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Abstract 

In this paper we examine the impact of commodity price uncertainty on US economic activity. 

Our empirical analysis indicates that uncertainty in agricultural, metals and energy markets 

depresses US economic activity and acts as an early warning signal for US recessions with a 

forecasting horizon ranging from one to twelve months. The results reveal that uncertainty 

shocks in agricultural and metals markets are more significant for the US macroeconomy when 

compared to oil price uncertainty shocks. Finally, we show that when accounting for the effects 

of macroeconomic and monetary factors, the negative dynamic response of economic activity 

to agricultural and metals price uncertainty shocks remains unaltered, while the response to 

energy uncertainty shocks is significantly reduced due to either systematic policy reactions or 

random shocks in monetary policy.  
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1. Introduction 

The real options approach to the theory of investment under uncertainty indicates that 

firms postpone their investment decisions, or they exercise their real option to wait to 

invest in highly uncertain times, due to the irreversible nature of investment decisions. 

This ‘irreversibility’ property of investment raises firms’ ‘option value’ to delay or 

postpone their investment decisions for less uncertain times (Aguerrevere 2009; 

Bernanke 1983; Brennan and Schwartz 1985; Henry 1974; Pindyck 1991, 1993; 

Triantis and Hodder 1990). In a similar way, uncertainty may lead to a reduction in 

employment and consumption due to a precautionary savings effect by economic agents 

(Caggiano et al. 2014; Edelstein and Killian 2009; Schaal 2017; Skinner 1988). Overall, 

rising economic uncertainty results to a drop in aggregate investment, consumption and 

employment, which, in turn, leads to economic recessions. A large and growing body 

in the literature shows the negative impact of rising uncertainty on the macroeconomy 

(Bachman et al. 2013; Baker et al. 2016; Basu and Bundick 2017; Bloom 2009; 

Caggiano et al. 2014; Caldara et al. 2016; Carriere-Swallow and Cespedes 2013; 

Carruth et al. 2000; Drechsel and Tenreyro 2018; Ilut and Schneider 2014).1 All these 

empirical studies show the negative macroeconomic effect of uncertainty shocks by 

proxying economic uncertainty using stock-market volatility, the VIX index or indexes 

of uncertainty about future economic policy.  

 

                                                           
1 Bloom (2009) shows that the negative impact of uncertainty shocks, which are proxied by the 

US stock-market volatility, occurs because higher uncertainty leads firms to “temporarily pause 

their investment and hiring process”. Bachmann and Bayer (2013) find that the ‘wait-and-see’ 

factor in German firms is a key factor that affects the business cycle in the German economy. 

Bloom et al. (2007) empirically verify this evidence by showing that higher uncertainty 

increases firms’ real option values to wait and reduces their responsiveness to aggregate 

demand shocks. 
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In this paper, we move the current research a step further by modeling uncertainty as 

the volatility of primary agricultural (corn, cotton, soybeans, wheat), metals (copper, 

gold, platinum, silver) and energy (crude oil, heating oil, petroleum, gasoline) 

commodity prices. Commodities are highly homogeneous products that are used as 

primary inputs for the production of manufacturing products. Therefore, their price 

volatility is a significant source of uncertainty for economic agents. Motivated by 

previous theoretical and empirical findings, we empirically examine the impact of 

commodity price uncertainty on US economic activity. To the best of our knowledge, 

the empirical literature showing the effect of commodity price uncertainty on 

macroeconomic fluctuations is limited. Previous empirical studies identify the well-

known oil-macroeconomy relationship according to which rising prices and volatility 

in the crude oil market result in depressing investment, a fall in GDP growth and 

economic recession (Elder 2018; Elder and Serletis 2010; Ferderer 1996; Hamilton 

1983, 1996, 2003; Jo 2014; Kilian 2009; Kilian and Vigfusson 2011, 2013, 2017; Lee 

at al. 1995; Rahman and Serletis 2011; Ravazzolo and Rothman 2013). For example, 

Hamilton (1983, 1996, 2003) finds an asymmetric relationship between oil price 

changes and economic activity by showing that oil price increases have a more negative 

impact on US GDP growth when compared to the positive impact of oil price decreases. 

Lee et al. (1995) and Ferderer (1996) were among the first to identify the role of the 

conditional second moment of oil price (i.e., variability) on forecasting macroeconomic 

activity. More specifically, they find that the conditional volatility of crude oil prices 

explains significantly better GNP growth variability when compared to the forecasting 

ability of crude oil prices. The recent empirical findings of Elder (2018), Elder and 

Serletis (2010) and Jo (2014) provide further insights into the significant forecasting 

power of oil price uncertainty on economic activity. Although all these studies identify 
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the negative macroeconomic impact of oil price uncertainty, there is no empirical work 

showing the macroeconomic impact of uncertainty in agricultural and metals 

commodity markets. In this paper, therefore, we attempt to fill this gap in the literature 

by examining and comparing the macroeconomic impact of energy and non-energy 

(agricultural and metals) commodity price uncertainty shocks.  

 

Our results show that uncertainty shocks in agricultural, metals and energy commodity 

markets have a significant negative impact on US activity and its components. More 

specifically, using regression analysis for each individual commodity price uncertainty 

series on the contemporaneous change in the quarterly real GDP, we report negative 

and statistically significant coefficients for all commodities (except soybeans). 

Furthermore, when employing forecasting regressions on investment and real GDP 

growth, we report negative and statistically significant coefficients for all the 

commodity series and for forecasting horizons ranging from one to three quarters. 

Interestingly, the uncertainty series of agricultural and metals commodities, like wheat, 

gold and platinum, have higher predictive power on investment and real GDP growth 

when compared to the energy markets. These findings are the first to show the 

significantly higher predictive information power of agricultural and metals 

commodities as opposed to energy commodities on US economic activity. While the 

previous findings in the literature identify the role of oil price uncertainty shocks (see, 

for example, Elder and Serletis 2010; Jo 2014; Rahman and Serletis 2011), we 

contribute to the literature by showing that the role of non-oil commodity uncertainty 

shocks are more significant for the macroeconomy when compared to oil uncertainty 

shocks. In order to examine the dynamic responses of economic activity to commodity 

price uncertainty shocks, we estimate a VAR model in which we control for various 
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additional factors that are found to affect economic activity such as monetary policy, 

the rate of inflation and the slope of the yield curve.  

 

In addition, in order to find the pure (net) recessionary impact of commodity price 

uncertainty shocks, we control for endogenous interactions between commodity price 

fluctuations and monetary policy by including the money supply and the inflation rate 

as endogenous variables in our VAR model. We find that price uncertainty shocks of 

many agricultural and metals commodities (like gold, wheat and platinum) have 

significant real effects on the macroeconomy that are completely unrelated to inflation 

and to any systematic monetary policy interventions. The VAR analysis shows that the 

estimated macroeconomic impact of uncertainty shocks in these commodity markets 

remains robust to the inclusion of alternative economic uncertainty measures, inflation 

and monetary policy instruments. In addition, we show that unlike the metals and 

agricultural uncertainty shocks, oil price uncertainty shocks become insignificant when 

we control for inflation and monetary policy. Our results, thus, are broadly in line with 

the findings of Bernanke et al. (1997) since we provide evidence that the significance 

of oil uncertainty shocks vanishes when we control for inflation and monetary policy 

shocks in the multivariate VAR model.2 In this paper, we provide further empirical 

support to this argument by showing that the oil price uncertainty shocks become 

insignificant in our multivariate VAR setting. In simple words, our results provide 

further empirical support to the findings of Bernanke et al. (1997), who show that “it is 

not possible to determine how much of the decline in output is the direct result of the 

                                                           
2 Bernanke et al. (1997) additionally find that the recessionary impact of oil shocks is also 

reduced even when they restrict monetary policy not to have systematic reactions to oil shocks. 

This means that the recessionary impact of oil price uncertainty shocks is either inflationary or 

can be attributed to systematic (or random) shocks-responses of the monetary authority. 
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increase in oil prices, as opposed to the ensued tightening of monetary policy”.3 On the 

other hand, our VAR analysis clearly shows that this is not the case for non-oil 

commodities. The shocks of non-oil commodities, like corn, wheat, gold and platinum, 

have a significant and long-lasting negative impact on US macroeconomic activity. For 

example, our VAR analysis reveals that a positive one-standard-deviation shock in 

wheat price volatility results in four basis points drop in GDP growth four quarters after 

the initial uncertainty shock, with the impact remaining negative and statistically 

significant from the second until the sixth quarter after the initial shock.  

 

Furthermore, we show that price uncertainty shocks of several agricultural and metals 

commodities, like corn, wheat, gold and platinum, have a larger and more persistent 

impact on the consumption component of US GDP. This finding is in line with 

Edelstein and Killian (2009), who show that energy price shocks result in a reduction 

in consumer spending, since they can create sudden shifts in precautionary savings and 

changes in the cost of energy-usage durables. We extend this empirical finding by 

showing that, apart from energy price jumps, price uncertainty in energy commodities 

                                                           
3 The relevant literature has extensively shown that on many occasions the monetary policy 

authority reacts (at some degree) to oil price shocks by raising the Fed fund rate in order to 

control the inflationary pressures of these shocks. Bernanke et al. (1997) are the first to show 

that oil shocks may not be the primary cause of US economic recessions since the monetary 

authority most of the time reacts to these shocks by raising short-term interest rates. Thus, it is 

difficult to attribute economic recessions solely to oil price shocks. Bernanke et al. (2004) use 

alternative structural VAR identification schemes and show that systematic monetary policy 

responses remain accountable for about half of the depressing impact of oil shocks on output. 

On the other hand, Hamilton and Herrera (2004) show that the Fed does not always have the 

ability to eliminate the recessionary consequences of oil shocks. Moreover, Carlstrom and 

Fuerst (2006) show that it is difficult to disentangle the recessionary impact of oil prices and of 

changes in the Fed fund rate, since most US economic recessions are associated with rising oil 

prices and a contractionary monetary policy. While the common view is that the Fed does not 

systematically respond to oil shocks since commodity prices are not explicit monetary policy 

target prices, the general consensus in the literature is in line with the more recent empirical 

findings of Kara (2017), who shows that the Fed includes oil prices in its policy rules, although 

the weight the Fed assigns to these prices is much smaller compared to their share in the US 

economy. 
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also has a persistently negative impact on consumption expenditures. In addition, our 

empirical findings lead to the conclusion that not only energy price uncertainty shocks, 

but also uncertainty shocks of various metals and agricultural commodities have an 

impact, of equal magnitude, on aggregate US consumption. Moreover, we show that 

commodity price uncertainty shocks affect negatively several other widely accepted 

proxies of economic activity, like the index of industrial production and the 

employment rate. The policy implication behind our empirical findings is that policy-

makers should turn their attention to both agricultural and metals price fluctuations 

instead of perceiving oil uncertainty shocks as the only commodity-related threat for 

the macroeconomy.  

 

Finally, our probit models indicate that a rise in the volatility of agricultural, metals and 

energy prices is associated with a higher probability of an economic recession in the 

US for horizons ranging from one to twelve months. More specifically, the energy 

volatility series have higher predictive information content for US recessions over 

short-term (up to two-month) forecasting horizons, while the agricultural and metals 

volatility series give significant forecasts on US recessions for longer-term forecasting 

horizons. The predictive power of commodity price uncertainty series for economic 

recession remains robust to the inclusion of various macro-factors that are used for the 

prediction of US economic recessions, such as the slope of the yield curve (Estrella and 

Hardouvelis 1991) and the economic policy uncertainty index (Baker et al. 2016; 

Karnizova and Li 2014).  
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The rest of the paper is organized as follows. Section 2 outlines the empirical 

methodology. Section 3 describes the data. Section 4 presents the empirical analysis, 

and Section 5 provides robustness checks. Finally, Section 6 concludes.  

 

2. Methodology 

2.1 Realized variance in commodity markets 

Our uncertainty measure is the realized variance (RV) of the daily returns of commodity 

futures. Following Ferderer (1996), we construct both quarterly and monthly volatility 

series for each commodity futures contract by computing for each period 

(quarter/month) the standard deviation of the daily returns. We calculate the realized 

variance using daily closing prices of the nearby futures contract, according to 

Equation (1) below: 
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1 1
,

1 1 1

1 T
t i t i t i t i
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i t i t i
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+ + − + + −

= + − + −

 − −
= − 

 
 ,                                 (1) 

 

Where Ft is the nearby commodity futures price on trading day t. RVt,T is our estimated 

realized variance for each period (t,T).4 The realized variance is then multiplied by 252 

(the number of trading days for one calendar year) in order to be annualized (COMRV 

= RVt,T ∗252).  

 

Our approach of estimating the realized variance using the standard deviation of daily 

returns is found to be preferable since it relies on all the information contained in the 

                                                           
4 The time period for the estimation of realized variance is either quarterly or monthly depending 

on the frequency of the time series used in our econometric model. 
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daily observations as compared to the approach of estimating unobservable GARCH 

measures of volatility based on quarterly or monthly commodity price series (see for 

example, Andersen et al. 2003). In simple words, the realized volatility is the actual 

variation that market participants and firms observe in the market and that, based on 

that variation, they take investment decisions and exercise (or not) their option to wait 

until the price variability reduces significantly.5 

 

2.2 VAR model  

Following Bernanke et al. (1997), we estimate a multivariate VAR model in which we 

control also for inflation and monetary policy as endogenous variables. In this way, we 

implicitly account for the inflationary impact of commodity prices and for possible 

monetary policy reactions to commodity market turbulence (Carlstrom and Fuerst 

2006; Hooker 2002; Kara 2017). In addition, we control for all the alternative proxies 

of macroeconomic and financial market uncertainty like the economic policy 

uncertainty index (Baker et al. 2016; Karnizova and Li 2014) and the volatility of the 

S&P500 stock-price index (Bloom 2009; Caggiano et al. 2017; Hamilton and Lin 1996; 

Schwert 1989). Moreover, in the VAR model we control for the slope of the US 

Treasury yield curve which is also a significant predictor of US economic activity 

(Estrella and Hardouvelis 1991). The major advantage of our VAR identification 

scheme is that we control for the major determinants of economic activity in the VAR 

setting. Thus, our VAR estimates give a more robust estimation compared to the 

                                                           
5 Our main findings remain unaltered when we use the GARCH approach of Elder and Serletis 

(2010) for the estimation of oil price uncertainty as the conditional standard deviation of a one-

step ahead forecast error. In addition, our main findings remain unaltered when we use the 

GARCH (1,1) model for the measurement of commodity price uncertainty, although the 

predictability of the uncertainty series is slightly reduced under this methodology. All these 

additional results can be provided upon request. 
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findings of Elder and Serletis (2010) and Jo (2014), since they do not include in their 

VAR identification schemes any variable that controls for monetary policy or other 

proxies of macroeconomic and financial uncertainty that have already been proven 

significant indicators of US economic recessions.  

 

Following the VAR modeling approach of Bekaert et al. (2013), we choose to place 

macroeconomic variables first and the financial variables (term spread, stock-market 

and commodity market) last in the VAR ordering due to the more sluggish response of 

the former compared to the latter. Our reduced form VAR model is given in Equation 

(2) below: 

 

                                          
0 1 1 ...t t k t k tY A AY A Y − −= + + + +                                           (2) 

 

Where 
0A  is a vector of constants, 

1A  to 
kA  are matrices of coefficients and 

t  is the 

vector of serially uncorrelated disturbances, with zero mean and variance-covariance 

matrix ' 2( , )t tE I  = . 
tY  is the vector of endogenous variables. The ordering of our 

baseline 8-factor VAR model is as follows: 

 

              [ΔGDP  INFL  UNEMP  ΔM2  TERM  EPU  SP500RV  COMRV]              (3) 

 

ΔGDP stands for the growth of real US GDP, COMRV is the realized variance of daily 

returns of the commodity futures prices, SP500RV is the realized variance of daily 

returns of the S&P 500 stock-market index, EPU is the policy uncertainty index, 

UNEMP is the unemployment rate, ΔM2 is the growth of M2 money supply,  INFL is 

the inflation rate (the quarterly growth of consumer price index (CPI) using a rolling 
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fixed window of four quarters) and TERM is the slope of the term structure of US 

interest rates (namely, the difference between the 10-year US Treasury Bond yield and 

the 3-month US Treasury Bill rate). We additionally estimate our baseline 8-factor 

VAR model where, instead of ΔGDP, we use the growth of the investment component 

of GDP (ΔINV) and the growth of the industrial production index (ΔIPI) as alternative 

proxies of economic activity in the US.6 

 

2.3 Forecasting regression models 

We complement our VAR analysis on the impact of commodity uncertainty shocks on 

US economic activity by using single-equation forecasting regression models. We, 

thus, estimate bivariate OLS forecasting regressions in which we use the realized 

variance of commodity prices as the only predictor of economic activity. The bivariate 

time-series forecasting regression model is given in Equation (4) below:  

 

0 1t t k tGDP b bCOMRV − = + +  ,                                                  (4) 

 

where ΔGDP is the growth of real US GDP and COMRV is the realized variance of 

agricultural, energy and metals commodity futures returns, respectively. The 

forecasting horizon ranges from 0 to 12 quarters. We additionally estimate the bivariate 

forecasting regressions of Equation (4) using the investment growth (ΔINV) and the 

industrial production index growth (ΔIPI) of US as alternative measures of economic 

activity.  

 

                                                           
6 The variables (in quarterly frequency) used in the VAR analysis cover the period from 1988 Q1 to 2016 

Q4, except for the VAR model for US IPI which is employed in monthly frequency and covers the period 

1988 M1 to 2017 M1.   
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Furthermore, and following our baseline 8-factor VAR model specification used in the 

VAR analysis, we estimate multivariate OLS forecasting regressions in which we 

include key macroeconomic and financial indicators of economic activity for the US on 

the left-hand side of the predictive regression equation. The multivariate time-series 

forecasting regression model, where we control for macroeconomic and financial 

fundamentals, is given in Equation (5) below: 

 

                        
0 1 2 3

4 5 6 7

500

           2

t t k t k t k

t k t k t k t k t

GDP b b COMRV b SP RV b EPU

b TERM b INFL b M b UNEMP 

− − −

− − − −

 = + + +

+ + +  + +
 ,              (5) 

 

where ΔGDP is the growth of real US GDP, COMRV is the realized variance of 

agricultural, energy and metals commodity futures returns, respectively, and SP500RV, 

EPU, TERM, INFL, ΔM2 and UNEMP are the macroeconomic and financial controls. 

Similarly with the bivariate models, we estimate the multivariate forecasting regression 

models of agricultural, energy and metals commodity volatility (Equation (5)) using 

the growth of investment (ΔINV) and the growth of industrial production index (ΔIPI) 

for US, respectively, as the dependent variable instead of the growth of real GDP.7 

 

3. Data 

3.1 Commodity prices data 

We obtain daily time-series data for the prices of the major S&P GSCI commodity 

futures indices from DataStream. More specifically, we obtain data for the prices of 

agricultural (corn, cotton, soybeans, wheat), metals (copper, gold, silver, platinum) and 

                                                           
7 The variables (in quarterly frequency) used in the regression analysis cover the period from 1988 Q1 to 

2016 Q4, except for the regressions for US IPI which are employed in monthly frequency and cover the 

period 1988 M1 to 2017 M1. 
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energy (crude oil, heating oil, gasoline, petroleum) commodity futures. Our daily 

commodity data covers the period from January 1988 to January 2017.8 

 

3.2 Macroeconomic and financial data 

We obtain quarterly and monthly (where available) US data for real Gross Domestic 

Product (GDP), consumer price index (CPI), unemployment rate (UNEMP), 

consumption expenditure (CE), investment (INV), Industrial Production Index (IPI), 

M2 money supply (M2), policy uncertainty index (EPU), the 10-year US Treasury 

Bond rate and the 3-month US Treasury Bill rate from the Federal Reserve Bank of 

Saint Louis (FRED). We also obtain data for the S&P 500 stock-market index from 

DataStream. The slope of the yield curve (TERM) is estimated as the difference between 

the 10-year US government bond yield and the 3-month maturity US Treasury Bill rate. 

All the macroeconomic and financial data series cover the period from January 1988 to 

January 2017. 

 

4. Empirical Analysis 

4.1 Descriptive statistics  

In this section we present the descriptive statistics for the variables used in our main 

analysis. Table 1 below shows the descriptive statistics of the quarterly time-series and 

the correlation matrix between quarterly commodity volatility series.9  

 

                                                           
8 Our quarterly dataset consists of the period from 1988 Q1 to 2016 Q4, while our monthly dataset 

(discussed in the online Appendix) covers the period 1988 M1 to 2017 M1.  

9 We use both quarterly and monthly time series models in our analysis. In the main body of the paper we 

report the descriptive statistics and the correlation matrix of the quarterly time series while in the online 

Appendix we additionally provide descriptive statistics for the monthly dataset and the respective 

correlation matrix for the commodity volatility series in monthly frequency.   
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[Insert Table 1 Here] 

 

From Table 1 we observe that energy commodity volatility series, such as the crude oil 

and petroleum, exhibit a higher mean compared to agricultural and metals commodity 

volatility series. In addition, the standard deviation of the RV series for energy 

commodity prices is much higher compared to the standard deviation of non-energy 

RV series. This indicates that the time variation and the sudden swings in time-varying 

volatility are much higher in energy commodity markets when compared to agricultural 

and metals commodity markets. Moreover, Table 2 displays the correlation matrix of 

our quarterly commodity RV series.  

 

[Insert Table 2 Here] 

 

Table 2 shows that the correlations between commodity volatility series are positive 

and, in most cases, greater than 40%. These results are a first indication of significant 

co-movements in the volatility of commodity prices. Furthermore, we observe that the 

correlations between commodity RV series of the same commodity class become even 

higher, a fact which indicates that the dynamics of commodity markets are being driven 

by common macroeconomic factors. These results are broadly in line with the findings 

of Bakas and Triantafyllou (2018), who show that common macro-factors drive the 

time-varying volatility in agricultural, energy and metals futures markets.  

 

4.2 The impact of commodity uncertainty on the US macroeconomy 

In this section we present the impact of agricultural, energy and metals commodities 

price uncertainty on US real GDP and investment growth. First, we estimate univariate 
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regressions, presented in Equation (4), in which we include the realized variance of 

commodity prices as the only explanatory variable. Table 3 shows the regression results 

of our univariate regression on real GDP growth using commodity price uncertainty as 

our only predictor.  

 

[Insert Table 3 Here] 

 

The results shown in Table 3 indicate that rising uncertainty in agricultural, metals and 

energy prices is associated with a significant drop in GDP growth. The estimated 

coefficients of the commodity price uncertainty series remain negative and statistically 

significant for forecasting horizons ranging from one up to six quarters ahead. When 

regressing the contemporaneous time series of commodity price volatility on GDP 

growth, we find that the volatility of metals and energy commodity prices are the most 

significant indicators of economic activity with adjusted R2 values reaching 29.8%, 

30.0% and 28.6% for the case of crude oil, gasoline and gold, respectively. Our results 

are in line with the findings of Elder and Serletis (2010), Elder (2018) and Jo (2014), 

according to which oil uncertainty shocks are significant indicators of economic 

activity; on the other hand, our empirical analysis is the first to show that rising 

uncertainty in metals and in some agricultural markets (like wheat) are equally 

important indicators of falling economic activity. However, when we lengthen the 

forecasting horizon, we observe that the volatility of energy commodities like crude oil, 

petroleum and gasoline have a poorer forecasting ability when compared with the 

explanatory power of agricultural and metals commodities. For example, the adjusted 

R2 value of the univariate regression falls from 10.2% (one quarter forecasting horizon) 

to 1.3% (two quarters forecasting horizon) when forecasting GDP growth using the 
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realized variance of crude oil futures as a predictor, while the respective adjusted R2 

falls from 18.7% to 9.8% when using the realized variance of gold futures instead. Our 

results on the macroeconomic information content of commodity price volatility are 

broadly in line with findings of Kang et al. (2017) and Fernández et al. (2018), who 

find that fluctuations in commodity prices are a significant driver of macroeconomic 

fluctuations in US output and in small emerging market economies output. Moreover, 

we additionally empirically examine the effect of commodity price volatility on US 

investment growth. The results of the univariate regression model are shown in Table 

4. 

 

[Insert Table 4 Here] 

 

The results displayed in Table 4 clearly show that commodity price uncertainty shocks 

of metals and energy commodity markets are robust indicators of depressed investment 

in the US economy. The negative impact of metals and energy market uncertainty on 

aggregate investment provides further empirical support to the theory of investment 

under uncertainty (Pindyck, 1991) and are in line with the findings of Elder and Serletis 

(2010), who find a negative impact of oil price uncertainty on US investment. Our 

regressions on domestic investment show that only the metals and energy commodity 

uncertainty series have predictive power on investment, while the coefficients of 

agricultural price uncertainty series are insignificant. These results were somewhat 

expected, since agricultural commodities are mostly linked with the consumption and 

not the investment side of the macroeconomy.  
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We additionally estimate multivariate regression models, presented in Equation (5),  in 

which we control for fundamental indicators of economic activity like inflation, 

monetary policy, the slope of the term structure of interest rates (Estrella and 

Hardouvelis 1991), stock-market volatility (Bloom 2009; Hamilton and Lin 1996) and 

economic policy uncertainty (Baker et al. 2016). Table 5 reports the results of our 

multivariate OLS forecasting regression model on quarterly GDP growth using 

contemporaneous values of commodity uncertainty series respectively. 

 

[Insert Table 5 Here] 

 

From Table 5 we observe that the contemporaneous impact of metals and energy 

uncertainty on economic activity is negative and statistically significant and remains 

robust to the inclusion of significant determinants of economic activity like inflation, 

monetary policy (the M2 money supply growth) and the slope of the US Treasury yield 

curve.  

 

Moreover, the results displayed in Table 5 show that energy price uncertainty has extra 

explanatory power when compared to popular economic uncertainty proxies that have 

a negative impact on the macroeconomy, such as the stock-market volatility (Bloom 

2009) and the economic policy uncertainty (Baker et al. 2016). In simple words, the 

price volatility of crude oil, petroleum and gold commodity futures seems to have 

additional predictive information content on business cycle variability that is not 

captured by the other popular uncertainty proxies. Furthermore, the increased price 

uncertainty of some agricultural commodities, like cotton and wheat, also has a 

significant negative contemporaneous effect on US economic activity. Overall, our 
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results show that, apart from energy markets, rising uncertainty in metals and 

agricultural markets has a significant negative contemporaneous effect on US GDP 

growth. Our results provide further empirical support to the findings of Elder and 

Serletis (2010) on oil price uncertainty, and they are broadly in line with the findings 

of Kang et al. (2017), who find that long-run shocks of commodity prices account for 

11.9% of variation in US output.  

 

In order to control for the lagged impact of commodity uncertainty on the US GDP 

growth, we run the same regression models in which we regress quarterly GDP growth 

having a one-quarter forecasting horizon (we use the lagged series of our explanatory 

variables). In this way, we examine the persistence of the impact of commodity 

uncertainty; at the same time, we implicitly make a first empirical examination of 

whether the impact of commodity uncertainty shocks is absorbed by inflation or by 

systematic monetary policy responses. Table 6 shows the respective results of our 

multivariate predictive regression model on US GDP growth.  

 

[Insert Table 6 Here] 

 

From the results shown in Table 6, we observe that the coefficients of energy and 

metals uncertainty shocks become smaller (in absolute values) and turn from 

significantly negative to statistically indistinguishable from zero. The econometric 

interpretation of this result is that, while energy and metals commodity uncertainty 

shocks have a significant contemporaneous effect on GDP growth, this effect vanishes 

after one quarter due to the fact that these shocks either tend to be inflationary (since 

we now control for lagged inflation) or are offset by systematic monetary policy shocks. 
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Carlstrom and Fuerst (2006) and Cologni and Manera (2008) support this view for oil 

markets by finding that it is difficult to infer whether US economic recessions have 

occurred because of oil prices or subsequent monetary policy reactions and that a 

significant part of the recessionary effects of oil price shocks is due to the systematic 

monetary policy reaction function. Our results on oil and metals uncertainty shocks are 

in line with those of Kang et al. (2017), who find that commodity price shocks account 

for 25.1% of variation in US consumer prices, implicitly indicating the significant 

inflationary pressures of commodity price shocks. Bernanke et al. (2004) provide 

additional robustness to these results by estimating a VAR framework in which they do 

not allow monetary policy to respond to oil shocks and find that, even under the scenario 

of the absence of systematic policy reactions, the impact of oil price shocks is 

significantly weakened when they control for monetary policy shocks (measured as 

surprises-innovations in the Federal fund rate) in the VAR model. Our results are in 

line with and provide further empirical support to the findings of Bernanke et al. (1997, 

2004) for oil markets since we can observe (Table 6) that the coefficient of monetary 

policy (M2 money supply growth), while being insignificant for the contemporaneous 

regressions (Table 5), has now turned positive and statistically significant.10 On the 

other hand, we find that the impact of the lagged (one quarter before) uncertainty shocks 

in corn and wheat markets remains negative and statistically significant when 

controlling for monetary policy and other uncertainty proxies. According to Bernanke 

et al. (1997), this means that the macroeconomic impact of agricultural uncertainty 

shocks cannot be attributed to systematic reactions of the monetary authority since it is 

unrelated to shocks in monetary policy. Our findings implicitly reveal that agricultural 

                                                           
10 Our results remain robust to the inclusion of alternative monetary policy instruments like the 

Federal funds rate and the 3-month US Treasury Bill rate. These additional results can be 

provided upon request. 
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uncertainty gives extra predictive power on GDP growth when compared to other 

indicators of economic activity like US inflation and other popular economic 

uncertainty proxies like EPU and stock-market volatility. In addition, Tables 7 and 8 

report the regression results of our multivariate OLS regression models on quarterly US 

investment using contemporaneous and lagged values of commodity uncertainty series 

respectively. 

 

[Insert Tables 7 and 8 Here] 

 

From the results shown in Tables 7 and 8, we can conclude that the theory of investment 

under uncertainty remains valid when we control for macro-factors that are associated 

with depressing aggregate investment. Interestingly, while the results presented in 

Table 7 show that there is a statistically significant contemporaneous negative impact 

of rising uncertainty in energy commodity markets on US aggregate investment, this 

impact significantly deteriorates when regressing the lagged (one quarter before) values 

of energy price volatility on aggregate investment (see Table 8). At the same time, we 

observe that the lagged impact of monetary variables like ΔM2 and the TERM turns 

from insignificant (in the contemporaneous regression model given in Table 7) to 

significant (in the forecasting regression model given in Table 8). These results 

implicitly reveal that the depressing impact of energy price uncertainty is significantly 

offset by systematic monetary policy reactions. On the other hand, the rising volatility 

of corn and wheat commodity markets has a statistically significant and persistently 

negative impact on US aggregate investment.  
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We lastly report the results of our bivariate and multivariate forecasting regression 

models (in monthly frequency) on the US industrial production index (IPI) growth. 

Tables 9 and 10 report the regression results of our bivariate and multivariate OLS 

regression models on the monthly IPI growth, respectively.  

 

[Insert Tables 9 and 10 Here] 

 

The results from Tables 9-10 show that the rising commodity uncertainty has a negative 

effect on IPI growth. As expected, the price uncertainty in the metals markets has the 

most significant impact on IPI growth. When controlling for additional macroeconomic 

and monetary factors, we observe that energy and wheat market uncertainty contain 

extra predictive power which is not included in other uncertainty measures like EPU 

and stock-market volatility. On the other hand, the predictive power of metals 

commodity price uncertainty series is significantly reduced when adding other 

economic uncertainty factors, a fact which shows that stock-market volatility may 

include the predictive information content of the metals commodity price uncertainty 

series.   

 

4.3 The responses of US economic activity to commodity price uncertainty 

shocks  

In this section we present the dynamic responses of unexpected commodity price 

uncertainty shocks on US economic activity and its components. More specifically, we 

present the estimated generalized Impulse Response Functions (IRFs) of our baseline 

multivariate VAR model described in Equations (2) and (3). Figures 1, 2 and 3 show 

the estimated IRFs for the VAR models in which we use the agricultural (corn, cotton, 
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soybeans, wheat), energy (crude oil, heating oil, gasoline, petroleum) and metals 

(copper, gold, silver, platinum) price volatility series as proxies for commodity price 

uncertainty.  

 

[Insert Figures 1, 2 and 3 Here] 

 

The IRFs show that agricultural and metals commodity price uncertainty shocks have 

a negative and long-lasting impact on US GDP growth. Specifically, our VAR analysis 

shows that rising volatility in some precious metals and agricultural prices, like 

platinum, gold and wheat, has a more negative and long-lasting impact on US GDP 

growth when compared with the respective macroeconomic effects of energy price 

uncertainty shocks. The results of our VAR model show that a positive one-standard-

deviation shock in the volatility of wheat prices reduces GDP growth by almost 4 basis 

points four quarters after the initial volatility shock, with the effect remaining 

statistically significant for five quarters after the initial shock. In addition, our VAR 

analysis shows that a positive one-standard-deviation shock in the realized variance of 

platinum futures prices reduces GDP growth almost 5 basis points three quarters after 

the initial uncertainty shock. On the other hand, the estimated response of US GDP 

growth to energy price uncertainty shock is statistically insignificant (statistically 

indistinguishable from zero) for all energy commodity markets considered. In our 

multivariate VAR model, we control for monetary policy (money supply M2) and 

inflation, so we are able to control for any possible interactions between monetary 

policy, inflation and commodity price volatility. The empirical studies in the literature 

on oil price shocks show that these price shocks do not have a pure macroeconomic 

(recessionary) impact since they are being followed by systematic reactions of 
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monetary policy and that overall, it is difficult to disentangle the recessionary impact 

of oil price shocks and monetary policy changes, which many times occur 

simultaneously (Bernanke et al. 1997, 2004; Carstrom and Fuerst 2006; Kara 2017). 

Assuming the same type of endogeneity between commodity price uncertainty and 

monetary policy, we control for possible interactions between monetary policy and 

commodity price uncertainty by including as endogenous variables the money supply 

growth (ΔM2) and inflation (INFL) in our VAR model. Thus, the estimated IRFs show 

the net impact of commodity price uncertainty shocks on US economic activity.11 

Unlike the empirical analysis of Elder and Serletis (2010) and Jo (2014), who do not 

control for inflation and systematic monetary policy shocks, in our VAR model we 

control for the possible interactions between monetary policy, inflation and commodity 

price uncertainty in order to measure the net real macroeconomic impact of unexpected 

random shocks in commodity price uncertainty. Our VAR estimates are broadly in line 

with the findings of Bernanke et al. (1997, 2004) and Kara (2017) since we find that 

the impact of oil price uncertainty shocks on US economic growth is significantly 

deteriorated when we control for monetary policy and inflation in our VAR model; 

thus, we implicitly allow for possible interactions between commodity price uncertainty 

shocks and monetary policy changes. The reduced impact of oil price shocks on US 

GDP growth may be attributed to the fact that these shocks are either inflationary and, 

as a consequence, do not pass to the real economy, or they result in a systematic reaction 

of the monetary authority (through contractionary monetary policy), which in turn 

reduces output. Thus, our analysis implicitly shows that oil shocks primarily affect the 

                                                           
11 We additionally estimate a structural VAR (SVAR) model in which we restrict monetary 

policy to have no systematic reaction to commodity price uncertainty shocks. Even under this 

VAR identification scheme, our basic findings remain unaltered. The impact of agricultural and 

metals commodity price uncertainty shocks remains negative and statistically significant 

irrespective of the systematic (or random) interactions of monetary policy with commodity price 

fluctuations. These additional results based on the SVAR analysis can be provided upon request. 
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monetary (nominal) and not the real part of the macroeconomy. On the other hand, the 

impact of non-oil price uncertainty shocks, such as shocks in wheat, gold and platinum 

price variability, remains robust to the inclusion of inflation, monetary policy and other 

macroeconomic factors directly related to economic activity. These results clearly show 

that, in sharp contrast to oil shocks, the agricultural and metals commodity price 

uncertainty shocks have a purely macroeconomic (recessionary) impact and, thus, can 

act as leading indicators of economic activity. The policy implication of our empirical 

findings is that monetary authorities should consider to target also the commodity price 

uncertainty of non-oil commodity market uncertainty. This policy may be feasible since 

commodity prices are significantly affected by changes in interest rates and monetary 

policy (Anzuini et al. 2013; Frankel and Hardouvelis 1985; Gubler and Hertweck 2013; 

Hammoudeh et al. 2015). Moreover, according to the empirical findings of 

Triantafyllou and Dotsis (2017), US monetary policy is capable of affecting the option-

implied uncertainty on agricultural commodity prices.  

 

We additionally estimate an identical VAR model given in Equations (2) and (3), in 

which we use US investment growth (ΔINV) instead of GDP growth as the first variable 

in the VAR ordering. Using this VAR model, we measure the impact of random shocks 

in the time-varying uncertainty of commodity prices on US aggregate investment. 

Figures 4, 5 and 6 below show the respective IRFs of US investment based on the 

multivariate VAR models.  

 

[Insert Figures 4, 5 and 6 Here] 

 



24 
 

From Figures 4-6, we observe that a positive shock in the realized variance of corn, 

wheat, gold and platinum results to significant drops in US investment growth. More 

specifically, an unexpected positive one-standard-deviation shock in the realized 

variance of wheat futures prices leads to a drop of approximately 15 basis points in US 

investment growth in about four quarters after the initial uncertainty shock, with the 

effect remaining negative and statistically significant for ten quarters after the initial 

shock. In addition, a positive price uncertainty shock in the gold futures market reduces 

US investment growth by nearly 40 basis points two quarters after the initial shock. On 

the other hand, energy price uncertainty shocks have a rather small and transitory 

negative impact on US investment growth.  

 

We, finally, estimate a similar VAR model in which we use the IPI growth as our proxy 

for economic activity (ΔIPI is now the first variable in the VAR ordering in Equation 

(3)) – this VAR model is estimated in monthly frequency. Figures 7, 8 and 9 show the 

estimated IRFs of our VAR model when using agricultural, energy and metals price 

volatility series as the commodity uncertainty measure.  

 

[Insert Figures 7, 8 and 9 Here] 

 

Figures 7-9 show that an unexpected positive uncertainty shock in agricultural markets 

like corn and wheat has a more significant and long-lasting impact on industrial 

production index growth when compared to the respective effect of energy and metals 

price volatility. For example, a one-standard-deviation shock in wheat price uncertainty 

reduces IPI growth by almost 8 basis points two months after the initial shock with the 

effect remaining negative and statistically significant for ten months after the initial 
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shock. On the other hand, the response of IPI growth to energy price uncertainty shocks 

is more transitory since the negative effect disappears 3-4 months after the initial energy 

uncertainty shock.  

 

5. Robustness checks 

In this section we provide the results of the robustness checks, which can be found in 

our online Appendix. In more details, we estimate the multivariate VAR model using 

alternative VAR orderings. The estimated IRFs based on the alternative VAR orderings 

remain nearly unchanged. We additionally run the same set of OLS forecasting 

regressions and VAR models using alternative proxies of economic activity, like the 

unemployment rate (UNEMP), the aggregate consumption expenditure growth (ΔCE) 

and the capacity utilization (ΔCU). These additional results provide robustness to our 

main findings and conclusions since all these alternative proxies of economic activity 

are negatively affected by agricultural and metals price uncertainty shocks, while the 

respective impact from the energy uncertainty shocks is much smaller. Lastly, we 

estimate linear probability (OLS) and probit forecasting regression models on the 

NBER recession index (NBER), and once again our main results on forecasting 

economic recessions remain unaltered.  

 

6. Conclusions 

Motivated by the real options approach of the theory of investment under uncertainty, 

we empirically examine the impact of commodity price uncertainty on US economic 

activity. Unlike previous studies that use a GARCH approach to infer uncertainty 

shocks in oil commodity prices, we measure uncertainty in commodity markets using 

the realized volatility of daily returns of commodity futures prices. Our paper also 
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differentiates from the previous literature since we empirically examine the impact of 

both oil and non-oil commodity price uncertainty shocks on US macroeconomy using 

a class of agricultural, metals and energy commodities. Our empirical analysis reveals 

that, while the short-run (contemporaneous) impact of energy price uncertainty shocks 

has a significant negative impact on economic activity, this effect vanishes one quarter 

after the initial shock. On the other hand, the dynamic effects of uncertainty in many 

agricultural and metals commodities have a long-lasting negative impact on US 

economic activity and its components, such as investment and consumption 

expenditure. Furthermore, when controlling for systematic monetary policy reactions 

and for innovations in the monetary policy stance, we find that the recessionary impact 

of energy shocks is significantly reduced. Regarding oil shocks, our results are in line 

with the findings of Bernanke et al. (1997, 2004), who show that the predictive power 

of oil is significantly reduced when controlling for monetary policy in the VAR model. 

On the other hand, although the non-oil price uncertainty shocks have a larger and more 

persistent negative impact on economic activity, our findings show that the Fed does 

not react to these shocks. Moreover, we find that rising uncertainty in agricultural, 

metals and energy markets predicts economic recessions with forecasting horizons 

ranging from one to twelve months ahead. In terms of policy implications, our findings 

suggest the inclusion of agricultural and metals price variability into the central bank 

information variable set when making predictions (and thus adopting proactive 

monetary policies) in order to ameliorate the recessionary impact of commodity market 

turbulence. 
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Tables and Figures 
 

 

Table 1. Descriptive Statistics – Quarterly Dataset  
 Mean Std. Dev. Minimum Maximum Skewness Kurtosis 

ΔGDP 0.006 0.006 -0.021 0.019 -1.169 6.555 

ΔINV 0.010 0.024 -0.096 0.058 -1.014 5.610 

SP500RV 0.030 0.047 0.004 0.441 6.386 54.028 

EPU 4.627 0.287 4.083 5.288 0.403 2.422 

TERM 0.018 0.011 -0.006 0.036 -0.223 1.952 

INFL 0.006 0.005 -0.023 0.017 -1.763 11.941 

ΔM2 0.013 0.007 -0.003 0.046 0.652 5.638 

UNEMP 0.061 0.015 0.039 0.101 0.999 3.207 

Corn 0.059 0.046 0.006 0.311 2.039 10.011 

Cotton 0.057 0.040 0.012 0.271 2.439 10.920 

Soybeans 0.050 0.036 0.006 0.212 1.925 7.251 

Wheat 0.071 0.052 0.009 0.305 1.827 7.005 

Crude oil 0.119 0.119 0.016 0.769 3.383 16.460 

Heating oil 0.104 0.086 0.015 0.652 3.174 17.686 

Petroleum 0.099 0.095 0.012 0.633 3.499 18.099 

Gasoline 0.112 0.096 0.014 0.742 3.584 20.829 

Copper 0.065 0.069 0.012 0.522 3.745 21.350 

Gold 0.025 0.023 0.002 0.143 2.552 10.923 

Platinum 0.044 0.036 0.006 0.249 3.257 17.331 

Silver 0.078 0.075 0.009 0.479 2.924 13.419 

N 116      

The descriptive statistics are based on the balanced dataset of the 12 agricultural, energy and metals 

commodities and the macroeconomic and financial time-series for the period 1988Q1 to 2016Q4. 

 

 

 

 

Table 2. Correlation Matrix for the Agricultural, Energy and Metals Commodity Markets – 
Quarterly Dataset 

 Corn Cotton Soybeans Wheat Crude 

oil 

Heating 

oil 

Petroleum Gasoline Copper Gold Platinum Silver 

Corn 1.000            
Cotton 0.619 1.000           
Soybeans 0.763 0.548 1.000          
Wheat 0.751 0.623 0.591 1.000         
Crude oil 0.260 0.268 0.241 0.219 1.000        
Heating oil 0.140 0.220 0.193 0.126 0.928 1.000       
Petroleum 0.269 0.292 0.265 0.227 0.991 0.956 1.000      
Gasoline 0.364 0.396 0.361 0.284 0.912 0.906 0.942 1.000     
Copper 0.555 0.387 0.422 0.428 0.413 0.300 0.421 0.502 1.000    
Gold 0.584 0.404 0.452 0.499 0.463 0.366 0.468 0.538 0.628 1.000   
Platinum 0.568 0.412 0.560 0.466 0.484 0.387 0.498 0.532 0.530 0.719 1.000  
Silver 0.619 0.510 0.436 0.539 0.346 0.218 0.351 0.423 0.672 0.806 0.587 1.000 

The agricultural commodities consist of corn, cotton, soybeans and wheat, while the energy commodities consist of crude oil, 

heating oil, petroleum and gasoline, and finally, the metals commodities consist of copper, gold, platinum and silver. 
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Table 3. Forecasting Gross Domestic Product (GDP) Growth with Commodity Market 

Uncertainty 
The table presents the results of the bivariate forecasting regression model on the quarterly Gross 

Domestic Product growth using the realized variance series of agricultural, energy and metals commodity 

futures returns. The forecasting horizon ranges from 0 to 12 quarters. COMRV is the realized variance 

and ΔGDP is the Gross Domestic Product growth. The standard errors are corrected for autocorrelation 

and heteroscedasticity using the Newey-West (1987) estimator. The estimated beta coefficients are based 

on the following bivariate regressions: 

 
𝛥𝐺𝐷𝑃𝑡 = 𝑏0 + 𝑏1𝐶𝑂𝑀𝑅𝑉𝑡−𝑘 + 𝜀𝑡 

 

 

Panel A: Estimated b1 coefficients 

Horizon (k) k=0 k=1 k=2 k=3 k=6 k=12 

Corn -0.049** -0.050** -0.034** -0.021* -0.038* -0.005 

Cotton -0.063** -0.042** -0.026* -0.018 -0.006 -0.001 

Soybeans -0.047 -0.047 -0.040 -0.013 -0.029* -0.017 

Wheat -0.045** -0.042** -0.039** -0.035 -0.021* -0.008 

Crude oil -0.028*** -0.017*** -0.007** -0.004 0.007** 0.004 

Heating oil -0.032*** -0.018* -0.008 -0.006 0.006 0.001 

Petroleum -0.035*** -0.021** -0.009** -0.006* 0.008* 0.003 

Gasoline -0.035*** -0.025*** -0.011*** -0.007** 0.004 -0.003 

Copper -0.036** -0.024** -0.012** -0.011 -0.014 -0.006 

Gold -0.139*** -0.109** -0.085*** -0.062*** -0.030 -0.034 

Platinum -0.077*** -0.073*** -0.053*** -0.041*** -0.002 -0.005 

Silver -0.035** -0.027* -0.013 -0.009 -0.004 -0.005 

 

 

 
Panel B: Adjusted R2 values 

Horizon (k) k=0 k=1 k=2 k=3 k=6 k=12 

Corn 13.0 13.6 5.9 1.7 7.6 -0.8 

Cotton 17.3 7.3 2.2 0.6 -0.8 -1.0 

Soybeans 7.5 7.2 5.1 -0.3 2.1 0.1 

Wheat 14.3 12.6 10.7 8.4 2.4 -0.5 

Crude oil 29.8 10.2 1.3 -0.2 0.8 -0.3 

Heating oil 20.6 5.6 0.4 -0.3 -0.2 -1.0 

Petroleum 29.1 10.2 1.3 -0.1 0.7 -0.7 

Gasoline 30.0 14.6 2.4 0.6 -0.5 -0.7 

Copper 16.0 7.0 1.0 0.8 1.6 -0.4 

Gold 28.6 17.2 10.2 5.1 0.5 1.0 

Platinum 21.4 18.7 9.8 5.6 -0.9 -0.9 

Silver 19.1 10.4 1.7 0.5 -0.7 -0.6 

* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 4. Forecasting Investment (INV) Growth with Commodity Market Uncertainty 
The table presents the results of the bivariate forecasting regression model on Investment growth using 

the volatility of agricultural, energy and metals commodity futures returns. The forecasting horizon 

ranges from 0 to 12 quarters. COMRV is the realized variance and ΔINV is the Investment growth. The 

standard errors are corrected for autocorrelation and heteroscedasticity using the Newey-West (1987) 

estimator. The estimated beta coefficients are based on the following bivariate regressions: 

 
𝛥𝐼𝑁𝑉𝑡 = 𝑏0 + 𝑏1𝐶𝑂𝑀𝑅𝑉𝑡−𝑘 + 𝜀𝑡 

 

 

Panel A: Estimated b1 coefficients 

Horizon (k) k=0 k=1 k=2 k=3 k=6 k=12 

Corn -0.130 -0.182* -0.126 -0.051 -0.048 0.045 

Cotton -0.196** -0.139 -0.043 0.002 0.050 0.045 

Soybeans -0.146 -0.183 -0.146 -0.034 -0.013 -0.007 

Wheat -0.119 -0.147* -0.121 -0.081 -0.016 0.033 

Crude oil -0.100*** -0.089** -0.047* -0.006 0.023 0.034** 

Heating oil -0.121*** -0.100** -0.048 -0.006 0.015 0.029 

Petroleum -0.124*** -0.112** -0.059* -0.010 0.028 0.039** 

Gasoline -0.116*** -0.119*** -0.070*** -0.023 0.022 0.019 

Copper -0.133** -0.130** -0.095*** -0.031 -0.020 -0.005 

Gold -0.409*** -0.415* -0.419*** -0.191 -0.001 -0.049 

Platinum -0.247*** -0.298*** -0.282*** -0.201*** 0.060 0.052 

Silver -0.080 -0.097 -0.070 -0.020 0.026 -0.016 

 

 

 
 

Panel B: Adjusted R2 values 

Horizon (k) k=0 k=1 k=2 k=3 k=6 k=12 

Corn 5.2 11.4 5.0 0.1 -0.1 -0.2 

Cotton 10.0 4.8 -0.4 -0.9 -0.2 -0.4 

Soybeans 4.0 7.0 4.2 -0.6 -0.9 -1.0 

Wheat 5.8 9.6 6.3 2.3 -0.8 -0.4 

Crude oil 23.8 19.0 4.7 -0.8 0.4 1.9 

Heating oil 17.7 12.2 2.1 -0.9 -0.6 0.1 

Petroleum 22.8 19.1 4.7 -0.7 0.3 1.4 

Gasoline 20.4 22.0 7.1 0.0 -0.2 -0.4 

Copper 13.6 13.3 6.7 -0.1 -0.6 -1.0 

Gold 15.0 16.0 16.3 2.7 -0.9 -0.7 

Platinum 13.1 20.2 18.1 8.7 -0.1 -0.3 

Silver 5.4 8.6 4.0 -0.5 -0.3 -0.7 

* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 5. Forecasting Gross Domestic Product (GDP) Growth with Commodity Market Uncertainty and Controlling for Macroeconomic and Financial 

Fundamentals 
The table presents the results of the multivariate forecasting regression model on Gross Domestic Product growth using the volatility of commodity futures returns, in which 

we control for key macroeconomic and financial indicators of the US economy. We use zero quarter forecasting horizon (k=0). The t-statistics reported are corrected for 

autocorrelation and heteroscedasticity using the Newey-West (1987) estimator. The estimated beta coefficients are based on the following regressions: 

 

0 1 2 3 4 5 6 7500 2t t t t t t t t tGDP b bCOMRV b SP RV b EPU b TERM b INFL b M b UNEMP  = + + + + + +  + +  

 

  Corn Cotton Soybeans Wheat Crude oil 
Heating 

oil 
Petroleum  Gasoline Copper Gold Silver Platinum 

COMRV Coef. -0.017 -0.028*** -0.018 -0.017* -0.015*** -0.017*** -0.019*** -0.021*** -0.007 -0.069*** -0.015** -0.023 

 t-stat -1.45 -2.62 -1.63 -1.77 -4.82 -3.88 -4.68 -4.16 -0.57 -3.37 -2.52 -1.22 

SP500RV Coef. -0.057*** -0.055*** -0.059*** -0.059*** -0.047*** -0.054*** -0.046*** -0.039*** -0.059*** -0.046*** -0.055*** -0.055*** 

 t-stat -5.12 -5.50 -7.47 -6.22 -5.04 -5.32 -4.84 -3.69 -4.12 -5.25 -6.10 -4.97 

EPU Coef. -0.010*** -0.009*** -0.010*** -0.009*** -0.006** -0.007** -0.006** -0.007*** -0.009*** -0.008*** -0.009*** -0.008*** 

 t-stat -3.42 -3.20 -3.25 -3.24 -2.20 -2.51 -2.31 -2.71 -3.05 -3.04 -3.26 -2.75 

TERM Coef. 0.098* 0.130** 0.118** 0.109* 0.093* 0.106* 0.099* 0.105** 0.093 0.089 0.094* 0.106* 

 t-stat 1.71 2.24 2.01 1.91 1.70 1.92 1.83 1.99 1.56 1.64 1.73 1.85 

INFL Coef. -0.088 -0.075 -0.074 -0.078 -0.120 -0.082 -0.113 -0.104 -0.100 -0.081 -0.103 -0.085 

 t-stat -1.00 -0.81 -0.85 -0.88 -1.52 -0.94 -1.40 -1.25 -1.06 -1.04 -1.19 -0.97 

ΔM2 Coef. 0.127 0.138* 0.112 0.129 0.064 0.076 0.062 0.068 0.096 0.125 0.129 0.094 

 t-stat 1.54 1.68 1.43 1.64 0.95 1.11 0.91 0.97 1.22 1.63 1.52 1.20 

UNEMP Coef. 0.041 0.026 0.013 0.030 -0.038 -0.037 -0.039 -0.037 0.018 0.022 0.038 -0.003 

 t-stat 0.68 0.49 0.24 0.58 -0.77 -0.72 -0.80 -0.75 0.34 0.45 0.73 -0.06 

              

% Adjusted R2 37.0 38.3 37.0 37.7 41.7 40.2 41.4 41.7 36.5 40.3 38.3 37.1 

* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 6. Forecasting Gross Domestic Product (GDP) Growth with Commodity Market Uncertainty and Controlling for Macroeconomic and Financial 

Fundamentals 
The table presents the results of the multivariate forecasting regression model on Gross Domestic Product growth using the volatility of commodity futures returns, in which 

we control for key macroeconomic and financial indicators of the US economy. We use a one quarter forecasting horizon (k=1). The t-statistics reported are corrected for 

autocorrelation and heteroscedasticity using the Newey-West (1987) estimator. The estimated beta coefficients are based on the following regressions: 

 

0 1 1 2 1 3 1 4 1 5 1 6 1 7 1500 2t t t t t t t t tGDP b bCOMRV b SP RV b EPU b TERM b INFL b M b UNEMP − − − − − − − = + + + + + +  + +  

 

  Corn Cotton Soybeans Wheat 
Crude 

oil 

Heating 

oil 
Petroleum  Gasoline Copper Gold Silver Platinum 

COMRV Coef. -0.042** -0.021 -0.026 -0.030** -0.005 -0.003 -0.006 -0.013 -0.000 -0.067 -0.015 -0.044 

 t-stat -2.24 -1.36 -1.35 -2.57 -1.11 -0.43 -0.96 -1.55 -0.01 -1.57 -1.64 -1.44 

SP500RV Coef. -0.040*** -0.057** -0.053*** -0.051*** -0.058*** -0.063*** -0.058*** -0.048* -0.065** -0.045*** -0.053*** -0.041*** 

 t-stat -2.60 -2.47 -3.32 -2.90 -2.69 -2.83 -2.62 -1.91 -2.40 -3.48 -3.67 -2.59 

EPU Coef. -0.009*** -0.006** -0.007*** -0.006** -0.005* -0.006** -0.005* -0.005* -0.006** -0.005** -0.006** -0.005* 

 t-stat -3.29 -2.47 -2.72 -2.49 -1.75 -2.13 -1.83 -1.79 -2.39 -2.07 -2.55 -1.67 

TERM Coef. 0.079 0.111* 0.114** 0.102* 0.087 0.091 0.090 0.092 0.091 0.077 0.082 0.096* 

 t-stat 1.46 1.76 1.96 1.94 1.48 1.54 1.52 1.60 1.51 1.34 1.38 1.82 

INFL Coef. -0.192 -0.206 -0.185 -0.184 -0.231 -0.221 -0.228 -0.226 -0.224 -0.205 -0.227 -0.193 

 t-stat -1.07 -0.96 -1.01 -1.04 -1.14 -1.07 -1.12 -1.11 -1.09 -1.23 -1.16 -1.20 

ΔM2 Coef. 0.212** 0.178** 0.166** 0.199** 0.139* 0.148* 0.139* 0.131* 0.152* 0.173** 0.178** 0.135* 

 t-stat 2.49 2.12 2.13 2.49 1.83 1.91 1.84 1.77 1.94 2.08 1.98 1.77 

UNEMP Coef. 0.091 0.025 0.016 0.047 -0.003 0.006 -0.003 -0.016 0.013 0.025 0.042 -0.012 

 t-stat 1.40 0.50 0.32 0.90 -0.06 0.11 -0.05 -0.29 0.27 0.47 0.81 -0.23 

              

% Adjusted R2 24.5 20.1 20.8 23.6 19.6 19.0 19.5 21.0 18.9 22.9 21.2 22.8 

* p < 0.10, ** p < 0.05, *** p < 0.01 

 



37 
 

Table 7. Forecasting Investment (INV) Growth with Commodity Market Uncertainty and Controlling for Macroeconomic and Financial Fundamentals 
The table presents the results of the multivariate forecasting regression model on Investment growth using the volatility of commodity futures returns, in which we control for 

key macroeconomic and financial indicators of the US economy. We use zero quarter forecasting horizon (k=0). The t-statistics reported are corrected for autocorrelation and 

heteroscedasticity using the Newey-West (1987) estimator. The estimated beta coefficients are based on the following regressions: 

 

0 1 2 3 4 5 6 7500 2t t t t t t t t tINV b bCOMRV b SP RV b EPU b TERM b INFL b M b UNEMP  = + + + + + +  + +  

 

  Corn Cotton Soybeans Wheat Crude oil 
Heating 

oil 
Petroleum  Gasoline Copper Gold Silver Platinum 

COMRV Coef. -0.027 -0.110* -0.057 -0.035 -0.065*** -0.071** -0.079*** -0.069** -0.067 -0.156* 0.000 -0.065 

 t-stat -0.51 -1.91 -0.87 -0.94 -2.76 -2.16 -2.61 -2.22 -1.45 -1.74 0.01 -0.90 

SP500RV Coef. -0.172*** -0.143*** -0.162*** -0.171*** -0.105*** -0.132*** -0.101*** -0.095** -0.116** -0.141*** -0.188*** -0.152*** 

 t-stat -3.01 -3.17 -3.69 -4.08 -2.92 -3.73 -2.64 -2.00 -2.45 -3.46 -3.74 -3.04 

EPU Coef. -0.030** -0.029** -0.030*** -0.028** -0.014 -0.017 -0.016 -0.021* -0.029** -0.027** -0.028** -0.026** 

 t-stat -2.51 -2.53 -2.71 -2.50 -1.14 -1.39 -1.25 -1.72 -2.53 -2.30 -2.43 -2.13 

TERM Coef. 0.323 0.435* 0.380 0.343 0.288 0.342 0.314 0.336 0.242 0.298 0.330 0.338 

 t-stat 1.32 1.75 1.58 1.40 1.23 1.41 1.33 1.39 0.94 1.25 1.38 1.40 

INFL Coef. -0.241 -0.164 -0.175 -0.215 -0.346 -0.182 -0.314 -0.272 -0.257 -0.218 -0.261 -0.216 

 t-stat -0.63 -0.43 -0.46 -0.56 -0.99 -0.50 -0.91 -0.77 -0.67 -0.61 -0.68 -0.58 

ΔM2 Coef. -0.034 0.067 -0.042 -0.018 -0.235 -0.185 -0.240 -0.187 -0.127 -0.022 -0.073 -0.096 

 t-stat -0.08 0.18 -0.12 -0.05 -0.65 -0.52 -0.66 -0.50 -0.32 -0.06 -0.20 -0.25 

UNEMP Coef. 0.243 0.256 0.201 0.233 -0.010 -0.008 -0.013 0.036 0.267 0.221 0.193 0.156 

 t-stat 0.65 0.75 0.63 0.74 -0.03 -0.02 -0.04 0.11 0.92 0.69 0.61 0.48 

              

% Adjusted R2 20.8 22.7 21.2 21.1 26.9 25.3 26.4 24.6 22.8 22.0 20.7 21.2 

   * p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 8. Forecasting Investment (INV) Growth with Commodity Market Uncertainty and Controlling for Macroeconomic and Financial Fundamentals 
The table presents the results of the multivariate forecasting regression model on Investment growth using the volatility of commodity futures returns, in which we control for 

key macroeconomic and financial indicators of the US economy. We use a one quarter forecasting horizon (k=1). The t-statistics reported are corrected for autocorrelation and 

heteroscedasticity using the Newey-West (1987) estimator. The estimated beta coefficients are based on the following regressions: 

 

0 1 1 2 1 3 1 4 1 5 1 6 1 7 1500 2t t t t t t t t tINV b bCOMRV b SP RV b EPU b TERM b INFL b M b UNEMP − − − − − − − = + + + + + +  + +  

 

  Corn Cotton Soybeans Wheat Crude oil 
Heating 

oil 
Petroleum  Gasoline Copper Gold Silver Platinum 

COMRV Coef. -0.126** -0.055 -0.081 -0.104*** -0.035** -0.030 -0.042* -0.047 -0.020 -0.162 -0.037 -0.110 

 t-stat -2.16 -0.84 -1.35 -2.67 -1.97 -1.28 -1.74 -1.50 -0.53 -1.21 -1.34 -1.21 

SP500RV Coef. -0.228*** -0.281*** -0.267*** -0.254*** -0.259*** -0.280*** -0.258*** -0.240*** -0.282*** -0.254*** -0.274*** -0.243*** 

 t-stat -4.08 -4.29 -5.41 -5.06 -4.58 -4.79 -4.37 -3.44 -4.07 -6.62 -5.96 -5.11 

EPU Coef. -0.030*** -0.022** -0.024*** -0.023*** -0.015 -0.017* -0.015* -0.017* -0.022*** -0.021** -0.023*** -0.018** 

 t-stat -3.22 -2.56 -2.83 -2.67 -1.60 -1.95 -1.69 -1.84 -2.59 -2.42 -2.74 -2.08 

TERM Coef. 0.497*** 0.585*** 0.604*** 0.570*** 0.509*** 0.537*** 0.523*** 0.536*** 0.505*** 0.498*** 0.509*** 0.543*** 

 t-stat 2.99 2.98 3.22 3.41 2.91 3.09 3.01 3.11 2.79 2.80 2.83 3.35 

INFL Coef. -0.045 -0.092 -0.019 -0.001 -0.185 -0.107 -0.167 -0.147 -0.138 -0.095 -0.147 -0.063 

 t-stat -0.09 -0.16 -0.04 -0.00 -0.36 -0.20 -0.32 -0.28 -0.26 -0.21 -0.28 -0.14 

ΔM2 Coef. 1.037** 0.927** 0.901** 1.022** 0.770** 0.811** 0.769** 0.779** 0.841** 0.909** 0.922** 0.816** 

 t-stat 2.41 2.10 2.30 2.48 2.01 2.13 2.03 2.05 2.13 2.28 2.20 2.10 

UNEMP Coef. 0.523** 0.321 0.300 0.410** 0.183 0.206 0.183 0.183 0.313 0.320 0.361** 0.229 

 t-stat 2.30 1.61 1.56 2.00 0.93 1.00 0.91 0.89 1.64 1.64 1.98 1.19 

              

% Adjusted R2 32.7 30.0 30.6 33.2 31.3 30.3 31.1 31.4 29.7 31.0 30.4 31.0 

   * p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 9. Forecasting Industrial Production Index (IPI) Growth with Commodity Market 

Uncertainty  
The table presents the results of the bivariate forecasting regression model on the monthly Industrial 

Production Index growth using the realized variance series of agricultural, energy and metals commodity 

futures returns. The forecasting horizon ranges from 0 to 12 months. COMRV is the realized variance 

and ΔIPI is the Industrial Production Index growth. The standard errors are corrected for autocorrelation 

and heteroscedasticity using the Newey-West (1987) estimator. The estimated beta coefficients are based 

on the following bivariate regressions: 

 
𝛥𝐼𝑃𝐼𝑡 = 𝑏0 + 𝑏1𝐶𝑂𝑀𝑅𝑉𝑡−𝑘 + 𝜀𝑡 

 

 

Panel A: Estimated b1 coefficients 

Horizon (k) k=0 k=1 k=2 k=3 k=6 k=12 

Corn -0.027** -0.024 -0.025* -0.029** -0.013 -0.008 

Cotton -0.030** -0.027 -0.026 -0.022 -0.019 -0.002 

Soybeans -0.027* -0.028 -0.031* -0.033* -0.022 -0.008 

Wheat -0.023** -0.025* -0.020** -0.026** -0.028** -0.012 

Crude oil -0.014** -0.014*** -0.012*** -0.011** -0.004 -0.001 

Heating oil -0.015** -0.014** -0.014** -0.011* -0.004 -0.003 

Petroleum -0.017** -0.016*** -0.015** -0.013** -0.005 -0.002 

Gasoline -0.019*** -0.018*** -0.016*** -0.015*** -0.006* -0.002 

Copper -0.010 -0.017** -0.021** -0.016* -0.004 0.000 

Gold -0.082*** -0.054** -0.064** -0.074*** -0.041* -0.010 

Platinum -0.053*** -0.040*** -0.042*** -0.048*** -0.037*** -0.004 

Silver -0.014* -0.013* -0.015 -0.014 -0.008 0.003 

 

 

 
Panel B: Adjusted R2 values 

Horizon (k) k=0 k=1 k=2 k=3 k=6 k=12 

Corn 5.1 4.3 4.7 6.3 1.1 0.2 

Cotton 4.6 3.7 3.4 2.4 1.6 -0.3 

Soybeans 3.5 3.9 4.7 5.4 2.2 0.0 

Wheat 5.4 6.2 3.8 6.9 7.8 1.1 

Crude oil 12.2 11.5 8.9 7.0 0.5 -0.2 

Heating oil 7.7 6.5 6.3 4.5 0.3 0.0 

Petroleum 10.9 10.5 8.5 6.6 0.6 -0.1 

Gasoline 13.6 12.1 9.5 8.8 1.3 -0.1 

Copper 1.4 4.5 7.1 3.9 0.0 -0.3 

Gold 14.2 6.0 8.5 11.6 3.3 -0.1 

Platinum 14.6 8.2 8.7 11.8 6.7 -0.2 

Silver 3.8 3.4 4.6 3.9 1.0 -0.1 

* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 10. Forecasting Industrial Production Index (IPI) Growth with Commodity Market Uncertainty and Controlling for Macroeconomic and 

Financial Fundamentals 
The table presents the results of the multivariate forecasting regression model on Industrial Production Index growth using the volatility of commodity futures returns, in which 

we control for key macroeconomic and financial indicators of the US economy. We use a one month forecasting horizon (k=1). The t-statistics reported are corrected for 

autocorrelation and heteroscedasticity using the Newey-West (1987) estimator. The estimated beta coefficients are based on the following regressions: 

 

0 1 1 2 1 3 1 4 1 5 1 6 1 7 1500 2t t t t t t t t tIPI b bCOMRV b SP RV b EPU b TERM b INFL b M b UNEMP − − − − − − − = + + + + + +  + +  

 

  Corn Cotton Soybeans Wheat 
Crude 

oil 

Heating 

oil 
Petroleum  Gasoline Copper Gold Silver Platinum 

COMRV Coef. -0.017 -0.016 -0.017 -0.020* -0.008** -0.007** -0.009** -0.011** -0.005 -0.018 -0.004 -0.018 

 t-stat -1.39 -1.31 -1.28 -1.88 -2.36 -2.11 -2.12 -2.17 -1.31 -1.15 -0.90 -1.28 

SP500RV Coef. -0.021* -0.023** -0.022** -0.020* -0.021*** -0.025*** -0.021*** -0.018*** -0.023** -0.024** -0.025** -0.021** 

 t-stat -1.73 -2.44 -1.98 -1.84 -2.94 -3.04 -2.95 -2.63 -2.42 -2.52 -2.39 -2.00 

EPU Coef. -0.006*** -0.006*** -0.006*** -0.006*** -0.004** -0.005*** -0.005** -0.005*** -0.006*** -0.006*** -0.006*** -0.006*** 

 t-stat -3.95 -3.65 -3.80 -3.83 -2.29 -2.81 -2.45 -2.74 -3.48 -3.21 -3.38 -2.90 

TERM Coef. 0.003 0.028 0.028 0.016 0.018 0.022 0.021 0.023 0.011 0.011 0.013 0.020 

 t-stat 0.08 0.86 0.92 0.54 0.54 0.64 0.63 0.69 0.31 0.33 0.38 0.62 

INFL Coef. -0.030 -0.025 -0.022 -0.027 -0.024 -0.020 -0.023 -0.023 -0.020 -0.021 -0.022 -0.019 

 t-stat -0.78 -0.65 -0.62 -0.77 -0.73 -0.58 -0.70 -0.69 -0.55 -0.60 -0.61 -0.57 

ΔM2 Coef. 0.024 0.041 0.003 0.056 0.021 0.016 0.017 0.013 0.003 0.011 0.015 0.014 

 t-stat 0.30 0.47 0.04 0.66 0.28 0.21 0.23 0.17 0.04 0.13 0.18 0.19 

UNEMP Coef. 0.114*** 0.099*** 0.089*** 0.115*** 0.064* 0.071* 0.066* 0.065* 0.096*** 0.091*** 0.096*** 0.081** 

 t-stat 3.16 2.99 2.60 3.29 1.72 1.89 1.73 1.70 2.74 2.60 2.68 2.21 

              

% Adjusted R2 14.4 13.7 14.1 16.2 16.2 14.1 15.6 16.4 13.1 13.3 13.0 13.9 

* p < 0.10, ** p < 0.05, *** p < 0.01 
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Figure 1. Response of Real GDP Growth to Agricultural Commodity Price Volatility Shocks 
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Figure 2. Response of Real GDP Growth to Energy Commodity Price Volatility Shocks 
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Figure 3. Response of Real GDP Growth to Metals Commodity Price Volatility Shocks 
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Figure 4. Response of Investment Growth to Agricultural Commodity Price Volatility Shocks 
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Figure 5. Response of Investment Growth to Energy Commodity Price Volatility Shocks 

 
 

 
 
 
 
 
 



46 
 

Figure 6. Response of Investment Growth to Metals Commodity Price Volatility Shocks 
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Figure 7. Response of IPI Growth to Agricultural Commodity Price Uncertainty Shocks 
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Figure 8. Response of IPI Growth to Energy Commodity Price Uncertainty Shocks 
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Figure 9. Response of IPI Growth to Metals Commodity Price Uncertainty Shocks 

 

 

 
 

 

 

 


