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Predicting the impacts of non-native species remains a challenge. As popu-

lations of a species are genetically and phenotypically variable, the impact

of non-native species on local taxa could crucially depend on population-

specific traits and adaptations of both native and non-native species. Bitterling

fishes are brood parasites of unionid mussels and unionid mussels produce

larvae that parasitize fishes. We used common garden experiments to measure

three key elements in the bitterling–mussel association among two popu-

lations of an invasive mussel (Anodonta woodiana) and four populations of

European bitterling (Rhodeus amarus). The impact of the invasive mussel

varied between geographically distinct R. amarus lineages and between local

populations within lineages. The capacity of parasitic larvae of the invasive

mussel to exploit R. amarus was higher in a Danubian than in a Baltic

R. amarus lineage and in allopatric than in sympatric R. amarus populations.

Maladaptive oviposition by R. amarus into A. woodiana varied among popu-

lations, with significant population-specific consequences for R. amarus
recruitment. We suggest that variation in coevolutionary states may predis-

pose different populations to divergent responses. Given that coevolutionary

relationships are ubiquitous, population-specific attributes of invasive and

native populations may play a critical role in the outcome of invasion. We

argue for a shift from a species-centred to population-centred perspective of

the impacts of invasions.
1. Introduction
Cases of biological invasions, where species are translocated to new geographi-

cal areas where they establish and spread, raises concerns for their potentially

negative ecological and economic consequences [1]. A substantial research

effort has focused on understanding the mechanisms of dispersal and establish-

ment of non-native species, and the ecological traits that predispose them to

invasiveness [2]. While this approach has significantly improved predictability

of the risk that invasion can occur, the predictive power of the impacts of inva-

ders on native species and communities remains limited [3–5]. The most visible

invasions, and those with the most damaging consequences for ecosystem

services, tend to receive the greatest attention. These cases strongly bias our

understanding of the impacts of invasions [6,7], because impacts of invasive

species can often, at least initially, be subtle and affect local processes and

species interactions [8–10].

The conventional approach to invasion ecology has been to concentrate at

the species level, but a conceptual shift to consider particular populations of

an invasive species can provide deeper insights [3,11]. This view recognizes

that populations of a species are genetically and phenotypically variable
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across their range, with potentially different capacities for

establishing and impacting local communities. Similarly,

different populations of native species can vary in their sus-

ceptibility to the impact of invasions. From this perspective,

the impact of non-native species on local taxa will crucially

depend on population-specific traits and adaptations, with

potentially variable outcomes for different populations. The

impact of invasive species is defined here in its broadest

sense as any change to the recipient ecosystem [2], but pri-

marily as any qualitative or quantitative change to the

ecological or evolutionary characteristics of existing native

populations and interspecific relationships [5].

Here, we use the association between bitterling fishes and

unionid mussels to test whether interactions between native

and invasive species vary in a population-specific context.

Bitterling (Acheilognathinae, Cyprinidae) are freshwater

fishes that originate, and show their greatest diversity and

abundance, in East Asia [12]. All bitterling species lay their

eggs in the gills of living unionid mussels via their exhalant

siphons and their embryos complete development inside

the mussel gill cavity, typically in one month. Most bitterling

fishes use several mussel species as hosts, but often express a

preference for particular species [13]. Host mussel preference

may vary among bitterling populations [14,15]. Hosting bit-

terling embryos is costly to mussels and they have evolved

adaptations to eject bitterling eggs and embryos, mirrored

by counter-adaptations in bitterling embryos to avoid ejection

[14,16–18]. In addition, and independently of the bitterling

utilization of mussel hosts, unionid mussels possess a larval

stage (glochidium) that must attach to a fish host (bitterling

or other species) to complete development. Female mussels

discharge ripe larvae into the water column where they

attach to a host fish, remain encysted for several days and

finally metamorphose into juvenile mussels. Hosting mussel

larvae is costly to fish [19], leading to fish adaptations

to reject them [20] and population-specific compatibility

between native mussels and their fish hosts [21]. The adap-

tations of mussels to eject bitterling eggs and adaptations of

fish to reject mussel larvae are independent, and different

physiological mechanisms are involved.

Rhodeus amarus is the only bitterling species in Europe,

where its distribution is natural and where it has been present

for at least 2 Myr [22–24]. All other bitterling species are

restricted to East Asia where they are abundant [12]. Rhodeus
amarus is a relatively thermophilic species [25] and expanded

across Europe from glacial refugia in the Pontic and Mediter-

ranean regions in warmer climatic periods of the Quaternary

[22,23,26]. Two distinct phylogeographic clades colonized

much of continental Europe independently, each originating

from the same refugium. A Danubian clade colonized central

and western Europe via the Danube basin, whereas a Baltic

clade colonized eastern and northern Europe via the Rivers

Dnieper, Dniester and Bug [22,23]. Populations of R. amarus
are generalists and use all native European unionid mussel

species for oviposition but display preference for Unio
tumidus, Unio pictorum and Anodonta anatina over Anodonta
cygnea [15,17,27]. Native unionid mussel populations across

continental Europe express limited adaptations to eject or

avoid bitterling eggs compared with unionid populations in

the Pontic region. This difference is probably owing to the

shorter duration of their sympatry and lower encounter rate

with R. amarus in continental Europe than in the Pontic

region where mussels routinely eject R. amarus eggs [18].
Rhodeus amarus is not a suitable host of parasitic larvae of

European mussels [28]; attached larvae (both Anodonta and

Unio) are typically rejected within the first day of infection

and R. amarus thereby avoid costs associated with mussel

larvae infection [29].

Anodonta woodiana is a mussel native to a large region of East

Asia where it is an abundant and widely distributed species

[30], commonly used for oviposition by several bitterling

species [31]. Anodonta woodiana was introduced into European

freshwaters in the 1970s, with many new populations appea-

red during the twenty-first century [30,32,33]. The arrival of

A. woodiana in Europe has transformed the outcome of

bitterling–mussel associations, with indications of a potential

disparity in the response of R. amarus to two isolated popu-

lations of invasive A. woodiana. Rhodeus amarus readily used

A. woodiana introduced to Poland (Baltic region) for oviposition,

while A. woodiana from this Polish population ejected bitterling

eggs before they completed development [34]. By contrast,

another A. woodiana population established in the Czech Repub-

lic (Danubian region) was avoided by sympatric R. amarus for

oviposition [35], which thereby escaped the negative impact

of the egg ejection by the invader. In addition, the Danubian

population of A. woodiana, in contrast to all native European

mussel species, was readily able to use R. amarus as a host for

its parasitic larvae, effectively reversing the roles of host and

parasite in the association [35]. These outcomes suggest poten-

tial differences in the ecological impacts of the invasive mussel,

depending on the population-specific context.

Here, we specifically tested population-specific impacts of

A. woodiana on R. amarus populations by examining three key

elements of the association. We used two genetically distinct

invasive populations of A. woodiana (Baltic and Danubian)

and measured their interactions with four R. amarus popu-

lations that varied in their prior exposure to A. woodiana
(allopatric or recently sympatric to them), but which otherwise

represented pairs of closely related populations from each of the

two major phylogeographic clades of R. amarus (Baltic sympa-

tric, Baltic allopatric, Danubian sympatric, Danubian allopatric)

(figure 1 and electronic supplementary material, table S1). To

separate the role of population-specific traits from the effects

of different environmental or community settings, we standar-

dized test conditions for each combination of populations by

using a common experimental environment.

With these populations, we experimentally tested: (i) the

capacity of A. woodiana larvae to develop on R. amarus; (ii) the

preference/avoidance response by R. amarus for oviposition

in the gills of A. woodiana; and (iii) the impact on the reproduc-

tive success of R. amarus of the addition of A. woodiana to the

mussel community. Given the high population-specificity of

relationships with fish hosts in European unionids [21], we pre-

dicted a variable capacity of A. woodiana larvae to develop on

R. amarus from different populations. We predicted significant

avoidance of Danubian A. woodiana, but a maladaptive utiliz-

ation of Baltic A. woodiana mussels with ovipositions followed

by egg ejection [34,35]. Finally, we predicted that differences

in the oviposition preferences for the two A. woodiana popu-

lations (avoidance versus active use) would translate into

population-specific impacts of the A. woodiana invasion in

terms of bitterling recruitment. A decrease in reproductive suc-

cess of R. amarus was predicted for the invasion of Baltic

A. woodiana, but a limited impact by Danubian A. woodiana.

The reason for the contrasting predictions was that Baltic

A. woodiana was readily used by R. amarus for oviposition
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Figure 1. Native range of Asian A. woodiana and European R. amarus, with an inset illustrating location of Baltic and Danubian populations used in the study and
the distribution of two major R. amarus clades in Europe. (Online version in colour.)
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followed by complete egg ejection, whereas Danubian

A. woodiana was avoided for oviposition, but still reduced

the reproductive success of R. amarus by increasing density-

dependent mortality of eggs in more heavily parasitized

native mussels [36].
 20151063
2. Material and methods
(a) Study populations
Both allopatric populations of R. amarus were naive to

A. woodiana, while sympatric bitterling had been exposed to

A. woodiana for several generations [32,37]. Baltic and Danubian

R. amarus populations (belonging to distinct phylogeographic

clades) were predicted to have evolved different adaptations to

use their native sympatric host mussels [18]. The estimates of

genetic divergence based on nine nuclear microsatellite markers

are FST ¼ 0.321–0.494 ( p , 0.001) for the difference between

Baltic and Danubian populations [23]. The Danubian pair of

R. amarus populations originated from the adjacent Rivers

Morava and Kyjovka (Czech Republic) and were genetically

similar (FST ¼ 0.006, p ¼ 0.095) [23], but contemporary migration

between them is prevented by regulation of the River Morava in

the 1980s [38]. The Kyjovka R. amarus (i.e. Danubian sympatric)

were exposed to A. woodiana for at least seven generations prior

to their use in experiments. Anodonta woodiana was first recorded

in the River Kyjovka in 2005 and now comprises approximately

50% of the unionid mussel community in the study stretch of the

river [33]. By contrast, Morava R. amarus are naive to A. woodiana
(Danubian allopatric), with A. woodiana wholly absent from the

River Morava [37]. A Baltic population of R. amarus allopatric to

A. woodiana was collected in the Włoclawek Reservoir on the

River Vistula. A sympatric population was collected from Lake

Lichenskie, where A. woodiana was first recorded in the mid-

1980s and is now abundant [32]. This makes sympatry between

A. woodiana and R. amarus in the Baltic region about 30 R. amarus
generations and hence older than in the Danubian region. The

two invasive A. woodiana populations possess a moderate level

of genetic differentiation (FST ¼ 0.074, p , 0.001; electronic

supplementary material).

(b) Experimental animals
Mussels were collected by hand from the River Kyjovka

(Danubian A. woodiana, A. anatina) and Lake Lichenskie (Baltic

A. woodiana) (electronic supplementary material, table S1) and

stored in large fibreglass containers before use in experiments.

Anodonta anatina was used as the native mussel species in all

experiments. This species was abundant at all the sites from

which experimental R. amarus populations were collected

and is typically used by R. amarus for oviposition [15,27,24].

Experimental R. amarus were collected by electrofishing (exact

locations are given in the electronic supplementary material,

table S1).
(c) Exploitation of Rhodeus amarus by parasitic larvae
of invasive Anodonta woodiana

To test the capacity of A. woodiana to successfully metamorphose on

R. amarus, mussels were collected from Lake Lichenskie and the

River Kyjovka during July 2013. A mussel-opening device was

used to non-destructively inspect the gills of mussels and females

with ripening larvae were selected and transported to the labora-

tory in containers of aerated water. In the laboratory, mussels

were separately held in 15 l containers until the spontaneous release

of larvae [32]. The viability of larvae (a subset of 30 larvae for each

mussel) was verified by evaluation of their snapping action in a

sodium chloride solution prior to experimental infection.

Population level evaluation of A. woodiana larvae–R. amarus host

compatibility was performed according to Douda et al. [21]. We used

larvae from one parent mussel to simultaneously infect two to four

R. amarus from each source population. Altogether, we performed 14

experimental infections (seven female mussels per population) to

infect a total of 120 R. amarus individuals (14–16 individuals for

each R. amarus–A. woodiana population combination). Common

infection tanks were used, which were subdivided into four sections

using 3 mm plastic nets to prevent mixing of individuals from

different source populations. The fish were infected in aerated sus-

pensions (0.5 l per fish) with mean viable larvae densities of

2127+1379 (mean+ s.d.). After a 15 min exposure, fish were trans-

ferred into water without larvae for 30 min to rinse non-attached

larvae. All fish were successfully infected.

Fish were subsequently placed individually into continu-

ously aerated 18 l glass aquaria (i.e. there was a single fish per

aquarium, using a total of 120 aquaria), with the bottom covered

with a net (mesh size 3 mm) and monitored for larval develop-

ment until the end of their parasitic phase. Fish were fed daily

with commercial flake fish food. Mean water temperature was

22.28C (s.d. ¼ 1.1) during the experiment. Parasitic larvae

attached to fins and gills of the fish and all completed their devel-

opment (or were rejected) within two weeks. Water was partially

exchanged (approx. 80% of total water volume) and examined

for the presence of rejected larval mussel and metamorphosed

juvenile mussels by siphoning the tank daily for the period of

two weeks. Rejected larvae and metamorphosed juvenile mus-

sels were collected from siphoned water using filters (mesh

size 139 mm) and identified under a microscope at 10–40� mag-

nification. Mussels were scored as living juveniles if foot activity

or valve movement was observed. These methods enabled us to

estimate both the absolute number of juvenile mussels recovered

from individual fish and the successful development of initially

attached A. woodiana larvae. The initial abundances were

44.4+33.2 larvae (mean+ s.d.) per gram of fish mass. The mor-

tality of fish was less than 5% during the experiment and was not

caused by A. woodiana larvae infestation.

Data on A. woodiana larvae transformation success were ana-

lysed using generalized linear model with a binomial error

structure and log-link function. To account for infecting several

fish by larvae originating from the same mussel, we used gener-

alized estimating equations (GEE) in the geepack package.
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The dependent variable was the ratio of successfully transformed

larvae to larvae rejected by host fish. The following factors

and their first-order interactions were included as explanatory

variables: fish origin (Danubian versus Baltic), mussel origin
(Danubian versus Baltic), sympatry (fish population sympatric

or allopatric to A. woodiana). Correlated observations from

repeated use of the same parent mussel as a source of larvae

for experimental infection were accounted for by using an

‘independence’ correlation structure.

(d) Bitterling behavioural discrimination: mechanisms
of Anodonta woodiana impact

The preference/avoidance of R. amarus to oviposit in the gills of

A. woodiana and a native mussel A. anatina were tested during

May and June 2012, at the peak of the R. amarus spawning

season. The study with Danubian fish were conducted in the

aquarium facility at the Institute of Vertebrate Biology, Czech

Republic, using aquaria measuring 750 � 400 � 400 mm. Exper-

iments with Baltic fish were conducted at the University of

Lodz, Poland, in aquaria measuring 500 � 400 � 350 mm. Only

an allopatric population of Baltic R. amarus was tested

owing to logistic reasons. Prior to their use in the experiment,

R. amarus were held in large outdoor pools under natural light

conditions and fed with a mixture of frozen chironomid larvae

and commercial fish food. During experiments, water tempera-

ture varied between 17 and 218C. The tanks contained a sand

substrate and artificial plants as refuges and were isolated by

opaque barriers. For each replicate, two mussels (one native

A. anatina and one invasive A. woodiana) in separate sand-filled

pots were placed at the centre of each tank, 0.35 m apart. Male

R. amarus were introduced to the pools to examine the mussels

and initiate territorial behaviour. After at least 2 h, a female

R. amarus in reproductive condition (her readiness to oviposit

indicated by an extended ovipositor) was introduced. Behaviour-

al recording commenced once the female had first approached

and inspected a mussel. Recording continued for 10 min but

was terminated at oviposition, if it occurred, as fish behaviour

changes post-oviposition and is not related to mussel preference

[16]. Five reproductive behaviours (male leading, sperm release,

male inspection, female inspection and female skimming)

(detailed definitions in the electronic supplementary material, table

S2) were recorded during observations, each clearly directed

towards one of the two test mussels and was interpreted as pre-

ference for that mussel [16]. Ovipositions, when they occurred,

were also recorded. A total of 102 paired replicates were com-

pleted; all subjects used only once, giving a total of 102 unique

pairs of R. amarus and 102 unique pairs of A. woodiana and

A. anatina mussels used in tests.

We tested whether fish from different R. amarus populations

discriminated against A. woodiana (i.e. behavioural avoidance).

For behaviours directed towards non-native A. woodiana and

native control mussels (A. anatina), pairwise differences in the

rate of each reproductive behaviour within a replicate were calcu-

lated. This approach generated a paired design where one

A. woodiana and one A. anatina were simultaneously presented

to a pair of R. amarus. Given strong collinearity between all

five behavioural preference measures (Spearman’s correlation,

all rS . 0.36, all p , 0.001, n ¼ 102), the data matrix (i.e. pairwise

differences for each reproductive behaviour) was simplified

using principal component (PC) analysis. The first principal com-

ponent (PC1) explained 60.8% of variation (eigenvalue ¼ 3.04)

and was the single best predictor of host mussel preference (elec-

tronic supplementary material, table S3). All analyses were

conducted using PC1 (named Preference in the results) but the

use of individual behaviours produced qualitatively identical

results (electronic supplementary material, figure S1). Least-

squared means were calculated for PC1 for each fish origin by
mussel origin combination. Negative mean values with 95% CIs

that were non-overlapping with zero were interpreted as signifi-

cant avoidance of A. woodiana (and hence significant preference

for A. anatina control), confidence intervals overlapping zero

indicated a lack of significant discrimination between A. woodiana
and A. anatina, and positive values with 95% CIs non-overlapping

with zero denoted a preference for A. woodiana (and avoidance of

A. anatina).

(e) Bitterling reproductive success: impact of Anodonta
woodiana invasion

The impact of the addition of A. woodiana to a unionid mussel

community on the reproductive success of R. amarus was tested

in experimental ponds. The ponds comprised large fibreglass

outdoor pools (1.3 � 1.3 � 1.0 m) situated at the garden of the

Institute of Vertebrate Biology, Czech Republic. Each pond had

a gravel substrate and was filled to a depth of 0.6 m with

water and furnished with artificial plants as refuges. Four

sand-filled plastic pots, each containing a mussel, were placed

in the corner of each pond; pots kept mussels in fixed positions

but permitted them to adopt a natural position and to filter nor-

mally. Under natural conditions at our study sites, A. woodiana
comprise approximately 50% individuals in the unionid mussel

community [32,33]; therefore, we experimentally evaluated scen-

arios when 50% of native mussels were replaced by non-native

A. woodiana. This provided three levels of mussel community

treatment; native community (four individuals of A. anatina),

community invaded by Baltic A. woodiana (two A. anatina and

two Baltic A. woodiana), and community invaded by Danubian

A. woodiana (two A. anatina and two Danubian A. woodiana).

Each mussel community treatment was replicated with both

R. amarus populations; sympatric and allopatric to A. woodiana.

For logistical reasons, Danubian and Baltic R. amarus were

tested in separate years. There were seven replicates of each

treatment combination, resulting in 84 experimental populations

tested over two spawning seasons.

Experimental R. amarus populations consisted of five males

and six females. Experimental fish foraged on natural food

(algae, detritus and invertebrates) that established in experimen-

tal ponds and were additionally fed daily with a mixture of

frozen chironomid larvae and cyclops nauplii, with an equal

amount provided to each population. Rhodeus amarus were

stocked on 11 May 2012 (Danubian fish) and 25 April 2014

(Baltic fish). A total of 420 male and 504 female R. amarus, 224

A. anatina and 56 Baltic and 56 Danubian A. woodiana were

used. Fish started to spawn approximately two (Danubian) and

four (Baltic) weeks after stocking. Experimental mussels were

recovered from ponds on 8–12 June 2012 and 12–13 June 2014,

before R. amarus embryos had completed development. Mussel

gills were dissected and all R. amarus embryos were counted.

A small number of juvenile R. amarus emerged from their host

mussels prior to mussel dissections (in a total of six pools in

Baltic R. amarus). These were collected from ponds and added to

the sum of R. amarus embryos from their respective populations.

To measure the impact of mussel community composition on

R. amarus reproductive success, the number of R. amarus embryos

recovered from each experimental population was tested with

mussel community (three levels; native, invaded by Danubian

A. woodiana, invaded by Baltic A. woodiana) and fish population
(two levels: sympatric, allopatric) as fixed factors. For Danubian

R. amarus, embryo abundance followed a normal distribution

and a general linear model (LM) was used. Data for Baltic

R. amarus were initially tested using a Poisson distribution but

were found to be overdispersed and a quasi-Poisson distribution

was used (generalized linear model with log-link function,

GLM). There were some mortalities of experimental A. anatina
mussels during the experiment with Baltic R. amarus, distributed
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randomly across treatments. Therefore, mussel mortality (the

number of A. anatina mussels that died before mussel dissection)

was included as an additional covariate in the analysis.
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Figure 4. Impact of mussel community on the reproductive success of
R. amarus populations. Mean (þ1 s.e.) number of R. amarus recovered
from experimental ponds. Baltic and Danubian R. amarus were tested separ-
ately in different years.
3. Results
(a) Population-specific exploitation of Rhodeus amarus

by invasive Anodonta woodiana
The capacity of A. woodiana to successfully metamorphose on

R. amarus differed among R. amarus populations but not

between A. woodiana populations (figure 2). Specifically,

Danubian R. amarus were considerably better hosts of

A. woodiana than Baltic R. amarus (GEE: Wald x2 ¼ 46.7, p ¼
0.001, nbalt ¼ 63, ndan ¼ 57). Further, A. woodiana were more

successful in developing on allopatric R. amarus than sympatric

R. amarus (x2 ¼ 6.5, p ¼ 0.011, nsymp¼ 60, nalop¼ 60), though

the effect was smaller than for the effect of R. amarus geographi-

cal origin. The two A. woodiana populations did not vary in their

capacity to infect R. amarus (x2 ¼ 1.3, p ¼ 0.263) and there was

no significant interaction between the origin of R. amarus and

A. woodiana (x2 ¼ 3.0, p ¼ 0.085) (electronic supplementary

material, figure S2).

(b) Population-specific impacts on native Rhodeus
amarus: mechanisms and consequences

Rhodeus amarus preference for host mussels revealed contrast-

ing population-specific responses (figure 3). Rhodeus amarus
from the sympatric Danubian population showed different

responses to the two A. woodiana populations. They avoided

locally sympatric Danubian A. woodiana (t-test: t15 ¼ 3.35,

p ¼ 0.005), but did not discriminate against unfamiliar Baltic

A. woodiana (t15 ¼ 0.64, p ¼ 0.502). The two allopatric

R. amarus populations differed in their response to the two

A. woodiana populations. Danubian R. amarus avoided

A. woodiana (Danubian mussels: t16 ¼ 2.47, p ¼ 0.026; Baltic

mussels: t16 ¼ 2.67, p ¼ 0.018), while Baltic R. amarus did not
discriminate against any A. woodiana population (Baltic

A. woodiana: t22 ¼ 1.34, p ¼ 0.196; Danubian A. woodiana:

t18 ¼ 0.02, p ¼ 0.981). Ovipositions were rare (electronic sup-

plementary material, table S4), but their distribution was

congruent with the behavioural preference score.

The presence of A. woodiana in the mussel community sig-

nificantly decreased R. amarus reproductive success (Danubian

R. amarus populations, LM: F2,36¼ 3.34, p ¼ 0.047; Baltic

R. amarus populations, GLM: F2,39 ¼ 3.98, p ¼ 0.028). The

fewest offspring were recovered from the treatments with

Baltic A. woodiana (figure 4 and electronic supplementary
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material, table S5). No significant effect of R. amarus sympatry

with A. woodiana was detected (sympatry: F1,36¼ 0.82, p¼ 0.372

and F1,38 ¼ 1.41, p ¼ 0.243 for Danubian and Baltic fish; inter-

action between mussel community and sympatry: F2,36 ¼ 1.80,

p ¼ 0.181 and F2,35 ¼ 1.39, p ¼ 0.267, respectively). Mortality

of native mussels had no effect on the outcome of tests

(F2,35 ¼ 0.23, p ¼ 0.632).
blishing.org
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4. Discussion
We demonstrated that interactions between native and invasive

species can vary considerably among populations, yielding

divergent outcomes and consequences of the interaction for

both native and invasive species. The impact of the invasive

species varied at two levels; both between geographically

distinct lineages of the native species and, within these lineages,

between local populations with contrasting histories of

sympatry with the invader. At a geographical scale, the

R. amarus–A. woodiana relationship in the Baltic region was

more costly to both partners. Larvae of A. woodiana that

parasitized Baltic R. amarus were less likely to successfully

metamorphose into juvenile mussels, and Baltic A. woodiana
imposed a greater reproductive cost on R. amarus. By contrast,

the relationship proved relatively more benign in the Danubian

region, where Danubian R. amarus were suitable hosts of

A. woodiana larvae and with the fish avoiding A. woodiana as a

host, and thereby escaping the cost of egg ejections. At a local

scale, behavioural discrimination against oviposition in an

unsuitable non-native host, combined with higher resistance

against parasitic larvae were detected in R. amarus sympatric

with A. woodiana, implying a potential for rapid evolutionary

response to the invader [8,10] and partly mitigating its negative

impacts. Given that our data come from a common garden

experiment, the source of inter-population variation was

attributable to the experimental populations and did not

result from natural variation in environmental conditions or

community structure. One caveat to this conclusion is that the

use of wild-caught individuals did not permit us to separate

genetic and maternal effects.

The impacts of invasive species may be strongly context-

dependent and highly variable, both in the magnitude and

direction of response [39]. It is generally assumed that con-

text-dependency arises from climatic, environmental and

community settings that naturally vary among regions where

a species has invaded. However, we demonstrated that vari-

ation in the impact of an invasion can derive from innate

characteristics of populations. The impacts of invasive species

on local communities can often be precipitated via subtle pro-

cesses between intimately interacting species [8,40,41]. These

relationships are often characterized by coevolution, when an

adaptation of one partner is matched by adaptation in the

second. Coevolutionary associations are inherently dynamic

and, across species ranges, they proceed at varying rates,

generating a diverse geographical mosaic of variable states

[42]. Species translocations can disrupt coevolved adapta-

tions, exposing both native and non-native species to novel

interactions [9,40].

We propose that coevolutionary dynamics within native

communities may predispose different populations to diver-

gent responses to an invading species, with variation in

consequences. Coevolutionary dynamics have rarely been con-

sidered as modulating impacts in invasion biology [43], but
may present an important source of variation in outcomes.

Our experimental system was not suited to replication across

a higher number of population combinations and it may be

argued that stochastic processes unrelated to coevolutionary

dynamics may have produced the observed pattern. Other

systems with fine-scale coevolutionary dynamics, such as

plant–insect interactions (e.g. pollination, seed dispersal), are

also prone to perturbations from invasions of non-native

species and may be easier to replicate across more populations

with a more reasonable cost and effort.

Several other examples indicate, at least indirectly, the

potential importance of coevolutionary dynamic states on the

impact of invasions. In an example conceptually matching

the R. amarus–A. woodiana scenario, Anguillicoloides crassus, a

nematode parasite of East Asian eels (Anguilla japonica),

caused massive mortalities of the European eel Anguilla angu-
illa when A. crassus was introduced to Europe. As a parasite

that apparently coevolved to an equilibrium with a local popu-

lation of A. japonica in its native range, its virulence is lethal for

evolutionarily naive A. anguilla hosts [43]. The introduction of

A. crassus to North America resulted in infections of the

American eel, Anguilla rostrata, but the impact of A. crassus on

A. rostrata, while less understood, appears more limited than

the impact on A. anguilla [44]. Similarly, a monogenean parasite

Gyrodactylus salaris is not lethal to Baltic populations of the

Atlantic salmon, Salmo salar, but caused substantial mortalities

once introduced into East Atlantic populations of S. salar [45].

Except for parasites invading new ranges (i.e. emerging

infectious diseases), where the impacts are apparent and

often have acute consequences, such cases have rarely been

documented. We propose that coevolutionarily dynamic

states between mutually interacting species may actually play

an important role in influencing the magnitude and direction

of the impacts of invasions. This perspective also recognizes

the invasion of non-native genotypes within an established

species range [11], which may often go undetected but could

have important consequences for community structure and

interspecific associations [46].

Impacts of invasive species also vary in time [40], and eco-

logical and evolutionary processes have been implicated as the

source of this variation [47]. We have shown that R. amarus
populations which were sympatric with the invasive mussel

were more efficient in rejecting their parasitic larvae than

evolutionary and ecologically naive allopatric R. amarus popu-

lations. An initial rapid establishment and strong negative

impact on native species can stabilize after the initial population

expansion by the invader (e.g. [48]), though chronic effects can

persist and many impacts can be irreversible [41,47]. Adaptive

responses to invasive populations can evolve relatively rapidly.

For example, native anole lizards, Anolis carolinensis, have

adapted to a niche shift following invasion of a competitor,

Anolis sagrei, to Florida with significant changes in ecology

and morphology over less than 20 generations [10]. Likewise,

evolutionary change in invasive populations that resulted in a

decrease in their impact on native species has been reported

[49]. In the case of R. amarus, a sympatric population appeared

capable of discriminating against the invasive host mussel

and avoided it for oviposition, despite not being able to dis-

criminate against the other, unfamiliar population of the

same invasive species.

An understanding of alternative effects of invasive species

across space and time still represents a major challenge for inva-

sion science. Our results illustrate the inherent difficulty in
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predicting the impact of a non-native species by demonstrating

that fine-scale population-specific attributes arising from local

adaptation and fine-scale coevolutionary dynamics can play a

major role in driving outcomes. While an ability to predict

the impact of non-native species is a prerequisite for the suc-

cessful management of biological invasions [1], achieving this

goal is not straightforward [4]. We argue here that a shift

from a species-centred to a more population-centred perspec-

tive of invasion may provide deeper insights into the success

and impacts of biological invasions.
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