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Early caregiver–infant interactions are critical for infants’ socio-
emotional and cognitive development. Several hormones and
neuromodulators, including oxytocin, affect these interactions.
Exogenous oxytocin promotes social behaviors in several species,
including human and nonhuman primates. Although exogenous
oxytocin increases social function in adults—including expression
recognition and affiliation—it is unknown whether oxytocin can
increase social interactions in infants. We hypothesized that neb-
ulized oxytocin would increase affiliative social behaviors and
such effects would be modulated by infants’ social skills, measured
earlier in development. We also hypothesized that oxytocin’s effects
on social behaviors may be due to its anxiolytic effects. We tested
these hypotheses in a blind study by nebulizing 7- to 14-d-old
macaques (n = 28) with oxytocin or saline. Following oxytocin
administration, infants’ facial gesturing at a human caregiver in-
creased, and infants’ salivary oxytocin was positively correlated
with the time spent in close proximity to a caregiver. Infants’ im-
itative skill (measured earlier in development: 1–7 d of age) pre-
dicted oxytocin-associated increases in affiliative behaviors—lip
smacking, visual attention to a caregiver, and time in close prox-
imity to a caregiver—suggesting that infants with higher propen-
sities for positive social interactions are more sensitive to exogenous
oxytocin. Oxytocin also decreased salivary cortisol, but not stress-
related behaviors (e.g., scratching), suggesting the possibility of
some anxiolytic effects. To our knowledge, this study provides the
first evidence that oxytocin increases positive social behaviors in
newborns. This information is of critical importance for potential
interventions aimed at ameliorating inadequate social behaviors in
infants with higher likelihood of developing neurodevelopmental
disorder.
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Oxytocin is a neuropeptide that has wide-ranging effects on
social behaviors and social perception, including increased

emotion recognition and prosocial behavior (1, 2). Animal studies
present convergent evidence of oxytocin’s positive effects on so-
cial behavior (2–6), including humans (1, 7). In recent years, an
increasing literature on human and nonhuman primates suggests
an association between oxytocin levels—either endogenous or
exogenously administered—and prosocial behaviors (8–10). In
both humans and macaques, exogenous oxytocin appears to en-
hance social attention, prosocial behaviors, sensitivity to gaze, and
sensitivity to facial expressions (for reviews, see refs. 1 and 2).
Oxytocin, therefore, may be a tool for promoting social behav-

iors, especially in clinical populations in which social faculties are
compromised (8, 11–13). In the last few years, in fact, oxytocin has
been tested in autistic individuals, and it appears to increase social
attention and improve emotion recognition (e.g., refs. 14–19; al-
though see ref. 20; for a recent review, see ref. 21). Given the
importance of early assessments in the diagnosis of autism (22),
studies clarifying the role of oxytocin in early development are
critically important. For example, human infants actively par-
ticipate in face-to-face caregiver–infant interactions; failure to

engage with caregivers in this way can disrupt the development
of healthy emotion regulation and socioemotional skills (23–25).
In both caregivers and neonates, complex cortical and limbic
brain networks are prepared to sustain such exchanges (26–28),
and several hormones and neuromodulators regulate the affec-
tive components of face-to-face caregiver–infant interactions (29–
32). However, to our knowledge, studies investigating the role of
infants’ oxytocin levels in these early intersubjective exchanges
have not been carried out. Only one study to date measured
endogenous oxytocin levels in newborns and reported that higher
levels of oxytocin in newborns’ cerebrospinal fluid (CSF) were
associated with higher levels of social engagement, including
actively seeking parental social interaction for soothing and
a greater interest in social interaction (33). No studies to date,
however, have administered oxytocin to infants to determine its
effects on social behavior, despite the fact that a more thorough
understanding of oxytocin and its behavioral consequences may
provide a potential tool for interventions aimed at promoting
social affiliation in individuals with social impairments (11–15,
34). The necessity to fill this gap motivated the present study.
Our first goal was to determine whether oxytocin influences

newborn macaques’ behaviors during an interaction with a hu-
man caregiver. We predicted that oxytocin, compared with sa-
line, would increase positive social behavior, including facial
gestures [i.e., lip smacking (LPS) and tongue protrusion (TP)],
visual attention to a human caregiver, and time spent in close
proximity to a human caregiver (Table 1). We chose macaques
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because they have an extended period of parental care and
exhibit complex mother–infant face-to-face interactions, e.g.,
mutual gaze, “motherese,” and facial imitation (35). As adults,
macaques display positive behavioral changes in response to
exogenous oxytocin (2–6), as in humans (1).
An additional motivation for the present study was to examine

individual differences in sensitivity to oxytocin. We predicted that
individual differences in infants’ social skills might moderate the
effects of oxytocin. In particular, in the first week of life, macaques,
like humans, imitate facial gestures (36); this response reflects the
emergence of infants’ early social skills in tuning their own be-
havior with that of their mothers (36). Despite large individual
differences in imitative ability (37), the neurochemical mechanism
mediating these responses remains unknown. Early imitative
abilities are associated with some aspects of later social cognitive
development (37–39) and may reflect general social interest (for
a review, see ref. 40). For example, macaque infants who con-
sistently imitate in the first week of life, compared with those
who do not, are better at recognizing human caregivers (38) and
visually attend more to caregivers (39). Together, these lines of
evidence suggest that the capacity to imitate at birth is associated
with a range of social-cognitive skills, and that the interindividual
differences in such skills may rely on neurobiological substrates
mediated by oxytocin. Given that infants may vary in their social
interest, and that oxytocin may enhance intrinsic social motiva-
tion (2, 4), we predicted infants’ imitative skill—a measure of
social interest—may predict their sensitivity to exogenous
oxytocin.
A final motivation was to assess infants’ salivary oxytocin and

cortisol levels, to determine the influence of inhaled oxytocin.
Other studies report that administering oxytocin results in a
dose-dependent decrease in plasma cortisol (41) and reduces
anxiety, which increases affiliative motivation (42). We predicted
that inhaled oxytocin would increase infants’ salivary oxytocin
and decrease salivary cortisol. We also measured anxiolytic
effects behaviorally by examining self-directed behaviors that
have been associated with stress (43), including scratching, yawn-
ing, self-sucking, self-clinging, and interactions with the surrogate
(Table 1).
To test these hypotheses, we assessed infant macaques’ neo-

natal imitation of facial gestures in the first week of life (for
rearing and testing details, see SI Methods). In the second week
of life, we carried out a procedure on 2 consecutive days, in
which infants were nebulized with oxytocin or saline (one per
day). One and 2 h following nebulization, infants were tested in
an imitation recognition task in which a human experimenter
imitated all of an infant’s mouth movements for 2 min, followed
by 2 min of still face (i.e., neutral face), while trying to maintain
eye contact with the infant. This paradigm was selected because
of previous findings that monkeys recognize when they are being

imitated (44) and display affiliation toward social partners who
imitate them (45). We collected saliva samples 2 and 4 h after
the end of nebulization to measure salivary oxytocin and cortisol
levels (see SI Methods for details).

Results
Exogenous Oxytocin Elevated Salivary Oxytocin and Decreased
Salivary Cortisol. All analyses initially included the variable of
sex (male, female), but there were no main effects or interactions
(values of P > 0.05); therefore, we excluded this variable. We
then analyzed infants’ saliva to assess peripheral oxytocin levels
(46). We carried out two paired-samples t tests, one at each
postnebulization time (2, 4 h), for both salivary oxytocin and
cortisol, to compare the levels in each condition (saline control,
oxytocin) (Fig. 1). There was higher salivary oxytocin in the
oxytocin condition [mean (M) = 26,995 pg/mL, SD = 37,976]
than the saline condition (M = 396 pg/mL, SD = 145) at 2 h
postnebulization [t(14) = 1.83, P = 0.013, d = 0.73], but no sig-
nificant difference in the conditions at 4 h postnebulization [t(13) =
1.86, P = 0.086]. Salivary cortisol was lower in the oxytocin con-
dition (M = 1.04 μg/dL, SD = 0.25) than in the saline condition
(M = 1.49 μg/dL, SD = 0.38) at 2 h postnebulization [t(7) = 2.48,
P = 0.042, d = 0.88], but there was no difference 4 h post-
nebulization [t(11) = 1.12, P = 0.287] (Fig. 1).
We next examined whether there was any association between

the nebulized amount of oxytocin delivered and infants’ behaviors,
salivary oxytocin, or cortisol levels. There were no significant

Table 1. Ethogram for 12 behaviors scored during imitation recognition

Behavior Operational definition

Events LPS Lip smacking. Rapid opening and closing of the mouth
TP Protrusion and retraction of the tongue

States Vis attn Visual attention. Looking at the face of the human caregiver model
Prox Proximity. Infant torso is within 5 cm (infant arm’s reach) from cage front

Events Scratch Common use
Yawn Common use

States Self-suck Insertion into mouth of fingers/hands, toes/feet
Self-clasp Hand or foot closed on fur or some body part
Surrogate Any touching of surrogate mother
Loco Locomotion. Directed movement of torso (>15 cm within 5 s)
Explore Exploration. Manipulating toys or bedding
Sleep Infant lying down with head on floor of cage

Fig. 1. Saliva analysis for oxytocin and cortisol levels, 2 and 4 h after neb-
ulization with either saline control or oxytocin. For salivary oxytocin (light
bars; left axis), there was a main effect of condition (Oxytocin > Saline
Control) [F(1,13) = 8.95, P = 0.010, ηp2 = 0.408]. For salivary cortisol (dark bars;
right axis), there was an effect at 2 h postnebulization (saline control >
oxytocin) [t(8) = 2.97, P = 0.018, d = 0.99], but no effect at 4 h post-
nebulization [t(12) = 1.28, P = 0.225]. Error bars reflect SEM. *P < 0.05.
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associations (values of P > 0.05) indicating that variations in de-
livery dosages were not large enough to produce differences in our
behavioral or physiological measures.

Oxytocin Increased Infants’ Facial Gestures. We analyzed 12 be-
havioral measures (Table 1) with repeated-measures ANOVAs
(Tables S1–S3) to determine whether each behavior varied
across condition (saline control, oxytocin), time postnebulization
(1 or 2 h after nebulization), and experimental period (imitation,
still face). In terms of oxytocin effects, only facial gestures—LPS
and TP—occurred more frequently in the oxytocin condition
relative to the saline condition (values of P < 0.05) (Fig. 2).
There were no other main effects or interactions for the variable
of condition for any of the other behaviors (values of P > 0.05).

Time Spent in Close Proximity to Caregiver Was Positively Associated
with Salivary Oxytocin. We examined whether there were any
associations between infants’ behaviors and their salivary oxy-
tocin levels. We focused specifically on the 2-h postnebulization
time, since we had both the behavioral and salivary oxytocin
measure at this time. We carried out a series of four linear
correlations on each of the 12 behaviors—examining both con-
ditions (saline control, oxytocin) and both stimulus periods (imi-
tation, still face)—using a Bonferroni correction (P < 0.05/4 =
0.0125). In the oxytocin condition, during the imitation period,
there was a positive correlation between salivary oxytocin and time
spent in close proximity to the caregiver [r(14) = 0.642, P = 0.007]
(Table S4). There were no other correlations (values of P > 0.0125).

Neonatal Imitation Predicted Oxytocin-Induced Increases in Affiliative
Behaviors. Finally, we examined whether infants’ facial imitation
performance in the first week of life was related to their behavioral
and physiological reactivity to oxytocin. We assessed infants’
strength of LPS imitation in the first week of life (SI Methods).
To assess the oxytocin-related behavioral changes, we calculated
the difference in the frequency or duration of each behavior
(Table 1) in oxytocin and saline conditions (i.e., frequency in sa-
line condition subtracted from frequency in oxytocin condition).
Oxytocin-associated difference scores greater than zero reflect
increases in behaviors, and scores below zero reflect decreases
in behaviors. We first examined the 2-min imitation period 2 h
after nebulization. There were positive correlations between LPS
imitative skill and three affiliative social behaviors: LPS gestures
[r(26) = 0.649, P < 0.001], time spent looking at the caregiver [r(24) =
0.719, P < 0.001], and time spent in close proximity to the caregiver

[r(26) = 0.498, P = 0.008] (Fig. 3). There were negative corre-
lations between LPS imitative skill and two behaviors—self-
clasping [r(26) = 0.430, P = 0.025] and sleeping [r(26) = −0.573, P
= 0.002]—and a positive correlation between LPS imitation
skill and locomotion [r(26) = 0.472, P = 0.013]. There were no
significant correlations between imitative skill and oxytocin-
associated difference scores, in the still-face periods, or in the
sessions 4 h after nebulization (values of P > 0.10). There were
also no associations between infants’ imitative skills and their
salivary oxytocin or cortisol levels in either the oxytocin or saline
conditions (values of P > 0.10).

Discussion
In the present study, exogenous oxytocin had positive effects on
7- to 14-d-old macaques’ social behaviors: infants produced more
facial gestures when nebulized with oxytocin compared with sa-
line. Synchronous communicative exchanges between infants and
caregivers, such as these, are important for healthy development
(for a review, see ref. 47), so increasing such exchanges could be
beneficial to infants (48). This finding has several implications
for possible early interventions promoting social behaviors in
children whose social skills could be compromised, such as in
autism (49).
The positive effect of oxytocin on social behavior found in the

present study is likely the consequence of the action of oxytocin,
or of its metabolites, on the central nervous system (CNS). In
fact, nebulizing oxytocin in macaque neonates increased salivary
oxytocin 2 h after nebulization. Although we were unable to
directly assess oxytocin in the CNS, this finding of elevated sal-
ivary oxytocin is consistent with studies in adult macaques that
reported elevated CSF oxytocin levels 35–120 min after aero-
solized oxytocin delivery (4, 50). It is also consistent with studies
in rodents reporting that intranasal oxytocin increases extracel-
lular concentrations of oxytocin in behaviorally relevant brain
regions, peaking 30–60 min after administration (51), and studies
of elevated oxytocin in human CSF 75 min following intranasal
administration (52). Although the relation between central and
peripheral oxytocin levels has not been fully elucidated (e.g., ref.
53), elevated oxytocin in CSF is likely to reflect transnasal pen-
etration into the CNS (4, 52), verifying that nebulization of
oxytocin was successful. Unlike other routes of administration (e.
g., intranasal, intravenous), nebulizing oxytocin may allow oxy-
tocin molecules to be absorbed into the CNS through the nasal
mucosa (54, 55), making it one of the most effective routes of
administration (50). Elevated oxytocin levels in both the CNS
and periphery are most likely due to the direct effects of exog-
enous peptide administration, although it is impossible to rule
out a contribution from endogenous oxytocin release (50). Fi-
nally, functional magnetic resonance imaging (fMRI) studies
have demonstrated that intranasal oxytocin produces changes in
the activity of several brain areas in humans and macaques (49,
56, 57), thus supporting other findings of the CNS effects of this
neuromodulator (58).
Cortisol levels were lower in the oxytocin condition compared

with the saline condition at 2 h after nebulization, consistent with
previous studies in adults (e.g., ref. 59). This finding may indicate
that oxytocin had some anxiolytic effects, although behaviorally
no such effects were detected. It is worth noting, however, that
both salivary oxytocin and cortisol levels did not remain altered
4 h after nebulization, suggesting that, in newborns, the effects
were not as long lasting as in human adults [e.g., lasting more
than 7 h (60)]. Lower doses of oxytocin may have shorter effect
durations; however, in the present study, our shorter effect
durations are unlikely to be due to lower doses, as the dose was
comparable to that in previous studies.
In contrast to our predictions, however, oxytocin did not appear

to increase infants’ visual attention to social partners, as reported
in adult monkeys (4). It is possible that, although oxytocin did not

Fig. 2. Infants’ lip smacking (LPS) and tongue protrusion (TP) gesture rates
in the imitation recognition task (imitation and still-face periods combined),
nebulized with either saline or oxytocin. These data are averaged across
time postnebulization (1 and 2 h after nebulization). There was a main ef-
fect of condition (oxytocin > saline control) [F(1,26) = 5.96, P = 0.022, ηp2 =
0.186]. Error bars reflect SEM. *P = 0.014, **P = 0.029.
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impact the overall amount of visual attention to the social partner,
it may have affected the distribution of infants’ attention to
caregivers; namely, attention to the most relevant aspects of the
face, such as the eyes (61), or attention to particular types of
expressions (6). It would also be interesting to examine whether
oxytocin would influence infants’ attention to eyes, as it does in
adults [e.g., humans (61); macaques (5)], especially given that at-
tention to the eyes in early infancy may be a key signature of
neurodevelopmental disorders, such as autism (22).
We also assessed whether variation in salivary oxytocin levels

were associated with variation in infants’ affiliative behaviors.
Salivary oxytocin was positively correlated with time spent in
close proximity to the caregiver, consistent with our prediction
that elevated oxytocin increases affiliation. Similarly, in adult
humans, oxytocin increases affiliation (62), and in animals, oxy-
tocin increases social approach (63).
Although these results provide clear support for the proposi-

tion that oxytocin increases affiliation, interpretations of these
findings at a neurophysiological level remain speculative. It is
possible that oxytocin reduced anxiety, resulting in an increased
propensity to socially engage with the caregiver. Several studies
have shown that oxytocin has stress-buffering effects that are
manifested behaviorally in terms of reduced anxiety and in-
creased affiliative motivation (42, 64) and physiologically in
terms of reduced activity of the hypothalamic-pituitary adrenal
(HPA) axis (41, 65). The present finding of decreased salivary
cortisol following oxytocin administration is consistent with these
results, as well as reports that oxytocin locally affects several
hypothalamic nuclei, e.g., through dendritic release (66). How-
ever, in the present study, there were no oxytocin-related be-
havioral anxiolytic effects, that is, no changes in self-directed
behaviors commonly associated with stress in macaques [e.g.,
scratching (43)]. The incongruity between a significant oxytocin-
related decrease in cortisol in the absence of a change in stress/
anxiety-related behaviors could be explained if the endocrine
effect was independent of stress. Indeed, the testing situation was
likely not stressful for the infants because they interacted with
human caregivers regularly and the task took place in their fa-
miliar home incubator. Alternatively, it is possible that oxytocin
had anxiolytic effects on the infants, but those effects were ob-
servable only in salivary cortisol because the behavioral measures
used were insensitive for detecting changes in stress levels.
Another possibility is that increases in prosocial behavior as

a consequence of oxytocin were not due to anxiolytic actions, but
rather were a consequence of oxytocin’s actions on brain regions
involved in social processing and the control of social behavior
(42, 67). In support of this, neuroimaging studies in humans dem-
onstrate that intranasal oxytocin modulates activity of the amyg-
dala and cingulate cortex (see ref. 67 for a review). A recent fMRI
study in monkeys showed that intranasal administration of oxy-
tocin reduced the effects of facial expression valence (e.g.,
threatening and neutral facial stimuli) on the activity of the
amygdala, the medial prefrontal cortex, and the inferotemporal
cortex (57), similar to effects found in humans (68). Further evi-
dence comes from fMRI studies demonstrating that intranasal
oxytocin produces changes in the activity of several brain areas in

human adults with Asperger syndrome (56) and children with
autism (49). Specifically, oxytocin increased brain activity for
socially meaningful stimuli and attenuated activity for nonsocial
stimuli (49), thus supporting other findings of the CNS effects of
this neuromodulator (58). Further studies are clearly necessary
to further test oxytocin’s effects on various brain regions.
Finally, individual differences in infants’ LPS imitative skill pre-

dicted their sensitivity to exogenous oxytocin. Stronger LPS imita-
tion in the first week was associated with increased affiliative
behaviors in the second week—LPS, time spent looking at a care-
giver, and time in close proximity to a caregiver—as a consequence
of oxytocin administration. In previous studies, we reported that the
early capacity of imitation in newbornmonkeysmight be an index of
the maturation of voluntary skilled movements as well as of cog-
nitive and social skills (35, 38). Although indirectly, these data
suggest that early social competencies are linked to brain networks
involved in motor control and in regulating socioemotional re-
sponses. Infants who are more sensitive and responsive to social
cues from birth are also more sensitive to the prosocial effects of
oxytocin, possibly due to oxytocin-associated amplification of in-
trinsic social motivation (2, 4). Infants’ imitative skills were not,
however, associated with salivary oxytocin or cortisol levels, in ei-
ther the oxytocin or control conditions, which indicates that, al-
though affiliative behaviors were altered by oxytocin as a function
of imitative skill, physiological responses—at least in our salivary
measures—were not different as a function of imitative skill. This
suggests that salivary oxytocin and cortisol may be more influenced
by exogenous than endogenous levels of these hormones. Alter-
natively, these data may indicate that, although salivary oxytocin
may be a fairly accurate measurement of peripheral oxytocin, these
levels may not necessarily indicate the precise quantity of oxytocin
absorbed in CNS, and therefore this noninvasive assessment may
lack the high resolution necessary for identifying potential inter-
actions between endogenous and exogenous levels.
Oxytocin clearly exerts its effects on several cortical network

and subcortical structures that regulate social behavior, as pre-
viously suggested. However, other networks could also be in-
volved. Indeed, the mirror neuron system has been shown to be
central in cortical action-perception mechanisms involved in
social perception and imitation (69, 70). Although speculative,
the heightened oxytocin sensitivity of infants with higher imita-
tive skills suggests that the social brain network linking action
and perception may be one target of this neuropeptide. Specif-
ically, we hypothesize that the mirror neuron system is a potential
candidate for mediating some of the social effects of oxytocin.
Recently, it was reported that, during the observation and imita-
tion of facial gestures, such as LPS, specific brain rhythms (the mu
rhythm) are desynchronized (71). These EEG changes may reflect
the activity of cortical parietal-frontal networks, which are part of
the mirror neuron system (72). Critically, in human adults, the
administration of oxytocin modulates the mu rhythm (73), pro-
viding preliminary support for the hypothesis that this network
may be a target of oxytocin. Further research on whether and how
oxytocin influences the mirror neuron system is warranted.
In addition, the administration of oxytocin in young pop-

ulations may produce different effects than in adults, depending
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Fig. 3. Associations between imitative skill and behav-
ioral changes due to oxytocin. Scatter plots reflect the
associationbetween the strengthof infants’ lip smacking
(LPS) imitation in the first week of life (x axis) and the
change in behaviors as a consequence of oxytocin ad-
ministration (y axis: saline control condition subtracted
fromoxytocin condition; 0 indicates no changes as a con-
sequence of oxytocin) during the imitation recognition
task in the second week of life, for (A) the frequency of
LPS, (B) time (in seconds) in close proximity to the care-
giver, and (C) time (in seconds) looking at the caregiver.
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on the maturation of brain structures that mediate responses to
social stimuli [e.g., potential dysregulation of HPA axis with
chronic administration (65)]. Similarly, chronic administration of
oxytocin in animals [e.g., pigs (65), mice (74), voles (75)] appears
to reduce social behavior relative to acute administration, which
generally increases social behaviors. Caution is therefore war-
ranted with chronic administration, particularly in developing
populations, which may be more vulnerable (e.g., ref. 49; for
a review, see ref. 53). However, further investigation is required
to understand the complex nature of the interaction between the
general effects of oxytocin and its action on different brain areas
involved in the perception and production of social behavior
(e.g., amygdala, cingulate cortex, and parietal-premotor cortex).
To our knowledge, this study provides the first evidence that

administration of oxytocin in newborns increases positive social
behaviors. Further research on endogenous oxytocin levels in
infants is another promising direction, as it may be possible to gain
similar benefits to that of exogenous oxytocin through social inter-
actions, including gentle touch and face-to-face interactions (for
a review, see ref. 76). A more thorough understanding of oxytocin
and its behavioral consequences may help in designing potential
therapeutic tools to prevent the detrimental risks of disrupted early
caregiver–infant interactions (e.g., institutionalized infants, infants
whose mothers suffer from depression), or to ameliorate skills in
young populations whose social behaviors are impaired due to bi-
ological preconditions (e.g., infants diagnosed with autism spectrum
disorder). In this context, oxytocin has significant appeal as an in-
novative adjunctive therapy for autism spectrum disorder (11–13)
and has shown promise as an early intervention (e.g., refs. 15–17).
Althoughmuch remains unknown about the influence of exogenous
oxytocin on infants, the present study presents promising results,
suggesting potential social benefits. The lasting effects of these
benefits and the extent to which there are individual differences in
these benefits, however, are topics that warrant further exploration.

Methods
Subjects. We tested 28 infant rhesus macaque monkeys (Macaca mulatta), 16
males and 12 females, on neonatal imitation every other day between 1 and
8 d of age (see SI Methods for details) and on imitation recognition between
7 and 14 d of age (M = 9.84 d, SD = 1.78). All infants were full-term and
healthy at time of testing. We tested one additional infant but excluded him
from analysis due to ill health at the time of testing. On the day of birth,
infants were separated from their mothers and raised in a neonatal primate
nursery facility (see SI Methods for details). The Animal Care and Use Com-
mittee of the Eunice Kennedy Shriver National Institute of Child Health and
Human Development (NICHD) approved this study.

Neonatal Imitation Testing Procedure. Infants were tested three times per day
on up to 4 separate days within the first week of life. During the baseline
period, a human experimenter presented a still face or still disk, followed by
one of three stimulus periods: LPS, TP, and Disk Control. Total frequencies of
LPS and TP were recorded from videotaped sessions by an experimenter blind
to the experimental condition, and were averaged across all testing days. We
computed an imitation index to capture the strength of infants’ neonatal
imitation performance (SI Methods).

Oxytocin Administration Procedure. We tested infants on 2 separate days,
once between days 7 and 11 (M = 8.9 d, SD = 1.4) and a second time between
days 8 and 14 (M = 10.8 d, SD = 1.6). On each test day, we administered
either oxytocin or a saline control solution. The order of conditions was

counterbalanced across subjects. Experimenters who collected the data and
coded the videos were blind to the experimental condition (i.e., which so-
lution the infant received) and to the imitator status of infants. We sought
to deliver 25 international units (IU) per infant (1.25 mL at 20 IU/mL; Bimeda-
MTC Animal Health) of oxytocin, or 1.25 mL of a sterile saline solution, via
nebulizing it into the nose and mouth continuously for 7 min, using a Pari
Baby Nebulizer (Fig. 4). Nebulization amounts were monitored by measuring
any remaining solution; infants received between 0.8 and 2.2 mL of oxytocin
[M = 1.30 mL (26 IU), SD = 0.32 mL (6.4 IU)] and 0.9–2 mL of saline (M = 1.46
mL, SD = 0.27). This dose is comparable to that given to newborn pigs [24 IU
(65)] and adult macaques [25–48 IU (4–6)]. During nebulization, infants were
cradled in the arms of a trained experimenter, and a small nebulization
mask was gently held over the nose and mouth. Infants displayed no signs of
distress during nebulization.

Saliva Collection Procedure, Purification, and Analysis. After nebulization,
infants were placed back in their incubator. We collected saliva samples
from a subsample of infants (n = 19) 2 and 4 h after the end of nebuli-
zation. We collected infants’ saliva by allowing infants to chew on fla-
vored dental cotton rope (SI Methods).

Imitation Recognition Testing Procedure. One and 2 h after the end of the
nebulization, we carried out an imitation recognition task, which consisted of
imitating all of the infant’s mouth movements for 2 min, followed by 2 min of
still face (i.e., neutral face). The model remained stationary just outside of the
infant’s incubator and attempted to maintain eye contact with the infant for
the entire test. The time period between the two tests was ∼1 h (M = 58 min,
SD = 6 min). Imitation recognition tests were videotaped (Sony Digital Video
Camcorder HDR-CX560V), and infants’ behaviors were coded off-line, frame by
frame (30 frames per s). Fourteen behaviors were scored (Table 1), including
four social behaviors: two facial gestures, LPS and TP (Fig. S1), the duration of
time infants looked at the human caregiver, and the duration of time the
infant spent in close proximity to the human caregiver. We additionally scored
nonsocial behaviors common in newborn macaques, including the frequency
of scratching and yawning, and the duration of time sucking hands/feet, self-
clasping, interacting with the surrogate, resting, locomotion, and exploring
the environment. One observer coded all sessions. To ensure reliability, this
observer was compared with three additional observers who together ran-
domly selected and coded all behaviors in 21–24% of the videos (SI Methods).
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