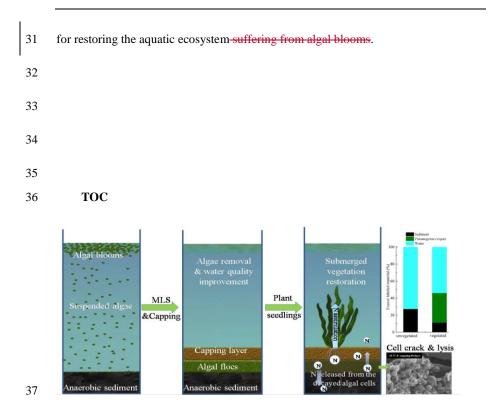
1 <u>Switching Transforming</u>-Harmful Algal Blooms to Submerged Macrophytes by

2 Lake Geo-Engineering Methods


- 3 Honggang Zhang[†], Yuanyuan Shang[†], Jun Chen[†], Gang Pan^{*, †,‡}
- 4 [†] Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences,
- 5 Beijing 100085, China
- 6 [‡] School of Animal, Rural and Environmental Sciences, Nottingham Trent University,

1

- 7 Brackenhurst Campus, NG25 0QF, UK
- 8 * Corresponding author: gpan@rcees.ac.cn (GP)

9

10	ABSTRACT: The switch of dominance from algae to macrophytes is crucial for
11	sustainablsustainability of lake ecosystemse management of lakes subject to human-
12	induced eutrophication. The transformationtransition of algal blooms into macrophytes
13	can transfer excess algae-sourced nutrients-into healthy food chain, thereby mitigating
14	eutrophication. This process, however, hardly-rarely occurs in an-established_algal
15	bloom <u>dominated</u> waters. Here, we examined a hypothesis <u>under different temperatures</u>
16	that the transtransition formation of algal bloom into macraphyte macrophyte can be
17	facilitated by using in-lake geo-engineering methods, <u>throughwhich can</u>
18	reestablishing the growing conditions of macrophytes and subsequentlytriggering
19	their uptake of algal-sourced nutrients. The results showed that flocculation-capping
20	could not only remove Microcystis aeruginosa blooms from water column and but also
21	facilitate algal the algae's decomposition and incorporation into submerged macrophyte
22	(-Potamogeton crispus) biomass at different temperatures after 60 days of controlled
23	experiment. The Chl-a concentrations could be significantly reduced after using
24	flocculation-capping technology. –Photosynthesis and respiration of <i>M. aeruginosa</i>
25	cells were-obviouslyinhibited following flocculation and cell autolysis occurred in
26	the treated systems compared with the control. The labeling test using $^{15}\mathrm{N}$ revealed that
27	between 3.3% and 34.8% of Microcystis-derived nitrogen could be assimilated 3.3%
28	and 34.8% by <i>P. crispus</i> under <u>at</u> 8 $^{\circ}$ C and 25 $^{\circ}$ C, respectively , throughout the
29	experiment. The study demonstrated that <u>flocculation-capping geo engineering</u> method
30	can facilitate the switch from algal to macrophyte-dominateds state, which is crucial

39 INTRODUCTION

40 Harmful algal blooms (HABs)-spread__in natural waters throughout the world-and 41 pose serious threats to the aquatic ecosystem, environment and public health.^{1, 2} The 42 formation of algal blooms restricts the light penetration into the bottom water, which 43 and then could suppress the growth of _- results in the loss or degradation of-submerged 44 macrophytes due to the decreased photosynthetic rates.^{2, 3} It is well known that 45 reduction of nutrient concentrations is often insufficient to restore the vegetated clear 46 state even at substantially lower nutrient concentrations where levels than those at when the massive-degradation of the vegetation occurred.4, 5 Some studies suggest that 47 3

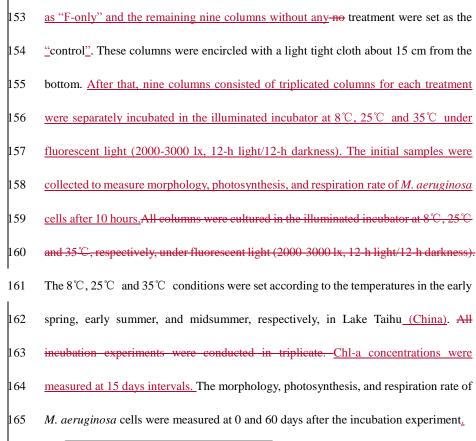
48	improving the submerged macrphytes growing conditionrestoration of clear water
49	canto trigger the growth of submerged macrophytes, which cause the clear state to be
50	self-stabilizing <u>of</u> self stabilizing in alternative the to the undesirable situation,
51	thereby recovering the ecosystem resilience. ^{6,7} However, this is thought to be difficult
52	to achieve in an <u>established</u> alga <u>el-dominated</u> bloom waters in where
53	photosynthesis and seed germination in submerged plants are usually suppressed by
54	due to its stable situation including low reduced transparence and low dissolved
55	oxygen. ⁷

56 Over the past few decades, many efforts have been made to reduce the amount of 57 phosphorus or to decrease the abundance of algal blooms directly in the water bodies.8 58 In-lake geo-engineering methods have preferably tackled both controlling 59 eutrophication and mitigating HABs by adding solid-phase P sorbents9 or other metal 60 salts¹⁰, chemical substances¹¹ and algaecides¹² into waters. However, the side-effects 61 from the use of non-biodegradable metal salts or other chemical substances become increasingly concerned.^{10, 13} Some studies eliminated the HABs out of water column 62 through flocculation and sedimentation with the modified clay/soil.¹⁴⁻¹⁶ Considering 63 64 that a substantial proportion massive part of P in water is mainly stored in algal cells 65 during algal bloomsthe algae growing season,17 the modified clay/soil methods can 66 speed up the algal blooms together with nutrients inside the cells settling onto sediment in environmentally-friendly way.^{16, 18} However, many settled algal cells may tolerate 67 68 the low light at lower temperatures and survive on the lake bottom in a certain period,

69	which may be the "seed bank" of thealgal blooms in the following years. ¹⁹ Otherwise,
70	the release of excess nutrients form the decayed algal cells together with oxygen
71	consumption may sustain the eutrophic status of lakes. ²⁰ All these factors may favor
72	algal blooms which seriously hinder the reconstruction of the submerged macrophytes,
73	especially for their initial germination or introduction period.

74 Actually, the The settling HABs in the sediments can also become major sources of 75 nutrients for the growth of submerged macrophytes once the macrophytes can be 76 reconstructed successfully, thereby transferring excess algae-sourced nutrients into 77 food web.21-23 Unfortunately, amounts of HABs sedimentation is a slow and 78 uncontrolled process in natural waters duringby the consequences of bloom die-off or 79 overwintering.^{24, 25} Thus the transformation of HABs into macrophytes cannot occurs 80 effectively in an established algal bloom waters, which aggravates the difficulty of lake 81 transformation from dominance by algae to macrophytes. Capping with natural soils 82 after settling HABs has been suggested to prevent algal floc/sediment resuspension and 83 reduce nutrient release into the water column.26 In addition to enhancing the transparence and oxygen level in water column,²⁷ this make it possible to construct 84 suitable habitats for restoring submerged macrophytes,28 in which deposited algal 85 blooms can be buried and decomposed under the capping layer. The reconstruction of 86 87 submerged vegetation, which is considered the most important for restoring aquatic 88 ecosystems suffering from serious eutrophication,²³ would be potentially facilitated by 89 utilizing the nutrients from both the decomposed algal blooms and sediment. The

90	redistributed nutrients can reduce the nutrient transfer into the water column and turn
91	them into the food chain via incorporation in plant biomass, and finally provide provide
92	opportunities to intercept and partially repair the brokennutrient biogeochemical
93	cycle. Some studies have found that reconstruction of submersed vegetation could be
94	facilitated by using modified soils methods floceulation, 27, 28 however, to our
95	knowledge, few studies have been reported to investigate the effects of such geo-
96	engineering methods on the nutrient transformation from an established algal blooms
97	to submerged macrophytes remain largely unexplored. Moreover, whether the switch
98	from algal bloom to macrophyte state in waters can be triggered by in-lake geo-
99	engineering method, if it is, the efficiency of nutrients derived from the algae that can
100	be used by the submerged vegetation need to be quantified.
101	In this study, the HABs in simulated water-sediment columns were treated by using
102	combination of modified soil and capping with natural soils. The morphology and
103	metabolism of the deposited algal cells in control, Flocculation-treated (F-only), and
104	Flocculation-capping-treated (F-capping) systems were investigated at 8°C, 25°C and
105	35℃ <u>different temperatures</u> , respectively. <u>The temperature 8℃, 25℃, and 35℃ were</u>
106	selected to simulate the stage of early spring, early summer, and midsummer in Lake Taihu,
107	where the dominant cyanobacteria appear in the surface water at the end of spring, bloom
108	during summer, and then sink onto the sediment during the late autumn and winter. The
109	assimilation of Microcystis-derived nitrogen by the submerged vegetation (i.e.,
110	Potamogeton crispus) was tracked using ¹⁵ N. We hypothesized that the flocculation-


111	capping technology could accelerate the removal of algal blooms from water, trigger
112	swift-death anddecomposition of the deposited algal biomass blooms in the sediment,
113	and thenfacilitate transference of the excess algae-sourced nitrogen_nutrients into the
114	submerged vegetation. The objectives of this study are to quantify the efficiency of
115	nitrogen transferred from algae into macrophyte biomass and to examine the synergetic
116	effects of the flocculation and capping treatment on switchingtransforming HABs into
117	submerged macrophytesvegetation at different temperatures. , and to quantify the
118	efficiency of nitrogen transferred from an established algal blooms into submerged
119	vegetation, and to explore the effects of temperature on both the dynamics of the algae's
120	morphology and metabolism and the assimilation of <i>Microcystis</i> derived nitrogen.

121 MATERIALS AND METHODS

122 Algae, soils, and flocculants. M. aeruginosa is a well-known freshwater bloom-123 forming cyanobacteria. The M. aeruginosa strain (FACHB-905) was obtained from the 124 Institute of Hydrobiology, Chinese Academy of Sciences, and cultivated in autoclaved 125 BG11 medium with 98% ¹⁵N as Na¹⁵NO₃ (Sigma-Aldrich) in the laboratory. Algal batch 126 cultures were maintained at 25° C $\pm 1^{\circ}$ C under cool white fluorescent light of 2000-127 3000 lx on a 12-h light/12-h darkness regimen in an illuminating incubator (LRH-250-128 G, Guangdong Medical Apparatus Co.Ltd., China). The BG11 medium with 98% ¹⁵N 129 as Na15NO3 (Sigma-Aldrich) was supplemented added in algal batch cultures on the 3 130 days before the algae were used for the assimilation experiment.

131 <u>Soil_The soil_</u>was collected from the bank of Lake Taihu (China), washed with

132	deionized water and dried for 10 h at 90 $^\circ$ C. The soils used for flocculation and capping	
133	were grounded and sieved through 180 meshes (<90 $\mu m)$ and 40 meshes (>380 $\mu m),$	
134	respectively. The chitosanChitosan (solids, C56H103N9O39, Qingdao Haisheng	
135	Bioengineering Co. Ltd., China) was dissolved by adding 100 mg of chitosan into 100	
136	mL of 0.5% HAc (1 g/L) and stirring until all chitosan was dissolved. To modify the	
137	soil, 100 ml soil suspension (100 g/L) was added to 300 ml chitosan solution (1 g/L).	
138	The mixture was prepared freshly and well stirred for each experiment. All the	
139	containers and materials were autoclaved together with BG11 medium.	
140	Algal biomass v ⁴ itality experiment. Algal cultures in the mid- to late-exponential	
141	growth phase were used. The experiment was conducted in 27 plexiglass cylinders with	
142	an inner diameter of 8.4 cm and height of 50 cm <u>(Figure 1 a)</u> . 1L bloom water (7. 293 -	
143	7.697×10^7 cells/mL) was filled into the columns and stable for 1 hours; 18 columns	
144	were then selected randomly for flocculation with modified soilsThe modified soil	
145	suspension was added to the bloom water and stirred by using a glass rod. The final	
146	concentrations of the modified soils in each column were consisted of 3 mg/L chitosan	
147	and 100 mg/L soil. The flocculated columns were kept standing for 3 hours to allow the	
148	algal flocs sedimentation, and then, (3 mg/L chitosan and 100 mg/L soil) and nine	
149	columns out of the flocculated columns were labeled "F-only". Three hours after	
150	sedimentation, 9 flocculated columns were covered with 1-cm-thick layer of natural	
151	soil and labeled "F-capping". The flocculation only columns labeled "F only" and the	
152	remaining-The nine- <u>flocculated</u> columns without capping treatment were labeled	
I	0	

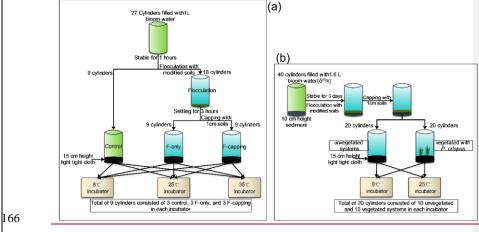


Figure 1. The conceptual diagram for the design of the algal biomass vitality

168	experiment (a) and nitrogen assimilation experiment (b).
169	-Chlorphyll-a (Chl-a): The algal water in the control and algal flocs in the treated
170	systems were siphoned out of the columns at 15 days intervals and filtered with a 0.45-
171	µm membrane. The flocs and membrane were extracted by acetone (90%) for 24 h at
172	<u>4°C and measured with a spectrophotometer.⁵</u>
173	Morphology: The samples were collected at 0 and 60 days and centrifuged at 6000
174	rpm for 3 min. The algal cells were pre-fixed with 2.5% glutaraldehyde for 4 h, washed
175	with phosphate buffer solution (centrifuged and then resuspended into the phosphate
176	buffer solution for 20 min, repeated three times), post-fixed with 1% osmium tetraoxide
177	for 2 h, and again washed with phosphate buffer solution. The washed samples were
178	dehydrated twice through a series of 30%, 50%, 70%, 85%, 95%, and 100% ethanol
179	solutions and dried with a vacuum drier. Completely dry samples were then mounted
180	on a copper stub, coated with gold, and examined with a SEM (S-3000N, HITACHI,
181	Japan).
182	Photosynthesis and respiration: The algal aggregates in the control and flocs in the
183	treated systems were gently siphoned at 0 and 60 days, added to the micro-breathing
184	bottle (4 ml), and cultured at 25° C $\pm 1^{\circ}$ C under cool white fluorescent light of 2000-
185	3000 lx with a 10-h light/10-h darkness regimen in the illuminating incubator. After
186	transferring sampling bottles into the incubator, photosynthetic and respiratory rates
187	were measured with a micro-respiration system (MRS, Unisense, Danmark). The O2
188	concentration was measured continuously for 60s every 2 min in each sample by an O ₂

189	microsensor within a whole culture cycle (i.e., 10-h light/10-h darkness regimen).
190	(Please see more details about the method in Supporting Information (SI)).
191	Nitrogen assimilation Assimilation experiment. After incubation, The the ¹⁵ N-
192	labeled <i>M. aeruginosa</i> cells were collected with a 30- µ m net and rinsed at least ten
193	times with deionized water to remove unassimilated ¹⁵ N-NO ₃ 15N-labeled algal cultures
194	were washed repeatedly with deionized water to remove unassimilated ¹⁵ N-NO ₃ . The
195	resulting $\delta^{15}N$ value of the labeled <i>M. aeruginosa</i> was $1072 \pm 13\%$ (n=2), and a certain
196	dosage of algae was used to form bloom water (7.293-7.697×10 ⁷ cells/mL). 40
197	columnsColumns with the same size as mentioned above were filled with 10 cm of
198	sediment (collected from Lake Taihu, China) and 1.6 L of bloom water and stabled for
199	3 days before the experiment (Figure 1 b). A 15-cm above the bottom of the column was
200	encircled with a light tight cloth to avoid the effects of ambient light on the sediment.
201	The sediments were capped with 1 cm of natural soil after flocculation with modified
202	soil. Half of the columns were planted with Potamogeton crispus seedlings after
203	capping treatment (vegetated systems), and the remaining columns remained
204	unvegetated. The total columns were divided into two groups and each group consisted
205	of 10 vegetated and 10 unvegetated systems. Each group (including unvegetated and
206	vegetated systems) was cultured in the illuminated incubator at $8^\circ C$ and 25 $^\circ C$,
207	respectively, under fluorescent light (2000-3000 lx, 12-h light/12-h darkness). <u>8 °C</u>
208	and 25 °C were set up to compare the <i>P. crispus</i> biomass and its assimilation of algal-
209	sourced N between germination and rapid growth period. Each treatment had 10
210	duplicates. Plant and sediment samples (the top 5 cm) were taken on the day of capping
211	(day 0) and on days 10, 17, 27, and 45 after capping treatment.; <u>The the samples</u> -taken
212	on day 0 were considered as controls. During each sampling event, two random
213	columns (treated as duplicates) were visited, and the entire plant biomass was harvested
214	from them.

215 The sediment and plants were homogenized, dried, and analyzed for stable nitrogen

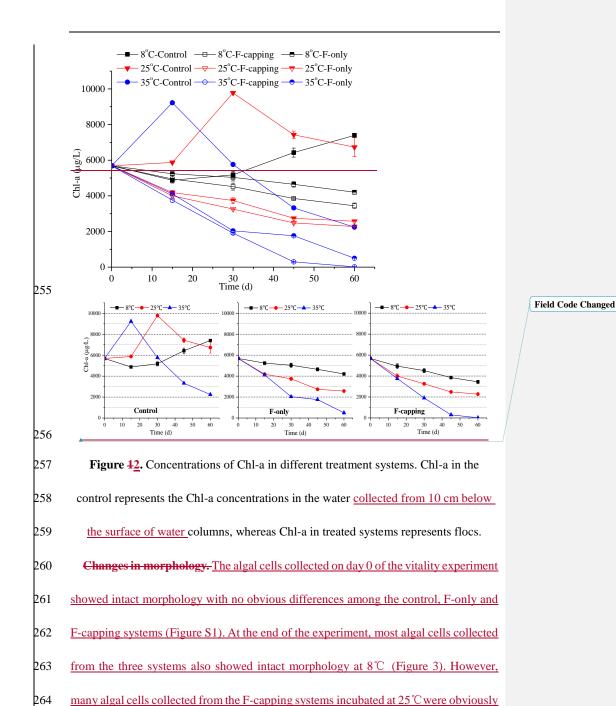
isotope ratio (¹⁵N/¹⁴N) using a Delta Plus Advantage mass spectrometer (Finnigan MAT)
connected to a Flash EA1112 elemental analyzer. Water samples were also analyzed.
¹⁵N abundance was expressed using the conventional delta notation against the
atmospheric nitrogen standard:

220
$$\delta^{15}N_{(\%)} = ({}^{15}N/{}^{14}N_{\text{sample}}/{}^{15}N/{}^{14}N_{s\,\text{tan}\,dard} - 1) \times 1000$$
 (1)

221 Moreover ¹⁵N data are presented as excess μ mol of ¹⁵N per gram of dry sample<u>(the</u>

222 <u>absolute amount of ¹⁵N incorporated in the plant</u>), calculated according to:²⁹

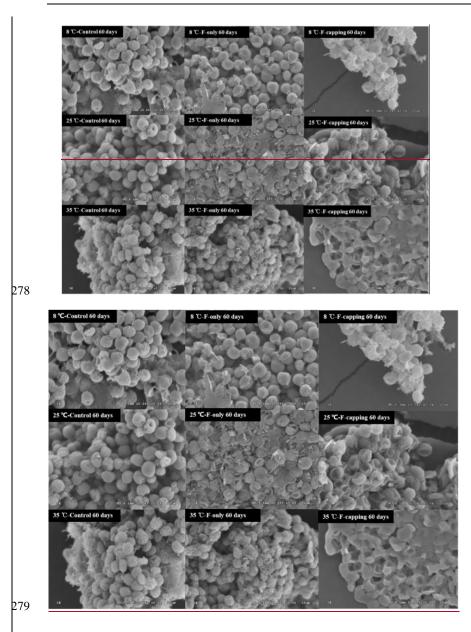
223
$$Excess {}^{15}N(\mu mol/g) = \frac{\mu mol \ of \ N \ in \ sample}{gram \ of \ dry \ sample} \times \frac{at {}^{9/15}N_{sample} - at {}^{9/15}N_{control}}{100} (2)$$

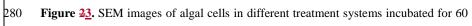

224
$$at\%^{15}N_{sample} = \frac{100 \times R_{air} \times (\frac{\delta^{15}N_{sample}}{1000} + 1)}{1 + R_{air} + R_{air} \times \frac{\delta^{15}N_{sample}}{1000}}$$
 (3)

The analytical error between repeated measurements was typically within $\pm 0.1\%$. where $at\%^{15}N_{control}$ represents the value on day 0, and $\delta^{15}N$ is expressed as an excess value relative to the atmospheric nitrogen ratio, $R_{air}=0.0036765$.

Statistical analysis. Mean value and standard error calculations and construction of graphics were-all__carried out using origin_Origin_8.0. Duncan's multiple range test was conducted to determine significant differences among different treatments using SPSS16.0 software, and the Pearson correlations among different parameters were also analyzed. A two-way ANOVA were used to compare Chl-a and assimilation of nitrogen between different treatment systems under different temperatures at each corresponding sampling point, with differences accepted at a significance level <0.05.

RESULTS

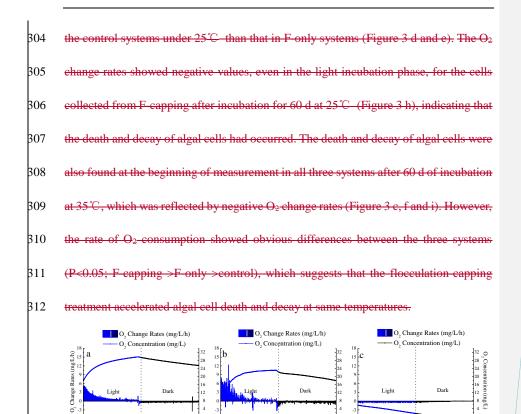

-00	
236	Algal biomass vitality experiment. Changes in Chl-a concentrations. The Chl-a
237	concentrations in the water from the control systems showed some increasing stages
238	during the experiment with the highest concentrations of 7397µg/L, 9778µg/L, and
239	<u>9224 µg/L at 8 °C, 25 °C and 35 °C, respectively (Figure 2). Whereas in the treated</u>
240	systems, the concentrations of Chl-a showed continuous declines at each temperature
241	in the following order: 8 °C -F-only >8 °C -F-capping >25 °C -F-only >25 °C -F-
242	capping >35 °C -F-only>35 °C -F-capping. Moreover, the higher water temperature
243	accelerated the decrease of the Chl-a concentrations in both the F-only and F-capping
244	treated systems (P< 0.05) (Figure 2). In the control samples, the concentrations of Chl-
245	a decreased before 15 days of incubation and then increased until the end of the
246	experiment at 8°C incubation (Figure 1), whereas the Chl a concentrations in the
247	samples incubated at 25 °C and 35 °C increased to peak values of 9778.4 and
248	9224.4µg/L on days 30 and 15, respectively, and decreased rapidly until the end of the
249	experiment. Compared with the control samples, the concentrations of Chl-a showed
250	continuous declines in the treated systems at all incubation temperatures in the
251	following order: 8°C-F only >8°C-F capping >25°C-F only >25°C-F capping >35°C-
252	F-only>35-C-F capping. A higher water temperature significantly accelerated the
253	decrease of the Chl-a concentrations in both the F-only and F-capping treated systems
254	(P<0.05) (Figure 1).
	12



indry argar cens concerca from the r-capping systems includated at 25 C were obviously

265 deformed and lysed compared with those collected from control systems. More

266	importantly, obvious cell autolysis occurred in the F-capping incubated at 35 °C
267	compared with those in control and F-only systems (Figure 3). The results also show
268	that the increasing temperature exacerbated the cell destruction in the treated
269	systems. The SEM images of algal cells collected on day 0 of the vitality experiment
270	showed no obvious differences among the control, F only and F capping systems
271	(Figure S1) in which intact cells were found at the beginning of the experiment.
272	- Most algal cells collected from the three systems sustained their normal
273	morphology at the end of incubation at 8°C - (Figure 2). Many algal cells collected from
274	the F capping systems were obviously wizened and cracked at $25^\circ\!\!\mathbb{C}$, whereas no
275	obvious changes in cell morphology were seen in the control and F only systems.
276	Especially in the F capping, obvious cell autolysis occurred at 35 $^\circ C$ (Figure 2). In
277	addition, the results also show that the increasing temperature exacerbated the



²⁸¹ days at 8° C, 25° C and 35° C, respectively.

282 <u>At the beginning of the experiment, Changes in photosynthesis and respiration.</u>

283	the M. aeruginosa cells collected from all the three systems could sustain their normal
284	photosynthesis and respiration which could be reflected by that the oxygen produced in
285	the light stage was sufficient to maintain algae's respiration during the dark phase
286	(Figure S2). The algal cells collected from both control and F-only systems still
287	sustained their photosynthesis incubated at 8° C and 25° C after 60 days, reflected by
288	the positive oxygen change rates (Figure 4 a, b and c, d). However, the photosynthesis
289	efficiency was eight times lower in the F-only systems at 25°C than that in control
290	systems. Although the cells collected from F-capping could sustain photosynthesis in
291	the light phase, the efficiency was much lower than those in control. It should be noted
292	that the O_2 change rates for the cells collected from F-capping incubated at $25{}^\circ\!C$
293	showed negative values even in the light incubation phase after incubation for 60 days
294	(Figure 4h), indicating that the death of algal biomass had occurred. The death and
295	decay of algal cells were found in all three systems after 60 d of incubation at 35° C,
296	which was reflected by negative O2 change rates (Figure 4 c, f and i). However, the
297	consumption rates of O ₂ showed significant differences among the three systems in the
298	order: (F-capping >F-only >control; P<0.05). These results indicated that the
299	flocculation-capping treatment accelerated algal cell death and decay. The M.
300	aeruginosa cells sustained their normal photosynthesis and respiration at the beginning
301	of the experiment (Figure S2). The algal cells collected from both control and F-only
302	systems sustained their normal photosynthesis and respiration after 60 days of
303	incubation at 8° C and 25° C, and photosynthesis and respiration were 8 times higher in

-6

¹⁸ 15 e

Light

Light

12 9

-6

¹⁸ 15 h

12 9 6

.6

12 14 16

Dark

16

O2 Change Rates (mg/L/h)

(lV-T/gm)

O2 Change Rates

313

d

15 g

Light

Field Code Changed

02 Concentration (mg/L)

Dark

12 14

Dark

14

.6 t

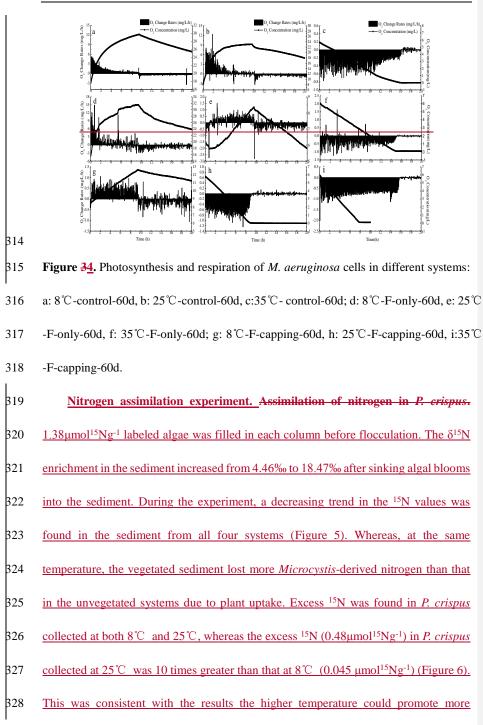
¹⁸ 15 f

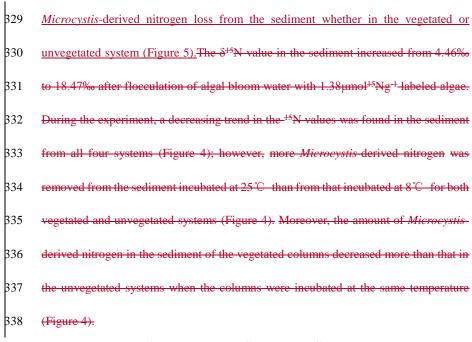
Light

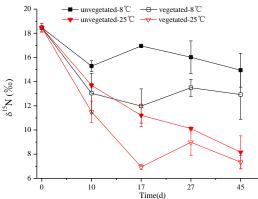
Light

12

6


18 15 i


.6L


12

Dark

Dark

341 45-d experiment.

339

At the end of the experiment, excess¹⁵N was concentrated in both of the vegetated

343 and unvegetated sediments (Figure 5). In the unvegetated systems, ¹⁵N retained in the

β44 sediments comprised 80.7% (1.11μmol¹⁵Ng⁻¹) and 27.2% (0.38μmol¹⁵Ng⁻¹) of the initial

350 351

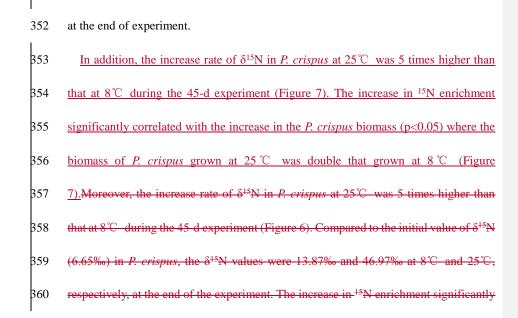
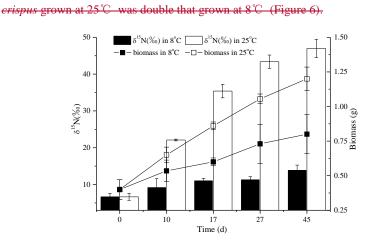
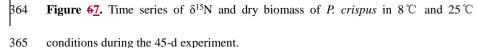



Figure 56. Labeled N retained by sediments, P. crispus, and water in different systems


25°C-unvegetated 25°C-vegetated 8°C-vegetated 8°C-vegetated

361 correlated with the increase in the *P. crispus* biomass (p<0.05) where the biomass of *P*.

363

362

366 DISCUSSION

367 HABs sedimentation using modified clay/soils. The removal and managementcontrol 368 of the growth of blooms, especially cyanobacterial blooms, is an important step in the 369 recovery of eutrophic lakes suffering eutrophication before the re-370 emergencereconstruction of macrophytes. In this study, the modified soil was selected 371 to acceleratespeed up the established _algal blooms sedimentationsettling onto the 372 sediment. The soil particles provided the algal biomassalgal flocs with sufficient ballast 373 to counteract the buoyancy of the M. aeruginosa cells in the water columns, so most 374 flocs in the treated systems remained at the bottoms of the columns in this experiment, 375 whereas, in the controls, M. aeruginosa mainly were suspended accumulated at the

376	water surface or was suspended in the water column (Figure 12). Recently, the use of
377	clays as ballast to sink algal blooms has been widely applied in both freshwater and
378	marine environment.9, 16, 27-Although the Chl-a concentrations in F-only and F-capping
379	treatments showed similar declining trends under each temperature after application of
380	the modified soils, the Chl-a concentration in each sampling point from F-only systems
381	was higher than those in F-capping systems. This was attributed to that However, more
382	M. aeruginosa cells survived is supposed to survive in the F-only columns than in the
383	F-capping columns at various temperatures, which can be partly reflected by the higher
384	Chl-a concentrations in the flocs (Figure $\frac{12}{2}$). These surviving algal <u>colonies-biomass</u>
385	may return to the water columns together with the sediments, especially in shallow
386	waters, where wind and wave-induced turbulence could be substantial. ²⁶
387	The flocculation and capping treatment by modified soil caused little damage to the
388	M. aeruginosa cells, as reflected by the intact cell morphology and normal
389	photosynthesis and respiration at day 0 (Figure S1 and S2). This results contributed to
390	the hypothesis could be confirmed by the visually observation fact that no
391	homogeneously green or yellow occurred for the flocs in the water and the sediment of
392	the columns, which is suggested as an indicator of cell lysis in this type of laboratory
393	experiment.9, 30 Given that cell lysis usually leads to the release of cell contents into
394	water, including both cyanobacterial toxins and excess nutrients, ^{15, 32} this result may be
395	important for preventing the intracellular cyanotoxins or excess nutrients released
396	abruptly to the environment in practice. As a consequence, the intracellular cyanotoxins

397	or excess nutrients should not be released abruptly to the environment. Likewise,
398	modified clay/soils has been shown to be environmentally friendly to aquatic organisms
399	in previous reports. ^{16, 31} However, the chitosan, which was used to modify natural soils
400	in this study, may possess antimicrobial activities against some bacteria, 32, 33 including
401	cyanobacteria species. ^{30,34,35} Although Miranda et al. (2017) found no detrimental
402	effects of chitosan on the Microcystis, ³⁴ other studies still found evidence for cell lysis
403	of <i>M. aeruginosa</i> at a relatively high dose of chitosan (e.g., $>8 \text{ mg/L}$). ³⁵ In our previous
404	study, the combination of chitosan with natural soils could lower the toxic risk on the
405	aquatic organisms exerted by chitosan alone by using a bioassay battery. ³¹ Although
406	the modified clay/soil has also been shown to be environmentally friendly to aquatic
407	organisms in other reports,16 Likewise, modified elay/soils has been shown to be
408	environmentally friendly to aquatic organisms in previous reports. ^{16, 31} -However, other
409	reports have still found some evidence for cell lysis of <i>M. aeruginosa</i> using a relatively
410	higher dose of chitosan modified kaolinite flocculation. ³⁰ Cell lysis usually leads to the
411	release of cell contents into water, including both cyanobacterial toxins and excessive
412	nutrients. ^{15,32} Thus, the dose of flocculants as well as the dominant species used for the
413	precipitation of eyanobacteria should be seriously consideredin practice.
414	Vitality changes in settled M. aeruginosa. Capping with soils can keep the settled
415	<i>M. aeruginosa</i> cells out of the light, which is a key factor affecting the photosynthetic
416	rates. When light stress was induced by flocculation-capping treatment, metabolism of

417 the deposited *M. aeruginosa* cells in our study was severely hindered due to reduction

418	in photosynthesis and respiration efficiency and subsequently triggered the degradation
419	of algal cells. Significant photo-inhibition occurred for the M. aeruginosa cells in the
420	F-capping systems compared with those in control and F-only systems, which was
421	indicated by the continuous consumption of O_2 at 25 $^\circ\!\mathrm{C}$, even under the light incubation
422	(Figure $3-4$ h). The photosynthesis and respiration effects of <i>M. aeruginosa</i> cells could
423	also be inhibited in F-only systems as reflected by the fact that _significantly lower
424	change rate of O ₂ respiration than those in control. The results above mentioned
425	confirmed the hypothesis that flocculation-capping treatment can accelerate the
426	deposited algal bloom die-off. It should be noted that although the interference of
427	bacteria (e.g., respiration of heterotrophic bacteria) could be minimized in our study,
428	the influence of bacterial activity on the algal cell vitality should be further considered
429	especially for the practical implementation of lake restoration.
430	In addition, the-temperature is a crucial factor in the living activities of
431	cyanobacteria in natural waters. In our studies, the three temperatures (8 $^\circ\!\!\mathrm{C},25^\circ\!\!\mathrm{C}$ and
432	35°C) were established according to simulate the temperatures in winter-early spring,
433	early summer and midsummer, respectively, in Lake Taihu, China, where the dominant
42.4	

early summer and midsummer, respectively, in Lake Taihu, China, where the dominant
cyanobacteria appear in the surface water at the end of spring, bloom during summer,
and then sink onto the __sediment during the late autumn and winter.³⁶³ Moreover, our
results showed that the deposited algal blooms-biomass tend to be tolerant of low light
at lower temperatures, as reflected by the normal morphology and photosynthesis and
respiration in the control system (Figure 2-3 and 34). Similarly, Ma et al (2016) found

439	that most cyanobacteria sank to the sediment and remained dormant as viable inoculants
440	(akinetes) below $12.5^{\circ}\mathbb{C}$. ^{3<u>7</u>4} These deposited algal cells will-can return to the water
441	column as a potential source of bloom formation due to stimulation of their growth by
442	the higher temperatures. ³⁸⁵ The higher temperature stimulated the growth of M .
443	aeruginosa cells, as reflected by the faster and higher increasing rates of Chl-a in
444	controls at 35 $^\circ \!\!\! \mathbb{C}$ than at 25 $^\circ \!\!\! \mathbb{C}$ before 15 days (Figure 34). The consumption of O_2 in
445	F-capping systems also increased as the temperature increased, and the O_2 change
446	rates <u>respiration</u> became negative-values at 25°C, especially at 35°C, after 60 days of
447	incubation (Figure 34), indicating that higher temperatures accelerate the respiration
448	rate of algal blooms buried under the capping layer. This contributed to the lysis of fact
449	that many algal cells collected from the F-capping systems were obviously wizened and
450	crackedat 25 $^\circ\!\mathbb{C}$, as compared to no obvious changes in cell morphology from the
451	control and F-only systems (Figure 23). This is consistent with the fact that the
452	decomposition of organic matter is intrinsically sensitive to increased temperature. ^{396,}
453	<u>40</u> 37
454	Assimilation of labeled nitrogen by submerged vegetation. In lakes, most
455	metabolic activities (i.e, organic matter mineralization and nutrient cycling) occur in
456	the sediment, withand algae sedimentation strongly influences a strong influence on
457	these biogeochemical processes in sediments. The decomposition of algal blooms can
458	directly release nutrients and pollutants-toxinsinto the surrounding environment, which
459	leads to changes in nutrient composition cycling in sediment and water. $\frac{38-41-430}{10}$ In this

460 study, nitrogen was-obviously_released into the sediment from the settled M. 461 aeruginosa during the experiment via lysis of algal biomass (Figure 45). The loss of 462 δ^{15} N from the sediment increased as the incubation time increased for all systems. A 463 portion of the loss of $\delta^{15}N$ from the sediment may be resulted from due to benthic 464 perturbation and mineralization,441 which could transform organic nitrogen into 465 inorganic fractionation with net loss via denitrification reactions into gaseous phasesand hence out of water in gas forms (e.g., N2 and N2O).452 A higher proportion 466 467 of the loss of labeling N was due to its release into the water column (Figure $\frac{56}{2}$). 468 Moreover, higher temperatures could trigger greater Microcystis-derived nitrogen 469 release from sediments, which is consistent with other reports that the nutrient cycling 470 rates increase with the addition of settled algal blooms and elevation of temperatures.385 471 The desirable growing conditions for submerged macrophytes including light 472 penetration and higher dissolved oxygen concentrationsoxygen level can be 473 reestablished after removal algal blooms using modified clay/soils.^{16, 27} Macrophytes 474 uptake plays a vital role in the mitigation of internal nutrient loads in vegetated 475 sediments in lakes.7 In this study, the vegetated system retained more Microcystis-476 derived nitrogen than the unvegetated systems (Figure 5). From Figure 4 to 6, we can 477 findwe found that the excess ¹⁵N was indeed assimilated by the P. crispus, which 478 contributed to less excess $\delta^{15}N$ in both sediment and water in the vegetated systems 479 than in the unvegetated systems, thereby reducing release of algae-sourced N into water 480 (Figures 5-75). This is the accepted way to restore a healthier ecological system

401	
481	dominated by submerged vegetation in shallow waters in previous studies. ^{27, 463} The
482	rapid uptake of $\delta^{15}N$ at both $8^\circ\! \mathbb{C}$ $$ and $25^\circ\! \mathbb{C}$ $$ mainly occurred within the first 10 d in this
483	study (Figure 45), which is similar to the finding of rapid uptake of labeled ammonium
484	and nitrate by common reeds. ⁴⁷⁴ This <u>phenomena</u> may be attributed to both uptake of
485	mineralized (inorganic) nitrogen and organic nitrogen in the sediment, which may play
486	important roles in assimilation of algae-sourced nitrogen by aquatic plants. $^{\underline{485},\underline{496}}$ In
487	addition, the assimilation of nitrogen by submerged vegetation may also-beresulted
488	result from directly uptake of nitrogen from water column. ⁵⁰⁴⁷ This can be inferred from
489	the decrease of labeling N in the water (Figure 56); nevertheless, the contributions of
490	these uptake pathways cannot be identified for the P. crispus in this study due to the
491	limitations of the experimental set-up. Further study should focus on the mineralization
492	rate of deposited algal blooms and the utility of inorganic and organic nitrogen by P.
493	crispus or other macrophytes.
494	Our results indicate that increasing of temperature-obviously_facilitates the
495	assimilation of Microcystis-derived nitrogen into P. crispus. This could be partially
496	attributed to that higher temperature could facilitate the decomposition of deposited
497	algal biomass (Fig.2 and 3), thus release more algal-sourced N. In addition, Because that
498	most aquatic plants grow from the early spring to midsummer in temperate lakes, which
499	is consistent with the result in this study that the growing rate of <i>P. crispus</i> was twice
500	as high at 25 $^{\circ}$ C as at 8 $^{\circ}$ C (Figure 67). The growing rate significantly affects the
501	incorporation of δ^{15} N in the <i>P. crispus</i> , as reflected by the 5 fold higher δ^{15} N % found

502	at 25 $^\circ\!\!\mathbb{C}$ than at 8 $^\circ\!\!\mathbb{C}.$ This is also attributed to the fact that a higher temperature
503	accelerates the processes of death, decay, and decomposition of the deposited algal cells.
504	Implications for lake restoration. Generally, switch of lakes subject to human-
505	induced eutrophication from the dominancy by algae to macrophyte can be difficult
506	tohardly achieve under natural conditions due to persistent the stable undesirable
507	situation caused byexcessive growth of algae biomass in water column. Moreover,
508	restoration of such lakes from an established algal bloom to a desired state dominated
509	by submerged macrphytes requires significant drastic and expensive intervention, even
510	after reducing external nutrient inputs. For this reason, many in-lake geo-engineering
511	methods have been widely used as environmentally-friendly, efficient and economical
512	way to accelerate removal of algal blooms from waters. ^{16, 18, 27} The improvement of
513	transparency and dissolved oxygen concentrationstransparence and oxygen level in
514	bottom water resulted from the application of modified clay/soil technology ^{16, 27} can
515	facilitatepave the way(e.g., establishing a certain period for plant germination and
516	growth) for reconstructing reconstruction of submerged macrophytes. Flocculation-
517	capping methods, as shown in this study, can not only effectively eliminate the algal
518	biomassblooms out of water columns, butand also facilitate their degradation, with
519	released nutrientsand subsequently to be absorbed by the growth of submerged
520	vegetation. Higher temperatures obviouslyaccelerated both the algae's
521	decomposition and incorporation into plant biomass, implying that application of these
522	method during the outbreak period of algal blooms can also facilitate such
	29

523	transformation due to the overlap of growing seasons between algae and submerged
524	vegetation, especially in temperate lakes. However, the effectiveness in the laboratory
525	test cannot be representative of field-scale application because of differences in scale
526	and environmental and hydraulic conditions. A field pilot experiment is necessary to
527	test the potential effects of such in-lake geo-engineering methods for both control algal
528	blooms and facilitate switch from algal to macrophyte state in lakes.
529	ASSOCIATED CONTENT
530	Supporting Information
531	Details on the methods for monitoring the morphology, photosynthesis and
532	respiration rate of M. aeruginosa cells. Figures showing SEM images of algal cells at
533	the beginning of the experiments (0 day), Phtotosynthesis and respiration of M.
534	aeruginosa cells in different systems: a: 25 $$ °C -control-0d, b: 25 $$ °C -F-only-0d, c:25 $$ °C
535	-F-capping-0d.
536	AUTHOR INFORMATION
537	Corresponding Author
538	*Corresponding author: Tel.: +86 10 62849686; Fax: +86 10 62849686; E-mail address:
539	gpan@rcees.ac.cn
540	Notes
541	The authors declare no competing financial interest.
542	ACKNOWLEDGEMENTS
543	The research was supported by the National Natural Science Foundation of China
544	(41401551); the Strategic Priority Research Program of CAS (XDA09030203); the
545	National Key Research and Development Program of China (2017YFA0207204); and

546 Natural Science Foundation of Beijing (8162040).

547 **REFERENCES**

- 548 (1) Conley, D. J.; Paerl, H. W.; Howarth, R. W.; Boesch, D. F.; Seitzinger, S. P.;
- 549 Havens, K. E.; Lancelot, C.; Likens, G. E., Controlling Eutrophication: Nitrogen and
- 550 Phosphorus. Science 2009, 323 (5917), 1014-1015.
- 551 (2) Xie, D.; Yu, D.; You, W. H.; Wang, L. G., Algae mediate submerged macrophyte
- 552 response to nutrient and dissolved inorganic carbon loading: A mesocosm study on
- 553 different species. *Chemosphere* **2013**, *93* (7), 1301-1308.
- 554 (3) He, H.; Liu, X.; Liu, X.; Yu, J.; Li, K.; Guan, B.; Jeppesen, E.; Liu, Z., Effects of
- 555 cyanobacterial blooms on submerged macrophytes alleviated by the native Chinese
- bivalve Hyriopsis cumingii: A mesocosm experiment study. *Ecol.Eng.* 2014, *71*, 363-367.
- (4) Carpenter, S. R.; Ludwig, D.; Brock, W. A., Management of eutrophication for
- lakes subject to potentially irreversible change. *Ecol. Appl.* **1999**, *9* (3), 751-771.
- 560 (5) Wang, L.; Pan, G.; Shi, W.; Wang, Z.; Zhang, H., Manipulating nutrient limitation
- 561 using modified local soils: A case study at Lake Taihu (China). Water Res. 2016, 101,
- 562 25-35.
- 563 (6) Scheffer, M.; Carpenter, S.; Foley, J. A.; Folke, C.; Walker, B., Catastrophic shifts
- 564 in ecosystems. *Nature* **2001**, *413* (6856), 591-596.
- 565 (7) Hilt, S.; Gross, E. M., Can allelopathically active submerged macrophytes stabilise
- 566 clear-water states in shallow lakes? *Basic Appl. Ecol.* 2008, 9 (4), 422-432.

567 (8) Jančula, D.; Maršálek, B., Critical review of actually available chemical
568 compounds for prevention and management of cyanobacterial blooms. *Chemosphere*569 **2011**, 85 (9), 1415-1422.

- 570 (9) Lürling, M.; van Oosterhout, F., Controlling eutrophication by combined bloom
 571 precipitation and sediment phosphorus inactivation. *Water Res.* 2013, 47 (17), 6527-
- 572 6537.
- 573 (10) Deng, Y.; Wu, M.; Zhang, H.; Zheng, L.; Acosta, Y.; Hsu, T.-T. D., Addressing
- 574 harmful algal blooms (HABs) impacts with ferrate(VI): Simultaneous removal of algal
- cells and toxins for drinking water treatment. *Chemosphere* **2017**, *186*, 757-761.
- 576 (11) Laue, P.; Bährs, H.; Chakrabarti, S.; Steinberg, C. E. W., Natural xenobiotics to
- 577 prevent cyanobacterial and algal growth in freshwater: Contrasting efficacy of tannic
- 578 acid, gallic acid, and gramine. *Chemosphere* **2014**, *104*, 212-220.
- 579 (12) Joo, J.-H.; Kuang, Z.; Wang, P.; Park, B. S.; Patidar, S. K.; Han, M.-S., Ecological
- 580 assessment of an algaecidal naphthoquinone derivate for the mitigation of
- 581 Stephanodiscus within a mesocosm. Environ. Pollut. 2017, 229, 735-745.
- 582 (13) Spears, B. M.; Maberly, S. C.; Pan, G.; Mackay, E.; Bruere, A.; Corker, N.;
- 583 Douglas, G.; Egemose, S.; Hamilton, D.; Hatton-Ellis, T.; Huser, B.; Li, W.; Meis, S.;
- 584 Moss, B.; Lurling, M.; Phillips, G.; Yasseri, S.; Reitzel, K., Geo-Engineering in Lakes:
- 585 A Crisis of Confidence? *Environ. Sci. Technol.* **2014**, *48* (17), 9977-9979.
- 586 (14) Noyma, N. P.; de Magalhães, L.; Furtado, L. L.; Mucci, M.; van Oosterhout, F.;
- 587 Huszar, V. L. M.; Marinho, M. M.; Lürling, M., Controlling cyanobacterial blooms

- 588 through effective flocculation and sedimentation with combined use of flocculants and
- phosphorus adsorbing natural soil and modified clay. *Water Res.* 2016, 97, 26-38.
- 590 (15) Lürling, M.; Noyma, N. P.; de Magalhães, L.; Miranda, M.; Mucci, M.; van
- 591 Oosterhout, F.; Huszar, V. L. M.; Marinho, M. M., Critical assessment of chitosan as
- 592 coagulant to remove cyanobacteria. *Harmful Algae* **2017**, *66*, 1-12.
- 593 (16) Lu, G. Y.; Song, X. X.; Yu, Z. M.; Cao, X. H.; Yuan, Y. Q., Environmental effects
- 594 of modified clay flocculation on Alexandrium tamarense and paralytic shellfish
- 595 poisoning toxins (PSTs). *Chemosphere* **2015**, *127*, 188-194.
- 596 (17) Bai, X.; Sun, J.; zhou, Y.; Gu, L.; Zhao, H.; Wang, J., Variations of different
- 597 dissolved and particulate phosphorus classes during an algae bloom in a eutrophic lake
- 598 by 31P NMR spectroscopy. *Chemosphere* **2017**, *169*, 577-585.
- 599 (18) Li, L.; Pan, G., A universal method for flocculating harmful algal blooms in
- marine and fresh waters using modified sand. *Environ. Sci. Technol.* 2013, 47 (9), 45554562.
- 602 (19) Verspagen, J. M. H.; Snelder, E. O. F. M.; Visser, P. M.; Johnk, K. D.; Ibelings,
- 603 B. W.; Mur, L. R.; Huisman, J., Benthic-pelagic coupling in the population dynamics
- of the harmful cyanobacterium Microcystis. *Freshw. Biol.* 2005, 50 (5), 854-867.
- 605 (20) Xie, L. Q.; Xie, P.; Tang, H. J., Enhancement of dissolved phosphorus release
- 606 from sediment to lake water by Microcystis blooms an enclosure experiment in a
- 607 hyper-eutrophic, subtropical Chinese lake. *Environ. Pollut.* 2003, *122* (3), 391-399.
- 608 (21) Karlson, A. M. L.; Nascimento, F. J. A.; Elmgren, R., Incorporation and burial of 33

- 609 carbon from settling cyanobacterial blooms by deposit-feeding macrofauna. Limnol.
- 610 Oceanogr. 2008, 53 (6), 2754-2758.
- 611 (22) Karlson, A. M. L.; Nascimento, F. J. A.; Suikkanen, S.; Elmgren, R., Benthic
- 612 fauna affects recruitment from sediments of the harmful cyanobacterium Nodularia
- 613 spumigena. Harmful Algae 2012, 20, 126-131.
- 614 (23) Yu, J. L.; Li, Y. M.; Liu, X. L.; Li, K. Y.; Chen, F. Z.; Gulati, R. D.; Liu, Z. W.,
- 615 The fate of cyanobacterial detritus in the food web of Lake Taihu: a mesocosm study
- 616 using C-13 and N-15 labeling. *Hydrobiologia* **2013**, *710* (1), 39-46.
- 617 (24) Fallon, R. D.; Brock, T. D., Overwintering of Microcystis in Lake Mendota.
- 618 Freshw. Biol. 1981, 11 (3), 217-226.
- 619 (25) Bostrom, B.; Pettersson, A. K.; Ahlgren, I., Seasonal Dynamics of a
- 620 Cyanobacteria-Dominated Microbial Community in Surface Sediments of a Shallow,
- 621 Eutrophic Lake. Aquatic Sciences 1989, 51 (2), 153-178.
- 622 (26) Pan, G.; Dai, L. C.; Li, L.; He, L. C.; Li, H.; Bi, L.; Gulati, R. D., Reducing the
- 623 Recruitment of Sedimented Algae and Nutrient Release into the Overlying Water Using
- 624 Modified Soil/Sand Flocculation-Capping in Eutrophic Lakes. Environ. Sci. Technol.
- 625 **2012**, *46* (9), 5077-5084.
- 626 (27) Pan, G.; Yang, B.; Wang, D.; Chen, H.; Tian, B. H.; Zhang, M. L.; Yuan, X. Z.;
- 627 Chen, J. A., In-lake algal bloom removal and submerged vegetation restoration using
- 628 modified local soils. *Ecol.Eng.* **2011**, *37* (2), 302-308.
- 629 (28) Tang, X.; Zhang, X.; Cao, T.; Ni, L.; Xie, P., Reconstructing clear water state and 34

- 630 submersed vegetation on behalf of repeated flocculation with modified soil in an in situ
- 631 mesocosm experiment in Lake Taihu. Sci. Total Environ. 2018, 625, 1433-1445.
- 632 (29) Veuger, B.; Eyre, B. D.; Maher, D.; Middelburg, J. J., Nitrogen incorporation and
- 633 retention by bacteria, algae, and fauna in a subtropical intertidal sediment: An in situ
- 634 N-15-labeling study. *Limnol. Oceanogr.* **2007**, *52* (5), 1930-1942.
- 635 (30) Shao, J. H.; Wang, Z. J.; Liu, Y.; Liu, H.; Peng, L.; Wei, X. D.; Lei, M.; Li, R. H.,
- 636 Physiological responses of Microcystis aeruginosa NIES-843 (cyanobacterium) under
- the stress of chitosan modified kaolinite (CMK) loading. *Ecotoxicology* 2012, 21 (3),
 698-704.
- (31) Wang, Z.; Zhang, H.; Pan, G., Ecotoxicological assessment of flocculant
 modified soil for lake restoration using an integrated biotic toxicity index. *Water Res.*
- 641 **2016,** *97*, 133-141.
- 642 (32) Mucci, M.; Noyma, N. P.; de Magalhães, L.; Miranda, M.; van Oosterhout, F.;
- Guedes, I. A.; Huszar, V. L. M.; Marinho, M. M.; Lürling, M., Chitosan as coagulant
 on cyanobacteria in lake restoration management may cause rapid cell lysis. *Water Res.* **2017**, *118*, 121-130.
- 646 (33) No, H. K.; Park, N. Y.; Lee, S. H.; Meyers, S. P., Antibacterial activity of
- 647 chitosans and chitosan oligomers with different molecular weights. Int. J. Food
- 648 <u>Microbiol. 2002, 74 (1-2), 65-72.</u>
- 649 (34) Kong, M.; Chen, X. G.; Xing, K.; Park, H. J., Antimicrobial properties of chitosan
- and mode of action: A state of the art review. Int. J. Food Microbiol. 2010, 144 (1), 51-

651	<u>63</u>
652	(35) Miranda, M.; Noyma, N.; Pacheco, F. S.; de Magalhães, L.; Pinto, E.; Santos, S.;
653	Soares, M. F. A.; Huszar, V. L.; Lürling, M.; Marinho, M. M., The efficiency of
654	combined coagulant and ballast to remove harmful cyanobacterial blooms in a tropical
655	shallow system. Harmful Algae 2017, 65, 27-39.
656	<u>(32) Mucci, M.; Noyma, N. P.; de Magalhães, L.; Miranda, M.; van Oosterhout, F.;</u>
657	Guedes, I. A.; Huszar, V. L. M.; Marinho, M. M.; Lürling, M., Chitosan as coagulant
658	on cyanobacteria in lake restoration management may cause rapid cell lysis. Water Res.
659	2017, <i>118</i> , 121–130.
660	(363) Lu, Y. P.; Wang, J.; Zhang, X. Q.; Kong, F. X., Inhibition of the growth of
661	cyanobacteria during the recruitment stage in Lake Taihu. Environ. Sci. Pollut. Res.
662	2016, <i>23</i> (6), 5830-5838.
663	(3 <u>7</u> 4) Ma, J. R.; Qin, B. Q.; Paerl, H. W.; Brookes, J. D.; Hall, N. S.; Shi, K.; Zhou, Y.
664	Q.; Guo, J. S.; Li, Z.; Xu, H.; Wu, T. F.; Long, S. X., The persistence of cyanobacterial
665	(Microcystis spp.) blooms throughout winter in Lake Taihu, China. Limnol. Oceanogr.
666	2016, <i>61</i> (2), 711-722.
667	(385) Chen, M.; Ye, T. R.; Krumholz, L. R.; Jiang, H. L., Temperature and
668	Cyanobacterial Bloom Biomass Influence Phosphorous Cycling in Eutrophic Lake
669	Sediments. <i>PLoS One</i> 2014 , 9 (3).
670	(326) Conant, R. T.; Drijber, R. A.; Haddix, M. L.; Parton, W. J.; Paul, E. A.; Plante,
671	A. F.; Six, J.; Steinweg, J. M., Sensitivity of organic matter decomposition to warming

672 varies with its quality. *Global Change Biol* **2008**, *14* (4), 868-877.

673	(3740) Zhang, L.; Wang, L.; Yin, K. D.; Lu, Y.; Yang, Y. Q.; Huang, X. P., Spatial and
674	Seasonal Variations of Nutrients in Sediment Profiles and Their Sediment-Water Fluxes
675	in the Pearl River Estuary, Southern China. J Earth Sci-China 2014, 25 (1), 197-206.
676	(4138) Dithmer, L.; Nielsen, U. G.; Lundberg, D.; Reitzel, K., Influence of dissolved
677	organic carbon on the efficiency of P sequestration by a lanthanum modified clay. Water
678	<i>Res.</i> 2016, <i>97</i> , 39-46.
679	(4239) Zhang, Y.; van Dijk, M. A.; Liu, M.; Zhu, G.; Qin, B., The contribution of
680	phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in
681	eutrophic shallow lakes: Field and experimental evidence. Water Res. 2009, 43 (18),
682	4685-4697.
682 683	4685-4697. (4 <u>3</u> 0) Zhu, Y. R.; Wu, F. C.; He, Z. Q.; Guo, J. Y.; Qu, X. X.; Xie, F. Z.; Giesy, J. P.;
683	(4 <u>3</u> 0) Zhu, Y. R.; Wu, F. C.; He, Z. Q.; Guo, J. Y.; Qu, X. X.; Xie, F. Z.; Giesy, J. P.;
683 684	(430) Zhu, Y. R.; Wu, F. C.; He, Z. Q.; Guo, J. Y.; Qu, X. X.; Xie, F. Z.; Giesy, J. P.; Liao, H. Q.; Guo, F., Characterization of Organic Phosphorus in Lake Sediments by
683 684 685	(4 <u>3</u> 0) Zhu, Y. R.; Wu, F. C.; He, Z. Q.; Guo, J. Y.; Qu, X. X.; Xie, F. Z.; Giesy, J. P.; Liao, H. Q.; Guo, F., Characterization of Organic Phosphorus in Lake Sediments by Sequential Fractionation and Enzymatic Hydrolysis. <i>Environ. Sci. Technol.</i> 2013 , <i>47</i>
683 684 685 686	(430) Zhu, Y. R.; Wu, F. C.; He, Z. Q.; Guo, J. Y.; Qu, X. X.; Xie, F. Z.; Giesy, J. P.; Liao, H. Q.; Guo, F., Characterization of Organic Phosphorus in Lake Sediments by Sequential Fractionation and Enzymatic Hydrolysis. <i>Environ. Sci. Technol.</i> 2013, <i>47</i> (14), 7679-7687.
683 684 685 686 687	 (4<u>3</u>0) Zhu, Y. R.; Wu, F. C.; He, Z. Q.; Guo, J. Y.; Qu, X. X.; Xie, F. Z.; Giesy, J. P.; Liao, H. Q.; Guo, F., Characterization of Organic Phosphorus in Lake Sediments by Sequential Fractionation and Enzymatic Hydrolysis. <i>Environ. Sci. Technol.</i> 2013, 47 (14), 7679-7687. (4<u>4</u>1) Li, K. Y.; Liu, Z. W.; Gu, B. H., The fate of cyanobacterial blooms in vegetated

691 removal through direct measurement of dissolved N-2 and N2O in a subtropical river-

692 reservoir system. *Ecol.Eng.* **2014**, *70*, 56-67.

(463) Pan, G.; Zhang, M.-M.; Chen, H.; Zou, H.; Yan, H., Removal of cyanobacterial
blooms in Taihu Lake using local soils. I. Equilibrium and kinetic screening on the
flocculation of Microcystis aeruginosa using commercially available clays and
minerals. *Environ. Pollut.* 2006, *141* (2), 195-200.

- 697 (4<u>7</u>4) Gribsholt, B.; Veuger, B.; Tramper, A.; Middelburg, J. J.; Boschker, H. T. S.,
- 698 Long-term N-15-nitrogen retention in tidal freshwater marsh sediment: Elucidating the
- 699 microbial contribution. *Limnol. Oceanogr.* **2009**, *54* (1), 13-22.

700 (485) Gribsholt, B.; Kristensen, E., Effects of bioturbation and plant roots on salt

- 701 marsh biogeochemistry: a mesocosm study. Mar. Ecol. Prog. Ser. 2002, 241, 71-87.
- 702 (496) Vonk, J. A.; Middelburg, J. J.; Stapel, J.; Bouma, T. J., Dissolved organic
- nitrogen uptake by seagrasses. Limnol. Oceanogr. 2008, 53 (2), 542-548.
- 704 (5047) Wozniak, J. R.; Childers, D. L.; Anderson, W. T.; Rudnick, D. T.; Madden, C.
- 705 J., An in situ mesocosm method for quantifying nitrogen cycling rates in oligotrophic
- 706 wetlands using (15)N tracer techniques. *Wetlands* **2008**, *28* (2), 502-512.

707

708