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Abstract 14 

In	many	taxa,	odour	cues	mediate	mating	decisions.	A	key	question	is	what	these	odours	15 

comprise,	where	they	are	produced,	and	what	they	signal.	Using	rose	bitterling,	fish	that	16 

spawn	in	the	gills	of	freshwater	mussels,	we	investigated	the	role	of	sperm	cues	on	female	17 

oviposition	 decisions	 using	 individuals	 of	 known	 MHC	 genotype.	 Male	 bitterling	18 

frequently	 released	 sperm	prior	 to	 female	oviposition	and	 females	 responded	with	an	19 

increased	probability	of	oviposition	and	released	a	greater	number	of	eggs,	particularly	if	20 

males	had	a	dissimilar	MHC	genotype.	These	mating	preferences	by	females	were	shown	21 

to	be	adaptive,	with	MHC	dissimilarity	of	males	and	females	correlated	positively	with	22 

embryo	survival.	These	results	support	a	role	for	indirect	benefits	to	rose	bitterling	mate	23 

choice	and	we	propose	that	sperm	acts	as	a	releaser	pheromone	in	bitterling,	functioning	24 

as	a	sexual	ornament	signalling	male	quality	as	a	mate.	25 

Keywords:	ejaculate;	mate	choice;	pheromone;	sexual	selection;	spermatozoa.	 	26 
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Introduction 27 

Many	taxa	use	chemical	signals	as	components	of	communication	in	the	context	of	mating,	28 

functioning	as	attractants	to	the	opposite	sex,	signalling	an	individual’s	dominance,	health	29 

status,	mating	 status,	 receptivity,	 genetic	 ‘quality’	 and	 parasite	 burden	 (Penn	&	Potts,	30 

1998;	Wyatt,	2003).	In	fish,	olfactory	signals	are	involved	in	a	wide	range	of	functions,	31 

such	 as	 antipredator	 responses,	 migration,	 kin	 recognition,	 and	 mating	 decisions	32 

(Milinski,	2014;	Wootton	&	Smith,	2015).	Pheromones,	which	are	chemical	signals	that	33 

have	evolved	to	elicit	a	specific	reaction	in	a	conspecific,	play	a	key	role	in	the	courtship	34 

and	mating	behaviour	of	fishes	(Liley,	1982;	Stacey	et	al.,	2003),	though	many	aspects	of	35 

olfactory	 signalling	 in	 fishes,	 including	 signalling	 behaviour	 and	 signal	 structure,	 are	36 

poorly	understood	(Rosenthal	&	Lobel,	2006).		37 

While	terrestrial	animals	typically	release	pheromones	from	specialised	exocrine	38 

glands	onto	a	substrate	and	rely	on	airborne	diffusion	transmission	to	disseminate	odour,	39 

fish	release	odour	cues	directly	into	water	where	the	rate	of	transmission	is	substantially	40 

slower	than	in	air.	Thus,	while	terrestrial	pheromones	tend	to	belong	to	a	limited	family	41 

of	volatile	chemicals,	those	of	fish	typically	comprise	a	wide	range	of	unspecialised	water-42 

soluble	 compounds	 (Stacey	 et	 al.,	 1986).	 A	 result	 is	 the	 evolution	 of	 highly	 flexible	43 

chemical	 communication	systems	 in	 fish	with	a	diverse	 range	of	 chemicals	potentially	44 

serving	as	pheromones,	either	priming	physiological	responses	in	conspecifics,	or	acting	45 

as	releasers,	inducing	intrinsic	adaptive	responses	(Stacey	et	al.,	1986;	Sorenson,	2015).		46 

One	 mechanism	 by	 which	 odour	 cues	 may	 mediate	 mating	 preferences	 in	47 

vertebrates	is	through	the	influence	of	an	individual’s	major	histocompatibility	complex	48 

(MHC)	genotype.	The	MHC	is	a	family	of	highly	polymorphic	genes	that	play	a	key	role	in	49 

resistance	 to	 infectious	 disease	 in	 vertebrates.	 MHC	 genes	 encode	 a	 set	 of	 trans-50 

membrane	 proteins	 that	 function	 in	 distinguishing	 between	 self	 and	 non-self	 antigen,	51 

presenting	 foreign	 peptides	 to	 immune-surveillance	 cells,	 such	 as	 T	 lymphocytes.	52 
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Individuals	with	 a	wide	 range	of	 antigen-binding	molecules	 are	 able	 to	 recognize	 and	53 

eradicate	 a	 wider	 range	 of	 pathogens	 and	 tend	 to	 have	 a	 fitness	 advantage	 over	54 

individuals	with	a	more	limited	MHC	profile	(Doherty	&	Zinkernagel,	1975;	Penn	&	Potts,	55 

1998;	Boehm	&	Zufall,	2006).	It	has	also	been	demonstrated	that	an	optimal	rather	than	56 

maximal	individual	MHC	diversity	can	confer	enhanced	resistance	to	pathogens	through	57 

negative	 T-cell	 selection	 during	 thymic	 development	 (Nowak	 et	 al.,	 1992;	Kalbe	 et	 al.,	58 

2009).	 Because	 MHC-dissimilar	 parents	 are	 more	 likely	 to	 produce	 offspring	 with	 a	59 

diverse	MHC	genotype,	MHC	genes	have	received	attention	as	possible	targets	of	sexual	60 

selection	through	mate	choice	(Firman	et	al.,	2017).		61 

An	assumption	 is	 that	MHC	polymorphism	generates	a	specific	odour	signature,	62 

which	is	perceived	by	the	olfactory	system	of	a	potential	mate	and	results	in	mating	if	the	63 

odour	cues	indicate	MHC	compatibility	(Penn	&	Potts,	1998;	Milinski	et	al.,	2005)	or	new	64 

or	 rare	 MHC	 alleles	 that	 have	 a	 selective	 advantage	 through	 frequency-dependent	65 

selection	(Van	Valen	1973;	Hamilton	1980).	A	key	question	is	what	these	odour	signatures	66 

comprise	 and	where	 they	 reside.	 Urine	 and	 body	 odour	 have	 been	 implicated	 as	 the	67 

primary	 source	 of	 compounds	 linked	 to	 mate	 choice	 and	 individual	 recognition	 in	68 

terrestrial	vertebrates	(Santos	et	al.,	2016;	Leclaire	et	al.,	2017;	Ferkin,	2018),	but	given	69 

the	 flexible	 chemical	 communication	 systems	 in	 fish,	 other	 sources	 of	 MHC-specific	70 

odours	may	operate.	71 

We	investigated	the	role	of	odour	cues	in	the	mate	choice	decisions	of	a	fish,	the	72 

rose	bitterling,	Rhodeus	ocellatus	(Kner,	1866).	Rose	bitterling,	in	common	with	all	other	73 

bitterling	 fishes,	 lay	 their	 eggs	 in	 the	 gills	 of	 living	 freshwater	mussels.	Males	 release	74 

sperm	over	a	mussel,	and	after	 fertilisation,	 the	eggs	complete	development	 inside	the	75 

mussel	 gill,	which	 typically	 lasts	 3-4	weeks	 (Smith	 et	 al.,	 2004).	 Female	 bitterling	 are	76 

choosy	over	which	mussels	 they	will	use	 for	oviposition.	Decision-making	 is	primarily	77 
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based	on	olfactory	cues	in	the	exhalant	flow	from	a	mussel’s	gill	and	include	mussel	odour	78 

and	dissolved	oxygen	concentration	(Phillips	et	al.,	2017).		79 

Mate	choice	by	female	R.	ocellatus	is	at	least	partly	based	on	genetic	compatibility.	80 

Female	 mate	 preferences	 are	 strong,	 but	 incongruent	 among	 individual	 females,	 and	81 

positively	correlated	with	offspring	survival	and	growth	rate	(Agbali	et	al.,	2010).	There	82 

is	 good	 evidence	 that	male	 and	 female	MHC	 dissimilarity	 affect	 offspring	 fitness,	 and	83 

female	mate	preferences	 correlate	with	MHC	 similarity,	with	 females	depositing	more	84 

eggs	with	MHC-dissimilar	mates	(Reichard	et	al.,	2012).	However,	how	female	bitterling	85 

recognise	MHC	compatibility	in	potential	mates	is	not	known.		86 

Male	 bitterling	 guard	mussels	 and	 attempt	 to	 lead	 females	 to	mussels	 in	 their	87 

territory	to	spawn	(Smith	et	al.,	2004).	Male	bitterling	perform	regular	pre-oviposition	88 

ejaculations	 over	 mussels	 in	 their	 territory	 and	 there	 appears	 to	 be	 an	 association	89 

between	 the	 likelihood	 of	 a	 female	 spawning	 in	 a	 mussel	 and	 the	 frequency	 of	 pre-90 

oviposition	ejaculations	in	bitterling	(Smith	&	Reichard,	2013;	Smith	et	al.,	2014),	though	91 

this	 has	 yet	 to	 be	 formally	 tested.	 If	 the	 case,	 an	 implication	 is	 that	 pre-oviposition	92 

ejaculation	may	provide	females	with	odour	cues	regarding	the	likelihood	of	fertilisation	93 

of	her	eggs	and,	alternatively	or	additionally,	on	mate	compatibility.		94 

We	tested	the	role	of	sperm	cues	on	 female	oviposition	decisions	in	R.	ocellatus	95 

with	an	experimental	approach	using	fish	of	known	MHC	genotype.	We	conducted	three	96 

experiments.	The	first	was	to	identify	the	role	of	sperm	on	female	oviposition	decisions	97 

(response	 to	 sperm	 cues),	 with	 the	 prediction	 that	 sperm	 release	 by	 males	 prior	 to	98 

oviposition	influenced	female	reproductive	investment.	In	the	second	experiment,	the	aim	99 

was	 to	 test	 the	 role	 of	 male	 genetic	 compatibility	 in	 female	 mating	 decisions	 and	100 

understand	the	way	that	sperm	release	mediated	female	spawning	decisions	(response	101 

to	MHC	compatibility).	Here	the	prediction	was	that	sperm	carried	cues	that	females	used	102 

to	measure	male	mate	 compatibility,	 with	 the	 predicted	 outcome	 that	 females	would	103 
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prefer	MHC	dissimilar	males	and	that	mating	decisions	were	associated	with	ejaculation	104 

frequency.	In	this	experiment	we	additionally	examined	whether	females	responded	to	a	105 

single	male	or	groups	of	three,	with	either	similar	or	dissimilar	MHC	genotypes.	The	aim	106 

in	performing	this	comparison	was	to	examine	whether	MHC	genotype,	or	genome-wide	107 

variability	in	the	case	of	groups	of	three	males,	contributed	to	female	mating	decisions.	108 

The	 prediction	 in	 this	 case	 was	 that	 if	 only	MHC	 genotype	 influenced	 female	 mating	109 

decisions,	 there	would	 be	 no	difference	 in	 female	 response	 between	 single	males	 and	110 

groups	of	three,	but	that	cues	associated	with	genome	wide	variability	would	result	in	a	111 

preference	for	three	males.	Finally,	we	examined	whether	MHC	genotype	influenced	egg	112 

survival	(embryo	survival),	with	the	prediction	that	pairings	between	males	and	females	113 

with	dissimilar	MHC	genotypes	would	result	in	greater	offspring	developmental	success.	114 

	115 

Materials and methods 116 

Experiment 1: Response to sperm cues 117 

Rose	bitterling	used	 in	 the	experiment	were	 the	 second	generation	of	 a	 large	outbred	118 

population	 of	 R.	 ocellatus	 originally	 imported	 from	 the	 River	 Yangtze	 basin,	 China.	 A	119 

sexually	mature	male	was	selected	from	a	stock	aquarium	and	housed	in	an	experimental	120 

aquarium	measuring	250	(length)	x	400	(width)	x	300	(depth)	mm	with	a	single	Unio	121 

pictorum	mussel	 in	 a	 57-mm	diameter	 ceramic	 flower	 pot	 and	 left	 alone	 overnight	 to	122 

establish	a	 territory.	A	 length	of	3-mm	diameter	silicon	tubing	was	suspended	directly	123 

over	 the	 inhalant	 siphon	 of	 the	mussel,	 50	mm	 from	 the	mussel	 inhalant	 siphon	 and	124 

connected	to	a	20-ml	plastic	syringe.	On	the	following	day,	a	female	with	ovulated	eggs	125 

(recognizable	by	extension	of	her	ovipositor)	was	gently	removed	from	a	stock	aquarium	126 

and	transferred	to	the	experimental	aquarium	containing	the	male	and	allowed	at	least	127 

15	min	to	settle.	During	this	time,	the	mussel	was	covered	with	a	perforated	plastic	cup	128 
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that	allowed	the	fish	to	see	and	smell	the	mussel	but	prevented	spawning.	Once	the	female	129 

started	approaching	the	mussel,	it	was	uncovered,	and	experimental	treatments	imposed.		130 

Each	 experimental	 pair	 of	 fish	 was	 randomly	 assigned	 to	 a	 sperm	 or	 control	131 

treatment.	 In	 the	 case	 of	 the	 control	 treatment,	 a	 20-ml	 solution	 of	 water	 from	 an	132 

aquarium	housing	six	male	R.	ocellatus	was	drawn	into	a	plastic	syringe,	attached	to	the	133 

silicon	 tubing	 suspended	 over	 the	 experimental	mussel,	 and	 slowly	 released	 over	 the	134 

inhalant	siphon	of	the	mussel.	In	the	case	of	the	sperm	treatment,	a	20-ml	sperm	solution	135 

was	 released	 in	 the	 same	 way.	 The	 sperm	 treatment	 was	 obtained	 from	 six	 male	 R.	136 

ocellatus	 randomly	 selected	 from	 stock	 aquaria	 and	 kept	 together	 for	 one	 day	 in	 an	137 

aquarium	measuring	1200	 (length)	x	400	 (width)	x	450	 (depth)	mm	with	a	 female	 in	138 

spawning	condition	and	a	U.	pictorum	mussel.	The	mussel	was	covered	with	a	perforated	139 

plastic	 cup	 to	 allow	 inspection	 of	 the	mussel	 but	 not	 spawning.	 On	 the	 following	 day	140 

sperm	was	stripped	from	each	male	in	5	ml	of	water	by	gently	pressing	their	abdomens.	141 

A	3-ml	subsample	of	the	sperm	solution	from	each	male	was	combined	and	mixed	with	2	142 

ml	of	fresh	water	to	make	a	20-ml	sperm	solution.	Sperm	solutions	were	made	up	within	143 

5	min.	of	each	experimental	test;	bitterling	spermatozoa	remains	viable	for	up	to	14	min.	144 

after	ejaculation	(Smith	et	al.,	2004).	145 

During	exposure	to	the	mussel	and	imposition	of	treatments,	fish	behaviour	was	146 

videoed	 for	 5	 min	 and	 male	 and	 female	 behaviour	 subsequently	 scored.	 Behaviours	147 

recorded	were	frequency	of	female	mussel	inspection	(the	female	positions	its	snout	close	148 

to	 the	exhalant	siphon	of	 the	mussel),	and	male	ejaculation	 frequency	(the	male	skims	149 

smoothly	over	the	 inhalant	siphon	of	 the	mussel	and	releases	sperm).	 In	 the	case	that	150 

spawning	occurred,	the	valves	of	the	mussel	were	gently	opened,	and	the	number	of	eggs	151 

deposited	in	the	gills	were	counted.	The	mussel	was	subsequently	covered	and	the	pair	152 

left	for	1	h.	After	this	period,	the	mussel	was	uncovered	and	the	process	repeated	using	153 
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the	 alternative	 treatment.	 After	 completion	 of	 a	 paired	 trial,	 fish	 and	 mussels	 were	154 

measured	and	none,	including	sperm	donor	males,	were	used	again	in	the	experiment.		155 

	156 

Experiment 2: Response to MHC compatibility 157 

A	 total	 of	 65	 males	 and	 28	 females	 were	 haphazardly	 selected	 from	 stock	 aquaria,	158 

individually	 marked	 using	 coloured	 visible	 implant	 elastomer	 tags	 (VIE,	 Northwest	159 

Marine	 Technology	 company)	 and	 genotyped	 for	MHC	 Class	 II,	 which	 is	 known	 to	 be	160 

associated	 with	 mate	 choice	 in	 several	 vertebrate	 taxa,	 including	 the	 rose	 bitterling	161 

(Agbali	et	al.,	2010;	Reichard	et	al.,	2012).	Individual	MHC	profiles	were	identified	for	each	162 

male	and	female	from	DAB1	and	DAB3	genes,	using	a	fin	clip	(for	details	on	genotyping	163 

methods	see	below).	Females	were	randomly	allocated	to	one	of	four	treatment	groups:	164 

single	male	MHC	 similar,	 single	male	MHC	 dissimilar,	 three	males	MHC	 similar,	 three	165 

males	 MHC	 dissimilar.	 Males	 were	 assigned	 from	 the	 pool	 of	 genotyped	 males	 to	 a	166 

treatment	 group	 based	 on	 their	 MHC	 profile	 and	 its	 relationship	 to	 a	 corresponding	167 

female	MHC	profile.	MHC	similarity/dissimilarity	was	maximized	in	terms	of	the	number	168 

of	DAB1	 and	DAB3	 alleles	 shared	 between	 the	 partners,	 analogous	 to	 the	 summation	169 

method	of	Landry	et	al.	(2001)	and	Eizaguirre	et	al.	(2009).	In	R.	ocellatus,	the	summation	170 

method	provided	 a	 stronger	 contrast	 than	 an	 alternative	method	 based	 on	 functional	171 

differences	(allele	divergence	method)	and	the	two	measures	were	strongly	correlated	172 

(Reichard	et	al.,	2012).	173 

	We	 aimed	 to	 maximize	 contrasts	 between	 similar	 and	 dissimilar	 males	 by	174 

allocating	the	most	similar	and	the	most	dissimilar	males	to	particular	females,	given	the	175 

constraints	of	our	set	of	genotyped	fish.	For	the	similar	genotype	treatment,	we	attempted	176 

to	pair	partners	with	identical	MHC	genotypes	and	in	nine	replicates	this	was	achieved	177 

(F01,	 F02,	 F06,	 F07,	 F09,	 F11,	 F14,	 F15,	 F22).	 In	 five	 replicates,	 an	 identical	 match	178 

between	male	and	female	MHC	genotypes	was	not	possible	(F03,	F10,	F18,	F20,	F25).	In	179 
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two	replicates,	a	female	was	paired	with	a	similar	male	that	possessed	either	an	identical	180 

DAB1	or	DAB3	allele	but	had	an	additional	DAB1	or	DAB3	allele	that	was	lacking	in	the	181 

male	(F10	and	F25).	In	another	replicate,	the	reverse	was	the	case	(F03).	In	two	further	182 

replicates	a	male	had	an	additional	DAB1	(F20)	and	DAB3	(F18)	allele	not	found	in	the	183 

female.	These	deviations	from	an	identical	match	between	females	and	males	in	the	MHC	184 

similar	treatment	still	represented	a	major	contrast	with	the	dissimilar	treatment,	with	a	185 

median	of	6	different	DAB	alleles	(range	3-6)	for	three	males	and	median	of	2	(range	1-3)	186 

different	alleles	for	a	single	male	(Table	1).	A	double-blind	approach	was	employed	for	187 

MHC	 testing;	 genotyping	 and	 treatment	 assignment	 were	 performed	 in	 Brno	 (Czech	188 

Republic)	while	behavioural	tests	were	conducted	blind	to	MHC	similarity	in	St	Andrews	189 

(UK).	 Three	 females	 (F02,	 F16,	 F26)	 repeatedly	 failed	 to	 ovulate,	 resulting	 in	 a	 final	190 

sample	size	of	25	experimental	females,	paired	with	51	males	(Table	S1).		191 

	 Experimental	fish	were	housed	in	single	sex	groups	in	ten	60	L	aquaria	containing	192 

a	sand	substrate	and	artificial	plants.	Mean	(±	s.e.)	water	temperature	was	23.1	(±	1.3)	°C.	193 

Lighting	was	maintained	on	a	12:	12	h	light:	dark	cycle.	Fish	were	fed	once	daily	with	a	194 

mixture	of	frozen	bloodworm	and	flake	food.	Female	reproductive	status	was	monitored	195 

each	 morning	 and	 those	 with	 ovulated	 eggs	 were	 gently	 transferred	 to	 a	 separate	196 

experimental	 aquarium	measuring	600	 (length)	x	300	 (width)	x	300	 (depth)	mm.	The	197 

single	 or	 group	 of	 three	 males	 assigned	 to	 the	 female	 were	 also	 caught	 from	 their	198 

respective	 holding	 aquaria	 and	 released	 in	 the	 experimental	 aquarium.	 Experimental	199 

aquaria	had	a	layer	of	sand	as	a	substrate	and	a	single	U.	pictorum	mussel	in	a	ceramic	200 

flower	pot	for	spawning.	The	fish	were	left	in	the	aquarium	for	at	least	1	hour	to	settle	201 

with	 the	mussel	 covered,	 after	which	 it	was	uncovered.	Once	 courtship	and	spawning	202 

behaviour	 started,	 the	 behaviour	 of	 the	 fish	 was	 recorded	 for	 10	 min.	 Behaviours	203 

recorded	were	male	ejaculation	frequency	and	courtship	frequency	(male	undulates	body	204 
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at	high	frequency	and	low	amplitude	and	swims	towards	the	mussel,	Smith	et	al.	2004)	205 

and	female	oviposition.	206 

	207 

Experiment 3: Embryo survival 208 

The	survival	of	embryos	fathered	by	males	with	MHC	similar	and	dissimilar	genotypes	209 

was	measured	using	fertilised	eggs	from	Experiment	2.	Thus,	1	h	after	the	completion	of	210 

each	replicate	 in	Experiment	2,	 the	 fish	and	mussel	were	removed	and	measured.	The	211 

valves	of	the	mussel	were	gently	opened,	and	the	number	of	eggs	laid	in	the	mussel	gill	212 

were	 counted.	 The	 remaining	 ovulated	 eggs	were	 stripped	 from	 the	 female	 by	 gently	213 

pressing	her	abdomen	and	placed	 in	aquarium	water	 in	a	70-mm	diameter	Petri	dish.	214 

Sperm	was	stripped	from	the	paired	male,	in	the	cases	where	females	were	exposed	to	215 

three	 males	 the	 sperm	 from	 just	 one	 randomly	 selected	 male	 was	 collected.	 Egg	216 

fertilisation	followed	an	established	protocol	described	in	Agbali	et	al.	(2010).	Embryos	217 

were	scored	for	development	to	the	neurula	stage	(Nagata	&	Miyabe,	1978),	indicating	218 

successful	onset	of	development	(Kimmel	et	al.,	1995).	Fish	and	mussels	were	not	used	219 

again.		220 

	221 

MHC analysis 222 

For	 MHC	 analysis,	 we	 used	 the	 same	 protocol	 as	 Reichard	 et	 al.	 (2012).	 In	 brief,	223 

genotyping	 focused	on	MHC	Class	 II,	 known	 to	be	associated	with	mate	 choice	 in	 rose	224 

bitterling.		A	gene	encoding	the	MHC	class	IIb	chain	of	the	protein	(Sambrook	et	al.,	2005)	225 

(named	DAB)	 can	 be	duplicated	 in	 cyprinids,	resulting	 in	 the	expression	of	DAB1	and	226 

DAB3	genes,	but	there	is	no	evidence	of	a	further	gene	duplication	at	either	DAB1	or	DAB3	227 

(Šimková	 et	 al.,	 2006).	We	 sequenced	 the	 complete	 (DAB1)	 or	 partial	 (DAB3)	 exon	 2	228 

encoding	the	b1	domain;	the	most	polymorphic	fragment	of	MHC	Class	II	molecules	that	229 

are	responsible	for	antigen	binding.	To	minimize	problems	with	null	alleles,	we	used	a	230 
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combination	of	three	primers	located	in	introns	and	exon	for	DAB1	alleles	(Fig.	S1)	and	231 

two	 primer	 sets	 for	 DAB3	 alleles	 (Fig.	 S2).	 DAB3	 gene	 was	 only	 present	 in	 some	232 

individuals.	DNA	sequences	were	translated	into	amino	acid	sequences	and	those	were	233 

used	in	all	subsequent	analyses.		234 

A	total	of	23	DAB1	alleles	(92	amino	acids	long,	Fig.	S3)	and	6	DAB3	alleles	(43	235 

amino	 acids	 long,	 Fig.	 S4)	 were	 detected.	 Heterozygote	 deficiency	 was	 observed,	236 

indicating	the	absence	of	 the	DAB1	and	DAB3	loci	on	some	chromosomes	 in	our	study	237 

population.	Heterozygote	 deficiency	 resulted	 from	 copy	 number	 variation	 rather	 than	238 

resulting	from	the	existence	of	null	alleles;	see	Reichard	et	al.	(2012)	for	full	details.	To	239 

avoid	the	possibility	of	analysing	pseudogenes,	we	compared	the	genotypes	of	the	DAB1	240 

gene	from	six	individuals	obtained	from	complementary	DNA	(cDNA)	and	genomic	DNA	241 

(gDNA)	following	RNA	extraction	from	the	spleen	and	reverse	transcription.	In	all	cases,	242 

the	sequences	of	exon	2	obtained	from	RNA	and	DNA	were	 identical.	Additionally,	 the	243 

exon	2	sequences	of	all	DAB	alleles	were	aligned	in	SeqScape	v2.5	(Applied	Biosystems)	244 

and	examined	for	 the	presence	of	stop	codons	and/or	 insertions	or	deletions	(‘indels’)	245 

causing	a	shift	of	the	reading	frame.	None	showed	these	types	of	mutation.	246 

	247 

Data analysis 248 

Female	response	to	the	sperm	treatment	was	modelled	with	a	Poisson	GLMM,	which	took	249 

the	form:	250 

	251 

	 𝐸𝑔𝑔𝑠$%	~	𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇$%)	252 

	 𝐸(𝐸𝑔𝑔𝑠$%) = 𝜇$% 	253 

	 log3𝜇$%4 = 	 𝜂$% 	254 

	 𝜂$% = 	 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡$% +	𝑒𝑗𝑎𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛$% +	𝑓𝑠𝑙$% +	𝑓𝑒𝑚𝑎𝑙𝑒%		255 
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	 𝑓𝑒𝑚𝑎𝑙𝑒%	~	𝑁(0, 𝜎EFGHIFJ )	256 

	257 

Where	the	number	of	eggs,	denoted	by	Eggsij,	spawned	by	female	j	was	assumed	to	follow	258 

a	Poisson	distribution	with	mean	and	variance	µij.	A	log	link	function	was	used	to	model	259 

the	 expected	 number	 of	 eggs	 spawned	 as	 a	 function	 of	 the	 covariates.	 The	 covariate	260 

treatmentij	was	a	categorical	covariate	with	two	levels,	corresponding	with	experimental	261 

treatment;	water	control	or	sperm	solution.	The	model	also	contained	a	linear	effect	for	262 

experimental	male	ejaculation	frequency	(ejaculationij)	and	female	standard	length	(fslij).	263 

The	random	intercept	femalej	was	included	to	introduce	a	correlation	structure	between	264 

observations	 for	 the	 same	experimental	 female	with	variance	s2,	 distributed	normally	265 

and	equal	to	0.		266 

	 In	the	case	of	female	response	to	MHC	compatibility,	because	females	frequently	267 

failed	 to	 spawn	with	 the	males	with	which	 they	were	paired	 (44%	of	 cases),	 the	data	268 

contained	a	large	number	of	zeros.	Consequently,	these	data	were	modelled	with	a	zero-269 

altered	Poisson	(ZAP)	GLM.	A	ZAP	(hurdle)	model	 is	partitioned	into	two	parts,	with	a	270 

binary	process	modelling	zeros	and	positive	counts,	and	a	second	process	modelling	only	271 

positive	 counts	 using	 a	 zero-truncated	 model	 (Hilbe	 2014).	 This	 modelling	 approach	272 

permitted	us	to	separately	identify	the	variables	that	elicited	spawning	(binary	part),	and	273 

number	of	eggs	laid	when	spawning	occurred	(zero-truncated	part)	(Zuur	et	al.,	2009).	274 

The	model	took	the	form:	275 

	276 

	 𝐸𝑔𝑔𝑠$	~	𝑍𝐴𝑃(𝜇$, 𝜋$)	277 

	 𝐸(𝐸𝑔𝑔𝑠$) 	= 	
N	O	PQ
N	O	FRSQ

	×	𝜇$ 	278 

	 𝑣𝑎𝑟(𝐸𝑔𝑔𝑠$) 	= 	
N	O	PQ
N	O	FRSQ

	×	(𝜇$ 	+ 	𝜇$J) 	− (
N	O	PQ
N	O	FRSQ

	×	𝜇$)J	279 

	 𝑙𝑜𝑔𝑖𝑡(𝜋$) = 	𝑚ℎ𝑐$ 	×	𝑒𝑗𝑎𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛$	280 
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	 𝑙𝑜𝑔(𝜇$) 	= 	𝑚𝑎𝑙𝑒𝑠$ +	𝑐𝑜𝑢𝑟𝑡𝑠ℎ𝑖𝑝$ +	𝑒𝑗𝑎𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛$	281 

	282 

A	log	link	function	was	used	to	model	the	expected	number	of	eggs	spawned	as	a	function	283 

of	 the	 covariates	 for	 the	 zero-truncated	part	of	 the	model,	 and	a	 logit	 function	 for	 the	284 

binomial	 part,	 to	 ensure	 the	 fitted	 probability	 of	 spawning	 lay	 between	 0	 and	 1.	 The	285 

covariate	malesi	was	a	categorical	covariate	with	two	levels,	corresponding	with	females	286 

exposed	 to	 either	 a	 single	 male	 or	 three	 males,	 while	mhci	 was	 a	 second	 categorical	287 

variable,	corresponding	with	females	exposure	to	males	with	a	similar	or	dissimilar	MHC	288 

genotype.	The	model	contained	linear	effects	for	experimental	male	ejaculation	frequency	289 

(ejaculationi)	and	courtship	frequency	(courtshipi).	290 

The	best-fit	ZAP	model	was	selected	based	on	second-order	Akaike’s	information	291 

criterion	(AICc),	by	removing	predictor	variables	from	the	full	model	until	the	model	with	292 

the	 lowest	AICc	value	was	 identified.	To	assess	model	 robustness,	we	 simulated	1000	293 

datasets	from	the	best-fitting	model	and	compared	these	with	observed	data,	using	the	294 

procedure	of	Zuur	&	Ieno	(2016)	for	hurdle	models.	295 

Embryo	survival	data	were	modelled	using	a	binomial	GLM	assuming	egg	survival	296 

for	i	replicates	followed	a	binomial	distribution	with	probability	pi.	Thus:	297 

	298 

	 𝑆𝑢𝑟𝑣𝑖𝑣𝑒𝑑$	~	𝐵𝑖𝑛(𝜋$, 𝐸𝑔𝑔𝑠$)	299 

	 𝐸(𝑆𝑢𝑟𝑣𝑖𝑣𝑒𝑑$) = 	𝐸𝑔𝑔𝑠$ 	×	𝜋$ 	300 

	 𝑣𝑎𝑟(𝑆𝑢𝑟𝑣𝑖𝑣𝑒𝑑$) = 	𝐸𝑔𝑔𝑠$ 	× 	𝜋$ 	×	(1 −	𝜋$)	301 

	 𝑙𝑜𝑔𝑖𝑡(𝜋$) 	= 	 𝜂$ 	302 

	 𝜂$ = 	𝑚ℎ𝑐$ +	𝑓𝑠𝑙$		303 

	304 
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The	variable	Survivedi	was	the	number	of	eggs	that	survived	to	the	neurula	stage	and	Eggsi	305 

was	the	 initial	number	of	eggs	 incubated.	The	covariates	mhci	and	 fsli	 correspond	with	306 

definitions	above.	307 

All	models	were	 implemented	using	Bayesian	 inference	with	 Integrated	Nested	308 

Laplace	Approximation	 (INLA)	 (Rue	et	al.,	 2009)	 in	 the	R	 statistical	 environment,	 ver.	309 

3.4.3	(R	Development	Core	Team,	2017),	with	diffuse	or	non-informative	priors	put	on	all	310 

parameters.	 The	 advantage	 of	 using	Bayesian	 inference	 is	 that	 is	 provides	 probability	311 

distributions	 for	 parameters	 of	 interest,	 so	 that	 probability	 statements	 about	 the	312 

magnitude	 of	model	 parameters	 can	 be	 made	 with	 confidence.	 This	 approach	 avoids	313 

reliance	 on	 hypothesis	 testing	 and	 P-values,	 which	 are	 increasingly	 recognised	 as	314 

unreliable	statistical	tools	for	any	but	the	simplest	models	(Burnham	&	Anderson,	2014;	315 

Nuzzo,	2014;	Wasserstein	&	Lazar,	2016).	316 

	 	317 

Results 318 

Experiment 1: Response to sperm cues		319 

Females	 spawned	more	 eggs	 in	 the	 gills	 of	mussels	 into	which	 a	 sperm	 solution	was	320 

released	 than	 those	 receiving	a	water	 control,	with	 zero	 falling	outside	 the	upper	and	321 

lower	credible	 intervals	of	 the	posterior	mean	(Table	2).	There	was	also	a	statistically	322 

important	positive	effect	of	male	ejaculation	frequency	on	the	number	of	eggs	spawned,	323 

though	no	effect	of	female	size	(Table	2;	Fig.	1).	324 

 325 

Experiment 2: Response to MHC compatibility 326 

For	the	binomial	part	of	the	best-fitting	ZAP	model,	the	probability	that	females	spawned	327 

was	greater	with	males	with	a	dissimilar	MHC	genotype	(Table	3).	A	greater	ejaculation	328 

frequency	by	males	also	increased	the	probability	of	spawning	(Table	3;	Fig.	2).	For	the	329 
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zero-truncated	part	of	the	model,	the	number	of	eggs	spawned	was	greater	with	a	single	330 

male	 than	with	 three	males.	There	were	also	 statistically	 important	positive	effects	of	331 

courtship	frequency	and	ejaculation	frequency	on	the	number	of	eggs	spawned	(Table	3;	332 

Fig.	2).	333 

	334 

Experiment 3: Embryo survival 335 

The	probability	of	embryos	surviving	to	the	neurula	stage	was	greater	for	those	fathered	336 

by	males	with	MHC	genotypes	that	were	dissimilar	to	the	MHC	genotype	of	the	female.	337 

There	was	also	a	positive	relationship	between	embryo	survival	and	female	size	(Table	4;	338 

Fig.	3).	339 

	340 

Discussion 341 

Our	results	provide	evidence	that	sperm	release	functions	as	a	releaser	pheromone	in	R.	342 

ocellatus,	 driving	 an	 adaptive,	 innate	 spawning	 response	 in	 females.	 Adding	 a	 sperm	343 

solution	from	multiple	males	enhanced	the	attractiveness	of	a	mussel	to	females	(Fig.	1),	344 

while	multiple	ejaculations	by	a	guardian	male,	particularly	 those	with	dissimilar	MHC	345 

genotypes,	increased	the	probability	of	female	oviposition	and	simultaneously	amplifying	346 

the	number	of	eggs	spawned	(Table	2;	Fig.	2).	MHC	dissimilarity	also	correlated	with	mate	347 

choice,	 and	 these	mate	 preferences	were	 adaptive;	 embryo	 survival	was	 greater	with	348 

MHC-dissimilar	parents	(Fig.	3).	Taken	together,	these	findings	offer	two	conclusions.	The	349 

first	is	that	odour	cues	produced	by	the	male	signal	MHC	compatibility	and	elicit	spawning	350 

by	the	female,	and	the	presence	of	sperm	also	serves	to	elicit	spawning,	but	independently	351 

of	MHC-related	 odour	 cues.	 The	 second,	more	 parsimonious,	 conclusion	 is	 that	MHC-352 

related	 odour	 cues	 reside	 in	 the	 ejaculate	 and	 function	 as	 releaser	 pheromones	 that	353 

females	use	in	making	adaptive	oviposition	decisions.	In	this	scenario,	the	ejaculate	has	a	354 
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dual	 function;	 as	 a	 medium	 for	 delivering	 spermatozoa	 to	 the	 egg	 to	 accomplish	355 

fertilisation,	and	as	an	ornament	signalling	male	quality	as	a	prospective	mate.		356 

The	proximate	mechanism	by	which	individuals	judge	MHC	dissimilarity	in	mating	357 

partners	has	been	persuasively	demonstrated	to	be	through	olfactory	cues	in	a	range	of	358 

vertebrates	(Eggert	et	al.,	1998;	Penn,	2002;	Ziegler	et	al.,	2005),	even	including	taxa,	such	359 

as	 birds,	 with	 relatively	 poorly-developed	 olfaction	 (e.g.	 Rymešová	 et	 al.,	 2017).	 The	360 

functional	benefits	of	 selecting	a	mate	with	dissimilar	MHC	variants	are	 recognised	as	361 

coming	through	increased	MHC	diversity	and	elevated	heterozygosity	in	the	offspring,	as	362 

well	as	 from	an	enhanced	performance	accruing	 from	specific	haplotype	combinations	363 

(Tregenza	&	Wedell,	2000).	However,	a	conceptual	difficulty	arises	with	the	evolution	of	364 

a	mate	choice	system	based	on	a	preference	for	MHC	dissimilarity	because	it	demands	an	365 

unusually	 complex	 set	 of	 traits,	 with	 an	 individual	 required	 to	 reference	 specific	366 

components	of	 their	own	genotype	as	well	as	those	of	potential	mates	 in	making	mate	367 

choice	decisions	(Puurtinen	et	al.,	2009).	Elucidating	the	mechanisms	by	which	genetic	368 

compatibility	functions	in	mate	choice	remains	a	significant	challenge.	369 

The	association	between	female	mate	preference,	MHC	dissimilarity,	and	embryo	370 

survival	in	R.	ocellatus	reinforces	previous	findings	for	a	non-additive	genetic	basis	to	the	371 

rose	bitterling	mating	system	(Agbali	et	al.,	2010;	Reichard	et	al.,	2012).	The	present	study	372 

further	 provides	 circumstantial	 evidence	 that	 the	 proximate	 cue	 for	 mate	 choice	 is	373 

associated	with	olfactory	cues	associated	with	sperm	release.	The	chief	components	of	374 

seminal	fluid	in	teleost	fishes	are	lipids,	proteins,	free	amino	acids	and	monosaccharides.	375 

Seminal	fluid	also	exhibits	phosphatase,	β-glucuronidase,	and	protease	activity	(Wootton	376 

&	 Smith,	 2015).	 An	 additional	 component	 of	 seminal	 fluid	 in	 some	 species,	 including	377 

bitterling	 (Pateman-Jones	 et	 al.,	 2011),	 is	 a	 sialoglycoprotein-rich	 fluid	 termed	mucin,	378 

which	 functions	 in	 slowly	 releasing	active	 spermatozoa	over	an	extended	period	after	379 

ejaculation	(Marconato	et	al.,	1996;	Scaggiante	et	al.,	1999).	Thus,	seminal	fluid	comprises	380 
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a	range	of	constituents	that	potentially	carry	MHC-dependent	olfactory	cues,	though	these	381 

have	yet	to	be	identified.	382 

Chemical	 signals,	 or	 pheromones,	 are	 widespread	 in	 nature	 (Wyatt,	 2003),	383 

including	 in	 fishes	 (Sorenson,	 2015),	 potentially	 performing	 the	 function	 of	 sexual	384 

ornaments	 comparable	 to	 colouration,	 morphological	 traits,	 or	 display	 behaviour	385 

(Corkum	 &	 Cogliati,	 2015).	 Female	 pheromones	 are	 recognised	 in	 initiating	 male	386 

reproductive	 behaviour	 in	 fishes	 (Stacey	 et	 al.,	 2003;	 Wootton	 &	 Smith,	 2015),	 but	387 

pheromones	 are	 also	 produced	 by	 males	 and	 serve	 to	 attract	 females	 and promote	388 

spawning	synchrony.	Male	pheromones	derive	 from	a	variety	of	sources,	 including	the	389 

urine	(Maruska	&	Fernald,	2012;	Keller-Costa	et	al.,	2014),	mesorchial	glands	(Gammon	390 

et	al.,	2005),	anal	glands	(Serrano	et	al.,	2008),	seminal	vesicles	(Lambert	&	Resink,	1991)	391 

and	 testes	 (Hurk	&	Resink,	1992;	Arbuckle	et	al.,	 2005).	 In	 the	Pacific	herring	 (Clupea	392 

pallasii),	a	releaser	pheromone	is	associated	with	sperm	(Stacey	&	Hourston,	1982)	and	393 

functions	 in	 initiating	 group	 spawning	 behaviour	 (Carolsfeld	 et	 al.,	 1997).	 For	394 

pheromones	to	function	as	ornaments,	they	must	stimulate	the	receiver’s	sensory	system,	395 

be	 innate	and	not	 learned,	carry	a	cost	 in	 their	production,	and	show	variation	among	396 

individuals,	 such	 that	 they	 serve	 as	 a	 measure	 of	 individual	 identity	 in	 mate	 choice	397 

(Sorenson,	2015).	In	the	case	of	bitterling,	cues	associated	with	sperm	release	appear	to	398 

satisfy	all	 these	criteria.	Sperm	is	evidently	detectable	by	 females	(Fig.	1),	with	 female	399 

responses	 apparently	 innate;	 responses	 are	 seen	 in	 females	 that	 have	 not	 spawned	400 

previously	 and	 are	 shared	 by	 related	 taxa	 (Phillips,	 2018).	 Sperm	 production	 is	401 

recognised	as	costly	in	fishes	(Wootton	&	Smith,	2015),	and	demonstrably	so	in	bitterling	402 

(Smith	et	al.,	2009).	Finally,	we	present	evidence	that	the	strength	of	female	response	to	403 

sperm	release	is	conditional	on	male	MHC	genotype	(Fig.	2).	404 

A	striking	feature	of	the	reproductive	behaviour	of	male	bitterling	is	the	frequency	405 

with	which	males	ejaculate	over	mussels	during	reproduction	(Smith	et	al.,	2004).	Male	406 
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bitterling	repeatedly	inspect	the	exhalant	siphon	of	the	mussels	they	guard,	ejaculating	407 

over	them	up	to	250	times	over	the	course	of	a	day	of	matings	under	natural	conditions	408 

(Smith	 et	 al.,	 2009).	 Notably,	 males	 engage	 in	 pre-oviposition	 ejaculations,	 releasing	409 

sperm	over	mussels	as	part	of	courtship,	and	even	in	the	absence	of	a	female.	The	function	410 

of	 pre-oviposition	 ejaculations	 is	 opaque.	 It	 may	 function	 in	 obtaining	 precedence	 in	411 

fertilisation	when	a	female	subsequently	spawns;	alternative	mating	tactics	are	common	412 

in	 bitterling,	 and	 sperm	 competition	 between	 guarder	 and	 sneaker	 males	 inside	 the	413 

mussel	gill	appears	common	(Reichard	et	al.,	2004a).	Males	may	also	keep	mussel	gills	414 

‘topped	up’	with	their	sperm	(sensu	Parker,	1998),	and	thereby	ensure	fertilisation	of	eggs	415 

should	a	female	deposit	eggs	in	a	mussel	in	the	male’s	absence,	since	water	filtration	by	416 

the	 mussel	 depletes	 sperm	 in	 the	 mussel	 gill	 (Smith	 &	 Reichard,	 2013).	 The	 present	417 

results	suggest	that	an	additional	explanation	for	pre-oviposition	ejaculation	may	be	in	418 

signalling	 male	 traits	 to	 prospective	 mates,	 including	 MHC	 compatibility,	 with	 sperm	419 

thereby	functioning	as	an	ornament.	420 

We	 showed	 that	 the	 number	 of	 males	 with	 which	 females	 were	 paired	 had	 a	421 

statistically	 important	 effect	 on	 the	 number	 of	 eggs	 spawned	 by	 females	 in	 the	 zero-422 

truncated	part	of	the	ZAP	model	(Table	3),	with	females	depositing	more	eggs	with	single	423 

males	rather	than	groups	of	three,	irrespective	of	male	MHC	genotype.	This	outcome	may	424 

result	from	an	artefact	of	our	experimental	design,	since	groups	of	males	tended	to	disrupt	425 

spawning	by	females	in	attempting	to	ejaculate	over	the	mussel	during	oviposition,	which	426 

can	significantly	constrain	oviposition	rate	at	the	population	level	(Reichard	et	al.,	2004b).	427 

Our	 predicted	 outcome	 for	 this	 treatment	 was	 that,	 in	 the	 case	 that	 genome-wide	428 

variability	 contributed	 to	 female	 mating	 decisions	 rather	 than	 MHC	 genotype	 alone,	429 

groups	of	 three	males	would	present	 females	with	greater	variability	 in	olfactory	cues	430 

than	single	males.	However,	 this	proved	not	 to	be	the	case	and	 it	appeared	to	be	MHC	431 
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dissimilarity	specifically	that	influenced	female	mate	choice,	though	with	the	caveat	that	432 

we	failed	to	adequately	control	male-male	and	male-female	interference	in	our	design.	433 

Females	spawned	a	greater	number	of	eggs	with	males	that	performed	courtship	434 

displays	more	frequently	(Table	2).	The	courtship	behaviour	of	male	bitterling	is	striking,	435 

involving	the	male	undulating	his	fins	and	body	in	front	of	the	female	at	high	frequency	436 

and	interspersed	with	sperm	releases	over	a	mussel	(Wiepkema,	1961;	Smith	et	al.,	2004).	437 

Male	bitterling	are	brightly	coloured,	and	a	possible	 function	of	courtship	 is	 to	display	438 

these	 nuptial	 colours	 to	 the	 female,	 which	 may	 signal	 direct	 or	 indirect	 mate	 choice	439 

benefits	to	females	(Smith	et	al.,	2004).	Vigorous	courtship	movements	may	also	function	440 

in	 directing	 sperm	 and	 associated	 odour	 cues	 to	 the	 female.	 The	 release	 of	 olfactory	441 

signals	 by	 fish	 is	 often	 associated	 with	 fin	 or	 body	 movements	 performed	 during	442 

courtship	displays	(Passos	et	al.,	2015),	possibly	because	the	diffusion	of	compounds	in	443 

water	 is	 relatively	 slow	 (Atema,	1996).	 In	 the	 swordtail	Xiphophorus	birchmani,	males	444 

release	urine-borne	chemical	cues	upstream	of	females,	so	that	odours	are	carried	to	the	445 

female	(Rosenthal	et	al.,	2011).	Thus,	the	positive	effect	of	male	courtship	frequency	on	446 

female	mating	 decisions	may	 reflect	 the	 role	 of	 this	 behaviour	 in	 displaying	 visual	or	447 

olfactory	ornaments	to	females,	or	both	in	the	case	that	multiple	cues	operate	in	the	rose	448 

bitterling	mating	system.	449 

Larger	females	produced	more	viable	eggs,	indicating	significant	maternal	effects	450 

in	embryo	survival	(Table	3).	Across	a	wide	range	of	teleost	species	egg	size	correlates	451 

positively	with	female	body	size	(Wootton,	1998),	and	female	age	and	size	are	recognised	452 

as	 predictors	 of	 egg	 and	 embryo	 ‘quality’	 (Wootton	&	 Smith,	 2015).	 Egg	 size	was	 not	453 

measured	in	the	present	study,	though	Agbali	et	al.	(2010)	did	measure	egg	size	in	their	454 

investigation	of	R.	ocellatus	and	demonstrated	that	additive	maternal	effects	were	largely	455 

explained	 by	 female	 size	 and	 egg	 size,	 and	 the	 same	 is	 assumed	 to	 be	 the	 case	 in	 the	456 

present	study.		457 
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In	summary,	female	rose	bitterling	responded	positively	to	the	presence	of	sperm	458 

released	over	mussels	during	spawning.	Multiple	ejaculations	by	males,	particularly	those	459 

with	 dissimilar	 MHC	 genotypes,	 increased	 the	 probability	 of	 oviposition,	 as	 well	 as	460 

increasing	 the	 number	 of	 eggs	 that	 females	 spawned.	 These	 mating	 preferences	 by	461 

females	 were	 adaptive,	 with	 MHC	 dissimilarity	 correlated	 with	 improved	 embryo	462 

survival.	We	propose	that	sperm	has	a	dual	function	in	rose	bitterling,	transporting	the	463 

spermatozoa	to	the	egg	and	as	a	sexual	ornament	by	acting	as	a	releaser	pheromone.	464 

  465 



	

	 21 

References 466 

Agbali,	M.,	Reichard,	M.,	Bryjová,	A.,	Bryja,	J.	&	Smith,	C.	2010.	Mate	choice	for	467 

nonadditive	genetic	benefits	correlate	with	MHC	dissimilarity	in	the	rose	bitterling	468 

(Rhodeus	ocellatus).	Evolution	64:	1683-1696.	469 

Aguilar,	A.	&	Garza.,	J.	C.	2007.	Patterns	of	historical	balancing	selection	on	the	salmonid	470 

major	histocompatibility	complex	class	II	β	gene.	J.	Mol.	Evol.	65:	34–43.	471 

Arbuckle,	W.J.,	Bélanger,	A.J.,	Corkum,	L.D.,	Zielinski,	B.S.,	Li,	W.,	Yun,	S.S.,	Bachynski,	S.	&	472 

Scott,	A.P.	2005.	In	vitro	biosynthesis	of	novel	5β-reduced	steroids	by	the	testis	of	the	473 

round	goby,	Neogobius	melanostomus.	Gen.	Comp.	Endocrinol.	140:	1-13.	474 

Atema,	J.	1996.	Eddy	chemotaxis	and	odor	landscapes:	exploration	of	nature	with	animal	475 

sensors.	Biol.	Bull.	191:	129-138.	476 

Boehm,	T.	&	Zufall,	F.	2006.	MHC	peptides	and	the	sensory	evaluation	of	genotype.	477 

Trends	Neurosci.	29:	100-107.	478 

Burnham,	K.P.	&	Anderson,	D.R.	2014.	P	values	are	only	an	index	to	evidence:	20th-vs.	479 

21st-century	statistical	science.	Ecology	95:	627-630.		480 

Carolsfeld,	J.,	Scott,	A.P.	&	Sherwood,	N.M.	1997.	Pheromone-induced	spawning	of	pacific	481 

herring.	Horm.	Behav.	31:	269-276.		482 

Corkum,	L.D.	&	Cogliati,	K.M.	2015.	Conspecific	odors	as	sexual	ornaments	with	dual	483 

functions	in	fishes.	In:	Fish	Pheromones	and	Related	Cues	(P.W.	Sorenson	&	B.D.	484 

Wisenden,	eds),	pp.	89-111.	John	Wiley	&	Sons,	London.	485 

Doherty,	P.C.	&	Zinkernagel,	R.M.	1975.	Enhanced	immunological	surveillance	in	mice	486 

heterozygous	at	the	H-2	gene	complex.	Nature	256:	50–52.	487 

Eggert,	F.,	Müller-ruchholtz,	W.	&	Ferstl,	R.	1998.	Olfactory	cues	associated	with	the	488 

major	histocompatibility	complex.	Genetica	104:	191-197.	489 

Eizaguirre,	C.,	Yeates,	S.E.,	Lenz,	T.L.,	Kalbe,	M.	&	Milinski,	M.	2009.	MHC-based	mate	490 

choice	combines	good	genes	and	maintenance	of	MHC	polymorphism.	Mol.	Ecol.	18,	491 

3316-3329.	492 

Ferkin,	M.H.	2018.	Odor	communication	and	mate	choice	in	rodents.	Biology	7:	13.	493 

Gammon,	D.B.,	Li,	W.,	Scott,	A.P.,	Zielinski,	B.S.	&	Corkum,	L.D.	2005.	Behavioural	494 

responses	of	female	Neogobius	melanostomus	to	odours	of	conspecifics.	J.	Fish	Biol.	495 

67:	615-626.	496 

Hamilton,	W.D.	1980.	Sex	versus	non-sex	versus	parasite.	Oikos	35:	282–290.		497 

Hilbe,	J.M.	2014.	Modeling	Count	Data.	Cambridge	University	Press,	Cambridge.	498 



	

	 22 

van	den	Hurk,	R.	&	Resink,	J.W.	1992.	Male	reproductive	system	as	sex	pheromone	499 

producer	in	teleost	fish.	J.	Exp.	Zool.	A	Ecol.	Genet.	Physiol.	261:	204-213.	500 

Kalbe,	M.,	Eizaguirre,	C.,	Dankert,	I.,	Reusch,	T.B.,	Sommerfeld,	R.D.,	Wegner,	K.M.	&	501 

Milinski,	M.	2009.	Lifetime	reproductive	success	is	maximized	with	optimal	major	502 

histocompatibility	complex	diversity.	Proc.	R.	Soc.	Lond.	B.	Biol.	Sci.	276:	925-934.	503 

Keller-Costa,	T.,	Hubbard,	P.C.,	Paetz,	C.,	Nakamura,	Y.,	da	Silva,	J.P.,	Rato,	A.,	Barata,	E.N.,	504 

Schneider,	B.	&	Canario,	A.V.	2014.	Identity	of	a	tilapia	pheromone	released	by	505 

dominant	males	that	primes	females	for	reproduction.	Curr.	Biol.	24:	2130-2135.		506 

Kimmel,	C.B.,	Ballard,	W.W.,	Kimmel,	S.R.,	Ullmann,	B.	&	Schilling,	T.F.	1995.	Stages	of	507 

embryonic	development	of	the	zebrafish.	Dev.	Dyn.	203:	253-310.		508 

Landry,	C.	&	Bernatchez,	L.	2001.	Comparative	analysis	of	population	structure	across	509 

environments	and	geographical	scales	at	major	histocompatibility	complex	and	510 

microsatellite	loci	in	Atlantic	salmon	(Salmo	salar).	Mol.	Ecol.	10:	2525-2539.	511 

Lambert,	J.G.D.	&	Resink,	J.W.	1991.	Steroid	glucuronides	as	male	pheromones	in	the	512 

reproduction	of	the	African	catfish	Clarias	gariepinus	-	a	brief	review.	J.	Steroid	513 

Biochem.	Mol.	Biol.	40:	549-556.		514 

Leclaire,	S.,	Strandh,	M.,	Mardon,	J.,	Westerdahl,	H.	&	Bonadonna,	F.	2017.	Odour-based	515 

discrimination	of	similarity	at	the	major	histocompatibility	complex	in	birds.	Proc.	R.	516 

Soc.	Lond.	B.	Biol.	Sci.	284:	20162466.	517 

Liley,	N.R.	1982.	Chemical	communication	in	fish.	Can.	J.	Fish.	Aquat.	Sci.	39:	22-35.	518 

Maruska,	K.P.	&	Fernald,	R.D.	2012.	Contextual	chemosensory	urine	signaling	in	an	519 

African	cichlid	fish.	J.	Exp.	Biol.	215:	68-74.		520 

Marconato,	A.,	Rasotto,	M.B.	&	Mazzoldi,	C.	1996.	On	the	mechanism	of	sperm	release	in	521 

three	gobiid	fishes	(Teleostei:	Gobiidae).	Environ.	Biol.	Fish.	46:	321-327.		522 

Milinski,	M.	2014.	Arms	races,	ornaments	and	fragrant	genes:	the	dilemma	of	mate	523 

choice	in	fishes.	Neurosci.	Biobehav.	Rev.	46:	567-572.	524 

Milinski,	M.,	Griffiths,	S.,	Wegner,	K.M.,	Reusch,	T.B.,	Haas-Assenbaum,	A.	&	Boehm,	T.	525 

2005.	Mate	choice	decisions	of	stickleback	females	predictably	modified	by	MHC	526 

peptide	ligands.	Proc.	Natl.	Acad.	Sci.	USA	102:	4414-4418.	527 

Nagata,	Y.	&	Miyabe,	H.	1978.	Developmental	stages	of	the	bitterling,	Rhodeus	ocellatus	528 

ocellatus	(Cyprinidae).	Mem.	Osaka	Kyoiku	Univ.	Ser.	3:	171-181.	529 

Nowak,	M.A.,	Tarczy-Hornoch,	K.	&	Austyn,	J.M.	1992.	The	optimal	number	of	major	530 

histocompatibility	complex	molecules	in	an	individual.	Proc.	Natl.	Acad.	Sci.	USA	89:	531 

10896-10899.	532 



	

	 23 

Nuzzo,	R.	2014.	Statistical	errors.	Nature	506:	150.	533 

Overath,	P.,	Sturm,	T.	&	Rammensee,	H.G.	2014.	Of	volatiles	and	peptides:	in	search	for	534 

MHC-dependent	olfactory	signals	in	social	communication.	Cell.	Mol.	Life	Sci.	71:	535 

2429-2442.		536 

Parker,	G.A.	1998.	Sperm	competition	and	the	evolution	of	ejaculates:	towards	a	theory	537 

base.	In:	Sperm	Competition	and	Sexual	Selection	(T.R.	Birkhead	&	A.P.	Møller,	eds),	pp.	538 

3	-54.	Academic	Press,	London.	539 

Passos,	C.,	Tassino,	B.,	Rosenthal,	G.G.	&	Reichard,	M.	2015.	Reproductive	behavior	and	540 

sexual	selection	in	annual	fishes.	In:	Annual	Fishes:	Life	History	Strategy,	Diversity,	and	541 

Evolution	(N.	Berois,	G.	García	&	R.O.D.	Sá,	eds),	pp.	207-230.	CRC	Press,	Boca	Raton.	542 

Pateman-Jones,	C.,	Rasotto,	M.B.,	Reichard,	M.,	Liao,	C.,	Liu,	H.,	Zięba,	G.	&	Smith,	C.	2011.	543 

Variation	in	male	reproductive	traits	among	three	bitterling	fishes	(Acheilognathinae:	544 

Cyprinidae)	in	relation	to	the	mating	system.	Biol.	J.	Linn.	Soc.	103:	622-632.	545 

Penn,	D.J.	2002.	The	scent	of	genetic	compatibility:	sexual	selection	and	the	major	546 

histocompatibility	complex.	Ethology	108:	1-21.		547 

Penn,	D.	&	Potts,	W.	1998.	MHC–disassortative	mating	preferences	reversed	by	cross–548 

fostering.	Proc.	R.	Soc.	Lond.	B.	Biol.	Sci.	265:	1299-1306.		549 

Phillips,	A.	2018.	The	Mechanisms	and	Consequences	of	Oviposition	Decisions	in	the	550 

European	Bitterling.	PhD	thesis,	University	of	St	Andrews.	551 

Phillips,	A,	Reichard,	M	&	Smith,	C.	2017.	Sex	differences	in	the	responses	to	oviposition	552 

site	cues	by	a	fish	revealed	by	tests	with	an	artificial	host.	Anim.	Behav.	126:187-194.	553 

Puurtinen,	M.,	Ketola,	T.	&	Kotiaho,	J.S.	2009.	The	good-genes	and	compatible-genes	554 

benefits	of	mate	choice.	Am.	Nat.	174:	741-752.	555 

R	Development	Core	Team,	2017.	R:	A	Language	and	Environment	for	Statistical	556 

Computing.	R	Foundation	for	Statistical	Computing,	Vienna.	557 

Reichard,	M.,	Jurajda,	P.	&	Smith,	C.	2004b.	Male-male	interference	competition	558 

decreases	spawning	rate	in	the	European	bitterling	(Rhodeus	sericeus).	Behav.	Ecol.	559 

Sociobiol.	56:	34-41.		560 

Reichard,	M.,	Smith,	C.	&	Jordan,	W.C.	2004a.	Genetic	evidence	reveals	density-561 

dependent	mediated	success	of	alternative	mating	tactics	in	the	European	bitterling	562 

(Rhodeus	sericeus)	Mol.	Ecol.	13:	1569-1578.	563 

Reichard,	M.,	Spence,	R.,	Bryjová,	A.,	Bryja,	J.	&	Smith,	C.	2012.	Female	rose	bitterling	564 

prefer	MHC-dissimilar	males:	experimental	evidence.	PLoS	One	7:	e40780.	565 



	

	 24 

Rosenthal,	G.G.,	Fitzsimmons,	J.N.,	Woods,	K.U.,	Gerlach,	G.	&	Fisher,	H.S.	2011.	Tactical	566 

release	of	a	sexually-selected	pheromone	in	a	swordtail	fish.	PLoS	One	6:	e16994.	567 

Rosenthal,	G.G.	&	Lobel,	P.S.	2006.	Communication.	In:	Behaviour	and	Physiology	of	Fish	568 

(K.A.	Sloman,	R.W.	Wilson	&	S.	Balshine,	eds),	pp.	39-78.	Elsevier,	San	Diego.	569 

Rue,	H.,	Martino,	S.	&	Chopin,	N.	2009.	Approximate	Bayesian	inference	for	latent	570 

Gaussian	models	by	using	integrated	nested	Laplace	approximations.	J.	R.	Stat.	Soc.	B	571 

71:	319-392.	572 

Rymešová,	D.,	Králová,	T.,	Promerová,	M.,	Bryja,	J.,	Tomášek,	O.,	Svobodová,	J.,	Šmilauer,	573 

P.,	Šálek,	M.	&	Albrecht,	T.	2017.	Mate	choice	for	major	histocompatibility	complex	574 

complementarity	in	a	strictly	monogamous	bird,	the	grey	partridge	(Perdix	perdix).	575 

Front.	Zool.	14:	9.	576 

Sambrook,	J.G.,	Figueroa,	F.	&	Beck,	S.	2005.	A	genome-wide	survey	of	Major	577 

Histocompatibility	Complex	(MHC)	genes	and	their	paralogues	in	zebrafish.	BMC	578 

Genomics	6:	152.	579 

Santos,	P.S.,	Courtiol,	A.,	Heidel,	A.J.,	Höner,	O.P.,	Heckmann,	I.,	Nagy,	M.,	Mayer,	F.,	580 

Platzer,	M.,	Voigt,	C.C.	&	Sommer,	S.	2016.	MHC-dependent	mate	choice	is	linked	to	a	581 

trace-amine-associated	receptor	gene	in	a	mammal.	Sci.	Rep.	6:	38490.	582 

Scaggiante,	M.,	Mazzoldi,	C.,	Petersen,	C.W.	&	Rasotto,	M.B.	1999.	Sperm	competition	and	583 

mode	of	fertilization	in	the	grass	goby	Zosterisessor	ophiocephalus	(Teleostei:	584 

Gobiidae).	J.	Exp.	Zool.	283:	81-90.		585 

Serrano,	R.M.,	Barata,	E.N.,	Birkett,	M.A.,	Hubbard,	P.C.,	Guerreiro,	P.S.	&	Canário,	A.V.	586 

2008.	Behavioral	and	olfactory	responses	of	female	Salaria	pavo	(Pisces:	Blenniidae)	587 

to	a	putative	multi-component	male	pheromone.	J.	Chem.	Ecol.	34:	647-658.		588 

Šimková,	A.,	Ottová,	E.	&	Morand,	S.,	2006.	MHC	variability,	life-traits	and	parasite	589 

diversity	of	European	cyprinid	fish.	Evol.	Ecol.	20:	465-477.	590 

Smith,	C.	&	Reichard,	M.	2013.	A	sperm	competition	model	for	the	European	bitterling	591 

(Rhodeus	amarus).	Behaviour	150:	1709-1730.	592 

Smith,	C.,	Pateman-Jones,	C.,	Zięba,	G.,	Przybylski,	M.	&	Reichard,	M.	2009.	Sperm	593 

depletion	as	a	consequence	of	increased	sperm	competition	risk	in	the	European	594 

bitterling,	Rhodeus	amarus.	Anim.	Behav.	77:	1227-1233.	595 

Smith,	C.,	M.	Reichard,	P.	Jurajda,	&	M.	Przybylski.	2004.	The	reproductive	ecology	of	the	596 

European	bitterling	(Rhodeus	sericeus).	J.	Zool.	262:	107-124.	597 

Smith,	C.,	Warren,	M.,	Rouchet,	R.	&	Reichard,	M.	2014.	The	function	of	multiple	598 

ejaculations	in	bitterling.	J.	Evol.	Biol.	27:	1819-1829.	599 



	

	 25 

Sorensen,	P.W.	2015.	Introduction	to	pheromones	and	related	chemical	cues	in	fishes.	600 

In:	Fish	Pheromones	and	Related	Cues	(P.W.	Sorenson	&	B.D.	Wisenden,	eds),	pp.	1-9.	601 

John	Wiley	&	Sons,	London.	602 

Stacey,	N.E.	&	Hourston,	A.S.	1982.	Spawning	and	feeding	behavior	of	captive	Pacific	603 

herring,	Clupea	harengus	pallasi.	Can.	J.	Fish.	Aquat.	Sci.	39:	489-498.		604 

Stacey,	N.,	Chojnacki,	A.,	Narayanan,	A.,	Cole,	T.	&	Murphy,	C.	2003.	Hormonally	derived	605 

sex	pheromones	in	fish:	exogenous	cues	and	signals	from	gonad	to	brain.	Can.	J.	606 

Physiol.	Pharm.	81:	329-341.		607 

Stacey,	N.E.,	Kyle,	A.L.	&	Liley,	N.R.	1986.	Fish	reproductive	pheromones.	In:	Chemical	608 

Signals	in	Vertebrates	4	(D.	Duvall,	D.	Müller-Schwarze	&	R.M.	Silverstein,	eds),	pp.	609 

117-133.	Springer,	Boston.	610 

Tregenza,	T.	&	Wedell,	N.	2000.	Genetic	compatibility,	mate	choice	and	patterns	of	611 

parentage.	Mol.	Ecol.	9:	1013-1027.	612 

Van	Valen,	L.	1973.	A	new	evolutionary	law.	Evol.	Theory	1:	1–30.		613 

Wasserstein,	R.L.	&	Lazar,	N.A.	2016.	The	ASA's	statement	on	p-values:	context,	process,	614 

and	purpose.	Am.	Stat.	70:	129-133.	615 

Wiepkema,	P.R.	1961.	An	ethological	analysis	of	the	reproductive	behaviour	of	the	616 

bitterling	(Rhodeus	amarus	Bloch).	Arch.	Néerl.	Zool.	14:	103-199.	617 

Wootton,	R.J.	1998.	The	Ecology	of	Teleost	Fishes.	Kluwer,	Dordrecht.	618 

Wootton,	R.J.	&	Smith,	C.	2015.	Reproductive	Biology	of	Teleost	Fishes.	Wiley-Blackwell,	619 

Oxford.	620 

Wyatt,	T.D.	2003.	Pheromones	and	Animal	Behaviour:	Communication	by	Smell	and	Taste.	621 

Cambridge	University	Press,	Cambridge.		622 

Ziegler,	A.,	Kentenich,	H.	&	Uchanska-Ziegler,	B.	2005.	Female	choice	and	the	MHC.	623 

Trends	Immunol.	26:	496-502.		624 

Zuur,	A.F.	&	Ieno,	E.N.	2016.	Beginner's	Guide	to	Zero-Inflated	Models	with	R.	Highland	625 

Statistics	Limited,	Newburgh.	626 

Zuur,	A.,	Ieno,	E.N.,	Walker,	N.,	Saveliev,	A.A.	&	Smith,	G.M.	2009.	Mixed	Effects	Models	627 

and	Extensions	in	Ecology	with	R.	Springer,	New	York.	 	628 



	

	 26 

Figure legends 629 

Fig. 1.	Posterior	mean	fitted	number	of	eggs	spawned	by	female	R.	ocellatus	as	a	function	630 

of	male	ejaculation	frequency	with	95%	credible	intervals	(shaded	area)	exposed	to	an	631 

experimental	sperm	solution	and	control	solution.	Data	were	modelled	with	a	Poisson	632 

GLMM	with	 individual	 females	 fitted	 as	 random	 intercepts.	 Black	 circles	 are	 observed	633 

data.	634 

Fig. 2.	Posterior	mean	fitted	number	of	eggs	spawned	by	female	R.	ocellatus	as	a	function	635 

of	male	ejaculation	frequency	with	males	with	a	similar	or	dissimilar	MHC	genotype.	Data	636 

were	modelled	with	a	zero-altered	Poisson	GLM.	Black	circles	are	observed	data.	637 

Fig. 3.	Posterior	mean	probability	of	survival	to	the	neurula	stage	of	R.	ocellatus	embryos	638 

produced	by	in	vitro	fertilisation	as	a	function	of	female	standard	length	(mm)	with	95%	639 

credible	intervals	(shaded	area)	for	parents	with	a	similar	or	dissimilar	MHC	genotype.	640 

Data	were	modelled	with	a	Binomial	GLM.	Black	circles	are	observed	data.	641 

	642 

Supporting information 643 

Fig. S1.	Schematic	representation	of	the	structure	of	the	DAB1	gene	and	the	positions	and	644 

names	of	three	combinations	of	primers	used.	645 

Fig. S2.	Schematic	representation	of	the	structure	of	the	DAB3	gene	and	the	positions	and	646 

names	of	three	combinations	of	primers	used.	647 

Fig. S3.	Amino	acid	sequence	alignment	of	23	MHC	Class	 II	DAB1	variants.	Codons	are	648 

numbered	according	to	Aguilar	&	Garza	(2007).	Dots	indicate	the	identity	with	the	Rooc-649 

DAB1*01	allele.	650 

Fig. S4.	Amino	acid	sequence	alignment	of	23	MHC	Class	 II	DAB3	variants.	Codons	are	651 

numbered	according	to	Aguilar	&	Garza	(2007).	Dots	indicate	the	identity	with	the	Rooc-652 

DAB3*01	allele.	653 
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Table	1.	Experimental	crosses,	MHC	genotypes	of	females	and	males,	and	experimental	outcomes.	Females	that	failed	to	ovulate	

(shaded)	were	excluded	from	data	analyses.	

 
 Female    Male1    Male2    Male3  MHC  

ID DAB1 DAB3  ID DAB1 DAB3  ID DAB1 DAB3  ID DAB1 DAB3 similarity outcome 
F01 Rooc*06 none  M05 Rooc*06 none  M10 Rooc*06 none  M50 Rooc*06 none similar spawned 
F02 Rooc*03 none  M03 Rooc*03 none  - - -  - - - similar failed to ovulate 
F03 Rooc*06 none  M18 Rooc*06 Rooc*05  - - -  - - - similar failed to spawn 
F04 Rooc*03/27 none  M30 Rooc*14 Rooc*02  - - -  - - - dissimilar failed to spawn 
F05 Rooc*02/31 none  M12 Rooc*01/18 none  M35 Rooc*18/25 none  M48 Rooc*06/18 none dissimilar spawned 
F06 Rooc*02/31 none  M32 Rooc*02/31 none  - - -  - - - similar spawned 
F07 Rooc*03 none  M25 Rooc*03 none  M27 Rooc*03 none  M49 Rooc*03 none similar failed to spawn 
F08 none Rooc*02  M29 none Rooc*04  - - -  - - - dissimilar failed to spawn 
F09 Rooc*03 none  M07 Rooc*03 none  - - -  - - - similar failed to spawn 
F10 Rooc*25 Rooc*02  M08 Rooc*25 none  M33 Rooc*25 none  M43 none Rooc*02 similar spawned 
F11 Rooc*01 none  M55 Rooc*01 none  - - -  - - - similar spawned 
F12 Rooc*02/31 none  M54 Rooc*01/21 none  - - -  - - - dissimilar spawned 
F13 Rooc*03 none  M21 Rooc*05 none  M23 Rooc*20 none  M53 Rooc*24 none dissimilar spawned 
F14 Rooc*03/ 21 none  M22 Rooc*03/21 none  - - -  - - - similar failed to spawn 
F15 Rooc*04 none  M16 Rooc*04 none  M42 Rooc*04 none  M46 Rooc*04 none similar failed to spawn 
F16 Rooc*19 Rooc*01  M17 Rooc*03/26 none  M19 Rooc*06/29 none  M37 Rooc*14/21 none dissimilar failed to ovulate 
F17 Rooc*02/30 none  M14 Rooc*01/09 none  M31 Rooc*03/26 none  M52 Rooc*03/26 none dissimilar spawned 
F18 Rooc*06 Rooc*02  M24 Rooc*06 Rooc*02/03  M34 Rooc*06 Rooc*02  M45 Rooc*06 Rooc*02 similar failed to spawn 
F19 Rooc*22 none  M02 Rooc*20 none  M20 Rooc*03/04 none  M41 Rooc*14 Rooc*02 dissimilar spawned 
F20 Rooc*18 none  M01 Rooc*18 none  M06 Rooc*18 none  M09 Rooc*18/19 none similar failed to spawn 
F21 Rooc*19 none  M39 Rooc*02 none  - - -  - - - dissimilar spawned 
F22 Rooc*01 none  M04 Rooc*01 none  M15 Rooc*01 none  M38 Rooc*01 none similar failed to spawn 
F23 none Rooc*03  M26 Rooc*18/32 none  M28 Rooc*20 Rooc*05  M44 Rooc*06/33 none dissimilar spawned 
F24 Rooc*25 Rooc*04  M11 Rooc*03/23 none  - - -  - - - dissimilar failed to spawn 
F25 Rooc*01 Rooc*01  M56 Rooc*01 none  - - -  - - - similar failed to spawn 
F26 Rooc*03/21 Rooc*02  M51 Rooc*06/ 19 none  - - -  - - - dissimilar failed to ovulate 
F27 Rooc*03/19 Rooc*04  M13 Rooc*02/06 none  M36 Rooc*06/25 none  M47 Rooc*14/23 none dissimilar spawned 
F28 Rooc*19 Rooc*06  M40 Rooc*03/ 21 none  - - -  - - - dissimilar spawned 

 



Table	 2.	 Posterior	 mean	 estimates	 for	 number	 of	 eggs	 spawned	 by	 female	 R.	

ocellatus	 as	 a	 function	 of	 sperm	 treatment,	 ejaculation	 frequency	 and	 female	

standard	length	(mm),	modelled	using	a	Poisson	GLMM	with	individual	females	

fitted	as	random	intercepts.	CrI	 is	 the	95%	Bayesian	credible	 interval.	Credible	

intervals	that	do	not	contain	zero	in	bold	to	indicate	statistical	importance.	

Model parameter Posterior mean Lower CrI Upper CrI 

Fixed intercept -0.36 -7.79 4.08 

Treatment(control) -1.53 -2.34 -0.88 

Ejaculation 0.30 0.15 0.54 

Female length 0.02 -0.08 0.19 

 
  



Table	 3.	 Posterior	 mean	 estimates	 for	 number	 of	 eggs	 spawned	 by	 female	 R.	

ocellatus	 as	 a	 function	 of	 MHC	 similarity,	 number	 of	 males,	 male	 courtship	

frequency	and	ejaculation	frequency	modelled	using	a	zero-altered	Poisson	GLM.	

CrI	is	the	95%	Bayesian	credible	interval.	Credible	intervals	that	do	not	contain	

zero	in	bold	to	indicate	statistical	importance.	

Model parameter Occurrence model  Frequency model 

Model parameter Posterior 
mean 

Lower 
CrI 

Upper 
CrI 

 Posterior 
mean 

Lower 
CrI 

Upper 
CrI 

Fixed intercept -0.88 -3.36 1.29  2.27 1.64 2.89 

Similarity(similar) -4.09 -8.14 -1.02  - - - 

Males(three) - - -  -0.38 -0.73 -0.03 

Courtship - - -  0.04 0.01 0.07 

Ejaculation 1.54 0.48 2.97  0.07 0.01 0.13 

Similarity x Ejaculation -29.4 -52.0 -14.8  - - - 

 
  



Table	4.	Posterior	mean	estimates	for	number	of	R.	ocellatus	eggs	surviving	to	the	

neurula	stage	as	a	function	of	MHC	similarity	and	female	standard	length	(mm),	

modelled	using	a	binomial	GLM.	CrI	is	the	95%	Bayesian	credible	interval.	Credible	

intervals	that	do	not	contain	zero	in	bold	to	indicate	statistical	importance.	

Model parameter Posterior mean Lower CrI Upper CrI 

Fixed intercept -1.43 -4.76 1.88 

Similarity(similar) -1.15 -1.70 -0.64 

Female length 0.08 0.01 0.14 

 
 


