
The Rotating Rayleigh-Taylor Instability

M. M. Scase1,∗ K. A. Baldwin2, and R. J. A. Hill3
1School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK

2Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
3School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK

(Dated: February 29, 2016)

The effect of rotation upon the classical two-layer
Rayleigh-Taylor instability is considered theoretically
and compared with previous experimental results. In
particular we consider a two-layer system with an axis
of rotation that is perpendicular to the interface between
the layers. In general we find that a wave mode’s growth
rate may be reduced by rotation. We further show that in
some cases, unstable axisymmetric wave modes may be
stabilized by rotating the system above a critical rotation
rate associated with the mode’s wavelength, the Atwood
number and the flow’s aspect ratio. We compare our the-
ory with experiments conducted in a magnetic field using
‘heavy’ diamagnetic and ‘light’ paramagnetic fluids and
present comparisons between the theoretical predictions
and experimental observations.

I. INTRODUCTION

Understanding of the Rayleigh-Taylor instability has
increased progressively since Lord Rayleigh’s [32] initial
work and the investigations of Taylor [42] and Lewis [20].
The motivation for research into this fundamental prob-
lem has changed over time, from the original interests of
Taylor and Lewis to the energy supply and astrophysical
aspects of more recent work. The now familiar struc-
ture of the Rayleigh-Taylor instability has been observed
from small scales in, for example, inertial confinement
fusion problems [see e.g., 11], to extremely large scales,
such as the crab nebula [see, e.g., 43] where pulsar winds
accelerate through dense supernova remnants. In many
cases of practical interest, it would be desirable to have
some further control over the instability after the setting
of the initial density profiles. One possibility is to ro-
tate the system; the often stabilising effect of rotation
on flow is well-known [see e.g., 12]. Tao et al. [39]
investigated whether rotation may be used to influence
the Rayleigh-Taylor instability at the surface of an iner-
tial confinement fusion target by considering instability
at an interface parallel to the axis of rotation. In iner-
tial confinement fusion, the Rayleigh-Taylor instability
reduces the efficiency of fusion during both the accelera-
tion phase, between the ablator and the fuel, and during
the deceleration phase, between the hot and cold fuel re-
gions [see e.g., 23]. The efficiency is reduced due to the
increased interfacial surface area between the two layers
in each case. The work of Tao et al. [39] suggested that
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the instability may be suppressed around the equatorial
region of a spherical rotating target.

In a previous paper [1] we reported results of experi-
ments to study the development of the Rayleigh-Taylor
instability in a two-layer fluid system with axis of rota-
tion perpendicular to the layers. The presence of rota-
tion introduces a restoring force on fluid elements moving
perpendicular to the axis of rotation: the Coriolis force.
This fictitious force, which appears in a rotating refer-
ence frame, acts to restore a fluid element, traveling in
a direction perpendicular to the axis of rotation, to its
original position, following a curved path. The presence
of the Coriolis force therefore allows the fluid to support
inertial wave motions, the rotational counterpart to the
internal gravity waves supported by a density stratifica-
tion. As will be shown, the Coriolis force acts to inhibit
large-scale overturning motions at the unstable interface
and is consequently important in changing the character
of the developing Rayleigh-Taylor instability as the rate
of rotation is increased. The effect is shown qualitatively
in Fig. 1. It can be seen that the large-scale overturning
motion required to form large vortices (top) is restricted
in the presence of rotation (bottom).

In this paper we present a theoretical study of the
Rayleigh-Taylor instability under the influence of rota-
tion and we review our previous experimental results in
light of this theory. Miles [24, 25] considered the ef-
fects of rotation on infinitesimal free-surface waves on a
body of water, remarking on Fultz’s [12] observation that
the parabolic nature of the free-surface is important and
cannot be neglected as previous authors had [see, e.g.,
18]

‘The planar [horizontal hydrostatic interface]
approximation is necessarily inconsistent for
axisymmetric gravity waves in the sense that
both the rotation induced shift . . . and the
free-surface slope are of the same order of
magnitude.’

We develop the theory of Miles [24, 25] to allow for
a two-layer fluid system that may have either a stable
or unstable interface. We find in the limit of high, sta-
ble density difference that we recover Miles’ [25] result,
and in the limit of an unstable density difference with no
rotation we recover the classical Rayleigh-Taylor model
[42]. In the special limit of semi-infinite fluid layers and
a strictly horizontal interface we recover the model of
Chandrasekhar [6]. For axisymmetric waves we are able
to find a critical rotation rate above which a given wave
mode behaves as an oscillating standing wave, but below
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FIG. 1: The upper image, taken of our experiments, is
of the Rayleigh-Taylor instability developing in a

non-rotating system. The instability develops in time,
forming large vortices that transport the ‘denser’

(green) fluid downwards. The lower image is of the
same fluids but here the system is rotating. The effect
of the rotation can be seen to restrict the size of the

vortices that form and inhibit the bulk vertical
transport of fluid. The times shown are 1.1 s and 1.2 s

after initiation in the upper and lower images
respectively, the fluids are as described in §IV. The tank

diameter is 90 mm, and the rotation rate in the lower
image was 2.52 rad s−1.

which exhibits Rayleigh-Taylor growth. In general, non-
axisymmetric waves cannot be stabilized indefinitely but
we are able to say for a given mode whether the growth
rate is reduced or increased by rotation and find that
there is a strong dependence on the aspect ratio of the
layers.

Previous experimental investigations of the classical,
non-rotating instability have used a variety of methods,
each with their own associated drawbacks. The main
techniques of the last half century include using: com-
pressed gas to accelerate slugs of fluid vertically down-
wards at rates considerably higher than gravity [e.g.,
20, 26], rocketry to rapidly accelerate gravitationally sta-
ble stratifications vertically downwards [e.g., 33], linear
electric motors or other methods to reverse the apparent
direction of gravity [e.g., 9, 44], and more recently, using
barrier removal techniques to allow a dense layer of fluid
to impinge on lower layers [e.g., 7, 16, 22]. Other tech-
niques include using a splitter plate to separate dense
horizontal flows above from light horizontal flows be-
low and then using the downstream distance from the
end of the splitter plate as a proxy for time after re-
lease [e.g., 38]. Recent studies have made use of mag-
netic fields to induce the Rayleigh-Taylor instability in
a two-dimensional system [see, e.g., 3, 14] or rotating
magnetic fields with a view to controlling the initial con-
ditions of the Rayleigh-Taylor instability in a ferrofluid
[e.g., 28, 31]. Our previous experiments made use of
the magnetic field of a superconducting solenoid mag-
net to apply magnetic body forces to a rotating two-
fluid system [1]. The gradient magnetic field attracts
the light paramagnetic fluid in the upper layer toward
the solenoid, and repels the desnse diamagnetic fluid in
the lower layer, with a force proportional to the mag-
netic field strength and its gradient. Above a particular
magnetic field strength and field gradient, determined by
the relative magnetic susceptibilities and densities of the
two fluids, the paramagnetic and diamagnetic body forces
acting on the fluids overcome the gravitational stability of
the system, inducing the onset of Rayleigh-Taylor insta-
bility, and the paramagnetic fluid exchanges places with
the diamagnetic fluid (see Supplementary Information).
We compare these experimental findings with the theory
presented here.

The structure of the paper is as follows: in §II we de-
velop an inviscid theory based on the previous theories
of Rayleigh-Taylor instability due to Taylor [42] and the
modeling of surface oscillations on rotating bodies of fluid
due to Lamb [18] and Miles [24, 25]. In §III we de-
velop the theory presented in §II to allow for magnetic
initiation of the rotating Rayleigh-Taylor instability on
linearly magnetizable fluids such as the para- and dia-
magnetic fluids used in the experiments. In §IV we re-
view the results from our earlier experiments in light of
the theory presented here. Finally in §V we discuss our
results and draw our conclusions.
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II. MODELING

II.1. Growth of the instability

We begin by considering a two-layer rotating fluid as
shown in Fig. 2. The upper layer is denoted by a sub-
script 1 and the lower layer by a subscript 2. We assume
cylindrical polar coordinates with unit vectors er, eθ,
and ez in the radial, azimuthal, and vertical directions
respectively and take the rotation to be described by the
pseudovector Ω = Ω ez. The radius of the cylinder is a,
and the lid and base of the cylinder are at z = ±d. Ig-
noring the effects of viscosity, we write the rotating Euler
equation for the fluid in each layer as

Duj
Dt

= − 1

ρj
∇pj + g∗ −Ω× (Ω× x)− 2Ω× uj , (1)

for j = 1, 2, where g∗ = −(g + g1)ez and uj and x are
velocity and position vectors respectively, in the rotating
frame. For simplicity we drop the g1 notation and will
write g∗ = −gez, with the understanding that g may
not be equal to the acceleration due to gravity, and may
change sign as a result of external bulk acceleration of
the system. When the fluid system is spun up into a
hydrostatic regime (in the rotating, non-inertial reference
frame) then uj ≡ 0 and

pj = p0 − ρj
{
gz − Ω2

2
(r2 − 1

2a
2)

}
, j = 1, 2, (2)

where p0 is a constant reference pressure equal to the
pressure at the interface when the system is not rotating.
We take z = z0(r) to be the position of the interface
between the two fluid layers. In the absence of viscosity,
requiring the stress to be continuous across the interface
is equivalent to requiring continuity of pressure across the
interface. Hence we may write p1 = p2 on z = z0(r), and
it follows that the interface is an isobar on which pj = p0
and has profile given by

z0(r) =
Ω2(r2 − 1

2a
2)

2g
. (3)

The shape and position of the interface are independent
of the densities of the fluid in the upper and lower layers.
Hence, whilst the value of p0 and the stability of the
interface may change according as to whether ρ1 < ρ2
or vice-versa, the profile remains the familiar ‘concave’
paraboloid such as may be observed at the free surface
of a vigorously stirred beverage.

Following Taylor [42] we investigate the development
of the Rayleigh-Taylor instability under rotation by con-
sidering the development of a perturbation to the in-
terface. The strength of a stratification can be char-
acterized by an Atwood number, defined here as A =
(ρ2−ρ1)/(ρ2+ρ1). Using this definition we have that for
a stable stratification A > 0 and for an unstable stratifi-
cation A < 0 [n.b., in experimental investigations of the
Rayleigh-Taylor instability, many authors, dealing only

g

z = z0(r)

Ω

g1

u2, ρ2

u1, ρ1

0 a

D1

D2

−d

0

d

FIG. 2: Two layers of incompressible fluid of density ρ1
and ρ2 occupy a cylindrical tank of radius a that is

being accelerated [see 42] at a rate g1. When the tank is
not rotating we take the interface between the fluids to

be at z = 0 (coordinates moving with the tank), the
base of the tank at z = −d and the lid of the tank at
z = d. The tank is spun up to have a constant angular
velocity Ω about the z-axis. The isobar describing the

interface is given by z = z0(r) where
z0(r) = Ω2(r2 − 1

2a
2)/(2g) and p = p0 on z = z0(r). The

meridional plane is split into two domains, D1 and D2

representing the upper and lower layers respectively
(shaded gray).

with unstable flows, define the Atwood number with op-
posite sign]. The amplitude of the perturbation and the
velocity and pressure deviation from the hydrostatic are
all assumed to be small. We describe the fluid velocity
and pressure perturbations in terms of a scalar poten-
tial, unifying the approaches of Taylor [42], in modeling
the non-rotating Rayleigh-Taylor instability, and Miles
[24, 25], in modeling surface waves on a rotating fluid.
Taylor [42] used a standard velocity potential and Miles
[25] used an ‘acceleration potential’ of the kind proposed
by Poincaré [29]. Here we make use of the ‘generalized
potential’ described by Hart [13]. Specifically, for an
interface perturbation

z = z0(r) + ε ζ(r, θ, t), (4)

where ε|ζ| � d, we take the velocity perturbation to the
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hydrostatic background to be

uj = ε

{(
1 +

1

4Ω2

∂2

∂t2

)
∇φj −

1

2Ω

∂

∂t
(ez×∇φj)

+ ez×(ez×∇φj)
}
, (5)

for j = 1, 2, and the pressure to be

pj = p0 − ρjg [z − z0(r)]− ερj
{
∂φj
∂t

+
1

4Ω2

∂3φj
∂t3

}
, (6)

for j = 1, 2.
Substitution of (5) and (6) into (1) shows that the ro-

tating Euler equation is satisfied at leading order by the
order 1 hydrostatic pressure terms and at order ε by the
generalized potential φ. (We note that both the present
formulation, and that of Miles [24, 25], necessarily im-
ply a swirl component to the flow as soon as the radial
velocity is non-zero.) By further assuming that the fluid
in each layer is incompressible, i.e., ∇·uj = 0, we obtain
the governing wave equation for each fluid layer

{
∂2t∇2 + 4Ω2∂2z

}
φj = 0, j = 1, 2. (7)

Solutions to this type of wave equation in the context of
inertial waves and internal gravity waves are well-known
[see, e.g., 21, and references therein].

We seek to solve the governing equation (7) together
with the following boundary conditions: that there is no
flow through the tank walls

u · er = 0, on r = a,
u · ez = 0, on z = ±d;

}
(8)

the velocity on the axis of rotation, r = 0, is sufficiently
regular, specifically that

r∂φ2j/∂r → 0 as r → 0, (9)

(this condition allows for finite fluid velocities across the
axis of rotation); and finally, we also require continuity
of stress across the interface. In the absence of viscosity
we therefore require

p
∣∣+
− = 0, across z = z0 + εζ. (10)

Since ζ is unknown we require the kinematic condition
that the interface moves with the local fluid velocity to
close the system:

D

Dt
(z0 + εζ) = u · ez, on z = z0 + εζ. (11)

Following Taylor [42] and Miles [25] we adopt a vari-
ational formulation and seek normal mode solutions of
the form

φ = φ̂(r, z) exp{i (ωt+mθ)}, ζ = ζ̂(r) exp{i (ωt+mθ)},
(12)

where m ∈ N0 is an azimuthal wavenumber. Substitution
into (7) yields the governing equation

1

r

∂

∂r

(
r
∂φ̂j
∂r

)
− m2

r2
φ̂j +

(
1− µ2

) ∂2φ̂j
∂z2

= 0, j = 1, 2,

(13)
where we adopt Miles’ [25] notation by defining µ =
2Ω/ω. The boundary conditions (8) and (9) become

r∂φ̂2j/∂r → 0 as r → 0,

r∂φ̂j/∂r + µmφ̂j = 0, on r = a,

∂φ̂j/∂z = 0, on z = ±d,



 (14)

where the plus or minus is taken according to whether j =
1 or 2 respectively. The condition of pressure continuity
across the interface (10) yields at order ε

iωµ2ζ̂ =
2Ω2

g

(
1− 1

µ2

)(
1 + A

A
φ̂2 −

1−A

A
φ̂1

)
,

(15)
on z = z0. The kinematic condition (11) at order ε can
be written as

iωµ2ζ̂ = z′0

(
∂φ̂j
∂r

+
µm

r
φ̂j

)
−
(
1− µ2

) ∂φ̂j
∂z

, j = 1, 2,

(16)
on z = z0 for each layer, where z′0 ≡ dz0/dr.

The variational functional Φ[φ̂1, φ̂2] is defined by mul-

tiplying the governing equation (13) by ρj φ̂j and inte-
grating over the domain D = D1 ∪ D2 = [0, a] × [−d, d]
(see Fig. 2) so that

Φ =

∫

D

ρφ̂

{
1

r

∂

∂r

(
r
∂φ̂

∂r

)
− m2

r2
φ̂+ (1− µ2)

∂2φ̂

∂z2

}
dA.

(17)
Following the method outlined in Miles [25] we write the
integral (17) in conservative form giving

Φ =

∫

D

ρ

[
1

r

∂

∂r

(
rφ̂
∂φ̂

∂r

)
+ (1− µ2)

∂

∂z

(
φ̂
∂φ̂

∂z

)]
dA

−
∫

D

ρ



(
∂φ̂

∂r

)2

+
m2

r2
φ̂2 + (1− µ2)

(
∂φ̂

∂z

)2

dA.

(18)

We consider the first integral in (18) and integrate over
D1 and D2 separately. Defining I1 to be the integral over
D1 and I2 to be the integral over D2, we have

I1 =

∫ z0(a)

z0(0)

∫ r0(z)

0

ρ1
r

∂

∂r

(
rφ̂1

∂φ̂1
∂r

)
rdrdz

+

∫ d

z0(a)

∫ a

0

ρ1
r

∂

∂r

(
rφ̂1

∂φ̂1
∂r

)
rdrdz

+

∫ a

0

∫ d

z0(r)

ρ1(1− µ2)
∂

∂z

(
φ̂1
∂φ̂1
∂z

)
rdzdr, (19)
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where r0(z) is the well-defined inverse of z0(r). Integrat-

ing and enforcing the boundary conditions ∂φ̂1/∂z|z=d =

0, (r∂φ̂1/∂r+µmφ̂1)|r=a = 0, and r∂φ̂21/∂r → 0 as r → 0
implies

I1 = ρ1

∫ z0(a)

z0(0)

rφ̂1
∂φ̂1
∂r

∣∣∣∣∣
r=r0(z)

dz

− ρ1µm
∫ d

z0(a)

φ̂21

∣∣∣
r=a

dz

− ρ1(1− µ2)

∫ a

0

φ̂1
∂φ̂1
∂z

∣∣∣∣∣
z=z0(r)

rdr. (20)

Transforming the first term in (20) by making the sub-
stitution z = z0(r) gives the result

I1 = −ρ1µm
∫ d

z0(a)

φ̂21

∣∣∣
r=a

dz

+ ρ1

∫ a

0

φ̂1

{
z′0
∂φ̂1
∂r
− (1− µ2)

∂φ̂1
∂z

}∣∣∣∣∣
z=z0(r)

r dr.

(21a)

Following a similar procedure, we may also show

I2 = −ρ2µm
∫ z0(a)

−d
φ̂22

∣∣∣
r=a

dz

− ρ2
∫ a

0

φ̂2

{
z′0
∂φ̂2
∂r
− (1− µ2)

∂φ̂2
∂z

}∣∣∣∣∣
z=z0(r)

r dr.

(21b)

Eliminating the interface perturbation, ζ, from the pres-
sure continuity condition (15) and the kinematic condi-
tion (16) we see that

z′0
∂φ̂j
∂r
− (1− µ2)

∂φ̂j
∂z

= −z′0
µm

r
φ̂j

+
2Ω2

g

(
1− 1

µ2

)(
1 + A

A
φ̂2 −

1−A

A
φ̂1

)
, (22)

for j = 1, 2 on z = z0(r). Thus, we may rewrite (21a,b)
as

I1 = −ρ1µm
∫ d

z0(a)

φ̂21

∣∣∣
r=a

dz

+

∫ a

0

ρ1φ̂1

{
2Ω2

g

(
1− 1

µ2

)(
1 + A

A
φ̂2 −

1−A

A
φ̂1

)

−z′0
µm

r
φ̂1

}∣∣∣
z=z0(r)

rdr, (23a)

I2 = −ρ2µm
∫ z0(a)

−d
φ̂22

∣∣∣
r=a

dz

−
∫ a

0

ρ2φ̂2

{
2Ω2

g

(
1− 1

µ2

)(
1 + A

A
φ̂2 −

1−A

A
φ̂1

)

−z′0
µm

r
φ̂2

}∣∣∣
z=z0(r)

rdr. (23b)

Substituting (23) into (18) we have that

Φ[φ1, φ2] = −ρ1µm
∫ d

z0(a)

φ̂21

∣∣∣
r=a

dz

+

∫ a

0

ρ1φ̂1

{
2Ω2

g

(
1− 1

µ2

)(
1 + A

A
φ̂2 −

1−A

A
φ̂1

)

−z′0
µm

r
φ̂1

}∣∣∣
z=z0(r)

rdr − ρ2µm
∫ z0(a)

−d
φ̂22

∣∣∣
r=a

dz

−
∫ a

0

ρ2φ̂2

{
2Ω2

g

(
1− 1

µ2

)(
1 + A

A
φ̂2 −

1−A

A
φ̂1

)

−z′0
µm

r
φ̂2

}∣∣∣
z=z0(r)

rdr

−
∫

D1

ρ1



(
∂φ̂1
∂r

)2

+
m2

r2
φ̂21 + (1− µ2)

(
∂φ̂1
∂z

)2

dA

−
∫

D2

ρ2



(
∂φ̂2
∂r

)2

+
m2

r2
φ̂22 + (1− µ2)

(
∂φ̂2
∂z

)2

dA.

(24)

Taking the functional derivative of Φ with respect to, for

example, φ̂1, where δ1Φ ≡ Φ[φ̂1 + δφ̂1, φ̂2] − Φ[φ̂1, φ̂2]
yields, after some manipulation,

δ1Φ = 2ρ1

∫

D1

{
1

r

∂

∂r

(
r
∂φ̂1
∂r

)

−m
2

r2
φ̂1 +

(
1− µ2

) ∂2φ̂1
∂z2

}
δφ̂1dA

− 2ρ1

∫ d

z0(a)

{
µmφ̂1 + r

∂φ̂1
∂r

}
δφ̂1

∣∣∣∣∣
r=a

dz

+ 2ρ1

∫ a

0

{
2Ω2

g

(
1− 1

µ2

)(
1 + A

A
φ̂2 −

1−A

A
φ̂1

)

−z′0
µm

r
φ̂1 −

[
z′0
∂φ̂1
∂r
− (1− µ2)

∂φ̂1
∂z

]}
δφ̂1

∣∣∣∣∣
z=z0(r)

rdr.

(25)

So we see that the functional Φ is stationary with respect

to first-order variations of φ̂1 about the solution of the
governing equation (13) in D1, the boundary condition
(22) for j = 1 at the interface z = z0(r) and at the no-
radial flow condition at r = a on the boundary of D1.
Similarly, Φ is stationary with respect to first-order vari-

ations of φ̂2 about the solution of the governing equation
(13) in D2, the boundary condition (22) for j = 2 at
the interface z = z0(r) and the no-radial flow condition
at r = a on the boundary of D2. (The Euler-Lagrange
equation for Φ as expressed in (17) is the governing equa-
tion (13) multiplied by 2ρ.) Following Miles [25] we pose
trial solutions that satisfy the governing equation (13),
the regularity condition at r = 0 and the boundary con-
ditions on r = a and z = ±d exactly, and invoke the
variational principle only in respect to the final bound-
ary condition on z = z0(r).
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If φ̂ is an exact solution of the governing equation (13),

it follows from the definition of Φ that Φ(φ̂) = 0. There-

fore, if φ̂ is a solution of (13), it follows from (18) and
(21) that

∫

D

ρ



(
∂φ̂

∂r

)2

+
m2

r2
φ̂2 + (1− µ2)

(
∂φ̂

∂z

)2

dA =

− ρ1µm
∫ d

z0(a)

φ̂21

∣∣∣
r=a

dz − ρ2µm
∫ z0(a)

−d
φ̂22

∣∣∣
r=a

dz

+

∫ a

0

ρ1φ̂1

{
z′0
∂φ̂1
∂r
− (1− µ2)

∂φ̂1
∂z

}∣∣∣∣∣
z=z0(r)

rdr

−
∫ a

0

ρ2φ̂2

{
z′0
∂φ̂2
∂r
− (1− µ2)

∂φ̂2
∂z

}∣∣∣∣∣
z=z0(r)

rdr. (26)

Substituting (26) into (24) we therefore have, after sim-
plification

Φ ∝
∫ a

0

{
ω2

[
1 + A

A
φ̂2 −

1−A

A
φ̂1

]2

+

[(
gz′0
Ω2r

)
Ω2

1− µ2

(
r
∂

∂r
+ 2µm

)
− g ∂

∂z

]

[
1 + A

A
φ̂22 −

1−A

A
φ̂21

]} ∣∣∣∣∣
z=z0(r)

r dr. (27)

The constant of proportionality is (ρ2 − ρ1)(1 − µ2)/4g,
but as interest is focussed upon stationary values of Φ,
it will be disregarded. We may further simplify (27)
by noting that, for z0 as defined by (3), the factor
gz′0/(Ω

2r) = 1. The expression in (27) is the two-layer
equivalent of the functional given in (3.2) of Miles [25]
and it can be seen that Miles’ expression is recovered
in the limit A = 1 (the stable single layer limit). The
cross term in the first term of the integrand is crucial in
coupling the behavior of the two fluid layers.

Again, following Miles [25], we seek to construct a
series solution based on trial solutions of the form

φ̂jn(r, z) = Jm
(
knr

a

)
cosh

(
kn
a

[z ∓ d]√
1− µ2

)
, (28)

for n = 1, 2, . . ., where Jm is a Bessel function of the first
kind and we take the minus or plus sign in (28) according
to whether j = 1 or 2 respectively. The trial solutions
(28) satisfy both the governing equation (13) and the
no-vertical-flow boundary conditions at z = ±d. The
radial no-flow condition at r = a sets the possible modes
of solution and so in general we sum over the countable
number of solutions, kn, of

kJm+1(k) = m(1 + µ)Jm(k), (29)

which follows from substituting (28) into (14) and setting
r = a. (The ratio kn/a may be regarded as the radial

wavenumber associated with the nth mode.) We assume
that as the number of terms in the series increases we
approach a full solution. Thus, we approximate φ̂1 and

φ̂2 by

φ̂j ≈ φ̂(N)
j =

N∑

n=1

cjn φ̂jn, j = 1, 2, for some N > 1.

(30)
We adopt a variational approach applied to (27) in order
to find the coefficients cjn such that our solution satis-
fies (22) on z = z0, the remaining unsatisfied condition.
Specifically, by seeking stationary values of the functional
Φ, by taking the partial derivatives ∂Φ/∂cjn, j = 1, 2,
n = 1, . . . , N , we may construct 2N linear equations in
the 2N coefficients. The eigenvalue equation for ω is
found by setting the determinant of this linear system to
be zero. If ω has a negative imaginary part then (12)
implies growth, and the onset of the Rayleigh-Taylor in-
stability.

In the remainder of §II we initially consider purely ax-
isymmetric instabilities, first asymptotically for low ro-
tation rates in §II.2.1–II.2.3, and then numerically for ar-
bitrary rotation rates in §II.2.4. We then consider asym-
metric instabilities, firstly asymptotically for low rotation
rates in §II.3.1–II.3.3, and then numerically for arbitrary
rotation rates in §II.3.4 and §II.3.5.

II.2. Axisymmetric instability, m = 0

In the first instance we consider purely axisymmetric
motion: the special case m = 0. Setting m = 0 in (29)
shows that we sum over the zeros of J1(k), which implies
k ∈ R.

II.2.1. Single mode, low rotation rate, gravity wave
solutions: asymptotics

Following Miles [25], we initially consider a solution
containing a single trial solution each in the upper and
lower layers. We further assume a low rotation rate such
that α = Ω2a/g � 1. Using such an approximation Miles
was able to explain the discrepancies between the theory
of Lamb [18] and the experimental observations of Fultz
[12, Fig. 12] and so we adopt this level of approximation
for initial investigation. Seeking an asymptotic expres-
sion for the eigenvalue equation for ω, we take (28) for
some single n ∈ N. By considering ∂Φ/∂c1n = 0 and
∂Φ/∂c2n = 0, and expanding in powers of α we find, af-
ter some significant manipulation, that an eigenvector of
the solution is

c ∝
(
1,−1− 1

6 coth(knδ)α+O(α2)
)
, (31)
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where δ = d/a, and the eigenvalue equation for ω is

ω2 ∼ gA kn
a

tanh(knδ) + 2Ω2 [1 + 2knδcsch(2knδ)

− 1

24
k2nA

2sech2(knδ)

]
+
g

a
O(α2). (32)

We observe therefore that if gA < 0 then ω2 < 0 and
interfacial perturbations will grow rather than oscillate
– the Rayleigh-Taylor instability. The form of (32) sug-
gests we may be able to suppress this growth to some
extent by rotating the system, i.e., the second term in
(32) may be used to compete with the first if it has the
opposing sign. However, it would be mistaken to suggest
that (32) implies that given a sufficient rotation rate an
unstable mode could be fully stabilized (ω2 > 0), as is
concluded erroneously by Sharma et al. [37] in the con-
text of particle laden Rayleigh-Taylor instability. The ex-
pansion (32) is asymptotic and its validity breaks down
when the second term is comparable to the first. The cor-
rect approach is to consider an expansion when ω, not Ω,
is small compared to (a/g)1/2 (see §II.2.3).

Whether the growth rate of a given wave mode is re-
duced or increased by rotation depends on the sign of the
second term in (32). Provided |A |/δ <∼ 8.72 then there
are no solutions for which the second term in (32) can
be made negative, and so the effect of rotation is always
to initially suppress a given wave mode. (The threshold
coefficient, c ≈ 8.72, is given by

c2 =
24

ξ20

[
ξ0 coth ξ0 + cosh2 ξ0

]
,

where

ξ0 [sinh(4ξ0)− 2ξ0] = 2 [sinh(2ξ0) + ξ0]
2
,

giving ξ0 ≈ 1.39.) However, if |A |/δ >∼ 8.72, indicating
a sufficiently strong stratification, or sufficiently shallow
aspect ratio, then there may exist wave modes which are
excited by rotating the system. For example, A = − 1

2 ,

δ = 1
18 , n = 7 gives |A |/δ = 9 > c, k7 ≈ 22.76 and

the second term of (32) is approximately −0.14, i.e., the
seventh mode is excited rather than suppressed as the
first six modes are.

Rather than considering the limit of low rotation rate,
α � 1, we may substitute (28) into (27) with m = 0
and take δ → ∞, which may be thought of as forcing a
horizontal initial interface, rather than parabolic, to find

ω4 − 4Ω2ω2 − ω4
0 = 0, where ω2

0 = gA
kn
a
, (33)

the solution of which, selecting the physically appropri-
ate branch by introducing the factor A /|A |, is Chan-
drasekhar’s solution [6, eqs. 162, 163] given by

ω2 = 2Ω2 +
A

|A |
√

4Ω4 + ω4
0 , (34)

in the present notation. We can expect that when we
have large aspect ratio, δ, and moderate values of α, (34)

will be a better approximation to ω than the asymptotic
expansion (32) since no small rotation rate approxima-
tion has been made in the case of (34). (We note that
the two solutions (32) and (34) coincide, as they must, if
δ � 1, Ω2a/g � 1.)

II.2.2. Single mode, low rotation rate, inertial wave
solutions: asymptotics

We show the presence of inertial waves when ω2 ∼
O(α). We consider ∂Φ/∂c1,n = 0 and ∂Φ/∂c2,n = 0 for a
single n ∈ N, but specifically seek solutions for which ω2

does not have an order 1 contribution, but has a leading
order contribution at O(α).

In order to ensure that ω2 has no leading order contri-
bution we find that we must satisfy

sinh

(
2knδ√
1− µ2

)
∼ O(α), (35)

which requires

ω2a

g
∼ 4α

1 + [2knδq]2
+O(α2), (36)

where δq = δ/qπ, for ±q = 1, 2, . . .. The frequencies
associated with these wave modes depend upon whether
q is even or odd. For q odd

ω2a

g
∼ 4α

1 + [2knδq]2

{
1∓ [2knδq]

2

1 + [2knδq]2
α

6δ
+O(α2)

}
,

(37)
where the minus or plus sign is taken according as
to whether the wave occurs mainly in the upper or
lower fluid respectively. The eigenvectors correspond
to waves occurring either in predominantly the upper
fluid, c = (1,O(α2)), or predominantly the lower fluid,
c = (O(α2), 1).

For q even

ω2a

g
∼ 4α

1 + [2knδq]2

{
1− [2knδq]

2

(1 + [2knδq]2)
2

1

A

[
(4δq)

2

±1

6

{(
1 + [2knδq]

2
) (

1 + [2knδq]
2 − 12(4δq)

2
)
A 2

+36(4δq)
4
}1/2

]
α

δ
+O(α2)

}
. (38)

It is straightforward to show that when A = 1, δq is re-
placed by δq/2, and the minus sign is chosen in (38) (cor-
responding to the flow taking place in the lower fluid) the
solution in (4.13) Miles [25] is recovered. The solutions
Miles found correspond to the even q solutions; hence δq
must be replaced by δq/2 above for comparison. For even
q the associated eigenvector is

c =

(
1,

1

6 (1 + A ) (4δq)2

{
A
(
1 + [2knδq]

2 − 6(4δq)
2
)

∓
[
A 2

(
1 + [2knδq]

2
) (

1 + [2knδq]
2 − 12(4δq)

2
)

+36(4δq)
4
]1/2}

+O(α)
)
. (39)
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The odd q solutions have been missed in previous stud-
ies and, since the solutions are independent of A , are
present for all values of A including the special case
A = 1.

II.2.3. Single mode, critical rotation rate for stabilization

A critical rotation rate, Ωc, for which a single gravity
wave mode is stable for Ω > Ωc and unstable for Ω < Ωc
can be found by considering an asymptotic expansion of
Φ as a series in ω2a/g. Near the stability threshold we
are in a regime ω2a/g � 1 and thus an expansion to
the first two terms of the series can be used to find the
critical rotation rate.

We have that for m = 0, kn is such that J1(kn) = 0
and so using the following results

∫ 1

0

J 2
0 (knx)

J 2
0 (kn)

x dx =
1

2
,

∫ 1

0

J 2
0 (knx)

J 2
0 (kn)

x3 dx =
1

6
,

∫ 1

0

J0 (knx)J1 (knx)x2 dx = 0, (40)

we may show that if α = α0 + aω2α1/g + . . ., to leading
order the variational function Φ is proportional to

ω2a

g

{[
1−A

A
c1n −

1 + A

A
c2n

]2

+
1−A

2A

[
k2n
12

+
δk2n
α0

]
c21n −

1 + A

2A

[
k2n
12
− δk2n

α0

]
c22n

}
.

(41)

It follows that for non-trivial solutions of ∂Φ/∂c1n = 0
and ∂Φ/∂c2n = 0 we require to leading order

{
1−A

A
+

1

2

[
k2n
12

+
δk2n
α0

]}

×
{

1 + A

A
− 1

2

[
k2n
12
− δk2n

α0

]}
− 1−A 2

A 2
= 0. (42)

At the instability threshold ω = 0 and hence α = α0.
Thus, we may solve (42) for α0 = αc, the critical value of
α that yields ω = 0. Hence, we find the critical rotation
rate Ωc to be given exactly by

Ω2
ca

g
=

6δ

A

(
1− k2n

48

)−1

×
[{

1− k2nA
2

12

(
1− k2n

48

)}1/2

− 1

]
. (43)

This result does not depend on exploiting a small rota-
tion rate or other small external parameter and so is not
asymptotic and is therefore true in general. Since Ωc ∈ R,
(43) only applies for −1 6 A < 0, i.e., a critical rotation
rate only exists if the fluid layers would be Rayleigh-
Taylor unstable in a non-rotating regime, as might be

anticipated on physical grounds. Under this condition on
A , (43) can be shown to be a strictly monotonically in-
creasing function in kn, bounded such that αc ∈ [0, 12δ).

A key observation from (43) is that the monotonic de-
pendence of αc on kn means that for a given rotation rate
all structures larger than the critical wavelength associ-
ated with kn are stabilised, whereas all structures smaller
than the critical wavelength remain unstable. This is in
keeping with the physical arguments presented earlier in
the introduction.

There exists a threshold rotation rate Ω = 4δ, where
the hydrostatic interface intersects the lid and the base
of the domain and, as a result, the assumed form of φ
no longer satisfies the boundary conditions at z = ±d.
So, although it follows from (43) that for a given radial
wavenumber, kn, there exists a critical rotation rate for
stabilization, it is not guaranteed that this critical ro-
tation rate is less than the threshold rotation rate 4δ.
That is to say, although (43) implies that since there are
no growing modes for −1 6 A < 0 when Ω2

ca/g > 12δ,
suggesting all modes may therefore be made indefinitely
stable, this absolute critical rotation rate cannot be at-
tained before the model breaks down.

In summary, (43) shows that for a given rotation rate
there exists a critical wavelength, above which all ax-
isymmetric modes are stable, but below which all short
wavelength modes remain unstable.

Chandrasekhar [6, Chap. X §95] considers the special
case of a two-layer stratification of semi-infinite fluids
with a horizontal interface and states that

‘. . . it follows that in the present case rotation
does not affect the instability or stability, as
such, of a stratification . . . ’.

The critical rotation rate given in (43) shows that Chan-
drasekhar’s (1961) result is a special case and not true
in general for purely axisymmetric flows, supporting
Carnevale et al. [5]. The case of two semi-infinite fluids
superposed is given by taking the limits a→∞, d→∞.
The assumption of a horizontal interface implies that
these limits should be taken such that δ = d/a → ∞.
Taking the limit δ → ∞ in (43) shows that there is in-
deed no finite critical rotation rate to stabilize a given
unstable mode as δ → ∞ since Ωc → ∞. However, as
soon as δ < ∞ there exists a finite critical rotation rate
above which an unstable axisymmetric mode may be sta-
bilized.

II.2.4. Single mode, arbitrary rotation rate solutions:
numerics

In order to obtain results at arbitrary rotation rate
we proceed using a hybrid of analytical and numerical
methods, whereby evaluation of integrals is carried out
using Simpson’s rule. For N = 1, n = 1 we construct
the matrix of coefficients of cjn from the linear equations
∂Φ/∂cjn = 0 for j = 1, 2. This yields a 2 × 2 matrix,
M, and the zeros of its determinant, corresponding to
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FIG. 3: Solutions of the eigenvalue problem, consistent with the assumptions of §II.1, describing the dispersion
relation for Atwood numbers A = ± 1

2 , δ = 1
4 , 4, N = 1, k = k1 ≈ 3.83. Solid lines are the exact solution calculated

numerically. The long-dashed lines correspond to Chandrasekhar’s solution (34). (a) Stable: A = 1
2 , δ = 1

4 . The
gravity wave solution coincides with the α = 0 axis at the value given by Taylor, indicated by a circle. The

asymptotic solution is shown dashed for α < 0.5 and continues dotted for larger values. The first pair of inertial
wave solutions (37) corresponding to q = 1 are shown (dot-dashed). The greyed region contains an infinite number
of possible inertial wave solutions corresponding to higher values of q. (b) Unstable: A = − 1

2 , δ = 1
4 . On α = 0 the

unstable growth is predicted by Taylor’s [42] result. It can be seen that as the rotation rate α increases, one of the
q = 1 inertial wave solutions coalesces with the gravity wave solution. The critical rotation rate is predicted by (43)

and is given by αc = 0.49. (c) A = 1
2 , δ = 4. With the increase in δ we see an improvement between the full

solution and Chandrasekhar’s solution, giving better agreement than the low rotation rate asymptotics (32). (d)
A = − 1

2 , δ = 4. There is excellent agreement with Chandrasekhar’s solution for α < 5 compared with the low
rotation rate asymptotics, but his solution remains in the unstable region as α→∞, unlike the full solution. The

critical rotation rate, αc = 7.78, follows from (43). As in (b), one of the q = 1 inertial wave solutions coalesces with
the gravity wave solution.
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possible solutions, are calculated numerically and plotted
in Fig. 3 for A = ± 1

2 , δ = 1
4 , 4. The zero rotation rate

solutions, as found by Taylor [42], are indicated by white
circles on the vertical axes. Selecting n = 1 gives k = k1,
the first zero of J1, and so we have k ≈ 3.83.

Inertial waves are present as a result of the rotation
and it can be seen that these solutions all converge at
the origin indicating that as the rotation rate tends to
zero these waves are not supported, consistent with their
definition. The first pair of inertial wave solutions, corre-
sponding to (37) with q = 1, are indicated by dot-dashed
lines extending away from the origin. The grayed-out
regions contain an infinite number of inertial waves cor-
responding to the higher values of q. Within this region
the numerical contouring of |M| = 0 fails and so the re-
gion has been grayed-out.

In the stable cases, A = 1
2 , shown in Fig. 3a, c, the

effect of the rotation on the gravity wave on the interface
is only to increase its frequency, hence the comments of
Miles [24] indicating that the effects of rotation are not
especially interesting for axisymmetric waves on a single
layer of fluid. The asymptotic gravity wave solutions (32)
are shown as the dashed lines extending away from the
white circle on the vertical axes. They are shown dashed
for α < 0.5, after which we anticipate the approximations
being less good and the solution is thereafter shown as
dotted.

In the unstable cases, A = − 1
2 , shown in Fig. 3b, d,

the effect of rotation on the k1 gravity wave at the in-
terface is to change the sign of ω2 from negative (un-
stable – Rayleigh-Taylor instability) to positive (stable –
standing wave solutions). The rotation is able to com-
pletely stabilize the mode for α > αc. It can be seen
that as the rotation rate is increased the gravity wave
solution coalesces with the dominant inertial wave solu-
tion. The predicted critical rotation rates are αc ≈ 0.49
for δ = 1

4 and αc ≈ 7.78 for δ = 4. It can be seen that
for moderate values of α there is significant improve-
ment in the agreement between the numerical solution
and Chandrasekhar’s [6] solution for the larger value of
δ, as expected (see §II.2.1). With the parameters used in
Fig. 3b, the asymptotic value of αc calculated for large
N is within 3.4% of that calculated using N = 1 modes,
as in (43).

It can be shown that as a result of (40b), the key results
of §II.2, (32) and (43), are independent of the Ω2/(1−µ2)
term in (27), the only term that has an explicit depen-
dence on the profile z0. As the low rotation rate ap-
proximation (32) and the critical rotation rate (43) are
independent of this term it follows that the unstable solu-
tion branch for ω can be well-approximated by neglecting
this term. Indeed, for low to moderate Atwood number
(A <∼

1
2 ) then

Φ ∝
∫ a

0

{
ω2
(
φ̂2 − φ̂1

)2
− gA ∂

∂z

(
φ̂22 − φ̂21

)}∣∣∣∣
z=z0

r dr

(44)
is a reasonable approximation to (27), with approximate
O(A 2) error. The calculated critical rotation rate for
the example considered in Fig. 3b using (44), as opposed

to (27), is αc = 0.45 compared to αc = 0.49, an error of
approximately 7.8%.

II.3. Non-axisymmetric instability, m 6= 0

We now consider the more general case which includes
non-axisymmetric modes. Here, the right hand side of
(29) can be non-zero, and so ω ∈ C, giving the possibil-
ity of both growth and precession of the instability. As
ω ∈ C it follows that k = k(Ω, ω) ∈ C in general. The
fact that k cannot be determined a priori for the whole
solution space increases the difficulty of calculating so-
lutions for the non-axisymmetric cases compared to the
axisymmetric cases.

II.3.1. Single mode, low rotation rate, gravity wave
solutions: asymptotics

To find the corresponding low rotation rate asymp-
totics as in §II.2 we expand both ω and k in terms of α.
It follows from (29) for ω ∼ ω0 +ω1α

1/2 +ω2α+ . . . that

k

k0
∼ 1 +

2m

k20 −m2

(
αg

aω2
0

)1/2

− 2m

k20 −m2

[(
aω2

1

g

)1/2

+
m
(
k20 +m2

)

(k20 −m2)
2

](
αg

aω2
0

)
+O(α3/2), (45)

where k0 ∈ R satisfies

k0Jm+1(k0) = mJm(k0). (46)

(Note that again there are a countable number of solu-
tions k0n but for clarity we will use the notation k0 and
understand that it may not be the first zero of (46).)
Substituting in and following a similar procedure to that
in §II.2, the first two terms for ω satisfy

aω2
0

g
= A k0 tanh(k0δ), (47a)

√
a

g
ω1 =

m

k20 −m2
[1 + 2k0δcsch (2k0δ)] . (47b)

The leading order term ω0 is unchanged from (32), noting
the change in definition of k0. The ω1 term is not present
in (32), as a result of m = 0 in the axisymmetric case.
However we note that ω1 ∈ R and so this term can play
no role in the growth or suppression of interfacial waves;
it is merely contributing a modification to the precession
velocity. We also note that ω1 is independent of A and
is therefore exactly the same as the first correction term
found by Miles [25, eq. (5.5)].

For comparison with the second term on the right hand
side of (32) we now calculate a(2ω0ω2 + ω2

1)/g and find
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it to be

2

{
1− 2m2k20

(k20 −m2)
3 + 2k0δcsch (2k0δ)

×
[
1− m2

(k20 −m2)2

(
k20 +m2

k20 −m2
+ 2k0δcoth (2k0δ)

)]

−1

8
k20A

2sech (k0δ)
2

[
1 +

4

k20 −m2

×
(
m2

k20
cosh (k0δ)

2 − k20G(m, k0)

)]}
, (48)

where we use (40) and define

G(m, k) =

∫ 1

0

Jm(kx)2

Jm(k)2
x3 dx. (49)

Provided k0 is a solution of (46) then in the limit m→ 0,
G(m, k0(m))→ 1

6 and we may recover the axisymmetric
m = 0 term in (32) from (48). The associated eigenvector
with the solution described by (47) and (48) is

c =

(
1,−1− k0

2
coth (k0δ)

×
[
1 +

4

k20 −m2

(
m2

k20
− k20G(m, k0)

)]
α+O(α2)

)
,

(50)

and we note that therefore to leading order the solution in
the lower layer is growing and precessing in the opposite
direction to the fluid in the upper layer, as might have
been anticipated.

It follows from (48) that ω2 ∈ C if ω0 ∈ C and so
may contribute to both precession and growth/decay.
Whether the growth rate of a wave mode is reduced or
increased by a small amount of rotation, compared to its
growth in a non-rotating system, is controlled by (48)
too, since ω1 ∈ R.

II.3.2. Single mode, low rotation rate, inertial wave
solutions: asymptotics

As with the axisymmetric case, for ω2 to have a leading
order contribution of O(α) we require (35) and hence
(36) to be satisfied. Writing ω ∼ ω1α

1/2 + ω2α+ . . . and
k ∼ k0 + k1α

1/2 + k2α+ . . . we have that

ω2
1a

g
=

4

1 + [2k0δq]2
for δq ≡

δ

qπ
, and q ∈ N.

(51)
The leading order balance of (29) is therefore

Jm+1(k0) =
m

k0

(
1 +

2

ω1

)
Jm(k0). (52)

Combining (51) and (52) we have that for a given m 6= 0
and δq, k0 must satisfy

1 + [2k0δq]
2 =

(
1− k0

m

Jm+1(k0)

Jm(k0)

)2

. (53)

The solutions fall into two categories according as to
whether q is odd or even, as before. For q odd

ω2a

g
∼ 4α

1 + [2k0δq]2

×
{

1∓ α[2k0δq]
2

2δ

(
1 + 4

[
δ2qm

2 −G(m, k0)
])

×
[
(
1 + 4δ2qm

2
) (

1 + [2k0δq]
2
)
− 8mδ2q

ω1

]−1
 . (54)

The expression for q-even is lengthy and so here we note
only the solutions for extreme values of δ, specifically for
q even, m 6= 0, then for δ � 1

ω2a

g
∼ 4α

{
1± 2δ2qα

δ

(
k20 [1− 4G(m, k0)] + 4m

)

+O(α2)

}
, (55)

and for δ � 1

ω2a

g
∼ 4α

{
1

[2k0δq]2
± α

δ

m

δqk30
+O(α2)

}
. (56)

A further, higher order, solution exists, provided m 6=
0, for k ∼ k0 +O(α) where Jm(k0) = 0 and

ω2a

g
∼
(

2m

k20δ

)2

α3

{
1− α

2δ

[
4G+(m, k0)

− 1 +
4

k20

(
1± 2

A

)]
+O(α2)

}
, (57)

where

G+(m, k) =

∫ 1

0

J 2
m(kx)

J 2
m+1(kx)

x3 dx. (58)

II.3.3. Single mode, critical rotation rate for stabilization

In §II.2.3 it was shown that for δ < ∞ there exists a
critical rotation rate, Ωc, above which an axisymmetric
wave mode can be stabilized for a given unstable Atwood
number. Here we show that such a critical rotation rate
does not exist in the case m 6= 0.

For m 6= 0 and Ω ∼ Ω0

[
1 + (Ω1/Ω0)ω +O(ω2)

]
, (29)

implies that

k

k0
∼ 1− ω

2mΩ0
+O(ω2), where Jm(k0) = 0, (59)

noting that m 6= 0 changes the definition of k0 from the
axisymmetric definition Jm+1(k0) = 0, to Jm(k0) = 0.
The eigenvalue equation for Ω becomes

1−A 2

A 2

[
a2mΩ0 J 2

m+1(k0)
]2
ω2 +O

(
ω3
)

= 0. (60)
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It can be seen that there is no non-zero critical rotation
rate, Ω0, that can force the leading order term in (60) to
be zero. Therefore, unlike the axisymmetric m = 0 case,
there does not exist a critical rotation rate that can be
used to stabilize a given wave mode. However, a given
wave mode may still be suppressed (or indeed excited)
by rotation, but a change of stability cannot occur.

II.3.4. Single mode, arbitrary rotation rate solutions:
numerics

The solutions of the eigenvalue problem are calculated
numerically for N = 1, n = 1, δ = 1

4 , A = − 1
2 , and m =

1, 2, 3 (see Fig. 3b for comparison with the axisymmetric
case, m = 0).

The numerical solution was calculated by evaluating
the determinant of M for a given α over a plane ω ∈ C
(numerical integration was carried out using Simpson’s
rule). The zeros of the real part of |M| were contoured
and intersections with the zero contour of the imagi-
nary part of |M| were found. The solution was con-
structed by then allowing α to vary over the range [0, αT ]
(see Fig. 4a). Figs 4b–d are projections of the three-
dimensional solution to allow comparison with Fig. 3b.
The positive vertical axis shows a projection of <(ω)2a/g
and the negative vertical axis shows a projection of
−=(ω)2a/g so that the plots coincide with the axisym-
metric case when ω ∈ R or ω ∈ iR. It can be seen that
for m 6= 0 the dominant gravity wave solution is not able
to cross from the unstable lower half of the domain into
the stable upper half, unlike the m = 0 solution shown
in Fig. 3b.

II.3.5. Multiple mode, arbitrary rotation rate solutions

Fig. 5 shows the possible wavemodes for A = − 1
2 ,

δ = 1
4 , m = 2, N = 2, and n = 1, 2. As the rotation

rate is increased the unstable gravity wave modes are
seen to be suppressed, though the suppression is greater
for the more unstable n = 2 mode. The plot shows that
suppressing a higher wavemode to such an extent that
it becomes more stable than a lower wavemode is possi-
ble since the solution’s projections cross (at α ≈ 1.505,
=(ω) ≈ −1.313, shown as circles, though in this case
the crossing occurs for α > αT where the solution is not
strictly valid). Comparing Fig. 4c with Fig. 5b, it can be
seen that the addition of a single extra mode significantly
increases the number of possible modes of behavior.

II.4. Summary of key results

In §II.1 the approach developed by Miles [25] to model
surface waves on a rotating body of water was gener-
alised to the two-layer case, allowing for either a stable
(positive Atwood number) or an unstable (negative At-
wood number) initial stratification. The dispersion rela-

tion for axisymmetric perturbations at low rotation rates
was derived in §II.2, (32) and it shows that gravitation-
ally unstable perturbations may be made less unstable
by rotating the system. This suggests that at least par-
tial suppression of the Rayleigh-Taylor instability may be
achieved through rotation of the system, though we note
that (32) is only valid in the limit aΩ2/g � 1. In §II.2.3
an exact result, (43), was found for the critical rotation
rate required to completely stabilise an otherwise gravita-
tionally unstable axisymmetric wave mode. This critical
rotation rate depends on the aspect ratio of the system
which is the reason an exchange of stability was not found
in the model of Chandrasekhar [6]. (43) indicates that
a rotation rate αc = 12δ is required to stabilise all ax-
isymmetric wave modes, but the model solutions (28) are
invalid for α > 4δ. Evaluating (43) at α = 4δ suggests
that modes in the range 0 < k2 < 6(3− |A |)|A |−1 may
be stabilised, i.e., wave modes with wavelengths λ in the
range

λ

a
& 2π

{ |A |
6 (3− |A |)

}1/2

∼ 1.48|A |1/2 +O(A 2),

though this calculation does not account for the influence
of one wave mode upon another as the summation, in
(30), has been ignored.

In §II.3 the dispersion relation for asymmetric wave
modes was derived (45)–(49). This dispersion relation
includes axisymmetric perturbations, m = 0, as a spe-
cial case. In the asymmetric case, m 6= 0, it was shown
that the wavenumber cannot be determined a priori, it
depends on both the rotation rate, Ω, and the mode fre-
quency, ω. The dispersion relation reveals, as might be
anticipated, that the mode frequency contains both real
and imaginary parts in general. Hence, the developing
instability is characterised by both a growth and a pre-
cession of a given wave mode. It was also shown, §II.3.3,
that a general critical rotation rate to stabilise an asym-
metric mode does not exist, unlike the axisymmetric case.

III. RAYLEIGH-TAYLOR INSTABILITY IN
PARAMAGNETIC AND DIAMAGNETIC FLUIDS

For the purposes of comparison with our experiments
[1] (see also Supplementary Information), we now con-
sider the rotating Rayleigh-Taylor instability induced be-
tween two magnetically susceptible fluids in the presence
of a gradient magnetic field, and how this compares with
the classical case considered in §II. The rotating Euler
equation, including the magnetic body force (see Supple-
mentary Information) is

ρ
Du

Dt
= −∇p+ ρ g − ρΩ× (Ω× x)

− 2ρΩ× u + µ0M∇H. (61)

Here H is the magnitude of the applied gradient mag-
netic field H and M is the magnitude of the magnetiza-
tion M of the fluid. The introduction of the magnetic
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FIG. 4: (a) The constructed solution of |M| = 0 for ω ∈ C and A = − 1
2 , δ = 1

4 , N = 1, n = 1, m = 1 (solid lines).
(b)–(d) Are projections of the solution squared, for comparison with Fig. 3b. Bold solutions have non-zero

imaginary component. It can be seen that unstable wave modes are not stabilized by increasing the rotation rate,
but are suppressed initially. Asymptotic gravity wave approximations (47), (48) to the solution are shown

dot-dashed. Numerical inertial wave solutions have not been plotted for clarity, but the first asymptotic solutions for
inertial waves, with q = 1 (54), are shown dashed.

body force modifies (6), but only appears at order 1 as
a hydrostatic background effect and so does not modify
the governing equation for the generalized potential φ.
(See Supplementary Information for a derivation of this
result). Hence, (7) and (8) are unchanged by including
magnetic effects.

There exists a technique for separating mixtures of ma-
terials on the basis of their density known as ‘sink-float
separation’ [35] which is useful to consider at this point.
In this process the density of an object is measured by ob-
serving the ‘apparent density’ of a surrounding ferrofluid

in a magnetic field when the object is neutrally buoy-
ant. The apparent density of the ferrofluid, ρ′ is defined
as the density of an equivalent non-magnetic fluid that
is subject to a gravitational force equal to the combined
magnetic and gravitational force on the ferrofluid. That
is to say (taking the non-rotating, static form of (61)),
ρ′g = ρg + µ0M∇H. Hence, for a constant magnetic
field with the gradient aligned vertically

ρ′ = ρ− µ0M

g

dH

dz
. (62)
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FIG. 5: Gravity wave solutions of |M| = 0 for A = − 1
2 ,

δ = 1
4 , m = 2 for N = 2 and n = 1, 2, i.e., k01 ≈ 3.054

and k02 ≈ 6.706. Bold solutions have non-zero
imaginary component. (a) Three-dimensional

representation of the solution: the most unstable
branches cross at α ≈ 1.505, where ω1 ≈ 1.514− 1.313i
and ω2 ≈ 0.189− 1.313i indicated by circles. (b) The

projected solutions for comparison with Fig. 3b.
Although αT = 1, the α axis has been extended to show

the possibility of rotation causing some modes to
become more unstable than others.

For para- and diamagnetic fluids, |χ| � 1, and we may
write

ρ′ ∼ ρ
{

1− 1

2gµ0

χ

ρ

dB2

dz
[1 +O(χ)]

}
, (63)

[see (39), 35]. (Here B is the magnitude of the magnetic

induction B, related to M and H by B = µ0 (M + H).)
Equivalently we can define a modified gravity such that
ρg′ = ρg + µ0M∇H. Then, in this case

g′ = g − µ0M

ρ

dH

dz
∼ g

{
1− 1

2gµ0

χ

ρ

dB2

dz
[1 +O(χ)]

}
.

(64)
We see that the correction factors in curly braces in

(63) and (64) are identical. Hence, with regard to calcu-
lating the vertical force only, it is equivalent to consider
either the magnetic field to be modifying the gravita-
tional field, or the apparent density field. However, the
concept of effective density is not fully compatible with
the rotating case as different effective densities must be
employed in the radial and vertical directions. We there-
fore proceed by considering an effective gravity, g′, acting
on each fluid in the magnetic field, which is applicable to
both radial and vertical directions.

Continuity of normal stress across the perturbed
boundary, z = z0(r)+ εei(ωt+mθ)ζ(r), is satisfied at order
1 by the hydrostatic initial conditions, and at order ε by

iωµ2ζ̂ =
2Ω2

g′

(
1− 1

µ2

)(
1 + A

A
φ̂2 −

1−A

A
φ̂1

)
,

(65)
(where µ is as defined in § II and not to be confused with
magnetic permeability) on z = z0, where

g′ = g

[
1− 1

2gµ0

(
χ2 − χ1

ρ2 − ρ1

)
∂B2

∂z

∣∣∣∣
z=z0(r)

]
, (66)

is a modified, and spatially varying effective gravitational
acceleration. Note that (65) has exactly the form of (15)
with the only difference being the modified gravity. In
(66), χj is the magnetic susceptibility, defined by M =
χH, of each fluid layer. The form of (66) is a two-layer
generalization of a modified gravity in the single-layer
sink-float applications (64).

The expression for the modified gravity, g′, in (66) in-
dicates that if there exists a region in the magnetic field
where ∂B2/∂z < 0, and we have an appropriate choice
of χ and ρ in each layer, then, depending on the mag-
nitude of ∂B2/∂z, we may be able to reverse the sign
of g′. This implies the following experimental method
is possible: a gravitationally stable stratification may be
prepared and placed in the magnetic field; then, if there
is sufficient downward magnetic attraction of the upper
layer and magnetic repulsion of the lower layer, the sta-
blizing effect of the gravitational field may be overcome.
By choosing fluids such that χ1 > χ2 and ρ2 > ρ1 then
the second term on the right hand side of (66) is negative.
If the system can be placed in a region of the magnetic
field where |∂B2/∂z| > 2gµ0(ρ2−ρ1)/|χ2−χ1|, then the
right hand side of (66) is negative, the stabilizing effect
of the gravitational field is weaker than the destabilizing
effect of the magnetic field and a Rayleigh-Taylor-like in-
stability may be initiated.

The discussion above motivates us to ask whether the
use of a magnet can closely replicate the onset of the
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FIG. 6: Supported eigenvalues of the fundamental
mode of instability for: (solid lines) the full magnetic

model using the magnetic field and experimental
parameters used in §IV; (dashed lines) the classical

model using an ‘apparent Atwood number’. Not shown
are solutions using a uniform gradient magnetic field

which are indistinguishable at this scale from the
apparent Atwood number classical solution. The

predicted critical rotation rate for stabilization using
the classical model (white square) is approximately
4.3% too large compared to the solution of the full

magnetic problem (white circle). The error between the
classical model, and the critical rotation rate from the
magnetic model with a uniform gradient field (white

diamond) is less than 0.02%.

classical Rayleigh-Taylor instability, particularly in a ro-
tating regime where the number of technical difficulties
involved experimentally increases for standard barrier-
removal methods. In the static non-rotating sink-float
separation technique discussed in Rosenweig [35], there
was an equivalence between an ‘apparent density’ and
a modified gravity. However, in the rotating case, we
observe from (3) that, while manipulating the fluid den-
sities in each layer does not change the parabolic hydro-
static interface, as soon as magnetically susceptible fluids
are placed in a magnetic field the parabolic interface is
changed in general. Nevertheless, we can compare the
growth rates of modes of instability using the full mag-
netic expressions derived above, with the classical expres-
sions derived in §II.1 using an apparent Atwood num-
ber approximation and show that the supported modes
and predicted growth rates may be extremely closely
matched.

Proceeding as in §II.1 with the modified stress continu-
ity condition (65) and the unchanged kinematic condition

(11), gives the magnetic counterpart of (27) as

Φ ∝
∫ a

0

{
ω2

(
g

g′

)[
1 + A

A
φ̂2 −

1−A

A
φ̂1

]2

+

[(
gz′0
Ω2r

)
Ω2

1− µ2

(
r
∂

∂r
+ 2µm

)
− g ∂

∂z

]

[
1 + A

A
φ̂22 −

1−A

A
φ̂21

]} ∣∣∣∣∣
z=z0(r)

rdr. (67)

In the case B = 0, g′ = g and z0 is as given in (3), and
so (27) is recovered.

We can therefore seek to achieve experimentally an ef-
fective, ideal, unstable Atwood number, Aideal < 0, in the
following manner. We define an apparent Atwood num-
ber, Aapp, via g′Agss = gAapp, where Agss > 0 represents
a gravitationally stable stratification. This implies

Aapp = Agss

[
1− 1

2gµ0

(
χ2 − χ1

ρ2 − ρ1

)
∂B2

∂z

]
. (68)

With the appropriate choices for the magnetic suscepti-
bility and fluid density in each layer, and suitable position
in the magnetic field, we can therefore closely approxi-
mate Aideal with Aapp. The experiment may be prepared
using standard techniques, as Agss is a gravitationally
stable stratification that is realisable in a laboratory. The
stable stratification may be spun-up into solid body rota-
tion before applying the magnetic field, changing the ef-
fective Atwood number from Agss to Aapp ≈ Aideal. The
relationship between the magnetically-induced instabil-
ity and the gravitationally-induced ‘classical’ instability
is evident in the limit of small Atwood numbers, where
in the classical case for Atwood number |Aideal| � 1 we
have approximately

Φ ∝
∫ a

0

{
ω2

Aideal

(
φ̂2 − φ̂1

)2
+

[(
gz′0
Ω2r

)
Ω2

1− µ2

×
(
r
∂

∂r
+ 2µm

)
− g ∂

∂z

](
φ̂22 − φ̂21

)} ∣∣∣∣∣
z=z0

rdr, (69)

and in the magnetic case where |Agss| � 1, we have
approximately

Φ ∝
∫ a

0

{
ω2

(
g

g′Agss

)(
φ̂2 − φ̂1

)2
+

[(
gz′0
Ω2r

)
Ω2

1− µ2

×
(
r
∂

∂r
+ 2µm

)
− g ∂

∂z

](
φ̂22 − φ̂21

)} ∣∣∣∣∣
z=z0

rdr. (70)

So provided that the effect of the differences between z0
in the classical case (3), and z0 in the magnetic case (see
Supplementary Information) on the structure of Φ are
small, the magnetically induced instability, governed by
(70), can be expected to accurately represent the classi-
cal gravitationally induced instability, governed by (69),
where the ideal Atwood number Aideal is replaced by an
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apparent Atwood number Aapp = g′Agss/g. The differ-
ence between the two interface profiles depends on the
specific profile of the magnetic field imposed. In the case
of a uniform gradient magnetic field, aligned vertically,
and zero rotation, the two profiles coincide and the struc-
ture of Φ is identical – a magnetically induced instability
is exactly equivalent to a gravitationally induced insta-
bility.

We now consider the supported modes for rotating
Rayleigh-Taylor instability in an ideal system, compared
to systems with magnetically-induced instabilities. Fig. 6
is a comparison between the supported frequencies of os-
cillation for the fundamental mode of instability for: the
magnetically induced instability from the magnetic field
used in [1] and §IV (solid); the magnetically induced in-
stability from a magnetic field with uniform vertical gra-
dient and no radial gradient (using the centerline of the
magnetic field in [1] and §IV); and the classical solution,
as derived in §II using an ‘apparent Atwood number’ ap-
proximation (dashed).

The solution using a uniform gradient field is not
shown as it is visually indistinguishable, at the scale
shown, from the classical ‘ideal A ’ solution. The two
curves coincide at the limit of no rotation, as they must,
and differ by less than 0.02% at the critical rotation rate
αc = 0.032. The magnetic field used in the calculations
is the field used in [1] (see Fig. 3 therein).

If an approximately uniform gradient magnetic field,
such as those described in the sink-float separation tech-
nique [35], can be employed to induce the instability there
is an excellent agreement between the predicted growth
rates between the magnetically induced flow and a clas-
sical flow using an apparent Atwood number approxima-
tion. The agreement is better for low rotation rates, with
the two methods exactly coinciding at zero rotation rate.
Using the magnetic field of a solenoid magnet, that has
some radial gradient in strength, to induce the instabil-
ity, yields good quantitative agreement between the two
methods. A magnetically induced realisation is therefore
a reasonable experimental method for approximating a
Rayleigh-Taylor instability and useful initial test of the
critical rotation rate predicted in (43).

IV. EXPERIMENTS

In [1] we described a series of three experiments that
used a superconducting solenoidal magnet to induce a
light paramagnetic fluid to impinge into a dense diamag-
netic layer triggering an instability. The first series in-
vestigated the reduction in growth rate of the Rayleigh-
Taylor instability due to rotation; in the second series we
measured the effect of rotation on the size and form of the
structures in the instability as it developed. The third
series of experiments investigated the effect of fluid vis-
cosity on the observed structures. In each experiment the
two layers comprised a paramagnetic manganese chloride
solution (upper layer), and a denser diamagnetic sodium
chloride solution (lower layer). In the third series of ex-

periments glycerol was added to both layers when the
effects of viscosity were investigated. Further details are
in [1] (see also Supplementary Information).

IV.1. Structure of the instability

In the second series of experiments the effect that the
rotation had on the structure of the developing instabil-
ity could be seen. The inset images to Fig. 7 (green discs)
show the development of the Rayleigh-Taylor instability
at the interface between the two fluids for different rota-
tion rates (additional images taken from the experiments
are shown in Fig. 5a [1]). At early times (t ∼ 0.5–1.0 s) a
perturbation to the interface can be seen which exhibits a
dominant length scale. Structures reminiscent of snake-
like convection rolls [e.g., 36] can be observed. It is appar-
ent that with an increase in rotation rate, the observed
instability decreases in length scale. At the lower rota-
tion rates the paths followed by the initial disturbance
structures have significant radial deviation, meandering
in towards the center of the tank and back out to the side
walls again. At the lowest rotation rates the instability
is more cellular than serpentine. As the rotation rate
is increased the cellular initial perturbation is no longer
observed and a more serpentine-like structure appears.
With increasing rotation rate the width of these struc-
tures decreases. It can also be observed that the amount
of radial meandering decreases too. It can be seen that
[1, Fig. 5], for increasing rotation rates, the instability
develops radially first with the azimuthal perturbations
becoming more pronounced as time evolves. By the time
t ≈ 3.0 s it is difficult to distinguish which structures
arose due to a radial or azimuthal perturbation. The
key observation is that the observed length scale of the
structures is smaller for greater rotation rates.

Fig. 7 shows that as the rotation rate increases the
observed length scale of the instability decreases, and
asymptotes to an approximately constant, finite length,
over the range of parameters explored. For the param-
eters chosen the finite length is approximately 6 mm.
From § II, we anticipate that rotation inhibits the forma-
tion of large structures, at least in the radial direction,
and the faster the rotation the more inhibited the larger
structures are in general. However, unlike the inviscid
analysis presented in §II, the fluids are viscous and it has
been shown [e.g., 6] that the viscosity of the fluid inhibits
the formation of small structures in classical non-rotating
Rayleigh-Taylor instability. We therefore interpret the
6 mm asymptote of observed lengthscale with increasing
rotation rate as being the result of two competing ef-
fects: inhibition of large structures due to rotation and
inhibition of small structures due to fluid viscosity.

IV.2. Suppression of the growth of the instability

Fig. 8 is a plot of the interface position relative to the
tank against time for 20 different rotation rates in the
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FIG. 7: The dominant scales of perturbation after the
onset of instability. Error bars are associated with

goodness-of-fit from the autocorrelation algorithm. It
can be seen that as the rotation rate is increased, the
observed scale of motion asymptotes to approximately

6 mm for the experimental parameters chosen. The
solid line is the empirical best fit

λ/a = 0.12 + [0.017/ (α+ 0.023)]
3.5

, where a is the tank
radius and α = Ω2a/g.

range Ω ∈ [0, 9.06] rad s−1. The specific rotation rate is
labelled on each curve. The plot shows a trend towards
slower growth rates with increasing angular velocity. In
Fig. 9 an exponential curve of the form exp{−=(ω)t}
has been best-fitted to the interface profiles in Fig. 8 and
the growth rate −=(ω) plotted. The error bars repre-
sent a 95% confidence interval for the fit to the profile
only. A trend can again be observed with the exper-
iments with the highest rotation rates having the low-
est growth rates. The solid line in Fig. 9 is the pre-
diction of the growth rate, calculated as in §II.2.4, of
the dominant observed wavelength. Here a dominant
axisymmetric mode has been assumed with kn in the
range 1 6 n 6 15 where λ ≈ 2πa/k and the dominant
wavelength has been calculated using an empirical rela-
tionship λ/a = 0.12 + [0.017/ (α+ 0.023)]

3.5
(see §IV.1,

Fig. 7) for the experimentally obtained λ.
We can show from (43) that for 0 < −A � 1 we have

αc ∼
k2

4
δ|A |+O(A 2) (71a)

and therefore

Ωc ≈ 1.92

√
dg|A |
a

, (71b)

for the largest mode. Hence for the chosen experimen-
tal parameters (d = 3.93 × 10−2 m, a = 4.50 × 10−2 m,
g = 9.81 m s−2) and given that the instability is ob-
served experimentally to occur where the apparent At-
wood number lies in the range −2× 10−3 . A < 0 (see

[1] Fig. 3), then both (43) and (71) indicate that the
largest mode is stabilised at Ωc ≈ 1.18 rad s−1. Fig. 10
shows the proportional contribution of mode-one, the
largest mode, to the overall interface profile of the de-
veloping instability at the time at which the instabil-
ity has an amplitude of 0.05d. The experimental im-
ages were stretched to remove the effects of rotation such
that r 7→ r, z 7→ z − Ω2(r2 − a2/2)/2g and the initial
approximately parabolic profile was rendered horizontal.
Contouring the image then yielded a fit of the inter-
face of the form z = ζ(r) and the coefficients cn were
found such that ζ(r) =

∑
cnJ0(knr/a) where kn are the

zeros of J1 as in §II. The proportional contribution of
mode-one was then calculated as |c1|/

∑ |cn|, as plotted
in Fig. 10. The solid vertical line is the critical rotation
rate, Ωc ≈ 1.18 rad s−1. As can be seen, for rotation
rates above the critical rotation rate the mode-one insta-
bility appears suppressed, but for rotation rates below
the critical rotation rate the proportional contribution of
mode-one is significantly greater. The suppression of the
mode-one instability can be readily observed by eye in
[1] Fig. 1.

V. DISCUSSION AND CONCLUSIONS

We have considered theoretically the effects of rotation
upon the classical Rayleigh-Taylor instability and com-
pared this theory with experimental results obtained us-
ing linearly magnetizable fluids. The dispersion relation
for interfacial disturbances at low rotation rates (32) sug-
gests that axisymmetric modes of a developing Rayleigh-
Taylor instability may have their rate of growth inhib-
ited by rotation. Indeed, if the critical rotation rate for
the mode is below the threshold 2(gd)1/2/a, then (43)
indicates that the mode may be stabilised indefinitely.
Rotation was also seen in some cases to be able to slow
the growth of asymmetric modes. Our observations from
the experiments are broadly inline with our theoretical
predictions, specifically that by rotating the system we
inhibit the growth of large wave modes and suppress the
growth rate of the instability (see e.g., Fig. 1). If the dom-
inant wavelength of instability is obtained from experi-
ment, the theoretically predicted growth rates compare
well with our observations. We have derived a critical
rotation rate for stabilizing axisymmetric modes and ob-
served experimentally that the magnitude of the largest
fundamental mode is significantly suppressed above the
calculated critical rotation rate (see Fig. 10).

We can understand our observations in the following
qualitative manner: a rotating fluid is known to organise
itself into coherent vertical structures aligned with the
axis of rotation, so-called ‘Taylor columns’ [41], whereas
a perturbation to an unstable two-layer density strati-
fication will lead to baroclinic generation of vorticity at
the interface, tending to break-up any vertical structures.
Hence the system under investigation undergoes compe-
tition between the stabilising effect of the rotation, that
is organising the flow into vertical structures and prevent-
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FIG. 8: The position of the interface, relative to the tank, for 20 different rotation rates (rad s−1). There is a trend
that the slower the rotation rate of the experiment the sooner the instability appears to grow, and the faster it

appears to grow.

ing the layers passing each other, and the destabilising
effect of the denser fluid overlying the lighter fluid that
generates an overturning motion at the interface. With
increased rotation rate the ability of the fluid layers to
move radially, with opposite sense to each other, in or-
der to rearrange themselves into a more stable configura-
tion, is increasingly prohibited by the Taylor-Proudman
theorem [see 30, 40]. The radial movement is therefore
reduced and the observed structures that materialize as
the instability develops are smaller in scale.

The experimentally observed structures are also af-
fected by the viscosity of the fluid layers. As is known,
viscous diffusion suppresses the growth of small-scale
structures in non-rotating Rayleigh-Taylor flows and we
have have observed the same system response in the ro-
tating regimes too. Higher viscosity in the fluid layers
leads to larger observed structures in the developing in-
stability. We therefore also have competition between ro-
tation suppressing the larger structures and viscosity sup-
pressing the smaller structures, leading to an observed in-
stability structure that depends on both the rotation rate
and the fluid viscosity. The length scale of the observed
dominant wavelength of the instability remains an open
question. We can say that the structure of the Rayleigh-

Taylor instability is significantly altered by rotating the
system, with the scale of the instability decreasing with
increasing rotation rate to a limit controlled by the fluid
viscosity.

A key question is whether the instability could be sta-
bilized indefinitely given a sufficiently high rotation rate.
Equivalently we could ask whether it is possible to find
a rotation rate rapid enough to completely suppress the
growth of the instability for any desired length of time?
It seems reasonable to suggest that it would be possible
to rotate the system quickly enough that the large-scale
structures are suppressed by rotation, and any remaining
small-scale structures are suppressed by viscosity. How-
ever, noting that the theory presented in §II is limited
to a maximum rotation rate α < 4δ and the experiments
presented are necessarily rotation rate limited too, the
evidence presented in Fig. 9 indicates that while the in-
stability can be suppressed, it cannot be suppressed in-
definitely, at least not in the configurations considered.
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SI. EQUIVALENCE BETWEEN INITIAL
CONDITIONS AND SYSTEM ACCELERATION

FOR NON-ROTATING SYSTEMS

Taylor [42] considered a two-layer non-rotating sys-
tem: an upper layer, of density ρ1, overlying a lower
layer, of density ρ2, with an initially horizontal hydro-
static interface perpendicular to the direction of gravity.
It was shown that a stable two-layer stratification sup-
ported stable interfacial standing waves with a temporal
dependence of the form exp {iωt}, where the frequency,
ω, satisfied ω2 ∝ gA (the constant of proportionality de-
pending on the wavenumber of the wave). Taylor showed
that by subjecting the system to a constant accelera-
tion vertically downwards, at a rate greater than that
of gravity, the system became unstable. The inertia of
the denser lower layer is greater than that of the lighter
upper layer and so the two layers are induced to swap po-
sition. It was shown that if the system was subjected to
a vertical acceleration g1 (using Taylor’s notation) then
ω2 ∝ (g + g1)A [42]. It can be seen therefore that for
g1 < −g, ω2 < 0, i.e., ω is imaginary, and perturbations
to the interface grow rather than oscillate as standing
waves. This growth represents the onset of the Rayleigh-
Taylor instability. Exactly the same growth can be seen
if, instead of subjecting the system to a bulk acceleration
g1, the sign of the Atwood number, A , is changed by
inverting the initial stable stratification. There is there-
fore an equivalence between accelerating a stable initial
stratification rapidly vertically downwards (g1 < −g) and
creating an unstable initial stratification (A < 0).

This equivalence between acceleration of the system
and unstable initial stratification does not exist when the
system is rotating. Independent of the density field, the
isobaric surfaces have identical paraboloidal profiles, as
is shown by (2). This equation also shows that if the
direction of acceleration is instantaneously inverted, the
isobaric surfaces are simultaneously inverted, becoming
convex (as can be seen by changing the sign of g in (3)).
However, the physical interface between the two fluids
cannot instantaneously invert, and so the fluid arrange-
ment is no-longer hydrostatic and an instability devel-
ops from non-hydrostatic conditions. The equivalence of
changing the sign of A and g is lost except in the spe-
cial case when the interface is horizontal, i.e., the non-
rotating Ω = 0 case, when inverting the isobaric surfaces
in the vertical direction has no effect.

∗ matthew.scase@nottingham.ac.uk

SII. RAYLEIGH-TAYLOR INSTABILITY IN
PARAMAGNETIC AND DIAMAGNETIC FLUIDS

In the absence of magnetic and viscous effects, the
stress tensor associated with the short-range molecular
forces [see e.g., 2] depends only upon the thermodynamic
pressure, σ = −p I. The stress tensor must be modified
however in the presence of a magnetic field and the ad-
ditional terms [see 34, (4.29)], σm are given by

σm = −
{∫ H

0

µ0
∂ (νM)

∂ν

∣∣∣∣
H,T

dH +
µ0

2
H2

}
I + BH,

(S1)
where H = |H|, M = |M |, T is the temperature, ν =
ρ−1 is the specific volume, and the dyadic product is
taken in the final term.

The magnetic induction, B is defined by B = µH,
where µ is the magnetic permeability [see e.g., 19]. In a
vacuum B = µ0H, where µ0 is the magnetic permeabil-
ity of free-space, and takes a value µ0 = 4π×10−7 N A−2.
The magnetization per unit volume, M , is defined via
B = µ0(H + M).

We assume that the fluids are linearly magnetizable,
consistent with the choice of diamagnetic and paramag-
netic fluids used in [1] and discussed in §IV. The flu-
ids may therefore be characterized by a constant mag-
netic volume susceptibility, χ (nondimensional), such
that M = χH. For the experiments in [1], typical orders
of magnitude of χ were 10−5 or smaller. It follows that
we may take µ = µ0(1 +χ) ≈ µ0, and H, B, and M are
collinear.

We further assume that the magnetization per unit
mass, νM , is independent of density, so that the inte-
gral in (S1) vanishes [34]. The implication of this final
assumption is that for an isothermal flow, the ‘magne-
tostrictive pressure’

ps ≡ µ0

∫ H

0

ν
∂M

∂ν

∣∣∣∣
H,T

dH (S2)

exactly balances the ‘fluid-magnetic pressure’ [as defined
in 34, (4.36b)], pm, as

pm ≡ µ0

∫ H

0

M dH

=

∫ H

0

µ0

[
∂(νM)

∂ν
− ν ∂M

∂ν

]

H,T

dH = 0− ps. (S3)

Equivalently, the ‘composite pressure’ [34], p∗ ≡ p+ps +
pm, is identical to the thermodynamic pressure, p. The
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full stress tensor for the flow may therefore be written as

σ = −
{
p+

µ0

2
H2
}
I + BH. (S4)

The contribution to the total body force on a fluid ele-
ment due to magnetic effects is given by fm = ∇ · σm,
hence

fm = −µ0

2
∇H2 + (B · ∇)H + (∇ ·B)H. (S5)

Maxwell’s equations state that the magnetic induction
is solenoidal, and so the third term on the right hand
side of (S5) is zero. For the present analysis, we as-
sume magnetostatic conditions. Furthermore, we model
an idealised fluid system in which there are no free elec-
tric currents, J free, in the fluids, which is equivalent to
assuming that the fluids have negligible conductivity. In
this case, ∇ × H = J free = 0. Using the identity
1
2∇H2 = (H · ∇)H + H × (∇ ×H), we may rewrite
the magnetic body force as

fm = −µ0

2
∇H2 +

µ

2
∇H2 ≡ µ0M∇H ≡

µ0χ

µ2
B∇B.

(S6)
For constant |χ| � 1, µ0µ

−2 ∼ µ−1
0 [1 +O(χ)] and so the

final expression may be well-approximated by

fm ≈
χ

µ0
B∇B = ∇

[
χB2

2µ0

]
. (S7)

We see that the body force due to the magnetic effects is
conservative and may be absorbed into a modified pres-
sure. There is therefore an analogy with buoyancy driven
flow in a two-layer fluid system. A wave may be sup-
ported at an interface between two fluid layers with uni-
form, but contrasting, densities. No fluid element in the
bulk of either layer experiences a ‘buoyancy force’ upon
itself as it is surrounded by fluid entirely of its own den-
sity. However, the effect of the difference in density is felt
throughout both fluids via the continuity of normal stress
across the interface, and hence a baroclinically driven
flow may be realised and sustained. Similarly here, the
body force in each fluid layer due to the gradient mag-
netic field may be removed by consideration of a suitable
background pressure, but a flow may still be driven due
to the difference in magnetic susceptibility of the two flu-
ids and the stress continuity condition at their interface.

For the purposes of calculating the continuity of stress
across the fluid-fluid interface we now consider the ap-
propriate generalization of Bernoulli’s equation to an
isothermal rotating magnetic system in the absence of
viscosity. This will enable the calculation of the profile
of the interface between the two fluid layers once spun
up into a hydrostatic state. The rotating Euler equation,
including the magnetic body force (S6) is

ρ
Du

Dt
= −∇p+ ρ g − ρΩ× (Ω× x)

− 2ρΩ× u + µ0M∇H. (S8)

It follows that in a hydrostatic system with Ω = Ωez
that

0 = −∇
[
p+ ρgz − ρΩ2r2

2
− µ0

∫ H

M dH

]
, (S9)

[cf. 34]. For the case of linearly magnetizable fluids con-
sidered here, M = χH and so the final term is taken to
be 1

2µ0χH
2. Hence we have that

p+ ρgz − ρΩ2r2

2
− µ0χ

2
H2 = const. (S10)

Using the same notation as in Fig. 2 and taking n to
be a unit normal to the interface directed from fluid 2
into fluid 1, then (S4) implies that

σ · n
∣∣∣
+

−
= −

[
p2 − p1 +

µ0

2
(H2

2 −H2
1 )
]
n

+ (B · n) [H2 −H1] , (S11)

where subscript 1 denotes evaluation just above the inter-
face, and subscript 2 denotes evaluation just below the
interface. Continuity of B · n has been used in (S11)
which follows as a result of B being solenoidal (or equiv-
alently from Gauss’s Law,

∮
S
B ·dS = 0). The tangential

component of H is continuous across the interface [see
34, (5.17), (5.18)], giving H2−H1 = (H2n−H1n)n and
H2

2 − H2
1 = H2

2n − H2
1n, where Hjn ≡ Hj · n. Writing

Bn ≡ B · n, (S11) is therefore

σ · n
∣∣∣
+

−
= −

[
p2 − p1 +

µ0

2
(H2n +H1n)(H2n −H1n)

−Bn(H2n −H1n)
]
n. (S12)

It follows from B = µ0(H+M) that Hn = Bn/µ0−Mn.
Substituting this into (S12) and simplifying gives

σ · n
∣∣∣
+

−
= −

[
p2 − p1 −

µ0

2
(M2

2n −M2
1n)
]
n. (S13)

The terms involving M2
n represent a traction at the inter-

face and are referred to as the ‘magnetic normal traction’
[34].

To find the profile of the hydrostatic interface between
the two fluid layers, we enforce continuity of normal stress
across the fluid interface, given by

σ : nn
∣∣∣
+

−
= 0 ⇒ p2 − p1 +

µ0

2
(M2

2n −M2
1n) = 0.

(S14)
Substituting in from the generalized Bernoulli equation,
(S10), we have therefore that

(ρ2 − ρ1)gz − (ρ2 − ρ1)
Ω2r2

2
− µ0

2
(χ2H

2
2 − χ1H

2
1 )

+
µ0

2
(M2

2n −M2
1n) = const. (S15)

Equation (S15) represents a generalization of the two fer-
rofluid case considered in Rosenweig [35, (42)] for a rotat-
ing system, but restricted to linearly magnetizable fluids.
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We may approximate (S15) under the assumption
that |χj | � 1 and see that the final term, represent-
ing the magnetic normal traction is an order of magni-
tude smaller in χ than the third term, representing the
magnetic body force. Hence, we neglect the magnetic
normal traction in this case and approximate µ0H

2
j ∼

B2µ−1
0 (1 +O(χj)) to write the hydrostatic interface pro-

file, z0(r), as

z0(r)− Ω2r2

2g
− χ2 − χ1

ρ2 − ρ1
B(r, z0(r))2

2gµ0
= const. (S16)

As B varies vertically in general, (S16) is an implicit re-
lation for the profile of the interface between two hy-
drostatic rotating fluid layers. In the absence of the
magnetic field, or in the case that the two fluids have
identical magnetic susceptibility, the parabolic profile in
(3) is recovered. The profiles in (S16) and (3) also co-
incide in the no-rotation limit if the magnetic field has
no radial variation, with both profiles being a horizon-
tal plane, z0 = const. Equation (S16) expresses the fact
that the sum of the gravitational potential, Ug, centrifu-
gal potential, Uc, and magnetic potential, Um, of a fluid
element of volume dV , of susceptibility and density χ2

and ρ2 respectively immersed in a fluid of susceptibility
and density χ1 and ρ1 respectively, is constant on the
surface z0(r), where

Ug = (ρ2 − ρ1) gz dV, Uc = 1
2 (ρ2 − ρ1) r2Ω2 dV,

Um = − (χ2 − χ1)B2 dV/(2µ0).

The magnetic body force, fm, may be absorbed into
a modified pressure term, p− χB2/(2µ0). The approach
taken in §II.1 to investigate the Rayleigh-Taylor insta-
bility therefore carries over to the magnetic case almost
entirely unchanged. The equation of motion for each fluid
layer may be written

Duj

Dt
= − 1

ρj
∇
[
pj −

χjB
2

2µ0

]
+g−Ω×(Ω× x)−2Ω×uj ,

(S17)
with (5) unchanged and (6) modified to account for the
background magnetic induction as

pj = p0 − ρj
{
gz − Ω2r2

2
− B2

2µ0

χj

ρj

}

− ερj
{
∂φj
∂t

+
1

4Ω2

∂3φj
∂t3

}
. (S18)

The analysis of §III then follows.

SIII. EXPERIMENTS

In our previous experiments [1] a weak upward mag-
netic force acted on a diamagnetic lower layer of NaCl
aqueous solution due to the interaction of the imposed

Light layer

Dense layer

Stage

Copper cylinder

PTFE bearing

Solenoid

Solenoid center

Magnet

Magnet bore

Slip bearing

Holding pin

Motor
Drive shaft

PTFE buffer

FIG. S1: Experimental arrangement (not to scale). A
gravitationally stable two-layer stratification was

spun-up above the magnet. By removing the holding
pin the system was lowered slowly (∼ 10 mm s−1) into
the magnetic field under its own weight. The motor

rotated the drive shaft about a vertical axis and the slip
ring allowed the stage to descend, whilst being

simultaneously rotated. Arrows indicate the direction of
rotation and descent of the stage. In the first series of
experiments a polytetrafluoroethylene (PTFE) buffer

halted the tank’s descent at a prescribed height so that
thereafter the magnetic field acting on the fluids was

steady.

strong magnetic field with the orbital motion of the elec-
trons in the water molecules [see, e.g., 17]. The down-
ward magnetic force on the paramagnetic upper layer of
MnCl2 aqueous solution was due to the interaction of
the magnetic field with the spins of the Mn2+ ions [see,
e.g., 17] which was stronger than the upward magnetic
force on the water molecules in this layer. As discussed
in §III, these magnetic forces are body forces: the force
per unit volume is given to a close approximation by
fm = χB∇B/µ0, in which χ is a positive quantity for
the paramagnetic fluid and a negative quantity for the
diamagnetic fluid. Note that, in contrast to a ferrofluid,
the magnetic susceptibility of the fluids in the experi-
ments was sufficiently small (the magnitude of the SI vol-
ume susceptibility |χ| ∼ 10−6–10−5) that the magnetic
field generated by the magnetisation of the fluid could
be considered insignificant compared to the applied field
(approximately 1 T).

In modeling the two-fluid system in §SII, we assumed
the conductivity to be zero. In our experiments, since
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we used ionic solutions, the conductivity was finite but
small compared to a fluid metal or plasma for example.
We measured the conductivity to be σ ∼ 1–4 S m−1. The
effect of this small conductivity on the fluids was confined
to introducing a weak, viscous-like damping of the flu-
ids, as we now discuss. Firstly, magnetic fields generated
by electromagnetic induction were negligible compared
to the externally imposed magnetic field. The magnetic
Reynolds number Rem = µ0ULσ gives a measure of the
strength of the magnetic field generated this way. For
the largest length scale, L, and velocity scale, U , in our
experiments, Rem ∼ 10−8–10−7. Secondly, the Lorentz
force, which is the force generated by current-carrying
ions moving through the magnetic field, is weak com-
pared to the Coriolis force. This may be shown by con-
sidering the Elsasser number, a measure of the relative
importance of the Lorentz force to the Coriolis force. The
Elsasser number for our experiments, El = σB2/(ρΩ),
was of the order of 10−2 for rotation rates Ω > 1 rad s−1.
We sought to verify that the conductivity of the fluids
played a negligible role in the experiments by performing
a separate series of experiments using more massive zinc
sulphate ions in the lower layer, replacing the sodium
chloride ions. This was carried out in such a way that
the density of the lower layer remained the same, but the
conductivity was reduced by a factor of approximately
35%; we observed no difference between the experimen-
tal runs using the two different solutions in the lower
layer.

In some cases the relative magnitude of the Lorentz
forces and viscous forces became comparable. The square
of the Hartmann number, B2L2σ/(ρν), a measure of the
relative strength of the Lorentz body force per unit mass
to the viscous diffusion term in the Navier-Stokes equa-
tion was of the order of 1 for the largest length scales
(L ∼ 10−1 m) and lowest viscosities (ν ∼ 10−6 m2 s−1)
we measured. It is known that in some cases the Lorentz
force can act similarly to a viscous force in that it acts to
weakly dampen motion that deviates from solid body ro-
tation [see, e.g., 34]. We therefore investigated the effect
of changing the fluid viscosities by the addition of equal
amounts glycerol to each layer, see §SIII.3, in order to
elucidate the possible side-effects of the magnet in this
limit.

SIII.1. Experimental method

The experimental tank consisted of a
110 mm×110 mm×135 mm perspex box containing
a cylindrical inner tank. For the first series of exper-
iments the inner cylindrical tank had internal radius
45 mm and height 130 mm; the tank’s axis of symmetry
was aligned with the axis of rotation. A volume of 250 ml
colourless brine (NaCl(aq) 0.43 mol l−1) formed the lower,
dense diamagnetic layer of the stratification. The layer
had density ρ2 = 1012.9 ± 1.2 kg m−3. The layer’s mag-
netic susceptibility was χ2 = −9.03 × 10−6 (SI units),
making the layer weakly repelled by the magnetic field.

A lighter, paramagnetic layer of manganese chloride
solution (MnCl2(aq), 0.06 mol l−1) was then floated on
top of this dense layer using standard floatation boat
methods. The lighter upper layer was dyed for visuali-
sation using water-tracing dye (Cole-Parmer 00295-18).
The lighter layer, with density ρ1 = 998.2 ± 0.5 kg m−3,
was filled to a volume slightly greater than 250 ml.
This layer’s magnetic susceptibility was 3.37 × 10−6

(SI units), making the upper layer weakly attracted by
the magnetic field. The solutions were prepared from
distilled deionized water that was allowed to come up to
the ambient temperature of the laboratory before use.
The preparation of the stratification took approximately
20 minutes to complete. The magnetic susceptibility
was measured using a Guoy balance. The conductivity
of the lower layer was measured to be in the range
σ ≈ 3 – 4 S m−1 and the conductivity of the upper layer
was measured to be in the range σ ≈ 1.5 – 2 S m−1. The
temperature of the fluids was in the range T = 22± 2◦C
over the run of experiments, with a kinematic viscosity
of approximately ν = 1.0 × 10−6 m2 s−1. The aspect
ratio of this series experiments was δ ≈ 0.87.

The upper layer was floated on top of the lower layer
and then a clear perspex tank lid was submerged into
the upper layer, avoiding trapping air bubbles. The lid
was lowered into a position such that, between the tank
base and lid, the fluid layers were of equal volume and
therefore equal height, approximately 39 mm. The cavity
between the inner cylinder and the square tank was then
filled with distilled water so that when viewed square-on,
lensing effects were minimised. This gravitationally sta-
ble two-layer stratification was then placed on the experi-
mental stage (see schematic in Fig. S1). With the holding
pin in place the tank was spun-up such that both layers
were in solid body rotation, which, depending on the cho-
sen angular velocity, typically took between 20 minutes
and 1 hour. This cautious spin-up time, comparable to
the viscous spin-up timescale d2/ν, and long compared

to the Ekman spin-up time, Ek−1/2/Ω, where the Ek-
man number Ek = ν/(Ωd2), was due to the presence
of the interface modifying the Ekman pumping with be-
havior comparable to that of a free surface [see e.g., 4,
27]. The angular velocity was progressively ramped up
to the final, target rotation rate. Typical ramping rates
were approximately 2× 10−3 rad s−2. A series of control
experiments with interfacial tracer particles were used to
determine the spin-up times for the various rotation rates
employed.

The experimental stage was mounted on a copper
cylinder (see figure S1). After the holding pin was
removed the cylinder descended smoothly through the
magnet’s bore under its own weight. To maintain a
straight vertical descent and prevent precession a PTFE
bearing was placed at the top of the magnet bore. The
constant speed of descent was governed by the strength
of the induced eddy currents in the copper cylinder. De-
scent speeds were approximately 9–11 mm s−1. A weak
dependence of the descent speed on rotation rate, owing
to friction with the slip bearing, was corrected for by the
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FIG. S2: Contours of the apparent Atwood number
(solid) and magnetic field strength (dotted, measured in
Tesla) for the system. The aspect ratio of the image is
1:1. The dashed lines are the magnetic field lines with

arrows indicating the direction of the magnetic field, B.
The grey region shows the range of curvatures of the

initial interface for rotation rates in the range
Ω ∈ [0, 9.06] rad s−1.

addition of small brass weights to the top of the outer
experimental tank. The copper cylinder was attached at
its base to a drive shaft of narrower diameter that had a
key shape cross-section. The drive shaft passed through
a slip-bearing with a key-hole shape cut through its cen-
ter. An off-axis motor was used to drive the slip bear-
ing around such that the drive shaft dropped smoothly
through the bearing whilst simultaneously rotating.

The experiments were lit using an array of white LEDs
and were recorded using a high speed digital video cam-
era (1920×1080 px, 60–240 Hz). Inevitably both the pro-
cess of floating on the upper layer and the spin up lead
to some diffusion of the interface. The thickness of the
diffuse layer was measured as being of the order of 2 mm
at the time the holding pin was released.

Based on the concentration of MnCl2 in the upper
layer, NaCl in the lower layer, and the strength of the
magnetic field (dotted contours, Fig. S2, it was possi-
ble to calculate the ‘apparent Atwood number’, between
the two fluids a priori and hence anticipate the height at
which we might expect the Rayleigh-Taylor instability to
begin to develop. Fig. S2 shows the contours of appar-
ent Atwood number for typical experimental parameters.
As a result of the spatial variation of the magnetic field
strength, the contours of apparent Atwood number are
curved in the opposite direction (convex) to the curve
of the interface between the fluid layers (concave). This
means that as the tank was lowered into the magnetic
field, the Atwood number of fluid at the interface on the

axis of the tank became negative before fluid at the inter-
face further from axis, i.e., the change of stability process
does not quite occur uniformly across the interface. This
undesirable effect was more pronounced the higher the
rotation rate was. Though the region of the interface at
the center of the tank becomes unstable slightly before
the regions at the edge, there is no clear indication of this
in our observations: the instability, to a good approxima-
tion, is initiated across the whole extent of the tank si-
multaneously. For the purposes of comparison, the range
of parabolic interface profiles used in the experiments is
shown in Fig. S2 in gray. The interface has a maximum
deflection from horizontal on the order of 6 mm, whereas
the lines of equipotential deflect from the horizontal on
the order of 2.5 mm across the width of the experiment.
For further details of the experimental method see [1]

The measured velocity and estimated wavelength for
each experiment shown in Fig. 9 is tabluated in Table SI,
together with the attained Reynolds number and Rossby
number in each experiment.

SIII.2. Structure of the instability

In the second series of experiments the effect that the
rotation had on the structure of the developing instability
was observed. For this series, a slightly wider inner tank
was used and the PTFE buffer was removed. The inner
tank was formed by wrapping transparent cellulose ac-
etate around a perspex circular disc that formed the base.
The internal radius was 53.5 mm. A volume of 300 ml
of dyed brine (NaCl(aq), 25 g l−1, ρ = 1.014 g cm−3) was
filled to a depth of approximately 33 mm. As before, the
brine was prepared from distilled deionized water that
was allowed to come up to the temperature of the lab-
oratory before use. The lower layer was dyed with red
and blue water-tracing dyes (Cole-Parmer 00295-18 and
00295-16) to make the layer opaque. To this, a small
amount of fluorescein sodium salt (Sigma-Aldrich F6377)
was added so that when the layer was illuminated most
of the visual signal was the fluorescence of the inter-
face. This dye technique has previously been used by
Dalziel [7], Davies-Wykes and Dalziel [8]. An upper,
lighter layer of fluid was then floated on top. The upper
layer was made paramagnetic by adding a manganese salt
(MnCl2(aq), 12 g l−1, ρ = 1.008 g cm−3) but no dye, and
was therefore transparent. The upper layer was filled to
a depth slightly greater than 33 mm. The lid of the tank
was formed by inserting another perspex disc into the
upper layer, ensuring that no air bubbles were trapped.
The disc was positioned such that the layer volumes, and
hence depths were equal at approximately 33 mm each.
This procedure gave an aspect ratio for the experiment of
δ ≈ 0.62. As with the first series of experiments, floating
the upper layer on and inserting the lid took approxi-
mately 20 minutes to complete. The cavity between the
outer box and the inner cylinder was filled with clear
distilled water. The layers had magnetic susceptibilities
of χ1 = 3.37 × 10−6 (SI units) in the upper layer and
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Experiment Rotation rate Front velocity Length scale∗ Reynolds number Rossby number
Ω (rad s−1) U (mm s−1) L (mm) UL/ν U/(LΩ)

1 0.00 9.3 21.9 205 ∞
2 0.00 11.4 21.9 250 ∞
3 0.44 7.0 19.8 140 0.81

4 1.01 13.1 13.9 183 0.94

5 1.52 11.3 9.6 109 0.77

6 1.82 10.0 8.0 80 0.69

7 2.01 10.4 7.3 76 0.71

8 2.52 7.6 6.2 47 0.49

9 3.08 9.6 5.6 54 0.56

10 3.58 9.5 5.4 52 0.49

11 3.67 8.8 5.4 47 0.44

12 4.08 8.1 5.3 43 0.37

13 4.59 8.9 5.3 47 0.36

14 5.10 7.8 5.3 41 0.29

15 5.58 6.9 5.3 36 0.23

16 5.64 7.8 5.3 41 0.26

17 5.99 6.7 5.2 35 0.21

18 7.01 6.2 5.2 32 0.17

19 8.07 4.1 5.2 22 0.10

20 9.06 4.1 5.2 21 0.09

TABLE SI: Measurements and key nondimensional quantities for the 20 experimental runs in §IV.2. Front velocity
is the approximately constant velocity attained after the initial growth of the instability, length scale is the

dominant length scale of the instability. ∗The length scales were not directly measured, but estimated using the fit
shown in Fig. 7, justified in §IV.1.

χ2 = −9.03× 10−6 (SI units) in the lower layer.
The camera was focussed on a plan view of the inter-

face of the two-layer system by use of a mirror positioned
above the experiment and angled at 45◦ to the vertical.
The camera’s position was fixed throughout the experi-
ment. Prior to analysis the rotation of the experimental
images was removed digitally, as if the camera had ro-
tated with the tank.

SIII.3. Effects of fluid viscosity

The effect of the viscosity is to suppress growth of
small-scale structures and therefore select a preferred
wavelength for growth. Since the fluid is both rotat-
ing and viscous we might anticipate that above a certain
critical rotation rate large structure are inhibited by the
rotation and small structures are inhibited by viscosity.
Our observation is that this inhibition selects a preferred
wavelength. With reference to Fig. 7, for Ω <∼ 4 rad s−1,
structures larger than 6 mm appear, but above this crit-
ical rotation rate, structures on this scale are inhibited.

To test the hypothesis that the observed length scale
above the critical rotation rate depends crucially upon
the fluid viscosity, a third set of experiments were con-
ducted keeping the rotation rate fixed (Ω = 7.8 ±
0.1 rad s−1), but varying the fluid viscosity. The vis-
cosity of the fluid was altered by the addition of glyc-

erol to each layer. The amount added to each layer
was such that the viscosity of the two layers was equal
for a given experiment. The viscosity was varied from
µw = 1.00 × 10−2 g cm−1 s−1, the viscosity of water at
room temperature, to µ = 26.73× 10−2 g cm−1 s−1. The
density difference and magnetic susceptibility difference
between the two layers were maintained at their previous
values. All other parameters from the second series of ex-
periments were maintained too, including the dimensions
of the experimental arrangement.

The variation of the observed length scale of instability
with viscosity is shown in Fig. S3. The data points are
the white circles. It is apparent that as the viscosity of
the two layers is increased the observed length scale in-
creases. In the most viscous case shown the observed
length scale is approximately 18 mm compared to the
6 mm length scale observed in the least viscous case. It
can also be seen that in the most viscous case there ap-
pears to be a strong wall effect (Fig. S3 insert). The ro-
tation rate chosen for the experiments shown in Fig. S3,
Ω = 7.8 ± 0.1 rad s−1, was selected as Fig. 7 indicates
that this puts the experiments in the regime where the
observed wavelength has asymptoted to 6 mm. In the
absence of viscosity it might have been anticipated that
the wavelength data would asymptote to 0 mm. This se-
ries of experiments, varying the fluid viscosity, was to
designed to investigate and explain the observed finite
asymptote (≈ 6 mm for Ω >∼ 4 rad s−1) in Fig. 7. It can
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FIG. S3: The dominant scales of perturbation after the
onset of instability. Error bars are associated with

goodness-of-fit from the autocorrelation algorithm. It
can be seen that as the viscosity is increased the

dominant lengthscale of the instability increases. An
increasing wall effect is observed as the viscosity of the

fluid layers is increased. The data suggests that the
limit as µ→ 0 is non-zero indicating possible

magnetically induced apparent viscosity in the fluid.

be seen from Fig. S3 that if the viscosity of the fluid lay-
ers had been increased, then, at least at Ω = 7.8 rad s−1,
the observed wavelength would have increased, and the
horizontal asymptote in Fig. 7 would have been raised.
Fig. S3 also suggests that were it possible to reduce the
fluid viscosity to zero, the observed wavelength of insta-
bility may not have tended to zero. One explanation for
this is that at this low viscous limit the relative impor-
tance of viscous diffusion becomes small compared to the
effect of the Lorentz force, i.e., the Hartmann number
becomes large, and we may have observed an effective
increase in viscosity due to the magnetic field.


