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AN INTEGRATED 

REPLENISHMENT AND 
TRANSPORTATION MODEL

Computational Performance Assessment

R A M E Z  K I A N ,  E M R E  B E R K ,  A N D 
Ü L K Ü  G Ü R L E R

13.1 Introduction

Transformation processes with multiple inputs typically exhibit non-
linearities in their output with respect to input usages. They have been 
traditionally modeled via production functions in the microeconomics 
literature (Heathfield and Wibe, 1987). One of the most common pro-
duction functions is the Cobb–Douglas (C–D) production function. 
This production function assumes that multiple (n) inputs (also called 
factors or resources) are needed for output, Q, and they may be substi-
tuted to take advantage of the marginal cost differentials. In general, 
it has the form Q A x i

i

n i

,= ⎡
⎣

⎤
⎦

( )
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α

1
 where A represents the total factor 

productivity of the process given the technology level, x(i) denotes the 
amount of input i used, and αi > 0 is the input elasticity. The total 
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 may be greater than (smaller than) 

or equal to 1 depending on whether there is diminishing (increasing) 
returns to resources, resulting in convex (concave) operational costs. 
The C–D production function was first introduced to model the labor 
and capital substitution effects for the US manufacturing industries 
in the early twentieth century (Cobb and Douglas, 1928). Despite its 
macroeconomic origins, since then, it has been widely applied to indi-
vidual transformation processes at the microeconomic level, as well. 
For example, the C–D production function was employed to model 
production processes in the steel and oil industries by Shadbegian and 
Gray (2005) and in agriculture by Hatirli et al. (2006). Logistics activi-
ties associated with shipment preparation, transportation/delivery, and 
cargo handling also use, directly and/or indirectly, multiple resources 
such as labor, capital, machinery, materials, energy, and information 
technology. Therefore, it is not surprising that there is a growing lit-
erature on the successful applications of the C–D-type production 
functions to model the operations in the logistics and supply chain 
management context. Chang’s (1978) work seems to be the earliest 
to construct a C–D production function to analyze the productivity 
and capacity expansion options of a seaport. Rekers et al. (1990) esti-
mate a C–D production function for port terminals and specifically 
model cargo handling service. In a similar vein, Tongzon (1993) and 
Lightfoot et al. (2012) consider cargo handling processes at container 
terminals for their production functions. In a recent work, Cheung 
and Yip (2011) analyze the overall port output via a C–D production 
function. Studies on technical efficiency in cargo handling and port 
operations provide additional support for the C–D-type functional 
relationships, where output is typically measured in volume of traf-
fic (in terms of twenty-foot equivalent unit—TEUs) and inputs may 
be as diverse as number or net usage time of cranes, types of cranes, 
number of tug boats, number of workers or gangs, length and surface 
of the terminals, berth usage, volume carried by land per berth, and 
energy (e.g., Notteboom et al. 2000, Cullinane 2002, Estache et al. 
2002, Cullinane et al. 2002, 2006, Cullinane and Song 2003, 2006, 
Tongzon and Heng 2005). Comprehensive surveys can be found in 
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Maria Manuela Gonzalez and Lourdes Trujillo (2009), Trujillo and 
Diaz (2003), Tovar et al. (2007), and Gonzalez and Trujillo (2009). 
For land transportation, we may cite the evidence from Williams 
(1979) and for supply chain management, Ingene and Lusch (1999) 
and Kogan and Tapiero (2009).

Although multi-input activities in the area of logistics have 
received the attention of researchers for economic modeling and effi-
ciency measurements, this body of knowledge has been only partially 
incorporated into decision making at the operational level. As Lee 
and Fu (2014) observed, the most commonly used transportation cost 
structures are tapering rates, proportional rates, and blanket rates 
(Lederer 1994, Taaffe et al. 1996, Ballou 2003, Coyle et al. 2008). 
Hence, scale economies are the most frequently made assumption. 
(See also Xu [2013] in a location context.) However, we believe that 
this assumption ignores the fundamental economic fact that output 
is typically nonincreasing in the input usage. That is, a C–D produc-
tion function with total input elasticities being less than unity results 
in optimal input usage with usage costs being convex in the output 
level. Our work has been motivated by that the existing literature 
on the dynamic joint replenishment and transportation models lacks 
incorporation of the economic production functions. Incorporation 
of such functions of transportation/delivery activities into the exist-
ing logistics management models yields interesting theoretical and 
practical insights. First, these empirically supported functions, typi-
cally, result in the models to be nonlinear and convex in the deci-
sion variables for certain parameter settings. For such settings, the 
theoretical findings of the classical models do not hold any longer. 
Hence, these new settings are of theoretical interest. Second, the 
solution methodologies suitable and satisfactory for the classical 
models become less useful and, in some cases, even unusable. This 
necessitates the development of novel heuristics. (For a detailed dis-
cussion of both aspects in a dynamic lot-sizing framework, see Kian 
et al. 2014.) In this work, we focus on the suitability of the existing 
generic solvers and their computational performance for a logistics 
model with convex costs.

We envision a firm that produces a single product and delivers 
the production quantity to its vendor-managed inventory warehouse. 
We consider the dynamic joint replenishment and transportation 
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problem for this integrated two-stage inventory system where the 
delivery times of the items from the production site to the ware-
house and from the warehouse to a customer’s site are negligible, 
but the logistical operations associated with shipment prepara-
tion, transportation/delivery, and cargo handling are nonlinear in 
the shipment quantity. In particular, we assume that the quantity 
transported requires multiple inputs whose usage is expressed by a 
C–D-type production function so that the resulting transportation 
costs are convex. Therefore, our work differs greatly from the existing 
models on replenishment and inbound/outbound logistics. Among 
the significant works in this area, we may cite Lippman (1969), Lee 
(1989), Pochet and Wolsey (1993), Lee et al. (2003), Jaruphongsa 
et al. (2005), Berman and Wang (2006), Van Vyve (2007), Hwang 
(2009), and Hwang (2010). Integrated replenishment and transporta-
tion problems have close similarity with the dynamic lot-sizing mod-
els in mathematical structure and analytical properties. A dynamic 
lot-sizing model with convex cost functions of a power form has been 
studied recently by Kian et al. (2014). It was shown that replenish-
ment is possible even with positive on-hand inventory (contrary to 
the classical Wagner–Whitin model in Wagner and Whitin [1958]), 
and thereby, a forward solution algorithm does not exist. In lieu of 
the optimal solution, heuristics were designed and approximate solu-
tions were investigated. For the related literature and the analytical 
intricacies of the particular lot-sizing model, we refer the reader to 
the aforementioned work.

The rest of the chapter is organized as follows. In Section 13.2, 
we present the assumptions of the model and provide three formula-
tions. In Section 13.3, we provide a numerical study and discuss our 
findings.

13.2 Model

13.2.1 Assumptions

We consider a single item. The problem is of finite horizon length, T. 
The demand amount in period t is denoted by dt(t  =  1,…,T). All 
demands are nonnegative and known, but may be different over 
the planning horizon. No shortages are allowed. The amount of 
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replenishment (production) in period t is denoted by qt and is unca-
pacitated. Replenishment in any period t incurs a fixed cost (of setup) 
Kt (≥0) and unit variable cost, pt. All units replenished in a period are 
transported to the warehouse; that is, dispatch quantity in a period 
is the same as the production quantity. Fixed costs associated with 
shipments are assumed negligible (or, equivalently may be viewed as 
subsumed in the fixed replenishment cost under the assumed dispatch 
policy). Each unit shipped in period t incurs a cost of τt. Additionally, 
the transportation and delivery use m (≥1) inputs with unit acquisi-
tion cost of input i in period t being at

i( ) for 1 ≤ i ≤ m. It is assumed 
that there are no economies of scale in the acquisition of the inputs 
and that unit acquisition costs are nonspeculative over the problem 
horizon. These assumptions dictate that a lot-for-lot acquisition pol-
icy is optimal for the inputs needed. (A similar set of assumptions 
are implicitly made for the ingredients/raw materials needed for the 
replenishment that involves actual manufacturing.) The input usage 
for transporting qt units of the item in period t is determined through 
a stationary C–D function as q xt t

i

i

m i

= ⎡
⎣

⎤
⎦

( )
=∏

α

1
 with αi ≥ 0 for all i. 

The stationarity of the function parameters are realistic in that the 
planning problem considered herein would be of very short term com-
pared to the timeframe required for technological changes that would 
impact the values of the elasticity and total factor productivity param-
eters. The inventory on hand at the end of period t at the warehouse is 
denoted by It; each unit of ending inventory in the period is charged 
a unit holding cost of ht. Without loss of generality, the initial inven-
tory level, I0, is assumed to be zero. Given that the short-term nature 
of the decisions, no discounting is assumed over the horizon although 
it can easily be incorporated into the model. The objective is to find a 
joint replenishment and transportation plan that determines the tim-
ing and amount of production and delivery (qt) such that total costs 
over the horizon are minimized.

Before we proceed with the formulations of the problem, a few 
remarks are in order about the particulars of our problem setting. 
(1) In the presence of zero fixed costs of shipment, the assumed dis-
patch policy is optimal. However, with nonzero fixed costs, it would 
be suboptimal. This particular fixed cost structure has been studied 
by Jaruphongsa et al. (2005) with zero unit variable costs. Under 



276 RAMEZ KIAN ET AL.

nonspeculative (fixed and unit) costs, it has been established that the 
replenishment quantity in any period k needs to be either zero or equal 
to the sum of a number of future dispatch quantities. In our setting, 
we chose fixed shipment costs to be zero for the impact of the special 
nature of the variable costs to be brought to the foreground. (2) Since 
Lippman (1969), the shipments have taken into account cargo capacity 
of individual vehicles and considered stepwise cost structures. Again, 
for better exposition of the special cost function we assume herein, 
we ignore this aspect. Thus, our results may be viewed as a relaxation 
of this cargo capacity constraint. (3) The dynamic lot-sizing problems 
are special cases of the joint replenishment and transportation prob-
lems and, thereby, show close affinity with them under certain cost 
structures and policies. This is true in our setting, as well. The charac-
teristics of the model herein are similar to those of Kian et al. (2014), 
and the two-echelon inventory system may be reduced to the single 
location lot-sizing model studied in the mentioned work. Therefore, 
in this work, we focus on the computational issues.

13.2.2 Formulations

We first formulate the problem as a mixed-integer nonlinear program-
ming (MINLP) problem. We will consider two equivalent variants. In 
the first formulation, PT

1, the decision variables are the replenishment 
(and shipment) quantities qt, the binary variables yt for replenishment 
setup, the input quantities xt

i( ) for i = 1, … ,m with the intermediate 
inventory variables It for 1 ≤ t ≤ T. The objective function is linear 
in the variables, but the constraints contain the nonlinear produc-
tion function that relates the inputs to the replenishment/shipment 
quantity. In the second formulation, PT

2 , we first determine the opti-
mal input usage for any replenishment/shipment quantity (which may 
be viewed as preprocessing) and incorporate the production function 
relationship into the objective function rendering the problem into a 
form with a nonlinear objective function with only linear constraints. 
In PT

2 , the decision variables are the replenishment (and shipment) 
quantities qt, the binary variables yt for replenishment setup with the 
intermediate inventory variables It for 1 ≤ t ≤ T.

We state the first formulation PT
1, which acts as a building block for 

the second formulation, formally as follows:
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where M is a sufficiently large positive number. The first set of con-
straints (13.1b) ensures that setups are performed only in the periods 
in which replenishment is positive, (13.1c) gives the evolution of on-
hand inventories, (13.1d) represents the production function relating 
the inputs and the transported quantity, and (13.1e) are binary and 
nonnegativity constraints. We assume that the initial inventory is zero 
and these demands are net demands. The second formulation PT

2 is 
obtained from PT

1 by first deriving the optimal input allocations for a 
given shipment quantity. To this end, consider the subproblem where 
the input acquisition costs in period t are minimized given qt  =  Q. As 
the input usage is uncapacitated, the first-order conditions imply that, 
for any i and j, j ∈ {1, … ,m},
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where x Qt
i( ) ( ) *  is the optimal usage of input i to transport Q units of 

the item. Hence, for 1 ≤ i ≤ m,
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(For details, see Heathfield and Wibe 1987.) Correspondingly, for a 
shipment quantity Q, the minimum transportation cost in period t, 
C Qt

* ( ), becomes
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The expression of C* (Q) enables us to rewrite the MINLP formula-
tion as PT

2 as follows:
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where M is as defined before. The constraints (13.5b), (13.5c), and 
(13.5d) perform the same function as in PT

1, but we have been able 
to eliminate the input variables and to render all constraints linear at 
the expense of nonlinearizing the objective function. Clearly, the sec-
ond formulation is more compact and has computational advantages 
as demonstrated in our numerical study. We can also formulate the 
problem as a dynamic programming (DP) problem. Define J It

T
t( ) 

as the minimum total cost under an optimal joint replenishment and 
transportation plan for periods t through T, where It is the ending 
inventory as defined before in the recursions (13.1c) or (13.5c). Then,
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(13.6)

where 1 0{ }qt>  indicates the existence of a setup in period t, with the 
boundary condition in period T being J IT

T
T( ) = 0 for any IT ≥ 0. 

The optimal solution is found using the earlier recursion, and J T
0 0( ) 

denotes the minimum cost over the problem horizon.
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The main difficulty with this formulation is its high dimensionality. 
The memory requirements and the system state size become prohibitively 
large, and the solution times are too long. It is not suitable for problems 
of large sizes in terms of horizon lengths and/or demand values. For 
our work, this formulation is important in that it provides a guaranteed 
optimal solution and serves as the benchmark in our numerical study.

13.3 Numerical Study

For our numerical study, we constructed our experiment set in line 
with Kian et al. (2014).

We considered a problem horizon of T = 100 periods. Period 
demands are generated randomly from three normal distributions 
with respective coefficients of variation, cov = 0.8, 0.4, and 0.2 and 
standard deviation σ (=40) where negative demand values have been 
replaced with zero demands. We denote the three demand patterns 
by D1, D2, and D3, respectively. All other system parameters are 
stationary. Noting that unit replenishment cost pt and unit trans-
portation cost τt can be subsumed into ht by simple transformations 
through inventory recursions, we assume them to be negligible over 
the entire problem horizon. We set unit holding cost rate, ht = h = 1, 
and setup cost is selected as a function of the mean demand rate, 
Kt = K = [ J2/2]μ, where J may be viewed as a proxy for the average 
size of a replenishment quantity under the simple EOQ formula. 
We have J ∈ {2, 3, 4, 5}. We considered r = 1.5. This corresponds to 
the C–D-type economic production function with convex costs. To 
select the parameters for the nonlinear transportation/delivery com-
ponent, we used the formulation PT

2  as the base. For this formula-
tion, we set wt  =  w and considered the variable cost of transportation 
per unit when a dispatched quantity equals the average demand per 
period, w where w  =  [wμr]/μ = wμr−1. Letting a h w,= /  we have w =  
hμ/(aμr) with a ∈ {0.02,0.05,0.1} so that the resulting variable cost 
for a shipment quantity of q units is given by [hμ/a](q/μ)r. Note that 
w is decreasing in a. The same sets of 10 demand realizations gen-
erated for each demand distribution were used for all experiment 
instances throughout the study. Overall, we have 120 = (4 × 3 × 10) 
experiment instances for PT

2 . As part of our study, we also tested the 
efficacy of formulation PT

2 , which is structurally different from PT
2 . 
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For consistency, we selected the parameters for this formulation as 
follows. We considered three values of number of iso-elastic inputs, 
m = 1, 2, 5 and αi = α for 1 ≤ i ≤ m with mα = 1/r. (All other parameters 
were selected as for PT

2.) Overall, we have 360 = (3 × 4 × 3 × 10) experi-
ment instances for PT

2 . The optimal plan has been obtained by the DP 
algorithm discussed earlier. We tested the solvers AlphaECP, Baron, 
Bonmin, Couenne, LINDOGlobal, and KNITRO available online 
at the NEOS server (http://www.neos-server.org/neos/solvers/index.
html). The server’s goal has been described as specifying and solving 
optimization problems with minimal user input (Dolan et al. 2002). 
The solver defaults/options were set at their defaults except that the 
time limits on all have been set to 1500 s since lower time resources 
resulted in too many interrupts in preliminary tests.

In our numerical study, (1) we considered an overall assessment of 
the computational performances of the two formulations with respect 
to the demand patterns and the number of inputs using different opti-
mizers, and  (2) focusing on the formulation PT

2 , we used the ANalysis 
Of VAriance (ANOVA) to identify the factors that have statistically 
significant impact on the solution quality.

13.3.1 Overall Assessment

The performance measures are (1) the number of instances in which a 
feasible solution has been obtained by a solver, and (2) the percentage 
deviation from the optimal solution for the obtained solutions aver-
aged over all 120 experiment instances for a particular demand distri-
bution. Note that in the latter computation, the experiment instances 
in which a solver failed have been excluded.

We begin our analysis with our findings on formulation PT
1. The 

overall performance summary with m = 1, 2, 5 for the entire experi-
ment set for this formulation is presented in Table 13.1, where # 
denotes the first performance measure and % denotes the second. For 
the cases when no feasible solution was obtained, an m-dash (—) has 
been used to denote the unavailable second measure.

AlphaECP failed to obtain a solution in all experiment instances, 
whereas LINDOGlobal was able to obtain a solution in all experiment 
instances except for the demand distribution D2. However, for that 
pattern, it also resulted in a solution in the most number of instances. 
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Bonmin has low performance in obtaining a solution, but the qual-
ity of the obtained solution is very good (optimal in many instances). 
Regardless of the number of inputs in the system, it was able to get a 
near-optimal solution for D1. The distribution D2 seems to present the 
most difficulty for given m and other parameters except for Bonmin.

For LINDOGlobal, the number of inputs in the problem setting 
has a negative impact on the quality of the obtained solutions. For 
other solvers, the behavior may not be monotone (e.g., KNITRO, 
Bonmin). However, in a very general qualitative sense, we get the 
impression that solver performance (in both criteria) tends to worsen 
as the number of inputs increases in the problem setting. This obser-
vation has motivated us to construct the second formulation, PT

2. For 
PT

2 , the performances of all solvers have improved significantly in 
terms of the number of instances for which a feasible solution was 
obtained; none of the solvers failed across the entire experimental 
bed. Also, the solution quality for all solvers except LINDOGlobal 
(for m = 1 case) has increased. These indicate that the formulation PT

2 
is more amenable to use on the available solvers.

13.3.2 ANOVA Assessment

The overall assessment presented earlier was based on the perfor-
mances of the two formulations and the solvers in an aggregate sense. 
Next, we focus on the formulation PT

2 and use the formal statistical 
tool ANOVA to identify the factors that impact the solution quality 
significantly in a statistical sense.

We considered a three-way ANOVA where the factors are (1) K 
(representing the fixed replenishment cost) considered in four levels Ki, 
i = 1,…, 4; (2) W (representing the transportation cost coefficient, w) 
considered in three levels, Wj, j  =  1, 2, 3 as given earlier in the experi-
mental bed; and (3) the different solvers denoted by S with six levels, 
Sk, k  =  1,…,6 corresponding to the solvers in the order given earlier 
with n = 10 replications (corresponding to the demand realizations) at 
each experimental instance. The response variables yijkl, i  =  1,…,4; j  =  
1,2,3; k  =  1,…,6; and l  =  1,…,10 are taken as the percentage devia-
tions of the solutions provided by the solvers from the optimal solu-
tion, which is obtained by DP. The ANOVA study was conducted for 
each demand distribution separately.
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The ANOVA tables for the three distributions are given in Tables 
13.2 through 13.4. The performance statistics for each factor level 
computed across the other experiment parameters are tabulated in 
Table 13.5 for each demand distribution. Finally, the interaction 
effects of the factor levels are provided in Figures 13.1 through 13.3 
for the each distribution, respectively. The inspection of these results 
reveals the following findings.

Firstly, all the factors and the interactions have significant impact 
on the solution quality, which is indicated by very large F values and 
correspondingly very small P-values, implying that the hypothesis 
that states that all factor levels have the same effect on the response 
variable is rejected for all three distributions. A closer inspection of the 
results provides further information regarding (1) the relative impact 
of the factors, (2) direction of the factor-level impact, and (3) the 
interaction effect. We treat each demand distribution separately.

Table 13.3 ANOVA for D2

SOURCE DF SEQ SS ADJ SS ADJ MS F P 

K 3 640.025 640.025 213.342 754.86 0
W 2 542.101 542.101 271.051 959.05 0
S 5 1020.997 1020.997 204.199 722.52 0
K *W 6 1163.260 1163.26 193.877 685.99 0
K *S 15 134.743 134.743 8.983 31.78 0
W *S 10 120.064 120.064 12.006 42.48 0
K *W *S 30 347.503 347.503 11.583 40.99 0
Error 648 183.140 183.14 0.283
Total 719 4151.832

Table 13.2 ANOVA for D1

SOURCE DF SEQ SS ADJ SS ADJ MS F P 

K 3 18285.12 18285.12 6095.04 1246.5 0
W 2 4611.81 4611.81 2305.9 471.58 0
S 5 17151.57 17151.57 3430.31 701.54 0
K *W 6 12221.28 12221.28 2036.88 416.56 0
K *S 15 7259.13 7259.13 483.94 98.97 0
W *S 10 2259.74 2259.74 225.97 46.21 0
K *W *S 30 6201.09 6201.09 206.7 42.27 0
Error 648 3168.54 3168.54 4.89
Total 719 71158.26
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Consider Table 13.2. Comparing the F values, we observe that 
the most important factors are, respectively, K, S, W, and the two-
way KW interaction. From Table 13.5, we see that K4, W3, and S2 
(Solver Baron) result in the worst solution quality on average. Next, 
inspecting the impact of average effect of different levels of factors 
from Table 13.5, we see that the largest deviation from the optimal 
results is observed when fixed cost is highest at K4 level, when W 
is at the W3 level, and the solver S2 is used. From Figure 13.1, we 
observe that the differential effect as K increases depends on the 
level of W implying a significant interaction of K and W with the 
worst performance occurring at K4W3 combination. Although not 
as significant, there is also some interaction of K with the solvers. 
As K level changes from 3 to 4, the performance deteriorates sig-
nificantly with solvers S5 (LINDOGlobal) and S6 (KNITRO). A 
similar relation also holds regarding the interaction between W and 
the solvers.

Similar analysis for D2 and D3 reveals the following. For D2, 
the factors with the highest F values are ordered as W, K, S, and the 
two-way interaction KW. Table 13.5 shows that there are less dras-
tic differences between the average solution quality corresponding to 
different levels of the factors. Figure 13.2 shows that the KW inter-
action is still significant, and the difference between the levels of K 
is highest for W3, where the interaction of solvers with K and W is 
reduced. The ordering of solver performances is similar to that of D1. 
For D3, we note that the factors with the highest F values are ordered 
as W, K, KW, and S. We again observe that the average solution qual-
ity corresponding to different factor levels generally becomes closer 

Table 13.4 ANOVA for D3

SOURCE DF SEQ SS ADJ SS ADJ MS F P 

K 3 451.116 451.116 150.372 3136.61 0
W 2 353.541 353.541 176.771 3687.26 0
S 5 86.901 86.901 17.38 362.53 0
K *W 6 855.188 855.188 142.531 2973.06 0
K *S 15 82.740 82.74 5.516 115.06 0
W *S 10 63.062 63.062 6.306 131.54 0
K *W *S 30 218.256 218.256 7.275 151.75 0
Error 648 31.066 31.066 0.048
Total 719 2141.870
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to each other, while the KW interaction is still emphasized and the 
interactions with the solvers become less emphasized.

From the earlier analysis, we see that the solvers’ performances 
get more and more closer to each other as the coefficient of variation 
of the demand distribution gets smaller and the worst performances 

Interaction plot for RESP
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Figure 13.2 Factor interaction for D2.
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Figure 13.1 Factor interaction for D1.
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are observed for the K4W3 large fixed cost and low transportation 
cost coefficient combination. Furthermore, S1, S3, and S4 (Solvers 
AlphaECP, Bonmin, and Couenne, respectively) are always among 
the best three performing solvers (although their ordering may 
change), whereas the worst performer is S2 in all three demand 
distributions. We observe that solver performances depend dras-
tically on problem formulations as well as cost parameters. We 
should also mention that they may as well depend on possible user 
interventions such as initial point selections that were not imposed 
in our study.
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