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ABSTRACT Eigendecomposition is the factorization of a matrix into its canonical form, whereby the matrix
is represented in terms of its eigenvalues and eigenvectors. A common step is the reduction of the data to a
kernel matrix also known as a Grammatrix which is used for machine learning tasks. A significant drawback
of kernel methods is the computational complexity associated with manipulating kernel matrices. This paper
demonstrates that leading eigenvectors derived from singular value decomposition (SVD) and Nyström
approximation methods can be utilized for classification tasks without the need to construct Gram matrices.
Experiments were conducted with 14 biomedical datasets to compare classifier performance when taking
as input into a classifier matrices containing: 1) leading eigenvectors which result from each approximation
method, and 2) matrices which result from constructing the patient-by-patient Gram matrix. The results
provide evidence to support the main hypothesis of this paper that using the leading eigenvectors as input into
a classifier significantly (p < 0.05) improves classifier performance in terms of accuracy and time compared
to using Gram matrices. Furthermore, experiments were carried out using large multi-modal mHealth time
series datasets of ten different subjects with diverse profiles while they were performing several physical
activities. Experiments with the mHealth datasets utilized a sequential deep learning model. The significance
of the proposed approach is that it can make feature extraction methods more accessible on large-scale
unimodal and multi-modal data which are becoming common in many applications.

INDEX TERMS Biomedical data, classification, machine learning, time-series, human activity recognition,
multi-modal data, deep learning.

I. INTRODUCTION
Low-rank matrix decompositions are important in the appli-
cation of kernel methods to large-scale learning prob-
lems. High-dimensional data is represented in more than
two or three dimensions and it can be difficult to manipulate
and interpret. One approach to dealing with high-dimensional
data is to assume that the data of interest reside on an embed-
ded non-linearmanifold within the higher-dimensional space.
If the manifold is of low enough dimensionality, the data can
be visualised in a low-dimensional space. Manifold learning
is also known as non-linear dimensionality reduction.

Large matrices consist of thousands to millions of matrix
entries and performing even simple operations on these
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matrices becomes a complex task. Feature extraction algo-
rithms are utilised to reduce the data into fewer dimensions
and hence to deal with the ‘curse of dimensionality’, so as to
reduce the complexity and improve the efficiency of oper-
ating on large matrices by constructing lower-rank matrix
approximations of large matrices [1]. Therefore, the task of
feature extraction or dimensionality reduction has become
common in large-scale applications, includingmachine learn-
ing. Furthermore, the idea behind creating low-rank approxi-
mations is that representing the data in a reduced dimensional
space removes noise from the data, which then reveals intrin-
sic structures of the data. For this reason, it is important to cre-
ate low-rank matrix approximations and utilise these, instead
of the full-rank matrices. Many methods have been pro-
posed to construct low-rank approximation of matrices, and
these methods rely on the eigenvectors of the kernel matrix.
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Some of these methods include Independent Compo-
nent Analysis (ICA) [2], Principal Component Analysis
(PCA) (also called Karhunen-Loéve Transform-KLT), Sin-
gular Value Decomposition (SVD), Laplacian Eigenmap [3],
Multidimensional Scaling (MDS) [4], Spectral clustering [5],
Isometric multi-manifold learning [6], kernel Fisher lin-
ear discriminant analysis [7], and the clustered Nyström
method [8]. A common step in kernel methods is the reduc-
tion of the data to a kernel matrix, also known as a Gram
matrix. The Gram matrix is then used for machine learning
tasks such as classification, clustering, and dimensionality
reduction [9]. A significant drawback of kernel methods is
the computational complexity associated with manipulating
kernel matrices.

Given a set of n data points, the kernel matrix K is of
size n× n, which results in a computational complexity of at
least O(n2) [9]. Furthermore, the majority of kernel methods,
such as SVD, have at their core operations the tasks of matrix
inversion or eigenvalue decomposition which scale as O(n3).
Moreover, those kernel algorithms which use tools such as
semi-definite programming have even higher-order polyno-
mial complexities [10]. Nyström based methods, have been
shown to be efficient techniques for the eigenvalue decom-
position of large kernel matrices [8], [11], [12]. For exam-
ple, the clustered Nyström method [8] employs an efficient
approach to computing matrix approximations with a high
degree of accuracy. A common approach when using feature
extraction and dimensionality reduction methods involves
passing the Gram matrix as input into a classifier [8], [11].

The work proposed in this paper describes and experi-
mentally evaluates an approach of using SVD and the Nys-
tröm matrix approximation methods [8] as approaches for
extracting features which will be used for classification
tasks, without constructing the Gram matrix. This means
that using the matrix containing the leading eigenvectors,
will avoid the computationally expensive task of construct-
ing a kernel matrix by computing an inner product of fea-
ture vectors. The proposed approach is demonstrated using
biomedical andmulti-modalmulti-sensor healthcare datasets,
however, any type of dataset which has been prepared for
classification tasks (i.e. inputs and labels) can be used. The
approach described in this paper is different to the approach
proposed by Zhang et al. who experimented with various
approximation methods for classification tasks using Gram
matrices [8], [11].

The paper is structured as follows: Section II dis-
cusses related works; Section III describes related manifold
learning and low-rank approximation methods; Section IV
describes the problem definition and hypotheses; Section V
provides the proposed method and architecture; Section VI
explains the experimental setupwhich comprises descriptions
of the datasets and experimental methodology. Section VII
discusses the experiments performed using benchmark multi-
class biomedical datasets. Section VIII describes the results
with multi-modal multi-sensor smart phone data (mHealth)
to predict human activity; Section IX describes the results

when adopting the proposed framework with a Deep Sequen-
tial classifier and applied to the mHealth Data for the task
of human activity recognition. Finally, Section X provides
conclusions and future work.

II. RELATED WORKS
Li et al. [12] argue that on very large datasets, the standard
SVD algorithm takes O(n3) time, and it can become pro-
hibitive in large-scale computations. Instead they proposed
a Large-Scale Nyström Kernel matrix approximation using
Randomized SVD, that initially samples a large column
subset from the input matrix, but then only performs an
approximate SVD on the inner submatrix using the recent
randomized low-rank matrix approximation algorithms.
Using the same arguments as Li et al. [12], Zhang et al. [11]
proposed an Improved Nyström Low-Rank approximation
method. They compared the Improved Nyström Low-Rank
approximation method with state-of-the-art approaches that
range from greedy schemes to probabilistic sampling, and
found that their proposed Nyström achieved significant per-
formance gains in a number of supervised/unsupervised
learning tasks including kernel Principal Component Analy-
sis and least squares Support Machines. In order to fit low-
rank approximations into classification applications, they
proposed the reconstruction of the eigen-system of a matrix
approximated by its low-rank decomposition [11]. This com-
mon step in kernel methods is the reduction of the data
to a kernel matrix, also known as a Gram matrix. The
Gram matrix is then utilised for training and validating a
machine learning classifier [9]. Similar to the work of Li
et al. [12], Zhang et al. [11] have used the Gram matrices
which resulted from the approximation methods, as input
into the machine learning model for performing the classi-
fication task. Zhang et al. [11] have applied their Nyström
method to 8 datasets and analysed approximation errors as
an indication of performance, however, such analysis alone
cannot be an indication of how the approximationmethodwill
perform when its outputs are fed into a classifier. The authors
present limited results on the classification accuracy of the
approximation methods under scrutiny. They only present the
results of applying the methods coupled with the Support
VectorMachine classifier on one dataset, the USPS digits (US
Postal Service Dataset) dataset, where SVD outperformed
their Nyström method on 6 out of 11 testing USPS tests
datasets. However, one can conclude that the performance
of SVD and Nyström was approximately similar for that
specific dataset. Their experiments also revealed that SVD
was slower than their proposed Nyström method. The reason
that SVD took longer than their Nyström method is due
to the fact that Gram matrices were used in their exper-
iments and to derive these matrices for SVD it is more
computationally complex than with Nyström. Nevertheless,
Nyström methods appear to be a good alternative to SVD,
and one of the aims of this paper is to perform further
experiments to appropriately compare and reach a steady
conclusion on performance differences by means of accu-
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racy and time. Li et al. [12] explain that computing the
kernel matrix involves quadratic space complexity, together
with the often-involved cubic time complexity, and this
can be demanding in large-scale and big data applications.
Li et al. [12] propose that a useful approach to reduce the
computational burdens of computing the Gram matrix K ,
where given a set of m samples the kernel matrix K is of size
m×m, is to perform low-rank approximation [11], [12]. This
involves, approximating K by G × GT , for some G ∈ Rm×k .
With k << m, the complexities associated in the handling of
matrix G are much lower than those with matrix K.

This paper, empirically explores the use of Gram matri-
ces and whether leading eigenvectors derived from Singular
Value Decomposition (SVD) and Nyström approximation
methods can be utilised for classification tasks without the
need to construct Gram matrices.

III. RELATED METHODS
Low-rank approximation is used in manifold learning and
dimensionality reduction algorithms that rely on the eigen-
vectors of the kernel matrix [11]. The aim of low-rank matrix
approximation is to obtain more compact representations of
the data with limited loss of information, and using fewer
dimensions than the original data [13]. Therefore, low-rank
approximation methods construct an approximation of the
original matrix which has a rank less than the rank of the
original matrix. This section summarises the related meth-
ods for constructing low-rank approximation of matrices and
describes the concept of Kernel Spectral Clustering, SVD,
and the Improved Nyström and Random Sampling Nyström
approximation algorithms.

A. KERNEL SPECTRAL CLUSTERING
Spectral clustering algorithms exploit pairwise similarities of
data instances. Liu et al. [14] proposed a Spectral Ensemble
Clustering (SEC) algorithm via weighted k-means cluster-
ing. They proposed Spectral Ensemble Clustering (SEC) to
make use of the advantages of co-association matrix and
have applied the proposed method to ensemble and multi-
view clustering tasks. The authors state that the purpose of
multi-view clustering is to separate instances into different
groups based on multiple representations. Kernels have sev-
eral meanings, and this paper follows the Mercer (positive
definite) kernel. The methods studied in this paper require
that the kernel function satisfies the requirement that the
Gram matrix, X, be a positive definite for any set of inputs
xNi=1. Let xi ∈ <

D be a vector of matrix X. Let k(x, x ′) ≥ 0
be some measure of similarity between objects x, x ′ ∈ X ,
and k is a kernel function. Such a matrix is referred to as a
Mercer kernel, or a positive definite kernel. Given matrix X,
the eigenvector decomposition of matrix X can be computed
using X = UT3U , where3 is a diagonal matrix of eigenval-
ues λi > 0. The entries in the kernel matrix can be computed
by performing an inner product of feature vectors. A major
problem for kernel-based predictions (such as Support Vector
Machines (SVMs) and Gaussian processes) is that they are

computationally expensive with regards to finding solution
scalings such as O(n3), where n is the number of training
examples. One approach to reduce computational complexity
is to perform low-rank approximation in order to reduce the
dimensionality of the matrices.

B. SINGULAR VALUE DECOMPOSITION
Let X be an arbitrary matrix of size m × n, where m is
the number of vector rows, and n is the number of vector
columns. Let Xi,j, i = 1 . . .m, be the ith row vector of matrix
X , and j = 1 . . . n the jth column vector of matrix X . Let
rank rank(X ) = r , the SVD of matrix X be denoted as
X = Ur × 6r × V T

r , where V
T
r is the transpose of matrix

Vr , 6r is a diagonal matrix containing the singular values
of matrix X sorted in decreasing order, and Ur and Vr have
orthogonal columns that contain the left and right singular
vectors of matrix X corresponding to its singular values. Let
Xk be the best rank-k approximation to X which has been
reconstructed via Xk = Uk × 6k × V T

k , where V
T
k is the

transpose of matrix Vk , 6k is a diagonal matrix containing
the k leading singular values of matrix X , and the Uk and
Vk have orthogonal columns that contain the leading k left
and right singular vectors of matrix X corresponding to its
singular values. The aim is to generate an approximation X̃ of
matrix X based on a sample k � n. It is important to identify
a suitable number of k dimensions to retain and which are
needed to create a good approximation of the original matrix
with fewer dimensions and minimum error.

C. NYSTRÖM MATRIX APPROXIMATION
The Nyström method is a technique for finding numeri-
cal approximation to eigenvalue decomposition. There exist
several variants for Nyström approximation based spectral
clustering. The Nyström method is used to generate low-
rank matrix approximations and has been applied to several
large-scale applications which require solutions to dealing
with the high computational complexity of large datasets [1].
The most important step of the Nyström method is sampling,
by choosing different sampled landmark points λ to obtain
different approximations of the original matrix, and thus to
approximately compute the kernel eigenfunctions. Uniform
sampling without replacement is a popular approach for this
purpose, where every point has the same probability of being
included in the sample. The aim is to generate an approxi-
mation X̂ of matrix X based on a sample of its columns n
obtained from matrix X such that, λ � n. The Nyström
method approximates the full kernel matrix X by first sam-
pling n columns, denoted by x̂1 . . . , x̂n. The Nyström method
has shown to be a good solution toward finding numerical
approximations to eigenfunction problems. Zhang et al. [11]
proposed an Improved version of the Nyström approximation
method which is based on a clustered data model that uses
an alterned k-means classifier – which they named Effective
k-Means. They proposed the use of clustering algorithms
to naturally obtain the data clusters by assigning each data
sample to its closest landmark point.
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D. RANDOM SAMPLING USING LANDMARK POINTS
Williams and Seeger [15] proposed a Random Sampling
technique for the Nyström method to speed up computing
kernel eigenfunctions. Random Sampling works by choos-
ing a subset of samples, called landmark points, to con-
struct a low-rank matrix approximation by computing the
kernel eigenfunctions. Thus, it approximates matrix K̂ by
randomly choosing m rows/columns of K (without replace-
ment). The random sampling technique proposed byWilliams
and Seeger [15] for approximating matrix X , gives rise to
O(m2n) computational complexity. The quality of the Nys-
tröm approximation depends significantly on the subset of
columns used, which are usually selected using random sam-
pling. Choromanska et al. [16] proposed a fast spectral clus-
tering algorithm with computational complexity linear in the
number of data points that is directly applicable to large-scale
datasets. However, a significant obstacle to scaling up spec-
tral clustering to large datasets is that it requires building a
similarity matrix between pairs of data points which becomes
computationally expensive for high dimensional data-sets,
that is datasets which have a large number of features.

IV. PROBLEM DEFINITION
As a preliminary, let matrix X be a, m × n, case-by-feature
matrix. Since the paper is concerned with biomedical and
health data classification, in the datasets herein m× n matri-
ces are patient-by-feature matrices. Therefore, each of the
datasets utilised in the experiments comprise of 1) a patient-
by-feature matrix, Xm×n, and 2) a vector Ym×1 where each
element yi holds the label for each row xi of matrix X.
Given the significant computational complexity associated
with manipulating Gram matrices, the main hypothesis of
the paper is that leading eigenvectors derived from eigende-
composition methods, can be used as input into a machine
learning classifier, as opposed to the Gram matrix, without
having a negative impact on classification performance. The
subsections that follow explain how the SVD and Nyström
methods will be adopted for exploring the main hypothesis,
and the remaining paper focuses on exploring this hypothesis
on biomedical and healthcare datasets.

A. EIGENVECTORS FROM NYSTRÖM METHODS
FOR CLASSIFICATION TASKS
The Nyströmmethod can be utilized for obtaining orthogonal
eigenvectors [11]. Zhang et al. [11] proposed an Improved
Nyströmmethod based on clustering algorithms, and for clas-
sification tasks their evaluations involved using the approxi-
mation of the original matrix. Given G ∈ <n×m is a lower
triangular matrix, and m � n, the top m eigenvectors U
of the original patient-by-feature matrix X can be obtained
as U ≈ GV31/2 in O(m2n) time, where V ,3 ∈ Rm×m

are from the eigenvalue decomposition of the m × m matrix
S = GTG = V3V T [11].
Hypothesis 1: For classification tasks the lower triangular

matrix G, which contains top eigenvectors, can be used as

input into a classifier instead of the Grammatrix K, computed
via G×GT without having a negative effect on performance.

Once the Nyström algorithm is applied to the patient-by-
feature matrix X , and the cluster centres cj are derived, then
each cluster centre becomes a landmark point λi. The aim
is to have the smallest number of landmark points needed
to represent every sample accurately (this is the task of
dimensionality reduction). This is a challenging task to do,
particularly when the dataset contains a lot of noise, and also
a high degree of uncertainty. The performance of the Nyström
matrix approximation algorithms depends on the number of
landmark points chosen, and the optimal number of landmark
points is decided by observing the classifiers accuracy and
speed. The aim is to have high performance (measured by
high classification accuracy achieved by the classifier in least
time) using a minimum number of landmark points, since
increasing the landmark points increases the dimensionality
of the matrix which is input into the classifier and therefore
this impacts on processing time.

B. EIGENVECTORS FROM SINGULAR VALUE
DECOMPOSITION FOR CLASSIFICATION TASKS
Given X, an m × n patient-by-feature matrix, and s =
min(m, n). If X has a rank r , then there is an m × m unitary
matrix G, an n × n unitary matrix V, and an m × n diagonal
matrix 6 = diag(σ1, . . . , σs) such that X = G6V T where
σ1 ≥ . . . σr > 0 = σr+1 = · · · = σs. The scalars σ1, . . . , σs
are called singular values and are the square roots of the
non-zero eigenvalues of XTX , ordered by size. SVD can be
used to reveal the rank (rX ) of matrix X. (rX ) of matrix X
is the number of nonzero diagonal elements of 6. A rank-k
approximation to matrix X, denoted as (Xr ), can be defined
where k ≤ rX , by setting all but the k-largest singular values
of X equal to zero. The patient-by-patient matrix K can be
reconstructed via K = (G × 6) × (G × 6)T , where K is
m× m, and it is considered as the Gram matrix.
Hypothesis 2: For classification tasks the lower triangular

matrix Gk , which contains leading eigenvectors, can be used
as input into a classifier instead of computing matrix K via
(Gk ×6k )× (Gk ×6k )T , without having a negative effect on
performance.
When applying SVD on a matrix, its performance depends

on the number of k dimensions chosen. Choosing a larger
number of dimensions than needed can result in including
noise in the dataset, and choosing too few dimensions may
remove important information.

V. PROPOSED METHOD AND ARCHITECTURE
This section describes the proposed architecture illustrated
in Fig. 1 and explains how to utilise a prediction model
which has eigendecomposition and dimensionality reduction
components to predict outcomes of new records, which in this
paper are patient records. In particular, a patient record can
contain n number of features, where features can be clini-
cal, gene expression, biomedical and other data. This paper
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FIGURE 1. Illustration of the proposed architecture for using
approximation methods to extract data for training a classifier. Gm×k is
the patient-by-dimension matrix.

focuses on biomedical data and healthcare data which was
obtained from multiple body sensors.
Input: Let X be a pre-processed m × n patient-by-feature

matrix. Pre-processing can include imputation of missing
values and preparation of dataset.
Normalise: In order to improve prediction results, it is

best to normalise the training dataset, X, with the preferred
normalisation function. In this paper the zscore normalisation
function is adopted, however zscore can be replaced by any
other alternative normalisation function. For a sample data
with mean X̄ and standard deviation S, the zscore of a data
point is z = (x − X̄ )/S. The zscore transformation measures
the distance of a data point from the mean in terms of the
standard deviation. The normalised (or standardized) data set
has a mean value of 0 and standard deviation 1, and retains
the shape properties of the original data set (same skewness
and kurtosis).
Eigendecomposition and Dimensionality Reduction: are

applied to matrix Xm×n using a pre-specified rank-k value
if SVD is applied, or using a k value which is basically the
number of landmark points λ if Nyström is applied. After
applying SVD and dimensionality reduction, the result is a
patient-by-dimension matrixGm×k , a Singular Values matrix,
6k×k , and a feature-by-dimension matrix, Vn×k . If Nyström
is applied then a patient by dimension matrix Gm×k and
a matrix C containing the k-means centroids used by the
method are two of thematrices returned. In SVD andNyström
the values of k and λ respectively indicate the number of
dimensions of matrix G. Figs. 2 and 3 visualise the data from
matrices G derived from applying SVD and the Effective
k-means Nyström methods to the Breast Cancer dataset.
Using SVD and Nyström, the data was reduced to 2 dimen-
sions for visualisation purposes.
Classifier: A machine learning classifier is then trained

using the truncated matrix Gm×k . The output is a trained

FIGURE 2. Example of SVD-G derived from applying SVD to the breast
cancer dataset using k = 2 dimensions. SVD-G plotted with Benign and
Cancer patient data shown in blue and red respectively. A logarithmic
scale was used for better visualisation of the data.

FIGURE 3. Example of Nyström-G derived from applying Nyström to the
breast cancer dataset using λ = 2 landmark points. Nyström-G plotted
with benign and cancer patient data shown in blue and red respectively.
A logarithmic scale was used for better visualization of the data.

classification model (i.e. learned model) which can be used
to predict the outcome of one or more new patient records, xi.
In this paper a k-Nearest Neighbour (kNN) and a Deep
Sequential classifier were adopted, but any other classifier
(or clustering algorithm), can be used.
Prediction Model: The prediction model takes a new

record, pi and predicts its class (e.g. cancer, benign
disease, etc.).

VI. EXPERIMENTAL SETUP
This section provides a description of the datastes and exeri-
ment methodology.

A. BIOMEDICAL DATASETS
Datasets were downloaded from online repositories con-
taining high-dimensional biomedical datasets. Some of the
datasets used in the experiments are benchmark biomedi-
cal datasets commonly used for evaluating pattern recog-
nition algorithms, whilst other datasets have been used in
biomedical papers. The datasets and their characteristics are
shown in Table 1. Some of the datasets contained NaN val-
ues, and these were replaced with a weighted mean of the
k nearest-neighbour columns as part of the normalisation
process. The nearest-neighbour column is the closest column
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TABLE 1. Benchmark datasets used in the experiments.

in Euclidean distance. If the corresponding value from the
nearest-neighbour column is also NaN, the next nearest col-
umn is used.

B. MULTI-MODAL MOBILE HEALTH (MHEALTH) DATASET
ThemHealth1 (Mobile Health) dataset is a benchmark dataset
for human behaviour analysis based on multi-modal body
sensing. The mHealth dataset comprises body motion and
vital signs recordings for ten volunteers of diverse pro-
file while performing 12 physical activities: Standing still
(1 min), Sitting and relaxing (1 min), Lying down (1 min),
Walking (1 min), Climbing stairs (1 min), Waist bends for-
ward (20x), Frontal elevation of arms (20x), Knees bending
(crouching) (20x), Cycling (1min), Jogging (1min), Running
(1 min), and Jump front and back (20x). Sensors on each sub-
ject’s chest, right wrist and left anklewere used tomeasure the
motion experienced by diverse body parts, namely, accelera-
tion, rate of turn and magnetic field orientation. All sensing
modalities are recorded at a sampling rate of 50 Hz, which
is considered sufficient for capturing human activity [17].
This dataset has been found to generalize to common activ-
ities of the daily living, due to the diversity of body parts
involved in each activity (e.g., frontal elevation of arms vs.
knees bending), the intensity of the actions (e.g., cycling vs.
sitting and relaxing) and their execution speed or dynamicity
(e.g., running vs. standing still). Data from the subjects carry-
ing out the activities were collected in an out-of-lab environ-
ment with no constraints on the way these must be executed,
with the exception that the subject should try their best when
executing them [17], [18].

C. EXPERIMENT METHODOLOGY
The architecture proposed in Section V is adopted to evaluate
the hypotheses provided in Section IV using the biomedical
and mHealth datasets. Classifier performance is evaluated in
terms of accuracy and time with and without using the Gram
matrices derived from applying SVD, and two versions of

1mHealth dataset https://archive.ics.uci.edu/ml/datasets/MHEALTH+
Dataset

the Nyström approximation algorithm – the Improved Nys-
trömmethod which uses a k-Means sampling procedure [11],
and the Randomised Sampling Nyström which uses Random
Permutation sampling procedure [12]. Experiments were per-
formed using an Intel(R) Core (TM) i7CPU 3.3GHz, and
32 GB RAM.

In the remainder of the paper, SVD stands for Singular
Value Decomposition, EKM for Improved Nyström method,
and RS for the Random Sampling Nyström method. The
following hold:
• Let method SVD-G return the truncated patient-by-
dimension matrix Gk , derived from SVD. Matrix Gk
holds the truncated left eigenvectors. rank-k is equal to
the selected number of leading eigenvectors.

• Let method SVD-GG return the patient-by-patient Gram
matrixGG, derived from computing (G×6)×(G×6)T .

• Let methods EKM-G and RS-G return patient-by-
landmark matrices Gk , derived from the EKM and RS
Nyström methods. Matrix G holds the k eigenvectors.
The rank-k is equal to the selected number of landmark
points, λ.

• Let methods RS-GG and EKM-GG return Gram matri-
ces GG, derived from computing (Gk × GTk ), where
rank-k is the number of landmark points.

The kNN classifier was adopted for two main reasons.
Firstly, because the aim is to evaluate classifier performance
when different data matrices are input into the classifier
rather than to identify the best classifier, a simple kNN
machine learning classifier was adopted for experiments with
all datasets (to keep the paper focused on the task). An addi-
tional Deep Sequential classifier was adopted for the larger
mHealth datasets which are likely to grow in size, given that
data is collected from mobile phones. Secondly, kNN was
selected experimentally, and because most other conventional
machine learning algorithms were too slow to train, they
were excluded from the experiments. Nevertheless, the pro-
posed approach can be adopted using any machine learning
classifier.

For the experiments described in this paper, the kNN was
set with 10 nearest neighbours, and each experiment was
run 30 times using 10-fold cross validation. Average 10-fold
cross-validation over 30 runs is reported.

It is considered that the best approximation methods are
those which allowed the classifier to achieve the highest clas-
sification accuracy, using the smallest rank (i.e. least number
of landmark points λ in Nyström methods, and least number
of k dimensions in SVD). Increasing the rank of the matrices
can often improve performance, however, it will also increase
the time needed to compute the Gram matrices, and it will
also increase the time the machine learning algorithm takes
to learn the data.

Thus, matrix G will be constructed using various ranks.
Matrix G will be of size m × k and input into the classifier
along with the target vector, Ym×1, which contains the target
value (i.e. ground truth) for each record.
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TABLE 2. Results of applying 10-fold kNN (k = 10 nearest neighbours) 30 times on the patient-by-dimension matrix G, m× k , and patient-by-patient
matrix GG, m×m derived when SVD, Effective k-means and the random-sampling Nyström algorithms are applied to each dataset. Results from
classification using matrices G and GG.

VII. RESULTS PART I: APPLYING AND COMPARING THE
PROPOSED ARCHITECTURE ON VARIOUS
BIOMEDICAL DATASETS
This section discusses the results when comparing the clas-
sification performance (accuracy and time) of the proposed
architecture using methods SVD-G, EKM-G and RS-G vs
SVD-GG, EKM-GG and RS-GG applied to the biomedical
datasets. Tables 2 and 3 show the classification results along
with the mean, maximum and minimum accuracy achieved
across the various ranks (average of 10-fold cross validation
run 30 times) for each dataset, and Table 4 shows average
accuracy values accross all biomedical datasets. In SVD,
the maximum number of k dimensions cannot exceed the
number of n features, and therefore the value of k was
reported accordingly as shown in Tables 2 and 3. For exam-
ple in Table 2, dataset Hepatitis reports results for SVD
up to k = 15 because the Hepatitis dataset has n = 19

features as shown in Table 1 which holds the characteristics
of the datasets. The line chart in Fig. 4 shows the average
performance of each method across all datasets at various
dimensionalities. The Boxplot in Fig. 5 plots the average clas-
sification accuracy across all datasets at various dimensions.
Each box holds 10 average values for dimensions 5, 10, . . . 50
for a method. When using the methods which use the
Grammatrices (i.e. GGmatrices) average lower classification
accuracy was achieved. Observing the average performance
across all datasets, when using SVD-G, the classifier returned
the highest accuracy as expected, given that it is known to be
a state-of-the-art dimensionality reduction method. Overall,
using SVD-G resulted in higher average accuracy using fewer
number of dimensions achieving an average of 0.91 accuracy
using 5-10 dimensions needing an average of 0.10 seconds;
followed by the RS-Gmethodwhich resulted in 0.90 accuracy
with 25 dimensions needing an average of 0.12 seconds.
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TABLE 3. Results of applying 10-fold kNN (k = 10 nearest neighbours) 30 times on the patient-by-dimension matrix G, m× k , and patient-by-patient
matrix GG, m×m derived when SVD, Effective k-means and the random-sampling Nyström algorithms are applied to each dataset. Results from
classification using matrices G and GG.

FIGURE 4. Line graph illustrating the average kNN classification
performance across the various dimensions. Approaches which did not
use the Gram matrices achieved higher average classification accuracy
than those which used Gram matrices. Average accuracy is derived from
running each method 30 times. SVD-G needed fewer dimensions than
other methods to achieve the highest classification accuracy across the
datasets.

These details are shown in Table 4 along with the average
accuracy and average time needed for the classifier when
using each of the methods. Fig. 6 shows the average time
taken for the classification task for each method across vari-
ous dimensions.

FIGURE 5. Average classification accuracy. Each box holds 10 mean
accuracy values for dimensions 5,10, . . . ,50 for a method. Average
accuracy is derived from running each method 30 times. Approaches
which did not use the Gram matrices achieved higher average
classification accuracy as it can be seen by the higher position of the
boxes.

The experimental results are consistent to support the
hypotheses provided in Section IV. However, before reaching
a final conclusion it is worth exploringwhether there exist any
significant differences in classification performance when
using the SVD, EKM-Nyström and RS-Nyström methods.
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TABLE 4. Part I: Average accuracy across all datasets. Each row holds
10 average values for k dimensions or λ landmark points (i.e. 5,
10, . . . ,50) for the SVD or Nyström methods. Average accuracy obtained
with 10-fold cross validation executed 30 times across all datasets. Part
II: average time across all datasets. The time reported is that of a single
10-fold cross validation, in order to demonstrate how long it takes to run
the decomposition and classification process once. Results show that
SVD-G was faster and more accurate than all other methods.

FIGURE 6. Average time: each box holds 10 average values for
dimensions 5,10, . . . ,and50 for a method. Approaches which did not
use the Gram matrices achieved lower decomposition and classification
time as it can be seen by the lower position of the boxes.

A. ARE THERE ANY SIGNIFICANT DIFFERENCES IN
CLASSIFICATION PERFORMANCE WHEN USING THE SVD,
EKM-NYSTRÖM AND RS-NYSTRÖM METHODS?
Friedman’s two-way Analysis of Variance (ANOVA) sta-
tistical test was adopted to determine whether there exist
statistically significant differences in classification perfor-
mance, in terms of accuracy and time, when using the var-
ious inputs, derived from approximation methods, within
the proposed framework. Let m × n be a matrix A, where
each cell aij holds the average performance value derived for
Nyström or SVD. Cells aij hold the average values (either
accuracy or time) (as shown in Table 4) at a particular dimen-
sionality. Each column of the matrix A holds the results
of the classifier when using one of 6 different approaches.
Friedman’s chi-square statistic compares the mean values
of the columns of matrix A. The test returned a statisti-
cally significant difference in performance depending on

TABLE 5. Table shows the result of the statistical tests when comparing
the accuracy and time taken to perform the decomposition and
classification tasks using various methods and the Datasets in Table 1.

which output was input into the classifier, χ2(5) = 41.39,
p = 0.00, and this suggests that the mean accuracy ranks
of at least one approach is significantly different than the
others.

A post-hoc multi-comparison test was run alongside the
Friedman test to return the pairwise comparison results, and
the results are shown in Table 5. The first two columns of
Table 5 show the groups that are compared. Post hoc analysis
was conducted with Bonferroni correction applied. Bonfer-
roni adjustment was applied on the results because multiple
comparisons are performed, and to reduce the likelihood of
declaring a result as statistically significant when they should
not be declared as such (a Type I error). The fourth column
shows the difference between the estimated groupmeans. The
third and fifth columns show the lower and upper limits for
95% confidence intervals for the true mean difference. The
sixth column contains the p-value (adjusted after Bonferroni
correction) for a hypothesis test that the corresponding mean
difference is equal to zero.

The highlighted p-values are very small with p < 0.05,
and these indicate that there are significant differences in
the accuracy values returned by those methods. Observing
the pairs of particular interest, SVD-G and SVD-GG, RS-
G and RS-GG, EKM-G and EKM-GG, there are signifi-
cant difference between the mean values of the methods
found in each pair (i.e. p = 0.00; p = 0.00, and p =
0.004 respectively for accuracy; and p = 0.00; p = 0.00,
and p = 0.00 for time). The mean values of the meth-
ods SVD-G, RS-G and EKM-G where significantly higher
than their corresponding methods SVD-GG, RS-GG and
EKM-GG with regards to accuracy, and significantly lower
with regards to time.
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VIII. RESULTS PART II: CASE STUDY ON MULTI-MODAL
MHEALTH DATA TO PREDICT HUMAN ACTIVITY
FROM SMART PHONE DATA
This section describes the application of the proposed meth-
ods to extract features from a multi-modal mHealth dataset,
described in Section VI-B. The mHealth dataset comprises
10 datasets, where each dataset holds the recordings of a
single human participant. The rows of the datasets have been
labelled as belonging to one of 13 classes where the first
class 0 is the null class, and the remaining 12 classes cor-
respond to human activities. The datasets are considered as
‘Limited Training Datasets’ [18] making this classification
task a challenging one. The reason the datasets are considered
to be ‘‘limited’’ is because the cases in the ‘null’ class range
from 65.73%-78.19%, whereas the cases in the remaining
12 classes range from 0.67%-3.13%. Hence, the number of
cases in all classes 1-13 are comparatively lower than the
0 class, and the number of training samples are limited.

TABLE 6. Table shows the results of comparing the various methods
applied to ten mHealth datasets.

Experiments were carried out using various dimensionality
settings for the SVD, EKM, and RS methods applied to the
mHealth datasets. The results in Table 6, revealed that SVD-G
achieved an average accuracy across the ten datasets of 0.94
(±0.01) when using k = 10 dimensions, compared to the
EKM-Gwhich achieved an average accuracy of 0.88 (±0.01),
and RS-G achieved an accuracy of 0.90 (±0.01) with λ = 10
landmark points.

Table 7 shows the performance of each method for each
class averaged across all 10 datasets when setting SVD to
k = 10 dimensions, and Nyström to λ = 10 landmark points.
It is also useful to observe the average results of each method
for each class across the 10 datasets. SVD-G outperformed
EKM-G andRS-G,where themethods achieved an average of
82.37%, 47.51%, and 61.0% respectively. Hence, a 34.86%
improvement when using SVD-G instead of EKM-G, and a
21.37% improvement when using SVD-G instead of RS-G.

TABLE 7. Average KNN classification accuracy for each class across all
mHealth datasets. SVD to k = 10 dimensions, and Nyström methods were
set to λ = 10 landmark points.

The performance advantages of using SVD-G over the other
approaches for the task of classifying data with limited train-
ing data are clear.

FIGURE 7. Dataset D1 SVD-G using a kNN classifier.

FIGURE 8. Dataset D10 SVD-G using a kNN classifier.

In order to provide a closer look at the results, the perfor-
mance of the methods on Datasets 1 and 10, using confusion
matrices are shown in Figs 7-12. The diagonal values show
the number of correct classifications, and the off-diagonal
values show the number of incorrect classifications. The sum
of correct and incorrect classifications are shown on the
far right columns with % correct (in blue shades) and %
incorrect (in red shades) respectively. The darker the shade
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FIGURE 9. Dataset D1 EKM-G.

FIGURE 10. Dataset D10 EKM-G using a kNN classifier.

FIGURE 11. Dataset D1 RS-G using a kNN classifier.

the higher the value. As it can be observed from Figs 7-12,
SVD-G achieved much higher accuracy than the alternative
approaches with fewer misclassified cases. Finally, the exper-
iments run quickly on the mHealth datasets, but the tasks of
computing a Gram matrix and training a classifier using the
Gram matrix took many hours. Therefore, only the results of
SVD-G, EKM-G and RS-G, which is using the leading eigen-
vectors (and the proposed framework) for training a classifier,
are presented in this section. The performance comparison
of using SVD-G, EKM-G, RS-G vs Gram matrix approaches

FIGURE 12. Dataset D10 RS-G using a kNN classifier.

SVD-GG, EKM-GG, RS-GG as input into the classifier has
been explored in Section VII. Given that mHealth is a large
dataset, which will grow as more data is collected from smart
phones, it is important to perform experiments using a Deep
Learning model. The Deep Sequential classifier was adopted,
and the results are described in Section IX.

FIGURE 13. Sequential model structure developed for classifying the
mHealth datasets.

IX. DEEP SEQUENTIAL CLASSIFIER TO PREDICT HUMAN
ACTIVITY USING THE MHEALTH DATA
This section provides the results when using the SVD-G, RS-
G, and EMK-Gmethods to extract features from the mHealth
datasets to predict Human Activity using a Deep Sequential
machine learningmodel2. The structure of themodel is shown
in Fig. 13. The SVD-G, RS-G and EKM-G approaches are
compared and the results are shown in Table 8. Dimensional-
ity for all approximation methods was set to 10 dimensions,

2The Python code for performing SVD on the mHealth data and then
feeding the extracted vectors into the Deep Sequential model is provided
here: https://github.com/gcosma/IEEE_Access_mHealth
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which is the same setting used in the previous experiments
described in Section VIII. Experiments were carried out
using all 10 mHealth datasets described in Section VI-B.
mHealth datasets are large and 10-fold is not normally be rec-
ommended for large datasets, however in these experiments
10-fold was suitable because the datasets are considered to be
‘limited’, as described in Section VIII.

TABLE 8. Deep sequential model. Table shows the results obtained when
using the output of SVD-G, RS-G, and EKM-G as input into a Deep learning
approach, namely a sequential model, for each of the mHealth datasets.

As shown in Table 8, performing feature extraction using
SVD-G resulted in higher classification accuracy compared
to Nyström methods. SVD-G outperformed RG-G by 4.65%
and outperformed EKM-G by 6.62%. Comparing the average
performance across the 10 mHealth datasets of the kNN and
Deep Sequential classifiers, shown in Tables 7 and 8 respec-
tively, the highest classification accuracy was achieved using
SVD-G with kNN and the Deep Sequential model returning
approximately the same accuracy. A 27.98% increase, was
revealed when using the Deep Learning model as opposed
to a kNN model to classify the data derived from EKM-
G; and a 16.47% increase, was revealed when using the
Deep Learning model as opposed to a kNN model to classify
the data derived from RS-G. Clearly, the leading eigenvec-
tors derived from SVD are of better quality, and easier to
classify than those derived from Nyström methods. Further-
more, the top eigenvectors returned by Nyström methods,
EKM-G, and RS-G, required a more efficient classifier
than kNN, to classify the data, and hence the Deep
Sequential model provided better classification accuracy
values.

X. CONCLUSION
A common step in kernel methods is the reduction of the
data to a kernel matrix, also known as a Gram matrix.
The Gram matrix is often used for machine learning tasks
such as classification and predictive modelling. A signifi-
cant drawback of kernel methods is the computational com-
plexity associated with manipulating kernel matrices. This
paper demonstrates that leading eigenvectors derived from
SVD and Nyström methods, for reducing the dimension-
ality of data, can be utilised for classification tasks with-
out the need to construct Gram matrices. Experiments were
conducted with 14 biomedical and 10 mHealth datasets to
compare classifier performance when taking as input matri-
ces containing: 1) leading eigenvectors which result from

SVD and Nyström methods; and 2) matrices which result
from constructing patient-by-patient Gram matrices. In the
experiments using the 14 biomedical datasets, the results
revealed that when the proposed architecture with a kNN
was adopted, SVD achieved on average higher accuracy
using fewer number of dimensions compared to Nyström
methods. The results revealed up to 34.86% improvement
on the mHealth datasets when using SVD in the pro-
posed architecture, as opposed to using Nyström methods.
In experiments using the ten mHealth datasets, the results
revealed that when leading eigenvectors are input into a
Deep Sequential machine learning model for the task of
Human Activity Recognition, SVD-G performed outper-
formed RG-G by 4.65% and outperformed EKM-G by
6.62%. These results demonstrate how the proposed archi-
tecture can make feature extraction methods more accessi-
ble on large-scale data such as the mHealth dataset using a
Deep Learning model, and in particular a Deep Sequential
model.

The results provide evidence to support the main hypoth-
esis of this paper, that the leading eigenvectors which rep-
resent the factor weights of each patient or person, need
only be input into a classifier, and that there is no improve-
ment in classification performance to construct and use
a Gram matrix. Furthermore, the fact that when adopting
the proposed approach, classification accuracy is higher on
various datasets of different types (including multi-modal
multi-sensor mHealth data) allows for the assumption that
the improved accuracy is dependent on the solution of the
approximation methods and thus the theoretical properties
of the methods and not the datasets. Importantly, the results
also conistenlty revealed the superiority of SVD as a feature
extraction method, when compared to Nyström methods.

Future work includes applying the proposed approach to
large image datasets using deep learning classifiers; and com-
paring the approach to more matrix approximation methods.
The significance of the proposed classification approach is
that it can make feature extraction methods more accessible
on large-scale data which is becoming common in many
applications such as natural language processing, image pro-
cessing, and other data analytics tasks where feature extrac-
tion is required.

REFERENCES
[1] S. Kumar, M. Mohri, and A. Talwalkar, ‘‘Sampling methods for the

Nyström method,’’ J. Mach. Learn. Res., vol. 13, no. 1, pp. 981–1006,
2012.

[2] A. Hyvärinen and E. Oja, ‘‘Independent component analysis: Algorithms
and applications,’’Neural Netw., vol. 13, nos. 4–5, pp. 411–430, Jun. 2000.

[3] M. Belkin and P. Niyogi, ‘‘Laplacian eigenmaps and spectral techniques for
embedding and clustering,’’ in Advances in Neural Information Processing
Systems, vol. 14. Cambridge, MA, USA: MIT Press, 2002, pp. 585–591.

[4] M. A. A. Cox and T. F. Cox, Multidimensional Scaling. Berlin, Germany:
Springer, 2008, pp. 315–347.

[5] A. Y. Ng, M. I. Jordan, and Y. Weiss, ‘‘On spectral clustering:
Analysis and an algorithm,’’ in Advances in Neural Information
Processing Systems 14, T. G. Dietterich, S. Becker, and Z. Ghahramani,
Eds. Cambridge, MA, USA: MIT Press, 2002, pp. 849–856.
[Online]. Available: http://papers.nips.cc/paper/2092-on-spectral-
clustering-analysis-and-an-algorithm.pdf

VOLUME 7, 2019 107411



G. Cosma, T. M. Mcginnity: Feature Extraction and Classification Using Leading Eigenvectors

[6] M. Fan, X. Zhang, H. Qiao, and B. Zhang, ‘‘Efficient isometric multi-
manifold learning based on the self-organizing method,’’ Inf. Sci., vol. 345,
pp. 325–339, Jun. 2016.

[7] S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K.-R. Müller,
‘‘Fisher discriminant analysis with Kernels,’’ in Proc. IEEE Signal
Process. Soc. Workshop Neural Netw. Signal Process. IX, Aug. 1999,
pp. 41–48.

[8] K. Zhang and J. T. Kwok, ‘‘Clustered Nyström method for large scale
manifold learning and dimension reduction,’’ IEEE Trans. Neural Netw.,
vol. 21, no. 10, pp. 1576–1587, Oct. 2010.

[9] F. R. Bach and M. I. Jordan, ‘‘Predictive low-rank decomposition
for Kernel methods,’’ in Proc. 22nd Int. Conf. Mach. Learn. (ICML),
New York, NY, USA, 2005, pp. 33–40.

[10] G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and
M. I. Jordan, ‘‘Learning the kernel matrix with semidefinite program-
ming,’’ J. Mach. Learn. Res., vol. 5, pp. 27–72, Jan. 2004.

[11] K. Zhang, I. W. Tsang, and J. T. Kwok, ‘‘Improved Nyström low-rank
approximation and error analysis,’’ in Proc. 25th Int. Conf. Mach. Learn.,
2008, pp. 1232–1239.

[12] M. Li, W. Bi, J. T. Kwok, and B.-L. Lu, ‘‘Large-scale Nys-
tröm Kernel matrix approximation using randomized SVD,’’ IEEE
Trans. Neural Netw. Learn. Syst., vol. 26, no. 1, pp. 152–164,
Jan. 2015.

[13] N. K. Kumar and J. Schneider, ‘‘Literature survey on low rank approx-
imation of matrices,’’ Linear Multilinear Algebra, vol. 65, no. 11,
pp. 2212–2244, 2017.

[14] H. Liu, J. Wu, T. Liu, D. Tao, and Y. Fu, ‘‘Spectral ensemble clus-
tering via weighted K-means: Theoretical and practical evidence,’’
IEEE Trans. Knowl. Data Eng., vol. 29, no. 5, pp. 1129–1143,
May 2017.

[15] C. K. I. Williams and M. Seeger, ‘‘Using the Nyström method to speed up
Kernel machines,’’ in Advances in Neural Information Processing Systems.
T. K. Leen, T. G. Dietterich, and V. Tresp, Eds. Cambridge, MA, USA:
MIT Press, 2001, pp. 682–688.

[16] A. Choromanska, T. Jebara, H. Kim, M. Mohan, and C. Monteleoni, Fast
Spectral Clustering via the Nyström Method. Berlin, Germany: Springer,
2013, pp. 367–381.

[17] O. Banos, R. Garcia, J. A. Holgado-Terriza, M. Damas, H. Pomares,
I. Rojas, A. Saez, and C. Villalonga, ‘‘Mhealthdroid: A novel frame-
work for agile development of mobile health applications,’’ in Ambi-
ent Assisted Living and Daily Activities. L. Pecchia, L. L. Chen,
C. Nugent, and J. Bravo, Eds. Cham, Switzerland: Springer, 2014,
pp. 91–98.

[18] L. T. Nguyen, M. Zeng, P. Tague, and J. Zhang, ‘‘Recognizing
new activities with limited training data,’’ in Proc. Int. Symp. Wear-
able Comput. (ISWC), New York, NY, USA, 2015, pp. 67–74.
doi: 10.1145/2802083.2808388.

GEORGINA COSMA received the B.Sc. (Hons.)
degree in computer science from Coventry Uni-
versity, U.K., in 2003, and the Ph.D. degree in
computer science from the University of Warwick,
U.K., in 2008. She is currently an Associate Pro-
fessor of data science and artificial intelligence
with the Department of Computing, Nottingham
Trent University. She is a member of the various
IEEE communities, including the IEEE Com-
puter Society, the IEEE Computational Intelli-

gence Society, Big Data Community, Brain Community, Cloud Computing
Community, Internet of Things Community, and Smart Cities Commu-
nity. She is a Principal Investigator of The Leverhulme Trust through the
Novel Approaches for Constructing OptimisedMultimodal Data Spaces. Her
research interests include data science, computational intelligence, nature-
inspired feature selection, feature extraction, conventional machine learning,
and deep learning algorithms. Her main research interested in biomedical
predictive modeling.

T. MARTIN MCGINNITY received the degree
(Hons.) in physics and the Ph.D. degree from the
University of Durham, U.K., in 1975 and 1979,
respectively. He is currently a part-time Professor
with the Department of Computing and Technol-
ogy, Nottingham Trent University (NTU), U.K.,
and the School of Computing, Engineering and
Intelligent Systems, Ulster University. Before tak-
ing semi-retirement, he was formerly the Pro Vice
Chancellor and the Head of the College of Science

and Technology, NTU, the Dean of the School of Science and Technology,
NTU, the Head of the School of Computing and Intelligent Systems, Ulster
University, and a Professor of intelligent systems engineering with Ulster
University. He was also the Director of the Intelligent Systems Research
Centre, Ulster University. He has authored or coauthored 350+ research
papers. He leads the Computational Neuroscience and Cognitive Robotics
Research Group with NTU. His current project is related to the development
of biologically compatible computational models of human sensory sys-
tems, including auditory signal processing, human tactile emulation, human
visual processing, sensory processing modalities in cognitive robotics, and
the implementation of neuromorphic systems on electronics hardware. His
work finds applications in industrial robotics, data analytics, and medical
systems. His research interests include artificial intelligence, computational
neuroscience, and the modeling of biological information processing and
cognitive robotics.

107412 VOLUME 7, 2019

http://dx.doi.org/10.1145/2802083.2808388

