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Abstract: The SpyCatcher-SpyTag system was developed seven years ago as a method for protein
ligation. It is based on a modified domain from a Streptococcus pyogenes surface protein (SpyCatcher),
which recognizes a cognate 13-amino-acid peptide (SpyTag). Upon recognition, the two form a covalent
isopeptide bond between the side chains of a lysine in SpyCatcher and an aspartate in SpyTag. This
technology has been used, among other applications, to create covalently stabilized multi-protein
complexes, for modular vaccine production, and to label proteins (e.g., for microscopy). The SpyTag
system is versatile as the tag is a short, unfolded peptide that can be genetically fused to exposed
positions in target proteins; similarly, SpyCatcher can be fused to reporter proteins such as GFP, and to
epitope or purification tags. Additionally, an orthogonal system called SnoopTag-SnoopCatcher has
been developed from an S. pneumoniae pilin that can be combined with SpyCatcher-SpyTag to produce
protein fusions with multiple components. Furthermore, tripartite applications have been produced
from both systems allowing the fusion of two peptides by a separate, catalytically active protein unit,
SpyLigase or SnoopLigase. Here, we review the current state of the SpyCatcher-SpyTag and related
technologies, with a particular emphasis on their use in vaccine development and in determining outer
membrane protein localization and topology of surface proteins in bacteria.

Keywords: autotransporter; covalent labeling; bacterial surface protein; SpyCatcher; topology mapping;
virulence factor

1. Introduction

The peptide bond is essential to biology. This secondary amide bond is produced by the
condensation of the carboxyl group of one amino acid residue with the α-amino group of the following
residue and results in the polymerization of amino acids to produce polypeptides. This central reaction
is catalyzed by the ribosome and the sequence of the polypeptide chain is defined by the genetic code.
In proteins, the peptide bond is sometimes referred to as the eupeptide bond. In addition, peptide
bonds can be found in non-ribosomal peptides, which are secondary metabolites such as antibiotics
produced by non-ribosomal peptide synthases [1]. A minority of proteins contain a second class of
peptide bonds, referred to as isopeptide bonds. This is an amide bond similar to the peptide bond,
but it is produced by the condensation of an amine group with a carboxyl group or a primary amide
group located in amino acid side chains, rather than the main chain-building amino or carboxyl groups
(Figure 1A).

In eukaryotes, the most prevalent example of isopeptide bond formation is the ubiquitination of
proteins targeted for degradation by the 26S proteasome [2]. The isopeptide is formed by the C-terminal
carboxyl group of ubiquitin and the side-chain amine of a lysine residue in the target protein. This reaction
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is catalyzed by E3 enzymes, or ubiquitin-protein ligases, which also impart specificity to the system [3].
Similarly, members of the small ubiquitin-like modifiers (SUMO) family, which regulate a number of
cellular processes, are ligated to their target proteins via an isopeptide bond [4].

In bacteria, isopeptides are mostly known from surface proteins of Gram-positive bacteria.
Two classes of proteins have notable isopeptide bonds: the microbial surface components recognizing
adhesive matrix molecules (MSCRAMMs) and pili [5]. In pili, pilin subunits are covalently bound to
each other via an intermolecular isopeptide bond between the carboxyl group of a C-terminal threonine
and the ε-amine of a lysine in the next subunit, a reaction catalyzed by a pilin-specific sortase [6].
In MSCRAMMs and some pilins, isopeptides are formed spontaneously between residues within
the same domain. These domains belong to the immunoglobulin fold superfamily. Isopeptide bond
formation increases the stability of the proteins or pili and may contribute to stronger binding to
ligands by MSCRAMMs, since in some cases the isopeptide only forms upon ligand binding to lock
the protein in a bound conformation [7].

The SpyCatcher-SpyTag system was developed by the Howarth laboratory based on the internal
isopeptide bond of the CnaB2 domain of FbaB, a fibronectin-binding MSCRAMM and virulence factor
of Streptococcus pyogenes [8,9]. An internal isopeptide bond forms spontaneously in this domain between
the ε-amine of lysine K31 and the side chain carboxyl of aspartic acid D117. The reaction is catalyzed by
the spatially adjacent glutamate E77 (Figure 1B). The resulting isopeptide bond confers high stability to
the CnaB2 domain [10]. The CnaB2 domain can be stably split into two components: a larger, incomplete
immunoglobulin-like domain (termed SpyCatcher) of 138 residues (15 kDa) and a shorter peptide
(SpyTag) of 13 residues (see Table 1 for peptide sequences). SpyCatcher contains the reactive lysine
and catalytic glutamate, whereas SpyTag includes the reactive aspartate. The two components can still
recognize each other with high affinity (0.2 µM) and the isopeptide can form between SpyCatcher and
SpyTag to form a covalently bound complex (Figure 1C). Under experimental conditions relevant to life
science research (room temperature, dilute protein concentrations), the reaction rates allow the bonds
to form at high efficiency within minutes [9]. SpyTag in particular is equivalent in size to a number of
epitope tags and can be genetically fused to a number of proteins and is able to react with SpyCatcher
when inserted at the N- or C-termini of target proteins, as well as internal sites [9,11]. SpyCatcher itself
can also be produced as a fusion protein, allowing the formation of covalently bonded protein partners
that might otherwise be difficult to produce as protein fusions [12–14].

A similar system has been developed based on another Gram-positive surface protein, the pilus
adhesin RrgA of S. pneumoniae [15,16]. The D4 domain of this protein is stabilized by an isopeptide
forming between a lysine (K742) and an asparagine (N854), catalyzed by the spatially adjacent E803 [15]
(Figure 1D). This domain was split into a scaffold protein called SnoopCatcher and a 12-residue
peptide termed SnoopTag, which can spontaneously form a covalent isopeptide bond upon mixing [16]
(Figure 1E). In contrast to SpyCatcher-SpyTag, the reactive lysine is present in SnoopTag and the
asparagine in SnoopCatcher. This system is orthogonal to SpyCatcher-SpyTag; that is, SnoopCatcher
does not react with SpyTag and SpyCatcher does not react with SnoopTag. This allows the use of both
systems simultaneously to produce “polyproteams,” programmed modular polyproteins, for use in
biotechnological applications [16].

The Howarth lab further modified these technologies by making tripartite systems, where
the isopeptide-forming lysine and aspartate/asparagine are located on separate peptides, and the
catalytic glutamate is present on a larger scaffold protein [17]. This was first attempted with the
SpyCatcher system to produce SpyLigase. Here, a second peptide containing the reactive lysine (KTag)
was separated from SpyCatcher, which itself was modified to produce the stable SpyLigase protein
containing the catalytic glutamate [18]. When SpyLigase was mixed with two proteins containing one of
the reactive peptides each, SpyLigase was able to catalyze the fusion of the two tags. However, although
SpyLigase could mediate the fusion of KTag and SpyTag located at both N- and C-terminal and even
internal positions, the reactions had a ~50% efficiency at best and were dependent on specific buffer
conditions and low temperature [16]. In contrast, the recently developed SnoopLigase system appears
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more robust and efficient [19]. SnoopLigase was engineered similarly to SpyLigase, and catalyzes the
isopeptide formation between the lysine of a modified SnoopTag (SnoopTagJr) and the asparagine
in a second peptide termed DogTag (Figure 1F). This system can have efficiencies over 95% that are
less sensitive to temperature and reaction conditions than SpyLigase. Furthermore, as SnoopTagJr
and DogTag have relatively high affinity for SnoopLigase, immobilizing SnoopLigase allows washing
away unconjugated reactants followed by elution of essentially pure fusion products [19]. The various
Catcher-Tag systems and their development are summarized in Table 1.

Below, we review the various applications of the SpyCatcher/SnoopCatcher systems in biotechnology.
Our emphasis will be on using this methodology to label surface-exposed proteins, especially for mapping
the topology of outer membrane-embedded virulence factors of Gram-negative bacteria.
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Figure 1. The SpyCatcher-SpyTag, SnoopCatcher-SnoopTag, and SnoopLigase systems. (A) Formation
of an isopeptide bond. The primary amine of a lysine side chain condenses with either the side-chain
amide of an asparagine (upper reaction) or the side-chain carboxyl of an aspartate (lower reaction) to
produce the isopeptide bond, releasing either ammonia or water, respectively; (B) the isopeptide bond
between SpyCatcher-SpyTag. The isopeptide formed by the reactive lysine (K31) in SpyCatcher and
aspartate (D117) in SpyTag is shown in green, and the catalytic glutamate (E77) in cyan; (C) crystal
structure of SpyCatcher-SpyTag. SpyCatcher is in blue and SpyTag is in magenta. The structures shown
in panels b and c are based on the Protein Data Bank (PDB) entry 4MLI [20]; (D) the isopeptide bond
between SnoopCatcher-SnoopTag, formed by lysine (K742) in SnoopTag and the asparagine (N854) in
SnoopCatcher, is shown in red, and the catalytic glutamate (E803) is in blue; (E) crystal structure of
SnoopCatcher-SnoopTag. SnoopCatcher is in yellow and SnoopTag in green. The structures shown
in panels d and e are based on the RrgA D4 domain structure (PDB ID: 2WW8) [15]; (F) schematic of
the function of SnoopLigase. A protein (in brown) containing SnoopTagJr (ST, in orange) and another
protein (purple) with DogTag (DT, green) are mixed in the presence of SnoopLigase (yellow). The tags
bind to SnoopLigase, which contains the catalytic glutamate (blue dot) and catalyzes the formation
of an isopeptide between SnoopTagJr and DogTag (red dot). The ligated proteins can then be eluted
from SnoopLigase.
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Table 1. Summary of Catcher-Tag technologies and their development.

Catcher Tag Tag Sequence Description Publication Year Reference

SpyCatcher SpyTag AHIVMVDAYKPTK 1 Original Catcher-Tag
technology. 2012 [9]

SpyCatcher
∆N1∆C1 SpyTag AHIVMVDAYKPTK 1

Minimal SpyCatcher construct
that still binds efficiently to

SpyTag.
2014 [20]

SpyLigase 2 SpyTag AHIVMVDAYKPTK 1 Rationally engineered system
for ligating two peptides. 2014 [18]

KTag ATHIKFSKRD

SnoopCatcher SnoopTag KLGDIEFIKVNK 1 Orthogonal technology to
SpyCatcher. 2016 [16]

SpyCatcher002 SpyTag002 VPTIVMVDAYKRYK 1 Improved SpyCatcher-SpyTag
system with faster reaction rate. 2017 [21]

SnoopLigase 2 SnoopTagJr KLGSIEFIKVNK 1 Rationally engineered system
for ligating two peptides. 2018 [19]

DogTag DIPATYEFTDGKHYITNEPIPPK

SpyDock SpyTag002 VPTIVMVDAYKRYK 1
Protein affinity purification
system (Spy&Go) based on

SpyCatcher.
2019 [22]

1 The reactive residues are shown in bold. 2 SpyLigase and SnoopLigase have two target peptides.

2. Applications of the SpyCatcher-SpyTag System

Being a quick and reliable coupling tool for irreversible peptide-protein ligation, the SpyTag-SpyCatcher
system is ideal for a wide range of applications, ranging from increasing protein stability to antigen delivery
during vaccination [14,23]. Before focusing on the use of the SpyTag-SpyCatcher system in the investigation
of bacterial virulence factors, we give a short overview of those applications. For more detailed information,
a list of publications and patents using the SpyTag-SpyCatcher and related technologies is accessible at the
SpyInfo web page (available online: https://www.bioch.ox.ac.uk/howarth/info.htm) and the corresponding
sequences and expression routes are listed in the SpyBank database [24].

A major application of the SpyTag-SpyCatcher system is the formation of so-called SpyRings
in order to increase the intrinsic resilience of proteins to denaturation. SpyRings are generated by
circularization of a single protein, which is accomplished by fusing an N-terminal SpyTag with
a C-terminal SpyCatcher, or vice versa (Figure 2A). Enzyme circularization increases resistance to
hyperthermal denaturation and aggregation, as well as alkali tolerance of individual enzymes without
a loss in enzymatic activity [25–29]. Enzymes with a short distance between termini (<15 Å), and
an active site which is not in direct proximity to one of the termini, are considered ideal candidates for
protein circularization [30]. However, efficient SpyRing circularization and increased thermal stability
have been shown for proteins where the termini are even farther apart [28].

Another frequently used application for the SpyCatcher-SpyTag system is the decoration of protein
hydrogels (Figure 2B). Hydrogels have found application, for example as an artificial extracellular
matrix material in medicine [31], tissue engineering [32,33], and cell culturing [34]. Hydrogels are
polymeric materials engineered to resemble the extracellular environment of specific tissues with
defined functional and structural properties. They have been used for decades as molecule delivery
devices and as carriers for cells in tissue engineering due to their ability to mimic aspects of the
native cellular environment [35]. However, hydrogels fail to fully imitate the complexity of biological
systems. Fusing SpyCatcher to the polymeric material used in hydrogel synthesis allows the decoration
with SpyTagged proteins post-hydrogelation to mimic specific microenvironments [36–39]. Thus,
the SpyTag-SpyCatcher system is used as a quick and simple molecular tool for the simultaneous
incorporation and presentation of different target molecules into and on hydrogels, thereby avoiding
an otherwise laborious engineering process.

The SpyTag-SpyCatcher system has also been used for the modular assembly of proteins onto
nanoparticles [40] (Figure 2C) and bacterial outer membrane vesicles [41] (Figure 2D; see also Section 3.3).
The same system can be used for the in vivo encapsulation of enzymes fused to phage capsid proteins
in order to create a protein nanocompartment [42] (Figure 2E) and for the decoration of virus-like

https://www.bioch.ox.ac.uk/howarth/info.htm
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particles (VLPs) for antigen delivery to the immune system [43,44] (Figure 2F; see also Section 3.3),
while successfully preserving the structure and the function of the assembled proteins.
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Figure 2. Applications of the SpyCatcher-SpyTag system. (A) SpyRing: SpyCatcher and SpyTag
are fused to the terminal ends of the protein of interest resulting in protein cyclization and thereby
conferring an increased resilience to denaturation; (B) post-hydrogelation decoration of protein
hydrogels: SpyCatcher is fused to the polymeric material used in hydrogel synthesis, which allows
the posthydrogelation decoration with proteins of interest fused to SpyTag; (C–F): (C) bioconjugation
of target proteins to nanoparticles, (D) outer membrane vesicles, (E) phage capsid proteins to create
a proteinaceous nanocompartment, and (F) virus-like particles; (G) SpyCLIP: SpyTagged RNA-binding
protein interacts with RNA and is covalently attached to beads with fused SpyCatcher for use in
pull-down assays; (H) fluorescent protein labeling for use, for example, in microscopy (ST represents
SpyTag sequence); (I) artificial multi-enzyme nanodevices for increased efficiency, stability, and
reusability. Schematic of mesh-like nanodevice is shown on the left and an enzymatic reaction scheme
on the right. S represents substrate; P represents product; A and B represent cofactors.
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Recently, the SpyTag-SpyCatcher system was used for the characterization of protein–RNA
interactions as an alternative for ultraviolet (UV) crosslinking and immunoprecipitation (CLIP) [45].
The CLIP method relies on the limited specificity of antibody–antigen interactions which cannot
withstand harsh washing conditions resulting in insufficient purity of ribonucleoprotein complexes
after immunoprecipitation. Therefore, additional gel purification steps are necessary to further purify
these complexes, which results in loss of protein. The disadvantages of CLIP are the labor-intensive
gel purification steps as well as a high number of false-positive signals due to non-specific interactions.
In comparison, the SpyTag-SpyCatcher technology allows the method to be performed with beads, skips
the gel purification steps altogether, and withstands harsh washing steps, thus reducing non-specific
interactions. The improved method using the Spy technology was termed SpyCLIP and requires
SpyCatcher being fused to beads for immunoprecipitation and fusion proteins of the protein of
interest, in this case the RNA-binding protein, to SpyTag [45] (Figure 2G). UV-crosslinking and affinity
purification (uvCLAP) [46] as well as gel-omitted ligation-dependent CLIP (GoldCLIP) [47], using the
covalent HaloTag-HaloLink purification system for immunoprecipitation [48], are both improvements
to the traditional CLIP protocol, omitting the labor-intensive gel purification steps. The advantage
of the SpyCatcher system over those methods is the ability of SpyTag-SpyCatcher to withstand even
harsher washing conditions than the biotin-streptavidin coupling used during uvCLAP, and the small
size of SpyTag compared to the 33 kDa protein tag used in GoldCLIP.

The system has also found increasing usage in conventional and super-resolution microscopy [49–51]
by providing an easy and reliable way to label a SpyTagged protein with SpyCatcher coupled to
a fluorescent dye (Figure 2H). Additionally, the limited accessibility of large antibodies, classically used
for detection of epitope-tagged molecules, can be avoided by using the relatively small SpyCatcher
protein during the detection of SpyTagged targets.

The Spy technology can also be used for the targeting of chemically synthesized voltage-sensitive
dyes to specific cells for optical measurement of voltage dynamics in living cells. To this end, SpyTag is
linked via a polyethylene linker to voltage-sensitive dyes while expressing SpyCatcher on the target
cells. These SpyTag–dye conjugates, termed Voltage Spy, display improved targeting, good voltage
sensitivity, and fast-response kinetics [52].

The system can also be used for the spatial and functional coordination of enzyme functions,
creating a microenvironment normally associated with biological compartmentalization and conferring
some of the same benefits (e.g., a local increase in enzyme and metabolite concentrations). Linkage
of SpyTag with SpyCatcher is utilized for enzyme organization, allowing construction of artificial
multi-enzyme nanodevices with a controlled spatial arrangement for increased efficiency of enzyme
cascades while maintaining or even increasing stability and reusability of biocatalysts [53] (Figure 2I).

3. Using SpyCatcher-SpyTag to Investigate Bacterial Virulence Factors

The SpyCatcher-SpyTag system has recently been used for investigating bacterial virulence factors.
So far, these have been limited to studying surface proteins of Gram-negative bacteria, especially
autotransporter proteins. Autotransporters, also called type V secretion systems, are a widespread
family of secreted proteins from Gram-negative bacteria, and many of these mediate virulence-related
functions [54]. These proteins, which are divided into several subclasses (type Va through type Ve),
have an outer membrane-embedded β-barrel domain and an extracellular region or passenger, which
harbors the specific activity of each protein. Although SpyCatcher-SpyTag has been used mostly for
studying autotransporters, the methods described below would be applicable to other surface-exposed
proteins, both in Gram-negative and Gram-positive bacteria.

The cell surface of Gram-negative bacteria is represented by the outer membrane (OM), which
is a complex asymmetric lipid bilayer. The extracellular face of the OM is mainly composed of
lipopolysaccharides and outer membrane proteins that include several common virulence factors responsible
for adhesion, mobility, and secretion, such as autotransporter adhesins, flagella, and type I-VIII secretion
systems, among others [55,56]. Studying the expression, secretion, migration, and interactions of OM
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proteins often requires labeling by reporter proteins or other fluorophores. Labeling OM proteins,
however, is challenging. Many fluorescent reporter proteins fail to mature in the periplasm [57]; thus,
genetic fusions with fluorescent proteins are limited to a handful of options [58–61]. An alternative
approach is non-covalent affinity-based labeling by using antibody–reporter protein fusions, affinity tags,
or other high-affinity interactions, for example, colicins ColE9 and ColIa for labeling of the vitamin B12
transporter BtuB [62]. Alternatively, labeling methods using small organic molecules include amine-reactive
fluorescence labeling [63,64], cysteine-reactive labeling [65], or site-specific labeling with unnatural amino
acids, and tag-specific labeling [66,67]. Each of these techniques, however, has shortcomings. Non-covalent
labeling requires high (nM) affinities for the label to remain associated with its target for a significant
amount of time, which often makes such labeling unsuitable for time-resolved imaging on the minute scale.
Small-molecule labeling often requires harsh treatment of the cells with reactive molecules, and site-specific
orthogonal labeling requires co-expression of additional OM proteins that can disturb the system. In this
section, we present a few recent examples showing how the SpyCatcher system can overcome many of
these challenges by covalently labeling OM-bound virulence factors with high specificity, both with the
purpose of studying the virulence factors and of exploiting their properties in vaccine development.

3.1. Using SpyCatcher to Investigate Membrane Protein Topology and Secretion

Trimeric autotransporter adhesins (TAAs), or type Vc secretion systems, constitute a group of
surface-displayed virulence factors in Gram-negative bacteria that are responsible for adhesion to
organic and inorganic surfaces. The prototypical TAA is Yersinia adhesin A (YadA), which consists of
a C-terminal transmembrane β-barrel domain, where three protomers form a 12-stranded β-barrel, and
an N-terminal trimeric passenger that is translocated through the β-barrel to the bacterial surface [68].
Once the passenger is translocated, it adopts a lollipop-like structure, forming a fibrous trimeric
coiled-coil stalk that ends in an N-terminal globular head domain, responsible for adhesion and
autoaggregation (Figure 3A). Autotransporters belonging to the type Va and Ve secretion systems
initiate their translocation process via a hairpin intermediate, meaning that the part of the passenger
most proximal to the β-barrel is initially inserted into the pore and then exported in a hairpin-like loop
from the β-barrel until the entire passenger is outside the cell [69,70].
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In a recent study, we investigated whether the hairpin model also holds true for TAAs using
YadA as a model system, and aided by the SpyCatcher-SpyTag technology [13]. Earlier studies had
identified a flexible region at the start of the coiled coil embedded within the lumen of the β-barrel,
termed the ASSA region, due to the sequence consisting of alanines and serines. The ASSA region was
hypothesized to be important for the formation of the hairpin [72]. To test this hypothesis, a truncated
YadA construct was used, containing only theβ-barrel and a small part of the passenger, termed YadAM
(for YadA membrane anchor; see Figure 3A). Single proline substitutions were introduced to the ASSA
region to probe its importance for translocation. Prolines are known secondary structure disruptors
due to their rigid backbone, and we expected the substitutions to disrupt the flexible ASSA region
sufficiently to stall the autotransporter process and trap the N-termini in the periplasm. To test this,
a representative mutant, YadAMA354P, was chosen for further studies, and a SpyTag was inserted in the
wild-type YadAM and YadAMA354P constructs at the N-terminus of the mature proteins, following the
signal peptide required for secretion. For easy detection, we fused purified SpyCatcher fused to sfGFP
(superfolder green fluorescent protein). Escherichia coli cells expressing the different constructs were
incubated with SpyCatcher-sfGFP (that is too large to penetrate the OM), allowing the SpyCatcher
domain to bind to the exported SpyTags presented on the bacterial surface, but not to any stalled
intermediates where the SpyTags would still be located in the periplasm. Bacterial cells producing the
wild-type construct displayed higher fluorescence compared with cells producing the A354P mutant,
indicating that the mutation was interfering with secretion of the passenger domain [13]. The effect
of the A354P mutation on the surface topology of YadA was further investigated by isolating OM
fractions of the two constructs after SpyCatcher-sfGFP treatment and analyzing them by semi-native
SDS-PAGE (i.e., without heating the samples beforehand) (Figure 4A). GFP is stable in SDS at ambient
temperatures [73], allowing instant visualization of GFP-containing bands by in-gel fluorescence
under blue light. The gel showed a ladder-like pattern of SpyTag-YadAM complexes bound to 1–3
SpyCatcher-GFP molecules, corresponding to the number of strands exported to the bacterial surface
(Figures 3B and 4A). Comparison of the band intensities indicates that the majority of YadAM exports all
three passengers, whereas YadAMA354P mainly exports 1–2 SpyTags. These experiments demonstrated
that the proline substitution is a partially stalled intermediate where one or two passenger strands are
exported, but not a fully blocked autotransport intermediate.

As an alternative to using reporter molecules such as GFP to study the surface topology of OM
proteins, the binding of SpyCatcher alone can be utilized for assessing surface exposure. Because
SpyCatcher forms a covalent bond with SpyTag, the added molecular weight of SpyCatcher causes
a change in electrophoretic mobility, giving a shift of 16 kDa that can be observed either by Coomassie
staining or Western blotting. As an example, we studied the surface exposure of the full-length,
SpyTagged YadA construct. YadA was treated with SpyCatcher alone (i.e., with no fusion partner) and
compared with YadA treated with an inactive SpyCatcher, where the catalytic glutamate was changed
to glutamine (SpyCatcherEQ), by SDS-PAGE. In this example, unlabeled YadA remains trimeric even
when heated to 95 ◦C and is seen as a single band at 200 kDa [74]. By contrast, the sample treated with
active SpyCatcher forms a ladder-like pattern corresponding to YadA alone and YadA plus 1–3 bound
SpyCatchers (Figure 4B). The experiments with truncated and full-length YadA demonstrate how
SpyCatcher can readily bind to SpyTags located in close proximity to the bacterial surface, as shown
for the YadAM constructs, as well as for the more exposed SpyTag protruding far from the surface
located on the full-length protein. Future work will determine whether this technology is also suitable
for detecting OM proteins without protruding domains, for example, where SpyTag is inserted into the
loops of transmembrane β-barrel domains.
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Figure 4. SpyCatcher assays with YadA. (A) Semi-native SDS-PAGE of OM preparations of wild-type
SpyTag-YadAM and SpyTag-YadAMA354P after treatment with SpyCatcher-sfGFP, visualized under
blue light. The ladder-like pattern indicates 1–3 bound SpyCatcher-sfGFP molecules. The gel shown is
based on results from [13]. The wild-type YadAM binds mainly three SpyCatcher-sfGFP molecules,
demonstrating full surface exposure of the N-terminal SpyTags, whereas the A354P mutant mainly binds
to 1–2 SpyCatcher-sfGFP molecules. Note that YadAMA354P migrates anomalously compared with the
wild-type. A schematic of the species visible in the gel is given on the side: SpyCatcher-sfGFP in green
and YadAM monomers in red, blue, and yellow. vc represents vector control; (B) SDS-PAGE of OM
preparations of full-length, trimeric SpyTag-YadA (~200 kDa) treated with the inactive SpyCatcherEQ

and normal SpyCatcher, stained with Coomassie blue. The SpyCatcher-treated SpyTag-YadA shows
a similar ladder-like pattern as in panel a, corresponding to the change in electrophoretic mobility as
1–3 SpyCatchers are bound.

3.2. Using SpyCatcher to Investigate Membrane Dynamics

The OM of Gram-negative bacteria consists of a mixture of OM proteins, lipopolysaccharides,
and phospholipids. Both OM proteins and lipopolysaccharides are inserted into the OM in localized
patches around the cell center where they diffuse to form a uniform distribution across the bacterial
surface [75]. When the bacterium grows in preparation for cell division, the outer membrane proteins
migrate towards the poles as a result of new membrane material and peptidoglycan being incorporated
near the cell center in a process that is still not well understood [62].

In a recent paper, Keeble et al. used the SpyCatcher system to study the OM dynamics in E. coli.
To this end, they used a novel phage display method to develop an improved SpyCatcher-SpyTag pair,
termed SpyTag002 and SpyCatcher002 [21]. The rate constant of the improved 002 pair was increased
by an order of magnitude compared to the original SpyCatcher–SpyTag interaction (2.0 × 104 M−1 s−1

vs. 1.7 × 103 M−1 s−1). The efficiency of the newly developed pair was demonstrated by labeling the
peptidoglycan-binding autotransporter intimin in order to study the membrane dynamics during cell
growth and division. Intimin, a virulence factor of enterohemorrhagic E. coli, is a surface-exposed
protein belonging to the type Ve secretion systems, also called inverse autotransporters [76]. Intimin
consists of three major parts: an N-terminal periplasmic domain that binds to peptidoglycan under acidic
conditions [77], a transmembrane β-barrel anchor [78], and the C-terminal passenger that is translocated
to the bacterial surface through the β-barrel [79]. Keeble et al. prepared an intimin–SpyCatcher002
construct with SpyCatcher002 fused to the C-terminus of a truncated intimin variant (Figure 5). Upon
overexpression in E. coli cells, the SpyCatcher002 domain is secreted together with the truncated passenger
and presented on the bacterial surface, where it can be labeled using SpyTag002 fused to the fluorescent
reporter protein mClover3 [80], in a similar fashion to that described for YadAM in Section 3.1. By imaging
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the cells using wide-field fluorescence microscopy after labeling, the movement of the mClover-tagged
intimins toward the poles could be tracked to study the dynamics of the OM. Intimin was initially
uniformly spread across the bacterial surface, but migrated towards the poles during cell division [21],
suggesting that the polar movement results from incorporation of new peptidoglycan and OM material in
preparation for cell division. This notion was further tested by repeating the experiment in the presence
of cefalexin, a β-lactam antibiotic that prevents bacterial division by inhibiting septum formation and
peptidoglycan synthesis. This time, the cells became elongated in preparation for division but were
unable to divide. After 45 min, the fluorescent signal was localized in patches around the bacterium,
thus demonstrating how inhibited peptidoglycan synthesis prevents the polar migration of OM proteins.
Keeble et al. demonstrated here how an intimin–SpyCatcher fusion can be used to study the effect of
peptidoglycan synthesis during division upon outer membrane dynamics [21]. This method could be
used for tracking the migration of other OM proteins in the membrane during different stages of the
cell cycle.Int. J. Mol. Sci. 2018, 19, x 11 of 20 
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Figure 5. Intimin–SpyCatcher002 fusion for studying membrane dynamics. Structural model of
the intimin construct used in [21]. The model is based on the crystal structures of the intimin
transmembrane domain (PDB ID: 4E1S) and SpyCatcher (PDB ID: 4MLI), the solution structure of the
peptidoglycan-binding LysM domain (PDB ID: 2MPW), and the homology model structures of the
extracellular D00 and D0 domains [81].

3.3. Exploiting Virulence Factors and Virus-Like Particles for Vaccine Development using SpyCatcher-SpyTag

Outer membrane vesicles (OMVs) are ubiquitously produced by Gram-negative bacteria and
are often responsible for delivering virulence factors to the host cells during infection [82]. Derived
from the outer membrane, OMVs contain many naturally occurring immunogenic components such as
lipopolysaccharides, lipoproteins, outer membrane proteins, peptidoglycan, and other periplasmic
components with intrinsic adjuvant properties [83]. As opposed to live and attenuated bacteria, OMVs
are non-replicating and therefore pose no risk of infection after vaccination of immunocompromised
individuals. Consequently, OMVs are promising candidates for modern vaccine development, both as
adjuvants and as delivery vehicles for antigens. Vaccines utilizing OMVs as adjuvants have already been
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on the market for more than two decades; however, the development of heterologous antigen-presenting
OMV-based vaccines using recombinant technology is still in its infancy [83,84]. Several strategies
have been employed to present antigens on OMV surfaces, most notably as heterologous fusions with
autotransporters [85–87]. The use of autotransporters for heterologous antigen presentation on OMVs
has recently been reviewed in detail elsewhere [88], so we will only provide a short overview here.

The Luirink group has pioneered the use of recombinant OMVs for vaccine development.
As a scaffold, they earlier utilized a classical (type Va) autotransporter, the E. coli hemoglobin protease
(Hbp). Hbp consists of two major parts: a C-terminal transmembrane β-barrel that is inserted into
the outer membrane, and an N-terminal passenger that is translocated through the β-barrel to the
bacterial surface where it is released to the environment through autoproteolysis (Figure 6) [89,90].
The Luirink group developed an Hbp variant suitable for heterologous antigen export and display by
introducing a point mutation that prevents autoproteolysis into a truncated Hbp passenger domain
(HbpD(∆d1); from now referred to only as Hbp) [86]. By combining the new Hbp variant with
a hypervesiculating Salmonella Typhimurium ∆tolRA strain, they developed a method to isolate large
amounts of Hbp-presenting OMVs [87]. To utilize Hbp as an antigen-presenting tool, several loops
in the passenger were identified that allowed the insertion of heterologous protein antigens without
impeding the autotransport process. However, even though the autotransporter accepts substantial
changes to its passenger, there are still considerable limitations to the size and folding properties of
passenger fusions [91].
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Figure 6. Hbp constructs used for vaccine display on outer membrane vesicles. (A) Structural model of
full-length HbpD(∆d1) based on the crystal structures of the Hbp transmembrane domain (PDB ID:
3AEH) and passenger (PDB ID: 1WXR); (B) and (C) schematic drawings of Hbp fusions used in [92] to
determine binding efficiencies between the SpyTag-SpyCatcher and SnoopTag-SnoopCatcher pairs on
Hbp-fusion-presenting OMVs.

In a recent paper, this problem was circumvented by using the SpyCatcher-SpyTag technology to
decorate the OMVs after expression of Hbp [92]. In the process, the investigators comprehensively
tested the applicability of the SpyCatcher and SnoopCatcher systems for modular vaccine building, and
we will only cover the highlights here. To fully test the range of the new technology, the authors prepared
OMVs presenting Hbp N-terminal fusions with SpyTag, SpyCatcher, SnoopTag, and SnoopCatcher
(Figure 6). By treating the different constructs with their respective binding partners, and comparing the
changes in electrophoretic mobility upon ligation by SDS-PAGE, they showed that all four Hbp-variants
exported their passenger to the surface and were amenable to ligation. As a proof-of-concept for vaccine
development, they proceeded to treat Hbp-SpyTag-presenting OMVs with a relatively large (24 kDa)
domain of the antigenic S. pneumoniae surface protein, PspAα, fused to both SpyCatcher and SnoopTag
(SpyCatcher–PspAα–SnoopTag) (Figure 7A). Earlier attempts to fuse PspAα with the Hbp passenger
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required the antigen to be divided into two smaller domains, which still resulted in significantly reduced
export and lower antigen presentation on the OMV surface [93]. The SpyCatcher–PspAα—SnoopTag,
on the other hand, was ligated to the Hbp-presenting OMVs with similar efficiency as the earlier
controls, demonstrating that the SpyCatcher system is a robust tool suitable for coating OMVs with
recombinant antigens, completely circumventing the passenger export problem.Int. J. Mol. Sci. 2018, 19, x 14 of 20 
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Figure 7. Hbp-antigen complexes made through Spy/SnoopCatcher fusions. (A) Schematic of
Hbp bound to SpyCatcher–PspAα–SnoopTag; (B) schematic of Hbp bipartite binding adduct
SpyCatcher–PspAα–SnoopTag and SnoopCatcher–SP1690–SpyTag; (C) schematic of Hbp tripartite
binding adduct with two SpyCatcher–PspAα–SnoopTags flanking SnoopCatcher–SP1690–SpyTag.

The next step was to check whether multiple antigens could be coupled to the OMV surface in
an iterative fashion by using the alternating combinations of the SpyCatcher and SnoopCatcher systems
flanking the antigen proteins. Combinations of antigens to form multivalent OMV-based vaccines can
significantly improve their efficiency, either by eliciting a stronger immune response to a particular
pathogen, or by providing a broader response by combining antigens from multiple pathogens [94,95].
For this approach, they treated the OMVs with PspAα fusion and a SnoopCatcher–SP1690–SpyTag
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fusion with wash steps in between, successfully forming bipartite (Figure 7B) and tripartite (Figure 7C)
coupling adducts. This work demonstrated how various recombinant antigens can be coupled to the
OMV surface using the SpyCatcher system.

A similar application for the SpyCatcher system in vaccine development has been used for VLPs.
VLPs are virus-derived proteins that self-organize into noninfectious virus-like structures that are
capable of eliciting strong immune reactions [96]. Much effort has been put into designing VLP–antigen
fusions; however, this approach has proven to be labor-intensive and time-consuming, since the
fusions often misalign, or are unable to form stable capsids [97]. Brune et al. from the Howarth
group circumvented this problem by using the SpyCatcher technology in an analogous fashion to
the OMV-based vaccines [44]. They were able to create stable SpyCatcher-presenting VLPs by using
a fusion between the bacteriophage AP205-derived capsid and SpyCatcher. They further demonstrated
how the VLPs could be decorated using SpyTag-fused malarial antigens (Figure 2F) in a plug-and-play
fashion, and how this product elicited an antibody response after a single injection in mice. In similar
work, Thrane et al. fused either SpyTag or SpyCatcher to the C- and/or N-termini of the AP205 capsid
protein, and subsequently treated the resulting VLPs with 11 different antigen–SpyCatcher/SpyTag
fusions [43]. In both works, the authors confirmed the immunogenic properties of the novel vaccines
by immunizing mice, thus confirming the functional activity of the novel vaccines. The results from the
OMV and VLP experiments demonstrated the versatility of the SpyCatcher system in a novel approach
for designing vaccines. By presenting one of the binding SpyCatcher/SpyTag partners on the particle
surface, linking antigens in a plug-and-play fashion circumvents the need for designing complicated
fusion constructs, and could soon pave the road for modular vaccines that can easily be tailored for
any need. For further information, Brune and Howarth recently published a more comprehensive
review on the design of VLP-based vaccines, including the use of the SpyCatcher platform for this
purpose [14].

4. Conclusions and Future Perspectives

The SpyCatcher system and its close relatives have been successfully used for protein engineering
purposes, including the cyclic polymerization of enzymes, or the decoration of hydrogels. In our
hands, the system has been extremely useful for showing cell surface localization, and to elucidate
the topology of membrane proteins. Other authors have used the technology for decorating vesicles
and virus particles with antigens. In all cases, the benefits of the system are the same: irreversible,
covalent coupling and the fact that the two partners of the system are relatively small entities that do
not interfere strongly with the native systems that they label.

It is somewhat ironic that the system, derived from a bacterial surface protein, has been widely
used for studying and modifying other bacterial or viral surface proteins. We strongly believe that this
system will have many more applications in basic science, and that this is only limited by the fact that
many researchers are not aware of its existence. This prompted us to write this review.

Some of the approaches related to vaccines will need more testing before they can potentially be
used in patients. For example, it remains unclear whether SpyCatcher (or its relatives) elicits a strong
immune response by itself, and whether that would limit its usefulness in vaccines. The work on VLPs
suggests that this could be problematic for some applications, where the SpyCatcher-VLPs did elicit an
immune response of their own that was then later masked after decorating the particles with the target
antigen [44].

Our own experiments were until now limited to surface-localized proteins in bacteria, but it is
conceivable that the system could also be used to label proteins in other cellular localization (e.g.,
after membrane permeabilization) as an alternative to antibody-based approaches. We also believe
that the system can be used in versatile ways to modify and functionalize artificial or biological
surfaces of almost any kind (e.g., to develop ELISA-like assays that require covalent immobilization),
and possibly to functionalize surfaces used in lab-on-a-chip approaches. Another conceivable use
of the system includes in situ labeling of proteins for added density to identify individual proteins
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(e.g., in cryo-electron micrographs or tomograms). As this review shows, the SpyCatcher-SpyTag
system has proven to be an extremely versatile tool for both basic research and applied science, and it
will undoubtedly spur further innovations in the future.

Author Contributions: Conceptualization, J.C.L. and D.L.; writing—original draft preparation, D.H., T.T., D.L.,
and J.C.L.; writing—review and editing, D.L. and J.C.L.

Funding: This research was funded by the Research Council of Norway, grant numbers 249793 (to J.C.L.) and
240483 (to D.L.).

Acknowledgments: The authors wish to thank Nandini Chauhan for providing the gel image shown in Figure 4B.
They also acknowledge the members of the Leo and Linke groups for fruitful scientific discussions.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

CLIP UV crosslinking and immunoprecipitation
GoldCLIP Gel-omitted ligation-dependent CLIP
Hbp Hemoglobin protease
MSCRAMMs Microbial surface components recognizing adhesive matrix molecules
OM Outer membrane
OMV Outer membrane vesicle
PDB Protein Data Bank
SDS-PAGE Sodium dodecylsulfate polyacrylamide gel electrophoresis
sfGFP Superfolder green fluorescent protein
SUMO Small ubiquitin-like modifier
TAA Trimeric autotransporter adhesin
UV Ultraviolet
uvCLAP UV-crosslinking and affinity purification
VLP Virus-like particle
YadA Yersinia adhesin A
YadAM YadA membrane anchor
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