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Abstract 
 

Glucolipotoxicity (GLT) is the term given to the combined and damaging effect of increased glucose 

and fatty acid levels on pancreatic beta cells (β-cells) (Poitout et al, 2010). There is mounting evidence 

that glucolipotoxicity is the cause of the decline in β-cell function found in type 2 diabetes (T2D). T2D 

is a chronic metabolic disorder characterised by sustained elevated blood glucose and free fatty acids, with 

a continuously increasing prevalence (Olokoba et al, 2012). It is estimated 415 million people currently are 

living with diabetes and 193 million are undiagnosed, of those 90% are T2D cases. (chatterjee et al, 2017).   

There are multiple aims in this thesis including the identification of GLT-induced inflammatory pathways of 

the pancreatic β-cell resulting from NF-κB activation. To identify novel transcription factors associated with 

GLT-induced reduction in insulin secretion and insulin gene expression and whether their expression is 

associated with the presence CD40. To observe whether the addition of carnosine to cultured cells can 

prevent/reverse the up-regulation in GLT-induced factors which potentially result in β-cell damage. Finally, 

to observed whether GLT can induce histone modifications resulting from disruption in the TCA cycle.  

To mimic GLT conditions INS-1 rat pancreatic β-cells were cultured in media supplemented with 28mM 

glucose, 200µM palmitic acid and 200µM oleic acid. The results showed following 5-day incubation ±GLT, 

there was an increase in TNF receptor CD40 and a CD40-dependent increase in NF-κB. Further to this 

exposure of INS-1 cells to GLT conditions resulted in a 3.7-fold increase in iNOS mRNA and increased 4-HNE 

and 3-NT adduct formation (43.4% and 33% respectively) indicating potential GLT-induced β-cell damage. 

The addition of 10mM carnosine was able to prevent/reverse the up-regulation of GLT-induced NF-κB 

activity, iNOS protein expression and 4-HNE and 3-NT adduction, identifying it as a potential therapeutic 

strategy for T2D. 

GLT-induced up-regulation of CD40 is also shown to be involved in the modulation of various genes, 

including insulin. siRNA down-regulation of CD40 resulted in increased insulin gene expression via 

modulation of ID4. Independent of CD40, a protein usually associated with MODY is observed. GLT results 

in 33.3% down-regulation of HNF4α, which has a knock-on effect on Rab protein expression resulting in 

down-regulation of insulin secretion. There by indicating that HNF4α is important in normal insulin 

secretion.  

This research found that GLT can result in acetylation of histones H3 and H4, subsequent to TCA cycle 

dysregulation and disruption to fatty acid synthesis and cholesterol biosynthesis pathways, indicating that 

GLT can affect gene transcription. 
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Chapter 1 

 
Introduction 

  



3 
 

1.0 CHAPTER 1: Introduction  
 

1.1 Physiology of Pancreatic Islets of Langerhans 
 

The pancreas is located at the rear of the abdomen behind the stomach and is connected to the 

duodenum via a tube known as the pancreatic duct. The pancreas is unique in that it is possesses both 

endocrine and exocrine function. It is made up of 95% exocrine tissue and is therefore called an 

exocrine gland, but it is made up of 5% endocrine tissue (Das et al, 2014). It is comprised of 

combination of cell types that make up the islets of Langerhans. The islets of Langerhans are made up 

by 4 cells types; alpha cells, beta cells (β-cells), delta cells and gamma cells (Kulkarni RN, 2004). Alpha 

cells which account for 20% of total islet cells and are responsible for producing glucagon, which is 

secreted when blood glucose concentrations fall too low. Glucagon is then converted to glucose to 

restore glucose homeostasis. Pancreatic β-cells make up most of the cells found in the islet at 

approximately 70%. Beta cells are responsible for producing insulin. Delta cells making up <10% of 

total islet cells which produce somatostatin, the function of somatostatin is to inhibit the secretion of 

both insulin and glucagon. Gamma cells produce pancreatic polypeptide and make up <5% of total 

islet cells. Together these cells form micro-organs known as islets of Langerhans that are distributed 

throughout the pancreas, making up 2-3% of the total pancreatic mass (Striegel et al, 2015) and have 

a key role in glucose homeostasis (Wang et al, 2013). Both insulin and glucagon play pivotal roles in 

maintaining glucose homeostasis and have important metabolic targets. The major function of insulin 

and glucagon is to together finely regulate blood glucose concentrations to avoid prolonged hyper or 

hypoglycaemia.  In order to do this insulin inhibits and glucagon stimulates glycogenolysis, 

gluconeogenesis, lipolysis, and ketogenesis. 

 Gluconeogenesis occurs in the liver and is the mechanism of the breakdown of glycogen to form 

glucose which is released into circulation. Gluconeogenesis a biochemical mechanism that synthesises 

glucose from amino acids. Lipolysis is a process where fatty acids and glycerol are released into 

circulation from stored triglycerides. Ketogenesis is the synthesis of ketones in the liver that are 

released into circulation formed from free fatty acids (Robertson and Harmon, 2007). 
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Figure 1.1 Schematic of Pancreas. Illustration of Pancreas identifying location of the pancreatic islets. Adpated from Medical 

Dictionary. 

 

 

1.1.1 Insulin biosynthesis 

 
Insulin is a hormone that is synthesised in and secreted from pancreatic β-cells. Insulin has a molecular 

weight of 5.8kda and is made up of 51-amino acids, the insulin gene however, encodes a precursor of 

insulin that is constructed of 110-amino acids and is called preproinsulin. The preproinsulin structure 

contains a hydrophobic N-Terminal signal peptide which interacts with cytosolic ribonuclear-protein 

signal recognition particles. It is the responsibility of these recognition particles to allow the 

translocation of preproinsulin across the rough endoplasmic reticulum membrane and into the lumen, 

via the peptide conducting channel. During this translocation, the N-Terminal signal peptide is cleaved 

by a signal peptidase resulting in proinsulin. To yield insulin, proinsulin must undergo folding and the 

formation of three disulphide bonds. Following the bond formation, the folded proinsulin is cleaved 

resulting in insulin and C-peptide (Fig 1.2). Both insulin and C-peptide are stored in secretory granules 

(Zhuo et al 2013). 
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Figure 1.2 Insulin Biosynthesis. Insulin is initially translated as preproinsulin that contains a hydrophobic amino-terminal 

signal sequence necessary for entering the ER. In the ER, the preproinsulin signal sequence is proteolytically degraded to form 

generating proinsulin. Following development of the three-dimensional conformation, the folded proinsulin is translocated 

from the ER to the Golgi apparatus where proinsulin enters immature secretory vesicles and is cleaved to yield the A chain 

and B chain of insulin and C-peptide. Figure adapted from Beta Cell Biology Consortium website. 

 

1.1.2 Insulin secretion 
 

The main stimuli for pancreatic β-cells to secrete insulin is elevated blood glucose concentration 

following the intake of food. Blood glucose is increased from basal level of 5.0 mM/L, to the post 

prandial level of approximately 10.4 mM/L following food intake (Rorsman et al, 2000). Circulating 

blood glucose is taken into the pancreatic β-cell via a transporter that is located on the cell surface. 

The main rodent β-cell glucose transporter is GLUT2 or SLC2A2 (McCulloch et al, 2011), whereas the 

main glucose transporters in humans are GLUT1 and/or GLUT3 (De Vos et al, 1995) Subsequent to its 

up-take, glucose undergoes glycolysis resulting in the generation of adenosine triphosphate (ATP). 

This alters the intracellular ATP/ADP ratio which in turn causes the closure of the ATP-sensitive 

potassium channels. When the β-cell is unstimulated the ATP-sensitive potassium channels remain 

open to ensure the stability and maintenance of resting potential of -70mV by transporting positively 

charged K+ ions out of the cell, down its concentration gradient (Rorsman et al, 2000). The closure of 

the potassium channel and the resulting increase in K+ ions cause the depolarisation of the cell 

membrane and the opening of the voltage-dependent L-type calcium channels. The increase in 

intracellular calcium concentration triggers the fusion of insulin-containing granules with the β-cell 

membrane and the ultimately the release of insulin (Fig. 1.3) (Röder et al, 2016). 

Insulin is secreted in order to maintain glucose homeostasis and stored within the β-cell in pre-formed 

granules (Cheng et al, 2013).The insulin-containing granules release their contents following fusion 

with the cell membrane, the key molecules responsible for this fusion are synaptosomal-associated 
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protein of 25kDa (SNAP-25), syntaxin-1 and synaptobrevins-2 also known as vesicle-associated 

membrane protein (VAMP2), all of which belong to a superfamily of soluble N-ethylmeleimide-

sensitive factor attachment protein (SNAP) receptors (SNAREs). Together with the Sec1/MUNC18-like 

proteins they form the SNARE complex (Röder et al, 2016). There are two types of SNAREs, categorised 

based on the membrane in which they are associated; v-SNAREs are found on vesicles and t-SNAREs 

are located on the target membrane. The formation of the v- and t-SNARE complex is responsible for 

the docking (Regazzi et al, 1995). To initiate granule fusion with the membrane synaptobrevin-2, a v-

SNARE that is integrated in the vesicle membrane fuses with t-SNAREs syntaxin-1 and SNAP-25 which 

are located in the target cells membrane, with MUNC-18 playing a key role (Röder et al, 2016). 

 

The insulin secretion process is biphasic, and the secretory granules are stored in three separate pools 

known as the docked, reserve and readily releasable pools. The docked pool is used in the first phase. 

The first phase peaks at approximately 5 minutes following glucose stimulation and it is in the first 

phase where most of the insulin is secreted. The second phase occurs considerably more slowly, where 

the remainder of the insulin is secreted (Röder et al, 2016).  The second phase uses the reserve pool 

of secretory granules and is less robust but can be sustained for a number of hours if elevated blood 

glucose levels persist (Jewell et al, 2010). The two phases use different pools of insulin containing 

granules, the first phase uses membrane fused granules known as the readily-usable pool and the 

second phase uses unfused granules from deeper with in the cell known as the storage pool. The 

unfused granules in the storage pool replenish the readily-usable pool if they are not used in the 

second phase (Jewell et al, 2010). 
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Figure 1.3: Glucose-stimulated insulin secretion from pancreatic β-cell. Glucose enters the cell via the constitutively active 

GLUT2 membrane located in the plasma membrane. The glucose gets metabolised which increases the ATP:ADP ratio and 

leads to closure of the ATP-dependent potassium channel. The closing of the ATP-dependent potassium channels results in 

depolarisation of the plasma membrane and the opening of the voltage-dependent calcium channel, the opening of this 

channel allows calcium to influx into the cell resulting in an increase in intracellular calcium concentration levels. Following 

this, SNARE proteins enable vesicle fusion for insulin release.  Adapted from Jewell et al, 2010. 

 

 

1.1.3 Insulin Signalling 

 

The hormone known as insulin is able to stimulate glucose uptake into skeletal muscle and adipose 

tissue, which is pivotal for the maintenance of whole-body glucose homeostasis (Leney et al, 2009).  

Glucose is transported into muscle cells via facilitated diffusion by the main glucose transporter known 

as GLUT4. This transporter is a protein that is regulated by a number of factors including insulin, 

glucose concentration, muscle contraction and hypoxia (Klip et al, 1992).  There are currently 13 

glucose transporters, GLUT1-12 and HMIT known in the human genome, however GLUT4 is the most 

highly expressed in skeletal muscle and adipose tissue but not the only expressed GLUT transporter. 

It is known that in skeletal muscle GLUT5 and GLUT12 may also play a part in glucose up take and 

GLUT8, GLUT12 and HMIT are also thought to contribute to glucose up take in adipose tissue (Huang 

et al, 2005).  
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The tissue that is primarily responsible for post-prandial glucose utilisation is skeletal muscle, which 

accounts for up to 75% of glucose disposal. In skeletal muscle glucose up take normally occurs in one 

direction due to rapid intracellular metabolism of glucose into glucose-6-phosphate and subsequent 

glycolysis (Klip et al, 1992). Glucose is also taken up via insulin signalling in adipose tissue. Mammalian 

adipose tissue has numerous functions including; insulation and the production of hormones. 

However, its most important role is to store nutrients in an efficient and compact form and be able to 

mobilise stored energy for use when needed. Adipocytes have the ability to extract both lipids and 

sugars from the blood circulation, however, extracting glucose is more highly regulated which means 

glucose transport is rate limiting. Glucose transport into the adipocyte results in glucose oxidation and 

ATP production as a result. It is also the basis for fatty acid synthesis and the three-carbon chain that 

is required for esterification of fatty acids that are extracted from the blood (Summers et al, 2000). 

Glucose up take into the cell via GLUT 4 requires the activation of the insulin receptor, tyrosine kinase. 

This activation then leads to activation of phosphatidylinositol (PI)2 3-kinase pathway. PI 3-kinase then 

phosphorylates phosphatidylinositol 4,5 bisphosphate (PI(4,5)P2) and also has the ability to increase 

the intracellular accumulation of phosphatidylinositol 3,4,5-trisphosphate (PIP3) at the plasma 

membrane. It is this accumulation of PIP3 that results in the activation of Akt via two intermediate 

kinases known as 3-phosphoinositide-dependentproteinkinase (PDK1) and Rictor/mTOR (Huang and 

Czech, 2007) which is required for the translocation of GLUT4 to the plasma membrane (Ijuin and 

Takenawa, 2012).   

GLUT4 moves between the cytoplasmic storage site and the plasma membrane where most of the 

GLUT4 is located intracellularly when insulin signalling is not present, this is because the basal rate of 

exocytosis is exceeded by the rate of endocytosis. When insulin signalling occurs it significantly 

increases the rate of exocytosis, which in turn leads to the translocation of up to 50% of all the 

intracellular GLUT4 protein to the cell surface where it enables the uptake of glucose (Huang and 

Czech, 2007). 
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Figure 1.4 Glucose uptake via GLUT4 translocation. Extracellular insulin binds to the alpha-subunit of the insulin receptor, 

this results in activation of the beta subunit kinase activity and the recruitment of IRS-1/ IRS-1 recruits PI3K. PI3K employs 

PDK1 to the plasma membrane where it serves to activate AKT, which in turn phosphorylates PIP2 to generate PIP3, which 

attracts PDK1 to the plasma membrane, where it activates AKT. The role of AKT is to phosphorylate AS160 which targets Rabs 

present on GLUT4 containing vesicles. Vesicle fusion occurs via facilitation of SNARE proteins, resulting in GLUT4 incorporation 

into the plasma membrane for glucose uptake. Adapted from Jewell et al, 2010. 

 

 

1.1.4 Insulin degradation 
 

Both insulin uptake and degradation are features of insulin-sensitive tissues. Insulin has a plasma half-

life of between 4 and 6 minutes which enables the hormone to respond rapidly to changes in blood 

glucose concentrations (Duckworth et al, 1998). Under normal conditions almost all the secreted 

insulin is degraded intracellularly via receptor-mediated internalisation mechanisms. Once insulin is 

bound to the receptor as part of normal insulin signalling, it can either be recycled to circulation or 

internalised resulting in insulin degradation (Duckworth et al 1998). During receptor mediated 

degradation, the insulin receptor binds insulin and internalises it into endosomes. Once formed, 

endosomes rapidly acidify which results in the dissociation of insulin from the receptor and its 

degradation. The insulin receptor is then recycled to the cell surface along with either degraded, 

partially degraded or fully intact insulin (Pivovarova et al, 2015). 

A major site for insulin degrading enzyme (IDE)-mediated insulin degradation is the liver, which is 

responsible for clearing approximately 80% of endogenous insulin. IDE is a zinc-metalloendopeptidase 
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that can cleave and inactivate insulin and many other peptides involved in regulating blood glucose 

(Farris et al, 2003). IDE is made up of two domains of equal size, IDE-N and IDE-C that are joined 

together by a 28-amino acid residue loop (Hulse et al, 2009). The two domains come together to form 

an enclosed catalytic chamber and engulf the peptide substrate (Tang W, 2016). 

 

 

1.2 Diabetes 

 

Diabetes is group of diseases associated with metabolic dysfunction, that are all categorised by chronic 

and continual elevated glucose levels, known as hyperglycaemia. The hyperglycaemia that is found in 

diabetes results a dysfunction in insulin action, secretion or a combination of both and can lead to 

long-term complications including kidney damage, retinopathy, nerve damage, amongst others 

(American diabetes Association). Historically the diagnosis of diabetes was based on fasting blood 

glucose levels of higher than 7mmol/L, any blood glucose level above 11.1mmol/L, or an abnormal 

glucose test. However, this has now been modified to include glycated haemoglobin (HbA1C) levels of 

6.5% or higher. There are three main type of types of diabetes; Type 1 diabetes, Type 2 diabetes and 

gestational diabetes (World Health Organisation).  

Type 1 diabetes is triggered by an immune-mediated destruction of the insulin producing β-cells, due 

to the development of islet autoantibodies and accounts for between 5-10% of all diabetic cases 

(Atkinson et al, 2014 and American association of diabetes). This type of diabetes is one of the most 

common chronic diseases of childhood, but it can be diagnosed at any age. The peak of diagnosis 

however is between the ages of 5-7 and at or near puberty (Atkinson et al, 2014). 

Type 2 diabetes is the most common form of diabetes and has an increasing prevalence worldwide 

(Dardano et al, 2014). Type 2 diabetes development is connected with genetic factors and/or 

environmental factors including life style habits such as a high fat diet and lack of exercise that lead to 

decreased insulin secretion or insulin resistance and resultant insufficient insulin action (Seino et al, 

2010).  

Gestational diabetes is a disorder involving glucose metabolism that develops during pregnancy, with 

up to 5% of pregnancies affected (Seino et al, 2010 and Diabetes UK). Gestational diabetes usually 

arises in the second or third trimester due the body producing enough insulin to meet the increased 

demands of pregnancy. The risk factors involved with developing gestational diabetes include excess 

weight as women who are overweight or obese have a greater risk of gestational diabetes. (Diabetes 
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UK). Glucose metabolism disorders often return to normal after pregnancy but there is an increased 

risk in developing type 2 diabetes in the future for both mother and child (Seino et al, 2010). 

Type 2 diabetes is the primary focus of this research. Type 2 diabetes accounts for the majority of all 

cases with 90% of diabetes being type 2 diabetes (diabetes UK).   

 

1.2.1 Type 2 diabetes 
 

Type 2 diabetes (T2D) is characterised by both hyperglycaemia and hyperlipidaemia, which together 

contribute to the detrimental effect known as glucolipotoxicity. The onset of type diabetes is primarily 

caused by life style and genetics. The main risk factor associated with type 2 diabetes is being 

overweight or obese, with obesity accounting for approximately 80-85% of the overall risk (Diabetes 

UK). In England, data suggests that 90% of people with type 2 diabetes, aged between 16-54 are obese, 

whereas only 10% of people with type 2 diabetes are a healthy weight or underweight (Public Health 

England). Life style factors that contribute to the onset of diabetes independently of obesity include 

being physically inactive, cigarette smoking, excessive alcohol consumption and non-life style 

dependent factors that can result in T2D include ethnicity and age. (Hu et al, 2001).  

As well as a reduced life expectancy by approximately 10 years, there are other complications 

associated with uncontrolled diabetes. Diabetic retinopathy is currently the leading cause of blindness 

among adults in the western world and is characterised by the growth of vascular and retinal lesions 

that is caused by chronic exposure to high blood glucose concentrations. Another common 

complication cardiovascular disease. Patients with type 2 diabetes have higher atherosclerotic plaque 

formation, higher atheroma volume, and smaller coronary artery lumen diameter than non-diabetic 

individuals (Low Wang et al, 2016). 
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Table 1.1 Risk of complications associated with T2D. Associated comorbidity and risk of development associated with T2D. 
Adapted from Public Health England. 

 

Complication Additional risk of complication 

among people with type 2 diabetes 

Angina +76% 

Myocardial infarction +55% 

Heart failure  +74% 

Stroke +34% 

Renal replacement therapy +164% 

Minor amputation (below ankle) +337% 

Major amputation (above ankle) +222% 

 

 

 

 

1.2.2 Beta cell compensation 
 

Obesity is characterised by insulin hypersecretion and insulin resistance (Camastra et al, 2005), 

however, only 15-20% of obese individuals develop type 2 diabetes as euglycaemia, also known as 

normoglycaemia is maintained by beta cell compensation. Type 2 diabetes develops when β-cells are 

unable to secrete sufficient insulin to overcome insulin resistance (Terauchi et al, 1997).  The amount 

of insulin that is secreted by β-cells can vary but is dependent stimuli such as glucose concentrations 

and must meet the insulin demand from target tissues. Euglycaemia is maintained by a feedback loop 

between insulin sensitivity and insulin secretion. An increase in insulin demand occurs during normal 

body growth and to meet this demand the β-cell adapts both its mass and function to secrete sufficient 

insulin to maintain blood glucose homeostasis. The increase in β-cell mass in obesity is a compensatory 

process, the β-cell masses of obese but non-diabetic or pre-diabetic subjects are larger than lean, 

normoglycaemic individuals. The β-cell mass of obese individuals is known to increase by 30-40% with 

insulin secretion increasing by 100% (Plaisance et al, 2014). 

Glucose is considered to be the dominant driving force of increased β-cell mass during β-cell 

compensation with increased glucose glycolysis occurring in the β-cell (Zhang et al, 2016). The enzyme 

that is responsible for the glycolysis of glucose in the beta cell is glucokinase (Gck), which subsequently 

leads to the up-regulation of Irs2 expression as a result of increased cytosolic calcium levels. Increased 
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Irs2 activity has the ability to activate a signalling cascade that enhances β-cell replication, via Fox01 

and increases β-cell survival via PKB/Akt (Weir and Weir, 2007). 

 

 

Figure 1.5 Beta cell adaptation to obesity and onset of diabetes. Beta cells compensate by increasing in mass and function 

in response to increases blood levels in obese individuals. However, when compensation fails the onset of hyperglycaemia 

and diabetes begin, which can result in beta cell failure.  Adapted from Alejandro EU, 2015. 

 

 

1.2.3 Beta cell mass in type 2 diabetes 
 

A consistent state of glucolipotoxicity results in pancreatic β-cell dysfunction, including impairment of 

insulin secretion, reduction in insulin gene expression and apoptosis (Samesh et al, 2013). Subsequent 

to β-cell compensation during obesity and pre-diabetes, patients with type 2 diabetes demonstrate a 

decrease in beta cell mass of up to 65% by comparison to non-diabetic BMI-matched individuals 

(Plaisance et al, 2014).  

 

1.2.4 Inflammation in diabetes 

An increase in glucose concentration and circulating free fatty acids has the potential to trigger an 

inflammatory response in many tissues, not only the pancreas. It has been postulated that the initial 
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inflammatory response is initiated for β-cell repair and regeneration (Donathet al, 2009), but in type 

2 diabetes it results in β-cell death.  Interleukin-1β (IL-1β) is a proinflammatory cytokine that plays a 

crucial role in the inflammatory response (Fig. 1.6). IL-1β is known to be induced by elevated glucose 

levels (Maedler et al, 2002). It is produced by most cell types as an inactive precursor known as pro-

IL-1β in response to molecular motifs called pathogen associated molecular patterns (PAMPs) and 

regulate gene expression pathways via pattern recognition receptors (PRRs).  The production of pro-

IL-1β is known as the priming step, in order for secretion, the newly primed cell must interact with 

another PAMP or a danger associated molecular pattern (DAMP) that is released from a cell that has 

already undergone apoptosis to induce the secretion of active IL-1β (Lopez-Castejon and Brough, 

2011). The effects of IL-1 cytokines are regulated by the IL-1 type I receptor (IL-1RI). Together with the 

IL-1 receptor accessory protein (IL-1RAcP) they combine to initiate signal transduction. The activation 

of this complex by IL-1 results in the expression of genes that play a further role in inflammation 

(O’Neill and Adinarello, 2000)  

 

 

 

Figure 1.6 Glucose and free fatty acids result in beta cell dysfunction. Increased glucose and fatty acids result in up-

regulation of IL-1β release as part of the adaptive response (Stimulation). Chronic exposure of β-cells to glucose and fatty 

acids results in activation of IL-1R, which results in further release of IL-1β and activation of NF-κB via an auto stimulatory 

process (Amplification). The further activation and release of IL-1β results in cytokine and chemokine recruitment which can 

lead to increased macrophages, apoptosis, fibrosis and amyloidosis and reduction in insulin production. Adapted from Donath 

et al.2009. 
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There are multiple homologues for IL-RI, which has resulted in the formation of a superfamily known 

as IL-1R/TLR superfamily, in which all members share a highly conserved cytosolic domain (TIR 

domain). A member of this superfamily is known as MyD88 which operates only in the cytosol and 

appears to be an adapter protein to members of the superfamily. MyD88 is known to connect the TIR 

domain of superfamily members to downstream signalling proteins via homotypic interactions (O’Neill 

and Adinarello, 2000). MyD88 is also a known recruiter and activates TRAF-6 via the recruitment of 

IRAK-1 and IRAK-2. This in turn can lead to the activation of kinases known as TAB-1 and TAK-2 that 

activate NIK resulting in the activation of NF-κB (O’Neill and Adinarello, 2000). 

IL-1β is able to induce Fas expression (Maedler et al, 2002). Fas also known as CD95 or TNFR6 is a cell-

death receptor that is able to induce cell apoptosis via a fas ligand (FasL). FasL are mostly expressed 

on activated T cells but are also constitutively expressed by beta cells, however beta cells do not 

express Fas under normal physiological conditions (Darville and Eizirik, 2001). FasL initiates 

programmed cell death via binding to its receptor and activating caspase-8, which cleaves procaspase-

3 resulting in cell death (Jacobsen). It has also been considered that the activation of NF-κB is 

necessary for Fas activation to occur (Maedler et al, 2002) and in many instances NF-κB has been seen 

as a signalling mediator for IL-1. The way in which NF-κB becomes activated is by IL-1β interacting with 

its receptor which results in tyrosine kinase activity which in turn either directly or in directly 

phosphorylates IKB. The phosphorylated IKB releases NF-κB which translocate to the cytosol (Kwon et 

al, 1995). 
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Figure 1.7 IL-1 induced singnalling pathway. IL-1 triggers a signalling pathway via a TIR domain and results in the activation 

of the transcription factor NF-κB.  Adapted from O’Neil and Adinarello 2000. 

 

It is recognised that long-chain fatty acids are also able to stimulate IL-1β expression and induce IL-1-

dependent cytokines such as IL-6 and IL-6, which alongside other proinflammatory cytokines such as 

TNF-α increased expression of various chemokines including; CXCL1 (KC), CXCL2 (MIP-2), MCP-1 and 

MIP-1α (Donath et al, 2009). CXCL1 and CXCL2 are chemoattractants for neutrophils to the site of 

inflammation. Neutrophils express the receptor CXR2 and both CXCL1 and CXCL2 both bind to the 

receptor (Fillipo et al, 2008). 

 

 

1.3 Current treatments for Type 2 diabetes 
 

Diabetes can be diagnosed based on the symptoms presented by the individual including polyurea, 

polydipsia, polyphagia and unexplained weight loss. There are also a number of tests that can be 
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conducted to diagnose prediabetes and diabetes. The diagnosis of prediabetes and type 2 diabetes 

can be made according to the level of glycated haemoglobin (HbA1c). According to guidelines outlined 

by the World Health Organisation a result considered non-diabetic is 6% or below (<42mmol/mol), a 

result considered pre-diabetic is 6-6.4% (42-47mmol/mol) and a result indicating the presence of type 

2 diabetes is 6.5% or more (>48mmol/mol). Another test carried out to diagnose type 2 diabetes is the 

fasting plasma glucose test. This test is carried out following a 10 hour fast from both food and drink 

and measures the amount of glucose in a sample of blood. The world health organisation defines a 

non-diabetic result as <6.1mmol/l (110mg/dl), a pre-diabetic result is 6.1-6.9mmol/l (111-125mg/dl) 

and diabetic result is considered >7.0 mmol/l (>125mg/dl) (Reinehr T, 2013. Rosenbloom et al, 2008). 

There are currently multiple treatments available for type 2 diabetes that are described below. 

 

1.3.1 Metformin 
 

Metformin is the first line treatment for type 2 diabetes and is the most commonly prescribed type 2 

diabetes treatment, taken by approximately 150 million people worldwide. It is also the only drug that 

can be used to treat pre-diabetes as it able to delay the onset of type 2 diabetes (Marin-Penalver et 

al, 2016. Pryor and Cabreiro, 2015).  

Metformin is hydrophilic and therefore cannot passively diffuse through cell membranes, instead 

metformin relies upon the organic cation transporter-1 (OCT-1) for its clinical action. Once it has 

entered the hepatocyte metformin accumulates in the mitochondrial matrix, where it inhibits 

mitochondrial respiration at the respiratory chain complex-1. Because of this inhibition, ATP levels 

decrease, and ADP and AMP levels increase. The increase in AMP kinase activity increases insulin 

action and reduces hepatic gluconeogenesis therefore reducing blood glucose levels (Hostalek et al, 

2015. Pryor and Cabreiro, 2015).  

 

1.3.2 Sulphonlyureas 
 

The function of sulphonlyureas is to stimulate release of insulin from pancreatic β-cells by binding to 

ATP-sensitive potassium channels (Aquilante CL, 2010). They act by binding to the specific sulphonyl 

receptor on pancreatic β-cells known as sulphonylureas receptor 1 (SUR1), which blocks the channel 

preventing the influx of potassium ions. The reduction in potassium ions results in membrane 

depolarisation and the opening of the calcium channel. The influx of calcium subsequently results in 

the exocytosis of insulin (Sola et al, 2015). Sulphonylurea drugs are only effective when there are 
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residual pancreatic β-cells present, as their main effect is to increase plasma insulin concentrations 

directly from the β-cell (Sola et al, 2015).  

 

1.3.3 Gliptins (DPP-4 inhibitors) and Incretin Mimetics 
 

 Following the ingestion of food, neuroendocrine cells in the gastrointestinal tract release hormones 

such as incretins glucagon-like peptide (GLP-1) and glucose-dependent insulinotropic peptide (GIP), 

which play a part in the increase of nutrient-stimulated pancreatic insulin release, supress glucagon 

secretion and increase glucose disposal (Duez et al, 2012). However, gliptins also known as DPP-4 are 

cell surface serine proteases that cleave and inactivate peptides such as GLP-1 and GIP. There by using 

DPP-4 inhibitors there will be a reduction in the breakdown of GLP-1 and GIP and an increase in 

nutrient-stimulated insulin release and lower blood glucose (Kim et al, 2014). 

 

1.3.4 GLP-1 agonists 
 

Glucagon-like peptide-1 (GLP-1) is a peptide hormone secreted from endothelial L cells in the intestine 

following the intake of food. L cells are located in the mucosa of the intestine and function as a nutrient 

sensor and mediate the release of GLP-1 in response to glucose, fatty acids and amino acids. GLP-1 

acts within the intestinal wall to activate reflexes that are a central part of gastric mobility and its role 

is to slow the gastric emptying, which augments insulin secretion.  GLP-1 may also be found in the 

circulation and acts as a hormone at the islets of Langerhan in the pancreas to stimulate insulin 

secretion, however, GLP-1 has a short half-life as it is rapidly degraded by DPP-4 (Nadkarni et al, 2014. 

Heppner et al 2015). The GLP-1 receptor agonists elicit their action by directly interacting with the 

GLP-1 receptor and work to increase GLp-1 activity, rather than preventing its degradation (Heppner 

et al, 2015).  

 

1.3.5 Sodium-glucose transporter 2 (SGLT2) Inhibitors 
 

SGLT2 inhibitors act by inhibiting the renal glucose reabsorption resulting in glucose excretion in the 

urine and subsequent reduction in plasma glucose (Nauck MA, 2014). Glucose reabsorption from the 

glomerular filtrate occurs in a process that is insulin-independent and is mediated by sodium-glucose 

co-transporters (SGLT) proteins. SGLTs are membrane bound proteins that actively transport glucose 
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against its concentration gradient and therefore requires an energy source. Approximately 90% of 

filtered renal glucose is reabsorbed by SGLT2 which a low-affinity high capacity transporter and the 

remaining 10% by SGLT1, a high-affinity, low-capacity transporter (Gerich JE, 2010. Triplett CL, 2012). 

 

1.3.6 Acarbose 
 

This treatment is an α-glucosidase inhibitor that prevents the absorption of carbohydrates during 

digestion in the small intestines, therefore reducing the increase in blood glucose concentrations that 

occurs after a meal. Acarbose can also decrease HbA1c levels by approximately 0.5% (Gu et al, 2015). 

Acarbose is thought to regulate glucose homeostasis via the MAPK pathway and suppression of 

proinflammatory cytokines by releasing miR-10a-5p and miR-664 in the ilium (Zhang et al, 2013). 

 

1.3.7 Thiazolidinediones 
 

Pioglitazone belongs to the Thiazolidinedione class of drugs for type 2 diabetes and is a strong insulin 

sensitizer.  It works by binding to the peroxisome-proliferator activated receptor gamma, which results 

in enhanced muscle, liver and adipose tissue sensitivity to insulin and also results in a reduction of 

both fasting and post-prandial blood glucose concentrations (Triplett et al, 2010). 

 

1.3.8 Nateglinide 
 

The function of this class of drugs is to act as an insulin secretagogue and induces rapid insulin 

secretion synergistically with food intake. This class of drug works in a similar way to sulphonylureas, 

where its action is mediated via the β-cell potassium ion channel, where the binding of nateglinide 

results in the closure of the potassium channel and ultimately the release of insulin (Ball et al, 2004). 

 

 

1.4 Glucolipotoxicity 
 

The term glucolipotoxicity refers to the combination of both high blood glucose (hyperglycaemia) and 

elevated fatty acid levels (hyperlipidaemia) and the harmful effects that the combination has on 

pancreatic β-cells regarding both function and survival (Poitout et al, 2010). Individually, raised 

glucose and free fatty acids elicit negative effects on the β-cell, but in combination both nutrients are 
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synergistically harmful, which has led to the concept of glucolipotoxicity (Poitout et al, 2010). It is now 

widely accepted that there must be increased glucose levels to facilitate lipotoxic effects, including 

inhibition of insulin secretion and apoptosis (Somesh et al, 2013). To replicate Glucolipotoxic 

conditions cells are exposed to fatty acids and elevated glucose levels. The two fatty acids used are 

oleate, palmitate, which are the most abundant FFAs in human nutrition and therefore in circulation 

(Donath et al, 2009). Oleate is the most common unsaturated fatty acid that is found in the diet and 

is classified as a monounsaturated omega-9. It is found in animals and vegetable fats and oils. Despite 

being used here as a damaging agent, there is evidence to suggest that oleic acid has anti-apoptotic 

and anti-inflammatory properties. Palmitic acid is the most common saturated fatty acid found in the 

diet, it can be sourced from animals, plants and microorganisms. In the diet it can be found in meats 

and dairy products.  

 

1.4.1 Glucotoxicity 
 

Glucotoxicity is the term given to chronically elevated blood glucose concentrations that ultimately 

lead to impaired β-cell function and resulting apoptosis. Acutely, an increase in blood glucose 

concentration has a stimulatory effect on the transcription factors that are involved in encoding 

preproinsulin (ins) and on insulin release. However, a prolonged exposure the hyperglycaemia reduces 

the transcription of the ins gene and leads to the reduction of insulin secretion following the reduction 

of Pdx-1 and MafA transcription factors (Ogihara and Mirmira, 2010). 

One proposed mechanism of hyperglycaemia-induced β-cell dysfunction is oxidative stress.  

Glucotoxicity generates oxidative stress by causing an accumulation of excess reactive oxygen species 

(ROS). Pancreatic β-cells are vulnerable to oxidative stress which is considered to be the cause of tissue 

damage that accompanies chronic hyperglycaemia and can induce a reduction in β-cell mass and 

apoptosis. The vulnerability of pancreatic β-cells to oxidative stress may be due to the lack low levels 

of antioxidants such as glutathione peroxidase dismutase. Glutathione peroxidase dismutase is an 

antioxidant enzyme that protects cells from ROS and subsequent downstream damage. The reason 

for the lack of antioxidants in β-cells is because ROS are constantly present at low levels and β-cells 

respond to elevated glucose levels via acute regulation of various reactive oxygen species and reactive 

nitrogen species, therefore ROS are required to be present for glucose homeostasis. However, chronic 

elevation of ROS can be damaging to the β-cell.   

ROS is a collective term given to chemical species that are formed from the incomplete reduction of 

oxygen, whereas RNS refers to all oxidation states and reactive adducts of nitrogenous nitric oxide 
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synthase products (Pitocco et al, 2013). The mitochondrial respiratory chain is a main source of ROS. 

The inner membrane complexes I and III generate highly reactive superoxide (O2∙) by the single-

electron reduction of oxygen. As this is a charged species it is not able to cross membranes freely. 

Superoxide is converted to hydrogen peroxide (H2O2) which is less reactive. This is able to diffuse 

across membranes through aquaporins and is then converted to highly reactive hydroxyl radicals (HO∙) 

(Gerber and Rutters, 2017).                                                                                                                                                                                             

It’s thought that the generation of superoxide is the first step in the ROS-generating cascade that leads 

to the production of other ROS/RNS. In addition to superoxide forming hydroxyl radicals, it can also 

react with nitric oxide (NO) to form a highly reactive nitrogen free radical known as peroxynitrite 

(ONOO-) (Keane et al, 2015).  

 

1.4.2 Lipotoxicity 
 

Lipotoxicity is the term given to describe the dysfunction of non-adipose tissue and cells caused by 

chronic exposure to elevated free fatty acid levels. When plasma levels of free fatty acids both prandial 

and postprandial exceed the uptake capacity of adipose tissue, the non-adipose tissue becomes 

overloaded with lipids. This results in metabolic imbalances, dysfunction and/or disease.  (Graier et al, 

2009). In normal physiology lipids have multiple biology functions including; being an energy reserve, 

serving as a signalling molecule and are major membrane components.  In β-cells, lipases remove lipids 

from plasma lipoproteins, the lipids are then converted into long-chain acyl-CoA that can then be 

transported to the mitochondria and subsequently directed into the β-oxidation pathway to provide 

energy (Véret et al, 2014). However, in high glucose concentrations β-oxidation is reduced, thus lipid 

detoxification is reduced, resulting in an accumulation of intracellular long-chain acyl-CoA which 

mediates the toxic effects of chronically elevated free fatty acids (El-Assaad et al, 2015). 

Another possible mechanism by which chronically elevated FFAs has a detrimental effect on 

pancreatic β-cells is via the induction of uncoupling protein (UCP2). Pancreatic UCP2 has a negative 

effect on insulin secretion by reducing the increases in ATP production that follows glucose 

metabolism (Joseph).  the presence of glucotoxicity intensifies the negative effects of lipotoxicity 

(Bachar et al, 2009). 
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1.4.3 Glucolipotoxicity-induced endoplasmic reticulum stress 
 

A mechanism by which excess free fatty acids and glucose induce β-cell dysfunction and apoptosis is 

via the activation of an adaptive response known as ER stress. This takes place in the endoplasmic 

reticulum (ER) which is an organelle involved in transmembrane lipid and protein biosynthesis, and 

calcium ion signaling and storage (Eizirik et al,2008).  Lipotoxicity is the main driver of ER stress but is 

intensified by the presence of glucose, which combined is known as glucolipotoxicity. Glucolipotoxicity 

activates a network known as the unfolded protein response (UPR) which has the purpose of restoring 

regular ER function, degrading proteins that have been misfolded and activating signaling pathways 

to subsequently upregulate the production of chaperones that are involved in protein folding.  (Bachar 

et al 2009. Cnop et al, 2017). 

ER stress results in an increase in binding of misfolded proteins to the ER chaperone known as 

immunoglobulin heavy-chain binding protein (BiP) resulting in the activation of many ER membrane 

proteins including PKR-Like ER kinase (PERK) inositol-requiring protein-1 (IRE1) and activating 

transcription factor 6 (ATF6) (Bachar et al, 2009). These membrane proteins are inactive when bound 

to the luminal ER chaperone BiP, however they become activated when BiP separates from their 

luminal side to play a role in protein folding which subsequently initiates ER-chaperone reduction. The 

function of the PERK is to phosphorylate the translation initiation factor (elF)2α, thus hindering protein 

synthesis and decreasing the functional demand on the ER. As well as this, elF2α phosphorylation 

increases the translation of ATF6, which is responsible for the transcription of both chaperones and 

CHOP. CHOP initiates the expression GADD34, that subsequently dephosphorylates PP1 and elF2α for 

reduction of translational inhibition. The newly activated IRE1 alternatively splices X-box binding 

protein 1 (XBP-1) mRNA. Spliced XBP-1 then induces genes that are involved in ER expansion, protein 

folding and degradation of misfolded proteins. Activated ATF6 translocate to the Golgi and are cleaved 

from the membrane by proteases known as S1P and S2P, a process responsible for inducing 

transcription of ER-chaperones such as BiP. When the unfolded protein response fails to relieve 

glucolipotoxicity-induced ER stress, the cell undergoes apoptosis (Cnop et al,2017. Bachar et al,2009). 

If the cell cannot resolve the protein-folding defect, cell-death signalling pathways are activated.  

 

 1.4.4 Glucolipotoxicity induced JNK activation 
 

Prolonged exposure to glucolipotoxicity-induced ER stress and resulting apoptosis in β-cells is 

associated with the activation of cJun N-terminal kinase (JNK). JNKs are members of the mitogen-

activated protein kinase (MAPK) family (Prause et al, 2014). There are 3 subtypes of JNK, JNK1 and JNK 



23 
 

2 are found ubiquitously whereas JNK3 is expressed only in the brain, testis and pancreatic β-cells 

(Solinas and Becattini, 2017).  The action of JNK varies depending on the apoptotic stimuli. 

Proinflammatory cytokine-induced β-cell apoptosis results in rapid and transient activation of JNK, 

whereas glucolipotoxicity-induced ER stress results in a more pro-longed JNK activation. In addition to 

ER stress JNK activation is initiated by glucolipotoxicity via oxidative stress and ROS formation. 

However, ER stress is able to associate with the mitochondrial or intrinsic death pathway via the p53-

upregulated modulator of apoptosis (puma) and via the JNK-dependent up-regulation of death protein 

(DP5) in response to GLT. 

 

 

1.5 Tumour Necrosis Factor Receptors 
 

Tumour necrosis factors are cytokines that mediate multiple effects such as cell proliferation, 

apoptosis, inflammation, immunomodulation, amongst others (Aggerwal BB, 2000). TNFs are 

activated by their associated ligands. Ligands are type II membrane proteins that are membrane 

bound and/or soluble. The role of the TNF ligand is to interact with one or more specific TNF receptor 

to form a complex that makes up the tumour necrosis factor receptor superfamily (Hehlgans and 

Pfeffer, 2005).   

The tumour necrosis factor receptor (TNFR) superfamily (TNFRSF) is made up of 29 transmembrane 

receptors. All members of the TNFRSF contain an extracellular domain that is used to bind to ligands 

and an intracellular domain that is responsible for mediating the activation of downstream pathways 

(Li et al, 2013).  The TNFR cytoplasmic domain can vary in length with between 40-200 residues which 

are also varied in homology. TNFRs can be broken down into two groups based on whether they 

contain a ‘death domain’ (Li et al, 2013).  The TNFRs that contain a death domain in the cytoplasmic 

domain include TNFRSF6/FAS, TNFR1, TRAIL-1, TNFRSF10A/ Death receptor 4, TNFRSF10B/Death 

receptor 5, TNFRSF10D/TRAIL-R4, TNFRSF25/Death receptor 3 and TNFRSF27.  The activation of the 

death domain containing receptors results in the recruitment of intracellular death domain containing 

adaptors such as FAS-associated death domain (FADD) and TNFR-associated death domain (TRADD). 

The recruitment of these molecules subsequently activates the caspase cascade and induce apoptosis 

(Hehlgans and Pfeffer, 2005). 

The TNFR group that doesn’t contain a death domain include; TNFRII, TNFRSF7, TNFRSF8, TNFR5, LTβR, 

OX40, 4-1BB, BAFFR, B-cell maturation antigen (BCMA), TNFRSF11A, transmembrane activator and 

calcium-signal modulating cyclophilin ligand (CAML) interactor (TACI), Fn14, activation induced TNF-
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receptor (AITR), and X-linked EDA-A2 receptor (XEDAR).  All the receptors that do not contain a death 

domain instead contain TNF-receptor associated factor (TRAF) interacting motif (TIM) in the 

cytoplasmic domain. The activation of TIM subsequently leads to the recruitment of TRAF family 

members which in turn leads to the activation of various signal transduction pathways, such as NF-κB. 

 

1.5.1 TNFR5/CD40 Structure 
 

TNFR5 also known as CD40 is best known as a costimulatory molecule in B-cells and T-cells (Elgueta et 

al, 2009) It is a membrane glycoprotein belonging to the tumour necrosis receptor family (TNFR) (Klein 

et al, 2005). Costimulatory molecules are separated into two broad group based their homologies to 

original group members. The groups are, the CD28/B7 family and the Tumour necrosis factor receptor 

family, which CD40 fall into. Other members of the TNFR family are TNFR4 (OX40), TNFR13c (BAFF-R), 

TNFR13b (TAC1), TNFR17 (BMCA), and TNFR11a (RANK). This group is further subdivided based on 

function.  

CD40 is a type I transmembrane protein with a molecular weight of 48 kDa and contains 193 amino 

acid extracellular domain. The extracellular domain contains 22 cysteine residues that are conserved 

between TNFR superfamily members (Elgueta et al, 2009).  

CD40 is activated upon binding with its ligand known as CD154 or CD40L. CD40L is a type II 

transmembrane protein and its molecular weight can vary between 32 and 39kDa due to potential 

post-translational modifications. CD40L is also a member of the tumour necrosis factor superfamily, it 

has a characteristic extracellular structure that is made up of an α-helix ‘sandwiched’ between two β-

sheets, which is beneficial for the trimerization of CD40L (Elgueta et al, 2009). CD40 ligation leads to 

stimulation of several significant signalling molecules including NF-κB, c-Jun kinase (JNK) and p38 

(Hostager and Bishop, 2013). 

 

Both CD40 and CD40L expression is most commonly associated with immune cells, as CD40 was 

initially characterised on B cells and CD40L is expressed primarily on activated T cells and B cells during 

inflammation, it’s now known that CD40 and CD40L are also expressed in non-immune cells including 

pancreatic duct cells (Barbé-Tuana et al, 2006). The vast expression of both CD40 and CD40L indicates 

a pivotal role in different cellular immune responses (Elgueta et al, 2009). 
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1.5.2 CD40 Ligand  
 

The CD40 ligand (CD40L) that is also known as CD154 belongs to the TNF superfamily. CD40L was first 

identified on activated T cells which induced B cell activation upon binding to CD40 on the B cell 

surface, resulting in increased proliferation and IgG-class switching (Michel et al, 2017). It has been 

identified that as well as the full length 33kDa CD40L that forms trimeric complexes on the cell surfaces, 

a shortened 18kDa version of CD40L exists that lacks the cytoplasmic tail, the transmembrane domain 

and parts of the extracellular domain. This truncated and soluble version of CD40L (sCD40L) is 

generated by shedding membrane anchored CD40L by various matrix metalloproteinases (MMPs) and 

disintegrin metalloproteinases (ADAMs) (Michel et al, 2017). The present study observes the potential 

activation of CD40 by ligation to CD40L in pancreatic β-cells rather than in T cells, where it is known 

that CD40L is released from the membrane of T cells by ADAM17 and ADAM10 upon engagement with 

CD40 (Moss and Minond, 2017).  CD40 and its ligand are not only expressed on immune cells but on 

non-immune cells including platelets, endothelial cells, fibroblasts, pancreatic islet β-cells and 

pancreatic ductal cells (Seijkens et al, 2012). According to Moss et al, CD40L is shed from the cell 

surface of any cell type that has ADAM17. A study conducted by Stutzer et al (2012) identified that 

multiple sheddases are present on the surface of β-cells including beta-site amyloid precursors protein 

cleaving enzymes 1 and 2 (BACE1 and BACE2) and more importantly members of the ‘a disintegrin and 

metalloproteinase’ (ADAM) family. 

 

1.5.3 TRAF recruitment and NF- κB activation 
 

Tumour necrosis factor associated proteins (TRAFs) are cytosolic adapter proteins that work as 

signaling intermediates for different receptors including; tumour necrosis factor super family 

receptors, Toll-like receptors, NOD-receptors, and others. TRAF proteins are known to bind to the 

cytoplasmic domain of CD40 subsequent to its ligation and potentially initiate signal transduction and 

NF-κB activation. The receptors that TRAF proteins interact with possess no catalytic activity, the 

activation of downstream pathways such as NF-κB are thought the be controlled predominantly by 

TRAF proteins, however the exact mechanism by which TRAF proteins regulate such activity remains 

unknown (Hayem et al, 2014).   
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Figure 1.8 Structural composition of TRAFs. Structural domain of seven TRAFs, identifying Zinc Ring (Zn Ring), Zinc fingers 

(Zn Fingers), coiled-coil domain (TRAF-N), TRAF-C domain, nuclear localisation signals and WD40 repeats. Adapted from Xie 

P, 2013. 

 

There are currently 7 known members of TRAF family and they are all similar in structure (Fig 1.8). The 

first six TRAFs share a conserved C-terminal TRAF domain and all have an N-terminal. In most TRAFs 

the N-terminal contains a RING finger motif and a variable range of zinc finger structures that are 

arranged into CART domains. TRAF7 was more recently identified as a TRAF protein based on its 

structure possessing a RING and Zinc-finger domain similar to the other TRAF protein, however TRAF 

7 doesn’t possess a C-Terminal TRAF domain (Hokayem et al, 2017).  TRAF1 however does not contain 

the RING finger motif and the additional zinc finger structures are not arranged into CART domains. 

TRAF1 is known to directly bind to CD30. CD40 is involved in CD30-mediated NF-kB activation as it 

contains multiple functional NF-κB binding sites within the promoter (Schwenzer et al, 1999). TRAF2 

is spread throughout the cytoplasm of cells when unstimulated but are recruited to the plasma 

membrane following CD40 ligation (Hostager and Bishop, 2013).  The activation of NF-κB occurs via a 

number of potential mechanisms in both the canonical and non-canonical pathways. The activation of 

the canonical NF-κB pathway involves TANK (I-TRAF). TANK is a TRAF binding protein that possesses 

both inhibitory and stimulatory properties. The stimulatory property of TANK is evident in its ability 

to activate NF-κB in the presence of low levels of TRAF2. This stimulatory action is dependent on the 
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N-terminal domain of TANK interacting with the TRAF2 (Pomerantz and Baltimore, 1999).  TRAF3 is 

able to bind to the CD40 receptor via the binding toTRAF5 (Leo et al, 1999). Upon binding to TRAF5 it 

plays a role in initiating the activation of NF-κB (Ni et al, 2000). However, it has also been reported 

that the up-regulation of TRAF3 blocks the activation of CD40. TRAF4 is both structurally and 

functionally an atypical member of the TRAF superfamily in that it works to negatively regulate the 

inflammatory signalling downstream of agonists such as tumour necrosis factors.  TRAF4 inhibits the 

activation of NF-κB by binding to the Nod-like receptor family member, NOD2 (Marinis et al, 2012). 

TRAF6 is dissimilar to other TRAFs as it can participate in signal transduction from IL-1R/TLR 

superfamily, whereas the other TRAFs mediate signals from only TNFs. Also, in CD40 signalling, TRAF6 

is able to mediate diverse effector functions downstream or is able to collaborate with TRAF2. The 

mediation elicited by TRAF6 is important for p38 MAP kinase activation, CD40-induced IL-6 secretion 

and plasma cell survival (Wu and Arron, 2003).   TRAF7 is also distinct to the other TRAF members as 

they interact with protein kinase members via the TRAF domain, instead TRAF7 uses the WD40 

repeats-containing region to interact with MEKK3. MEKK3 is a pivotal signaling molecule in TNF-

induced NF-κB activation pathway, and the expression of both MEKK3 and TRAF7 results in the 

activation of p38 MAP kinase and JNK (Zotti et al, 2012).  

 

1.5.4 TNFR5/CD40 and Diabetes 
 

There is increasing evidence linking CD40 and CD40L to inflammation associated with type 2 diabetes. 

Chronic inflammation is a characteristic of type 2 diabetes and manifests in the pancreas, adipose 

tissue, liver, vasculature, and the circulation. The inflammatory response is associated with an increase 

in pro-inflammatory cytokines expression, including IL-1β and IL-6, which are induced and maintained 

by oxidative stress and glucolipotoxicity. The expression of CD40 on pancreatic β-cells increases in 

response to proinflammatory cytokines such as IL-1β, TNF-α, and IFN-γ. Whereas the membrane-

bound CD40L is expressed on immune cells that infiltrate the diabetic pancreas (Seijkens et al, 2012). 

 

1.6 Nuclear Factor kappa B 
 

Nuclear factor kappa B (NF-κB) is a family of ubiquitously expressed transcription factors that have 

the primary function of regulating the induction of genes involved in immune and inflammatory cell 

function (Pomerantz).  The NF-κB family includes; NF-κB1 (p50/p105), NF-κB2 (p52/p100), p65 (RelA), 

RelB, and c-Rel (Tak and Firestein, 2001). All members have the ability to homodimerize and form 
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distinct heterodimers with other NF-κB family members, with the most common heterodimer being 

P50 or p52 subunit and p65, these members contain transactivation domains (TAD) which are 

necessary for gene induction (Tak and Firestein, 2001).  Each member has a 300-amino acid Rel 

homology domain (RHD), this domain has multiple functions including interacting with iκB, 

dimerization, interacting with DNA and translocation to the nucleus.  

In the majority of cell types NF-κB is activated by the canonical pathway (Fig 1.9) where it is 

sequestered in the cytosol in its in inactive form attached to the NF-κB inhibitor known as iκB (Zhang 

et al, 2016). The iκB family of inhibitors are related proteins that all of have a core of six or more 

ankyrin repeats, an N-terminal regulatory domain and C-terminal that contains a PEST motif. The most 

commonly known member of the iκB family is iκBα, which is known to bind to NF-κB dimers and block 

their nuclear localisation sequence, resulting in NF-κB being trapped in the cytoplasm. For NF-κB to 

translocate to the nucleus NF-κB must be activated and the NF-κB-iκB complex disrupted (Karin M, 

1999). The activation of NF-κB and its nuclear translocation is known to play a key role in inflammation 

through its ability to induce transcription of proinflammatory genes (Tak and Firestein, 2001). 

 

 

Figure 1.9: Canonical activation of NF-κB. Activation of NF-κB p50/p65 occurs via the degradation of its inhibitor known as 

IκB. Following the degradation of the inhibitor the NF-κB p50/p65 can translocate the nucleus where it acts as a transcription 

factor. Abcam.com 

Another mechanism of NF-κB activation is via the non-canonical pathway.  
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The non-canonical pathway is involved in immune cell differentiation and maturation (Shih et al, 

2011).  The non-canonical pathway differs from the canonical pathway by using a mechanism that 

relies on the inducible processing of p100 instead of IKβ degradation (Fig 1.10). Another major 

difference between the canonical and non-canonical pathway is the mechanism of activation. The 

canonical pathway responds to stimuli from diverse immune receptors and leads to rapid but 

transient NF-κB activation whereas the non-canonical NF-κB pathway relies on phosphorylation-

induced p100 processing, which is triggered by signalling from a subset of TNFR members, including 

CD40. This pathway is dependent on NIK and IKKα, but not on the trimeric IKK complex, and 

mediates the persistent activation of RelB/p52 complex (Sun S, 2011). 

 

 

 

Figure 1.10 Non-canonical Activation of NF-κB. The non-canonical pathway is activated by members of the TNFR family 
utilises the phosphorylation induced processing of p100 to activate NF-κB.  
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1.7 GLT effect on mitochondria function 
 

This project also focuses on GLT-induced disruption of the citric acid cycle and the resulting effect on 

fatty acid synthesis, Cholesterol synthesis and histone acetylation. 

 

1.7.1 Citric Acid cycle 
 

The process of respiration occurs in 3 main pathways: glycolysis, the citric acid cycle and electron 

transport (Fernie et al, 2004). The citric acid cycle is also known as the TCA cycle and the Krebs cycle 

takes place in the mitochondria of the cell. It is the process that is relied upon by all aerobic organisms 

to generate NADH and FADH2 that provides the reductive potential that is required to generate ATP 

(Mailloux et al, 2007). The citric acid cycle occurs directly after glycolysis and is made up of 8 steps. 

The first step of the cycle is the generation of citrate resulting from the condensation of acetyl-coA 

with oxaloacetate and is catalysed by citrate synthase. The second step is formation of isocitrate via 

cis-Aconitate, this reversible step is catalysed by aconitase. The third step results in the formation of 

α-ketoglutarate and CO2 which occurs due to the oxidative decarboxylation of isocitrate catalysed by 

the enzyme isocitrate dehydrogenase. Step four involves α-ketoglutarate undergoing oxidative 

decarboxylation catalysed by the α-ketoglutarate dehydrogenase complex and results in succinyl-CoA. 

Following this, succinyl-CoA is converted to succinate by succinyl-coA synthetase. The sixth step 

involves succinate undergoing oxidation to form fumarate by succinate dehydrogenase. In step seven, 

L-malate is generated by the reversible hydration of fumarate and is catalysed by L-malate. Finally, L-

malate is oxidised to form oxaloacetate by NAD-linked L-malate dehydrogenase (Berg et al,2005). 

  

1.7.2 Histones 
 

Histones are broken into two groups, the first group being the core histones including; H2A, H2B, H3 

and H4. All core histones are similar in structure with an unstructured amino-terminal tail and 

conserved central motif domain that is known as a histone fold. The histone fold is made up of an α-

helix with a short helix bordering either side. The core histones all have a N-terminal with a basic 

region that extends through the DNA and into the space surrounding the nucleosome. The second 

group are linker histones made up of H1 and H5. Histone H1 and H5 pivotal roles in regulating the 

structure of chromatin and contributes to linking the chromatin to higher order structures such as 

fibrils (Lyubitelev et al, 2015) Both linker histones have a conserved structure that is made up a N-

terminal tail, a central globular domain and C-terminal tail.  It is the role of the globular domain that 
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binds to the nucleosome core and the role of the C-terminal tail that interacts with linker DNA and is 

important for higher affinity binding of linker histones to the nucleosome.  

The main function of histones is to package DNA into chromatin, which are the basic subunits of 

nucleosomes. The nucleosome is made up of two copies of each histone, the H2A-H2B form a dimer 

and H3-H4 for a tetramer. Together the core histones form an octane which is the basic core particle 

of a nucleosome, around which ~147 base pairs of DNA wrapped in ~1.65 left-handed super- helical 

turns (Fig 1.11) (Zhou et al, 2015).  

 

 

Figure 1.11 Schematic representation of the organisation of genetic material. Nucleosomes are formed by DNA wrapped 

around  eight histone proteinns, which together form chromatin. whatisepigenetics.com.  

 

1.7.2.1 Histone Acetylation 

 

The post translational modification to histones known as histone acetylation is associated with altered 

transcriptional activity in eukaryotic cells. Acetylation of histones occurs at the lysine residue on the 

amino-terminal tail of the core histones by the addition of an acetyl unit, resulting in the removal of 

the positive charge of the histone tails and causing a reduced affinity between the histone and DNA. 

Consequently, histone acetylation alters nucleosomal conformation which can lead to increased 

accessibility of transcriptional regulatory proteins to chromatin templates (Struhl K., 1998). Histone 

acetylation is catalysed by a number of different histone acetyltransferases (HATs), which are 

responsible for transferring the acetyl group from acetyl-CoA to the lysine residue. The HATs work in 
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complexes with multiple proteins and these complexes regulate specific chromatin targeting. There 

are three main types of HATs including; Gcn5, MYST, and p300/CBP, all of which share a conserved 

binding site with acetyl-CoA. The most commonly found HAT is p300/CBP, which has the ability to 

acetylate all four of the core histones (Ogryzko et al, 1996). 

 The level of histone acetylation depends on intermediary metabolism in the citric acid cycle for 

supplying acetyl-coA (Gladieri et al, 2014).  Acetyl-coA is produced in the mitochondria of the cell via 

glycolysis prior to entering the citric acid cycle. Acetyl-coA to be used in fatty acid synthesis, 

cholesterol synthesis or histone acetylation must leave the mitochondria. However, as there is no 

transporter to transfer acetyl-coA across the mitochondria membrane into the cytoplasm, acetyl-coA 

condenses with oxaloacetate to form citrate which is transported out of the mitochondria and 

subsequently converted to acetyl-CoA and oxaloacetate by ATP-Citrate lyase (Fan et al, 2015. Wellen 

et al, 2009). This means that acetyl-coA has a key regulatory role and is a pivotal metabolite that 

connections metabolism with many other functions including; transcription and signaling. This also 

means that the amount of histone acetylation is dependent on nutritional intake and presence of ATP-

citrate lyase, which could be related to obesity-related type 2 diabetes (Wellen et al, 2009).   

 

1.8 Aims and Objectives 
 

1.8.1 GLT induced inflammation  

 

The initial aim of this thesis is to identify activation of inflammatory pathways resulting from INS-1 

pancreatic β-cell exposure to glucolipotoxic cell media. The reason for observing the induction of 

inflammation resulting from GLT is because elevated glucose and fatty acids are considered to be 

pivotal for the onset of type 2 diabetes (Boden and Laakso, 2004). This is also important based on the 

knowledge that over 85% of type 2 diabetics are overweight or obese and that overweight and obese 

individuals have increased blood glucose and circulating free fatty acids (Sepp et al, 2014). To elucidate 

potential inflammation resulting from exposure to GLT INS-1 cells will be incubated in media 

supplemented with 28mM glucose, 200µM palmitic acid and 200µM for 5 days, subsequently, 

alterations in protein, mRNA and activation will be observed and results will highlight potential cell 

damage inflicted by GLT. 
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1.8.2 CD40-induced Gene Modulation 

 

Based on a bespoke neural net analysis (NNA) map generated by Professor Graham Ball that identifies 

genes potentially down regulated in the presence of CD40, an aim in this project is to identify whether 

GLT-induced up-regulation of CD40 is able to modulate various genes and potentially play a role in the 

down regulation of insulin that is seen in type 2 diabetes and β-cells exposure to GLT. In order to 

achieve this CM cells are initially used to validate the findings of the NNA map, subsequent to this INS-

1 cells are used as CM cells are unable to function in GLT conditions. After validating the NNA map, 

the pathway will be further enriched to identify any genes that are associated with CD40 expression 

that also play a role in insulin secretion or expression. This is important as will identify a novel role for 

CD40 in insulin expression.  The strategy to achieve this aim will utilise siRNA transient knock down 

technology to determine the effect CD40 has on selected genes and the effect this has downstream 

on inhibition of binding-4 (ID4) and ultimately on insulin gene expression.   

 

1.8.3 Carnosine as a Potential Therapy 

 

A further aim in this project is to identify whether a dipeptide known as carnosine has the ability to 

prevent or reverse the potentially damaging effects of GLT. In order to achieve this aim, it will be 

observed whether the INS-1 pancreatic β-cell contains carnosine synthase and therefore has the 

ability to generate carnosine naturally in the presence of β-alanine, L-histidine and ATP. Following this, 

10mM of carnosine will be added to cell culture media ±GLT to identify whether it has the ability to 

reverse or prevent the inflammatory process seen in chapter which can potentially cause damage to 

the β-cell. 

 

1.8.4 GLT-induced effect on HNF4α 

 

HNF4α is commonly associated with a type of diabetes known as MODY caused by a mutation of the 

HNF4α gene resulting in β-cell dysfunction (Gardener and Tai, 2012). The aim of this chapter is to 

identify whether exposure of INS-1 cells to GLT for 5 days also has an effect on HNF4α gene expression 

and whether this has a further effect on insulin secretion via dysregulation of Rabs. The reason HNF4α 

is of interest is based on enriched MetaCore™ data generated by Dr Tania Jones, which identified 

HNF4α as a being down regulated following exposure to GLT. This is validated using RT-qPCR. siRNA 
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knock down technology is used to find any effect that HNF4α has on selected Rab genes and on insulin 

secretion using an insulin secretion ELISA. The findings in this chapter will highlight whether HNF4α is 

affected by diet (GLT) rather than, or as well as mutation to have an effect on insulin secretion and 

that the mechanism for disrupting insulin secretion is via down-regulation of Rab genes.  

 

 

1.8.5 GLT-induced Histone acetylation 
 

Another aim of this project was to observe whether GLT-induced disruption of the TCA cycle ultimately 

results in an increase in histone acetylation. In order to determine this, INS-1 cells will be incubated 

±GLT for 5 days and metabolites including citrate, IDH2 and IDH3 will measured using RT-qPCR. 

Subsequent to this ATP-citrate lyase levels will be measured ±GLT which is the enzyme responsible for 

generating cytosolic acetyl-coA from citrate. The pathways which utilise acetyl-coA will be observed 

for any disruption in response to GLT by measuring the protein and mRNA of certain components. If 

disruption is observed, then acetylation of histones will be measured using western blotting in both 

control and GLT conditions.  This chapter will determine whether exposure to GLT is sufficient to cause 

potential alteration in gene transcription via histone acetylation resulting from disruption of the TCA 

cycle.  
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Chapter 2 
 

Materials and Methods 
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2.0 CHAPTER 2: Materials and Methods 
 

2.1 Materials 
All reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA) and all plasticware purchased 

from ThermoFisher (Waltham, MA, USA) unless otherwise stated. 

 

2.2 Solutions and Buffers 
 

Table 1.1: Compositions of buffers used throughout the project. 

SOLUTION COMPOSITION 

RIPA buffer 150mM NaCl, 0.1% Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS, 50mM 

Tris HCL, H2O pH 8.0 

Sample buffer 40% glycerol, 240 mM Tris HCl, 8% SDS, 0.04% Blue Bromophenol, 5% β-

mercaptoethanol, pH 6.8 

Lower buffer 1.5 M Tris HCl, 0.4% SDS, pH 8.8 

Upper buffer 1.5 M Tris HCl, 0.4% SDS, pH 6.8 

Running Buffer 0.25 M Tris HCl, 2.5 M glycine, 1% SDS, pH 8.3 

Transfer buffer 60% Biorad transfer solution, 20% ddH2O, 20% Ethanol 

PBS 10X 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4 

Stripping buffer 6.25 ml Tris HCl 0.5M pH 6.8, 5 ml SDS 20%, 347μl β-mercaptoethanol 

 

 

 

 

2.3 Cell culture and cell growth 
 

 
 

  

INS-1 cells 24 hour after passage INS-1 cells in RPMI-1640 (5 days) INS-1 cells in GLT media (5 days) 
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2.4 Cell lines 

2.4.1 INS-1 cell line 
 

The cell line used in this project is a rat insulinoma cell line known as INS-1. INS-1 cells display 

important characteristics of the pancreatic β-cell which includes high insulin content and 

responsiveness to glucose within a physiological range. INS-1 cells are derived from a rat insulinoma 

by x-ray irradiation. Despite being able to respond to glucose the cells are still proliferative, but the 

total amount of insulin is only about 20% of that of the native cells (Skelin et al 2010). This cell line is 

used based on its ability to display β-cell characteristics however other insulinoma cell line used in β-

cell research is RINm5F. This cells line has been reported to possess abnormal properties of glucose 

transport and inapt glucose sensitivity (Halban et al, 1983). 

 

2.4.2 CM Cell line 
 

The second cell line used in this project is the cell line known as CM. The CM cell line is derived from 

human pancreatic insulinoma. As it is a beta cell is suitable for this project as it appears to maintain 

the characteristics of functioning β-cells (Jonnakuty and Gragnoli, 2007). 

 

 

2.4.3 Cell Culture 

 

INS-1 and CM were both cultured in media with the same composition. The pancreatic β-cells were 

cultured in RPMI-1640 media (Life Technologies, UK) comprising of 11mM D-glucose and 

supplemented with 10mM HEPES, 26mM sodium bicarbonate, 50µM β-Mercaptoethanol and 

adjusted to pH 7.4. The complete medium was supplemented with 10% v/v foetal bovine serum (FBS) 

(Life Technologies UK), 1% v/v sodium pyruvate (Life Technologies, UK), 1% v/v Penicillin/Streptomycin 

(Life Technologies, UK). Cells were cultured in T75 flasks and incubated at 37ᵒC and 5% CO2 and 

passaged when 80-85% confluent. 

 

2.4.4 Glucolipotoxic Treatment 

To create the replica of the extracellular glucolipotoxic environment the RPMI-1640 medium was 

supplemented with 17mM D-glucose (final concentration 28mM), 200µM sodium oleate (oleic acid) 
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and 200µM palmitic acid (Bagnati et al; 2016). The stock solutions of the fatty acids were conjugated 

to BSA, 100mM of oleic acid was dissolved in 50% ethanol and palmitic acid was dissolved in 100% 

ethanol. The RPMI-1640 was supplemented 2% BSA and filtered, following the addition of the fatty 

acids the media was incubated in a water bath at 37ᵒC to allow the fatty acids to conjugate to the BSA. 

 

2.4.5 Cyro-conservation and Cell Recovery 

INS-1 cells were collected cyro-conservation when they reached 80-85% confluency. The media was 

aspirated, and the adherent cells washed with sterile phosphate buffered saline (PBS). The cells were 

detached with the addition of trypsin EDTA and incubated at 37oC for 5 minutes. The cells were 

harvested in RPMI-1640 media and centrifuged at 400 x g for 5 minutes. The supernatant was 

aspirated, and the pellet was resuspended in 1ml of synth-a-freeze (life technologies, UK) per one 

million cells. The cryovial was stored in a suitable container at -80ᵒC for 48 hours and then were moved 

into liquid nitrogen storage. 

 

2.4.6 Mycoplasma detection and treatments 

INS-1 cells were regularly checked for mycoplasma infection using Roche mycoplasma PCR ELISA kit. 

If mycoplasma infection of cells was detected it was treated using LookOut® Mycoplasma Elimination 

Kit purchased from Sigma-Aldrich according to the manufacturer’s guidelines. 

 

2.5 Preparation of protein samples 
 

2.5.1 Cell lysis 

Cells were seeded into 6-well plates and treated with appropriate media. Following the incubation 

period (usually 5 days) the cells were washed in cold PBS and lysed in RIPA buffer containing 1x 

protease and phosphatase inhibitor tablet (Roche applied Sciences, Basel, Switzerland) whilst stored 

on ice. Cell scrapers were used to harvest cells from the surface of the plates and destroy cellular 

integrity. Lysates were transferred to 1.5ml Eppendorf tubes and kept on ice for 40 minutes and 

vortexed for 1 minute every 5 minutes. The tubes were centrifuged at 13,000 rpm for 10 minutes to 

pellet cell debris and the supernatant was transferred to a clean 1.5ml Eppendorf tube and stored at 

-80ᵒC until used for subsequent analysis. 
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2.5.2 BCA Assay 

The protein concentration of cell lysates was measured using Pierce™ BCA (Bicinchoninic acid) Protein 

Assay Kit (Thermo Fisher Scientific, Waltham, MA). The principle of this colorimetric assay technique 

is that peptide bonds present in the proteins can reduce Cu2+ ions from cupric sulphate. The amount 

of reduced Cu2+ is proportional to the amount of protein present in the solution forming a purple-

coloured product that absorbs light at 562nm. The absorbance is nearly linear over a broad 

concentration range (20-2000µg/ml) bovine serum albumin (BSA) is included in the kit to create a 

standard calibration curve for protein quantification.  

 

2.6 Western blot 
 

2.6.1 SDS-PAGE 

Acrylamide/bisacrylamide gels were hand poured using the Biorad system. Firstly, a resolving gel was 

prepared as shown in table 2.2, poured between two glass plates 1mm apart, this was allowed to set 

with a covering of 70% ethanol. Secondly, a stacking gel was prepared and poured on top of the 

resolving gel with a ten teeth comb in place, following the removal of the ethanol layer. 

 

Table 2.2: Table showing recipe of 10% SDS-gel used in western blotting 

Ingredient for 10% gel Resolving gel Stacking gel 

H2O 6.15 ml 3.07 ml 

30% acrylamide/Bisacrylamide 29:1 4.95 ml 670µl 

Tris-HCL 1.5M 3.75 ml - 

Tris-HCL 0.5M - 1.25 ml 

APS (10%) 75 µl 25 µl 

SDS (20%) 75 µl 25 µl  

TEMED 10 µl 5 µl 

 

The prepared gels were placed into electrophoretic tanks and once submerged in running buffer the 

combs were removed. Between 20-30µg protein were denatured by the addition of 4x laemmli loading 

buffer (Biorad, Ca, US) and heated to 95°C for 5 minutes. This denatured protein was loaded to the gel 

alongside a molecular weight marker. The gel was run at a constant voltage 90V for 120 minutes. 

Subsequently the proteins were transferred to a nitrocellulose membrane using Biorad transfer buffer 

and a Biorad Transfer unit using a semi-dry transfer for mix molecular weight proteins. 
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2.6.2 Immunoblotting 

Nitrocellulose membranes were blocked with 5% (w/v) non-fat dried milk dissolved in 1x Tris-buffered 

Saline with Tween (TBST) for 120 minutes at room temperature to prevent non-specific binding. The 

nitrocellulose membrane was incubated with the primary antibody diluted in 5% (w/v) non-fat dried 

milk in TBST over night at 4ᵒC on a tube roller. The following day the membrane was washed in TBST 

3 times for 10 minutes before being incubated in the correct secondary antibody (anti-mouse or anti-

rabbit IgG) for 120 minutes at room temperature. The membrane was then washed in TBST 3 times 

for 10 minutes before covered in ECL solution (Amersham, GE Healthcare, UK) and the signals exposed 

using chemiluminescence. 

 

2.7 Real-time qPCR 
 

2.7.1 Primer design 

Primers were designed using a combination of NCBI gene search to obtain species specific mRNA 

sequences, Primer Quest to obtain potential primer pairs and NCBI primer blast to identify specificity 

of primer pairs. Specific forward and reverse primers were designed of 18-25bp longs, with a GC 

content no higher than 55% and a melting temperature of 57-62°C. The specificity of the primers was 

determined by nucleotide blast search and then purchased from Sigma-Aldrich. The primers were 

verified using PCR. 

2.7.2 Primer testing 
 

A Taq polymerase master mix was prepared that contained both forward and reverse primers and the 

cDNA which was put into the thermo cycler with a denaturing temperature ranging from 58-62.5° (Fig. 

2.1). Primers were tested using an agarose gel made up of 1.5% agarose dissolved in 1x TAE buffer. 

This was heated until the agarose dissolved and poured into a gel cassette and left to set. Loading dye 

was added to each of the samples prior to being loaded to the gel and they were run alongside a SYBR 

safe DNA gel stain ladder. The gel was run at 90V for 40 minutes. The gel was then visualised using 

GeneSnap software.  
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Figure 2.1 Image for optimum PCR denaturing temperature. Temperatures ranging from 58°C-62.5°C were used to 

distinguish the optimum annealing temperature that used be used for the specific primers. 

 

 

2.7.3 Preparation of sample 

INS-1 cells were seeded and treated in either 6-well plates or T75 flasks, following the treatment 

incubation period the cells were detached using trypsin EDTA (Life technologies, UK). The cells were 

then centrifuged at 1500 RPM to form a pellet, 1ml of sterile PBS was used to suspend the pellet and 

a maximum of 5 x 105 cells were transferred to a new 1.5ml tube. This was centrifuged at 1500 RPM 

to form a pellet. 

 

2.7.4 RNA Extraction 

To extract RNA from the INS-1 cells a RNeasy® Micro Kit (Qiagen, UK). The supernatant was removed 

from the cell pellet and 350µl of RLT buffer was added followed by 1 volume of 70% ethanol and mixed 

well using pipetting. The sample along with any precipitate was transferred to a RNeasy® Mini spin 

column in a 2ml collection tube and centrifuged for 15 seconds at 8000 x g. The flow through was 

discarded. To the spin column 350µl of RW1 buffer was added and centrifuged for 15 seconds at 8000 

x g. The flow through was discarded. A DNase incubation mix was prepared by mixing 10µl DNase I 

stock solution with 70µl RDD buffer and added directly to the spin column membrane, this was 

incubated at room temperature for 30 minutes. Subsequent to the incubation period 350µl of RW1 

buffer was added and the spin column was centrifuged for 15 seconds at 8000 x g.  The collection tube 

was discarded. Once in a new collection tube 500µl RPE buffer was added and centrifuged at 8000 x g 

for 15 seconds. The flow through was discarded. Eighty percent ethanol was added to the spin column 

and centrifuged for 2 minutes at 8000 x g. The collection tube was discarded and replaced. The spin 

column was centrifuged with the lid open for 5 minutes at 13,000 x g to dry the membrane. The 



42 
 

collection tube was discarded and replaced with 1.5ml collection tube. To the centre of the membrane 

14µl RNase free water was added and centrifuged for 1 minute at 13,000 x g to elute the RNA. 

 

2.7.5 RNA quantification 

The RNA extracted was quantified using Nanodrop spectrophotometer technology to determine 

concentration and quality. The NanoDrop calculates RNA concentration by measuring the absorbance 

at 260 nm; absorbance correlates with concentration in a linear manner (Beer-Lambert law). 

 

2.7.6 cDNA synthesis and Reverse Transcription 

 

cDNA synthesis was carried out using High Capacity cDNA Reverse Transcription kit (Thermo Fisher 

Scientific, UK). In each reaction 1.5µg of total RNA was used to be reversed transcribed to cDNA. The 

reaction was set up as follows: 

 

Table 2.3: Reagents and volumes used in cDNA synthesis prior to RT-qPCR. 

Reagent: Volume (µl) 

Reverse Transcription buffer 2 

dNTPs 0.8 

Random Primers 2 

Reverse Transcription enzyme 1 

RNA (1.5µg) 

Water (make up to 20µl) 

 

 

2.7.7 Quantitative PCR 

 

Quantitative PCR (qPCR) measures the amount of PCR product generated in one cycle, using a 

fluorescence label. During amplification a fluorescence dye binds to the DNA molecules, and 

fluorescence values are recorded during each cycle of the amplification process. The fluorescence 

signal is directly proportional to the DNA concentration over a broad range, and the point at which 

fluorescence is first detected as statistically significant above the background is called the threshold 

cycle or Ct value. The higher the initial amount of sample DNA, the sooner the accumulated product 

is detected in the fluorescence plot and the lower the Ct value. Each time a control was run alongside 
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the samples that was negative for cDNA, therefore if amplification of product was observed it was 

evidence of contamination.  

The reaction for the qPCR was set up as follows: 

Table 2.4: Reagents and volumes for mastermix used in RT-qPCR. 

Reagent Volume (µl) 

SYBR green 8.4 

Forward Primer (10µM) 0.8 

Reverse Primer (10µM) 0.8 

cDNA (25ng) 

Water (make up to 20µl) 

    

2.7.8 Data Analysis 

 
The qPCR data obtained was analysed using the 2-ΔΔCT method, a relative quantification strategy that 

calculates a ratio between the target and reference gene. The reference gene used throughout the 

qPCR experiments was GAPDH. A CT value gained from computer software Rotor Gene Q series was 

converted into ΔCT to calculate the relative fold change of a sample again the control sample, known 

as calibrator. The calibrators for the qPCR reactions carried out in this project were the control 

(untreated samples). The house keeping genes used were, GAPDH, β-actin in INS-1 cells and GAPDH 

and B2M in CM cells. 

The fold change relative to the calibrator sample was calculated as follows: 

1. ΔCT = Ct target gene – Ct endogenous control (normalisation to housekeeping gene to minimize 

sample to sample variations) 

2. ΔΔCT = ΔCT sample - ΔCT calibrator  

3. 2 ΔΔCT = fold change relative to the calibrator sample 

 

2.8 siRNA Transfection 

 

siRNA techniology was used to transiently knockdown cellular proteins. The transient transfections 

were performed using Lipofectamine RNAiMAX (life Technologies, UK) alongside siRNA (Dharmacon, 

GE Healthcare, UK). INS-1 cells were seeded into 6-well plates 24 hours before the transfection in 

order to be 40-50% confluent at the time of transfection. siRNA-Lipofectamine complexes were 

prepared for each sample to be transfected (one well of the 6-well plate) as follows: in a 1.5ml sterile 
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tube, 7µl of siRNA (20µM) was diluted in 243µl of Optimem (Invitrogen) without serum and was mixed 

gently. In a separate sterile tube 7µl of RNAiMAX (Invitrogen) was diluted in 243µl of Optimem without 

serum and mixed gently. These solutions were incubated at room temperature for 8 minutes before 

being combined into one tube. The duplex was incubated at room temperature for 25 minutes. Media 

was removed from the cells and replaced with RPMI-1640 with serum but without antibiotics, 

subsequently 500µl of the transfection solution was added. Following a 24-hour incubation the 

transfection solution was removed and complete RPMI-1640 was added and was incubated for 72 

hours before knock-down was detected using western blotting. 

 

2.9 Mass Spectrometry 
 

The basic principal of mass spectrometry is the generation of ions from a specific sample. The ions are 

separated based on their mass-to-charge ratio (m/z) and the relative abundance of each ion is then 

identified. This is done via the following process; the ions are produced from the sample in the 

ionisation source. Based on the mass-to-charge ratio the ions are then separated in the mass analyser. 

Selected ions are then fragmented and analysed again, these are then detected their abundance is 

measured by a detector that can convert the ions into electric signals. These signals are then processed 

using a computer (premier biosoft). 

 

 

 

 

Figure 2.2 Overview of a Mass spectrometer. A mass spectrometer has three main components; ion source for producing 
gaseous ions, the analyser for sorting the ions based on their mass-to-ratio and a detector for detecting ions and recording 
the relative abundance.  
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2.9.1 Cell lysis 

Cell lysis was used prior to protein quantification using BCA assay. Cells were harvested using Trypsin 

EDTA, (Gibco life technologies UK) incubated for 5 minutes at 37ᵒC and centrifuged for 5 minutes at 

300g. The cell pellet was washed twice in DPBS (Phosphate buffered saline) (Gibco, Life technologies 

UK) to remove any residual serum. Subsequently 15µl of 8M Urea was added to the pellet followed by 

20µl 0.05% ProteaseMAX™ surfactant (Promega). The tube was then vortexed to ensure complete 

lysis of the cells. Following this 58.5µl of 50mM TEAB (Triethyl ammonium bicarbonate) was added 

and the tube was incubated on ice for at least 15 minutes. The cells were then centrifuged for 10 

minutes at 14,000g and the supernatant was transferred into a fresh tube. To enhance cell lysis, the 

cell lysate was placed in a water bath sonicator for 5 minutes on full power, then on to ice for 5 minutes, 

this was repeated 3 times. The cell lysate was the centrifuged again 13,000x g for 5 minutes, the 

supernatant was transferred to a fresh tube. 

 

2.9.2 Alkylation and Reduction 

To the cell lysate 1µl of 0.5M DTT was added and incubated at 56ᵒC for 20 minutes. Following the 

incubation period 2.7µl of 0.5M IAA was added. This was then mixed using a vortex and incubated at 

room temperature for 15 minutes in the dark. A protein assay was then carried out. 

 

2.9.3 Trypsinisation protocol 

From the cell lysate, 50µg of protein was collected and the volume was made up to 100µl with 50mM 

TEAB. Alongside this, 20µl of 1mM HCL was added to a vial of Trypsin (sigma), vortexed thoroughly to 

re-suspend the trypsin and 2µg (2µl) of Trypsin was added to the cell lysate sample, vortexed 

thoroughly and incubated at 37ᵒC for 12-13 hours. Following the trypsinisation incubation the samples 

were concentrated to dryness in a speedvac. The samples were then re-suspended in 20µl 5% 

acetonitrile and transferred to a fresh LC vial. The sample were then analysed using the mass 

spectrometer. 

      

2.10 Nitrate/Nitrite assay 
 

To determine the levels of nitrite present in the INS-1 cell, a nitrite/nitrate kit was purchased (Sigma-

Aldrich). A standard curve was generated, and all buffers were prepared based on manufacturer’s 

instructions. Following the cell growth and treatment period the cell culture media was collected and 

centrifuged at 1000 x g to remove all insoluble material. The supernatant was collected and 
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transferred to a clean tube. Appropriate amounts of standard and sample were added to wells of a 

96-well plate. Greiss reagent A was added to all wells and the plate was covered and incubated at 25°C 

for 5 minutes on a horizontal shaker. Greiss reagent B was then added to the wells and the plate was 

incubated at 25°C for 10 minutes. Following this incubation period, the absorbance was measured at 

540nm. The blank measurements were subtracted from the test samples and the standards and the 

levels of nitrite were determined using the standard curve. 

 

 

2.11 NF-κB activity 
 

NF- κB activation is measured in this project as it is implicated in to regulation and transcription of 

multiple genes that are involved in the mediation of immune and inflammatory responses. The 

principle of the NF- κB transcription factor kits is to detect and quantify transcription factor activation 

via an ELISA assay. 

 

2.11.1 Nuclear extraction 
 

The nuclear extract is required for the NF-κB Transcription Factor Assay (Active Motif, CA, USA), this 

was doing using the Nuclear/cytosol extraction kit (Biovision, Milpitas, CA, USA). All buffers were 

prepared prior the assay according to manufacturer’s guidelines. The cells were detached from the 

plate surface using trypsin EDTA and centrifuged to form a cell pellet. Cytosol extraction buffer-A was 

added to the pellet and fully resuspended via vortexing. The cells were then incubated on ice for 10 

minutes. Following this ice-cold cytosol extraction buffer-B was added and they tube was vortexed for 

10 seconds followed by an incubation on ice for 1 minute and the vortexed again for 10 seconds. The 

tube was centrifuged for 5 minutes at 17,000 x g and the supernatant (cytosolic fraction) was 

immediately transferred to clean tube and placed on ice. The pellet was resuspended in ice-cold 

nuclear extraction buffer and vortex for 15 seconds and returned to the ice, this was repeated every 

10 minutes for 40 minutes. The tube was then centrifuged at 17,000 x g for 10 minutes. The 

supernatant (nuclear extract) was transferred to a clean tube and used in the NF-κB activity assay 

immediately. 
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2.11.2 NF-κB activity assay  
 

To measure NF-κB activity a kit was purchased, and the manufacturers guidelines were followed. All 

buffers and reagents were prepared according the manufacturer. To each well 30µl of complete 

binding buffer was added to each well being used. To the positive test well 20µl of diluted jurkat was 

added and to the negative wells 20µl complete lysis buffer was added. The plate was covered at 

incubated at room temperature for 1 hour with mild agitation on a plate rocker. The wells were then 

washed 3 times with diluted wash buffer. To each well 100µl of diluted NF-κB antibody was added, 

followed an incubation period of 1 hour at room temperature without agitation. The wells were then 

washed 3 times with diluted wash buffer. To each well 100µl of diluted HPR-conjugated antibody was 

added and the plate was covered and incubated at room temperature. after this incubation the wells 

were washed 4 times with diluted wash buffer followed by 100µl of developing solution added o each 

well. This was incubated for 3 minutes before 100µl of stop solution was added and the absorbance 

was measured at 450nm/655nm. 

 

2.12 HNE-assay 
 

To measure the presence of 4-hydroxynonenal (Abbexa, Cambridge, UK) was purchased, and the 

manufacturers guidelines were followed. The wells were washed prior to use and 50µl of prepared 

standards were added to the standard well, and 50µl of the diluted sample were added to the test 

well and 50µl of sample/standard buffer was added to the control wells. This was followed 

immediately by 50µl of biotin conjugate antibody being added to each well. The plate was covered 

and incubated at 37°C for 45 minutes. The plate was then washed with diluted wash buffer three times. 

To each well 100µl of Streptavidin-HRP Conjugate working solution was added and the plate was 

covered and incubated at 37°C for 30 minutes. Following the incubation period each well was washed 

five times with diluted wash buffer. To each well 90µl of TMB was added, the plate was then covered 

and placed in the dark at 37°C for 20 minutes. Subsequently, 50µl of stop solution was added to each 

well and the absorbance was measured at 450nm. 

 

2.13 Immunoprecipitation 
 

Immunoprecipitation is a technique that is used to separate proteins that are bound to an antibody 

from the rest of the sample. This is done by coating magnetic beads with a specific antibody prior to 
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adding the cell lysate. This allows easy removal of the magnetic bead-bound antibody and proteins 

(Cothall JT, 2014).  

 

2.13.1 Antibody binding to beads 
 

Immunoprecipitation was carried using out using Pierce™ Crosslink Magnetic IP/Co-IP Kit (Thermo 

Scientific, Waltham, MA, USA) Any required buffers were prepared according to manufacturer’s 

guidelines.  

To each tube being used 25µl of vortexed magnetic beads was added and placed on magnetic stand 

for 1 minute. The bead storage solution was discarded, leaving only the beads in the tube. To each 

tube 500µl of prepared 1x modified coupling buffer was added. The contents of the tube were mixed 

and incubated at room temperature for 1 minute on a rotating platform. The beads were collected 

using the magnetic stand the supernatant was removed and discarded. Antibody was diluted 1:20 and 

added to the magnetic beads. The beads were incubated in the antibody solution for 1 hour, vortexing 

every 10 minutes. The beads were collected using the magnetic stand and the supernatant was 

removed and discarded. Following this, 100µl of prepared 1x modified coupling buffer was added to 

the beads, the tube was gently inverted, and the beads were collected, and the supernatant removed 

and discarded. The final step was 300µl of 1x modified coupling buffer being added to the beads, 

gently inverted to mix. The beads were collected using the magnetic strip and the supernatant 

removed and discarded. This step was repeated.  

2.13.2 Antibody Cross-linking 
 

The provided disuccinimidyl suberate (DSS) blister pack was prepared according to the manufacturer’s 

guidelines. The prepared DSS was then diluted 1:100 in DMSO. To the bead 2.5µl 20x coupling buffer, 

4µl DSS and 43.5µl water was added. This cross-linking reaction was incubated for 30 minutes at room 

temperature, vortexing every 10 minutes. The beads were collected, and the supernatant was 

removed. The beads were then ready to be incubated with the cell lysate. 

 

2.13.3 Cell lysis and incubation with antibody cross-linked beads 
 

The INS-1 adherent cells were detached from the flask surface using trypsin. The cells were centrifuged 

into a pellet and washed with cold PBS. Ice cold lysis buffer provided in the kit was added to the cells 

according to the manufacturer’s guidelines. The pellet was resuspended on incubated on ice for 5 
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minutes with periodic mixing. The lysate was transferred to a microcentrifuge tube and centrifuged at 

13,000 x g for 10 minutes to pellet the cells. The supernatant was then transferred to a clean tube 

prior to protein determination and incubation with the antibody-bound cross-linked beads. The 

appropriate amount of cell lysate was added to the magnetic beads and stored at 4°C overnight. The 

following day the beads were stored in 50mM TEAB prior to trypsinisation. 

 

2.13.4 Trypsinisation 
 

The immunoprecipitation samples were then trypsinised. (section 2.7.3).  The following day the 

magnetic beads were removed, and the supernatant was analysed using SWATH-MS. 

 

 

2.14 Citrate Assay 
 

Citric acid is an important intermediate in the mitochondrial citric acid cycle and is generated by the 

addition of oxaloacetate to acetyl CoA that results from the glycolytic pathway. Citrate can be 

transported out of the mitochondria and converted back to oxaloacetate and acetyl CoA where it can 

then be used for cholesterol synthesis, fatty acid synthesis and histone acetylation. The principle of 

the citrate kit is a colorimetric assay. The citrate assay kit quantifies citrate in a sample by converting 

citrate to pyruvate via oxaloacetate. The newly formed pyruvate is able change the colour of a probe 

and the optical density is measured (Abcam, Cambridge, UK).  

 

2.14.1 Citrate assay sample preparation 
 

INS-1 cells were harvested and centrifuged to form a cell pellet. The pellet was washed with cold PBS 

and resuspended in 100µl of assay buffer. A cell pellet was reformed by centrifugation at 13,000 g for 

5 minutes at 4°C. The supernatant was collected and transferred to a clean prior to the start of the 

citrate assay kit protocol (Abcam, UK).  A standard curve was prepared according to the 

manufacturer’s guidelines.  
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2.14.2 Deproteinisation step 
 

The sample was added to a 10 kD Spin Column (ab93349) and centrifuged 3 x 10 minutes at 13,000g 

in order to collect the deproteinised sample used for the assay procedure. 

2.14.3 Citrate assay procedure 
 

A standard curve was prepared was prepared according to the manufacturer’s guidelines. To each of 

the standard wells 50µl of standard was added and to the test wells 50µl of diluted sample was added 

and this was repeated for the background samples.  

A reaction mix was prepared as below; 

 

Table 2.5: Reaction mix for test, standard and background samples. 

 

Reagent 

Volume for test and 

standard samples 

(µl) 

Volume for 

background well 

(µl) 

Assay buffer 44 46 

Enzyme mix 2 0 

Developer 2 2 

Citrate probe 2 2 

 

To the corresponding well 50µl was added. The plate was incubated at room temperature for 30 

minutes prior to the absorbance being measured at 570nm. 

 

2.15 Insulin Secretion ELISA 
 

Insulin secretion from INS-1 pancreatic β-cells was measured using an ELISA assay purchased from 

Mercodia, Uppsala, Sweden.  The ELISA was carried out according to the manufacturer’s guidelines. 

INS-1 cells were seeded into 6-well plates and treated ± GLT for 5 days. The following buffers were 

prepared immediately prior to the start of the ELISA assay. 
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Table 2.6: Krebs ringer-hepes buffer recipe. 

Reagent Concentration 

Sodium Chloride  125mM 

Potassium Phosphate monobasic 1.2mM 

Potassium Chloride 5mM 

Magnesium Sulphate 2mM 

Calcium Chloride 1mM 

Glucose 1.67mM 

Hepes 25mM 

BSA 0.1% 

 pH 7.4 

 

Table 2.7: Secretagogue Cocktail. 

Reagent Concentration 

Tolbutamide 1mM 

Leucine 10mM 

Glutamine 10mM 

PMA 1µM 

Isobutylmethyxantine 1mM 

Glucose 10mM 

 

To appropriate wells, 1ml of Krebs ringer-hepes buffer or secretagogue was added and incubated at 

37ᵒC for 2 hours. Subsequent to the incubation period the cell medium was collected into clean 1.5ml 

Eppendorf tubes and centrifuged at 900 rpm for 2 minutes. The supernatant was collected and placed 

into fresh Eppendorf tubes. Sample and calibrators (10µl) were pipetted into a pre-coated 96-well 

plate in duplicate, to this 50µl of enzyme conjugate was added. The plate was covered and placed on 

a plate shaker for 2 hours at room temperature shaking 900 rpm, in order for any insulin present to 

bind to the antibodies on the pre-coated plate. The reaction volume was discarded, and the wells were 

washed 5 times using 350µl wash buffer per well. To each well 200µl substrate TMB was added to 

each well and incubated at room temperature for 15 minutes followed by 50µl stop solution. The 

optical density was read at 450nm. 

 

2.16 Statistical Analysis 
 

To determine statistical significance of results gained in this thesis statistical analysis using a two-tailed, 

unpaired T-test for analysis of two conditions or ANOVA for analysis of or more conditions were carried 

out using Microsoft Excel. A p-value of <0.05 was considered to be significant. Results are expressed 
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as mean ± standard error of the mean (SEM). All results expressed are from three or more independent 

experiments. 
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Chapter 3 

Glucolipotoxic-induced Beta Cell Inflammation 
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3.0 CHAPTER 3: Glucolipotoxic-induced Beta Cell Inflammation 
 

3.1 Introduction 
 

Type 2 diabetes is a chronic metabolic disorder with increasing prevalence worldwide (Kennedy-

Martin et al, 2017) and is characterised by β-cell dysfunction, insulin resistance and ultimately beta 

cell death (Ortega et al, 2017). Excess body weight and the associated changes in metabolism that 

occurs as a result of a high energy diet including increased glucose and circulating free fatty acids is 

the main risk factor of developing type 2 diabetes (Golson et al, 2010). Type 2 diabetes is the most 

common type of diabetes with type 2 diabetes accounting for approximately 91% off all diabetic cases 

(Ortega et al, 2017). It is known that over 80% of type 2 diabetic patients are obese and that glucose 

and free fatty acid levels are often increased in obesity. Fatty acids can induce insulin secretion and 

long chain fatty acids, however increased fatty acid levels associated with obesity can result in 

impaired insulin secretion and development of T2D via oxidative stress and inflammation (Ježek et al, 

2018). Beta cell dysfunction in type 2 diabetes could potentially result from multiple causes including, 

ER stress, oxidative stress, lipotoxicity, and glucotoxicity, which elicit an inflammatory response 

(Nordmann et al, 2017). Inflammation is a manifestation of a disease which initially has beneficial 

effects such as encouraging regeneration or preventing spread of infection, however prolonged or 

chronic inflammation may intensify disease via tissue destruction which is likely to be the case in type 

2 diabetes (Donath et al, 2009). Inflammatory responses are likely to result in the activation of nuclear 

factor kappa B (NF-κB) (Nordmann et al, 2017). 
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Figure 3.1 Effects of glucose and fatty acids on pancreatic β-cell. The exposure of β-cells to GLT initially results in the 

expression of cytokines such as IL-1, resulting from the adaptive cellular response. Chronic exposure to GLT results in the auto 

stimulatory activation of IL-1RI and further production of IL-1 and IL-1-dependent cytokine and chemokine release in the 

amplification stage. The precipitation stage results in a broad inflammatory response via activation of the paracrine and 

autocrine (Donath et al, 2009). 

 

3.1.1 Nuclear factor kappa B 
 

NF-κB is a family of inducible transcription factors that are found ubiquitously. The family is made up 

of 5 members including; Rel (c-Rel), RelA (p65), RelB, NF-κB1 (p50/p105) and NF-κB2 (p52/p100) that 

are able to associate with each other to form homo- and heterodimer (Oeckinghaus and Ghosh,2009). 

All of which have a conserved Rel homology domain (RHD) that is made of up of approximately 300 

amino acids, which is responsible for its interaction with other NF-κB family members, inhibitory 

proteins and DNA.  In non-stimulated cells NF-κB are bound to ankyrin-rich regions the inhibitor IκB 

and NF-κB is sequestered in the cytoplasm, in stimulated cells the IκB inhibitor is phosphorylated, 

meaning NF-κB is free to enter the nucleus, where it is able to bind to the κB sites in the promoter 

regions of target genes and induces transcription of pro-inflammatory mediators such as iNOS, COX-

2, IL-1β, IL-6, amongst others (Shin et al, 2012. Lorenzo et al, 2011). 

NF-κB has long been considered a prototypical proinflammatory signalling pathway, largely based on 

the activation of NF-κB by proinflammatory cytokines such as interleukin 1 (IL-1) and tumour necrosis 

factor α (TNFα), and the role of NF-κB in the expression of other proinflammatory genes including 

cytokines, chemokines, and adhesion molecules (Lawrence T, 2009). 
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Figure 3.2 NF-κB family members. Schematic image showing the structure of the NF-κB family members. Adapted from 

Oeckinghaus and Ghosh, 2009. 

 

 

3.1.2 Cluster of differentiation (CD40)/ Tumour Necrosis Factor Receptor 5 (TNFR5) 
 

As already discussed in chapter 1 section 1.5, CD40 also known as TNFR5 is a membrane glycoprotein 

belonging to the tumour necrosis factor receptor super family and is expressed in many cell types. Its 

natural ligand CD40L (CD154) is part of the TNFα protein family and is a type II transmembrane protein 

(Barbé-Tuana et al, 2005). The interaction between CD40 and CD40L has been reported to coordinate 

the inflammatory process through secondary messengers. CD40-CD40L initiates the release of various 

cytokines and chemokines and activate multiple transcription factors, one of which may be NF-κB 

(Tone et al, 2001. Rizvi et al, 2008). 

  

3.1.3 Inducible Nitric Oxide Synthase 

Nitric oxide synthase (NOS) metabolises L-arginine to OH-L-arginine which is then oxidised to L-

citrulline and nitric oxide (NO). There are three types of NOS, all of which contain haem and bind with 

calmodulin. Endothelial NOS (eNOS) which are expressed in endothelial cell and have a role in 

maintaining blood vessel dilation, controlling blood pressure and vaso-protective properties. Neuronal 
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NOS (nNOS) that is expressed in peripheral neurons and functions in maintaining synaptic plasticity in 

the central nervous system, vasodilation and central regulation of blood pressure. This project is 

concerned with inducible NOS (iNOS), which unlike nNOS and eNOS is not constitutively expressed 

and expression is induced in stimulated cells by various inflammatory stimuli (Simon et al, 2015). iNOS 

is expressed in a number of cell types both immune and non-immune cells and its induction 

contributes to the pathophysiology of inflammatory diseases (Förstermann and Sessa, 2012).    

 

3.1.4 Nitric Oxide 
 

NO is a free radical and a gaseous signalling molecule that is required for pancreatic physiology. NO is 

produced by the enzyme NOS, of which are 3 isoforms. The isoform of interest in this project is iNOS, 

because it is the NOS isoform that is chiefly responsible for the role of NO in inflammation, via NF-κB-

dependent transcription (Zamora et al, 2000). iNOS is involved in nitic oxide (NO) formation by 

catalysing the transformation of L-arginine to L-citrulline, where L-arginine concentrations are rate 

limiting in this process (Keklikoglu and Akinci, 2013). The increased levels of NO resulting from the 

transformation of L-arginine to L-citrulline could potentially result in increased levels of peroxynitrite 

(ONOO-) to such an extent that it could interact with signalling pathways in the region which its 

produced. NO is able to interact with superoxide in a number of physiological situations, including 

inflammation (Wolin et al, 2002). Superoxide is reactive oxygen species ROS, which are generated 

when glucose undergoes oxidative phosphorylation in the mitochondria. ROS was originally 

considered to be a useless by-product of metabolism in the mitochondria which had damaging effects 

on biological systems but there is increasing evidence to suggests that the generation of ROS is 

essential for various processes (Pi et al, 2007) such as, in cellular respiration increased superoxide is 

found to be required in decreasing ADP concentration, supplying substrates and increasing 

intracellular Ca2+ concentrations. Superoxide is highly reactive but can be converted to a less reactive 

molecule known as H2O2 by superoxide dismutase (SOD), which can then be converted to water and 

oxygen by enzymes catalase (CAT), glutathione peroxidase (GPx) and peroxiredoxin. Pancreatic β-cells 

possess low levels of anti-oxidant enzymes to overcome the constant production of superoxide, they 

are equipped with moderate SOD, but insufficient levels of H2O2 inactivating enzymes CAT and GPx, 

possessing around 5% GPx compared to expression in the liver. The vast imbalance between 

superoxide and H2O2 breakdown could mean that pancreatic β-cells are vulnerable to H2O2 build up 

(Pi et al, 2007). 
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3.1.5 Reactive carbonyl species 
 

Reactive carbonyl species (RCS) are made up of biological compounds that are formed via membrane 

lipid oxidation by reactive oxygen species and possess carbonyl-conjugated C-C bonds. By comparison 

to free radicals, RCS are more stable and are able to freely diffuse in and out of the cell, meaning they 

can attack targets away from the area of formation making them mediators of oxidative stress and 

tissue damage. An increase in ROS can be associated with the progression of various diseases via the 

increase in RCS, which can then employ their detrimental effects by increasing ROS production and 

resulting in the formation of a vicious cycle of ROS and RCS production (Vidal et al, 2014). Following 

their production, RCS are highly reactive due to their electrophilic nature and easily react with 

nucleophilic amino acids such as Lys, His and Cys which results in protein adduct formation. The 

formation of carbonyl species adducts is reported to cause irreversible cellular damage (Hwang et al, 

2016). 

 

 

 

Figure 3.3 Carbonyl species and adducts. Schematic image of the most abundant carbonyl species.  Adapted from Tian et al, 
2014. 

 

Of the carbonyl species the α,β-unsaturated aldehydes known as 4-hydroxynonenal (4-HNE) and 

acolein and the dicarbonyl known as methylglyoxal are the most abundant and toxic lipid derived RCS 

(Vidal et al, 2014). As such, this project 4-hydroxynonenal (4-HNE), which is a small electrophilic, 

mono-reactive carbonyl species that is a major by-product of lipid peroxidation (Tian et al, 2014). ROS 

that is produced by the mitochondrial transport chain is the major source of 4-HNE and because there 
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is a basal concentration of ROS that is inherent to aerobic life, there should be a basal concentration 

of 4-HNE. The physiological concentration of 4-HNE in plasma is 0.3-0.7µM, therefore if the 

concentration of the RCS doesn’t exceed this then this could be beneficial for the cell, as in low 

concentrations 4-HNE plays important roles in various cellular functions including, cell growth, 

proliferation, differentiation and apoptosis (Tian et al, 2016. Semchyshyn HM, 2014. Dallaeu et al, 

2013). 

 

 

 

 

Figure 3.4 Pathway demonstrating how iNOS results cell damage. iNOS converts L-arginine to citrulline and produces 

simultaneously produces NO in the process. When NO is upregulated it more likely to encounter superoxide (O2•). The 

combination of NO and O2• results in the production of peroxynitrite and lipid peroxidation and HNE adducts as by products 

(Pacher et al, 2007) 
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3.2 Chapter Aim 
 

This project focusses on the dysfunction of pancreatic β-cells resulting from inflammatory process 

induced by the exposure to glucolipotoxicity. Glucolipotoxicity is the term given to the deleterious 

effects of the combination of both elevated glucose and free fatty acid levels (Poitout et al, 2010). The 

aim of this investigation was to identify inflammatory processes resulting from the exposure to INS-1 

and CM cell to high glucose and free fatty acid levels down stream of CD40, that could potentially lead 

to β-cell damage. 

 

3.3 Results 
 

In order to investigate the effects of both high glucose and high fatty acids on inflammation in 

pancreatic beta cells, a rat insulinoma cell line was used known as INS-1. To replicate chronic 

glucolipotoxic conditions the INS-1 cells were incubated in either control conditions (11mM glucose) 

or glucolipotoxic conditions (GLT) (27mM glucose, 200µM palmitic acid and 200µM oleic acid) for 5 

days, prior to cell death. The initial results below demonstrate that a day treatment induces 

phenotypical changes of INS-1 cells without significantly decreasing cell viability (Fig 3.6) and 

prolonged exposure to GLT conditions results in cell death (Fig 3.5). Further to this 5-day exposure of 

INS-1 cells to GLT reduces insulin secretion by 30% (p=0.00037) indicating that chronic exposure to 

high glucose to fatty acids disrupts β-cell function (Fig 3.7).  

 

 

Figure 3.5 INS-1 cells at different time points in control and GLT conditions. The GLT treatment is added 24 hours after 

passage and experimental procedures carried out 5 days later. As the photos indicate the cells are still viable at 5 days in 
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control and GLT conditions and demonstrate phenotypic differences. Ten days post treatment the GLT treated cells are no 

longer living.   

 

 

 

Figure 3.6 Effect of GLT on mitochondrial activity. INS-1 cells were incubated 5-days ±GLT and cell viability was determined 
via MTT assay. Data shows absorbance values 570nm – 650nm. The data shown is the mean ± SEM of three independent 
experiments.   

 

 

 

Figure 3.7 Insulin secretion following 5-day incubation ±GLT.  INS-1 cells were incubated for 5-days ±GLT.  Cells were then 

subjected to secretagoge incubation for one hour prior to insulin secretion analysis using ELISA testing (Mercodia, Uppsala, 

Sweden). The data shown is the mean ± SEM of three independent experiments.   
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3.3.1 Effect of GLT on CD40 and NF-κB 
 

 CD40/TNFR5 belongs to the tumour necrosis factor receptor superfamily (Tone et al, 2001) and is 

expressed in a number of cell types. The ligand of CD40 known as CD40L is primarily associated with 

immune cells but is present in other cell types including pancreatic β-cells. The reason for observing 

the effects of the TNFR5 member of the super family is based on Affymetrix data and PCR that showed 

TNFR5/CD40 is the most up-regulated of family members affected by GLT (Table 3.1). 

 

Table 3.3: TNFR super family member expression. Analysis of individual expression data for TNFR superfamily members 
TNFRSF1, TNFRSF5, TNFRSF6 and independent RT-qPCR analysis. Data are shown from three individual experiments. 
Experiments were performed by Dr Marta Bagnati. Bagnati et al, 2016. 

 

 TNFR1 TNFR5 TNFR6 

Affymetrix  2.23 (p=<0.0001) 1.59 (p=<0.05) 

PCR 2.23 (p=NS) 3.62 (p=<0.05) 1.19 (p=NS) 

 

To identify interactions of CD40, MetaCore™ was used to generate a non-biased network by Dr Tania 

Jones, from microarray data that was gathered by Dr Marta Bagnati. MetaCore, from Thomson 

Reuters, is an analysis programme for interpreting functional information from lists of regulated genes. 

It produces relevant pathways, diseases and networks associated with the specific genes of interest. 

 CD40L signalling through CD40 resulted as the top-ranked of all up-regulated networks in GLT 

conditions. The analysis showed that both NF-κB and JAK/STAT signalling networks were up-regulated 

in response to GLT.   
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Figure 3.8 MetaCore™ Network Analysis.  Unbiased network analysis of a microarray data set ±GLT generated by Dr Tania 
Jones. 

 

 

In order to observe the effects that GLT conditions has on the expression of the CD40 and NF-κB gene, 

INS-1 cells were incubated for 5 days in media containing 200µM palmitic acid, 200µM oleic acid and 

27mM glucose, the cells were lysed, and total RNA was extracted (Qiagen, Hilden, Germany). The level 

of CD40 mRNA was measured by RT-qPCR using CD40 specific primers. The data demonstrated an 

increase in the CD40 gene by 5.65-fold (p<0.00072). CD40 protein expression ±GLT was also measured 

using western blotting and despite the increase in protein expression being more modest than that of 

mRNA expression, CD40 protein expression was still significantly increased following 5-day GLT 

incubation. 
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Figure 3.9 TNFR5/CD40 mRNA and Protein Expression.  INS-1 cells were incubated ±GLT for 5 days. Cells were subsequently 

lysed and either total RNA was extracted or RIPA was used to extract proteins. RT-qPCR was used to measure mRNA, using 

specific CD40 primers and data represent ΔΔCt expressed as fold change compared to the untreated control.  Protein lysates 

were loaded to a 10% acrylamide gel and separated using SDS-PAGE. Proteins were transferred to a nitrocellulose membrane 

and immunoblotted using CD40 specific antibody. Data shown is normalised to tubulin and expressed as fold change 

compared to the untreated control Data shown as mean ±SEM in three independent experiments. 

 

It was also of interest to observe whether NF-κB activation is directly affected by GLT. The level of NF-

κB mRNA expression was measure using NF-κB specific primers and the results demonstrated that 

exposure to a high glucose and fatty acid environment induced an increase in NF-κB expression by 

5.59-fold (p=0.00021). NF-κB activation was also measured using an NF-κB activation ELISA kit (Active 

motif, Carlsbad, CA, USA). INS-1 cells were incubated ±GLT for 5 days and the nuclear compartment 

was subsequently extracted, using nuclear/cytosol fractionation kit (Biovision, Milpitas, CA, USA). The 

data obtained showed that there is an increase in NF-κB activation resulting from exposure to 

glucolipotoxic conditions of 2.01-fold increase (p=0.0002). This data indicates that the presence of 

high glucose and high fats is able to induce an increase gene expression of both CD40 and NF-κB. 
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 Figure 3.10 NF- κβ mRNA expression and activity.  INS-1 cells were incubated ±GLT for 5 days. Cells were subsequently lysed 

and total RNA was extracted prior RT-qPCR analysis to measure mRNA, using specific NF-κβ primers. Data represent ΔΔCt 

expressed as fold change compared to the untreated control.   For measuring NF-κβ cells were lysed and measures using NF-

κβ TransAm NF-κβ kit (Active Motif, CA, USA). Data shown is mean ±SEM of three independent experiments.  

 

 

3.3.2 Effect of CD40 on NF-κB 
 

As observed in the figure above (Fig 3.10) the replication of chronic glucolipotoxic conditions in INS-1 

cells has an effect on both CD40 and NF-κB gene expression in pancreatic beta cells. It was important 

to investigate whether CD40 expression might influence NF-κB activity. To determine this, a transient 

knockdown of CD40 was carried out using siRNA. The INS-1 cells were subject to ssRNA/siRNA for 24 

hours, subsequently incubated ±GLT media for 72 hours and the nuclear extracted was obtained 

(Biovision, Milpitas, CA, USA). The NF-κB activity of the INS-1 nuclear extracts were measured using 

an NF-κB activity ELISA kit (Active Motif, CA, USA). The data obtained showed that following CD40 

knock down (58.3% p<0.0423) there was a reduction in NF-κB activation (46.7% p<0.0385). 
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Figure 3.11 NF-κβ activity following CD40 knock down. Knock down of CD40 was carried out using siRNA (Dharmacon, GE 

Healthcare, UK). Cells were treated ±siRNA ±ssRNA for 24 hours and subsequently incubation in RPMI-1640 media ±GLT for 

72 hours. Following CD40 knock down the effect of diminished CD40 expression on NF-κβ activity. NF-κβ activity was 

determined using TransAm NF-κβ kit. Data shown is mean ±SEM of three independent experiments. 

 

 

3.3.3 NF-κB p65 is a transcription factor for iNOS 
 

Nuclear Factor Kappa B is a family of transcription factors that are known to play a pivotal role in 

inflammation via its ability to induce transcription of proinflammatory genes. The NF-κB family include 

NF-κB1 (p50/p105), NF-κB2 (p52/p100), RelB, c-Rel and p65. This research project focused on NF-κB 

p65, because as well as being the most commonly activated form of NF-κB it also contains the 

transactivation domain that is necessary for gene induction (Tak). NF-κB p65 specifically binds to the 

κB-binding site of target genes located in either the promoter or enhancer region to initiate 

transcription. Consistant with the other NF-κB family members, p65 contains a Rel homology domain 

(RHD), which is responsible for recognising DNA sequences of target genes as well forming 

heterodimers with other members of the NF-κB family (Lecoq et al, 2017). 
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Following on from the identification that GLT-induced CD40 upregulation is involved in NF-κB 

activation, we next wanted to determine whether iNOS was also affected by a high glucose and high 

fat diet. INS-1 cells were incubated for 5 days ±GLT, the cells were lysed in RIPA buffer and the proteins 

were separated on a 7.5% SDS-PAGE gel, transferred onto a nitrocellulose membrane and were 

immunoblotted with anti-iNOS monoclonal antibody (Abcam, Cambridge, UK). The results showed 

that exposure to GLT caused an up-regulation in iNOS protein expression (3.7-fold p=0.0075).  

 

 

 

Figure 3.12 iNOS Protein Expression. INS-1 cells were incubated ±GLT for 5 days prior to lysing using RIPA buffer. Proteins 

were quantified using BCA assay and loaded to 7.5% acrylamide gel and separated using SDS-PAGE. Proteins were transferred 

to nitrocellulose and gel and immunoblotted using iNOS specific antibodies. Data is normalised to tubulin and expressed as 

fold change compared to the untreated control. Data shown is mean ±SEM of three individual experiments. 
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3.3.4 Nitric Oxide is produced via two distinct mechanisms in pancreatic beta cells 
 

 Nitric oxide is a free radical that is produced in many tissue types, it is known to be responsible for 

multiple regulatory functions and plays a role in the pathogenesis of cellular injury. NO can be 

generated from a Nitric oxide synthases (NOSs) (Li et al, 2008). 

 

3.3.4.1 Nitric oxide is produced from L-arginine 

 

In this project, it was observed that iNOS increases in response to GLT conditions. To identify whether 

nitric oxide is formed enzymatically in β-cells in GLT, it was observed whether L-arginine was being 

broken down to form citrulline and NO when iNOS expression increases, by measuring the expression 

of arginosuccinate.  INS-1 cells were incubated ±GLT for 5-days, lysed and total RNA was extracted. 

RT-qPCR was used to measure levels of the gene argininosuccinate synthase (ASS1), which is the 

enzyme that catalyses the reformation of L-arginine following its initial conversion to citrulline and 

was measured to see if the up-regulation of iNOS (Fig 3.8) resulted in a greater turnover of L-arginine, 

in turn meaning an increase in NO.  The results demonstrate that the mRNA levels of ASS1 increase in 

GLT which suggests that citrulline is being formed by the breakdown of L-arginine during the formation 

of NO.  
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Figure 3.13 Arginosuccinate synthase mRNA expression. INS-1 cells were treated ± GLT for 5 days. Cells were subsequently 

lysed and total RNA was extracted, reverse transcribed to generate cDNA and analysed using RT-qPCR using arginosuccinate 

synthase primers. Data represent ΔΔCt expressed as fold change compared to the untreated control. Data shown is mean 

±SEM from three independent experiments. 

 

3.3.4.2 Is Nitric Oxide is produced from Nitrite 

 

Nitrite is thought to be a mechanism of storing NO in a physiologically stable condition. Nitrite can be 

converted to NO in certain conditions such hypoxia, by the enzyme nitrate reductase. Nitrite was 

measured in this experiment to determine whether the pools of stable NO increased in GLT conditions. 

INS-1 cells were incubated ±GLT for 5-days prior to being used in the Nitrite Assay kit (Sigma-Aldrich, 

St.Loius, MO, USA). 
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Figure 3.14 Nitrite in response to GLT. Cells were incubated ±GLT for 5 days. Cells were lysed and used in the Nitrite 

colorimetric assay (Sigma-Aldrich). Data represents nitrite compared to the untreated control Data shown is the mean ± SEM 

of four independent experiments.  

 

3.3.5 Nitric oxide results in HNE adduction and 3-NT 
 

The reason HNE and 3-NT was included in this investigation is because the most common source of 4-

HNE is from reactive oxygen species and 3-NT is a marker of lipid peroxidation, that results from an 

increase in NO (Cruz and Fardilha, 2016).  These species were observed as the results in Fig 3.11 did 

not indicate an increase in NO, however, the increase in HNE and 3-NT suggests that NO does increase 

in GLT conditions and results in cell damage. To identify whether HNE and 3-NT increased in response 

to GLT conditions, INS-1 cells were incubated for 5 days ±GLT media and 4-HNE formation was 

determined by ELISA (Abbexa, Cambridge, UK) and the absorbance was read at 450nm.  The results 

demonstrated that exposure of the pancreatic β-cell to GLT for 5-days increased 4-HNE formation by 

43.4%.  3-NT species were determined by ELISA (Abcam, Cambridge, UK) and the absorbance was read 

at 450nm. The results showed an increase in 3-NT species by 33%. 3-NT analysis was carried out by 

Michael Cripps. 
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Figure 3.15 4-HNE adducts and 3-NT in response to GLT. Cells were incubated ± GLT for 5 days. 4-HNE formation was 

determined by ELISA (Abbexa, Cambridge, UK) and absorbance measured at 490 nm.  3-NT formation was determined by 

ELISA (Abcam, Cambridge, UK), with absorbance measured at 450 nm. Data are expressed as mean ± SEM from 3 independent 

experiments. 

 

3.3.6 Effect of CD40 on interferon gamma induced proteins 
 

The unbiased network analysis performed on microarray data of INS-1 cells ±GLT showed major 

involvement of the JAK/STAT signalling pathway (Fig 3.4). To validate this finding independent RT-

qPCR was used to measure the expression changes of six interferon gamma (IFN-γ) genes, that were 

present in the original microarray data set. The reason for observing changes in expression of IFN-γ is 

because they are associated with stimulating the initiation of the JAK/STAT pathway and initiating an 

immune response (Horvath CM, 2004). The cells were treated ± GLT for 3-days prior to RNA extraction 

(Qiagen, Hilden, Germany), reverse transcribed to generated cDNA (ThermoFisher, Waltham, MA, USA) 

and analysed using RT-qPCR using IFN-γ specific primers. The results showed that all 6 of the tested 

IFN-γ genes were significantly up-regulated in response to GLT. 
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Figure 3.16 IFNγ mRNA Expression. Cells were incubated ± GLT for 5 days. Total RNA was extracted from cells and reverse 

transcribed to generate cDNA and subsequently analysed using RT-qPCR using specific IFNγ primers. Data represent ΔΔCt 

expressed as fold change compared to the untreated control. Data shown is mean ± SEM from three independent experiments. 

 

 

    3.4 Discussion 
 

The damaging effects of elevated glucose combined with elevated free fatty acids on the function of 

pancreatic β-cells is termed glucolipotoxicity. Glucolipotoxicity negatively effects β-cell function, 

particularly insulin production and secretion. In human circulation, palmitic, oleic and stearic are the 

most common fatty acids making up approximately 80% of the total circulating fatty acids, with oleic 

acid being the most prominent free fatty acid found in the human pancreas.  

Type 2 diabetes is caused largely by factors associated with life style and genetics. A number of life 

style factors contribute to the onset and development of type 2 diabetes, with chronic over nutrition 

combined with lack of exercise the main cause of increasing prevalence of overweight and obese 

individual. In the UK, approximately 86% of type 2 diabetic patients are overweight or obese (Olokoba 

et al, 2012. Kempf et al, 2006. Al-shafari and Gunaid, 2014). 

CD40/TNFR5 is a cell surface receptor and belongs to the tumour necrosis factor receptor superfamily. 

It is a type 1 transmembrane protein with four extracellular cysteine rich domains that are important 

for it to bind to its ligand, CD40L.  CD40 is mainly associated with the initiation and progression of 

adaptive immune responses including T cell-dependent immunoglobulin class switching, memory B 
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cell development and germinal centre development but both CD40 and its ligand have been found in 

multiple cell types and its therefore now accepted that the CD40-CD40L interaction is associated with  

more general immune regulation, and CD40-mediated signalling is involved in many pathways 

including  NF-κB, STAT3 and MAPK (Van Kooten and Banchereau, 2000. Yao et al, 2016).  

Based on Affymetrix and PCR data obtained by Marta Bagnati it apparent that CD40/TNFR5 was the 

most up-regulated of the observed TNFR family members. Additionally, MetaCore™ analysis of genes 

identified using microarray analysis ± GLT, identified CD40 as a major regulatory pathway. MetaCore™ 

is an integrated software that is used for functional analysis for experimental data. It is based on a 

collection of data of human protein-protein, protein-DNA interactions, transcription factors, effects of 

bioactive molecules and signalling and metabolic pathways. MetaCore™ can be used for functional 

analysis of proteomics, metabolomics, gene expression, siRNA, and others (MIT Libraries). The 

software for this investigation was beneficial as it identified that CD40 potentially signals via NF-κB. 

 

The results obtained in this project demonstrated that CD40/TNFR5 gene and protein expression 

increased in response to elevated glucose and fatty acids. The results showed that CD40 gene 

expression increased significantly by 5.65-fold and the protein expression increased by 3-fold. This 

investigation is based on results obtained and published by Bagnati et al, 2016 who identified that a 

number of tumour necrosis factor receptors that were associated with inflammation and apoptosis 

and of these CD40/TNFR5 was the most affected in response to GLT. Bagnati et al found an increase 

in CD40 gene expression of 2.23-fold, which is much less than the current study. Bagnati et al also 

identified an increase in CD40 protein expression by 2-3-fold, which again is less than the current study. 

A reason that Bagnati et al identified a lower increase in CD40 gene and protein expression could be 

because they incubated the INS-1 cells in media supplemented with high glucose and fatty acids for 

72 hours rather than 5-days, that was used in the present investigation. This suggests the chronic 

exposure of INS-1 to GLT media intensifies over time prior to causing apoptosis.  

INS-1 incubation in GLT media also had an effect on the expression and activation of NF-κB, which is 

a family of inducible transcription factors and are activated by a number of different stimuli (Hayden 

and Ghosh, 2014).  NF-κB gene expression was increased significantly by 5.59-fold in response to GLT 

and NF-κB activity was also up-regulated in response to INS-1 incubation in GLT media by 2.01-fold. 

The next step of the investigation was to determine whether CD40 signalling has an effect on NF-κB 

activation and expression. This again builds upon published work by Bagnati et al, who found and 

published that NF-κB protein expression was up-regulated by an average of 73% following 72-hour 

incubation in glucolipotoxic media. This finding was followed by the observation that the increase and 
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activation of NF-κB is in fact associated with the increase in CD40. Firstly, evidence for this is shown in 

the Bagnati et al paper that presented that in the presence of the CD40 ligand known as CD40L, there 

was an increase in the translocation of NF-κB from the cytoplasm to the nucleus suggesting that it was 

no longer being sequestered by its inhibitor and was now active. Subsequent to this, our current 

investigation used siRNA to transiently knock down CD40 and observe the effects this had on NF-κB 

activation or mRNA expression. The results showed that despite a modest knock down of 58.3 ±16.9%, 

NF-κB activation was reduced by 46.7 ±8.2%, which is published in the Bagnati et al 2016 paper. This 

suggests that CD40 is an upstream activator of NF-κB.  

The transcription factor family, NF-κB is central to iNOS regulation (Vanini et al 2015). This 

investigation sought to identify whether glucolipotoxic conditions had an effect on iNOS expression. 

iNOS expression is important because it’s thought to be one of the direct consequences of an 

inflammatory process and is responsible for the production of nitric oxide (NO). NO is an uncharged 

and unstable free radical molecule that functions as a mediator in many tissue types. Due to its small 

size and it being uncharged, NO can diffuse out of the cell where it was produced and into nearby 

target cells (Augusti et al, 2004. Collin-Osdoby et al, 1995). Low concentrations No is essential for cell 

maintenance however, if concentrations become too high it can have cytotoxic effects on the cells 

(Augusti et al, 2004). 

 The results showed that iNOS expression was significantly increased in response to GLT. iNOS protein 

expression increased by 3.7-fold in GLT conditions compared to the untreated control. This is a 

significant finding as it demonstrates that a high glucose and fatty acid environment results in 

inflammation, as iNOS is the main producer of NO.  

The next part of the investigation was to measure argininosuccinate synthase (ASS1) mRNA levels in 

response to GLT incubation. The reason for this was to identify whether the increase in iNOS would 

result in NO production, as iNOS is responsible for catalysing the reaction of L-arginine to L-citrulline 

that results in NO production. The reason ASS1 was measured is because it is the enzyme required for 

converting L-citrulline back to L-arginine once following the catalysis of iNOS (Haines et al, 2011). The 

results indicated that ASS1 mRNA levels increased by almost exactly 2-fold, supporting the suggestion 

that that NO production is increased in GLT conditions following the increase in iNOS induction.  

The effect of glucolipotoxic conditions on nitrite was also observed. The reason that nitrite was 

factored into this investigation is because it is a stable product of NO, as NO itself is only short-lived 

due to scavenging reactions. Nitrate can be formed from the reduction of nitrate, but the majority of 

nitrite is derived from the oxidation of NOS-generate NO (Tiso and Schlechter, 2015. Lundberg et al, 

2008). The results however were unexpected and showed that nitrate production was down-regulated 
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following INS-1 exposure to GLT conditions. Nitrite was down-regulated by 46.5% in GLT conditions 

compared to the untreated control. This result was unexpected as it was rational to consider that if 

NO levels increase, as suggested by the increasing iNOS expression, it would result in an increase in 

NO oxidation and therefore an increase in nitrite. A source of nitrite is from the oxidation of nitric 

oxide. This means that nitrite could be formed from NO that is originally generated from iNOS 

(Lundberg et al, 2008). However, it has been identified in this study that when INS-1 cells are exposed 

to GLT media there is increase in HNE, which suggests that the NO resulting from increased iNOS 

expression, is reacting with superoxide to form peroxynitrite rather than being oxidised. Peroxynitrite 

is produced from the diffusion-limited reaction of NO with superoxide and is an important 

intermediate in the pancreatic beta cell inflammatory response (Jourd’heuil et al, 2001).  

 HNE is the most abundant product of lipid peroxidation that results from omega-6 (ω-6) 

polyunsaturated fatty acids. HNE is known to be increased in oxidative stress related diseases including 

obesity and diabetes (Li et al, 2013). HNE have damaging effects resulting from its high reactivity based 

on its strong electrophilic functional group; 2,3-double bond close to the hydroxyl group on C4 and 

the carbonyl group on C1 (Li et al, 2012). There are apparently two main factors that affect HNE 

concentration, the first is up-stream metabolism of HNE, as high levels of lipid peroxidation resulting 

in HNE is the hallmark of increased levels of oxidative stress. The second factor is down-stream of HNE 

metabolism and is the disposal of HNE which includes; conjugation to glutathione, cysteine and 

carnosine. It also includes reduction to DHN by cytosolic aldehyde reductase and finally oxidation to 

4-hydroxynonanoic acid that can be catalysed to form acetyl-CoA and propionyl-CoA that enters the 

citric acid cycle. Disturbance of the balance between metabolism and disposal of HNE can lead to the 

accumulation in HNE causing protein, lipid, and/or DNA damage by modifications. A significant study 

observed the effects of 4 diets (standard chow, low fat, ketogenic and high fat) on HNE concentrations 

in mouse liver cells. The results showed that HNE and its analogue known as ONE were found in the 

highest concentrations in liver cells that were exposed to the high fat diet. They also proved that 

conjugation to of HNE to glutathione is a major HNE disposal pathway in the liver. However, they 

didn’t explore HNE disposal in other pathways such as cysteine or carnosine conjugation.  

The reason the study conducted by Li et al, 2012 is significant is because they have demonstrated that 

diet can influence HNE concentration which is down stream of NF-κB, iNOS and NO which this current 

investigation is concerned with. However, the current investigation builds upon the study by Li et al, 

2012 by looking at more relevant fatty acids and glucose. The results found in the present investigation 

is that HNE increases on average by 43.4% when the INS-1 cells are incubated in media containing 

elevated glucose, oleic and palmitic acid. The study by Li et al uses linoleic and linolenic acid to 

generate the 4 different diet types being tested. Linoleic and linolenic acid are ω-6 and ω-3 fatty acids, 
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that are found in vegetable oils and fish oils respectively. Both of which are polyunsaturated essential 

fatty acids. However, the main dietary fatty acids are oleic acid and palmitic acid, which are used in 

the present investigation. Oleic acid is the most abundant fatty acid in nature and is an ω-9 

monounsaturated fatty acid that is found in plant oils. Palmitic acid is a common saturated fatty acid 

that is found in plant and animals (PubChem). The relevance of the finding that HNE increases in INS-

1 β-cells following incubation in GLT media for 5 days is that it demonstrates directly that diets is 

responsible for damage to β-cells in conditions that are representative of obesity and type 2 diabetes, 

despite neither of the fatty acids used being an ω-6 fatty acid.  

As well as lipid peroxidation causing an increase in HNE, the increase may also result from lack of 

scavenging. It was demonstrated by Li et al, that glutathione conjugation was the major source of HNE 

disposal, however it is known that pancreatic islets have less glutathione peroxidase and it has even 

been shown to be completely absent in a pancreatic β-cell line (Tiedge et al, 1997). Glutathione 

peroxidase is an enzyme that is present in the ROS degradation pathway to protect cells from 

increased hydrogen peroxide concentrations and lipid peroxides, however, it is thought to be 

expressed in much lower concentrations in β-cells because it is required for insulin secretion 

(Robertson and Harmon, 2007. Pi et al, 2007). Therefore, without the protection of glutathione 

peroxidase it is likely that HNE would accumulate more in pancreatic beta cells than in other cell types, 

in stressful conditions resulting in beta cell damage.  Another study that was investigating the effect 

of a high fat diet on HNE concentration in adipose tissue supported this hypothesis. Again, the study 

used linoleic fatty acid in the high fat diet as this is the most commonly found fatty acid in adipose 

tissue and their results showed that lipid peroxidation and HNE is increased in high fat conditions in 

epididymal adipose tissue, however the same result wasn’t identified in subcutaneous adipose tissue. 

They also found that glutathione peroxidase was down regulated in mouse epididymal adipose tissue 

following the high fat diet but the enzyme was not affected in subcutaneous adipose, this again 

supports the idea that glutathione peroxidase conjugation is a major disposal pathway for HNE and is 

the reason that HNE was increased in subcutaneous adipose tissue following the high fat diet (Long et 

al, 2013). Therefore, this again supports the theory that pancreatic β-cells are more susceptible to 

HNE accumulation based on their lack of glutathione peroxidase and that the CD40-induced NF-κB 

pathway results in HNE accumulation and ultimately β-cell damage.  

Another part of investigation into the CD40/TNFR5 signalling pathway and its association with other 

genes. A programme known as MetaCore™ was used to build a network of signalling that were 

significantly up-regulated following INS-1 exposure to GLT. The primary signalling network that up-

regulated by GLT was the JAK/STAT signalling pathway. This was validated by measuring IFNγ genes 

that are reported to initiate the pathway and up-regulate cytokine action in the immune response. 
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This finding may suggest a possible role for pancreatic β-cell damage in the onset of T2D induced by 

the JAK/STAT pathway 

 

3.5 Conclusion 
 

In conclusion the results shown in this chapter indicate that an up-regulation in CD40 is induced by 

elevated levels of glucose and fatty acids and it suggests that CD40 plays a role in glucolipotoxic-

induced inflammation that is found in diabetes. The results also indicate that the glucolipotoxic-

induced increase in CD40 expression is linked to an increase in NF-κB activation and downstream 

inflammatory pathways culminating in the production of 4-HNE in pancreatic beta cells, summarised 

in Figure 3.17.  

 

 

Figure 3.17: Summary of results. Summary of chapter 3 results that identified GLT resulted in an increase of CD40 protein 

and mRNA, leading to increased NF-κB activity. NF-κB is a transcription factor of iNOS which also increased following 

exposure to GLT and finally an increase in markers of lipid peroxidation, HNE and 3-NT adducts.   
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4.0 CHAPTER 4: Modulation of Gene Expression by CD40/TNFR5 
 

4.1 Introduction 
 

As discussed in chapter 3 of this thesis, CD40 is up-regulated in INS-1 cells following exposure to 

glucolipotoxic (GLT) conditions. As shown in chapter 3 this results in a cascade that of up-regulation 

of genes and proteins that are potentially involved in inflammation. This chapter further examines 

how CD40 is able to modulate various genes to disrupt normal beta cell function.  

 

4.1.1 Tumour necrosis factor super family 
 

There are currently 19 ligands and 29 receptors that make up the tumour necrosis factor superfamily 

(TNFSF) (Xu et al, 2017). The superfamily plays a role in activating signalling pathways that are involved 

in cell survival, proliferation, or apoptosis. The tumour necrosis factor receptors (TNFRs) can be broken 

down into two groups depending on whether they possess an intracellular death domain (DD). The 

DD results in cell apoptosis via activation of caspases through contribution of adapter proteins FADD 

(Fas-associated death domain) and TRADD (TNF receptor associated death domain). The second group 

of TNFSFRs signal via TNF receptor-associated proteins (TRAFs) only. However, DD-containing 

receptors can also operate via this pathway. TRAFs are able to bind directly to TRADD or to the 

cytoplasmic portion of the receptor to initiate a response (Ślebioda and Kmieć, 2014). 

CD40 is a cell surface receptor and a member of the TNFR super-family and has the alias TNFR5. It was 

first identified and characterised on B lymphocytes, however, it has since been found on multiple 

other cell types (Van Kooten and Banchereau, 2000). CD40 is a type I transmembrane protein with a 

molecular mass of 48kDa and is made up of an extracellular domain, a leader sequence, a 

transmembrane domain and an intracellular domain.  Within the extracellular domain there are 22 

cysteine residues that are conserved between TNFR super family members (Elgueta et al, 2009). The 

ligand for CD40 is known as CD40L or CD154, and is a type II transmembrane protein, with a molecular 

weight between 32 and 39kDa, CD40L has a variable molecular weight due to post translational 

modifications. The ligand for CD40 is also part of the TNF superfamily and is characterised by its 

‘sandwich’ structure. CD40L is composed of a α-helix loop located between two β-sheets, which allows 

for its trimerization (Elgueta et al, 2009).   

It is known that CD40 is a key activation receptor via its interaction with CD40L resulting in the 

production in many proinflammatory cytokines including IL-1, IL-6 and IL-8. The signal transduction 
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mechanism of CD40-CD40L has been shown to be mediated by the transcription factor Nuclear Factor 

Kappa B (NF-κB). Several proinflammatory cytokines have NF-κB binding sites in their promoter region 

and are therefore potential targets of CD40 engagement (Phipps R, 2000). Regarding pancreatic cells 

specifically, results in chapter 3 of this thesis and data published by Bagnati et al, indicate that it is 

pancreatic up-regulation of CD40 that leads to the activation of both NF-κB and STAT1 that initiates 

islet inflammation and eventually β-cell death by increasing transcription of inflammatory mediators 

(Turner MD, 2017). 

 

4.1.2 Inhibitor of DNA binding proteins 
 

There are four inhibitor of DNA binding proteins, also commonly known as inhibitor of differentiation 

proteins (ID1-4), that are part of the helix-loop-helix (HLH) family of transcriptional regulatory proteins 

that act as dominant negative regulators and repress transcription of bHLH transcription factors. All 

four of these ID proteins have a homologous helix-loop-helix domain which is highly conserved and is 

made up 2 amphipathic helices on either side of a loop that controls homo- and hetero-dimerisation 

but lack the basic DNA binding domain (Han et al, 2017). ID proteins dimerise with their partner basic 

HLH (bHLH) transcription factors in a dominant negative manner to prevent them binding DNA (Han 

et al, 2017). The bHLH dimers bind to the E-box DNA consensus, represented by the sequence CANNTG 

present in a wide variety of tissues, via a group of positively charged amino acids (Sharma et al, 2016). 

The binding is repressive as it is the E-box that mediates transcription.  It is known that E-box elements 

are present in promoter and enhancer regions that regulate pancreas-specific gene expression. A 

number of genes that are only found located in the pancreas, such as insulin and somatostatin genes, 

require E-Box sites to be expressed sufficiently. Insulin and somatostatin promoter sites contain E-box 

sites that when multimerized are adequate enough to regulate pancreatic β-cell specific gene 

expression (Massari and Murre, 2000).  
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Figure 4.1 Schematic image of how id proteins bind to E-proteins to prevent transcription. Adapted from Engel and Murre, 
2001. 

 

ID proteins have a wide variety of roles in physiological development processes and also in pathology, 

however, biological effects of ID4 appear to the opposite of the other bHLH dimers. ID1-3 are 

considered to play a role in regulation of the cell cycle and differentiation and as their expression is 

commonly found in various cancer types, ID1, ID2 and ID3 are considered to be tumour enhancers/ 

oncogenes where as ID4 has emerged as a potential tumour suppressor, as it appears to be silenced 

in many cancers. 

 

4.1.3 Insulin synthesis and Secretion 
 

Insulin gene expression only occurs in beta cells of the endocrine pancreas in response to increased 

glucose concentrations (German and Wang, 1994). The insulin gene promoter is regulated by the 

binding a specific transcription factors to its promoter region such as PDX-1, MAF-A and HNF-1 

amongst others (Melloul et al, 2002). Insulin gene transcription is controlled by the interaction of 

regulatory proteins known as trans-activating factors with specific DNA sequences known as cis-

elements. The most important cis-element that regulates transcription is the insulin control element 

(ICE), which operates via both positive and negative-acting transcription factors (Melloul et al, 2002). 

The transacting activators of ICE expression are thought include E, A and C1/RIPE3. E boxes bind 

proteins of the basic helix-loop-helix (bHLH) family which function as potent transcription activators 

by forming heterodimers with bHLH family members. A-boxes bind to a well-known insulin 

transcription factor known as pancreatic duodenal homeobox-1 (PDX-1) to initiate insulin gene 
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transcription. PDX-1 is involved in the early conversion of primitive gut cells to pancreatic beta cells 

and also in the maturation of beta cells. PDX-1 is a major trans activator of the insulin gene, and islet 

specific genes such as GLUT2, glucokinase and somatostatin (Stein et al, 1994. Melloul et al, 2002).  

The reason for observing transcription factors in this chapter is to determine whether CD40 might 

modulate gene expression beyond inflammation (detailed in Chapter 3). A former member of the 

Turner lab observed four well known insulin gene transcription factors; PDX-1, MAF-A, HNF-1 and 

TFAM for alterations following CD40 transient knock down using siRNA. However, none were affected 

by the absence of CD40, although crucially this knock-down resulted in increased insulin expression.  

 

4.2 Aim 
 

It has been observed in the previous chapter that CD40 expression increases when the pancreatic beta 

cell is exposed to GLT, resulting in an increase in genes involved in inflammation, however the aim of 

this chapter was to determine whether the presence of CD40/TNFR5 was able to result in the 

suppression of gene expression in pancreatic beta cells, therefore altering function and also to identify 

a repressor of insulin gene transcription that is mediated by CD40.  

 

4.3 Results 
 

A concentration of 10mM carnosine was used to investigate its ability to prevent or reverse the up-

regulation of various proteins and genes resulting from INS-1 exposure to GLT. This concentration 

was determined as being the most effective and least damaging to the INS-1 cells compared to other 

concentrations (1mM, 20mM 50mM and 100mM, data not shown). Cell culture media ±GLT was 

supplemented with 10mM and incubated for 5 days.  

 

4.3.1 CD40 inhibits transcription in human CM cell line 
 

This chapter of the thesis utilised a human cell line known as CM. The CM cell line is derived from a 

human pancreatic insulinoma and it was used in this project as a model for β-cells and to study the 

effect of CD40 on various genes. Importantly, CM have been reported been reported to maintain many 

of the primary characteristics of β-cells (Jonnakuty and Gragnoli, 2007). The reason the human CM cell 
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line is used here is because human data was used to generate the bespoke CD40 regression analysis 

pathway (Fig 4.2). The use of a second cell line also added validity to the project. 

Utilising unique neural net algorithms (generated by Professor Graham ball, NTU) a bespoke CD40 

regression analysis pathway was generated. This demonstrated the negative effect of CD40 on the 

interaction between numerous genes.  It has already been demonstrated in chapter 3 that CD40 is up-

regulated when INS-1 cells were exposed to high glucose and fatty acid media. From the genes that 

were predicted to be inhibited by the presence of CD40/TNFR5, six were selected based on their 

physiological role and their position as hubs in the interactions (Figure 4.2). 

 

 

   

      

Figure 4.2 Bespoke CD40 regression analysis pathway. Generated by Professor Graham Ball. Shows pathway as generated 
by Professor Ball and highlights selected genes for further analysis. 

 

Table 4.1 Six selected genes identified as negatively regulated in the bespoke CD40 regression analysis and their 
corresponding function.  

Gene Function 

 GTP-binding protein 4 
(GTPBP4) 

GTP-binding proteins are GTPases and function as molecular switches 
that can flip between two states: active, when GTP is bound, and 
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inactive, when GDP is bound. 'Active' in this context usually means that 
the molecule acts as a signal to trigger other events in the cell. 

ILVB acetolactate like 
gene (ILVBL) 

A protein encoding gene that plays a role in catalysing the first step in 
branched amino acid synthesis. 

Isocitrate 
dehydrogenase 2 

(IDH2) 

Catalyses the oxidative decarboxylation of isocitrate to α-ketoglutarate 
and synthesis NADPH in the mitochondrial TCA cycle. 

Major vault protein 
(MVP) 

Required for normal vault structure. Vaults are multi-subunit structures 
that may act as scaffolds for proteins involved in signal transduction. 
Vaults may also play a role in nucleo-cytoplasmic transport. 

Sterol-C4-methyl 
oxidase like (SC4MOL) 

Encodes the protein sterol-C4- methyl oxidase (SMO), which is involved 
in catalysing the demethylation of C4-methysterols in the cholesterol 
synthesis pathway. 

Cortexin-1 (CTXN) Encodes a protein that is found located in precursors of neurons and is 
involved in the mediation of intra and extra-cellular signalling of cortical 
neurons during brain development. 

 

 

CM cells were transiently transfected with siRNA for 24 hours to knockdown CD40/TNFR5 expression 

(Dharmacon, GE Healthcare, UK). Following 24 hours incubation in transfection reagent cells were 

washed with PBS and incubated in 0.8mM glucose RPMI-1640 for 72 hours. Subsequent to the 

knockdown procedure, cells were lysed and captured in a pellet. The pellet was then split in order to 

be used for both western blot technology and PCR analysis. Prior to western blot analysis protein was 

extracted from the cells using RIPA buffer and quantified by a BCA assay. Equal amounts of protein 

were loaded to a 10% SDS-Page gel and the proteins were separated using electrophoresis. The 

proteins were then transferred to a nitrocellulose gel and immunoblotted using specific antibodies. 

The results demonstrated a significance in analysis of variance (0.00001) and that CD40/TNFR5 was 

knocked down in the siRNA treated cells by 85% compared to the control (p=0.000038) and 

CD40/TNFR5 was down regulated in the siRNA treated cells by 79.2 % by comparison to the scrambled 

sequence treated cell (ssRNA) (p=0.000097). 
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Figure 4.3 CD40 knock down in CM cells. CD40 was transiently knocked down in human CM using siRNA. siRNA transfection 

solution was applied to cells for 24 hours. Subsequently, CM cells were incubated in 0.8mM glucose RPMI-1640 for 72 hours. 

Cells were lysed using RIPA buffer and quantified using BCA assay. Proteins were loaded to a 10% acrylamide gel and 

separated using SDS-PAGE. Proteins were transferred to nitrocellulose membrane and immunoblotted using CD40 specific 

antibodies. 

 

 

The pellet obtained as explained above was used to extract RNA using an RNA extraction kit (Qiagen), 

reverse transcribed and used in qPCR analysis. Specific primers were used for the genes observed 

(GTPBP4, ILVBL, IDH2, MVP, SC4MOL, and CTXN).  

The results demonstrated 85% knockdown of CD40 in siRNA treated cells. This resulted in increased 

expression of all genes identified in the bespoke regression map, apart from MVP. The cells that 

underwent transient knockdown of CD40 using siRNA showed an increased expression of GTPBP4 by 

3.84-fold (p=0.009), 5.83-fold increase of ILVBL gene expression (p=0.048), 3.44-fold increase in IDH2 

gene expression (p=0.0084), 3.8-fold increase in SC4MOL gene expression (p=0.0086) and a 4.69-fold 

increase in CTXN1 gene expression (p=0.037) by comparison to the untreated control cells. However, 

there was no significant change in gene expression of MVP. These results confirm the validity of the 

predicted interactome, with the presence of CD40 able suppress expression of various functional 

genes. 
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Figure 4.4: Gene expression following CD40 knockdown in CM cells. Subsequent the CD40 knockdown in human CM cells, 

total RNA was extracted (Qiagen, Hilden, Germany), reverse transcribed (Thermofisher, Waltham, MA, USA) and analysed 

using RT-qPCR with specific primers. Results are shown as ΔΔCt expressed as fold change compared to the control. Results 

shown are mean ± SEM of four independent experiments. 

 

 

Previous results were supported by identifying whether the same reduction in expression was 

experienced in GLT conditions at protein level. The INS-1 cell line was utilised for further investigation 

as CM cells do not function in GLT conditions. INS-1 cells were incubated ±GLT for 5 days. After the 

incubation period, protein was extracted using RIPA buffer and quantified by a BCA assay. Equal 

amount of protein for each condition was loaded to 10% SDS-Page gels and the proteins were 

separated using electrophoresis. The proteins were then transferred to nitrocellulose membranes and 

immunoblotted with either IDH2 or SC4MOL specific antibodies. The results showed that exposure to 

GLT resulted in a reduction of IDH2 protein expression by 24% (p=0.00014) and a reduction in SC4MOL 

protein expression by 55.6 (p=0.0003).  
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Figure 4.5 IDH2 and SC4MOL protein expression in response to GLT. INS-1 cells were incubated ± GLT for 5-days. Proteins 

were lysed used RIPA buffer and quantified using BCA assay. Proteins were loaded to acrylamide gels and separated using 

SDS-PAGE. Proteins were transferred to nitrocellulose membranes and immunoblotted using specific antibodies. 

 

 

4.3.2 GLT reduces insulin gene transcription 
 

It is well known that chronic exposure to high glucose and fatty acid concentrations reduces insulin 

gene expression. The aim of this section was to determine whether novel genes could be identified 

that participate in this process, and hence that might play a role in reducing insulin secretion. 

 

4.3.2.1 Time lapse insulin gene expression 

 

 INS-1 cells were incubated ±GLT media for 24, 72 or 120 hours. Following the incubation period, total 

RNA was extracted from the cell using an RNA extraction kit (Qiagen), reverse transcribed and 

ultimately used in qPCR analysis, using specific primers for the insulin gene. The results showed that 

there was gradual decline in insulin gene expression as the time points progressed compared to 

control. Analysis of variance demonstrated there was a significant reduction in insulin expression 

between time points (p=0.042). 
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Figure 4.6 Insulin gene expression in response to GLT. INS-1 cells were incubated ± GLT for either 24 hours, 72 hours or 120 

hrs. Prior to incubation total RNA was extracted (Qiagen, Hilden, Germany), reverse transcribed (Thermofisher, Waltham, 

MA, USA) and analysed using RT-qPCR with insulin specific primers. Results are shown as ΔΔCt expressed as fold change 

compared to the control. Results shown are from three independent investigations. 

 

Following the observation that insulin gene expression is reduced in INS-1 β-cells, RT-q PCR analysis 

was undertaken to determine whether the gene for the insulin degrading enzyme (IDE) was increased. 

IDE is a zinc metalloproteinase which was first observed for its ability to degrade insulin (Tundo et al, 

2012). Cells were incubated ± GLT for 5 days prior to RT-qPCR analysis being performed using specific 

IDE primers. The results (Fig. 4.7) shows that despite IDE expression being moderately increased in 

response to GLT, was not statistically significant. 
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Figure 4.7 IDE Gene expression in response to GLT.  INS-1 cells were incubated ± GLT 5 days. Total RNA was extracted (Qiagen, 

Hilden, Germany), reverse transcribed (Thermofisher, Waltham, MA, USA) and analysed using RT-qPCR with IDE specific 

primers. Results are shown as ΔΔCt expressed as fold change compared to the control. Results shown are mean ± SEM from 

three independent investigations. 

 

 

 

4.3.3 GLT increases potential insulin inhibition gene 
 

Further neural net analysis was performed with enriched analysis for CD40 interaction with 

transcriptional regulators. Of those showing a positive interaction with CD40, inhibition of DNA-

binding 4 (ID4), a transcriptional repressor was the top hit. Therefore, in order to determine whether 

the presence of CD40 influenced the reduction of insulin gene expression through modulation of ID4 

I first sought to determine whether ID4 expression changes in response to GLT conditions. 

INS-1 cells were incubated ± GLT for 5 days, subsequent to the incubation period total RNA was 

extracted (Qiagen), reverse transcribed (Invitrogen) and analysed using qPCR with primers specific to 

ID4. The results showed (Fig 4.8) ID4 gene expression was significantly increased by 2.23-fold (p=0.003) 

following 5 days incubation in GLT media. 
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Figure 4.8 ID4 gene expression in response to GLT. INS-1 cells were incubated ± GLT 5 days. Total RNA was extracted (Qiagen, 

Hilden, Germany), reverse transcribed (Thermofisher, Waltham, MA, USA) and analysed using RT-qPCR with ID4 specific 

primers. Results are shown as ΔΔCt expressed as fold change compared to the control. Results shown are mean ± SEM from 

three independent investigations. 

 

 

As ID4 gene expression is increased by GLT, I then sought to determine whether up regulation of ID4 

affected the down regulation of insulin observed in the same conditions.  

INS-1 cells were subjected to siRNA transfection to knock down expression of ID4 for 24 hours, then 

transfection media replaced with RPMI-1640 media ±GLT for 72 hours. Following the 72-hour 

incubation the cells were lysed with RIPA buffer, separated into two tubes and then either prepared 

for western blotting to detect the level of ID4 knockdown or for PCR analysis to measure the change 

in insulin gene expression. The initial result (Fig 4.9) confirmed previous data in this chapter, in that 

insulin gene expression was down regulated by 52.6% (p=0.016) in GLT treated cells compared to 

control.  The results also showed that following siRNA transient knockdown of ID4, in non-GLT treated 

cells ID4 protein expression was reduced by 87.1 resulting in a 42.2 (p=0.006) increase in insulin gene 

expression in siRNA treated cells compared to non-GLT treated ssRNA cells. In GLT treated cells there 

was a reduction in ID4 protein expression by 92% resulting in an increase in siRNA treated cells in 

insulin gene expression by 26.4% (p=0.034) compared to ssRNA treated cells. 
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Figure 4.9 Insulin gene expression following ID4 knockdown. ID4 was transiently knocked down using siRNA for 24 hours 

followed by 72 hours incubation ± GLT. Total RNA was then extracted (Qiagen, Hilden, Germany), reverse transcribed 

(Thermofisher, Waltham, MA, USA) and analysed using RT-qPCR with insulin specific primers. Results are shown as ΔΔCt 

expressed as fold change compared to the control. Results shown are mean ± SEM from three independent investigations. 

 

To determine whether CD40 was the driving force responsible for the up-regulation of ID4 witnessed 

in GLT conditions and the subsequent reduction of insulin gene expression, a transient knockdown of 

CD40 was carried out. I then determined the effect on ID4 expression (Fig 4.10).  
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Figure 4.10 Effect of CD40 knockdown on ID4 protein expression. CD40 was transiently knocked down using siRNA for 24 

hours followed by 72-hour incubation ± GLT. Proteins were extracted using RIPA buffer and quantified using BCA assay. 

Proteins were loaded to acrylamide gels and separated using SDS-PAGE. Proteins were transferred to nitrocellulose 

membrane and immunoblotted using specific antibodies.  

 

 

4.4 Discussion 
 

Cluster of differentiation 40 (CD40) belongs to the TNF receptor family and is involved in the 

development of various inflammatory diseases (Portillo et al, 2014). The reason for investigating CD40 

in this chapter was to determine whether the increase in CD40 expression, that was previously shown 

to result from exposure to GLT, was able to modulate expression of genes associated with β-cell 

function. Using a bespoke interactome network map genes were identified that were predicted to be 

negatively regulated by CD40. Each gene is presented as a node and the link between the genes is 

symbolised as by an arrow to indicate the directional effect from the ‘source node’ to the ‘target node’ 

and this is used to demonstrate interactions between biological components (Tong et al, 2014). 
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 From the genes in the regression interactome (Fig. 4.2A), where all the genes identified were shown 

to be negatively regulated by CD40, six were selected for testing (Fig. 4.2B). Evidence of CD40 

activation resulting in cellular dysfunction was demonstrated. From six genes tested, five were 

negatively regulated by CD40 in human CM cells. This was determined by transient knock down of 

CD40 using siRNA. Following a knock down in CD40 of 85% compared to the untreated control and 79 

compared to the scrambled sequence control, PCR was used to determine the change in gene 

expression of the selected genes. GTPBP4 (GTP-binding protein 4) is a GTP-ase and functions as a 

molecular switch that alternates between the active and inactive GDP-bound form. When in the GTP-

bound active form, it can function as a trigger to initiate other cellular events. Following the knock 

down of CD40, GTPBP4 is increased 3.84 compared to control (p=0.0012), and 5.29 compared to the 

scrambled sequence control (p=0.0011). The next gene to be tested was ILVBL (ILVB acetolactate like 

gene) is a protein encoding gene that plays a role in catalysing the first step in branched amino acid 

synthesis. Subsequent to the knock down of CD40, ILVBL gene expression is increased 5.83-fold 

compared to control (p=0.046), and 9.79-fold compared to the scrambled sequence control (p=0.039). 

IDH2 (isocitrate dehydrogenase 2) is found in the mitochondria and catalyses the oxidative 

decarboxylation of isocitrate to α-ketoglutarate and synthesis NADPH (Han et al, 2017). IDH2 gene 

expression increased by 3.44-fold compared to untreated control and 3.44-fold compared to the ss 

control. MVP (Major vault complex) showed no changed in expression in response to the reduction in 

CD40 protein expression. SC4MOL (sterol-C4-methyl oxidase like) gene encodes the protein sterol-C4- 

methyl oxidase (SMO), which is involved in catalysing the demethylation of C4-methysterols in the 

cholesterol synthesis pathway (He et al, 2011) was up regulated by 3.8-fold in response to the 

transient knock down of CD40 compared to the untreated control and was up regulated by 3.7-fold 

compared to the ss control. Finally, CTXN (cortexin-1) gene encodes a protein that is found located in 

precursors of neurons and is involved in the mediation of intra and extra-cellular signalling of cortical 

neurons during brain development (Watson et al, 1994).  

 These results therefore demonstrate that CD40 stimulation via GLT exposure is able to result in the 

suppression of various genes and is likely to influence multiple cellular functions in β-cells. These 

findings are consistent with a report on B cells where systematic screening showed there are many 

unrecognised targets of CD40 including transcription factors, signalling molecules, proapoptotic 

molecules, cytokines and others. Importantly the study found that a number of genes were down 

regulated in response to CD40 stimulation including 18 transcriptional regulators (Dadgostar et al, 

2002).  

 

In order to validate the findings of Figure 4.4, protein expression of IDH2 and SC4MOL was measured 
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to confirm whether these proteins are reduced in GLT conditions, where it is known that CD40 

activation is increased. The results confirmed the findings of Figure 4.4 and showed that IDH2 protein 

expression was reduced by 24% and SC4MOL was reduced by 55.6%. IDH2 is located in the 

mitochondria, where it functions as an enzyme in the citric acid cycle. Its role is to consume NADP+ 

and provides NADPH by catalysing the oxidative decarboxylation of isocitrate to α-ketoglutarate 

(Smolkova and Jezek, 2012. Medeiros et al, 2017). GLT-induced damage of the mitochondria would be 

expected as it known that it is a major source of ROS and a primary site for ROS-induced oxidative 

damage and apoptosis. A recent study found that a reduction in IDH2 resulted in decreased cell 

viability and mitochondrial respiration rates where as a complete loss of IDH2 led to oxidative damage 

and apoptosis in HEI-OC1 cell, a mouse inner ear cell line (White et al, 2018). 

 As previously mentioned SC4MOL is involved in the demethylation of C4-methysterols in the 

cholesterol synthesis pathway. A similar study examining the effects of high glucose on pancreatic β-

cells found that HMGCoA was significantly reduced which is a rate limiting enzyme in cholesterol 

synthesis and its function is to catalyse mevalonate from 3-hydroxyl-3-methylglutaryl Co enzyme A 

and a reduction in cholesterol content (Somanath et al, 2009). This is consistent with the results shown 

in the present study and suggest that the driving force behind the alterations to the mitochondria, 

cholesterol synthesis and other mechanisms in the pancreatic β-cell that are caused by GLT are likely 

due to, at least in part due to activation of CD40. 

Consistent with my ID4 data presented in this chapter, a former member of the Turner lab group 

identified that by knocking down CD40 using siRNA, a 1.7-fold increase in insulin mRNA could be 

achieved in control conditions (data not shown). This finding suggests a novel role for CD40 in 

transcriptional regulation beyond just the inflammatory pathway in β-cell function. Therefore, the aim 

of this chapter is to identify the transcriptional machinery regulated by CD40 activation that results in 

the loss of insulin gene expression in GLT conditions. Multiple publications have demonstrated that 

insulin secretion is reduced in high glucose or fatty acid environments, however publications usually 

either show the effects of glucotoxicity or lipotoxicity, rarely combined, as demonstrated in this 

research project. It is well known that prolonged exposure of β-cells to glucotoxic environments 

diminishes insulin secretion (Dubois et al, 2007), and hyperglycaemia results in the reduced capacity 

of β-cells to secrete insulin (Kawahito et al, 2009). A suggested explanation for the loss of insulin 

secretion following exposure to the fatty acid palmitate is because it impairs the activity of the insulin 

promoter, but the same study identified that the addition of palmitate did not affect the stability of 

the preproinsulin gene (Kelpe et al, 2003).  
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Insulin degrading enzyme (IDE) is a zinc metallopeptidase that can degrade peptides including insulin. 

IDE is reported to be localised mainly in the cytosol of the cell but is also found in the mitochondria, 

peroxisomes and endosomes (Song et al, 2018). The results showed that in response to GLT, 

expression levels of the IDE gene increased by 13±6%. Despite an increase in the peptidase which is 

able to degrade insulin, the increase was not considered significant (p=0.09), and therefore isn’t the 

reason for the significant reduction of insulin gene expression that results from INS-1 cell exposure to 

GLT conditions. 

ID4 is identified as a stress-induced protein in β-cells that is significantly up-regulated in response to 

GLT conditions in INS-1 cells. The results showed that ID4 is up regulated by 2.23-fold in GLT conditions 

compared to control untreated cells. This finding is supported by Bensallam et al (2015), who 

identified that all members of the ID family were up regulated in diabetic mouse islets and builds upon 

another study that identified that both ID1 and ID3 are up-regulated in response to glucose and other 

insulin secretagogues (Wice et al, 2001). However, neither of these publications investigated ID4 in 

pancreatic β-cells.  

The results presented in this chapter identify ID4 as a novel modulator of insulin gene expression. The 

results showed that following the transient knock down of ID4 there is an increase in insulin gene 

expression in both control and GLT conditions, identifying that ID4 plays a role in the suppression of 

insulin gene expression that is observed in GLT conditions. However, this seemingly contradicts 

previously published data that stated that all four members of the ID family did not alter insulin 

secretion in physiological concentrations (Wice et al, 2001). However, it has already been observed 

that exposure of the INS-1 cells to GLT conditions was able to significantly up regulate ID4 gene 

expression above the control level. The findings by Wice et al (2001) also suggest that the up regulation 

of ID1 and ID3 in response to glucose actually promotes insulin secretion rather than inhibit synthesis 

as seen by ID4 in this project (Wice et al, 2001). The reason for ID4 responding in the opposite manner 

to other ID members is explained in a study that examined expression patterns of the ID protein family 

during mouse embryogenesis. The study identified that there was a difference in expression patterns 

of ID1-3 and ID4 which could suggest the dominant negative transcriptional activity of the proteins 

may lead to different physiological consequences (Jen et al, 1996).  

Therefore, the increase in ID4 might result in suppression of insulin gene expression due to ID4 

inhibiting the actions of the other members of the ID family. Consistent with this hypothesis a study 

has identified that the presence of ID4 was able suppress the effect of proteins ID1-3 in human 

prostate cancer cells lines (Sharma et al, 2015). This determination could also be relevant in pancreatic 

β-cells and the same phenomenon could be occurring, as Wice et al stated that ID1-3 could be 
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beneficial for insulin secretion, but in stress conditions such as GLT, ID4 is up regulated and it may be 

that this inhibits ID1-3, in turn suppressing insulin gene expression. This theory also expands upon 

further findings of Bensallam et al, who identified that when ID1 and ID3 were inhibited there was a 

resulting increase in reactive oxygen species (ROS). This is supported by results in the current research 

project that has identified a concomitant increase in ID4 gene expression and ROS when INS-1 were 

exposed to GLT. The results in this chapter also identified that CD40 is the driving force behind ID4 up 

regulation in response to GLT. As it is shown in this chapter that ID4 is responsible for suppressing 

insulin gene expression ID4 is therefore identified as a novel negative regulator of insulin gene 

expression. The results demonstrate a clear connection between CD40 knockdown using siRNA and a 

resultant loss in ID4 expression.  
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5.0 CHAPTER 5: Potential Therapeutic effects of Carnosine 
 

5.1 Introduction  
 

Carnosine is a physiological dipeptide that is synthesised from L-histidine and β-alanine in the 

presence of ATP. It is present in mammalian tissue and is found in abundance mostly in skeletal muscle 

tissue, heart muscle and the central nervous system (Harris et al, 2012). Βeta-alanine is considered to 

be the rate limiting step in carnosine formation as it has been demonstrated that by increasing the 

availability of β-alanine via supplementation, there is an increase concentration of carnosine in muscle 

tissue (Cuthbertson et al, 2010). Carnosine synthase, which belongs to the ATP-grasp family is also 

known as ATPGD1 and is the ATP-dependent ligase responsible for the formation of carnosine from 

its components L-histidine and β-alanine. (Drozak et al, et al 2010. Veiga-da-Cunha et al, 2014). The 

dipeptidase known as carnosinase (CN) is responsible for the degradation of histidine containing 

dipeptides including carnosine. There are two types of CN, CN1 which hydrolyses carnosine in plasma 

and CN2 which hydrolyses carnosine in the cytoplasm of cells (Peters et al, 2018. Otani et al, 2008). 

 

 

Figure 5.1: Structure of carnosine, Beta-alanine and L-histidine. Schematic image illustrating the formation of carnosine 
from β-alanine and L-histidine (Superfoodly.com). 
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5.1.1 Functions of Carnosine 
 

 

 

 

Figure 5.2 Potential functions of carnosine. Schematic of the potential roles of carnosine within skeletal muscle. (Generated 
by Jones R, 2017). 

 

Carnosine is a water-soluble dipeptide that is characterised by three ionisable groups; the carboxylic 

group (pKa 2.76), the amino group of the β-alanine (pKa 9.32) and the imidazole group/ring (pKa 6.72). 

The imidazole ring is located on the histidine residue of the dipeptide, it contains two nitrogen atoms 

and functions as the driver in a number of carnosine’s functions. (Culbertson et al, 2010). 

Carnosine is an antioxidant, which broadly means that it is able protect lipids, protein, DNA and other 

macromolecules from oxidative damage. The antioxidant properties possessed by carnosine are 

mediated by mechanisms including metal ion chelation and scavenging of reactive oxygen species and 

reactive carbonyl species. The antioxidant activity exhibited by carnosine is based on the functions of 

the imidazole ring. It has been shown that imidazole alone reduces oxidation to lipids by 39% and that 

histidine-containing dipeptides such as carnosine that were lacking the proton on the nitrogen of the 

imidazole ring showed very little antioxidant activity (Kohen et al, 1988).  

One mechanism by which antioxidants protect their target from oxidative stress is via metal ion 

chelation (Kohen et al, 1988). There is a lot of evidence to suggest that carnosine forms complexes 
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with metals of the first transition metal series including Cu2+, Co2+, Cd2+, Zn2+. Of these, the complexes 

of carnosine with Cu2+ and Zn2+ are the most studied and understood due to their physiological 

relevance and potential pharmaceutical applications. It has been proposed that metal ions bind with 

the imidazole ring, amino and peptide nitrogen atoms to form two-membered chelate rings.  

In normal physiological conditions reactive oxygen species (ROS) have role in maintaining regulatory 

functions. However, if there is an uncontrolled increase in expression of ROS they can interact with 

biomolecules and resulting in oxidative modifications and stress, which prevents them undertaking 

their functional regulatory roles. The markers of oxidative modifications and oxidative stress include 

glycated proteins and products of lipid peroxidation (Prokopieva et al, 2016). ROS is able to react with 

a biomolecule known as superoxide, which can result in downstream lipid peroxidation, HNE adduct 

and 3-nitrotyrosine formation, which are major biomarkers of oxidative stress and cell damage (Weber 

et al, 2013). However, at physiological concentrations carnosine has been found to directly interact 

with superoxide via a ‘charge-transfer’ complex which alters the reactivity of superoxide, therefore 

preventing the downstream cellular damage (Boldyrev et al, 2013). Carnosine is also reactive carbonyl 

species (RCS) scavenger. RCS can be divided into 3 groups, α,β-unsaturated aldehydes such as HNE, 

ketoaldehydes and dialdehydes (Hwang et al, 2016).  

Carnosine is also used to inhibit protein glycation. Glycation of proteins lead to the generation of a 

heterogenous group of adducts known as advanced glycation end products (AGE). The primary 

mechanism of glycation -induced damage involves the cross-linking between proteins and/or DNA 

modifying or destroying their functional properties (Pepper et al, 2010). It has been suggested that 

the presence of carnosine abolishes protein cross-linking resulting from glycation. A possible 

mechanism for this is the amino group or imidazole group on the carnosine binds to reactive 

dicarbonyls. An alternative possibility that has been suggested is that the proteins become 

‘carnosinylated’ at carbonyl groups and this may protect them from being degraded or cross-linked 

(Pepper et al, 2010).  

Carnosine also has pH buffering abilities. A buffer is a compound that is able to resist large changes in 

pH even in low concentrations (Decker et al, 2001). In skeletal muscle it has been identified that 

carnosine has the ability to stabilise pH levels and it is the function of the imidazole group located on 

the L-histidine residue to buffer pH. This is because they have a pK value similar to the intracellular 

pH, thus one of the two nitrogens in the imidazole group can be protonated within the physiological 

range (Abe, 2000).  

Another potential function of carnosine is the regulation of calcium ion (Ca2+) concentrations. In 

muscles during contraction and relaxation, Ca2+ exchange is primarily controlled by Ca2+ ATPase.  Ca2+ 
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ATPase is involved in the accumulation of Ca2+ during muscle relaxation and Ca2+-channels which allow 

the release of Ca2+ into the cytoplasm during muscle contraction (Batrukova and Rubtsov, 1997). 

Carnosine has the potential to assist in cytoplasmic regulation of Ca2+ and H+ coupling as it able to bind 

to both ions (Jones et al, 2017). Published data has also shown that the presence of carnosine 

improves the efficiency of Ca2+ pump by increasing the Ca/ATP coefficient. The mechanism by which 

it does this is thought to be via binding to the saturable binding sites (Batrukova and Rubtsov, 1997). 

Evidence has also shown that components of carnosine have effects on Ca2+ channels. Beta-alanine is 

able to enter the cells along with depolarising Na+ ions which results in the opening of voltage-

activated L-type Ca2+ channels and L-histidine as a cationic amino acid is able to cause gating of 

voltage-sensitive Ca2+ channels resulting from depolarisation if the plasma membrane (Albrecht et al, 

2017). 

 

5.1.2 Factors Affecting Carnosine Concentration 
 

 

 

Figure 5.3 Potential factors affecting carnosine content. The image shows that aging, being female and following a 

vegetarian diet are likely to reduce skeletal muscle carnosine content, whereas males and individuals who follow an 

omnivorous diet or supplement their diet with β-alanine are likely to high increased levels of carnosine in the skeletal muscle. 

Adapted from Derave et al, 2010. 

   

There are multiple factors that can impact carnosine content in muscles. Diet influences carnosine 

levels and meat intake is considered to be the primary supply of carnosine in humans. Dietary 

carnosine is able to cross the intestinal lumen barrier and appear intact in the plasma if it hasn’t been 
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hydrolysed by carnosinase. Based on the rapid hydrolysis of carnosine it is considered to be a bioactive 

food component. Following meat ingestion there has also been an increase in urinary carnosine shown 

(Gardener et al, 1991). Evidence that meat is a primary source of carnosine has been documented. 

Females who were chronic vegetarian (vegetarian for 8 years +) showed a 20% reduction in muscular 

carnosine compared to omnivorous counterparts. Another study that measured carnosine content in 

calf muscle found that vegetarian men had 26% less carnosine that omnivorous subjects (Everaert et 

al, 2010). However, it has been debated that a vegetarian life style must be chronic in order to affect 

carnosine levels, short term vegetarianism is not sufficient to show a reduction in muscular carnosine 

(Baguet et al, 2011). 

Another factor affecting carnosine content is gender, where men appear to have higher concentration 

of carnosine in skeletal muscle than women. A study conducted by Everart et al, concluded that men 

have up to 82% more muscular carnosine than women in various skeletal muscles. The reason for this 

appears to be the difference in muscle type between men and women, men have a higher percentage 

of type II muscle fibres than women who are reported to have type I muscle fibres. There is between 

30-100% more carnosine in type II muscle fibres than type I (Varanoske et al, 2017).  

Another major factor that affects carnosine concentration is age. As the aging process takes place 

muscle undergo alterations which include reduction in strength and mass. Peripheral muscle strength 

reduces by 20% between the ages of 20 and 70, which corresponds with the reduction in mass. 

Carnosine also has muscle-independent effects on inflammatory processes, wound healing and tissue 

protection, therefore it may be possible that age-related inflammation and delayed wound healing 

are also associated with a reduction in carnosine as individuals age (Stuerenberg and Kunze, 1999). 

 

5.2 Aims 
 

1. To identify whether pancreatic β-cells possess carnosine synthase, the enzyme required to 

generate carnosine from β-alanine and L-histidine in the presence of ATP. 

 

2. To identify whether carnosine synthase concentrations are affected by GLT, thereby affecting 

the ability of the β-cell to generate carnosine. 

 

3. To see if the effects of GLT on carnosine synthase concentrations can be reversed or prevented 

by the supplementation with carnosine, β-alanine and or/ L-histidine. 
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4. To observe whether the supplementation of ±GLT media with 10mM carnosine is able to 

reverse/prevent cytotoxic damage that is caused by high glucose and high fatty acid media. If 

so, this has the potential to be developed in line with therapeutic strategies based around 

carnosine. 

 

 

5.3 Results 
 

5.3.1 Beta cells are able to generate Carnosine 
 

The initial part of the investigation involved incubation of the rat pancreatic INS-1 cells ± GLT, ±GLT 

and 10mM carnosine and ± GLT supplemented with 10mM of the components of carnosine (β-alanine 

and L-histidine), as well as ± carnosine and ± carnosine components alone for 5 days. The reason for 

this was to determine whether pancreatic β-cells possess sufficient active enzyme to generate 

carnosine from β-alanine to L-histidine. Following the incubation period, the cells were lysed, and 

proteins were extracted using RIPA buffer and the protein was determined using BCA assay. Equal 

amounts of protein were loaded to an SDS-Page gel and were separated using electrophoresis. The 

proteins were transferred to a nitrocellulose membrane immunoblotted using a carnosine synthase 

specific antibody. The results initially demonstrate that carnosine synthase is in fact present in 

pancreatic β-cells. The results also demonstrate that the addition of GLT induced a significant decrease 

in carnosine synthase by 23.8% (p=0.035). The addition of 10mM carnosine was able to able to return 

the level of carnosine back to basal level. The supplementation of RPMI-1640 with 10mM carnosine 

was able to increase the level of carnosine synthase by 10% compared to the control level (not 

significant increase). The results also demonstrated that the addition of GLT ± L-histidine/β-alanine 

was also able to significantly decrease carnosine synthase levels by 27.3% and 33.4% respectively. 

When used to supplement RPMI-1640 media both L-histidine and β-alanine were able to push 

carnosine synthase levels above control.  
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Figure 5.4: Effect of GLT on carnosine synthase expression. INS-1 cells were incubated ±GLT, supplemented with either 

carnosine, L-histidine, β-alanine for 5 days prior to protein lysis, protein was quantified using BCA assay and equal amount of 

protein were loaded to a 10% acrylamide gel and separated using SDS-PAGE. Proteins were transferred to a nitrocellulose gel 

and immunoblotted using ATPGD1 antibody.  

 

5.3.2 Carnosine reverses GLT-induced up-regulation of molecules potentially involved in β-

cell inflammation 
 

The second part of the investigation involved incubating INS-1 cells ±GLT ± carnosine for 5 days to 

observe whether the addition of carnosine was able to prevent or reverse the potentially damaging 

effects elicited by GLT via up-regulation NF-κB, iNOS, 4-hydroxynonenal (4-HNE) and 3-nitrotyrosine 

(3-NT), shown in chapter 3.  

To observe the effects of carnosine on NF-κB activation ±GLT, cells were incubated either in control 

RPMI-1640 media ± carnosine, or GLT media ± carnosine for 5 days. Nuclear extract was then isolated 

using the Nuclear/cytosol extraction kit (Biovision, Milpitas, CA, USA) and utilised in the Transcription 

Factor assay (Active Motif, Carlsbad, CA, USA). The results indicated that there was a factor of variance 

between the samples (P=0.0062). The results showed (Fig.5.5A) that GLT was able to induce NF-κB 

activation by 2.6-fold and that addition of 10mM carnosine was able to reduce this increase in 
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activation to 35% above control level (p=0.039). The addition of 10mM carnosine to control reduced 

NF-κB activity by 15.4% below control level (although not significantly different).  

For iNOS analysis, protein was extracted from INS-1 cells using RIPA buffer and determined by BCA 

assay (ThermoFisher, Waltham, Ma, USA). Protein was loaded onto a 7.5% gel and separated using 

SDS-PAGE. Protein was transferred onto a nitrocellulose membrane using a Trans-Blot®Turbo™ 

transfer system (Bio-Rad, Hercules, CA, USA) immunoblotted using an iNOS specific antibody (Abcam, 

Cambridge, UK). Analysis of variance indicated a significant difference between the means of the 

samples (p=0.0052). iNOS protein expression was shown (Fig.5.5B) to increase by 3.7-fold in response 

to GLT (p=0.0075). By contrast, the addition of 10mM carnosine to the GLT media was able to reduce 

the increase in iNOS expression to only 55% higher than control level (p=0.017). The supplementation 

of 10mM carnosine to RPMI-1640 control media reduced iNOS protein expression to 19% below basal 

level (although not statistically significant).  

In order to determine the effects on 4-HNE, an ELISA kit was utilised (Abbexa, Cambridge, UK), 

following a 5-day ± GLT, ± carnosine incubation period. ANOVA identified a significant difference 

between the sample means (p=0.0034). The results showed that 4-HNE species increased in response 

to GLT by 43.46% (p=0.00098). The addition of 10mM carnosine to the GLT media was able to reduce 

the up-regulation of 4-HNE species to a 16.67% increase (p=0.048). Similarly, an ELISA assay (Abcam, 

Cambridge, UK) was used to determine the effect on 3-NT adduct formation, where the analysis of 

variance was significant (p=0.0056). The results demonstrated that GLT was able to induce an increase 

in 3-NT adduct by 33%, and the addition of carnosine to the GLT media was able to almost completely 

eradicate the increase in 3-NT adduct formation, resulting in 3-NT adducts only 5% higher than the 

control level. 
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Figure 5.5: Effects of Carnosine supplementation. INS-1 cells were incubated ±GLT ±carnosine for 5-days. A. cells were lysed 

and NF-κβ activity was measured using TransAm NF-κβ kit (Active Motif, CA, USA). Absorbance was read at 450mM. B. protein 

were collected and quantified using BCA assay. Proteins were loaded to 7.5% acrylamide gel and separated using SDS-PAGE. 

Proteins were transferred to nitrocellulose membrane and immunoblotted using iNOS specific antibody. C. Cell lysates were 

collected and analysed for the presence of HNE using ELISA (Abbexa, Cambridge, UK) absorbance was measured at 490nm. 

D. Lysates were collected and analysed for 3-NT species using ELISA (Abcam, Cambridge, UK). Absorbance was measured at 

450nm. All data presented is mean ±SEM from 3 or more experiments. 

 

To identify proteins that were adducted in GLT conditions but didn’t show adduction in control or 

carnosine conditions, cells were incubated for 5 days ± GLT ± Carnosine and analysed using co-

immunoprecipitation and mass spectrometry.  
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Table 5.1: Proteins that develop HNE adducts or form 3-NT species in GLT conditions, but which are reversed 

by the addition of 10mM carnosine. Identified using co-immunoprecipitation from three independent 

experiments. Cells were incubated ± GLT ±Carnosine for 5 days prior to Co-IP and mass spectrometry. Data 

shown is from three individual experiments.  
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Data obtained from mass spectrometry was analysed using Panther Classification System to identify 

the proteins protein class and biological functions of the proteins that are adducted in GLT conditions 

but adducts are not present in control, control + carnosine or carnosine conditions.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Protein class of 4-HNE adducted proteins. Chart represents proteins that form adducts in response to GLT but is 

able to be prevented or reversed by the addition of 10mM carnosine. Generated using Panther Classification system. 
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Figure 5.7 Biological process of 4-HNE adducted proteins. Chart represents the biological functions of the proteins that are 

adducted with 4-HNE in GLT conditions which is reversed/prevented by the addition of 10mM carnosine. Generated using 

Panther Classification system. 

 

 

 

 

Figure 5.8 Protein class of proteins that generate 3-NT. Chart shows function of proteins that form adducts in response to 

GLT but is able to be prevented or reversed by the addition of 10mM carnosine. Generated using Panther Classification system. 
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Figure 5.9 Biological process of proteins that generate 3-NT. Chart represents the biological functions of the proteins that 

are generate 3-NT in GLT conditions which is reversed/prevented by the addition of 10mM carnosine. Generated using 

Panther Classification system. 

 

5.3.3 Carnosine is able to reverse/prevent GLT induced reduction in insulin secretion 
 

The final part of investigation in this chapter was to determine whether the addition of 10mM 

carnosine to cell media ±GLT was able to reverse or prevent the GLT-induced reduction in insulin 

secretion as already described in Chapter 3 and 4. 

INS-1 cells were incubated in media ± GLT ± 10mM carnosine for 5 days prior to being exposed to a 

secretagogue cocktail for one hour and insulin being measured using an ELISA assay (Mercodia, 

Uppsala, Sweden). The results show that the exposure of pancreatic β-cells to GLT conditions is able 

to down regulate insulin secretion by 30% (p=0.00037), however the addition of 10mM  carnosine to 

GLT supplemented cell media, is able to reverse the GLT down-regulation of insulin secretion to 50% 

above control level (p=0.0009) and a similar increase is observed by supplementing the cell media with 

10mM of carnosine alone. 
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Figure 5.10 Effect of carnosine on insulin secretion. INS-1 cells were incubated ±GLT and ±carnosine for 5 days cells were 

then subjected to secretagogue incubation for one hour prior to insulin secretion analysis using ELISA testing (Mercodia, 

Uppsala, Sweden). The data shown is the mean ± SEM of three independent experiments.   

 

 

5.4 Discussion 
 

Carnosine is a naturally occurring dipeptide that is synthesised from β-alanine and L-histidine, 

catalysed by carnosine synthase in the presence of ATP. The initial aim of this chapter was to identify 

whether carnosine synthase was present in the INS-1 β-cell line in order to determine whether 

pancreatic β-cells have the potential to synthesise carnosine. Firstly, as the results of the western blot 

in Figure 5.5 demonstrates, pancreatic β-cells do contain carnosine synthase. Based on literature 

searches this appears to be the first time that this enzyme has been identified in β-cells. This finding 

suggests that β-cells do in fact have the potential to generate carnosine in the presence of β-alanine, 

L-histidine and ATP. The figure also shows that levels of carnosine synthase are reduced in rat β-cells, 

when cells are exposed to glucolipotoxic (GLT) conditions for 5 days. This finding progresses upon a 

study conducted by Gualano et al (2012) which found that individuals with type 2 diabetes had 

approximately 45% less carnosine in the gastrocnemius muscle which is located in the calf. The reason 

suggested for this reduction was that carnosine is protected by a limited pool of anti-cytotoxic 

mediators which decline in conditions that are found in diabetes such as hyperglycaemia, oxidative 

and carbonyl stress (Gualano et al, 2012). The results found in this chapter build upon the Gualano et 

al study to identify that cells have a reduced ability to generate carnosine under stress induced by 
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exposure to high glucose and fatty acid conditions. Therefore, in combination it can be assumed that 

during the onset of type 2 diabetes, carnosine stores are reduced, and the replenishment is hindered 

by a reduction in carnosine synthase.  

The next part of the investigation involved identifying whether supplementation with carnosine had 

any beneficial effects following the damage to INS-1 pancreatic β-cell initiated by exposing them to 

GLT conditions. Nuclear factor kappa B (NF-κB) is a ubiquitous transcription factor that regulates 

expression of multiple proinflammatory genes and is a known regulator of iNOS expression and is 

therefore strongly associated with inflammation. NF-κB is sequestered in the cytoplasm in an inactive 

form when associated with the inhibitor IκB. The activation of NF-κB is dependent on the 

phosphorylation and degradation of IκB, which allows NF-κB to translocate to the nucleus and act as 

a transcription factor. Initially the findings in this chapter echo the results of chapter 3 that showed 

an up-regulation of NF-κB activity in GLT conditions. However, as the results demonstrate in Figure 

5.5A, supplementation of media with carnosine had inhibitory effect on the activation of NF-κB. The 

supplementation of GLT to the cell culture media significantly increased the activation of NF-κB by 

2.66-fold (p=0.014), whereas the addition of 10mM carnosine to the cell media supplemented with 

GLT showed an increase of only 35%. The addition of 10mM carnosine to cell culture media not 

supplemented with GLT reduced NF-κB activation by 16% below control (basal level). This therefore, 

demonstrates that despite not completely eradicating the up-regulation in NF-κB induced by GLT, the 

addition of carnosine is able to significantly reduce NF-κB activation and potentially prevent the 

initiation of an inflammatory response resulting from exposure to high glucose and fatty acids. 

Previous work conducted by Odashima et al (2006) highlighted that L-carnosine in combination with 

zinc was a potential treatment for inflammatory bowel disease and acetic acid induced lesions. The 

results of their study identified that treatment with zinc carnosine was able to significantly reduce NF-

κB in colonic mucosa whilst simultaneously inducing HSP72 which plays a crucial role in the 

cytoprotective effects of digestive organs (Odashima et al, 2006). The results in this chapter identify 

carnosine alone as a potential therapy for GLT-induced inflammation whereas the study conducted by 

Odashima et al, used a combination of zinc and carnosine. Carnosine may be a more beneficial 

therapeutic strategy as despite zinc also being part of a healthy diet and associated with anti-

inflammatory action in the intestine, excessive zinc has been linked impaired immunity in healthy 

individuals. Increased zinc intake is also linked to side effect symptoms including nausea, vomiting, 

gastic pain and fatigue, which are not associated with carnosine alone and therefore will not cause ill 

effect as a supplement in addition to dietary carnosine intake (Chandra et al, 1984. Fosmire GJ, 1990). 
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 Although there is limited mechanistic data published on the effects of carnosine on β-cells, a study 

was recently published in 2018 that supports the findings in this chapter and showed that following 

stress induced by H2O2, the addition of carnosine was able to significantly reduce both the 

translocation and expression of NF-κB in pancreatic INS-1E cells (Miceli et al, 2018).  Together, the 

findings in this chapter and the data published by Miceli et al, gives rise to the question of whether 

carnosine strengthens the association between NF-κB and IκB or else prevents the phosphorylation 

and degradation of IκB thereby preventing the activation and translocation of NF-κB in order to elicit 

the therapeutic effects. 

Inducible nitric oxide (iNOS) expression is induced by activated NF-κB and is a primary enzyme in 

generating nitric oxide from L-arginine (Lechner et al, 2005). The results in Figure 5.5B, identify that 

when exposed to GLT conditions for 5 days rat pancreatic β-cells show a significant increase in 

inducible nitric oxide synthase (iNOS) expression, whereas the addition of 10mM carnosine prevents 

GLT up-regulation of iNOS expression, therefore indicating that carnosine is able to inhibit NO 

formation. This finding both supports and expands upon findings published by Urazaev et al, 1998 who 

concluded that imidazole, which is found in the histidine residue of carnosine has multiple beneficial 

effects, including being able to inhibit nitric oxide (NO) synthase in skeletal muscle. A reason for this 

could be based on the structural similarity between imidazole and 7-nitro indazole, a known NO 

inhibitor. Whereas imidazole contains two nitrogen atoms located on positions 2 and 4, the NO 

inhibitor has two nitrogen atoms located on positions 3 and 4 (Urazaev et al, 1998). Despite the 

similarity, the two are not identical and could be the reason why carnosine is not completely efficient 

at eliminating NO synthase. This does however exhibit the beneficial effects of carnosine which 

contains the active imidazole ring and identifies potential protective effects as damage can result 

down stream of NO synthase. This finding is significant because in normal physiology NO plays a role 

in cellular function therefore it is important that is concentration is maintained, however, NO can 

become cytotoxic which is dependent on its combination with superoxide to form peroxynitrite 

(Ormerod et al, 1999). This combination inactivates NO, therefore disrupting its normal function and 

creates a potent oxidant (Förstermann and Sessa, 2012). It is therefore important that the 

supplementation with carnosine is able to inhibit the production of excess NO but also not to down 

regulate the production of NO below basal level as this may also disrupt cellular function. 

4-hydroxynonenal adducts are an α,β-aldehyde that are formed during lipid peroxidation (Barrera et 

al, 2015). The results in Figure 5.6C demonstrate that the addition of 10mM carnosine to control media 

was able to reduce HNE below basal level by 3%. The addition of 10mM carnosine to GLT media was 

able to prevent or reduce the induction of HNE caused by GLT. These results demonstrate that the 

addition of carnosine to INS-1 cell media reduces cytotoxicity. This is supported by a study conducted 
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by Liu et al (2003) who found that carnosine was capable of inhibiting protein cross linking that was 

induced by HNE at a physiologically relevant concentration. The reason for this inhibition was the 

formation of stable HNE-carnosine bonds. The inhibition of cross-linking also demonstrates the ability 

of carnosine to intercept intermediates in the reaction of HNE on the protein surface before the 

intermediates permanently cross-link. This may involve carnosine displacing bound HNE from the 

protein surface or it may involve the covalent binding of carnosine into the monovalent HNE adducts 

(Liu et al, 2003). Another study found that when carnosine binds with HNE it prevents or diminishes 

the cytotoxic effects of HNE in macrophages (Barski et al, 2014).  

The generation of 3-nitrotyrosine (3-NT) is catalysed by a class of peroxidases that utilise nitrite and 

hydrogen peroxide as substrates (Ahsan H, 2013). The results in this chapter show that exposure of 

INS-1 cells to GLT for 5 days increased 3-NT species by 33%, importantly, the addition of 10mM 

carnosine was able to prevent 3-NT adduct formation completely (p=0.0076) (Cripps et al, 2017).  

A study designed to observe nitrosative stress associated with neurological disorders published data 

identifying that NO, peroxynitrite and 3-NT were all up-regulated in astrocytes exposed to LPS- and 

INF-γ-induced nitrosative stress, which is similar to the findings of this current project which has 

identified the up-regulation of NO, HNE and 3-NT. The same published study also demonstrated that 

treatment with carnosine was able to reduce 3-NT levels (Calabrese et al, 2005). The study identifies 

the initiation of same inflammatory pathway identified in chapter 3 of this project, which is also either 

attenuated or prevented by the addition of 10mM carnosine. This suggests that carnosine has 

therapeutic potential against inflammation found in the onset of type 2 diabetes as well as other 

pathologies including neurological disorders. 

Co-immunoprecipitation (Co-IP) was executed to determine the presence of the post-translational 

modifications 4-HNE and 3-NT in the pancreatic β-cell line INS-1. The combination of mass 

spectrometry and Co-IP allows the identification of specific isolated members of a protein complex 

and is also used to identify interactions between proteins (Free et al, 2009). Figure 5.5 and 5.6 

represent the protein class and biological process of the proteins that were adducted by 4-HNE in GLT 

conditions and not affected in control, carnosine or control + carnosine conditions. Figure 5.7 and 5.8 

represent the protein class and biological process in proteins that gained 3-NT in GLT conditions where 

3-NT was not present in control, carnosine or control + carnosine conditions. This reiterates the 

potential benefits of carnosine supplementation. The panther analysis identified clear differences 

between the location and function of proteins that were adducted. Proteins affected by 4-HNE 

adduction were primarily enzymes and proteins associated with mitochondrial function whereas the 

proteins that were adducted with 3-NT were protein involved in trafficking and the cytoskeleton.  This 
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may be identified as a novel therapeutic strategy if the same pattern of adduction extends to other 

tissues and cells, molecules could be identified as prognostic markers of type 2 diabetes.  

 

Lack of carnosine may result in the increased number of individuals with type 2 diabetes. In 2007 it 

was reported by the United Nations Food and Agricultural Organisation (UNFAO) that India had the 

lowest meat consumption compared to other countries throughout the world and a report in 2014 

identified that India had the highest rate of vegetarianism with over 1/3 of the population following a 

lactovegetarian diet, other studies have stated the percentage of vegetarians to be as high as 41% 

(Devi et al, 2014). Coincidently, in 2000 India had the highest prevalence of diabetes ranging between 

5-17% with higher numbers found in the southern part of the country and urban areas (Kaveeshwar 

and Cornwall, 2014). The high prevalence of diabetes is reported to be based on genetics, and cultural 

and social factors such as aging population and increased urbanisation (Tripathy et al, 2017). However, 

based on the reported link between vegetarianism and lack of carnosine in skeletal muscle (Gardener 

et al, 1991, Everaert et al, 2010) the onset of type 2 diabetes and resulting inflammation-induced 

cellular damage could be associated with the reduction in cytoprotective properties of carnosine, as 

vegetarian individuals are not obtaining sufficient carnosine intake via their diet. Another group where 

the decline in carnosine concentration may result in a decrease in the cytoprotective properties of 

carnosine is in the elderly. A study conducted in 2016 identified the incidence of type 2 diabetes 

increased with age and peaked between the ages of 70 and 79 (Sharma et al, 2016). To support this, 

an age-related decline in carnosine has also been reported. Free carnosine levels reduced by 63% 

between the ages of 10 and 70, which is thought to be due to a reduction in muscle mass and function 

(Stuerenberg HJ, 1999). Therefore, the reduction in carnosine concentration that occurs naturally with 

age could mean the individual is susceptible to inflammation related diseases such as diabetes. 

However, an age-related decline in pancreatic β-cell carnosine is yet to be determined.  

Despite the promising therapeutic potential of carnosine, its use is limited due to its instability in 

human plasma. Carnosine is rapidly degraded by carnosinase which is a specific dipeptidase that 

catalyses the hydrolytic cleavage of carnosine (Vistoli et al, 2009). For future work it may be more 

relevant to look at inhibiting carnosinase function in human plasma rather than increasing carnosine 

levels. Vistoli et al (2009), observed carnosine derivatives and found that by exchanging L-histidine for 

D-histidine resulted in a higher selectivity for aldehydes and increased plasma stability and therefore 

a more efficient RCS quencher. It may therefore be beneficial to supplement the human diet with D-

carnosine rather than L-carnosine or as it’s rapidly degraded, it may be advantageous increase 

inhibition of carnosinase to increase the plasma content of carnosine. 
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6.0 CHAPTER 6: Role of HNF4α in the Regulation of Insulin Secretion 

of Pancreatic β-cells, and Dysregulation by Glucolipotoxicity  
 

6.1 Introduction 
 

Chapter 4 discussed how insulin gene expression is reduced as a result of GLT-induced CD40 up-

regulation, whereas this chapter examines whether HNF4α plays a role in altering insulin secretion 

independent of CD40 up-regulation in response to GLT conditions. This chapter examines the effect 

GLT has on HNF4α and Rab proteins and whether this has any implication on insulin secretion. 

 

6.1.1 Hepatic nuclear factor 4 alpha (HNF4α) 
 

Hepatic nuclear factor 4 alpha (HNF4α) is part of the steroid and thyroid superfamily of transcription 

factors, which are highly conserved and in adults are primarily found in the liver, gut, kidney and 

pancreatic islets, including the beta cell (Stoffel and Duncan, 1997). It is considered to be one of 

multiple transcription factors necessary for the maintenance of the adult β-cell as disruption of this 

gene leads to impaired glucose tolerance resulting from a reduction in glucose-stimulated insulin 

secretion (Gupta et al, 2007). 

HNF4α has two distinct promoter regions known as P1 and P2. The P1 promoter region is utilised by 

hepatocytes and used to transcribe exon 1A, whereas pancreatic β-cells use promoter P2 and 

transcribe exon 1D. In total thirteen exons have been identified in HNF4α, and alternative splicing of 

these exons results in nine isoforms of HNF4α. Transcription of three of these isoforms, HNF4α 7-9 is 

driven by the promoter P2, that primarily drives transcription in pancreatic β-cells (Bagwell et al, 2005).  

HNF4α has a number of functional domains these include N-terminal A/B domain that is associated 

with the transactivation domain AF-1, a C domain that is responsible for binding DNA, an E domain 

that is functionally complex as a ligand binding domain, a dimerization platform and a transactivation 

domain (AF-2), and finally an F domain that has a negative regulatory function (Fig.6.1) (Yagamata K, 

2014).  
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Figure 6.1. Schematic image of HNF4α structure. Adapted from Jiang et al, 1995. 

 

HNF4α is synthesized in the cytoplasm and migrates to the nucleus where it interacts with regulatory 

elements in promoter regions and enhancers. This results in products with various function including 

the metabolism of fatty acids, amino acids and glucose and is also involved in liver differentiation and 

development (Ogata et al, 2012. Stoffel and Duncan, 1997). As HNF4α has no known ligand, it is 

referred to as an orphan receptor however it is considered the activity of HNF4α is controlled by fatty 

acyl-coenzyme (CoA) thioesters, which can function as both agonists and antagonists and by protein 

kinase A-mediated phosphorylation, suggesting that HNF4α plays a role in metabolism homeostasis 

(Hayhurst et al, 2001). 

 

6.1.2 HNF4α and its role in diabetes 
 

HNF4α has been linked to a form of type 2 diabetes known as maturity onset diabetes of the young 

(MODY) as the HNF4α gene is located within the type 2 diabetes-linked region on chromosome 20q12-

q13.1 (Bagwell et al, 2005).  MODY1 is a genetically heterogenous monogenic disorder characterised 

by early onset, usually being diagnosed during adolescence and is caused by an autosomal dominant 

mode of inheritance, and impaired glucose-stimulated insulin secretion (Miura et al, 2006). MODY is 

considered to be very rare, accounting for approximately 2-5% of all diabetes cases (Gardner and Tai, 

2012). MODY is known to result from a mutation of 6 different genes, the gene that is of interest in 

this project is HNF4α resulting in MODY1. Other mutations include; a mutation of the gene encoding 

glucokinase resulting in MODY2, HNF1α resulting in MODY3, PDX-1/ resulting in MODY4, HNF1β and 

NeuroD1 resulting in MODY5 and 6 respectively (Gupta et al, 2005). HNF4α contains two promoter 

regions, the first promoter known as P1 is liver specific and drives the expression of HNF4α 1-6 

transcripts (Ellard et al, 2006). Whereas the second promoter P2, is located up-stream of transcription 
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start site is responsible for the expression of transcripts HNF4α 7-9 (Ellard et al, 2006). Transcripts of 

the P2 promoter have been detected in insulinoma INS-1 cells and in mouse and human pancreatic 

islets, leading to the conclusion that the P2 promoter is responsible for HNF4α transcription in the 

endocrine pancreas (Eeckhoute et al, 2003). Clinical studies have demonstrated that MODY1 is 

characterised by abnormal glucose-stimulated insulin secretion but the MODY1 individuals show 

normal insulin sensitivity, suggesting that pancreatic β-cell dysfunction rather than insulin resistance 

is the primary defect in this disorder resulting from abnormal gene expression (Stoffel and Duncan, 

1997. Yamagata et al, 1996).  

   

 

6.1.3 HNF4 alpha effect on trafficking molecules in the insulin secretory pathway 
 

Insulin secreting β-cells store insulin in membrane-bound granules and it is known that these β-cell 

granules also contain high concentrations of divalent cations including Ca2+. Ca2+ is a crucial 

intracellular signal in the regulation of insulin secretion from pancreatic β-cells. Secretagogue-initiated 

insulin secretion is dependent on an influx of Ca2+ across the plasma membrane, through L-type 

voltage dependent Ca2+ channels. The calcium-sensing receptor (CaR), is a G-protein coupled receptor 

that senses extracellular levels of Ca2+ and maintains Ca2+ homeostasis and is a receptor that is found 

in both pancreatic α- and β-cells.  (Zhuang et al, 2010). 

 

HNF4α is known to directly induce the transcription factor x-box binding protein 1 (XBP1) which 

controls the development and maintenance in multiple secretory cell lines. Loss of function of XBP1 

can have a toxic effect on β-cells during the ER stress response where XBP1 plays a role in the unfolded 

protein response (UPR). UPR typically follows ER stress, UPR is facilitated by three transmembrane 

stress sensor protein known as PERK, IRE1, and ATF6. IRE1 cleaves unsliced XBP1 which results in the 

active spliced form XBP1s. XPB1s is responsible for the ER biogenesis and promotes the activation of 

ER chaperone genes necessary for the folding and trafficking of secretory proteins (Akiyama et al, 

2013). A decrease in XBP1 can result in the decrease in production of the ER chaperone Bip. This can 

occur with or without ER stress (Kirkpatrick et al, 2011.).  Importantly, in HNF4α knockdown/knockout 

models there is a decrease in XBP1 and subsequently reduced cellular ER networks, including Ca2+ 

signalling. This is significant as glucose stimulated insulin release is dependent on ER Ca2+ signalling 

(Moore et al, 2016).  
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HNF4α is also involved in the regulation of GLUT2 genes. It has been reported that HNF4α is an 

essential positive regulator of HNF1α which is necessary for GLUT2 glucose transporter expression and 

L-type pyruvate kinase gene expression in pancreatic β-cells (Párrizas et al, 2001). 

 

6.1.4 Rab Proteins 
 

Rab proteins belong to the Ras superfamily, of small monomeric GTPases that are located on the 

cytoplasmic surfaces of certain membrane bound organelles (Chen et al, 2014). Their main function is 

to facilitate the attachment of vesicles to their target membrane (Xiong et al, 2017), but Rabs have 

also been associated with other aspects of vesicle transport including vesicle formation, motility and 

docking (Woodman P, 1998). Rabs continuously cycle between a GTP (Guanosine-5’-Triphosphatate)- 

bound active form and a GDP-bound inactive form. The GTP-bound form interacts with downstream 

effector proteins and guides transport vesicles from the donor membrane to the target membrane. 

At the plasma membrane this occurs with assistance of an anterior SNARE fusion complex, which 

triggers release of inhibiting factors to convert the active Rab complex to its inactive form (Xiong et al, 

2017). The switch between the active and inactive form occurs due to GTP-hydrolysis that is facilitated 

by GDPase activating protein and the Rab-GDP complex then separates from the vesicle. After the 

conformational switch the newly inactive Rabs interact with a GDP dissociation inhibitor that has the 

ability to remove the Rabs from the membrane and support them in the cytosol. To switch back to the 

GTP-bound form the GDP dissociation inhibitor-Rab complex must be recognised by a guanine 

nucleotide exchange factor (GEF), that removes the GDP dissociation inhibitor and replaces GDP with 

GTP (Alverez). In unison with this process several accessory proteins associate with the anterior fusion 

complex and with ATP enzyme, NSF, which hydrolyses ATP and triggers the fusion of vesicles with their 

target membranes. Transport vesicles/granules are only able to form when they contain specific Rabs 

and SNARES (Xiong et al, 2017).  

 

6.1.5 Rab1B role in vesicle transport 
 

Rab1B is located in both the ER and the Golgi compartments in eukaryotic cells and is an essential 

protein for transport between the ER and Golgi and between different Golgi compartments. As Rab1B 

is found in 2 different stages of vesicle transport it may play a key role in the assembly and disassembly 

of machinery found in both vesicle fission and vesicle fusion during the early stages of the secretory 

pathway (Plunter et al, 1995). The effector proteins of Rab1B are, p115, GM130, Golgin84, MICAL-1, 
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Iporin, and Giantin. Of these it is known that both p115 and GM130 are essential for ER to Golgi 

transport (Monetta et al, 2007). Studies have also identified that Rab1B has a role in calcium-sensor 

receptor trafficking from the endoplasmic reticulum to the Golgi, that regulates receptor cell surface 

expression and thereby cell signalling responsiveness to extracellular calcium (Zhuang et al, 2010). 

 

6.1.6 Rab2A role in vesicle transport 
 

Rab2A is required in the early stages of the secretory pathway in the ER-Golgi intermediate 

compartment (ERGIC). The ERGIC is made up of a 53-kDa membrane protein and COPI subunit known 

as COP-β, a tubular vesicular membrane cluster that connects the ER and Golgi.  This is also the site of 

segregation the anterograde and retrograde paths and therefore important in early secretion (Tisdale 

et al, 2004). 

A mechanism that regulates COPI-mediated anterograde and retrograde transport from the ERGIC is 

the sorting by Rabs using effector proteins. There are 2 Rabs that associate with ERGIC, the first is 

Rab1B. As already mentioned Rab1B is involved in membrane tethering in anterograde transport. The 

other Rab is Rab2A that acts in together with an atypical kinase C and GAPDH in order to stimulate 

COPI vesicle formation enriched in recycling proteins. GAPDH is an effector protein of RAB2A and also 

a glycolytic enzyme that is regulated by poly (ADP-ribose) polymerase (PARP)-dependent poly (ADP-

ribosylation, although the trafficking doesn't require the glycolytic activity of GAPDH (Sugarwara et al, 

2014). 

 

6.1.7 Rab4B role in recycling 
 

Rab4B is a key player in the endocytic recycling. It is associated with early endosomes and recycling 

endosomes and regulates the recycling of membranes and proteins from these compartments back 

to the plasma membrane. There are 2 isoforms of Rab4 that are highly homologous; Rab4A and Rab4B 

which are localised in the same compartments and are believed to have very similar functions 

(Krawczyk et al, 2007).  

 

6.1.8 Role of Rab10 in GLUT4 trafficking 
 

Rab10 is a regulator of insulin-stimulated GLUT4 translocation to the plasma membrane in adipose 

cells. GLUT4 is a glucose transporter that plays a key role in maintaining glucose metabolism. In non-
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insulin-stimulated conditions GLUT4 is sequestered either in the GLUT4 storage vesicles or in the 

perinuclear storage compartments. Insulin signalling stimulates the GLUT4 storage vesicle recruitment 

and fusion with the plasma membrane. Insulin binding to the receptor on cell surface initiates a 

signalling cascade which results in the phosphorylation of the GTP-ase activating protein known as 

AS160 and the Rab proteins no longer being repressed in the GDP-bound inactive form. Rab10 is 

known to be the primary Rab protein in regulating GLUT4 storage vesicle translocation downstream 

of AS160 (Sadacca et al, 2013).  

6.2 Aims 
 

The aim of this chapter is to identify whether exposure of INS-1 cells to GLT for 5 days has a negative 

effect on HNF4α gene expression. This will show that diet (high glucose and fatty acids) has an 

inhibitory effect on the gene during the onset of type 2 diabetes, as well as gene mutations which 

occur in MODY. Further to this it will be of interest whether the effect of GLT on HNF4α has an effect 

on insulin secretion via the dysregulation of Rab genes.  

 

6.3 Results 
 

6.3.1 Effect of glucolipotoxicity on HNF4 alpha gene expression 
 

MetaCore™ was used to build an unbiased network to identify proteins that are affected by 

glucolipotoxicity. The MetaCore™ network identified that HNF4α is down regulated in response to GLT 

and is shown by the blue circle. The grey arrows leading to the proteins identify that there is a 

directional association between HNF4α the other detected genes.  
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Figure 6.2 MetaCore™ network. An unbiased interaction network was developed that identified genes affected by 

glucolipotoxicity. The map shows that genes are negatively regulated by GLT by the blue circle. The main ‘hub’ shown was 

HNF4α which is one of the highest ranked down regulated networks. The arrows between hubs are to demonstrate the 

directional association.  

 



HNF4α is a transcription factor which is elicits its effects primarily in the liver but is also found in the 

kidney and pancreatic β-cells. The MetaCore™ unbiased network analysis of the effects of GLT, 

identified HNF4α as a ‘top hit’ for down regulation (Fig.6.2), it was then of interest as to whether 

HNF4α was affected by GLT in pancreatic β-cells. 

The INS-1 cells were incubated ± GLT media for 5 days and total RNA was extracted. The levels of 

HNF4α mRNA was measured using qPCR and HNF4α specific primers. The data showed that HNF4α is 

significantly down regulated when INS-1 cells are exposed to GLT. The results showed an average 33.3% 

down regulation of HNF4a (p=0.0099). 
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Figure 6.3 Effect of GLT on HNF4α gene expression. INS-1 cells were incubated ±GLT for 5-days. RNA was extracted (Qiagen, 

Hilden, Germany), reverse transcribed and analysed using qPCR with HNF4α specific antibodies. Data shown is the mean ± 

SEM of three independent experiments 

 

6.2.2 Effect of HNF4α knockdown on Rab expression and insulin secretion 
 

In order to observe any functional effects of HNF4α, it was transiently knocked down using siRNA. 

Following the knock down using siRNA, cells were incubated ± GLT for 72 hours prior to being lysed 

using RIPA buffer. Proteins were then separated using a 10% SDS-Page gel, transferred onto a 

nitrocellulose membrane and immunoblotted with anti-HNF4α monoclonal primary antibody (Abcam, 

Cambridge, UK) and a secondary mouse antibody. Using analysis of variance it was found there was 

significant differences between the sample means (p=0.0032).The data indicates that in the RPMI-

1640 untreated cells a knock down of 44% compared to the scrambled sequence and 43% compared 

to untreated control was achieved and 43.58% knock down compared to the scrambled sequence and 

45.8% compared to the GLT treated control was achieved.   
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Figure 6.4 Transient knock down of HNF4α. HNF4α was knocked down using siRNA. Cells were incubated ± HNF4α siRNA, ± 

ssRNA for 24 hours at 37ᵒC, 5% CO2. Cells were then incubated ± GLT for 72 hours 24 hours at 37ᵒC, 5% CO2. Subsequently, 

cells were lysed and pelleted. This pellet was then halved, for use in protein and mRNA analysis. For protein analysis, protein 

was quantified using BCA assay (ThermoFisher, Waltham, CA,USA). Protein was loaded to a gel and separated using SDS-

PAGE. The protein was then transferred to a nitrocellulose and immunoblotted using HNF4α specific antibodies. 

 

  

To identify whether the knock down of HNF4α has any implications on trafficking, the Rab proteins 

identified by the MetaCore™ network were selected and their gene expression was examined using 

RT-qPCR. HNF4α was transiently knocked down using siRNA for 24 hours and subsequently incubated 

in GLT media for 72 hours. Total RNA was extracted (Qiagen, Hilden, Germany) and mRNA levels were 

measured by RT-qPCR using Rab specific primers. The data showed significant analysis of variance and  

all four Rabs tested were significantly reduced when HNF4a was knocked down compared to the 

scrambled sequence treated cells (ssRNA) and all Rabs apart from Rab4B were also significantly 

reduced in GLT conditions when compared to the control. 

 



126 
 

 

 

 

Figure 6.5 Effect of HNF4α knock down on Rab gene expression. INS-1 cells were transfected ± ssRNA/ HNF4a siRNA and 

incubated ±GLT for 72 hours prior to RNA extraction, cDNA synthesis and qPCR using Rab specific primers. The extent of 

HNF4α knock down is shown in figure 6.4.   

 

 

Rab1B was reduced by 67% following HNF4a knock down in control cells by comparison to the control 

ssRNA treated cells (p= 0.0087) and was decreased by 63% following HNF4α knockdown compared to 

the untreated control (p=0.0076) (Data not shown in Fig.6.5 A). When incubated in GLT conditions the 

expression of Rab10 was reduced 47.77% compared to GLT ssRNA treated cells (p=0.0065) and was 

reduced by 45.32% compared to the GLT treated control cells (p=0.0053). It was also observed that 

Rab10 was decreased when exposed to GLT conditions by comparison to untreated cells by 64.97% 

(p=0.0034) (Data not shown in Fig.6.5A). 

Rab2B was also down regulated following the knockdown of HNF4α by 86.16% in control condition 

compared to the control ssRNA (p=0.0003) and was down regulated by 84.8% following HNF4α knock 

down compared to the untreated control (p=0.000006) (significance data not shown in Fig.6.5 B). 
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Rab2B was also down regulated following HNF4α knock down in GLT conditions, Rab2B was down 

regulated by 85.73% compared to the GLT ssRNA treated cells (p=0.0264) and was down regulated by 

87.5% compared to the GLT control (p=0.004) (significance data not shown in Fig6.5B). There is also a 

significant reduction in Rab2B expression resulting from GLT conditions, Rab2 expression is decreased 

by 71.9% following a 5-day incubation in GLT media (p=0.00007) (significance data not shown in 

Fig.6.5B). 

Following HNF4α knock down Rab4B showed a reduction of 68.89% (p=0.00028) when compared to 

the ssRNA treated cells and 71.18% when compared to RPMI-1640 control (p=0.000068) (significance 

data not shown in Figure 6.5C).  In GLT conditions, following HNF4α knock down Rab4B was reduced 

88.55% ±3.49% compared to GLT ssRNA treated cells (p=0.000043) and Rab4B was reduced 88.63% 

±3.69% compared to the GLT treated cells (p=0.00012) (significance data not shown in Figure.6.5C). 

The results also demonstrated that exposure to GLT conditions independent of HNF4α knock down 

also reduce Rab expression however, GLT inhibited Rab4B by 12.94% compared to control, which was 

not statistically significant (p=0.069). 

Subsequent to HNF4α knock down rab10 was inhibited 32.66% ±1.5% when compared to the ssRNA 

treated control (p=0.049) and was inhibited by 35.38% compared to the untreated control (p=0.041) 

(significance data not shown in Figure.6.5 D). In GLT conditions following the knockdown of HNF4α, 

Rab10 expression was decreased by 64.39% compared to the GLT ssRNA treated cells (p=0.487) and 

57.07% compared to the GLT control (p=0.044) (significance data not shown in Fig.6.5D). 

As Rabs are involved in vesicle transport and the fact that the Rabs are down regulated when HNF4a 

expression is decreased, the next step was to identify whether the lack of HNF4a had an impact on 

insulin secretion. INS-1 cells underwent a transient knockdown of HNF4α using ssRNA/siRNA for 24 

hours followed by 72 hours incubation ±GLT. The cells were then subjected to an insulin secretion 

assay (Mercodia, Uppsala, Sweden). The results showed that reduction in HNF4α does influence 

insulin secretion. The results showed that following transient HNF4α siRNA knockdown insulin 

secretion was significantly reduced. In the RPMI-1640 treated cells insulin secretion was decreased 

44.6% compared to the ssRNA control cells (p=0.046) and insulin secretion decreased by 47.8% 

compared to the untreated control (p=0.036). The same pattern was observed in the GLT treated cells 

where insulin secretion was down regulated 40.9% in GLT-incubated and HNF4α siRNA treated cells 

compared to the GLT -incubated ssRNA treated cells (p=0.012) and was down regulated 49.1% 

compared to the GLT incubated control cells (p=0.0066) (significance data not shown in Fig.6.6). 
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Figure 6.6 Effect of HNF4α knock down on insulin secretion. INS-1 cells were transiently transfected ± HNF4α siRNA, ± ssRNA 

for 24 hours at 37ᵒC, 5% CO2. Cells were then incubated ± GLT for 72 hours at 37ᵒC. Cells were then subjected to secretagogue 

incubation for one hour prior to insulin secretion analysis using ELISA testing (Mercodia, Uppsala, Sweden). The data shown 

is the mean ± SEM of three independent experiments.   

 

 

In support of the insulin secretion ELISA assay data which demonstrated that insulin secretion was 

significantly reduced following HNF4a knockdown, RT-qPCR was carried out to identify whether insulin 

gene expression is also down regulated as a result of HNF-4α knock down. HNF4α was knocked down 

as described above and treated ±GLT for 72 hours prior to RNA extraction, cDNA synthesis and RT-

qPCR with insulin gene specific primers. The results obtained supported that of the insulin secretion 

ELISA and showed that insulin gene expression is also down regulated. Insulin gene expression was 

down regulated in the RPMI-1640 control samples following HNF4α knock down by 74.47% compared 

to the ssRNA treated cells (p=0.0098) and decreased by 70.2% compared to the untreated control cell 

(p=0.0004) (significance data not shown in Fig.6.7). The GLT treated cells also showed significant 

reduction in insulin gene expression following HNF4α knock down. Following HNF4α transfection 

insulin gene expression reduced by 73.39% in GLT compared to the GLT ssRNA treated cells (p=0.0086) 

and by 75.23% compared to the GLT control cells (p=0.0086) (data not shown in Figure 6.6). 
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Figure 6.7 Effect of HNF4α knock down on insulin gene expression. Subsequent to HNF4α knock down using siRNA/ssRNA 

and 72-hour incubation ±GLT. RNA was extracted from INS-1 (Qiagen, Hilden Germany), reverse transcribed to generate cDNA 

(ThermoFisher, Waltham, CA, USA) and analysed using qPCR with specific insulin primers. The data shown is the mean + SEM 

of three independent experiments.   

 

 

6.2.3 Effect of glucolipotoxicity on HNF1α expression 
 

Hepatic nuclear receptor 1 alpha (HNF1α) is another protein that is associated with sub type of type 2 

diabetes and is considered to be regulated by the binding of HNF4α. To identify whether HNF1α was 

affected by glucolipotoxic conditions, INS-1 cells were incubated ±GLT media for media for 5 days prior 

to RT-qPCR. The results identified that, similar to HNF4α, HNF1α was also significantly down regulated 

by 65.9% (P=0.000924).  
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Figure 6.8 Effect of GLT on HNF1α gene expression. Ins-1 cells were incubated for 5 days ± GLT prior to RNA extraction 

(Qiagen, Hilden Germany), cDNA synthesis (ThermoFisher, Waltham, CA, USA) and qPCR analysis using HNF1α specific 

primers. Results shown are the mean + SEM of three independent experiments. 

 

 

6.3.4 Effect of HNF4α knock down on HNF1α gene expression 
 

To identify whether the expression of HNF1α genes is reliant upon the presence of HNF4α, the gene 

expression of HNF1α was measured after HNF4α siRNA knock down. The results demonstrated that 

when HNF4α is knocked down, the expression of HNF1α is reduced. The reduction in HNF1α gene 

expression following HNF4α knockdown is significant in both control and GLT treated cells. In the 

control cells following the 45% knockdown of HNF4α there is a resulting 87.0% reduction in HNF1α 

gene expression (p=0.003). The reduction in HNF1α gene expression is also significant in the GLT 

treated cells where a 42% knock down of HNF4α was achieved has resulted in a 60% reduction in 

HNF1α gene expression. 
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Figure 6.9 Effect of HNF4α knock down on HNF1α gene expression. INS-1 cells were transiently transfected ± ssRNA/ HNF4α 

siRNA for 24 hours and incubated ±GLT for 72 hours prior to RNA extraction (Qiagen, Hilden, Germany), cDNA synthesis 

(ThermoFisher, Waltham, CA, USA) and RT-qPCR with HNF1α specific primers. Results are shown as mean + SEM of three 

independent experiments. 

 

6.4 Discussion 
 

Hepatocyte nuclear factor 4 alpha (HNF4α) (NR2A2) is a conserved member of the steroid and thyroid 

superfamily of transcription factors that is mostly associated with mutations resulting in maturity-

onset diabetes of the young (MODY). It is known that HNF4α mutates in the MODY diabetes subtype, 

but the results of this project build upon this knowledge by demonstrating that exposure of the rat 

pancreatic INS-1 cell to glucolipotoxic conditions lead to a significant 33.3% reduction in HNF4α gene 

expression (Fig.6.3), suggesting that HNF4α may be involved in the onset of type 2 diabetes, as MODY 

is only associated with increased birth weight and not increased glucose or free fatty acid levels, as 

seen in type 2 diabetes (Gardener and Tia, 2012). The MetaCore™ network (Fig.6.2) that predicted a 

negative association between GLT and HNF4α was correct. This finding suggests that the expression 

of HNF4α is disrupted during the high glucose and high fat environment that is found during the onset 

of type 2 diabetes and that HNF4α may be a gene involved in maintaining normal glucose homeostasis.  

Data published by Nikolaidou-Neokosmidou et al, (2006) touched upon the inhibition of HNF4α by NF-

κB in liver cells. The research of Nikolaidou-Neokosmidou et al (2006) found that the activation of the 
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NF-κB subunit p65 is necessary for the inhibition of HNF4α. Thereby suggesting the reason for reduced 

HNF4α in GLT conditions could be due to GLT-induced ER stress. It has been shown earlier in this thesis 

(chapter 3) that GLT induces inflammation and resulting cell damage, and NF-κB activation is 

dependent on CD40, which is up-regulated in GLT conditions. In addition, according to Bagnati et al, 

ER stress is likely to be a consequence of increased islet inflammation.  

A network was generated using MetaCore™ which identifies biological molecular interactions. In the 

network generated for this project, it identified that HNF4α is down regulated following exposure to 

GLT, which has been positively identified above (Fig.6.2), it also identified that there was an 

association between HNF4α and other proteins including Rab-GTPases. The network identified that 

Rab1B, 4B and 10 were also down regulated in GLT but didn’t identify any directional change for Rab2A. 

Rab proteins serve as vesicle trafficking molecules with upstream regulators and downstream 

effectors, coupled with GTP-binding and hydrolysis they are involved ubiquitously throughout vesicle 

transport (Xiong et al, 2017).  The results presented here demonstrated an association between 

HNF4α and the expression of Rab genes. The MetaCore™ network identified a negative interaction 

between HNF4α in GLT conditions and Rab expression. This was confirmed following HNF4α knock 

down, that resulted in a reduction of Rabs 1A, 2B, 4B and 10.  These Rab genes are also decreased 

when the INS-1 cells are exposed the glucolipotoxic conditions, as suggested by the MetaCore™ 

network and is complementary to the changes in insulin secretion following GLT exposure for 5 days. 

This indicates that HNF4α plays a pivotal role in the expression of Rab genes as indicated in the 

MetaCore™ network in Fig.6.2. 

There has been no reported relationship between HNF4a and Rab activity in the literature so far, but 

this finding builds upon published data that found Rab2A knockdown inhibits glucose stimulated 

insulin secretion in min-6 cells (Sugarwara et al, 2014). The study found that glucose-stimulated insulin 

secretion that was induced by elevated glucose levels of 25mM was inhibited by the knockdown of 

Rab2A. This would be expected from both Rab1B and Rab2A as they are both involved in trafficking 

from the ERGIC to the Golgi. However, the knockdown resulted in a 90% decrease in Rab2A but only 

lead to a moderate decrease in insulin secretion (Sugarwara et al, 2014). This suggests that glucose 

stimulated insulin secretion is only partially dependent on the amount of preproinsulin newly 

transported from the ERGIC to the Golgi but is also reliant on the insulin granules stored post-Golgi 

which are not transported by Rab2A.  

Data presented here shows for the first time an association between HNF4α, Rab proteins and insulin 

secretion. Rab2A was the most effected by knock down of HNF4α with an observed reduction of 86.16% 

in control and 84.8% reduction in GLT treated INS-1 cells (Fig. 6.5B). The reported results of Sugarwara 
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et al is consistent with data found in this project, however, the inhibition of Rab2A here was a 

consequence of HNF4α knock down which lead to a decrease in insulin secretion. Therefore, Rab2A 

clearly plays a role in insulin secretion down stream of HNF4α. 

Rab1B has also been reported to plays a role in insulin secretion by aiding in the conversion proinsulin 

to insulin prior to its secretion via interacting with Golgi membrane protein known as golgin-84. A 

study conducted by Liu et al found that in INS-1E cells there was a reduction in conversion of proinsulin 

to insulin following Rab1b knockdown (Liu et al, 2016). From the results in this project it has been 

determined that Rab1B is regulated downstream of HNF4α. 

  The majority of literature for both Rab4B and Rab10 expression focuses on skeletal muscle, 

adipocytes, and cardiomyocytes, and their involvement in insulin-stimulated trafficking of GLUT4 

rather than in β-cell insulin secretion. Rab4b is reportedly found in both early endosomes and in the 

GLUT4 sequestration compartment, which could therefore mean that it is involved in trafficking 

between the two.  A study conducted by Kaddai et al, identified that following the down regulation of 

Rab4B in adipose tissue there is a negative alteration in GLUT4 translocation and an increase in glucose 

uptake.  

The research of Chen et al found that the role of rab10 predominately follows insulin secretion and is 

involved in the trafficking of GLUT4 storage vesicles, they found that following Rab10 knockdown 

there was a significant reduction in insulin-stimulated GLUT4 translocation to the plasma membrane 

(Chen et al, 2013). However, the data obtained in this research project identifies that Rab10 is present 

in pancreatic β-cells and is regulated to a certain extent by HNF4α. Evidence for this is shown in 

Figure.6.5D where rab10 is significantly reduced following the knockout of HNF4α in control and GLT 

conditions. A reason for Rab10 reduction following the decrease in HNF4α could be because it is up-

regulated following insulin secretion, rather than playing a role in insulin trafficking prior to its 

secretion. This is supportive of previous work that identified HNF4α plays a pivotal role in glucose 

stimulated insulin secretion.  

 

Expanding on the finding in Figure 6.3 that showed HNF4α is decreased in GLT conditions, it was 

observed that reduction of HNF4α resulted in a significant decreased in insulin secretion and insulin 

gene expression in both control and glucolipotoxic conditions. This is a significant finding as reduced 

insulin secretion in response to elevated glucose and fatty acids is a characteristic of type 2 diabetes, 

thereby suggesting that HNF4α has an important role in β-cells and the evidence that HNF4α regulates 

Rab expression suggests a novel role for HNF4α in ER trafficking.  Despite the reduction in HNF4α in 

this study being GLT-induced, which suggests a link to type 2 diabetes, it has been previously reported 
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that HNF4α MODY is also linked to insulin secretion. Clinical studies have demonstrated reduced GSIS 

in patients with pre-diabetes of HNF4α MODY, suggesting that β-cell dysfunction is the primary defect 

in the disorder (Arya et al, 2014). The reason for the decrease in insulin gene expression and insulin 

secretion resulting from reduced HNF4α could be ER stress. Early stage insulin biosynthesis occurs in 

ER (Harding and Ron, 2002), which could be disrupted by GLT-induced reduction of HNF4α, which lies 

up-stream of ER-Golgi trafficking Rabs.   

 

Hepatic nuclear factor alpha (HNF1α) is most commonly associated with maturity onset diabetes of 

the young type 3 (MODY3). MODY3 is caused by heterozygous mutations in the gene encoding 

homeodomain-containing transcription factor HNF1α. As can be seen in Figure.6.8 there is a down 

regulation of the HNF1α gene in response to 5-day GLT treatment by an average of 65.9%, which is 

vastly more than the reduction of HNF4α in the same conditions. This identifies that HNF1α is also 

affected during the onset of type 2 diabetes where elevated glucose levels and circulating fatty acids 

are found and it is more strongly down regulated than HNF4α.  The next step of the investigation was 

to identify whether there was a link between the down regulation of HNF4α and the gene expression 

levels of HNF1α. 

Hepatic nuclear receptor 1 alpha (HNF1α) which contains a homodimer is highly expressed in the liver 

but is also expressed in the kidney, intestines and the pancreatic islets (Uchizono et al, 2009) Like 

HNF4α, HNF1α also belongs to the steroid/thyroid hormone receptor superfamily. There is evidence 

to suggest that both of these transcription factors work together in a transcription factor network 

where HNF4α controls the activity of HNF1α (Kyither et al, 2013). In the liver its thought that HNF4α 

acts upstream of HNF1α and it has been hypothesised that HNF4α increases mRNA levels indirectly by 

increasing HNF1α levels. The results shown in Figure.6.9 identifies that expression HNF1α is at least 

partially reliant on HNF4α expression. This is clear based on the 64% down regulation of HNF4α using 

siRNA transfection resulting in the subsequent 87% down regulation in HNF1α expression in RPMI-

1640 control conditions and a 43.4% knock down of HNF4α resulted in a 60% reduction in HNF1α in 

GLT conditions. The results of this project build on existing knowledge by identifying that HNF1α is 

also significantly decreased in rat pancreatic beta cells when exposed to high fatty acids and high 

glucose, suggesting that this protein is affected via HNF4α during the onset of type 2 diabetes and not 

only mutated resulting in MODY3, a subtype of type 2 diabetes. This finding is supported by a study 

that found HNF4α controls the transcriptional activity of HNF1α in HeLa cell with cooperation with 

cofactor P300 (Eeckhoute et al, 2004). This supports the idea that HNF4α only partially controls HNF1α 

transcription, as in the present investigation HNF1α was down regulated to a larger extend than 

HNF4α. Other studies have found supporting evidence that when HNF1α is disrupted there is a 



135 
 

reduction in insulin secretion, a recent study found that by replacing the first axon of HNF1α with a β-

galactosidase coding sequence and a neomycin expression cassette there were significant alterations 

to both glucose- stimulated and amino acid stimulated insulin secretion.  Therefore, these finding and 

reports from other research groups place HNF1α down stream of HNF4α. 

   

6.5 Conclusion 
 

The results of this project have determined that high glucose and high fats are able to down regulate 

HNF4α expression which leads to impaired insulin secretion. These results suggest

that HNF4α is negatively affected during the onset of type 2 diabetes and this has repercussions on its 

role in maintaining normal β-cell function and glucose homeostasis. The MetaCore™ network 

identified that HNF4α is an upstream transcription factor of various Rab-GTPases as their expression 

was decreased following HNF4α knock down. This indicates that they are involved in regulating 

aspects of the insulin secretory pathway. Muira et al, (2006), reported that the role for HNF4a in 

pancreatic β-cells is unclear, however the result gathered in this chapter suggest that HNF4a regulates 

Rabs involved in insulin gene expression and insulin secretion which is disrupted by GLT, possibly via 

ER stress. 
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Role of Glucolipotoxicity in Mitochondrial Dysfunction and 
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  7.0 CHAPTER 7: Role of Glucolipotoxicity in Mitochondrial Dysfunction 

and Histone Acetylation 
 

7.1 Introduction 
 

The previous chapters have examined how GLT alters gene and protein expression, which may have 

the potential to negatively affect β-cell function, however this chapter observes how exposure of INS-

1 cells to GLT conditions may affect metabolism and result in epigenetic changes, by disrupting the 

citric acid cycle and increasing histone acetylation.  

 

7.1.1 The importance of the citric acid cycle 
 

The citric acid cycle (also known as the Krebs cycle and TCA cycle) is the most important metabolic 

pathway for generating energy (Akram M, 2014). The citric acid cycle occurs in the mitochondria, 

which have important roles in energy metabolism. The function of the mitochondria is to change 

organic material into ATP energy (Nazaret et al, 2009). The citric acid cycle is made up of 8 steps. In 

brief, the first step is the formation of citrate which occurs due to the condensation of acetyl-CoA with 

oxaloacetate where the methyl carbon of the acetyl unit is connected to the carbonyl group of 

oxalacetate, a process that is catalysed by citrate synthase. During this reaction Citroyl-CoA is formed 

transiently and rapidly undergoes hydrolysis to yield free CoA and citrate. The second step is the 

formation of isocitrate via cis-Aconitate, in the step an enzyme known as aconitase catalyses citrate 

to isocitrate, which is a reversible step. This is done via the formation of the tricarboxylic acid, cis-

aconitate. The third step involves oxidative decarboxylation of isocitrate to α-ketoglutarate and CO2, 

a reaction catalysed by isocitrate dehydrogenase. The fourth step involves oxidative decarboxylation 

again, this time of α-ketoglutarate which is converted to succinyl-CoA and oxygen by the α-

ketoglutarate dehydrogenase complex. The next step is the conversion of succinyl-CoA to succinate 

catalysed by succinyl-CoA synthetase. In step six the succinate formed from succinyl-CoA is oxidised 

to form fumarate by succinate dehydrogenase which is a flavoprotein and is the only enzyme in the 

citric acid cycle that is membrane-bound. In step seven the enzyme fumarase catalyses reversible 

hydration of fumarate to L-malate. In the final step L-malate is oxidised to oxaloacetate, by NAD-linked 

L-malate dehydrogenase (Berg et al, 2005). 
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Figure 7.1 Citric acid cycle. Schematic image of basic events that occur during the mitochondrial citric acid cycle. Adapted 
from Kruse et al, 2017. 

 

Pathways that are fed from metabolites branching from the citric acid cycle include fatty acid and 

cholesterol synthesis and histone acetylation. A molecule involved in both fatty acid and cholesterol 

synthesis and histone acetylation is acetyl-CoA. In the mitochondria oxaloacetate generates citrate, 

which is then transported to the cytosol and broken down the acetyl-CoA via ATP-citrate lyase (ACLY) 

(Chen et al, 2017). 

The breakdown of citrate to acetyl-CoA, catalysed by ACLY, triggers fatty acid and cholesterol synthesis. 

The synthesis of both fatty acids and cholesterol requires acetyl-CoA and NADPH, and both are formed 

in processes that require the reductive polymerisation of acetyl-CoA and they are also both essential 

structural components of cell membranes (Gibbons, 2003). The overproduction of both fatty acids and 

cholesterol can be toxic, which means the levels of these lipids present in cells needs to be controlled. 

This is achieved by a feedback regulatory system that moderates the transcription of lipogenic enzyme 
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genes. These moderators belong to a family of transcription factors known as regulatory element-

binding proteins (SREBPs) (Ye and DeBose-Boy. 2011).  

The difference in the structure of fatty acids and cholesterol is the result of the different pathways 

used in the reductive polymerisation of acetyl-CoA. During fatty acid synthesis acetyl-CoA is converted 

to malonyl-CoA, catalysed by acetyl-CoA carboxylase, and results in straight chain products (Somesh 

et al., 2013. Gibbons GF, 2003).  The pathway involved in cholesterol synthesis generates branched 

chain intermediates known as HMG-CoA, which is then reduced by NAPDH resulting in mevalonic acid. 

Mevalonic acid is the precursor of the isoprene unit, isopentyl pyrophosphate (Gibbons GF, 2003). The 

isoprene units are then condensed to form a 30-carbon squalene molecule. Squalene is a precursor 

for all steroids and in order to generate cholesterol, squalene must be transformed to lanosterol and 

finally to cholesterol (Cerqueira et al, 2016).  

 

The DNA of eukaryotes is assembled into nucleosomes, where 146 base pairs of DNA are wrapped 

1.65 times around a histone octamer. There are four core histones, H2A, H2B, H3 and H4 and the 

octamer is made up of two H2A–H2B dimers and one H3–H4 tetramer and this complex forms the 

repeating unit of chromatin (Gardener et al, 2011). All the core histones have a lysine-rich N-termini 

which is positively charged and binds with negatively charged DNA (Guo et al, 2006). Histones are 

present throughout the entirety of eukaryotic DNA and their function is to prevent access to genetic 

information to prevent unwanted transcription or replication (Guo et al, 2006).  Histone acetylation is 

a modification that can occur on any of the core histones and is important for maintaining normal cell 

cycle progression, gene expression and DNA repair. The enzyme family primarily responsible for 

catalysing histone acetylation are the histone acetyl transferases (HATs) which use acetyl-CoA as an 

acetylation donor (Galdieri and Vancura, 2012). As with fatty acid and cholesterol synthesis the level 

of acetyl-CoA available is dependent upon ACYL, which has been shown to regulate histone acetylation 

and influence gene expression in a wide range of mammalian cell types (Carrer et al, 2017). Acetylation 

of histones occurs on specific lysine residues at the N-terminus which reduces the affinity of DNA and 

histones by reducing the positive charge for each acetyl group added the overall positive charge is 

reduced by 1 (Turner BM, 1991). The decrease in affinity of histone and DNA means that transcription 

factors can easily access the promoter region and alter gene transcription, in addition to this, 

acetylated histones are known to form recognition sites for bromodomain-containing proteins which 

further enhances gene transcription as bromodomain-containing protein are found in transcriptional 

co-regulators (Peleg et al, 2016). The rate of histone acetylation is dependent on intermediary 

metabolism for supplying acetyl-CoA to the nuclear cytosolic compartment. In mammalian cells the 
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major source of acetyl-CoA used for histone acetylation is ATP-citrate lyase (Galdieri and Vancura, 

2012).  

Post translational modifications have previously been linked to diabetes, where studies have 

demonstrated that diabetic stimuli such as high glucose can alter levels of key histone modifications 

including both acetylation and methylation.  

 

7.2 Aim 
 

The aim of this investigation was to observe whether a high glucose and high fatty acid environment, 

replicating chronic hyperglycaemia and lipidaemia that is found in type 2 diabetes could alter the 

metabolic pathway by disrupting the citric acid cycle and to identify whether this had an effect on 

gene transcription via histone acetylation. The reason for this investigation is based on the fact that 

histone acetyl transferases use acetyl-CoA as an acetyl-unit donor which links mitochondrial 

metabolism to histone acetylation and gene expression (Takahashi et al, 2006).  

 

7.3 Results 
 

Mitochondrial citrate can be transported out to the cytoplasm where it can subsequently be used to 

generate acetyl-CoA which is the donor of an acetyl group in histone acetylation (Wellen et al, 2009) 

The first step taken in identifying whether the citric acid cycle is affected by glucolipotoxicity was to 

measure cellular levels of citrate using a citric assay kit (Abcam, Cambridge, UK). The results (Fig. 7.2) 

demonstrated that there was a significant increase of 3.1-fold in GLT conditions compared to control 

(p=0.00027).  
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Figure 7.2 Effect of GLT on citrate levels. Cells were incubated ± GLT for 5 days prior to analysis using citrate assay kit (Abcam, 

Cambridge, UK). Absorbance was measured at 570nm. Results are expressed as mean ± SEM of three individual experiments. 

 

 

The next part of the investigation involved looking at ATP production and whether this was affected 

by glucolipotoxic conditions. ATP content was observed using a kit supplied by Perkin Elmer, 

Massachusetts, US. The results showed that following incubation of INS-1 cells ± GLT for 5 -days there 

was a significant decrease in ATP content by 42.1% (p=0.005).  

 

 

Figure 7.3 Effect of GLT on ATP content. INS-1 cells were incubated ± GLT for 5 days prior to analysis using ATP assay kit 

(Perkin Elmer, Waltham, MA, USA). Results are expressed as mean ± SEM of three independent experiments. Analysis 

following incubation was carried out by Akashdeep Singh. 
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After identifying that ATP production is disrupted in glucolipotoxic conditions it was clear that there is 

a disruption in the citric acid cycle. To identify whether IDH2 is affected by glucolipotoxic conditions, 

western blot and RT-qPCR assays were conducted following the incubation of INS-1 cells ±GLT media. 

The results demonstrated that IDH2 is significantly down regulated following cellular exposure to GLT. 

IDH2 gene expression was decreased by 41.7% (p=0.0074) and IDH2 protein expression was reduced 

to a lesser extent by 24% (p=0.00014).   

 

 

 

            

 

Figure 7.4 Effect of GLT on IDH2 gene and protein expression. INS-1 cells were incubated ± GLT for 5 days prior to collection 

using Trypsin EDTA and centrifuged to collect a cell pellet. The pellet was halved and used in either qPCR analysis or western 

blot technology. For RT-qPCR, total RNA was extracted (Qiagen, Hilden Germany, CDNA transcribed (ThermoFisher, MA, USA) 

and analysed by RT-qPCR using IDH2 specific primers. Results are shown as ΔΔCt expressed as fold change compared to 

control. The INS-1 cells collected for western blot was lysed using RIPA buffer to extract protein. Protein was quantified using 

BCA assay and protein was loaded to 10% acrylamide gel, separated using SDS-PAGE and transferred to a nitrocellulose 

membrane. Membranes were immunoblotted using IDH2 specific primers. Results shown are mean ± SEM of three 

independent experiments. 
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Following on from the observation that IDH2 was reduced in GLT conditions it was important to 

observe whether IDH3 was also affected. The results demonstrated that using RT-qPCR following a 5-

day incubation ±GLT, the INS-1 cells also showed a significant down regulation in IDH3. RT-qPCR results 

showed a similar down regulation to that of IDH2 at 36.9% (p=0.0017). Western blot data 

demonstrates that IDH3 protein expression was decreased by 24.4% (p=0.0009). 

 

 

 

 

Figure 7.5 Effect of GLT on IDH3 gene and protein expression. INS-1 cells were incubated ± GLT for 5 days prior to collection 

using Trypsin EDTA and centrifuged to collect a cell pellet. The pellet was halved and used in either qPCR analysis or western 

blot technology. For RT-qPCR, total RNA was extracted (Qiagen, Hilden Germany, CDNA transcribed (ThermoFisher, MA, USA) 

and analysed by RT-qPCR using IDH3 specific primers. Results are shown as ΔΔCt expressed as fold change compared to 

control. The INS-1 cells collected for western blot was lysed using RIPA buffer to extract protein. Protein was quantified using 

BCA assay and protein was loaded to 10% acrylamide gel, separated using SDS-PAGE and transferred to a nitrocellulose 

membrane. Membranes were immunoblotted using IDH3 specific primers. Results shown are mean ± SEM of three 

independent experiments. 
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The next metabolite to be investigated was acetyl-coA carboxylase, the enzyme responsible for 

catalysing acetyl-CoA to malonyl-coA. INS-1 cells were incubated ± GLT for 5-days prior to RNA 

extraction, cDNA synthesis and RT-qPCR with acetyl-CoA carboxylase specific primers. The results 

showed a significant increase in acetyl-CoA carboxylase by 3.9-fold (p=0.013).  

 

 

 

Figure 7.6 Effect of GLT on Acetyl-CoA carboxylase gene expression. INS-1 cells were incubated ± GLT for 5-days. Total RNA 

was extracted (Qiagen, Hilden, Germany). Reverse transcribed to obtain cDNA (ThermoFisher, Waltham, MA, USA) and 

analysed using RT-qPCR with acetyl-coA specific primers. Results are shown as ΔΔCt expressed as fold change compared to 

the control. Results shown are mean ± SEM of three independent experiments. 

 

ATP-citrate lyase (ACLY) is an enzyme that converts citrate to acetyl-coA and oxaloacetate. INS-1 cells 

were incubated ±GLT for 5-days prior to RNA extraction, cDNA synthesis and RT-qPCR with ACLY 

specific primer. The results showed exposure to GLT conditions increased ACLY expression by 2.5-fold 

(p=0.034). A similar fold increase was achieved when observing protein expression. GLT increased 

ACLY by 2.49-fold. ACLY was also observed using proteomics, the results obtained were supportive of 

the RT-qPCR data and identified that ACLY proteins increased in GLT (data not shown). 
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Figure 7.7 Effect of GLT on ATP-citrate lyase. INS-1 cells were incubated ± GLT for 5 days. For RT-qPCR analysis total RNA 

was extracted (Qiagen, Hilden, Germany), cDNA was synthesis (ThermoFisher, Waltham, MA, USA) and used for RT-qPCR 

analysis using ATP-citrate lyase specific primers. Results are shown as ΔΔCt expressed as fold change compared to the control. 

For western blot analysis cells were lysed using RIPA buffer and the extracted protein was quantified using BCA assay. Proteins 

were loaded to 10% acrylamide gel and separated using SDS-PAGE. Proteins were transferred to a nitrocellulose membrane 

and immunoblotted using ATP-citrate lyase specific enzymes Western Blot data supplied by Tatjana Baranov. Data shown is 

mean ± SEM of three independent experiments.  

 

As the previous results demonstrate that there is a disruption in the citric acid cycle caused by the 

exposure to high glucose and fatty acids and there is an increase in acetyl-coA departing the citric acid 

cycle in the mitochondria as citrate and travelling to the cytosol. It was of interest to see what effect 

this was having on other processes that utilise acetyl-CoA. It is known that fatty acid synthesis takes 

place in the cytosol and acetyl-CoA carboxylase is considered to be a crucial enzyme in this process. 

As it has already been seen in figure 7.6, acetyl-coA carboxylase is increased in GLT conditions. The 

next step of this investigation was to identify whether the excess acetyl-CoA was being employed for 

fatty acid synthesis. INS-1 cells that had been incubated ± GLT for 5-days were utilised for RNA 

extraction, cDNA synthesis and RT-qPCR with fatty acid synthase specific primers or were lysed using 

RIPA buffer to generate a whole cell lysate prior to western blotting. The results showed that despite 

the excess acetyl-CoA carboxylase gene expression in GLT conditions there was a reduction in fatty 

acid synthase gene expression by 56.9% (p=0.0018) and a reduction in fatty acid synthase protein 

expression by 52% (p= 0.043). 
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Figure 7.8 Effect of GLT on fatty acid synthase gene expression and protein expression.  INS-1 cells were incubated ± GLT 

for 5 days prior to collection using trysin EDTA and centrifuged to collect a cell pellet. The pellet was halved and used in either 

qPCR analysis or western blot technology. For RT-qPCR, total RNA was extracted (Qiagen, Hilden Germany, CDNA transcribed 

(ThermoFisher, MA, USA) and analysed by RT-qPCR using FAS specific primers. Results are shown as ΔΔCt expressed as fold 

change compared to control.  INS-1 cells collected for western blot was lysed using RIPA buffer to extract protein. Protein was 

quantified using BCA assay and protein was loaded to 10% acrylamide gel, separated using SDS-PAGE and transferred to a 

nitrocellulose membrane. Membranes were immunoblotted using FAS specific primers. Results shown are mean ± SEM of four 

independent experiments. 

 

An alternative pathway that could potentially make use of the excess acetyl-CoA in the cytosol is 

cholesterol synthesis which employs acetyl-coA to begin the pathway. SC4MOL plays a role in the 

cholesterol synthesis pathway and observed using both RT-qPCR and western blot technology 

following 5-days ±GLT. The results showed that following exposure to GLT the expression of the 

SC4MOL gene was reduced by 55.6% (p=0.00017) compared to the untreated and SC4MOL protein 

expression was reduced by 41.2% (p=0.0003). 
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Figure 7.9 Effect of GLT on SC4MOL gene expression and protein expression.  INS-1 cells were incubated ± GLT for 5 days 

prior to collection using trypsin EDTA and centrifuged to collect a cell pellet. The pellet was halved and used in either qPCR 

analysis or western blot technology. For RT-qPCR, total RNA was extracted (Qiagen, Hilden Germany, CDNA transcribed 

(ThermoFisher, MA, USA) and analysed by RT-qPCR using SC4MOL specific primers. Results are shown as ΔΔCt expressed as 

fold change compared to control. The INS-1 cells collected for western blot was lysed using RIPA buffer to extract protein. 

Protein was quantified using BCA assay and protein was loaded to 10% acrylamide gel, separated using SDS-PAGE and 

transferred to a nitrocellulose membrane. Membranes were immunoblotted using SC4MOL specific primers. Results shown 

are mean ± SEM of three independent experiments. 

 

The schematic in figure 7.10 demonstrates the changes to the citric acid cycle that are caused by 

glucolipotoxicity. As the results so far in this chapter have suggested, the exposure of INS-1 cells to 

GLT cause a disruption in both the fatty acid synthesis and cholesterol pathways despite the 

abundance of acetyl-CoA. It is therefore demonstrated in this chapter that GLT which is characteristic 

of type 2 diabetes likely results in histone acetylation and potential epigenetic change by blocking 

alternative pathways and utilising acetyl groups of the acetyl-CoA as donors for acetylation. 
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Figure 7.10 Schematic showing the effect of GLT on the TCA cycle, fatty acid synthesis, cholesterol synthesis and histone 
acetylation. 

 

 

  

Based on the finding that the increase in citrate, resulting in acetyl-CoA was not being used in fatty 

acid synthase or cholesterol synthesis it was important to look at histone acetylation. Histone 

acetylation is a process where the lysine residue of the N-terminal becomes acetylated and alters gene 

transcription. The results demonstrate that of the four core histones both histone H3 and Histone H4 

have increased acetylation in GLT conditions. The INS-1 cells were incubated ±GLT for 5-days prior to 

protein extraction using RIPA buffer and used in western blot analysis. Figure 7.11 shows that histone 

H3 acetylation was increased by 2.53-fold (p=0.031) and histone H4 acetylation was increased 2.8-fold 

(p=0.042). 
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Figure 7.11 Effect of GLT on histone acetylation of histones H3 and H4. INS-1 cells were incubated ± GLT for 5-days prior to 

being lysed using RIPA buffer. Extracted proteins were quantified using BCA assay (ThermoFisher, Waltham, MA, USA). 

Proteins were loaded to a 15% acrylamide gel and separated using SDS-PAGE. Proteins were transferred to a PVDF membrane 

and immunoblotted using acH3 or acH4 antibody. Results are shown as mean ± SEM of four individual experiments. 

 

7.4 Discussion 
 

Acetylation is a well-studied post-translational modification that can occur on histones. This project 

examined the link between metabolic stress resulting from high glucose and fatty acids and potential 

epigenetic alterations resulting from histone acetylation. The metabolite acetyl-CoA is considered to 

be a key metabolite in the connection between the citric acid cycle and epigenetic changes. Acetyl-

CoA can be produced via numerous mechanisms, both catabolic and anabolically. The main 

mechanism is the conversion of pyruvate into acetyl-coA by pyruvate dehydrogenase in the 

mitochondria during glucose oxidation (Kaelin and Mcknight, 2013). In mitochondria, acetyl-CoA is 

produced from pyruvate that is generated during glycolysis prior to the citric acid cycle, via oxidative 
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decarboxylation. There is no transporter molecule to guide acetyl-coA to the cytoplasm, instead 

acetyl-CoA is transferred into citrate by condensing with oxaloacetate, this is then transported out of 

the mitochondria and subsequently converted back to oxaloacetate and acetyl-coA by ATP-citrate 

lyase. It is also possible for acetyl-CoA to be formed in the cytoplasm from acetate by cytosolic acetyl-

coA synthetase, however, metazoans are only exposed to low levels of acetate and therefore use 

glucose as their main source of acetyl-CoA following glycolysis (Fan et al,2015, Wellen et al, 2009).   

Results in figure 7.2 demonstrate that exposure of the rat islet cell line, INS-1 to high glucose and fatty 

acids results in an increase in citrate levels measured using a citrate assay kit (Abcam, Cambridge, UK). 

The increase seen in citrate is a 3.1-fold increase compared to control, this is a substantial finding as 

citrate is converted to acetyl-CoA once out of the mitochondria and therefore is reason to believe that 

the levels of acetyl-CoA and available acetyl groups are therefore increased.  

The initial result in the project suggested that citrate is increased in response to GLT, the next task was 

to determine whether the overall citric acid cycle was affected by the exposure to glucolipotoxic 

conditions by measuring ATP content. The results in this project showed that ATP content was reduced 

by 42.1% in GLT conditions compared to the control, which demonstrates that the overall citric acid 

cycle is disrupted by pancreatic beta cell exposure to GLT conditions. A potential cause of ATP 

reduction is oxidative stress which has been found in high fat diet induced obesity in both humans and 

rodents. A study conducted by Rogers et al, 2014 found that prolonged exposure to lipotoxicity 

resulted in mitochondrial crisis in preadipocyte cells via a transient increase in ROS and lipid peroxides, 

decreases in ATP capacity and ultimately cell death. The Rogers et al study exposed the cells to a fatty 

acid concentration of 600µM of free fatty acids made up of oleic acid, palmitic acid, linoleic acid and 

stearic acid, which resulted in an accumulation of mitochondrial ROS. The results obtained in this 

current study build upon a recent publication that found that oxidative stress results in pancreatic β-

cell dysfunction and reduction in ATP production (McEvoy et al, 2015). The present study is more 

relevant as the study conducted by McEvoy et al created oxidative stress by knocking down the 

cystinosin gene. However, by knocking down the cystinosin gene there was an increase in oxidative 

stress markers that are also found when cells are exposed to glucolipotoxic conditions, including super 

oxide (Robertson, 2004). This could mean that the GLT treatment of the pancreatic β-cells could results 

in a reduction in ATP content due to oxidative stress in type 2 diabetes. 

The results demonstrate a reduction in both IDH2 and IDH3 which are both found in the mitochondria 

and is involved in the citric acid cycle. Following a 5-day incubation ±GLT media the INS-1 showed a 

reduction of 41.7% of IDH2 protein expression normalised to control and 24% reduction of IDH2 

protein expression normalised to control. A reduction of 36.9% was also observed in IDH3 gene 

expression in response to GLT incubation normalised to control. As the role of IDH2 and IDH3 is to 
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generate α-ketoglutarate from isocitrate via oxidative carboxylation and in the process IDH2 generates 

NADPH and IDH3 generates NADH, the reduction in these enzymes suggests that there is a possible 

dysregulation of mitochondrial metabolites in pancreatic β-cells in response to GLT which could result 

in a disruption of overall ATP production. 

A study conducted by MacDonald et al, 2013 found that when mitochondrial IDH2 and IDH3 were 

knocked out there was a reduction in α-ketoglutarate by 90%. The work in this research projects builds 

upon the findings by Macdonald, as despite the fact that both IDH2 and IDH3 are only reduced in 

response to GLT and not completely knocked out, this will have a negative effect on the production of 

α-ketoglutarate and hinder the citric acid cycle. This is also supportive of the finding that ATP content 

is reduced in response to GLT and that the disruption of the citric acid cycle in response to GLT occurs 

early in the cycle with the excess departure of citrate to the cytosol and reduced IDH2 and IDH3. The 

same study found that when mitochondrial IDH2 and IDH3 were reduced, IDH1 that is located in the 

cytosol compensated by producing more metabolites such citrate and α-ketoglutarate to transport 

back into the mitochondria (MacDonald et al, 2013). This could be a reason for the increased citrate 

levels that were found in the INS-1 cells that were treated with GLT, however this is unlikely as we 

found ACLY was increased which functions to convert citrate to acetyl-CoA in the cytosol.  

The result in figure 7.7 is supportive of the assumption that glucolipotoxic conditions result in higher 

levels of acetyl-CoA exiting the citric acid cycle as it shows a significant increase in ACLY gene 

expression and protein expression both approximately 2.5-fold compared to the untreated control 

cells using RT-qPCR. Given that the role of ACLY is to convert citrate back to acetyl-CoA and 

oxaloacetate, the results suggests that ACLY levels increases to meet the demand resulting from 

increased levels of citrate in GLT conditions.   

This finding is consistent with data observed by Zhao et al, 2016, who found that ACLY is the leading 

supplier of acetyl-coA in standard and nutrient rich conditions. The same research group also found 

that ACLY is required for glucose-dependent histone acetylation and when ACLY was depleted global 

histone acetylation was vastly reduced. Their results also showed that following the depletion of ACLY, 

acetate was used to supply acetyl-coA for histone acetylation, however the level of histone acetylation 

is much lower than when the acetyl-coA is supplied by ACLY (Zhao et al, 2016). The results in this 

project build upon the findings of the Zhao lab group as their work was carried in glioblastoma cells, 

whereas the current project is looking at the effects of nutrient rich conditions (high glucose and fatty 

acids) on pancreatic β-cells. This means that the effects of GLT treatment on the movement of citrate 

and the increase in acetyl-CoA are representative of what happens during the onset of type 2 diabetes.  
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As it has already been established that there is an increase in acetyl-CoA leaving the mitochondria as 

citrate in GLT conditions, it was then of interest how this increase effects the pathways that occur in 

the cytosol and utilise the acetyl-coA that is provided by the mitochondrial citric acid cycle. The first 

metabolite to be observed was the enzyme that is responsible for catalysing acetyl-CoA to malonyl-

CoA known as acetyl-coA carboxylase, which is the substrate used as an intermediate in the elongation 

by the fatty acid synthase enzyme (Wright et al, 2006).  The results show in figure 7.4 that there is a 

significant increase in acetyl-CoA carboxylase gene by 3.9-fold. This result would be suggestive fatty 

acid synthesis would be increased in GLT conditions resulting from the increase in available in acetyl-

CoA and acetyl-CoA carboxylase enzyme. However, fatty acid synthase gene and protein expression 

was measured in control and GLT conditions. The results were surprising as it was found that both 

fatty acid synthase gene and protein expression was down regulated in response to GLT. Fatty acid 

synthase gene expression was reduced by 56.9% in GLT compared to control and fatty acid synthase 

protein expression was down regulated 52% in GLT conditions compared to control. This finding 

identifies a potential blockage in the fatty acid synthase pathway of the INS-1 cell in response to GLT 

conditions. This finding is also similar to results published by Guiu-Jurado et al, 2015 who found that 

gene expression of enzymes required for fatty acid synthesis was down regulated in both visceral and 

adipose tissue of obese women. This is relevant as obesity is possibly the main modifiable risk factor 

for the development of type 2 diabetes (Daousi et al, 2006) and is characterised by high glucose level 

and free fatty acids. 

 

As it was now apparent that the fatty acid synthesis pathway was blocked following INS-1 β-cell 

exposure to GLT conditions, another possible route for excess acetyl-CoA was investigated. The 

cholesterol synthesis pathway is also able to utilise acetyl-CoA. Cholesterol synthesis is an important 

component of lipid rafts and cell membranes and it is a precursor of steroids, vitamin D and bile (He 

et al, 2014). The metabolite that was observed was Sterol-C4-Methyl Oxidase-Like (SC4MOL) also 

known as Methylsterol Monooxygenase 1 (msmo1). SC4MOL is found in the endoplasmic reticulum 

membrane and is an intermediate enzyme involved in cholesterol biosynthesis (He et al, 2014).  
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Figure 7.12 Cholesterol biosynthesis pathway. Pathway identifying steps of the cholesterol synthesis pathway, indicating the 

location of SC4MOL mechanism of action. Adapted from He et al, 2014. 

 

 Despite, the fact that acetyl-CoA levels are increased in GLT conditions, SC4MOL gene and protein 

expression were both down regulated. Using RT-qPCR and western blot technology the results showed 

that SC4MOL was down regulated 77.6% and 57% respectively. This indicates that despite the fact that 

acetyl-CoA, which is required to begin the cholesterol synthesis pathway, is increased in response to 

GLT the cholesterol synthesis pathway is disrupted and doesn’t utilise the excess acetyl-CoA that is 

newly available. A similar finding has been reported by Chen et al, in 2012 who identified that SC4MOL 

was down regulated in an animal model of type 2 diabetes, in a study that was looking at insulin 

resistance. Reduction in cholesterol synthesis in response to GLT is supported by a publication by 

Somanath et al, 2009, as they found that in high glucose environments (28mM) cholesterol synthesis 
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was reduced in rat INS-1 cells. Data published by Somanath et al, suggest the disruption in the 

cholesterol synthesis occurs early in the pathway as they observed that there was reduction in a key 

enzyme involved in cholesterol synthesis known as 3-hydroxy-3-methylglutaryl coenzyme A reductase 

(HMGCR). HMGCR is a key enzyme involved cholesterol synthesis and is responsible for the generation 

of mevalonate from as 3-hydroxy-3-methylglutaryl coenzyme A (Burg and Espenshade, 2011). The 

current research project builds upon the findings of the Somanath et al, as we suggest that the excess 

acetyl-CoA in the cytosol that is unable to be utilised for either fatty acid synthesis or cholesterol 

synthesis pathways is instead being used for histone acetylation.   

 

The exposure of INS-1 cells to GLT conditions appears to cause a dysregulation of metabolism by 

disrupting the citric acid cycle. Following 5-day incubation in GLT conditions there is a reduction in 

overall ATP production (Fig. 7.3). In total there are approximately 38 molecules of ATP formed from 

glycolysis, citric acid cycle and the electron transport chain (Porter and Brand, 1995). By measuring 

the amount of ATP using an ATP assay it was found that overall expression of ATP was down-regulated. 

This finding is supported by Peterson et al, 2004 who found that insulin-resistant individuals produce 

30% less ATP than healthy individuals and also by Schmid et al, 2011 who identified that type 2 diabetic 

patients have reduced levels of hepatic ATP production. As well as reduced ATP production this 

investigation found lower levels of other citric acid cycle components in GLT conditions, including 

isocitrate dehydrogenase II. There are three different isoforms of IDH expressed in eukaryotic cells, 

IDH1, IDH2 and IDH3. Both IDH1 and IDH2 form homodimers and catalyse the formation of alpha-

ketoglutarate (AKG) via oxidative decarboxylation of isocitrate. IDH1 catalyses this reaction in the 

cytosol whereas IDH2 catalyses this reaction in the citric acid cycle in the mitochondria (Keum et al, 

2015). The newly formed AKG plays a key role in the citric acid cycle and determines the overall rate 

of the cycle (Wu et al, 2016). The formation of AKG is considered to be a limiting step of the citric acid 

cycle, so a down regulation of IDH2 resulting in less AKG could be a key step in the overall reduction 

of ATP and disruption of the citric acid cycle in GLT conditions.  

The results also demonstrated that fatty acid synthesis is down regulated in glucolipotoxic conditions, 

despite levels of acetyl-coA seemingly increasing. The results showed that using both RT-qPCR and 

western blot, fatty acid synthesis were down regulated 57% and 48% respectively (Fig. 7.8).  

The modification of histone proteins such as acetylation and methylation have crucial roles in 

epigenetic gene regulation. The addition of an acetyl group to the lysine residue of the histone results 

in an increased negative charge and reduced affinity between the histone and the negatively charged 

DNA (Kaelin and McKnight, 2013).  The results shown in this thesis identified that both histone H3 and 
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histone H4 acetylation was upregulated in response to GLT. H3 acetylation increased by more than 

2.5-fold and histone H4 acetylation increased by 2.8-fold compared to control. Published data 

supports these results as a study determined that increased glucose levels were able to acetylate 

histone H4 in min-6 cells. The same study identified that this acetylation resulted in increased 

expression of various genes. This study supports the theory put across in this chapter that suggest GLT 

conditions is able to induce epigenetic changes that alter gene transcription. 

In conclusion glucolipotoxic conditions result in mitochondrial metabolism dysfunction and as result 

this may block cytoplasmic pathways that include fatty acid synthesis and cholesterol synthesis and 

results in increased histone acetylation. 
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8.0 CHAPTER 8: General Discussion, Conclusion and Future Work 
 

8.1 General Discussion  
 

Diabetes mellitus is the term used to describe a group of metabolic diseases that are characterised by 

hyperglycaemia and arising from defected insulin secretion and/or insulin action. The majority of 

diabetes cases falls into two broad groups; type 1 diabetes (T1D) and type 2 diabetes (T2D) (Conti et 

al, 2017). Type 2 diabetes which is the focus of this thesis is characterised by hyperglycaemia arising 

from insulin resistance. As hyperglycaemia becomes chronic it leads to oxidative stress, which is the 

central mechanism for glucose toxicity (Karachanak-Yankova et al, 2015). The global prevalence of 

diabetes is quickly rising. The cause of this rapid increase in prevalence in many countries is due to the 

rapidly increasing urbanisation and a sedentary lifestyle. However, diabetes may also result from 

genetic alterations and emerging evidence suggests that environmental factors modulate aberrant 

expression of several key genes through epigenetic mechanisms in type 2 diabetes (Khullar et al, 2017).  

The aim of the thesis was to identify novel mechanisms by which glucolipotoxicity results in the 

damage and death of pancreatic β-cells. The glucolipotoxic conditions were mimicked by 

supplementing RPMI-1640 cell media with 28mM glucose, 200µM oleic acid, 200µM palmitic acid and 

culturing INS-1 rat pancreatic β-cells in these conditions for between 3-5 days. The reason for the use 

of oleic, a monounsaturated fatty acid and palmitic a saturated fatty acid is because these are the 

most abundant fatty acids found in the human diet and was therefore representative of human β-cell 

physiology during the onset of T2D (Orsava et al, 2015).  The conditions used to create a glucolipotoxic 

environment were sufficient to inhibit insulin gene expression and insulin secretion but did not 

significantly affect cell viability, which meant it was possible to assess mechanisms implicated in 

glucolipotoxicity with the aim to find therapeutic targets to combat T2D. Based on data gathered via 

microarray and RNA sequencing by a former PhD student of the Turner Group, the initial investigation 

of this thesis was focussed on the inflammatory process of the β-cell that occurs in response to GLT. 

The results showed that both activation and gene expression of NF-κB increased in GLT conditions, 

this was a significant finding as many of the cellular events resulting for the activation of NF-κB are 

known, however the initial trigger of activation is poorly defined (Bagnati et al, 2016). The cause of 

activation was elucidated from network analysis of CD40/TNFR5 signalling using MetaCore™. The 

network analysis identified genes that are significantly up-regulated in INS-1 cells in response to GLT. 

The most significantly up-regulated biological networks linked CD40 to both NF-κB and JAK/STAT. 

Protein and gene expression of CD40 were up-regulated in GLT conditions and following this finding, 

transient knock down of CD40 was carried out to determine the link between CD40 and NF-κB in β-
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cells, which demonstrated that NF-κB activation is dependent on CD40. NF-κB embodies a family of 

transcription factors that are able to control a large number of genes involved in inflammatory 

processes (Liu et al, 2016). The finding that NF-κB activation is dependent on CD40 in GLT conditions 

is important as GLT-induced CD40 is potentially the initiator of inflammation in β-cells and by blocking 

its action could be a way of preventing β-cell damage in a high glucose and high fat environment.  NF-

κB is a known transcription factor of iNOS (Morris et al, 2003). When cells were exposed to GLT 

conditions there was a significant up-regulation in iNOS expression. iNOS produces nitric oxide by 

utilising L-arginine as a substrate (Förstermann and Sessa, 2012).  Despite NO not specifically being 

measured, it was determined that NO levels increased in INS-1 cells based on evidence of down-

stream peroxynitrite activity, which is a nitrating agent that results from the combination of NO with 

superoxide. 3-NT is a post-translational modification which was significantly increased in response to 

GLT. 3-NT modifications occur via the action of peroxynitrite and have been used as a marker for 

nitrosative and oxidative stress mediated by peroxynitrite, resulting in the addition of a -NO2 group 

(Ahsan, 2013. Cruz and Fardiha, 2016). 4-HNE adducts were also significantly increased, which is a 

marker of lipid peroxidation which also results from peroxynitrite and forms adducts during oxidative 

stress (Hogg and Kallyanaraman, 1999. Castro et al, 2017). Therefore, the resulting damage that was 

evident in the presence of the 3-NT and 4-HNE adducts demonstrated that the initiation of CD40 

resulting from exposure of INS-1 cells to GLT conditions concludes in β-cell damage.   

The next part of the investigation was to determine whether the activation of CD40 in GLT conditions 

is responsible for the reduction in insulin gene expression that is observed. It was first established that 

CD40 is also expressed in the human β-cell line CM and various genes were identified and a network 

generated that showed a gene in a human β-cell that were negatively regulated by expression of CD40. 

This was tested by knocking down CD40 using siRNA and measuring the change in expression of 6 of 

the genes. The results showed that the absence of CD40 resulted in a significant increase of these 

genes at low glucose level (0.8mM), and therefore demonstrated that CD40 has suppressive effects 

on various genes. This was followed up using INS-1 cells ±GLT that demonstrated a decrease in 

SC4MOL and IDH2 at protein level. This was a significant finding as it showed that GLT-induced CD40 

was able to affect cellular function by down regulating genes as well as stimulating genes.  Despite a 

human cell line being more physiologically relevant, it was not possible to use the CM cell line in GLT 

conditions. Publications state that the CM cell line can be used as a beta cell model to study the 

pathogenesis of T2D (Jonnakuty and Gragnoli, 2007), however, the capacity of CM cells to respond to 

glucose stimulation is lost if passaged in ‘normal’ glucose concentrations. If CM cells are cultured at 

low concentrations for a long period of time (8 weeks), they re-acquire their response to glucose 
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(Baroni et al, 1999). This proved them to be an un-reliable cell line and research with the rat INS-1 

cells resumed.  

A major part of this thesis was to identify whether carnosine possessed any therapeutic potential 

against the CD40-induced inflammation that was shown in chapter 3.  Carnosine is a naturally 

occurring dipeptide that is synthesised from β-alanine and L-histidine. It has previously been shown 

to exhibit both anti-oxidant and anti-carbonyl properties. A Study claimed that the dietary carnosine 

was able to reduce fasting plasma glucose levels, but there has been no published data on its beneficial 

effects again glucolipotoxicity in pancreatic β-cells (Liu et al, 2015). The results demonstrated that the 

addition of carnosine was able to reduce GLT-induced induction of NF-κB activation, iNOS protein 

expression, 3-NT species and 4-HNE adducts (Data published in Cripps et al, 2017), demonstrating the 

protective action of carnosine against glucolipotoxic reactive species in pancreatic beta cells as all 

inflammatory components down stream of CD40 activation were inhibited. This highlights the 

potential for carnosine as a therapeutic strategy in T2D, this theory enhanced more so by the finding 

that carnosine supplementation is also able to reverse the GLT-mediated reduction in insulin secretion 

(Cripps et al, 2017). However, dietary carnosine has rapid turnover due to the plasma enzyme known 

as carnosinase 1. Therefore, it may be necessary to administer carnosine in high doses to overcome 

this problem, or a more realistic approach may be to inhibit carnosinase 1. 

The results in this chapter showed for the first time that carnosine synthase, the enzyme responsible 

for catalysing the synthesis of carnosine was present in β-cells. This suggests that pancreatic β-cells 

have the potential to generate carnosine when exposed to the necessary conditions. 

Mass spectrometry data of INS-1 cells incubated ±GLT, ± carnosine identified numerous proteins that 

were adducted with 4-HNE or developed 3-NT species in GLT conditions, but these markers of cell 

damage were removed or prevented by the addition by the additional of carnosine. This further 

identifies the biological functions and or cellular processes that are affected by GLT, and also the areas 

which are rescued by the addition of carnosine. This is beneficial as it can help in the specificity of drug 

development.   

Another gene linked to insulin secretion is hepatocyte nuclear factor 4 alpha (HNF4α). This was 

identified using MetaCore™ that showed HNF4α to be a key gene that is down regulated in response 

to GLT. HNF4α was shown to be a ‘hub’ and the effects of GLT on HNF4α showed to have a negative 

knock on effect on other genes. The HNF4α gene has a role in the development and maintenance of 

pancreatic β-cell function. The P2 promoter region is associated with associated with T2D 

susceptibility and mutations in the HNF4α gene or the P2 region cause a type of diabetes known as 

maturity-onset diabetes of the young (MODY) (Harries et al, 2008). In order to validate the finding of 
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MetaCore™, siRNA was used to perform a transient knock down of HNF4α, subsequent to this qPCR 

was used to observe the effects this had on Rab genes. All four of the Rab genes that were observed 

were down regulated in the absence of HNF4α, therefore validating the MetaCore™ results. Rab 

proteins act as a vesicle trafficking molecular switch and couple with GTP-binding and hydrolysis they 

are involved in different stages of vesicle transport (Xiong et al, 2017). Results shown in chapter 4, 

identify that GTP-binding proteins are down regulated in GLT conditions as a result of CD40 up-

regulation, therefore this could be an additional reason for the Rab genes are down regulated in GLT 

conditions, However, there is not yet a link between the up regulation of CD40 and the suppression 

of HNF4α gene expression. The down regulation of HNF4α shown in this chapter is also associated 

with the reduction of both insulin gene expression and insulin secretion. A supporting study also found 

that INS-1 cells that were dominant negative for HNF4α showed a blunted insulin secretion in response 

to GLT, however they did not link this to reduced Rab expression as we did in the present study (Wang 

et al, 2000). Various Rab proteins are associated with insulin secretion however, there are not vast 

amounts published literature, however a research group examined an insulin secretory granule and 

identified via proteomic analysis that it contained 3 of the 4 tested in this project (Rab 1b, 2A, and 10) 

(Brunner et al, 2007).  Therefore, if the Rab proteins are negatively affected by GLT down stream of 

HNF4α, then it likely that the insulin secretory granule will experience dysfunction.  

This thesis also concludes that GLT results in increased histone acetylation via the dysregulation 

and/or blockage of the cholesterol and fatty acid synthesis pathways resulting from GLT-induced 

dysfunction in the citric acid cycle. Histone acetylation is a well-studied post translation modification, 

where acetylation of the lysine residue results in the neutralisation of the charge on the histone, which 

increases chromatin accessibility (Verdone et al 2006). GLT-induced mitochondria damage is not a 

surprising phenomenon as it has been reported that the mitochondria are a primary target for 

oxidative stress (Bensellam et al, 2001). GLT initiates the dysregulation via up-regulating citrate, which 

is evidence that increased acetyl-coA is exiting the mitochondria into the cytoplasm. Acetyl-CoA is not 

able to leave the mitochondria as acetyl-CoA so it combines with oxaloacetate to form citrate, it is 

then converted back to acetyl-coA by ATP-citrate lyase once in the cytoplasm (Fan et al, 2015). The 

results in this chapter also showed that ATP-citrate lyase is up-regulated in response to GLT. The 

increase in citrate and ATP-lyase are suggestive that in GLT conditions there is increased acetyl-CoA in 

the cytoplasm, which the location of the fatty acid synthase dependent-fatty acid synthesis pathway 

and cholesterol synthesis pathway (Mashima et al, 2009. Miller and Bose, 2011).  

The results of this chapter of this chapter showed that ATP levels were reduced which is indicative of 

GLT-induced dysregulation in the mitochondria. The majority of ATP is synthesised in the mitochondria 

during glucose metabolism via oxidative phosphorylation (Bertram et al, 2006), however, this is not 
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the only site where ATP is found, therefore a limitation to this investigation is that ATP was measured 

in the whole cell lysate rather than the mitochondrial extract. As the ATP content down regulation 

does not represent the mitochondria is not possible to determine whether the overall ATP production 

of the citric acid cycle is affected by GLT. However, further proof of GLT-induced disruption to the citric 

acid cycle is observed in the down regulation of IDH2 and IDH3. IDH2 and IDH3 are localised to the 

mitochondria and are a critical part of the citric acid cycle, they have the responsibility of catalysing 

isocitrate to α-ketoglutarate via oxidative decarboxylation (Madeiros et al, 2017.  Hartong et al, 2008). 

Therefore, as both of these key citric acid cycle components are down regulated at gene and protein 

level, suggests that there will be less α-KG generated and will disrupt the next stages of the citric acid 

cycle.  

As previously mentioned, the results showed that there was an increase in acetyl-CoA translocating 

from the mitochondria, where the citric acid cycle takes places to cytoplasm where it can be utilised 

in both the fatty acid synthase and cholesterol synthesis pathway. However, the despite the increased 

cytoplasmic acetyl-CoA there does not appear to be an increase in either fatty acid synthesis or 

cholesterol synthesis. The results showed a GLT-induced reduction of fatty acid synthase, the enzyme 

responsible for catalysing the synthesis of fatty acids and the results also showed a reduction in 

SC4MOL, a key component of the cholesterol synthase pathway. Therefore, it was then hypothesised 

that the exposure of the INS-1 to GLT conditions resulted in a blockage or disruption of those pathways. 

It was then believed that the increased acetyl-coA was being transferred to the nucleus and utilised in 

histone acetylation. The results showed that a significant increase in acetylation of histones H3 and 

H4. Therefore, the exposure of INS-1 cells to GLT is sufficient to cause disruption to key components 

of the citric acid cycle and result in increased histone acetylation, which can therefore result in 

epigenetic changes.  

 

8.2 Conclusion 
 

This thesis elucidates novel mechanisms of GLT-induced damage to pancreatic β-cells that are 

associated with the onset of T2D. It has been shown that GLT-induced CD40 expression is responsible 

for activating β-cell inflammation, as well as suppressing insulin gene expression. This thesis also 

identified novel genes that are associated with insulin secretion and which are regulated by the 

exposure to GLT. GLT-induced disruption of the citric acid cycle is also shown, which ultimately leads 

to potential epigenetic alterations.  This thesis also demonstrated a potential therapeutic strategy via 

a naturally occurring dipeptide known as carnosine that is able to reverse the damage caused in the 

CD40-dependent inflammatory pathway. 
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8.3 Future Work 
 

8.3.1 CD40 Work: Modulating CD40 signalling 
 

The identification of CD40 as the GLT-induced trigger that results in initiation of the β-cell 

inflammatory pathway and ultimately cell damage and death give rise for the potential development 

of a class of drugs based on the antagonism of CD40. One strategy for modulating CD40 signalling 

would be through Ab-based therapies that target CD40. However, immune cell interactions with the 

Fc region could potentially lead to either opsonisation of β-cells or antibody-dependent cell 

cytotoxicity. Therefore, the Fc region of antagonistic CD40 antibody would first need be removed using 

either pepsin or papain enzymatic IgG cleavage. Pepsin cleavage would result in one bivalent F(ab)2 

molecule and then this would be process into two monovalent Fab molecules. Papain cleavage would 

result in two monovalent Fab molecules. The removal of the Fc region would result in fragmented 

antibodies that are still able to antagonise CD40 signalling, however the original antibody’s Fc portion 

would no longer be in the fragments and therefore would no longer be able to promote agglutination, 

precipitation, opsonisation, or cell lysis. 

 An alternative strategy to achieve modulation of CD40 signalling would be via phage display, which 

also requires an antagonistic CD40 antibody (Turner MD, 2017). Phage display is already considered a 

robust technique used in drug discovery and is a technique that uses bacteriophage as a platform to 

display peptide/polypeptides (Rami et al, 2017). Through utilising the mechanism of phage display it 

is possible to generate multiple different antibody fragments including F(ab’)2 or monovalents Fab, 

scFv, or Fv domains. This can be achieved for CD40 by amplifying the immunoglobulin heavy and light 

chains via PCR, ligating with a linker region followed by subcloning into a phagemid vector in order to 

produce a recombinant phage capable of expressing the desired antibody fragment (Turner MD, 2017) 

Finally, inhibition of CD40 signalling could be achieved through CD40 small molecule inhibitors, as 

reported by Chen et al (2017). The principle behind this is the development of small molecules that 

are able to interfere with the CD40-CD40L interaction. It has been reported that the development of 

dye was able to disrupt the interaction in human B cells. A similar pharmacological investigation would 

need to be carried out to development/identify small molecules that are able to disrupt the CD40-

CD40L interaction in pancreatic β-cells, but in theory this should also prevent the initiation of GLT-

induced inflammation and the resulting cell damage or death. 
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8.3.2 Carnosine-based therapeutics 
 

Preliminary studies (Fig.8.1) have shown that supplementing pancreatic β-cells with 100µM β-alanine 

and L-histidine both separately and combined was able to increase intracellular β-cell carnosine 

content. Supplementing RPMI-1640 media with 100µM β-alanine was able to increase carnosine 

content by over 4-fold. This therefore demonstrates that β-alanine supplementation would be 

beneficial for increasing carnosine content of type 2 diabetic patients and suggests a novel therapeutic 

application for β-alanine/carnosine supplementation. Future work would highlight the entry 

mechanism of β-alanine and L-histidine into the pancreatic β-cell and determine an adequate 

concentration to combat the diabetes associated inflammation. 

 

 

Figure 8.1 Carnosine content in response to beta-alanine and L-histidine supplementation. INS-1 cells were incubated ±beta-

alanine ± L-histidine both individually and combined for 5-days. Amino acid analysis was used to measure carnosine content. 

 

Despite carnosine content increasing with β-alanine and L-histidine supplementation this does not 

address the potential for enzyme degradation of carnosine via carnosinase. Therefore, a future 

research possibility would be the generation of pharmacological carnosinase inhibitors. The reason 

for this would be to prevent the degradation of carnosine that is seen in individuals with type 2 

diabetes. An alternative strategy would be to synthesise non-hydrolysable carnosine mimetics. This 

approach would also be beneficial as these compounds theoretically function in the same way as 

carnosine and possess identical scavenging capability. However, their changed molecular structure 

should in theory be less recognisable, and hence prevent or slow down their natural rate of 

degradation.  
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8.3.3 ID4 experiments- Insulin secretion 
 

It has been shown that by reducing ID4 gene expression, there is an increase in inulin gene expression. 

Therefore, in addition to targeting CD40 to modulate islet inflammation and insulin gene expression, 

future work should also focus on mechanisms to enhance insulin expression and secretion through 

strategies that target inhibition of ID4. 

 

8.3.4 HNF4α experiments- Association to CD40 
 

HNF4α gene expression is down regulated in GLT conditions, and this in turn leads to downregulation 

of a number of genes that are known to function as mediators of endomembrane transport and 

autophagy. Therefore, further work should investigate whether we can prevent HNF downregulation 

by GLT, perhaps by interfering with CD40 signalling?  Should such an approach prove successful, then 

this should in turn increase the -cell’s capacity for insulin secretion. 
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