Unemployment, Growth and Welfare Effects of Labor Market Reforms

King Yoong Lim & Pierre-Richard Agenor

School of Social Sciences, University of Manchester

This version: August 24, 2017 EEA Lisbon 2017

向下 イヨト イヨト

Long-term Structural Unemployment

• Global Unemployment: **204** millions in 2016; **5.6%**.

- If they formed their own country, the unemployed would be the 5th largest country in the world.
- High rates of long-term structural unemployment;
- Example: Europe-5 (52.8%
 in 2015, compared to OECDaverage of 33.8%).

Source: OECD; ILO

King Yoong Lim & Pierre-Richard Agenor

Unemployment, LMRs, Growth and Welfare

Addressing Shortcomings in LMR Literature

Large LMRs literature: Efficiency wages, U.Benefits, Min wages, C.Bargaining, Search [van Schaik & de Groot (2000), Meckl (2004), Zagler (2009; 2011), Bhattacharyya & Gupta (2015), Cacciatore & Fiori (2016), Chang & Hung (2016)]

・ 同 ト ・ ヨ ト ・ ヨ ト …

Addressing Shortcomings in LMR Literature

Large LMRs literature: Efficiency wages, U.Benefits, Min wages, C.Bargaining, Search [van Schaik & de Groot (2000), Meckl (2004), Zagler (2009; 2011), Bhattacharyya & Gupta (2015), Cacciatore & Fiori (2016), Chang & Hung (2016)]

Shortcomings that we attempt to address:

- 1. Key Issue: Simultaneous LMRs In Practice, LMRs often implemented in Packages. Ignoring *Policy Externalities*: a potential source of bias.
- 2. Welfare effects and trade-offs with growth;
- Transitional dynamics (hence, dynamic trade-offs of LMRs) often neglected due to limited attention to supply side of workforce composition;

Model Overview

Issues addressed in the following settings:

- Innovation driven OLG growth model, with heterogeneous labor force (untrained & specialized), LM rigidities-generated structural unemployment in equilibrium;
- 2-period individuals with different innate abilities; In old age, time is allocated to leisure;
- 4 production sectors: manufacturing (homogeneous final good); intermediate goods (IGs); innovation (designs for producing IGs); education (allows skills acquisition);
- Impact of LMRs is assessed not only in terms of unemployment, growth, and welfare, but also misallocation of talent.

▲ □ → ▲ □ → ▲ □ →

Utility function

$$V_t^{h,j} = \eta_C \ln c_{t|t}^{h,j} + \frac{\ln c_{t|t+1}^{h,j}}{1+\rho}, \ h = U, SY, SR, \ j = E, L$$

Budget constraints

$$c_{t|t}^{U,j} + s_t^{Uj} = \begin{cases} (1-\tau)w_t^U & \text{if } j = Y \\ b_t^U & \text{if } j = L \end{cases},$$

$$c_{t|t}^{h,j} + s_t^h = \begin{cases} (1-\varepsilon)(1-\tau)(w_t^h - tc_t) & \text{if } j = E, \ h = SY, SR\\ (1-\varepsilon)(b_t^S - tc_t) & \text{if } j = L \end{cases}$$

$$c_{t|t+1}^{h,j} = (1 + r_{t+1})s_t^h, \ h = U, SY, SR, \ j = E, L$$

(1日) (日) (日)

æ

Threshold level of ability, a_t^C , above which individuals choose to undergo training depends on

$$(1-\zeta^{UL}_t) {w}^U_t + \zeta^{UL}_t {b}^U_t$$
 ,

$$(1-\varepsilon)(\zeta_t^{SY}w_t^{SY}+\zeta_t^{SR}w_t^{SR}+\zeta_t^{SL}b_t^S)-tc_t,$$

where ζ_t^j , j = SY, SR, SL, UL are respective probabilities.

Training cost proportional to expected S-wage & inversely related to ability.

Key channel through which unemployment/public policy affect supply side of labor market.

・ 同 ト ・ ヨ ト ・ ヨ ト

Production Structure and the Labor Market

King Yoong Lim & Pierre-Richard Agenor Unemployment, LMRs, Growth and Welfare

LMR Feature 1 (T.Union and Minimum Wage)

- FG: Wages set through a *right-to-manage* bargaining process between a centralized trade union & firms.
- Union maximizes, for h = U, SY:

$$\mathfrak{V}_t^h = (w_t^h - w_t^{hT})^{\xi^h} (N_t^h)^{1-\xi^h},$$

subject to labor demand functions. Solution:

$$w_t^h = (\frac{1-\xi^h}{1-2\xi^h})w_t^{hT},$$

where $w_t^{UT} = w_t^{UM}(\theta_t^{UL})^{-\varkappa^U}$, $w_t^{UM} = w_0^U(\frac{Y_t}{N})$.

- Similar specification SY-workers.
- In a growth setting: minimum wage, target wages, and benefit rates must rise at same rate as (average) income.

LMR Feature 2 (U.Insurance, Endogenous Payroll Taxes)

 Gov. operates u.insurance fund (financed by payroll contribution of firms), in addition to general budget.

$$(b_t^U \theta_t^{UL} + b_t^S \theta_t^{SL})\bar{N} = \varsigma_t \{ w_t^U \theta_t^{UY} + (1 - \varepsilon) (w_t^{SY} \theta_t^{SY} + w_t^{SR} \theta_t^{SR}) \}\bar{N},$$

which implies

$$\varsigma_t = \frac{b_t^U \theta_t^{UL} + b_t^S \theta_t^{SL}}{w_t^U \theta_t^{UY} + (1 - \varepsilon)(w_t^{SY} \theta_t^{SY} + w_t^{SR} \theta_t^{SR})}.$$

- Implication: higher unemployment may raise the payroll tax if wages do not fall enough; may further depress unemployment.
- ► To ensure nondegenerate solution, UI set as a linear function of level of per capita income: b^h_t = κ^h Y_t/M, h = U, S.

向下 イヨト イヨト

LMR Feature 3 (Innovation - Efficiency wage framework)

Sub-utility function:

$$U^{R}(w_{t}^{SR}, 1 - e_{t}^{R}) = \ln[(w_{t}^{SR})^{\delta_{R}}(1 - e_{t}^{R})^{1 - \delta_{R}}]$$

In equilibrium, we can derive:

$$e_t^R = 1 - (1 - e_m^R) \left(\frac{\zeta_t^{SY} w_t^{SY} + \zeta_t^{SL} b_t^S}{w_t^{SR}}\right)^{\psi}, \text{ with } \psi = \pi \delta_R / (1 - \delta_R),$$

and, wage in innovation:

$$w_t^{SR} = \kappa^R (\zeta_t^{SY} w_t^{SY} + \zeta_t^{SL} b_t^S),$$

with $\kappa^R > 1$ a function of π , a choice variable at the level of firms. π 1-to-1 to monitoring intensity (Shapiro-Stiglitz, 1984), which in turn varies inversely with unit monitoring cost (exogenous) (van Schaik & de Groot (2000)).

Solow condition satisfied.

(日本) (日本) (日本)

Supply functions:

$$N_t^U = \bar{N} \int_0^{a_t^C} f(a) da = a_t^C \bar{N}, \text{ and } N_t^S = \frac{1 - (a_t^C)^2}{2} \bar{N}.$$

< □ > < □ > < □ > < □ > < Ξ > < Ξ > = Ξ

Supply functions:

$$N_t^U = \bar{N} \int_0^{a_t^C} f(a) da = a_t^C \bar{N}, \text{ and } N_t^S = \frac{1 - (a_t^C)^2}{2} \bar{N}.$$

► Supply of S-workers in innovation $(a^R > a^C)$ $N_t^R = \frac{(1 - a^R)(a^R + 1)}{2}\bar{N} = \frac{1 - (a^R)^2}{2}\bar{N}.$

Supply of S-labor to manufacturing: N^S − N^{SR} where N^{SR} ≤ N^R is actual employment in innovation.

(四) (日) (日)

3

Supply functions:

$$N_t^U = \bar{N} \int_0^{a_t^C} f(a) da = a_t^C \bar{N}, \text{ and } N_t^S = \frac{1 - (a_t^C)^2}{2} \bar{N}.$$

► Supply of S-workers in innovation
$$(a^R > a^C)$$

$$N_t^R = \frac{(1 - a^R)(a^R + 1)}{2}\bar{N} = \frac{1 - (a^R)^2}{2}\bar{N}.$$

- Supply of S-labor to manufacturing: N^S − N^{SR} where N^{SR} ≤ N^R is actual employment in innovation.
- Index of talent misallocation:

$$\max[0, (N_t^R - N_t^{SR})/N_t^{SY}].$$

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

Supply functions:

$$N_t^U = \bar{N} \int_0^{a_t^C} f(a) da = a_t^C \bar{N}, \text{ and } N_t^S = \frac{1 - (a_t^C)^2}{2} \bar{N}.$$

► Supply of S-workers in innovation
$$(a^R > a^C)$$

$$N_t^R = \frac{(1 - a^R)(a^R + 1)}{2}\bar{N} = \frac{1 - (a^R)^2}{2}\bar{N}.$$

- Supply of S-labor to manufacturing: N^S − N^{SR} where N^{SR} ≤ N^R is actual employment in innovation.
- Index of talent misallocation:

$$\max[0, (N_t^R - N_t^{SR})/N_t^{SY}].$$

Equilibrium:

$$N_t^S = N_t^{SY} + N_t^{SR} + N_t^{SL},$$
 and $N_t^U = N_t^{UL} + N_t^{UY}.$

$$\mathcal{W}_{t} = 0.2 \sum_{h=0}^{\infty} \Lambda^{h} (V_{t+s}^{U,E} + V_{t+h}^{U,L} + V_{t+h}^{SY,E} + V_{t+h}^{SR,E} + V_{t+h}^{S,L}),$$

with Λ : social discount rate.

- Equal weight to each group; accounts for welfare of all current and future generations;
- Approximation along the BGE (see paper).
- Alternative: varying weights; but rather arbitrary in such a model without explicit modelling of insider-outsider.

向下 イヨト イヨト

- Parameterize 2 sets & compare systematically between a HIC benchmark (Europe-5) and MIC benchmark (Latin America-5).
- Partial analysis of individual LMR Policies (min wage, UB rates, cut in union wage mark-ups, training cost cut).
- Examining for *policy externalities* Sum of Parts vs LT effect of Composite Reform Programmes.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Key Results: LMRs entail a two-way causality between growth and unemployment: dynamic trade-offs between growth, unemployment, & welfare.
- Individual reforms may generate conflicting effects on growth and welfare.
- Reaffirms literature that growth & unemployment has weak relationship...
- but policies promoting growth via direct skills expansion tend to result in **absorption problem/oversupply** of qualified labour (specialized unemployment rate going up).

・同下 ・ヨト ・ヨト

Individual and Composite Experiments: Steady-State Effects

うくで

 Popular recommendations/implementation of simultaneous ambitious LM composite reforms can be costly due to inadequate Policy Externalities.

In MICs, where efficiency level is lower in both public & private sectors, *public investment* in infrastructure, through its supply-side effects, may help: (i) mitigate the growth-welfare tradeoff, and (ii) relieve the absorption problem of specialized labor.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Thank You

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < @

Appendix

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < @

Key differences between MIC and HIC

- Higher efficiency and lower cost of training in HIC.
- Lower degree of substitution between intermediate goods in MIC.
- Higher elasticities of output and innovation activity with respect to public capital in MIC.
- ► Higher share of S-workers in innovation in HIC.
- Higher efficiency and lower cost of training in HIC.
- Lower degree of substitution between intermediate goods in MIC.

・吊り ・ヨト ・ヨト

Key differences between MIC and HIC

- Higher elasticities of output and innovation activity w.r.t public capital in MIC.
- Higher share of S-workers in innovation in HIC.
- Higher open unemployment rate for U-workers (S-workers) in HIC (MIC).
- Higher payroll tax rate in HIC.
- Higher degree of talent misallocation in MIC.
- Note: other important structural differences are quality of governance and share of spending on R&D in output.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Parameter	Description	High	Middle
		Income	Income
Households			
ρ	Intergenerational discount rate	0.375	0.375
σ	Household savings rate	0.109	0.138
χ	Productivity parameter (efficiency of training)	0.9	0.5
μ	Advanced education cost	0.08	0.12
ε	Time allocated to schooling activity	0.115	0.123
Final goods			
ω	Elasticity wrt public-private capital ratio	0.17	0.24
β^{S}	Elasticity wrt specialized workers	0.3	0.35
β^U	Elasticity wrt untrained workers	0.3	0.2
α	Elasticity wrt private capital	0.3	0.35
γ	Elasticity wrt intermediate input	0.1	0.1
Intermediate goods			
η	Substitution parameter, intermediate goods	0.61	0.25

Calibrated Parameter Values: Benchmark Case

King Yoong Lim & Pierre-Richard Agenor Unemployment, LMRs, Growth and Welfare

(ロ) (四) (E) (E) (E)

Benchmark Parameters

Innovation sector

ϕ_1^R	Elasticity wrt public infrastructure	0.186	0.300
π	Probability of being caught shirking	0.078	0.048
δ_R	Elasticity wrt wage for innovation	0.9	0.9
λ	Elasticity of production wrt labor input	0.6	0.6
ψ	Elasticity of effort wrt relative wages	0.70	0.43
Government			
au	Tax rate on total wages	0.198	0.123
v_I	Share of spending on infrastructure	0.050	0.069
φ	Efficiency parameter, public investment	0.5	0.4
Labor market			
κ^{S}	Specialized labor, unemp. benefit indexation	0.4	0.4
κ^U	Untrained labor, unemp. benefit indexation	0.4	0.4
ξ^U	Relative weight, untrained workers	0.06	0.08
ξ^{SY}	Relative weight, specialized workers	0.06	0.08
w_0^U	Minimum wage indexation, untrained workers	0.522	0.546
w_0^{SY}	Minimum wage indexation, specialized workers	0.740	0.699
\varkappa^U	Elasticity wrt unemployment, untrained wage	0.12	0.12
\varkappa^{S}	Elasticity wrt unemployment, specialized wage	0.12	0.12

= ୭ ୯ ୯

Initial	Steady-State	Values of	Key	Variables
---------	--------------	-----------	-----	-----------

Variable	Description	High	Middle
		Income	Income
θ^U	Share of untrained workers in population	0.732	0.795
θ^{S}	Share of effective specialized workers in population	0.232	0.184
θ^{SR}	Share of effective specialized workers in innovation sector	0.019	0.004
θ^{SY}	Share of effective specialized workers in final good sector	0.145	0.109
$ heta^{UY}$	Share of untrained workers in final good sector	0.606	0.708
θ^{UL}	Untrained unemployment rate	0.126	0.087
θ^{SL}	Specialized unemployment rate	0.068	0.071
$(\theta^R - \theta^{SR})/\theta^{SY}$	Index of misallocation of talent	0.189	0.392
ζ^{SL}	Probability of specialized workers getting unemployed	0.293	0.385
ζ^{SY}	Prob. of specialized workers employed in final good sector	0.623	0.593
ζ^{SR}	Prob. of specialized workers employed in innovation sector	0.084	0.022
ζ^{UL}	Prob. of untrained workers getting unemployed	0.172	0.110
ζ^{UY}	Prob. of untrained workers getting employed	0.828	0.890
ς	Firms' payroll contribution rate	0.126	0.052
$w^U/w^S_{weighted}$	Relative wage ratio	0.550	0.750
k^G	Public-private capital ratio	0.189	0.147
Y/K^P	Final output-private capital ratio	0.286	0.429
m	Stock of innovation-private capital ratio	0.100	0.100

King Yoong Lim & Pierre-Richard Agenor Unemployment, LMRs, Growth and Welfare

(1日) (1日) (日)

æ

æ