
 
 

In and around: Identifying predictors of theft within and near 

to major mass underground transit systems 

Andrew D Newton*1, Henry Partridge23 and Andy Gill2 

1Senior Research Fellow, the Applied Criminology Centre, University of Huddersfield, UK.  

E-mail: a.d.newton@hud.ac.uk 

 2Enforcement and On Street Operations (EOS), Transport for London, London, UK 

3PhD Candidate, University College London (UCL) 

* Corresponding author. 

Abstract This paper identifies factors that encourage or reduce pick-pocketing at 

underground rail stations through a case study analysis of the London Underground. 

Negative binomial Poisson regression models found possible predictor variables of 

pick-pocketing selected from the internal characteristics of stations, and features of their 

nearby surroundings. Factors that increased risk were those associated with; greater 

congestion inside stations including lifts, waiting rooms and fewer platforms; and, 

increased levels of accessibility near stations, more paths and roads. Features that 

reduced risk were those likely to encourage detection and guardianship; stations with 

more personal validators, staffing levels, and shop rentals; and, the presence of more 

domestic buildings nearby. Station type was also influential; those that were ‘attractors’ 

of crime and those frequently used by tourists were at greater risk. The findings suggest 

a transmission of theft risk between the internal settings of underground stations and 

their nearby surroundings.  
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Introduction  

This study analyses theft of personal property offences on the London Underground 

(LU). This major mass transit system carries over 1,000 million passenger per year, and 

experienced 5,063 theft offences in financial year 2011/2012 (BTP, 2013). Whilst this 

represents a rate of only four thefts per million passenger journeys, theft is a key offence 

type on the LU. Indeed, as a proportion of all offences, over half were for theft. This 

paper examines a specific type of theft offence, what Smith (2008) termed stealth 

crimes, for example pick-pocketing. It excludes snatching and other theft types. For 

these stealth offences, victims are often unaware items are stolen, only discovering them 

missing at a later date, on transit journeys usually somewhere else on the transit line. As 

the location of many of these thefts is unknown, an innovative methodology is used to 

better estimate the locations of theft on transit stations. This is termed Interstitial Crime 

Analysis (ICA) and is described in detail by Newton et al (2014).  

This research builds on the Newton et al (2014) study into the spatial patterns of theft 

on the LU that found; theft was concentrated at a small number of stations; positive 

correlations existed between theft at three settings, ‘below ground’, ‘at’ stations; and, in 

‘nearby’ surroundings of stations; and, that these correlations were most prominent at 

peak travel times. A key question that arose in the previous study which this paper 

attempts to address is: What are the explanations for these patterns of theft observed on 

the LU? 

This paper aims to identify predictor variables of theft on the LU at two distinct 

settings; within underground rail stations; and, in the nearby surroundings of stations. 



 
 

The key questions are; what predictor variables influence theft on the LU; and, is there 

any evidence of a transmission of theft risk between these internal and external settings?  

Theoretical explanations and previous studies (for overviews see Smith and Clarke, 

2000; Smith and Cornish, 2006; Newton, 2014) suggest three possible inter-related 

explanations for theft on transit systems; the presence of transit systems are themselves 

a system cause of theft; stations act as generators/attractors of theft; and, stations serve 

as a type of ‘risky facility’.  

Theoretical background 

The presence of transit systems may help shape the crime patterns of urban areas (Piza 

and Kennedy, 2003). Stations act as a focal point, the entrances and exit to the system, 

and the interchanges connecting different journeys. During peak travel times they 

concentrate a number of persons together in small spaces, at other times stations are 

isolated with fewer users. The presence of a transit station may create opportunities for 

offending at particular locations at certain times of the day. Therefore, the first question 

is whether the transit system itself creates opportunities for theft, driven by passenger 

movement and passenger journeys.  

Attractors and generators 

Stations may serve as attractors or generators of crime (Brantingham and Brantingham, 

1995). Crime attractors are places offenders visit due to known expected opportunities 

for crime, for example liquor stores, pawn brokers, drug-treatment centres, homeless 

shelters, and liquor clubs (Rengert et al, 2005; McCord et al, 2007). Generators are 

settings whereby a number of persons are channelled together, resulting in unplanned 



 
 

but favourable conditions for crime, for example high schools, football stadiums and 

parks (Groff and McCord 2012). Kurland (2013) states for football stadiums (although 

this could equally apply to underground stations) that they may act as; mostly a crime 

attractor; mostly a crime generator; or simultaneously as a crime generator/crime 

attractor. However, attractors and generators are difficult to quantify, a point returned to 

later in this paper. The second question to be explored is therefore whether stations act 

as an attractor or generator of theft, or both?  

Stations may also act as ‘risky facilities’, a term used to describe similar land features 

such as bars or hospitals, or in this case underground rail stations, whereby, most of the 

crime at these facilities occurs at only a minority of them (Eck et al, 2007). 

Explanations for the presence of risky facilities are centred on the mobility of urban 

areas, determined by the geometry and patterns of crime (Brantingham and 

Brantingham, 1993). Offenders and victims have daily movement patterns termed 

routine activities (Felson and Cohen, 1980), and movement is concentrated at favourite 

activity nodes, for example based on work, leisure, or recreation activities. Risky 

facilities are often located at these activity nodes. Travel between nodes occurs along 

distinct routes (paths) constrained by obstacles (barriers) to movement, and offenders 

increase knowledge of suitable opportunities to offend during their routine activities. On 

transit systems there are may be certain nodes (stations) and paths (railway lines) that 

users favour. It is suggested that the presence or absence of certain features along these 

paths and at these nodes may encourage or deter offenders. A third question is therefore; 

what characteristics of stations and their nearby surroundings influence opportunities 

for theft? 



 
 

All three theoretical standpoints propose that high crime stations will be located in high 

crime areas, and low crime stations in low crime areas. This suggests crime is a product 

of its wider environment, and Block and Block (2000) usefully term these nearby 

surroundings the ‘environs’ of rapid transit. However, the research evidence here is 

unclear. Not all stations in high crime areas experience high crime levels. Some studies 

suggest a well-designed transit station can insulate itself from crime in the wider 

environment (Clarke et al, 1996; La Vigne 1996); others argue high crime stations are 

situated in high crime areas (Block and Block, 2000; Loukaitou-Sideris et al, 2002; 

Ceccato et al, 2013, Newton et al, 2014). Few studies have examined this explicitly for 

theft. La Vigne’s (1996) study found Part I offences (including the subcategory of theft) 

were not correlated with their external environment. However, theft could not be 

isolated here from other Part I crimes thus findings here for theft alone may be skewed 

by other crime types.   

Bowers (2013) examined whether crime risk transfers between the internal and external 

settings of risky facilities, and hypothesised risky facilities may act; as radiators of 

crime, the primary driver of risk radiating risk to the nearby surroundings; or, as 

absorbers of crime, soaking up crime from the surrounding environment. The study 

found risky facilities were more likely to act as radiators although did not include transit 

facilities in the analysis. Underground stations are a unique type of risky facility, a 

‘true’ radiator, connected by underground lines (pipes) that can be entered and exited 

from their external environs, or underground via a different station. A final research 

question is therefore whether there is a transfer of theft risk between the internal settings 

of underground stations and their surrounding environs, and vice versa. The following 

research questions were devised for this study:  



 
 

1. What are the predictor variables of theft on the LU? 

2. Is theft on the LU influenced by both internal design characteristics (within 

stations) and the external settings near to stations (external features)? 

3. Is there evidence of a transmission of theft risk between the internal settings of 

underground rail stations and their nearby external environs? 

Theft on transit systems 

Theft on underground stations has been shown to be non-uniform in time and space, 

concentrated at particular stations and peak times of the day (Loukatiou-Sideris et al, 

2002; Ceccato et al, 2013; Newton, 2014). Theft concentrates at busy stations during 

the early morning and afternoon rush hour periods. However, high passenger numbers 

and nearby high theft levels alone do not provide a sufficient explanation of theft. 

Additional predictor variables present both inside stations (internal characteristics) and 

in their nearby surroundings (external features) are required to better explain theft levels 

on underground transit systems, and previous literature on potential mechanisms of theft 

on transit systems identified a number of possible predictor variables of theft.  

Newton et al (2014) summarised a number of mechanisms that may act as predictor 

variables for theft at transit stations. For this study, these are grouped into the following 

classifications; high densities of people clustered together in small spaces; a lack of user 

knowledge about the system; the ease of passenger distraction; the accessibility and ease 

of access to and exit from stations; anonymity of offenders; barriers to movement 

between and within stations; and, staffing, protection and guardianship. These are not 

mutually exclusive, for example, high passenger density offers natural anonymity and 

reduced likelihood of detection. Moreover, individual predictor variables such as paid 



 
 

control gates, better lighting, or the presence of CCTV may impact on more than one of 

the above classifications.   

Stations may act as a crime generator or attractor although few have attempted to 

quantify the differences between these. Perhaps a useful starting point here is offered by 

Clarke and Eck (2003); crime generators are defined as having a high count of crime but 

a low rate per population; and crime attractors as experiencing a high count and rate of 

crime, a point returned to later in this paper.  

This is further complicated as additional features near to a station may also be a crime 

attractor or generator. Whilst some studies have examined attractors and generators near 

to risky facilities (Groff et al, 2010), few have examined this specifically for transit 

stations. Bernasco and Block (2011) investigated the influence of crime generators, 

crime attractors, and offender anchor points on robbery near to rail stations and found; 

pull factors such as crime generators increased the transient population of an area and 

therefore increased risk; blocks with attractors/generators of crime elevated crime risk 

in adjacent blocks; and, push factors such as the presence and proximity of a motivated 

offender’s anchor point increased risk. Again, the authors did not distinguish between 

features that served as crime attractors and those that were crime generators.  

Groff and McCord (2012) examined generators around parks and found; elevated levels 

of crime near to parks increased risk inside parks; that both the internal and external 

settings of parks influenced risk; and that features serving as activity generators inside 

parks reduced crime. Parks with more activity generators, generally the larger parks, 

had more legitimate users, more capable guardians, and therefore less crime. However, 

not all activity generators increase legitimate users. At transit stations more activity 



 
 

generators may not reduce theft. Increased numbers of users may actually increase 

targets but also disguise offenders. Loukatiou-Sideris et al (2002) term this a second 

level population density; as passenger levels increase, a certain density (first level) may 

be reached that encourages some violent crimes; beyond this, even higher passenger 

densities (second level) may actually promote some lower level crimes such as pick-

pocketing.  

Outside of parks, Groff and McCord found increased levels of mixed land use near 

parks reduced crime levels by increasing ‘eyes on the street’, consistent with the work 

of Jacobs (1961). However as discussed by Browning et al (2010) mixed land use may 

also increase crime prevalence due to territorial impacts, reducing informal levels of 

social control, consistent with Newman (1973). For this paper land use near to stations 

will be tested as an external predictor variable of theft, as this may serve to increase or 

potentially reduce theft levels.  

Data and methodology 

This study uses data from a range of sources, including data on theft within and near to 

stations, and possible predictor variables of theft, both inside stations (internal 

characteristics) and near to stations (the external environment).  

Crime data 

On the LU, stations are policed by the British Transport Police (BTP) and their external 

environs by the Metropolitan Police Service (MPS) and City of London Police (CoLP). 

Data was obtained from all three organisations for the 12 month period 1st April 2011 to 

31st March 2012 for the following codes; Home Office (HO) codes shoplifting (HO 



 
 

classification 46); theft person (HO classification 39); and theft other (HO Classification 

49); and BTP codes theft luggage (J02), theft personal property (J03), theft from the 

person (J04) and shoplifting (J22).  

Theft data was captured for the internal setting, within stations, and the external 

environs near to stations. For theft at stations, the BTP theft data was separated into 

thefts ‘at’ stations with a known location, and theft that happens as part of a transit 

journey (with an unknown location). The latter was measured using the ICA measure to 

estimate likely locations of underground theft during transit journeys. A 400m buffer 

zone around stations was used for the external environs near to stations, a distance 

shown from previous studies to be appropriate (Newton et al, 2014).  Additional crime 

data for other crime types which may influence theft levels were captured at census 

ward level as it was not available within the 400m buffer for this study.  

Interstitial Crime Analysis (ICA) 

A difficulty in analysing pick-pocketing offences is that time and location are often 

unknown; theft may have occurred at or between several stations traversed during a 

transit journey. The innovative ICA technique (Newton et al, 2014) generates 

probability estimates of the likely locations of theft on underground journeys using the 

following procedure. 

Taking a hypothetical model; if pick-pocketed passenger ‘X’ travels from station A to 

station C, and changed at station B, then there are five ‘sections’ of this journey where 

theft may have occurred (station A; segment A to B; station B; segment B to C; and 

station C). The risk at each of the five sections is assigned a value of 0.2. If a second 

victimised passenger ‘Y’ travels from station A to C and did not change at B the risk is 



 
 

0.25 at each section of the journey (station A; segment A to B; segment B to C; station 

C).  If passenger ‘Z’ travels from station A to B, the risk at each section is 0.33 (station 

A; segment A to B; and station B). The ICA then generates a cumulative risk for each 

station and for each segment, based on the possible pick-pocketing offences for 

passengers X, Y, and Z combined. For this paper an ICA score was calculated for each 

station and station segment using 5063 theft offences on the LU. An ICA score for each 

station was generated. This was further standardised as a rate (ICA adj*), by dividing 

the ICA score by the number of annual passenger journeys at each station. 

Predictor Variables 

A range of station features were selected as potential ‘internal’ predictor variables of 

theft including; station age and depth, gates and validators, ticket machines, lifts and 

escalators, amenities, staffing levels and number of platform (Table One). An OLS 

regression model revealed these variables were highly correlated with each other, and 

therefore some variables were removed to avoid multicollinearity errors (Table 1). A 

second OLS regression model confirmed those selected for further analysis were within 

acceptable statistical levels (VIF< 3.5, Tolerance >0.25). 

Table 1 

A range of potential ‘external’ predictor variables for theft were identified from the 

environs of stations including; socio-demographic data, accessibility measures based on 

roads and paths, nearby crime levels, and local land use (Table Two). An OLS 

regression model was again used to remove any highly correlated variables. As a final 

stage, a third OLS model combining both the internal and external predictor variables 

was generated, and any highly correlated variables were removed before further 



 
 

analysis. The variance inflation factor and tolerance scores revealed variables selected 

for further modelling were appropriate. 

Table 2 

A third possible theft predictor variable of theft, in addition to the internal and external 

predictor variables is ‘station type’ and this was captured and classified using three 

methods. The first was based on fare zone ranging from zone 1 to zone 6; stations in 

zone 1 are in the centre of the LU network, those in zone 6 on the outskirts. The second 

was a TfL classification of primary usage and location, namely; ‘City’; ‘Inner Suburb’; 

‘Outer Suburb’; ‘Shopping’; ‘Terminus’; and ‘Tourist’. The third method was an 

attractor/generator index (AGI) developed specifically for this paper.  

Preliminary analysis found considerable variation when comparing stations which 

experienced high counts of theft, and those stations which had high rates of theft (per 

million passenger journeys). Only ten stations were in the top twenty of all LU stations 

for both theft counts and theft rates. Furthermore, there was also considerable spatial 

variation in high risk stations by time of the day. Therefore the AGI was developed to 

separate stations into possible crime attractors (with high counts and rates of theft) and 

potential crime generators (with high counts of theft only). These were also subdivided 

further by those that experienced; high rates of theft at all times of the day; high theft 

rates but only at certain times of the day; and, low theft rates.  

Theft offences were broken down into six time periods; early (02.00-06:59); morning 

peak (07.00-09:59); inter-peak (10.00-15:59); afternoon peak (16.00-18:59); evening 

(19.00-21:59); and late (22.00-01:59). For all stations ICA and ICA adj* scores were 

calculated, across each of the six time periods. The AGI score devised was then used to 



 
 

classify stations into six types; AGI_1, high theft counts at all time periods; AGI_2, 

high theft rates at all time periods; AGI_3, high theft counts and high theft rates at all 

time periods; AGI_4, intermittently high theft counts and rates (at some but not all times 

of the day; AGI_5, intermittent medium theft rates and counts; and AGI_6, low risk of 

theft counts and rates. 

Modelling 

A series of negative binomial Poisson regression models were constructed. The 

dependent variable was theft at stations measured using the ICA, and this was regressed 

against a series of potential internal and external predictor variables. Preliminary 

analysis of the distribution of the ICA scores based on cumulative count data revealed 

this was highly skewed and over dispersed. Therefore negative binomial Poisson 

regression models were deemed appropriate (Hilbe, 2011) as used in a number of 

studies (Osgood, 2000; MacDonald and Lattimer, 2010; Bernasco and Block, 2011).  

Six models were constructed; model 1 considered internal characteristics, model 2 

external features, and model 3 combined internal and external variables. Three 

additional models were generated (4-6) to incorporate station type into the analysis, 

using fare zone, TfL classification, and the AGI score.  

The negative binomial Poisson models use theft counts rather than rates. The population 

at risk is accounted for through the use of an exposure measure, the offset variable. In 

this analysis, annual per million passenger journey counts at each station were used as 

the offset variable. Therefore passenger levels which may influence theft levels 

(Ceccato et al, 2013; Newton et al 2014) are included in the model but not as a direct 

predictor variable. The procedure for generating each model was; enter each predictor 



 
 

variable one at a time, significant variables are kept, and none significant variables are 

removed at each iteration stage. This was repeated for all predictor variables. At the end 

of this procedure, none significant variables are re-entered into the model to check if 

they influence the final model and re-included if significant.  

Results and Discussion  

Model 1 examined internal predictors of theft (Table 3) and variables found to have a 

statistically significant positive relationship with theft were; the number of lifts that are 

primary means of access to platforms; and the number of waiting rooms. Negative 

relationships were found for; station depth; the number of electronic gates; and, the 

number of platforms. In model 2 (Table 3) external variables found to positively 

influence theft were; the percentage of roads and paths near to stations; and high levels 

of theft nearby. Negative relationships were found between theft and; more domestic 

buildings nearby; and, high levels of violence against the person near to stations. The 

log likelihood, BIC and AIC values in models 1 and 2 showed they were both better 

predictors of theft than the baseline model 0 (stations offset by passenger numbers with 

no predictor variables). 

Table 3 

Model 3 combined both internal and external predictor variables of theft into a single 

model (Table 3). The log likelihood, AIC and BIC scores revealed model 3 was a better 

predictor of theft than models 1 and 2. There were some differences in identified 

predictor variables. In model 3, variables found to have a negative correlation with theft 

included; station depth; the number of personal validators; staffing levels; the number of 

platforms; and, more domestic buildings nearby. Variables shown to significantly 



 
 

increase theft were; the number of lifts which are primary access to platforms; waiting 

rooms; the percentage of roads and paths in nearby environs, and increased theft levels 

in the surrounding area.  

Models 4 to 6 incorporated station classification into the analysis. Fare zone was found 

to be none significant and removed. Model 4 analysed the TfL classification of station 

type and model 5 examined the AGI values. Model 6 combined TfL classification and 

AGI values (Table 4). In model 4 a significant positive relationship was found between 

theft and stations classed as ‘tourist’, and a negative relationship with ‘terminus’ 

stations. In model 5 a positive relationship was found between theft and AGI_3 stations 

(possible crime attractors), and a slightly negative relationship with AGI_5 stations 

(with intermittent medium levels of theft only at some times of the day). AGI_1 stations 

(possible crime generators) were also slightly positively correlated with theft. The final 

model (6) combined all three measures, the internal and the external predictor variables 

and station typology. The log likelihood, ACI and BCI scores revealed model 6 was a 

better predictor of theft than all previous models.  

Table 4 

From model 6 it was evident that predictor variables that reduce the risk of theft are; 

higher numbers of staff, personal validators, platforms, and shop rentals; more domestic 

buildings nearby; and stations classified as terminus stations. Potential explanations 

here are; that validators may reduce offender anonymity; increased staffing levels may 

increase possible detection and reduce anonymity of offenders; more platforms at 

stations may disperse passengers throughout the station and therefore victims are less 

concentrated; and, nearby domestic buildings might encourage more guardianship, or 



 
 

users may be familiar with the station and use it regularly thus be more aware of 

suspicious offender activity.   

Factors that increased the risk of theft below ground included; the number of lifts which 

are primary means of access to platforms; the number of waiting rooms; theft ‘at’ 

stations; the percentage of roads and paths in the nearby environs; nearby levels of theft; 

and stations identified as crime attractors. Potential explanations here are that; lifts and 

waiting rooms may concentrate persons in confined spaces; more roads and paths may 

increase accessibility and, or, increase the movement of persons to and away from an 

area; and, high levels of theft nearby, consistent with Newton et al, (2014) indicate a 

likely transmission of risk from inside a station to its external environs, and vice versa. 

Moreover, model 6 which incorporated internal characteristics, external variables, and 

station typology, was a better predictor of theft than other models, suggesting there is an 

interaction between the internal and external features that influence theft, and, therefore, 

it is argued that a transmission of theft risk does exist between underground stations and 

their nearby environs.  

There are a number of potential limitations with this analysis. The ICA technique may 

not accurately estimate likely locations of risk as it assumes that the risk at a segment 

between two stations, and the risk at a station are equal. Suggestions for future 

refinement of the ICA method are provided by Newton et al, (2014).  The AGI index 

could also be further refined and tested. The predictor variables used may not include all 

relevant variables, and external predictors are aggregated using census wards which 

may not representative of station environs. Recorded crime data is subject to under-

reporting, although it is contended under-reporting of theft is likely to be a universal 

problem across the entire LU, not skewing the ICA scores by individual stations. The 



 
 

analysis is based on the LU network and there may be errors due to spatial auto-

correlation. However, although the ICA scores are subject to a high degree of spatial 

auto-correlation, an examination of the ICA adj* (standardised per million passenger 

journeys) did not find such errors. The negative binomial Poisson regression models are 

offset by the passenger data thus it is not thought spatial autocorrelation errors are 

present.  

Conclusion 

This paper examined potential predictor variables of theft selected from the ‘internal’ 

settings of stations and their nearby ‘external’ environs. It combined the use of the 

innovative ICA measure for predicting underground theft at unknown locations and 

times, with negative binomial Poisson regression models to identify predictor variables 

of theft on the LU. Factors found to increase risk of theft were those that may encourage 

congestion of passengers within stations (lifts and waiting rooms), and those that 

increased levels of accessibility and access to stations (more paths and roads nearby). In 

contrast those that reduce theft were those likely to decrease anonymity and increase 

potential guardianship and offender detection (higher levels of staffing, personal 

validators, shop rentals, and more domestic buildings nearby), and those that disperse 

passengers throughout the station and avoid congestion (more platforms). Stations with 

higher theft levels in their surrounding environs, those identified as crime attractors 

(high theft counts and high theft rates), and stations with high levels of tourist use were 

at greater risk. Terminus stations were at lower risk. 

Policy implications and future avenues 



 
 

The evidence presented in this paper suggests offenders operate both inside the LU and 

near to underground stations. Indeed, even if different offenders are in operation at these 

two settings, at peak travel times this elevated risk occurs both within and near to high 

risk stations, thus deployment of resources, joint operations and shared intelligence 

between BTP, MPS and CoLP should be encouraged. The ICA technique can assist in 

identifying the location and times of high risk stations, and deployment at these times 

and places should focus on both settings, within stations and in their nearby environs, as 

both are subject to elevated risk levels. 

This paper presents evidence of a transmission of theft risk between the internal and 

external environments and vice versa, and therefore it is likely that barriers to 

movement between these settings (for example paid access gates) are perhaps not 

effective at deterring pick-pocketing offenders. An explanation offered by Newton et al, 

(2014) is that offenders are able to travel ‘unregistered’ on the LU using Oyster cards 

(plastic pre-paid travel cards) and all day travel cards, which can be bought with cash at 

automated machines. These travel cards are inexpensive for all day travel, and the price 

of travel may be small compared to the potential rewards of successful and undetected 

theft activity.  

The findings of this paper present a range of potential design solutions, for example 

increased accessibility outside stations and increased congestion within stations 

increases theft risk. However, any design alterations such as restricting accessibility 

may increase other crime types on the LU, or indeed impact negatively on user’s 

experience and feelings of safety. Moreover, features that increase or reduce theft risk 

are present both within the internal settings and in the nearby environs of stations, thus 



 
 

measures that address only internal or only external risk factors in isolation may not be 

effective in reducing theft.  

Further avenues for research  

The ICA technique should be further refined to better assign risk at stations and 

segments, for example based on journey time, platform length, carriage capacity, or 

other possible weightings of risk. A number of additional variables not currently 

captured could be incorporated into the model, for example line of sight, visibility, 

lighting, and CCTV. Better measures of nearby predictor variables could also be 

captured, for example within 250m of a station as opposed to entire census ward areas. 

Accessibility and congestion could be modelled using CCTV data for example to 

compare high and low risk stations for theft by different times of the day. The AGI 

index should also be refined, to develop better measures of crime attractors and crime 

generators for studies that examine crime at risky facilities.   

The ICA technique allows identification of stations that experience high and low levels 

of theft. This could be used to identify stations for further fieldwork, capturing 

information on the individual settings within a station, for example on platforms, on 

stairwells and escalators, to advance knowledge of which sections within a station are 

more at risk, and at which time of the day or day of the week. The ICA technique could 

also be used to evaluate the impact of prevention activity, for example deployment of 

plain clothed and uniform officers could be monitored and compared. The analysis 

presented here considers two settings, inside and near to stations. Stations could be 

further subdivided, for example Ceccato et al (2013) identified the following; the 

immediate vicinity; exits and entrances; lounges; transition areas; and platforms; and 



 
 

Newton et al, (2014) identified four alternative settings; near to but outside a station; 

inside a station but before the paid barrier control, within a station inside the paid 

barrier control including platforms, escalators and lounges; and on carriages themselves. 

It may be useful to examine theft against these more detailed settings in a refined model. 

Finally this study does not consider the items stolen. It may be useful to study theft 

offences by the type of property, as the increasing use of mobile technology and smart 

phones may be attractive to offenders, as a primary or secondary target as opposed to 

wallets, purses and their contents. There may be different patters observed by type of 

product stolen. Additionally changes to the network may impact on theft, for example 

current proposals on the LU to close three out of four ticket offices, extend services to 

24 hours, and increase Wi-Fi coverage on the network may actually impact on theft, and 

or other crime levels. Careful consideration should be given to the management of 

stations if such changes are introduced.   
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Table One: Potential predictor variables of theft – Internal station settings 

Predictor  Influence Selection  

Supplied by TfL 

  Passenger journey (per million passengers) CD Offset Variable 

N electric gates (new version) BM Y 

N pneumatic gates BM NMC 

N electric gates (old version) BM NMC 

N manual gates BM NMC 

N manual gates (1 off type) BM Y 

N wide aisle gates BM NMC 

N passenger validators BM Y 

N ticket halls FCG Y 

N waiting rooms FCG Y 

N cash machines FCG Y 

N shop rentals FCG Y 

N kiosk rentals FCG Y 

Station age (years) FCG Y 

Cycle racks (Yes/No) FCG Y 

Control room visible to passengers (Y/N) FCG Y 

Toilets (Y/N) FCG NNS 

N lifts where primary access CA Y 

N lifts where secondary access A Y 

N non-station lifts A NNS 

N stair lifts A NMC 

N escalators A Yes 

N passenger conveyors A NMC 

Station depth: average platform depth (m) A Y 

N tube platforms CA NMC 

N surface platforms CA Y 

N sub-surface platforms CA Y 

N island platforms CA NMC 

Estimated staffing levels (number) D Y 

Supplied by BTP 

  At station theft personal property: J04 OA Y 

At station shoplifting: J03 OA Y 

At station theft other: J22 OA Y 

Predictor: N=Number of 

Influence: CD=Congestion/Detection; BM=Barrier to Movement; 

FCG=Facilities/Congestion/Guardianship; CA=Congestion/Accessibility; A=Accessibility; 

DG=Detection/Guardianship; OA=Offender Activity 

Selection: Y=Yes; NNS= No, not significant, NMC= no, multi-collinearity 

 

 

 

 

 



 
 

Table Two: Potential predictor variables of theft – external nearby settings 

Predictor  Source Influence Selection  

Crime 

GLUD 

unless stated 

  Nearby station shoplifting (<400m) MPS/CoLP OA Y 

Nearby station other theft (<400m) MPS/CoLP OA Y 

Theft and handling rate (census ward) 

 

OA NNS 

Robbery rate (census ward) 

 

OA NNS 

VAP rate (census ward) 

 

OA Y 

SES characteristics (census ward) 

   Population density  

 

DC NNS 

Average house prices  

 

SES  NNS 

Index of Multiple Deprivation Score ONS FCG NNS 

LU- % domestic buildings  

 

FCG Y 

LU- % domestic gardens  

 

FCG NMC 

LU-% non-domestic buildings  

 

FCG NMC 

LU- % green space  

 

FCG NMC 

LU-% roads  

 

A Y 

LU- % rail  

 

A NMC 

LU % paths  

 

A Y 

LU - % other land use 

 

FCG Y 

% claiming incapacity benefits  

 

FCG NMC 

% claiming income support 

 

FCG Y 

% of Unauthorised school absence  

 

FCG Y 

% of young persons (<16)  

 

M Y 

% working persons  

 

M NMC 

% old  

 

M Y 

Predictor: LU = Land Use 

Source: MPS=Metropolitan Police Service; CoLP=City of London Police; GLUD=Generalised Land Use 

Database; ONS=Office National Statistics 

Influence: CD=Congestion/Detection; BM=Barrier to Movement; 

FCG=Facilities/Congestion/Guardianship; CA=Congestion/Accessibility; A=Accessibility; 

DG=Detection/Guardianship; OA=Offender Activity 

Selection: Y=Yes; NNS= No, not significant, NMC= no, multi-collinearity 

 

 

 

 

 

 

 

 



 
 

Table Three: Regression analysis: Internal and external characteristics of stations and 

theft 

  Model 1: Internal Only Model 2: External 

Model 3:  

Internal and External 

 Predictor variable B SE Sig B SE Sig B SE Sig 

Approximate age 0 0.002 

    

- - 

 Station depth 
-0.01 0.003 *** 

   

-0.006 0.003 ** 

Electronic gates -0.036 0.009 *** 

   

- - 

 Manual gates -1.53 0.844 * 

   

-1.14 0.793 

 Personal validators -0.031 0.018 * 

   

-0.036 0.017 ** 

Lifts (primary access) 0.118 0.049 ** 

   

0.111 0.045 ** 

Lifts (secondary access) 0.063 0.042 

    

0.04 0.036 

 Staff  levels (estimated) -0.008 0.007 

    

-0.016 0.005 *** 

Sub surface platforms -0.168 0.06 *** 

   

-0.107 0.054 ** 

Surface platforms -0.167 0.049 *** 

   

-0.136 0.046 *** 

Ticket halls -0.054 0.13 

    

- - 

 Waiting rooms 0.151 0.08 * 

   

0.141 0.079 * 

Shop rentals -0.005 0.011 

    

-0.013 0.011 

 Kiosk rentals -0.054 0.062 

    

- - 

 Cycle racks 
-0.192 0.107 * 

   

- - 

 Control room -0.127 0.104 

    

- - 

 At station thefts -0.005 0.007 

    

0.001 0.006 

 Domestic buildings 

   

-0.047 0.015 *** -0.031 0.012 *** 

Road 

   

0.043 0.014 *** 0.039 0.012 *** 

Path 

   

0.22 0.062 *** 0.247 0.055 *** 

Other land uses 

   

-0.017 0.012 

 

-0.011 0.011 

 Children 

   

0.003 0.017 

 

0.013 0.014 

 Elderly 

   

0.008 0.023 

 

0.028 0.019 

 % Claim income support 

   

-0.034 0.032 

 

-0.026 0.025 

 % Unauthorised school 

Absence 

   

-0.037 0.187 

 

- - 

 Violence rate 

   

-0.002 0.001 ** - - 

 Shoplifting <250m 

   

-0.009 0.009 

 

-0.007 0.008 

 Theft person < 250m 

   

0.013 0.007 ** 0.011 0.006 * 

Other theft < 250m 

   

0.002 0.01 

 

-0.006 0.008 

 Constant 1.125 0.373 

 

-0.968 0.59 

 

-0.607 0.632 

 minus 2*LOG(lh) 1024.97 1023.42 944.258 

AIC 1170.532 1120.520 1031.237 

AICC 1173.313 1122.213 1036.149 

BIC 1172.56 1165.158 1106.779 

***99% significance; **95% significance, * 90% significance  

 

 



 
 

Table Four: Regression analysis: Internal and external characteristics of stations, 

station classification and theft 

 
Model 4 Model 5: Model 6 

Predictor variable B SE Sig B SE Sig B SE Sig 

Station depth -0.003 0.003 
 

-0.005 0.003 * -0.003 0.003 
 

Manual gates -1.218 0.766 
 

-1.002 0.771 
 

-1.107 0.753 
 

Personal validators -0.025 0.016 
 

-0.035 0.016 ** -0.027 0.015 * 

Lifts (primary 

access) 
0.103 0.041 ** 0.084 0.044 * 0.07 0.04 * 

Staff levels -0.018 0.005 *** -0.013 0.004 *** -0.016 0.004 *** 

Sub surface 

platforms 
-0.109 0.056 ** -0.147 0.052 *** -0.094 0.053 ** 

Surface platforms -0.101 0.044 ** -0.111 0.045 ** -0.087 0.043 ** 

Waiting rooms 0.128 0.075 ** 0.139 0.077 * 0.13 0.074 * 

Shop rentals -0.011 0.009 
 

-0.027 0.01 *** -0.02 0.009 ** 

At station thefts -0.001 0.005 
 

0.017 0.007 ** 0.012 0.006 ** 

Domestic buildings 0.033 0.016 ** -0.028 0.012 ** -0.018 0.01 * 

Roads 0.014 0.011 
 

0.033 0.012 *** 0.021 0.011 ** 

Paths 0.138 0.052 *** 0.217 0.052 *** 0.131 0.049 *** 

Other land uses -0.005 0.01 
 

-0.016 0.011 
 

-0.009 0.011 
 

Children 0.007 0.011 
 

0.016 0.011 
 

-0.011 0.011 
 

Elderly -0.008 0.011 
 

0.257 0.183 
 

0.023 0.019 
 

Shoplifting <250m -0.014 0.008 ** -0.004 0.008 
 

-0.009 0.007 
 

Theft Person < 

250m 
0.012 0.005 *** 0.009 0.006 

 
0.01 0.005 ** 

Other Theft < 250m -0.007 0.007 
 

-0.012 0.008 
 

-0.013 0.007 * 

AGI1 0.304 0.181 * - - 
 

0.207 0.174 
 

AGI2 0.066 0.174 
 

- - 
 

0.064 0.169 
 

AGI3 0.91 0.151 *** - - 
 

0.811 0.147 *** 

AGI4 0.083 0.14 
 

- - 
 

0.079 0.134 
 

AGI5 -0.219 0.118 * - - 
 

-0.21 0.117 * 

Tourist 
   

0.246 0.181 
 

0.351 0.163 ** 

Shopping 
   

0.021 0.203 
 

0.088 0.181 
 

Inner suburb 
   

0.027 0.196 
 

0.271 0.18 
 

Outer suburb 
   

-0.286 0.23 
 

-0.001 0.22 
 

Terminus 
   

-0.955 0.297 *** -0.55 0.276 ** 

Constant -0.855 0.602 -1.42 -0.689 0.636 
 

0.057 1.125 0.050 

minus 2*LOG(lh) 893.594 919.17 868.13 

AIC 964.9068526 989.283 947.472 

BIC 1050.749903 1075.126 1050.484 

***99% significance; **95% significance, * 90% significance  


