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Abstract: 

Closed-loop artificial pancreas systems have recently been proposed as a solution for treating stage 

I diabetes by reproducing the function of the pancreas. However, there are many unresolved issues 

associated with their development, including monitoring and controlling oxygen, immune 

responses and the optimization of glucose. All of which need to be monitored and controlled to 

produce an efficient and viable artificial organ, that can become integrated in the patient and 

maintain homeostasis. This research focused on monitoring oxygen concentration, specifically 

achieving this kinetically as the oxygen gradient in an artificial pancreas made of alginate spheres 

containing islet cells. Functional Nanoparticle (NP) for measuring the oxygen gradient in different 

hydrogel cellular environments using fluorescence-based (F) microscopy were developed and 

tested. By ester bond, a linker Pluronic F127 was conjugated with a carboxylic acid modified 

polystyrene Nanoparticle (510 nm). A hydrophilic/ hydrophobic interaction between the 

commercially available oxygen sensitive fluorophore with F127 results in Fluorescence-based 

Nano oxygen particle (FNOP). The in-house synthesized FNOP was calibrated inside electro 

sprayed alginate filled hydrogels and demonstrated a good broad Dynamic Range (2.73-22.23) 

mg/L as well as a Resolution of -0.01 mg/L with an accuracy of ± 4%. The calibrated FNOP was 

utilised for continuous measuring of oxygen concentration gradient for cell lines RIN-m5F / HeLa 

for more than five days in alginate hydrogel spheres in vitro. 
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1. Introduction: 

According to the world health organization, diabetes is one of the top fifteen leading causes of 

death in the world for the year 2002, though it is projected to be in 7th position by 2030 [1], but 

currently in 6th position and accounted for approximately 1.6 million deaths in 2015. There was 

approximately a 50% increase in death due to diabetes from 2000 to 2012. This disease still 

urgently requires medical therapies to tackle the fatalities and to deliver cost effective strategies 

for the detection and treatment of the disease. It is necessary to develop techniques which can 

detect, monitor and cure the disease.   Currently there are a number of technologies which can help 

to tackle the effects of diabetes and the development of bio-artificial pancreas is one strategy with 

promise by providing insulin production and release [2]. 

To produce a bio artificial pancreas, Beta cells are encapsulated in biocompatible material, 

cultured in vitro and then injected into patients [3]. Theoretically the cells in the encapsulated 

material will respond accordingly to the glucose level [4]. A major limiting factor in the 

development of the artificial pancreas is the optimization of encapsulation. The encapsulation 

material must defend the cells within from the host immune response, allow the release of 

exogenous factors produced by the encapsulated cells, and provide for the necessary mass transport 

exchange of nutrients, oxygen and other factors that are essential to maintain the encapsulated cells 

[5, 6]. Therefore, the material must act as a selectively permeable barrier. The size and composition 

of the encapsulating material or hydrogel is also a critical factor in the performance of the artificial 

pancreas. In the work by Vegas, A. J et.al [7], the sizes of alginate spheres were varied in the range 

of 0.5mm to 1.5mm and it was observed that the 1.5mm modified alginate spheres were 

advantageous in terms of reducing immunological responses when compared to 0.5mm sized 

spheres. However, the oxygen distribution across the larger sphere varied with few cells remaining 
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inside the centre of the sphere [7]. In this research the oxygen distribution within spheres has been 

evaluated. Different concentrations of calcium and strontium gelated alginate spheres were utilised 

as the cell carrier and the hydrogel sizes were in the range 700-1000 µm in diameter. 

Primary human derived donor cell encapsulations have proven efficacy in terms of diabetes 

control, there is a shortage of donor cells for socioeconomic reasons. To address this issue of a 

shortage of donor cells, some groups are encapsulating embryonic stem cells in hydrogels, and 

differentiating the cells [8]. The physiological balance of oxygen, pH, and glucose levels in and 

around the hydrogel are key parameters in controlling the differentiation [9]. In particular, oxygen 

concentration plays a key role in the initial survival of encapsulated cells [10-12]. Deriving 

information regarding levels of oxygen concentration inside the material in a high spatial and 

temporal distribution will permit the synthesis of new material systems where cell growth and 

performance can be enhanced [13].  Potentially real time monitoring of oxygen levels can be 

achieved by fluorescent technologies. 

The first oxygen sensing mechanism by fluorescence was demonstrated by Kautsky in the early 

20th century [14], the first fluorescence system with an integrated UV source was developed in 

1968 by Bergman [15].  A wide variety of fluorophores [16] like organic probes, metal-ligand 

complexes, and luminescent nanomaterials make this technique versatile. Metal-ligand complexes 

have a longer lifetime, and large stoke shift and are more stable when compared to organic probes. 

In metal-ligand complexes, Ruthenium-based oxygen sensing is the most studied and widely used 

fluorophore because of its wideband excitation (400-480 nm) and large stoke shift, resulting in an 

emission region of >610 nm. The importance and working principle of the fluorescent responsive 

ruthenium dye were explained by Mills. A and M.P. Coogan et al [17, 18]. Based upon data derived 

from previous reports a hydrophobic fluorophore of the ruthenium-based metal-ligand complex 
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was selected for our sensing application. To avoid the photo-bleaching effect of the fluorophore, 

a suitable substrate material has to be chosen and this provided broad adaptability to the specific 

needs [19]. A fluorophore can be tethered or encapsulated onto a substrate material [20] and it can 

be in the form of a thin film or particle. Within this paper, data is presented which provides 

evidence that the particle-based approach can provide spatiometric concentration gradient 

information from inside an encapsulated material for 3D tissue culture applications. The 

advancement of nanomaterial technology and their application in biocompatibility has huge 

potential in optimizing the design and of substrate materials and controlled culture conditions to 

induce specific forms of cell responses. [21, 22]  

Previous work has successfully demonstrated the encapsulation of fluorophores in a nanoparticle 

for intracellular imaging [23], but very few works utilized these sensors for material optimization, 

via monitoring of selected parameters within a hydrogel environment that provides real time 

information regarding optimal environmental conditions that are required to ensure efficient cell 

function [24]. Previous studies have utilized commercial sensors [25] which are not suitable for 

the new generation of additive manufacturing techniques due to their large feature size of sensors 

which may affect toxicity and biocompatibility for a wide range of cellular phenotypes [26]. To 

address these issues small feature Oxygen sensors, with easy calibration, and reduced photo 

bleaching must be designed and tested.  The objective of this research was to fabricate 

nanoparticles that have the ability to sense a range of oxygen concentrations by binding optical 

responsive fluorophores on to them and employing these sensors in 3Dimensional cellular 

conditions.  

2. Materials and Methods: 

2.1 Materials and Reagents 



6 

 

Polystyrene Nano beads with surface modified by carboxyl groups (Thermo SCI-ENTIFIC, 

W050C), Pluronic F127, (3-Aminopropyl) triethoxysilane, Strontium chloride, Calcium chloride 

dehydrate, Alginic acid sodium salt (Sigma Aldrich), Ru (dpp) 3Cl2 (C72H48Cl2N6Ru) (Fluka) ( 

excitation at 470-490 nm and emission at 613 nm), HeLa cell lines, RIN-mF5 cells lines, Culture 

well gaskets (Grace Bio Labs), Cell culture Media Gibco™ RPMI 1640 Medium 1x, Gibco™ 

DMEM 1x ,SPl life science culture flask, Hamilton syringe (25ul), KD scientific syringe pump, 

Nitrogen and Oxygen gas cylinders (10 L), Oxygen meter (Hanna Instruments 98193), KUBOTA 

centrifuge 3700, MIKRO 200R centrifuge, SPELL MAN voltage controller (9 W, 30 kV | 

CZE1000R), JEOL JSM 6610 SEM, Zeiss LSM 780 Confocal Microscope - Inverted Microscope 

were employed in this study. 

2.2.1 Synthesis of Functional Nano Oxygen Particles 

FNOPs were fabricated using the process in fig. 1A.  0.5ml (100mg/ml) Polystyrene Bead (PSB) 

solution was centrifuged at 8000 rpm for 10 minutes to extract the PSBs from the Sodium azide 

solution. To obtain pure PSBs a purification step was repeated in twice, DI water was mixed with 

PSBs and centrifuged at 8000 rpm for 10 minutes, and the supernatant was removed as well as the 

samples were mixed with DI water and centrifuged for a second time. The supernatant was 

removed and DI water was added to make a final solution of 1ml PSB solution. Pluronic F127 

(0.1g/1ml of PSB) (a triblock copolymer), poly (propylene oxide) (a central hydrophobic polymer), 

and poly (ethylene glycol) (PEG, hydrophilic ends) were employed and attached to the surface of 

PSB by an esterification process, 1 mg of Oxygen-sensitive red fluorescent molecule Ru (dpp) 

3Cl2, (C72H48Cl2N6Ru) (Fluka, excitation at 470-490 nm and emission at 613 nm), was attached 

to the structure of a hydrophobic polymer Pluronic F-127 [27]  
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Figure 1. (A) Schematic illustration of FNOP (B) SEM image of PSBs after surface modified with 

carboxylic functional group. (C) SEM image of PSBs after F127 grafted. (D) Comparison of FTIR 

Transmission spectrum of B and C (E) Fluorescence image of FNOPs  

in ethanol and ultra-sonicated for at least 30 minutes to form functional FNOPs by hydrophobic 

interaction. Functional FNOP particles were washed with sterile DI water by centrifuging the 

sample at 8000 rpm for 10 minutes, the supernatant was removed. Finally, 1ml of sterile DI water 

was added to the washed FNOP. The final Functional FNOPs were stored in a dark and dry place 

at room temperature for further experiments. To ensure spatiometric dispersion of particles 

throughout the suspension and to avoid aggregation because of electrostatic effects a centrifugation 

of FNOP stock solution at low speed of 1100 rpm for ten minutes was introduced prior to use in 

calibration and sensing experiments. 

Nanoparticles were visualized using Scanning Electron Microscopy (Fig. 1 B and C). The 

corresponding FTIR image (Fig 1D), suggested that the room temperature esterification process 

for two hours was successful in attaching PSB particles with Pluronic F127 and corresponding 



8 

 

fluorescence image (Fig 1E) of functional Nano oxygen particles with excitation of 470 nm and 

emission >610 nm.   

2.2.2 Hydrogel Preparation 

2.2.2. A Preparation of alginate solution 

A sterilized 5 wt. % alginate solution was prepared using Alginic acid mixed with DI water on 

a magnetic stirrer for 12 hours at 500C. The prepared solution was kept for sterilization in an 

autoclave and stored in 40C until required. The hydrogels 5wt. % alginate was mixed with filtered 

culture media to make a 3 wt. % solution. 

2.2.2. B Electrospray technique 

The hydrogel spheres were prepared using electrospray technique [28]. Sterilized alginate 

solution was loaded into a Hamilton syringe (25ul) (Fig 2A). The positive terminal of a high 

voltage power supply (5-7KV) (SPELL MAN voltage controller) was connected to the needle of 

the syringe and the ground terminal was applied to a metal container loaded with either Strontium 

chloride (0.1M SrCl2) or Calcium chloride (0.1M Calc2) for the polymerization of alginate 

(concentrations optimized based on data derived from experiments described in section 2.2.7). The 

polymerized alginate hydrogel spheres were collected and further used for calibration and 

validation experiments. The hydrogel spheres were imaged with a confocal microscope and the 

structure of half spheroid and the sensor distribution inside hydrogel (Fig. 2B) which was taken 

with the aid of confocal microscope with a total z-axis of 400 µm in step size of 6 µm.  

Equipment was sterilized by spraying 70% ethanol and kept under UV irradiation for at least 2 

hours before the experiment. For measuring the oxygen concentration within cellular 

environments, the 3 wt. % alginate was mixed with the RIN-m5F/ HeLa cell lines in a 
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concentration of 2.00106 (cells/ ml ) / 5.00106  ( cells/ ml) for further generation and testing of 

hydrogels. 

A MOXI Z Mini Automated Cell Counter Kit, US Version was used in measuring cellular 

concentration. In 1ml final volume of PBS washed trypsinzed cell a 75ul of cell solution is loaded 

onto the cell counting cassette and corresponding cellular concentrations were noted. 

 

Figure (2A) Electrospray technique in generating hydrogels (2B). confocal imaging of generated 

hydrogels with FNOP sensor. 

2.2.3 Calibration of oxygen 

A glass container filled with DI water was used for calibration, as shown in fig. S1a. The 

containers contain 3 inlets for input of oxygen and nitrogen gases, as well as inserting the oxygen 

meter (Hanna Instruments 98193) which was used to monitor dissolved oxygen. One gas outlet 

was fitted with the rubber lid for free flow of gases into the chamber [29].  

For calibration of oxygen in a hydrogel sphere, the alginate solution was mixed with 10 to 20ul 

of FNOPs and stirred for 5 minutes using a magnetic stirrer and then the hydrogels of size ~750 
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µm were generated by using the technique as specified in section 2.2.2.B. The generated hydrogels 

were collected and pipetted evenly on to the well gasket filled with alginate. The glass slide with 

alginate hydrogels was placed in the water-filled container and monitored under the microscope.  

For calibration in DI water, the FNOP particles were pipetted onto a modified glass substrate 

with the 3-Aminopropyltrimethoxy silane treated and attachment of PSBs were done by 

attachment of leftover carboxylic acid group on PSB to the amine functional group forming the 

amide bond.  

2.2.4 Cell Culture 

All cultures were maintained in 5% CO2, 95% air, and at 370C 

2.2.4. A HeLa cell lines 

HeLa cell lines, were purchased from Bio resource Collection and Research Center (BCRC) and 

grown media consisting with Gibco™ DMEM 1x with   10%   foetal   bovine serum (FBS) 

(GIBCO),  1% penicillin – streptomycin (AppliChem). 

2.2.4 B RIN-m5F cell culture 

RIN-m5F cell lines, an islet beta cell, was purchased from Bio resource Collection and Research 

Center (BCRC) and grown media consisting with Gibco™ RPMI 1640 Medium 1x, 10%   foetal 

bovine serum (FBS) (GIBCO), 1% L glutamine (200 mM Solution, GIBCO), 1% penicillin – 

streptomycin (AppliChem). 

2.2.4 C Cell staining 

2.2.4 C.A Hoechst 

5ug/ml of Hoechst was dissolved in PBS solution and for each cell culture flask 2ml stain 

suspension was added and incubated for 30 minutes. The stained cell flasks were washed with PBS 

to remove unbounded Hoechst.  Hoechst labelled cells were trypsinzed and resuspended into the 
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appropriate concentrations for incorporation into the hydrogel experiments. RIN-m5F stained with 

Hoechst (Fig.S2a). 

2.2.4. C.B Calcein AM Viability Stain 

In initial experiments, before the encapsulation of cells into hydrogels, cells were stained with 

Hoechst, Hoechst intensity could not accurately determine cell viability, as the intensity decreased 

with time (Fig.S3) and detection of the Hoechst signal is compromised by background staining 

and noise, (Fig.S4). To analyze cellular viability, Calcein AM was used at regular intervals, using 

a batch processing technique for cellular viability in RIN-mF5 cells in hydrogels. A 1ul of Calcein 

AM stock solution (1ug/1ul) was dissolved in 1ml of FBS free medium and 200 µlof the dissolved 

or working solution was taken and used in a batch process by adding into each well of a 96 well 

plate. Insulin cells stained with Calcein AM in 10 ml T75 flask (Fig.S2b). 

2.2.5 Toxicity 

The FNOP particles were characterized for toxicity, with a varied concentration range (10µl/ml 

to 50µl/ml in a step size of 10µl/ml ) of  Nanoparticles  were cultured in contact with 1.14×105 

Hela cells in 10 ml T25 flask for 8 days and obtained the optimized concentration of 10-20 µl of 

FNOPs as shown in Fig.S5. 

2.2.6 Analysis 

 2.2.6 A.  Image processing 

The fluorescence intensities of the FNOPs were acquired by a camera through an optical 

microscope (OM) with the help of Cam-ware and analyzed by image software (Image J). The 

colour images were converted into 32 bit black and white images.  

With the aid of Calcein AM staining, the cellular density inside the hydrogel was calculated.  

This was achieved by subtracting the background from the positive colour cellular images (positive 
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Calcein stain) and then converting the images to grayscale.  Threshold levels were adjusted for 

images to separate the background pixel intensity form the foreground pixel intensity and the 

number of the particles with suitable pixel size (within the size of cells) were turned in to a binary 

image, measured and plotted. 

2.2.6 B. Statistical Analysis 

To measure the oxygen concentration, an average of 10 FNOP intensities were analyzed for 

every hydrogel image. To measure a cellular density, 3 hydrogels stained with Calcein AM were 

analysed and the average value was used as the reference value, and corresponding standard 

deviation values were plotted as error bars. For curve fitting processes in analyzing graphs, the 

origin was used. 

2.2.7 Hydrogel as a scaffold  

 To evaluate the effect of different concentrations and type of gelling agents on cell viability a 

series of screening experiments were conducted. RIN-m5F cells (Fig.S6a) and HeLa cells 

(Fig.S6b) were cultured in contact with the five different hydrogel test conditions by seeding 

1.0×106 cells per well in a 6 well plate, 3wt % alginate solution, 100mM Calcium chloride, 

100mM strontium chloride solution and alginate (3wt %) solution was gelated with Calcium 

chloride and Strontium chloride to form a thick substrate. In optimizing the molar concentration 

of CaCl2 and SrCl2 a range (10mM to 450mM) with a step size of 50mM were tested and better 

gelation was observed at 100mM concentration, this was used for optimized electrospray 

generation of hydrogels. 

In Fig. S6a, RIN-m5F cells were cultured for 7 days without any media change, this provided 

for the observation of cells under the control label (cells with media) were showing a feature of 

floating (from 60 hours) which is a characteristic nature of Insulin cell. Though the concentration 
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(100mM) of calcium chloride and strontium chloride was high, however after generating 

hydrogels, the hydrogels were washed for 3 times with the respective culture medium to ensure 

that leftover calcium or strontium ions should not affect the cells in hydrogels. The thin film 

approach of 3wt. % alginate solution cured with calcium and strontium ions (figure S6a) clearly 

shows good growth of cells. The calcium gelated alginate scaffold substrate demonstrated more 

effective growth of RIN-m5F cells when compared to strontium gelated alginate within a thin film 

structure (Fig. S6a). Though the control experiments showed some progressive results in the 

approach to optimizing the hydrogel-based approach for the RIN-m5F cell culture. The parameters 

obtained cannot be completely relied on from this approach to be applied further for the 3D 

spheroid model, because the structural and environmental conditions differed 2D model to 3D 

model. 

2.2.8 SEM sample preparation 

For imaging the FNOP sensors, the sensors were pipetted onto the Silicon wafer and then dried 

under room temperature, coated with chromium, for about 10 to 15 nm for visualization under 

SEM. 

For imaging the hydrogels, alginate was pipetted onto the glass slide and then gelated with calcium 

and strontium ions. The gelated hydrogels were dried under room temperature and the dried sample 

was placed onto sample holder with the aid of carbon tape and coated with chromium for about 10 

to 15 nm for visualization under SEM. 

 

Results and Discussion: 

 The optimized FNOP/cell concentration was used to assess the effect of culturing FNOPs in 

contact with RIN-m5 cells and no toxic effect was observed. Results from this initial study also 
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demonstrated that FNOPs were able to enter inside or attach to the HeLa cells whereas no 

observable FNOP particles were inside the Insulin cells (Fig.S7a, b). 

As specified in section 2.2.3 and 2.2.6 the calibration of oxygen was carried out inside the 

hydrogel (fig.3A, B, and C) and in DI water (fig.S1b). The calibrations inside hydrogels were 

performed at 170C which was different from the room temperature, this was due to purging 

nitrogen gas into the chamber which decreased the water temperature (measured with temperature 

sensor embedded in the oxygen meter). The oxygen concentration was varied and obtained a 

measurable range of (2.73-22.23) mg/L, Percentage of oxygen saturation was correlated to the 

dissolved oxygen (DO) in mg/L by multiplying a factor of 0.69 in measuring DO levels at 370C, 

which is approximated by using Winkler method. In DI water the synthesized FNOPs showed 

good approximation to the characteristic nature of stern Volmer relation [11].  In addition to the 

calibration, the FNOP particles were observed in the hydrogel environment for 7 days and the 

intensity of calibration was measured at regular interval (Fig. 3D). The hydrogels were maintained 

in the same culture environment as standard cell culture. The curve clearly showed that there was 

no significant deviation in the intensity of FNOPs. This suggests that there was negligible photo 

bleaching. To minimize the effect of saturation of pixel intensity, the camera exposure time was 

optimized to 1 sec exposure as it had the least photo bleaching effect when compared to 2, 3, 4 and 

5 sec camera exposure time. 
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Figure (3A). Bright field view Hydrogel (3B). Fluorescence intensity of FB-FNOP at particular 

oxygen concentration (3C). Calibrated curve for different oxygen concentrations 3D. Intensity vs 

Number of hours for photo bleaching effect [Scale bar-200 µm]     

Each hydrogel was generated with 700-800 RIN-m5F cells by considering 2.00106 cells/ ml in 

alginate solution. The generated hydrogels were collected using pipette tips and were distributed 

evenly in the 96 well plate culture chamber, incubated at 370C, 5 % CO2 and were monitored.  The 

fluorescent image for sensing oxygen and RIN-m5F cellular viability was taken at respective time 

intervals (fig. 4.A, B, and C). 

 

A. B. 

C. D. 
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Figure (4A) Culturing of RIN-m5F in CaCl2 gelated Hydrogel Red colour indicated the FNOP 

(4B). Culturing of RIN-m5F in CaCl2 gelated Hydrogel Red colour indicated the FNOP (4C). 

CaCl2 (Top) and SrCl2 (bottom) gelated Hydrogel environment of RIN-m5F stained with Calcein 

AM.  [Scale bar-350 µm] 

 

The oxygen levels within hydrogel were measured by using a reference calibration (Fig. 5A). 

Oxygen gradients in both hydrogels showed the upward curvature and position of change can be 

correlated with respective time constants deduced from figure 5B, there was an exponential decay 
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in cellular density with time. By using a mathematical curve fitting technique, time constants for 

CaCl2 and SrCl2 hydrogels were approximately 120 and 45 hours respectively.  

From the Fig.4C, 5A and 5B, it was observed that RIN-m5 cells were more viable in calcium-

based hydrogels when compared to Strontium based hydrogels. Within the hydrogels, the exterior 

parts had greater viability compared to the interior parts or necrotic parts, this was due to the 

oxygen gradient in the CaCl2 hydrogel environment of RIN-m5 being nearly an inverse square to 

the radial distance. 

For insulin cells, the normalized intensity levels, in a CaCl2 gelation hydrogel were divided into 

three regions (Centre, Interior, and Exterior), the corresponding intensity was plotted with time 

(Fig.6) Oxygen concentration was inversely proportional to intensity. By correlating the Initial 

normalized average intensity with Oxygen a difference of approximately 1.22 mg/L and 0.61 mg/L 

was observed with the exterior region and interior respectively with a centre region, and difference 

of 0.54 mg/L was observed between interior and exterior regions.  

 

 

 

 

 

 

 

Figure (5A). Oxygen gradient in SrCl2 and CaCl2 gelated Hydrogel environment of RIN-m5F 

cells (5B) Cellular density of CaCl2 andSrCl2 gelated Hydrogel environment of RIN-m5F stained 

with Calcein AM  

A
. 

B
.
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Figure (6A). FNOP distribution in centre, interior and exterior parts [Scale bar-100 µm] (6B). 

Normalized intensity inside RIN-m5F in one plane of Hydrogel  

 

For Hela cells inside the 3D hydrogel environment, the gradient of oxygen with time (Fig. S4) is 

approximated with O2 CaCl2 (mg/L) = 8.71 ∗ (𝑒(
−𝑡

1.93
)) + 3.10  , O2SrCl2 (mg/L) = 6.36 ∗

(𝑒(
−𝑡

1.32
)) + 2.50 this showed similar exponential decay but differed in the initial level of oxygen 

concentration with 2.95 mg/L. As a function of time, the difference in hydrogel oxygen gradient 

follows a linear curve with a negative slope of 0.68 mg/L.  

A confocal image at 84 hours of HeLa cellular hydrogel environment is shown in Fig.7, the plot 

showed the normalized gradient of oxygen concentration for CaCl2 and SrCl2 gelated hydrogels 

from the exterior (~0 µm) to centre (~350 µm) of the hydrogel. The gradient followed the 

sigmoidal curve 𝐴2 + (𝐴1 − 𝐴2)/(1 + 𝑒(
𝑥−𝑥0

𝑑𝑥
)) in both the hydrogels, and respective values with 

standard deviation were shown in Table 1. The strontium gelated hydrogel exhibited a wide range 

of uniform values and it reached half the value at 295.38± 4.91 µm within the range for the calcium 

A
. 

B
. 
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gelated hydrogel which reached 169.04 ±1.71 µm. A slope of -2.1(a.u. /mm) and -1.5 (a.u. /mm) 

was observed in SrCl2 and CaCl2 hydrogels. The diffusion coefficient of oxygen in HeLa cells 

incubated in hydrogel was calculated by using the Fick’s law of diffusion equation in considering 

the rate of time equation and concentration gradient and it was found to be 1.3 * 10-9 ( m2/sec)  

which is in the range of the nominal value inside polymeric hydrogels [30-36] . The Oxygen (based 

on normalized intensity) spatial distribution of CaCl2 and SrCl2 hydrogels without cells (figure 

S9) demonstrated there was not a large difference in spatial difference in CaCl2 hydrogel with and 

without cells, while the in SrCl2 (fig.7b) showed the slow decrease of the oxygen gradient inside 

hydrogels, up to 250 µm from the exterior, which suggested there were more viable cells in SrCl2 

compared to CaCl2. This difference is accounted due the reactivity and gel strength with the 

calcium and strontium ions and is according to the ratio of mannuronic acid (M) and guluronic 

acid (G) of alginate [37]. The different mechanical strength of extra cellular matrix results in varied 

behaviour of cancer cell proliferation rate, with higher mechanical strength of extra cellular matrix 

results in relatively higher proliferation [38]. The current experiments were performed with M/G 

ratio of 1.56 in alginate, which results in slower gelation rate with strontium when compared to 

calcium. The decrease in gelation rate exhibit the higher mechanical strength and uniformed 

structures compared to the faster gelation rate [39, 40].  Calcium and Strontium gelated hydrogel 

SEM images were shown in (Fig. S8 A and B).  

By observing temporal progression and Live and Dead Cell imaging in the hydrogel environment 

of Insulin cells, we found that the CaCl2 hydrogels showed a viable micro environment compared 

to SrCl2, whereas for Hela cells on the basis of both temporal and spatial oxygen distribution 

suggested SrCl2 was a more suitable environment. 
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In addition to the material suitability to the cellular environment, the application of these highly 

temporal and spatial resolved monitoring approaches will greatly enhance the design efficiency in 

producing suitable 3D microenvironments, particularly in additive manufacturing and for different 

cellular applications. 

Table: 1 spatial gradient of Oxygen inside Hydrogel with respect to sigmoidal curve  

Hela Cell_3.5 day [ 𝐴2 + (𝐴1 − 𝐴2)/(1 + 𝑒(
𝑥−𝑥0

𝑑𝑥
))] 

 CaCl2 SrCl2 

 Value S.D Value S.D 

A1 1.02476 0.00457 0.99136 0.002 

A2 0.6686 0.00266 0.65026 0.01702 

x0 169.04171 1.71293 295.388 4.90776 

dx 56.77374 1.83943 40.80 2.978 

 

 

 

 

Figure.7 Oxygen gradient in CaCl2 (A) and SrCl2 (B) gelated Hydrogel environment of Hela Cells 

on 3rd day using confocal microscopy. 

B. A. 
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Conclusion: 

The development of a functional nanoparticle-based oxygen sensor system that can be used to 

measure the oxygen concentration in 3D hydrogel tissues cultures using fluorescence microscopy 

has been demonstrated.  RIN-m5F, and HeLa cell lines were successfully cultured with FNOPs in 

calcium and strontium chloride gelation hydrogel environments. In the experiments, the size of the 

hydrogels generated using an electrospray technique was in the range of 700-1000 µm in diameter.  

The oxygen concentration gradient tested the cellular viability within the calcium- and strontium- 

based gelation for RIN-m5F and Hela cells and demonstrated that the two different gelation ions, 

results in a significant difference in oxygen gradient in 3 Dimensional hydrogel environments and 

various suitability for different cell types.  To address the need to mimic the natural environment, 

the fabricated FNOP sensor material with the information of high spatial and temporal distribution 

of oxygen should be extremely valuable in monitoring the 3D tissue material for cellular viability, 

which will increase the ease and rapid generation of complex and or larger hydrogel structures. 
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