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ABSTRACT  

This paper describes novel adaptations of optically sectioned planar format assays to screen 

compounds for their affinities to materials surfaces. The novel platform, which we name Optical 

sectioned Indicator Displacement Assays (O-IDA), makes use of displaceable dyes in a format 

adaptable to high-throughput multi-well plate technologies. We describe two approaches; the first 

being where the dye exhibits fluorescence in both the surface bound and unbound state and the 

second, where fluorescence is lost upon displacement of the dye from the surface.  Half maximal 

inhibitory concentration (IC50), binding affinity (Ki), and binding free energy (∆Gads) values can 

be extracted from the raw data. Representative biomolecules were tested for interactions with silica 

in aqueous environment and ZnO (0001)-Zn and (10-10) facets in a non-aqueous environment. We 

provide the first experimental values for both the binding of small molecules to silica and the facet-

dependent ZnO binding affinity of key amino acids associated with ZnO-specific oligopeptides. 

The specific data will be invaluable to those studying interactions at interfaces both experimentally 

and computationally. O-IDA provides a general framework for the high-throughput screening of 

molecules binding to materials surfaces, which has important applications in drug delivery, (bio-) 

catalysis, biosensing and biomaterials engineering. 

 

 

* Corresponding author: carole.perry@ntu.ac.uk 

  



 3 

Introduction 

 

Interactions at the abiotic/biotic interface are of fundamental interest in medical devices, drug 

delivery and catalysis and have wide applications ranging from polypeptide adsorption,1–4 cell 

adhesion,5,6 biomaterials,7–10 and biosensors.11,12 Common methods for the experimental 

quantification of interactions at materials’ surfaces include quartz crystal microbalance (QCM),13 

surface plasmon resonance (SPR)14 or single molecule force spectroscopy (SMFS).15 These 

techniques take an indirect measure of the interactions and heavily rely on the models applied 

during data analysis. Furthermore, the experimental procedure and the associated analysis can be 

very time consuming. A direct measurement of binding enthalpies can be achieved using 

isothermal titration calorimetry16 but the method is limited to stable suspensions.  

Indicator displacement assays17–19 provide measurements of interactions based on the direct 

observation of competitive binding between a reference compound and the analyte of interest to a 

given interaction site. Although they are used in drug discovery and high throughput screening, to 

the best of our knowledge, they have not previously been applied to screening of molecules that 

bind to abiotic material surfaces. Adapting this approach into the field of abiotic/biotic interactions 

would represent an important advance and could enable comprehensive screening of interactions 

at the analyte/material interface. Screenable displacement assays in a planar format20 have been 

described for receptor ligand interaction studies and this approach can indeed be adapted to 

measure molecular interactions with abiotic/biotic surfaces, as we will prove in this paper.  

We establish the novel approach using two representative functional oxides with important 

applications in nanotechnology and biomedicine. The first system is silica, for which knowledge 

of important binding interactions can lead to a deeper understanding of silica-based drug delivery 
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systems,21,22 the synthesis of new materials for biomedical use23 and processes such as 

biosilicification24,25 in mineralizing organisms.26–28 Advancements in this research area will have 

direct implications in material science, medicine and bio-nanotechnology. For this system we 

selected representative amino acids, a small polyamine29 and a drug, ibuprofen, that is often used 

in model studies.30–32 

As a second system, we chose zinc oxide which is widely used in the form of crystals and 

nanoparticles for applications ranging from (photo-) catalysis,33 mechanical actuators,34 

piezoelectric and optoelectronic devices35 through to biomedical applications.36 This versatility is 

triggered by the unique properties of ZnO, which is a semiconductor with a wide direct band gap 

and a high exciton binding energy.37 The morphology-dependent properties of ZnO can be altered 

using biomolecules, which lead to a large variety of shapes with small variations in the preparation 

conditions. Within this framework, the biomineralization of ZnO with amino acids is of special 

interest.38–43 For the selection of amino acids (H, C, S, L, A and P), we refer to prior studies where 

the interaction of binding peptides with specific ZnO crystal planes has been investigated.43,44 

Further, histidine and cysteine are well known to bind Zn2+ ions in zinc finger proteins45–48 and 

while histidine was found to be enriched in a phage display study for two common surfaces of 

ZnO, namely the zinc-terminated (0001) and the oxygen-terminated (000-1) polar surfaces,44 

cysteine is usually suppressed due to the impairment of phage infectivity.49,50  

This paper describes an approach to measure abiotic-biotic interactions which involves the 

combination of optically sectioned planar format assays (OSPFA) using confocal scanning laser 

microscopy (CSLM) and an indicator displacement assay (IDA) for screening of compounds 

binding to abiotic surfaces. The goal is to enable high throughput screening of molecule libraries 

to identify compounds with high materials binding affinity. Although our examples are two 
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functional oxides, silica and ZnO, the approaches introduced here are general and could be applied 

to a wide range of materials. 

 

Materials and Methods 

 

Silica: Hydrophilic silica surfaces were produced following a previously described protocol,51–53 

a brief description is provided in the SI. CSLM experiments were conducted using 96 microwell 

glass bottom black plates (Nunc 164588). To determine the binding constant of the PDMPO dye  

((LysoSensor™ yellow/blue DND-160, 1 mM in dimethyl sulfoxide), Life Technologies) to the 

silica surfaces, we measured the concentration-dependent adsorption behavior and the time-

dependent increase of the fluorescence intensity upon interaction with the substrate.  To measure 

the binding of the compounds of interest to the silica surface the following protocol was adopted. 

1 μM PDMPO ((LysoSensor™ yellow/blue DND-160, 1 mM in dimethyl sulfoxide), Life 

Technologies) in 0.1 M phosphate buffer at pH 7.2 was applied and incubated (2 hrs at RT). The 

solution was then removed and replaced with test compounds at concentrations from 1 mM to 1 

nM) followed by incubation (2 hrs at RT). The treated wells were then subjected to CSLM (Leica 

TCS SP5 with 405nm excitation of PDMPO) with detection of fluorescence between 480 nm and 

600 nm along the z-axis. Instrumental parameters were: the numerical aperture (0.5 NA), 

objectives (Leica HCX PL Fluotar, 20×), pinhole size (84 µm) and step size  of 0.5 µm, PMT gain 

(1107 V), offset (2.7 %) and laser intensity (77 %). If not stated otherwise, a minimum of three 

intensity curves were averaged for each inhibitor molecule concentration and normalized to the 

maximum intensities. All reagents used, aniline hydrochloride, ammonium persulfate, glutaric 

dialdehyde (50% v/v), amino acids (alanine, histidine and aspartic acid), lysozyme, tetramethyl 
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orthosilicate (TMOS), polyamine (spermine), hydrochloric acid, sodium hydroxide, ibuprofen, 

monobasic potassium phosphate monohydrate and dibasic potassium phosphate were obtained 

from Sigma-Aldrich. 

Zinc oxide: Single-crystalline ZnO (0001)-Zn and (10-10) substrates (Crystal GmBH, Berlin, 

Germany) were fixed in a 96 microwell plate after 30 min cleaning treatment with an UV Ozone 

Cleaner (ProCleaner Plus, BioForce Nanosciences). To determine the binding constant of the 

FluoZin-1 Dye (F24181, Thermo Fisher) to the ZnO surfaces, we measured the concentration-

dependent adsorption behavior and the time-dependent increase of the fluorescence intensity upon 

interaction with the ZnO (0001)-Zn and (10-10) substrates.  Binding studies were initiated by 

adding 200 µl of 10 μM FluoZin-1 dye in methanol and incubating (2 hr) on a shaker at 30 rpm at 

room temperature. The dye-containing solution was removed and replaced with 200 μl methanol 

(control) or with 200 μl solutions (1 nM to 1 mM) containing test compounds (the amino acids, H, 

C, S, L, A and P, Sigma-Aldrich) and incubated (2 hr) using the same conditions as above. Note: 

all the ZnO interaction studies were performed in methanol to avoid the rapid dissolution of ZnO 

single crystalline substrates in aqueous media.54 The substrates were measured using CSLM (Leica 

TCS SP5) using 496 nm excitation of FluoZin-1) with detection of fluorescence between 498 nm 

and 601 nm along the z-axis. Instrumental parameters were: the numerical aperture (0.5 NA), 

objectives (Leica HCX PL Fluotar, 10×), pinhole size (84 µm) and step size of 1 µm, PMT gain 

(1107 V), offset (2.7 %) and laser intensity (67 %). If not stated otherwise, a minimum of three 

intensity curves were averaged for each inhibitor molecule concentration and normalized to the 

maximum intensities.  

Data fitting: The assay results were fitted using a modification of the generalized logistic function 

using commercially available software (Origin; OriginLab 2015) using a Levenberg-Marquardt 
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algorithm with a tolerance of 10−9 and maximum number of 400 iterations. The resulting curve is 

plotted along with the 95% confidence intervals and the 95% prediction intervals.  

 

Theory  

 

This study adapts two similar fluorescence-based indicator displacement assays.18,19 One is the 

optically sectioned planar format assay (OSPFA), which has been described previously for 

antibodies and receptors (Figure 1a and e). The other involves selection of the indicator such that 

fluorescence is lost upon displacement (Figure 1b and f). Choosing an indicator with high affinity 

and specificity towards the surface of interest under the desired solvent conditions is key for this 

assay. For instance, PDMPO is known to be relatively insensitive to the presence of different ions 

and ionic strength55 and FluoZin-1 was developed for a cellular environment. These surface-bound 

assays are based on a two-step process: (i) the indicator is brought into contact with the surface 

where it binds reversibly (Figure 1 a and b) and (ii) a competitive molecule is added at increasing 

concentration (Figure 1 e and f) to test its ability to displace the indicator. If the test molecule 

causes the indicator to move from the surface into solution this response can be detected.18,19 For 

studies involving PDMPO as the indicator, PDMPO is found both bound to the surface and in bulk 

solution and the contributions of each have to be isolated from the observed spectral response. The 

approach to separate out the value of interest is described in the supplementary information and 

Supplementary Figure 1. The surface-bound contribution is the quantity of interest for subsequent 

EC50 and IC50 determinations. 
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The use of dyes like FluoZin-156,57 simplifies the treatment as FluoZin-1 becomes brightly 

fluorescent when it binds to Zn2+ in solution or to the coordinated zinc species in the surface of the 

ZnO single crystals used in this study; however, it is non-fluorescent when displaced from zinc 

species by a test compound.56 Thus one can simply use the optical response along the z-axis 

perpendicular to the surface to obtain intensity values which are used directly  in equations 1 and 

Figure 1: Binding assays of the selected indicators (upper panel) and comparison of the optically sectioned 
planar format indicator displacement assay for silica and ZnO (lower panel). a) and e) Schematic 
representation of the interaction at the silica interface (‘reduced’ indicates a reduction in signal intensity) and 
b) and f) at the ZnO interface. c) and g) Model reactions and their equilibrium constants during the binding 
assay and the displacement assay, respectively. S corresponds to the number of binding sites on the surface, 
F denotes the fluorescent dye and M the molecule of interest d) Concentration-dependent increase of the 
normalized fluorescent thin layer intensity B/Bmax, fitted by a modification of the generalized logistic 
function, leading to four fitting parameters including two asymptotes (A1, A2), the slope m as well as the 
concentration producing 50% of the maximal response (EC50). h) Concentration-dependent decrease of the 
normalized fluorescent thin layer intensity B/B0 fitted by a modification of the generalized logistic function, 
leading to four fitting parameters including the two asymptotes (A1, A2), the slope n as well as the 
concentration producing a 50% reduction in the response (IC50).  
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2 for the EC50 and IC50 determinations. The approach is adaptable to non-planar sample shapes; 

however, the planar shape is useful as it allows ZnO single crystals with specific orientation, in 

this case (0001)-Zn and (10-10) surfaces, to be assessed.  

Binding affinities of the indicator. For the optically sectioned planar format indicator 

displacement assay (O-IDA), the interaction of the indicator, in our case the fluorescent dyes 

PDMPO and FluoZin-1, with the substrate, silica and ZnO, respectively, must be calculated based 

on a binding assay before we can elucidate the interaction of the inhibitor molecules. This binding 

assay describes the formation of the fluorescent dye layer (thin layer) on the substrate. Upon 

maximum coverage of the substrate with the indicator a saturation of the maximum fluorescence 

intensity is observed, and addition of further indicator molecules does not contribute to the 

measured thin layer intensity meaning it does not alter the binding equilibrium. 

Calculation of EC50. Here we consider EC50 as the concentration required to reach half 

saturation of the surface with indicator. The values are obtained by fitting the indicator/ dye 

concentration and the associated intensities to a logistic dose-response equation:  

𝐵𝐵
𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚

= 𝐴𝐴1 +
𝐴𝐴2 − 𝐴𝐴1

1 + 10(𝑥𝑥−𝑙𝑙𝑙𝑙𝑙𝑙𝑥𝑥0)𝑚𝑚   .          (1) 

Plotting the fluorescence intensity B against the logarithm of the concentration x results in a 

sigmoidal shape for any value of the slope of the dose response curve m. A1 and A2 describe the 

asymptotes, x0 corresponds to the sigmoid midpoint, which gives the EC50 values as 10𝑥𝑥0  .  

If fluorescence intensities are normalized to Bmax, A2 = 1 and in the case where there is no 

residual background, A1 simplifies to 0. The surface specific binding constant KF of the 

fluorescence dye depends on the slope, m, of the curves via 𝐾𝐾𝐹𝐹 =  𝐸𝐸𝐸𝐸50𝑚𝑚 . When m = 1, EC50 would 

be equivalent to the dissociation constant of the fluorescence dye from the surface (KF).  
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Indicator displacement assay: To perform the indicator displacement assay, we firstly remove 

the supernatant including the non-bonded indicator molecules and replace it with a solvent to 

access the fluorescence intensity after an incubation period. This fluorescence signal is the initial 

state for the following displacement assay and provides the reference intensity (B0). For the 

displacement assay, the compound of interest is added in solution at different concentrations and 

the fluorescence signal is measured after an equilibration period and compared to the initial state. 

After full replacement of the dye, additional binding would not be detected for instance for the 

formation of multilayers. 

Calculation of IC50. During the indicator displacement assay, we access the so-called IC50 

value. Here, IC50 is defined as the concentration required to displace 50% of the bound indicator 

molecules in the thin layer from the initial state. IC50 is determined from the concentration 

dependent fluorescence of the indicator on the surface (c.f. Figure 1) and describes the potency of 

an assayed test compound. Modifying the generalized logistic function in equation 1 to account 

for a displacement by changing the sign of the exponent yields: 

𝐵𝐵
𝐵𝐵0

= 𝐴𝐴2 +
𝐴𝐴1 − 𝐴𝐴2

1 + 10−(𝑥𝑥−𝑙𝑙𝑙𝑙𝑙𝑙𝑥𝑥0)𝑛𝑛           (2)  

where the parameters are the same as in equation 1. Here the fits were simplified by applying a 

one-site competition curve, which is a dose response curve with a Hill slope n equal to 1. The IC50 

is then obtained from 10𝑥𝑥0  . Here, A1 and A2 can be used to account for residual fluorescence not 

treated already and to account for irreversible binding of the indicator dye. 

Calculation of Ki.  A quantity analogous to the inhibitory binding constant, Ki,58 can be defined 

for these assays. A range of approaches have been considered,58 59–62 however, the approach from 

Cheng,61,62 who highlighted the importance of the slope function, appears to be the most suitable 

for our treatment since it is obtained directly from the law of mass.61,62 This approach includes the 
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slopes n and m for the antagonist (substrate of interest) and agonist (fluorescent dye), respectively, 

and gives: 

𝐾𝐾𝑖𝑖 =  
𝐼𝐼𝐼𝐼50𝑛𝑛

1 + � [𝐹𝐹]
𝐸𝐸𝐸𝐸50

�
𝑚𝑚

 
 =

𝐼𝐼𝐼𝐼50𝑛𝑛

1 + [𝐹𝐹]𝑚𝑚
𝐾𝐾𝐹𝐹

     .                (3)    

As noted before, in the current study we assume that n = 1. 

Calculation of the free energy of fluorescent dye binding ∆𝐺𝐺𝐹𝐹 and adsorption ∆𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎. The 

availability of an equilibrium dissociation constant for the binding of the fluorescent dye, KF, 

allows for the calculation of the binding affinity following ∆𝐺𝐺𝐹𝐹 =  −𝑅𝑅𝑅𝑅 ln(𝑣̅𝑣𝑠𝑠 ∙ 𝐾𝐾𝐹𝐹) with 

𝑣̅𝑣𝑠𝑠 being the partial molar volume of the solvent used,63 in our cases 𝑣̅𝑣𝑠𝑠 = 0.018 𝑙𝑙 𝑚𝑚𝑚𝑚𝑚𝑚−1 for the 

aqueous environment and 𝑣̅𝑣𝑠𝑠 = 0.04046 𝑙𝑙 𝑚𝑚𝑚𝑚𝑚𝑚−1 for the methanol environment. The free energy 

of adsorption is calculated similarly, ∆𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎 =  −𝑅𝑅𝑅𝑅 ln(𝑣̅𝑣𝑠𝑠 ∙ 𝐾𝐾𝑖𝑖), with Ki being the inhibitory 

binding constant. 

 

Results and discussion 

 

The silica system is studied in aqueous media in accordance with previous binding studies1 and 

conditions used for both studies of biomineralization and drug delivery. The ZnO system is studied 

in methanol to prevent dissolution54 and to compare to conditions used in some bio-mineralization 

strategies.64,65 The usage of different solvent systems showcases the versatility of the approach.  
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Silica/PDMPO interaction in an optically sectioned planar format indicator displacement 

assay 

Measurement of the binding of the PDMPO fluorescent dye in phosphate buffer to silica 

(Supplementary Figure 2) yield an EC50 value of 1.75 ± 0.27 µM, KF = 0.01  ± 0.02 µM and a 

binding energy ∆GF = -13.28 ± 0.12 kcal mol-1
.   

The assay system was then challenged with the amino acids alanine, histidine and aspartic acid, 

the polyamine spermine, and ibuprofen. These specific amino acids were chosen as they are 

commonly found in peptides that bind to silica.66 A polyamine was selected as it has been found 

to be part of the post-translational modifications of proteins isolated from silicifying organisms 

such as some diatoms.67,68 It has also been shown to moderate silica formation in vitro.69,70 

Ibuprofen was selected as an example of a commonly used hydrophobic drug which could serve 

as a test case for silica-based drug delivery systems that can control the release of drugs and deliver 

them to specific targets.  

The dose response behaviour of the selected biomolecules are presented in Figure 2 (exemplarily 

for histidine) and in Supplementary Figure 3 (for all other systems). The calculated IC50, Ki and 

ΔGads values are presented in Table 1. Of the compounds tested, ibuprofen had the strongest 

affinity for the silica surface and spermine the weakest. The binding energies covered the range 

from -12.82 to -9.39 kcal mol-1 with the affinity of amino acids towards hydroxylated silica being: 

histidine>aspartic acid> alanine, this trend aligns with a computational study that studied the 

binding affinities of several amino acids to an amorphous hydroxylated silica surface with 

relatively different hydrophilicity performed under gas conditions.68 
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Histidine’s highest binding affinity to silica most likely includes interactions of the imidazole 

side chain interacting with silanol/siloxide groups on the silica surface as has been reported for 

peptides containing histidine.71,72 We propose that protonated N atoms of the imidazole ring may 

form direct H bonds with the silanol terminal group of the silica surface, in particular with 

deprotonated silanols that would be present at the pH of the experiment. Another contribution to 

binding will arise when the imidazole ring inserts flat into locally hydrophobic pockets while still 

forming hydrogen bonds with terminal OH groups. Both behaviours have been observed for 

peptide silica binding.71,72  

For the other two investigated amino acids, we obtain similar values for their binding affinity 

towards silica. With respect to the very different side functionalities, we would expect a common 

binding configuration via the amine group, which is known from molecular dynamics simulations 

on silica.71,73 

We note that computational studies of isolated amino acid binding to silica have only been 

performed on different surfaces of fully hydroxylated quartz in vacuum or for amino acid 

Figure 2: Exemplar dose response curves from histidine a) with silica, b) with the (0001)-Zn, and c) with (10-10) 
ZnO single crystal surfaces.  



 14 

analogues on fully hydroxylated quartz in an aqueous environment; thus there is no directly 

comparable computational data available. Of the data that is available, computed adsorption 

enthalpies (∆Eads) for alanine and aspartic acid on the (10-10) surface of quartz range from ca. -17 

to -20 kcal mol-1.74,75 For studies of ‘models of amino acids’ (e.g. methane for alanine; methanol 

for serine; butylamine for lysine and acetic acid for glutamic acid) the values are all around the -1 

to -2 kcal mol-1 range.76 For the investigated polyamine,77 the interaction with silica will most 

probably be mediated by the amine groups, leading to a comparable binding affinity. Similarly, 

there are no computational data available for comparison.  

 

Table 1: Binding affinities of selected biomolecules to silica surfaces. The standard error of the 

fitting for the IC50 values were propagated during the calculations.  

 

Name 
IC50  

(µM) 

Ki  

(µM) 

ΔGads  

(kcal mol-1) 

Amino 

acids 

Alanine 6.17 ± 1.77 4.23 ± 1.30 -9.71 ± 0.18 

Histidine 0.54 ± 0.11 0.37 ± 0.08 -11.15 ± 0.12 

Aspartic 

acid 
3.43 ± 0.71 2.35 ± 0.52 -10.06 ± 0.13 

Polyamine Spermine 10.7 ± 2.0 7.33 ± 1.45 -9.39 ± 0.12 

Drugs Ibuprofen 0.032 ± 0.003 0.022 ± 0.003 -12.82 ± 0.08 
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In our experimental study, Ibuprofen was found to exhibit the highest binding affinity for silica 

amongst all studied binding partners, with ∆𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎 = -12.82 ± 0.08 kcal mol-1. In recent density 

functional theory (DFT) simulations,32,78 interactions of ibuprofen with an hydroxylated silica 

surface were indeed shown to be exothermic and exergonic. Weak hydrogen-bonding between the 

carboxylic functionality of ibuprofen and OH surface groups of silica surface and dispersive 

attractions between the non-polar portion of ibuprofen and the surface were both found to be 

important,32 particularly in the presence of added water molecules.78  

ZnO/FluoZin indicator displacement assay 

The facet-specific binding of FluoZin-1 to ZnO in methanol (Supplementary Figure 4 and 

Supplementary Table 1) indicates that binding is stronger to the polar terminated ZnO (0001)-Zn 

((∆GF = -16.32 ± 0.03 kcal mol-1) than to the mixed terminated (10-10) surface (∆GF = -14.58 ± 

0.05 kcal mol-1). For the investigation of the binding affinities of amino acids we fitted the dose 

response behaviour with equation 2, similar to the Silica/PDMPO system (Figure 2, 

Supplementary Figure 5 and Supplementary Figure 6). The results are summarized in Table 2. The 

binding affinities of the amino acids to the (0001)-Zn surface can be ranked in the following order: 

histidine ≳ proline > serine ≳ cysteine > leucine ≳ alanine. For the amino acid/(10-10) ZnO 

interface, the ranking of the amino acids leads to a slightly different order: proline ≳ histidine > 

serine ≳ cysteine > alanine ≳ leucine. 

The interaction of histidine and proline is characterized by very similar values of the binding 

free energy within our experimental setup (c.f. Table 2). While the interaction of Zn2+ ions in 

solution with histidine79–81 and within zinc finger proteins46,48,82–84 has been extensively 



 16 

investigated, little is known about the interaction with proline. Biomineralization studies with 

amino acids support the strong influence of cysteine and histidine residues on the morphology of 

ZnO particles, while the influence of proline was less pronounced.85,86   

We hypothesize that the interaction of histidine and proline may take place through a 

qualitatively similar binding mode, namely via the nitrogen of the imidazole ring and the 

pyrrolidine group, respectively. However, the precise interaction patterns will very likely be 

determined by the local arrangement of the surface’s terminal groups together with the exact 

protonation states of both the amino acids and the surface. Such protonation states in a pure 

methanol environment are not unambiguously accessible at this point and should be investigated 

carefully in future combined experimental/theoretical studies. 

 

Table 2: Binding affinities of selected amino acids to the polar (0001)-Zn and the mixed terminated 

(10-10) surfaces of ZnO. The standard error of the fitting for the IC50 values were propagated 

during the calculations. 

Name 
IC50  

(µM) 

Ki  

(µM) 

∆𝑮𝑮𝒂𝒂𝒂𝒂𝒂𝒂  

(kcal mol-1) 

Alanine 
(0001)-Zn 461 ± 23 6.94 ± 2.19  -8.94 ± 0.19 

(10-10) 153 ± 28  3.77 ± 0.98  -9.30 ± 0.15 

Cysteine 
(0001)-Zn 53.2 ± 4.5 0.80 ± 0.26 -10.22 ± 0.19 

(10-10) 62.6 ± 6.4 1.55 ± 0.33 -9.83 ± 0.13 
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In agreement with previous research, we obtain similar binding affinities for the amino acids 

cysteine and serine.87 Though a proton-transfer to the surface was proposed for the adsorption of 

cysteine on the (10-10) surface,87 in agreement with the proposed interactions within zinc finger 

proteins, the interaction of cysteine and serine on this surface was attributed to the direct or indirect 

formation of hydrogen bonds including the carboxylate and side chain groups.87 Presumably, the 

interaction of the aliphatic amino acids alanine88 and leucine with the ZnO surfaces is via their c-

terminal carboxylate groups alone, leading to the lowest binding affinities obtained in our 

experimental study.  

Conclusions  

 

Histidine 
(0001)-Zn 0.39 ± 0.05 0.006 ± 0.002 -13.12 ± 0.20 

(10-10) 0.66 ± 0.06 0.016 ± 0.003 -12.53 ± 0.13 

Proline 
(0001)-Zn 1.52 ± 0.07 0.023 ± 0.007 -12.33 ± 0.19 

(10-10) 0.55 ± 0.06 0.014 ± 0.003 -12.63 ± 0.13 

Serine 
(0001)-Zn 48.6 ± 4.7 0.73 ± 0.24 -10.27 ± 0.19 

(10-10) 101 ± 5 2.49 ± 0.48 -9.55 ± 0.12 

Leucine 
(0001)-Zn 375 ± 28 5.64 ± 1.81 -9.06 ± 0.19 

(10-10) 231 ± 17 5.71 ±1.15 -9.05 ± 0.12 
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This study reports the first measurements of small molecule interactions with silica and zinc 

oxide surfaces using optically sectioned indicator displacement assays (O-IDAs). As demonstrated 

using the ZnO system using methanol as the solvent, these O-IDAs are not restricted to aqueous 

systems or materials that are insoluble in an aqueous environment. They can be performed in any 

solvent and with any material provided a suitable dye is available and the system overall does not 

produce interfering fluorescence. Additionally, investigation of interaction kinetics may be 

possible provided that the interactions investigated happen on a timescale slower than the time of 

image acquisition in the confocal microscope.  

The transfer of traditional indicator displacement assays to study the abiotic/biotic interface also 

requires us to keep in mind the underlying receptor occupancy theory with its assumptions.89–92 

For a direct comparison, we do not know the number of accessible binding sites on our surface of 

interest, for instance due to surface protonation and system dynamics. In the framework of 

abiotic/biotic interactions, the maximum number of binding sites corresponds to the number that 

can be occupied by a known concentration of fluorescent dye. However, it is important to note that 

steric hindrance might prevent full occupancy. Further, during the displacement assay also non-

indicator-occupied binding sites might be accessible and additionally not all analytes interact at 

the same binding site as the fluorescent dye due to the different chemistry involved. For instance, 

the dye FluoZin-1 binds to the zinc surface species, while some of the investigated amino acids 

will probably interact with the molecular adsorbed and/or dissociated water molecules present on 

the surface; the dye would in this case be displaced due to ’steric’ considerations.  

The O-IDA approach introduced here could be used similarly to the fluorescence-based indicator 

displacement assays in pharmacological screening since the method is convenient, robust, and 

scalable to high-throughput formats. In this form, O-IDAs could be of interest for assessing the 
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binding of medicinally relevant peptides or substrates for catalytic applications. This technique 

has advantages over quartz crystal microbalance (QCM) and surface plasmon resonance 

approaches by avoiding the issues associated with isolating the behaviour of molecules versus 

solvent/ions (QCM) and the need for a conductive surface (SPR). The only limitation of the O-

IDA technique is the requirement for a fluorescent dye that has a specific interaction towards the 

abiotic surface of interest. A major advantage in comparison to the alternative approaches is the 

direct visualization of the adsorption events, which allows for quality control judgements regarding 

the homogeneity and spatial distributions of the response. 

 

ASSOCIATED CONTENT 

Supporting Information.  

The following files are available free of charge: 

Synthesis of the functionalised silica surfaces; Overview of the Silica/PDMPO interaction in a 

planar format indicator assay; Characterization of the fluorescent dye PDMPO; O-IDA results 

for amino acids, ibuprofen and spermine on Silica using PDMPO; Characterization of the 

fluorescent dye FluoZin-1; Binding affinity of FluoZin-1 towards ZnO (0001)-Zn and (10-10); 

O-IDA results for amino acids on ZnO (0001)-Zn using FluoZin-1; O-IDA results for amino 

acids on ZnO (10-10) using FluoZin-1. 

AUTHOR INFORMATION 

Corresponding Author 

* carole.perry@ntu.ac.uk,  



 20 

Author Contributions 

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the 

manuscript. ‡These authors contributed equally.  

Funding Sources 

CCP acknowledges Airforce office of scientific research FA9550-13-1-0040 and FA9550-16-1-0213. LCC acknowledges 

funding from the Deutsche Forschungsgemeinschaft under Grants No. CO 1043/17- 1 and CO 1043/11-1.  

ACKNOWLEDGMENT 

The authors thank Dr. Massimo Delle Piane for fruitful discussions and Mr Daniel Oliver for 

dose response measurements for ZnO. 

ABBREVIATIONS 

CSLM: Confocal scanning laser microscopy; IDA: indicator displacement assay; OSPFA: 

optically sectioned planar format assay; SPR: surface plasmon resonance; QCM: quartz crystal 

microbalance  



 21 

REFERENCES 

(1)  Sola-Rabada, A.; Michaelis, M.; Oliver, D. J.; Roe, M. J.; Colombi Ciacchi, L.; Heinz, H.; 

Perry, C. C. Interactions at the Silica–Peptide Interface: Influence of the Extent of 

Functionalization on the Conformational Ensemble. Langmuir 2018, 34 (28), 8255–8263. 

https://doi.org/10.1021/acs.langmuir.8b00874. 

(2)  Patwardhan, S. V.; Patwardhan, G.; Perry, C. C. Interactions of Biomolecules with 

Inorganic Materials: Principles, Applications and Future Prospects. J. Mater. Chem. 2007, 

17 (28), 2875–2884. https://doi.org/10.1039/b704075j. 

(3)  Puddu, V.; Perry, C. C. Peptide Adsorption on Silica Nanoparticles: Evidence of 

Hydrophobic Interactions. ACS Nano 2012, 6 (7), 6356–6363. 

https://doi.org/10.1021/nn301866q. 

(4)  Hildebrand, N.; Michaelis, M.; Wurzler, N.; Li, Z.; Hirst, J. D.; Micsonai, A.; Kardos, J.; 

Gil-Ley, A.; Bussi, G.; Köppen, S.; et al. Atomistic Details of Chymotrypsin 

Conformational Changes upon Adsorption on Silica. ACS Biomater. Sci. Eng. 2018, 4 (12), 

4036–4050. https://doi.org/10.1021/acsbiomaterials.8b00819. 

(5)  Anselme, K.; Davidson, P.; Popa, A. M.; Giazzon, M.; Liley, M.; Ploux, L. The Interaction 

of Cells and Bacteria with Surfaces Structured at the Nanometre Scale. Acta Biomater. 

2010, 6 (10), 3824–3846. https://doi.org/10.1016/j.actbio.2010.04.001. 

(6)  Nel, A. E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V; Somasundaran, P.; Klaessig, 

F.; Castranova, V.; Thompson, M. Understanding Biophysicochemical Interactions at the 

Nano--Bio Interface. Nat. Mater. 2009, 8 (7), 543–557. https://doi.org/10.1038/nmat2442. 



 22 

(7)  Roach, P.; Farrar, D.; Perry, C. C. Interpretation of Protein Adsorption: Surface-Induced 

Conformational Changes. J. Am. Chem. Soc. 2005, 127 (22), 8168–8173. 

https://doi.org/10.1021/ja042898o. 

(8)  Roach, P.; Eglin, D.; Rohde, K.; Perry, C. C. Modern Biomaterials: A Review—Bulk 

Properties and Implications of Surface Modifications. J. Mater. Sci. Mater. Med. 2007, 18 

(7), 1263–1277. https://doi.org/10.1007/s10856-006-0064-3. 

(9)  Hench, L. L. Biomaterials: A Forecast for the Future. Biomaterials 1998, 19 (16), 1419–

1423. https://doi.org/10.1016/S0142-9612(98)00133-1. 

(10)  Williams, D. F. On the Nature of Biomaterials. Biomaterials 2009, 30 (30), 5897–5909. 

https://doi.org/10.1016/j.biomaterials.2009.07.027. 

(11)  Li, Q.; Michaelis, M.; Wei, G.; Colombi Ciacchi, L. A Novel Aptasensor Based on Single-

Molecule Force Spectroscopy for Highly Sensitive Detection of Mercury Ions. Analyst 

2015, 140 (15), 5243–5250. https://doi.org/10.1039/C5AN00708A. 

(12)  Li, Q.; Zhang, T.; Pan, Y.; Ciacchi, L. C.; Xu, B.; Wei, G. AFM-Based Force Spectroscopy 

for Bioimaging and Biosensing. RSC Adv. 2016, 6 (16), 12893–12912. 

https://doi.org/10.1039/C5RA22841G. 

(13)  O’Sullivan, C. K.; Guilbault, G. G. Commercial Quartz Crystal Microbalances – Theory 

and Applications. Biosens. Bioelectron. 1999, 14 (8–9), 663–670. 

https://doi.org/10.1016/S0956-5663(99)00040-8. 

(14)  Homola, J.; Yee, S. S.; Gauglitz, G. Surface Plasmon Resonance Sensors: Review. Sensors 



 23 

Actuators B Chem. 1999, 54 (1–2), 3–15. https://doi.org/10.1016/S0925-4005(98)00321-9. 

(15)  Dudko, O. K.; Filippov, A. E.; Klafter, J.; Urbakh, M. Beyond the Conventional Description 

of Dynamic Force Spectroscopy of Adhesion Bonds. Proc. Natl. Acad. Sci. 2003, 100 (20), 

11378–11381. https://doi.org/10.1073/pnas.1534554100. 

(16)  Freire, E.; Mayorga, O. L.; Straume, M. Isothermal Titration Calorimetry. Anal. Chem. 

1990, 62 (18), 950A–959A. https://doi.org/10.1021/ac00217a002. 

(17)  Hennig, A.; Bakirci, H.; Nau, W. M. Label-Free Continuous Enzyme Assays with 

Macrocycle-Fluorescent Dye Complexes. Nat. Methods 2007, 4 (8), 629–632. 

https://doi.org/10.1038/nmeth1064. 

(18)  Nguyen, B. T.; Wiskur, S. L.; Anslyn, E. V. Using Indicator-Displacement Assays in Test 

Strips and to Follow Reaction Kinetics. Org. Lett. 2004, 6 (15), 2499–2501. 

(19)  Nguyen, B. T.; Anslyn, E. V. Indicator–Displacement Assays. Coord. Chem. Rev. 2006, 

250 (23–24), 3118–3127. https://doi.org/10.1016/j.ccr.2006.04.009. 

(20)  Ghafari, H.; Parambath, M.; Hanley, Q. S. Macromolecular Binding and Kinetic Analysis 

with Optically Sectioned Planar Format Assays. Analyst 2012, 137 (20), 4809–4814. 

https://doi.org/10.1039/c2an35134j. 

(21)  Barbé, C.; Bartlett, J.; Kong, L.; Finnie, K.; Lin, H. Q.; Larkin, M.; Calleja, S.; Bush, A.; 

Calleja, G. Silica Particles: A Novel Drug-Delivery System. Adv. Mater. 16 (21), 1959–

1966. https://doi.org/10.1002/adma.200400771. 

(22)  Delle Piane, M.; Corno, M.; Ugliengo, P. Ab Initio Modeling of Hydrogen Bond Interaction 



 24 

at Silica Surfaces With Focus on Silica/Drugs Systems. In Modelling and Simulation in the 

Science of Micro- and Meso-Porous Materials; Catlow, C. R. A., Speybroeck, V. Van, van 

Santen, R. A., Eds.; Elsevier, 2018; pp 297–328. https://doi.org/10.1016/B978-0-12-

805057-6.00009-0. 

(23)  Sola-Rabada, A.; Sahare, P.; Hickman, G. J.; Vasquez, M.; Canham, L. T.; Perry, C. C.; 

Agarwal, V. Biogenic Porous Silica and Silicon Sourced from Mexican Giant Horsetail 

(Equisetum Myriochaetum) and Their Application as Supports for Enzyme Immobilization. 

Colloids Surfaces B Biointerfaces 2018, 166, 195–202. 

https://doi.org/10.1016/j.colsurfb.2018.02.047. 

(24)  Townson, J. L.; Lin, Y.-S.; Chou, S. S.; Awad, Y. H.; Coker, E. N.; Brinker, C. J.; Kaehr, 

B. Synthetic Fossilization of Soft Biological Tissues and Their Shape-Preserving 

Transformation into Silica or Electron-Conductive Replicas. Nat. Commun. 2014, 5, 5665. 

https://doi.org/10.1038/ncomms6665. 

(25)  Kaehr, B.; Townson, J. L.; Kalinich, R. M.; Awad, Y. H.; Swartzentruber, B. S.; Dunphy, 

D. R.; Brinker, C. J. Cellular Complexity Captured in Durable Silica Biocomposites. Proc. 

Natl. Acad. Sci. 2012, 109 (43), 17336–17341. https://doi.org/10.1073/pnas.1205816109. 

(26)  Kröger, N.; Deutzmann, R.; Sumper, M. Polycationic Peptides from Diatom Biosilica That 

Direct Silica Nanosphere Formation. Science (80-. ). 1999, 286 (5442), 1129–1132. 

https://doi.org/10.1126/science.286.5442.1129. 

(27)  Kroger, N.; Deutzmann, R.; Bergsdorf, C.; Sumper, M. Species-Specific Polyamines from 

Diatoms Control Silica Morphology. Proc. Natl. Acad. Sci. 2000, 97 (26), 14133–14138. 



 25 

https://doi.org/10.1073/pnas.260496497. 

(28)  Hildebrand, M. Diatoms, Biomineralization Processes, and Genomics. Chem. Rev. 2008, 

108 (11), 4855–4874. https://doi.org/10.1021/cr078253z. 

(29)  Pegg, A. E. Functions of Polyamines in Mammals. J. Biol. Chem. 2016, 291 (29), 14904–

14912. https://doi.org/10.1074/jbc.R116.731661. 

(30)  Salonen, J.; Laitinen, L.; Kaukonen, A. M.; Tuura, J.; Björkqvist, M.; Heikkilä, T.; Vähä-

Heikkilä, K.; Hirvonen, J.; Lehto, V.-P. Mesoporous Silicon Microparticles for Oral Drug 

Delivery: Loading and Release of Five Model Drugs. J. Control. Release 2005, 108 (2–3), 

362–374. https://doi.org/10.1016/j.jconrel.2005.08.017. 

(31)  Andersson, J.; Rosenholm, J.; Areva, S.; Lindén, M. Influences of Material Characteristics 

on Ibuprofen Drug Loading and Release Profiles from Ordered Micro- and Mesoporous 

Silica Matrices. Chem. Mater. 2004, 16 (21), 4160–4167. 

https://doi.org/10.1021/cm0401490. 

(32)  Delle Piane, M.; Corno, M.; Pedone, A.; Dovesi, R.; Ugliengo, P. Large-Scale B3LYP 

Simulations of Ibuprofen Adsorbed in MCM-41 Mesoporous Silica as Drug Delivery 

System. J. Phys. Chem. C 2014, 118 (46), 26737–26749. 

https://doi.org/10.1021/jp507364h. 

(33)  Bowker, M. The Mechanism of Methanol Synthesis on Copper/Zinc Oxide/Alumina 

Catalysts. J. Catal. 1988, 109 (2), 263–273. https://doi.org/10.1016/0021-9517(88)90209-

6. 



 26 

(34)  Özgür, Ü.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Doğan, S.; Avrutin, V.; Cho, 

S.-J.; Morkoç, H. A Comprehensive Review of ZnO Materials and Devices. J. Appl. Phys. 

2005, 98 (4), 041301. https://doi.org/10.1063/1.1992666. 

(35)  Wang, Z. L. Zinc Oxide Nanostructures: Growth, Properties and Applications. J. Phys. 

Condens. Matter 2004, 16 (25), R829–R858. https://doi.org/10.1088/0953-

8984/16/25/R01. 

(36)  Zhang, Y.; Nayak, T.; Hong, H.; Cai, W. Biomedical Applications of Zinc Oxide 

Nanomaterials. Curr. Mol. Med. 2013, 13 (10), 1633–1645. 

https://doi.org/10.2174/1566524013666131111130058. 

(37)  Capper, P.; Kasap, S.; Willoughby, A. Zinc Oxide Materials for Electronic and 

Optoelectronic Device Applications; John Wiley & Sons, 2011. 

(38)  Umetsu, M.; Mizuta, M.; Tsumoto, K.; Ohara, S.; Takami, S.; Watanabe, H.; Kumagai, I.; 

Adschiri, T. Bioassisted Room-Temperature Immobilization and Mineralization of Zinc 

Oxide—The Structural Ordering of ZnO Nanoparticles into a Flower-Type Morphology. 

Adv. Mater. 2005, 17 (21), 2571–2575. https://doi.org/10.1002/adma.200500863. 

(39)  Limo, M. J.; Ramasamy, R.; Perry, C. C. ZnO Binding Peptides: Smart Versatile Tools for 

Controlled Modification of ZnO Growth Mechanism and Morphology. Chem. Mater. 2015, 

27 (6), 1950–1960. https://doi.org/10.1021/acs.chemmater.5b00419. 

(40)  Sola-Rabada, A.; Liang, M.-K.; Roe, M. J.; Perry, C. C. Peptide-Directed Crystal Growth 

Modification in the Formation of ZnO. J. Mater. Chem. B 2015, 3 (18), 3777–3788. 

https://doi.org/10.1039/C5TB00253B. 



 27 

(41)  Baier, J.; Blumenstein, N. J.; Preusker, J.; Jeurgens, L. P. H.; Welzel, U.; Do, T. A.; Pleiss, 

J.; Bill, J. The Influence of ZnO-Binding 12-Mer Peptides on Bio-Inspired ZnO Formation. 

CrystEngComm 2014, 16 (24), 5301. https://doi.org/10.1039/c4ce00520a. 

(42)  Liang, M.-K.; Limo, M. J.; Sola-Rabada, A.; Roe, M. J.; Perry, C. C. New Insights into the 

Mechanism of ZnO Formation from Aqueous Solutions of Zinc Acetate and Zinc Nitrate. 

Chem. Mater. 2014, 26 (14), 4119–4129. https://doi.org/10.1021/cm501096p. 

(43)  Liang, M.-K.; Deschaume, O.; Patwardhan, S. V; Perry, C. C. Direct Evidence of ZnO 

Morphology Modification via the Selective Adsorption of ZnO-Binding Peptides. J. Mater. 

Chem. 2011, 21 (1), 80–89. https://doi.org/10.1039/C0JM02124E. 

(44)  Rothenstein, D.; Claasen, B.; Omiecienski, B.; Lammel, P.; Bill, J. Isolation of ZnO-

Binding 12-Mer Peptides and Determination of Their Binding Epitopes by NMR 

Spectroscopy. J. Am. Chem. Soc. 2012, 134 (30), 12547–12556. 

https://doi.org/10.1021/ja302211w. 

(45)  Dudev, T.; Lim, C. Principles Governing Mg, Ca, and Zn Binding and Selectivity in 

Proteins. Chem. Rev. 2003, 103 (3), 773–788. https://doi.org/10.1021/cr020467n. 

(46)  Maret, W.; Li, Y. Coordination Dynamics of Zinc in Proteins. Chem. Rev. 2009, 109 (10), 

4682–4707. https://doi.org/10.1021/cr800556u. 

(47)  Vallee, B. L.; Auld, D. S. Active-Site Zinc Ligands and Activated H2O of Zinc Enzymes. 

Proc. Natl. Acad. Sci. 1990, 87 (1), 220–224. https://doi.org/10.1073/pnas.87.1.220. 

(48)  Laitaoja, M.; Valjakka, J.; Jänis, J. Zinc Coordination Spheres in Protein Structures. Inorg. 



 28 

Chem. 2013, 52 (19), 10983–10991. https://doi.org/10.1021/ic401072d. 

(49)  Kay, B. K.; Adey, N. B.; Yun-Sheng, H.; Manfredi, J. P.; Mataragnon, A. H.; Fowlkes, D. 

M. An M13 Phage Library Displaying Random 38-Amino-Acid Peptides as a Source of 

Novel Sequences with Affinity to Selected Targets. Gene 1993, 128 (1), 59–65. 

https://doi.org/10.1016/0378-1119(93)90153-T. 

(50)  Peters, E. A.; Schatz, P. J.; Johnson, S. S.; Dower, W. J. Membrane Insertion Defects 

Caused by Positive Charges in the Early Mature Region of Protein PIII of Filamentous 

Phage Fd Can Be Corrected by PrlA Suppressors. J. Bacteriol. 1994, 176 (14), 4296–4305. 

https://doi.org/10.1128/jb.176.14.4296-4305.1994. 

(51)  Rai, A.; Perry, C. C. Facile Fabrication of Uniform Silica Films with Tunable Physical 

Properties Using Silicatein Protein from Sponges. Langmuir 2010, 26 (6), 4152–4159. 

https://doi.org/10.1021/la903366a. 

(52)  Hickman, G. J.; Rai, A.; Boocock, D. J.; Rees, R. C.; Perry, C. C. Fabrication, 

Characterisation and Performance of Hydrophilic and Super-Hydrophilic Silica as Cell 

Culture Surfaces. J. Mater. Chem. 2012, 22 (24), 12141–12148. 

https://doi.org/10.1039/c2jm31161e. 

(53)  Nicklin, M.; Rees, R. C.; Pockley, A. G.; Perry, C. C. Development of an Hydrophobic 

Fluoro-Silica Surface for Studying Homotypic Cancer Cell Aggregation–Disaggregation as 

a Single Dynamic Process in Vitro. Biomater. Sci. 2014, 2 (10), 1486–1496. 

https://doi.org/10.1039/C4BM00194J. 

(54)  Michaelis, M.; Fischer, C.; Colombi Ciacchi, L.; Luttge, A. Variability of Zinc Oxide 



 29 

Dissolution Rates. Environ. Sci. Technol. 2017, 51 (8), 4297–4305. 

https://doi.org/10.1021/acs.est.6b05732. 

(55)  Diwu, Z.; Chen, C.-S.; Zhang, C.; Klaubert, D. H.; Haugland, R. P. A Novel Acidotropic 

PH Indicator and Its Potential Application in Labeling Acidic Organelles of Live Cells. 

Chem. Biol. 1999, 6 (7), 411–418. https://doi.org/https://doi.org/10.1016/S1074-

5521(99)80059-3. 

(56)  Gee, K. .; Zhou, Z.-L.; Ton-That, D.; Sensi, S. .; Weiss, J. . Measuring Zinc in Living Cells. 

Cell Calcium 2002, 31 (5), 245–251. https://doi.org/10.1016/S0143-4160(02)00053-2. 

(57)  Jiang, P.; Guo, Z. Fluorescent Detection of Zinc in Biological Systems: Recent 

Development on the Design of Chemosensors and Biosensors. Coord. Chem. Rev. 2004, 

248 (1–2), 205–229. https://doi.org/10.1016/j.cct.2003.10.013. 

(58)  Yung-Chi, C.; Prusoff, W. H. Relationship between the Inhibition Constant (KI) and the 

Concentration of Inhibitor Which Causes 50 per Cent Inhibition (I50) of an Enzymatic 

Reaction. Biochem. Pharmacol. 1973, 22 (23), 3099–3108. https://doi.org/10.1016/0006-

2952(73)90196-2. 

(59)  Craig, D. A. The Cheng-Prusoff Relationship: Something Lost in the Translation. Trends 

Pharmacol. Sci. 1993, 14 (3), 89–91. https://doi.org/10.1016/0165-6147(93)90070-Z. 

(60)  Lazareno, S.; Birdsall, N. J. M. Estimation of Competitive Antagonist Affinity from 

Functional Inhibition Curves Using the Gaddum, Schild and Cheng-Prusoíf Equations. Br. 

J. Pharmacol. 1993, 109 (4), 1110–1119. https://doi.org/10.1111/j.1476-

5381.1993.tb13737.x. 



 30 

(61)  Cheng, H. C. The Power Issue: Determination of KB or Ki from IC50. J. Pharmacol. 

Toxicol. Methods 2001, 46 (2), 61–71. https://doi.org/10.1016/S1056-8719(02)00166-1. 

(62)  Cheng, H. The Influence of Cooperativity on the Determination of Dissociation Constants: 

Examination of the Cheng–Prusoff Equation, the Scatchard Analysis, the Schild Analysis 

and Related Power Equations. Pharmacol. Res. 2004, 50 (1), 21–40. 

https://doi.org/10.1016/j.phrs.2003.11.007. 

(63)  Alsteens, D.; Pfreundschuh, M.; Zhang, C.; Spoerri, P. M.; Coughlin, S. R.; Kobilka, B. K.; 

Müller, D. J. Imaging G Protein–Coupled Receptors While Quantifying Their Ligand-

Binding Free-Energy Landscape. Nat. Methods 2015, 12 (9), 845–851. 

https://doi.org/10.1038/nmeth.3479. 

(64)  Kilper, S.; Facey, S. J.; Burghard, Z.; Hauer, B.; Rothenstein, D.; Bill, J. Macroscopic 

Properties of Biomimetic Ceramics Are Governed by the Molecular Recognition at the 

Bioorganic-Inorganic Interface. Adv. Funct. Mater. 2018, 28 (10), 1705842. 

https://doi.org/10.1002/adfm.201705842. 

(65)  Kilper, S.; Jahnke, T.; Aulich, M.; Burghard, Z.; Rothenstein, D.; Bill, J. Genetically 

Induced In Situ-Poling for Piezo-Active Biohybrid Nanowires. Adv. Mater. 2019, 31 (6), 

1805597. https://doi.org/10.1002/adma.201805597. 

(66)  Belton, D.; Paine, G.; Patwardhan, S. V; Perry, C. C. Towards an Understanding of 

(Bio)Silicification: The Role of Amino Acids and Lysine Oligomers in Silicification. J. 

Mater. Chem. 2004, 14 (14), 2231–2241. https://doi.org/10.1039/B401882F. 

(67)  Mathé, C.; Devineau, S.; Aude, J.-C.; Lagniel, G.; Chédin, S.; Legros, V.; Mathon, M.-H.; 



 31 

Renault, J.-P.; Pin, S.; Boulard, Y.; et al. Structural Determinants for Protein 

Adsorption/Non-Adsorption to Silica Surface. PLoS One 2013, 8 (11), e81346. 

https://doi.org/10.1371/journal.pone.0081346. 

(68)  Otzen, D. The Role of Proteins in Biosilicification. Scientifica (Cairo). 2012, 2012 (Article 

ID 867562). https://doi.org/10.6064/2012/867562. 

(69)  Belton, D. J.; Patwardhan, S. V; Perry, C. C. Spermine, Spermidine and Their Analogues 

Generate Tailored Silicas. J. Mater. Chem. 2005, 15 (43), 4629–4638. 

https://doi.org/10.1039/B509683A. 

(70)  Belton, D. J.; Patwardhan, S. V; Annenkov, V. V; Danilovtseva, E. N.; Perry, C. C. From 

Biosilicification to Tailored Materials: Optimizing Hydrophobic Domains and Resistance 

to Protonation of Polyamines. Proc. Natl. Acad. Sci. 2008, 105 (16), 5963–5968. 

https://doi.org/10.1073/pnas.0710809105. 

(71)  Rimola, A.; Sodupe, M.; Ugliengo, P. Affinity Scale for the Interaction of Amino Acids 

with Silica Surfaces. J. Phys. Chem. C 2009, 113 (14), 5741–5750. 

https://doi.org/10.1021/jp811193f. 

(72)  Patwardhan, S. V; Emami, F. S.; Berry, R. J.; Jones, S. E.; Naik, R. R.; Deschaume, O.; 

Heinz, H.; Perry, C. C. Chemistry of Aqueous Silica Nanoparticle Surfaces and the 

Mechanism of Selective Peptide Adsorption. J. Am. Chem. Soc. 2012, 134 (14), 6244–6256. 

https://doi.org/10.1021/ja211307u. 

(73)  Emami, F. S.; Puddu, V.; Berry, R. J.; Varshney, V.; Patwardhan, S. V; Perry, C. C.; Heinz, 

H. Prediction of Specific Biomolecule Adsorption on Silica Surfaces as a Function of PH 



 32 

and Particle Size. Chem. Mater. 2014, 26 (19), 5725–5734. 

https://doi.org/10.1021/cm5026987. 

(74)  Han, J. W.; Sholl, D. S. Enantiospecific Adsorption of Amino Acids on Hydroxylated 

Quartz (0001). Langmuir 2009, 25 (18), 10737–10745. https://doi.org/10.1021/la901264e. 

(75)  Han, J. W.; Sholl, D. S. Enantiospecific Adsorption of Amino Acids on Hydroxylated 

Quartz (10̄0). Phys. Chem. Chem. Phys. 2010, 12 (28), 8024–8032. 

https://doi.org/10.1039/B926035H. 

(76)  Wright, L. B.; Walsh, T. R. Facet Selectivity of Binding on Quartz Surfaces: Free Energy 

Calculations of Amino-Acid Analogue Adsorption. J. Phys. Chem. C 2012, 116 (4), 2933–

2945. https://doi.org/10.1021/jp209554g. 

(77)  Menzel, H.; Horstmann, S.; Behrens, P.; Bärnreuther, P.; Krueger, I.; Jahns, M. Chemical 

Properties of Polyamines with Relevance to the Biomineralization of Silica. Chem. 

Commun. 2003, No. 24, 2994–2995. https://doi.org/10.1039/B310201G. 

(78)  Delle Piane, M.; Vaccari, S.; Corno, M.; Ugliengo, P. Silica-Based Materials as Drug 

Adsorbents: First Principle Investigation on the Role of Water Microsolvation on Ibuprofen 

Adsorption. J. Phys. Chem. A 2014, 118 (31), 5801–5807. 

https://doi.org/10.1021/jp411173k. 

(79)  Zhou, L.; Li, S.; Su, Y.; Yi, X.; Zheng, A.; Deng, F. Interaction between Histidine and 

Zn(II) Metal Ions over a Wide PH as Revealed by Solid-State NMR Spectroscopy and DFT 

Calculations. J. Phys. Chem. B 2013, 117 (30), 8954–8965. 

https://doi.org/10.1021/jp4041937. 



 33 

(80)  Trzaskowski, B.; Adamowicz, L.; Deymier, P. A. A Theoretical Study of Zinc(II) 

Interactions with Amino Acid Models and Peptide Fragments. JBIC J. Biol. Inorg. Chem. 

2007, 13 (1), 133–137. https://doi.org/10.1007/s00775-007-0306-y. 

(81)  Liao, S.-M.; Du, Q.-S.; Meng, J.-Z.; Pang, Z.-W.; Huang, R.-B. The Multiple Roles of 

Histidine in Protein Interactions. Chem. Cent. J. 2013, 7 (1), 44. 

https://doi.org/10.1186/1752-153X-7-44. 

(82)  Chakrabarti, P. Geometry of Interaction of Metal Ions with Histidine Residues in Protein 

Structures. "Protein Eng. Des. Sel. 1990, 4 (1), 57–63. 

https://doi.org/10.1093/protein/4.1.57. 

(83)  Lin; Lim, C. Factors Governing the Protonation State of Zn-Bound Histidine in Proteins: A 

DFT/CDM Study. J. Am. Chem. Soc. 2004, 126 (8), 2602–2612. 

https://doi.org/10.1021/ja038827r. 

(84)  Daniel, A. G.; Farrell, N. P. The Dynamics of Zinc Sites in Proteins: Electronic Basis for 

Coordination Sphere Expansion at Structural Sites. Metallomics 2014, 6 (12), 2230–2241. 

https://doi.org/10.1039/C4MT00213J. 

(85)  Gerstel, P.; Hoffmann, R. C.; Lipowsky, P.; Jeurgens, L. P. H.; Bill, J.; Aldinger, F. 

Mineralization from Aqueous Solutions of Zinc Salts Directed by Amino Acids and 

Peptides. Chem. Mater. 2006, 18 (1), 179–186. https://doi.org/10.1021/cm051542o. 

(86)  Gerstel, P.; Lipowsky, P.; Durupthy, O.; Hoffmann, R. C.; Bellina, P.; Bill, J.; Aldinger, F. 

Deposition of Zinc Oxide and Layered Basic Zinc Salts from Aqueous Solutions Containing 

Amino Acids and Dipeptides. J. Ceram. Soc. Japan 2006, 114 (1335), 911–917. 



 34 

https://doi.org/10.2109/jcersj.114.911. 

(87)  große Holthaus, S.; Köppen, S.; Frauenheim, T.; Ciacchi, L. C. Molecular Dynamics 

Simulations of the Amino Acid-ZnO (10-10) Interface: A Comparison between Density 

Functional Theory and Density Functional Tight Binding Results. J. Chem. Phys. 2014, 140 

(23), 234707. https://doi.org/10.1063/1.4882280. 

(88)  Gao, Y. K.; Traeger, F.; Shekhah, O.; Idriss, H.; Wöll, C. Probing the Interaction of the 

Amino Acid Alanine with the Surface of ZnO. J. Colloid Interface Sci. 2009, 338 (1), 16–

21. https://doi.org/10.1016/j.jcis.2009.06.008. 

(89)  Hill, A. V. The Possible Effects of the Aggregation of the Molecules of Haemoglobin on 

Its Dissociation Curves. J Physiol 1910, 40, 4–7. 

(90)  Clark, A. J. Mode of Action of Drugs on Cells; Edward Arnold: London, 1933. 

(91)  Ruffolo, R. R. Important Concepts of Receptor Theory. J. Auton. Pharmacol. 1982, 2 (4), 

277–295. https://doi.org/10.1111/j.1474-8673.1982.tb00520.x. 

(92)  Colquhoun, D. The Quantitative Analysis of Drug–Receptor Interactions: A Short History. 

Trends Pharmacol. Sci. 2006, 27 (3), 149–157. https://doi.org/10.1016/j.tips.2006.01.008. 

 

  



 35 

TOC 



 36 

 


	Introduction
	Materials and Methods
	Theory
	Results and discussion
	Conclusions

