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HIGHLIGHTS 18	

• Bioacoustic recording is used to generate occupancy and detectability estimates  19	

• Rare heathland breeding birds varied in their occupancy between 0.68 and 0.13 20	

• Detectability varied from 0.74 to 0.20, and was affected by habitat 21	

• Bioacoustics can be used to provide improved data over traditional survey methods 22	

ABSTRACT 23	

Effective monitoring of rare and declining species is critical to enable their conservation, but can often be 24	

difficult due to detectability or survey constraints. However, developments in acoustic recorders are 25	

enabling an important new approach for improved monitoring that is especially applicable for long-term 26	

studies, and for use in difficult environments or with cryptic species. 27	

Bioacoustic data may be effectively analysed within an occupancy modelling framework, as 28	

presence/absence can be determined, and repeated survey events can be accommodated. Hence, both 29	

occupancy and detectability estimates can be produced from large, coherent datasets. However, the most 30	

effective methods for the practical detection and identification of call data are still far from established. 31	

We assessed a novel combination of automated clustering and manual verification to detect and identify 32	

heathland bird vocalizations, covering a period of six days at 44 sampling locations 33	

Occupancy (Ψ) and detectability (p ) were modelled for each species, and the best fit models provided 34	

values of: nightjar Ψ=0.684, p=0.740, Dartford warbler Ψ=0.449 p=0.196 and woodlark Ψ=0.13 p=0.996. 35	

Including environmental covariates within the occupancy models indicated that tree, wetland and heather 36	

cover were important variables, particularly influencing detectability. 37	

The protocol used here allowed robust and consistent survey data to be gathered, with limited fieldwork 38	

resourcing, allowing population estimates to be generated for the target bird species. The combination of 39	
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bioacoustics and occupancy modelling can provide a valuable new monitoring approach, allowing 40	

population trends to be identified, and the effects of environmental change and site management to be 41	

assessed. 42	

KEYWORDS 43	

Acoustic ecology, autonomous recorder, bird survey, heathland, occupancy model. 44	

 45	

1. INTRODUCTION 46	

1.1 Bioacoustics for Biodiversity Monitoring 47	

Biodiversity monitoring is central to nature conservation, allowing species status to be evaluated or 48	

assessments to be made of biological responses to environmental changes (Pereira & Cooper, 2006). 49	

Long-term monitoring of designated nature conservation sites is particularly needed to identify population 50	

trends and inform management planning efforts, especially in the context of factors such as climate 51	

change and habitat loss/severance (Noss, 1990; Furnas & Callas, 2015). However, existing monitoring 52	

practices and protocols are often sub-optimal, especially in terms of unbiased spatial coverage, sampling 53	

effort optimization, the statistical use of the data, and the lack of repeated sampling (Schmeller et al., 54	

2012).  55	

We assessed the potential to improve the existing monitoring methods currently used on sites that are 56	

internationally important for their breeding bird populations. The most common methods for monitoring 57	

of bird numbers and distributions are transect or point count surveys by human observers. These have 58	

recognised disadvantages, such as observer bias, the availability of skilled/experienced surveyors 59	

(Brandes, 2008; Celis-Murillo et al., 2009; Rempel et al., 2005; Sedláček et al., 2015), and the infrequent 60	

and short-term nature of survey visits (Shonfield & Bayne, 2017; Zwart et al., 2014). In response to these 61	
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issues, passive acoustic monitoring is increasingly being used as an alternative monitoring technique. This 62	

method uses automated recording units, which can be deployed in the field for days or weeks at a time to 63	

capture animal sounds. The advantages of this approach include the production of a standardised, long-64	

duration, permanent dataset and record of species identification, which can be repeatedly analysed and 65	

subject to validation by independent reviewers (Abrahams & Denny, 2018; Celis-Murillo et al., 2009; 66	

Rempel et al., 2005).  Automated recorders can be synchronized to occur simultaneously across large 67	

spatial extents, reducing temporal variability in studies (Brandes, 2008; Furnas & Callas, 2015; 68	

MacKenzie & Nichols, 2004), and offering large data volumes at low cost and with little resourcing 69	

requirement (Acevedo & Villanueva-Rivera, 2006; Hill et al., 2018; Holmes et al., 2014; Zwart et al., 70	

2014). Due to potential benefits such as these, the use of automated recorders has increased significantly 71	

over the last ten years (Shonfield & Bayne, 2017), and some researchers have advocated the use of 72	

automated recorders instead of expert personnel for conducting surveys (Darras et al., 2018; Rempel et 73	

al., 2005; Brandes, 2008; Zwart et al., 2014).  74	

There are potential barriers to the widespread uptake of passive acoustic monitoring for bird surveys. 75	

These include the need for specific expertise and the increased time required for post-processing 76	

compared to some traditional surveys (Banner et al., 2018; Knight et al., 2017), together with the costs of 77	

equipment (Beason et al., 2018; Farina et al., 2014; Hill et al., 2018). However, open source or low-cost 78	

recording devices are being produced and post-processing methods are constantly improving – although 79	

automated species identification, including machine-learning approaches, is still in development 80	

(Acevedo et al., 2009; Salamon et al., 2016). For fieldwork, a practical disadvantage is the fact that 81	

acoustic monitoring does not allow the collection of visual clues which can sometimes be vital for the 82	

identification of cryptic/quiet species, or for assessing abundance (Klingbeil & Willig, 2015; Sedláček et 83	

al., 2015). In some cases, the use of audio recording units has resulted in detection of fewer species and 84	

detection at shorter distances than human observers (Holmes et al., 2014; Yip et al., 2017), but the 85	

potential for longer term data capture with recording units means that this constraint can normally be 86	
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addressed by longer deployment times (Darras et al., 2018; Sedláček et al., 2015; Shonfield & Bayne, 87	

2017; Zwart et al., 2014). However, microphone performance and maintenance needs to be considered as 88	

part of the planning of fieldwork campaigns (Turgeon et al., 2017; Yip et al., 2017). 89	

1.2 Occupancy Models 90	

Alongside the technological advances in bioacoustics, there has been a dramatic recent increase in the 91	

development and application of occupancy models that explicitly incorporate species detectability (Furnas 92	

& McGrann, 2018; MacKenzie & Nichols, 2004; MacKenzie et al., 2002; MacKenzie et al., 2006). The 93	

presence/absence of a species in a sample  can be used to calculate occupancy (Ψ) - the proportion of an 94	

area, or number of sites, occupied by a species. The frequency with which a species is repeatedly recorded 95	

at each sampling site can also be used to assess detectability (p), to allow for the estimation of, and 96	

correction for, imperfect detection (Banner et al., 2018; MacKenzie et al., 2002; MacKenzie et al., 2006). 97	

The ability to factor these two parameters into assessments allows improved estimates of populations and 98	

greater understanding of ecological patterns such as species/habitat relationships (MacKenzie et al., 99	

2006).  100	

Despite the clear potential and utility of combining bioacoustic techniques and occupancy models, only a 101	

few studies have united these methodological developments to model the population status of a range of 102	

vocal species (Yates & Muzika 2006; Furnas & Callas 2015; Kalan et al. 2015; Campos-Cerqueira & 103	

Aide 2016; Stiffler et al. 2018; Wood et al., 2019). This study, therefore, provides an important additional 104	

case-study in new geographical, habitat and spatiotemporal contexts. Furthermore, it also addresses one of 105	

the most critical questions in this area of study - how to most effectively extract useful information from 106	

acoustic recorders to feed into the occupancy models and allow population estimates to be generated. 107	

Although fine-grained data can be gained from acoustic recorders, a significant benefit of the occupancy 108	

modelling approach in field studies is that it relies only on presence/absence data, rather than metrics of 109	

abundance such as counts of individuals (MacKenzie et al., 2006). This is normally much easier to 110	
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determine, requiring less interpretation in the field/lab, and counteracting the potential for inter-observer 111	

or inter-survey error (MacKenzie et al., 2006). Although some information is perhaps lost by this 112	

approach, data accuracy may be gained as, for rare species, it can be very difficult to correctly estimate 113	

abundance during surveys, whereas estimation of occupancy may still be possible with a high level of 114	

confidence (Campos-Cerqueira & Aide, 2016; Mackenzie & Royle, 2005). Finally, occupancy and 115	

abundance will be linked in most populations, and at small spatial scales and with territorial species, 116	

occupancy may be regarded as equivalent to population size and can be used for investigating population 117	

dynamics or spatial variation (MacKenzie et al., 2006; Royle & Nichols, 2003; Furnas & Callas, 2015; 118	

Campos-Cerqueira & Aide, 2016; Wood et al., 2019). 119	

1.3 Heathland Bird Monitoring 120	

Our study was conducted on European nightjar Caprimulgus europaeus, woodlark Lullula arborea and 121	

Dartford warbler Sylvia undata.  These three birds are specialists of lowland heathland habitats, and are 122	

rare and declining species considered to be of international conservation importance (Clark & Eyre, 123	

2012). Despite significant legal and policy protection, however, their breeding site habitats are threatened 124	

by air pollution, urban development, inappropriate management and recreational disturbance (Fagúndez, 125	

2013; Mallord et al., 2007).  126	

Monitoring a variety of bird species, with differing behaviours, over extensive heathland sites, presents 127	

significant challenges for conservation managers. In particular, a number of different surveyors are 128	

inevitably involved in the surveys used for monitoring the target species. Inter-observer differences are 129	

therefore likely to produce variations in data, particularly with nocturnal nightjar surveys, where it is hard 130	

to differentiate individuals and accurately map territories (Liley & Fearnley, 2014). Automated recorders, 131	

used by themselves or in conjunction with existing methods, have great potential to reduce bias and 132	

variability in survey results and account for the effects of detectability between sites and surveys, to 133	

produce more reliable and consistent population estimates. 134	
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Our goal in this study is to establish effective methods for combining bioacoustic techniques and 135	

occupancy models in the monitoring of rare breeding bird populations. We capture an acoustic dataset and 136	

demonstrate how to efficiently process recordings to detect and identify species vocalizations within this, 137	

using a novel clustering technique. We then analyse the acoustic data to estimate occupancy and 138	

detectability for the three target species, using single-species, single-season occupancy models, and 139	

combine this with environmental covariates, to determine the effects of habitat on model outputs. This 140	

provides useful occupancy and detectability estimates for the target species, highlighting the potential for 141	

bioacoustic methods to be used as an alternative or complement to current monitoring practices, with 142	

benefits in terms of consistent, verifiable and permanent field data. 143	

2. MATERIALS AND METHODS 144	

2.1 Study Area 145	

We conducted the study on parts of the Thames Basin Heaths SPA and the Wealden Heaths SPA. These 146	

are two large, internationally important, nature conservation sites in southern England, made up of 18 147	

heathland sites of varying size and character. These sites comprise a mix of dry and wet heath vegetation, 148	

with mire, bog, waterbodies, permanent grassland, scrub and blocks of woodland (Figure 1). Together, 149	

they cover a total of 12,199 ha, of which 5,702 ha is classified as lowland heath (Clark & Eyre, 2012). 150	

Within this overall context, we gathered data at three heathland sites to which access could be readily 151	

gained: Chobham Common, Horsell Common and Thursley Common, which together cover an area of 152	

992 ha. 153	
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 154	
Figure 1. Land Cover Map 2015 habitat data and acoustic sampling site locations. 155	
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2.2 Acoustic Monitoring 157	

We used Wildlife Acoustics SongMeter SM2 recorders, equipped with a single mono omnidirectional 158	

microphone to record audio data (see Supplementary Information: Appendix 1). These automated 159	

recording units were programmed to record a 1 minute audio sample every ten minutes (i.e. one minute 160	

on, nine minutes off), from two hours before sunrise, until three hours after, and then from one hour 161	

before sunset until two hours after. Daily sampling therefore took place within a 5 hour period at dawn, 162	

and 3 hours at dusk. The units were deployed at a single sample site for a period of six days during May-163	

June 2018, so that each site had 288 minutes of recording. The audio samples were all recorded as .wav 164	

files onto an SD card, at 48kHz sampling rate and 16-bit depth (Abrahams, 2018). All microphones were 165	

calibrated to ensure comparable sensitivity and performance before deployment (Turgeon et al., 2017; 166	

Yip et al. 2017). 167	

Sample locations were defined across the study area by using GIS to place a regular 250 m point grid 168	

across the three heathland sites. It was considered that this would be a sufficient distance for recordings to 169	

be independent of each other, and relevant to the territory sizes of the species being studied. From the 166 170	

possible grid points, 48 were randomly selected, stratified to the relative area of each heathland site, to 171	

provide 9 sampling sites at Horsell Common, 15 at Thursley Common, and 24 at Chobham Common. As 172	

16 recorders were available for the study, the 48 sampling sites were divided into three sessions of field 173	

recording: 26-31 May, 5-10 June, 16-21 June. The sites were randomly assigned to one of the three 174	

survey sessions, so that 3 sites at Horsell Common, 5 at Thursley Common, and 8 at Chobham Common 175	

would be sampled at each session. Despite differences in date, all site samples were treated equally as 176	

individual samples within a single season. A closure assumption was therefore made that bird 177	

distribution, population size and density did not change over the course of the three survey sessions.  178	

All sites were given an identification code consisting of a number and site suffix of H, T or C (Figure 1). 179	

Field placements matched the GIS locations as closely as features on the ground would allow. During the 180	

deployments, one recorder failed to record evening sessions repeatedly (at three sampling sites), and 181	
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another suffered battery failure on one occasion. These failures were all at Thursley Common (sites 315T, 182	

319T, 332T, 391T) and the sites were removed from the dataset, leaving 44 sampling locations.  183	

2.3 Audio Data 184	

The audio recordings taken from the field were analysed using a semi-automated system to identify target 185	

species vocalizations (termed ‘phrases’) in the recordings. Kaleidoscope Pro 4.3.2 software (Wildlife 186	

Acoustics, 2017) was first employed, using its cluster analysis method with default settings 187	

(https://www.wildlifeacoustics.com/images/documentation/Kaleidoscope-Pro-5-User-Guide.pdf). This 188	

process analysed the time and frequency characteristics of the recorded audio files, using Hidden Markov 189	

Models, to search for sounds within a 1500-7000Hz frequency band and of 2-20 seconds duration, with a 190	

maximum inter-syllable gap of 1 second - creating each as an individual new .wav file. The analysis 191	

process grouped similar phrases in the recordings (e.g. the song of a particular bird species) into clusters 192	

based on their sound characteristics. After the automated clustering was complete, the phrases detected by 193	

the software were manually reviewed by listening to playback and by the visual inspection of 194	

spectrograms to classify the presence/absence of the target species in each phrase. 195	

2.4 Environmental Data 196	

In order to investigate the influence of habitat on occupancy and detectability at each of the study sites, 197	

we obtained data from a combination of satellite and terrestrial mapping sources. The proportion of 198	

Broadleaf trees, Coniferous trees, Heather and Heather grassland within 100m of each sample site was 199	

calculated from Land Cover Map 2015 (LCM2015) vector data, accessed from the Centre for Ecology 200	

and Hydrology (Rowland et al., 2017). Distance to the nearest road was calculated based on Ordnance 201	

Survey OpenMap-Local vector data (OS data © Crown copyright and database right 2018). We also used 202	

pre-processed satellite data from Copernicus Pan-European High Resolution Layers (HRL; 203	

https://land.copernicus.eu/pan-european/high-resolution-layers) representing Tree Cover Density (TCD), 204	

Water and Wetness (WAW) and Imperviousness (IMD) at a 20m resolution. The Tree Cover Density 205	



Page 11 of 34	

(forest) HRL provides the level of tree cover in a range from 0-100% for each pixel.. The Water and 206	

Wetness HRL shows the occurrence of water and wet surfaces over the period from 2009 to 2015, on a 207	

scale from (1) permanent water, to (4) temporary wetness. The Imperviousness degree IMD captures the 208	

spatial distribution of artificially sealed (i.e. urbanized/road) areas. We used Zonal Statistics to summarise 209	

these measures for each sampling site, to produce the sum of all pixel values within a 100m radius of the 210	

site. All spatial analyses were performed in QGIS (QGIS Development Team, 2018). Weather was 211	

represented in our environmental variables by ‘derived 24hr sun duration’ from the weather station at 212	

Wisley, Surrey (Ref. src_id 719/DCNN 5237, WGS84 51.3108, -0.47634), accessed from BADC 213	

(badc.nerc.ac.uk). Other weather variables were unavailable from this source as records for the survey 214	

period were sparse. 215	

2.5 Occupancy Models 216	

The occupancy of each of the three target species was modelled separately using a single-species, single-217	

season modeling approach with observation and habitat covariates (Furnas & Callas, 2015; MacKenzie et 218	

al., 2002; MacKenzie et al., 2006; Stiffler et al., 2018), using established protocols with the ‘Unmarked’ 219	

package in R (Fiske & Chandler, 2011; R Core Team, 2013; RStudio Team, 2015). The acoustic data was 220	

summarised to day-level temporal resolution of presence/absence, to produce a detection history at each 221	

sampling site comprising 6 replicate surveys. The naive occupancy for each species was checked and 222	

confirmed to be >0.1, so that detection histories were not too sparse to fit single-species models. We first 223	

created null models, without covariates, to represent equal probability of detection and/or occupancy 224	

across all survey sites and days. We then developed models including covariates representing the areas of 225	

different habitat types within 100m of the sampling location (from LCM2015 and Copernicus data), and 226	

distance to the nearest road (as shown in Table 2). We anticipated that detection probability might change 227	

over the course of the survey period (Campos-Cerqueira & Aide, 2016; Furnas & McGrann, 2018) due to 228	

seasonal and weather reasons, and used Julian day of survey and 24-hour sun duration to represent this 229	

information. All variables were scaled and centered around zero prior to analysis. The broadleaf and 230	
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coniferous covariates were excluded as these duplicated the TCDsum habitat type, and the LCM2015 data 231	

were more zero-inflated than the Copernicus data. IMDsum was also rejected as the data were very 232	

sparse. Covariates were applied first to the detection parameter, before the occupancy parameter. Each 233	

model was inspected to check estimates, standard errors and convergence. All models tested are listed in 234	

Table 2. 235	

We assessed model fit using Akaike’s Information Criterion (AIC), ranking and comparing models based 236	

on AIC relative differences between the top ranked model and each other model (∆AIC) and AIC 237	

weights. We considered models with ∆AIC <2 to be equally supported (Burnham & Anderson, 2002) and 238	

combined these by applying model averaging using the MuMIn package in R (Barton, 2018), to estimate 239	

occupancy and detection for each species. Initially, models without occupancy covariates were fitted to 240	

select the most appropriate covariates for detection. These covariates were then retained for all candidate 241	

models when occupancy covariates were added. The models generated for each species were used to 242	

assess occupancy levels at the study sites, define potential habitat areas and calculate provisional 243	

population estimates. 244	

3. RESULTS 245	

3.1 Clustered Audio Segments 246	

Kaleidoscope clustering of the complete audio dataset detected 28,775 phrases as individual .wav files, an 247	

average of 109 phrases per site/day. Each phrase included bird vocalizations and other sounds. With a 248	

mean duration of 6 seconds (range 2-20.9 sec), the clustered phrases comprised 48 hours of audio - 23% 249	

of the total recorded dataset. The phrases were grouped into 55 clusters by the software. 250	

Manual review of all the clustered phrases identified the three target species in the dataset, with 757 251	

phrases across 30 sites having vocalizations of nightjar, 327 of woodlark at 7 sites, and 115 of Dartford 252	

warbler at 14 sites. This gave a total of 1,199 phrases recorded for the three target species. Nightjar and 253	
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Dartford warbler were recorded at all three SPA sites, but woodlark was only recorded at Chobham and 254	

Thursley Commons.  255	

3.2 Patterns in Activity 256	

The total number of phrases recorded per day across all sampling sites varied from 1,974 on 30 May to 257	

1,145 on 17 June. The daily number of phrases was relatively even between recording sessions 1 and 2, 258	

but declined for session 3 in mid-June. This pattern was matched somewhat by the daily numbers of target 259	

species vocalizations (Figure 2). Nightjar and Dartford warbler vocalizations were recorded throughout 260	

all three recording sessions, but woodlark was mostly confined to the early June session only - although 261	

this is likely to be related to presence at the sites being sampled at that time, rather than any reason to do 262	

with seasonal timing. 263	

The most vocally active sites were 61C and 70C (north Chobham) for nightjar, 29C and 25C (south 264	

Chobham) for woodlark, and 339T and 343T (central Thursley) for Dartford warbler - see locations at 265	

Figure 1. Significant numbers of calls were not recorded for any species at the Horsell Common sites. 266	

 267	

0

50

100

150

May 28 Jun 04 Jun 11 Jun 18
Date

N
um

be
r o

f p
hr

as
es

 re
co

rd
ed

Species
DW

NJ

WL



Page 14 of 34	

Figure 2. Number of target species recorded per day across all sampling sites, for Dartford warbler 268	

(DW), nightjar (NJ), and woodlark (WL). 269	

 270	

3.3 Environmental Parameters 271	

The recorders were placed in habitats that varied from open heath to mature forest (Figure 1). Thursley 272	

Common can be divided into a western part, dominated by Heather, with the eastern part being 273	

Coniferous and Broadleaved woodland. Chobham Common is a mosaic of Heather and Heather 274	

grassland, with Coniferous and Broadleaved woodland around its fringes. This site has a much larger 275	

cover of WAW than the two other sites. Horsell Common is mostly Coniferous and Broadleaved 276	

woodland, with patches of Heather at its eastern end. The means and ranges of the GIS-measured 277	

environmental parameters are listed in Table 1. 278	

 279	

Habitat variable Mean value Range Units 

TCDsum 2570 0-6209 Sum of % per pixel 

WAWsum 36.8 0-252 Sum of 1-4 index per pixel 

Distance to Road (HubDist) 351 29-961 Metres 

Heather 14459 0-31318 Sum of pixels 

Heather grassland 4204 0-31060 Sum of pixels 

Table 1. Measured habitat parameters (n=44 sampling sites) 280	

 281	
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3.4 Occupancy Modelling 282	

Naive occupancy was calculated for each species, based on the presence of the species across all 44 283	

sample sites in the study. The naive occupancy values, equal to the proportion of sites with positive 284	

detections, were 0.68 for nightjar, 0.32 for Dartford warbler and 0.16 for woodlark. 285	

Models incorporating covariates on the detection and occupancy parameters were generated for each 286	

species (Table 2). Two models for nightjar had equal support (∆AIC <2) and so were averaged to produce 287	

covariate estimates. The averaged model included Julian date (JULIAN), Tree Cover Density (TCDsum) 288	

and Water and Wetness (WAWsum) as detectability covariates with no covariates acting on occupancy. 289	

The best fit model for nightjar (NJmdet3), with an AICwt of 53%, indicates an occupancy of 0.684 (SE 290	

0.071) with a detectability of 0.740 (SE 0.035), varying only slightly from the null model (Ψ=0.682, 291	

p=0.733). 292	

There were four favoured models for Dartford warbler, including the null model, with TCDsum, 293	

WAWsum, and distance to road (HubDist) featuring on the detectability parameter. Heather grassland 294	

was the only indicator for occupancy. The averaged model for Dartford warbler used only distance to 295	

road as a detectability covariate, with no covariates acting on occupancy. The best-fit model for Dartford 296	

warbler (DWmdet5), with an AICwt of 36%, indicates an occupancy of 0.449 (SE 0.107), with a 297	

detectability of 0.196 (SE 0.053), an increase from the null model occupancy of 0.382 (SE 0.091), but 298	

decrease in detectability from 0.258 (SE 0.057). 299	

Woodlark had two favoured models, sharing Julian date, WAWsum, distance to road, Heather and 300	

Heather grassland as detectability covariates, and WAWsum, Heather and Heather grassland for 301	

occupancy covariates. The averaged model for woodlark had five significant covariates, and again, these 302	

were all on the detection parameter. Julian date, WAWsum and Heather were all positively related to 303	

detectability, while distance to road and Heather grassland were negative indicators. For woodlark, the 304	

best-fit model (WLmocc2), with an AICwt of 59%, indicated an occupancy of 0.13 (SE 0.117), lower 305	
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than the null model figure of 0.162 (SE 0.056), and a detectability of 0.996 (SE 0.012), which varied 306	

substantially from the null model detectability of 0.491 (SE 0.081). 307	

Model Formula AIC ∆AIC AICwt 
Nightjar 
NJmdet3 ~JULIAN + TCDsum + WAWsum ~ 1 259.62 0.00 0.528 
NJmocc3 ~JULIAN + TCDsum + WAWsum ~ TCDsum 260.64 1.02 0.317 
NJmocc2 ~JULIAN + TCDsum + WAWsum ~ TCDsum + HubDist 262.33 2.70 0.136 
NJmocc1 ~JULIAN + TCDsum + WAWsum ~ TCDsum + WAWsum + HubDist + 

Heather + HeatherGrass 
267.64 8.02 0.010 

NJm0 ~1 ~ 1 267.79 8.17 0.009 
Dartford Warbler 
DWmdet5 ~TCDsum + HubDist ~ 1 157.11 0.00 0.364 
DWmocc3 ~HubDist + TCDsum ~ HeatherGrass 158.19 1.08 0.212 
DWmdet4 ~TCDsum + WAWsum + HubDist ~ 1 158.40 1.29 0.191 
DWm0 ~1 ~ 1 159.00 1.89 0.142 
DWmocc2 ~HubDist + TCDsum ~ WAWsum + HeatherGrass 160.06 2.95 0.083 
DWmocc1 ~HubDist + TCDsum ~ TCDsum + WAWsum + HubDist + Heather + 

HeatherGrass 
164.89 7.79 0.007 

Woodlark 
WLmocc2 ~JULIAN + WAWsum + HubDist + Heather + HeatherGrass ~ WAWsum + 

Heather + HeatherGrass 
69.31 0.00 0.593 

WLmocc3 ~JULIAN + WAWsum + HubDist + Heather + HeatherGrass ~ WAWsum + 
HeatherGrass 

70.75 1.44 0.288 

WLmocc1 ~JULIAN + WAWsum + HubDist + Heather + HeatherGrass ~ TCDsum + 
WAWsum + HubDist + Heather + HeatherGrass 

73.10 3.79 0.089 

WLmdet3 ~JULIAN + WAWsum + HubDist + Heather + HeatherGrass ~ 1 75.29 5.98 0.030 
WLm0 ~1 ~ 1 100.55 31.24 0.000 

Table 2 Model selection list for all species - with detectability and occupancy covariates 308	

 309	

Predicted occupancy varied little between sampling sites for nightjar and Dartford warbler (Figure 3), as 310	

only single covariates were acting on these species - TCDsum and Heather grassland respectively. 311	

Woodlark occupancy predictions varied more widely due to the number of habitat covariates acting on the 312	

models for this species - including WAWsum, Heather and Heather grassland. Detectability predictions 313	

were sensible for nightjar and Dartford warbler, but highly polarised to 0-1 in the models for woodlark, 314	

due to the small number of positive sampling sites. 315	



Page 17 of 34	

 316	
Figure 3. Model-averaged predicted occupancy and detectability across all sampling sites, for Dartford 317	

warbler (DW), nightjar (NJ), and woodlark (WL). 318	

 319	

Our results can be used to provide a baseline for assessing the population of the three heathland bird 320	

species studied. We assumed that occupancy is a good surrogate for abundance (MacKenzie & Nichols, 321	

2004) and that we could quantify the relative abundances of the bird species, based on the proportion of 322	

sampling sites in which they were recorded to be present. Given the separation distances between recorder 323	

locations in this study, it is considered reasonable to assume that each occupied sampling site represented 324	

a separate territory/pair. Using the occupancy estimates from the null models for the three species we can 325	

calculate that the areas of occupied habitat for each species, from a total 992 ha, are: nightjar 676 ha, 326	

Dartford warbler 379 ha, woodlark 161 ha (Table 3). Combining these habitat areas with published 327	

breeding densities of 0.074-0.078 males/ha for nightjar (Berry, 1979; Conway et al., 2007), 0.32-0.42 328	

pairs/ha for Dartford warbler (Bibby & Tubbs, 1975), and 0.05 pairs/ha for woodlark (Langston et al., 329	

2007; Sitters et al., 1996), gives estimated population levels of: nightjar 51 males, Dartford warbler 140 330	

pairs, and woodlark 8 pairs (Table 3).  331	
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Species Occupancy (SE) Occupied habitat (90% CI) Density ha-1 Pairs (90% CI) 

Nightjar 0.682 (0.0702) 676 ha (562-791) 0.075 51 (42-59) 

Dartford warbler 0.382 (0.0914) 379 ha (230-528) 0.37 140 (85-195) 

Woodlark 0.162 (0.0562) 161ha (69-252) 0.05 8 (3-13) 

Table 3. Calculated areas of occupied habitat, based on intercept-only occupancy estimates 332	

 333	

4. DISCUSSION 334	

4.1 Bioacoustic Approach 335	

To our knowledge, this is the first study in Europe to combine bioacoustic survey with occupancy 336	

modelling. It is also the first in the UK to undertake a large scale survey for multiple bird species using 337	

automated recorders. It therefore expands the geographic scope of case studies for these methods, and 338	

applies them in a new habitat, beyond the American forested ecosystems in which most previous studies 339	

have been located (Furnas & Callas, 2015; Campos-Cerqueira & Aide, 2016; Furnas & McGrann, 2018; 340	

Wood et al., 2019). 341	

We used species detection data from six repeated days of recording at 44 sampling sites, combining this 342	

with environmental covariates to estimate occupancy and detectability for three bird species. Our results 343	

show that the bioacoustic approach can be used effectively for the survey and monitoring of heathland 344	

bird populations. Although we included models where habitat covariates could influence occupancy in 345	

our candidate sets, the ‘best’ models for each species suggested that the habitat variables were not 346	

important indicators of occupancy at the scale studied. This is possibly due to the fact that the study areas 347	

were all lowland heathland sites, generally suitable for the study species, and so the distribution of 348	

individuals was likely to relate to micro-habitat features that were not detectable at the scale of the field 349	
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survey, satellite and map data applied. The satellite data used was at 20m pixel size, but the average size 350	

of the LCM polygons was 2.4 ha, equivalent to 87 m radius. Although the covariate data was sampled at a 351	

similar scale (100 m radius) to previous studies (Furnas & Callas, 2015; Campos-Cerqueira & Aide, 352	

2016), these were landscape-scale surveys less dependent on small habitat features to differentiate plots. 353	

Thus, we would agree with the finding of Niedballa et al. (2015), that both the spatial scale of habitat 354	

covariate data, and the radius sampled around survey sites, can affect the fit of occupancy models. Higher 355	

resolution data is needed for a site-based scale of assessment, if habitat covariates are to be included in 356	

analyses. For future studies, this should be gained from either field survey or high-resolution 357	

aerial/satellite imagery, such as the 5m resolution RapidEye imagery used by Niedballa et al (2015). 358	

 359	

Identification of species vocalizations is commonly done either by complete manual analysis or, 360	

increasingly, by the use of automated recognizers, which require the a priori compilation and analysis of 361	

a large library of known species vocalizations (Knight et al., 2017; Shonfield & Bayne, 2017). Our 362	

analysis workflow included automated clustering of the acoustic data set, followed by manual validation 363	

of candidate vocalizations of the target species (Abrahams & Denny, 2018). This process has two 364	

benefits.  Firstly, the automated clustering identified signals, that may be target bird species, but filtered 365	

out noise. In the current study, this allowed 77% of the total acoustic dataset to be filtered out, before 366	

identifications were attempted, significantly reducing the later workload in manually reviewing data for 367	

target species vocalizations. The second benefit of the analysis approach taken here, was that the manual 368	

validation step helped to minimize false-positive detections (Campos-Cerqueira & Aide, 2016;), which 369	

are often a significant issue with automated species identification systems (Zwart et al., 2014; Salamon et 370	

al., 2016). Misclassification errors such as this violate a major assumption of most occupancy models, and 371	

can lead to substantial errors in occupancy estimates (MacKenzie et al., 2006; Banner et al., 2018). The 372	

issue can potentially be addressed by complete manual identification of all recordings, but this is highly 373	

time-consuming, while the hybrid automated/manual approach taken here reduced the workload in the 374	



Page 20 of 34	

manual review stage to less than a quarter of what it would have been. The corollary is that the data 375	

rejected by the automated clustering may contain target species vocalizations, and hence false-negatives 376	

may result. However, with the summation of the detailed call data down to daily presence/absence at each 377	

site, the potential loss of some target species phrases is considered unlikely to significantly affect the 378	

occupancy and detectability estimates derived from the modelling (Shonfield et al., 2018). The combined 379	

use of automated clustering and manual verification is therefore recommended as a valid approach for 380	

identification in bioacoustic studies. 381	

4.2 Spatial Sampling Design 382	

In bioacoustic studies with static sampling locations, the layout of recorder placements is of high 383	

importance. For occupancy modelling especially, the distance between sampling sites should be relevant 384	

to the territory size of the taxa being recorded (Niedballa et al., 2015), while also ensuring that the 385	

detection process is independent at each site by preventing overlap between the recording radius around 386	

each recorder. While this distance is variable, for many bird species the effective recording radius of most 387	

detectors is in the region of 50 m - although this is dependent on microphone model, variability and 388	

condition (Furnas & Callas, 2015; Turgeon et al., 2017; Yip et al., 2017).  Within our study, the closest 389	

spacing between sampling sites was set by the ~250 m sampling grid. The mean nearest neighbour 390	

distances of the recorder sites were 316 m for Chobham, 346 m for Horsell, and 329 m for Thursley 391	

(range 202-703). Due to the sampling sites being spread across three survey sessions, the mean nearest 392	

neighbour distances between recorders in each session were 608 m, 466m and 508m. 393	

For nightjar, a threshold of 350 m distance between registrations has been proposed to differentiate 394	

between male territories (Conway et al., 2007), while Stiffler et al (2018) applied a minimum spacing of 395	

400 m for recording wetland birds. The spacing of the recorders within the current study related well to 396	

these studies, and as a result, there can be a reasonable confidence that there was no double-counting for 397	

the bird species being studied. A 250 m sampling grid, as set out in the draft protocol of Abrahams (2018) 398	

is therefore considered to be appropriate for future studies, although additional refinement of detector 399	
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placement may be warranted to maximise coverage of sites, dependent on the vocal and territorial 400	

characteristics of the species being studied. For example, recent research has indicated that, for a desired 401	

threshold of detection efficiency, careful selection of optimised placements based on topography, 402	

vegetation and weather patterns, may be most efficient (Piña-Covarrubias et al., 2018). 403	

4.3 Temporal Sampling Design 404	

In any occupancy study, the balance between the number of sites and number of sampling events 405	

differentially affects the accuracy and precision of the occupancy and detectability estimates.  We 406	

recorded for six days at 44 sites, which we considered likely to balance fieldwork resourcing with 407	

sufficient sample site density. This was a longer deployment time than the two-three days used by Furnas 408	

& Callas (2015) and Stiffler et al. (2018), and equivalent to that employed by Campos-Cerqueira & Aide 409	

(2016) and Wood et al. (2019). For rare species with a high probability of detection (i.e. woodlark for this 410	

study) the required survey effort should maximize the number of sites covered, while for common species 411	

with low detection (i.e. Dartford warbler) the most efficient sampling approach is to increase the number 412	

of survey occasions (Mackenzie & Royle, 2005). With the low occupancy for woodlark found here, it is 413	

likely that an increased number of sampling sites (and lower number of survey days if necessary) would 414	

be likely to improve the modelling results (Mackenzie & Royle, 2005; Banner et al., 2018). This modified 415	

sampling approach would, however, have to be considered in terms of its costs/benefits,  taking into 416	

account the potential effects on Dartford warbler modelling and increased fieldwork time or equipment 417	

requirements. 418	

4.4 Detectability 419	

Using the null models, without covariates, we estimated detectability as 0.73 for nightjar, 0.49 for 420	

woodlark and 0.26 for Dartford warbler. The national Breeding Bird Survey (BBS) (Johnston et al., 2014) 421	

found a much lower detectability of 0.30 for nightjar, which is perhaps unsurprising, due to the 422	

difficulties with surveying this species within a standard (mostly daytime) survey method. However, the 423	
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BBS detectability estimates of 0.47 for woodlark and 0.37 for Dartford warbler are similar to those found 424	

in this bioacoustic study. In this comparison, nightjar is much better detected by acoustic recorders (as 425	

found by Zwart et al., 2014), but Dartford warbler less so, while detectability for woodlark is matched. 426	

Taking detectability into account during traditional bird surveys requires repeated visits across the season. 427	

The time often occurring between site visits may then invalidate the assumption that detection probability 428	

remains constant across the survey events. The protocol used in this study enabled six days of back-to-429	

back recording, simultaneously at 16 sites, minimising the risk that detection probability would change 430	

between sampling events.  This would have been difficult to achieve without the use of automated 431	

recorders. The greater number of survey replicates achievable with the bioacoustics approach is therefore 432	

able to improve occupancy and detection estimates (MacKenzie et al., 2006; Stiffler et al., 2018). 433	

We found that survey date, combined with habitat characteristics, explained detectability and improved 434	

the performance for some of the species models generated here, similar to the finding of Furnas & Callas 435	

(2015). Wetland (WAWsum) was a positive parameter on detectability for all three species, and woodland 436	

(TCDsum) was also positive for nightjar, as was Heather for woodlark. The probability of detecting a 437	

species during a bioacoustic survey is a function of both the probability of it vocalizing and the recorder 438	

detecting the call. The vocalization rates of many birds vary due to age, sex, breeding status, time of day, 439	

and seasonal variation (Campos-Cerqueira & Aide, 2016; Furnas & McGrann, 2018). As a consequence, 440	

both survey timing and the number of visits need to accommodate species vocalizing behavior to ensure 441	

accurate detection, particularly for species with sporadic vocalization patterns (La & Nudds, 2016). Age 442	

and sex-specific variation in vocalization rates cannot be accounted for easily when using automated 443	

recorders, but our methods allowed for the other variation factors, as we sampled over a relatively short 444	

period of time during the breeding season, and sampled over a wide timeframe every day, thereby 445	

minimising the potential for seasonal and diurnal variation in call rates. Our results, together with those of 446	

Johnston et al. (2014), showing how detection probability varies by species, should be considered in 447	
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decisions about study design when planning to survey birds using automated recorders or traditional 448	

methods.  449	

4.5 Occupancy 450	

We calculated occupancy as 0.682 for nightjar, 0.382 for Dartford warbler and 0.162 for woodlark, 451	

showing that nightjar is widespread across the study sites, while woodlark has a much more restricted 452	

distribution. This is in line with other survey data for the sites, collected by traditional survey methods 453	

(J.Eyre & J.Clark; D. Boyd pers. comms.), and previous occupancy studies (Furnas & Callas, 2015; 454	

Campos-Cerqueira & Aide, 2016; Wood et al. 2019). Although the occupancy figures provide a 455	

population estimate in themselves, they could potentially be used to generate an estimate of the number of 456	

pairs, as the common measure for population size.  We did this provisionally, using a combination of 457	

habitat area and previously recorded breeding densities to give the following numbers: Dartford warbler 458	

140, nightjar 51 and woodlark 8. 459	

The occupancy modelling indicated a positive relationship between nightjar and TCDsum. This 460	

corresponds to associations with woodland found in previous studies (Bright et al., 2007; Conway, 2010]. 461	

The negative relationship between Dartford warbler and Heather Grassland was surprising, as this species 462	

is generally associated with dry-humid heath, and gorse, sometimes with a grassy component (Bibby & 463	

Tubbs, 1975). Woodlark occupancy was positively related to Heather Grassland, and negatively to 464	

WAWsum and Heather. These results are more expected, as nest sites for this species are generally found 465	

in tall/dense heather or grass (Mallord et al., 2007), while foraging sites have short grass and bare ground 466	

(Conway et al., 2009). 467	

 468	
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5. CONCLUSION 469	

Our study demonstrates the suitability of the bioacoustics approach to identify the distributions and assess 470	

the populations of target bird species on heathland study areas. Occupancy and detectability estimates 471	

were produced, taking into account imperfect detection. If carried out on a regular basis, this method 472	

could provide a valuable new approach for monitoring of population levels and favourable conservation 473	

status. For future studies in this setting, and with these species, methods might be improved by increasing 474	

the number of sample sites at which recording takes place. This approach would be likely to improve the 475	

modelling for woodlark, but would need to be balanced against potential effects on models for the other 476	

two species studied. 477	

The field of conservation biology is continuously adopting improved, cheaper and more easily available 478	

technologies. In the near future, automated interpretation of recordings using machine learning methods 479	

will become increasingly viable, allowing effective identification of a range of bird species (Brandes, 480	

2008; Acevedo & Villanueva-Rivera, 2009; Knight et al., 2017; Shonfield & Bayne, 2017, Stowell et al., 481	

2019). The permanent nature of bioacoustic recordings will allow these ongoing developments in call 482	

analysis and automated identification to be used to re-analyse previously collected data, perhaps alongside 483	

new recordings (Shonfield & Bayne, 2017; Stiffler et al., 2018). The use of bioacoustics will, therefore, 484	

be indispensable for conducting long-term and potentially continuous monitoring over large spatial scales, 485	

aiding understanding of the ongoing effects of threats and management practices on bird populations on 486	

heathland and in other environments. 487	

 488	
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SUPPLEMENTARY INFORMATION: APPENDIX 1 660	

Kaleidoscope 4.3.2 software settings 661	

File parameters: 662	

• No subdirectories 663	

• No split to max duration 664	

• Split channels—yes. 665	

 666	

Signal parameters: 667	

• Signal of interest 1500–7000 Hz	668	

 669	

• Duration 2–20 s 670	

• Maximum inter syllable gap 1 s 671	

 672	

Scan and cluster recordings: 673	

• Max distance 1.0 674	

• FFT window 5.33 ms 675	

• Max states 12 676	

• Max distance for building clusters 0.5 677	

• Max clusters 500 678	
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	679	

Figure	4.		Number	of	detection	days	for	each	species	at	each	site.	680	

	681	

 682	


