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Abstract 

The dramatic increase in the complexity of flow cytometric datasets requires the development 

of new computational based approaches that can maximize the amount of information derived 

and overcome the limitations of traditional gating strategies. Herein, we present a 

multivariate computational analysis of the HIV-infected flow cytometry datasets that were 

provided as part of the FlowCAP-IV Challenge using unsupervised and supervised learning 

techniques. Out of 383 samples (stimulated and unstimulated), 191 samples were used as a 

training set (34 individuals whose disease did not progress, and 157 individuals whose 

disease did progress). Using the results from the training set, the participants in the Challenge 

were then asked to predict the condition and progression time of the remaining individuals 

(45 ‘non-progressors’ and 147 ‘progressors’). To achieve this, we first scaled down data 

resolution. We then excluded doublet cells from the analysis using Expectation Maximization 

approaches. We then standardized all samples into histograms and used Genetic Algorithm-

Neural Network to extract feature sets from the datasets, the reliability of which were 

examined using WEKA-implemented classifiers. The selected feature set resulted in a high 

sensitivity and specificity for the discrimination of progressors and non-progressors in the 

training set (average True Positive Rate = 1.00 and average False Positive Rate = 0.033). The 

capacity of the feature set to predict real-time survival time was better when using data from 

the ‘unstimulated’ training set (r = 0.825). The p-values and 95% confidence interval log-

rank ratios between actual and predicted survival time in the test set were 0.682 and 

0.9542±0.24 for the unstimulated dataset, and 0.4451 and 0.9173±0.23 for the stimulated 

dataset. Our analytic strategy has demonstrated a promising capacity to extract useful 

information from complex flow cytometry datasets, despite a significance imbalance and 

variation between the training and test sets. 
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INTRODUCTION 

Recent advances in instrumentation and data acquisition platforms have strengthened the 

potential of flow cytometry as a platform for clinical diagnosis and decision-making (1–3), 

drug discovery and drug development (4–6). However, the ability to achieve this requires 

high-dimensional datasets and new approaches for the automated analysis of these. In order 

to stimulate progress in this area, the FlowCAP Consortium (7) has established a series of 

competitions, the aims of which are to promote the development of computational methods 

for automatically identifying cell populations in multi-dimensional flow cytometry data and 

therefore remove the need for ‘subjective’ manual gating. The recent competition (FlowCAP-

IV) provided flow cytometry data on the phenotype of unstimulated peripheral blood 

mononuclear cells (PBMCs) from HIV infected individuals, and also of PBMCs that had 

been stimulated in vitro with HIV antigens. The aim of the contest was to use data from the 

provided ‘training’ samples which came from individuals with known outcomes (i.e. non-

progressor and progressor) and the survival time (in days) to identify which features within 

the cell populations which could be used to predict the time to progression to Acquired 

Immune Deficiency Syndrome (AIDS) and outcomes for those individuals whose data were 

provided in the ‘test’ set. 

The analysis of the data in this competition presented 3 major challenges. Firstly, the 

data were highly imbalanced: the ratio of non-progressors to progressors was 1:4.6, and the 

mean survival time of patients varied widely (maximum = 5855 days, minimum = -10 days, 

mean 947.36 days). Secondly, the number of events that were captured in the non-progressor 

group ranged between 40131 and 1000000 (mean = 388598, standard deviation = 287653 and 

median = 335049, unstimulated and stimulated dataset combined) and events captured in the 

progressor group ranged between 12668 and 1000000 (mean = 281518, standard deviation = 

239968 and median = 183671, unstimulated and stimulated dataset combined). Thirdly, the 

Page 4 of 25

John Wiley and Sons, Inc.

Cytometry, Part A

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

5 

data exhibited high complexity, in that the cell profiles within the progressor and non-

progressor groups were irregular and the data was of a high resolution: the data has 262144 

possible channels (equivalent to 18 bit ADCs). Standard computational techniques which 

assume equality of sample distribution and uniformity of cell distribution, are therefore not 

very effective for analyzing this dataset. Furthermore, a data pre-processing step which 

lowers the resolution of the data in order to improve the processing time of the algorithm and 

the analysis of the histograms, but without compromising the original characteristics of the 

data is required. 

Taking into these challenges into consideration, we proposed a multivariate analysis 

strategy which would utilize the learning power of unsupervised and supervised learning 

principles to identify features within the histograms that have the capacity to predict / identify 

outcome and progression. In order to achieve this, we first scaled down the resolution of the 

data and used an unsupervised learning method called Expectation Maximization (EM) to 

remove doublet cells from analyzed cell populations. We then standardized the remaining 

live, singlet cells into histograms and applied a supervised learning method called Genetic 

Algorithm-Neural Network (GANN) to identify features that can differentiate non-progressor 

from progressor and predict the survival time of all patients. We term our method as 

EM/GANN since it makes use of 2 computing techniques to interpret flow cytometric data: 

(a) doublet removal using EM clustering and (b) identification of feature sets using GANN. 

The use of EM for the analysis of flow cytometry data is not new. The EM algorithm 

has been commonly used, in conjunction with statistical mixture models, to discover cell 

populations in samples. Several examples include optimized t-mixture model (8), the skew t-

mixture model in FLAME (9) and also in the mixture modeling approach which has been 

proposed by Boedigheimer and Ferbas (10). However, we did not use EM to optimize the 

GANN algorithm, rather we used the EM algorithm alone to discover singlet cells in the 
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population and the GANN algorithm to identify feature sets that can describe the difference 

between non-progressors and progressors, and the survival time of the patients. GANN is the 

bespoke algorithm which has been designed for handling large-scale datasets (11). 

This study did not analyze the flow cytometry data using the more typically applied 

gating and hierarchy-based approaches. As a consequence, rather than reporting on features 

on a ‘population’ basis (i.e. positive and negative populations for each marker or combination 

of markers), we examined the capacity of every feature within cell population (i.e. every 

channel in the histogram plot) to identify features that can (1) discriminate between non-

progressors and progressors, and (2) predict the survival time of HIV-infected patients. We 

will therefore report the identified feature on the basis of channel numbers – for example, 

IL2_5 represents the channel number 5 in histogram for IL2 expression. 
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MATERIALS AND METHODS 

HIV dataset 

The provided dataset contains 17 parameter flow cytometry data (including 3 scatter 

parameters, a combined VIVID/CD14 parameter, and a Time parameter) derived from 383 

peripheral blood mononuclear cell (PBMC) samples that had been stimulated with HIV 

antigens and their corresponding unstimulated controls. Of the 383 samples, 191 (34 non-

progressors and 157 progressors) were used as training samples and the remaining 192 were 

test samples (45 non-progressors and 147 progressors). Clinical outcomes of the test samples 

were not provided at the onset of the Challenge. The FlowCAP Consortium suggested the use 

of specific parameters for doublet removal (FSC-A and FSC-H) and for the identification and 

gating of live lymphocytes (VIVID/CD14 and SSC). After manually screened all 191 training 

samples for possible doublet cells and lymphocytes, we found that there is a significant 

variation in the cell profiles for samples within similar disease groups. 

Figure 1 shows 2D-scatterplots based on 4 randomly selected samples from the 

progressor group which have been generated using combinations of FSC-H, FSC-A, SSC-A 

and VIVID/CD14. These profiles were not consistent in terms of sample shape, number of 

cells detected and cell signals. It was also apparent that the Time parameter more consistently 

identified live, singlet cells than FSC-H. Therefore, we used FSC-A, SSC-A and Time to 

identify live, singlet cells from cell population. 

 

Data scaling 

Given {1, 2,..., }x i∈  is the cell events in which {1, 2,... }i  is the relative intensity value 

and channel number of events, s  is the scaling factor and dR  is the reduced resolution 

channels. A simple equation is given as follows: 

Page 7 of 25

John Wiley and Sons, Inc.

Cytometry, Part A

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

8 

 
dScale ( ) ,i

x
x

s
=   (1) 

where 
max( )

d

x
s

R
= . 

In this study, we used 1024 channels (equivalent to 10 bit ADCs). 

 

Doublet removal using EM 

EM is an effective iterative procedure to produce Maximum Likelihood (ML) 

estimates of unknown parameters when the outcomes of these parameters are clumped 

together (12,13). The EM algorithm contains 2 iterative steps: an expectation step (E-step) 

and a maximization step (M-step). The E-step computes an estimate for the unknown 

variables using the observed variables and current estimate of the parameters. The M-step 

provides new estimates of the parameters. 

Given that Y  is a set of observed data of flow cytometry parameters SSC-A, FSC-A 

and Time; X  is a set of unknown latent values from Y  that can describe outcomes x  (singlet 

cells in this study) and θ  is a set of density values to describe likelihood of x . The 

probability density function of x  is ( | )f x θ . To optimize (maximize) log-likelihood 

ln ( | )f x θ , EM iteratively find (E-step) and maximize (M-step) lower boundaries of ( | )f x θ  

based on Y  and current estimate of kθ  with the following equations: 

 ( ) ( )E-step: ln | | ,k kg E f x Yθ θ θ=     (2) 

 ( )1M-step: arg maxk kgθ
θ θ+ =  (3) 

The E-step and the M-step will be iteratively performed until convergence, i.e. when 

1k kθ θ γ−− <  and γ  is the defined threshold for convergence. 

In our study, the simple EM algorithm from the WEKA data mining suite (14), 

version 3.6 was used to cluster singlet cells from the cell populations. The default parameter 
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setting was used, except that the number of clusters was set between 3 and 4, depending on 

the variability of background noise in the population. In the default setting, a 10 fold cross-

validation procedure and 0.0001γ =  were applied. 

 

Histogram transformation 

Cumulative histograms based on the actual number of channel values for the gated 

cell populations were created. This yielded 2047 bins ranging from -1023 to +1023 for each 

fluorochrome marker in the data (2047 bins x 12 markers = 24564 binned features). The 

dimension of the data is then reduced by simply removing bins with more than 50% of NULL 

values, leaving a total of 1578 and 1644 features in the training sets (stimulated and 

unstimulated). 

 

Feature selection using GANN 

GANN is the bespoke hybrid method of a genetic algorithm (GA) and an artificial 

neural network (ANN) which co-evolve together to find optimal set of features that, given a 

basic ANN classifier (i.e. feedforward neural network), will effectively classify the data (15). 

GA is tasked with finding the optimum ANN with a feature set that will correctly 

discriminate the classes and ANN is tasked to optimize the fitness values of GA. 

Given {1, 2,...,s}N ∈  is the total number of samples in the dataset, 
iks  is the sample i  

in class k , ikT  is the target output of the sample i  in class k , ikA  is the activation value of 

ANN, kC  is the centroid value of class k  and ikO  is the final prediction value generated by 

ANN, fitness of GA is iteratively examined by ANNs in the following equation: 

 
1 1

fitness 
N C

ik

i k

s
= =

=∑∑ , (3) 
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where { ( ),2

( ),( ) ik ik

ik ik

f x O T

ik ik ik ik f x O Ts T A C
≥ =
< ≠= − −  and 

1
k sk

s kk

C A
s ∈

= ∑ . 

For network activation function, ( )f x , given w  is the network weight, i  is the input 

node to the hidden node j  and b  is the bias nodes, ( )f x  can be expressed as: 

 
2

( ) 1
1 exp( )

j j

j

f x b
x

 
= − + 

+ −  
 (4) 

The remaining parameter was set as follows: Total repetitions = 1000, Population size 

= 100, Fitness evaluation = 40000, Input node = 10 and Hidden node = 5. 

 

Classification using cost-sensitive classifier 

Considering the degree of imbalance in the data, cost-sensitive classifiers (CSC), 

which allow the control of True Positive Rate (TPR) and False Positive Rate (FPR) were 

used. The WEKA-implemented CSC Nearest Neighbor (CSC-IBk) was used to analyze the 

data. As the misclassification cost is dependent on the underlying probability of the classifiers 

(16), experiments on different sets of misclassification costs were performed until a minimal 

FPR is achieved. 

 

Survival time prediction using additive regression method 

Considering the variability in the survival time of the patients: mean survival time of 

947.36 days in the training set (maximum 5855 days, minimum -10 days, median 722 days) 

and mean survival time of 966.61 days in the test set (maximum 4925 days, minimum -8 

days, median 745 days), a Gaussian-based additive regression method which is less sensitive 

to the data dimension and data skewness, was used. The WEKA-implemented Additive 

Regression model with Gaussian-based classifier was therefore used to predict the survival 

time of the patients.  
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RESULTS 

Doublet removal 

Figure 2 shows the gating results generated by EM in order to illustrate its elasticity 

for processing flow cytometry data. The plot of the original samples was depicted in Figure 1. 

Using SSC-A, FSC-A and Time, most of the doublets and unwanted cells were eliminated 

from the subsequent analysis, thereby leaving singlet and “lymphocyte-like” cell populations. 

Combining all 383 samples (stimulated and unstimulated), more singlet cells were 

found in the non-progressor group, with average ratio of 0.52:0.48. The breakdown ratio of 

singlet cells identified in the non-progressor group in each dataset are as follow: 0.51:0.49 in 

the stimulated dataset (mean = 198091.7 in the non-progressor group and mean = 192174.5 in 

the progressor group), and 0.53:0.47 in the unstimulated dataset (mean = 208097.5 in the 

non-progressor group and 187743.6 in the progressor group). Considering the degree of 

imbalance in the data (average ratio of 1 non-progressor sample to 3.9 progressor samples) 

and number of events captured in each group, EM is able to cluster singlet cells from such 

cell populations. 

 

Feature sets differentiating non-progressor from progressor 

For the stimulated dataset, a total of 5 features (IL2_5, IL2_6, IL2_7, IL2_8 and 

IL2_9) were identified as being able to discriminate between non-progressors and 

progressors. For the unstimulated dataset, 7 features from 4 separate markers (CD154_5, 

CD154_6, CD45RO_1023, CCR7_9, IL2_6, IL2_7 and IL2_8) were deemed to be 

significant. Table 1 shows the summary results for the non-progressor group, and the 

misclassification cost for the group is presented in Figure 3. 

All of the 34 samples from the non-progressor group in the training set were perfectly 

classified. An False Positive Rate (FPR) lower than 20% confirmed the predictive capacity of 

Page 11 of 25

John Wiley and Sons, Inc.

Cytometry, Part A

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

12 

the identified features. Although a slight increase in FPR (~6% increment) and a reduction in 

the True Positive Rate (TPR) suggested that the identified features are still significant for 

describing progressor samples in the test samples, these features were no longer effective for 

predicting non-progressor samples . This could be due to possible variations in some of the 

features that are associated with non-progression between the training and test sets (Table 2). 

Significant variations in IL2_5 and IL2_6 in the stimulated samples and IL2_6 in the 

unstimulated samples in the training and test sets were detected, thereby indicating that these 

features might be associated with certain (training set) patients in the data. This led to the low 

TPR in the non-progressor group in the test set. 

 

Feature sets to predict survival time of HIV patients 

A total of 6 features from 4 markers (IL2_1, CD3_1, CD3_2, CD8_9, CD107A_6 and 

CD107A_7) and 7 features from CD45RO marker (CD45RO_16, CD45RO_17, 

CD45RO_18, CD45RO_19, CD45RO_22, CD45RO_23 and CD45RO_26) in unstimulated 

and stimulated datasets exhibited a strong capacity to predict real-time survival time of 

patients in the training set (r = 0.535 in the stimulated dataset and r = 0.825 in the 

unstimulated dataset) (Table 3). The predictive capacity of these feature sets was significantly 

lower in the test sets (r = 0.149, stimulated and r = 0.173. unstimulated). This is not too 

surprising given that our regression model was trained using actual progression times of 

patients. 

The capacity of these feature sets to predict patient survival times was evaluated using 

a log-rank (Mantel-Cox) test which was based on the actual and the predicted progression 

time for stimulated and unstimulated datasets was calculated and the survival plot based on 

these dataset is presented in Figure 4. The p-values and 95% confidence interval log-rank 

ratios between actual and predicted survival time for stimulated data are 0.2956 and 
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0.8944±0.21 in the training set and 0.4451 and 0.9173±0.23 in the test set. The p-values and 

95% confidence interval log-rank ratios between actual and predicted survival time for 

unstimulated data are 0.7859 and 0.9702±0.24 in the training set and 0.682 and 0.9542±0.24 

in the test set. High p-values show that there is no significant different between the actual 

survival curve and the predicted survival curve in these datasets, and demonstrates that the 

selected feature sets are able to provide proximity prediction to the actual results. 

Interestingly, the feature set identified from the unstimulated dataset has better prediction 

accuracy than the feature set selected from the stimulated dataset. 
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CONCLUSIONS 

We proposed a multivariate analysis strategy that assembles unsupervised and 

supervised learning principles to interpret complex flow cytometry data. We used EM and 

GANN to identify the capacity of individual features within fluorescence histograms to 

predict the outcome of patients with HIV (i.e. non-progressor and progressor) and their 

survival time (in days). The classification models based on these feature sets were trained 

using 191 training samples and validated using a separate set of data (192 test samples). 

Fewer than 7 features (i.e. 5 features from stimulated and 7 features from 

unstimulated) have been shown to be able to discriminate non-progressors from progressors 

and to predict survival time of patients (6 features for the stimulated dataset and 7 features for 

the unstimulated dataset). The better performance of these feature sets in the training set than 

in the test set is likely due to the significant variation on these features between training and 

test sets. Somewhat counter-intuitively, features from the unstimulated dataset were better at 

predicting the survival time than the features identified from the stimulated dataset. In 

summary, we have developed a new approach for analyzing complex flow cytometry datasets 

which has the potential to extract features that have the capacity to predict disease 

progression and survival in patients with HIV infection. 
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Legends to Figures 

 

Figure 1: Scatterplots of original samples, with the intensity based on Time represents with 

2-color shades, i.e. blue means low frequency and yellow means high frequency. These plots 

pose challenges for manual gating, as each sample has to be independently measured and the 

gate for one sample cannot be used for another sample. 

 

Figure 2: Scatterplots of gated ‘live’, singlet cells using EM. 

 

Figure 3: Misclassification costs per dataset. 

 

Figure 4: Kaplan Meier curves for stimulated and unstimulated cells. (Top) The predicted 

progression time in the training set. (Bottom) The predicted progression time in the test set. 
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Table 1: The TPR and FPR for the non-progressor group. 

Dataset Set TPR (%) FPR (%) Accuracy (%) 

Stimulated Training 100.00 17.83 85.34 

 Test 37.78 26.53 65.10 

     

Unstimulated Training 100.00 19.11 84.29 

 Test 35.56 22.45 67.71 
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Table 2: The median intensities of the feature sets and the intensities different between 

sample sets. 

Non-progressor Progressor 

Intensity difference 

(ratio) 

Dataset Feature set Training Test Training Test Training Test 

Stimulated IL2_5 6576.5 5323 6632 8775 0.991 0.606 
IL2_6 3726 3860 4600 6463 0.81 0.597 

IL2_7 2170.5 2354 3337 4103 0.65 0.573 

IL2_8 979 1313 2180 2463 0.449 0.533 
IL2_9 380.5 526 1196 1432 0.318 0.367 

Unstimulated CD154_5 6094.5 6247 7564 7520 0.805 0.83 

CD154_6 3098 3537 5011 5141 0.618 0.687 

CD45RO_1023 14 11 40 28 0.35 0.392 

CCR7_9 2581.5 2448 3324 3338 0.776 0.733 

IL2_6 7017.5 5451 6523 7320 1.075 0.744 
IL2_7 4688 4699 5867 5297 0.799 0.887 

IL2_8 2391.5 2584 3980 4006 0.6 0.645 
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Table 3: Survival analysis results. 

Dataset Set Mean 

(Actual) 

Std. dev. 

(Actual) 

Mean 

 (Predicted) 

Std. dev. 

(Predicted) 

r 

Stimulated Training 947.36 966.96 947.05 430.65 0.535 

 Test 933.61 851.00 942.16 489.05 0.149 

       

Unstimulated Training 947.36 966.96 947.13 721.88 0.825 

 Test 933.61 851.00 966.21 545.17 0.173 
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Scatterplots of original samples, with the intensity based on Time represents with 2-color shades, i.e. blue 
means low frequency and yellow means high frequency. These plots pose challenges for manual gating, as 
each sample has to be independently measured and the gate for one sample cannot be used for another 

sample.  
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Scatterplots of gated ‘live’, singlet cells using EM.  
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Misclassification costs per dataset.  
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Kaplan Meier curves for stimulated and unstimulated cells. (Top) The predicted progression time in the 
training set. (Bottom) The predicted progression time in the test set.  
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