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Abstract 

Urinary tract infections (UTIs) are one of the most common human infections 

worldwide.  UTI is caused by a wide range of Gram-positive and Gram-negative 

pathogens with Uropathogenic E. coli (UPEC) the most common causative pathogen. 

In clinical microbiology, diagnosis, analysis and treatment are based on single colony 

selection of a homogenous bacterial population. However, recent work on infections 

such as cystic fibrosis has highlighted the presence of multiple phenotypic and 

genotypic variants within a single infected patient.  

A study comparing bacteria isolated from urine and blood samples from patients 

with urosepsis showed the presence of multiple sequence types of E. coli within a 

single patient. Therefore, here we present work investigating the level of within-

patient diversity of UPEC at a phenotypic and genotypic level. Forty-two urine 

samples were collected and antibiotic sensitivity testing performed on each well-

isolated colony. Samples are classified based on their sensitivity profiles into three 

patterns: identical resistance profile, low diversity resistance profiles and highly 

diverse resistance profiles. Nine urine samples were categorized as having highly 

diverse resistance profiles. Phenotypic assays of bacteria from the highly diverse 

group show variation in motility, biofilm formation and association and invasion 

assays. To determine the phenotypic baseline diversity level, the highly diverse 

resistance profile samples were compared with samples that were shown to have a 

homogenous population, and eight randomly selected samples with low diversity 

patterns. Bacteria from both patterns show no phenotypic variation. We further 

analysed the levels of genotypic diversity between sample isolates. We compared 

bacteria from highly diverse resistance profiles using whole-genome sequence data 
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in order to correlate the phenotypic diversity with genetic changes. Together our 

data is the most high-resolution snapshot to date-of the levels of extant diversity of 

UPEC within patients with UTI. 
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1 Introduction 

1.1 Urinary tract infections 

Urinary tract infections (UTIs) are one of the most common infections of humans and 

are defined as invasion of urinary tract epithelium by pathogenic bacteria. Annually, 

150 million people are diagnosed with UTIs worldwide (Foxman, 2003; Hooton, 2012; 

Lüthje and Brauner, 2016; Flores-Mireles et al., 2015). UTIs can generally be 

classified into upper UTIs (pyelonephritis) and lower UTIs (cystitis). UTIs cover a wide 

range of disease presentations varying in severity from asymptomatic bacteriuria to 

urosepsis and death. Those diseases are categorised based on the pathogen isolation 

site (Foxman, 2003; Foxman, 2010; Brumbaugh and Mobley, 2012; Flores-Mireles et 

al., 2015; Kumar et al., 2015). If bacteria are isolated from urine without clinical 

symptoms this is known as asymptomatic bacteriuria. Cystitis refers to isolation of 

bacteria from the bladder, while isolation of bacteria from the kidneys is known as 

pyelonephritis. In addition, urosepsis occurs following the spread of the uropathogen 

to the bloodstream (Foxman, 2010; Brumbaugh and Mobley, 2012; Flores-Mireles et 

al., 2015; Kumar et al., 2015).  

UTIs also can be classified as either uncomplicated or complicated. Uncomplicated 

UTIs are defined when the infection occurs in healthy individuals with no structural 

abnormalities. However, UTIs in individuals with urological abnormalities, inserted 

instrumentation (catheter) or who are immunocompromised, are classified as 

complicated infections (Foxman, 2003; Flores-Mireles et al., 2015; Kumar et al., 

2015).  

Urinary tract infections occur more frequently in women. About 50 % - 80 % of 

females suffer from UTIs and 20 % - 50 % of those women may experience a 
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recurrent UTI (Foxman, 1990; Agarwal et al., 2012; Lüthje and Brauner, 2014). 

Further, infants, pregnant women, elderly people and diabetic patients are 

categorised as high-risk groups with respect to UTIs (Foxman, 2003; Hannan et al., 

2012). 

1.1.1 Pathogenesis 

UTIs are caused by a wide range of Gram-negative, Gram-positive and fungal 

pathogens (Hacker, 2002). The most frequent causative agent of uncomplicated UTIs 

is the group known as Uropathogenic Escherichia coli, which account for 70 % - 95 % 

of community-acquired infections. Uropathogenic Escherichia coli are predominant 

in 50 % of nosocomial infections (Hacker, 2002; Kucheria et al., 2005). However, 

complicated UTIs can be caused by other Gram-negative pathogens such as Proteus 

species, multi-resistant Klebsiella pneumoniae and Pseudomonas aeruginosa. These 

pathogens play a role in infections in catheterised and immunocompromised 

patients. Gram-positive bacteria such as Staphylococcus aureus and Staphylococcus 

epidermidis may also have a role in causing nosocomial UTIs, especially in patients 

who have undergone organ transplantation or chemotherapy (Hacker, 2002). 

Pathogens that cause UTIs are thought to originate from the human intestinal tract. 

There are also some indications that UTIs may result from the consumption of 

contaminated food, and other evidence suggests that uropathogens could be 

transmitted sexually (Pitout, 2012a). Once the uropathogen has migrated to the 

bladder, colonisation of the urinary tract may begin (Foxman, 2010; Hooton, 2012). 

Following migration and colonisation by uropathogens, adherence to urinary tract 

cells is initiated by the action of pili and flagella (Flores-Mireles et al., 2015).  The 

adherence of the uropathogen can result in the invasion of the urinary tract 
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epithelium cell. Invasion of the urinary tract allows bacteria to survive within the 

host, and to produce toxins and proteases which release nutrients such as iron 

allowing their sequestration by siderophores (Flores-Mireles et al., 2015). 

Uropathogens then can multiply and evade host immunity, so allowing bacteria to 

ascend from the urethra to the bladder, ureters and kidneys and cause infection 

(Agarwal et al., 2012; Hooton, 2012; Flores-Mireles et al., 2015). This route of UTI 

spread is known as the ascending route of infection and it is a common sequence of 

infection (Agarwal et al., 2012). Efficient colonisation of the periurethral area with 

uropathogens is dependent on a variety of virulence factors which are required for 

motility, colonisation and evading the immune system (Foxman, 2010).  

1.1.1.1 Catheter associated urinary tract infections 

The most common infections in healthcare settings are catheter associated UTIs 

(Kumar et al., 2015).  These infections are considered to be correlated with high 

morbidity and may contribute to the development of severe infections, such as 

those of the blood stream (Choong and Whitfield, 2000; Flores-Mireles et al., 2015). 

In catheterised patients, biofilm producing strains have a significant role in blocking 

the catheter and this may result in haematuria and pain (Choong and Whitfield, 

2000). UTIs are diagnosed in catheterised patients by the presence of a bacterial 

count >1000 CFU/ml in addition to the symptoms listed above. In the case of a 

positive urine culture, the catheter should be replaced and an antimicrobial 

treatment initiated based on the culture antimicrobial sensitivity result (Kumar et al., 

2015). 



Introduction 

5 

 

1.1.1.2 Recurrent urinary tract infections 

Recurrent UTIs are defined as the occurrence of two or more infections within six 

months, or more than three infections within a year (Lüthje and Brauner, 2016). 

Recurrent UTIs are commonly seen in women and it has been reported that 25 % of 

women have a second UTI within six months of the first infection (Ejrnæs, 2011). 

Anatomical structure plays a crucial role in bacterial ascension to the urinary tract. 

Women have short urethras and the close proximity to the periurethral area is the 

most probable route of infection (Minardi et al., 2011).  

Reinfection with the same bacterial strain because of its persistence within the 

urinary tract is considered one of the reasons for recurrent UTIs (Lüthje and Brauner, 

2016). Following adherence, some pathogens invade the epithelium cells to form 

intracellular bacterial communities. Cells that are invaded by uropathogens undergo 

apoptosis, are excreted into the urine, and the uropathogen is released from 

intracellular bacterial communities to invade deeper tissue (Lüthje and Brauner, 

2016). Within infected cells, bacteria form dormant cells that do not multiply and are 

known as the quiescent intracellular reservoir. Once these dormant cells become 

activated a recurrent infection may result (Lüthje and Brauner, 2016). 

1.1.2 Clinical manifestations 

UTIs can comprise a wide spectrum of diseases varying in severity. Asymptomatic 

UTIs can be diagnosed by the presence of a high level of bacteriuria in the absence of 

symptoms. Symptomatic UTIs are generally classified based on the site of the 

occurrence of symptoms: lower UTIs and upper UTIs (Hannan et al., 2012). Classical 

UTI symptoms include pain, frequent urination and urgency. Patients who have 

these symptoms are diagnosed with cystitis in 96 % of cases (Bien et al., 2012). 
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Lower UTIs affecting the urethra and bladder may produce symptoms which include 

frequent urination, a burning sensation and dysuria. Further, lower abdominal 

discomfort with cloudy or bloody urine that may be foul smelling may occur as 

symptoms of lower UTIs. In contrast, infection of the upper urinary tract (ureters and 

kidneys) may associate with flank pain and fever. These symptoms are, in general, a 

result of inflammation of the urinary tract epithelium following uropathogen 

colonisation (Hannan et al., 2012). 

1.1.3 Diagnosis 

UTIs are diagnosed based on urinalysis and the presence of a significant number of 

pathogen cells in urine samples without or with symptoms. Urinalysis tests are 

commonly used in the laboratory to determine the nature of the infection. Nitrite 

and leukocyte esterase assays are dipstick tests that can help in UTI diagnosis. A 

positive nitrite result reflects the presence of a Gram-negative species.  Leukocyte 

esterase is another marker of UTIs and turns to positive in the presence of an 

elevated number of leukocytes as a consequence of the presence of uropathogens. 

Due to the limitations of the dipstick assays and to confirm a positive result, a 

microscopic examination of urine sediment should be made to confirm the presence 

of bacteria in the urine. However, the accuracy of microscopic examination is related 

to number of epithelial cell present within the sample, and there should be < 15 cells 

per high power field (40 x).  UTIs are diagnosed on the basis of positive culture plates 

with bacterial concentrations exceeding 103 – 105 CFU/ml (Foxman, 2010; Hilbert, 

2011).  
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1.1.4 Treatment 

UTIs are treated based on the patient’s condition (exhibiting symptoms or not), the 

patient’s history of previous UTI infections and previous treatment. Patients who 

have a symptomatic bacteriuria with colony counts >105 CFU/ml are usually not 

treated unless those patients are in an at-risk group such as the elderly, pregnant 

women, young girls or suffering from diabetes (Hannan et al., 2012; Kumar et al., 

2015). High-risk group patients should be treated with a seven-day regime of 

Nitrofurantoin, Trimethoprim-Sulfamethoxazole and Fosfomycin. Patients with 

infection limited to the bladder are defined as having uncomplicated cystitis and are 

treated same as the high-risk group of asymptomatic bacteriuria patients. The 

antimicrobial dose should be continued for seven days as having the treatment for a 

shorter duration may result in a recurrent infection.  Extended use of antibiotics may 

develop complicated cystitis. In this case, a further seven-day regime of Ciprofloxacin 

and Levofloxacin is recommended (Kumar et al., 2015).  

Patients with fever, chills and flank pain, in addition to a positive laboratory 

examination, are diagnosed as pyelonephritis cases. The empirical treatment 

recommended is based on a Gram stain result to prevent any further complication. 

Empirically, Ciprofloxacin is recommended as an oral dose. However, if regional 

resistance to ciprofloxacin is more than 10 %, treatment should be initiated with 

Ceftriaxone or aminoglycoside followed by Ciprofloxacin (Kumar at al., 2015). 

Complicated pyelonephritis patients need to be treated in hospital with treatment 

including the use of one of Ceftazidime, Cefepime, Piperacillin-Tazobactam, 

Aztreonam, Meropenem or Imipenem for a fourteen-day period (Kumar at al., 2015). 
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1.2 Escherichia coli species 

Escherichia coli was first known as Bacterium coli commune. This name was given by 

a German physician called Theodor Escherich in 1885 (Welch, 2006; Chaudhuri and 

Handerson, 2012; Croxen et al., 2013). The name of Escherichia coli (E. coli) became 

recognised in 1954 (Croxen et al., 2013). E. coli are, mostly, harmless commensal 

organisms that colonise the gastrointestinal tract of warm-blooded animals and 

become part of the normal flora within hours after birth (Kaper et al, 2004; Croxen et 

al., 2013). 

Escherichia coli is a member of the family Enterobacteriaceae, which encompasses 

Gram negative, mostly oxidase negative facultative anaerobic bacilli. E. coli has the 

ability to grow over a wide range of temperatures with the optimal temperature in a 

range between 37 °C and 42 °C, and is commonly motile with peritrichous flagella 

(Welch, 2006; Croxen et al., 2013). E. coli isolates are antigenically variable, with 

those variations occurring because of the variability in somatic (O), capsular (K) and 

flagellar (H) antigens (Welch, 2006; Chaudhuri and Handerson, 2012; Croxen et al., 

2013).  

1.2.1 Pathogenic Escherichia coli 

E. coli were considered to be non-pathogenic bacteria until they were isolated from 

several outbreaks of infantile diarrhoea in the 1940s (Chaudhuri and Handerson, 

2012). Since then, E. coli have been classified based on genetic differences and 

various clinical presentations into commensal strains, intestinal pathogenic strains 

and extraintestinal pathogenic strains (Russo and Johnson, 2000). Pathogenic E. coli 

infections may cause diseases ranging from diarrhoea to meningitis, and from 

asymptomatic bacteriuria to lethal urosepsis (Kaper et al., 2004; Pitout, 2012a). The 
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intestinal pathogenic E. coli group comprises Entero-pathogenic, Entero-invasive and 

Entero-aggregative pathogenic E. coli strains while the Extraintestinal pathogenic E. 

coli include uropathogenic and neonatal meningitis E. coli strains (Kaper et al., 2004; 

Pitout, 2012a). E. coli have been classified into four phylogenetic groups based on 

the genetic relatedness indicated A, B1, B2 and D. The commensal and intestinal E. 

coli strains commonly belong to groups A and B1. However, Extraintestinal 

pathogenic E. coli isolates mainly belong to B2 and D (Pitout, 2012b).  

The pathogenic strains differ from the non-pathogenic ones by possessing virulence 

factor genes which enable them to cause intestinal and extraintestinal diseases 

(Russo and Johnson, 2000; Croxen et al., 2013). There are around one million base 

pairs difference in genome size between commensal and pathogenic E. coli strains 

(Dobrindt et al., 2003). This variation in genome size is thought to be linked to the 

presence of diverse virulence factors which are required for pathogenic strains to 

survive and cause infection within the specific host (Wiles, 2008; Croxen et al., 2013). 

In general, the E. coli genome is composed of a conserved core and a flexible gene 

pool. The conserved core provides the backbone of genetic information that is 

responsible for the essential bacterial processes whilst the flexible gene pool 

provides the bacteria with the ability to adapt to new environments and to exhibit 

pathogenicity (Pitout, 2012a; Croxen et al., 2013). The flexible gene pool varies 

among various E. coli clones and contributes to intra-species variability and its size is 

dependent on the gain and loss of extra-genomic DNA (Pitout, 2012a). 

1.2.2 Extraintestinal pathogenic Escherichia coli  

Extraintestinal Pathogenic E. coli (ExPEC) are defined as a group of E. coli strains 

which have the ability to cause disease outside of the gastrointestinal tract. It 
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comprises two pathotypes: uropathogenic E. coli and neonatal meningitis E. coli 

(Kucheria et al., 2005; Lloyd et al., 2007). ExPEC also have the ability to exist in the 

gut as normal flora without causing disease (Russo and Johnson, 2003). However, 

ExPEC exhibit genome diversity and possess a wide range of virulence factors that 

are important for host colonization and can cause infection via dissemination to 

extraintestinal areas such as the blood, central nervous system (CNS) and urinary 

tract (Kucheria et al, 2005; Pitout, 2012a). ExPEC may acquire diverse virulence 

factors enabling them to establish a variety of infections such as bacteremia, 

nosocomial pneumonia, cholecystitis, cholangitis, peritonitis, cellulitis, osteomyelitis 

and arthritis. Thus, ExPEC may result in infection of the biliary and central nervous 

systems (Russo and Johnson, 2003; Hussain et al, 2012; Pitout, 2012b). 

1.2.3 Uropathogenic Escherichia coli  

The Uropathogenic E. coli (UPEC) are opportunistic intracellular organisms, and were 

first recognized in the 1970s as a cause of UTIs (Wiles et al., 2008; Agarwal et al., 

2012). UPEC is the most common causative organism of UTIs and Extraintestinal 

human disease (Wiles et al., 2008). UPEC accounts for about 90 % of community-

acquired infections and up to 50 % of nosocomial ones (Wiles et al., 2008; Toval et 

al., 2014). UPEC strains can colonise uroepithelial cells and indwelling medical 

surfaces resulting in a range of diseases such as asymptomatic bacteriuria, cystitis, 

pyelonephritis and urosepsis (Wiles et al., 2008; Spurbeck and Mobley, 2013). UPEC 

isolates exhibit variability in virulence gene repertoire and expression level which 

results in heterogeneity in bacterial growth and persistence within the urinary tract 

(Wiles et al., 2008).  
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1.2.3.1 Uropathogenic Escherichia coli virulence factors 

The ability of UPEC to cause symptomatic UTIs is strictly related to the expression of 

various virulence factors (Bien et al., 2012). Virulence factor genes vary among UPEC 

isolates resulting in UPEC heterogeneity (Bien et al, 2012). Common UPEC virulence 

factors are linked to adhesion, the production of toxins, siderophore systems, 

capsule and lipopolysaccharide. These virulence factors are encoded by 

pathogenicity island and mobile DNA elements (Brzuszkiewick et al., 2006; Pitout, 

2012a). UPEC virulence factors are divided into surface associated and secreted 

virulence factors. The surface associated virulence factors are attached to the 

surface of UPEC cells while the other virulence factors are secreted at the site of 

infection (Bien et al., 2012). 

1.2.3.1.1 Adhesion 

Attachment of UPEC to, and invasion of, bladder superficial cells is an important 

determinant of UPEC pathogenicity and initiation of UTIs (Mulvey et al., 2001; Bien 

et al., 2012). Adhesion is a common characteristic of pathogenic organisms to 

overcome fluid flow. In the case of UPEC, this fluid is normally urine (Johnson, 1991). 

In addition, adhesion is thought to trigger host and bacterial cell signalling directly, 

and to facilitate delivery of bacterial content to the host cells (Bien et al., 2012). 

Adherence of UPEC to urinary tract epithelial cells is mediated by fimbriae. Fimbriae 

are rod-shaped structures comprised of several subunits and adhesive tips. 

Promotion of adhesion and invasion may be associated with other structures and 

molecules such as flagella and toxins (Lüthje and Brauner, 2014). The most common 

adhesive organelles among UPEC are type 1 fimbriae and P fimbriae and 80 % of 

UPEC isolates express both or either type of these fimbriae (Mabbett et al., 2009). 
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UPEC type 1 fimbriae have the ability to bind to mannose receptors expressed by 

umbrella cells at the luminal surface of the urinary tract. This binding is mediated by 

FimH at the fimbrial tip to enhance UPEC survival, stimulate mucosal inflammation, 

mediate adhesion, invasion and promote intracellular bacterial community 

formation (Bien et al., 2012; Lüthje and Brauner, 2014). Binding of UPEC to host 

surfaces results in phosphorylation events that are required for the signalling 

stimulation pathway (Bien et al., 2012).  FimH receptors are solubilised by the 

Tamm-Horsfall protein which is produced by the kidney and, because of this, the 

binding ability between UPEC and the urinary tract is limited (Bien et al., 2012). This 

may explain the higher frequency of type 1 fimbriae in strains isolated from the 

lower urinary tract (Lüthje and Brauner, 2014).  

UPEC may also express P fimbriae that have a role in ascending infections and 

adhesion of uropathogens to the upper urinary tract, and also have the ability to 

induce the production of cytokines. P fimbriae are commonly expressed by UPEC in 

pyelonephritis patients (Bien et al., 2012; Lüthje and Brauner, 2014). P fimbriae are 

heteropolymeric fibres of different subunits encoded by the PapA to K gene operon. 

P fimbriae have the ability to bind with the Galα of glycosphingolipid in kidneys. The 

attachment of P fimbriae with receptors in the kidney may result in the release of 

cermides that act against Toll-like receptor 4 (TLR4) leading to immune system 

activation (Bien et al., 2012).  

There are other types of adhesive organelles in UPEC such as S fimbriae and Dr 

adhesions (Lüthje and Brauner, 2014). S fimbriae facilitate the binding of the 

uropathogen to epithelial and endothelial cells of the lower urinary tract and kidneys 

which results in the dissemination of the infection. This type of fimbriae is mostly 
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present in isolates from patients with meningitis, sepsis and ascending UTIs. 

However, Dr adhesin binds to type IV collagen in the kidney. This adhesion organelle 

is frequently found in chronic pyelonephritis isolates (Bien et al., 2012).  

1.2.3.1.2 Flagella 

Flagella (H antigen) are the motility organelles of UPEC and 70 % to 90 % of UPEC 

causing UTIs are flagellated. Although bacterial motility is not required for successful 

colonisation, flagella may contribute to UPEC migration to the upper urinary tract 

and allow further interaction between bacterial cell and host epithelium. It is 

thought that flagella may have a role in invasion of the renal collecting duct in 

pyelonephritis isolates and enable UPEC to reach the renal epithelium barrier to the 

blood stream (Subashchandrabose and Mobley, 2015).  It was reported that cystitis 

isolates are motile than pyelonephritis isolates (Johnson, 1991). 

1.2.3.1.3 Capsule and lipopolysaccharide  

The capsule (K antigen) is a polysaccharide structure which surrounds the bacterial 

cell protecting the uropathogen from the immune system and phagocytic 

engulfment. There are more than 80 types of K antigen within the species E. coli.  

Although K1, K2, K3, K5, K12, K13, K20 and K51 are commonly seen in cystitis and 

pyelonephritis isolates, the most common K antigen among urinary tract isolates is 

K1. Capsular types K1 and K5 are represented 63 % of isolates from women with 

pyelonephritis infections and these two antigens are also thought to have a role in 

protection from the humoral immune response. The presence of K antigens is 

significantly related to the ability of E. coli strains to resist serum. This ability can 

help bacteria to evade  the complement cascade system, by blocking its activation 

(Johnson, 1991; Bien et al., 2012). Lipopolysaccharide (LPS) is an integral component 
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of the Gram-negative bacterial cell wall and has a role in pathogenicity. The 

endotoxin is well-known for its role as an activator of the host response, in addition 

to its ability to induce nitric acid and produce cytokines (Bien et al., 2012).  

1.2.3.1.4 Toxins 

Toxins are defined as secreted virulence factors that are produced by UPEC. Toxins 

are believed to be essential in the deep spreading of infections into underlying tissue. 

As the urinary tract environment has a limited source of nutrients, the secretion of 

toxins can damage the host tissue providing bacteria with access to nutrients and to 

evade the immune system (Bien et al., 2012; Lüthje and Brauner, 2014; Flores-

Mireles et al., 2015). 

The toxin most often secreted by UPEC is α-haemolysin. It is a lipoprotein and 

thought to be associated with upper UTIs such as pyelonephritis. A high level of α-

haemolysin production may lead to erythrocyte and nucleated cell lysis which allows 

UPEC to cross the mucosal barrier and results in damaging of the effector immune 

cells and gaining host nutrients and iron. However, secretion of α-haemolysin at low 

levels can induce apoptosis of neutrophils, T lymphocytes and renal cells, and also 

promotes their exfoliation (Bien et al, 2012). 

One third of pyelonephritis strains produce the cytotoxic necrotising factor 1 (CNF1). 

CNF1 is a protein secreted by E. coli and able to stimulate actin stress fibre and 

membrane ruffle formation leading to pathogen entry into the cell. There is another 

toxin secreted by pyelonephritis strains which is the secreted autotransporter toxin 

(SAT). This toxin is an important product of bacteria as it has toxic activity against 

bladder and kidney cells (Bien et al., 2012). 
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1.2.3.1.5 Iron uptake system 

The iron uptake system is important for bacterial virulence. The utilization of 

siderophores for iron scavenging is an essential mechanism allowing uropathogens 

to grow and survive extraintestinally (Wiles et al., 2008; Hannan et al., 2012; Flores-

Mireles et al., 2015). One iron acquisition system is expressed by both commensal 

and pathogenic E. coli strains and is known as enterobactin. Enterobactin competes 

with transferrin for iron binding (Wiles et al., 2008). There are additional iron 

acquisition systems which are encoded by UPEC: aerobactin and yersiniabactin, 

which are two siderophore mechanisms (Wiles et al., 2008; Flores-Mireles et al., 

2015). Aerobactin is highly expressed by UPEC and characterised by its ability to bind 

with iron molecules and stability at low pH. Yersiniabactin has a role in protecting 

against intracellular killing and copper stress, and it is important in biofilm formation 

(Flores-Mireles et al., 2015). A comparison study by Lloyd et al, (2007) illustrated 

that enterobactin (ent/feb), enterobactin-like (iro), aerobactin (iuc/iut), 

yersiniabactin (fyu), iron transport (sit) and heme (chu) systems have a clear role in 

UPEC survival within the urinary tract. A recent study developing a vaccine against 

UTIs found seven different proteins related to the iron acquisition system that 

conferred immune protection. Four of these proteins (IreA, Hma, IutA and FyuA) may 

work as antigens that could develop the necessary protection against UTIs (Mobley 

and Alteri, 2016). 

1.2.3.1.6 Biofilm formation and extracellular matrix components 

Numerous pathogenic bacteria have the ability to form biofilms and this may 

contribute to pathogen protection from antibacterial treatments and host defence 

mechanisms. Biofilm formation is generally related to infection persistence (Lüthje 
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and Brauner, 2014; Flores-Mireles et al., 2015). In UPEC, having intracellular bacterial 

communities protects the bacteria from host immunity, antibiotic treatment and 

other environmental stresses are defined as biofilm formation and mediated by type 

1 pili, antigen 43 and other adhesive organelles. In catheterised patients, biofilm 

formation is linked to the presence of type 1 pili (Flores-Mireles et al., 2015). 

1.3 Escherichia coli antimicrobial resistance 

Clinical diseases that are caused by ExPEC are widely treated with first line agents 

including cephalosporins, fluoroquinolones and trimethoprim-sulfamethoxazole. 

However, increasing resistance to these agents, which was first observed in the late 

1990s, makes infection management challenging. β-lactamases are common 

enzymes that cause inactivation of β-lactam molecules. β-lactamases include Amp C 

β-lactamases, extended spectrum β-lactamases and carbapenemases. Increasingly 

common production of these enzymes is responsible for the development of 

resistance to all β-lactam antibiotics used in treating E. coli infections (Pitout, 2012b).  

Extended spectrum β-lactamases (ESBLs) are commonly seen in community-acquired 

isolates of E. coli and characterised by resistance to all β-lactam antibiotics apart 

from carbapenems and cephamycins (Pitout, 2012b). ESBLs have increased 

significantly in community isolates across Europe (Bevan et al., 2017). Between the 

1980s and 1990s, two types of ESBLs were identified: the sulfhydryl reagent variable 

(SHV) and Temoneira (TEM). Then, ESBLs encoded by genes on plasmids (CTX-M) 

were described in 1983 and identified as different β-lactamases (Pitout, 2012b). CTX-

M β-lactamase enzymes spread and became distributed worldwide, especially in E. 

coli.  Extraintestinal pathogenic E. coli expressing CTX-M β-lactamases are commonly 

seen in UTIs, bacteraemia and intra-abdominal cases. CTX-M is usually carried on a 
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resistance plasmid that confers resistance to β-lactam, fluoroquinolones, 

aminoglycosides and trimethoprim-sulfamethoxazole antibiotics (Johnson et al, 

2010). Global spreading of CTX-M producing bacteria may limit treatment options 

and could contribute to the emergence of carbapenemase-producing 

Enterobacteriaceae (Bevan et al., 2017). The type of CTX-M varies according to the 

geographical region with most types worldwide being CTX-M-14 and CTX-M-15 

(Pitout, 2012b). Bevan et al. (2017) proposed factors which might be related to 

global dissemination of ESBLs such as plasmid content and food-animal transmission. 

The ability to home blaCTX-M on a plasmid has held great importance in the field of 

evolution, due to the relocation of the antimicrobial resistance gene via horizontal 

gene transfer in Enterobacteriaceae. IncF plasmids predominantly carry blaCTX-M-15 

while various types of plasmid carry by blaCTX-M-14 including IncF and IncK (Bevan et al., 

2017). Spreading of a virulent clonal strain is also important, such as E. coli ST131, 

which is isolated worldwide and commonly carries CTX-M-15.  In addition, other 

factors may contribute to the global spreading of ESBLs such as the existence of 

blaCTX-M in a variety of reservoirs in environment and food-producing animals (Bevan 

et al., 2017). 

1.4 Escherichia coli Sequence types 

UTIs are caused by UPEC isolates belonging to a number of multi locus sequence 

types and this is thought to reflect the pathogenic potential and likelihood of the 

establishment of infection (Croxall et al., 2011; Toval et al., 2014). Multi locus 

sequence typing (MLST) is a nucleotide-based grouping system based on the 

sequencing of internal fragments of selected genes (Tartof et al., 2005).  It is a 

sequence typing tool that obtains the nucleotide sequence of ~450 bp fragments 
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derived from seven housekeeping genes in order to identify their allelic profiles 

(Chaudhuri and Henderson, 2012; Pitout, 2012b). In E. coli, there are seven 

housekeeping genes used for obtaining sequence types which are adenylate kinase 

(adk), fumarate hydratase (fumC), isocitrate/isopropylmalate dehydrogenase (icd), 

adenylosuccinate dehydrogenase (purA), DNA gyrase (gyrB), ATP/GTP binding motif 

(recA) and malate dehydrogenase (mdh). These housekeeping genes were selected 

based on the idea that they evolve slowly (Tartof et al., 2005). A previous 

epidemiological study by Croxall et al. (2011) demonstrated that the UPEC 

population was diverse and 52 sequence types were involved in causing UTIs in the 

Nottingham area, UK. Another study carried out by Lau et al. (2008) reported that 

the most common UPEC sequence type that caused UTIs is sequence type 131 

followed by sequence types 69, 73 and 95. A study on ExPEC isolates reveals that E. 

coli bloods stream isolates generally belong to ST73, ST131, ST95, ST69 and ST12 

respectively (Kallonen et al., 2017). 

1.4.1 Sequence type 131 

Sequence type 131 (ST131) is a pandemic clone of ExPEC and the dominant strain 

associated with extraintestinal disease. ST131 is commonly associated with UTIs and 

bloodstream infections especially in community isolates (Rogers et al., 2011; Croxall 

et al., 2011; Adams-Sapper et al., 2013). In addition, ST131 is highly prevalent among 

antimicrobial and multidrug resistant isolates (Johnson et al., 2010). A study by Clark 

et al. (2012) in Nottingham, UK reported that ST131 is the most common sequence 

type among ExPEC isolates. Transmission of ST131 between family members may 

occur to cause pyelonephritis and septic shock (Hannan et al., 2012). 
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ST131 belongs to phylogenetic group B2 and all ST131 isolates belong to the O25 

serogroup. Further, ST131 is significantly associated with carrying CTX-M and OXA 

(oxacillinase) genes and characterised by frequent expression of CTX-M-15 which 

results in resistance to ciprofloxacin, trimethoprim, ampicillin and cefotaxime (Lau et 

al., 2008; Johnson et al., 2010; Croxall et al., 2011). Since 2007, ST131 has been 

associated significantly with an increase in ESBL-producing clinical E. coli isolates 

(Pitout, 2012b). In addition, ST131 isolates resistant to carbapenems are now extant 

through acquisition of blaKPC, blaVIM and blaNDM-1 genes (Adams-Sapper et al., 2013).  

ST131 can be divided into sub-clusters and isolates of this sequence type may differ 

in genetic background, virulence profiles, antimicrobial resistance and ability to 

spread (Johnson et al., 2010; Croxall et al., 2011; Pitout, 2012b; Adams-Sapper et al., 

2013). Martinez-Medina et al. (2009) showed that ST131 isolates may harbour a 

variety of virulence genes such as PapC, PapGIII, ibeA, cnf1 and hlyA, and ST131 

isolates possess one of five different types of FimH (Adams-Sapper et al., 2013).  

1.4.2 Sequence type 69 

Sequence type 69 (ST69) is widely disseminated in North America and belongs to 

phylogenetic group D. Isolates of this sequence type are commonly associated with 

blood stream infections (Leflon-Guibout et al., 2008; Adams-Sapper et al., 2013). 

ST69 in San Francisco, USA, was highly associated with students with UTIs and these 

isolates were often multidrug resistant, especially the clonal group A (CgA) which is a 

common clone of ST69 (Adams-Sapper et al., 2013; Skjøt-Rasmussen et al., 2013).  

A study carried out in California reported that CgA isolates were commonly isolated 

from community acquired UTIs. In this study, 81 % of CgA isolates were carrying O1, 

O2, O4, O6, O7, O16, O18, O25 or O75 (Manges et al., 2001). However, in Europe, CgA 
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is commonly isolated from women with UTIs involving bacteraemia and 

characterised by sulfamethoxazole-trimethoprim resistance (Skjøt-Rasmussen et al., 

2013). A study published within the UK by Gibreel et al. (2012) showed that ST69 

isolates were more often isolated from females than males. ST69 was commonly 

associated with trimethoprim resistance and more associated with hospital isolates 

(Gibreel et al., 2012). 

1.4.3 Sequence type 73 

Sequence type 73 (ST73) is characterised by having a smaller genome size than other 

UPEC sequence types (Zdziarski et al., 2008).  ST73 complex is highly diverse, and is a 

commonly isolated UPEC and belongs to phylogenetic group B2 (Gibreel et al., 2012). 

ST73 complex isolates showed more susceptibility to antibiotics than ST131 and ST69 

isolates in a study carried out on patients with ExPEC bloodstream infections in San 

Francisco, USA (Adams-Sapper et al., 2013). Also, a study by Kallonen et al., (2017) 

showed a similar finding in the UK. 

1.4.4 Sequence type 95 

Sequence type 95 (ST95) belongs to phylogenetic group B2 and contains isolates 

from serogroups O1, O2 and O18 with polysaccharide antigen K1 commonly 

expressed among isolates of this sequence type. ST95 is commonly associated with 

community onset infections (Mora et al., 2009; Adams-Sapper et al., 2013). ST95 

strains have been isolated from avian pathogenic E. coli (APEC), human 

uropathogenic E. coli (UPEC) and neonatal meningitis E. coli (NMEC) members 

(Johnson and Russo, 2005). ST95 isolates showed the lowest resistance to antibiotics 

of UPEC sequence types (Gibreel et al., 2012; Adams-Sapper et al., 2013). ST95 

subgroups commonly possess pap genes that encode P fimbriae, a phenotype which 
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enhances colonisation of avian and human epithelium cells which is then thought to 

promote zoonotic transmission (Adams-Sapper et al., 2013; Maluta et al., 2014). 

1.4.5 Sequence type 10 

Sequence type 10 (ST10) is a complex of sequence types characterised by the 

carriage of five different ESBLS, comprising CTX-M-14, SHV-12, CTX-M-9, CTX-M-15 

and CTX-M-32 (Oteo et al., 2009). ST10 complex isolates are commonly seen among 

faecal sample isolates of healthy E. coli carriers (Leflon-Guibout et al., 2008). In Brazil, 

ST10 clonal complex strains have been isolated from avian pathogenic E. coli, human 

UTI and sepsis cases. ST10 isolates were also thought to be associated with zoonotic 

infections worldwide (Maluta et al., 2014). This sequence type may carry the blaTEM 

resistant gene (Adam-Sapper et a., 2013). 

1.4.6 Sequence type 12 

Sequence type 12 (ST12) is a clonal complex characterised by multidrug resistance to 

two or more classes of antibiotics (Adams-Sapper et al., 2013) and belongs to 

phylogenetic group B2 (Kallonen et al., 2017). ST12 is one of five predominant 

sequence types of ExPEC isolates (Kallonen et al., 2017). ST12 isolates can carry the 

blaTEM, blaCTX-M-14 and blaKPC resistance genes (Adam-Sapper et a., 2013). 

1.5 Within host bacterial diversity 

Isolates within a bacterial species vary in antimicrobial resistance and virulence 

potential. Both these factors are considered to be formally adaptive mechanisms 

allowing bacteria to survive within the host and escape host immunity (Martinez and 

Baquero, 2002; Didelot et al., 2016). Variation within bacterial species is a result of 

evolution, and the evolutionary process in term of mutation rate accumulation per 
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site can happen over years (long-term evolution) or months, the latter being 

described as the short-term evolution (Didelot et al., 2016). Gene acquisition, gene 

loss or other genomic alterations are the key determinants of bacterial evolution and 

may result in the formation of a new strain (Dobrindt, 2005; Vejborg et al., 2011). 

Bacterial evolution mechanisms include point mutations, genetic rearrangement or 

horizontal gene transfer (HGT). Further, extreme bacterial evolution is highly 

associated with HGT in which long sequences are transferred via plasmids or 

pathogenicity islands. The acquired DNA sequences are thought to be responsible for 

transforming non-virulent strains to virulent ones and are linked with the transfer of 

antimicrobial resistance plasmids and virulence factors. Those genomic variations 

are commonly seen in the flexible gene pool and result in interspecies or intraspecies 

bacterial diversity. Closely related strains can acquire various horizontally transferred 

elements which may provide a specific trait to a particular strain (Dobrindt, 2005). 

Within species evolution is most easily detected by applying whole-genome 

sequencing. Homologous gene gain and non-homologous gene loss are evolutionary 

processes which can be measured. Also, the mutation rate per species can be 

evaluated (Didelot et al., 2016). 

1.5.1 Staphylococcus epidermidis within-host diversity 

Over time, polyclonal (varied sequence types within a single host) and monoclonal 

diversity (genetic variation within same sequence type) were demonstrated in 

patients infected with Staphylococcus epidermidis. Monoclonal diversity leads to 

phenotypic variation and can result in diverse drug resistance profiles in isolates 

from the same sequence type from a single patient. The reason behind such 

monoclonal diversity is thought to be related to mutations, DNA rearrangement or 
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loss. Further, polyclonal diversity associated with multi sequence types of S. 

epidermidis was also determined in four out of fourteen studied patients (Galdbart 

et al., 1999). 

1.5.2 Helicobacter pylori within-host diversity 

Genetic diversity was determined in a patient infected with Helicobacter pylori over 

a period of six years. Genetic variation within the flexible gene pool was found in the 

more recent isolates which became more tolerant to antibiotic treatment (Israel et 

al., 2001). Genetic variability was determined within and between isolates from a 

mother and her children who were all infected with H. pylori. Although the clonal 

isolate was the dominant strain between family members, bacterial change was 

shown between individuals and thought to have resulted from pathogen adaption to 

the newly colonised host. In addition, the mother was infected with two distinct 

strains of H. pylori (Kivi et al., 2007). 

1.5.3 Staphylococcus aureus within-host diversity 

Within-host diversity was evaluated among isolates from samples obtained over a 

year and half from individuals infected with Staphylococcus aureus. Samples were 

categorized into two groups:  a group colonized with different strains of S. aureus 

and group containing very similar strains with minor genetic variation (Cespedes et 

al., 2005). S. aureus has been shown to exhibit phenotypic variation resulting in small 

colony variants to be produced in a single patient, and other changes were found in 

their virulence factor content and a reduction in susceptibility to antibiotics 

(Tuchscherr et al., 2011). This study correlated with data from McAdam et al. (2011) 

where, although three isolates of S. aureus from a single host were of similar 

sequence type, 31 point mutations were identified between them. The recognized 
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mutations were thought to be related to genes responsible for growth, virulence and 

antibiotic resistance (McAdam et al., 2011). In addition, 131 colonies from 13 

individuals were sequenced to evaluate within host diversity of nasal S. aureus 

isolates. These isolates commonly exhibited microevolution (mutations) and, to a 

lesser extent, mobile genetic element variation (Golubchik et al., 2013). 

1.5.4 Burkholderia dolsa within-host diversity 

An epidemiological study using whole genome sequencing was carried out on 114 

isolates of Burkholderia dolsa from 14 patients. Most of the isolates were from 

patients’ airways and there were some blood isolates. Dissemination of infection to 

bloodstream was reported to be associated with multiple strains of B. dolsa within 

the same individual (Lieberman et al., 2011). Dozens of colonies were sequenced at a 

single time point from a patient infected with B. dolsa and deep sequencing was also 

performed on isolates from five patients. Results of this research concluded that the 

collected samples followed the diverse community model which is thought to be 

derived from adaption of the pathogen to the environment under selective pressure, 

so generating polymorphic mutations (Lieberman et al., 2014). 

1.5.5 Mycobacterium tuberculosis within-host diversity 

Multiple infections may occur in patients infected with Mycobacterium tuberculosis, 

with two strains of M. tuberculosis found in 19 % of patients examined. This was 

seen more frequently in patients with a previous infection (Warren et al., 2004). 

Microdiversity of a single strain within a single host was shown and intraspecies 

diversity was indicated in patients infected with M. tuberculosis. The reason was 

thought to be related to an elevation of the mutation rate in persistent infections 

resulting in the development of multidrug resistant strains (Warner et al., 2015). 
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O’Neill et al. (2015) reported that most within and between host variation of isolates 

from people infected with M. tuberculosis occurred in genes responsible for 

pathogenicity.  

1.5.6 Pseudomonas aeruginosa within-host diversity 

The evolution of Pseudomonas aeruginosa was assessed in one cystic fibrosis patient 

over a period of time. The first sample was taken after six months and the second 

sample was taken after 96 months. Isolates from the second sample had 

accumulated mutations and it was thought that those mutations affected protein 

function. Isolates from the second sample varied phenotypically by the loss of 

motility, pyoverdine production, secreted protease and biofilm formation. Mutations 

also affected the multidrug efflux pump genes, making the later isolate more 

resistant to treatment. It had become resistant to aminoglycosides, amikacin, 

gentamicin and tobramycin when compared with the six-month isolate which was 

resistant to β-lactam agents only (Smith et al., 2006). In another study, two colonies 

from three patients infected with P. aeruginosa were selected for genome 

sequencing to assess genetic variation. Colonies from samples displayed genetic 

variation thought to have an impact on cell physiology and gene expression (Chung 

et al., 2012). Another study was carried to determine the evolution of P. aeruginosa 

within a single host over a period of time, and showed that long-term colonisation 

led to increased mutation, especially in genes responsible for pathogen adaption to 

the host (Feliziani et al., 2014). Within-host diversity was also determined in four 

Italian patients infected with P. aeruginosa over time with similar findings to the 

previous study (Marvig et al., 2015). Moreover, bacterial diversity within a single 

host at single time point was evaluated by Darch et al. (2015) where 44 colonies of P. 
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aeruginosa were compared phenotypically and genetically within a single patient. 

The result of this study determined that the isolates varied in antibiotic resistance 

profile, pyocyanin, LasA, LasB and quorum sensing production. In addition, whole 

genome sequence was carried out on 22 colonies and it was determined that 

phenotypic variation may be related to recombination events (Darch et al., 2015).  

1.5.7 Escherichia coli within-host diversity 

Comparative genome sequence analysis reveals that ExPEC exhibit genetic diversity 

underlying their phenotypic diversity (Dobrindt, 2005). ExPEC strains belonging to 

phylogenetic groups B2 and D have a larger genome size with a higher percentage of 

virulence genes than isolates of phylogenetic groups A and B1 (Zdziarski et al., 2008). 

Horizontal gene transfer, gene loss and gain have a played role in the evolution of 

UPEC and drive phenotypic variation (Brzuszkiewicz et al., 2006). 

Levert et al. (2010) reported within-host phenotypic and genetic diversity of E. coli 

among patients with extraintestinal infections. Three outcomes were obtained in 

this research; patients with no diversity, patients showing within sequence type 

heterogeneity (monoclonal diversity) and patients with infections caused by a 

number of sequence types of E. coli (polyclonal diversity) (Levert et al., 2010). 

Further, molecular analysis for a family infected with shiga toxigenic E. coli (STEC) 

revealed that family members were infected with multiple STEC strains. The strains 

detected were thought to have pathogenic potential and potentially could cause the 

development of symptoms (Staples et al., 2012). In 2013, isolates from one patient in 

a genomic analysis study revealed the presence of two different sequence types, 

ST131 in his blood samples and ST10 in his urine samples.  Reanalysis of urine culture 

plates demonstrated the presence of two other UPEC sequence types (ST131 and 
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ST127). In that study, a genetic analysis was conducted to compare the blood and 

urine isolates from patients who had similar sequence types, and some mutations 

were detected in the two isolates from a single patient, and there was a difference in 

serum resistance (McNally et al., 2013). In another study, sixteen single colonies 

were sequenced from eight fecal samples in order to evaluate within-host diversity. 

One individual had multiple sequence types of E. coli. Extensive heterogeneity was 

also observed in the accessory genome between individual strains (Stoesser et al., 

2015). 
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1.6 Aim of this research 

Urinary tract infection is commonly caused by Uropathogenic Escherichia coli (UPEC). 

Clinical diagnosis and the choice of the most effective treatment in the clinical 

laboratories are based on single colony selection, assuming that identical colonies of 

a homogenous bacterial culture are similar. However, within-host diversity is well 

recognized in many organisms including E. coli. Evolution of diversity within a patient 

at a single time point may have a crucial impact on the correct diagnosis of the UTI 

and its treatment. This PhD research aims to investigate UPEC diversity within a 

single host. Determining within-host diversity was achieved through three stages:  

•    Sensitivity testing with eight different classes of antibiotics for a maximum of 

forty-eight well-isolated colonies on collected UPEC culture plates. 

•    Comparing selected colonies within samples via various phenotypic assays using 

motility assay, biofilm formation assay using crystal violet and association and 

invasion assay to T24 epithelial cell line. 

•    Investigation of genetic diversity within collected samples using whole-genome 

sequencing technology. 
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2 .1 Materials and Methods 

2.1.1 Collection of bacterial strains 

A total forty-two uropathogenic E. coli pure culture plates were used in this research 

from patients with urinary tract infections. Patients’ bacterial slopes were collected 

from the Clinical Microbiology Department at Queen Medical Centre (QMC), 

Nottingham, UK. Collected bacterial slopes were selected randomly with no 

identifiable information except the sex of the patients. Samples were assigned as UTI 

with given serial number containing the letter ‘F’ for female patients or letter ‘M’ for 

male patients. Samples were collected over a six months period in 2014. Table 2.1 

shows details of the samples details that used in this research. 

2.1.2 Bacterial cultures maintenance and storage  

Uropathogenic E. coli samples were collected as nutrient agar slopes and sub-

cultured on LB (Sigma-Aldrich, UK) agar plates in order to have well-isolated colonies. 

The initial streak of each of the collected samples were maintained in 1 ml of 

Lysogeny Broth (LB) containing 20 % glycerol (Fisher Scientific) and stored at – 80 ˚C. 

The susceptibility patterns of the varied well-isolated colonies, within each sample of 

the high and low diversity groups, were maintained. A single representative colony 

(bacterial isolate) of the identical group samples, with identical sensitivity patterns, 

were also stored. The saved bacterial isolates were categorised by colony number, 

sample number and the letter ‘F’ or ‘M’. 
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Table 2.1 Patient samples used in this research: 

Sample ID Source Gender 

UTI (F1) Urine Female 

UTI (F2) Urine Female 

UTI (F3)  Urine Female 

UTI (F4) Urine Female 

UTI (F5) Urine Female 

UTI (F6) Urine Female 

UTI (F7) Urine Female 

UTI (F8) Urine Female 

UTI (F9) Urine Female 

UTI (F10) Urine Female 

UTI (F11) Urine Female 

UTI (F12) Urine Female 

UTI (F13) Urine Female 

UTI (F14) Urine Female 

UTI (F15) Urine Female 

UTI (F16) Urine Female 

UTI (F17) Urine Female 

UTI (F18) Urine Female 

UTI (F19) Urine Female 

UTI (F20) Urine Female 

UTI (F21) Urine Female 

UTI (M1) Urine Male 

UTI (M2) Urine Male 

UTI (M3) Urine Male 

UTI (M4) Urine Male 

UTI (M5) Urine Male 

UTI (M6) Urine Male 

UTI (M7) Urine Male 

UTI (M8) Urine Male 

UTI (M9) Urine Male 

UTI (M10) Urine Male 

UTI (M11) Urine Male 

UTI (M12) Urine Male 

UTI (M13) Urine Male 

UTI (M14) Urine Male 

UTI (M15) Urine Male 

UTI (M16) Urine Male 

UTI (M17) Urine Male 

UTI (M18) Urine Male 

UTI (M19) Urine Male 

UTI (M20) Urine Male 

UTI (M21) Urine Male 
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2.2 Culture media 

2.2.1 Lysogeny Broth (LB) Agar 

Media was ordered from Sigma-Aldrich, UK. It consists of 5 g/L yeast extract, 10 g/L 

sodium chloride, 10 g/L tryptone, and 15 g/L granulated agar. 40 g of LB agar was 

dissolved in 1 L distilled water (dH2O) and sterilised by autoclaving for 15 minutes at 

121 °C.  

2.2.2 Lysogeny Broth (LB) 

Media was ordered from Sigma-Aldrich, UK. It consists of 5 g/L yeast extract, 10 g/L 

sodium chloride and 10 g/L tryptone. 20 g of LB broth was dissolved in 1L distilled 

water (dH2O) and sterilised by autoclaving for 15 minutes at 121 °C.  

2.2.3 Cystine Lactose Electrolyte Deficient (CLED) agar 

Media was ordered from Oxoid Limited, UK. It consists of 0.128 g/L L-cystine, 10 g/L 

lactose, 4 g/L tryptone, 0.02 g/L bromothymol blue and 4 g/L peptone. 36.2 g was 

dissolved in 1 L distilled water (dH2O) and sterilised by autoclaving for 15 minutes at 

121 °C.  

2.2.4 Iso-Sensitest agar 

Media was ordered from Oxoid Limited, UK. It consists of 11 g/L hydrolysed Casein, 3 

g/L peptones, 2 g/L glucose, 3 g/L sodium chloride, 1 g/L soluble starch, 2 g/L 

disodium hydrogen phosphate, 1 g/L sodium acetate, 0.2 g/L magnesium 

glycerophosphate, 0.1 g/L calcium gluconate, 0.001 g/L cobaltous sulphate, 0.001 g/L 

cupric sulphate, 0.001 g/L zink sulphate, 0.001 g/L ferrous sulphate, 0.002 g/L 

manganous chloride, 0.001 g/L menadione, 0.001 g/L cyanocobalamin, 0.02 g/L L-

cystine hydrochloride, 0.02 g/L L-tryptophan, 0.003 g/L pyridoxine, 0.003 g/L 

pantothenate, 0.003 g/L nicotinamide, 0.0003 g/L biotin, 0.00004 g/L thiamine, 0.01 
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g/L adenine, 0.01 g/L guanine, 0.01 g/L xanthine, 0.01 g/L uracil and 8 g/L agar. 31.4 

g was dissolved in 1 L distilled water (dH2O) and sterilised by autoclaving for 15 

minutes at 121 °C. 

2.2.5 Technical agar 

Media was ordered from Oxoid limited, UK. A 3 g of technical agar used with 1 L of 

LB broth for motility assay followed by autoclaving 15 minutes at 121 °C. 

2.3 Antibiotic used for susceptibility testing  

Antibiotic resistance tests of all isolates were performed with reference to the 

protocol for standardized disk diffusion method provided by The British Society for 

Antimicrobial Chemotherapy (BSAC) (BSAC, 2013). A panel of eight antibiotics were 

selected and are described in table 2.2. 

Table 2.2 Antibiotic disks used in chapter three 

Antibiotic Experiment Supplier 

Ampicillin (10 µg) 

Sensitivity Testing Mast Company limited, UK 

Cefepime (30 µg) 

Cefpodxime (10 µg) 

Ceftazidime (30 µg) 

Ciprofloxacin (1 µg) 

Gentamicin (10 µg) 

Meropenem (10 µg) 

Trimethoprim (2.5 µg) 
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2.4 General media, buffers and reagents  

2.4.1 Saline solution  

Saline solution was used as a diluent of bacterial culture (Oxoid Limited, UK). One 

saline tablet was added to 500 ml dH2O followed by autoclaving at 121 ˚C for 15 

minutes. 

2.4.2 Glycerol solution 

80 % of glycerol solution was used to make bacterial stocks (Fisher Scientific, UK) and 

was prepared by adding 80 ml of glycerol into 20 ml dH2O. 

2.4.3 Crystal violet solution 

1 % of crystal violet solution was used to strain biofilm in biofilm formation 

experiment (Sigma Aldrich, UK). It composed of 2.3 % certified crystal violet, 0.1 % 

ammonium oxalate and 20 % ethyl alcohol. 

2.4.4 McCoy's 5A modified medium 

McCoy’s 5A modified medium was used as a minimal defined medium in bacterial 

growth studies and also as a growth and infection medium in cell culture assays 

(Sigma Aldrich, UK). It is ready to use and contains 2.2 g/L sodium bicarbonate. 

2.4.5 Dulbecco's phosphate buffer saline (PBS) 

Dulbecco's phosphate buffer saline (PBS) was used to wash cells during tissue culture 

work (Sigma Aldrich, UK). It is composed of sodium and magnesium chloride 

solution.  

2.4.6 Penicillin-Streptomycin Antibiotics 

Penicillin-Streptomycin antibiotic was purchased as a sterile liquid bio reagent 

(Sigma Aldrich, UK). It was manufactured by mixing 10000 units of penicillin with 10 

mg streptomycin/ml. 5 % (5 ml) of penicillin-streptomycin antibiotics was added to 
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the McCoy’s 5A modified medium to create the growth medium for T24 cell line. 

Penicillin- Streptomycin antibiotics were stored at 4 ˚c. 

2.4.7 Gentamicin Antibiotic Solution  

Gentamicin (Sigma Aldrich, UK) was used in the invasion assay to kill the extracellular 

bacteria with a concentration of 100 µg/ml. Gentamicin antibiotic solution was 

stored at 4 ˚C. 

2.4.8 Triton X-100 

Triton X-100 was used during cell culture studies (Sigma Aldrich, UK). 1 % triton X-

100 was prepared by adding 100µl of Triton X-100 to 10 ml of dH2O (V/V). 
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2.4.9 Nextera XT DNA library prep reagents  

 Reagents (Illumina, Inc) 

Tagment Genomic DNA (Illumina, Inc) 

Nextera XT library prep kit (Box 1 of 2) 

(ATM) Amplicon tagment mix 

(TD) Tagment DNA buffer 

Nextera XT library prep kit (Box 2 of 2) (NT) Neutralise tagment buffer 

Library amplify (illumine, Inc) 

Nextera XT library prep kit (Box 1 of 2) (NPM) Nextera PCR master mix 

Nextera XT index kit Index 1 primers (N7) and index 2 primers 

PCR clean up (Illumina, Inc) 

Nextera XT library prep kit (Box 1 of 2) (RSP) Resuspension buffer 

AMPure XP beads (Beckman Coulter, Inc) 

80% freshly prepared ethanol 

Pool library 
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2.5 Methods 

2.5.1 Disk diffusion method 

Isolates were screened for sensitivity testing to eight different antibiotics that belong 

to the aminoglycoside, penicillin, cephalosporin, carbapenems, quinolones classes 

and others such as trimethoprim. This was performed on each well-isolated colony 

(maximum 48 colonies per sample) based on the British Society for Antimicrobial 

Chemotherapy (BSAC, 2013) using the disk diffusion method. Commercial antibiotics 

used in this research project were: ampicillin (10 µg), cefepime (30 µg), cefpodoxime 

(10 µg), ceftazidime (30 µg), ciprofloxacin (1 µg), gentamicin (10 µg), meropenem (10 

µg) and trimethoprim (2.5 µg). A cotton swab was dipped in 0.5 McFarland solution 

of bacterial isolate, rolled around the tube and then spread over the surface of an 

iso-sensitest agar plate.   E. coli ATCC 10418 and ATCC 11560 were used as sensitive 

and resistant control for quality purposes. Plates were incubated at 37 °C overnight. 

The zone of inhibition was measured in mm and compared with the defined 

standards on British Society of Antimicrobial Chemotherapy (BSAC; BSAC, 2013). 

2.5.2 Motility assay using semi solid agar plates 

For the motility assay, all isolates from - 80 ˚C stock were incubated in Lysogeny 

Broth (LB) broth at 37 ˚C for 18 hours with shaking (200 rpm). A 3 µl drop was 

applied onto a motility agar plate containing LB broth and 0.3 % Bacto agar. The 

plates were incubated at 37 ˚C for 18 hours. The motility assay was assessed by 

measuring the zone of migration through the agar. The motility ability of each isolate 

was measured, diameter in mm as the mean of three independent experiments. 

Salmonella enteritidis and Staphylococcus aureus were used as positive and negative 

controls respectively. 
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2.5.3 Biofilm formation assay using crystal violet 

Biofilm formation was analysed in a 96-well plate assay at 37 °C for 24, 48, 72 and 96 

hours. First of all, all variants were grown at 37 °C for 18 hours without shaking. The 

optical density was adjusted to 0.5 - 0.7 using fresh LB broth and measured in a 

spectrophotometer at 600 nm. Two hundred microliters was transferred in triplicate 

to a 96 well micro titre plates and incubated. At set time points the wells were 

washed three times with saline and then stained with two hundred microliters (0.1 % 

V/V) crystal violet for 15 minutes at room temperature. Two hundred microliters of 

ethanol was added to each well after stain removal and incubated at room 

temperature for 10 minutes. Finally, one hundred microliters from each well was 

transferred to a new micro titre plate.  The optical density at 600 nm measured using 

a micro titre plate reader. The biofilm formation of each isolate was measured as the 

mean of absorbance of three independent experiments. The negative control was LB 

broth. 

2.5.4 Tissue association and invasion assay 

2.5.4.1 Culture cell line 

The human bladder epithelial T24 cell line was grown in a growth medium (Table 2.3) 

at 37 °C in humidified condition under 5 % CO2 incubator. Cells were subcultured 

every 2 to 3 days. The confluent monolayer was then de-attached using Trypsin–

EDTA and incubated in a CO2 incubator for 5 minutes. The cell suspension was 

transferred to a 15ml falcon tube and centrifuged for 5 minutes at 1200 rpm. The 

pellet was then suspended in 3-5 ml of fresh growth media. T24 cell line was then 

used to subcultured in 24 well micro plates at concentration of 5×104 cell/ml two 

days before association and invasion assay. 
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2.5.4.2 Association and invasion assay 

Bacteria were grown overnight in 1ml LB broth and incubated at 37 ˚C with shaking 

(200 rpm). Cultures were centrifuged at 15000 x G for 1 minute and pellets 

suspended in infection media (1:100). The 24 well micro plates that contain T24 cell 

were infected with 500 μl of bacterial suspension in duplicate and incubated at 37 ˚C 

in CO2 incubator for 3 hours. For association assays, cells were washed twice with 

Dulbecco’s phosphate buffered saline and lysed with 1 % triton x-100 solution. Serial 

dilutions of lysed cells were plated in duplicate on LB agar and incubated overnight 

at 37 ˚C. For invasion assay, after 3 hours incubation, the 24 well micro plates were 

washed twice with Dulbecco’s phosphate buffered saline and fresh infection media 

containing 100 μg/ml of gentamicin solution was added and incubated for 2 hours at 

37 ˚C in CO2 incubator. After that, cells were washed with Dulbecco’s phosphate 

buffered saline, lysed with 1% triton x-100, diluted serially with saline and finally 

plated out in duplicate on LB agar plates.  

Colonies were counted using the Miles & Misra technique to determine the level of 

bacterial association and invasion. These assays were measured in CFU/ml as the 

mean of three independent experiments. In these assays, DH5α and CFT073 were 

used as negative and positive controls respectively.  

The growth and infection media were prepared as described in the table 2.3. 

Table 2.3 Growth and infection media preparation 

Growth Media Infection Media 

Addition of 10 % of Foetal bovine serum, 5 % of 

Penicillin-streptomycin and 5 % of non-essential 

amino acid solution to Macoy’s 5A Medium. 

Addition of 10% of Foetal bovine serum and 5 % 

of non-essential amino acid solution to Macoy’s 

5A Medium. 
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2.6 Next-generation sequencing 

2.6.1 Genomic DNA extraction 

Genomic DNA was extracted from uropathogenic E. coli strains pre-grown in LB agar 

cultures. A uropathogenic E. coli colony was inoculated into sterile LB broth at 37 ˚C 

for 18 hours. The genomic DNA was extracted from 1 ml of the LB broth cells 

suspension using the GenEluteTM Bacterial Genomic DNA kit (Sigma Aldrich, UK) 

according to the procedure described in the manufacturer’s user guide booklet.  

2.6.2 Nanodrop 

The purity and concentration for all extracted genomic DNA was measured using a 

Nanodrop 2000 (Thermo Scientific, UK). Extracted DNA samples only accepted with a 

minimum 260/280 nm values of 1.8. 

2.6.3 Qubit  

Qubit was used to quantify the extracted DNA and normalised to 0.2 ng/μl using 

High Sensitivity (HS) Qubit kit (Qubit 3.0 flourometer) (Thermo Fisher Scientific, Inc) 

with range between 0.2- 100 ng.  

2.6.4 Nextera XT DNA library 

Next generation sequencing was applied on extracted samples of bacterial isolates 

using Miseq platform (Illumina, Inc). Next generation sequence was performed 

according to the protocol described in the Nextera XT DNA library prep reference 

guide. Following to PCR amplification, PCR products were cleaned up using AMPure 

XP beads (Beckman Coulter, Inc). Libraries then were normalised to 4 nm after 

checking the DNA concentration using Qubit HS assay. Libraries were loaded onto 

Miseq reagent Kit V2, paired ends, 251 cycles.
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2.7 Bioinformatics 

2.7.1 Genome assembly 

De novo assemblies were performed using SPAdes (Version 3.5.0; Bankevich et al., 

2012). SPAdes provides computational efficiency and strong performance for small 

genome. Further, SPAdes provides (careful) flag which reduce errors and short 

indels. SPAdes assembly was performed using the command line:  

SPAdes.py --pe1-1 /file location.FASTQR1 --pe1-2 /file location. 

FASTQR2 -careful –o /file name 

2.7.2 QUAST 

Genome assembly quality was assessed using QUAST version 2.0. QUAST is easy, 

representative and informative software that provides a range of metrics presented 

to assess the quality of assembly (Gurevich et al., 2013). QUAST was performed using 

the command line: 

QUAST.py /file name –o /file name 

2.7.3 Genome annotation 

Prokka is a rapid and accurate tool used for bacterial genome annotation (Seemann, 

2014). Assembled FASTA files are the only acceptable format for this software and 

are required to start the Prokka script where it utilizes a built in database to 

annotate the genome and produces output files in GFF formats which are 

compatible annotation formats ready for further analysis (version 1.12; Seemann, 

2014). Prokka annotation was performed using the command line: 

Prokka –outdir /file location –usegenus /file name –-locustag *.FASTA 
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2.7.4 Genome mapping 

All sequenced uropathogenic E. coli raw FASTQ files were aligned to their respective 

de novo assembled genome (fasta files) using CSI phylogeny, CGE website 

(https://cge.cbs.dtu.dk/services/CSIPhylogeny/) (version 1.4). CSI phylogeny is a 

web-based used for calling and filtering SNPs using BWA and SAMtools. BWA 

software was developed and optimised by Li and Durbin, (2009). BWA version 3.0 

provides a more accurate and fast alignment of paired ends sequencing reads 

produced by Illumina (Li and Durbin, 2009). SAMtools version 1.4 was used to extract 

the required information from SAM files generated by the BWA alignment process. 

SAMtools software is used to manipulate the data in SAM format files such as 

indexing, merging, sorting and other post processing requirements (Li et al., 2009; 

Evolution and Genomics, 2011). This results in VCF files containing all the SNP data 

for each strain against their reference genome. 

2.7.5 Artemis ACT 

Artemis (version 2) is a genomic tool used for visualisation the annotated genome 

(Rutherford et al., 2000).  
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3.1 Introduction 

3.1.1 Microbiological diagnosis of positive UTIs 

In microbiological laboratories, clinical diagnosis is based on single colony selection 

especially if identical morphological colonies are obtained within a bacterial culture 

plate. This assumes that a single colony is representative of the entire bacterial 

population. Based on that assumption, bacterial isolate identification, antibiotic 

susceptibility and further biochemical testing are carried out on the positive urine 

culture plate in dedicated laboratories (Szczepura, 1991; Johnson et al., 1995).    

3.1.1.1  Antimicrobial susceptibility testing using disk diffusion method  

Antimicrobial susceptibility testing is a common technique to validate the sensitivity 

of bacterial isolates to an antimicrobial agent (Szczepura, 1991). This is to be able to 

select the most effective treatment for the bacterial infection (BSAC, 2012). The 

method of choice by both the European Committee on Antimicrobial Susceptibility 

Testing (EUCAST) and the British Society of Antimicrobial Chemotherapy (BSAC) is 

the disk diffusion method (BSAC, 2012). The disk diffusion method provides an 

accurate and reproducible way of examining antimicrobial sensitivity (BSAC, 2012) 

and as such is the most routinely applicable method in clinical laboratories (NCCLS, 

1992). The method allows clinicians to examine different antimicrobial agents on 

clinical isolates at a single time point (CLSI, 2012). The results of disk diffusion tests 

can be easily interpreted by measuring the zone of inhibition surrounding the 

antibiotic disk and based on the measured diameter, an isolate is categorised as 

sensitive, intermediate or resistant to the tested antimicrobial agent (Jenkins and 

Schuetz, 2012). 
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3.1.1.2  Antibiotics used for treating urinary tract infections 

Many classes of antimicrobial agents are used to treat urinary tract infections, these 

agents vary in their mode of actions. Currently, urinary tract infections are treated 

with β-lactams, aminoglycosides, trimethoprim-sulfamethoxazole and 

fluoroquinolone antibiotics (Gupta et al., 2011). Since the 1990s, antibiotic 

resistance has emerged that makes management of urinary tract infections 

challenging (Pitout and Laupland, 2008). Due to the emergence of antimicrobial 

resistance among clinical isolates, the disk diffusion method should be employed 

using a wide range of antibiotic classes to guide clinicians as to the most effective 

antimicrobial agent. Therefore, BSAC guidelines recommend that when testing the 

susceptibility of uropathogens, screening should be performed using six classes of 

antibiotics disks which are aminoglycosides, penicillin, cephalosporins, quinolones, 

carbapenems and others such as trimethoprim (BSAC, 2013). 

3.1.2 Variation in susceptibility profiles within a single patient 

Several studies have revealed that there might be phenotypic and genotypic 

variation between bacteria isolated from a single host. Studies have determined the 

variation between bacteria isolated from a single patient in morphology and 

susceptibility to antibiotics over time. One of the earliest studies by Thomassen 

(1979) reported that mucoid and non-mucoid colonies of P. aeruginosa from cystic 

fibrosis patients have a varied susceptibility profile. For a single patient and over a 

six-month period, it was noticed that isolated bacterial colonies varied in their 

morphological appearance, lost their mucoid ability, and became more resistant to 

treatment. As morphological changes in colony appearance might be related to 
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varied resistance profiles, Wolter et al. (1995) recommended mixing various 

morphological colonies to provide an efficient result for susceptibility testing. This 

was carried out on bronchial secretions of patients colonised with P. aeruginosa in 

cystic fibrosis cases (Wolter at el, 1995). Due to complications in treating 

Pseudomonas infection and in some cases, the most susceptible agent may not 

improve the patient condition, the possibility of the presence of diverse isolates 

within a patient was presumed. Therefore, the idea of applying sensitivity testing on 

four identical colonies isolated from single cystic fibrosis patients infected with P. 

aeruginosa was demonstrated by Foweraker and co-workers in 2005. This study 

revealed that over time only one patient showed an identical resistance profile, 51 % 

of collected samples patients had mixed colony morphotypes and different 

sensitivity results while 15 % of isolated colonies were similar morphologically but 

still varied in their resistance patterns (Foweraker et al., 2005).  

Further variation in resistance profile was recognised in patients infected with S. 

aureus. Bacteria isolated from blood of the same patient at different time points 

became tolerant to vancomycin treatment (Sieradzke et al., 2003). In 2007, Mwangi 

et al., carried out a PCR sequence analysis on two isolates from the previous study 

and 35-point mutations were identified in the resistant isolate which were thought 

to be related to vancomycin resistance. Another study was carried out on three S. 

aureus isolates that were collected at three different time points, from cystic fibrosis 

patients in order to determine phenotypic and genetic variation. Applying whole-

genome sequencing determined that these isolates were genetically varied and that 

this could affect antibiotic sensitivity (McAdam et al., 2011).  
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Variation within hosts infected with ExPEC has also been recognised. In 2010, a 

molecular study was carried out on 126 isolates from nineteen patients. The 

determined types of diversity (polyclonal and monoclonal) where shown to have an 

impact on bacterial phenotypic features such as antibiotic resistance and pathogenic 

potential (Levert et al., 2010).  

Recently, within-host variation of bacterial pathogens has been determined at a 

single time point. Darch et al. (2015) determined the level of phenotypic and 

genotypic diversity of forty-four identical colonies from a single cystic fibrosis patient 

infected with P. aeruginosa and variation in antibiotic sensitivity were determined 

between colonies from a single cystic fibrosis patient infected with P. aeruginosa 

(Darch et al., 2015). 

3.1.3 Aim of the chapter 

Uropathogenic E. coli is the most common causative agent of urinary tract infections 

(Kucheria et al., 2005) and the presence of more than one sequence type of 

uropathogenic E. coli within a single urosepsis patient has been reported (McNally et 

al., 2013). As such the aim of this research was to determine the population diversity 

level of uropathogenic E. coli within multiple patients at a single time point. To 

investigate this, we started by examining antimicrobial sensitivity using the disk 

diffusion method on a maximum of forty-eight well-isolated colonies from a given 

urine sample. The rationale being that changes in sensitivity profile can be a sign for 

bacterial diversity and can provide us with an initial prediction of the levels of 

diversity present in our collected samples.  
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3.1.4 Strains used in this chapter for disk diffusion method 

The disk diffusion method was performed on bacteria isolated from 21 female and 

21 male samples collected from Queen Medical Centre Hospital (QMC) in 

Nottingham. A maximum of forty-eight well-isolated colonies from each sample 

were compared using 8 different classes of antibiotics that belong to the 

aminoglycoside, penicillin, cephalosporin, carbapenem, quinolones classes and 

others such as trimethoprim as referred in table 2.2 in Chapter 2. Isolated colonies 

from each collected sample were streaked out on LB agar plates and assigned with a 

specific colony number including the original patient sample number. A swab from 

the entire original LB plate and colonies that exhibited varied resistance profiles 

within patient samples were also stored in Lysogeny Broth (LB) broth containing 20 % 

(V/V) glycerol at - 80 °C. 

3.2 Results 

3.2.1 Uropathogenic E.coli varied resistance profile patterns  

The antimicrobial sensitivity of screened colonies within each sample was 

determined based on the BSAC disk diffusion test, 2013. Due to the presence of 

differing levels of variation in resistance patterns, samples were classified into three 

resistance profile patterns table 3.1. We found patients where all isolated colonies 

had identical susceptibility profiles for all examined antibiotics. We defined this 

pattern as an identical resistance profile pattern as shown in (A) in table 3.1. Some 

patients had colonies exhibiting changes in their resistance profile between an 

intermediate zone of inhibition and either a resistant or sensitive pattern for a given 

antibiotic(s). We defined this pattern as a low diverse resistance profile patterns as 
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shown in (B) in table 3.1. The last pattern we found was the highly diverse resistance 

profile pattern. This profile pattern is defined when isolated colonies within each 

sample vary in their susceptibility profile between sensitive and resistant for one or 

more antibiotic as shown in (C) in table 3.1. 
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Table 3.1 Examples of the three defined patterns among collected samples based on variation in their resistance profile . Three separate resistance profile 

patterns were obtained based on variation in antibacterial susceptibility between isolated colonies within each sample. (1) represents an identical resistance 

profile pattern and was defined when all examined colonies displayed an identical susceptibility pattern for the examined antibiotics. (2) represents low diversity 

resistance profile patterns.  These patterns were defined when examined colonies varied in their susceptibility between resistances (R) to intermediate (I) zones of 

inhibition, or sensitive (S) to intermediate (I) zones of inhibition, for an examined antibiotic. Finally, (3) represents highly diverse resistance profile patterns. Highly 

diverse patterns were defined when the examined colonies varied in their susceptibility between sensitive (S) and resistance (R) zones of inhibition for a single 

antibiotic. Zone of inhibition measurements were interpreted based on BSAC, 2013. 

Sample number 
Number of colonies 

have been examined 

Number of 
different 

resistance profile 

Number of colonies 
that have the same 

pattern 

Aminoglycoside Penicillin Cephalosporin Carbapenems Quinolones Miscellaneous 

GM AP CPM CPD CAZ MM CIP TM 

(1) UTI (M19) 48 colonies 1 profile 48 R R R R R S R R 

(2) UTI (F8) 48 colonies 5 profiles 

20 S S S S S S S R 

19 I S S S S S S R 

7 I S I S S S S R 

1 I S S S I S S R 

1 I S I S I S S R 

(3) UTI (F3) 48 colonies 3 profiles 

45 R R R R S S R R 

2 R R R S S S R R 

1 R S I S S S R R 
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3.2.2 Percentages of resistance profile patterns of collected samples 

The highly diverse resistance profile patterns accounted for 21 % of collected samples 

and most of these samples were from female patients. The low diverse resistance profile 

patterns accounted for 66.67 % and the majority of these samples were from male 

patients. The last pattern is the identical resistance profile and it accounted for 11.9 % of 

collected samples. The majority of collected patient samples belong to the low diverse 

resistance patterns and the minority to the identical resistance profile.  

Figure 3.1 shows the number of samples belonging to the various resistance patterns 

(high, low and identical) for all collected female and male patient samples. Highly diverse 

resistance pattern samples accounted for 29 % (6 samples) of all studied female patient 

samples and for 14.29 % (3 samples) of all studied male patient samples. Furthermore, 

66.67 % (28 samples) of collected samples showed low-level diversity to antimicrobials of 

which 46.4% were from female patients and 53.57 % from male patients. The remaining 

five samples were found with colonies that had identical patterns of antibiotic 

susceptibility. Two female samples and three male samples are classified as having an 

identical resistance profile pattern. Together these data show that female UTI samples 

are slightly more varied in their sensitivity profiles than male samples, particularly with 

respect to highly diverse resistance profile samples. With respect to male patients, an 

identical number of samples (3 patients) exhibited highly diverse resistance profile 

patterns and identical resistance patterns.  
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Figure 3.1 The percentage of varied resistance profiles patterns among collected female and male 

patients samples. The bar charts represent number of samples within high, low and identical resistance 

profile patterns of female and male groups. The highest number of samples was shown in low diverse 

resistance profile patterns followed by highly diverse resistance profile patterns and the lowest number 

were determined in the identical resistance profile pattern. 
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3.2.3 Highly diverse resistance profile patterns 

Table 3.2 and table 3.3 show the antibiotic resistance profile patterns obtained within the 

six female and three male samples exhibiting high diversity. Three of these female 

samples and one male sample contain an E. coli classified as multi-drug resistant, as 

shown in table 3.2 and 3.3, due to the isolates being resistant to three or more classes of 

antibiotics.  

Variation between sensitivity and resistance was observed for all antibiotics except 

Meropenem as shown in figure 3.2. The highest levels of variation between sensitive and 

resistant bacterial isolates within samples were seen with Ampicillin followed by 

Gentamicin and Cefpodoxime. For female patients’ samples, apart from Ciprofloxacin and 

Meropenem, variation between sensitive and resistant bacterial isolates was seen in all 

other examined antibiotics. For male patients’ samples, variation in resistance profiles 

between sensitivity and resistance was seen in Gentamicin, Ampicillin, Ciprofloxacin and 

Trimethoprim.
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Table 3.2 Female highly diverse resistance profile patterns samples. The highly diverse resistance profile patterns among female samples including the number of 

examined colonies within each sample, number of colonies that have a similar resistance patterns and the resistance profile for all examined colonies. The 

highlighted samples represent multidrug resistance samples. Patterns with (R) indicate that the bacterial isolate is resistant to the examined antibiotic. Similarly, (I) 

indicates that the bacterial isolate has an intermediate zone of inhibition to the examined antibiotic and (S) indicates that the bacterial isolate is sensitive to the 

examined antibiotic. Zones of inhibition measurements were interpreted based on BSAC, 2013. 

Sample number 
Number of colonies 

have been examined 

Number of 
different 

resistance profile 

Number of colonies that 
have the same patterns 

Aminoglycoside Penicillin Cephalosporin Carbapenems Quinolones Miscellaneous 

GM AP CPM CPD CAZ MM CIP TM 

(A) UTI (F1) 
 

26 colonies 
 

4 profiles 
 

15 S R S S S S S R 

9 S S S S S S S R 

1 S R S S S S S S 

1 S R S S S S S I 

(B) UTI (F2) 
 

40 colonies 
 

9 profiles 
 

17 I R I S I S R R 

7 I R I S I I R R 

5 R R R S I I R R 

4 S R S S S S R R 

2 R R I S I I R R 

2 R R R S I S R R 

1 R R I S R I R R 

1 R R R R R I R R 

1 I R I S S S R R 

(C) UTI (F3) 
 

48 colonies 
 

3 profiles 
 

45 R R R R S S R R 

2 R R R S S S R R 

1 R S I S S S R R 

(D) UTI (F4) 
 

22 colonies 
 

3 profiles 
 

17 I R S S S S S S 

4 S R S S S S S S 

1 S S S S S S S S 
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Sample 
number 

Number of colonies 
have been 
examined 

Number of different 
resistance profile 

Number of colonies that 
have the same patterns 

Aminoglycoside Penicillin Cephalosporin Carbapenems Quinolones Miscellaneous 

GM AP CPM CPD CAZ MM CIP TM 

 
 

(E) UTI (F5) 
 
 
 

48 colonies 
 

9 profiles 
 

16 S R I S S S S S 

14 S R I S I S S S 

9 I R R S I S S S 

2 I R R S R I S S 

2 I R R S R I S S 

2 I R R S I I S S 

1 S R R S I S S S 

1 S R R S R I S S 

1 I R I S I S S S 

1 I R I S S S S S 

 
(F) UTI (F6) 

 
40 colonies 5 profiles 

35 R R R R S S R R 

2 R R I S S S R R 

1 R R R R I S R R 

1 R R I R S S R R 

1 S R R S S S R R 
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Table 3.3 Male Highly diverse resistance profile patterns samples. The highly diverse resistance profile patterns among male samples including the number of 

examined colonies within each sample, number of colonies that have a similar resistance patterns and the resistance profile for all examined colonies. The 

highlighted samples represent multidrug resistance samples. Patterns with (R) indicate that the bacterial isolate is resistant to the examined antibiotic. Similarly, (I) 

indicates that the bacterial isolate has an intermediate zone of inhibition to the examined antibiotic and (S) indicates that the bacterial isolate is sensitive to the 

examined antibiotic. Zones of inhibition measurements were interpreted based on BSAC, 2013. 

Sample number 
Number of colonies 

have been 
examined 

Number of different 
resistance profile 

Number of colonies that 
have the same patterns 

Aminoglycoside Penicillin Cephalosporin Carbapenems Quinolones Miscellaneous 

GM AP CPM CPD CAZ MM CIP TM 

(H) UTI (M1) 36 colonies 11 profiles 

8 I R I S S S I R 

7 S R S S S S S R 

7 S R S S S S I R 

6 I R S S S S I R 

2 I R I S I S I R 

1 I R S S S S S R 

1 I R S S I I I R 

1 I R I S I I I R 

1 I R I S S S S R 

1 S R I S I S I R 

1 I R I S I S R R 

(I) UTI (M2) 48 colonies 6 profiles 

33 S R S S S S S R 

7 I R S S S S S R 

3 I R I S S S S R 

3 I R I S I S S R 

1 S R I S S S S R 

1 S S S S S S S R 

(G) UTI (M3) 40 colonies 2 profiles 
39 R R R R R S R R 

1 S R R R R S R S 
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Figure 3.2 Number of samples that varied in resistance among examined antibiotics between 

sensitive and resistance. Number of samples that changed in their resistance profiles between sensitive 

(S) to resistant (R) for an examined antibiotics of all collected highly diverse samples. Meropenem is the 

only antibiotic that does not show any resistance zone of inhibition. Gentamicin (GM), Ampicillin (AP), 

Cefepime (CPM), Cefpodoxime (CPD), Ceftazidime (CAZ), Ciprofloxacin (CIP), Meropenem (MM) and 

Trimethoprim (TM). 
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3.2.4 Low diverse and identical resistance patterns samples  

The low diversity resistance profile pattern was the most commonly observed profile 

in samples from both males and females. In this resistance profile, there is a change 

from either resistant or sensitive to an intermediate level of resistance between the 

examined colonies. In the female low diverse resistance profile patterns (table 3.4), 

the examined colonies within samples varied in their susceptibilities to Gentamicin, 

Cefepime, Ceftazidime, Meropenem, Ciprofloxacin and Trimethoprim. Whereas male 

patient samples (table 3.5) show a variation between isolated colonies in all 

examined antibiotics apart from Ampicillin, Cefpodoxime and Ciprofloxacin. The 

highest level of variation among collected samples was noticed in Gentamicin and 

was distributed equally between female and male patients.  This was followed by 

Cefepime and Ceftazidime, respectively (Figure 3.3). The lowest level of variation 

was in Ciprofloxacin, seen only in two female samples.  

Five samples were categorised as having identical resistance profile patterns (table 

3.6). Only three male patient samples (14.29 %) contained an identical pattern, in 

comparison with two female patients (10 %). All but one (male sample) of the 

identical resistance profile pattern samples are categorised as multi-drug resistant.  

One female sample bacterial isolate is resistant to all examined antibiotics except 

ciprofloxacin. However, the male samples are resistant to all examined antibiotics 

apart from Meropenem. The remaining one male sample is sensitive to all examined 

antibiotics.  
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Table 3.4 Female low diverse resistance profile patterns samples. Low diverse resistance profile patterns among female samples including the number of 

examined colonies within each sample, number of colonies that have a similar resistance patterns and the resistance profile for all examined colonies. The 

highlighted samples represent multidrug resistance samples Patterns with (R) indicate that the bacterial isolate is resistant to the examined antibiotic. Similarly, (I) 

indicates that the bacterial isolate has an intermediate zone of inhibition to the examined antibiotic and (S) indicates that the bacterial isolate is sensitive to the 

examined antibiotic. Zones of inhibition measurements were interpreted based on BSAC, 2013. 

Sample number 
Number of colonies 

have been examined 
Number of different 

resistance profile 

Number of colonies 
that have the same 

patterns 

Aminoglycoside Penicillin Cephalosporin Carbapenems Quinolones Miscellaneous 

GM AP CPM CPD CAZ MM CIP TM 

UTI (F7) 
 
 

32 colonies 
 
 

5 profiles 
 
 

25 S R S S S S S R 

4 I R S S S S S R 

1 I R I S I I S R 

1 I R I S S I S R 

1 S R I S S I S R 

UTI (F8) 
 

 

48 colonies 
 
 

5 profiles 
 
 

20 S S S S S S S R 

19 I S S S S S S R 

7 I S I S S S S R 

1 I S S S I S S R 

1 I S I S I S S R 

UTI (F9) 
 
 

47 colonies 
 
 

4 profiles 
 
 

18 S S S S S S S R 

15 S S S S S S I R 

8 S S S S S S S I 

6 S S S S S S I I 

UTI (F10) 
 
 

48 colonies 
 
 

4 profiles 
 
 

41 S S S S S S S S 

5 I S S S S S S S 

1 I S I S S S S S 

1 S S I S S S S S 

UTI (F11) 
 

 

48 colonies 
 
 

4 profiles 
 
 

22 I R S S S S S R 

17 I R I S S S S R 

5 S R S S S S S R 

4 I R I S I S S R 

UTI (F12) 
 

32 colonies 
 

3 profiles 
 

21 S R R S S S S R 

9 S R I S S S S R 

2 S R R S I S S R 
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Sample number 
Number of colonies 

have been examined 
Number of different 

resistance profile 

Number of colonies 
that have the same 

patterns 

Aminoglycoside Penicillin Cephalosporin Carbapenems Quinolones Miscellaneous 

GM AP CPM CPD CAZ MM CIP TM 

UTI (F13) 
 

48 colonies 
 

3 profiles 

44 S S S S S S S S 

3 I S S S S S S S 

1 I S S S S S S I 

UTI (F14) 
 

38 colonies 
 

3 profiles 
 

26 I R S R R S R R 

8 I R I R R S R R 

4 S R S R R S R R 

UTI (F15) 
 

28 colonies 
 

3 profiles 
 

13 S R S S S S S R 

8 I R S S S S S R 

7 I R I S S S S R 

UTI (F16) 
  

48 colonies 
 

2 profiles 
 

47 S R S S S S S R 

1 I R S S S S S R 

UTI (F17) 
  

36 colonies 
  

2 profiles 
  

32 S S S S S S I R 

4 S S S S S S S R 

UTI (F18) 
  

48 colonies 
  

2 profiles 
  

47 S R S S S S S S 

1 I R S S S S S S 

UTI (F19) 
  

48 colonies 2 profiles 32 R R R R R S R R 

16 I R R R R S R R 
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Table 3.5 Male low diverse resistance profile patterns samples.  The low diverse resistance profile patterns among male samples including the number of 

examined colonies within each sample, number of colonies that have a similar resistance patterns and the resistance profile for all examined colonies. The 

highlighted samples represent multidrug resistance samples. Patterns with (R) indicate that the bacterial isolate is resistant to the examined antibiotic. Similarly, (I) 

indicates that the bacterial isolate has an intermediate zone of inhibition to the examined antibiotic and (S) indicates that the bacterial isolate is sensitive to the 

examined antibiotic. Zones of inhibition measurements were interpreted based on BSAC, 2013. 

Sample 
number 

Number of colonies 
have been examined 

Number of different 
resistance profile 

Number of colonies that 
have the same patterns 

Aminoglycoside Penicillin Cephalosporin Carbapenems Quinolones Miscellaneous 

GM AP CPM CPD CAZ MM CIP TM 

UTI (M4) 
  

36 colonies 
  

7 profiles 
  

13 I S S S S S S S 

6 S S S S S S S S 

5 I S I S I S S S 

5 I S S S I S S S 

4 I S I S S S S S 

2 I S I S I S S I 

1 I S I S I I S I 

UTI (M5) 
  

48 colonies 
  

6 profiles 
  

27 S S S S S S S S 

13 I S S S S S S S 

3 I S I S S S S S 

2 S S I S S S S S 

2 S S S S S I S S 

1 I S I S I S S S 

UTI (M6) 
  

48 colonies 
  

5 profiles 
  

39 S R S S S S S R 

4 I R S S S S S R 

2 S R I S S S S R 

2 I R I S S S S R 

1 I R I S I S S R 

 
UTI (M7) 

 
18 colonies 

 

 
4 profiles 

 

9 I S I S I S R R 

6 S S S S S S R R 

2 S S S S I S R R 

1 S S I S S S R R 

 
UTI (M8) 

 
48 colonies 

 

 
3 profiles 

 

34 S S S S S S S S 

11 I S S S S S S S 

3 I S I S S S S S 

UTI (M9) 48 colonies 
 

2 profiles 
 

34 R R R R R S R R 

14 R R R R R I R R 
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Sample 
number 

Number of colonies 
have been examined 

Number of different 
resistance profile 

Number of colonies that 
have the same pattern 

Aminoglycoside Penicillin Cephalosporin Carbapenems Quinolones Miscellaneous 

GM AP CPM CPD CAZ MM CIP TM 

UTI (M10) 48 colonies 
 

2 profiles 
 

26 R R S S S S S R 

2 R R I S S S S R 

UTI (M11) 
  

40 colonies 
  

2 profiles 
  

32 R R R R R S R R 

8 R R R R R I R R 

UTI (M12) 
  

40 colonies 
  

2 profiles 
  

28 S S S S S S S S 

12 I S S S S S S S 

UTI (M13) 
  

32 colonies 
  

2 profiles 
  

31 I R S S S S S S 

1 S R S S S S S S 

UTI (M14) 
  

48 colonies 
  

2 profiles 
  

47 S S S S S S S S 

1 I S S S S S S S 

UTI (M15) 
  

48 colonies 
  

2 profiles 
  

47 S S S S S S S S 

1 I S S S S S S S 

UTI (M16) 
  

48 colonies 
  

2 profiles 
  

38 I R S S S S S S 

10 S R S S S S S S 

UTI (M17) 
  

28 colonies 
 

2 profiles 
 

25 I R I S S S S R 

3 S R I S S S S R 

UTI (M18) 
  

32 colonies 
  

2 profiles 
  

31 S S S S S S S S 

1 S S I S S S S S 
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Table 3.6 Female and Male identical resistance profile patterns samples.  The identical resistance profile pattern among female and male samples including the 

number of examined colonies within each sample, number of colonies that have a similar resistance patterns and the resistance profile for all examined colonies. 

The highlighted samples represent multidrug resistance samples.  Patterns with (R) indicate that the bacterial isolate is resistant to the examined antibiotic. 

Similarly, (I) indicates that the bacterial isolate has an intermediate zone of inhibition to the examined antibiotic and (S) indicates that the bacterial isolate is 

sensitive to the examined antibiotic. Zones of inhibition measurements were interpreted based on BSAC, 2013. 

Sample number 
Number of 

colonies have 
been examined 

Number of different 
resistance profile 

Number of colonies 
that have the same 

patterns 

Aminoglycoside Penicillin Cephalosporin Carbapenems Quinolones Miscellaneous 

GM AP CPM CPD CAZ MM CIP TM 

Female samples 

(J) UTI (F20) 40 colonies 1 profile 40 R R R R R R S R 

(K) UTI (F21) 22 colonies 1 profile 22 R R S S S S S R 

Male samples 

(L) UTI (M19) 48 colonies 1 profile 48 R R R R R S R R 

(M) UTI (M20) 32 colonies 1 profile 32 S S S S S S S S 

(N) UTI (M21) 44 colonies 1 profile 44 R R R R R S R R 
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Figure 3.3 Number of samples that varied in susceptibility among examined antibiotics. The figure 

represents number of samples that changed to intermediate (I) zone of inhibition from either 

sensitive (S) or resistance (R) for examined antibiotics of all collected low diverse samples. Ampicillin 

and Cefpodxime antibiotics are not included in this pattern. Gentamicin (GM), Ampicillin (AP), 

Cefepime (CPM), Cefpodoxime (CPD), Ceftazidime (CAZ),, Ciprofloxacin (CIP),  Meropenem (MM) and 

Trimethoprim (TM). 

 

 

GM
 (
10

 µ
g)

AP 
(1

0 
µg

)

CPM
 (
30

 µ
g)

CPD
 (
10

 µ
g)

CAZ (
30

 µ
g)

CIP
 (
1 
µg

)

M
M
 (
10

 µ
g)

 

TM
 (
2.

5 
µg

)
0

5

10

15

20

25
N

u
m

be
r 

of
 s

am
pl

es
 v

ar
ie

d 
(R

 /
 S

 t
o 

I)



Multiple resistance profiles present in similar morphological colonies within a single Uropathogenic Escherichia 

coli patient 

 

 

 

65 

3.3 Discussion 

A study published in 2013 reported the presence of two sequence types of UPEC 

within a single patient with urinary tract infection (McNally et al., 2013). A body of 

literature proposes that bacterial populations within a single host may differ 

(Sieradzke et al., 2003; Mwangi et al., 2007; McAdam et al., 2011; Lieberman et al., 

2011) and existence of genetic variation between bacterial isolates from clinical 

infections has been proven (Sieradzke et al., 2003; Mwangi et al., 2007). In addition, 

multiclonal infections have also been identified in some cases (McAdam et al., 2011; 

Lieberman et al., 2011). We would like to determine the entire of diversity within a 

single patient infected with UPEC. 

Based on the rationale that variation in susceptibility profiles may be a sign of 

bacterial within-host diversity, in our research we have applied the disk diffusion 

method on 48 isolated colonies from patients infected with UPEC to assess 

population diversity levels. The experiment was performed on forty-two samples. 

The samples were then classified based on the obtained resistance pattern into 

three groups (table 3.1). The observed variation in the resistance profiles of our 

collected UPEC samples could be linked with the phenomenon termed 

heteroresistance, when the susceptibility profiles within a single population exhibit 

variation (El-Halfawy and Valvano, 2015). There are two possibilities that may 

explain the presence of heteoresistance in our samples.  

Having hetroresistance within bacterial populations could be due to the presence of 

polyclonal diversity, where two or more sequence types of UPEC are present within a 

single patient. This has been shown previously in patients infected with multiple E. 
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coli sequence types. Levert and co-workers (2010) reported that 21 % of patients 

infected with ExPEC could be categorised as having a polyclonal infection. UPEC is a 

heterogeneous group of organisms comprised of multiple different sequence types 

that possess varied resistance profiles, and so it is possible that we have multiple 

sequence types within our highly diverse resistance profiles group. As an example, 

ST95 is a highly susceptible isolate whereas ST131 generally multi-drug resistant 

(Gibreel et al., 2012). 

Alternatively, development of heteroresistance within our samples may also be a 

result of single nucleotide polymorphisms or insertions and deletions, leading to 

monoclonal diversity. This situation is increasingly being reported in recurrent 

infections and chronic infections (El-Halfawy and Valvano, 2015). A further study on 

patients infected with H. pylori reported that the presence of heteroresistant 

isolates might be due to highly dynamic DNA, with resistant colonies in that study 

thought to be derived from a single pre-existing strain rather than infection with 

multiple bacterial strains (Kao at al., 2014a). In addition, host diversity was examined 

in patients infected with ExPEC by Levert et al. (2010) and it was found that most 

patients could be categorised as demonstrating monoclonal diversity due to 

microheterogeneity of mutations. Furthermore, prolonged infection can drive 

sensitive E. coli to become antibiotic resistant through the gain of mutations, such as 

occurs for gentamicin resistance (El-Halfawy and Valvano, 2015). This possibility 

could be linked with the variation observed in our samples that display highly diverse 

and low diversity resistance profiles. 
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We suspect that the highly diverse resistance profiles most likely originated due to 

infection with multiple sequence types of UPEC and we hypothesise this will be 

accompanied by the presence of other phenotypic and genetic variations. 

Furthermore, we presume that the variation observed in our low diversity resistance 

patterns originates from a monoclonal infection showing low-level mutation and 

phenotypic diversity. In total, 11.9 % of our samples were classified as possessing an 

identical pattern and can therefore be considered a homogenous population.  

The highly diverse resistance profile was observed in 66 % of samples came from 

female patients, making this sex appear to be more susceptible to population 

diversity. However, this could be linked to the fact that women are more susceptible 

to urinary tract infections (Foxman, 2003), as females have a shorter urethra that 

allows uropathogens to access the bladder more readily (Ronald, 2003). In addition, 

females are more susceptible to recurrent urinary tract infections, and prolonged 

vaginal colonisation with uropathogenic E. coli has been reported (Ronald, 2003; 

Hooton, 2012). Our female patients may have an infection with mixed strains of 

UPEC or have a recurrent infection with the same strain which is accumulating 

genetic variation over time. As reported by Hooton (2012) two thirds of women 

having a previous history of UTIs become reinfected with the same bacterial strain 

causing the initial infection (Hooton, 2012; El-Halfawy and Valvano, 2015).  The 

clinical history of the patient, of whom the samples were taken, may have provided 

further details about the collected samples, however, this information was not 

available. Additionally, due to the smaller sample size used within the investigation, 
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it cannot be generalised that female patients are more susceptible to the hetero 

resistance phenomenon.  

Variations in antibiotic resistance were mostly seen for ampicillin and gentamicin, 

followed by cephalosporins and trimethoprim. These classes of antibiotics have seen 

an increase in resistance in recent years, and resistance to β-lactams and 

aminoglycosides has been reported to be between 20 % and 45 % according to 

surveillance data from Europe and North and South America (Pitout and Laupland, 

2008; Foxman, 2010). Therefore high variation in ampicillin and gentamicin 

resistance could be supported by the overall increase in resistance to these 

antibiotics. 

Overall, most classical diagnoses performed in a clinical laboratory are carried out 

based on the assumption that a single colony from a homologous bacterial culture is 

representative of an entire bacterial population (Pappas, 1991). This was supported 

by a study published in 2014, Willner and co-workers examined urinary tract isolates 

and reported that single isolates were representative of urinary tract infections at 

the genus and strain levels. In their research 50 samples were examined in order to 

determine the genus level of urinary tract infection communities, while examination 

at the strain level was performed for 27 E. coli samples (Willner et al., 2014). DNA 

was also extracted from urine samples and single cultured colonies from eight 

patients and metagenomics analysis conducted. However, our research was based 

on comparing isolated colonies from pure UPEC cultures from patients with UTIs at a 

single time point in order to determine population diversity level. This approach was 

previously taken for P. aeruginosa to determine the level of phenotypic and 
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genotypic variation (Darch et al., 2015). In our research, a different experimental 

design for phenotypically comparing colonies from pure UPEC samples was applied 

compared to those utilised by Willner et al. (2014). The obtained variation in 

susceptibility testing provided a prediction of the diversity of our samples and 

allowed the next stage of this research to be designed. The results of the following 

chapters will expand our knowledge about strain-level diversity by either confirming 

that single isolates are representative of an entire bacterial population or proving 

that there is diversity at the strain level and estimating the level of this diversity. 

Further, if there is a potential for the presence of a missed bacterial isolate during 

diagnosis, which could have implications on providing the most efficient treatment 

and infection persistence (Foweraker et al., 2005). This may impact the treatment 

efficacy of urinary tract infections and lead to further complications. 



 

 

Chapter Four 

 

Phenotypic diversity within apparently identical isolates of Uropathogenic 

Escherichia coli from a single patient
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4.1 Introduction 

4.1.1 Phenotypic diversity of Uropathogenic E. coli isolates  

Strains of UPEC are primarily confined to four defined phylogenetic groups, namely A, 

B1, B2, and D, with the most virulent isolates belonging to groups B2 and D (Boyd and 

Hartl, 1998). UPEC isolates can vary phenotypically on the basis of the virulence 

factors that they possess (Johnson, 1991). A study performed on 72 ExPEC strains 

determined that the variable virulence factors within the phylogenetic groups were 

not unique to those specific groups (Johnson et al., 2001). Within isolates from 

individual patients, phenotypic diversity was demonstrated in eight patients infected 

with ExPEC. These isolates exhibited wide variation in antibiotic resistance, outer-

membrane permeability, growth rate under standard conditions, and virulence 

properties (Levert et al., 2010). 

4.1.2 Role of motility in E. coli uropathogenesis 

Motility in flagellated strains of UPEC plays a role in efficient colonisation and 

migration of infection to the upper urinary tract, and also in the spread of 

uropathogens to the blood stream, resulting in sepsis (Simms and Mobley, 2008; 

Lane et al., 2005; Lane et al., 2007). Flagellated UPEC isolates are responsible for 70 % 

– 90 % of urinary-tract infections (Bien et al., 2012). UPEC isolates vary in their 

motility, and can be classified as either hypo-motile or hyper-motile (Kao et al., 

2014b). As an illustration of that, isolates from the urine of pyelonephritis patients 

are less motile than isolates from the urine of cystitis patients (Herrmann and 

Burman, 1985). 

Flagella organelles consist of flagellin, which can be composed of one of 56 different 

proteins, the H antigens (Erdem et al., 2007), and these proteins are thought to have 
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a role in physiological mechanisms such as adhesion, invasion and biofilm formation. 

Parthasarathy et al. (2007) suggested that the flagella of meningitis-associated E. coli 

could mediate the invasion of brain epithelium. In addition, H6 and H7 flagellin 

antigens in Enteropathogenic and Enterohaemorrhagic E. coli are involved in 

adhesion to colon epithelium cells (Erdem et al., 2007). Furthermore, motility is 

thought to be related to biofilm formation. Wood et al. (2006) demonstrated, in a 

comparative study among eight E. coli strains, that differences in flagella expression 

lead to differences in biofilm architecture. Also, deletion of fliA or qseB genes not 

only affected cell attachment and bacterial motility, but also decreased biofilm 

formation. 

4.1.3 Role of biofilm formation in uropathogens 

Invasion by UPEC of superficial urinary tract cells is the first stage in the formation of 

intracellular bacterial communities (Wright et al., 2005). These communities are 

highly organised multicellular adherent colonies and are surrounded by a matrix 

(Traunter and Darouiche, 2004). The biofilm matrix is formed of a variety of 

molecules such as proteins, exopolysaccharides and nucleic acids (Branda et al., 

2005). During biofilm formation, bacterial cells are surrounded by a thick layer of 

exopolysaccharides, which is responsible for non-specific adhesion, and fimbriae 

which protrude from the bacterial cell surface and are responsible for specific 

adherence to the host surface. Once bacterial cells adhere to the surface, biofilm 

formation can take place (Costerton, 1999). Other factors such as the curli fimbriae, 

F conjugative pilus, and flagella are also involved in the formation of a mature 

biofilm. The curli fimbriae and F conjugative pilus are involved in cell-surface 

interaction, and biofilm stabilisation and maturation, respectively (Soto et al., 2011). 
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Biofilm formation protects the pathogen from antibiotic treatment and phagocytic 

cells, and allows the pathogen to survive within the host (Traunter and Darouiche, 

2004). Ponnuusamy et al. (2012) reported that there is a significant relationship 

between biofilm formation and antibiotic resistance. In that study, biofilm-producing 

Uropathogenic E. coli isolates were recognised to be less sensitive to ampicillin, β-

lactam and aminoglycoside antibiotics. Biofilm formation may also be the main 

determinant of recurrent urinary tract infection (Soto et al., 2011) and is thought to 

be the factor that makes the infection persist (Subashchandrabose and Mobley, 

2015). In addition, Uropathogenic E.coli cystitis isolates are highly motile and seem 

to be very efficient at biofilm formation (Herrmann and Burman, 1985; Tabasi et al., 

2015). 

4.1.4 Role of association and invasion in uropathogens 

UPEC attachment is a key factor in urinary tract colonisation, infection development, 

and persistence. To establish a urinary tract infection, UPEC need to overcome 

several factors such as urine flow, host immunity, and antimicrobial treatment, and 

adherence of UPEC to the urinary tract epithelium may help to overcome those 

obstacles (Justice et al., 2004). The ability of UPEC to bind to host cells by adhesive 

organelles is the main determinant in urinary tract pathogenicity and promotes host 

cell invasion (Mulvey et al., 2001). There are many types of pilus involved in the 

adhesion of UPEC to the host epithelial cells. Type 1 pili, P pili, S pili and the Dr 

adhesin family have all been found to be involved in attachment and invasion 

(Johnson, 1991). 

Type 1 pili are encoded by most UPEC isolates (Russell and Orndorff, 1992; Jones et 

al., 1995). They are composed of a helical rod of Fim A - repeated subunits, with a 
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wide tip containing the adhesive protein Fim H and two adaptor proteins, F and G 

(Russell and Orndorff, 1992; Jones et al., 1995). Attachment to bladder epithelium 

occurs via binding of FimH to mannose-containing glycoprotein receptors on bladder 

cell surfaces (Mulvey et al., 2001). Type 1 fimbriae are not only expressed by the 

most common UPEC, but their role in biofilm formation has also been shown (Pratt 

and Kolter, 1998; Schembri et al., 2001). Type 1 fimbriae also have a role in 

uroepithelial colonisation, and they help in bacterial attachment to the bladder 

epithelium and subsequent invasion (Sokurenko et al., 1998; Jacobsen et al., 2008). P 

pili adhesion organelles are found commonly in Uropathogenic E. coli. P pili are 

composed of repeating Pap A subunits and a tip which is composed of Pap – G, E, F, 

and K (Mulvey, 2002). P pili are thought to have a role in the early colonisation of the 

urinary tract (Orskov et al., 1982). Pap G is highly efficient at binding with glycolipids 

on erythrocytes and the host kidney (Leffler and Svanbrog-Eden, 1980; Lund et al., 

1987) and is often present in isolates from pyelonephritis patients (Roberts et al., 

1994). 

S pili are another type of adhesive organelle which are expressed by UPEC. These pili 

have a role in the interaction between UPEC and kidney epithelium and vascular cells. 

S pili are composed of Sfa A, the major subunit, and three smaller subunits, Sfa G, 

SfaH and SfaS (Schmoll et al., 1989), and they attach to sialosyloligosaccharide 

(Goldhar, 1996). S pili are highly expressed in sepsis and meningitis isolates, and 

seem to have a role in bacterial dissemination (Mulvey, 2002). Dr family adhesins are 

another group of adhesive organelles composed of adhesive fimbriae AFA - I and AFA 

- II (Goldhar, 1996). They are expressed in most recurrent UPEC (Korotkova et al., 
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2008) and have a role in the ascension of uropathogens to the upper urinary tract 

(Goldhar, 1996). 

4.1.5 Aim of the chapter 

In chapter 3, three resistance level profiles were described based on variation in 

susceptibility results obtained from apparently identical colonies isolated from the 

same patient. It was suggested that those variations may be related to population 

diversity. This pattern of observing a diverse population among the isolates could 

reflect further phenotypic variation, especially where there was a highly diverse 

pattern. To determine the degree of phenotypic diversity within various resistance 

profile patterns additional phenotypic assays were performed on the isolates from 

within each sample exhibiting a variable resistance profile. The baseline standard 

level of phenotypic variation was determined via comparison of isolates from highly 

diverse samples with isolates from patients thought to have a homogenous 

population (isolates of an identical resistance profile pattern).  

4.1.6 Bacterial isolates used in this chapter 

Bacterial isolates (variants) were obtained from UPEC samples with varied resistance 

profiles as described in Chapter 3, were used in this chapter and described in table 

4.1, In addition to the control cultures used in the phenotypic assays. 
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Table 4.1 Bacterial strains used in this chapter 

Highly diverse resistance profile pattern 

Sample ID Samples bacterial isolates (Variants) Resistance profile 

A. UTI (F1) 

Colony 2 Resistance to AP and TM 

Colony 6 Resistance to TM 

Colony 14 Resistance to AP 

Colony 18 Resistance to AP, Intermediate to TM 

B. UTI (F2) 

Colony 24 Resistance to AP, GM, CIP and TM 

Colony 30 Resistance to AP, CIP and TM 

Colony 31 Resistance to all except MM 

C. UTI (F3) 
Colony 3 Resistance to AP and CPM 

Colony 7 Sensitive to AP, Intermediate to CPM 

D. UTI (F4) 
Colony 2 Resistance to AP 

Colony 20 Sensitive to AP 

E. UTI (F5) 
Colony 19 Resistance to CAZ 

Colony 28 Sensitive to CAZ 

F. UTI (F6) 
Colony 2 Resistance to GM 

Colony 40 Sensitive to GM 

G. UTI (M3) 
Colony 5 Resistance to GM and TM 

Colony 35 Sensitive to GM and TM 

H. UTI (M1) 
Colony 2 Resistance to CIP 

Colony 25 Sensitive to CIP 

I. UTI (M2) 
Colony 18 Resistance to AP 

Colony 31 Sensitive to AP 

Identical resistance profile pattern 

J. UTI (F20) 

Five random colonies were selected 

assigned with (A,B.C,D and E) 

Sensitive to MM only 

K. UTI (F21) Resistance to GM, AP and TM 

L. UTI (M21) Sensitive to MM only 

M. UTI (M20) Sensitive to all examined antibiotics 

N. UTI (M19) Sensitive to MM only 
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Controls used in this chapter 

Staphylococcus aureus _ Motility assay 

Salmonella enteritidis _ Motility assay 

E. coli K12 _ Biofilm formation assay 

E. coli DH5α _ Association and invasion assay 

E. coli CFT07 _ Association and invasion assay 

4.1.7 Statistical analysis 

Graph Pad Prism software (version 7 XML) was used to perform statistical analyses 

of the data. One-way ANOVA was applied to determine the statistical significance for 

motility assay. Multiple group comparison of two-way ANOVA was used to 

determine the statistical differences of biofilm formation and association and 

invasion assays between variants within each sample of highly diverse and identical 

resistance profile patterns. 
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4.2 Results 

4.2.1 Motility ability among samples variants  

A motility assay using semi-solid agar plates was performed on the highly diverse 

resistance profile variants and five apparently identical colonies of identical 

resistance profile, and the zone of migration measured and compared. Data from the 

latter group was taken to reflect the base line variation level of motility. Bar charts in 

figures 4.1, 4.2 and 4.3 represent the mean diameter of migration zones in mm. S. 

aureus and S. enteritidis were used as negative and positive controls, respectively. 

4.2.1.1 Highly diverse resistance profile sample variants  

Figures 4.1 and 4.2 show the variation of motility within each isolate from highly 

diverse samples. Figure 4.1 shows the zone of migration for colonies from female 

samples. The only significant variation was noticed in sample D where isolates 

behaved differently in their motility (P value = 0.0369; F value = 18.61). The isolate 

assigned (2) from sample D is a motile isolate while the other isolate (20) from the 

same sample is non-motile. Isolates from the other female patient samples showed 

similar behaviour in their motility when comparisons were made for bacterial 

isolates obtained from the same sample. No significant differences in motility were 

found in isolates from male patients (figure 4.2). Overall, isolates from male patients 

were less motile than those from female patients. Apart from sample G, where the 

isolates were non-motile, all other isolates were motile. The overall motility pattern 

in all isolates was approximately > 20 mm as a migration zone. However, the 

migration zone of variants from sample C was about 7 mm and this defines them as 

hypo-motile isolates. 
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A. Highly diverse resistance profile female samples 
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Figures 4.1 Comparison of motile ability among bacterial isolates (variants) belong to female highly 

diverse resistance profile pattern samples. Motility assays, using semi-solid agar plates, were applied 

to six different female samples. Bacterial isolates of each sample were grown on semi-solid agar and 

incubated at 37 °C for 18 hours. The bacterial isolates of each sample were assigned with a number, 

each represented the variation between sensitivity and resistance to an antibacterial agent based on 

susceptibility testing. The corresponding bar chart has been listed with six letters, in order to represent 

each of the six female samples, as follows: (A) : UTI (F1), (B) : UTI (F2), (C) : UTI (F3), (D) : UTI (F4), (E) : 

UTI (F5) and (F) : UTI (F6). The bar charts display a representation of the mean of the migration zone 

across three independent experiments. Furthermore, they are based on three replicates with error bars 

to indicate the standard deviation of each variable. S.enteritidis and S.aureus were each used as a 

positive and negative control respectively, and were also visually represented through documented bar 

charts. The only significant is shown in sample (D) whereas sample bacterial isolates (variants) has a P 

value < 0.05. 
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B. Highly diverse resistance profile male samples 

  

 

 

 

Figures 4.2 Comparison of motile ability between bacterial isolates (variants) belong to male high 

diverse resistance profile pattern samples. Motility assays, using semi-solid agar plates, were applied 

to three different male samples. Bacterial isolates of each sample were grown on semi-solid agar and 

incubated at 37 °C for 18 hours. The bacterial isolates of each sample were assigned with a number, 

each represented the variation between sensitivity and resistance to an antibacterial agent based on 

susceptibility testing. The corresponding bar chart has been listed with three letters, in order to 

represent each of the three male samples, as follows: (G) : UTI (M3), (H) : UTI (M1) and (I) : UTI (M2). 

The bar charts display a representation of the mean of the migration zone across three independent 

experiments. Furthermore, they are based on three replicates with error bars to indicate the standard 

deviation of each variable. S.enteritidis and S.aureus were each used as a positive and negative 

control respectively, and were also visually represented through documented bar charts. There is no 

significant difference in zone of migration in (mm) between variants of each sample.  
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4.2.1.2 Identical resistance profile samples 

Five random colonies of identical resistance pattern were selected to determine if 

motility varied between colonies that were thought to be derived from a 

homogenous population. The motility assay was applied to five colonies assigned A, 

B, C, D and E from each sample as illustrated in figure 4.3. Isolates from female 

samples J and K, and male samples L, M and N in figure 4.3 show no significant 

differences in motility. All isolates from within a sample were motile and behaved 

similarly. 
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Identical resistance pattern samples 
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Figures 4.3 Comparison of motile ability of bacterial isolates belong to female and male identical 

resistance profile pattern samples. Motility assays, using semi-solid agar plates, were applied to 

identical profile pattern samples. Bacterial isolates of each sample were grown on semi-solid agar 

and incubated at 37 °C for 18 hours. The bacterial isolates of each sample were assigned with a 

letters (A to E), each represented the identical susceptibility pattern to an antibacterial agent based 

on susceptibility testing. The corresponding bar chart has been listed with five letters, in order to 

represent each of the five samples of identical group, as follows: (J) : UTI (F20), (K) : UTI (F21), (L) : 

UTI (M21), (M) : UTI (M20) and (N) : UTI (M19). The bar charts display a representation of the mean 

of the migration zone across three independent experiments. Furthermore, they are based on three 

replicates with error bars to indicate the standard deviation of each variable. S.enteritidis and 

S.aureus were each used as a positive and negative control respectively, and were also visually 

represented through documented bar charts. There is no significant difference in zone of migration 

in (mm) between variants of each sample.  
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4.2.2 Biofilm formation using crystal violet among samples variants 

Biofilm formation was measured using the crystal violet assay on the highly diverse 

resistance profile sample isolates and five apparently identical colonies of identical 

resistance profile. The data for the five colonies of identical resistance pattern was 

determined to evaluate the base line variation level of biofilm formation. Bar charts 

in figures 4.4, 4.5 and 4.6 show the mean absorbance for various examined isolates 

within samples at 600 nm.  

4.2.2.1 Highly diverse resistance profile sample variants 

The biofilm-forming ability of isolates from highly diverse resistance samples was 

compared. Bar charts in figures 4.4 and 4.5 represent the mean of measured optical 

density for variants within each sample. Isolates from three female samples A, C and 

D varied in biofilm formation (Figure 4.4), with the variation observed after 24 hours. 

In sample (D) variation in biofilm production ability was observed after 96 hours 

incubation. In sample A, a significant variation in biofilm formation ability was 

noticed between variants 18Y and 2 (P value < 0.001), and also with variants 6 and 

14 (P value < 0.05) (F value = 0.7538). variant  18Y was less proficient in biofilm 

production than the others. Sample C variants also showed a significant difference in 

biofilm formation, with variant 3 observed to be highly able to produce biofilm when 

compared to isolate 7 (P value = 0.0021; F value = 26.6). In addition, in sample D, 

variants behaved differently in biofilm formation; variant 2 being  able to produce 

biofilm after 24 hours (P value = 0.0377) while isolate 20 was increasingly able to 

form biofilm after 96 hours (P value = 0.0089) (F value = 7.691). The other three 

female samples showed no significant differences between within sample isolates 
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(Figure 4.4). In addition to that, no significant variation was noticed between isolates 

from male samples as shown in figure 4.5. 
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A. Highly diverse resistance profile female samples 
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Figures 4.4 Comparison of biofilm formation ability using crystal violet assay among bacterial isolates 

(variants) belong to female highly diverse resistance profile pattern samples. Biofilm formation using 

crystal violet was applied to six different female samples. Bacterial isolate of each sample were grown 

in 5 ml LB liquid media and incubated at 37 °C for 18 hours without shaking. A 1:100 dilution was 

incubated in triplicate using 96 well microtitre plates at 37 °C for 24 hours, 48 hours, 72 hours and 96 

hours. The bacterial isolates of each sample were assigned with a number, each represented the 

variation between sensitivity and resistance to an antibacterial agent based on susceptibility testing. 

The corresponding bar chart has been listed with six letters, in order to represent each of the six female 

samples, as follows: (A) : UTI (F1), (B) : UTI (F2), (C) : UTI (F3), (D) : UTI (F4), (E) : UTI (F5) and (F) : UTI 

(F6). The bar charts display a representation of the mean of absorption across three independent 

experiments. Furthermore, they are based on three replicates with error bars to indicate the standard 

deviation of each variable.  There was no significant difference in absorbance between bacterial isolates 

(variants) of sample (B), (E) and (F) while a significant variation was noticed between bacterial isolates 

(variants) of sample (A), (C) and (D). (*) Indicates that P value is less than 0.05 and (**) indicates that P 

value is less than 0.01. Further, K12 and LB were used for control purposes. 
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B. Highly diverse resistance profile male samples 

  

 

 

 

Figures 4.5 Comparison of biofilm formation ability using crystal violet assay among bacterial isolates 

(variants) belong to male highly diverse resistance profile pattern samples. Biofilm formation using 

crystal violet was applied to three different male samples. Bacterial isolate of each sample were grown 

in 5 ml LB liquid media and incubated at 37 °C for 18 hours without shaking. A 1:100 dilution was 

incubated in triplicate using 96 well microtitre plates at 37 °C for 24 hours, 48 hours, 72 hours and 96 

hours. The bacterial isolates of each sample were assigned with a number, each represented the 

variation between sensitivity and resistance to an antibacterial agent based on susceptibility testing. 

The corresponding bar chart has been listed with three letters, in order to represent each of the three 

male samples, as follows: (G) : UTI (M3), (H) : UTI (M1) and (I) : UTI (M2). The bar charts display a 

representation of the mean of absorption across three independent experiments. Furthermore, they 

are based on three replicates with error bars to indicate the standard deviation of each variable. There 

is no significant difference in biofilm formation between variants of each sample.  Further, K12 and LB 

were used for control purposes. 
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4.2.2.2 Identical resistance profile samples 

Five random colonies of identical resistance pattern were selected to determine if 

biofilm formation level varies between colonies that thought to be derived from a 

homogenous population. Five isolates (A - E) from three male samples (L, M and N) 

and two female samples (J and K) were tested and there were no significant 

differences in biofilm formation for isolates from within the same clinical sample. 
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Identical resistance profile samples 
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Figures 4.6 Comparison of biofilm formation ability using crystal violet assay of bacterial isolates 

belong to female and male identical resistance profile pattern samples. Biofilm formation using crystal 

violet was applied to the identical resistance profile samples. Bacterial isolate of each sample were 

grown in 5 ml LB liquid media and incubated at 37 °C for 18 hours without shaking. A 1:100 dilution was 

incubated in triplicate using 96 well microtitre plates at 37 °C for 24 hours, 48 hours, 72 hours and 96 

hours. The bacterial isolates of each sample were assigned with a letters (A to E), each represented 

identical sensitivity pattern to an antibacterial agent based on susceptibility testing. The corresponding 

bar chart has been listed with five letters, in order to represent each of the five samples of the identical 

group, as follows: (J) : UTI (F20), (K) : UTI (F21), (L) : UTI (M21), (M) : UTI (M20) and (N) : UTI (M19). The 

bar charts display a representation of the mean of absorption across three independent experiments. 

Furthermore, they are based on three replicates with error bars to indicate the standard deviation of 

each variable. There is no significant difference in biofilm formation between variants of each sample.  

Further, K12 and LB were used for control purposes. 
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4.2.3 Association and invasion of uropathogenic E.coli isolates to T24 among 

resistance profile patterns  

Comparisons of association and invasion of UPEC strains to T24 cells were performed 

on highly diverse resistance profile sample variants and five apparently identical 

colonies of identical resistance profile. Data for five colonies of identical resistance 

pattern were also determined to evaluate the baseline variation of association and 

invasion using the Miles and Misra technique (Miles et al., 1938). Bar charts in 

figures 4.7, 4.8 and 4.9 represent the mean log of calculated CFU/ml for isolates 

within samples. 

4.2.3.1 Highly diverse resistance profile sample variants  

Bar charts in figure 4.7 and 4.8 represent the log of CFU/ml in association and 

invasion assays of different within sample variants to T24 cells. With regard to the 

association assay in figure 4.7, all isolates  from female samples behaved identically. 

However variants from sample D showed a variation in association ability (P value < 

0.0001; F value = 9.84). Isolate 2 showed about a 1000 fold increase in association 

ability compared to the other variant. For isolates from samples from female 

patients, the invasion ability in samples A and F was varied. In sample A, strain 18Y 

invaded T24 cells less than the other strains and was signifcantly less invasive than 

strain 2 (P value < 0.05), and strains 14 and 18W (P value < 0.001) (F vlaue = 1.285). 

The other signifcant variation was noticed in sample F, where variant 2 was about 

10000 fold more invasive than isolate 40 (P value = 0.0054, F value = 4.019). On the 

other hand, male samples in figure 4.8 displayed no significant variation between 

isolates in association ability. Isolates from only one male sample show a significant 

variation in invasion ability where sample G showed significant variation between 
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the two variants, with strains 5 showing higher invasion of T24 cells than isolate 35 (P 

vlaue < 0.05; F value = 1.958).  
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Figures 4.7 Comparison of association and invasion ability to T24 among bacterial isolates (variants) 

belong to female highly diverse resistance profile pattern samples. Association and invasion assay 

were applied to six different female samples. Bacterial isolate of each sample were grown in 5 ml LB 

liquid media and incubated at 37 °C for 18 hours with shaking. A 1:100 dilution was incubated in 

duplicate using 24 well microtitre plates at 37 °C with CO2 for 3 hours for the association assay and after 

the addition of Gentamicin were incubated at 37 °C with CO2 for 2 hours. The bacterial isolates of each 

sample were assigned with a number, each represented the variation between sensitivity and 

resistance to an antibacterial agent based on susceptibility testing. The corresponding bar chart has 

been listed with six letters, in order to represent each of the six female samples, as follows: (A) : UTI 

(F1), (B) : UTI (F2), (C) : UTI (F3), (D) : UTI (F4), (E) : UTI (F5) and (F) : UTI (F6). The bar charts display a 

representation of the mean of log CFU/ml of three independent experiments. Furthermore, they are 

based on three replicates with error bars to indicate the standard deviation of each variable.  CFT073 

and DH5α were used as a positive and negative control in duplicate and represented as documented 

bar charts. Significant variation were shown in association between bacterial isolates (variants) of 

sample (D) and in invasion in sample (A) and (F). (*) Indicates that the P value is less than 0.05, (**) (P < 

0.001) and (****) indicates (P value < 0.0001). 
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B. Highly diverse resistance profile male samples 

 
 

 

 

 

Figures 4.8 Comparison of association and invasion ability to T24 among bacterial isolates (variants) 

belong to male highly diverse resistance profile pattern samples. Association and invasion assay were 

applied to three different male samples. Bacterial isolate of each sample were grown in 5 ml LB liquid media 

and incubated at 37 °C for 18 hours with shaking. A 1:100 dilution was incubated in duplicate using 24 well 

microtitre plates at 37 °C with CO2 for 3 hours for the association assay and after the addition of Gentamicin 

were incubated at 37 °C with CO2 for 2 hours. The bacterial isolates of each sample were assigned with a 

number, each represented the variation between sensitivity and resistance to an antibacterial agent based 

on susceptibility testing. The corresponding bar chart has been listed with three letters, in order to represent 

each of the three male samples, as follows: (G) : UTI (M3), (H) : UTI (M1) and (I) : UTI (M2). The bar charts 

display a representation of the mean of log CFU/ml of three independent experiments. Furthermore, they 

are based on three replicates with error bars to indicate the standard deviation of each variable.  CFT073 

and DH5α were used as a positive and negative control in duplicate and represented as documented bar 

charts. There is significant variation in invasion between bacterial isolates (variants) of sample (G). (*) 

Indicates that the P value is less than 0.05. 
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4.2.3.2 Identical resistance profile samples 

Five random colonies of identical resistance pattern were selected to determine if 

the association and invasion level varied between colonies that were thought to be 

derived from a homogenous population. Association and invasion assays were 

applied on five identical pattern isolates (A, B, C, D and E) obtained from female 

samples (J) and (K) and male samples (L), (M) and (N), as shown in figure 4.9. There 

was no significant variation between examined colonies. Further, these samples 

seemed to have higher invasion capabilities than those from the highly diverse 

samples in general. 
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Identical resistance profile samples 
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Figures 4.9 Comparison of association and invasion ability to ability to T24 among bacterial isolates 

belong to female and male identical resistance profile pattern samples. Association and invasion assay 

were applied to five identical resistance profile samples. Bacterial isolate of each sample were grown in 

5 ml LB liquid media and incubated at 37 °C for 18 hours with shaking. A 1:100 dilution was incubated in 

duplicate using 24 well microtitre plates at 37 °C with CO2 for 3 hours for the association assay and after 

the addition of Gentamicin were incubated at 37 °C with CO2 for 2 hours. The bacterial isolates of each 

sample were assigned with letters (A to E), each represented identical sensitivity pattern to an 

antibacterial agent based on susceptibility testing. The corresponding bar chart has been listed with five 

letters, in order to represent each of the five samples of identical group, as follows: (J) : UTI (F20), (K) : 

UTI (F21), (L) : UTI (M21), (M) : UTI (M20) and (N) : UTI (M19). The bar charts display a representation of 

the mean of log CFU/ml of three independent experiments. Furthermore, they are based on three 

replicates with error bars to indicate the standard deviation of each variable. CFT073 and DH5α were 

used as a positive and negative control in duplicate and represented as documented bar charts.  
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4.2.4 Summary table of  varied phenotypic abilities among highly diverse samples 

About 55% of  samples yielding isolates with differing resistance profiles were found 

to contain isolates which differed when assessed by additional phenotypic assays, as 

illustrated in table 4.2. Resistant bacterial isolates of various samples were noted to 

be the most highly motile, best produces of biofilms, most adherent and invasive to 

T24 cells. Most of the Ampicillin resistant isolates showed a high ability to form 

biofilm. However, those phenotypic variations among highly diverse pattern variants 

indicated no specific relationship with antibiotic class. Samples from female patients 

yielded the majority of highly diverse resistance pattern isolates and also the most 

significant phenotypic variation between variants from within samples.  
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Table 4.2 Summary of the highly diverse resistance pattern samples. The patterns observed were dependent upon the variants (bacterial isolates) of highly 

diverse samples, the variants present within each sample, the antibiotics that bacterial isolates were assorted in, and where those variants have a significant 

phenotypic difference. MDR referred to samples with multi drug resistance ability. (*) represents where the significant variation was found. 

Sample ID 

Variants 
MDR Antibiotic resistance profile 

Phenotypic assay 

Motility assay Biofilm production 
Association and invasion 

Assay 

Highly diverse resistance profiles 

(A) UTI (F1) 

2 

 AP/TM 

AP/TM resistance 

 * * 

6 TM resistance 

14 AP resistance 

18W 
AP/ TM resistance 

18Y 

(B) UTI (F2) 

24 

Yes GM/CAZ/CPM/CPD 

GM resistance 

   30 GM sensitive 

31 GM/CAZ/CPM/CPD resistance 

(C) UTI (F3) 
3 

Yes AP 
Resistance variant 

 *  
7 Sensitive variant 

(D) UTI (F4) 
2 

 AP 
Resistance variant 

* * * 
20 Sensitive variant 

(E) UTI (F5) 
19 

 CAZ 
Resistance variant 

   
28 Sensitive variant 

(F) UTI (F6) 
2 

Yes GM 
Resistance variant 

  * 
40 Sensitive variant 

(G) UTI (M3) 
5 

Yes GM/TM 
Resistance variant 

  * 
35 Sensitive variant 

(H) UTI (M1) 
2 

 CIP 
Sensitive variant 

   
25 Resistance variant 

(I) UTI (M2) 
18 

 AP 
Resistance variant 

   
31 Sensitive variant 
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Phenotypic assays was applied also on selection of the low diversity resistance 

profile pattern isolates. Isolates from four female and four male samples were 

selected and the same phenotypic assays were applied. There were no significant 

phenotypic differences recognised between the examined isolates as illustrated in 

table 4.3. 

With regard to the overall phenotypic variation between the three resistance profile 

patterns (high, low and identical), significant phenotypic variation was only noticed 

in isolates from the highly diverse resistance pattern samples. No phenotypic 

variation was observed in the low and identical resistance pattern samples.  
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Table 4.3: Phenotypic variation of some low diverse resistance profile pattern samples. The patterns observed were dependent upon the variants (bacterial 

isolates) of low diverse samples, the variants present within each sample, the antibiotics that bacterial isolates were assorted in, and where those variants have a 

significant phenotypic difference. MDR referred to samples with multi drug resistance ability.  

Sample ID Variants MDR Antibiotic resistance profile 
Phenotypic assay 

Motility assay Biofilm production Association and invasion Assay 

Low diverse resistance profiles 

UTI (F13) 

17 

  GM/TM 

All sensitive 

None 38 GM intermediate 

43 GM/TM intermediate 

UTI (F16) 
1 

  GM 
GM sensitive 

None 
5 GM intermediate 

UTI (F17) 
13 

  CIP 
CIP intermediate 

None 
20 CIP sensitive 

UTI (F19) 
2 

Yes GM 
GM resistance 

None 
12 GM intermediate 

UTI (M11) 
5 

Yes MM 
MM intermediate 

None 
12 MM sensitive 

UTI (M12) 
2 

  GM 
GM sensitive 

None 
16 GM intermediate 

UTI (M16) 
10 

  GM 
GM intermediate 

None 
25 GM sensitive 

UTI (M10) 
2 

  CPM 
CPM sensitive 

None 
14 CPM intermediate 
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4.3 Discussion 

The development of a urinary tract infection within a patient is thought to be related 

to the presence of a combination of virulence factors in the pathogen (Dobrindt, 

2005). Bacterial motility, attachment and invasion of the host, alongside the ability 

to form biofilm, are all factors which allow UPEC to survive within the urinary tract 

and cause infection. There is a natural heterogeneity within UPEC in terms of motility, 

host adherence and invasion (Naves et al, 2008). This variability has been recognised 

in comparisons between E. coli isolates collected from patient’s urine samples. E. coli 

isolates obtained over time from a symptomatic patient with a urinary tract infection 

proved to be genetically heterogeneous and that heterogeneity included metabolic 

functions such as iron uptake and stress resistance (Zdziarski et al., 2010). In addition, 

within-host phenotypic variation was demonstrated in eight patients infected with 

ExPEC by Levert and his group (Levert et al., 2010). Therefore, as with the resistance 

variation obtained in Chapter 3, colonies that have varied antibiotic susceptibility 

profiles could have variability to other phenotypic characteristic.  

In this chapter, isolates from within each sample showing a highly diverse resistance 

profile were compared using a motility assay based on spreading on a semi-solid 

agar plate. Flagella and chemotaxis are thought to be expressed at specific stages, 

and at specific sites for efficient colonisation (Lane et al., 2005). Flagella are also 

thought to be highly active in the upper urinary tract leading to the colonisation of 

the kidneys (Lane et al., 2007). It was noticed that there was a significant variation in 

motility between variants obtained from the sample form one female case; one 

variant was motile while the other one was not. Interestingly, the motile bacterial 

isolate is a resistant colony from the sample. This patient could have a mixed 
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infection with two different sequence types or with a strain persisting from an old 

infection, or may have been reinfected with another strain of E. coli. Those two 

strains may behave differently in biofilm formation as illustrated by Pratt and Kolter 

(1998), where non-motile strains of E. coli were deficient in the early stages of 

biofilm formation (Pratt and Kolter, 1998). 

Ponnusamy et al. (2012) reported that most antibiotic-resistant strains were 

characterized by their ability to form biofilm. It was also shown that biofilm 

producing isolates are difficult to eradicate form the host and a prolonged antibiotic 

treatment is needed (Graham and Galloway, 2001). As a correlation with that, 

variation in biofilm formation was noticed in our samples. Our data showed variation 

in biofilm formation between the resistant and sensitive isolates obtained from 

three female patients after 24 hours of incubation. In samples C and D, resistant 

strains were able to form biofilm and these data agreed with Ponnusamy study. In 

addition, the non-motile variant from sample D showed a significant difference in its 

ability to form biofilm after 96 hours incubation and the significance here may due to 

the resistant strain not being able to survive after 96 hours of incubation. This 

correlates with a study reporting that the optimal time to examine biofilm 

production in E. coli strains was after 24 hours of incubation (Adamus-Białek et al., 

2015). A study on women with recurrent urinary tract infections found that isolates 

from 74% of recurrent infection cases were able to form biofilm (Soto et al., 2007). 

Therefore, our female samples having a varied biofilm production level may have a 

previous history of having UTIs. Generally, all sample isolates were able to form 

biofilm when compared with the E. coli K12 control. Those isolates may show a high 
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attachment level, and Soto et al. (2007) determined that most biofilm producing 

strains express type 1 fimbriae.  

The ability of isolates from samples with highly diverse resistance profiles to attach 

to T24 cells and invade them was tested using the gentamicin protection assay. 

Attachment of UPEC is considered to be the early stage in colonization of the urinary 

tract leading to subsequent disease (Martinez et al., 2000; Bahrani-Mougeot et al., 

2002; Connell et al., 1996). Generally, all isolates attached to T24 cells at a high level 

and this could reflect the role of adhesive organelles which are important in biofilm 

formation (Cegelski et al., 2009). Sample D isolates exhibit a significant difference in 

attachment level to T24 cells and this can be linked with presence of difference in 

motility and biofilm production between variants from this female patient. Invasion 

of bladder cells generally has an important role in urinary tract infections persistence 

(Martinez et al., 2000). Variation in invasion ability between isolates was noticed in 

samples from two female and one male case. In sample A, one isolate was 

characterized by low invasion ability and was previously shown to have a low level of 

biofilm formation ability. The resistant isolates in the other two samples showed 

high invasion levels in T24 cells, but no significant responses were noticed in the 

other phenotypic assays. Isolates from these two samples exhibited the crucial factor 

for infection persistence, the ability of bacterial cells to invade the urinary tract 

epithelium followed by intracellular bacterial community development (Blango and 

Mulvey, 2010). Especially for sample F, persistence of infection with possible 

dissemination to other areas may be relevant in this patient. 

Obtained phenotypic variation in the highly diverse resistance profile samples might 

have arisen from the presence of two or more different sequence types of UPEC.  
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Further, recurrent infections could have an impact on patients in term of population 

diversity. Recurrent infection could be as a result of either relapsed infection with 

the original strains or reinfection by different strains of E. coli (Soto et al., 2011). 

Those two possibilities are relevant because most of the samples yielded isolates 

which tended to form biofilm. Presence of two different sequence types may be 

more relevant in sample D, as all examined phenotypic traits varied. This can result 

from an infection with two different sequence types or a recurrent infection with 

persistence of the previous strain. Generally, 55 % of highly diverse resistance profile 

samples are varied phenotypically among examined phenotypic assays in this 

chapter.  

The isolates from samples with highly diverse resistance profiles were also compared 

with five seemingly identical isolates of identical resistance patterns to obtain an 

overview about the baseline phenotypic diversity level. The phenotypic data for 

isolates from samples which were believed to contain a homogenous population 

were examined, and no significant differences were apparent. Baseline phenotypic 

heterogeneity was therefore very low.  
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5.1 Introduction 

5.1.1 Escherichia coli genotypic analysis 

E. coli is a genetically heterogeneous group of organisms, and this heterogeneity is 

thought to be related to acquisition or deletion of genetic elements. Using molecular 

genetic approaches, genetic diversity can be determined among pathogenic and 

commensal E. coli isolates. It has been demonstrated that using molecular techniques 

can help in studying the evolutionary process of E. coli strains, and can determine the 

varied genetic content of E. coli isolates (Dobrindt et al., 2003). As an illustration, 

multiplex PCR was used in an epidemiological study to determine widespread variation 

in presence of virulence factors among 75 ExPEC isolates (Johnson and Stell, 2000).  

By applying genome sequencing, it has been shown that UPEC isolates can acquire extra 

genetic material which may provide specific phenotypic traits for particular strains 

(Dobrindt, 2005). Most acquired mobile genetic elements are virulence-associated genes 

that cause structural and functional diversity (Dobrindt, 2005). Brzuszkiewicz et al. (2006) 

published a study comparing UPEC phenotypes and their genomes to give a better 

understanding of UPEC diversity by comparing the sequenced isolated genome to the 

CFT073 genome. They showed that most UPEC virulence genes are located on a 

pathogenicity island.  

Lloyd et al. (2007) applied comparative genomic hybridisation to different UPEC 

genomes extracted from different disease sets of the urinary tract and from commensal 

isolates. It was found that UPEC virulence genes were differentially present across 

examined isolates. These genes were distributed randomly among UPEC bacterial strains 

(Lloyd et al., 2007). Comparative genomic hybridisation was also carried out on eleven 



Genotypic diversity of Uropathogenic E.coli colonies from a single patient 

 111 

UPEC of asymptomatic bacteriuria and it was reported that there was diverse genetic 

content among those isolates (Zdziarski et al., 2008). 

Molecular studies have also been carried out on ExPEC to determine within-host 

diversity using MLST, PFGE and PCR on 226 isolates. Whole-genome sequencing using 

Illumina technology was used on eight isolates. Together, these showed two types of 

within-host diversity of ExPEC: polyclonal and monoclonal (Levert et al., 2010). 

Additionally, 265 of the E. coli isolates of inpatients and outpatients were compared 

phenotypically and using molecular methods. Molecular analysis study was based on 

using multiplex PCR and MLST. It was shown that, in UTIs caused by the heterogeneous 

group of E. coli, most virulence-associated genes were located on mobile elements such 

as plasmids (Toval et al., 2014). In 2015, genome sequencing was applied to 19 UPECs to 

give a better understanding about the degree of diversity among strains and it was 

found that closely related UPEC isolates belonging to the same sequence type may differ 

genetically (Lo et al., 2015). 

5.1.2 Whole-genome sequencing  

Bacterial genotyping is becoming increasingly important, especially in nosocomial 

infections associated with high morbidity and mortality. Microbiological epidemiological 

studies are important to understand the distribution and relatedness of bacterial 

pathogens and to control bacterial infection. Whole-genome sequencing is rapidly 

replacing traditional genotyping methods as it has become fast and cheaper over time 

(Bertelli and Greub, 2013). Whole-genome sequencing data of bacterial isolates can 

provide unparalleled information about virulence and antibiotic resistance genes found 

within bacterial isolates, and provides a better understanding of evolutionary processes 

(Mardis, 2011; Bertelli and Greub, 2013). Further, whole-genome sequencing can 
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provide a rapid and accurate identification of the real potential source of bacteria that 

causes an outbreak, which enables researchers to inform infection control interventions 

(Harris et al., 2010; Harris et al., 2013). 

5.1.2.1 Using whole-genome sequencing to detect within population variation 

Whole-genome sequencing is applied to determine within- and between-host genetic 

diversity. De novo assembly is one method used to provide information about short 

insertion or deletion between closely related bacterial strains (Maclean et al., 2009). 

This method was used on isolates from MRSA carriage to detect insertions and deletions 

(Golubchik et al., 2013). Additionally, aligning of sequenced data against a reference 

genome is also another method to provide information about SNPs and has importance 

in investigation of evolutionary process during bacterial infection. Mapping sequenced 

bacterial isolates to a reference genome provides information about accumulated 

mutations and was applied on isolates of B. dolosa isolated from single patients 

(Lieberman et al., 2011; Lieberman et al., 2014). 

5.1.3 Aim of this chapter 

Variation in resistance profile between colonies could be a sign of genotypic diversity, 

and we observed multiple cases of such variation in colonies from the same patient. In 

addition, we observed variation in other phenotypic characteristics between colonies 

obtained from the same patient, which would also suggest significant genotypic 

variation. In this chapter, we aimed to determine to what extent those phenotypic 

variation are based on genetic differences. Johnson et al. (2001) reported that vertical 

inheritance and horizontal transmission within bacterial populations produce divergent 

patterns of virulence factors. Therefore, in this chapter, determining genetic diversity 
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within a single patient will create a detailed picture of the level of within-host diversity 

of UPEC within patients.  

We performed whole-genome sequencing on all variants characterised previously in 

Chapter three from the highly diverse resistance profile samples. The aim was to 

investigate if there were multiple strain types present in these samples, or if key gene 

gain events had occurred within the infecting population that led to clinically important 

shifts in phenotype within the population.  

Low resistance profile and identical pattern samples were also evaluated to see if these 

groups contained identical or low diversity in populations of infecting cells. To do this, 19 

random low-diversity samples and the 5 identical samples were selected, and we 

performed deep population sequencing on complete bacterial growth of those samples. 

By using a mapping approach, we could then identify the total number of SNPs in each 

of the infecting populations and quantify the baseline level of genetic diversity across 

these sample types. 

5.1.4 Bacterial strains used in this chapter 

Bacterial isolates (variants) were obtained from UPEC samples with varied resistance 

profiles as described in Chapter 3, were used in this chapter and described in table 5.1. 
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Table 5.1 Bacterial isolates used in this chapter 

Colony-based whole-genome sequencing samples 

High diverse resistance profile samples 

Sample ID Sample variant Resistance profile Phenotypic variation 

UTI (F1) 

Colony 2 Resistance to AP and TM 

Varied in biofilm formation and invasion assay 

Colony 6 Resistance to TM 

Colony 14 Resistance to AP 

Colony 18W Resistance to AP 

Intermediate to TM Colony 18Y 

UTI (F2) 

Colony 24 Resistance to AP, GM, CPM, CIP and TM 

No phenotypic variation among examined assays Colony 30 Resistance to AP, CIP and TM 

Colony 31 
Resistance to GM, AP, CPD, CPM, CIP and 

TM 

UTI (F3) 

Colony 3 Resistance to AP and CPM 

Varied in biofilm formation 

Colony 7 Sensitive to AP, Intermediate to CPM 

UTI (F4) 

Colony 2 Resistance to AP 

Varied in all examined phenotypic assays 

Colony 20 Sensitive to AP 

UTI (F5) 

Colony 19 Resistance to CAZ 

No phenotypic variation among examined assays 

Colony 28 Sensitive to CAZ 

UTI (F6) 

Colony 2 Resistance to GM 

Varied in invasion assay 

Colony 40 Sensitive to GM 

UTI (M3) 

Colony 5 Resistance to GM and TM 

Varied in invasion assay 

Colony 35 Sensitive to GM and TM 

UTI (M1) 

Colony 2 Resistance to CIP 

No phenotypic variation among examined assays 

Colony 25 Sensitive to CIP 

UTI (M2) 

Colony 18 Resistance to AP 

Colony 31 Sensitive to AP 

Low diverse resistance profile sample 

UTI (F17) 

Colony 13 

Varied in CIP No phenotypic variation among examined assays 

Colony 20 
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Deep sequencing samples 

Low diverse resistance profile samples 

Sample ID Sample variant Resistance profile 

UTI (F16) 

Pooled colonies of the whole bacterial 

growth 

Varied in GM 

UTI (F19) Varied in GM 

UTI (F13) Varied in GM/TM 

UTI (F12) Varied in CAZ/CPM 

UTI (F9) Varied in CIP/TM 

UTI (F7) Varied in GM/CPM/CAZ/MM 

UTI (F8) Varied in GM/CPM/CAZ 

UTI (F11) Varied in GM/CPM/CAZ 

UTI (F15) Varied in GM/CPM 

UTI (M11) Varied in MM 

UTI (M12) Varied in GM 

UTI (M16) Varied in GM 

UTI (M5) Varied in GM/CPM/CAZ/MM 

UTI (M4) Varied in GM/CPM/CAZ/MM/TM 

UTI (M7) Varied in GM/CPM/CAZ 

UTI (M9) Varied in MM 

UTI (M6) Varied in GM/CPM/CAZ 

UTI (M10) Varied in CPM 

UTI (M8) Varied in GM/CPM 

Identical resistance profile samples 

UTI (F20) 

Pooled colonies of the whole bacterial 

growth 

Sensitive to MM only 

UTI (F21) Resistance to GM, AP and TM 

UTI (M21) Sensitive to MM only 

UTI (M20) Sensitive to all examined antibiotics 

UTI (M19) Sensitive to MM only 
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5.2 Bioinformatics programs  

Raw FASTQ files for bacterial isolates were assembled using SPAdes (version 3.5.0). 

Detailed information is described in section 2.7.1, Chapter 2. 

5.2.1 QUAST 

QUAST was applied on all assembled genomes providing a range of metric assessments 

in tables 5.2 and 5.4 (version 2.0; Gurevich et al., 2013) (section 2.7.2, Chapter 2). 

5.2.2 Multi locus sequence type 

Multi locus sequence type (MLST) of whole-genome sequenced isolates was identified 

using CGE website (http://cge.cbs.dtu.dk/services/MLST/) and are shown in table 5.2 

and 5.4 (version 1.8). 

5.2.3 Bacterial analysis pipeline 

A bacterial analysis pipeline was created for whole genome sequenced samples using 

CGE website (https://cge.cbs.dtu.dk/services/cge/) (version 2015-04-28). The bacterial 

analysis pipeline can provide information on carriage of resistance genes, virulence 

genes, FimH adhesion type and plasmids and are shown in table 5.3.  

5.2.4 Pan-genome sequence analysis 

Pan-genome sequence analysis (https://lfz.corefacility.ca/panseq/page/novel_full.html) 

was applied to determine the novel regions that varied between sequenced bacterial 

isolates belonging to a single patient sample and illustrated in tables 5.2 to 5.11 (Laing et 

al., 2010). 

5.2.5 BLASTx 

Novel regions identified between bacterial isolates within samples were identified using 

BLASTx web-base (https://blast.ncbi.nlm.nih.gov/Blast.cgi/). 

http://cge.cbs.dtu.dk/services/MLST/
https://cge.cbs.dtu.dk/services/cge/
https://lfz.corefacility.ca/panseq/page/novel_full.html
https://blast.ncbi.nlm.nih.gov/Blast.cgi/
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Figure 5.1: Overview of the whole-genome sequencing analysis pipelines. 
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5.3 Results 

5.3.1 Colony-based genome sequencing of highly diverse resistance profile samples 

Whole-genome sequencing was performed on twenty-two DNA bacterial isolates 

extracted from the nine samples of the highly diverse resistance profile group.  

5.3.1.1 Quality metric assessment and MLST of highly diverse resistance profile 

samples 

The assembled quality metrics and MLST of all genomes from the highly diverse 

resistance profile group are shown in table 5.2. 
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Table 5.2 MLST and quality metrics assessment of colony-based genome sequencing of highly diverse 

resistance profile samples. MLST sequence type was identified for each sequenced bacterial isolate and 

quality metric assessments were completed. The number of contigs, the total sequence length and 

number of contigs that cover half the reference genome (N50) were also determined, with the coverage 

of sequenced bacterial isolates calculated. 

Sample 

number 

Colony 

number 
MLST 

Number of 

contigs 
Total length (bp) N50 (bp) Coverage 

UTI (F1) 

2 

M.morgani 

23 3758027 607206 41.58 

6 17 3759560 744281 41.56 

14 19 3760130 744281 41.55 

18W 20 3758396 432235 41.57 

18Y ST73 117 5091783 275590 30.69 

UTI (F2) 

24 

ST131 

77 5285865 276327 44.49 

30 62 5280101 276327 59.02 

31 67 5288069 336308 31.61 

UTI (F3) 
3 

ST88 
118 5233663 188663 60.10 

7 105 5225951 208295 48.73 

UTI (F4) 
2 ST95 109 5280865 268910 29.31 

20 ST10 77 4691891 123294 36.28 

UTI (F5) 
19 

ST131 
112 5260716 287246 60.24 

28 112 5282372 285848 56.35 

UTI (F6) 
2 

ST648 
141 5322010 215375 44.74 

40 94 5183762 240192 52.27 

UTI (M3) 
5 

ST131 
124 5352019 190996 34.43 

35 94 5229679 222525 31.59 

UTI (M1) 
2 

ST69 
191 5161261 95321 13.04 

25 164 5162471 106412 13.16 

UTI (M2) 
18 

ST12 
134 5244845 191984 16.72 

31 121 5233880 191984 44.69 
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Sample UTI (F1) had a difference in genome size (total genome length) between all 

sequenced bacterial isolates (2), (6), (14) and (18W) and (18Y) of about 1 million base 

pairs. By using MLST, this female patient was shown to have a polymicrobial infection 

due to the presence of four bacterial isolates of Morganella morgani and one bacterial 

isolate of UPEC.  

Patient samples UTI (F4), UTI (F6) and UTI (M3) contain bacterial isolates with a 

difference in genome size between 100,000 and 1 million base pairs. The largest 

difference in base pairs was seen in sample UTI (F4). Based on MLST, this female patient 

had two distinct sequence types of UPEC, ST95 and ST10 while samples UTI (F6) and UTI 

(M3) contained strains belonging to the same ST, ST648 and ST131 respectively. 

Patient sample UTI (F5) and UTI (M2) contained strains with a difference in genome size 

between 10,000 and 100,000 base pairs. MLST showed that both sequenced bacterial 

isolates of sample UTI (F5) belong to ST131 while sample UTI (M2) bacterial isolates 

belong to ST12. 

Sequenced bacterial isolates of patient samples UTI (F2), UTI (F3) and UTI (M1) had a 

difference of less than 10000 base pairs and they belong to ST131, ST88 and ST69 

respectively. 

5.3.1.2 Resistance and virulence gene analysis of strains from highly diverse resistance 

profile samples 

Using the Centre for Genomic Epidemiology database, a bacterial analysis pipeline was 

run to compare virulence and resistance genes of sequenced bacterial isolates belonging 

to a single patient. The bacterial pipeline was run on five female samples and three male 

samples of the highly diverse resistance profile group. Full details of resistance genes, 

virulence genes and plasmid replicon type are shown in table 5.3.                                     
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Table 5.3 Resistance/ virulence genes of bacterial isolates belong to a single patient of highly diverse resistance profile samples. Sample ID, resistance genes, virulence 

genes, FimH typing and plasmid are included in the table. Resistance genes: Aminoglycoside resistance aadA5, aac(3)-IId ,StrA, StrB, aph(3’)-1; β-lactam resistance bla OXA-

1, bla TEM 1B, bla TEM 1C; Sulphonamides resistance sul1, sul2; Trimethoprim resistance dFrA17;  Phenicol resistance CatB3; Tetracycline resistance tetB. Virulence genes: 

vaculating autotransporter toxin (vat), Increase serum survival (iss), Cytotoxic necrotizing factor (cnf1), Plasmid encoded enteroxin (senB), S fimbriae minor subunit (sfaS), 

Enterobactin sidephore receptor protein (iroN). Further, the varied resistance gene and plasmid are highlighted. 

Sample 

number 

Colony 

number 
MLST Resistance genes Virulence genes 

FimH 

type 
Plasmid 

Samples sequenced bacterial isolates have variation among all examined profiles 

UTI (F4) 
2 ST95 StrA, StrB, bla TEM 1C, Sul2 

iss, vat, cnf1, senB, sfaS, 

iroN 
 FimH 18 

IncFII, IncB/O/K/Z, IncFIB 

Col156, ColRNAI, Col8282 

20 ST10 None FimH 34 p0111 

Samples sequenced bacterial isolates varied in resistance genes and plasmid types profiles 

UTI (F3) 

3 

ST88 

OXA-1, Cat B3 

Identical Identical 

 

7  
Col(BS512), Col(8282), Col(MP18), 

Col(MG828) 

UTI (F6) 
2 

ST648 

aac(3)IId, StrA, StrB, aph(3’)-1°, tetB, Sul2, 

CaT A1 Identical Identical 
IncFII, IncFIA, IncFIB, IncQ1 

40  Col(MP18) 

UTI (M3) 
5 

ST131 
aadA5, aac(3)-IId, Sul1, dFrA17, mph(A) 

Identical Identical 
IncFII, IncFII, IncFIB,IncFIA 

35   

UTI (M2) 
18 

ST12 
StrA, StrB, bla TEM 1B, Sul2 

Identical Identical 
Col8282 

31   
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Sample 

number 

Colony 

number 
MLST Resistance genes Virulence genes FimH type Plasmid 

Samples sequenced bacterial isolates have variation in plasmid types 

UTI (F2) 

24 

ST131 Identical profiles 

Col(BS512), Col(MG828) 

30  

31  

UTI (M1) 
2 

ST69 Identical profiles 
Col(BS512) 

25  

Samples sequenced bacterial isolates have identical profile 

UTI (F2) 
19 

ST131 Identical profiles 
28 
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Table 5.3 displays the differences in resistance and virulence gene content of bacterial 

strains isolated from single patients. Samples are categorised into groups based on 

obtained variation among examined profiles (resistance genes, virulence genes, FimH 

type and plasmid type). Firstly, strains that varied among all examined profiles. Female 

sample UTI (F4) exhibited a diverse genetic content of acquired resistance genes, 

virulence genes, FimH adhesion type and plasmid type. This sample has two different 

sequence types, and so can be defined as a polyclonal infection.  

Secondly, sample bacterial isolates that only varied in resistance genes and plasmid type. 

Samples UTI (F3), UTI (F6), UTI (M3) and UTI (M2) belong to this category and all sample 

exhibited monoclonal diversity as these sequenced bacterial isolates of each sample 

have the same sequence type. Further, samples UTI (F2) and UTI (M1) sequenced 

bacterial isolates vary only in plasmid type. These two samples also exhibited also 

monoclonal diversity. Lastly, sample UTI (F5) bacterial isolates have identical genetic 

content. 

Strains of samples UTI (F4), UTI (F6) and UTI (M3) showed variation in Inc plasmid type. 

Samples UTI (F2), UTI (F3), UTI (F4), UTI (F6), UTI (M3), UTI (M1) and UTI (M2) showed 

variation in presence of a Col plasmid replicon.  

Sample UTI (F4) is the only patient that displays polyclonal diversity, meaning that 

several patients contain strains having the same sequence type but clear phenotypic 

variation and potentially differences in gene and plasmid content. To further investigate 

the levels of within clone diversity, we used Pan-seq analysis on the remaining highly 

diverse samples to fully characterise differences in gene content between strains from 

the same patient. 
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5.3.1.3 Pan-seq genome analysis of strains with identical MLST from highly diverse 

resistance samples  

Pan-seq genome analysis was run on the sequenced bacterial isolates of highly diverse 

resistance profile samples that have identical sequence type. The analysis was run on 

four female samples and three male samples. Pan-seq genome analysis can help in 

defining the unique regions in one bacterial isolate with respect to the other. The 

putative function of the novel region is then identified using BLASTx (Laing et al., 2010). 

Novel regions with size less than 500bp has been removed. The identified novel regions 

obtained between sequenced bacterial isolates of a single patient are shown in tables 

(5.4 – 5.10). 
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Table 5.4: Identified novel regions of UTI (F2) bacterial isolates using Pan-seq analysis. Strain specific genes, related to the novel regions, were identified and their 
putative functions established. 

UTI (F2) 

Gene Putative Function Gene Putative Function 

Sequenced bacterial isolate (24) with respect to isolate (31) Sequenced bacterial isolate (24) with respect to isolate (31) 

Large Terminase (542bp)    

Replication protein (608bp) Bacterial replication Replication protein (1134bp) Bacterial replication 

Hypothetical protein (704bp).  Hypothetical protein (638bp)  

Mobilization protein (1658bp).  Mobilization protein (1077bp)  

Helix-turn-helix domain of transposase 

IS66 family protein (2690bp) 
DNA binding 

Helix-turn-helix domain of transposase 

IS66 family protein (1913bp) 
DNA binding 

Colibactin non-ribosomal peptide 

synthetase ClbJ (3833bp) 
DNA damage in the host (1) 

Colibactin non-ribosomal peptide 

synthetize ClbJ (3833bp) 
DNA damage in the host (1) 

Sequenced bacterial isolate (30) with respect to isolate (24) Sequenced bacterial isolate (30) with respect to isolate (31) 

Hypothetical protein (784bp)  Hypothetical protein (935bp), (792bp)  

Acyl-CoA dehydrogenase (773bp) Fatty acid and amino acid catabolism Acyl-CoA dehydrogenase (774bp) Fatty acid and amino acid catabolism 

Plasmid replication protein (2946bp) Bacterial replication Plasmid replication protein (2946bp) Bacterial replication 

Sequenced bacterial isolate (31) with respect to isolate (24) Sequenced bacterial isolate (31) with respect to isolate (30) 

Hypothetical protein (618bp)  DNA packaging protein (516bp) Replication 

Lipid transfer protein (1142bp) Lipid transfer activity Hypothetical protein (734bp), (1570)  

Hypothetical protein (1479bp)    

Integrase core domain-containing protein 

(9011bp) 
DNA integration 

Integrase core domain-containing protein 

(11596bp) 
DNA integration 

(1): (Nougayrède et al, 2006) 
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Table 5.5: Identifed novel regions of UTI (F3) bacterial isolates using Pan-seq analysis. Strain specific genes, related to the novel regions, were identified and their 

putative functions established. Possible varied phenotype related to the gene was also mentioned.  

UTI (F3) 

Gene Putative Function Linked phenotype to identified gene 

Sequenced bacterial isolate (3) with respect to isolate (7) 

Replication protein (854bp) Bacterial replication  

Class D β-lactamase OXA-1 (1001bp) Antibiotic resistance Resistant to β -lactam  

Chloramphenicol acetyltransferase (1490bp) Antibiotic resistance Resistant to Phenicol 

Colanic acid exporter (3135bp) Extracellular polysaccharide Biofilm matrix formation (1) 

Hypothetical protein (5412bp)   

Mercury (II) reductase (8684bp) Mercury resistance  

Sequenced bacterial isolate (7) with respect to isolate (3) 

Hypothetical protein (509bp)   

Conjugal transfer protein (610bp) DNA transfer channel 

Conjugal transfer protein TraG (783bp) DNA transfer channel 

Hypothetical protein (827bp), (742bp), (959bp)  

Uncharacterised protein (1001bp)  

Replication protein (1435bp), (2565bp) Bacterial replication 

(1): (Soto et al., 2007) 
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Table 5.6: Identified novel regions of UTI (F5) bacterial isolates using Pan-seq analysis. Strain specific genes, related to the novel regions, were identified and their 
putative functions established. 

UTI (F5) 

Gene Putative Function 

Sequenced bacterial isolate (19) with respect to isolate (28) 

ATP-dependent RNA helicase DbpA (1159bp) Bacterial enzyme (RNA binding) 

Hypothetical protein (2672bp)  

Dipepetidase E (5551bp) Bacterial enzyme (Dipeptide cleavage) 

Structural protein (9446bp)  

Sequenced bacterial isolate (28) with respect to isolate (19) 

Oligopeptide ABC transporter substrate-binding protein OppA (788bp) Protein and peptide transport 

Pitrilysin (1004bp) Bacterial enzyme 

Universal stress protein UspE (1479bp) Bacterial survival (1) 

Amino acid permease (2391bp) Amino acid transporter 

Histidne histamine antiroperter (3607bp) Antiporter 

Phospho-2-dehydro-3-deoxyheptonate aldolase (4075bp) Amino acid biosynthesis 

Hypothetical protein (5650bp)  

(1): (Nachin et al., 2005). 
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Table 5.7: Identified novel regions of UTI (F6) bacterial isolates using Pan-seq analysis. Strain specific genes, related to the novel regions, were identified and their 
putative functions established. Possible varied phenotype related to the gene is also mentioned. 

UTI (F6) 

Gene Putative Function Linked phenotype to identified gene 

Sequenced bacterial isolate (2) with respect to isolate (40) 

Protein ImpB (707bp) DNA repair  

Conjugal transfer protein TraJ (736bp) DNA transfer channel  

Amino acid binding protein (833bp) Amino acid transport  

Aminoglycoside 3'phosphotransferase APH(3') (1038bp) Antibiotic resistance Resistant to aminoglycoside  

Transposase (1277bp) Transposition (Mobile genetic element insertion)  

Hypothetical protein (1388bp)   

IcIR family trancriptional regulator  (1646bp) Multi drug resistance and virulence  

IS21 family transposase (1954bp) Transposition (Mobile genetic element insertion)  

Tetracycline efflux MFS transporter Tet B (2781bp) Antibiotic resistance Resistant to tetracycline  

Metal ABC transporter substrate binding protein (3401bp) Metal binding  

Replication protein C (4385bp) Bacterial replication  

Hypothetical protein (19752bp), (5904bp)   

Tn3 family transposase (5028bp) Transposition (Mobile genetic element insertion)  

IS1182 family transposase (6974bp) Transposition (Mobile genetic element insertion)  

ABC transporter substrate-binding protein  (7654bp) Protein binding  

Iron permease (10778bp). Bacterial pathogenesis  Iron acquisition 

Ton B dependent sidephore receptor (11555bp) Bacterial pathogenesis  Iron acquisition 

Sequenced bacterial isolate (40) with respect to isolate (2) 

Replication protein (506bp) Bacterial replication  

RopB/ MobA like protein (642bp) Plasmid mobilization 

Plasmid mobilisation protein (714bp) Plasmid mobilization 

Tail fiber assembly protein (806bp) Formation tail fiber 

Exonuclease family protein (2170bp) DNA repair 

DNA-binding protein (3161bp) Bacterial replication 

RHS Repeat family protein (3398bp) Polysaccharide synthesis 
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Table 5.8: Identified novel regions of UTI (M3) bacterial isolates using Pan-seq analysis. Strain specific genes, related to the novel regions, were identified and their 
putative functions established. Possible varied phenotype related to the gene is also mentioned. 

UTI (M3) 

Gene Putative Function Linked phenotype to identified gene 

Sequenced bacterial isolate (5) with respect to isolate (35) 

Hypothetical protein (653bp)   

DNA polymerase V (707bp) DNA repair  

Hypothetical protein (1006bp)   

Type VI secretion protein IcmF (1157bp) Bacterial survival and replication  

Phage tail protein (1302bp) Tail formation  

Enolase (1986bp) Glycolysis  

Aminoglycoside N(3') acetyltransferase (2598bp) Antibiotic resistance Resistant to aminoglycoside 

IS66 family transposase (2708bp) Transposition (Mobile genetic element insertion)  

Ton B dependent receptor (2983bp) Bacterial pathogenesis  Iron acquisition 

IS110 family transposase (3746bp) Transposition (Mobile genetic element insertion)  

Hypothetical protein (6557bp)   

Hypothetical protein (PapB) Bacterial virulence Adhesion(1) 

Conjugative transfer relaxase/helicase TraI DNA transfer  

Group II intron reverse transcriptase/ maturase (24619bp) Mobile genetic element  

Tn3 family transposase: 2 plasmid (7218bp) Transposition (Mobile genetic element insertion)  

YfcC family protein (8503bp) Putative amino acid antiporter  

Chromate transporter (10932bp) Chromate resistance  

Sequenced bacterial isolate (35) with respect to isolate (5) 

Non-ribosomal peptide synthetase  (647bp) Non-ribosomal peptide synthesis   

Efflux ABC transporter permease protein (793bp) ATP/ nucleotide binding 

Transposase (3429bp) Transposition (Mobile genetic element insertion) 
(1): (Leffler and Svanbrog-Eden, 1980; Lund et al., 1987) 
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Table 5.9: Identified novel regions of UTI (M1) bacterial isolates using Pan-seq analysis. Strain specific genes, related to the novel regions, were identified and their 
putative functions established. 

UTI (M1) 

Gene Putative Function 

Sequenced bacterial isolate (2) with respect to isolate (25) 

Head completion/ stabilisation protein (2762bp) Phage replication 

Replication protein (3921bp) Plasmid replication 

Sequenced bacterial isolate (25) with respect to isolate (2) 

Filamentous hemagglutinin family domain-containing protein (528bp) Transport 

Type-1 restriction enzyme EcoKI specificity protein (4040bp) DNA restriction 

Table 5.10: Identified novel regions of UTI (M2) bacterial isolates using Pan-seq analysis. Strain specific genes, related to the novel regions, were identified and their 

putative functions established. Possible varied phenotype related to the gene is also mentioned. 

UTI (M2) 

Gene Putative Function Linked Phenotype to identified gene 

Sequenced bacterial isolate (18) with respect to isolate (31) 

Toxin YafO (776bp) Protein synthesis inhibitor   

RepB family plasmid replication initiator protein (1042bp) Bacterial replication  

Acetyl-CoA acetyltransferase (1309bp) Fatty acid and lipid catabolism  

TEM family class A β -lactmase (1916bp) Antibiotic resistance Resistant to β -lactam  

Hypothetical protein (2269bp)   

Str A (3591bp) Antibiotic resistance Resistant to aminoglycoside  

Sequenced bacterial isolate (31) with respect to isolate (18) 

Flagellar protein (2347bp) Bacterial virulence (1) Binding /motility 

DNA recombinase (2468bp) DNA exchange  

6-phosphogluconate phosphatase (2846bp) Bacterial enzyme (Metal binding)  

Cobalt-zinc-cadmium resistance protein (3111bp) Metal resistance  

(1): (Partridge et al., 2015)
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Female patients UTI (F2), UTI (F3), UTI (F5), UTI (F6) and male patient UTI (M3) 

sequenced bacterial isolates were genetically diverse in term of existed gene contents. 

Sequenced isolates of each one of these samples contained different genetic fragments 

of more than 5kbp. Female sample UTI (F2) sequenced bacterial isolates differed in 

replication protein, plasmid protein and some enzymes. Sample UTI (F3) isolate (3) has 

mercury reductase and class D β-lactamase, while the other isolate (7) has a unique 

replication protein and conjugal transfer protein. The third female sample UTI (F5) 

isolate (19) has a large fragment of structural protein, while isolate (28) has UspE, which 

has been shown to play a role in phenotypic functions such as motility and adhesion and 

helps in bacterial survival (Nachin et al., 2005).  

In sample UTI (F6), isolate (2) has unique proteins related to conjugal transfer protein, 

tetracycline efflux transporter, metal binding protein and Ton B dependent siderophores. 

Isolate (5) in sample UTI (M3) contained a unique type VI secretion protein IcmF, Ton B 

dependent receptor, papB protein and Tn3 transposes which contained two plasmid 

proteins. These two samples show the largest level of genetic diversity in bacteria 

studied that belong to the same clone type. 

The genetic variation in isolates of samples UTI (M1) and UTI (M2) occurred at similar 

levels. In male sample UTI (M1), sequenced bacterial isolate (2) has a unique replication 

protein, while the other sequenced bacterial isolate (25) has a type-1 restriction enzyme 

Ecor1. In male sample UTI (M2), sequenced bacterial isolate (18) has TEM family class A 

β-lactam and StrA, while bacterial isolate (31) has a flagellar protein and cobalt-zinc-

cadmium resistance protein. 

Sequenced bacterial isolates of the same sequence type among highly diverse samples 

are varied in proteins related to plasmids, such as replication protein, conjugal transfer 
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protein, IS66, IS110, binding protein, recombinase proteins and IcIR. IS66 and IS110 are 

responsible for horizontal transmission and acquiring mobile genetic elements which are 

responsible for bacterial evolution (Han et al., 2001; Tobes and Pareja, 2006). Genetic 

variation between sequenced bacterial isolates from the same patient also include 

variation in proteins responsible for drug and metal resistance such mercury reductase, 

β-lactamase, metal ABC binding protein, tetracycline efflux system, TEM family and 

metal resistance protein. Also, several iron uptake systems are varied between bacterial 

isolates such as Ton B protein and iron permease. 

5.3.2 Whole-genome sequencing of low diverse resistance profile samples 

Whole-genome sequencing was applied on twenty samples of the low diverse resistance 

profile patterns. Colony-based sequencing was applied on two bacterial isolated from 

one low diverse sample and deep sequencing was applied on nineteen randomly 

selected samples. 

5.3.2.1 Quality metric assessment and MLST of the low diverse resistance profile 

samples 

The assembly quality metrics and MLST for the whole-genome sequencing of the low 

diverse resistance profile sample are shown in table 5.11. 
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Table 5.11 MLST and quality metrics assessment of colony-based and pooled genome sequencing of low 

diverse resistance profile samples. MLST sequence type was identified for each sequenced bacterial 

isolate and quality metric assessments were completed. The number of contigs, the total sequence length 

and number of contigs that cover half the reference genome (N50) were also determined, with the 

coverage of sequenced bacterial isolates calculated. 

Sample number MLST Number of contigs 
Total length 

(bp) 
N50 (bp) Coverage 

Colony-based sequencing 

UTI (F17) 
13 

ST10 
97 4772971 178642 32.74 

20 108 4779629 174317 32.69 

Deep sequencing 

UTI (F12) ST131 1571 6496694 225002 24.05 

UTI (F9) ST355 128 4906722 274347 31.84 

UTI (F7) ST404 127 5328251 245659 29.32 

UTI (F8) ST10 101 4837046 203697 32.30 

UTI (F11) ST58 111 4969202 123969 31.44 

UTI (F16) ST404 146 5341348 196359 29.25 

UTI (F13) ST73 73 5024121 395954 31.10 

UTI (F15) ST69 202 5283128 137122 29.58 

UTI (F19) ST131 142 5311854 227152 29.42 

UTI (M5) ST12 75 5020826 324524 31.12 

UTI (M4) ST12 72 4989540 272338 31.32 

UTI (M7) ST12 173 5309323 198138 29.43 

UTI (M10) ST12 106 5101415 197068 30.63 

UTI (M9) ST131 126 5265576 209516 29.67 

UTI (M6) ST131 75 4920096 201241 31.76 

UTI (M11) ST648 123 5270316 210219 29.65 

UTI (M12) ST73 71 5036192 395957 31.03 

UTI (M16) ST95 147 5333419 286696 29.30 

UTI (M8) ST80 118 5093302 316363 30.68 
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5.3.2.2 Colony-based sequencing of bacterial isolates of the low diverse resistance 

sample 

Isolates obtained from female sample UTI (F17) had identical sequence type. Pan-seq 

and BLASTx analysis was applied on the two sequenced bacterial isolates and revealed 

some variation in presence of hypothetical proteins and bacterial enzymes. Strain (13) 

has ribosomal protein, nuclease and iron permease while strain (20) has initiator 

replication protein, transposase and oxygenase as shown in table 5.12. 
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Table 5.12: Identified novel regions of UTI (F17) bacterial isolates using Pan-seq analysis. Strain specific genes, related to the novel regions, were identified and their 
putative functions established. 

UTI (F17) 

Gene Putative Function 

Sequenced bacterial isolate (13) with respect to isolate (20) 

Nuclease (713bp) DNA cleavage 

Iron ABC transporter permease (1142bp) Bacterial virulence 

30S ribosomal protein S12 methylthiotransferase RimO (1371bp) Ribosomal proteins transferase 

Hypothetical protein (1993bp)  

Sequenced bacterial isolate (20) with respect to isolate (13) 

Transposase family protein (549bp) Transposition (Mobile genetic element insertion) 

β -carotene 15,15 mono-oxygenase (782bp) Bacterial enzyme 

Transposase (1655bp) Transposition (Mobile genetic element insertion) 

YfcC family protein (1714bp) Amino acid antiporter 
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5.3.2.3 Deep sequencing of the low diverse resistance profile samples 

Deep sequencing was carried out on 19 samples of the low diverse resistance profile. A 

sweep of bacterial growth was taken and DNA extracted and sequenced to detect the 

existing SNPs within the bacterial population. To do this, raw reads were mapped 

against their de novo assembled genome using CSI phylogeny on the CGE website 

(https://cge.cbs.dtu.dk/services/CSIPhylogeny/) (version 1.4); (section 2.7.3, Chapter 2). 

SNPs were determined with base quality > 30 and minimum depth of 10. SNPs selected 

based on allele frequency calculated from DP4 statistics. DP4 provides information 

about the forward reference allele, reverse reference allele, forward non-reference 

allele and reverse non-reference allele reads coverage. Tables 5.13 display the number 

of mutation/s that found, whether these mutations are synonymous or non-

synonymous, and the gene function. Generated variant call format (VCF) files output has 

been displayed in Chapter 7. 
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Table 5.13 Detected SNPs within low diverse sequenced samples. The number of mutation found in each 

sample, whether these mutations are synonyms (S) or non-synonyms (NS), and their location.  

Sample number Number of mutations S/NS Function 

UTI (F12) 

2 NS 

Hypothetical protein 

Manganse transport membrane protein MntB 

3 S 

Coenzyme A biosynthesis bifunctional protein CoaBC 

Carboxylate amine ligase YbdK 

Small toxic polypeptide LdrD 

UTI (F9) 2 NS Hypothetical protein 

UTI (F7) 

7 NS 

Actin cross-linking toxin VgrG1 

Hypothetical protein (5) 

Putative autotransporter 

2 S 
Actin cross-linking toxin VgrG1 

Antigen 43 

UTI (F8) 9 NS 

Manganse transport membrane protein MntB (6) 

Transposase IS1200 like protein 

tRNA nuclease precursor 

Phage DNA packaging protein Nu1 

UTI (F11) 1 NS Fructose specific phosphotransferase enzyme lib component 

UTI (F16) 

6 NS 

Putative type II secretion system protein 

Putative autotransporter precursor 

Phage related baseplate assembly protein 

Hypothetical protein (2) 

Glutamate decarboxylase beta 

2 S 
Citrate lyase subunit beta  

Hypothetical protein 

UTI (F13) 3 NS 
Phage related baseplate assembly protein 

Adhesion YadA precursor 

UTI (F15) 

6 NS 

Putative transposase (2) 

Hypothetical protein (2) 

gpW 

Fibronectin type III protein 

3 S 

Exodeoxyribonuclease 

Phage terminase large subunit (GpA) 

Group II intron encoded protein LtrA 
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Sample number Number of mutations S/NS Function 

UTI (F19) 

5 NS 

Antirestriction protein K1cA (2) 

Putative autotransporter precursor 

Hypothetical protein 

IS1 transposase 

3 S 
Small toxic polypeptide LdrD (2) 

Transposase IS66 family protein  

UTI (M5) 
3 NS 

Hypothetical protein (2) 

DsdX permease 

1 S autotransporter precursorPutative  

UTI (M4) 4 Ns 

Electron transport complex protein RnfC (3) 

Primosomal protein N' 

UTI (M7) 

4 NS 
Hypothetical protein (2) 

Filamentous hemagglutinin (2) 

2 S 
Minor fimbrial protein PrsF precursor 

Hypothetical protein 

UTI (M10) 2 NS 
Integrase core domain protein 

D epimerase tagatose 3 

UTI (M9) 

6 NS 

Terminase like family protein (3) 

Hypothetical protein (2) 

Phage tail fibre repeat protein 

4 S 

Nicotinate phosphoribosyltransferase 

Small toxic polypeptide LdrD (2) 

S transposase 1 

UTI (M6) None 

UTI (M11) 

1 NS IS1 transposase  

3 S 
Hypothetical protein (2) 

Integrase core domain protein 

UTI (M12) 1 NS C1amp binding protein CrfC 

UTI (M16) 
6 NS 

IncFII repA protein family (2) 

Bifunctional protein 

Electron transport complex protein RnfC (3) 

1 S DNA primase TraC 

UTI (M8) 2 NS 
Integrase core domain protein 

Filamentous hemagglutinin 
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Deep sequencing revealed a limited number of mutations. The number of investigated 

non-synonymous mutations within each sample fewer than 10 mutations. All deep 

sequenced samples reveal microvariation which reflect low levels of within-host 

diversity. 
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5.3.3 Whole-genome sequencing of identical resistance profile samples 

Deep sequencing was carried out on the five samples showing identical resistance 

profile. A sweep of bacterial growth was harvested and DNA extracted and sequenced to 

detect the existing SNPs within the bacterial population.  

5.3.3.1 Quality metric assessment and MLST of the identical resistance profile samples 

The assembly quality metrics and MLST for the whole-genome sequencing of the 

identical resistance profile samples are shown in table 5.14. 
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Table 5.14 MLST and quality metrics assessment of whole genome sequencing of identical resistance 

profile samples. MLST sequence type was identified for each sequenced bacterial isolate and quality 

metric assessments were completed. The number of contigs, the total sequence length and number of 

contigs that cover half the reference genome (N50) were also determined, with the coverage of 

sequenced bacterial isolates calculated. 

Identical resistance profiles samples 

Sample number MLST Number of contigs 
Total length 

(bp) 
N50 (bp) Coverage 

UTI (F20) ST131 121 5142915 180644 30.38 

UTI (F21) ST69 139 5213889 175003 29.97 

UTI (M21) ST131 366 5634478 188745 27.73 

UTI (M19) ST131 143 5404293 202819 28.91 

UTI (M20) ST681 94 5168921 196585 30.23 
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5.3.3.2 Deep sequencing of the identical resistance profile samples 

Deep sequencing was carried out on the identical resistance profile samples to detect 

SNPs within population. Table 5.15 display the number of mutations found in generated 

VCF files, whether these mutations are synonymous or non-synonymous, and the gene 

function. Generated variant call format (VCF) files output including all SNPs are 

displayed in Chapter 7. 
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Table 5.15 Detected SNPs within identical resistance sequenced samples. The number of mutations in 

each sample, weather these mutations are synonymous (S) or non-synonymous (NS), and their location. 

Sample number Number of mutations S/NS Function 

UTI (F20) 1 NS Phage tail fibre repeat protein 

UTI (F21) 
2 NS 

gpW 

Peptidase S49 family 

1 S Phage terminase large subunit (GpA) 

UTI (M21) 

4 NS 

Hypothetical protein (3) 

Dihydrolipollysine acetyl transferase component 
residue pyruvate dehydrogenase complex 

2 S 
Small toxic polypeptide LdrD 

Ptative autotransporter precursor 

UTI (M19) 

4 NS 

Invasin 

Small toxic polypeptide LdrD 

Phage portal protein 

Integrase core domain protein 

2 S 
Small toxic polypeptide LdrD 

Integrase core domain protein 

UTI (M20) 2 NS 
Integrase core domain protein 

Hypothetical protein 
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Deep sequencing revealed a limited number of mutations. The number of investigated 

non-synonymous mutations within each sample was fewer than 10 mutations. All 

identical resistance profile samples reveal microvariation which reflects low levels of 

within-host diversity. 
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5.3.4 Summary table linking genotypic with phenotypic variation  

Phenotypic and genotypic diversity level can be assessed initially on the variation of 

antibiotic susceptibility. This is recognised in our highly diverse resistance profile 

samples. One patient showed that the phenotypic variation is linked with having a 

polyclonal diversity (two sequence types). The remaining seven samples proved to have 

a monoclonal diversity linked with further phenotypic and genetic variation. Linked 

phenotypic characteristics and genotype profile are shown in table 5.16.  

To assess the phenotypic and genotypic diversity level of each sample, in comparison to 

other bacterial isolates which share a susceptibility profile, scoring analysis was 

performed through chi-square analysis using Graphpad prism software. A chi-squared 

test was chosen and used in order to assess how likely the observations are assuming 

that the null hypothesis is true (Campbell, 2007). The diversity levels of four samples 

within the highly diverse group were predicted as a majority of the examined colonies 

shared a susceptibility pattern. There were three different resistance profiles noted 

within the UTI (F3) sample. The phenotypic and genotypic diversity level for two of the 

bacterial isolates were representative of two different profile patterns. Bacterial isolates 

(3) shared the resistance profile with 44 other bacterial colonies (91.67 %), assuming 

that those colonies comprise the same level of phenotypic and genotypic diversity. 

However, bacterial isolate (7) was the only susceptible isolate among examined well-

isolated colonies. UTI (F4) also has three different resistance profiles among the 

examined well-isolated colonies. The resistant isolate (2) shared a resistance profile with 

16 bacterial isolates (72.73 %), assuming that those bacterial isolates belong to ST 95. 

Comparatively, bacterial isolate (20) was the only susceptible isolate that was found 

amid well-isolated colonies within the sample. Further research could perform the same 
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experiment using a higher dose of the varied antibiotic in order to assess whether this 

has an effect upon the susceptibility to resistance. UTI (F6) showed five different 

resistance profile patterns. Resistant bacterial isolate (2) shared the resistance profile 

with 34 other bacterial isolates (85 %), again assuming that those well-isolated colonies 

have the same diversity level. The other bacterial isolate is the only sensitive isolate 

found within the sample. Furthermore, UTI (M1) had two different resistance profile 

patterns. The resistance isolate (5) shared a resistance profile with 38 bacterial isolates 

(95 %), again assuming an identical diversity level. Likewise, bacterial isolate (35) was 

the only susceptible isolate that was found within this population. Within all of these 

mentioned samples, phenotypic and genotypic diversity level can be, and was, predicted, 

as approximately 80 % of well-isolated colonies can be expected. 

The remaining four samples were not associated with a common resistance profile, a 

feature which could potentially be accompanied by a diverse phenotype and genotype 

within the population. A diversity level of 15 % was predicted with respect to sample UTI 

(F2), this was based on the presence of other bacterial isolates which share a resistance 

pattern with the examined bacterial colonies. Sample UTI (F5) resulted in a diversity 

level of 35.41 %, this was determined due to the shared resistance pattern amongst 

examined well-isolated colonies. Penultimate, a diversity level of 22.23 % was observed 

in sample UTI (M1) as there were 11 different resistance profile patterns noted within 

this sample. This was comparatively higher than the predicted diversity level of 8.33 % 

within the final sample, UTI (M2). This was concluded as 6 different resistance patterns 

were observed. Thus, these samples may have a diverse bacterial population.  
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Table 5.16 Summary tables of highly diverse resistance sample profiles and their diversity level. This table shows the phenotypic and genotypic variation of bacterial 

isolates within each high diverse resistance profile samples. 

Sample 

number 

Resistance profile Phenotypic diversity Genotypic diversity 

Diversity level 
Antibiotic 

Susceptibility 

result 
Motile ability Biofilm formation Association and invasion MLST Genetic content 

Highly diverse resistance profile samples 

UTI (F2) 

24 AP, GM, CPM R 

No Phenotypic Variation ST131 Varied plasmid type may affect resistance profile 

Monoclonal 

diversity 

30 AP R 

31 
GM, AP, CPD, 

CPM 
R 

UTI (F3) 
3 AP R 

None 
High 

None ST88 

Class D β-lactam 

Colanic acid exporter 

7 AP S Low - 

UTI (F4) 
2 AP R Motile High Highly adherent to T24 ST95 

Varied in all resistance, virulence genes and 

plasmid content Polyclonal diversity 

20 AP S Non motile Low Less adherent to T24 ST10 - 

UTI (F5) 
19 CAZ R 

No Phenotypic Variation ST131 
Structural protein may affect resistance profile 

Monoclonal 

diversity 

28 CAZ S - 

UTI (F6) 
2 GM R 

None 
Highly invasive to T24 

ST648 
Aminoglycoside resistance aadA5, aac(3)-IId 

40 GM S Less invasive to T24 - 

UTI (M3) 
5 GM and TM R 

None 
Highly invasive to T24 

ST131 

Aminoglycoside resistance aadA5, aac(3)-IId 

 Trimethoprim resistance dFrA17 

PapB 

35 GM and TM S Less invasive to T24 - 

UTI (M1) 
2 CIP R 

No Phenotypic Variation ST69 
Replication protein may affect resistance profile 

25 CIP S - 

UTI (M2) 
18 AP R 

No Phenotypic Variation ST12 
β-lactam resistance bla TEM 1B 

31 AP S - 
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Table 5.17 Scoring analysis for the examined bacterial isolate of each sample. This table shows scoring analysis and represented as a percentage of having phenotypic and 

genotypic diversity based on the examined bacterial isolate that shared other bacterial isolate shared the susceptibility profile.  

Sample 

number 

Number of different 

resistance profile/s 

found within sample  

Examined 

bacterial isolate 

within sample 

Resistance profile 

Varied 

antibiotic 

Susceptibility 

result 

Percentage of the 

examined bacterial 

isolate 

Percentage of other bacterial isolates having identical resistance 

profile/s pattern and may have the same phenotypic and genotypic 

variation level 

UTI (F2) 9  

24 AP, GM, CPM R 2.50 % - 

30 AP R 2.50 % 7.5 % 

31 
GM, AP, CPD, 

CPM 
R 2.50 % - 

UTI (F3) 3 
3 AP R 2.08 % 91.67 % 

7 AP S 2.08 % - 

UTI (F4) 3 
2 AP R 4.55 % 72.73 % 

20 AP S 4.55 % - 

UTI (F5) 9 
19 CAZ R 2.08 % - 

28 CAZ S 2.08 % 31.25 % 

UTI (F6) 5 
2 GM R 2.50 % 85.00 % 

40 GM S 2.50 % - 

UTI (M3) 2 
5 GM and TM R 2.50 % 95 % 

35 GM and TM S 2.50 % - 

UTI (M1) 11 
2 CIP R 2.78 % - 

25 CIP S 2.78 % 16.67 % 

UTI (M2) 6 
18 AP R 2.08 % 4.17 % 

31 AP S 2.08 % - 
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The other two groups of our samples (low and identical resistance profiles) proved to 

have no phenotypic variation with low level of genetic diversity as shown in table 5.18. 
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Table 5.18 Summary tables of low and identical resistance sample profiles and their diversity level. This table shows phenotypic and genotypic variation among low 

diverse and identical resistance profiles patterns. 

Low diverse resistance profile samples 

Sample number Resistance profile Phenotypic diversity Genotypic diversity Diversity level 

UTI (F12) 

Varied in antibiotic susceptibility either from sensitive or 

resistant to intermediate zone of inhibition 

Some of these samples are examined phenotypically 

and showed no variation 
Low SNPs number is detected 

Low diversity 

level  

UTI (F9) 

UTI (F7) 

UTI (F8) 

UTI (F11) 

UTI (F16) 

UTI (F13) 

UTI (F15) 

UTI (F19) 

UTI (M5) 

UTI (M4) 

UTI (M7) 

UTI (M10) 

UTI (M9) 

UTI (M6) 

UTI (M11) 

UTI (M12) 

UTI (M16) 

UTI (M8) 

Identical resistance profile samples 

UTI (F20) 

Identical resistance profile is detected by all examined well-

isolated colonies 
No Phenotypic variation is detected Low SNPs number is detected 

Low diversity 

level  

UTI (F21) 

UTI (M21) 

UTI (M19) 

UTI (M20) 
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5.4 Discussion 

Variation in resistance profiles and phenotypic characteristics within a single UPEC 

sample (Chapters 3 and 4) may also be related with further diversity of genetic content 

between bacterial isolates within the sample. Using genomic approaches facilitates 

detection of varied genetic content within groups of organisms. Acquired genetic 

elements or genome alterations have a role in pathogen evolution and in within-host 

adaptation (Dobrindt, 2005). In this chapter, within-host genetic diversity of UPEC was 

investigated using whole-genome sequencing technology. 

Whole-genome sequencing was performed on seventeen bacterial isolates from eight 

highly diverse resistance patient samples. Sequenced bacterial isolates from the same 

patient varied in genome size and genetic content. Differences in genome size between 

bacterial isolates of the same patient may reveal variation of flexible genome size that 

may be affected by acquisition or loss of genetic material (Dobrindt, 2005).  

Presence of polyclonal diversity was shown in one female sample UTI (F4) infected with 

two different sequence types of UPEC. This explains the variation in resistance profile 

and phenotypic assays described in chapters 3 and 4, and the difference in genome size, 

resistance genes, virulence genes and FimH adhesion type in this chapter. Having 

polyclonal diversity (multi sequence types) within a single patient could be due to 

infection with multiple clones of UPEC or having multiple transmissions over time, as 

shown in a B. dolosa evolution study by Lieberman et al. (2011) and also reported in 

mother infected with multiple clones of H. pylori (Kivi et al., 2007). Further, it was 

reported that mixed colonization within the host may result from two separate 

transmission events (Didelot et al., 2016).  
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Sequenced isolates from a female sample UTI (F6) and from a male sample UTI (M3) had 

a similar sequence type and are defined as having monoclonal diversity. Isolate (2) of 

sample UTI (F6) contained unique genetic content compared to the other isolate from 

this patient and most of the varied genetic content is related to gene acquisition 

(conjugal transfer and IcIR). In chapter 3, isolate (2) is resistant to aminoglycoside which 

be linked with presence of aminoglycoside 3'phosphotransferase APH(3') gene in this 

chapter. Further, isolate (2) characterised with high invasion ability to T24 cell line in 

chapter 4 and could be linked with presence of varied transposase genes and IcIR family 

transcriptional regulator which could be responsible for virulence. Furthermore, 

sequenced isolate (5) of sample UTI (M3) has varied gene regions that are related to 

antibiotic resistance and bacterial virulence. Presence of Aminoglycoside N(3') 

acetyltransferase, Aminoglycoside resistance aadA5, aac(3)-IId and Trimethoprim 

resistance dFrA17 genes explain resistance ability to GM and TM in chapter 3. In 

addition, presence of pap region in this strain may explain having high invasion ability to 

T24 cell line. Pap may associate with ascension of UTI to kidneys. Having the pap operon 

is important in ascending the UTI and is identified in 80 % of pyelonephritis patients 

(Kucheria et al., 2004). Such diversity could be explained by long-term infection 

persistence of a single clone and subsequent reinfection with new bacterial cells of the 

same clone.  

The other five samples of our highly diverse resistance profile exhibit monoclonal 

diversity due to having the same sequence type of UPEC. Those samples have smaller 

scale genetic differences between patient sequenced isolates. Horizontal gene transfer 

may provide the bacterial isolates with a specific trait and play role on pathogen host 

adaption and have a significant in bacterial evolution (Dobrindt, 2005; Brzuszkiewicz et 
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al., 2006; Didelot et al., 2016). These samples reveal within host monoclonal diversity 

and could be related to the long-term persistence of UPEC within the host. Sample UTI 

(F2) sequenced isolates differ in replication proteins. Sample UTI (F3), bacterial isolate (3) 

has class D β-lactamase OXA-1 which is responsible for the different antibiotic resistance 

reported in chapter 3. Also, colanic acid exporter gene is found as a novel region in this 

strain which may be linked with biofilm formation ability in chapter 4. Lastly, sample UTI 

(M2) isolate (18) has TEM family class A β -lactamase which is responsible for AP 

resistance in chapter 3. 

Generally, varied genetic content within the highly diverse resistance sample isolates is 

related to proteins thought to be associated with pathogenicity islands. According to 

Dobrindt (2005), the pathogenicity island of E. coli isolates is thought to carry virulence 

genes related to iron uptake and adhesion and to varied plasmid effects on drug 

resistance (Dobrindt, 2005). Variation in these types of genes has been confirmed in this 

research among our highly diverse resistance samples.  

During bacterial infection, pathogens can accumulate mutations that allow adaptation 

with the host, evading the immune system and resisting antibiotic treatment. Evolution 

at the gene level was assessed in Lieberman et al. (2011), who found a significant 

correlation between non-synonymous mutation and gene evolution after initial infection. 

That study revealed that non-synonymous mutation causes alteration in fluoroquinolone 

resistance and has a role in pathogenesis (Lieberman et al., 2011). In this research, deep 

sequencing of low diverse and identical resistance profile samples reveal a limited 

number of mutations and this indicates limited levels of within-host evolution. Zdziarski 

et al. (2010) determined a limited number of mutations from isolates of asymptomatic 

bacteriuria and that prolonged infection may alter genomic content to very limited 
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levels. These may occur as adaption mechanisms that are required for growth within the 

urinary tract (Zdziarski et al., 2010).  

Taking all considerations together, genomic diversity within a patient infected with UPEC 

has been demonstrated within our collected samples can be classified into two groups: 

samples that showed highly diverse genetic content (highly diverse) and samples with 

very limited genetic diversity. The highly diverse genetic samples are represented by the 

highly diverse resistance profile samples but examples of polyclonal infection are very 

rare. Instead phenotypic and genotypic diversity appears to be driven by differential 

presence of loci associated with either mobile genetic element and horizontal gene 

transfer (Brzuszkiewicz et al., 2006; Schubert et al., 2009). Polyclonal diversity was found 

in one female patient and monoclonal diversity was demonstrated in the remaining 

highly diverse samples. The other two groups of samples (low and identical) are 

characterised by a limited number of nucleotide substitution. 
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6.1 Discussion 

Species diversity within a single host has been recently evaluated among various 

organisms such as S. aurous, H. pylori, B. dolosa, M. tuberculosis and P. aeruginosa 

(Kivi et al., 2007; Cespedes et al., 2005; McAdam et al., 2011; Golubchik et al., 2013; 

Lieberman et al., 2014; O’Neill et al., 2015; Feliziani et al., 2014; Darch et al., 2015). 

Variation in resistance profiles and phenotypic characters, besides genetic content, 

were recognised within these species in a single patient. Within patients, diversity 

was also indicated among patient infected with ExPEC (Levert et al., 2010).  

A previous study by our research group established that multiple sequence types of 

ExPEC were isolated in a single patient with urosepsis when a comparison was 

performed between blood and urine isolates (McNally et al., 2013). As UPEC is the 

causative agent of UTIs, this PhD research has been conducted to evaluate the host 

diversity of a single patient infected with UPEC. The experimental work described 

here has been based on comparing apparently identical colonies of a single UPEC 

culture plate using sensitivity testing, various phenotypic assays and genome 

sequencing technology. 

First, 41 samples of patients with UPEC were collected from QMC, Nottingham, UK 

and classified, based on variation in resistance profile between examined well-

isolated colonies, into three groups: highly diverse resistance profile, low diverse 

resistance profile and identical resistance profile patterns. Afterwards, various 

phenotypic assays were applied on isolated strains from the highly diverse resistance 

profile pattern samples and five randomly selected colonies from each apparently 

identical resistance profile samples. Then, the genetic diversity was also assessed 

within patients of those three patterns using whole-genome sequencing technology. 
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Whole-genome sequencing was performed on bacterial isolates that have a varied 

resistance profile within samples of highly diverse resistance pattern patients, and 

deep sequencing was applied on 19 samples of the low diverse resistance profile and 

samples of identical resistance patterns. 

This research data can be classified into two groups in term of having within-sample 

diversity. Samples have a polyclonal or monoclonal diversity, which has clearly been 

seen in highly diverse resistance profile samples. The other group is recognised 

within the other two resistance profile patterns (low and identical) and characterised 

extremely low levels of genomic diversity within the infecting population.  

Heteroresistance was recognised in strains isolated from patients whose samples 

exhibited highly diverse resistance patterns, and this was the first sign of within-host 

diversity. Heteroresistance is also thought to be related with infection persistence 

(El-halfawy and Valvano, 2015). Phenotypic diversity was also evaluated via motility 

using semi solid agar plate, biofilm formation using crystal violet and association and 

invasion assays to T24 epithelial cell lines. This subsequently proved phenotypic 

diversity between identical colonies within a single patient of highly diverse 

resistance profile pattern. Variation in motility, biofilm formation and attachment 

and invasion abilities are mostly related with having an infection in the upper urinary 

tract or UTI persistence (Lane et al., 2005; Soto et al., 2007; Blango and Mulvey, 

2010). Thus, patients with heteroresistance and phenotypic variation may suffer 

from UTI ascension or long-term infection. Polyclonal diversity was proved in one 

female sample due to having two different E. coli sequence types. The remaining 

highly diverse resistance profile samples showed monoclonal diversity. Variation in 

genetic content within a single host is a sign of UPEC evolution and thought to be 
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related also to host adaption (Dobrindt, 2005; Brzuszkiewicz et al., 2006). The 

noticed diversity within these samples could be related to the long-term persistence 

of UPEC within the host.  

Low diversity and identical resistance profiles are the second group identified in this 

research. Although some change in resistance was recognised within the low diverse 

samples, phenotypic diversity was not recognised within this group. Similar 

phenotypic findings were seen in the identical resistance profile samples. Low-levels 

of genetic variation were determined in low diverse and identical resistance profile 

samples. Detected SNPs may have occurred due to UPEC adaption within the host. 

As illustrated by Lieberman et al. (2011), several mutations can accumulate within 

the pathogen during the infection with the aim of adapting to the host.  

Long-term UPEC infection within a patient may drive the obtained phenotypic and 

genotypic diversity. Recurrent infection may influence the patient’s status, and the 

persistent strain may acquire virulent traits that increase their ability to survive and 

persist within the host. In a cystic fibrosis patient infected with S. aureus, three 

sequential isolates and clonal genetic diversity were obtained related to variation 

resistance, growth and virulence (McAdam et al., 2011). Genetic diversity was also 

determined within four sequential isolates of H. pylori and thought to be related to a 

recombination event due to long term persistence in the host (Kennemann et al., 

2011). Feliziani et al. (2014) examined genetic diversity in relation with prolonged 

existence of P. aeruginosa. Two patients were included in the study, and it was 

revealed that multiple genetic recombinations and hypermutability is related to 

long-term infection (Feliziani et al., 2014). The long-term existence of a pathogen 

within the host is thought to be related with pathogen genotypic diversity as 
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illustrated in B. dolosa by Lieberman et al. (2014). Isolates of S. aureus from the 

same individual exhibited microevolution and exchanged mobile elements. This 

evolution is thought to be related with prolonged carriage and duration of infection 

(Golubchik et al., 2013). All mentioned studies linked long-term infection persistence 

with pathogen within host diversity. In this research, highly diverse samples are 

predicted to be isolated from patients with a long history of UTIs. Further, polyclonal 

diversity is recognised in female patients, which could be explained by the high 

prevalence of recurrent infections among female patients (Brumbaugh and Mobley, 

2012). Therefore, obtained genetic variations explain the variation in antibiotic 

resistance and phenotypic assays. As variation in genetic content can also determine 

the colonisation and pathogenicity levels resulting from having different UTIs 

(Vejborg et al., 2011), studying patients with a history of UTIs could add a further 

dimension when investigating UPEC diversity. Overall phenotypic and genotypic 

diversity is mostly seen in female patients. Our findings show that two-third of our 

highly diverse sample patterns came from female patient. Assuming that female 

samples are more susceptible to having a diverse bacterial population, having a 

larger sample size could prove this hypothesis.   

Determined heteroresistance, phenotypic and genotypic diversity, within a single 

patient, by comparing identical colonies within UPEC infected patients, raises 

concerns regarding the effectiveness of antibiotic treatment and infection 

management. Therefore, several considerations arise and this affects the choice of 

treatment and mode of microbial analysis and diagnosis. Willner et al. (2014) stated 

that single bacterial isolates of uncomplicated UTIs were representative and 

effective for patient treatment. Here, within host diversity indicates that single 
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colony selection is not representative for heterogenous bacterial population. This 

research has focused on patients with UTIs generally, with no respect to a specific 

clinical situation. Further, single colony selection may underestimate species 

diversity, and this was recognised in 16 sequenced isolates of E. coli faecal samples. 

Polyclonal diversity was recognised within patients with presence of multiple types 

of ESBL. Within clone diversity was also recognised (Stoesser et al., 2015). As UPEC 

are thought to originate in human intestines (Pitout, 2012a) and extensive within 

host diversity was shown in faecal E. coli samples (Stoesser et al., 2015), this could 

provide a mechanism for the variation we have observed. 

In conclusion, 19.5 % of collected UPEC samples display either highly dynamic within 

host polyclonal or monoclonal genetic diversity and this may be related with the 

long-term coexistence of UPEC within the patient’s urinary tract. However, it is 

unclear whether patients with polyclonal and monoclonal diversity are infected with 

a multi-strain of UPEC at single time point, or because of reinfection with a new 

strain, or a relapse with the same strain during the current infection. Persistence and 

recurrent infection may be significantly related to UPEC diversity within a single host. 

For patients who need treatment, it may be efficient to mix a few colonies together 

to give the most effective antimicrobial susceptibility result, as was done with P. 

aeruginosa in Darch et al.’s (2015) published study. Finally, our data is the most high-

resolution snapshot to date that proved to have phenotypic and genotypic diversity 

within a single patient and demonstrate homogenous bacterial community may 

reveal phenotypic and genotypic variations.  
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6.2 Future work 

The presented research evaluated the diversity level within a single patient. Based 

on our findings, knowledge of patient history might be a crucial determinant of the 

diversity level within a single patient. Our findings also determined the presence of 

varied proteins between bacterial isolates that belongs to a single patient. We 

hypothesized that replication protein, conjugal transfer protein, IS66, IS110, binding 

protein and recombinase proteins are responsible for the obtained phenotypic and 

genotypic variation and might be responsible for within-host diversity of a single 

patient. Therefore, it would be worthwhile in future work to evaluate the effect of 

these proteins on within-host diversity. Such a finding could provide a better 

understanding and sufficient knowledge of single host diversity. 
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Table 7.1 VCF files of deep mapping sequence samples (low and identical resistance profiles): this table displays position, altered amino acid, quality and mapping 

information: REF: the reference base, ALT: alternative base, Quality: quality score, DP: depth, AF1: allele frequency and DP4: number of forward reference allele; reverse 

reference allele; forward non reference allele and reverse non reference allele. Positions highlighted in red is the non-synonyms mutation, the yellowish positions are the 

synonyms mutation. 

UTI (F9) 

Position REF ALT Quality Information 

2566275  C T 125 DP 75 AF1 0.5 DP4 14 14 22 25 

4857708 Hypothetical protein T C 160 DP 109 AF1 0.5 DP4 13 26 36 33 

2566315  C T 225 DP 77 AF1 0.5 DP4 12 12 24 28 

47462  C T 135 DP 45 AF1 1 DP4 0 1 18 20 

182801  C G 186 DP 57 AF1 1 DP4 0 1 19 34 

261785  A G 140 DP 35 AF1 1 DP4 0 4 23 8 

416322  C A 164 DP 32 AF1 1 DP4 4 0 9 18 

426579  C A 131 DP 40 AF1 1 DP4 0 4 25 8 

433011  G T 181 DP 49 AF1 1 DP4 1 0 13 23 

586455  C G 222 DP 71 AF1 1 DP4 0 0 29 39 

653170  C A 144 DP 81 AF1 1 DP4 0 4 42 8 

724271  C T 161 DP 62 AF1 1 DP4 0 1 34 9 

1065711  G T 162 DP 57 AF1 1 DP4 2 0 16 30 

1191053  T G 209 DP 44 AF1 1 DP4 1 0 16 27 

1380217  C A 196 DP 50 AF1 1 DP4 6 0 23 21 

1586918  A T 222 DP 70 AF1 1 DP4 0 1 33 36 

1711518  T G 222 DP 45 AF1 1 DP4 1 0 19 23 

2033773  T C 141 DP 37 AF1 1 DP4 3 0 10 22 

2037751  G C 139 DP 37 AF1 1 DP4 0 5 25 6 

2058289  C G 222 DP 66 AF1 1 DP4 0 0 34 25 

2594640  C A 120 DP 45 AF1 1 DP4 0 4 21 13 

2698830  T C 222 DP 90 AF1 1 DP4 4 7 27 42 

2698914  C T 224 DP 98 AF1 1 DP4 15 8 35 39 

2698966  G A 222 DP 92 AF1 1 DP4 10 8 29 41 

2698977  C T 225 DP 88 AF1 1 DP4 8 7 25 37 
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2699766  T C 222 DP 72 AF1 1 DP4 6 4 24 33 

2699883  C T 222 DP 79 AF1 1 DP4 3 0 35 35 

2825903  C T 163 DP 68 AF1 1 DP4 1 3 35 23 

3076738  C A 172 DP 74 AF1 1 DP4 0 11 35 26 

3294541  C A 163 DP 58 AF1 1 DP4 0 1 33 24 

3308848  C A 134 DP 50 AF1 1 DP4 0 3 32 8 

3308870  C A 176 DP 55 AF1 1 DP4 0 1 37 6 

3499664  C A 220 DP 54 AF1 1 DP4 1 0 28 25 

3513464  G T 151 DP 55 AF1 1 DP4 0 1 31 21 

3553547  G T 134 DP 32 AF1 1 DP4 2 0 14 14 

3573038  C A 128 DP 66 AF1 1 DP4 0 0 34 8 

3970886  G T 125 DP 58 AF1 1 DP4 1 0 18 24 

3982836  G T 166 DP 42 AF1 1 DP4 1 0 7 21 

3982881  G T 148 DP 43 AF1 1 DP4 0 1 9 23 

4051247  C T 222 DP 37 AF1 1 DP4 1 0 13 19 

4078420  C A 123 DP 45 AF1 1 DP4 0 2 29 8 

4078431  G T 150 DP 43 AF1 1 DP4 0 5 25 11 

4078459  C T 169 DP 41 AF1 1 DP4 0 3 24 9 

4281615  T G 222 DP 72 AF1 1 DP4 0 0 31 39 

4375154  A C 146 DP 59 AF1 1 DP4 9 0 16 28 

4375171  G T 125 DP 58 AF1 1 DP4 7 0 11 30 

4558824  C A 125 DP 39 AF1 1 DP4 0 5 15 17 

4565452  T A 222 DP 62 AF1 1 DP4 0 0 33 22 

4748127  C G 154 DP 40 AF1 1 DP4 0 0 20 10 

UTI (M19) 

4599529  C T 225 DP 150 AF1 0.5 DP4 27 33 42 45 

5368396 Integrase core domain protein A T 225 DP 148 AF1 0.5 DP4 27 30 46 36 

5375822  T C 225 DP 160 AF1 0.5 DP4 28 38 41 50 

5368473 Integrase core domain protein A G 191 DP 150 AF1 0.5 DP4 23 33 44 40 

5368396 Integrase core domain protein G T 179 DP 143 AF1 0.5 DP4 26 29 47 33 

4599579  G T 164 DP 140 AF1 0.5 DP4 24 33 43 37 

4599233 Small toxic polypeptide LdrD G A 135 DP 154 AF1 0.5 DP4 29 17 54 51 
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2838182 . A G 123 DP 173 AF1 0.5 DP4 36 31 52 49 

4599716 Small toxic polypeptide LdrD G A 122 DP 120 AF1 0.5 DP4 12 15 47 44 

74769  A C 133 DP 42 AF1 1 DP4 4 0 8 18 

74879  G T 170 DP 57 AF1 1 DP4 0 0 27 21 

107510  C A 222 DP 58 AF1 1 DP4 0 1 12 33 

237470  C T 124 DP 59 AF1 1 DP4 5 1 10 35 

264901  A T 222 DP 55 AF1 1 DP4 1 0 14 40 

298201  C G 179 DP 100 AF1 1 DP4 1 0 45 49 

453441  G T 179 DP 49 AF1 1 DP4 5 0 14 27 

453477  G T 138 DP 58 AF1 1 DP4 9 0 17 32 

453496  G A 133 DP 61 AF1 1 DP4 0 0 12 31 

871038  G A 122 DP 54 AF1 1 DP4 0 0 7 35 

871049  G A 153 DP 52 AF1 1 DP4 0 0 11 34 

898945  G A 127 DP 51 AF1 1 DP4 1 0 5 34 

1460423  C A 144 DP 44 AF1 1 DP4 0 0 24 10 

1460448  C T 131 DP 46 AF1 1 DP4 0 2 28 10 

1460481  C A 155 DP 52 AF1 1 DP4 0 3 27 15 

1650551  G C 198 DP 100 AF1 1 DP4 0 1 57 33 

1946071  C A 158 DP 66 AF1 1 DP4 0 0 38 17 

2204233  T G 124 DP 69 AF1 1 DP4 1 0 25 38 

2570287  G T 148 DP 59 AF1 1 DP4 3 0 8 39 

2570330  T A 131 DP 57 AF1 1 DP4 7 0 14 33 

2570367  G A 204 DP 54 AF1 1 DP4 0 0 13 31 

2570383  G A 134 DP 56 AF1 1 DP4 0 0 16 30 

2717371  A G 222 DP 63 AF1 1 DP4 1 1 27 32 

2950155  G T 163 DP 53 AF1 1 DP4 1 0 10 31 

2953381  T C 157 DP 88 AF1 1 DP4 2 7 32 41 

2968290  T A 222 DP 67 AF1 1 DP4 1 0 26 34 

3052591  G T 222 DP 93 AF1 1 DP4 1 0 56 36 

3060191  A C 183 DP 106 AF1 1 DP4 0 1 42 60 

3191904  A G 128 DP 44 AF1 1 DP4 0 4 19 19 

3191938  C A 172 DP 46 AF1 1 DP4 0 1 20 15 
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3196168  C A 164 DP 60 AF1 1 DP4 0 1 32 19 

3196196  C A 171 DP 64 AF1 1 DP4 0 7 36 20 

3347998  G T 124 DP 41 AF1 1 DP4 2 0 8 14 

3393087  G T 145 DP 73 AF1 1 DP4 9 1 34 26 

3393180  A G 132 DP 77 AF1 1 DP4 7 1 33 32 

3686171  T A 222 DP 77 AF1 1 DP4 0 1 41 25 

3960927  C A 135 DP 86 AF1 1 DP4 0 8 44 18 

4572570  A T 222 DP 85 AF1 1 DP4 0 1 40 43 

4872136  C T 175 DP 53 AF1 1 DP4 5 0 21 24 

4872200  G T 120 DP 48 AF1 1 DP4 3 0 12 20 

4941485  C A 152 DP 67 AF1 1 DP4 0 0 37 7 

5021394  C G 222 DP 67 AF1 1 DP4 0 1 34 27 

5114795  C A 153 DP 47 AF1 1 DP4 0 2 25 12 

5348608  G T 131 DP 83 AF1 1 DP4 2 2 22 43 

5423389  T G 134 DP 24 AF1 1 DP4 1 1 9 11 

UTI (F7) 

5299267 Antigen 43 C A 122 DP 221 AF1 0.5 DP4 54 34 79 53 

5296801  C T 129 DP 284 AF1 0.5 DP4 48 37 111 72 

5322388 Actin cross-linking toxin VgrG1 T C 133 DP 308 AF1 0.5 DP4 50 31 133 79 

3636345 Actin cross-linking toxin VgrG1 A T 144 DP 340 AF1 0.5 DP4 53 70 89 127 

5299319  A T 160 DP 211 AF1 0.5 DP4 45 33 74 57 

5296988 Hypothetical protein A G 164 DP 304 AF1 0.5 DP4 50 48 106 94 

5296310  A G 188 DP 269 AF1 0.5 DP4 47 59 69 93 

53910 Hypothetical protein C T 225 DP 209 AF1 0.5 DP4 13 33 88 74 

3918536 Putative autotransporter G A 225 DP 98 AF1 0.5 DP4 12 17 36 32 

5281901 Hypothetical protein T C 225 DP 134 AF1 0.5 DP4 30 15 51 35 

5282012 Hypothetical protein A G 225 DP 179 AF1 0.5 DP4 39 23 67 47 

5295629 Hypothetical protein A G 225 DP 321 AF1 0.5 DP4 4 61 104 100 

5296451  T C 225 DP 83 AF1 0.5 DP4 9 15 22 37 

5296867  C T 225 DP 294 AF1 0.5 DP4 64 34 111 79 

3620060  G A 125 DP 87 AF1 1 DP4 2 0 18 42 

5169068  G T 126 DP 72 AF1 1 DP4 1 10 30 30 
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2947500  C T 137 DP 104 AF1 1 DP4 0 5 49 19 

4656086  C A 141 DP 92 AF1 1 DP4 0 4 49 10 

1160396  G T 142 DP 110 AF1 1 DP4 0 4 54 37 

3250416  C A 145 DP 112 AF1 1 DP4 1 9 50 30 

191240  C A 148 DP 70 AF1 1 DP4 0 9 35 22 

3475826  G T 165 DP 139 AF1 1 DP4 7 0 54 67 

190701  G T 177 DP 166 AF1 1 DP4 1 0 72 73 

2829970  T C 188 DP 89 AF1 1 DP4 0 0 33 55 

1407412  C A 209 DP 108 AF1 1 DP4 0 4 64 36 

470216  A T 222 DP 120 AF1 1 DP4 1 0 52 62 

641516  A C 222 DP 132 AF1 1 DP4 0 0 63 65 

1760388  C A 222 DP 196 AF1 1 DP4 1 1 72 102 

2260808  T C 222 DP 147 AF1 1 DP4 0 1 79 54 

2265808  G T 222 DP 67 AF1 1 DP4 1 0 22 36 

3473826  C T 222 DP 58 AF1 1 DP4 0 0 23 33 

3918941  T A 222 DP 99 AF1 1 DP4 0 0 35 54 

3918965  T G 222 DP 100 AF1 1 DP4 1 0 42 49 

UTI (M5) 

2226609  C A 148 DP 58 AF1 0.5 DP4 1 8 22 12 

4993266 Hypothetical protein C T 128 DP 329 AF1 0.5 DP4 66 58 88 101 

4946892  G A 139 DP 23 AF1 0.5 DP4 3 2 8 8 

831267  T G 157 DP 122 AF1 0.5 DP4 16 19 31 46 

831255  C T 161 DP 119 AF1 0.5 DP4 17 19 39 33 

4994873 DsdX permease G A 167 DP 275 AF1 0.5 DP4 51 65 70 79 

4999469  T C 177 DP 233 AF1 0.5 DP4 33 66 49 81 

4993368 Hypothetical protein G A 225 DP 301 AF1 0.5 DP4 54 70 76 91 

4999142  C T 225 DP 225 AF1 0.5 DP4 41 51 54 69 

317001  G A 222 DP 115 AF1 1 DP4 0 0 56 55 

1202383  C T 140 DP 67 AF1 1 DP4 0 6 47 10 

1365636  A G 222 DP 117 AF1 1 DP4 1 0 59 50 

3383983  T C 222 DP 90 AF1 1 DP4 0 0 59 17 

3564534  C T 186 DP 113 AF1 1 DP4 0 0 60 41 
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3700768  A G 157 DP 64 AF1 1 DP4 2 0 15 40 

3748176  C A 207 DP 124 AF1 1 DP4 0 6 72 34 

3769829  G T 160 DP 97 AF1 1 DP4 4 0 19 47 

3850354  G T 222 DP 206 AF1 1 DP4 0 1 99 94 

3879854  G T 222 DP 69 AF1 1 DP4 0 0 34 27 

3905954  A T 222 DP 107 AF1 1 DP4 1 0 46 60 

4761309  C A 222 DP 99 AF1 1 DP4 1 0 40 56 

UTI (F8) 

4799131 Manganese transport system membrane protein MntB T G 225 DP 86 AF1 0.5 DP4 15 15 32 24 

4799410 Manganese transport system membrane protein MntB T C 225 DP 110 AF1 0.5 DP4 21 17 32 34 

4808498 Transposase IS200 like protein G A 225 DP 45 AF1 0.5 DP4 2 11 9 23 

4816913  C T 225 DP 55 AF1 0.5 DP4 8 11 14 21 

4817783  T C 225 DP 98 AF1 0.5 DP4 18 20 28 32 

4811088 tRNA nuclease WapA precursor A G 223 DP 79 AF1 0.5 DP4 23 6 47 3 

4816574  C T 177 DP 49 AF1 0.5 DP4 10 4 20 14 

4816671 Phage DNA packaging protein Nu1 G A 170 DP 49 AF1 0.5 DP4 12 4 19 14 

4799230 Manganese transport system membrane protein MntB T C 166 DP 92 AF1 0.5 DP4 16 18 28 29 

4799254 Manganese transport system membrane protein MntB T C 163 DP 86 AF1 0.5 DP4 17 15 25 28 

4799857 Manganese transport system membrane protein MntB T C 161 DP 67 AF1 0.5 DP4 7 11 17 25 

4808461  T C 158 DP 43 AF1 0.5 DP4 3 10 10 20 

4816445  A G 152 DP 32 AF1 0.5 DP4 9 1 16 6 

4816868  T C 126 DP 57 AF1 0.5 DP4 9 11 18 19 

4799113 Manganese transport system membrane protein MntB T C 125 DP 88 AF1 0.5 DP4 16 15 33 23 

3252096  G T 122 DP 33 AF1 0.51 DP4 10 0 11 11 

17101  T G 148 DP 44 AF1 1 DP4 0 1 20 23 

48301  C T 162 DP 38 AF1 1 DP4 2 0 8 26 

115624  C A 152 DP 31 AF1 1 DP4 0 1 18 7 

127401  G T 154 DP 47 AF1 1 DP4 2 0 26 19 

170501  G C 202 DP 39 AF1 1 DP4 0 0 16 18 

181424  G A 146 DP 38 AF1 1 DP4 0 3 21 9 

233982  G T 129 DP 36 AF1 1 DP4 8 0 14 14 

334337  G T 122 DP 28 AF1 1 DP4 4 0 10 14 
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438442  C A 151 DP 35 AF1 1 DP4 0 4 21 9 

438452  C A 126 DP 35 AF1 1 DP4 0 4 21 10 

443017  C T 205 DP 55 AF1 1 DP4 1 1 26 25 

445636  G A 120 DP 31 AF1 1 DP4 4 0 8 13 

445769  G T 175 DP 43 AF1 1 DP4 0 0 9 25 

536405  C A 159 DP 34 AF1 1 DP4 0 2 15 13 

686073  G T 121 DP 50 AF1 1 DP4 1 0 11 27 

719542  A G 135 DP 38 AF1 1 DP4 0 2 21 9 

758679  G T 148 DP 46 AF1 1 DP4 9 0 17 19 

779117  T C 222 DP 38 AF1 1 DP4 1 0 24 13 

788861  C T 138 DP 26 AF1 1 DP4 0 0 3 13 

788897  G T 122 DP 27 AF1 1 DP4 2 0 6 15 

810821  G T 126 DP 45 AF1 1 DP4 1 0 5 24 

843462  A G 170 DP 39 AF1 1 DP4 0 1 20 17 

917032  G C 158 DP 23 AF1 1 DP4 0 2 13 7 

985462  A T 202 DP 35 AF1 1 DP4 0 1 16 17 

1059362  T G 194 DP 28 AF1 1 DP4 1 0 16 9 

1075756  T A 222 DP 37 AF1 1 DP4 1 0 15 10 

1392089  G T 126 DP 30 AF1 1 DP4 1 1 4 22 

1434534  G T 222 DP 52 AF1 1 DP4 0 1 19 30 

1555856  C A 167 DP 42 AF1 1 DP4 3 0 14 19 

1562441  G A 222 DP 22 AF1 1 DP4 0 1 15 6 

1563041  G A 200 DP 39 AF1 1 DP4 0 1 19 16 

1629004  C A 167 DP 41 AF1 1 DP4 0 1 26 5 

1638668  G T 133 DP 58 AF1 1 DP4 4 0 10 35 

1655719  G T 193 DP 50 AF1 1 DP4 0 0 20 13 

1841297  C A 157 DP 35 AF1 1 DP4 0 0 16 9 

1852536  A T 125 DP 27 AF1 1 DP4 1 0 3 21 

2001467  T A 222 DP 36 AF1 1 DP4 0 1 20 8 

2043696  T G 172 DP 43 AF1 1 DP4 1 0 15 26 

2062053  G T 169 DP 32 AF1 1 DP4 1 0 6 19 

2181725  G T 221 DP 38 AF1 1 DP4 3 0 14 19 
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2293668  C A 152 DP 33 AF1 1 DP4 0 3 15 12 

2400369  T G 150 DP 39 AF1 1 DP4 4 0 16 19 

2400380  G T 143 DP 36 AF1 1 DP4 3 0 11 18 

2400407  C G 131 DP 33 AF1 1 DP4 3 0 6 16 

2400611  C A 178 DP 36 AF1 1 DP4 1 0 12 16 

2401517  C T 120 DP 27 AF1 1 DP4 0 0 17 6 

2414184  G T 130 DP 25 AF1 1 DP4 0 3 18 4 

2501117  G T 222 DP 49 AF1 1 DP4 0 1 27 19 

2560715  G T 132 DP 27 AF1 1 DP4 4 0 11 11 

2560727  G T 140 DP 27 AF1 1 DP4 3 0 14 10 

2568691  C A 163 DP 29 AF1 1 DP4 0 0 12 10 

2617724  C A 120 DP 25 AF1 1 DP4 0 3 13 5 

2638669  C A 138 DP 33 AF1 1 DP4 5 0 10 17 

2638688  G T 146 DP 40 AF1 1 DP4 1 0 7 18 

2638715  G T 197 DP 46 AF1 1 DP4 2 0 17 19 

2706919  G T 135 DP 27 AF1 1 DP4 0 0 5 13 

2886762  G C 171 DP 30 AF1 1 DP4 0 0 9 15 

2986960  T G 134 DP 36 AF1 1 DP4 5 0 17 14 

3033473  C G 176 DP 47 AF1 1 DP4 1 0 16 26 

3037154  G T 144 DP 36 AF1 1 DP4 1 0 7 18 

3059511  C A 154 DP 48 AF1 1 DP4 0 0 25 12 

3059620  G T 173 DP 37 AF1 1 DP4 0 4 16 15 

3059646  C A 166 DP 38 AF1 1 DP4 0 1 16 14 

3317688  T A 181 DP 45 AF1 1 DP4 1 0 18 26 

3349929  G T 178 DP 48 AF1 1 DP4 0 2 22 20 

3361945  T G 165 DP 35 AF1 1 DP4 6 0 7 21 

3433943  G T 177 DP 52 AF1 1 DP4 5 0 18 25 

3575500  G T 157 DP 44 AF1 1 DP4 2 0 12 27 

3672504  C A 141 DP 43 AF1 1 DP4 1 0 24 16 

3681405  C A 125 DP 41 AF1 1 DP4 5 0 6 29 

3735104  C A 211 DP 52 AF1 1 DP4 1 0 27 23 

3817554  G T 122 DP 44 AF1 1 DP4 3 0 2 25 
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3866743  A T 127 DP 38 AF1 1 DP4 6 0 14 12 

3967433  T C 187 DP 51 AF1 1 DP4 0 0 25 17 

4016759  C A 129 DP 31 AF1 1 DP4 0 0 21 5 

4253602  C A 222 DP 41 AF1 1 DP4 0 0 20 17 

4254702  G T 148 DP 19 AF1 1 DP4 0 1 4 14 

4254786  C T 212 DP 22 AF1 1 DP4 1 2 5 13 

4300631  C T 127 DP 34 AF1 1 DP4 1 0 12 20 

4300841  A T 138 DP 32 AF1 1 DP4 2 0 8 19 

4323326  G T 164 DP 27 AF1 1 DP4 2 0 12 11 

4468927  C A 123 DP 39 AF1 1 DP4 0 4 12 19 

4468940  C A 191 DP 40 AF1 1 DP4 0 0 7 20 

4643744  G T 120 DP 41 AF1 1 DP4 0 4 22 6 

4666734  C A 148 DP 25 AF1 1 DP4 2 0 7 16 

UTI (F11) 

1767247 Fructose-specific phosphotransferase enzyme Iib component G A 141 DP 58 AF1 0.5 DP4 3 11 20 24 

4553709  C T 159 DP 91 AF1 0.5 DP4 19 16 13 41 

4712621  A G 201 DP 488 AF1 0.5 DP4 91 104 128 149 

4694980  C T 225 DP 86 AF1 0.5 DP4 13 16 28 29 

143754  C T 173 DP 49 AF1 1 DP4 0 5 28 16 

143764  G T 222 DP 50 AF1 1 DP4 0 2 28 19 

143774  C A 170 DP 52 AF1 1 DP4 0 0 30 9 

143790  C T 134 DP 52 AF1 1 DP4 0 5 30 10 

288520  G T 147 DP 36 AF1 1 DP4 1 0 4 25 

288538  G A 131 DP 36 AF1 1 DP4 2 0 5 24 

345851  C T 144 DP 40 AF1 1 DP4 5 0 4 30 

397355  C A 124 DP 48 AF1 1 DP4 0 2 29 11 

658269  G A 222 DP 50 AF1 1 DP4 0 1 23 25 

666962  C A 173 DP 42 AF1 1 DP4 0 2 23 8 

963101  C A 178 DP 62 AF1 1 DP4 7 0 22 33 

1088454  C A 191 DP 52 AF1 1 DP4 0 1 28 18 

1088487  C A 189 DP 53 AF1 1 DP4 0 1 28 13 

1207612  G T 150 DP 60 AF1 1 DP4 7 0 21 30 
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1371373  C T 175 DP 56 AF1 1 DP4 0 2 21 21 

1464847  C A 139 DP 60 AF1 1 DP4 0 2 32 10 

1530662  G T 155 DP 50 AF1 1 DP4 8 0 12 30 

1707315  G T 131 DP 70 AF1 1 DP4 1 0 32 27 

1813711  G T 178 DP 41 AF1 1 DP4 1 0 13 19 

1813723  G T 133 DP 42 AF1 1 DP4 7 0 13 19 

1893382  A T 222 DP 24 AF1 1 DP4 1 0 10 12 

2004351  G T 178 DP 58 AF1 1 DP4 0 0 30 26 

2030951  G C 167 DP 56 AF1 1 DP4 0 1 26 27 

2210852  G A 181 DP 62 AF1 1 DP4 0 1 39 20 

2499913  T C 222 DP 42 AF1 1 DP4 1 0 21 20 

2500902  G T 149 DP 35 AF1 1 DP4 4 0 9 21 

2543199  C T 149 DP 54 AF1 1 DP4 0 4 26 13 

2625178  G T 128 DP 51 AF1 1 DP4 1 0 7 33 

2680004  G T 204 DP 46 AF1 1 DP4 0 3 26 9 

2905781  G T 149 DP 82 AF1 1 DP4 0 0 35 45 

3025129  C A 161 DP 30 AF1 1 DP4 0 0 14 8 

3159881  C A 128 DP 66 AF1 1 DP4 0 5 30 24 

3298166  G T 125 DP 39 AF1 1 DP4 8 0 9 22 

3510537  C G 180 DP 60 AF1 1 DP4 0 1 31 25 

3515838  G T 149 DP 48 AF1 1 DP4 6 0 22 18 

3603027  G A 122 DP 68 AF1 1 DP4 0 10 29 26 

3614238  G T 163 DP 64 AF1 1 DP4 3 0 14 34 

3678716  G T 160 DP 41 AF1 1 DP4 3 1 16 14 

3713326  T A 222 DP 43 AF1 1 DP4 1 0 21 18 

3713515  C A 151 DP 41 AF1 1 DP4 0 3 7 17 

3713684  G T 151 DP 38 AF1 1 DP4 3 0 14 19 

3832019  G C 222 DP 54 AF1 1 DP4 0 1 27 18 

4293566  C A 147 DP 54 AF1 1 DP4 0 7 20 26 

4311350  G T 166 DP 41 AF1 1 DP4 1 0 4 26 

4353935  G T 156 DP 60 AF1 1 DP4 6 0 18 33 

4369326  G T 166 DP 58 AF1 1 DP4 9 0 20 28 
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4369341  T C 128 DP 58 AF1 1 DP4 7 0 23 25 

4369388  G T 184 DP 56 AF1 1 DP4 9 0 16 30 

4369417  G T 172 DP 66 AF1 1 DP4 8 0 21 30 

4369428  C T 179 DP 65 AF1 1 DP4 7 0 23 33 

4391683  T C 146 DP 54 AF1 1 DP4 0 8 29 16 

4401561  G T 152 DP 50 AF1 1 DP4 2 1 14 26 

4401629  G T 142 DP 44 AF1 1 DP4 5 0 15 22 

4401656  G T 143 DP 41 AF1 1 DP4 1 0 14 21 

4497607  C A 135 DP 65 AF1 1 DP4 0 4 33 18 

4499992  T G 222 DP 81 AF1 1 DP4 1 0 35 45 

4695535  C A 141 DP 28 AF1 1 DP4 0 0 18 7 

UTI (M4) 

375768 Electron transport complex protein RnfC G A 176 DP 82 AF1 0.5 DP4 11 15 27 22 

375756 Electron transport complex protein RnfC A C 156 DP 82 AF1 0.5 DP4 11 13 35 22 

375705 Electron transport complex protein RnfC C T 121 DP 82 AF1 0.5 DP4 5 10 37 28 

3908592 Primosomal protein N' C A 120 DP 50 AF1 0.5 DP4 0 5 7 15 

192701  C A 207 DP 52 AF1 1 DP4 0 1 25 24 

277501  T G 156 DP 49 AF1 1 DP4 0 1 25 20 

375301  C A 138 DP 37 AF1 1 DP4 2 0 21 13 

568634  T G 150 DP 27 AF1 1 DP4 0 0 12 6 

741298  C A 155 DP 64 AF1 1 DP4 0 7 40 15 

891356  A T 150 DP 54 AF1 1 DP4 2 0 17 26 

891369  G T 122 DP 56 AF1 1 DP4 9 0 13 31 

891451  G A 216 DP 59 AF1 1 DP4 0 0 20 32 

891716  C A 190 DP 54 AF1 1 DP4 0 6 30 17 

914150  C T 179 DP 43 AF1 1 DP4 0 1 21 19 

954350  T A 222 DP 53 AF1 1 DP4 0 1 25 27 

958752  G T 133 DP 52 AF1 1 DP4 3 0 7 28 

958823  G T 168 DP 51 AF1 1 DP4 0 0 18 26 

1016464  G T 145 DP 50 AF1 1 DP4 1 0 18 23 

1095150  A T 222 DP 58 AF1 1 DP4 0 0 22 33 

1112708  G A 159 DP 49 AF1 1 DP4 5 0 11 31 
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1112738  G T 151 DP 52 AF1 1 DP4 2 1 13 28 

1124279  G T 124 DP 42 AF1 1 DP4 2 0 6 20 

1220308  C A 148 DP 66 AF1 1 DP4 0 5 27 28 

1224066  C T 122 DP 41 AF1 1 DP4 0 0 16 12 

1224084  C T 138 DP 39 AF1 1 DP4 0 4 19 12 

1247881  C A 143 DP 64 AF1 1 DP4 1 7 42 13 

1321050  T G 222 DP 48 AF1 1 DP4 0 0 23 22 

1597326  G C 222 DP 51 AF1 1 DP4 0 0 31 15 

1597424  C A 192 DP 54 AF1 1 DP4 0 1 17 16 

1614626  T A 170 DP 56 AF1 1 DP4 1 0 28 25 

1769811  C A 154 DP 62 AF1 1 DP4 0 4 28 12 

1770473  G T 156 DP 60 AF1 1 DP4 0 8 33 17 

1957026  G A 222 DP 52 AF1 1 DP4 1 0 22 29 

2441175  G T 137 DP 54 AF1 1 DP4 1 0 11 25 

2542630  G A 156 DP 42 AF1 1 DP4 1 0 10 21 

2542739  A T 191 DP 43 AF1 1 DP4 5 0 18 16 

2542930  A T 123 DP 61 AF1 1 DP4 7 0 20 25 

2836690  G A 222 DP 46 AF1 1 DP4 0 2 31 13 

2841290  A G 222 DP 54 AF1 1 DP4 0 1 25 25 

3031643  G T 180 DP 55 AF1 1 DP4 2 0 19 22 

3076416  G T 130 DP 34 AF1 1 DP4 6 0 12 11 

3210570  C A 166 DP 36 AF1 1 DP4 1 2 13 17 

3210682  C A 133 DP 36 AF1 1 DP4 0 4 18 12 

3283634  G A 160 DP 72 AF1 1 DP4 0 5 37 20 

3292642  T C 142 DP 35 AF1 1 DP4 5 0 17 12 

3417542  T C 155 DP 39 AF1 1 DP4 0 7 22 8 

3549316  G T 131 DP 74 AF1 1 DP4 1 0 5 48 

3785750  C A 171 DP 74 AF1 1 DP4 0 1 31 22 

3799235  G T 174 DP 34 AF1 1 DP4 0 1 12 16 

3922136  C T 213 DP 68 AF1 1 DP4 0 1 39 28 

3996560  C T 121 DP 45 AF1 1 DP4 0 0 34 4 

4027213  C A 128 DP 63 AF1 1 DP4 0 4 31 11 
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4447096  C T 141 DP 49 AF1 1 DP4 6 0 8 33 

UTI (M7) 

5253754 Hypothetical protein A G 123 DP 130 AF1 0.5 DP4 9 22 39 58 

5280458  T C 142 DP 92 AF1 0.5 DP4 23 13 36 20 

5192453 Minor fimbrial protein PrsF precursor A G 151 DP 74 AF1 0.5 DP4 6 21 28 19 

5254581  T C 151 DP 96 AF1 0.5 DP4 2 28 6 60 

5237347 Hypothetical protein A G 158 DP 69 AF1 0.5 DP4 15 7 32 15 

5257122 Filamentous hemagglutinin T G 162 DP 100 AF1 0.5 DP4 18 22 27 33 

5254064  A C 164 DP 154 AF1 0.5 DP4 29 29 44 51 

5253461 Hypothetical protein T C 225 DP 115 AF1 0.5 DP4 19 10 55 29 

5254539  C T 225 DP 124 AF1 0.5 DP4 9 33 11 71 

5257161 Filamentous hemagglutinin G A 225 DP 98 AF1 0.5 DP4 17 20 23 34 

5280383  A G 225 DP 82 AF1 0.5 DP4 18 13 27 22 

116501  C T 194 DP 50 AF1 1 DP4 2 1 21 22 

116534  G T 144 DP 47 AF1 1 DP4 2 1 16 24 

127171  C A 126 DP 50 AF1 1 DP4 2 5 25 14 

130967  G T 120 DP 21 AF1 1 DP4 0 3 9 9 

150284  A T 222 DP 26 AF1 1 DP4 2 1 17 5 

252900  T C 222 DP 66 AF1 1 DP4 1 0 23 41 

432367  G T 167 DP 34 AF1 1 DP4 3 0 6 19 

432400  A C 222 DP 35 AF1 1 DP4 1 0 14 17 

586870  C T 168 DP 54 AF1 1 DP4 0 0 10 37 

613850  G T 143 DP 35 AF1 1 DP4 4 0 24 7 

700187  G T 122 DP 30 AF1 1 DP4 3 1 6 20 

901360  T C 134 DP 51 AF1 1 DP4 8 0 11 27 

901413  T C 135 DP 54 AF1 1 DP4 1 0 12 33 

968779  G T 128 DP 42 AF1 1 DP4 3 1 9 23 

978379  T C 190 DP 43 AF1 1 DP4 1 0 17 24 

1208749  G T 148 DP 48 AF1 1 DP4 1 0 15 24 

1249259  C A 132 DP 24 AF1 1 DP4 3 0 4 17 

1320685  A T 220 DP 48 AF1 1 DP4 0 1 24 21 

1356285  C A 222 DP 32 AF1 1 DP4 1 0 6 24 
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1363907  G T 199 DP 48 AF1 1 DP4 1 0 17 17 

1363920  G T 150 DP 47 AF1 1 DP4 2 0 27 16 

1594777  C T 222 DP 50 AF1 1 DP4 1 0 12 36 

1852082  C G 222 DP 64 AF1 1 DP4 1 0 37 23 

1852449  G C 145 DP 39 AF1 1 DP4 2 2 6 28 

2021443  C A 153 DP 60 AF1 1 DP4 0 5 29 11 

2057006  G T 152 DP 46 AF1 1 DP4 1 3 24 16 

2063318  C A 144 DP 41 AF1 1 DP4 0 1 23 7 

2063346  C A 138 DP 39 AF1 1 DP4 2 0 17 8 

2063970  G A 222 DP 39 AF1 1 DP4 0 2 16 21 

2091236  G T 207 DP 53 AF1 1 DP4 0 1 29 17 

2107170  C A 200 DP 34 AF1 1 DP4 1 0 21 12 

2160538  G C 141 DP 56 AF1 1 DP4 1 0 7 32 

2182788  C A 149 DP 44 AF1 1 DP4 0 5 24 12 

2304843  C T 132 DP 24 AF1 1 DP4 2 0 4 16 

2305178  C A 129 DP 48 AF1 1 DP4 4 0 28 11 

2305213  T G 178 DP 45 AF1 1 DP4 1 0 27 11 

2633384  G T 130 DP 29 AF1 1 DP4 3 0 10 12 

2918256  T C 126 DP 44 AF1 1 DP4 0 8 25 10 

3165659  A C 142 DP 18 AF1 1 DP4 0 1 12 5 

3184913  C A 203 DP 70 AF1 1 DP4 0 2 32 18 

3276659  G A 130 DP 23 AF1 1 DP4 0 1 14 8 

3377416  T C 198 DP 36 AF1 1 DP4 1 1 15 18 

3599555  G T 121 DP 35 AF1 1 DP4 6 0 9 14 

3655562  A G 222 DP 37 AF1 1 DP4 1 0 23 13 

3898922  G T 175 DP 45 AF1 1 DP4 1 0 9 25 

4067967  A C 130 DP 38 AF1 1 DP4 4 0 10 23 

4190262  C A 172 DP 43 AF1 1 DP4 0 2 19 16 

4219037  C T 222 DP 46 AF1 1 DP4 1 0 8 23 

4283494  G T 166 DP 53 AF1 1 DP4 0 0 24 21 

4458805  A C 222 DP 38 AF1 1 DP4 0 5 21 11 

4458845  A G 122 DP 41 AF1 1 DP4 0 6 23 11 
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4458877  C G 140 DP 49 AF1 1 DP4 0 2 29 7 

4469504  A T 137 DP 36 AF1 1 DP4 6 0 10 19 

4956296  C A 222 DP 36 AF1 1 DP4 1 1 15 19 

5179672  G T 124 DP 21 AF1 1 DP4 1 0 16 2 

5209653  C A 150 DP 67 AF1 1 DP4 0 1 36 13 

5233310  C T 184 DP 45 AF1 1 DP4 2 0 18 21 

UTI (M10) 

5013035  T G 225 DP 331 AF1 0.5 DP4 32 56 87 140 

5013003  T C 202 DP 343 AF1 0.5 DP4 64 76 80 118 

5012980  A G 177 DP 351 AF1 0.5 DP4 70 77 84 119 

5012938  C T 173 DP 380 AF1 0.5 DP4 70 79 92 121 

4259528 Integrase core domain protein G A 163 DP 147 AF1 0.5 DP4 19 36 44 46 

5094004  G A 162 DP 51 AF1 0.5 DP4 5 12 13 21 

5042126  A G 161 DP 50 AF1 0.5 DP4 5 7 21 16 

2644044  G A 155 DP 48 AF1 0.5 DP4 4 7 21 15 

3649523 D-tagatose 3-epimerase C A 120 DP 35 AF1 0.572 DP4 0 8 16 9 

83896  G T 137 DP 25 AF1 1 DP4 1 0 6 14 

91151  C A 132 DP 44 AF1 1 DP4 0 5 24 13 

104101  T G 129 DP 41 AF1 1 DP4 1 0 18 22 

152501  A G 190 DP 35 AF1 1 DP4 1 0 19 13 

251405  G T 126 DP 41 AF1 1 DP4 1 0 8 26 

311701  C T 181 DP 36 AF1 1 DP4 2 0 17 15 

349801  A C 128 DP 39 AF1 1 DP4 1 0 16 22 

392180  T G 155 DP 32 AF1 1 DP4 4 0 7 20 

430501  C A 222 DP 31 AF1 1 DP4 0 0 17 9 

430689  C A 135 DP 33 AF1 1 DP4 0 2 18 8 

441601  C A 159 DP 41 AF1 1 DP4 0 2 18 19 

484860  G T 156 DP 22 AF1 1 DP4 0 0 15 3 

510364  G T 162 DP 50 AF1 1 DP4 1 0 9 31 

707600  G T 131 DP 21 AF1 1 DP4 3 0 9 9 

757215  G T 150 DP 43 AF1 1 DP4 2 0 11 23 

775730  G T 181 DP 21 AF1 1 DP4 1 0 7 13 
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807009  G T 181 DP 38 AF1 1 DP4 0 0 20 13 

845630  G T 133 DP 39 AF1 1 DP4 4 0 9 24 

975784  C A 128 DP 49 AF1 1 DP4 0 4 18 9 

981425  C G 165 DP 46 AF1 1 DP4 0 0 17 23 

985225  G A 193 DP 42 AF1 1 DP4 0 0 23 18 

1008629  G T 124 DP 27 AF1 1 DP4 2 0 8 15 

1057825  C T 158 DP 34 AF1 1 DP4 2 0 14 15 

1057840  G T 176 DP 39 AF1 1 DP4 0 0 11 16 

1104025  A T 222 DP 51 AF1 1 DP4 1 0 14 35 

1107603  C A 142 DP 24 AF1 1 DP4 4 0 9 11 

1116745  C A 131 DP 32 AF1 1 DP4 0 2 18 6 

1125825  G A 150 DP 31 AF1 1 DP4 1 0 10 17 

1203874  C A 174 DP 52 AF1 1 DP4 1 4 26 17 

1228521  G T 145 DP 37 AF1 1 DP4 1 0 4 24 

1236747  C A 162 DP 26 AF1 1 DP4 2 0 10 10 

1236775  G T 179 DP 23 AF1 1 DP4 0 1 9 11 

1236793  C A 159 DP 25 AF1 1 DP4 1 0 9 12 

1237325  A G 204 DP 30 AF1 1 DP4 0 1 14 14 

1299733  T C 127 DP 48 AF1 1 DP4 5 0 14 26 

1315670  G A 222 DP 37 AF1 1 DP4 0 1 21 15 

1378071  A C 133 DP 39 AF1 1 DP4 8 0 12 17 

1406802  G T 161 DP 47 AF1 1 DP4 2 0 7 27 

1581870  G A 222 DP 24 AF1 1 DP4 0 1 13 7 

1641892  G A 131 DP 42 AF1 1 DP4 2 0 5 28 

1645484  G T 163 DP 28 AF1 1 DP4 3 0 6 14 

1645506  G T 130 DP 31 AF1 1 DP4 3 0 6 18 

1645610  G T 155 DP 27 AF1 1 DP4 0 0 8 15 

1657971  C A 182 DP 31 AF1 1 DP4 1 0 6 15 

1662896  T C 132 DP 33 AF1 1 DP4 4 0 9 20 

1662917  G A 163 DP 41 AF1 1 DP4 1 0 9 19 

1663277  G A 207 DP 38 AF1 1 DP4 0 0 19 10 

1697593  G T 142 DP 25 AF1 1 DP4 0 0 7 12 
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1813340  C A 134 DP 26 AF1 1 DP4 2 0 2 18 

1876742  T G 124 DP 38 AF1 1 DP4 5 0 6 24 

1894681  A G 188 DP 27 AF1 1 DP4 0 1 8 16 

1943681  C A 163 DP 32 AF1 1 DP4 1 0 16 11 

2158793  G T 171 DP 39 AF1 1 DP4 0 0 12 23 

2260293  G C 211 DP 37 AF1 1 DP4 0 0 23 12 

2281893  A G 213 DP 19 AF1 1 DP4 0 1 11 5 

2383260  A G 126 DP 35 AF1 1 DP4 0 4 14 15 

2383328  G T 134 DP 37 AF1 1 DP4 0 7 16 12 

2447067  A T 222 DP 41 AF1 1 DP4 0 0 20 17 

2483689  G T 160 DP 38 AF1 1 DP4 3 0 19 13 

2632004  C A 123 DP 32 AF1 1 DP4 0 0 21 5 

2636442  G T 134 DP 31 AF1 1 DP4 3 0 14 12 

2636511  G T 149 DP 29 AF1 1 DP4 2 1 13 11 

2638916  A G 191 DP 33 AF1 1 DP4 0 3 13 14 

2692572  G T 139 DP 35 AF1 1 DP4 6 0 4 23 

2762683  G A 201 DP 47 AF1 1 DP4 0 1 24 16 

2908313  C A 153 DP 44 AF1 1 DP4 0 1 22 9 

2914035  G T 120 DP 28 AF1 1 DP4 2 0 3 17 

2988528  A C 222 DP 28 AF1 1 DP4 0 1 16 11 

3082141  C A 146 DP 30 AF1 1 DP4 0 0 17 8 

3178238  T A 135 DP 41 AF1 1 DP4 5 0 19 17 

3220534  C A 158 DP 44 AF1 1 DP4 0 0 20 23 

3225840  C A 205 DP 44 AF1 1 DP4 0 0 26 8 

3225870  G A 222 DP 44 AF1 1 DP4 0 0 21 9 

3225902  T A 166 DP 44 AF1 1 DP4 0 4 16 20 

3235134  C A 216 DP 33 AF1 1 DP4 0 0 14 18 

3309970  T A 141 DP 57 AF1 1 DP4 8 0 16 27 

3309986  G A 160 DP 58 AF1 1 DP4 4 0 19 27 

3333690  C A 157 DP 44 AF1 1 DP4 0 5 25 11 

3438281  G T 161 DP 27 AF1 1 DP4 1 0 7 18 

3438876  C A 137 DP 29 AF1 1 DP4 0 2 13 7 
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3544802  T A 222 DP 31 AF1 1 DP4 1 0 8 21 

3544840  A T 222 DP 22 AF1 1 DP4 1 0 6 13 

3600789  T A 181 DP 35 AF1 1 DP4 4 0 11 19 

3689685  C A 138 DP 24 AF1 1 DP4 0 1 8 11 

3696089  G T 143 DP 29 AF1 1 DP4 4 0 9 14 

3719862  C A 124 DP 44 AF1 1 DP4 0 5 19 18 

3734397  C A 128 DP 31 AF1 1 DP4 0 5 13 10 

3759027  G T 161 DP 29 AF1 1 DP4 0 3 17 9 

3771505  T G 145 DP 39 AF1 1 DP4 0 3 21 13 

3787692  G A 222 DP 29 AF1 1 DP4 0 2 9 17 

3859255  G A 123 DP 27 AF1 1 DP4 0 0 11 11 

3959932  C A 180 DP 43 AF1 1 DP4 1 0 21 19 

3980094  G C 156 DP 39 AF1 1 DP4 1 2 12 16 

3980571  C A 190 DP 47 AF1 1 DP4 0 1 19 11 

4078451  A C 160 DP 69 AF1 1 DP4 0 6 32 27 

4120387  C A 122 DP 28 AF1 1 DP4 0 0 14 9 

4154019  C T 125 DP 40 AF1 1 DP4 0 0 28 4 

4154046  C A 132 DP 42 AF1 1 DP4 0 2 31 5 

4180646  C A 133 DP 38 AF1 1 DP4 0 2 17 13 

4180678  G A 222 DP 41 AF1 1 DP4 0 1 23 15 

4248693  A C 130 DP 22 AF1 1 DP4 1 1 15 3 

4288349  G T 144 DP 35 AF1 1 DP4 2 0 5 24 

4322812  C T 222 DP 45 AF1 1 DP4 2 0 19 19 

4323011  C T 154 DP 46 AF1 1 DP4 0 5 27 12 

4444836  G T 125 DP 60 AF1 1 DP4 3 0 9 32 

4511096  G A 141 DP 28 AF1 1 DP4 2 0 2 18 

4539485  A G 128 DP 48 AF1 1 DP4 0 6 26 16 

4696873  C A 139 DP 39 AF1 1 DP4 0 3 17 13 

4697862  C A 133 DP 36 AF1 1 DP4 0 6 19 11 

4718680  T A 222 DP 50 AF1 1 DP4 0 0 18 28 

4739328  C A 187 DP 43 AF1 1 DP4 0 1 16 15 

4745971  T C 126 DP 19 AF1 1 DP4 3 0 5 11 



Appendix 

 

 

181 

4956447  T A 157 DP 48 AF1 1 DP4 4 0 13 30 

4986109  G C 193 DP 40 AF1 1 DP4 0 2 17 16 

5042463  G A 222 DP 44 AF1 1 DP4 0 2 19 21 

5075111  C A 127 DP 49 AF1 1 DP4 0 2 7 29 

5084139  G T 147 DP 16 AF1 1 DP4 1 0 4 11 

UTI (F16) 

5319547  G C 123 DP 99 AF1 0.5 DP4 15 15 35 32 

2000311 Citrate lyase subunit beta C A 125 DP 34 AF1 0.6243 DP4 6 0 4 23 

1327153  T C 139 DP 27 AF1 0.501 DP4 6 0 5 13 

342709 Putative type II secretion system protein K G T 143 DP 38 AF1 0.508 DP4 8 0 14 11 

5307367  A G 145 DP 90 AF1 0.5 DP4 9 16 28 37 

5337913 Hypothetical protein T C 152 DP 40 AF1 0.5 DP4 4 6 14 16 

5322246  T G 153 DP 123 AF1 0.5 DP4 14 13 32 53 

5306775  T C 166 DP 109 AF1 0.5 DP4 22 13 36 35 

5306797  A G 166 DP 111 AF1 0.5 DP4 20 21 39 30 

5294582 Hypothetical protein A G 168 DP 113 AF1 0.5 DP4 20 18 33 39 

5306871  G A 174 DP 109 AF1 0.5 DP4 15 24 35 31 

5294106 Hypothetical protein G A 225 DP 112 AF1 0.5 DP4 16 22 40 31 

5294194  T C 225 DP 113 AF1 0.5 DP4 19 16 47 29 

5313754 Glutamate decarboxylase beta C T 225 DP 63 AF1 0.5 DP4 14 5 31 9 

5322064  T A 225 DP 119 AF1 0.5 DP4 16 8 67 22 

3336195 Phage-related baseplate assembly protein A G 225 DP 47 AF1 0.5 DP4 7 6 18 14 

3749157 Putative autotransporter precursor A G 225 DP 42 AF1 0.5 DP4 4 2 16 16 

59567  A T 222 DP 39 AF1 1 DP4 1 0 11 19 

60533  C T 222 DP 30 AF1 1 DP4 1 0 13 12 

60601  T A 198 DP 28 AF1 1 DP4 1 0 13 13 

73401  C A 219 DP 49 AF1 1 DP4 2 0 26 20 

139401  G T 216 DP 31 AF1 1 DP4 0 0 12 16 

189301  C T 201 DP 31 AF1 1 DP4 0 0 12 18 

462220  C A 143 DP 33 AF1 1 DP4 0 2 19 9 

528305  G T 135 DP 35 AF1 1 DP4 2 0 9 14 

546600  G T 139 DP 41 AF1 1 DP4 0 1 23 15 
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581322  G A 126 DP 38 AF1 1 DP4 1 0 9 21 

674270  G T 156 DP 43 AF1 1 DP4 0 0 8 27 

674300  T G 168 DP 42 AF1 1 DP4 2 0 14 26 

738752  C A 120 DP 29 AF1 1 DP4 0 1 20 4 

741196  G A 130 DP 23 AF1 1 DP4 2 1 11 8 

744351  G T 129 DP 34 AF1 1 DP4 1 0 14 13 

744381  G T 196 DP 33 AF1 1 DP4 4 0 13 15 

793248  G T 127 DP 25 AF1 1 DP4 3 0 13 6 

860802  C A 162 DP 47 AF1 1 DP4 0 0 28 15 

862432  G T 145 DP 51 AF1 1 DP4 1 0 14 26 

864861  C A 146 DP 43 AF1 1 DP4 0 4 25 10 

864902  C A 132 DP 42 AF1 1 DP4 0 1 26 9 

878247  T A 188 DP 21 AF1 1 DP4 1 1 10 8 

896815  C A 152 DP 27 AF1 1 DP4 0 0 15 8 

962502  T A 197 DP 31 AF1 1 DP4 0 0 15 14 

965517  C T 137 DP 38 AF1 1 DP4 2 0 7 14 

965547  C G 136 DP 36 AF1 1 DP4 4 0 11 16 

980347  G A 121 DP 26 AF1 1 DP4 0 2 16 6 

1069320  G T 169 DP 28 AF1 1 DP4 0 0 9 11 

1237550  C T 208 DP 25 AF1 1 DP4 1 0 13 11 

1335112  C A 120 DP 41 AF1 1 DP4 6 0 6 25 

1335164  G A 148 DP 47 AF1 1 DP4 4 0 10 28 

1335180  T G 125 DP 45 AF1 1 DP4 5 0 10 27 

1335671  G T 172 DP 45 AF1 1 DP4 1 0 21 17 

1397024  T C 165 DP 39 AF1 1 DP4 0 1 14 24 

1397045  C A 185 DP 37 AF1 1 DP4 0 1 16 14 

1475574  C A 154 DP 27 AF1 1 DP4 5 0 8 14 

1571924  C G 134 DP 20 AF1 1 DP4 0 0 6 13 

1572282  A T 134 DP 25 AF1 1 DP4 3 0 9 12 

1573470  C T 174 DP 33 AF1 1 DP4 1 0 7 18 

1703116  T A 132 DP 27 AF1 1 DP4 0 4 11 9 

1758224  C A 146 DP 25 AF1 1 DP4 0 1 10 9 
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1799369  G T 184 DP 38 AF1 1 DP4 0 0 13 20 

1809620  C A 171 DP 31 AF1 1 DP4 0 1 16 14 

1811616  A C 125 DP 32 AF1 1 DP4 0 6 16 9 

2057138  G A 207 DP 49 AF1 1 DP4 0 1 20 28 

2066438  G T 209 DP 31 AF1 1 DP4 1 0 15 15 

2097571  C A 171 DP 32 AF1 1 DP4 0 0 13 11 

2097597  C A 121 DP 35 AF1 1 DP4 0 1 15 4 

2189746  C A 182 DP 43 AF1 1 DP4 0 1 18 13 

2189786  C T 148 DP 51 AF1 1 DP4 0 6 24 18 

2189822  C A 121 DP 51 AF1 1 DP4 0 6 24 17 

2223724  G A 132 DP 18 AF1 1 DP4 0 2 12 4 

2236405  C T 222 DP 34 AF1 1 DP4 2 0 15 15 

2237224  A G 223 DP 17 AF1 1 DP4 0 1 6 8 

2354398  C G 127 DP 29 AF1 1 DP4 4 0 11 13 

2425459  G A 163 DP 30 AF1 1 DP4 0 0 7 18 

2444726  G T 222 DP 42 AF1 1 DP4 0 1 23 17 

2479804  G T 166 DP 36 AF1 1 DP4 0 0 13 19 

2540626  T A 189 DP 46 AF1 1 DP4 0 1 17 28 

2550855  G T 189 DP 32 AF1 1 DP4 0 0 10 18 

2672922  A T 133 DP 38 AF1 1 DP4 5 0 15 12 

2672973  G T 208 DP 32 AF1 1 DP4 0 0 9 13 

2802767  G T 157 DP 41 AF1 1 DP4 3 0 8 28 

2815961  C T 222 DP 39 AF1 1 DP4 2 0 14 17 

2816041  G T 203 DP 46 AF1 1 DP4 1 0 17 23 

2938650  G T 146 DP 48 AF1 1 DP4 3 0 20 18 

3045816  A T 139 DP 28 AF1 1 DP4 0 3 18 7 

3071946  C A 222 DP 44 AF1 1 DP4 0 0 17 19 

3072011  C A 137 DP 39 AF1 1 DP4 0 3 16 13 

3134983  C A 145 DP 28 AF1 1 DP4 0 0 13 7 

3135616  G A 174 DP 26 AF1 1 DP4 0 1 15 9 

3140485  G T 148 DP 39 AF1 1 DP4 1 0 12 17 

3140536  G T 203 DP 46 AF1 1 DP4 0 0 18 16 
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3140580  G T 174 DP 47 AF1 1 DP4 0 0 19 17 

3140590  G T 162 DP 43 AF1 1 DP4 2 0 20 14 

3140622  G A 162 DP 47 AF1 1 DP4 0 0 17 15 

3207901  G A 172 DP 28 AF1 1 DP4 0 3 15 8 

3207927  G A 146 DP 25 AF1 1 DP4 0 0 14 6 

3211599  A C 222 DP 29 AF1 1 DP4 0 1 8 18 

3214464  G T 125 DP 33 AF1 1 DP4 2 0 6 19 

3214655  G T 125 DP 37 AF1 1 DP4 1 0 5 22 

3221765  G T 162 DP 58 AF1 1 DP4 0 0 9 31 

3221835  C A 186 DP 48 AF1 1 DP4 2 0 7 29 

3259370  T A 132 DP 28 AF1 1 DP4 2 1 14 11 

3294999  C T 222 DP 25 AF1 1 DP4 1 0 9 15 

3336165  T G 141 DP 45 AF1 1 DP4 4 4 23 13 

3336525  C T 142 DP 15 AF1 1 DP4 0 0 2 12 

3352082  G T 222 DP 38 AF1 1 DP4 0 1 22 15 

3413710  C A 123 DP 28 AF1 1 DP4 0 1 17 5 

3414982  G C 164 DP 28 AF1 1 DP4 0 0 15 12 

3479283  G A 132 DP 23 AF1 1 DP4 1 0 12 10 

3488769  G T 128 DP 27 AF1 1 DP4 3 0 9 10 

3570583  T C 140 DP 33 AF1 1 DP4 1 0 13 19 

3748362  A G 222 DP 21 AF1 1 DP4 0 0 11 9 

3748416  A G 222 DP 20 AF1 1 DP4 0 1 10 9 

3748449  A G 222 DP 20 AF1 1 DP4 0 0 11 6 

3748626  G A 222 DP 42 AF1 1 DP4 1 5 17 19 

3748665  T G 222 DP 40 AF1 1 DP4 2 4 16 18 

3748707  A G 222 DP 40 AF1 1 DP4 1 4 16 14 

3748749  C A 147 DP 43 AF1 1 DP4 1 5 20 11 

3748926  A G 222 DP 52 AF1 1 DP4 4 1 28 15 

3756214  C T 131 DP 31 AF1 1 DP4 0 5 18 8 

3788980  C A 124 DP 26 AF1 1 DP4 0 4 13 9 

3821351  C T 222 DP 38 AF1 1 DP4 1 0 16 21 

3842391  C A 129 DP 29 AF1 1 DP4 0 4 17 7 
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3929823  G A 133 DP 28 AF1 1 DP4 0 0 8 13 

4043865  G A 126 DP 37 AF1 1 DP4 6 0 9 18 

4216645  T A 222 DP 26 AF1 1 DP4 0 1 17 6 

4251083  C A 133 DP 39 AF1 1 DP4 3 0 9 20 

4267192  C A 179 DP 47 AF1 1 DP4 0 0 18 23 

4298264  G T 131 DP 42 AF1 1 DP4 3 0 10 23 

4320362  G T 128 DP 34 AF1 1 DP4 2 0 5 21 

4330494  C A 222 DP 39 AF1 1 DP4 0 1 20 18 

4333367  C A 186 DP 25 AF1 1 DP4 0 0 4 17 

4406815  G T 167 DP 38 AF1 1 DP4 4 0 15 17 

4433119  G A 164 DP 33 AF1 1 DP4 0 1 15 12 

4566191  G T 167 DP 28 AF1 1 DP4 0 0 11 14 

4570591  G T 160 DP 30 AF1 1 DP4 3 0 13 11 

4671423  C A 167 DP 49 AF1 1 DP4 0 0 24 14 

4749357  G T 147 DP 38 AF1 1 DP4 0 3 21 9 

4752396  G T 179 DP 37 AF1 1 DP4 1 0 14 22 

4831670  G T 189 DP 28 AF1 1 DP4 0 1 12 15 

4875819  C A 164 DP 23 AF1 1 DP4 0 0 13 7 

4876029  C A 158 DP 27 AF1 1 DP4 0 0 7 18 

4876050  C A 179 DP 26 AF1 1 DP4 1 1 6 18 

4876136  G A 144 DP 18 AF1 1 DP4 0 1 0 15 

4961429  C A 168 DP 25 AF1 1 DP4 1 0 5 16 

4961509  G T 201 DP 21 AF1 1 DP4 0 0 6 11 

5041004  C A 222 DP 38 AF1 1 DP4 2 0 19 16 

5041772  C A 136 DP 33 AF1 1 DP4 0 2 18 9 

5049581  C A 158 DP 31 AF1 1 DP4 1 0 9 17 

5049950  G T 130 DP 33 AF1 1 DP4 3 0 12 14 

5061527  C T 159 DP 35 AF1 1 DP4 1 0 19 8 

5326531  G T 123 DP 22 AF1 1 DP4 0 1 8 10 

5332930  T C 222 DP 20 AF1 1 DP4 0 1 5 13 

5337431  T C 222 DP 20 AF1 1 DP4 2 1 7 10 

UTI (F13) 
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3171736 Phage-related baseplate assembly protein T C 147 DP 47 AF1 0.5 DP4 1 8 21 15 

3623009 Adhesion YadA precursor A G 225 DP 71 AF1 0.5 DP4 11 9 18 22 

5008430  G A 158 DP 76 AF1 0.5 DP4 17 12 25 21 

29601  C G 167 DP 48 AF1 1 DP4 1 1 22 22 

126863  C T 144 DP 42 AF1 1 DP4 0 0 7 26 

149809  C A 167 DP 55 AF1 1 DP4 0 5 24 17 

160900  G A 222 DP 40 AF1 1 DP4 0 1 15 24 

195800  T G 166 DP 33 AF1 1 DP4 1 0 12 20 

214200  C G 222 DP 56 AF1 1 DP4 0 0 26 23 

297768  G T 148 DP 40 AF1 1 DP4 7 0 20 13 

848147  C A 139 DP 23 AF1 1 DP4 0 1 6 12 

948184  C A 133 DP 55 AF1 1 DP4 0 10 28 17 

960542  A G 120 DP 34 AF1 1 DP4 5 0 10 16 

960567  G T 188 DP 33 AF1 1 DP4 0 0 9 15 

1271820  G A 179 DP 26 AF1 1 DP4 1 1 9 10 

1431443  G T 222 DP 53 AF1 1 DP4 0 1 27 11 

1471370  T G 212 DP 38 AF1 1 DP4 0 1 24 13 

1732570  C T 155 DP 67 AF1 1 DP4 1 0 36 29 

1795102  A T 128 DP 47 AF1 1 DP4 5 0 15 26 

1825787  G T 165 DP 36 AF1 1 DP4 2 0 10 20 

1938163  C A 121 DP 33 AF1 1 DP4 0 3 19 10 

1941012  C A 120 DP 31 AF1 1 DP4 0 1 17 5 

1990181  C A 122 DP 33 AF1 1 DP4 0 3 11 11 

1997012  C A 132 DP 39 AF1 1 DP4 1 1 8 24 

2014390  C T 222 DP 32 AF1 1 DP4 0 0 7 17 

2445898  A C 212 DP 37 AF1 1 DP4 0 1 16 17 

2460498  C A 211 DP 41 AF1 1 DP4 1 0 23 17 

2472255  G A 222 DP 30 AF1 1 DP4 0 0 13 12 

2753738  A C 140 DP 25 AF1 1 DP4 0 3 14 8 

2753748  G A 222 DP 25 AF1 1 DP4 0 0 15 5 

2791098  T A 210 DP 52 AF1 1 DP4 0 1 17 34 

2797582  A T 149 DP 24 AF1 1 DP4 1 2 13 8 
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2929452  A C 191 DP 34 AF1 1 DP4 1 1 20 11 

3247567  G T 129 DP 57 AF1 1 DP4 4 0 9 35 

3276191  T G 152 DP 31 AF1 1 DP4 0 1 22 4 

3440219  G T 177 DP 42 AF1 1 DP4 0 0 12 22 

3444629  G T 121 DP 42 AF1 1 DP4 0 0 3 25 

3483425  G T 130 DP 31 AF1 1 DP4 4 0 6 18 

3547577  G A 131 DP 38 AF1 1 DP4 0 1 14 16 

3623273  G A 200 DP 56 AF1 1 DP4 5 1 25 23 

3623309  G A 222 DP 53 AF1 1 DP4 1 0 21 23 

3634733  G C 150 DP 42 AF1 1 DP4 0 3 16 17 

3688112  G T 124 DP 46 AF1 1 DP4 0 6 31 8 

3688140  A C 125 DP 50 AF1 1 DP4 0 5 34 6 

3753796  C G 164 DP 31 AF1 1 DP4 1 0 6 15 

3770920  C A 170 DP 23 AF1 1 DP4 0 0 6 12 

3856396  A T 125 DP 47 AF1 1 DP4 0 5 20 18 

3897296  A T 160 DP 48 AF1 1 DP4 1 0 22 24 

4009147  G T 128 DP 37 AF1 1 DP4 5 0 8 21 

4097532  G T 173 DP 60 AF1 1 DP4 1 0 32 23 

4097948  C G 170 DP 37 AF1 1 DP4 0 4 17 12 

4176212  C A 143 DP 34 AF1 1 DP4 1 3 16 6 

4231057  C T 214 DP 38 AF1 1 DP4 1 0 17 20 

4303943  C A 140 DP 28 AF1 1 DP4 3 0 7 12 

4310431  C A 135 DP 36 AF1 1 DP4 0 4 15 9 

4472331  G T 147 DP 43 AF1 1 DP4 5 0 20 16 

4521001  T G 161 DP 28 AF1 1 DP4 0 3 11 14 

4521042  T C 148 DP 26 AF1 1 DP4 0 1 6 13 

4567815  C T 222 DP 27 AF1 1 DP4 1 0 16 10 

4662894  C A 140 DP 66 AF1 1 DP4 0 1 34 23 

UTI (M9) 

4829840  T G 225 DP 53 AF1 0.5 DP4 2 16 20 15 

5137026  A C 225 DP 233 AF1 0.5 DP4 49 22 117 40 

5202463 Terminase-like family protein T A 225 DP 129 AF1 0.5 DP4 20 30 39 35 
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5202520 Terminase-like family protein A G 225 DP 133 AF1 0.5 DP4 26 23 35 41 

5202547 Terminase-like family protein C T 225 DP 134 AF1 0.5 DP4 29 20 34 46 

5265729  T C 225 DP 54 AF1 0.5 DP4 13 5 26 10 

5265885  T C 225 DP 61 AF1 0.5 DP4 5 14 17 25 

5004916  A G 199 DP 66 AF1 0.5 DP4 9 7 15 19 

5254296  T C 187 DP 84 AF1 0.5 DP4 4 20 17 27 

5233107 Hypothetical protein C A 178 DP 115 AF1 0.5 DP4 20 23 28 43 

2266421 Small toxic polypeptide LdrD G A 173 DP 107 AF1 0.5 DP4 26 13 36 31 

2266904 Small toxic polypeptide LdrD G A 167 DP 85 AF1 0.5 DP4 12 14 34 25 

3723912  T C 167 DP 68 AF1 0.5 DP4 8 10 29 20 

5232987 Hypothetical protein T C 165 DP 110 AF1 0.5 DP4 26 17 39 26 

3723751  G A 164 DP 67 AF1 0.5 DP4 8 7 20 30 

3723899  C T 159 DP 71 AF1 0.5 DP4 10 10 29 21 

5279414 Phage tail fibre repeat protein C T 152 DP 55 AF1 0.5 DP4 16 4 11 24 

3723727  C T 147 DP 71 AF1 0.5 DP4 7 8 25 30 

5250759 Is1 transposase C T 145 DP 258 AF1 0.5 DP4 53 48 80 67 

4829822  G A 139 DP 58 AF1 0.5 DP4 3 18 18 18 

286865  G T 177 DP 45 AF1 1 DP4 6 0 17 22 

287501  G T 193 DP 46 AF1 1 DP4 0 2 20 23 

387844  C A 144 DP 36 AF1 1 DP4 0 4 14 17 

458111  T G 222 DP 90 AF1 1 DP4 0 1 25 44 

613572  C A 179 DP 44 AF1 1 DP4 3 0 19 20 

613626  G T 123 DP 40 AF1 1 DP4 1 0 10 23 

779772  A G 208 DP 62 AF1 1 DP4 1 1 30 28 

792472  C T 150 DP 56 AF1 1 DP4 0 1 30 23 

812766  G A 222 DP 70 AF1 1 DP4 0 1 48 20 

816993  A G 125 DP 28 AF1 1 DP4 0 1 7 13 

875917  T A 122 DP 48 AF1 1 DP4 0 5 34 7 

975729  C G 127 DP 40 AF1 1 DP4 0 3 29 3 

1079488  A T 133 DP 47 AF1 1 DP4 0 1 29 16 

1101798  G T 188 DP 48 AF1 1 DP4 1 0 8 26 

1101819  G T 156 DP 45 AF1 1 DP4 0 0 11 23 
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1107536  C A 127 DP 35 AF1 1 DP4 1 4 6 19 

1202989  C A 147 DP 37 AF1 1 DP4 1 1 20 7 

1369518  G A 122 DP 23 AF1 1 DP4 0 0 8 6 

1369544  C A 180 DP 27 AF1 1 DP4 0 0 14 8 

1384808  C A 124 DP 55 AF1 1 DP4 0 7 29 16 

1459031  A T 157 DP 38 AF1 1 DP4 1 0 15 22 

1542288  C A 128 DP 48 AF1 1 DP4 0 2 18 19 

1542310  C T 139 DP 48 AF1 1 DP4 0 3 24 15 

1731936  C A 121 DP 37 AF1 1 DP4 0 2 16 4 

1731949  C A 130 DP 40 AF1 1 DP4 0 2 19 7 

1831796  G T 175 DP 44 AF1 1 DP4 2 0 18 17 

1891118  C T 222 DP 48 AF1 1 DP4 1 0 22 25 

2007189  G A 139 DP 28 AF1 1 DP4 1 0 5 20 

2053015  A C 222 DP 55 AF1 1 DP4 0 2 19 34 

2134651  G T 149 DP 44 AF1 1 DP4 7 0 13 18 

2228893  G T 124 DP 31 AF1 1 DP4 4 0 6 19 

2228928  A T 129 DP 35 AF1 1 DP4 5 0 9 18 

2236253  T A 129 DP 38 AF1 1 DP4 8 0 14 13 

2271681  G A 193 DP 44 AF1 1 DP4 0 1 19 16 

2329392  C A 126 DP 59 AF1 1 DP4 0 2 25 18 

2356127  C A 135 DP 35 AF1 1 DP4 0 0 22 6 

2434005  A G 217 DP 61 AF1 1 DP4 0 1 25 33 

2463527  C T 158 DP 39 AF1 1 DP4 0 0 20 5 

2463560  G A 126 DP 40 AF1 1 DP4 0 2 16 4 

2475405  G C 222 DP 57 AF1 1 DP4 1 0 24 28 

2504405  C T 222 DP 44 AF1 1 DP4 2 0 17 24 

2595657  C A 165 DP 36 AF1 1 DP4 0 0 21 8 

2669779  A C 122 DP 43 AF1 1 DP4 0 7 24 12 

2723652  G A 222 DP 83 AF1 1 DP4 0 4 47 26 

2748998  C A 144 DP 49 AF1 1 DP4 0 6 23 19 

2770346  G T 136 DP 48 AF1 1 DP4 4 0 14 19 

2825032  G C 222 DP 46 AF1 1 DP4 0 1 20 24 
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3003084  C A 161 DP 70 AF1 1 DP4 0 0 37 26 

3039231  A C 131 DP 52 AF1 1 DP4 0 8 24 17 

3078191  A G 152 DP 40 AF1 1 DP4 6 0 6 27 

3188453  C T 149 DP 35 AF1 1 DP4 0 1 24 3 

3211733  G T 154 DP 38 AF1 1 DP4 2 0 11 21 

3211744  G A 196 DP 40 AF1 1 DP4 0 0 14 19 

3294744  C A 174 DP 53 AF1 1 DP4 1 0 19 31 

3321468  G A 175 DP 33 AF1 1 DP4 4 0 11 18 

3614249  T G 135 DP 49 AF1 1 DP4 2 0 8 30 

3810438  G T 142 DP 38 AF1 1 DP4 0 0 21 5 

3884238  A C 209 DP 54 AF1 1 DP4 0 1 36 17 

4190647  C T 222 DP 64 AF1 1 DP4 1 0 16 35 

4190663  G T 128 DP 62 AF1 1 DP4 3 0 11 33 

4190684  G T 152 DP 62 AF1 1 DP4 0 1 12 33 

4206647  C A 211 DP 50 AF1 1 DP4 1 0 23 26 

4211712  C A 163 DP 53 AF1 1 DP4 0 1 26 20 

4302704  A C 146 DP 51 AF1 1 DP4 3 0 8 23 

4302739  C A 222 DP 45 AF1 1 DP4 0 0 12 21 

4302814  G T 161 DP 53 AF1 1 DP4 1 0 14 28 

4370303  A C 179 DP 38 AF1 1 DP4 0 4 18 16 

4397112  G T 150 DP 35 AF1 1 DP4 2 0 9 17 

4429617  C A 133 DP 44 AF1 1 DP4 0 3 25 7 

4470685  T A 222 DP 49 AF1 1 DP4 0 3 21 20 

4576030  A T 193 DP 66 AF1 1 DP4 0 1 26 39 

4659608  G A 222 DP 41 AF1 1 DP4 0 2 22 9 

4659632  C A 124 DP 46 AF1 1 DP4 0 3 27 8 

4710806  C A 168 DP 56 AF1 1 DP4 0 4 28 16 

4756148  G T 130 DP 55 AF1 1 DP4 9 0 15 27 

4778886  T G 156 DP 44 AF1 1 DP4 1 0 19 24 

4996530  G T 140 DP 105 AF1 1 DP4 1 0 8 74 

5265408  C T 139 DP 58 AF1 1 DP4 0 0 14 14 

5265431  C A 136 DP 56 AF1 1 DP4 0 17 14 24 
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5265457  T A 152 DP 48 AF1 1 DP4 0 8 12 26 

UTI (M6) 

2124178  G T 128 DP 30 AF1 0.5016 DP4 0 7 16 7 

55781  G T 123 DP 42 AF1 1 DP4 3 0 7 22 

307920  G T 147 DP 44 AF1 1 DP4 5 0 11 26 

358482  C T 136 DP 44 AF1 1 DP4 0 0 24 3 

529095  C T 176 DP 34 AF1 1 DP4 0 0 14 10 

552871  C T 176 DP 34 AF1 1 DP4 5 0 11 17 

552902  G T 132 DP 30 AF1 1 DP4 1 0 4 16 

780451  G T 121 DP 23 AF1 1 DP4 2 1 7 11 

843789  C T 156 DP 48 AF1 1 DP4 0 4 24 14 

909423  G T 143 DP 30 AF1 1 DP4 0 2 17 10 

909494  G T 127 DP 30 AF1 1 DP4 0 4 15 7 

909529  C G 127 DP 29 AF1 1 DP4 0 2 13 6 

959143  G T 144 DP 35 AF1 1 DP4 3 0 7 16 

959253  G T 124 DP 32 AF1 1 DP4 2 1 7 16 

959323  G T 201 DP 30 AF1 1 DP4 0 0 9 19 

1109223  T G 166 DP 45 AF1 1 DP4 2 0 19 21 

1186770  G T 140 DP 26 AF1 1 DP4 0 3 11 10 

1190753  G T 138 DP 33 AF1 1 DP4 5 0 8 20 

1208837  G T 170 DP 48 AF1 1 DP4 6 0 18 24 

1209024  C A 155 DP 63 AF1 1 DP4 0 8 28 26 

1321029  G A 120 DP 23 AF1 1 DP4 0 3 17 3 

1392107  G T 144 DP 32 AF1 1 DP4 3 0 9 12 

1392127  G T 138 DP 35 AF1 1 DP4 5 0 9 17 

1668780  G T 137 DP 27 AF1 1 DP4 1 0 10 14 

1768559  C A 137 DP 37 AF1 1 DP4 0 4 21 9 

1843115  G A 169 DP 29 AF1 1 DP4 0 1 17 7 

1936581  G A 124 DP 22 AF1 1 DP4 0 0 11 7 

1980299  C A 121 DP 32 AF1 1 DP4 0 1 20 3 

2008000  G T 147 DP 49 AF1 1 DP4 7 0 16 26 

2152268  G T 128 DP 28 AF1 1 DP4 0 3 19 6 
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2216464  C G 120 DP 31 AF1 1 DP4 1 1 13 5 

2436474  A C 126 DP 21 AF1 1 DP4 0 2 11 7 

2484492  G A 192 DP 48 AF1 1 DP4 0 1 28 17 

2514978  C A 120 DP 63 AF1 1 DP4 0 8 34 19 

2585635  G T 141 DP 32 AF1 1 DP4 5 0 9 16 

2614727  G T 167 DP 35 AF1 1 DP4 0 0 16 11 

2634289  C T 222 DP 48 AF1 1 DP4 0 0 15 25 

2678433  G C 217 DP 52 AF1 1 DP4 0 1 24 26 

2721741  A T 178 DP 46 AF1 1 DP4 1 0 7 23 

2721852  G T 156 DP 34 AF1 1 DP4 3 0 9 21 

2854407  A C 142 DP 33 AF1 1 DP4 5 0 12 14 

2854476  G A 203 DP 37 AF1 1 DP4 0 0 12 14 

2929539  T G 131 DP 35 AF1 1 DP4 6 0 13 15 

2929593  G T 163 DP 26 AF1 1 DP4 0 0 9 13 

3018212  C A 206 DP 47 AF1 1 DP4 0 0 16 29 

3046012  C A 157 DP 32 AF1 1 DP4 0 2 15 13 

3046051  G A 222 DP 28 AF1 1 DP4 0 0 13 5 

3223185  T C 178 DP 39 AF1 1 DP4 0 0 23 16 

3249208  C A 212 DP 48 AF1 1 DP4 4 0 22 20 

3258735  C A 161 DP 23 AF1 1 DP4 0 0 7 9 

3258834  C A 155 DP 24 AF1 1 DP4 2 0 9 11 

3334449  G T 134 DP 39 AF1 1 DP4 10 0 12 17 

3395432  G T 133 DP 40 AF1 1 DP4 5 0 15 15 

3455042  G T 123 DP 34 AF1 1 DP4 1 0 4 21 

3459783  G A 173 DP 30 AF1 1 DP4 0 1 20 3 

3497165  G A 139 DP 29 AF1 1 DP4 2 0 5 17 

3505667  G T 164 DP 27 AF1 1 DP4 2 1 9 15 

3650538  A G 153 DP 38 AF1 1 DP4 0 3 24 8 

3911951  G T 139 DP 37 AF1 1 DP4 2 0 8 19 

4024126  C A 138 DP 48 AF1 1 DP4 1 0 21 23 

4152074  C T 197 DP 50 AF1 1 DP4 1 0 15 32 

4270553  A G 121 DP 39 AF1 1 DP4 0 7 24 8 
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4418886  G T 174 DP 37 AF1 1 DP4 1 0 12 21 

4419293  G T 125 DP 35 AF1 1 DP4 4 0 19 12 

4435494  C A 122 DP 42 AF1 1 DP4 0 2 22 8 

4557952  G T 136 DP 22 AF1 1 DP4 0 1 15 3 

4561740  G T 143 DP 30 AF1 1 DP4 3 0 11 10 

4663428  G C 147 DP 44 AF1 1 DP4 0 0 21 22 

4708516  C A 134 DP 37 AF1 1 DP4 0 0 22 10 

4736151  T C 171 DP 27 AF1 1 DP4 1 0 11 15 

4753666  G T 143 DP 28 AF1 1 DP4 1 0 16 4 

4753693  C A 175 DP 32 AF1 1 DP4 0 5 15 11 

4825763  T C 122 DP 28 AF1 1 DP4 2 1 14 9 

UTI (M11) 

3973036 Hypothetical protein A T 225 DP 144 AF1 0.5 DP4 21 14 51 56 

5217992  G A 225 DP 589 AF1 0.5 DP4 123 133 138 167 

5237315 Integrase core domain protein C A 225 DP 218 AF1 0.5 DP4 48 41 60 64 

5258646  G C 225 DP 138 AF1 0.5 DP4 31 24 47 32 

5277619  G T 225 DP 199 AF1 0.5 DP4 46 35 68 50 

5277696 Hypothetical protein G A 225 DP 214 AF1 0.5 DP4 29 43 68 72 

4634033 Is1 transposase C A 145 DP 150 AF1 0.5 DP4 17 31 39 58 

5244417  C A 132 DP 229 AF1 0.5 DP4 37 61 51 78 

210069  C G 125 DP 36 AF1 1 DP4 4 0 4 25 

392889  C T 157 DP 70 AF1 1 DP4 1 7 46 10 

498197  C A 166 DP 76 AF1 1 DP4 0 4 41 16 

749353  T C 222 DP 64 AF1 1 DP4 1 0 27 35 

958681  C A 156 DP 85 AF1 1 DP4 0 0 47 23 

958792  C A 136 DP 87 AF1 1 DP4 0 7 39 18 

1553651  C A 168 DP 53 AF1 1 DP4 0 7 31 14 

1654597  C A 147 DP 78 AF1 1 DP4 1 2 43 13 

1785108  C T 127 DP 86 AF1 1 DP4 0 1 35 49 

1896567  C T 136 DP 83 AF1 1 DP4 0 1 41 7 

1962825  C A 139 DP 90 AF1 1 DP4 0 6 41 20 

1974638  C A 161 DP 87 AF1 1 DP4 0 1 41 21 
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1986247  T G 157 DP 49 AF1 1 DP4 0 8 27 12 

2138042  C A 151 DP 75 AF1 1 DP4 0 9 39 20 

2313844  C T 222 DP 97 AF1 1 DP4 1 0 42 52 

2479926  C T 135 DP 56 AF1 1 DP4 0 1 37 6 

3319347  G A 143 DP 74 AF1 1 DP4 0 4 46 12 

3607209  G C 201 DP 91 AF1 1 DP4 0 1 47 37 

3726034  C A 132 DP 68 AF1 1 DP4 0 11 27 26 

3875488  T A 222 DP 33 AF1 1 DP4 0 0 7 24 

3929180  G T 180 DP 46 AF1 1 DP4 1 0 10 21 

4304387  G T 187 DP 59 AF1 1 DP4 0 1 37 17 

4304408  C T 222 DP 57 AF1 1 DP4 0 1 38 18 

4390262  A C 206 DP 55 AF1 1 DP4 0 1 28 25 

5159138  C A 169 DP 102 AF1 1 DP4 0 5 54 29 

UTI (F20) 

2783629  A C 142 DP 26 AF1 0.502 DP4 3 1 11 11 

4392589 Phage tail fibre repeat protein T A 145 DP 24 AF1 0.6243 DP4 2 1 12 8 

2783570  C T 146 DP 35 AF1 0.5 DP4 5 5 10 14 

2783583  T C 157 DP 34 AF1 0.5 DP4 5 4 10 15 

2783398  C T 159 DP 32 AF1 0.5 DP4 0 5 12 15 

2783422  G A 170 DP 31 AF1 0.5 DP4 2 6 11 11 

212101  A C 184 DP 19 AF1 1 DP4 0 1 9 9 

212801  A T 222 DP 15 AF1 1 DP4 1 0 6 7 

393082  C T 121 DP 17 AF1 1 DP4 0 0 7 7 

561459  A C 141 DP 21 AF1 1 DP4 0 3 7 11 

779189  C A 159 DP 23 AF1 1 DP4 1 0 4 13 

923153  C G 143 DP 21 AF1 1 DP4 0 2 12 5 

1376749  C T 222 DP 22 AF1 1 DP4 2 0 5 14 

1621327  A T 126 DP 26 AF1 1 DP4 0 0 10 11 

1736124  C A 121 DP 22 AF1 1 DP4 0 4 13 5 

1831968  C A 195 DP 20 AF1 1 DP4 0 1 9 10 

1931625  G T 140 DP 24 AF1 1 DP4 0 0 4 13 

1990015  G A 172 DP 21 AF1 1 DP4 0 1 9 7 
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2613458  C A 125 DP 21 AF1 1 DP4 0 1 11 6 

2989307  C A 151 DP 18 AF1 1 DP4 1 0 5 12 

3100700  C A 133 DP 19 AF1 1 DP4 2 0 7 8 

3396836  C T 132 DP 25 AF1 1 DP4 2 0 5 15 

3396863  T G 137 DP 22 AF1 1 DP4 3 0 7 11 

3447111  G T 206 DP 22 AF1 1 DP4 0 0 8 11 

3649843  G T 135 DP 22 AF1 1 DP4 0 0 7 11 

3857621  C T 195 DP 24 AF1 1 DP4 1 0 12 11 

3954814  T A 133 DP 19 AF1 1 DP4 0 1 11 6 

4138491  T C 150 DP 19 AF1 1 DP4 1 0 9 9 

4259943  G T 144 DP 26 AF1 1 DP4 1 0 7 7 

4274423  A G 196 DP 23 AF1 1 DP4 0 1 10 12 

4663744  G A 121 DP 13 AF1 1 DP4 0 1 9 3 

4670344  A G 222 DP 27 AF1 1 DP4 0 1 18 8 

4674188  G T 120 DP 26 AF1 1 DP4 0 3 18 5 

4674289  C A 124 DP 25 AF1 1 DP4 0 0 18 3 

4674444  T G 222 DP 20 AF1 1 DP4 1 0 4 15 

4691800  T C 142 DP 21 AF1 1 DP4 3 0 8 10 

4860162  C A 124 DP 22 AF1 1 DP4 0 1 11 7 

4887512  C A 151 DP 23 AF1 1 DP4 0 3 11 8 

4988187  C A 166 DP 19 AF1 1 DP4 0 0 10 5 

4988284  T A 144 DP 16 AF1 1 DP4 1 0 6 9 

UTI (M8) 

4978588  G T 225 DP 135 AF1 0.5 DP4 26 24 40 38 

4978628  A G 225 DP 123 AF1 0.5 DP4 29 13 37 34 

4973249 Filamentous hemagglutinin G A 176 DP 99 AF1 0.5 DP4 15 22 29 27 

4126341  T C 160 DP 68 AF1 0.5 DP4 14 10 21 22 

5052692 Integrase core domain protein A G 146 DP 109 AF1 0.5 DP4 18 23 37 24 

4126505  C T 131 DP 53 AF1 0.5 DP4 5 5 24 15 

37992  C A 172 DP 33 AF1 1 DP4 2 0 8 17 

38199  G T 131 DP 38 AF1 1 DP4 6 0 6 26 

100839  G A 131 DP 34 AF1 1 DP4 0 5 15 14 
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200736  G T 126 DP 29 AF1 1 DP4 1 0 4 16 

251179  T G 160 DP 38 AF1 1 DP4 1 0 8 22 

338901  C G 221 DP 28 AF1 1 DP4 1 0 2 23 

425565  G T 151 DP 24 AF1 1 DP4 0 2 18 1 

428201  C G 194 DP 44 AF1 1 DP4 1 0 18 19 

445673  C A 137 DP 47 AF1 1 DP4 0 1 30 7 

466454  G T 146 DP 24 AF1 1 DP4 1 0 9 6 

632301  G T 222 DP 44 AF1 1 DP4 0 1 23 18 

746646  C T 221 DP 28 AF1 1 DP4 0 0 13 14 

813146  C G 154 DP 27 AF1 1 DP4 1 0 14 11 

1107838  G T 131 DP 34 AF1 1 DP4 1 0 10 20 

1136246  T A 200 DP 32 AF1 1 DP4 1 0 14 10 

1169696  G T 202 DP 42 AF1 1 DP4 0 0 16 17 

1170610  C A 124 DP 40 AF1 1 DP4 0 5 20 13 

1362316  G T 222 DP 45 AF1 1 DP4 0 1 22 20 

1414265  A G 140 DP 47 AF1 1 DP4 8 0 15 23 

1548616  C A 165 DP 29 AF1 1 DP4 0 2 14 11 

1611438  G T 142 DP 41 AF1 1 DP4 2 0 12 17 

1768145  G T 222 DP 38 AF1 1 DP4 0 1 11 25 

1880620  G A 122 DP 49 AF1 1 DP4 1 1 8 29 

1880634  C A 149 DP 47 AF1 1 DP4 6 0 11 29 

1881996  C A 142 DP 49 AF1 1 DP4 7 0 21 21 

2025045  C A 133 DP 40 AF1 1 DP4 0 2 17 10 

2083120  A C 222 DP 27 AF1 1 DP4 0 1 12 12 

2132115  C T 222 DP 28 AF1 1 DP4 1 0 12 13 

2158246  A C 163 DP 29 AF1 1 DP4 0 0 6 19 

2160197  C T 127 DP 28 AF1 1 DP4 0 0 4 15 

2228625  C A 176 DP 44 AF1 1 DP4 0 3 24 14 

2325304  C A 127 DP 23 AF1 1 DP4 0 1 13 6 

2607822  C A 205 DP 34 AF1 1 DP4 0 2 20 9 

2651910  G T 140 DP 29 AF1 1 DP4 3 0 13 13 

2833461  C G 122 DP 37 AF1 1 DP4 3 0 16 9 
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2833510  C G 122 DP 46 AF1 1 DP4 0 0 3 23 

2833755  C A 129 DP 48 AF1 1 DP4 0 2 25 13 

3138908  G A 183 DP 39 AF1 1 DP4 1 0 16 21 

3331815  G T 138 DP 45 AF1 1 DP4 0 5 29 11 

3331848  C A 127 DP 53 AF1 1 DP4 0 5 30 8 

3506271  A G 209 DP 41 AF1 1 DP4 2 0 25 14 

3542071  A G 222 DP 75 AF1 1 DP4 1 0 28 43 

3593144  G T 146 DP 41 AF1 1 DP4 3 0 9 24 

3593188  G C 122 DP 26 AF1 1 DP4 1 1 11 11 

3593210  A C 126 DP 25 AF1 1 DP4 3 0 9 12 

3661117  C T 222 DP 60 AF1 1 DP4 1 0 25 33 

3748117  A T 211 DP 41 AF1 1 DP4 0 1 15 23 

3779900  C A 123 DP 43 AF1 1 DP4 4 0 15 18 

3779959  C G 168 DP 44 AF1 1 DP4 2 0 13 18 

3780759  A T 209 DP 44 AF1 1 DP4 0 1 26 17 

3844124  C T 177 DP 25 AF1 1 DP4 0 0 5 16 

3848345  A T 203 DP 24 AF1 1 DP4 5 0 7 12 

3888111  C T 123 DP 36 AF1 1 DP4 0 1 20 11 

3888140  C A 124 DP 32 AF1 1 DP4 0 2 20 6 

3888155  C T 140 DP 33 AF1 1 DP4 0 3 20 8 

3958832  G T 133 DP 35 AF1 1 DP4 1 0 4 25 

4126591  C T 128 DP 56 AF1 1 DP4 1 5 24 20 

4126645  C A 158 DP 61 AF1 1 DP4 1 1 34 8 

4203376  C A 158 DP 37 AF1 1 DP4 0 1 21 8 

4204712  A T 222 DP 65 AF1 1 DP4 2 0 26 33 

4281146  G T 150 DP 31 AF1 1 DP4 2 0 7 15 

4356784  G T 138 DP 39 AF1 1 DP4 4 0 10 20 

4414750  A C 131 DP 36 AF1 1 DP4 0 5 21 10 

4539349  G T 145 DP 34 AF1 1 DP4 5 0 10 18 

4556519  T C 129 DP 33 AF1 1 DP4 8 0 8 16 

4599104  G A 222 DP 33 AF1 1 DP4 0 2 14 13 

4756399  C A 164 DP 35 AF1 1 DP4 1 0 16 16 
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4756899  C T 222 DP 36 AF1 1 DP4 1 0 12 23 

4764199  C A 154 DP 38 AF1 1 DP4 1 0 22 15 

UTI (F21) 

1556195  G A 143 DP 49 AF1 0.8294 DP4 1 3 18 20 

1555946  G A 133 DP 40 AF1 0.504 DP4 0 5 11 21 

222  A G 197 DP 51 AF1 0.5 DP4 3 7 26 15 

424173  T A 225 DP 210 AF1 0.5 DP4 45 34 84 41 

1556088  C A 166 DP 60 AF1 0.5 DP4 8 7 15 23 

4825834  G A 225 DP 35 AF1 0.5 DP4 5 5 20 5 

5122322  A G 225 DP 339 AF1 0.5 DP4 61 48 105 119 

5134146  A C 122 DP 142 AF1 0.5 DP4 29 15 56 32 

5134281  T C 146 DP 141 AF1 0.5 DP4 27 17 47 47 

5134827  G A 176 DP 109 AF1 0.5 DP4 18 22 35 31 

5135301  A G 168 DP 108 AF1 0.5 DP4 14 14 34 33 

5136859  T C 225 DP 153 AF1 0.5 DP4 32 24 44 48 

5135859 gpW A C 225 DP 120 AF1 0.5 DP4 23 25 35 35 

5198830 Peptidase family S49 A G 155 DP 106 AF1 0.5 DP4 15 16 43 31 

5135240 Phage terminase large subunit (GpA) T C 172 DP 110 AF1 0.5 DP4 22 18 32 36 

259848  C A 131 DP 41 AF1 1 DP4 1 1 26 7 

516446  G C 210 DP 50 AF1 1 DP4 1 0 22 27 

788973  G C 126 DP 37 AF1 1 DP4 4 0 4 24 

988085  C T 136 DP 34 AF1 1 DP4 0 0 22 2 

988101  T A 120 DP 40 AF1 1 DP4 0 7 21 9 

988151  G T 222 DP 40 AF1 1 DP4 0 3 18 11 

992612  G T 139 DP 37 AF1 1 DP4 4 0 8 18 

1083191  G T 170 DP 52 AF1 1 DP4 3 0 16 22 

1083377  G T 151 DP 46 AF1 1 DP4 3 0 17 21 

1083400  G T 158 DP 48 AF1 1 DP4 1 0 17 23 

1083623  G A 222 DP 38 AF1 1 DP4 0 1 14 15 

1400608  C A 144 DP 44 AF1 1 DP4 0 6 25 11 

1453483  C A 137 DP 37 AF1 1 DP4 1 0 14 12 

1458548  A T 148 DP 70 AF1 1 DP4 0 0 35 33 
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1786317  G T 222 DP 43 AF1 1 DP4 0 1 27 11 

1844717  T A 216 DP 27 AF1 1 DP4 1 0 13 13 

1908978  C A 135 DP 29 AF1 1 DP4 0 4 17 6 

1942109  C A 121 DP 31 AF1 1 DP4 0 6 18 6 

1958785  T A 222 DP 42 AF1 1 DP4 0 0 9 32 

1963613  T G 159 DP 48 AF1 1 DP4 0 5 31 10 

2002484  C T 172 DP 50 AF1 1 DP4 1 0 27 22 

2035284  C A 166 DP 37 AF1 1 DP4 0 5 19 10 

2092198  G A 165 DP 32 AF1 1 DP4 1 0 13 16 

2343592  C T 162 DP 38 AF1 1 DP4 0 1 19 9 

2380624  C A 180 DP 43 AF1 1 DP4 0 1 18 24 

2515283  G C 179 DP 39 AF1 1 DP4 3 1 14 20 

2624310  G T 139 DP 37 AF1 1 DP4 1 0 9 22 

2641953  G T 136 DP 29 AF1 1 DP4 2 0 7 16 

2641964  G T 128 DP 29 AF1 1 DP4 4 0 8 16 

2969698  G T 149 DP 43 AF1 1 DP4 0 0 31 3 

3009452  C A 139 DP 35 AF1 1 DP4 0 3 10 9 

3123162  C G 210 DP 43 AF1 1 DP4 1 0 12 27 

3136465  G T 122 DP 54 AF1 1 DP4 2 0 8 18 

3177365  G T 157 DP 31 AF1 1 DP4 2 3 15 11 

3189987  G T 151 DP 39 AF1 1 DP4 0 1 26 4 

3267198  C A 150 DP 41 AF1 1 DP4 0 8 18 14 

3270345  A T 124 DP 46 AF1 1 DP4 8 0 9 26 

3318053  C A 175 DP 63 AF1 1 DP4 0 1 29 18 

3333954  A C 155 DP 42 AF1 1 DP4 0 2 28 5 

3493271  C A 136 DP 35 AF1 1 DP4 0 6 16 12 

3497829  G T 128 DP 29 AF1 1 DP4 0 5 13 11 

3568183  G T 123 DP 33 AF1 1 DP4 5 0 13 11 

3652959  C T 120 DP 42 AF1 1 DP4 0 3 29 4 

3719608  C A 144 DP 25 AF1 1 DP4 3 0 4 18 

3719635  C G 125 DP 24 AF1 1 DP4 3 0 6 15 

3719778  A C 182 DP 25 AF1 1 DP4 0 1 15 8 
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3977567  T G 196 DP 51 AF1 1 DP4 0 1 19 28 

4121066  T G 152 DP 30 AF1 1 DP4 5 0 7 18 

4121581  C G 217 DP 61 AF1 1 DP4 0 0 37 21 

4129037  T A 222 DP 57 AF1 1 DP4 0 1 27 25 

4129048  C A 140 DP 57 AF1 1 DP4 0 2 31 14 

4299171  C A 144 DP 25 AF1 1 DP4 0 1 19 5 

4339461  G A 127 DP 45 AF1 1 DP4 0 1 24 20 

4778111  G T 143 DP 55 AF1 1 DP4 7 0 14 34 

4778255  G T 134 DP 59 AF1 1 DP4 5 0 24 26 

4940652  C T 133 DP 45 AF1 1 DP4 1 0 7 26 

UTI (M21) 

895266 Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex G T 225 DP 27 AF1 0.53 DP4 1 4 7 11 

2675063 Hypothetical protein A G 225 DP 43 AF1 0.5 DP4 3 2 20 18 

2873142 Putative autotransporter precursor C T 225 DP 109 AF1 0.5 DP4 15 26 30 32 

5462324  C T 225 DP 92 AF1 0.5 DP4 12 18 27 34 

5588730 Hypothetical protein A G 176 DP 116 AF1 0.5 DP4 26 7 36 21 

2981086  G A 169 DP 73 AF1 0.5 DP4 12 5 22 31 

5421648  T C 165 DP 110 AF1 0.5 DP4 18 25 29 37 

5454617 Hypothetical protein G A 158 DP 102 AF1 0.5 DP4 27 11 47 15 

2981234  C T 152 DP 65 AF1 0.5 DP4 11 7 25 22 

4626896 Small toxic polypeptide LdrD G A 149 DP 120 AF1 0.5 DP4 20 16 45 36 

2981247  T C 148 DP 68 AF1 0.5 DP4 9 6 27 25 

5355859  A G 136 DP 156 AF1 0.5 DP4 29 31 42 50 

5605170  T G 136 DP 74 AF1 0.5 DP4 18 9 26 21 

2981062  C T 135 DP 81 AF1 0.5 DP4 11 6 27 37 

259848  C A 131 DP 41 AF1 1 DP4 1 1 26 7 

516446  G C 210 DP 50 AF1 1 DP4 1 0 22 27 

788973  G C 126 DP 37 AF1 1 DP4 4 0 4 24 

988085  C T 136 DP 34 AF1 1 DP4 0 0 22 2 

988101  T A 120 DP 40 AF1 1 DP4 0 7 21 9 

988151  G T 222 DP 40 AF1 1 DP4 0 3 18 11 

992612  G T 139 DP 37 AF1 1 DP4 4 0 8 18 
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1083191  G T 170 DP 52 AF1 1 DP4 3 0 16 22 

1083377  G T 151 DP 46 AF1 1 DP4 3 0 17 21 

1083400  G T 158 DP 48 AF1 1 DP4 1 0 17 23 

1083623  G A 222 DP 38 AF1 1 DP4 0 1 14 15 

1400608  C A 144 DP 44 AF1 1 DP4 0 6 25 11 

1453483  C A 137 DP 37 AF1 1 DP4 1 0 14 12 

1458548  A T 148 DP 70 AF1 1 DP4 0 0 35 33 

1786317  G T 222 DP 43 AF1 1 DP4 0 1 27 11 

1844717  T A 216 DP 27 AF1 1 DP4 1 0 13 13 

1908978  C A 135 DP 29 AF1 1 DP4 0 4 17 6 

1942109  C A 121 DP 31 AF1 1 DP4 0 6 18 6 

1958785  T A 222 DP 42 AF1 1 DP4 0 0 9 32 

1963613  T G 159 DP 48 AF1 1 DP4 0 5 31 10 

2002484  C T 172 DP 50 AF1 1 DP4 1 0 27 22 

2035284  C A 166 DP 37 AF1 1 DP4 0 5 19 10 

2092198  G A 165 DP 32 AF1 1 DP4 1 0 13 16 

2343592  C T 162 DP 38 AF1 1 DP4 0 1 19 9 

2380624  C A 180 DP 43 AF1 1 DP4 0 1 18 24 

2515283  G C 179 DP 39 AF1 1 DP4 3 1 14 20 

2624310  G T 139 DP 37 AF1 1 DP4 1 0 9 22 

2641953  G T 136 DP 29 AF1 1 DP4 2 0 7 16 

2641964  G T 128 DP 29 AF1 1 DP4 4 0 8 16 

2969698  G T 149 DP 43 AF1 1 DP4 0 0 31 3 

3009452  C A 139 DP 35 AF1 1 DP4 0 3 10 9 

3123162  C G 210 DP 43 AF1 1 DP4 1 0 12 27 

3136465  G T 122 DP 54 AF1 1 DP4 2 0 8 18 

3177365  G T 157 DP 31 AF1 1 DP4 2 3 15 11 

3189987  G T 151 DP 39 AF1 1 DP4 0 1 26 4 

3267198  C A 150 DP 41 AF1 1 DP4 0 8 18 14 

3270345  A T 124 DP 46 AF1 1 DP4 8 0 9 26 

3318053  C A 175 DP 63 AF1 1 DP4 0 1 29 18 

3333954  A C 155 DP 42 AF1 1 DP4 0 2 28 5 
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3493271  C A 136 DP 35 AF1 1 DP4 0 6 16 12 

3497829  G T 128 DP 29 AF1 1 DP4 0 5 13 11 

3568183  G T 123 DP 33 AF1 1 DP4 5 0 13 11 

3652959  C T 120 DP 42 AF1 1 DP4 0 3 29 4 

3719608  C A 144 DP 25 AF1 1 DP4 3 0 4 18 

3719635  C G 125 DP 24 AF1 1 DP4 3 0 6 15 

3719778  A C 182 DP 25 AF1 1 DP4 0 1 15 8 

3977567  T G 196 DP 51 AF1 1 DP4 0 1 19 28 

4121066  T G 152 DP 30 AF1 1 DP4 5 0 7 18 

4121581  C G 217 DP 61 AF1 1 DP4 0 0 37 21 

4129037  T A 222 DP 57 AF1 1 DP4 0 1 27 25 

4129048  C A 140 DP 57 AF1 1 DP4 0 2 31 14 

4299171  C A 144 DP 25 AF1 1 DP4 0 1 19 5 

4339461  G A 127 DP 45 AF1 1 DP4 0 1 24 20 

4778111  G T 143 DP 55 AF1 1 DP4 7 0 14 34 

4778255  G T 134 DP 59 AF1 1 DP4 5 0 24 26 

4940652  C T 133 DP 45 AF1 1 DP4 1 0 7 26 

UTI (M12) 

4930263  A C 170 DP 143 AF1 0.5 DP4 30 28 41 41 

4933235 C1amp-binding protein CrfC T G 173 DP 153 AF1 0.5 DP4 24 36 45 43 

4934934  T C 225 DP 179 AF1 0.5 DP4 42 32 49 51 

284418  T C 152 DP 86 AF1 1 DP4 10 0 26 46 

285247  C T 170 DP 61 AF1 1 DP4 0 8 32 13 

285268  G T 124 DP 54 AF1 1 DP4 0 10 27 16 

600227  C A 140 DP 83 AF1 1 DP4 0 4 42 23 

624159  C A 133 DP 54 AF1 1 DP4 0 7 23 14 

705810  G T 157 DP 68 AF1 1 DP4 2 0 18 38 

937985  C A 162 DP 75 AF1 1 DP4 0 3 34 21 

940744  G T 168 DP 59 AF1 1 DP4 6 0 19 29 

1105139  G T 147 DP 63 AF1 1 DP4 0 3 33 13 

1105152  C A 134 DP 64 AF1 1 DP4 0 2 33 21 

1454171  C A 157 DP 79 AF1 1 DP4 10 0 25 40 
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1454248  A T 165 DP 94 AF1 1 DP4 4 0 38 49 

1810872  G T 182 DP 88 AF1 1 DP4 11 0 32 42 

1966992  C A 161 DP 63 AF1 1 DP4 0 9 29 15 

1990180  T C 222 DP 70 AF1 1 DP4 0 1 38 29 

2210963  T A 207 DP 52 AF1 1 DP4 1 0 26 16 

2405697  C A 180 DP 89 AF1 1 DP4 0 8 50 22 

2478362  C A 177 DP 65 AF1 1 DP4 0 4 41 14 

2519606  G T 221 DP 64 AF1 1 DP4 2 0 19 31 

2519725  G T 124 DP 90 AF1 1 DP4 0 0 30 50 

2524328  C T 163 DP 78 AF1 1 DP4 0 3 42 16 

2670904  G A 222 DP 111 AF1 1 DP4 0 0 47 58 

3064461  A T 201 DP 68 AF1 1 DP4 1 0 33 33 

3215959  G T 184 DP 54 AF1 1 DP4 6 0 24 24 

3377403  G T 166 DP 70 AF1 1 DP4 8 0 21 40 

3377431  G T 151 DP 76 AF1 1 DP4 6 0 24 36 

3395737  C A 164 DP 73 AF1 1 DP4 0 9 41 21 

3554920  G A 222 DP 98 AF1 1 DP4 0 1 42 49 

3616620  A C 220 DP 41 AF1 1 DP4 0 1 20 16 

3651252  G A 177 DP 70 AF1 1 DP4 0 0 36 20 

3796843  T G 153 DP 74 AF1 1 DP4 10 0 22 40 

3900140  C A 147 DP 76 AF1 1 DP4 0 6 36 26 

4043641  G T 147 DP 96 AF1 1 DP4 8 0 29 51 

4043690  A T 222 DP 85 AF1 1 DP4 1 0 37 47 

4300961  T A 222 DP 91 AF1 1 DP4 0 1 51 37 

4420685  G A 222 DP 101 AF1 1 DP4 0 1 49 47 

4587187  G T 144 DP 33 AF1 1 DP4 3 0 14 16 

4587214  G T 143 DP 27 AF1 1 DP4 3 0 12 12 

4663977  C A 124 DP 66 AF1 1 DP4 0 2 27 9 

4877373  G T 147 DP 81 AF1 1 DP4 3 0 26 42 

UTI (F15) 

5179020  G A 225 DP 111 AF1 0.5 DP4 17 25 24 38 

2214404 Fibronectin type III protein C T 225 DP 34 AF1 0.5 DP4 7 1 6 17 
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5179203 gpW A C 225 DP 94 AF1 0.5 DP4 19 14 34 24 

5190670 Exodeoxyribonuclease 8 C T 225 DP 123 AF1 0.5 DP4 26 23 43 30 

5209070 Putative transposase A C 225 DP 126 AF1 0.5 DP4 13 32 31 41 

5209303  A G 225 DP 103 AF1 0.5 DP4 22 15 34 32 

5228578  T A 225 DP 225 AF1 0.5 DP4 23 42 52 106 

5230869  A G 225 DP 94 AF1 0.5 DP4 14 18 29 33 

5261372 Hypothetical protein A G 225 DP 151 AF1 0.5 DP4 25 27 41 36 

5261519 Hypothetical protein A G 225 DP 181 AF1 0.5 DP4 33 38 53 45 

5269447  C T 225 DP 92 AF1 0.5 DP4 25 10 32 24 

5228143 Group II intron-encoded protein LtrA A G 195 DP 264 AF1 0.5 DP4 69 42 78 68 

5179220  C T 188 DP 91 AF1 0.5 DP4 18 14 32 24 

5179621  A C 177 DP 115 AF1 0.5 DP4 23 19 35 37 

5178584 Phage terminase large subunit (GpA) C T 174 DP 91 AF1 0.5 DP4 22 12 34 21 

5209348  A G 172 DP 110 AF1 0.5 DP4 25 15 33 35 

5209361  T C 167 DP 110 AF1 0.5 DP4 27 17 31 35 

5209016 Putative transposase A G 147 DP 137 AF1 0.5 DP4 23 31 37 40 

5190505 Exodeoxyribonuclease 8 C A 144 DP 101 AF1 0.5 DP4 18 21 37 25 

5209319  T G 137 DP 105 AF1 0.5 DP4 23 14 31 31 

2401  A G 222 DP 66 AF1 1 DP4 0 1 38 27 

166101  C A 222 DP 71 AF1 1 DP4 1 0 36 34 

1127475  A C 129 DP 32 AF1 1 DP4 4 0 8 19 

1146726  C A 185 DP 47 AF1 1 DP4 0 1 22 14 

1163692  T G 138 DP 48 AF1 1 DP4 8 0 13 25 

1163709  C A 153 DP 47 AF1 1 DP4 5 0 11 26 

1163724  A T 141 DP 46 AF1 1 DP4 2 0 11 28 

1243044  C A 152 DP 36 AF1 1 DP4 0 5 20 10 

1319917  G T 158 DP 53 AF1 1 DP4 2 0 24 21 

1321254  C T 120 DP 35 AF1 1 DP4 0 3 16 9 

1335221  C T 212 DP 33 AF1 1 DP4 1 0 10 17 

1398205  C G 166 DP 46 AF1 1 DP4 1 0 18 25 

1398221  G T 160 DP 47 AF1 1 DP4 4 0 17 22 

1399332  G A 143 DP 32 AF1 1 DP4 0 3 19 7 
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1594705  A C 222 DP 74 AF1 1 DP4 0 1 32 36 

1637150  C A 149 DP 49 AF1 1 DP4 0 5 25 18 

1708815  G T 180 DP 64 AF1 1 DP4 2 0 17 37 

1746772  G T 127 DP 36 AF1 1 DP4 3 0 5 22 

1805361  T C 222 DP 65 AF1 1 DP4 1 0 24 38 

1890043  C A 126 DP 28 AF1 1 DP4 0 4 12 10 

2123253  C A 197 DP 48 AF1 1 DP4 0 4 26 14 

2131013  G T 145 DP 42 AF1 1 DP4 0 0 17 21 

2149313  C T 205 DP 50 AF1 1 DP4 0 0 23 24 

2168413  G T 222 DP 38 AF1 1 DP4 0 0 17 20 

2200067  C A 141 DP 29 AF1 1 DP4 0 0 15 8 

2237236  C T 185 DP 50 AF1 1 DP4 1 0 20 28 

2244632  G T 121 DP 49 AF1 1 DP4 5 0 12 32 

2341336  A T 222 DP 55 AF1 1 DP4 0 0 30 21 

2364636  G T 191 DP 60 AF1 1 DP4 1 0 18 41 

2659279  C A 217 DP 45 AF1 1 DP4 0 1 22 21 

2762030  G T 134 DP 94 AF1 1 DP4 4 0 11 42 

2898987  G T 147 DP 62 AF1 1 DP4 6 0 10 37 

2906731  T C 201 DP 40 AF1 1 DP4 0 0 15 23 

3093913  C A 133 DP 62 AF1 1 DP4 0 6 32 22 

3108870  T G 179 DP 60 AF1 1 DP4 0 0 26 31 

3263254  C A 164 DP 51 AF1 1 DP4 0 1 28 14 

3316800  T C 125 DP 18 AF1 1 DP4 0 0 4 14 

3475780  C A 207 DP 65 AF1 1 DP4 0 1 30 19 

3540274  A T 222 DP 42 AF1 1 DP4 1 0 13 25 

3658719  G T 153 DP 74 AF1 1 DP4 5 0 22 37 

3862054  G T 161 DP 56 AF1 1 DP4 3 0 19 28 

3862229  G A 134 DP 58 AF1 1 DP4 0 3 31 14 

3862373  G A 126 DP 62 AF1 1 DP4 2 1 5 43 

3886959  A T 222 DP 55 AF1 1 DP4 0 1 24 28 

4229041  T A 175 DP 43 AF1 1 DP4 0 0 20 20 

4292034  C A 160 DP 48 AF1 1 DP4 0 3 28 8 
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4322426  T G 173 DP 36 AF1 1 DP4 4 0 13 17 

4690388  C A 130 DP 62 AF1 1 DP4 0 5 30 7 

4738282  G T 148 DP 44 AF1 1 DP4 6 0 18 12 

4792156  G A 182 DP 49 AF1 1 DP4 0 0 14 29 

4864165  C T 153 DP 44 AF1 1 DP4 2 0 25 16 

4864197  A G 222 DP 44 AF1 1 DP4 0 0 23 16 

4864209  T C 207 DP 42 AF1 1 DP4 0 0 20 18 

5172250  C T 175 DP 42 AF1 1 DP4 0 1 18 16 

5183360  G T 167 DP 34 AF1 1 DP4 0 1 13 8 

5248624  G T 163 DP 56 AF1 1 DP4 6 13 18 19 

UTI (M16) 

5169385  C T 131 DP 137 AF1 0.5 DP4 22 28 21 66 

5310182  T C 132 DP 86 AF1 0.5 DP4 16 16 25 29 

5299182 IncFII repA protein family T C 136 DP 57 AF1 0.5 DP4 4 12 17 18 

306799 Bifunctional protein Fo1C T C 137 DP 39 AF1 0.5005 DP4 2 2 21 14 

5213081  T G 144 DP 90 AF1 0.5 DP4 13 19 22 32 

5358449  C T 145 DP 21 AF1 0.5025 DP4 3 0 11 7 

1639567 Electron transport complex protein RnfC A C 151 DP 52 AF1 0.5 DP4 4 4 19 24 

5205886  C T 155 DP 44 AF1 0.5 DP4 10 5 17 12 

5276307  C A 177 DP 76 AF1 0.5 DP4 12 10 27 20 

5358463  A G 225 DP 21 AF1 0.5003 DP4 3 0 11 7 

1639543 Electron transport complex protein RnfC G A 225 DP 58 AF1 0.5 DP4 7 7 18 26 

1639555 Electron transport complex protein RnfC A G 225 DP 56 AF1 0.5 DP4 5 6 17 25 

4860839 DNA primase TraC T A 225 DP 31 AF1 0.5 DP4 5 3 9 11 

4864309  C T 225 DP 99 AF1 0.5 DP4 18 21 28 31 

5164966  A G 225 DP 21 AF1 0.5 DP4 2 3 8 8 

5299152 IncFII repA protein family A G 225 DP 59 AF1 0.5 DP4 8 13 17 21 

5299217  G T 225 DP 48 AF1 0.5 DP4 10 3 15 18 

56301  C A 215 DP 32 AF1 1 DP4 1 0 14 15 

102855  C A 137 DP 39 AF1 1 DP4 0 4 15 16 

149869  C A 121 DP 21 AF1 1 DP4 0 0 11 7 

292232  C A 174 DP 42 AF1 1 DP4 0 2 18 14 
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292252  C A 128 DP 41 AF1 1 DP4 0 5 17 10 

329509  G T 143 DP 37 AF1 1 DP4 2 0 9 16 

329520  C A 168 DP 35 AF1 1 DP4 4 0 16 13 

329556  G T 155 DP 48 AF1 1 DP4 0 0 19 20 

574633  A T 222 DP 44 AF1 1 DP4 4 0 16 23 

737884  T C 142 DP 24 AF1 1 DP4 0 1 13 5 

774704  G T 182 DP 45 AF1 1 DP4 2 0 14 23 

827063  C T 174 DP 51 AF1 1 DP4 0 1 19 29 

855138  T C 136 DP 43 AF1 1 DP4 5 0 12 24 

878552  C A 141 DP 58 AF1 1 DP4 1 3 35 8 

880582  C A 158 DP 53 AF1 1 DP4 0 0 34 8 

880599  C T 143 DP 55 AF1 1 DP4 0 1 33 9 

910863  A G 148 DP 18 AF1 1 DP4 1 0 3 14 

1105063  G T 222 DP 67 AF1 1 DP4 0 0 37 26 

1144391  C A 121 DP 36 AF1 1 DP4 0 0 5 27 

1162204  G T 125 DP 33 AF1 1 DP4 4 0 11 16 

1163712  C A 182 DP 40 AF1 1 DP4 0 2 19 14 

1183248  C T 127 DP 26 AF1 1 DP4 0 2 8 13 

1183392  C A 166 DP 28 AF1 1 DP4 0 0 9 16 

1205869  G T 122 DP 39 AF1 1 DP4 1 0 6 19 

1390439  C T 122 DP 37 AF1 1 DP4 4 0 5 17 

1390504  A C 146 DP 42 AF1 1 DP4 8 0 11 21 

1390514  A G 125 DP 43 AF1 1 DP4 9 0 9 22 

1524317  G A 167 DP 37 AF1 1 DP4 0 2 18 13 

1524331  G T 222 DP 35 AF1 1 DP4 0 0 17 6 

1624796  A G 169 DP 49 AF1 1 DP4 1 0 20 18 

1902422  C G 197 DP 30 AF1 1 DP4 1 0 9 20 

1908063  G T 153 DP 45 AF1 1 DP4 4 0 9 16 

2071822  G T 153 DP 57 AF1 1 DP4 1 1 36 19 

2074222  C T 222 DP 54 AF1 1 DP4 1 0 19 33 

2176839  G T 133 DP 61 AF1 1 DP4 7 1 19 31 

2437021  C A 120 DP 38 AF1 1 DP4 0 4 21 11 
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2609198  C A 178 DP 41 AF1 1 DP4 0 1 20 16 

2609216  T C 152 DP 42 AF1 1 DP4 0 7 19 16 

2683045  C T 166 DP 31 AF1 1 DP4 0 0 15 14 

2683281  C A 156 DP 26 AF1 1 DP4 0 0 13 9 

2683411  G T 120 DP 32 AF1 1 DP4 6 1 11 12 

2730545  C T 222 DP 46 AF1 1 DP4 0 0 16 28 

2931725  C G 126 DP 32 AF1 1 DP4 5 0 7 16 

2931764  C A 128 DP 29 AF1 1 DP4 3 0 8 16 

3272804  C A 145 DP 34 AF1 1 DP4 0 1 17 2 

3339750  C A 120 DP 40 AF1 1 DP4 5 0 4 25 

3339771  T C 136 DP 41 AF1 1 DP4 5 0 9 26 

3466977  G A 215 DP 44 AF1 1 DP4 1 0 10 18 

3615777  A T 222 DP 44 AF1 1 DP4 1 0 22 20 

3671501  C A 120 DP 36 AF1 1 DP4 0 0 22 10 

3725299  G C 153 DP 32 AF1 1 DP4 0 0 3 19 

3725835  G T 151 DP 52 AF1 1 DP4 0 0 13 25 

4006737  G A 138 DP 43 AF1 1 DP4 4 0 13 20 

4053151  G T 122 DP 36 AF1 1 DP4 5 0 6 16 

4063886  T G 220 DP 45 AF1 1 DP4 1 0 15 27 

4071444  T G 150 DP 43 AF1 1 DP4 0 1 30 11 

4101403  C A 161 DP 59 AF1 1 DP4 0 2 32 12 

4515909  C T 222 DP 41 AF1 1 DP4 1 0 13 27 

4576092  C A 141 DP 59 AF1 1 DP4 1 0 26 30 

4698429  C A 126 DP 34 AF1 1 DP4 0 3 17 8 

4761126  C A 222 DP 41 AF1 1 DP4 0 1 24 15 

4774326  A T 222 DP 43 AF1 1 DP4 1 0 17 24 

4831146  G T 157 DP 53 AF1 1 DP4 1 0 25 26 

4860498  A C 146 DP 49 AF1 1 DP4 1 6 21 20 

4860591  C A 132 DP 42 AF1 1 DP4 0 3 17 11 

4860605  C T 144 DP 42 AF1 1 DP4 0 3 16 17 

5046530  T G 138 DP 47 AF1 1 DP4 5 0 12 25 

5046561  T C 138 DP 45 AF1 1 DP4 5 0 10 26 
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5046610  C A 167 DP 42 AF1 1 DP4 4 1 10 27 

5047570  G C 167 DP 30 AF1 1 DP4 0 3 17 7 

5102850  A T 166 DP 34 AF1 1 DP4 3 1 11 16 

5201353  C A 177 DP 27 AF1 1 DP4 0 1 9 16 

5221464  C A 162 DP 25 AF1 1 DP4 0 1 7 14 

5279588  G A 132 DP 25 AF1 1 DP4 0 2 6 12 

5294174  T C 222 DP 22 AF1 1 DP4 2 3 11 6 

UTI (M20) 

5153575 Hypothetical protein G T 222 DP 56 AF1 1 DP4 4 2 24 23 

3975549  G A 225 DP 49 AF1 0.5 DP4 11 4 11 23 

5137817 Integrase core domain protein T G 225 DP 628 AF1 0.5 DP4 142 142 172 163 

5141778  G A 225 DP 234 AF1 0.5 DP4 49 43 69 58 

5147501  C T 195 DP 187 AF1 0.5 DP4 36 41 44 63 

2977259  C T 130 DP 106 AF1 0.5 DP4 10 23 30 43 

5141709  A G 130 DP 224 AF1 0.5 DP4 46 45 69 60 

208601  A C 213 DP 113 AF1 1 DP4 0 1 51 58 

536409  C A 192 DP 107 AF1 1 DP4 0 4 50 32 

549772  G T 120 DP 75 AF1 1 DP4 4 0 23 31 

695461  A G 222 DP 83 AF1 1 DP4 4 0 21 56 

736361  C T 150 DP 94 AF1 1 DP4 1 0 40 52 

802496  T A 222 DP 85 AF1 1 DP4 1 1 39 44 

950710  C A 150 DP 85 AF1 1 DP4 8 0 32 38 

1591422  G C 120 DP 47 AF1 1 DP4 0 3 20 8 

1591432  C A 206 DP 46 AF1 1 DP4 0 2 19 17 

1981672  G A 222 DP 78 AF1 1 DP4 7 1 35 27 

1981690  G A 203 DP 74 AF1 1 DP4 1 2 33 29 

1981720  G T 222 DP 70 AF1 1 DP4 0 0 30 28 

2011562  A T 214 DP 95 AF1 1 DP4 2 0 43 46 

2202802  G T 218 DP 90 AF1 1 DP4 0 1 47 42 

2521737  G T 222 DP 78 AF1 1 DP4 0 0 39 38 

2656397  G T 129 DP 92 AF1 1 DP4 3 0 6 55 

2729487  C T 147 DP 78 AF1 1 DP4 0 4 37 12 



Appendix 

 

 

210 

2814242  G A 147 DP 55 AF1 1 DP4 1 0 22 25 

2928590  C G 209 DP 47 AF1 1 DP4 0 0 19 24 

3070500  T C 222 DP 116 AF1 1 DP4 0 1 50 64 

3103445  C A 135 DP 74 AF1 1 DP4 2 6 30 20 

3232009  G T 123 DP 78 AF1 1 DP4 4 0 24 42 

3232033  G T 169 DP 79 AF1 1 DP4 1 0 25 42 

3403781  A G 174 DP 78 AF1 1 DP4 0 1 34 37 

3722379  G T 151 DP 84 AF1 1 DP4 6 0 23 37 

3722450  G T 155 DP 88 AF1 1 DP4 2 0 30 42 

3944877  G T 184 DP 41 AF1 1 DP4 1 0 10 24 

4104601  G C 215 DP 112 AF1 1 DP4 0 1 53 58 

4262242  G T 126 DP 44 AF1 1 DP4 1 0 3 31 

4562485  G T 214 DP 71 AF1 1 DP4 0 1 34 34 

4570129  G T 126 DP 67 AF1 1 DP4 3 0 10 35 

4571402  G T 122 DP 50 AF1 1 DP4 1 0 9 23 

4728532  C T 139 DP 45 AF1 1 DP4 0 0 26 7 

4913927  G T 144 DP 78 AF1 1 DP4 9 0 21 44 

5150943  T C 222 DP 66 AF1 1 DP4 3 2 30 24 

5153362  A G 133 DP 29 AF1 1 DP4 1 0 17 8 

5153509  A G 201 DP 56 AF1 1 DP4 0 0 31 25 

5153536  T C 222 DP 53 AF1 1 DP4 2 0 22 24 

5153575  G T 222 DP 56 AF1 1 DP4 4 2 24 23 

UTI (F19) 

5193123  A C 121 DP 145 AF1 0.5 DP4 41 18 54 30 

764134  G T 126 DP 46 AF1 0.5 DP4 14 0 12 16 

4643865 Anti restriction protein K1cA A G 129 DP 92 AF1 0.50 DP4 13 0 32 40 

5192970  C A 132 DP 96 AF1 0.5 DP4 19 14 42 19 

4644344  A G 137 DP 154 AF1 0.5 DP4 29 32 37 52 

3788197  C T 153 DP 77 AF1 0.5 DP4 15 14 23 25 

1990634 Small toxic polypeptide LdrD C T 156 DP 111 AF1 0.5 DP4 12 20 24 54 

1990151 Small toxic polypeptide LdrD C T 157 DP 86 AF1 0.5 DP4 14 7 32 30 

3677065  T C 158 DP 67 AF1 0.5 DP4 9 13 25 19 



Appendix 

 

 

211 

5299014  A G 163 DP 55 AF1 0.5 DP4 11 6 26 10 

3677147 Putative autotransporter precursor A G 168 DP 72 AF1 0.5 DP4 5 13 19 27 

3788210  T C 168 DP 81 AF1 0.5 DP4 12 13 31 25 

5032962 Hypothetical protein G A 178 DP 135 AF1 0.5 DP4 26 27 49 27 

4644272  A G 184 DP 149 AF1 0.5 DP4 31 27 42 42 

3676966  A G 225 DP 106 AF1 0.5 DP4 11 31 33 29 

4643880 Antirestriction protein K1cA A G 225 DP 92 AF1 0.5 DP4 15 1 35 40 

5208312  C T 225 DP 141 AF1 0.5 DP4 35 21 46 36 

5209699  C T 225 DP 139 AF1 0.5 DP4 24 32 33 46 

5252249  C T 225 DP 87 AF1 0.5 DP4 17 16 28 26 

5275233  C A 225 DP 74 AF1 0.5 DP4 22 5 29 18 

5291706 Is1 transposase C A 225 DP 203 AF1 0.5 DP4 28 18 93 57 

5302106 Transposase IS66 family protein C A 225 DP 84 AF1 0.5 DP4 20 7 37 8 

10901  G A 158 DP 40 AF1 1 DP4 1 0 21 18 

387967  C T 120 DP 38 AF1 1 DP4 0 2 23 4 

545937  A C 222 DP 68 AF1 1 DP4 0 1 25 41 

656518  C A 178 DP 60 AF1 1 DP4 0 0 27 13 

656563  C A 170 DP 69 AF1 1 DP4 0 8 37 13 

688607  G A 122 DP 51 AF1 1 DP4 4 0 8 25 

760837  G C 162 DP 52 AF1 1 DP4 0 1 38 13 

981051  A C 143 DP 61 AF1 1 DP4 0 7 28 24 

981132  C A 167 DP 57 AF1 1 DP4 0 5 28 16 

1453004  C T 175 DP 55 AF1 1 DP4 0 4 27 13 

1497550  G T 212 DP 50 AF1 1 DP4 1 0 25 15 

1497573  G T 169 DP 37 AF1 1 DP4 1 0 20 8 

1750960  C G 122 DP 34 AF1 1 DP4 0 7 20 7 

1808580  T A 139 DP 49 AF1 1 DP4 0 8 28 10 

1855114  G T 134 DP 43 AF1 1 DP4 3 0 8 25 

1910019  T G 184 DP 45 AF1 1 DP4 5 0 19 21 

1976649  C A 177 DP 50 AF1 1 DP4 1 0 18 25 

2394133  G T 154 DP 44 AF1 1 DP4 2 0 5 21 

2514162  T A 146 DP 35 AF1 1 DP4 0 4 17 13 
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2514187  G C 131 DP 34 AF1 1 DP4 0 5 15 11 

2514198  C A 136 DP 37 AF1 1 DP4 0 2 18 8 

2636723  G A 222 DP 58 AF1 1 DP4 0 0 28 14 

2649562  C A 145 DP 67 AF1 1 DP4 0 5 28 16 

2905967  G T 182 DP 36 AF1 1 DP4 1 0 5 24 

2909962  C A 170 DP 42 AF1 1 DP4 0 0 29 3 

3056375  T A 126 DP 60 AF1 1 DP4 1 0 15 44 

3168854  G T 217 DP 41 AF1 1 DP4 1 0 15 23 

3169638  C A 153 DP 65 AF1 1 DP4 8 0 18 39 

3433420  T C 202 DP 33 AF1 1 DP4 1 0 11 21 

3482020  C G 154 DP 53 AF1 1 DP4 0 1 24 27 

3548720  G A 165 DP 79 AF1 1 DP4 0 1 46 32 

3553124  G A 125 DP 47 AF1 1 DP4 6 0 20 18 

3635182  T A 189 DP 64 AF1 1 DP4 0 0 34 27 

3677463  C T 222 DP 75 AF1 1 DP4 2 2 27 37 

3688282  G T 195 DP 69 AF1 1 DP4 0 0 33 33 

3739146  G T 130 DP 44 AF1 1 DP4 5 0 19 18 

3786374  A C 222 DP 58 AF1 1 DP4 0 1 29 26 

4051834  A T 146 DP 65 AF1 1 DP4 1 0 28 35 

4132465  C A 155 DP 37 AF1 1 DP4 0 0 25 6 

4167131  C A 166 DP 55 AF1 1 DP4 0 0 22 12 

4202117  T A 186 DP 60 AF1 1 DP4 0 7 34 18 

4397400  C A 185 DP 57 AF1 1 DP4 0 1 29 25 

4411970  G A 222 DP 40 AF1 1 DP4 0 0 14 23 

4435580  A G 137 DP 47 AF1 1 DP4 0 7 17 23 

4565513  G A 124 DP 31 AF1 1 DP4 5 1 8 15 

4583393  C A 128 DP 35 AF1 1 DP4 2 0 5 23 

4618479  G T 153 DP 45 AF1 1 DP4 0 1 30 6 

4682121  C T 130 DP 33 AF1 1 DP4 0 1 20 5 

4682387  A C 129 DP 34 AF1 1 DP4 0 2 25 7 

4682787  A G 204 DP 44 AF1 1 DP4 0 1 23 19 

4703403  G T 135 DP 66 AF1 1 DP4 3 0 14 39 
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4906586  G T 160 DP 46 AF1 1 DP4 3 0 7 30 

5003758  A T 125 DP 50 AF1 1 DP4 0 9 25 15 

5264633  A C 159 DP 31 AF1 1 DP4 1 0 14 16 

UTI (F12) 

5440371 ECF RNA plymerase sigma factor SigW G A 169 DP 119 AF1 0.5 DP4 34 11 46 24 

5500129 Manganese transport system membrane protein MntB T C 165 DP 175 AF1 0.5 DP4 30 33 54 58 

4242957 Small toxic polypeptide LdrD G A 162 DP 118 AF1 0.5 DP4 29 11 44 34 

5500474 Manganese transport system membrane protein MntB A G 160 DP 152 AF1 0.5 DP4 27 29 41 53 

7034249  C T 160 DP 69 AF1 0.5 DP4 12 10 26 21 

6134236  A G 142 DP 81 AF1 0.5 DP4 15 13 30 18 

1169066 Carboxylate-amine ligase YbdK C A 135 DP 51 AF1 0.6243 DP4 0 6 22 13 

939450 Hypothetical protein C A 133 DP 44 AF1 0.5002 DP4 3 9 12 19 

3995602 Coenzyme A biosynthesis bifunctional protein CoaBC G T 132 DP 31 AF1 0.5013 DP4 7 2 9 12 

5499772  A G 121 DP 131 AF1 0.5 DP4 32 14 61 23 

44074  C A 159 DP 56 AF1 1 DP4 0 5 28 13 

47401  G A 222 DP 53 AF1 1 DP4 0 1 25 25 

227470  C A 220 DP 47 AF1 1 DP4 0 1 28 12 

261700  A C 133 DP 42 AF1 1 DP4 2 0 13 23 

261840  C T 129 DP 37 AF1 1 DP4 1 0 15 16 

286901  G A 222 DP 54 AF1 1 DP4 0 1 34 18 

289201  A G 222 DP 76 AF1 1 DP4 0 1 32 33 

341216  C A 125 DP 75 AF1 1 DP4 0 1 34 22 

519501  G T 212 DP 63 AF1 1 DP4 0 1 37 25 

541902  T C 169 DP 65 AF1 1 DP4 8 0 17 40 

546360  C A 144 DP 36 AF1 1 DP4 0 0 21 5 

623139  G T 144 DP 69 AF1 1 DP4 3 0 9 34 

636786  G T 154 DP 68 AF1 1 DP4 9 0 17 35 

740001  G A 159 DP 87 AF1 1 DP4 0 0 55 29 

1044723  G T 138 DP 53 AF1 1 DP4 5 0 15 24 

1097707  G A 155 DP 91 AF1 1 DP4 0 1 46 43 

1212795  A C 146 DP 55 AF1 1 DP4 2 0 12 34 

1228382  C A 140 DP 30 AF1 1 DP4 0 4 16 10 
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1335307  C G 140 DP 25 AF1 1 DP4 1 0 16 4 

1539188  C A 172 DP 67 AF1 1 DP4 0 6 31 26 

1772067  C A 121 DP 47 AF1 1 DP4 1 3 20 19 

1866971  A C 222 DP 44 AF1 1 DP4 1 1 12 30 

1894550  G T 133 DP 38 AF1 1 DP4 0 5 14 13 

1917634  C A 170 DP 40 AF1 1 DP4 0 2 24 8 

1917707  G T 222 DP 42 AF1 1 DP4 0 0 20 11 

2067265  G T 167 DP 42 AF1 1 DP4 4 0 7 22 

2075971  G A 222 DP 56 AF1 1 DP4 0 1 25 26 

2076071  G A 164 DP 50 AF1 1 DP4 0 2 17 29 

2077405  G T 160 DP 58 AF1 1 DP4 6 1 21 27 

2379119  G T 164 DP 38 AF1 1 DP4 0 0 11 21 

2391064  G T 197 DP 56 AF1 1 DP4 2 0 19 27 

2391171  G T 150 DP 59 AF1 1 DP4 4 0 18 33 

2511499  G T 171 DP 76 AF1 1 DP4 1 0 47 27 

2653801  C A 168 DP 53 AF1 1 DP4 1 0 24 14 

2918431  T G 219 DP 58 AF1 1 DP4 1 0 25 30 

2932918  C A 144 DP 57 AF1 1 DP4 0 1 30 17 

2932931  T G 222 DP 58 AF1 1 DP4 0 1 31 25 

3132001  G T 155 DP 38 AF1 1 DP4 2 0 11 21 

3132323  G T 222 DP 57 AF1 1 DP4 0 1 28 26 

3263301  G T 126 DP 30 AF1 1 DP4 0 0 3 23 

3263504  C A 222 DP 53 AF1 1 DP4 0 1 25 22 

3352646  G C 120 DP 25 AF1 1 DP4 2 0 7 14 

3675308  C A 145 DP 55 AF1 1 DP4 0 5 27 15 

3743067  G T 151 DP 84 AF1 1 DP4 2 1 27 41 

3808171  C T 127 DP 34 AF1 1 DP4 0 3 9 16 

3817212  C A 132 DP 58 AF1 1 DP4 0 3 35 11 

3855317  T G 222 DP 71 AF1 1 DP4 1 0 17 52 

4033605  G T 198 DP 61 AF1 1 DP4 0 1 29 17 

4161756  G T 196 DP 63 AF1 1 DP4 0 0 18 36 

4183047  G A 154 DP 54 AF1 1 DP4 0 7 22 21 
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4516543  G A 164 DP 49 AF1 1 DP4 7 0 15 26 

4718041  C A 139 DP 85 AF1 1 DP4 0 2 46 21 

4983183  C A 222 DP 63 AF1 1 DP4 0 1 35 27 

5182399  A C 143 DP 26 AF1 1 DP4 1 0 9 14 

5258556  G C 130 DP 15 AF1 1 DP4 0 1 9 5 
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