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Abstract— In the age of Internet of Things (IoT), online data 

has witnessed significant growth in terms of volume and 

diversity, and research into information retrieval has become 

one of the important research themes in the Internet oriented 

data science research. In information retrieval, machine-

learning techniques have been widely adopted to automate the 

challenging process of relation extraction from text data, which 

is critical to the accuracy and efficiency of information 

retrieval-based applications including recommender systems 

and sentiment analysis. In this context, this paper introduces a 

novel, domain knowledge centric methodology aimed at 

improving the accuracy of using machine-learning methods for 

relation classification, and then utilise Genetic Algorithms 

(GAs) to optimise the feature selection for the learning 

algorithms. The proposed methodology makes significant 

contribution to the processes of domain knowledge-based 

relation extraction including interrogating Linked Open 

Datasets to generate the relation classification training-data, 

addressing the imbalanced classification in the training 

datasets, determining the probability threshold of the best 

learning algorithm, and establishing the optimum parameters 

for the genetic algorithm utilised in feature selection. The 

experimental evaluation of the proposed methodology reveals 

that the adopted machine-learning algorithms exhibit higher 

precision and recall in relation extraction in the reduced feature 

space optimised by the implementation.  The considered 

machine learning includes Support Vector Machine, 

Perceptron Algorithm Uneven Margin and K-Nearest 

Neighbours. The outcome is verified by comparing against the 

Random Mutation Hill-Climbing optimisation algorithm using 

Wilcoxon signed-rank statistical analysis.   

Index Terms—IoT, Information Extraction, Smart System, 

Machine Learning, Genetic Algorithms, Optimization 

I. INTRODUCTION 

NTERNET of Things (IoT) paradigm is increasing the 

amount of data being made available online [1][2]. It is 

due to the integration of the Internet with many 

heterogeneous areas such as, Internet of Healthcare Things 

(IoHT) in medical, Internet of Vehicles (IoV) in transport, 

and Internet of Industrial Things (IIoT) in industry [3][4].  

The growing online data can be analysed to satisfy the 

information need of a variety of intelligent or smart 

applications and services including advising financial 

investors about a potential business risk, informing the music 

industry about an emerging consumer trend, alerting drivers 

using traffic predictions, etc. [5]. However, the online-

published data is diverse in terms of volume and complexity, 

largely unstructured and constructed in natural human 

languages, which makes its manual exploitation infeasible.  
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Therefore, Information Extraction (IE) techniques are 

needed to automate the interpretation of data written in 

natural language text. Named entity recognition and relation 

extraction are the two fundamental processes of IE. 

Extracting the relations between the named entities, such as 

that between an organisation and an employee, is critical to 

the identification of the problem domain’s key events,  and 

is therefore key to the majority of IE applications such as 

semantic search, question answering, knowledge harvesting, 

sentiment analysis and recommender systems [6]. 

There are two main approaches to relation extraction, 

Rule-based and Machine Learning (ML) approaches. While 

Rule-based approaches rely on transforming the linguistic 

features space into lexical and syntactic patterns to be 

applied on natural language texts in order to extract relations, 

ML approaches do not require deep linguistic skills and use 

trained classifiers to extract relations from unstructured text 

[6]. Similar to the work of Minard, et al. in [7], our relation 

extraction method adopts a hybrid approach that integrates 

both Rule-based and ML techniques. Our approach relies on 

Rule-Based techniques for recognising named entities, 

extracting relation instances and generating feature vectors, 

then Supervised ML techniques are utilised for Relation 

Extraction based on named entities’ relation instances and 

their feature vectors. For Named Entity Recognition we used 

the Rule-based ANNIE (A Nearly-New Information 

Extraction) pipeline system in GATE’s NLP engine [8]. 

With respect to relation extraction, we implemented and 

evaluated three ML classifiers that are commonly adopted 

for relation extraction from unstructured text: Support 

Vector Machine (SVM), Perceptron Algorithm Uneven 

Margin (PAUM) and K-Nearest Neighbour (KNN).  

The success of supervised ML is affected by two factors. 

The first factor is the quality of the training datasets, i.e. the 

quality and representation of the class instances in the 

training datasets. If the training datasets contain significant 

irrelevant, unreliable, noisy or redundant information, then 

creating accurate classification models during the training 

phase will be more difficult [9]. The second factor is the 

relevance of the feature vectors that represent distinctive 

characteristics of the classes in training datasets. The process 

of identifying and removing the undesirable features is called 

feature selection, which reduces the dimensionality of the 

data and increases the speed and efficiency of classifiers’ 

operations [10]. Several feature selection approaches were 

proposed with different selection techniques such as 

heuristic methods and Evolutionary Algorithms (EAs). A 

popular feature selection technique uses Genetic Algorithms 

(GA) as a wrapper approach, where the best feature subsets 

are evaluated by using the classifier to detect the possible 

interaction between features. GAs are widely and 

successfully used to solve the feature selection problem [11] 

[12]. However, to the best of our knowledge, no reported 

work has been published so far on the use of GAs for feature 

selection in the relation classification process. In this effort, 
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we aim to employ GAs as a wrapper approach for feature 

selection to improve the accuracy of relation classifiers. With 

respect to the quality of the training datasets, we intend to 

exploit knowledge about the target domain, in particular as 

the taxonomy of its key concepts and the likely relations 

between them, to aid process of detecting the candidate 

relations in the training dataset as well as extracting an 

extended set (lexical, syntactic, Named Entity) of training 

features. Semantic Web Technologies (SWTs) will be 

utilised as the modelling tool for domain knowledge as they 

facilitate the organisation of information into a highly 

structured knowledgebase that can be comprehended and 

processed by software agents.  

This paper presents a novel methodology for integrating 

domain knowledge with supervised ML to improve the 

processes of Relation Extraction from unstructured text. We 

utilise semantic modelling for constructing the domain 

knowledge and GAs for optimising the learning algorithms’ 

feature subset. Our proposed approach makes several 

contributions to the methods of knowledge-based relation 

extraction including: 

1) Interrogating Linked Open Data (LOD) 1  datasets to 

efficiently generate the relation classification training data; 

2) Reducing the training data True Negative/Positive 

imbalance; 

3) Setting the best-fit learning algorithms’ probability 

threshold; 

4) Establishing the optimum GAs parameters. 

The findings of our research also make valuable contribution 

to the understanding of the impact of specific feature types 

(lexical, syntactic, Named Entity) and features grouping on 

the accuracy of the relation classification process for the 

target application domain. 

Our experimental evaluation revealed that all the adopted 

relation classifiers perform significantly better, in terms of 

the relation extraction precision and recall, in the reduced 

feature space optimised by GAs. Moreover, using the 

Wilcoxon statistical analysis test, we verified that our 

implementation of GAs represents an appropriate choice for 

optimising the process of features selection for the relation 

classification problem by comparing it against a space search 

algorithm that has similar operational dynamics, Random 

Mutation Hill-Climbing (RMHC). 

This paper is organised as follows. Section 2 summarises 

the related works on relation extraction and feature selection. 

The main processes of our proposed domain-specific 

approach to relation extraction described in section 3. The 

ML-based Relation classification tasks are introduced in 

section 4. The feature selection task and its optimisation is 

explained in section 5. Section 6 evaluates the performance 

of the GA-optimised ML classification, which is further 

analysed in section 7 by contrasting it to optimisation based 

on the Random Mutation Hill-Climbing Algorithm. Section 

8 summarises the findings of the paper and section 9 presents 

the conclusions and our plans for further works. 

II. BACKGROUND AND RELATED WORKS  

The focus of this paper is on optimising the ML relation 

classification process of our hybrid rule based – supervised 

ML relation extraction approach. There are two key 

processes in the supervised ML pipeline that can 
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significantly impact the classification accuracy: the class 

instances labelling and feature vectors generation; both 

processes can benefit from formalised knowledge of the 

problem domain, which can play an important role in 

understanding the syntactic and semantic characteristics of 

the problem domain’s text and subsequently in improving 

Natural Language Processing tasks associated with 

automating or semi-automating the instances labelling 

process. For instance, in our implementation of Machine 

Learning based relation classification, domain-specific 

knowledge is used to compile some of our training datasets 

by drawing on relation mentions that feature as ground facts 

in public datasets such as DBpedia and Freebase. This 

alleviates the manual annotation effort for relation 

extraction, which can be a time-consuming and cumbersome 

task to undertake manually [13].  

The second key process in the supervised ML pipeline is 

features vector generation. ML classification tasks require 

assigning features vector to a finite set of classes in their 

training datasets. Searching for an optimal features subset 

can be computationally expensive, especially when the 

features vector is high-dimensional. Several methods have 

been developed for generating the features subsets such as 

sequential search that includes forward and backward search, 

and complete search that includes exhaustive search and the 

more common random search, where all operators are 

randomly generating and selecting features subsets. Example 

of random search implementations include evolutionary 

algorithms, simulated annealing and random mutation hill-

climbing.  

After feature subsets are generated, they are evaluated by 

a certain criterion to measure the improvement to the 

accuracy of the targeted classification model. Based on the 

evaluation criteria, feature selection approaches can be 

classified into two categories, the Filter approach and the 

Wrapper approach [12]. The Filter approach assesses the 

relevance of features by describing a dataset from the 

perspective of consistency, dependency and distance 

metrics. All the features are scored and ranked based on 

certain statistical criteria, and the features with the highest-

ranking values are selected and the low scoring features are 

removed. The best feature subset for the classifier model is 

selected independently because it ignores the targeted 

classification model performance on the reduced feature set. 

On the other hand, the wrapper approach embeds the targeted 

classification model performance to assess the relevance of 

the features. After a search procedure in the space of possible 

feature subsets is defined and various subsets of features are 

generated, the evaluation of a specific subset of features is 

obtained by training and testing the targeted classification 

model. To search the space of all feature subsets, a search 

algorithm is wrapped around the classification model [14] 

[15]. 

Several studies compared the filter and wrapper 

evaluation criteria. All these studies agree that the Filter 

approach requires less computational resources than the 

Wrapper approach because it does not involve the targeted 

classification model performance in assessing the selected 

features subsets. They also agree that the Wrapper approach 

is more accurate than the Filter approach as it selects the best 

feature subset by directly involving the targeted 
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classification model performance in accuracy measures to 

ensure that it is improved [12][14]. 

Considering that the ML model performance can be 

affected by an individual feature as well as combinations of 

two or more features in a feature set, this research 

investigates the application of automatic search techniques, 

in particular Genetic Algorithms as a wrapper approach to 

improve the process of feature subset selection. Although 

this technique is computationally more demanding compared 

to Filter approaches feature selection, we argue that the 

computational overhead is not critical to the performance of 

our Information Extraction system as the feature selection 

optimisation process is applied as a one-off process to 

optimise the performance of the machine learning classifies 

for each target problem domain.  

Genetic Algorithms as a Wrapper approach have been 

used to solve the feature selection optimisation problem in 

diverse areas of Machine Learning based classification 

problems ranging from Named Entities Recognition [16]  to 

diagnosis and treatment of heart conditions [17].    

III. DOMAIN-SPECIFIC RELATION EXTRACTION FROM 

UNSTRUCTURED DOCUMENTS  

Our approach integrates domain knowledge with ML 

classification to improve the fundamental information 

retrieval tasks of Named Entity Recognition and Relation 

Classification. The approach is based on comprehensive 

analysis of the key concepts and relations of the targeted 

domain, which are modelled, using Semantic Web 

technologies, into a formal ontology that is used to 

semantically tag the entities and interrelations extracted from 
relevant Web documents. This effectively transforms the 

initial ‘conceptual’ domain knowledge into an enriched 

knowledgebase that can be intelligently explored by means 

of sophisticated interrogation of the integral and inferred 

facts within a single document or a set of interrelated 

documents [18].  The tasks of our approach are implemented 

in three main phases as depicted in Fig. 1, they are: 

1) Phase one: Domain analysis and constructing the 

knowledge map and then translating it into a formal semantic 

model, ontology. 

2) Phase two: Natural Language pre-processing tasks for 

Named Entity Recognition including, relation detection, 

features extraction and training datasets generation. 

3) Phase three: Relation classification including features 

selection by utilising supervised ML and then inserting the 

semantically annotated information into semantic ontology.  

The unstructured data source of this research is online 

financial news articles. They are retrieved by using the Rich 

Site Summary (RSS) feeds including BBC, Reuters and 

Yahoo Finance. For the purpose of training datasets 

generation, we retrieve 6135 documents from the online 

news RSS feeds. Table 1 presents some examples of those 

news RSS Feeds links. 

TABLE 1: EXAMPLE OF RSS FEEDS 

http://rss.cnn.com/rss/money_markets.rss 

http://articlefeeds.nasdaq.com/nasdaq/categories?category=International 

http://feeds.bbci.co.uk/news/business/rss.xml 

http://feeds.reuters.com/reuters/UKPersonalFinanceNews 

https://uk.finance.yahoo.com/news/provider-yahoofinance 

Building the domain’s knowledge map aims to create a 

prearranged vocabulary and semantic structure for 

exchanging information about that domain. We modelled the 

domain knowledge in terms of the problem (use case) 

domain’s key concepts, their interrelations and the 

characteristics of the data as well as the interaction with the 

target beneficiary groups. Then, the knowledge map is 

translated into a formal semantic model, ontology. The 

ontology can be utilised to source knowledge from publicly 

available datasets that are published using the same 

standardised formalism. Moreover, ontology reasoning can 

infer more information about knowledge facts in different 

contexts [18]. As shown in Fig. 2 the target domain 

knowledge is structured as a map of interrelated concepts 

that can be easily revised and improved by both the domain 

experts and knowledge engineers.  

Fig. 2: The concept Map of this work 

 

The following subsections describe in detail the pre-

processing tasks for our proposed hybrid relation 

classification approach. 

Fig. 1: The Three phases of The General Framework 

 

http://rss.cnn.com/rss/money_markets.rss
http://articlefeeds.nasdaq.com/nasdaq/categories?category=International


This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2018.2885640, IEEE
Access

A. Relation Detection 

Our relation extraction approach is implemented at the 

sentence-level. Every entity pair for a targeted relation that 

appears in a sentence in unstructured data is identified and 

annotated as a relation instance and is assumed to represent 

one relation type. Relation detection grammar rules are 

encoded using GATE’s pattern matching language JAPE 

(Java Annotation Patterns Engine) [19]. The number of 

detected sentences and relation instances of the targeted 

relations in this work is shown in Table 2. These relation 

instances will be used to compile the relation classification’s 

training datasets. 

TABLE 2: SENTENCES AND NUMBER OF PAIRS OF RELATION INSTANCES  

Annotation Type Number 

Sentences 251237 

Relation Instances of Person-Organisation pairs 26316 

Relation Instances of Person-Location pairs 31012 

Relation Instance of Location-Organisation pairs 22567 

Relation Instances of StockSymbol-Organisation 1174 

Relation Instances of StockIndex-Organisation 777 

Relation Instances of Organisation-Percent 5213 

Relation Instances of StockIndex-Percent 1761 

B. Feature Extraction 

We argue that domain knowledge can assist in selecting 

the relation classifiers’ features vector. Therefore, we exploit 

the semantic knowledge of the problem domain to extract 

new features that expand on the features set used in 

traditional ML relation classification efforts such as that by 

Mintz, et al. in [20]; for instance, we added dependency paths 

and entity description features. As the dependency path 

(grammatical relation) between the related entities is not 

always apparent, we took into consideration the dependency 

paths of all words in the sentence including the candidate 

relation entities. The entity description features include its 

Parts of Speech annotation, the entity string and the number 

of words in the entity.   

The features are categorised into three categories, Lexical 

features, Syntactic Features and Named Entity Features as 

illustrated in Table 3 below. These features are extracted by 

using JAPE rules in the GATE Embedded framework and 

added to every relation instance in the unstructured data. 

TABLE 3: ML FEATURES VECTOR LIST (LEX=LEXICAL, SYN=SYNTACTIC & 

ENT=NAMED ENTITY FEATURES CATEGORY),   

Cat. Name Description 

Lex 

poslist 

POS of words between entity pairs. A specific class 

of POS such as “JJS”, the superlative adjective 
ending with “est”   

genposlist 

General POS of words between entity pairs. A 

generic class of POS such as “JJ”, any adjective 

form.  

posbefore POS of three words before the left entity 

posafter POS of three words after the right entity. 

posentity1 POS of the first entity  

posentity2 POS of the second entity  

Syn 

dependency-

Path 

The whole collapsed typed dependency path of the 

entity pairs’ sentences. It is the path of the 
grammatical relations hold between all pairs of 

words in a sentence such as adjectival complement 

(acomp) relation between a verb and an adjective.  

dependency-

Kinds 

The kinds of collapsed typed dependency path 

between entity pairs 

dependency-

Word 

 The words’ strings of collapsed typed dependency 

path between entity pairs.  

directDep 
Direct collapsed typed dependency path between 

entity pairs  

wordsStrSeq The strings of the words between entity pairs 

depDistance 
The number of the collapsed typed dependency 

between words  

Ent 

enttokensno1 The number of tokens in the first entity 

enttokensno2 The number of tokens in the second entity 

order The order of the entities 

distance The number of tokens between the two entities  

entityString1 Token string of the first entity 

entityString2 Token string of the second entity 

typeentity1 The type of the first entity  

typeentity2 The type of the second entity 

IV. ML-BASED RELATION CLASSIFICATION  

Selecting an appropriate ML algorithm depends on the 

problem specification and the nature of the data [21]. We 

implemented and evaluated three different supervised ML 

relation classifiers, Support Vector Machine (SVM), 

Perceptron Algorithm Uneven Margin (PAUM) and K-

Nearest Neighbour (KNN). The works of Li, et al. in [22], 

Piskorski, et al. in [23]  and Witten, et al. in [24]  reveal that 

these algorithms are used in IE tasks with adequate results.  

SVM is a supervised ML algorithm that has proved 

effective for a diversity of classification tasks including 

many IE tasks. The most important parameters of this 

implementation are SVM cost (C, the Cost associated with 

allowing training errors, soft margin) and the uneven 

margins ( or tau, setting the value of uneven margins 

parameter of the SVM) [22] [25].  

PAUM is a simple and effective learning algorithm 

especially for large training datasets. It has been successfully 

used for document classification and IE. It has three 

parameters, positive (p) and negative (n) margins, which 

allow the PAUM to handle imbalanced datasets better, and 

the modification of the bias term parameter (optB) [26].    

KNN uses simple techniques and its accuracy is often 

enhanced when the number of features is small; the KNN 

implementation used in this work has only one parameter, K 

[27]. 

This work uses the GATE implementation for the three ML 

algorithms above as explained in the work of Cunningham, 

et al. in [8].  

The algorithms above can implement both binary and 

multi-class classifiers. Multi-classification is usually solved 

in terms of multiple binary classifications by using a simple 

“one-vs-others” or “one-vs-another” models [22]. Rifkin, et 

al. in [28] argue that the “one-vs-others” approach is simple, 

robust and the accuracy of its results is better or similar to 

other approaches such as the single machine and error-

correcting coding approaches besides that it requires less 

number of models. For these reasons, a number of studies 

have employed this multi-class approach; for example, the 

work of Archibald, et. al in [29] and the work of 

Chandrashekar, et. al in [10].  Hence, we adopted the “one-

vs-others” method to transform multi-classifier into multiple 

binary. 

The key elements affecting the accuracy of supervised ML 

algorithms are the training datasets, the feature vector and 

the learning model parameters. The configuration of these  

elements affects the accuracy of algorithms’ results. The next 

subsections present how we generated the training datasets, 

tuned the algorithms’ parameters and selected the best 

feature subsets for relation classification.   

A. Generating the Training Datasets  

We adopted two methods to generate the labelled 

instances for the training datasets, using manual annotation 

and automatically by means of extracting ground facts from 

existing public datasets. 
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1) Generating training datasets from online structured 

datasets 

We have employed Semantic Web technologies to model 

our problem domain knowledge and subscribe the retrieved 

data to it using the Resource Description Framework (RDF) 

standard. The same standardised metadata is used in public 

datasets in the Linked Open Data (LOD) Cloud to publish 

ground facts that are relevant to various problem domains. 

These ground facts can be used to compile training datasets 

for relation classification and enriching the resulting 

knowledgebase.  Hence, we adopted a knowledge-driven 

distant supervision ML approach to extract common entity 

pairs’ relations by utilising two existing knowledge datasets 

as a distant supervision sources for ML relation 

classification. These datasets are DBpedia2 and Freebase3. 

At the time of writing this document, DBpedia contained 

more than 4.5 million entities and more than 3 billion RDF 

triples for a diversity of languages. Freebase dataset 

contained approximately 47.5 million topics and 2.9 billion 

facts in English language. 

The training datasets were built by retrieving the relations 

between any two entities in a single sentence in the 

unstructured document that are mentioned in Freebase or 

DBpedia as ground facts. These relations are assumed to be 

a class instance or true positive in the training datasets. The 
mentioned relations in the semantic datasets were extracted 

by using JENA’s SPARQL engine. JENA4 is a free and open 

source Java framework for building Semantic Web and 

Linked Data applications, and SPARQL5 is an RDF Query 

Language recommended by W3C for interrogating semantic 

stores. The complete implementation details of this task were 

published in our previous paper [18]. 

2) Generating training datasets manually 

Although manual annotation of ML relation instances is a 

labour-intensive task, it is generally considered to be more 

precise than automatic annotation. In this research, we 

applied manual annotation to generate training datasets to 

extract uncommon relations between pairs that could not be 

found in exiting semantic datasets, DBpedia and Freebase. 

We employed GATE annotation tools to extract the training 

                                                           

2  http://wiki.dbpedia.org/ 

3  https://developers.google.com/freebase/ 

instances for ML. Table 4 shows the three training datasets 

that were collected manually. 

B. Parameters Optimisation 

The optimisation of the ML algorithms’ parameters is the 

problem of choosing/tuning a set of parameters’ values that 

result in improving the ML classifiers’ performance by 

tuning the ML algorithms’ parameters.  

Lorena, et al. in [30] report that there are generally three 

methods to find the ML algorithms’ parameters optima: use 

the default values, define the values by grid search and 

automatic search through optimization techniques such as 

GAs. Grid based search is commonly used to perform 

parameter optimization, where the default values for the ML 

algorithms’ parameters are evaluated against the other values 

in the grid. In this work, we adopted grid-based search to 

perform parameter tuning as it is sufficient to satisfy the 

requirements of the deployed ML techniques and is simple 

to implement in comparison with the computationally 

expensive automatic optimisation techniques [31].   

Practically, grid search starts with a finite set of reasonable 

values for each parameter. These values are selected 

manually in accordance with the specifications of each 

algorithms. Then, the selected grid sets are used to train the 

ML algorithms and evaluate their performance against 

ground-truth in a k-fold validation process. Finally, the 

parameters that achieve the highest model performance are 

chosen [32][31]. In this work, the finite sets of parameter 

values for SVM and KNN (paramxeters C and tau for SVM, 

K for KNN) were heuristically selected by studying the 

specifications and recommendations of those algorithms. 

However, for the PAUM algorithm parameters (p, n and 

optB), we relied on the recommended parameters’ values by 

the work of Li, et al in [33]. The parameters’ values selected 

by grid search proved favourable to the traditionally 

accepted default values for the SVM, PAUM and KNN 

algorithms. Table 5 shows the parameters of SVM, PAUM 

and KNN that were selected using the grid search 

experiments. 

V. OPTIMISING FEATURE SELECTION USING GENETIC 

ALGORITHMS 

The features in the solution space for Relation 

Classification are loosely related, which makes the 

utilisation of manual search techniques difficult. Hence, we 

automate the feature selection process by applying Genetic 

Algorithms search in a wrapper approach. In the wrapper 

approach, the classifier model itself is employed to measure 

the fitness of features set; in other words, the features 

selected depend on the classifier model used.      

4  https://jena.apache.org/ 

5  https://www.w3.org/TR/sparql11-overview/ 

TABLE 4: THE SUMMARY OF THE COLLECTED TRAINING DATASETS 

(RI=ALL RELATION INSTANCES, RC= RELATIONS CLASSES, 

DOC=DOCUMENTS, P=PERSON, O=ORGANISATION, L=LOCATION, 

S=STOCK SYMBOL, I=STOCK INDEX, C=PERCENTAGE) 

Pairs Method Doc RI RC Relation Types 

P-O Distant Supervision 161 4213 204 

founderOf 38 

keyPersonIn 107 

employerOf 59 

P-L Distant Supervision 636 
1115

2 
896 

hasPlace 221 

birthplace 233 

hasNationality 415 

deathPlace 27 

L-O Distant Supervision 281 6217 299 locatedIn 299 

S-O Distant Supervision 71 316 83 issuedBy 83 

I-O Manual 44 -- 107 memberOf 107 

O-C Manual 399 -- 753 

shareIncreasedBy 257 

shareDecreasedBy 259 

profitIncreasedBy 155 

profitDecreasedBy 82 

I-C Manual 91 -- 234 
indexIncreasedBy 115 

indexDecreasedBy 119 

TABLE 5: THE GRID SEARCH RESULTS OF OPTIMUM ML ALGORITHMS 

PARAMETERS 

ML P 
Grid 

Result 
Description 

SVM 
C 1 

The Cost associated with allowing training 
errors (soft margin) 

tau 0.8 Setting the value of uneven margins 

PAUM 

p 10 Positive margin 

n 1 Negative margin 

optB 0.3 The modification of the bias term 

KNN K 1 The number of nearest neighbour instances 
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We have adopted the conventional implementation of 

GAs that generally comprises the initialisation of the 

solution space population, population reproduction, 

crossover and mutation operations and defining the fitness 

function for evaluation. However, several techniques can be 

deployed to implement the aforementioned operations; for 

instance, there are two techniques for population 

reproduction, steady-state and generational populations and 

there are several methods for the population initialisation 

such as randomness, compositionality and non-

compositionality. Similarly, parent selection can be 

performed using Stochastic Universal Sampling (SUS) or the 

Roulette Wheel Selection (RWS), and parent replacement 

can be based on the replacement of the worst parent or the 

replacement of random parents. The crossover operation 

could be applied to one or two crossover points in the 

chromosome and mutation operation could be applied on one 

or more genes in the chromosome [34][35][36]. We 

conducted a series of experiments to heuristically determine 

the techniques that represent a better fit for our feature 

selection problem.  

In our implementation, the genetic-information or 

chromosome is represented by a binary string of 1’s and 0’s 

(genes) that operate as a feature filter, where every bit or 

gene in the chromosome represents a certain feature. If the 

bit value equals one, this means that its feature is selected to 

participate in constructing the classifier model, otherwise the 

feature must be removed. The size of the features vector in 

this work is 20, which means that the size of the chromosome 

is 20 bits. Fig. 3 shows how the chromosome filtering is 

working. 

 

Fig. 3: Chromosome features filtering 

 

For the purpose of using GA as a wrapper approach, the 

ML classifiers are utilised to assess features’ subsets 

according to their classification performance. In detail, we 

define the fitness function using the classification F1 score, 

which is computed by evaluating the relation classification 

model using k-fold Cross Validation. The fitness values are 

computed as follows:  

1) By filtering a specified chromosome, a feature subset is 

generated to train the relation classification model.  

2) The generated feature subset is evaluated by applying k-

fold Cross Validation on the classification models with the 

targeted training dataset and feature subset as an input.  

3) The resulting F1-score is assumed to be the fitness 

function value for the specified chromosome or feature 

subset.  

Fig. 4 below illustrates the workflow of the features 

selections process as wrapper approach.  
By means of experimentation, we heuristically selected the 

Roulette Wheel technique for parent strings selection and 

adopted two-points and all points for the crossover and 

mutation operations respectively. For population 

initialisation, we adopted randomness initialisation. There 

are two techniques for population reproduction, steady state 

and generational techniques. We adopted the steady state 

technique with the unconditional replacement of the worst 

chromosome for the parent replacement strategy because it 

is commonly used to assist in improving the performance of 

GAs. Steady state technique is less computationally 

intensive than generational technique; for instance, for 20 

population size and two parent selection and 50 iteration, it 

requires 120 fitness calls instead of 1100 fitness calls for 

generational technique. 

 

Fig. 4: GA feature subsets selection as Wrapper Approach 
 

GAs have their own parameters that require more 

experimentation to find the best fit for a specific optimisation 

problem. These parameters are, initial population size, the 

number of generations, crossover rate and mutation rate. 

These parameter values should be adjusted for each problem 

because they would be related to characteristics of the 

problem. Small population size might not provide a 

sufficient sample size for the search space in order to reach 

an optimum solution. On the other hand, a large population 

requires more evaluations per generation, which can result in 

a slow rate of convergence. The crossover rate controls the 

frequency of applying the crossover operator on the selected 

parents to generate offspring. The higher the crossover rate, 

the more quickly new solutions are introduced into the 

population. If the crossover rate is too low, the search might 

be inactive due to the lower exploration rate. Similarly, the 

mutation rate controls the frequency of applying the 

mutation operator on the selected parents after applying 

crossover operator to increase the variability of the 

population. A low level of mutation rate serves to prevent 

any given gene position in the chromosome from converging 

to a single value in the entire population. A high level of  

 mutation yields an essentially random search. Lastly, we 

needed to determine the optimal number of generations as it 

is directly related to the number of evaluations or fitness 

functions calls and hence impacts the efficiency of the GAs 

implementation. By means of experimentation, we 

heuristically established the parameters that represent the 

best fit for our feature selection problem. The values of the 

parameters are shown in Table 6.  

 

 

 

 

 

 

 

 

 

TABLE 6: OUR IMPLEMENTATION OF GAS 

PARAMETERS 

Parameters Values 

The number of generations 100 

The population size 20 

The crossover rate 0.6 

The mutation rate 0.05 
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Our implementation of Genetic Algorithm operation steps 

to select the best features subset are as in the following 

Pseudo-code: 

 

Algorithm 1: Genetic Algorithm Implementation  
1:  Start:  
2:   N is the size of the population 
3:   Pc is the crossover rate and Pm is the mutation rate  
4:   Let the best solution S* and its fitness F*(S*) equal to 0  
5:   Generate initial N chromosomes Ci for the initial  
       Population, where i ∈ [0,1,…,N)  
6:   Evaluate initial chromosomes Ci, to be of finesses F(Ci); 
7:   repeat  
8:         Apply Roulette Wheel tech. to select two parents’  
            chromosomes, Cj and Ck, where 0 ≤ j,k < N and j≠k 
9:         Generating new chromosomes  
10:            Apply two points crossover operation on Cj and Ck  
                     chromosomes with probability Pc 

11:               Apply all points mutation operation on Cj and Ck  
                      chromosomes with probability Pm 
12:               Let new chromosomes be Cj’ and Ck’, children’s  
                     chromosomes  
13:       Evaluate Cj’ and Ck’, the fitness of the children’s  
             chromosomes are F(Cj’) and F(Ck’)      
14:       Unconditionally replace children’s chromosomes Cj’ 
              and Ck’ with the worst chromosomes in population  
15:       Find best chromosome Cb with best fitness F(Cb) in  
             the current population, where 0 ≤ b< N 
16:       Let the current solution S equals the best      

chromosome 
             Cb and the current fitness F equals F(Cb)  
17:       if F > F* then 
18:            Update the best solution and the best fitness; 
19:            S*=S ; 
20:            F* = F ;  
21:       end if 
22:  until (stopping condition is met) 
23:  Return S*, F* 
24:  End 

 

Our implementation of GAs’ operations output is the 

chromosome that has best fitness value in the population. 

The selected features of this chromosome are considered to 

be the best for the targeted classifier model. More details 

about our evaluation results are presented in the ensuing 

section.  

VI. EVALUATION RESULTS AND DISCUSSION 

 There are two commonly used evaluation methods for 

ML algorithms, K-fold cross-validation and holdout test. In 

K-fold cross-validation, the corpus is split into K equal size 

partitions of documents. The evaluation run is repeated K 

times (folds). Each partition is used as test dataset and all the 

remaining partitions as a training dataset for all K folds. The 

overall Recall, Precision and F1-measure result of this 

method is the average of the all folds’ results. In contrast, in 

holdout test, a number of documents in the training datasets 

are randomly selected according to a specified ratio, the 

default is 66%. All other documents are assumed to be 

testing dataset [37][8]. In this work, we used cross validation 

K-Fold with K=10, which is empirically found to be the best 

method in practical ML evaluations as reported by Witten, et 

al. in [24]. 

There are two different options for computing precision, 

recall and F1-measure over a corpus: micro averaging and 

macro averaging. In micro averaging, the corpus is treated as 

one large document, where True Positive, False Positive and 

False Negative are counted through the entire corpus, and 

precision, recall and F1-measure are calculated accordingly. 

On the other hand, macro averaging computes precision, 

recall and F1-measure by counting True Positive, False 

Positive and False Negative on every single document and 

then averages the results for the entire corpus [8]. Macro 

Averaging is more appropriate for our problem domain since 

the sourced financial news articles represent independent 

documents.  

According to Witten, et al in [24], there is more than one 

method to plot the evaluation results of ML algorithms 

performance. These methods depend on the target domain. 

For instance, the marketing domain uses lift chart by plotting 

True Positive rate versus training subset size, the 

communication domain uses Receiver Operator 

Characteristic (ROC) curve by plotting True Positive rate 

versus False Positive rate and the Information Retrieval 

domain uses Recall versus Precision curve. This research 

computes the evaluation results of ML models in relation 

classification by drawing the relation between recall and 

precision in terms of the confidence threshold for 

classification or the threshold probability classification as it 

is commonly accepted as the standard in the Information 

Extraction field. 

The probability threshold value is an important factor for 

the best classification results in the majority of Machine 

Learning classifiers. In these classifiers, a set of instances are 

assigned to a class if their probability of class membership is 

greater than a probability threshold ρ, where 0 ≤ ρ ≤ 1. For 

example, with the default probability threshold value of 0.5, 

the predicted probability value of any instance to be a 

member of a certain class as a true positive must be greater 

than 0.5 [38]. However, Freeman, et. al in [39] have asserted 

that the accuracy of the classification models is affected by 

the value of the threshold. They added that the default 

threshold value of 0.5 does not necessarily produce a highest 

prediction accuracy; particularly, when the datasets are 

highly imbalanced. It should be noted, however, that in all 

the previous studies in Relation Extraction that are reported 

in the open literature and to the best of authors’ knowledge, 

the impact of probability threshold values on the relation 

classification accuracy has not been given great attention by 

the researchers in the past.  This motivated us to investigate 

the impact of the probability threshold in relation 

classification in our research by means of experimentation. 

We heuristically selected the best threshold value for all 

classification models on all training datasets by drawing on 

the correlation between the threshold probability 

classification and F1-measure. 

As presented in section 4 and Table 4, we generated seven 

different training datasets that cover different relations 

between different entity concepts in the financial and 

economic news domain. The sources of the unstructured 

documents are RSS Feeds (see Table 1).  

 In the seven training datasets, all the named entities are 

automatically annotated; however, the classes’ relation 

instances are automatically annotated in four training 

datasets and manually annotated in the other three training 

datasets. 

The ML relation classification models have been created 

by using the training datasets with the features vectors. These 

models should be evaluated before applying them to extract  
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relations from unstructured data. Initially, the training 

datasets were configured by reducing their classes imbalance 

to reach the optimum results. Then, a series of experiments 

were conducted in this research in order to select the best 

feature subsets to improve the accuracy of relation classifiers 

models and choosing between ML algorithms, SVM, PAUM 

and KNN. 

A. Configuring the Training Datasets    

Generally, the classification models tend to favour the 

majority classes while incorrectly classifying the instances 

from the minority classes. According to Agrawal, et al. in 

[4], if the size of one class’s instances is much more than  

 

other classes’ instances in a training dataset, it is considered 

imbalanced. In our training datasets, specifically the datasets 

that are generated using public distant supervision sources 

(DBpedia and Freebase), the number of negative relation 

instances is large. This is attributed to the fact that some 

relations in our unstructured data will be incorrectly assumed 

to be negative instances as they are not included as ground 

facts in the sourced public datasets. We believe that these 

negative relation instances can disrupt the balance between 

True Positives and Negatives instances of the classes in the 

training datasets.  

The first set of experiments attempts to alleviate the 
classes’ imbalance in terms of True Positive and True 

Negative numbers in order to improve the accuracy of the 

classification model and to speed up ML processing. In these 

experiments, we heuristically measure the impact of 

reducing the number of negative relation instances on the 

models’ accuracy by reducing or removing the relation 

instances in the documents that are not mentioned in the 

distant supervision sources. We also explicitly add some 

negative relation instances in the training datasets of one 

relation class in order to decrease in the true positive rate 

while maintaining a low false positive rate as recommended 

by Mohamed, et al. in [40]. Table 7 above shows the impact 

of reducing the number of negative Relation Instances on 

ML models’ accuracy in terms of Precision, Recall and F1-

measure.    

Mintz, et. al in [20] utilise multi-class logistic 

classification for relation extraction and reported that the 

negative relations instances had a minor effect on the 

performance of their classifier. However, for the 

implemented SVM classification, it is evident from Fig. 5 

that the SVM model accuracy clearly improves as we reduce 

the number of the True Negative relation instances because 

the class distribution in the training datasets does play a 

major role in the performance of most classification 

algorithms as highlighted by Agrawal, et. al in [4].   
 

 

Fig. 5: SVM model accuracy in terms of the number of non-relevant 

relation instances in Location-Organisation pair training dataset. 

B. Features selection 

The second set of experiments concerns feature selection 

by using GAs in a wrapper approach. First, we find the best 

subset of features by using our implementation of GAs, and 

then evaluate the relation classification models using the 

selected feature subset. 
 

 

Fig. 6: The Genetic Algorithm Iterations to select the best feature subset 

for Stock Index and the Percentage increase or decrease training dataset 

1) Feature selection results 

Using the same parameters listed in Table 6, we execute 

our implementation of the GA. The results in Fig. 6 illustrate 

the required number of GAs’ iterations required by SVM, 

PAUM and KNN to select an optimal fitness function value 

(F1 measure); SVM, PAUM and KNN require 57, 54 and 69 

iterations respectively. We conclude that the three ML 

algorithms require approximately the same numbers of 

iterations to reach the optimal fitness value and that 100 

iterations are quite sufficient for the GAs to achieve that 

goal. 

Table 8 below shows the number of selected features in 

every subset for every classifier, SVM, PAUM and KNN, in 

all training datasets. This table also shows the features in 

every subset, which are classified into the three categories, 

Lexical, syntactic and Named Entity category. 

TABLE 7: SHOWS THE IMPACT OF REDUCING THE NUMBER OF NEGATIVE RELATION INSTANCES ON ML MODELS ACCURACY IN TERMS OF PRECISION, 
RECALL AND F1-MEASURE 

Training Datasets 

(Automatically Collected) 

Negative Relation 

Instances 

SVM PAUM KNN 

P R F1 P R F1 P R F1 

Person-Organisation 

(3 Classes) 

0 0.8593 0.7426 0.7956 0.8691 0.7635 0.8112 0.7792 0.765 0.772 

3415 0.836 0.591 0.688 0.814 0.599 0.682 0.592 0.635 0.607 

Person-Location 
(4 Classes) 

0 0.7779 0.7006 0.7371 0.76 0.6981 0.7274 0.6807 0.6549 0.6675 

9796 0.627 0.35 0.445 0.591 0.338 0.422 0.4 0.374 0.385 

Location-Organisation 

(1 Class) 

256 0.6164 0.8583 0.7162 0.6695 0.8044 0.7269 0.6416 0.7797 0.7027 

2730 0.697 0.378 0.484 0.652 0.395 0.483 0.445 0.566 0.497 

StockSymbol-Organisation 

(1 Class) 

55 0.812 0.9114 0.854 0.8385 0.9014 0.8658 0.8086 0.8443 0.8179 

233 0.728 0.819 0.76 0.712 0.853 0.766 0.756 0.849 0.787 
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From the data in Table 8, it is apparent that the features of 

the Named Entities category are more important than the 

features of the lexical and syntactic categories in the majority 

of the training datasets. These results are consistent with the 

findings of Wang, et al. in [41] who noted that the entity 

features lead to improvement in performance because the 

mentioned relation between two entities is closely related to 

the entity types. 

2) Evaluating the Relation Classification Models by using 

the Selected Feature subsets 

The selected feature subsets in the training datasets are 

employed to create the relation classifiers’ models. These 

models are evaluated by using 10-fold cross validation. 

Table 9 shows the comparison between the F1-measures 

results of the three relation classifiers models, SVM, PAUM 

and KNN when they use all features vectors and when they 

use the feature subsets. Also, the table indicates the best F1-

measure in terms of the best probability threshold.  

Fig. 7 illustrates the impact of the probability threshold on 

the F1-measure upon SVM relation classification when 

using all the classification features and the features subsets 

selected by our implementation of GA. It is clear that the F1-

measure peaks upon probability threshold of 0.4.  

All of the classifiers that we studied, SVM, PAUM and 

KNN, performed significantly better in the reduced feature 

space optimised by the GA. As evident in Table 9, our 

implementation of GAs has improved the accuracy of ML 

algorithms in all training datasets. It can also be noticed that 

the improvements registered for SVM and PAUM are more 

evident compared to KNN. KNN is more sensitive to the 

irrelevant features, which is corroborated by Imandoust, et 

al. in [42] while Wang, et al. in [41] assert that the 

mechanism of SVM learning makes the irrelevant features 

have little impact on the performance of the SVM algorithm.     

Our experiments have also indicated that the accuracy of 

the classification models is affected by the value of the 

probability threshold. The best threshold values for all 

classification models on all training datasets were 

empirically selected to deliver better classification accuracy 

compared to the default threshold value 0.5 as evidenced in 

below. 

Fig. 7: Impact of threshold on SVM relation classifiers’ accuracy 

It can be observed from Table 9 that our implementation 

of GA selects features from the Named Entity category more 

frequently than from the lexical and syntactic categories for 

the majority of the training datasets. Consequently, we 

decided to conduct further research to investigate the impact 

of the features categories on the classifiers’ performance.  

With respect to the performance of the SVM, PAUM and 

KNN relation classifiers, the data in Table 9 indicates that 

the accuracy of SVM classifier outperforms PAUM and 

KNN for most of the training datasets, which are Person-

Organisation, Person-Location, StockIndex-Organzation and 

Organisation-Percent training datasets. The recorded results 

consistent with the findings of other studies that utilise ML 

in relation classification; for example, the study by Li, et al. 

in [43] found that SVM may perform better than PAUM in 

small training datasets and they have a close performance in 

large training datasets. Also, the work of Hmeidi, et. al in 

[27] reveal that SVM has better F1-measure results than 

KNN. We believe that PAUM and KNN exhibit better 

performance than SVM in some training datasets because 

PAUM is appropriate for imbalanced training datasets and 

KNN performs better with small number of features. 

C. Features Category Selection   

This section evaluates the effect of the features of a single 

category (Lexical, Syntactic or Named Entity) on the accuracy 

of the relation classification  

models. We created the models by using training datasets 

with features of each category individually and with feature 

combinations of all categories. The models’ evaluation  

TABLE 8: THE FEATURE SUBSETS THAT ARE SELECTED BY USING 

GAS (LEX=LEXICAL, SYN=SYNTACTIC & ENT=ENTITY) 

TDS ML 
Feature Numbers 

lex syn ent Total 

PerOrg 

SVM 5 2 6 13 

PAUM 3 2 5 10 

KNN 1 0 5 6 

PerLoc 

SVM 4 1 7 12 

PAUM 1 2 7 10 

KNN 2 1 5 8 

LocOrg 

SVM 3 3 5 11 

PAUM 3 2 4 9 

KNN 5 4 4 13 

StsOrg 

SVM 2 2 2 6 

PAUM 2 5 3 10 

KNN 2 1 2 5 

StiOrg 

SVM 3 3 3 9 

PAUM 3 2 4 9 

KNN 5 3 1 9 

OrgPct 

SVM 3 3 5 11 

PAUM 2 5 6 13 

KNN 2 2 5 9 

StiPct 

SVM 1 3 4 8 

PAUM 2 3 5 10 

KNN 2 3 4 9 

TABLE 9: COMPARING THE CLASSIFIERS RESULTS IN TERMS OF F1 SCORE BEFORE AND AFTER GAS RESULTS (THR=PROBABILITY 

THRESHOLD, ALL=F1 WHEN ALL FEATURES, GA=F1 WHEN FEATURES SELECTED BY GA) 

Entity Pairs Type 
SVM PAUM KNN 

Thr. ALL GA Thr. ALL GA Thr. ALL GA 

Person-Organisation 0.5 0.7956 0.825 0.65 0.8072 0.8125 0.5 0.772 0.8111 

Person-Location 0.4 0.736 0.7564 0.65 0.7278 0.7514 0.7 0.668 0.7321 

Location-Organisation 0.55 0.7236 0.7344 0.5 0.7269 0.7577 0.8 0.7045 0.7489 

StockSymbol-Organisation 0.55 0.8689 0.8643 0.5 0.8583 0.8689 0.5 0.8179 0.8768 

StockIndex-Organisation 0.6 0.8548 0.8898 0.5 0.8765 0.8771 0.4 0.8449 0.8774 

Organisation-Percent 0.15 0.6513 0.6715 0.15 0.6463 0.6649 0.8 0.58 0.6443 

StockIndex-Percent 0.4 0.7032 0.7726 0.5 0.7268 0.7804 0.5 0.7052 0.7622 
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results are compared in Table 10. The data in the table 

indicates that the best Precision, Recall and F1-measure 

values are produced when features of named entities 

category are included in the training.  

The results of these experiments illustrate that the models 

that are created using the Named Entity category combined 

with lexical and/or syntactic features, exhibit better accuracy 

than the models created without including the Named Entity 

category. This is true for the all training datasets and all ML 

classifiers except the training dataset of the relation between 

Stock Symbol and Organisation entities when using SVM 

and PAUM classifiers. This is attributed to the fact that the 

relation instance correlating Stock Symbol and Organisation  

 

is short in terms of the number of words (sometimes there 

are no words between the entity pairs) compared to other 

relations (with more than two words between the entity 

pairs). This reduces the effectiveness of certain features; for 

instance, the features that represent the number of tokens 

between the entities in the relation instances and the features 

that represent the POS of the words between the entities. 

Table 11 below illustrates the difference in POS features for 

StockSymbol-Organisation and Organisation-Percent 

relation instances.  

The results of these experiments illustrate that the models 

that are created using the Named Entity category combined 

with lexical and/or syntactic features, exhibit better accuracy 

than the models created without including the Named Entity 

category. This is true for the all training datasets and all ML 

classifiers except the training dataset of the relation between 

Stock Symbol and Organisation entities when using SVM 

and PAUM classifiers. This is attributed to the fact that the 

relation instance correlating Stock Symbol and Organisation 

is short in terms of the number of words (sometimes there 

are no words between the entity pairs) compared to other 

relations (with more than two words between the entity 

pairs). This reduces the effectiveness of certain features; for 

instance, the features that represent the number of tokens 

between the entities in the relation instances and the features 

that represent the POS of the words between the entities. 

Table 11 below illustrates the difference in POS features for 

StockSymbol-Organisation and Organisation-Percent 

relation instances.  

 
TABLE 11: EXAMPLES OF THE POS FEATURE OF TOKENS BETWEEN 

ENTITY PAIRS 

Relation Instance 

Example 
Entity 1 Entity 2 

POS feature of tokens 

between entity pairs 

Axalta Coating 

Systems Ltd. 

(AXTA 

Axalta 

Coating 

Systems Ltd. 

AXTA 

There is only one token 

between the two entities. 

It is the right brackets “(“ 

Apple were 

crushed again 

Friday, falling 

$6.60, or 5.86% 

Apple 5.86% 
VBD-VBN-RB-NNP-,-

VBG-$-CD-.-CD-,-CC 

 

The number of POS tokens between the entity pairs in the 

relation instance of StockSymbol-Organisation training 

dataset is only one and the number of POS tokens between 

the entity pairs in the relation instance of and Organisation-

Percent training dataset is 12. It is clear that the features 

which are related to the tokens between the entity pairs in the 

StockSymbol-Organisation training dataset are not sufficient 

to indicate the syntactic relation between organisation and its 

stock symbol within the context.   

In general, the classification accuracy of the ML models 

has improved as a result of deploying our GA for optimising 

the feature selection process. In section 7, we further assert 

this claim by comparing it against another solution search 

method for features selection.  

VII. CONTRASTING OUR IMPLEMENTATION OF GA 

OPTIMISATION TO RANDOM MUTATION HILL-CLIMBING  

In this section, we attempt to verify that GAs are an 

appropriate choice for optimising the process of features 

selection for the relation classification problem. Hence, we 

decided to compare our implementation of GAs with 

Random Mutation Hill-Climbing (RMHC) as their 

operational dynamics are very similar. Our choice of HC to 

compare against GAs for the feature selection optimisation 

problem is consistent with numerous studies that elected to 

compare between the two algorithms, for a variety of 

problems, since their early conception. One of the earliest 

investigations was carried out by Mitchell, et al. in (Mitchell 

et al. 1994) who attempted to answer the question: when will 

a GA outperform Hill-Climbing? They claim that 

understanding the mechanism of GAs and the characteristic 

of the fitness landscapes of the problem is crucial for 

deciding when the GAs will be most useful. Another study 

by MacFarlane, et al. in [44] compared GAs to several types 

of HC algorithms including RMHC. The algorithms were 

applied to solve term selection problem for an information 

filtering task. Although they observed that both Genetic and 

Hill-Climbing algorithms appear to be able to improve 

accuracy of term selection, they did not find evidence that 

their implementation of GA performs better than that for 

their Hill-Climbing algorithm. A recent study by Sakamoto, 

et al. in [45] elected to compare GAs and HC in a completely 

different problem domain, which is simulating the node 

placements problem for achieving the network connectivity 

and user coverage. 

RMHC can be considered as a GA without crossover 

operation and initial population. The solution neighbour or 

the new solution in RMHC can be generated by applying a 

similar mutation operation as in GAs, which could make 

jumps of varying sizes through the search space [36]. The 

other reason of choosing RMHC to compare with our 

implementation of GAs is to compare between the 

complexity of GA with the simplicity of RMHC and 

TABLE 10: SVM, PAUM AND KNN CLASSIFIERS WITH CATEGORIZED FEATURES (FC=FEATURES CATEGORY, L=LEXICAL FEATURES, 

S=SYNTACTIC FEATURES, E=NAMED ENTITY FEATURES, THR=PROBABILITY THRESHOLD, P=PRECISION, R=RECALL, F1=F1 SCORE) 

TDS SVM PAUM KNN 

FC P R F1 Thr FC P R F1 Thr FC P R F1 Thr 

PerOrg L+E 0.9052 0.7516 0.8194 0.55 L+E 0.8481 0.7868 0.8149 0.65 L+E 0.823 0.7788 0.7998 0.75 

PerLoc E 0.7622 0.7266 0.7439 0.4 S+E 0.768 0.7014 0.733 0.65 E 0.7225 0.6951 0.7085 0.55 

LocOrg E 0.6535 0.8645 0.7426 0.55 E 0.6893 0.8349 0.7526 0.5 E 0.7026 0.7804 0.738 0.75 

StsOrg L 0.8796 0.9114 0.8914 0.5 L+S 0.8489 0.9114 0.8764 0.5 L+E 0.8518 0.8486 0.8433 0.9 

StiOrg L+E 0.8114 0.9408 0.8664 0.65 L+S+E 0.799 0.9789 0.8766 0.5 S+E 0.7994 0.9292 0.8546 0.3 

OrgPct S+E 0.6955 0.6419 0.6674 0.4 S+E 0.6811 0.624 0.6507 0.15 S+E 0.6158 0.6115 0.6136 0.5 

StiPct S+E 0.6921 0.6921 0.6921 0.5 L+S+E 0.73029 0.721 0.7268 0.5 L+S+E 0.7281 0.6863 0.7052 0.5 
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answering the question: do we need the computational 

complexity of GA operations? 

In our RMHC implementation, we adopted a similar 

configuration to that used by Sakamoto, et al. in [45]. The 

RMHC implementation works as in the following 

pseudo-code: 

 

Algorithm 2: RMHC implementation 

1:  Start 
2:   Generate an initial solution S0; 
3:   Evaluate the initial solution S0, F(S0); 
4:   Let the current solution S equals the initial solution S0;  
5:   Let the best solution S* equals the initial solution S0; 
6:   Let the best fitness value F* equals the fitness of the 
initial 
       solution F(S0); 
7:   repeat 
8:      Mutate current solution S to generate a new solution 
S’; 
9:        Evaluate the new solution F(S’); 
10:     if F(S’) > F(S*) then 
11:            Update the best solution and the best fitness; 
12:            S*=S’ ; 
13:            F* = F(S’) ;  
14:     end if 
15:     Update the current solution S = S’  ; 
16:  until (stopping condition is met) 
17:  Return S∗, F∗ 
18:  End 

 

In order to fairly compare the performance of our 

implementation of GAs and RMHC for features selection 

problem, the experiments should be under the same 

computational conditions, in particular with respect to the 

fitness evaluation calls as it represents the most critical 

operational step of search algorithms. It is clear that one run 

of GAs is more expensive than one run of RMHC in terms 

of fitness functions calls [46]. As a result, we should run both 

algorithms with equal number of fitness function calls.  

Because we adopted the steady state technique for 

population reproduction in our implementation of GAs, the 

number of fitness function calls will be equal to 𝐼 × 2 + 𝑃, 

where, I is the iterations number of GAs’ operations and P is 

the population size. However, the number of fitness function 

calls in RMHC is equal to the number iterations of its 

operations because our implementation of RMHC does not 

have initial population. Consequently, the number of 

iterations of RMHC experiments should be equal to the 

number of our GA fitness function calls. 

For the purpose of this experimental comparison, we 

evaluate optimising the accuracy of the SVM relation 

classifier for only one training dataset (Location-

Organisation). The number of iterations in our 

implementation of the GAs is 50, thus the algorithm makes 

120 fitness function calls for a population size of 20; 

consequently, the Random Mutation Hill-Climbing 

algorithm should have 120 iterations in order to subject it to 

the same computational efforts in terms of fitness 

evaluations. The number of executed runs for each algorithm 

is 30, which represent the number of sample runs. 

 The comparison between our implementation of Genetic 

and Random Mutation Hill Climbing algorithms are 

highlighted in Table 12 in terms of fitness sample runs, i.e. 

F1-measure. The results in the table indicates that Random 

Mutation Hill-Climbing algorithm outperforms our 

implementation of Genetic Algorithms in only 4 of the 30 

sample runs. 

From the data in Table 12, it is apparent that our 

implementation of Genetic Algorithms outperforms Random 

Mutation Hill-Climbing algorithm in most the results’ 

sample runs as our implementation of Genetic Algorithms 

have higher ranking sample runs than the sample runs of 

Random Mutation Hill-Climbing algorithm. Nevertheless, in 

order to further examine any significant difference in the 

performance of our implementation Genetic Algorithms and 

Random Mutation Hill-Climbing algorithm, we applied a 

statistical test to compare their performance in the feature 

subset selection problem. We considered a Wilcoxon singed 

rank test procedure to perform a pairwise comparison 

between the two algorithms’ sample runs. Wilcoxon test is a 

non-parametric statistical procedure for examining the 

median differences in observations for two samples. It aims 

to detect if there is a significant difference among the 

behaviour of the samples of two algorithms’ results. Before 

applying the Wilcoxon procedure test, we should rank the 

absolute differences of the two sample pairs. First, finding 

out the difference between each sample pair. Then, the 

absolute differences of the samples are ranked by ordering 

them from the smallest to the largest. The rank will be 

according to the position of the absolute difference of the 

pair in the ordered list [47]. Table 12 shows the fitness values 

for the sample runs of Genetic and Random Mutation Hill-

Climbing algorithms; also, their paired sample runs 

differences and the ranks and total ranks of their absolute 

differences.  
 

TABLE 12: GA AND RMHC F1-MEASURE SAMPLE RUNS AND 

THEIR ABSOLUTE DIFFERENCES RANKS 

Sample 

Run # 

GA 

F1 

RMHC 

F1 
Difference 

GA 

Ranks 

RMHC 

Ranks 

1 0.7460218 0.735 0.0110218 26  

2 0.7368624 0.7319737 0.0048887 12  

3 0.738097 0.7338212 0.0042759 6  

4 0.7448637 0.7402726 0.0045911 10  

5 0.7361086 0.728381 0.0077276 21  

6 0.7298968 0.7381135 -0.0082167  22 

7 0.7359173 0.7313907 0.0045266 8  

8 0.7370021 0.7309848 0.0060174 17  

9 0.7419199 0.7394984 0.0024215 3  

10 0.7452387 0.7305558 0.0146829 29  

11 0.7377635 0.7325595 0.005204 13  

12 0.7390769 0.7343243 0.0047526 11  

13 0.7368212 0.7398594 -0.0030382  5 

14 0.7368653 0.7304085 0.0064568 19  

15 0.7397724 0.7376058 0.0021667 2  

16 0.7347115 0.7289391 0.0057724 16  

17 0.7364395 0.7203119 0.0161276 30  

18 0.7419509 0.7420638 -0.0001129  1 

19 0.7370386 0.7249938 0.0120448 28  

20 0.7394399 0.7287488 0.0106911 25  

21 0.7457602 0.7364889 0.0092713 23  

22 0.7398368 0.7299845 0.0098523 24  

23 0.7423382 0.7304239 0.0119143 27  

24 0.7362633 0.7423339 -0.0060706  18 

25 0.7341355 0.728746 0.0053895 14  

26 0.7377205 0.7304985 0.007222 20  

27 0.7303425 0.725773 0.0045694 9  

28 0.7415834 0.7371815 0.0044019 7  

29 0.7321383 0.7292429 0.0028955 4  

30 0.7438176 0.7381317 0.0056859 15  

Total Ranks: 419 46 
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The Wilcoxon singed rank statistical analysis was applied 

by using the R package6 on our implementation of Genetic 

Algorithms and Random Mutation Hill-Climbing algorithm 

sample runs under the null hypothesis and at 0.05 significant 

level (α). The Wilcoxon test results in R package are shown 

in below: 

data:  GA and RMHC 

V = 419, p-value = 0.00003453 

alternative hypothesis: true location shift is not equal to 0 

Where V is the sum of the positive ranks (GA results 

ranks) and p-value is a probability that measures the 

evidence against the null hypothesis. Lower probabilities 

provide stronger evidence against the null hypothesis. 

It is clear that p-value (0.00003453) is considerably less 

than the significant level (0.05). This result shows that there 

is a significant difference between our implementation of 

GAs and Random Mutation Hill-Climbing algorithm and the 

null hypothesis is rejected. The statistical test result further 

evidences that our implementation of GAs for feature 

selection outperforms the Random Mutation Hill-Climbing 

algorithm in terms of improving relation classifiers accuracy. 

VIII. FINDINGS SUMMARY: A METHODOLOGY FOR 

KNOWLEDGE-ASSISTED ML- BASED RELATION 

EXTRACTION 

Our research into extracting relations from domain-

specific documents resulted in a comprehensive 

methodology for integrating domain knowledge with 

supervised ML techniques to improve the Information 

Extraction process form unstructured data.  

The preliminary stage of our proposed methodology, 

which comprised knowledge map construction and the NLP 

tasks (NER, Relation Detection, feature extraction), was 

documented in detail in an earlier publication [18]. This 

paper documents how our methodology integrates domain 

knowledge with ML techniques in order to improve the 

process of Information Extraction process from unstructured 

data. In this stage, we developed innovative techniques to 

optimise the process of ML classifiers for Relation 

Extraction; this includes employing distant supervision for 

compiling the ML training datasets and using GA for 

features selection. Supported by a series of experiments, our 

research reports on the favourable knowledge-assisted 

implementation and configuration of the ML classifiers and 

GAs including: 

A. Bootstrapping the training datasets with distant 

supervision sources. 

We have employed public LOD datasets (DBpedia and 

Freebase) as distant supervision sources to our ML 

algorithms as, similar to our knowledge modelling approach, 

these datasets use the same standardised semantic formalism 

to publish ground facts that are relevant to our problem 

domain. The ground facts were used to compile training 

datasets for relation classification. 

B. Configuring the ML algorithms. 

1) For ML algorithms’ parameter optimisation and 

improving the ML classifiers’ performance, we 

adopted a grid-based manual search approach to 

perform parameter tuning, which proved sufficient to 

                                                           

6 https://www.r-project.org/ 

satisfy the requirements of the deployed ML techniques 

(SVM, PAUM, KNN); grid-based search is simple to 

implement compared to the computationally expensive 

automatic optimisation techniques. Adapting ML 

algorithms’ parameters is a critical task in tuning 

general-purpose algorithms to solve different domain-

specific problems. The parameters’ values, which are 

selected by grid search, proved favourable to the 

traditionally accepted default values for the SVM, 

PAUM and KNN algorithms. 

2) In order to further enhance the accuracy of the relation 

classification models, by means of experimentation, we 

heuristically determined the best probability threshold 

values for all classification models on all training 

datasets by drawing on the correlation between the 

threshold probability classification and F1-measure. 

Experimental results showed that the empirically 

selected values deliver better classification accuracy 

compared to the default threshold value. Hence, we 

believe that the probability threshold should be 

investigated when creating classification models, in 

particular for the relation classification problem. 

3) Macro-averaging was considered more appropriate for 

evaluating the classification accuracy for the problem 

domain since the sourced financial news articles 

represent independent documents. Precision, recall and 

F1-measure were computed for individual documents 

and then averaged for the entire corpus.  

C. Reducing the training datasets’ imbalance. 

The utilisation of distant supervision for the compilation 

of the training data ground facts can result in incorrectly 

labelling a considerable number of relations as negative 

instances thus disrupting the balance between True Positive 

and True Negative instances of the classes in the training 

datasets. Hence, we conduct a number of experiments to 

heuristically reduce the number of resulting negative 

instances and we also explicitly introduce some negative 

relation instances in the training datasets of one relation class 

in order to decrease the true positive rate while maintaining 

a low false positive rate. The experimental results evidenced 

that our approach has a positive impact on the models’ 

accuracy. 

D. Fitting the GAs’ operations and parameters to the 

relation classifiers’ features selection problem. 

1) We utilised GAs as wrapper approach to optimise the ML 

features selection and the experimental results proved 

that all of the studied relation classifiers perform 

significantly better in the reduced feature space.  

2) The configuration parameters of GAs require tuning to 

find the best fit for a specific optimisation problem. By 

means of experimentation, we heuristically established 

the optimum values for the GA’s initial population size, 

the number of generations, crossover rate and mutation 

rate that represent the best fit for our features selection 

problem for relation classification.    

3) In terms of selecting the best features for relation 

classification, the research findings indicate that the 

models that are created using the Named Entity category 

combined with lexical and/or syntactic features exhibit 
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better accuracy. The exception for our target domain is 

the Stock Symbol and Organisation relation as it is 

characterised with short relation mentions (instances) in 

terms of the number of words. 

After building the relation classification models by using 

the configured training datasets and the best selected features 

vectors, we apply these models onto the pre-processed 

unlabelled online financial news documents to extract new 

relations between the targeted annotated entities. The output 

data of this step is an annotated document with entities and 

their interrelations that are incrementally populated into the 

resultant semantic knowledgebase. The extracted relations 

have a confidence score based on the probability of the 

correctness of entity pairs’ relation. These scores could be 

used to rank the extracted relations to generate a list of the 

most confident relations [20]. 

The above described methodology is applicable to other 

domains and only requires the one-off effort in constructing 

the semantic model of the domain knowledge, i.e. 

engineering the semantic ontology that conceptualises the 

domain’s key terms and relations and identifying public data 

sets providing ground facts about the domain’s key events. 

IX. CONCLUSIONS AND FURTHER WORK 

Harnessing insights from the prolific online information 

resources requires the computerised processing of 

unstructured text in order to satisfy the information need of 

particular applications such as recommender systems and 

sentiment analysis. The research reported in this paper 

contributes to the efforts of information extraction by 

proposing a novel methodology that integrates domain 

knowledge with supervised Machine Learning (ML) to 

improve the processes of Relation Extraction from 

unstructured text.  

Considering that the success of supervised Machine 

Learning is affected by the quality of the training datasets 

and the relevance of the features vectors, we utilised distant 

supervision techniques, informed by Linked Open Data 

datasets, to aid in the compilation of the input training data, 

and then deployed evolutionary algorithms (Genetic 

Algorithms) to optimise the process of features selection in 

order to reduce the dimensionality of the data and 

subsequently increase the efficiency and accuracy of the 

classifiers’ operations. Our research also makes several 

contributions to the methods of configuring the GA-

optimised machine learning for relation classification 

including the reduction of the training data True 

Negative/Positive imbalance, setting the best-fit learning 

algorithms’ probability threshold and establishing the 

optimum GAs parameters. In addition, the findings of our 

research also contributed to the understanding of the impact 

of specific feature types (lexical, syntactic, Named Entity) 

and features grouping on the accuracy of the relation 

classification process for the target application domain. 

The conducted experimental evaluation evidenced that the 

developed knowledge-assisted ML relation classification 

model, which was further boosted by our implementation of 

GAs to reduce the feature space, has resulted in significant 

improvement in the process of relation extraction. The 

experimental results also indicate that amongst the 

implemented ML algorithms, SVM exhibited the best 

relation classification accuracy in the majority of the training 

datasets while retaining acceptable levels of accuracy in the 

rest in the remaining training datasets. 

Finally, we verified that GAs represent an appropriate 

choice for optimising the process of features selection for the 

relation classification problem by comparing them against a 

space search algorithm that has similar operational 

dynamics, Random Mutation Hill-Climbing (RMHC). In 

order to further examine any significant difference in the 

performance of our implementation of GAs and Random 

Mutation Hill-Climbing algorithm. We used a non-

parametric statistical procedure, Wilcoxon test, to detect if 

there is a significant difference among the behaviour of the 

sample runs of our algorithms’ implementations. The 

findings demonstrated that our implementation of GAs for 

feature selection outperforms the Random Mutation Hill-

Climbing algorithm in terms of improving relation classifiers 

accuracy. 

Our plans for further work include investigating whether 

the relation classification results can be further enhanced by 

utilising GAs to solve the multi-objective optimisation 

problems combining parameters optimisation of the ML 

algorithms and feature selection in relations classification. 

More broadly, our future work aims to develop the reasoning 

capabilities of the underlying semantic knowledgebase for 

the benefit of target user groups such as journalists or 

financial investors. Hence, we will investigate the 

application of reasoning techniques such as the first-order 

classification rules that can be hard-wired into the 

knowledgebase’ semantic model and the explicit Semantic 

Web Rules Language (SWRL) to classify events and facts 

that might be of interest to the end users. The planned 

research will also investigate the techniques for Natural 

Language query interpretation into SPARQL queries that 

can efficiently interrogate the domain Knowledgebase. 
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