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Abstract—Due to the advancement in energy harvesting wireless sensor networks (EH-WSNs), the data collection from one-hop
stationary sensor nodes using a path-constrained mobile element (ME) has become one of the challenging issues. Toward the
throughput improvement, we propose a general framework for network throughput maximization (NTM) problem by optimizing
practically feasible parameters. For each proposed scenario, a mixed integer linear programming (MILP) optimization model
is introduced for the problem formulation. Due to the NP-Hardness of the MILP models, we design two efficient algorithms
namely as ODSAA and ODAA for two practically implementable scenarios. Having a preknowledge about the deployed location
of nodes, the proposed algorithms run centrally by sink and find the sub-optimal solutions within a reasonable computation
time. Furthermore, under the uniform distribution of energy harvesting, we find out two threshold points on respectively energy
harvesting mean and battery capacity of nodes after which the network throughput reaches a stable point. Finally, simulations
are conducted on different set of node deployments, which the results confirm that the proposed algorithms significantly improve
the data throughput collected by sink and also the theoretical thresholds provide a confidence interval of 90%.

Index Terms—Energy Harvesting Wireless Sensor Networks (EH-WSNs), Network Throughput, Mixed Integer Linear Program-
ming (MILP), NP-Hardness, Energy Harvesting Mean, Battery Capacity Threshold.
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1 INTRODUCTION

THANKS to several surveillance applications, data
collection from one-hop stationary sensor nodes

in wireless sensor networks (WSNs) using a mobile
sink has attracted several research attentions, recently
[7], [8], [11]. In the road condition surveillance, sensor
nodes are stationary deployed to sense statistical data
such as humidity or temperature and a mobile vehicle
with path-constrained trajectory is employed to collect
data from the sensors in an efficient manner. The
collected data is forwarded to a main base station for
further processing or aggregation and ultimately the
improvement of road quality [2]. On the other side,
from the energy harvesting point of view as a poten-
tial future development of surveillance applications,
the unlimited lifetime and continues monitoring is
guaranteed. In an energy harvesting wireless sensor
network (EH-WSN), sensor node have the possibility
of recharging their battery from the ambient energy
resources in their surroundings such as solar, wind
or vibrations [23]. Parallel to this advancement, the
data collection from sensor nodes using mobile sinks
has been also studied in EH-WSNs with most focus
on throughput maximization [7], [8], [11]. From the
mobility point of view, the existing works assume
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a constant speed for the mobile sink [7], [8], [11].
However, in many emergency situations such as mili-
tary applications, considering constant velocity for the
mobile sink is not applicable since the data delivery
delay must satisfy the application deadline [17]. Fur-
thermore, the motion of sink with a constant speed
can unnecessarily waste its energy. Therefore, within
the time periods which sink has less available data
in its vicinity to collect, it must speed up in order
to conserve its energy for consecutive slots with the
possibility of more available data.

The problem of maximizing total collected data
from one-hop stationary sensor nodes which are de-
ployed along a straight path using a mobile sink
in EH-WSNs, namely as network throughput maxi-
mization (NTM) problem, was initially introduced in
[7], [8]. Due to some unrealistic assumptions on their
problem formulation, the authors in [11] reformulate
the problem by taking into account the heterogeneity
of transmission period and energy harvesting aspect
of nodes over different time intervals. The problem
scenario in [11] is based on the assumption that the
speed of sink and its travelled distance at each time
slot are fixed during whole data collection process.
In other words, the system parameters are not fully
utilized in [11] from the practical point of view.
Motivated by this fact, one may further improve the
network throughput by optimizing practically feasible
parameters such as the travelled distance by sink at
each time slot or even its speed. Furthermore, the
assumption of constant energy harvesting in [11] does
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Fig. 1: Data collection in WSNs using mobile elements with
fixed mobility pattern under different objectives.

not always meet in practical data collection scenar-
ios since the pattern of energy harvesting from the
solar resources is non-deterministic and vary due to
periodically change in weather conditions [19], [20].
Consequently, from the prospective of EH-WSNs de-
signers, the energy harvesting resources which affect
the network throughput can be utilized in order to
minimize the system cost in practical data collection
scenarios.

The structure of this paper is organized as follows:
In Section 2, the related works together with the main
contributions of the paper are discussed. The data
collection and energy harvesting models are detailed
in Section 3 and Section 4 is devoted to the formula-
tion of NTM problem under different scenarios. The
problem approaches, proposed algorithms and related
theoretical analysis are all discussed in Section 5 and
6. The analytical thresholds on energy harvesting
mean and battery capacity of sensors are derived in
Section 7. Simulations are conducted in Section 8 and
finally Section 9 concludes the paper.

2 RELATED WORKS

Due to the advancement in WSNs architecture based
on the mobile sinks, the data collection using a path-
constrained mobile sink has been extensively studied
by several researchers [1], [15], [4]. Fig. 1 shows a
classification of works on data collection in WSNs us-
ing a sink with fixed mobility pattern under different
problem objectives. Francesco et al. [1] survey thor-
oughly the data collection works in WSNs using the
mobile sinks. In the prospective of sink mobility, the
Fixed Mobility pattern where the mobile sink moves
on a path-constrained trajectories has found many
research attentions due to its wide range of practical
applications [3], [15], [4]. Using a path-constrained
sink for data gathering from one-hop sensor nodes not
only improves the network throughput [4] but also
reduces the data delivery latency [15].

On the other side, the replacement of conventional
energy-limited sensors with energy harvesting nodes
has introduced new challenges and opportunities for

data collection applications. In conventional WSNs,
the data collection strategies follow mainly three ob-
jectives: Network Lifetime Maximization, Data Latency
Minimization or Network Throughput Maximization. Due
to the constrained imposed on the energy of nodes
in conventional WSNs, the authors in [4] introduce
the problem of data gathering from far away sen-
sors using relay nodes close to the trajectory of sink
with the objective of maximizing overall network
lifetime. Y. Yun, et al. [17] introduce the problem of
collecting data from sensor nodes with the objective
of maximizing network lifetime under the constraint
that data delivery delay must satisfy the network
deadline. They formulate the problem as an Integer
Linear Programming (ILP) optimization model and
solve it directly using standard ILP solvers. In [15] and
[13], the authors study the problem of determining
some pre-specified sojourn locations in the sensors
area such that by visiting those locations by sink
temporarily and collecting data from the neighboring
nodes, the overall data latency is minimized.

From the network throughput point of view in con-
ventional WSNs, the algorithms aim to maximize the
total volume of data which is collected by sink in one
round of its trajectory. X. Xu, et al. [16] introduce the
problem of environmental monitoring using a mobile
vehicle. They devise a two stage heuristic which finds
a near-optimal tour for the trajectory of sink such that
by collecting data from the sensors in the neighboring
of that trajectory, the total collected data is maximized.

On the other hand, due to the recent advancement
in energy harvesting wireless sensor networks (EH-
WSNs), the sensor nodes can harvest energy period-
ically from the ambient resources in their surround-
ings such as wind, solar or vibrations [6], [12], [22].
Therefore, the data collection algorithms in EH-WSNs
do not take into account the lifetime maximization as
long as the sensors have the possibility of energy re-
plenishment. X. Ren, et al. [14] investigate the problem
of data gathering from the energy harvesting nodes
using a mobile sink under the constraint that the
overall data delivery latency must meet the network
deadline.

Basically, most of the works on data collection using
a mobile node in EH-WSNs are defined with the
objective of network throughput maximization [7],
[8], [11]. Due to the wide range of applications for
data collection on a direct path, the authors in [7], [8]
investigate the NTM problem in an EH-WSN using a
path-constrained mobile sink. Due to some unrealistic
assumptions considered in [7] and [8] and in order to
further improve the network throughput, the authors
in [11] propose a condition on the fixed distance
travelled by sink at all time slots. Based on the pro-
posed condition, they develop an online centralized
algorithm which not only has low computational com-
plexity but outperforms the previous works in term
of network throughput. Motivated by the drawback
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of considering fixed distance travelled by sink and its
constant speed in [11], in order to further improve the
throughput, we propose different scenarios for NTM
problem for which practical parameters are optimally
utilized. Furthermore, due to the infeasibility of as-
sumption on constant energy harvesting in practical
data collection scenarios [22], [10], in contrast to [11],
we consider an uniform energy harvesting distribu-
tion in this work to statistically model the amount
of harvested energy by nodes during different time
intervals.

We note that the objective of NTM problem consid-
ered in this work is determining the optimal distance
or sink speed together with the selection of one can-
didate node at each time slot. This makes our work
different from traditional data forwarding approach
[13] based on classical travelling salesman problem
(TSP) in the sense that in classical TSP model, the
obtainable throughput in each path is known and the
objective is only the selection of optimal trajectory.

2.1 Contributions
The following are our main contributions in this pa-
per:
• A general framework is proposed for NTM prob-

lem in sink-based data collection in EH-WSNs
such that by optimizing practically feasible pa-
rameters, the network throughput significantly
improves. Note that we refer to the total collected
data by sink as the network throughput through-
out the paper.

• A mixed integer linear programming (MILP) op-
timization model is proposed for each defined
scenario of NTM problem which accommodates
the problem-specific constraints. Due to the NP-
Hardness of the optimization models, two effi-
cient algorithms with polynomial run-time com-
plexity are designed to cope with two practically
implementable scenarios.

• Considering the uniform energy harvesting dis-
tribution, we show that the increase in the har-
vested energy by nodes does not guarantee the
monotonic increase in total data collected by
sink. Motivated by this fact and depending on
the battery capacity of nodes, we derive a the-
oretical threshold on the amount of harvested
energy such that by increasing the energy after
that threshold, the network throughput reaches a
stable point.

• Furthermore, given the mean of energy harvest-
ing distribution, we find out an analytical thresh-
old on the battery capacity such that when the
capacity exceeds that threshold point, the net-
work throughput is saturated. As an advantage,
these established thresholds can help the design-
ers of EH-WSNs to minimize efficiently the cost
of energy harvesting resources in practical data
collection scenarios.
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Fig. 2: The energy harvesting at the beginning and the
energy consumption of nodes during each time interval.

3 DATA COLLECTION AND ENERGY HAR-
VESTING MODELS

Following the IEEE 802.15.4 standard for WANs (Wide
Area Networks), we assume that |V | sensor nodes
are uniformly deployed along both sides of a direct
path with fixed length L. The sensors are remained
stationary during the data collection. A mobile sink
with large data buffer size moves on the path as its
trajectory to collect data from the nodes in one-hop
of its transmission range along the path. The total
time duration of one round path traversal by sink
is divided into several consecutive time slots. Under
two different scenarios, the sink travels the path with
either a constant speed vm during whole of its trajec-
tory or changes its speed at different time slots. With
the given speed v and a time slot with duration τ ,
the mobile sink travels distance l = v.τ on the path
during that time slot. Due to the physical interfer-
ence between nodes transmitting simultaneously, the
mobile sink receives data successfully from at most
one sensor node for the whole transmission period of
node at each time slot [7], [8], [11]. Furthermore, for
initiating the data collection process and in order to
localize the duration of message exchange between
the sink and sensor nodes, following the work in
[11], we consider the continues duration of every two
consecutive time slots as one time interval. Based on
the sensors’ information which is provided to the sink
through message passing at the beginning of each
time interval, the sink makes decision on which nodes
must send their data at the current time interval.

From the energy replenishment point of view, the
mobile sink is assumed to have unlimited energy
storage, while solar-based energy harvesting sensor
nodes such as Heliomote based on MICA2 platform
are deployed which periodically recharge their battery
from the ambient solar energy resources [6], [10].
The amount of harvested energy varies at different
time intervals therefore is non-deterministic. Fig. 2
illustrates a schematic view of energy harvesting by
sensor nodes at different time intervals where the
energy harvesting point corresponds to the beginning
of the time interval. The amount of harvested energy
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by nodes at the beginning of each time interval which
for the sake of simplicity, we assume that follows a
uniform distribution in this work, is provided to the
mobile sink via message passing when sink is located
at the beginning of interval.

Following the widely adopted energy model [12],
the worst case is when the energy consumption rate
of node is more than its energy harvesting rate.
Therefore, the sensors must preserve their harvested
energy during each time interval. Denoted by Bi the
battery capacity of sensor node si, its energy budget
at the beginning of time interval k is given by bi(k) =
min{bi(k − 1)− ci(k − 1) + hi(k), Bi} where ci(k − 1)
is the consumed energy by node i at time interval
k − 1 and hi(k) represents its harvested energy at
time interval k. From the energy consumption point of
view, the sensor nodes are divided into two groups: A
non-eligible node if either it has not slot opportunity
for data transmission to the sink or its energy budget
within a time slot is less than the required energy for
data transmission and, eligible node if it has enough
energy for transmitting its volume of data to the sink
at that time slot. In Fig. 2, the energy consumption
pattern of eligible and non-eligible nodes has been
shown with bold and dashed lines, respectively. We
remark that the possibility of energy replenishment
compared to energy-limited sensor nodes and also
finding the opportunity for data transmission in sub-
sequent rounds of sink’s trajectory on the path can
also address the fairness issue.

4 PROBLEM STATEMENT
With the aforementioned data collection and energy
harvesting models, the network throughput maxi-
mization (NTM) problem is defined as the problem
of allocating time slots to sensor nodes considering
their energy budget such that the total collected data
by sink is maximized. To formulate the NTM problem,
we need first to define the following system parame-
ters: Let rij denote the data transmission rate of node
si at time slot tj . Variable τij is used to denote the
time duration in which the mobile sink can collect
data from sensor si at time slot tj . Corresponding to
this time period, the mobile sink travels a distance
dij on the path within the coverage range of si at
time slot tj . Note that sensor node si can have three
possible deployed locations for its (xi, yi)-coordinate
at time slot tj which are when its communication
range covers two consecutive time slots tj−1, tj , only
time slot tj or two consecutive slots tj , tj+1. With fixed
value of l, it is straightforward to see that the value
of dij , 1 ≤ i ≤ |V |, 1 ≤ j ≤ |T |, in all three deployed
locations is obtained from the following relation:

dij =


Max

{
{Min(lj, xend)−Max(l(j − 1), xstart)}, 0

}
ri > yi

0, ri ≤ yi
(1)

Where xstart and xend are respectively the starting
and ending intersection points of node’s projection
with the path. Furthermore, the binary variable aij
is defined to indicates the allocation of time slot tj to
sensor node si such that aij = 1 if time slot tj is allo-
cated to sensor node si and aij = 0, otherwise. With
all system parameters defined in Table 1, the NTM
problem which takes into account the effective trans-
mission period together with the energy harvesting
aspect of sensor nodes is formulated as the following
ILP model presented in [11]. Here, |TI| = |T |/2 is the
number of time intervals.

Maximize
{aij}

1

|T | × τ

|V |∑
i=1

|T |∑
j=1

aij .rij .τij (2)

Subject to:

aij = 0, ∀1 ≤ i ≤ |V |, j 6∈ A(i)

|V |∑
i=1

aij ≤ 1, ∀1 ≤ j ≤ |T |

ci(k) ≤ bi(k)

∀1 ≤ i ≤ |V |, 1 ≤ k ≤ |TI|
bi(k) = Min{bi(k − 1)− ci(k − 1) + hi(k), Bi}

∀1 ≤ i ≤ |V |, 1 ≤ k ≤ |TI|

ci(k) =
∑

2(k−1)<j≤2k

aij .Pij .τij ,

∀1 ≤ i ≤ |V |, 1 ≤ k ≤ |TI|
bi(1) = Ii + hi(1), 1 ≤ i ≤ |V |

hmin ≤ hi(k) ≤ hmax,∀1 ≤ i ≤ |V |, 1 ≤ k ≤ |TI|

(3)

(4)

(5)

(6)

(7)

(8)
(9)

In the above ILP problem, the only decision variable
is aij and since the constant speed vm is considered
for the sink in data collection model of [11], the
quantities τij are derived by τij = dij/vm. For all
nodes si, 1 ≤ i ≤ |V |, the quantities Bi and Ii
are known in advance and with the given values
of hi(k) from the uniform interval [hmin, hmax], the
bi(k) quantities are determined from the relations (6),
(7) and (8). Relation (6) also ensures that the energy
budget of a node at each time interval does not exceed
its battery capacity. The values of other parameters
are known in advance. Constraints (3), (4) specify the
allocation possibilities and constraint (5) ensures that
the total energy consumption of a sensor node for
data transmission to sink at the time slots allocated
to it within a time interval does not exceed its energy
budget at that interval.

As a drawback, the parameters of NTM problem
(2)-(9) are not optimally utilized. Inspired by this fact
in order to further improve the network throughput,
we propose different scenarios for NTM problem by
optimizing the practically feasible parameters and
formulate the proposed scenarios using mixed integer
programming (MIP) optimization models.
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TABLE 1: The list of defined parameters in network throughput maximization (NTM) problem.

System Parameter Parameter Description
|V |, |T | The number of sensor nodes and time slots
L, l, α Fixed path length and fixed distance traveled by sink at all time slots, path loss exponent normally between 2 and 5
τ, vm Time slot period and the constant speed of the sink
vj , lj , τj The speed of sink at, the traveled distance by sink in and the time duration of time slot tj
τij , dij The period of time that node si observes sink in its communication range at time slot tj and its corresponding distance on the path
(xi, yi) Cartesian deployed location of sensor node si on R2 plane
Ri, xstart, xend Transmission range of sensor node si, starting and ending points where the projection of sensor node on R2 plane intersects the path
rij , Pij Transmission rate and power of sensor node si at time slot tj
bi(k), hi(k), ci(k) The energy budget, the amount of harvested energy and the energy consumption of sensor node si at time interval k
Ii, Bi Initial energy budget and battery capacity of sensor node si
aij The allocation decision variable

It is noteworthy to mention that although other
mathematical models such as techniques from game
theory can capture the formulation of the proposed
scenarios, due to the complication of such tools, we
utilize MIP optimization models in this work to for-
mulate the NTM scenarios with the following moti-
vations:
• Since the node selection and the distance or speed

of the sink at each time slot take values from
binary and real domains, respectively, MIP is the
most suitable approach to mathematically state
the optimization problems in which the objective
function and constraints involve two different
types of decision variable [24].

• MIP optimization models have been well ac-
cepted for problems which explore the use of
mobile sink in WSNs targeting at different ob-
jectives due to their relatively simple structure to
incorporate the objective function and constraints
involving various types of decision variables [25].

4.1 Optimal Distance per Time Slot

As the first scenario, the objective is to find an op-
timal distance that sink travels all time slots with
that distance such that the network throughput is
maximized assuming that sink maintains a constant
speed during its trajectory on the path. Since the
time duration of each time slot is not known in ad-
vance, with constant sink speed, the optimal distance
subsequently determines the time duration and the
number of time slots for the trajectory of sink on the
path. Considering l here as a real decision variable
which its value determines the distance for which
sink travels all time slots, the first constraint of this
problem scenario is Max{Ri, 1 ≤ i ≤ |V |} ≤ l ≤ L
as proposed in [11]. This condition implies that each
sensor node has maximum two available time slots
for data transmission to the sink.

Knowing that |T | = L/l, the problem of finding the
optimal distance per time slot where the maximum
network throughput is achieved (NTM-ODTS) can be
formulated as MILP optimization model (10)-(13). In
this optimization model, the variables aij and l are
the binary and real decision variables, respectively.
The value of parameters vm, rij , Pij , Bi, Ii and hi(k)

are known in advance. On the other side, with the
optimal value of l, the value of variables dij are
determined from equation (1), |T | = bL/lc, τ = l/vm,
τij = (dij/l)× τ and ci(k), bi(k) depend on the binary
values aij , 2(k − 1) ≤ j ≤ 2k. Constraint (11) specifies
the possible range for variable distance per time slot
and constraints (12)-(13) have similar description with
constraints (5)-(7) in NTM problem (2)-(9) except for
here, the optimal value of l determines the time
duration that is considered for each time slot as well
as the number of time slots.

Maximize
l,{aij}

1

L

|V |∑
i=1

bLl c∑
j=1

aij .rij .dij (10)

Subject to:

Max{Ri} ≤ l ≤ L, ∀1 ≤ i ≤ |V |
ci(k) ≤ bi(k)

∀1 ≤ i ≤ |V |, 1 ≤ k ≤ |TI|

ci(k) =
∑

2(k−1)<j≤2k

aij .Pij .dij .(
1

vm
)

∀1 ≤ i ≤ |V |, 1 ≤ k ≤ |TI|
with constraints (3), (4), (6), (8), (9).

(11)
(12)

(13)

4.2 Optimal Distance Allocation
As the second scenario for NTM problem, assuming
that the mobile sink maintains a constant speed dur-
ing whole of its trajectory on the path, the objective is
to determine different optimal distances for time slots
in order to further improve the network throughput.
Note that under this scenario, the total number of time
slots is fixed at |T | and the time duration of time
slots are not known in advance. With constant sink
speed, different distances for time slots subsequently
determine the time duration of time slots which their
values vary depending on the optimal distance of
each slot. Denoting lj , 1 ≤ j ≤ |T | as the distance
considered for time slot tj , the objective is to find
the optimal distance vector lv = {l1, l2, ..., l|T |} for
which the network throughput is maximized. Under
this scenario, the problem of optimal distance allo-
cation subject to maximizing the network throughput
(NTM-ODA) can be formulated as the following MILP
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Fig. 3: The movement of sink under different scenarios.
(a): NTM (b): NTM-ODTS (c): NTM-ODA

optimization model:

Maximize
{lj},{aij}

1

L

|V |∑
i=1

|T |∑
j=1

aij .rij .dij (14)

Subject to:

lmin ≤ lj ≤ lmax, ∀1 ≤ j ≤ |T |
|T |∑
j=1

lj = L, ∀1 ≤ j ≤ |T |

with constraints (3), (4), (6), (8),

(9), (12), (13).

(15)

(16)

In the above formulation, the variables aij and
lj , 1 ≤ j ≤ |T | are respectively the binary and real
decision variables. We should note that the value of
parameters |T |, vm, rij , Pij , Bi, Ii and hi(k) are known
in advance while on the other side, the optimal value
of lj , 1 ≤ j ≤ |T | subsequently determines τj = lj/vm,
τij = (dij/lj) × τj and ci(k), bi(k) are determined
based on binary values aij , 2(k − 1) < j ≤ 2k.
Furthermore, dij quantities are computed using the
following revised version of equation (1):

dij =


Max

{
Min(

∑j
k=1 lk, xi +

√
R2
i − y2

i )−

Max(
∑j−1
k=1 lk, xi −

√
R2
i − y2

i ), 0
}

Ri > yi

0, Ri ≤ yi
(17)

Constraint (15) ensures that the allocated distance
to each time slot falls within the minimum and
maximum allowed distances for all time slots and
constraint (16) guarantees that the sum of all allocated
distances does not exceed the total length of path.

We have illustrated schematically in Fig. 3 the dis-
tinction between NTM and the proposed scenarios
NTM-ODTS and NTM-ODA in term of travelled dis-
tance by sink at each time slot as well as the number
of time slots when the speed of sink remains constant
under each scenario.

4.3 Optimal Sink Speed Allocation

Motivated from delay-tolerant applications for
which the total data delivery time must satisfy
the application’s deadline [1], [15], we define a
scenario fro NTM problem where different speeds
are allocated to the sink during different time slots.

For the third scenario, with total number of |T |
slots and assuming the fixed distance l considered
for all time slots, the objective is to determine the
optimal sink speed vj for each time slot tj , 1 ≤ j ≤ |T |
in order to achieve the maximum throughput. Since
the distance is fixed for all time slots, the optimal
speed at each time slot subsequently determines
the time duration that sink must spend at that slot.
With the aforementioned notations, the problem of
optimal sink speed allocation with the objective of
maximizing the network throughput (NTM-OSS)
can be formulated as the following mixed integer
nonlinear programming (MINLP) optimization
model. Note that parameters Tdeadline, vmin and
vmax are used to denote respectively the data
delivery deadline, the minimum and the maximum
speeds which can be allocated to sink at all time slots.

Maximize
{vj},{aij}

∑|V |
i=1

∑|T |
j=1 aij .rij .dij .(

1
vj

)∑|T |
j=1

l
vj

(18)

Subject to:

vmin ≤ vj ≤ vmax, ∀1 ≤ j ≤ |T |
|T |∑
j=1

l

vj
≤ Tdeadline

ci(k) ≤ bi(k)

∀1 ≤ i ≤ |V |, 1 ≤ k ≤ |TI|

ci(k) =
∑

2(k−1)<j≤2k

aij .Pij .dij .(
1

vj
)

∀1 ≤ i ≤ |V |, 1 ≤ k ≤ |TI|
with constraints (3), (4), (6), (8), (9).

(19)

(20)

(21)

(22)

In problem formulation (18)-(22), the variables aij
and vj are the binary and real decision variables, re-
spectively. The value of parameters |T |, l, rij , Pij , Bi, Ii
and hi(k) are known in advance and also dij values
are computed from the relation (1). On the other
hand, the optimal value of vj determines the values
of τj = l/vj and τij = (dij/l) × τj . Constraint (19)
specifies the possible range for the speed which can be
allocated to the sink at each time slot and constraint
(20) sates that the total time taken by sink for data
collection must satisfy the data delivery deadline. The
rest of the constraints have the similar description
as their corresponding constraints in problem (2)-(9)
except here, with fixed distance per time slot, the
optimal value of speed at each time slot determines
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TABLE 2: The NTM problems under different scenarios (optimization model and parameters).

Data Collection Optimization Decision Independent Dependent Proposed
Scenario Model Variables Parameters Parameters Algorithm

Initial Distance |T |, l, τ, vm, τij , dij , AdjustmentBased-
per Time Slot [11] ILP {aij} rij , Pij , hi(k), Bi ci(k), bi(k) Allocation
Optimal Distance
per Time Slot MILP l, {aij} vm, rij , Pij , |T |, τ, τij , dij , ODSAA
[This Paper] hi(k), Bi ci(k), bi(k)
Optimal
Distance Allocation MILP {lj}, {aij} |T |, vm, rij , τj , τij , dij , ODAA
[This Paper] Pij , hi(k), Bi ci(k), bi(k)

the time duration that sink spends at each time slot.
We should note that MILP formulations (10)-(13)

and (14)-(16) are not mathematically equivalent due
to the difference in the number of their decision vari-
ables. This in turn implies that the proposed algorithm
for each scenario is not applicable for the other one. It
is also noted that although the problem formulations
for the second and third scenarios are equivalent,
however, they are not transformable to each other.
The reason is that since the variable which has to be
optimized is not identical under these two scenarios
therefore, the time slots duration are not equal under
these two scenarios. This in turn implies that the
distance allocation in second scenario is treated as in-
dependent from the speed allocation in third scenario.

In Table 2, we have summarized the NTM problem
and the first two proposed scenarios together with
the optimization model, involving parameters and the
proposed data collection algorithm for each scenario.
We note that although third scenario of NTM problem
has been investigated in this work, as we point out
later in Section 6, designing an algorithm for this
scenario is considered as an interesting future work.

5 PROBLEMS APPROACH

The proposed optimization models belong to the
class of intractable problems and finding their
optimal solutions is an NP-Hard problem [9]. The
combination of branch and bound with linear
programming relaxation can be applied to achieve
the optimal solution of MILP models [26]. However,
the computational complexity of the branch and
bound significantly grows when the number of
sensors or time slots increases. As another approach,
one may apply the exhaustive method for searching
one candidate for real decision variable from its
domain for which the linear programming relaxation
on its corresponding ILP subproblem results in the
best upper bound. However, there is no guarantee
on the optimality of the candidate value for real
decision variable since there is no theoretically proven
approximation factor for the relaxation technique.

Due to the computationally expensive of finding
the optimal solutions of MILP problems, we rely
on the well-used greedy heuristic [5] to find the
approximate feasible solutions in a reasonable
computation time.

Greedy Allocation Heuristic (GAH)

Input: |T | : Number of Time slots, |V | : number of sensors
Output: Allocation of |T | time slots to |V | sensor nodes

1: for each time slot 1 ≤ t ≤ |T | do
2: Neighbor(t) ← The set of nodes whose their

transmission range covers the sink trajectory at t
3: for each sensor s ∈ Neighbor(t) do
4: energyBudget(s) ←

energyBudget(s)+harvestedEnergy
5: end for
6: eligibleNodes(t) ← The set of nodes from

Neighbor(t) which satisfy constraint (5);
7: for each sensor s′ ∈ eligibleNodes(t) do

Compute Throughput(s′)
8: end for
9: sselect ← arg max

∀s∈eligibleNodes(t)
{Throughput(s)}

10: Allocate timeslot t to sselect
11: Update energy budget of sselect
12: overallThroughput ←

overallThroughput + Throughput(sselect)
13: end for
14: return overallThroughput

Getting benefit of the greedy allocation, we develop
two efficient algorithms for the first and second
scenarios of NTM problem. As an advantage, the
proposed algorithms not only result in significantly
improvement in network throughput compared to
the algorithm of [11] but most importantly, as we
show later, they provide an approximation factor for
the problems which is interestingly no larger than
the approximation factor of the greedy algorithm
for NTM problem. Before detailing the proposed
algorithms, we need the following definitions:

Definition 1: Let ILP-ODTS(l′, {aij}) be the obtained
integer linear programming subproblem when the fixed
scalar distance Max{Ri, 1 ≤ i ≤ |V |} ≤ l′ ≤ L is
substituted in NTM-ODTS problem (10)-(13).

Definition 2: Let ILP-ODA(l′v, {aij}) be the obtained
integer linear programming subproblem when the fixed
distance vector l′v = (l′1, l

′
2, ..., l

′
|T |) satisfying conditions

lmin ≤ l′j ≤ lmax, 1 ≤ j ≤ |T | and
∑|T |
j=1 l

′
j = L is

substituted in NTM-ODA problem (14)-(16).

6 PROPOSED ALGORITHMS

According to the definitions in the previous section,
we design two greedy-based efficient algorithms for
the first and second scenarios of NTM problem.
Having the pre-knowledge about the locations of
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Algorithm 1 Optimal Distance per Slot Allocation
(ODSAA)

Input: Initial distance per time slot
l = Max(Ri, 1 ≤ i ≤ |V |)

Output: Optimal distance per time slot
1: Throughput ← solution of GAH for subproblem

ILP-ODTS(l, {aij})
2: while Throughput is increasing do
3: l← l + ∆l
4: Throughput ← solution of GAH for subproblem

ILP-ODTS(l, {aij})
5: end while
6: return l, Throughput;

nodes in the network using the intercommunication
mechanism between them, the proposed algorithms
run centrally by the sink and find the sub-optimal
solutions within a reasonable computation time.

For the NTM-ODTS problem, as the authors pro-
vide a reasonable explanation in [11], by increasing
the distance per time slot, l, from the initial value, the
network throughput has an increasing behavior up to
an optimal point. We get benefit of this observation
to design the algorithm for NTM-ODTS problem. The
body of the proposed algorithm namely as Optimal
Distance per Slot Allocation Algorithm (ODSAA) has
been shown in Algorithm 1. It starts with the initial
distance and slightly increases it by small constant
∆l until the throughput returned by greedy alloca-
tion heuristic (GAH), with the pseudocode shown in
the previous page, for obtained ILP subproblem ILP-
ODTS(l, {aij}) has increasing behavior. The algorithm
stops and returns the last value of l where for the
first time throughput decreases. Since the proposed
algorithm is adopted from the justification of authors
in [11] for the behavior of throughput, therefore, the
convergence of ODTS algorithm to a near-optimal
solution is guaranteed.

For the NTM-ODA problem, the algorithm initial-
izes the distance vector lv = {l1, l2, ..., l|T |} with equal
values for all time slots. Then, the greedy algorithm is
run for the first round and the average of throughput
at each time slot is obtained. Within a number of itera-
tions equal to the number of time slots, the algorithm
slightly updates the distance that sink must traverse at
each time slot based on the amount of available data.
More precisely, if the available data in the current
time slot is below the average value, the algorithm
decreases the distance at that time slot proportional
to the difference between the average and available
throughput at that time slot. Obviously, more avail-
able data to be collected less reduction in distance.
The reverse operation is performed by the algorithm
if the throughput at the current time slot is above
the average. As a constraint, this updating process
must satisfy the feasibility of distance vector. In other
words, both constraints (15) and (16) must be satisfied
during the updating process. The constraint (15) can

Algorithm 2 Optimal Distance Allocation (ODAA)

Input: Initial distance vector lv = {l1, l2, ..., l|T |} where
lv(k) = Max(Ri, 1 ≤ i ≤ |V |),∀1 ≤ k ≤ |T |

Output: Optimal distance vector and optimal throughput
1: overallThroughput ← solution of GAH for

subproblem ILP-ODA(lv, {aij})
2: optThroughput← overallThroughput, optDVector← lv
3: for each 1 ≤ iteration ≤ |T | do
4: aveThr ← overallThroughput/|T |
5: for each 1 ≤ t ≤ iteration do
6: lv(t) = lv(t)+

(Throughput(t)− aveThr)/aveThr
7: if lv(t) < lmin OR lv(t) > lmax then
8: lv(t) = lv(t)+

(aveThr − Throughput(t))/aveThr
9: end if

10: end for
11: sumofDistance ←

∑iteration
t=1 lv(t)

12: aveDistance← (L−sumofDistance)/(|T |−iteration)
13: if aveDistance < lmin then
14: lv(t) = lv(t)−

((lmin−aveDistance) ∗ (|T | − iteration))/iteration
∀1 ≤ t ≤ iteration

15: end if
16: if aveDistance > lmax then
17: lv(t) = lv(t)+

((aveDistance−lmax) ∗ (|T | − iteration))/iteration
∀1 ≤ t ≤ iteration

18: end if
19: sumofDistance ←

∑iteration
t=1 lv(t)

20: aveDistance ← sumofDistance/(|T | − iteration)
21: lv(t)← aveDistance, ∀iteration + 1 ≤ t ≤ |T |
22: overallThroughput ← solution of GAH for

subproblem ILP-ODA(lv, {aij})
23: if overallThroughput > optThroughput then
24: optThroughput ← overallThroughput
25: optDVector ← lv
26: end if
27: end for
28: return optDVector, optThroughput

be simply checked by performing two comparisons
to ensure that the updated distance falls within the
allowed range. To satisfy constraint (16) at each itera-
tion, after updating the distance of the beginning time
slots, the remaining slots are allocated with a distance
which is the average of difference between the path
length and residual distance. Two further conditions
guarantee the validity of the allocated distance to the
remaining time slots.

The greedy allocation heuristic (GAH) is run on the
updated distance vector and the obtained throughput
is compared with the best one found yet. The algo-
rithm finally returns the optimal distance vector along
with the maximum achievable throughput after the
completion of all iterations. Since at each iteration,
the distance of all time slots from the beginning
up to the current iteration is updated based on the
throughput achieved in the previous round, there-
fore, the convergence of the best solution returned
by algorithm which as we show later provides the
desired approximation factor is guaranteed. The body
of the proposed algorithm called Optimal Distance
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Allocation Algorithm (ODAA) has been summarized
in Algorithm 2.

We note that an algorithm similar to ODAA can be
designed for the third scenario with slightly different
speed adjustment which we consider it as our inter-
esting future work.

6.1 Approximation Factor

In this section, we analysis the approximation factor
of the proposed suboptimal algorithms. Since the
proposed algorithms employ the greedy allocation
heuristic in each iteration, therefore, we need to find
out the approximation factor of the greedy heuristic.

Definition 3: Let P be an NP-Hard maximization
problem such that there is a polynomial algorithm A for it.
We say A is an α-approximation algorithm (0 < α < 1)
for P if for every instance x of P , the solution returned
by A, sA(x), is within the factor of α from the optimal
solution sopt(x), namely, sA(x) ≥ α.sopt(x) [21].

As our methodology to prove the approximation
factor of greedy heuristic, we first derive the
approximation factor of AdjustmentBased-Allocation
algorithm using the idea of interval repartitioning.
Together with the approximate improvement ratio
between the AdjustmentBased-Allocation and
the greedy heuristic, we then derive the desired
approximation factor.

Lemma 1: AdjustmentBased-Allocation algorithm
proposed in [11] is a 6

7 -approximation algorithm for the
NTM problem (2)-(9).

Proof: Given an instance P of NTM problem
(2)-(9), let assume SA and Sopt be respectively
the overall data throughput which is achieved
by algorithm AdjustmentBased-Allocation and the
optimal throughput for instance P . Under condition
l ≥ max(ri, 1 ≤ i ≤ |V |), each sensor can send data
to sink in at most two consecutive time slots and as
authors show in [11], the difficulty of problem comes
from the correlation between sensors when different
interval partitioning is considered. To prove the
approximation factor, we first find an upper bound
on the optimal solution of instance P .

The AdjustmentBased-Allocation algorithm
considers the interval partitioning {2, 2, .., 2} for
instance P and finds the optimal solution within
each interval by doing four comparisons between
the sensors with first and second maximum available
data at two consecutive slots. In the following,
we show how changing the interval partitioning
leads to further improvement in throughput.
Note that the sensor nodes harvest the same
amount of energy within each time interval under
different interval partitioning. Since the condition
l ≥ Max{Ri, 1 ≤ i ≤ |V |} implies that each node

sk sm sl sj 
si 

Time Interval        Time Interval              Time Interval 

Time Interval                     Time Interval 

Time Slot t1    Time Slot t2       Time Slot t3     Time Slot t4 

Mobile Sink Path 
……. 

Fig. 4: Five sensor nodes at three consecutive time intervals.

can send its data to sink in at most two consecutive
time slots, the following is the only scenario such
that changing the interval partitioning leads to
further energy harvesting and therefore further
throughput obtained. Consider the scenario in Fig. 4
where five sensor nodes can send their data at four
time slots within three consecutive time intervals.
Assume sensor nodes si and sm are the nodes with
maximum available data at time slots respectively
t1, the second time slot of the first interval, and
t4, the first time slot of the third interval. In the
second time interval, sensor node sk is the node
with maximum data at both time slots t2 and t3
but has not enough energy for data transmission
to sink at both slots. Also, sensors sj and sl are
the nodes with second maximum available data at
time slots respectively t2 and t3. Further assume that
D[sj ][t2] +D[sk][t3] > D[sk][t2] +D[sl][t3] holds where
D[s][t], the volume of data that sensor node s can send
to sink at time slot t, is given by D[s][t] = rst × τst.

What AdjustmentBased-Allocation algorithm does
is considering the interval partitioning {2, 2, 2}
(Shown in the bottom of Fig. 4) and allocating
four time slots {t1, t2, t3, t4} to sensor nodes
{si, sj , sk, sm}, respectively. Now to see how much
further throughput can be achieved, we need to
consider all possible interval partitioning. With
interval partitioning {1, 2, 2, 1} (shown in the top of
Fig. 4), the sensor node sk is located at two different
time intervals and therefore finds the opportunity
of two times energy harvesting. This in turn results
in the selection of nodes {si, sk, sk, sm} for data
transmission to the sink. It is easy to see that under
the other possible interval partitioning {2, 1, 1, 2}-
{1, 2, 1, 2}-{2, 1, 2, 1} or {1, 1, 1, 1, 1, 1}, the same nodes
{si, sk, sk, sm} are selected for data transmission to
the sink. It can be seen that considering each
of the above-mentioned interval partitioning, the
further improvement D[sk][t2]−D[sj ][t2] is obtained.
Depending on the deployed location of sensor node
sk at time slot t2, with fixed values τ and l, its
transmission duration can change approximately
from zero to maximum R̄τ/l, where R̄ is the
average transmission range of nodes. Now, since the
transmission duration of sensor node sj at time slot
t2 can not be more than the one of node sk at this
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time slot, the average of improvement in throughput
is approximately given by:

E[D[sk][t2]−D[sj ][t2]] = E[rkt2 ].E[τkt2 ]

− E[rjt2 ].E[τjt2 ]

≈ r̄ R̄.τ
2l
− r̄ (R̄.τ)/2l

2
= r̄

R̄.τ

4l
(23)

Where r̄ is the average transmission rate of nodes.
With |T |/2 time intervals, assume that for instance
P of the problem, there are k ≤ |T |/2 time intervals
with available data (available node). Since the above
improvement in throughput is achieved for three con-
secutive time intervals, we conclude that for instance
P , the optimal throughput cannot be more than the
throughput returned by AdjustmentBased-Allocation
algorithm plus k/3 times of the above improvement.
That means for the instance P of the problem:

Sopt ≤ SA + (
k

3
)× (

r̄.R̄.τ

4l
) (24)

Note that here the equality holds when the improve-
ment occurs in all three consecutive time intervals.
Inequality (24) in turn implies that:

Sopt
SA
≤ 1 +

k.r̄.R̄.τ

12l.SA
(25)

Since according to Fig. 4, at least the data from
either nodes sj and sl in both or node sk in one
of the time slots t2 and t3 is collected, therefore, for
instance P of the problem, at each time interval with
available data, the AdjustmentBased-Allocation algo-
rithm achieves an average data throughput of at least
r̄.(R̄.τ/2l). That means with k time intervals, the over-
all data throughput returned by AdjustmentBased-
Allocation is at least k × (r̄.R̄.τ)/2l which yields
the inequality k.r̄.R̄.τ

2l.SA
≤ 1. This inequality in turn

implies that k.r̄.R̄.τ
12l.SA

≤ 1/6. Now, from (25), we get
Sopt

SA
≤ 1 + δ1 where 0 < δ1 ≤ 1/6. This concludes that

AdjustmentBased-Allocation is a (6
7 )-approximation

algorithm for NTM problem (2)-(9). �
Corollary 1: Greedy allocation heuristic (GAH) is a 9

14 -
approximation heuristic for NTM problem (2)-(9).

Proof: Let SG be the optimal solution returned by
greedy allocation heuristic GAH on instance P . Since
the greedy heuristic collects data locally at each time
slot without interval partitioning, therefore, finding
the upper bound on ratio Sopt

SG
is not straightforward

following the repartitioning as in Lemma 1. To derive
the upper bound on this ratio, we derive first an
upper bound on the ratio between the data through-
put returned by AdjustmentBased-Allocation and the
greedy heuristic i.e SA

SG
and then together with the

result of Lemma 1, we get the desired approximation
factor. In Fig. 4, since the greedy heuristic allocates
time slots t2 and t3 to sensor nodes sj ,sl, respec-
tively, with respect to AdjustmentBased-Allocation

algorithm, a throughput improvement of (D[sj ][t2] +
D[sk][t3])−(D[sj ][t2]+D[sl][t3]) is achieved. Knowing
that the transmission duration of node sl at time slot
t3 can not exceed the transmission duration of node sj
at time slot t2, therefore, the average of improvement
within one time interval is approximately given by:

E[(D[sk][t2] +D[sj ][t3])− (D[sj ][t2] +D[sl][t3])]

≈ (r̄
R̄.τ

4l
+ r̄

R̄.τ

2l
)− (r̄

R̄.τ

2l
+ r̄

R̄.τ

8l
) = r̄

R̄.τ

8l
(26)

Having that k ≤ |T |/2 time intervals with available
data in Lemma 1, the following inequality holds:

SA ≤ SG + k × (
r̄.R̄.τ

8l
) (27)

And (27) in turn implies:

SA
SG
≤ 1 +

k.r̄.R̄.τ

8l.SG
(28)

Now, since according to Fig. 4, the greedy allocation
collects at least the data from the nodes sj and sl
at time slots t2 and t3, therefore, for the instance
P of the problem, the greedy heuristic achieves the
average throughput of at least ( r̄.R̄.τ4l + r̄.R̄.τ

8l ) in time
interval with available data. That means the overall
throughput returned by greedy allocation heuristic
in k time intervals is at least k× ( r̄.R̄.τ4l + r̄.R̄.τ

8l ) which
yields the inequality 3k.r̄.R̄.τ

8l.SG
≤ 1. Considering this

later inequality in the right hand side of (28), we
get SA

SG
≤ 1 + δ2 where 0 < δ2 ≤ 1/3. Now from

Sopt

SA
≤ 7/6 and SA

SG
≤ 4/3, we conclude that greedy

allocation GAH is a 9
14 -approximation heuristic for

NTM problem (2)-(9). �

In the following, we show that the proposed
algorithms achieve an approximation factor for the
first and second scenarios of NTM problem which
is same as the approximation factor of the greedy
allocation for NTM problem. Lets bring first the
following definition:

Definition 4: Let opt(l′) and subopt(l′) be respectively
the optimal objective value of subproblem ILP-
ODTS(l′, {aij}) and the corresponding suboptimal
objective value when the greedy allocation heuristic is
applied on it.

Theorem 1: Algorithm ODSAA achieves an
approximation factor for NTM-ODTS problem which
is same as the approximation factor of GAH for the NTM
problem (2)-(9).

Proof: Let Max{Ri, 1 ≤ i ≤ |V |} ≤ l∗ ≤ L and
Max{Ri, 1 ≤ i ≤ |V |} ≤ l+ ≤ L be respectively
the optimal solution and the solution returned
by algorithm ODSAA for NTM-ODTS problem.
With α = 9/14, the approximation factor of the
greedy heuristic GAH, to prove that ODSAA is an
α−approximation algorithm for NTM-ODTS problem,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TMC.2016.2607716

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON MOBILE COMPUTING 11

we need to show the inequality subopt(l+) ≥ α.opt(l∗).
Since the greedy heuristic GAH achieves the

approximation factor of α for any instance of the
NTM problem, therefore:

subopt(l∗) ≥ α.opt(l∗) (29)

Furthermore, since the ODSAA algorithm returns the
distance scalar where the greedy allocation for its cor-
responding ILP subproblem achieves the maximum
objective value among all possible subproblems, we
have the following relation hold:

subopt(l+) = Max
{
subopt(l′),

∀l′ : Max{Ri, 1 ≤ i ≤ |V |} ≤ l′ ≤ L
}

(30)

This in turn implies that:

subopt(l+) ≥ subopt(l∗) (31)

Now, combining (29) and (31), we get:

subopt(l+) ≥ α.opt(l∗) � (32)

Corollary 2: Algorithm ODAA achieves a same ap-
proximation factor for the NTM-ODA problem as the
approximation factor of GAH for NTM problem (2)-(9).

Proof: The proof is similar to the proof of Theorem
1 and is omitted here for the sake of simplicity. �

6.2 Complexity Analysis
The two following theorems show that the proposed
algorithms have the computational complexity of
polynomial order in the worst case.

Theorem 2: Algorithm ODSAA has a computational
complexity of order O(|T |.|V |) in the worst case where
|T | and |V | are respectively the number of time slots and
deployed nodes.

Proof: According to the ODSAA algorithm, in each
time slot, the GAH constructs the neighborhood set
and finds the selectedNode with O(|V |) in the worst
case. Since the mobile sink traverses the path within
|T | time slots, the overall time complexity of GAH is
of order O(|T |.|V |). Assume that the algorithm finds
the solution after N iterations in the worst case. Since
the ODSAA algorithm runs the greedy allocation as
its subroutine in each iteration, therefore, in the worst
case, the overall time complexity of the algorithm
ODSAA is of order O(N.|T |.|V |).

With fixed value of |T | and large |V |, the nodes
loose their contribution in data transmission to sink
with very high ratio when the distance per time slot
increases from the initial value. This in turn implies
that using ODSAA, the optimal distance per time
slot is obtained after very small number of iterations.
Therefore, from the definition of Big O notation:

f(|T |, |V |) ∈ O(g(|T |, |V |)) ⇐⇒
∃c, Vm > 0 3 ∀|V | ≥ Vm ⇒ f(|T |, |V |) ≤ c.g(|T |, |V |)

with fixed |T | and |V | → ∞, the number of itera-
tions, N , starts from a very small value and converges
to 1. Considering c = 1 and large Vm, this implies that:

f(|T |, |V |) =TODSAA(|T |, |V |) ≤ |T |.|V | = g(|T |, |V |)
⇒ TODSAA(|T |, |V |) ∈ O(|T |.|V |) �

Theorem 3: Algorithm ODAA has a computational
complexity of order O(|T |2.|V |) in the worst case where
|T | and |V | are respectively the number of time slots and
deployed nodes.

Proof: According to ODAA algorithm, the initial
optThroughput is obtained using the greedy allocation
heuristic with a complexity of order O(|T |.|V |). The
total number of iterations in the algorithm is equal to
the number of time slots. Within the iteration i, 1 ≤
i ≤ |T |, the first and second For loops are run with a
complexity of order O(i). To compute the complexity
of the If part, we need to compute the probability
that the event AverageDistance < lmin happens. To
do that, we need first to find the range of all possible
values for the variable AverageDistance. It is obvious
that the range of values for variable AverageDistance
is equal to L−ilmax

|T |−i ≤ AverageDistance ≤ L−ilmin

|T |−i
where, L is the path length and lmin and lmax are
respectively the minimum and maximum allowed
distances. Considering variable AverageDistance as a
random variable, its probability density function is
stated as f(l) = |T |−i

i(lmax−lmin) . Therefore, the probability
of happening the event AverageDistance < lmin is
computed by the following integration:

Prob[AverageDistance < lmin] = Max
{

0,∫ lmin

L−ilmax
|T |−i

|T | − i
i(lmax − lmin)

dl
}

= Max
{

0,
|T |lmin + i(lmax − lmin)− L

i(lmax − lmin)

}
=


0,

i < b L−|T |lmin
lmax−lmin

c
|T |lmin+i(lmax−lmin)−L

i(lmax−lmin)
, i ≥ b L−|T |lmin

lmax−lmin
c

With the above probability, we have an O(i) com-
plexity for the For loop in the If statement. Similarly,
the probability that the average distance exceeds the
maximum allowed range is given by:

Prob[AverageDistance > lmax] = Max
{

0,∫ L−ilmin
|T |−i

lmax

|T | − i
i(lmax − lmin)

dl
}

= Max
{

0,
L+ i(lmax − lmin)− |T |lmax

i(lmax − lmin)

}

=


0,

i < b |T |lmax−L
lmax−lmin

c
L+i(lmax−lmin)−|T |lmax

i(lmax−lmin) , i ≥ b |T |lmax−L
lmax−lmin

c

With the above probability, there is O(i) complexity
for the For loop in the If statement. Finally, the last For
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loop is performed with a complexity of order O(|T |−i)
and the solution of greedy allocation heuristic with
the updated distance vector as the input is achieved
with order O(|T |.|V |). Assuming that each If-Else
statement takes O(1) time, putting all the aforemen-
tioned complexities together, we have the following
overall time complexity for the ODAA algorithm:

TODAA(|V |, |T |) = |V |.|T |

+

b L−|T |lmin
lmax−lmin

c∑
i=1

{
3i+ |T | − i+ |T |.|V |

}

+

b |T |lmax−L
lmax−lmin

c∑
i=d L−|T |lmin

lmax−lmin
e

{
3i+ (

|T |lmin + i(lmax − lmin)− L
i(lmax − lmin)

)(i)

+ |T | − i+ |T |.|V |
}

+

|T |∑
d |T |lmax−L
lmax−lmin

e

{
3i+

i(2i− |T |)(lmax − lmin)

i(lmax − lmin)

+ |T | − i+ |T |.|V |
}
∈ O(|T |2.|V |) �

7 ENERGY HARVESTING THRESHOLD

One important factor which affects the network
throughput is the amount of harvested energy
by sensor nodes at each time interval. Although
increasing the amount of harvested energy causes the
increase in throughput, there is a threshold on the
harvested energy such that the network throughput
becomes saturated when the sensors harvest energy
more than the threshold. The reason is due to the
selection of at most one eligible sensor at each time
slot by the mobile sink. The increase in harvested
energy yields the increase in throughput until in all
time slots, the energy consumption of the sensor
node with maximum available data falls below
its energy budget. Obviously, after this point, by
increasing the harvested energy, no more data can be
collected by the sink. Having the system parameters,
we are interested here to find the above-mentioned
threshold. We note that since from the data collection
model, the sensors send data with fixed transmission
rate and for whole of the period that cover the sink’s
trajectory on the path and also sink has large data
buffer size, therefore, the parameters such as sink’s
buffer size or the data size in sensor’s queue have
no effect on the threshold on energy harvesting.
However, the battery capacity of nodes as a realistic
parameter is considered in the derivation of this
threshold.

In the following derivations, we assume the
uniform distributions for the amount of harvested
energy by nodes, the transmission range, the
transmission rate and initial energy level of nodes
denoted by random variables h, R, r and I ,

respectively. For each of the above-mentioned
variables, the corresponding minimum and maximum
values are considered for the uniform distribution
and, therefore, the middle point of min and max is the
average value of that random variable. Furthermore,
the variable C is defined as a random variable to
indicate the energy consumption of an eligible node
for data transmission to sink within a time interval.
We note that since the amount of harvested energy by
nodes changes within a uniform interval, therefore,
we are motivated to find out the analytical threshold
on the energy harvesting mean.

Theorem 4: With identical battery capacity B for
all sensor nodes, the threshold on energy harvesting mean
is approximately given by:

Thresholdh̄ ≈

{
3B+pK−3Ī

3+p
, B ≤ K

(3+p)K−3Ī
3+p

, B > K
(33)

Where Ī = 1
2 (Imin + Imax) is the average initial energy

of nodes, constant K = 1
2τ.rmax.R

α
max and p is the

probability that a sensor node can send its data to sink
in two consecutive time slots.

Proof: We know that at the threshold point, the
energy consumption of the eligible node falls below
its energy budget at the corresponding time interval.
To find the average energy budget of an eligible node
within the time interval, we need to consider two
different cases.

Case 1: the eligible node can send data to sink in
only one time slot. In this case, its average energy
budget before data transmission to sink is equal to
Ī + h̄, the average of its initial energy plus mean of
the harvested energy.

Case 2: the eligible node can send its data to sink at
both time slots of time interval. Here, three sub-cases
can happen assuming with the same probability 1

3 .
Case 2-1: the node can send data in both first and
second time slots of time interval. Now, the node is
selected for data transmission in either one time slot
(first or second) or in both of them assuming with
the same probability of 1

2 . If selected at one slot, its
average energy budget is same as Case 1. Otherwise, if
selected at both time slots, its average energy budget
is equal to average of initial energy plus the amount
of harvested energy minus the consumption in the
first slot which is Ī + h̄ − C̄. Case 2-2: the eligible
node can send data to sink in the second slot of the
previous interval and the first time slot of the current
interval. In this case, since the node is eligible in
the current interval, therefore, either it is selected in
the previous interval and the first slot of the current
interval or is only selected in the first slot of the
current interval assuming with same probability 1

2 . If
first case happens its average energy budget is equal
to Ī+2h̄−C̄ and if the second one happens its energy
budget is equal to Ī+2h̄. Case 2-3: The node can send
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its data in the second time slot of the current interval
and the first slot of the next interval. In this case, since
the node is eligible in the current interval, therefore,
its average energy budget is equal to Ī + h̄.

With known value of the probability that a node
can send its data to sink at two consecutive time
slots, p, which has been analytically derived in [11],
putting the above two cases together and considering
that the energy budget of an eligible node can not be
more than its battery capacity, the following inequality
holds for an eligible node:

C̄ ≤min{(1− p)(Ī + h̄)

+ p
{1

3
{1

2
(Ī + h̄) +

1

2
(Ī + h̄− C̄)}

+
1

3
{1

2
(Ī + 2h̄) +

1

2
(Ī + 2h̄− C̄)}

+
1

3
(Ī + h̄)

}
, B} (34)

To find the average energy consumption of an
eligible node, we need to find out the probability
density function (pdf) of transmission power which
has a complicated term. Therefore, for the sake of
simplicity, with minimum and maximum energy con-
sumption respectively zero and τ.rmax.R

α
max, we use

the approximate value 1
2τ.rmax.R

α
max for the average

of energy consumption. Knowing that the energy con-
sumption of nodes can not be more than the battery
capacity, we get the following approximation for C̄:

C̄ ≈ min{1

2
τ.rmax.R

α
max, B} (35)

Now, replacing C̄ in the both sides of inequality
(34) by relation (35) and analyzing the four possible
conditional cases, it is seen that h̄ ≥ 3B+pK−3Ī

3+p for

B ≤ K and h̄ ≥ (3+p)K−3Ī
3+p for B > K where constant

K = 1
2τ.rmax.R

α
max. Therefore, we get the following

result for the threshold on energy harvesting mean:

Thresholdh̄ ≈

{
3B+pK−3Ī

3+p
, B ≤ K

(3+p)K−3Ī
3+p

, B > K
(36)

7.1 Battery Capacity Threshold
Another important factor which affects the network
throughput is the battery capacity of sensor nodes.
The experiment shows that although the increase in
battery capacity causes the increase in throughput
but after a threshold point, the network throughput
becomes saturated by increasing the capacity. The
reason is that initially, the harvested energy by nodes
is bounded by the low battery capacity and there-
fore increase in the capacity leads to the increase
in throughput. But this increase is up to the point
when the capacity of nodes has enough space to
accommodate the initial and available energy for har-
vesting. Although after this threshold sensors have
enough battery capacity, there is no more energy to

TABLE 3: The list of system parameters and their
corresponding values used in the simulations.

Corresponding Value
System Parameter (ODSAA, ODAA,

AdjustmentBased-Allocation)
Number of Sensor Nodes 2000 ∼ 8000

Path Length 10 km
Sink Speed 7.5 m/s

Sensors Transmission Range Uniform[10 m, 15 m]
Sensors Transmission Rate Uniform[60 KB

Sec , 80 KB
Sec ]

Energy Harvesting Distribution Uniform[480 Joule, 520 Joule]
Battery Capacity of Nodes 4500 Joule
Probability of Battery Failure (Pf ) 0.05

AdjustmentBased-
ODSAA ODAA Allocation

Time Slot Period Variable Variable 2 Sec

be harvested and therefore the throughput becomes
stable. we are here interested to find out theoretically
the threshold on battery capacity when the mean of
energy harvesting distribution is given.

In the following, we denote B as the identical
battery capacity of all sensor nodes. As it is seen
from comparing the average energy budget of nodes
in both Case 1 and Case 2 in Theorem 4, for every
eligible node si ∈ S, the battery capacity must be at
least:

B ≥ max{Ii + hi, Ii + hi − Ci, Ii + 2hi − Ci,
Ii + 2hi} = Ii + 2hi. (37)

Since the above inequality must be satisfied for all
eligible sensor nodes, therefore, we get the following
result for the threshold on battery capacity of nodes:

Theorem 5: Given the maximum initial energy of nodes,
Imax, and the harvested energy, hmax, the threshold on the
battery capacity of nodes is given by:

ThresholdB = Imax + 2hmax (38)

8 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of three
data collection algorithms ODSAA, ODAA, proposed
in this work, and AdjustmentBased-Allocation [11] in
terms of network throughput, energy efficiency and
computational complexity. The algorithms have been
implemented with the programs written in Java.

8.1 Simulation Setup
In the simulations, for the system parameters, we
assume a direct path with fixed length 10 km for the
trajectory of the mobile sink. The whole duration of
sink’s trajectory on the path is divided into several
consecutive time slots. From the network side, we
assume that approximately 2000 to 8000 sensors are
uniformly deployed along the both sides of the path.
The nodes have the transmission range uniformly
distributed within interval [10 m, 15 m] and a uniform
transmission rate [60 KB/Sec, 80 KB/Sec].

The performance of three algorithms are evaluated
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ODSAA, Initial Energy = [2000 Joule, 2500 Joule]
ODSAA, Initial Energy = [3000 Joule, 3500 Joule]
ODSAA, Initial Energy = [4000 Joule, 4500 Joule]

Fig. 5: The comparison between ODSAA and
AdjustmentBased-Allocation algorithms in term of optimal
distance per time slot.

considering the following model parameters: Since
in the first and second scenarios of NTM problem
the sink maintains a constant speed during whole
of its trajectory on the path, therefore, the constant
speed vm = 7.5m/s is considered for the mobile sink
in the implementation of both ODSAA and ODAA
algorithms. On the other side, the same sink speed,
the constant time slot period 2 Seconds and fixed
distance per time slot 15m are considered in the imple-
mentation of AdjustmentBased-Allocation algorithm.
However, the time slot period is changed at different
time slots depending on the optimal distance at each
time slot under the both first and second scenarios of
NTM problem.

For the energy harvesting parameters, the uniform
distribution is used in the implementation of algo-
rithms to express the stochastic amount of harvested
energy by nodes at the beginning of each interval.
The ideal battery capacity 4500 Joule and the prob-
ability of battery failure 0.05 are considered in the
simulations. The unit of network throughput, the total
collected data by the sink, is also KB. The list of system
parameters and their corresponding values has been
summarized in Table 3.

8.2 Performance Evaluation of Algorithms
As the first simulation, we are interested to find
the optimal distance per time slot under different
number of nodes using the ODSAA algorithm.
Recall that the at the optimal distance, the maximum
data throughput is achieved. With three initial
energy levels and uniform energy harvesting
[480Joule, 520Joule] with mean h̄ = 500Joule, Fig.
5 illustrates the distance per time slot achieved by
the ODSAA algorithm when the number of sensors
varies from 2000 to 8000 nodes. The following
observations are seen: First, by increasing the number
of nodes, the optimal distance per time slot returned
by ODSAA decreases. The reason is that after some
increase in throughput, with higher ratio the nodes
loose their contribution in data transmission to sink
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Fig. 6: The comparison between three algorithms in term
of network throughput.
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 Initial Energy Level : 
[4200 Joule, 4500Joule]

Fig. 7: The comparison between three algorithms in term
of energy efficiency.

when they are densely deployed compared to the
sparse deployment. Therefore, the optimal distance
is reached earlier in the case of dense deployment.

Second, by increasing the initial energy, the optimal
distance has an overall decreasing trend. The reason
is that since the sensor nodes have enough energy for
data transmission to sink in most of the cases when
with high initial energy, therefore, with faster ratio
they loose their contribution in data transmission to
sink compared to the case when their initial energy
level is low. As another observation, the distance for
three initial energy levels remain constant for the
number of nodes between 6000 and 7000. The reason
is that in dense deployment, the ratio of loosing
contribution in data transmission to sink remains
same with larger difference in the number of nodes
compared to sparse deployment.

In the next simulation, we have compared the
performance of three algorithms ODSAA, ODAA
and AdjustmentBased-Allocation in term of network
throughput in one round of data collection by sink.
For different number of nodes varying from 2000 to
8000, the initial energy level [4200Joule, 4500Joule]
and uniform distribution [480Joule, 520Joule], the
result of throughput comparison has been shown in
Fig. 6. As the results show, using ODSAA algorithm,
the network throughput significantly increases
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Fig. 8: The effect of increase in harvested energy on network
throughput using ODSAA algorithm.
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Fig. 9: The comparison between three algorithms in term
of total computation time.

compared to AdjustmentBased-Allocation with an
average improvement of approximately 103KB. As
another observation, for each number of nodes,
further improvement in network throughput is
achieved by updating the distance at each time slot
based on the available data at sink’s vicinity using
ODAA algorithm.

In the next simulation, we have evaluated the
performance of three algorithms in term of energy
efficiency. Denoted by Ec the total consumed energy
by eligible nodes at all time slots in one round of
data collection and Eb, their total energy budget,
we define the energy efficiency criteria based on the
total percentage of consumed energy obtained by
Ec

Eb
× 100%. As the result in Fig. 7 shows, the ODSAA

algorithm has the best while AdjustmentBased-
Allocation achieves the worst performance in term of
energy efficiency. The reason is that AdjustmentBased-
Allocation algorithm considers a fixed initial distance
per time slot (fixed transmission period) for nodes
which can lead to more energy consumption for
nodes in some of the time slots.

In Fig. 8, we have shown the effect of increase in
the amount of harvested energy by nodes on the
network throughput using ODSAA algorithm. As
we can see, the throughput increases when there are
more energy for harvesting since as long as the nodes
harvest more energy, they have more opportunities

TABLE 4: The comparison between experimental and
theoretical thresholds on energy harvesting mean for
different number of nodes (B = 2× 104 Joule).

Number of Experimental Theoretical
Sensor Nodes (|V |) Threshold (Joule) Threshold (Joule)

2000 17000 16293
3000 17500 16293
4000 17000 16293
5000 17500 16293
6000 17500 16293
7000 17500 16293
8000 17000 16293

TABLE 5: The comparison between experimental and
theoretical thresholds on energy harvesting mean for
different battery capacities (|V | = 3000).

Battery Experimental Theoretical
Capacity (Joule) Threshold (Joule) Threshold (Joule)

5× 103 5× 103 6.4308× 103

1× 104 1× 104 1.0224× 104

1.5× 104 1.5× 104 1.4017× 104

2× 104 1.75× 104 1.6293× 104

2.5× 104 1.7× 104 1.6293× 104

3× 104 1.75× 104 1.6293× 104

for data transmission to the sink.
Since the energy harvesting means are considered

for different rounds of sink path traversal, the
observation from the result in Fig. 8 concludes that
the nodes with more available data which have not
enough energy in one round, find the opportunity
for data transmission in subsequent round when they
harvest more energy. This observation can in turn
cover the fairness issue remarked in Section 3.

We have further compared the performance
of ODSAA and ODAA with respect to
AdjustmentBased-Allocation in term of computational
complexity with the result illustrated in Fig. 9. The
computational complexity of each algorithm is
measured as the total time taken by the algorithm
to find the suboptimal solutions. The unit of the
time is considered as Seconds. As we can see,
ODSAA and AdjustmentBased-Allocation algorithms
have the same order of growth in computation
time while the complexity of ODAA algorithm
dramatically increases, therefore, confirming the
statements of Theorems 2 and 3. Therefore, regarding
the effectiveness of the proposed algorithms, with
the same order of complexity, according to the result
shown in Fig. 6, the significant improvement in
network throughput is achieved using ODSAA
algorithm. Also, further throughput can be
obtained using ODAA with polynomial increase
in computation time.

8.3 Energy Harvesting Thresholds

In this subsection, we evaluate the theoretical thresh-
olds derived in Section 7 through the compari-
son with the experimental thresholds. With uniform
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Fig. 10: The effect of increase in battery capacity of nodes
on network throughput with fixed energy harvesting mean
and different number of nodes.

energy harvesting and initial energy from interval
[2000Joule, 2500Joule] for sensor nodes, the rest of the
parameters have the same values as given in Table 3.

As the first simulation, we are interested to see
the effect of increase in energy harvesting mean on
network throughput in one round of data collection.
With fixed variance of distribution and battery capac-
ity 2×104Joule, we have increased the mean of energy
harvesting (h̄) from 0 to 2 ×104 Joule. For different
number of nodes, the experimental threshold has been
obtained with 50 trails of simulation. As the results
of comparison in Table 4 shows, with average energy
consumption of approximately C̄ ≈ 1.8 × 104Joule,
the theoretical threshold derived from the relation (33)
provides a confidence interval of at least 90% for the
average experimental threshold for each number of
nodes.

As the next simulation, with fixed number of sen-
sors at 3000 nodes, the experimental threshold on
energy harvesting mean has been derived considering
different battery capacities ranging from 5× 103Joule
to 3 × 104Joule. As we can see from the results
illustrated in Table 5, with the same average energy
consumption as the previous part, the theoretical
threshold from equation (33) provides a confidence
interval of in average 90% for the experimental thresh-
old for each battery capacity.

As the next simulation, we have investigated the
effect of increase in battery capacity of nodes on the
network throughput in one round of data collection
by sink. For the simulation, we have considered the
mean of energy harvesting to justify the theoretical
derivation in relation (38) in average sense. With fixed
h̄ = 2000Joule and considering five different number
of nodes, the battery capacity is increased from 0 to
10000 Joule. For each number of nodes, the thresh-
old on battery capacity, where for the first time the
throughput becomes saturated, has been shown with
dashed line in Fig. 10. The theoretical threshold shown
in relation (38) with average initial and harvested
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Fig. 11: The effect of increase in battery capacity of nodes on
network throughput for different energy harvesting means
and fixed number of nodes.

energy has been also drawn with bold line. As the
comparison shows, for different number of nodes, the
theoretical threshold provides a confidence interval of
almost 95%.

We have further simulated the effect of increase in
battery capacity of nodes when with fixed number
of sensors at 3000 nodes, three different values for
h̄ are considered. As the results illustrated in Fig. 11
show, for each energy harvesting mean, the theoretical
threshold (ACT) provides a confidence interval of 95%
for the experimental threshold.

9 CONCLUSIVE REMARKS

Toward the network throughput improvement using
a mobile sink in energy harvesting wireless sensor
networks (EH-WSNs), we propose a general frame-
work for network throughput maximization (NTM)
problem. By optimizing feasible problem parameters,
the NTM problem is investigated under different sce-
narios by formulating each scenario as a mixed integer
linear programming (MILP) optimization model sub-
ject to some scenario-specific constraints. Due to the
NP-Hardness of the MILP problems, we design two
efficient algorithms namely as ODSAA and ODAA for
two practically feasible scenarios which run centrally
by the sink to find the sub-optimal solutions in a
reasonable computation time. Furthermore, under the
uniform energy harvesting distribution, we establish
two theoretical thresholds on energy harvesting mean
and battery capacity of nodes such that by increas-
ing either one after the threshold, the throughput
becomes stable. The results of simulations conducted
on different set of node deployments confirm the
significant improvement in network throughput by
optimizing the feasible parameters. Furthermore, the
results of simulation is an evidence that theoretical
thresholds provide a confidence interval of 90%. As
an advantage, these thresholds can help the designers
of sink based EH-WSNs to optimize efficiently the
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cost of energy harvesting resources in practical data
collection scenarios.
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