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We study solitary wave solutions of the fifth-order Korteweg–de Vries equation which contains,
besides the traditional quadratic nonlinearity and third-order dispersion, additional terms including
cubic nonlinearity and fifth order linear dispersion, as well as two nonlinear dispersive terms. An exact
solitary wave solution to this equation is derived, and the dependence of its amplitude, width, and
speed on the parameters of the governing equation is studied. It is shown that the derived solution can
represent either an embedded or regular soliton depending on the equation parameters. The nonlinear
dispersive terms can drastically influence the existence of solitary waves, their nature (regular or
embedded), profile, polarity, and stability with respect to small perturbations. We show, in particular,
that in some cases embedded solitons can be stable even with respect to interactions with regular
solitons. The results obtained are applicable to surface and internal waves in fluids, as well as to
waves in other media (plasma, solid waveguides, elastic media with microstructure, etc.). Published
by AIP Publishing. https://doi.org/10.1063/1.5009965

I. INTRODUCTION

The Korteweg–de Vries (KdV) equation

∂u
∂t

+ c
∂u
∂x

+ αu
∂u
∂x

+ β
∂3u

∂x3
= 0 (1)

is the well-known model for the description of weakly-
nonlinear long waves in media with small dispersion (see,
for instance, Refs. 1–6). It is widely used in the theory of
long internal waves where it describes astonishingly well the
main properties of nonlinear waves, even when their ampli-
tudes are not small (see, for instance, the reviews in Refs. 7–9).
This is the simplest model that combines the typical effects of
nonlinearity and dispersion and provides stationary solutions
describing both periodic and solitary waves. The KdV equation
is completely integrable and possesses many remarkable

properties, which can be found in the references cited
earlier.

At the same time, the KdV model cannot provide a
detailed description of many important features of non-
linear waves observed in laboratory experiments, such as
the non-monotonic dependence of solitary wave speed on
amplitude or the table-top shape of large-amplitude solitary
waves.10 To capture such properties, the first natural step is a
straightforward extension of the KdV model by retaining the
next-order nonlinear and dispersive terms in the asymptotic
expansion of the solutions to primitive equations, for exam-
ple, the Euler equations with boundary conditions appropri-
ate for oceanographic applications in the case of the ocean
gravity waves. A rather general form of the extended KdV
equation has been derived by many authors (in application
to surface and internal waves as shown in Fig. 1 see, e.g.,
Refs. 11–20),
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∂x2
+ β1

∂5u

∂x5

)
= 0. (2)

This equation, written in the coordinate frame moving with the
speed c, combines the quadratic (∼α) and cubic (∼α1) nonlin-
ear terms, linear dispersion of the 3rd (∼β) and 5th (∼β1)
orders, and also higher-order nonlinear dispersion terms with

a)Author to whom correspondence should be addressed: Yury.Stepanyants@
usq.edu.au

coefficients γ1 and γ2; the parameter ε � 1 is presumed to be
small.

Particular cases of the fifth-order KdV equation, where
some coefficients are zero, were also derived for plasma
waves,21 electromagnetic waves in discrete transmission
lines,22 gravity-capillary water waves,23,24 and waves in
a floating ice sheet (see Ref. 25 and the references
therein).
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FIG. 1. Sketch of two configurations for surface water waves (a) and internal
waves in two-layer fluids (b). (Notice that the horizontal and vertical scales
are different.)

In general, Eq. (2) is not integrable, but for particular
choices of coefficients, it reduces to one of a set of equa-
tions that are completely integrable. These are the Gardner
equation26,27 (when β1 = γ1 = γ2 = 0) or its particular
case, the standard KdV/mKdV equation (when either α1 = 0
or α = 0), as well as the Sawada–Kotera and Kaup–
Kupershmidt (KK) equations (when α = β = 0).5,6 A compre-
hensive discussion of Eq. (2) and its properties can be found in
Ref. 28.

The coefficients of Eq. (2) for surface gravity waves are

c =
√

gh, α =
3c
2h

, α1 = −
3c

8h2
, β =

ch2

6
,

β1 =
19ch4

360
, γ1 =

5ch
12

, γ2 =
23ch
24

.
(3)

For the gravity-capillary surface waves, as well as for internal
waves in a two-layer fluid, the coefficients are presented in
Appendix A. All notations are shown in Fig. 1.

Unlike the KdV equation, the higher-order model (2) is
not a Hamiltonian equation and does not preserve the energy,
in general. However, in the particular cases when it reduces
to completely integrable models, it clearly becomes Hamilto-
nian. Beside those cases, there is one more particular case of
α1 = 0 and γ2 = 2γ1 when Eq. (2) becomes Hamiltonian but
nonintegrable.29,30 In the meantime, with the help of a near-
identity transformation, it can be mapped approximately into
one of a number of Hamiltonian equations.31–34 In particular,
the asymptotic near-identity transformation

ũ = u + ε(au2 + buxx) (4)

maps Eq. (2) into itself up to terms of o(ε) but with the new
coefficients

α̃1 = α1 − aα, β̃1 = β1, γ̃1 = γ1, γ̃2 = γ2 − 6aβ + 2bα,

where a and b are the arbitrary parameters. If we choose the
parameters a = (γ2 − 2γ1) /6β and b = 0, then Eq. (2) can be
presented in the Hamiltonian form,

ut =
∂

∂x

(
δH
δu

)
, (5)

where the Hamiltonian is H = ∫ H dx with the density

H = −1
6
αu3 +

1
2
βu2

x − ε

(
1

12
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2
γ̃1uu2

x

)
.

(6)

The Hamiltonian form provides conservation of the “mass”
I1 = ∫ u dx, “wave energy” I2 = ∫

(
u2/2

)
dx, and Hamilto-

nian I3 = ∫ Hdx. These conserved quantities are very useful
in the development of asymptotic methods and perturbation
techniques, as well as helping to control the accuracy of
numerical schemes. Notice however, as has been shown in
Ref. 14, that the formal Hamiltonians which follow from the
approximate evolution equations are not usually the genuine
Hamiltonians that can be derived from the primitive equa-
tions for small-amplitude wave perturbations and which agree
with the physical energy conservation. Even in the classical
KdV equation (1), the Hamiltonian does not represent the
genuine wave energy. To this end, the “correct” KdV equa-
tion with the genuine Hamiltonian was derived in Ref. 14;
the corresponding equation is a particular case of Eq. (2) with
β1 = 0.

If the leading-order evolution equation is integrable, then
the underlying physical system is said to be asymptotically
integrable up to O(ε). It turns out that for the higher-order
KdV equation (2) with special choices of coefficients, it is
possible to extend the asymptotic integrability, even up to
O(ε2).31–33 Indeed, the generic KdV equation is asymptot-
ically reducible to the integrable equation by the nonlocal
near-identity transformation,

ũ = u + ε

(
a1u2 + b1uxx + c1ux

∫ x

x0

u dx̃ + d1xut

)
, (7)

where a1, b1, c1, and d1 are the arbitrary constants. This trans-
formation can reduce (2) either to the next member of the KdV
hierarchy or even to the classical KdV equation, with accuracy
up to O(ε2). In particular, to transfer equation (2) to the KdV
equation, one should choose coefficients in (7) of the form

a1 =
−18β2α1 + 2α2 β1 + 3αβγ1

9αβ2
,

b1 =
−6β2α1 − α

2 β1 + αβγ2

2α2 β
,

c1 =
4αβ1 − 2βγ1

9β2
, d1 = −

β1

3β2
.

There are numerous other near-identity transformations; some
of them are of special interest because they do not contain a
secular term ∼d1 as in formula (7). In particular, the appro-
priately modified near-identity transformations reducing the
higher-order KdV equation to the KdV equation have been
successfully used to obtain particular solutions for the higher-
order KdV equation from the known solutions of the KdV
equation (e.g., the two-soliton solution extending the relevant
KdV solution35–37 and the undular bore solution38).

In some particular cases when Eq. (2) is non-integrable,
it possesses, nevertheless, stationary solitary-type solutions,
which can be constructed either numerically or sometimes
even analytically. One of the best known cases is the Kawa-
hara equation which follows from Eq. (2) when α1 = γ1

= γ2 = 0.39 This equation contains a rich family of solitary
solutions including solitons with monotonic40 and oscillatory
tails.22,39,41

Recently one more particular case of Eq. (2) was con-
sidered, the so-called Gardner–Kawahara equation,18,42 when
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only the nonlinear dispersive terms are absent (γ1 = γ2 = 0).
Such a situation may occur, for example, in a two-layer fluid
with surface tension between the layers. Solitary solutions for
that equation were constructed numerically,42 and it was shown
that among them there are “fat solitons,” similar to those seen in
the Gardner equation, and solitons with oscillatory tails, such
as in the Kawahara equation, as well as their combination—fat
solitons with oscillatory tails.

An analytical solitary wave solution of the non-integrable
equation (2) was found in Ref. 20 for a special set of coef-
ficients, when it is not reduced to the Sawada–Kotera or
Kaup–Kupershmidt equations. The obtained solution does not
contain any free parameters and represents an example of
a so-called “embedded soliton.” Embedded solitons co-exist
with linear waves propagating with the same speed (they are
“embedded” into the continuous spectrum of linear waves,
whereas regular solitons can be called “gap” solitons because
they exist when the soliton speed belongs to a gap in the phase
speed spectrum of a corresponding linearized system43). The
term “embedded soliton” was introduced in Ref. 44, although
such solitons were known since 1974 when the first analyti-
cal example was obtained in Ref. 45 and their stability was
demonstrated numerically in Ref. 46 (some information about
that can be found also in Ref. 47). As currently known,48

embedded solitons can be both stable and unstable with respect
to perturbations of small or even big amplitudes depending on
the particular governing equation or set of equations.

Nevertheless, the general problem of existence of solitary
wave solutions of Eq. (2) with arbitrary coefficients remains
open so far, and this circumstance motivated our study. Besides
the pure academic interest, the problem is also topical in appli-
cation to surface and internal waves of large amplitude in the

ocean. Equation (2) can be considered as the model equation
capable of describing typical features of large-amplitude soli-
tary waves with good accuracy (see, e.g., Ref. 10 where it was
shown that even its reduced version, the Gardner equation,
provides solutions similar to those which can be constructed
within the fully nonlinear Euler equations). We study the role
of higher-order nonlinear dispersive terms (∼γ1, γ2) and their
influence on the shape and polarity of solitary wave solu-
tions. By means of the Petviashvili numerical method,47,49 we
construct stationary solutions of Eq. (2) and categorise them
in terms of dimensionless parameters. We then numerically
model non-stationary solutions using a pseudospectral scheme
similar to that used in Refs. 50–53. We show that these solu-
tions demonstrate soliton-like properties in the course of their
interaction with only minor inelastic effect. We also found an
exact analytical solution to this equation in the general case
without a restriction on its coefficients. The solution repre-
sents either the embedded or regular (gap) soliton, depending
on parameters.

II. DIMENSIONLESS FORM OF THE FIFTH-ORDER
KdV EQUATION AND ITS GENERAL PROPERTIES

To minimise the number of parameters in the problem, let
us present Eq. (2) in dimensionless form using the change of
variables,

τ =
sα3t
εα1

√
s

εα1 β
, ξ = αx

√
s

εα1 β
, υ =

εα1

α
su, (8)

where s = sign (α1 β), i.e., s = 1 if α1 β > 0 and s = �1
if α1 β < 0. After that the main equation (2) can be presented
in the conservative form,

∂υ

∂τ
+
∂

∂ξ

[
υ2

2
+ s

υ3

3
+
∂2υ

∂ξ2
+ B

∂4υ

∂ξ4
+
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2
∂2υ2

∂ξ2
+
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2

(
∂υ
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= 0, (9)

where

B = α2 s
α1 β

β1

β
, G1 =

s
α1 β

αγ1, G2 =
s

α1 β
αγ2 (10)

[notice that s/(α1 β) > 0]. The conservative form immediately
provides the “mass conservation” integral I1 as defined before.
Multiplying this equation by υ and integrating either over the
entire axis ξ for solitary waves or over a period for periodic
waves, we derive the “energy balance equation,”

∂I2

∂τ
≡

∂

∂τ

∫
υ2

2
dξ =

(
G1 −

G2

2

) ∫ (
∂υ

∂ξ

)3

dξ. (11)

This relationship denotes a distinguishing feature of the model
(9) which describes, in general, either time decay or growth
of “wave energy” I2 due to the presence of the nonlinear dis-
persive terms. Such conditionally defined “wave energy” is
conserved either in the trivial case when G1 = G2 = 0 or in the
special case when G2 = 2G1.29 For stationary waves described
by even functions υ(ξ), the right-hand side of Eq. (11) is

zero, and their “energy” is also conserved for any values of
G1 and G2. (Note that in the case of surface gravity waves,
G1 � G2/2 = �3/2.)

For waves of infinitesimal amplitude, υ → 0, Eq. (9)
can be linearised. Looking for a solution in the form
υ ∼ exp i (ω̃τ − κξ), we obtain the dispersion relation ω̃ (κ)
and phase speed Vph(κ), in the coordinate frame moving with
speed c, of the form

ω̃ = −κ3 + Bκ5, Vph(κ) ≡
ω̃

κ
= −κ2 + Bκ4. (12)

The plot of the phase speed is shown in Fig. 2 for three typical
values of the parameter B. Note that for surface water waves
B = 57/5 > 0; therefore, qualitatively the dispersion curve is
similar to curve B = 1. The same is true for oceanic internal
waves, as follows from the expressions for the coefficients of
(2) (see Appendix A). In some cases for internal waves in
laboratory tanks, the coefficient B can be zero or negative.
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FIG. 2. Plots of phase speed as per Eq. (12) for zero, positive, and negative
values of parameter B = 0. The dashed horizontal line illustrates speed V s of
a solitary wave, which can generate a small amplitude oscillatory wave at the
resonant wavenumber κr .

In the case of B ≤ 0, the phase speed is a mono-
tonic function of κ, whereas for B > 0 it has a minimum,
Vmin = �1/(4B), at the point κc = (2B)−1/2 (see Fig. 2). The
concept of phase speed is very useful in understanding the
process of interaction of a moving source (e.g., a solitary
wave) with linear waves. In particular, if the speed of a source

V s is such that there is no resonance with any linear wave,
i.e., there is no intersection of the dashed line in Fig. 2 with
the dispersion curve (e.g., when V s < Vmin), then the source
does not lose energy for the wave excitation. Otherwise, in
the case of a resonance (see the intersection of the dashed line
with the curve for B = 1), the source, in general, can expe-
rience energy losses for the generation of a linear wave and,
as a result, it gradually decelerates. Without external compen-
sation of energy losses, such a source usually cannot move
steadily. However, there are several examples of embedded
solitons which can steadily propagate with the same speed
as a linear wave but not exciting it effectively. The physics
of such a phenomenon has not been well understood yet; it
requires further study which is beyond the scope of this paper.
Therefore, the no-resonance condition V s , Vph can provide
only an indication of when a solitary wave can most likely be
expected.

III. STATIONARY SOLUTIONS OF THE FIFTH-ORDER
KdV EQUATION

Consider now stationary solutions to Eq. (9) in the form of
traveling waves depending only on one variable, ζ = ξ � V τ,
where V is the wave speed. In this case, Eq. (9) can be reduced
to an ordinary differential equation (ODE) and integrated once
(the constant of integration is set to zero for solitary waves),

B
d4υ

dζ4
+

d2υ

dζ2
− Vυ +

υ2

2
+ s

υ3

3
+

G1

2
d2υ2

dζ2
+

G2 − 3G1

2

(
dυ
dζ

)2

= 0. (13)

There are five independent parameters in this equation: B,
G1, G2, s, and V, which determine the structure of a soli-
tary wave. This equation actually splits into two independent
equations with different properties: one equation with negative
cubic term (s = �1) and another one with positive cubic term
(s = 1). We will derive a particular soliton solution to this equa-
tion for both s = 1 and s = �1. The case of s = 0 with a specific
link between the parameters, G2 = 2G1, has been studied in
Ref. 29.

As a first step, let us consider solitary wave asymptotics
at plus/minus infinity. Assuming that soliton solutions decay
at infinity, let us linearise Eq. (13) (simply omit all nonlinear
terms) and seek a solution of the remaining linear equation in
the form υ ∼ exp (µζ). Substituting this trial solution into the
linearised equation (13), we obtain an algebraic equation for
µ of the form (cf. Ref. 29)

Bµ4 + µ2 − V = 0. (14)

The roots of this bi-quadratic equation are

µ1,2 = ±

√
−1 +

√
1 + 4BV

2B
, µ3,4 = ±

√
−1 −

√
1 + 4BV

2B
.

(15)
Let us analyze the roots in detail (an alternative analysis of
the roots in the plane of different parameters can be found in

Ref. 29). First, we consider the case when the parameter B is
negative. For negative V, we have 4BV > 0 and

√
1 + 4BV > 1;

therefore, the roots µ1,2 are purely imaginary, and the roots µ3,4

are real. Solutions corresponding to purely imaginary roots
are not decaying and cannot represent solitary waves with
zero amplitude at infinity. If V = 0, then µ1,2 = 0 and the
corresponding solutions do not decay at infinity.

If 0 < V < �1/(4B), then we have
√

1 + 4BV > 0,
and all four roots µ1,2,3,4 are real. In this case, soliton solu-
tions are possible, with exponentially decaying asymptotics
at infinity. Finally, if V > �1/(4B), then

√
1 + 4BV is com-

plex; all roots are complex-conjugate in pairs µ1,2 = ±(p1 +
iq1), µ3,4 = ±(p2 + iq2). Due to the presence of the real parts
of the roots, p1,2, there can be soliton solutions with oscil-
latory asymptotics. The decay rate of a solitary wave in the
far field is determined by the root with the smallest value
of |p1,2|.

Assume now that B is positive. It follows from a sim-
ilar analysis of roots as was done for negative B that, for
V < Vmin ≡ �1/(4B), solitary waves with oscillatory asymp-
totics are possible. For Vmin < V < 0, the roots are purely
imaginary; therefore, no solitons with zero asymptotics can
exist in this case. For V > 0, the roots µ1,2 are purely real,
and then embedded solitons with exponential asymptotics are
possible.
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FIG. 3. Asymptotics of possible soliton solutions of
Eq. (13) with different signs of parameter B [panel (a)].
Panel (b) shows the asymptotics of regular solitons in the
case of B = 0 or embedded solitons in the case of B > 0.

In the particular case of B = 0, Eq. (14) has two real
roots corresponding to soliton solutions, provided that V > 0.
These findings can be summarised with the help of a schematic
diagram, as shown in Fig. 3.

It should be noted that the analysis of roots only predicts
possible asymptotics of solitons provided that they exist, but
it does not guarantee their existence. In particular, if B = 0,
then soliton solutions with monotonically decaying exponen-
tial asymptotics could exist for any V > 0 [see case (b) in the
diagram], but in fact, they exist only for 0 < V < 1/6 (see, e.g.,
Ref. 42).

A. Solitary wave solution of the fifth-order
KdV equation

Let us consider a trial solution to (13) in the form of a
sech2 solitary wave (in a similar way to what was done in
Ref. 28), taking the form

υ (ζ) = A sech2(Kζ), (16)

where A is the soliton amplitude and K is the parameter deter-
mining its half-width∆= 1/K (similar solution was constructed
in Ref. 29 for the particular case of s = 0 and G2 = 2G1). By
substitution of this solution into Eq. (13), we obtain

C2 sech2 (Kζ) + C4 sech4 (Kζ) + C6 sech6 (Kζ) = 0, (17)

where
C2 = 16BK4 + 4K2 − V , (18)

C4 = −120BK4 + [2(G1 + G2)A − 6]K2 +
A
2

, (19)

C6 = 120BK4 + s
A2

3
− 2(G2 + 2G1)AK2 (20)

(cf. Ref. 28 where a slightly different approach was
used). Equating the coefficients C2 and C4 to zero, we
obtain

V = 4K2
(
1 + 4BK2

)
=

4
(
∆2 + 4B

)
∆4

, (21)

A = 12K2 1 + 20BK2

1 + 4 (G1 + G2) K2
=

12

∆2

∆2 + 20B

∆2 + 4 (G1 + G2)
. (22)

Eliminating A from Eq. (20) with the help of Eq. (22), we
obtain the quadratic equation for R ≡ K2 of the form

80B
(
G2

1 + G1G2 − 10Bs
)

R2 + 4
(
2G2

1 + 3G1G2 + G2
2

−5BG2 − 20Bs
)
R − 5B + 2G1 + G2 − 2s = 0.

This equation has two roots, in general, and the corre-
sponding expression for the half-width of a solitary wave is
determined by

∆
2
1,2 =

40B
(
G1G2 + G2

1 − 10Bs
)

5B (G2 + 4s) − 3G1G2 − 2G2
1 − G2

2 ± (5B − G1 − G2)
√

(2G1 + G2)2 − 40Bs
. (23)

Thus, we see that a solitary wave solution in the form of
(16) does exist for a certain set of parameters B, G1, and
G2. One of the obvious restrictions on the set of param-
eters is (we have two expressions as s can be positive or
negative)

(2G1 + G2)2 − 40Bs ≥ 0 ⇒ B ≥ −
(2G1 + G2)2

40

for s = −1 or B ≤
(2G1 + G2)2

40
for s = 1.

(24)

Below we consider a few particular cases and analyze the
corresponding soliton solutions.

B. The Gardner–Kawahara equation (G1 = G2 = 0)

In this case, the expressions for ∆, V, and A simplify
considerably. The half-width is given by

∆
2 =

−40Bs

2s ±
√
−10Bs

. (25)

The soliton derived from (25) can either be an embedded soli-
ton or a regular soliton, dependent upon its speed as defined
by (21) and the value of B. Due to the presence of s in (25),
we consider two sub-cases: s = �1 and s = 1.
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1. The Gardner–Kawahara equation with s = −1

In this case, the only meaningful solution to (25) is

∆
2 =

40B

−2 +
√

10B
, (26)

with B > 2/5 for a real solution. Then from Eq. (21), it follows
that V > 0. With B > 0, the phase speed dependence of linear
waves on the wavenumber is shown in Fig. 2 by the upper line.
Therefore, solution (16) with V > 0 is the embedded soliton
moving in resonance with a linear wave (however gap soli-
tons can co-exist with the embedded soliton as will be shown
below). Figure 4 shows the dependence of the soliton parame-
ters on B. The soliton amplitude monotonically increases with
B, whereas its width and speed non-monotonically depend on
this parameter. The minimum value ∆min =

√
32 is attained

at B = 8/5, and maximum speed Vmax = 5/32 occurs at
B = 128/45. Soliton profiles for these two cases will be shown
below in Fig. 9 in comparison with regular solitons, numeri-
cally constructed for the same values of B. The asymptotics of
embedded solitons are in agreement with the prediction from
the analysis of roots of the characteristic equation (14)—see
Fig. 3(b).

2. The Gardner–Kawahara equation with s = 1

In this case, the soliton half-width takes the form

∆
2 =

−40B

2 ±
√
−10B

, where B< 0. (27)

If the positive sign is taken in front of the square root, then the
right-hand side of the expression is positive for all negative
B, whereas if the negative sign is taken in front of the square
root then the expression in the right-hand side is positive only
under the restriction B > �2/5 [see Fig. 5(a)].

Then, from Fig. 2, it follows that for B < 0 the solution
(16) represents a regular soliton if V > 0 and an embedded
soliton if V < 0. The soliton velocity (21) with ∆2 given by
Eq. (27) is

V =
4

∆4

(
∆

2 + 4B
)
= −

5B + 8 ± 3
√
−10B

50B
. (28)

The analysis of this expression shows that, if the positive sign is
chosen in front of the square root, then solution (16) represents
a regular soliton with V > 0, if�32/5<B< 0, and an embedded

FIG. 4. Dependence of embedded soliton parameters on B, for G1 = G2 = 0
with s = �1. The vertical dashed line shows the limiting value of the parameter
Blim = 2/5, below which the soliton does not exist.

FIG. 5. Dependence of soliton parameters on B, for G1 = G2 = 0 with
s = 1. Frame (a): widths of two different solitons as per Eq. (27); frame
(b): speeds of two different solitons as per Eq. (28); frame (c): amplitudes
of two different solitons as per Eqs. (29) and (30). Line 1 is for positive
sign in these expressions and line 2 for negative signs. Dashed vertical lines
correspond to the critical values of parameter B: B = �32/5 (left line) and
B =�2/5 (right line). The horizontal dashed line in frame (b) shows the limiting
value of soliton speed V lim = �1/10, when B→ �∞, and the horizontal dashed
line in frame (c) shows the limiting value of soliton amplitude Alim = 9/4,
when B→ �∞.

soliton with V < 0, if B< �32/5. If the sign in front of the square
root is negative, then solution (16) represents a regular soliton
with V > 0 within the interval �2/5 < B < 0, whereas beyond
this interval soliton solutions do not exist [see Fig. 5(b)].

As follows from Eq. (22), solitons with positive sign
in front of the square root in Eq. (27) have positive polar-
ity, and solitons with negative sign have negative polarity
[see Fig. 5(c)]. In particular, when G1 = G2 = 0, we have

A1 = −
360B

∆4
1

= −
9

20B

(
2 − 5B + 2

√
−10B

)
, (29)

A2 = −
360

∆4
2

= −
9

20B2

(
2 − 5B − 2

√
−10B

)
. (30)

Vertical dashed lines in Fig. 5 at B = �2/5 show the limit-
ing value of this parameter below which the negative polarity
solitons cannot exist. Other vertical dashed lines in Fig. 5 at
B =�32/5 show the boundary between the regular solitons with
V > 0 and B > �32/5 and embedded solitons with V < 0 and
B < �32/5.
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FIG. 6. Profiles of gap solitons of positive and negative polarities for three
values of B in the interval �2/5 < B < 0. Specifically B = �0.05 for lines 1
and 2, B = �0.1 for lines 3 and 4, and B = �0.15 for lines 5 and 6.

The horizontal dashed line in frame (b) shows the limit-
ing value of the embedded soliton speed V lim = �1/10, when
B → �∞, and the horizontal dashed line in frame (c)
shows the limiting value of the embedded soliton amplitude
Alim = 9/4, when B→ �∞ (the width of the embedded soliton
slowly increases when B→ �∞ as ∆ ∼ 2 4

√
−10B).

Thus, in the interval �2/5 < B < 0, two types of regular
solitons can coexist with different widths, speeds, amplitudes,
and polarities. When B < �2/5, only one soliton of positive
polarity can exist which smoothly transfers into the embedded
soliton when the parameter B passes through the threshold
value B = �32/5 where the velocity vanishes. Figure 6 illus-
trates the profiles of regular solitons of positive and negative
amplitudes for three values of B in the indicated interval.

C. A particular case of surface gravity waves (s = −1)

Using the expressions for the coefficients of Eq. (2) for
gravity waves [see Eq. (3)], we obtain the dimensionless
parameters B = 57/5, G1 = 10, and G2 = 23 [notice that in
this case G2 = 2.3G1, which is very close to the case G2 = 2G1

when the energy is conserved—see Eq. (11)]. For this set of
parameters, there is only one real root of Eq. (23),

∆1 =

√
8436

√
2305 − 14

≈ 15.75. (31)

After that, we find the amplitude and speed of a soliton in the
form

A =
3

148

(
51 −

√
2305

)
≈ 6.06 · 10−2,

V =
157
√

2305 − 89
390165

≈ 1.91 · 10−2. (32)

We see again that V > 0 and B > 0; therefore, the soliton is
in resonance with one of the linear waves as shown in Fig. 2
by the upper line. Hence, solution (16) represents again the
embedded soliton with exponential asymptotics in agreement
with the prediction following from the analysis of roots of
characteristic equation (14)—see Fig. 3(b).

In dimensional variables, the amplitude, width, and speed
of the surface embedded soliton are

Ad = 4hA, ∆d = h∆/6, Vd = 6V
√

gh,

where index d pertains to the dimensional variables and h is
the fluid depth. Setting h = 10 m, we obtain Ad ≈ 2.42 m,

∆d ≈ 26.25 m, and Vd ≈ 1.14 m/s (the total speed is
c + Vd ≈ 9.9 m/s + 1.14 m/s ≈ 11.04 m/s). Thus, accord-
ing to this solution, a soliton of small amplitude can exist on
the surface of the water. In the meantime, the classical KdV
theory predicts the existence of a soliton which has ampli-
tude Ae ≈ 5.37 m and speed V e ≈ 2.66 m/s at the same width
∆d ≈ 26.25 m.

The linear wave of infinitesimal amplitude propagating
with the same speed as the embedded soliton (Vph = c + Vd)
has dimensional wavelength,

λd = π

√√√√
2β
Vd

*.
,

√
1 +

4β1Vd

β2
− 1+/

-
.

Substituting the coefficients of Eq. (2) for pure gravity waves
[see Eq. (3) in Appendix A] and h = 10 m, we obtain
λd ≈ 32.5 m.

As mentioned earlier, the embedded solitons can be stable
even with respect to big perturbations. We will demonstrate in
Sec. V that they can survive even after strong interactions with
regular solitons. The problem of general evolution of embed-
ded solitons under the action of small perturbations caused by
medium inhomogeneity or energy dissipation is still an open
problem and worth a further study. Some preliminary results
can be found in Refs. 20 and 48.

D. A particular case when G2 = 3G1

One more special case of G2 = 3G1 is worth considering
because, in this case, the basic equation (13) simplifies. In this
simplified form, we can use the numerical code described in
Appendix B, based on the Petviashvili method and adapted for
the solution of Eq. (13) without the last term. This allows us to
find the solutions numerically and compare the results obtained
with the analytical solutions derived here. This case will also
allow us to understand the role of nonlinear dispersion in the
energy balance equation (11). According to that equation, the
energy is conserved on even solutions, and therefore stationary
solutions in the form of solitary waves may exist. However
the question is what happens when solitary waves interact?
We consider this problem in Sec. V by the direct numerical
solution of the non-stationary equation (9).

In the case of G2 = 3G1, Eq. (23) for the soliton half-width
reduces to

∆
2
1,2 =

80B
(
2G2

1 − 5Bs
)

5B (3G1 + 4s)− 20G2
1 +σ (5B− 4G1)

√
5
(
5G2

1 − 8Bs
) ,

(33)
whereσ =±1. We plot the parameter plane (B, G1) for the half-
width, amplitude, and speed in Fig. 7 for s = �1 and σ = ±1,
and similarly in Fig. 8 for s = 1 and σ = ±1. Soliton solutions
in the form of Eq. (16) cannot exist if 5G2

1 − 8Bs < 0, that is,
B < −5G2

1/8 for s = �1 and B > 5G2
1/8 for s = 1 (denoted

as region 1a in Figs. 7 and 8) or if ∆2
1,2 < 0 (region 1b). The

regions where ∆2
1,2 > 0 are designated by region 2. For the

plot of soliton speed and amplitude, red regions indicate a
positive quantity and blue regions indicate a negative quantity
(note that, in the figures for ∆, we assume that the positive
square root is taken). The difference between the cases for
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FIG. 7. The parameter plane (B, G1) for the casesσ =±1
in Eq. (33) where soliton solutions in the form of (16) can
exist in region 2. Region 1a and region 1b denote areas
where ∆ is complex. Subsequent panels show subregions
of region 2, where soliton speed or amplitude is positive
(red) or negative (blue). The images for∆ use red shading
for region 2, for reference. We use an enhanced scale in
the lower left frame for V to show detail.

σ = �1 andσ = 1 is shown in the first line of each figure, where
the size of region 1b differs in each case and therefore the
range of values for which solitons can exist is different in each
case.

Thus, we see that nonlinear dispersion can affect the exis-
tence of soliton solutions, their nature (regular or embedded
solitons), polarity, and, apparently, stability, as discussed in
Sec. IV.

IV. NUMERICAL SOLUTIONS FOR STATIONARY
SOLITONS

Soliton solutions derived in Sec. III represent partic-
ular cases of the wide family of stationary solutions con-
taining a class of solitary waves. Solitary wave solutions of
Eq. (2) [or in the stationary case Eq. (13)] can be constructed,
in general, by means of one of the well-known numerical
methods, e.g., the Petviashvili method47,49 or Yang–Lacoba
method.54 As mentioned in the Introduction, in some particular
cases, soliton solutions were found analytically, in other cases

numerically. In the particular case of the Gardner–Kawahara
equation, when γ1 = γ2 = 0 in Eq. (2) [or G1 = G2 = 0
in Eq. (13)], soliton solutions were constructed and studied
in Ref. 42.

Here we will construct a family of soliton solutions
using the Petviashvili method for some particular cases
to compare the numerical solutions with the analytical
solutions derived in Sec. III. The numerical method in
application to Eq. (13) is described in Appendix B. We
consider two particular cases when G1 = G2 = 0 and when G2

= 3G1. In the latter case, we will see the influence of nonlinear
dispersion on the shape and polarity of solitary waves.

A. The Gardner–Kawahara equation (G1 = G2 = 0)

We showed in Sec. III B that embedded solitons of the
form (16) can exist in the Gardner–Kawahara equation under
certain restrictions on the value of B, and these restrictions are
different for s = �1 and s = 1. We therefore split the following
analysis into two subsections.
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FIG. 8. The parameter plane (B, G1) for the casesσ =±1
in Eq. (33) where soliton solutions in the form of (16) can
exist in region 2. Region 1a and region 1b denote areas
where ∆ is complex. Subsequent panels show subregions
of region 2, where soliton speed or amplitude is positive
(red) or negative (blue). The images for∆ use red shading
for region 2, for reference. We use an enhanced scale in
the lower right frame for V to show detail.

1. Numerical solutions in the case of negative cubic
term (s = −1)

In this case, soliton solutions in the form of Eq. (16)
can exist only for B > 2/5 and represent the embedded
soliton. However, soliton solutions in different forms can
exist both for positive and negative B. For positive B, such
solutions can be constructed numerically for V < Vmin

≡ �1/(4B) (see Fig. 2). In Fig. 9, we present two fami-
lies of numerical solutions. In panel (a), one can see the
analytical solution for the embedded soliton (16) (line 1)
when B = 8/5 and the soliton has the minimum width
∆min =

√
32 and speed V = 3/20 (see Subsection III B). Lines

2, 3, and 4 show numerically constructed regular solitons for
the same value of B and V = �0.25, �0.5, and �1,
respectively.

In panel (b), one can see the analytical solution for the
embedded soliton (16) (line 1) when B = 128/45 and the soli-
ton has the maximal speed V = 5/32 and width ∆ = 16

√
2/15

(see Subsection III B). Lines 2, 3, and 4 show numerically

constructed regular solitons for the same value of B and
V = �0.25, �0.5, and �1, respectively.

When B < 2/5, analytical solutions of Eq. (13) are
unknown; however, they can be constructed numerically.
We managed to construct such solutions within a relatively
narrow range of parameters. In particular, when B = 1/5,
solitary-type solutions appear in the form of oscillatory wave
trains—see Fig. 10(a) (similar solutions were constructed
numerically in Ref. 29). When V approaches �1.25 from
below, solitons look like envelope solitons of the non-linear
Schrödinger (NLS) equation (see, e.g., Refs. 1–6). Then, when
V decreases, the soliton shape smoothly changes and rep-
resents a negative polarity soliton with oscillatory tails as
shown by line 2 in Fig. 10(a). We did not manage to construct
numerical solutions for V < �1.7.

When B < 0, regular solitons exist for V > 0 and have bell-
shaped profiles as shown in Fig. 10(b) for B = �1 and several
values of V. However, they exist only within a relatively narrow
range of V between 0 and 0.17. Similar situation occurs for
other negative values of B.
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FIG. 9. Soliton profiles in the case G1 = G2 = 0. Panel (a) B = 8/5: the embedded soliton (16) (line 1); other lines represent regular solitons for V = �0.25 (line
2), V = �0.5 (line 3), and V = �1 (line 4). Panel (b) B = 128/45: the embedded soliton (16) (line 1); other lines represent regular solitons for V = �0.25 (line 2),
V = �0.5 (line 3), and V = �1 (line 4).

FIG. 10. Soliton profiles in the case G1 = G2 = 0. Panel (a) shows solitons for B = 1/5 and speed V = �1.3 (line 1) or V = �1.6 (line 2). Panel (b) shows solitons
for B = �1 and speed V = 0.1 (line 1), V = 0.15 (line 2), or V = 0.17 (line 3).

2. Numerical solutions in the case of positive cubic
term (s = 1)

In this case, solutions in the form of (16) can exist only for
negative B; they can be in the form of either regular solitons
or embedded solitons (see Subsection III B). However soliton
solutions in different forms can exist, in principal, both for
positive and negative B. Nevertheless we did not manage to
construct soliton solutions numerically for positive B. This
requires further investigation.

In the case of negative B, there are two families of regular
solitons of positive and negative polarities. Typical examples
are shown in Fig. 11 for B = �0.1. Line 1 represents the analyt-
ical solution (16) with V = 2.1, and line 2 is another analytical
solution with V = 0.9 as per Eq. (28). However, we failed to
reproduce these solutions numerically by means of the Petvi-
ashvili method. Lines 3 and 5 in Fig. 11 correspond to solutions
found using the numerical scheme for V = 2.1 and V = 0.9,
respectively (in comparison to the analytical solutions of line
1 and line 2). All these solitons have exponentially decaying
asymptotics at infinity.

To explain the difference in the solutions, we refer to
Eq. (14). As follows from the analysis of this equation, all
its roots are real when 0 < V < �1/(4B) (which is the case
for Fig. 11). This means that the exponential decay of a soli-
tary wave can be controlled by one of the two real roots at plus
infinity and one of the other two roots at minus infinity. Appar-
ently, soliton solutions obtained analytically and numerically
correspond to different roots of characteristic equation (14).

Then, it follows from numerical solutions that when the
soliton speed increases, so does the amplitude, but the soliton
profile becomes non-monotonic; this is again in agreement
with the qualitative analysis shown in Fig. 3(a) for B < 0.
Lines 4 and 6 illustrate such solutions for V = 100.

We did not manage to construct solitons of negative polar-
ity with B = �0.1 and V < 1.95 even when the starting solution
for the iteration scheme (see Appendix B) was chosen in the
form of the analytical solution (16). However, for V ≥ 1.95,
solitons of negative polarity were constructed numerically and
are shown in Fig. 11. They represent almost mirror reflections

FIG. 11. Soliton profiles in the case of positive cubic nonlinearity, s = 1, with
G1 = G2 = 0 and B = �0.1. Lines 1 and 2 show analytical solutions (16) for
regular solitons with V = 2.1 for the positive polarity soliton and V = 0.9 for
the negative polarity soliton. Lines 3 and 5 pertain to the numerical solutions
with V = 2.1 and V = 0.9 correspondingly, and lines 4 and 6 pertain to solutions
with V = 100.
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FIG. 12. Numerical solutions of Eq. (13) for negative cubic nonlinearity (s = �1), B = �1, V = 0.1, G2 = 3G1, and several values of G1. In panel (a), we have
the soliton solution for G1 = 0 (line 1, reference case), G1 = �4 (line 2), G1 = �8 (line 3), and G1 = �9 (line 4). In panel (b), we have the soliton solution for
G1 = 0 (line 1, reference case), G1 = 4 (line 2), G1 = 8 (line 3), and G1 = 16 (line 4).

of solitons of positive polarity. A similar situation occurs in the
case of the Gardner equation with positive cubic nonlinearity,
when solitons of positive polarity can exist for all amplitudes
from 0 to infinity, whereas solitons of negative polarity can-
not exist, if their amplitudes are less than some critical value.
Below the critical amplitude breathers can exist instead (see,
e.g., Ref. 55 and the references therein).

B. The particular case of Eq. (13) with G2 = 3G1

Another particular case we study is G2 = 3G1. The basic
equation (13) in this case contains four independent parameters
B, G1, s, and V, which determine the structure of solitary waves.
This case is convenient from the numerical point of view as
the iteration scheme is simpler than for other cases of G1 and
G2. Another point of interest in this case is the fact that wave
energy is not conserved in general—see Eq. (11) (whereas for
even solutions the energy is conserved); therefore, this allows
us to understand the role of nonlinear dispersion. In the param-
eter plane (G1, B), there are zones where regular solitons of
different polarities can exist. The boundaries of these zones
are fairly complicated, and we demonstrate some typical soli-
ton solutions belonging to different zones, for the cases when
s = �1 and s = 1 as before.

1. Numerical solutions in the case of negative cubic
term (s = −1)

• B = �1

Consider first the case when B = �1 in Eq. (13). In this
case, regular solitons can exist for V > 0. In Fig. 12, we

illustrate the structure of a solitary wave when G1 varies.
Line 1 in both panels show the reference case when G1 =
0. If this parameter becomes negative, the solitons become
wider, their amplitudes slightly decrease, and the tops become
flatter [see lines 2 and 3 in panel (a)]. However, when G1

approaches �9, the soliton profiles become non-monotonic
with oscillations on the top [see line 4 in panel (a)] (simi-
lar solutions were constructed numerically in Ref. 29). For
smaller values of G1 < �9, we were unable to obtain numer-
ical solutions (apparently, they do not exist for such a set of
parameters).

When G1 becomes positive and increases, the solitons
become narrower and their amplitudes slightly increase first,
but then they monotonically decrease when G1 exceeds 4 [see
lines 1, 2, and 3 in panel (b)]. For relatively large values of G1,
soliton tails become non-monotonic with negative minima on
the profile [see line 4 in panel (b)].

• B = 1

When B = 1, solutions in the form of regular solitons can
exist only for negative V < Vmin ≡ �1/(4B) [see after Eq. (12)].
In Fig. 13(a), we show the structure of solitary waves for V =
�0.5 and different values of G1. Solitons in this case have
negative polarity and oscillating tails. Line 1 corresponds to
the case when G1 = 0. If this parameter becomes negative,
the solitons become wider and their amplitudes increase [see
line 2 in panel (a)]. For G1 < �3, we were unable to construct
numerical solutions (apparently, they do not exist for such a
set of parameters). When G1 becomes positive and increases,
the solitons become narrower and smaller [see lines 3 and 4 in
panel (a)].

FIG. 13. Numerical solutions of Eq. (13) for negative cubic nonlinearity (s = �1), B = 1, G2 = 3G1, and several values of G1. Panel (a): V = �0.5 and we have
the soliton solution for G1 = 0 (line 1, reference case), G1 = �3 (line 2), G1 = 3 (line 3), and G1 = 12 (line 4). Panel (b): V = �5 and we have the soliton solution
for G1 = 0 (line 1, reference case), G1 = �1.88 (line 2), G1 = �1.89 (line 3), and G1 = 12 (line 4).
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In Fig. 13(b), we show the structure of solitary waves
for V = �5 and different values of G1. Solitons in this case
can have both negative and positive polarities; they can have
slightly oscillating tails or non-monotonic aperiodic tails. Line
1 corresponds to the case when G1 = 0. If this parameter
becomes negative and varies from zero to G1 = �1.88, the
solitons remain qualitatively the same but become wider and
their amplitudes slightly increase as shown in panel (b) by line
2. When G1 further decreases and becomes less than �1.89,
the solitons abruptly change their polarity, become taller, and
narrower with well-pronounced negative minima (see line 3).
Further increases in G1 result in soliton profiles that remain
qualitatively the same, but their amplitudes decrease.

When G1 becomes positive and increases, soliton profiles
remain similar to the shape of the soliton for G1 = 0, but the
solitons become narrower and of smaller amplitude [see, e.g.,
line 4 in panel (b)].

2. Numerical solutions in the case of positive cubic
term (s = 1)

In this case, the analytical solution (16) for B > 0 can
exist only for V > 0 representing an embedded soliton (see
Figs. 2 and 8), whereas solutions in the form of regular solitons,
apparently, cannot exist; we were unable to construct such
solutions numerically.

For B < 0, the analytical solution (16) exists in the form
of a regular soliton for V > 0 and embedded soliton for V < 0
(see Figs. 2 and 8). Embedded solitons cannot be reproduced
by means of the Petviashvili method (see Appendix B); there-
fore, we constructed only regular solitons numerically for the
particular case of B = �1 and V > 0. The structure of these
solitons depends on their speed and is illustrated by Fig. 14
for two particular values of V. In panel (a), we show a few typ-
ical soliton profiles for V = 0.1 and several values of G1. Line
1 shows the reference case when G1 = 0. If G1 becomes neg-
ative, the solitons become wider and their amplitudes slightly
decrease (see line 2). For G1 < �12, we did not obtain soliton
solutions.

When G1 becomes positive, the soliton amplitude slightly
increases first (see line 3), but then it decreases, and solitons
become narrower (see line 4). For sufficiently large G1, soliton
profiles become non-monotonic so that negative minima
appear in the profiles (see line 5).

In panel (b), we show other typical soliton profiles for
V = 1 and several values of G1. Line 1 shows the reference
case when G1 = 0. If G1 becomes negative, the solitons become
wider and their amplitudes slightly decrease (see line 2).
When G1 passes through some critical value between �4.63
and �4.64, the soliton polarity abruptly alters from positive to
negative (see line 3). Then, when G1 further decreases, soli-
ton profiles remain qualitatively similar to what is shown by
line 3, but their amplitudes become smaller (see line 4). When
G1 becomes positive, soliton profiles remain qualitatively sim-
ilar to line 1, but their amplitudes gradually decrease and
well-pronounced minima appear on both sides of the crests
(see line 5).

The solutions constructed numerically do not reproduce
the analytical solution (16). The reason is the same as dis-
cussed in Sec. IV A 2, i.e., solutions with different asymptotics
can coexist for the same set of parameters, and the numerical
scheme, apparently, converges to only one of them which is
different from solution (16).

C. Stationary solutions for two particular cases
of Eq. (9)

In this subsection, we briefly consider particular exact
solutions of Eq. (9). In the first case, we set s = G1 = G2 = 0 to
reduce the general equation (9) to the generalised Kawahara
equation containing both third- and fifth-order derivatives. The
exact solution to this equation was obtained for the first time
by Yamamoto and Takizawa40 (for further references see also
Ref. 28),

υ (ζ) = −
105

169B
sech4

(
x − Vτ
∆

)
, (34)

where V =�36/169B,∆ =
√
−52B, and B< 0. There are no free

parameters in this solution; the amplitude, speed, and width of
the Yamamoto–Takizawa (YT) soliton (34) are determined by
the coefficients of the generalised Kawahara equation. The
soliton moves with a positive speed, whereas linear waves
propagate with negative phase speeds; therefore, it is a reg-
ular soliton; its profile is shown in Fig. 15 by line 1 for
B = �1. It was easily reproduced numerically with the help
of the Petviashvili method when the speed was chosen in
accordance with formula V = �36/169, B ≈ 0.213.

FIG. 14. Numerical solutions of Eq. (13) for positive cubic nonlinearity (s = 1) and G2 = 3G1, B = �1. Panel (a): V = 0.1 and we have the soliton solution for
G1 = 0 (line 1, reference case), G1 = �12 (line 2), G1 = 4 (line 3), G1 = 12 (line 4), and G1 = 24 (line 5). Panel (b): V = 1 and we have the soliton solution for
G1 = 0 (line 1, reference case), G1 = �4.63 (line 2), G1 = �4.64 (line 3), G1 = �12 (line 4), and G1 = 6 (line 5).
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FIG. 15. Yamamoto–Takizawa soliton (34) (line 1). Other lines represent
numerically obtained soliton solutions of Eq. (9) with s = G1 = G2 = 0 and
B =�1. The solution with V = 0.25 and V = 0.15 correspond to line 2 and line 3,
respectively, and line 4 represents the KdV soliton with the same amplitude
as that of line 3.

By means of Petviashvili’s method, we constructed a fam-
ily of soliton solutions with the fixed value of parameter B =
�1. All solitary solutions of this family are qualitatively simi-
lar to the YT soliton. In particular, line 2 shows the numerical
solution for V = 0.25 and line 3 for V = 0.15. It was discovered
that the soliton amplitude decreases as the speed decreases. At
small amplitudes, the soliton profile becomes indistinguish-
able from the profile of the KdV sech2-soliton of the same
amplitude. This is illustrated by Fig. 15 where the numerically
obtained line 3 practically coincides with line 4, which rep-
resents the KdV soliton of the same amplitude. Apparently
within this equation, there is a continuous family of solitary
wave solutions whose profiles depend on their amplitude, and
the YT soliton is just one particular of the representatives of
this family.

Because the generalised Kawahara equation is non-
integrable, one can expect that soliton interactions are inelas-
tic, i.e., in the process of soliton collisions, they radiate
small-amplitude trailing waves and, as a result, change their
parameters. This will be confirmed in Sec. V.

In the second case, we present the soliton solution to the
Kaup–Kupershmidt equation.5,6,28 This equation is a particular
case of Eq. (2) with the following coefficients: α = β = 0,
εα1 = 180, εγ1 = 30, εγ2 = 75, and εβ1 = 1. With such a set
of coefficients, the equation is completely integrable, and its
soliton solution has a slightly unusual form,

υ(ξ, τ) = 3A
2 sech2 (ζ/∆) + sech2 (ζ/∆)

[
1 + 2 sech2 (ζ/∆)

]2
, (35)

where A is the soliton amplitude (a free parameter),∆ = 1/
√

6A
is the soliton width, ζ = ξ � V τ, and V = (6A)2 is the soliton
speed.

The profile of the Kaup–Kupershmidt (KK) soliton of a
unit amplitude is shown in Fig. 16. As one can see, its speed is
positive, whereas waves of infinitesimal amplitude within the
Kaup–Kupershmidt equation have negative phase speeds (in
the moving coordinate frame). Therefore, the KK soliton is a
regular soliton too.

In contrast to the previous case, the Kaup–Kupershmidt
equation is completely integrable; therefore, soliton interac-
tions are elastic and, to a certain extant, trivial. This means

FIG. 16. The Kaup–Kupershmidt “fat” soliton (35) of a unit amplitude.

that after interaction solitons completely restore their orig-
inal parameters and do not radiate small amplitude pertur-
bations. Therefore, solitons remain the same as they were
before interaction, and the only traces of interaction are their
shifts in space and time, exactly as in the interaction of elastic
particles.

V. NUMERICAL STUDY OF SOLITON INTERACTIONS

It was anticipated in Ref. 28 that Eq. (2) would be studied
numerically to confirm the existence and robustness of solitary
wave solutions, investigate whether they emerge evolutionary
from the arbitrary initial pulse-type perturbations, how do they
behave under collisions, whether “they emerge unscathed as
true solitons, or is there a small but nonzero nonelastic effect.”
Since that time, such investigation was not carried out to the
best of our knowledge. Here we will try to illuminate these
issues.

To solve Eq. (2) numerically, we apply a pseudospectral
technique similar to that used in Refs. 50–53. The equation
is solved in the Fourier space using a 4th order Runge–Kutta
method for time stepping, while the nonlinear terms are cal-
culated in the real space and transformed back to the Fourier
space for use in the Runge–Kutta scheme. To remove the alias-
ing effects, we use the truncation 2/3-rule by Orszag in the
work of Boyd.56 See Appendix C for the description of the
numerical scheme.

To generate solitons for a given set of parameters, an initial
pulse was taken as the initial condition. This pulse was taken
in the form a standard KdV soliton, i.e., of the form

u(x, 0) = P sech2 *
,

√
|P |
12

x
L

+
-

, (36)

where P corresponds to the amplitude and L is a factor used
to change the width of this initial pulse. In each case, we can
control the number of solitons produced, and their amplitudes,
via the parameters P and L.

To calculate the interaction of regular or embedded soli-
tons, we generate regular solitons of the required amplitude
using the method described earlier. Once the solitons gen-
erated from the pulse are well separated, we extract them
from the solution. To study the interaction of these regular
solitons with other regular solitons or embedded solitons, we
generate an initial condition using the extracted soliton and
either another extracted soliton (for the interaction of regu-
lar solitons) or with the embedded soliton found analytically
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so that their interactions could be studied. This extraction
was performed so that any radiation emerging from the ini-
tial pulse would not interfere with the collision. In each of
the numerical cases considered below, the value of P and L
is stated for each regular soliton generated via this method.
Furthermore, we state if the solitons used in the proceed-
ing calculations are found analytically or generated from a
pulse.

With the help of this numerical method, we studied inter-
actions of solitary waves with different parameters and dif-
ferent coefficients of the governing equation (9). First of all,
we found that the embedded soliton propagates in all cases,
with minimal loss of energy. We have calculated the change
of “wave energy” I2 = ∫ (u2/2)dx (see the Introduction) as

∆I2 =
I2(t) − I2(0)

I2(0)
, (37)

where I2(0) is the initial wave energy and I2(t) is the wave
energy at time t.

Using this numerical method with periodic boundary con-
ditions, we obtained ∆I2 = 1.2 × 10�13 and 2.4 × 10�13

for the embedded solitons in the cases when nonlinear dis-
persion is present, whereas for the regular solitons in these
cases we obtained ∆I2 = 1.2 × 10�5 and 5.2 × 10�6. In the
case of the regular solitons, as they were generated by a
pulse-like initial condition, fast moving radiation was gen-
erated that would re-enter the domain and interfere with the
main wave structure. To diminish this effect, we applied “a
sponge layer” to the solution domain to absorb this radiation
and prevent it re-entering the solution domain, as detailed in
Appendix C. This accounts for the lower accuracy in the wave
energy conservation. It is worth noting that when the embed-
ded soliton is perturbed, the energy is no longer conserved
and therefore the solution eventually breaks down, except in
the case when there is no nonlinear dispersion (see Sec. V A
below).

For the regular solitons in all cases, they steadily propagate
without loss of energy even in the cases when G2 , 2G1. As
has been mentioned earlier [see the paragraph after Eq. (11)],
in the case of propagation of a stationary wave described by
an even function, the right-hand side of Eq. (11) vanishes, and
wave energy I2 is conserved. However, an interesting question
arises about the energy conservation in the process of soliton
interaction when G2 , 2G1. Below we present the results of our
numerical study of Eq. (9) with negative cubic nonlinearity in
the cases when (i) G1 = G2 = 0 and (ii) G2 = 3G1. Equation (9)
with positive cubic nonlinearity can be studied in a similar way,
but such exercises require much more computational resources
because soliton amplitudes are limited in this case and can be
very close to each other, whereas their speeds are relatively
small; therefore, soliton interactions take a very long time to
compute.

A. The Gardner–Kawahara equation (G1 = G2 = 0)

As shown in Subsection IV A 1, there are families of
regular solitons for positive and negative B, some of which
can co-exist with the embedded soliton (16)—see Figs. 9 and
10. Here we present (i) an example of pulse disintegration
into a number of regular solitons (Fig. 17); (ii) interaction

FIG. 17. Generation of several regular solitons from the initial sech2-pulse
within the framework of Eq. (9) with s = �1, B = 8/5, G1 = G2 = 0. Line 1
corresponds to the initial condition at t = 0 (blue), and line 2 is the solution at
t = 10 (red). The initial pulse parameters are P = �7.5 and L = 1.

of regular solitons (Fig. 18); and (iii) interaction of regular
and embedded solitons (Fig. 19). Figure 17 illustrates that
regular solitons with non-monotonic profiles asymptotically
appear from pulse-type initial perturbations in the process of

FIG. 18. Interaction of two regular solitons within the framework of Eq. (9)
with s = �1, B = 8/5, G1 = G2 = 0. Line 1 corresponds to the initial condition at
t = 0 (blue) before the interaction and line 2 to the solution after the interaction
at t = 20 (red). Both solitons were obtained numerically from a pulse-like
initial condition. The initial pulse parameters are P1 = �7.5 and L1 = 1 for the
taller soliton and P2 = 3P1/4 and L2 = 1 for the shorter soliton.

FIG. 19. Interaction of a regular soliton of negative polarity and an embedded
soliton of positive polarity within the framework of Eq. (9) with s = �1, B =
�8/5, G1 = G2 = 0. Line 1 corresponds to the initial condition at t = 0 (blue)
before the interaction and line 2 to the solution after the interaction at t = 140
(red). The regular soliton was obtained numerically from a pulse-like initial
condition. The initial pulse parameters are P = �7.5 and L = 1.
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its disintegration. Apparently, such solitons can form bound
states, bi-solitons, triple-solitons, or multi-solitons, i.e., sta-
tionary moving formations consisting of two or more binding
solitons,22,29,41,42,57 but we did not study this phenomenon in
our paper.

The interaction of two solitons as shown in Fig. 18
demonstrates that the solitons survive after the collision, but
a residual small wave packet is generated in the trailing
wave field. This clearly indicates that the soliton collision is
inelastic.

The most fascinating is Fig. 19 which demonstrates (seem-
ingly for the first time) that the embedded soliton can survive
after interaction with a regular soliton. The interaction is obvi-
ously inelastic so that small disturbances appear both in front
and behind the embedded soliton. Thus, we see that it sur-
vives even after collision with a regular soliton, and for much
longer times (up to t = 700), the embedded soliton keeps its
identity.

B. Interactions of solitary waves when G2 = 3G1

Following the same steps as in Subsection V A, we con-
sider the cases when the parameters are (i) s = �1, B = �1,
G1 = 4, and G2 = 12 [see Fig. 12(b)] and (ii) s = �1, B = 1,
G1 = �1.88, and G2 = �5.64 [see Fig. 13(b)]. First of all,
we observed steady propagation of solitons in both of these
cases. Then we observed the emergence of a number of soli-
tons from an initial pulse with larger amplitude and width; this
is illustrated in Fig. 20 for case (i) and Fig. 21 for case (ii).

Finally we studied the interaction of these solitons. When
colliding two regular solitons, we observed that after the
interaction both the solitons survived, but some portion of
their energy converted into a small wave packet generated
in the trailing wave field; this is shown in Fig. 22 for case
(i) and Fig. 23 for case (ii). This is typical for the inelastic
interaction.

For the collision of a regular soliton with an embedded
soliton, in case (i), we observed that only the regular soliton
survives the collision and an intense wave packet is generated
in the trailing wave field (see Fig. 24).

In contrast to that, in case (ii), the regular and embedded
solitons both survive after the collision and a wave packet is

FIG. 20. Generation of regular solitons from the initial sech2-pulse within
the framework of Eq. (9) with s = �1, B = �1, G1 = 4, and G2 = 12. Line 1
corresponds to the initial condition at t = 0 (blue), and line 2 is the solution at
t = 1800 (red). The initial pulse parameters are P = 0.275 and L = 3.175.

FIG. 21. Generation of regular solitons from the initial sech2-pulse within
the framework of Eq. (9) with s = �1, B = 1, G1 = �1.88, and G2 = �5.64. Line
1 corresponds to the initial condition at t = 0 (blue), and line 2 is the solution
at t = 10 (red). The initial pulse parameters are P = �4 and L = 0.3.

FIG. 22. Interaction of two regular solitons within the framework of Eq. (9)
with s = �1, B = �1, G1 = 4, and G2 = 12. Line 1 corresponds to the initial
condition at t = 0 (blue) before the interaction and line 2 to the solution after
the interaction at t = 2100 (red). Both solitons were obtained numerically from
a pulse-like initial condition. The initial pulse parameters are P1 = 1.2 and L1
= 5 for the taller soliton and P2 = P1/3 and L2 = 1 for the shorter soliton.

FIG. 23. Interaction of two regular solitons within the framework of Eq. (9)
with s = �1, B = 1, G1 = �1.88, and G2 = �5.64. Line 1 corresponds to the
initial condition at t = 0 (blue) before the interaction and line 2 to the solution
after the interaction at t = 15 (red). Both solitons were obtained numerically
from a pulse-like initial condition. The initial pulse parameters are P1 = �4
and L1 = 0.3 for the taller soliton and P2 = P1/2 and L2 = 0.3 for the shorter
soliton.
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FIG. 24. Interaction of regular soliton of positive polarity and embedded soli-
ton of negative polarity within the framework of Eq. (9) with s = �1, B = �1,
G1 = 4, and G2 = 12. Line 1 corresponds to the initial condition at t = 0 (blue)
before the interaction and line 2 to the solution after the interaction at t = 250
(red). The regular soliton was obtained numerically from a pulse-like initial
condition. The initial pulse parameters are P = 0.4 and L = 1. The gap soliton
survives, but the embedded soliton does not.

generated in front of the embedded soliton (see Fig. 25). In both
cases, we conclude that the collision is inelastic. It is worth
noting in this case that our numerics were not stable beyond
the time considered in the calculation; it may be stable for a
smaller spatial discretisation; however, the corresponding time
discretisation becomes very small and the calculations take a
very long time.

C. The generalised Kawahara equation

As we defined in Sec. IV C above, the generalised Kawa-
hara equation is a particular case of Eq. (9) with the coefficients
s = G1 = G2 = 0. We analyzed the stationary solitary solutions,
one of which is the YT soliton (34). Here we show that solitary
waves emerge from pulse-type initial perturbations within the
generalised Kawahara equation. As the initial condition, the
sech2 pulse was chosen. Figure 26 illustrates an example of

FIG. 25. Interaction of regular soliton of negative polarity and embedded
soliton of positive polarity within the framework of Eq. (9) with s = �1, B = 1,
G1 = �1.88, and G2 = �5.64. Line 1 corresponds to the initial condition at t = 0
(blue) before the interaction and line 2 to the solution after the interaction at
t = 30 (red). The regular soliton was obtained numerically from a pulse-like
initial condition. The initial pulse parameters are P = 0.4 and L = 1.

FIG. 26. Generation of solitons from the initial sech2-pulse for the gener-
alised Kawahara equation. Line 1 corresponds to the initial condition at t = 0
(blue), and line 2 is the solution at t = 80 (red). The initial pulse parameters
are P = 2 and L = 2.

FIG. 27. Interaction of the YT regular soliton (smaller amplitude pulse in
the figure) with another regular solitary wave numerically constructed within
the framework of the generalised Kawahara equation. Line 1 corresponds to
the initial condition at t = 0 (blue) before the interaction and line 2 to the
solution after the interaction at t = 680 (red). The regular soliton with the
framework of the generalised Kawahara equation was obtained numerically
from a pulse-like initial condition. The initial pulse parameters are P = 1
and L = 1. Small insertion shows a magnified fragment of a radiated wave
field.

pulse disintegration onto two solitary waves accompanied by
the small residual wave train (not visible in the figure).

The soliton interaction is demonstrated in Fig. 27. The
initial condition was chosen as the YT soliton (1) and the
numerically obtained solitary wave (2). We see that solitary
waves survive the collision and appear after that with almost
the same amplitudes. However, a small wave train appears
in the result of interaction, evidence that the interaction is
inelastic.

VI. CONCLUSION

In this paper, we have studied the properties of soliton
solutions of the fifth-order KdV equation (2) which is used to
describe surface and internal gravity waves, as well as appear-
ing in other applied areas. Using the changes of independent
and dependent variables, this equation has been reduced to the
dimensionless form (9) with the minimum number of indepen-
dent parameters, only three for positive and negative cubic non-
linearity. In the theory of nonlinear internal waves, both these
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cases of positive and negative cubic nonlinearity can occur
depending on the stratification of the fluid.8,58,59 In some par-
ticular cases, Eq. (9) reduces to well-known equations, among
which there are Gardner,55 Kawahara39 equations and their
generalisation,18,42 Sawada–Kotera and Kaup–Kupershmidt
equations.5,6,28

Equation (9) is non-integrable, in general, and it does not
provide conservation of the “wave energy.” However, it per-
mits the existence of solitary wave solutions both with mono-
tonic and non-monotonic profiles and even with oscillatory
asymptotics, which suggests the existence of more compli-
cated structures in the form of stationary multi-solitons.22,41,42

Following,20 we have derived an exact soliton solution in the
general case and have shown that in some cases this solution
can represent a regular soliton, whereas in others it represents
an embedded soliton whose speed coincides with the speed of
some linear wave. Our numerical simulations have confirmed
that such solitons can propagate without loss of energy, if there
are no perturbations in the form of other waves or medium
inhomogeneity, or dissipation. We have identified the areas
on the plane of parameters where the derived soliton solution
exists as the embedded or regular soliton and found numeri-
cally a number of soliton solutions of Eq. (9) with different
sets of governing parameters.

In Sec. V, we have studied numerically the emergence of
solitons from arbitrary pulse-type initial conditions and have
demonstrated that regular solitons are generated from the ini-
tial conditions. However in the course of interaction, such
solitons produce small-amplitude trailing waves which evi-
dence that the interaction has inelastic character. Moreover,
the solitons with non-monotonic profiles can form stationary
or non-stationary bound states similar to those experimentally
observed in Ref. 22.

One particularly interesting observation emerging from
our study is the stability of embedded solitons with respect
to interactions with other waves (e.g., the regular solitons,
like in this paper). This sheds some additional light on the
stability problem and nature of embedded solitons and indi-
cates that they could be observed in natural and laboratory
environments. In particular, in the absence of nonlinear dis-
persion, the embedded soliton survives the interaction with no
visible loss of amplitude. On the other hand, the results of our
numerical investigations suggest that in some cases embedded
solitons, apparently, can transfer to radiating solitons under
the influence of external perturbations (the radiating solitons

are quasi-stationary long-living solitary waves permanently
radiating from one side small-amplitude linear waves—see,
e.g., Refs. 53 and 60 and the references therein). We do not
touch this interesting possibility in the present paper, but it can
be a theme for further study.

Finally, it would be interesting to extend the present study
to the study of the respective ring wave counterparts (see
Refs. 61–64 and references therein). The solitary wave solu-
tions studied in our present paper provide meaningful “initial
conditions” for numerical experimentation with the amplitude
equation describing ring waves.
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APPENDIX A: COEFFICIENTS OF THE
HIGHER-ORDER KdV EQUATION FOR WATER WAVES

The coefficients of Eq. (2) for gravity surface waves are
given in (3). Here we present the coefficients for internal waves
in two-layer fluid derived in Ref. 18. All notations are shown
in Fig. 1,

c =

√
(ρ2 − ρ1)gh1h2

ρ1h2 + ρ2h1
, α =

3c
2h1h2

ρ2h2
1 − ρ1h2

2

ρ1h2 + ρ2h1
,

β =
h1h2

6
c
ρ1h1 + ρ2h2 − 3σ/c2

ρ1h2 + ρ2h1
, (A1)
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3c

8h2
1h2
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ρ2
2h4

1 + ρ2
1h4

2 + 2ρ1ρ2h1h2
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(A2)
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h4
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1h2
2/2

)
+ (19/4) h1h2

(
ρ2

1h2
1 + ρ2

2h2
2

)
− S1

(ρ1h2 + ρ2h1)2
, (A3)

γ1 =
c

12

5h1h2

(
ρ2

2h1 − ρ
2
1h2

)
+ ρ1ρ2 (h1 − h2)

(
7h2

1 + 9h1h2 + 7h2
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)
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, (A4)

γ2 =
c

24

23h1h2

(
ρ2

2h1 − ρ
2
1h2

)
+ ρ1ρ2 (h1 − h2)

(
31h2

1 + 39h1h2 + 31h2
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)
+ 2S2/5

(ρ1h2 + ρ2h1)2
, (A5)
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where

S1 = 5h1h2
3σ

2c2

(
ρ1h1 + ρ2h2 +

3σ

2c2

)
,

S2 =
3σ

2c2

(
ρ2h2

1 − ρ1h2
2

)
.

In particular, when ρ1 = 0, we obtain the coefficients of
Eq. (2) for surface gravity-capillary waves on a thin liquid
layer,

c =
√

gh2, α =
3c
2h2

, α1 = −
3c

8h2
2

, β =
ch2

2

6

(
1 −

3σ

c2ρ2h2

)
,

(A6)

β1 =
ch4

2

18

[
19
20
−

3σ

2c2ρ2h2

(
1 +

3σ

2c2ρ2h2

)]
, (A7)

γ1 =
5ch2

12

(
1 −

3σ

5c2ρ2h2

)
, γ2 =

23ch2

24

(
1 +

15σ

23c2ρ2h2
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APPENDIX B: PETVIASHVILI’S METHOD

Let us make a Fourier transform of Eq. (13) with respect
to the variable ζ denoting the Fourier image of the function

υ(ζ) by F̂(υ),

(
Bκ4 − κ2 − V

)
F̂(υ) = −

s
3

F̂(υ3) −
1
2

(
1 − G1κ

2
)

F̂(υ2)

−
1
2

(G2 − 3G1) F̂
[(
υ′

)2
]
, (B1)

where κ is the parameter of the Fourier transform (the
dimensionless wavenumber).

If we multiply Eq. (B1) by F̂(υ) and integrate it with
respect to κ from minus to plus infinity, we obtain the equality

+∞∫
−∞

(
Bκ4 − κ2 − V

) [
F̂(υ)

]2
dκ

= −
1
2

+∞∫
−∞

{2s
3

F̂(υ3) +
(
1 − G1κ

2
)

F̂(υ2)

+ (G2 − 3G1) F̂
[(
υ′

)2
] }

F̂(υ) dκ. (B2)

If υ(ζ) is an exact solution of Eq. (13) and F̂(υ) is its Fourier
image satisfying Eq. (B1), then it follows from Eq. (B2) that
the quantity M, dubbed the stabilising factor and defined below,
should be equal to one,

M[υ] =

−2

+∞∫
−∞

(
Bκ4 − κ2 − V

) [
F̂(υ)

]2
dκ

+∞∫
−∞

{
(2s/3)F̂(υ3) +

(
1 − G1κ

2
)

F̂(υ2) + (G2 − 3G1) F̂
[(
υ′

)2
] }

F̂(υ) dκ

. (B3)

However, in general, if υ(ζ) is not a solution of Eq. (13), then M[υ] is some functional of υ. In the spirit of the Petviashvili
method, let us construct the iteration scheme (for details see Refs. 47 and 49),

F̂(υn+1) = −
1
2

Mr[υn]
(2s/3)F̂(υ3

n) +
(
1 − G1κ

2
)

F̂(υ2
n) + (G2 − 3G1) F̂

[(
υ′n

)2
]

Bκ4 − κ2 − V
, (B4)

where the factor M is used to provide a convergence of the
iterative scheme (otherwise the scheme is not converging) and
the exponent r should be taken in the range r = [3/2, 2]. As
has been shown in Ref. 49, r = 3/2 provides the fastest con-
vergence for pure cubic nonlinearity, whereas r = 2 provides
the fastest convergence for pure quadratic nonlinearity. In our
calculations, we chose r = 7/4 which provided the fastest con-
vergence to the stationary solution for mixed quadratic and
cubic nonlinearity.

The convergence is controlled by the closeness of the
parameter M to unity. Starting from the arbitrary pulse-type
function υ0(ζ), we conducted calculations with the given
parameters B, G1, G2, and V on the basis of the iteration
scheme (B4) until the parameter M was close to 1, up to small
quantity ε , i.e., until |M � 1| ≤ ε (in our calculations, it was set
to ε = 10�6).

To avoid a singularity in Eq. (B4), the speed of a solitary
wave should be chosen in such a way that the fourth-degree
polynomial in the denominator of Eq. (B4) does not have real
roots. This corresponds to the case when there is no resonance
between the solitary wave and a linear wave, i.e., V ,Vph(κ)—
see Eq. (12). Under this condition, only regular solitons can
be constructed by means of this method, not the embedded
soliton.

APPENDIX C: PSEUDOSPECTRAL SCHEME
FOR THE FIFTH-ORDER KdV EQUATION

The numerical scheme used for the interaction of regular
and embedded solitons is as follows. We implement a pseu-
dospectral scheme using a 4th order Runge–Kutta method for
time stepping. The time stepping is performed in the Fourier
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space, and the nonlinear terms are calculated in the real space
and transformed back to the Fourier space for use in the
method. First, we consider a solution in the domain [�L, L] and
transform it to the domain [0, 2π] via the transform x̃ = Sx + π
with S = π/L. Writing (2) in the divergent form, we obtain
(omitting tildes)

ut + S
∂

∂x

[
α

u2

2
+ α1

u3

3
+ βS2 ∂

2u

∂x2
+ β1S4 ∂

4u

∂x4

+
γ1

2
S2 ∂

2u2

∂x2
+
γ2 − 3γ1

2

(
S
∂u
∂x

)2
= 0. (C1)

The terms u2, u3, and
(
∂u
∂x

)2
are calculated in the real domain

before transforming back to the Fourier space for use in the
time-stepping algorithm.

Let us discretise the solution interval by N nodes where
N is a power of 2, so we have spacing ∆x = 2π/N (in our cal-
culation, we used N = 213 = 8192 so that the spacial resolution
was ∆ξ = 0.15). We use the Discrete Fourier Transform (DFT)

û(k, t) =
1
√

N

N−1∑
j=0

u(xj, t)e−ikxj , −
N
2
≤ k ≤

N
2
− 1, (C2)

where xj = j∆x and k is an integer representing the discretised
(and scaled) wavenumber. The inverse transform is

u(x, t) =
1
√

N

N/2−1∑
k=−N/2

û(k, t)eikxj , j = 0, 1, . . . , N − 1. (C3)

We make use of the Fast Fourier Transform (FFT) algorithm to
implement these transforms effectively. We introduce the fol-
lowing notation for the last term in square brackets of Eq. (C1)
to simplify the expression ẑ = F

(
F−1 (ikSû)2

)
, where F

and F−1 represent the forward and inverse Fourier transforms,
respectively. Applying these transforms to (C1), we obtain

ût = F(û) ≡ −

[
αikS

2
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3

û3 − βik3S3û + β1ik5S5û

−
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2
ik3S3 û2 +
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2

ikSẑ

]
.

(C4)

To solve the ODE (C4) numerically, we use a 4th order Runge–
Kutta method for time stepping. Let us assume that the solution
at time t is given by ûj = û(x, j∆t), where ∆t is the time step of
integration. The solution at time t = (j + 1)∆t is given by

ûj+1 = ûj +
1
6

(
aj + 2bj + 2cj + dj

)
, (C5)

where complex quantities a, b, c, and d are defined as

aj = ∆tF
(
ûj

)
, bj = ∆tF

(
ûj +

1
2

aj

)
,

cj = ∆tF

(
ûj +

1
2

bj

)
, dj = ∆tF

(
ûj + cj

)
. (C6)

The nonlinear terms u2 and u3 were evaluated in the real space
and then were transformed to the Fourier space for use in
Eq. (C4).

Due to periodical boundary conditions (which is the intrin-
sic feature of the pseudospectral method), the radiated waves

can re-enter the region of interest and interfere with the main
wave structures. To alleviate this, we have introduced a damp-
ing region (“sponge layer”) at each end of the domain to
prevent waves re-entering. Within the sponge layer, we intro-
duce in the left-hand side of Eq. (C1) a linear decay term
ν r(x) u, where ν is the coefficient of artificial viscosity and

r(x) =
1
2

[
2 + tanh D

(
x −

3L
4

)
− tanh D

(
x +

3L
4

)]
. (C7)

The coefficient D was chosen such that damping occurs only
beyond the region of interest and does not affect the main wave
structures. The spatially nonuniform decay term was treated
numerically in the same way as the nonlinear terms.
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10H. Michallet and E. Barthélemy, “Experimental study of interfacial solitary
waves,” J. Fluid Mech. 366, 159–177 (1998).

11D. J. Benney, “Long non-linear waves in fluid flows,” J. Math. Phys. 45(1-4),
52–63 (1966).

12C.-Y. Lee and R. C. Beardsley, “The generation of long nonlinear internal
waves in a weakly stratified shear flows,” J. Geophys. Res. 79(3), 453–457,
https://doi.org/10.1029/jc079i003p00453 (1974).

13C. Koop and G. Butler, “An investigation of internal solitary waves in a
two-fluid system,” J. Fluid Mech. 112, 225–251 (1981).

14P. J. Olver, “Hamiltonian perturbation theory and water waves,” Contemp.
Math. 28, 231–249 (1984).

15T. R. Marchant and N. F. Smyth, “The extended Korteweg–de Vries equation
and the resonant flow of a fluid over topography,” J. Fluid Mech. 221,
263–288 (1990).

16K. Lamb, “The evolution of internal wave undular bores: Comparisons of
a fully nonlinear numerical model with weakly nonlinear theory,” J. Phys.
Oceanogr. 26, 2712–2734 (1996).

17R. Grimshaw, E. Pelinovsky, and O. Poloukhina, “Higher-order Korteweg–
de Vries models for internal solitary waves in a stratified shear flow with a
free surface,” Nonlinear Processes Geophys. 9, 221–235 (2002).

18A. R. Giniyatullin, A. A. Kurkin, O. E. Kurkina, and Y. A. Stepanyants,
“Generalised Korteweg–de Vries equation for internal waves in two-layer
fluid,” Fundam. Appl. Hydrophysics 7(4), 16–28 (2014) (in Russian).

19A. Karczewska, P. Rozmej, and Ł. Rutkowski, “A new nonlinear equation
in the shallow water wave problem,” Phys. Scr. 89, 054026 (2014).

20A. Karczewska, P. Rozmej, and E. Infeld, “Shallow-water soliton dynamics
beyond the Korteweg–de Vries equation,” Phys. Rev. E 90, 012907 (2014).

21T. Kakutani and H. Ono, “Weak non-linear hydromagnetic waves in a cold
collisionless plasma,” J. Phys. Soc. Jpn. 26, 1305–1318 (1969).

22K. A. Gorshkov, L. A. Ostrovsky, and V. V. Papko, “Interactions and bound
states of solitons as classical particles,” Sov. Phys. JETP 44(2), 306–311
(1976).

23L. A. Abramyan and Yu. A. Stepanyants, “The structure of two-dimensional
solitons in media with anomalously small dispersion,” Sov. Phys. JETP
61(5), 963–966 (1985).

https://doi.org/10.1029/rg027i003p00293
https://doi.org/10.1121/1.2395914
https://doi.org/10.1121/1.2395914
https://doi.org/10.1063/1.2107087
https://doi.org/10.1017/s002211209800127x
https://doi.org/10.1002/sapm196645152
https://doi.org/10.1029/jc079i003p00453
https://doi.org/10.1017/s0022112081000372
https://doi.org/10.1090/conm/028/751987
https://doi.org/10.1090/conm/028/751987
https://doi.org/10.1017/s0022112090003561
https://doi.org/10.1175/1520-0485(1996)026<2712:teoiwu>2.0.co;2
https://doi.org/10.1175/1520-0485(1996)026<2712:teoiwu>2.0.co;2
https://doi.org/10.5194/npg-9-221-2002
https://doi.org/10.1088/0031-8949/89/5/054026
https://doi.org/10.1103/physreve.90.012907
https://doi.org/10.1143/jpsj.26.1305


022104-20 Khusnutdinova, Stepanyants, and Tranter Phys. Fluids 30, 022104 (2018)

24J. K. Hunter and J. Scheurle, “Existence of perturbed solitary wave solutions
to a model equation for water waves,” Phys. D 32, 253–268 (1988).
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