1 Combining bioacoustics and occupancy modelling for improved monitoring of

2 rare breeding bird populations

3 AUTHOR DETAILS

- 4 Carlos Abrahams ^{1,2} Matt Geary ³
- 5
- 6 ^{1.} Baker Consultants Ltd, West Platform, Cromford Station, Cromford Bridge, Matlock, Derbyshire, DE4
- 7 5JJ, c.abrahams@bakerconsultants.co.uk 01629 593958
- 8 ² Nottingham Trent University, Clifton Campus, Nottingham, NG11 8NS Carlos Abrahams ORCID id:
- 9 0000-0003-0301-5585
- 10^{3.} Conservation Biology Research Group, Department of Biological Sciences, University of Chester,
- 11 Parkgate Rd, Chester CH1 4BJ. ORCID id: 0000-0003-0951-6110
- 12

13 DECLARATION OF AUTHORSHIP

- 14 CA conceived the ideas, designed methodology; collected and analysed the data. CA led the writing of the
- 15 manuscript, with MG contributing to occupancy modelling methods and development of the text. Both
- 16 authors contributed critically to the drafts and gave final approval for publication.

18 HIGHLIGHTS

19	•	Bioacoustic recording is used to generate occupancy and detectability estimates
20	•	Rare heathland breeding birds varied in their occupancy between 0.68 and 0.13
21	•	Detectability varied from 0.74 to 0.20, and was affected by habitat
22	•	Bioacoustics can be used to provide improved data over traditional survey methods

23 ABSTRACT

Effective monitoring of rare and declining species is critical to enable their conservation, but can often be
difficult due to detectability or survey constraints. However, developments in acoustic recorders are
enabling an important new approach for improved monitoring that is especially applicable for long-term
studies, and for use in difficult environments or with cryptic species.

28 Bioacoustic data may be effectively analysed within an occupancy modelling framework, as

29 presence/absence can be determined, and repeated survey events can be accommodated. Hence, both

30 occupancy and detectability estimates can be produced from large, coherent datasets. However, the most

31 effective methods for the practical detection and identification of call data are still far from established.

32 We assessed a novel combination of automated clustering and manual verification to detect and identify

33 heathland bird vocalizations, covering a period of six days at 44 sampling locations

34 Occupancy (Ψ) and detectability (p) were modelled for each species, and the best fit models provided

values of: nightjar Ψ =0.684, p=0.740, Dartford warbler Ψ =0.449 p=0.196 and woodlark Ψ =0.13 p=0.996.

36 Including environmental covariates within the occupancy models indicated that tree, wetland and heather

37 cover were important variables, particularly influencing detectability.

38 The protocol used here allowed robust and consistent survey data to be gathered, with limited fieldwork

resourcing, allowing population estimates to be generated for the target bird species. The combination of

40 bioacoustics and occupancy modelling can provide a valuable new monitoring approach, allowing

41 population trends to be identified, and the effects of environmental change and site management to be

42 assessed.

43 **KEYWORDS**

44 Acoustic ecology, autonomous recorder, bird survey, heathland, occupancy model.

45

46 1. INTRODUCTION

47 1.1 Bioacoustics for Biodiversity Monitoring

48 Biodiversity monitoring is central to nature conservation, allowing species status to be evaluated or 49 assessments to be made of biological responses to environmental changes (Pereira & Cooper, 2006). 50 Long-term monitoring of designated nature conservation sites is particularly needed to identify population 51 trends and inform management planning efforts, especially in the context of factors such as climate 52 change and habitat loss/severance (Noss, 1990; Furnas & Callas, 2015). However, existing monitoring 53 practices and protocols are often sub-optimal, especially in terms of unbiased spatial coverage, sampling 54 effort optimization, the statistical use of the data, and the lack of repeated sampling (Schmeller et al., 55 2012).

We assessed the potential to improve the existing monitoring methods currently used on sites that are internationally important for their breeding bird populations. The most common methods for monitoring of bird numbers and distributions are transect or point count surveys by human observers. These have recognised disadvantages, such as observer bias, the availability of skilled/experienced surveyors (Brandes, 2008; Celis-Murillo et al., 2009; Rempel et al., 2005; Sedláček et al., 2015), and the infrequent and short-term nature of survey visits (Shonfield & Bayne, 2017; Zwart et al., 2014). In response to these 62 issues, passive acoustic monitoring is increasingly being used as an alternative monitoring technique. This 63 method uses automated recording units, which can be deployed in the field for days or weeks at a time to capture animal sounds. The advantages of this approach include the production of a standardised, long-64 65 duration, permanent dataset and record of species identification, which can be repeatedly analysed and 66 subject to validation by independent reviewers (Abrahams & Denny, 2018; Celis-Murillo et al., 2009; 67 Rempel et al., 2005). Automated recorders can be synchronized to occur simultaneously across large 68 spatial extents, reducing temporal variability in studies (Brandes, 2008; Furnas & Callas, 2015; 69 MacKenzie & Nichols, 2004), and offering large data volumes at low cost and with little resourcing 70 requirement (Acevedo & Villanueva-Rivera, 2006; Hill et al., 2018; Holmes et al., 2014; Zwart et al., 71 2014). Due to potential benefits such as these, the use of automated recorders has increased significantly 72 over the last ten years (Shonfield & Bayne, 2017), and some researchers have advocated the use of 73 automated recorders instead of expert personnel for conducting surveys (Darras et al., 2018; Rempel et 74 al., 2005; Brandes, 2008; Zwart et al., 2014).

75 There are potential barriers to the widespread uptake of passive acoustic monitoring for bird surveys. 76 These include the need for specific expertise and the increased time required for post-processing 77 compared to some traditional surveys (Banner et al., 2018; Knight et al., 2017), together with the costs of 78 equipment (Beason et al., 2018; Farina et al., 2014; Hill et al., 2018). However, open source or low-cost 79 recording devices are being produced and post-processing methods are constantly improving – although 80 automated species identification, including machine-learning approaches, is still in development 81 (Acevedo et al., 2009; Salamon et al., 2016). For fieldwork, a practical disadvantage is the fact that 82 acoustic monitoring does not allow the collection of visual clues which can sometimes be vital for the 83 identification of cryptic/quiet species, or for assessing abundance (Klingbeil & Willig, 2015; Sedláček et 84 al., 2015). In some cases, the use of audio recording units has resulted in detection of fewer species and 85 detection at shorter distances than human observers (Holmes et al., 2014; Yip et al., 2017), but the 86 potential for longer term data capture with recording units means that this constraint can normally be

addressed by longer deployment times (Darras et al., 2018; Sedláček et al., 2015; Shonfield &	& Bayne.
---	----------

- 88 2017; Zwart et al., 2014). However, microphone performance and maintenance needs to be considered as
- part of the planning of fieldwork campaigns (Turgeon et al., 2017; Yip et al., 2017).

90 1.2 Occupancy Models

91 Alongside the technological advances in bioacoustics, there has been a dramatic recent increase in the 92 development and application of occupancy models that explicitly incorporate species detectability (Furnas 93 & McGrann, 2018; MacKenzie & Nichols, 2004; MacKenzie et al., 2002; MacKenzie et al., 2006). The 94 presence/absence of a species in a sample can be used to calculate occupancy (Ψ) - the proportion of an 95 area, or number of sites, occupied by a species. The frequency with which a species is repeatedly recorded 96 at each sampling site can also be used to assess detectability (p), to allow for the estimation of, and 97 correction for, imperfect detection (Banner et al., 2018; MacKenzie et al., 2002; MacKenzie et al., 2006). 98 The ability to factor these two parameters into assessments allows improved estimates of populations and 99 greater understanding of ecological patterns such as species/habitat relationships (MacKenzie et al., 100 2006).

101 Despite the clear potential and utility of combining bioacoustic techniques and occupancy models, only a 102 few studies have united these methodological developments to model the population status of a range of 103 vocal species (Yates & Muzika 2006; Furnas & Callas 2015; Kalan et al. 2015; Campos-Cerqueira & 104 Aide 2016; Stiffler et al. 2018; Wood et al., 2019). This study, therefore, provides an important additional 105 case-study in new geographical, habitat and spatiotemporal contexts. Furthermore, it also addresses one of 106 the most critical questions in this area of study - how to most effectively extract useful information from 107 acoustic recorders to feed into the occupancy models and allow population estimates to be generated. 108 Although fine-grained data can be gained from acoustic recorders, a significant benefit of the occupancy

109 modelling approach in field studies is that it relies only on presence/absence data, rather than metrics of

abundance such as counts of individuals (MacKenzie et al., 2006). This is normally much easier to

111 determine, requiring less interpretation in the field/lab, and counteracting the potential for inter-observer 112 or inter-survey error (MacKenzie et al., 2006). Although some information is perhaps lost by this 113 approach, data accuracy may be gained as, for rare species, it can be very difficult to correctly estimate 114 abundance during surveys, whereas estimation of occupancy may still be possible with a high level of 115 confidence (Campos-Cerqueira & Aide, 2016; Mackenzie & Royle, 2005). Finally, occupancy and 116 abundance will be linked in most populations, and at small spatial scales and with territorial species, 117 occupancy may be regarded as equivalent to population size and can be used for investigating population 118 dynamics or spatial variation (MacKenzie et al., 2006; Royle & Nichols, 2003; Furnas & Callas, 2015; 119 Campos-Cerqueira & Aide, 2016; Wood et al., 2019).

120 1.3 Heathland Bird Monitoring

Our study was conducted on European nightjar *Caprimulgus europaeus*, woodlark *Lullula arborea* and
Dartford warbler *Sylvia undata*. These three birds are specialists of lowland heathland habitats, and are
rare and declining species considered to be of international conservation importance (Clark & Eyre,
2012). Despite significant legal and policy protection, however, their breeding site habitats are threatened
by air pollution, urban development, inappropriate management and recreational disturbance (Fagúndez,
2013; Mallord et al., 2007).

127 Monitoring a variety of bird species, with differing behaviours, over extensive heathland sites, presents 128 significant challenges for conservation managers. In particular, a number of different surveyors are 129 inevitably involved in the surveys used for monitoring the target species. Inter-observer differences are 130 therefore likely to produce variations in data, particularly with nocturnal nightjar surveys, where it is hard 131 to differentiate individuals and accurately map territories (Liley & Fearnley, 2014). Automated recorders, 132 used by themselves or in conjunction with existing methods, have great potential to reduce bias and 133 variability in survey results and account for the effects of detectability between sites and surveys, to 134 produce more reliable and consistent population estimates.

Page 6 of 34

135 Our goal in this study is to establish effective methods for combining bioacoustic techniques and 136 occupancy models in the monitoring of rare breeding bird populations. We capture an acoustic dataset and 137 demonstrate how to efficiently process recordings to detect and identify species vocalizations within this, 138 using a novel clustering technique. We then analyse the acoustic data to estimate occupancy and 139 detectability for the three target species, using single-species, single-season occupancy models, and 140 combine this with environmental covariates, to determine the effects of habitat on model outputs. This 141 provides useful occupancy and detectability estimates for the target species, highlighting the potential for 142 bioacoustic methods to be used as an alternative or complement to current monitoring practices, with 143 benefits in terms of consistent, verifiable and permanent field data.

144 2. MATERIALS AND METHODS

145 2.1 Study Area

146 We conducted the study on parts of the Thames Basin Heaths SPA and the Wealden Heaths SPA. These 147 are two large, internationally important, nature conservation sites in southern England, made up of 18 148 heathland sites of varying size and character. These sites comprise a mix of dry and wet heath vegetation, 149 with mire, bog, waterbodies, permanent grassland, scrub and blocks of woodland (Figure 1). Together, 150 they cover a total of 12,199 ha, of which 5,702 ha is classified as lowland heath (Clark & Eyre, 2012). 151 Within this overall context, we gathered data at three heathland sites to which access could be readily 152 gained: Chobham Common, Horsell Common and Thursley Common, which together cover an area of 153 992 ha.

154 155 I

55 Figure 1. Land Cover Map 2015 habitat data and acoustic sampling site locations.

157 2.2 Acoustic Monitoring

158 We used Wildlife Acoustics SongMeter SM2 recorders, equipped with a single mono omnidirectional 159 microphone to record audio data (see Supplementary Information: Appendix 1). These automated 160 recording units were programmed to record a 1 minute audio sample every ten minutes (i.e. one minute 161 on, nine minutes off), from two hours before sunrise, until three hours after, and then from one hour 162 before sunset until two hours after. Daily sampling therefore took place within a 5 hour period at dawn, 163 and 3 hours at dusk. The units were deployed at a single sample site for a period of six days during May-164 June 2018, so that each site had 288 minutes of recording. The audio samples were all recorded as .way 165 files onto an SD card, at 48kHz sampling rate and 16-bit depth (Abrahams, 2018). All microphones were 166 calibrated to ensure comparable sensitivity and performance before deployment (Turgeon et al., 2017; 167 Yip et al. 2017).

168 Sample locations were defined across the study area by using GIS to place a regular 250 m point grid 169 across the three heathland sites. It was considered that this would be a sufficient distance for recordings to 170 be independent of each other, and relevant to the territory sizes of the species being studied. From the 166 171 possible grid points, 48 were randomly selected, stratified to the relative area of each heathland site, to 172 provide 9 sampling sites at Horsell Common, 15 at Thursley Common, and 24 at Chobham Common. As 173 16 recorders were available for the study, the 48 sampling sites were divided into three sessions of field 174 recording: 26-31 May, 5-10 June, 16-21 June. The sites were randomly assigned to one of the three 175 survey sessions, so that 3 sites at Horsell Common, 5 at Thursley Common, and 8 at Chobham Common 176 would be sampled at each session. Despite differences in date, all site samples were treated equally as 177 individual samples within a single season. A closure assumption was therefore made that bird 178 distribution, population size and density did not change over the course of the three survey sessions.

179 All sites were given an identification code consisting of a number and site suffix of H, T or C (Figure 1).

180 Field placements matched the GIS locations as closely as features on the ground would allow. During the

181 deployments, one recorder failed to record evening sessions repeatedly (at three sampling sites), and

another suffered battery failure on one occasion. These failures were all at Thursley Common (sites 315T,
319T, 332T, 391T) and the sites were removed from the dataset, leaving 44 sampling locations.

184 2.3 Audio Data

185 The audio recordings taken from the field were analysed using a semi-automated system to identify target 186 species vocalizations (termed 'phrases') in the recordings. Kaleidoscope Pro 4.3.2 software (Wildlife 187 Acoustics, 2017) was first employed, using its cluster analysis method with default settings 188 (https://www.wildlifeacoustics.com/images/documentation/Kaleidoscope-Pro-5-User-Guide.pdf). This 189 process analysed the time and frequency characteristics of the recorded audio files, using Hidden Markov 190 Models, to search for sounds within a 1500-7000Hz frequency band and of 2-20 seconds duration, with a 191 maximum inter-syllable gap of 1 second - creating each as an individual new .wav file. The analysis 192 process grouped similar phrases in the recordings (e.g. the song of a particular bird species) into clusters 193 based on their sound characteristics. After the automated clustering was complete, the phrases detected by 194 the software were manually reviewed by listening to playback and by the visual inspection of 195 spectrograms to classify the presence/absence of the target species in each phrase.

196 2.4 Environmental Data

197 In order to investigate the influence of habitat on occupancy and detectability at each of the study sites, 198 we obtained data from a combination of satellite and terrestrial mapping sources. The proportion of 199 Broadleaf trees, Coniferous trees, Heather and Heather grassland within 100m of each sample site was 200 calculated from Land Cover Map 2015 (LCM2015) vector data, accessed from the Centre for Ecology 201 and Hydrology (Rowland et al., 2017). Distance to the nearest road was calculated based on Ordnance 202 Survey OpenMap-Local vector data (OS data © Crown copyright and database right 2018). We also used 203 pre-processed satellite data from Copernicus Pan-European High Resolution Layers (HRL; 204 https://land.copernicus.eu/pan-european/high-resolution-layers) representing Tree Cover Density (TCD),

205 Water and Wetness (WAW) and Imperviousness (IMD) at a 20m resolution. The Tree Cover Density

Page 10 of 34

206 (forest) HRL provides the level of tree cover in a range from 0-100% for each pixel.. The Water and 207 Wetness HRL shows the occurrence of water and wet surfaces over the period from 2009 to 2015, on a 208 scale from (1) permanent water, to (4) temporary wetness. The Imperviousness degree IMD captures the 209 spatial distribution of artificially sealed (i.e. urbanized/road) areas. We used Zonal Statistics to summarise 210 these measures for each sampling site, to produce the sum of all pixel values within a 100m radius of the 211 site. All spatial analyses were performed in OGIS (OGIS Development Team, 2018). Weather was 212 represented in our environmental variables by 'derived 24hr sun duration' from the weather station at 213 Wisley, Surrey (Ref. src id 719/DCNN 5237, WGS84 51.3108, -0.47634), accessed from BADC 214 (badc.nerc.ac.uk). Other weather variables were unavailable from this source as records for the survey 215 period were sparse.

216 2.5 Occupancy Models

217 The occupancy of each of the three target species was modelled separately using a single-species, single-218 season modeling approach with observation and habitat covariates (Furnas & Callas, 2015; MacKenzie et 219 al., 2002; MacKenzie et al., 2006; Stiffler et al., 2018), using established protocols with the 'Unmarked' 220 package in R (Fiske & Chandler, 2011; R Core Team, 2013; RStudio Team, 2015). The acoustic data was 221 summarised to day-level temporal resolution of presence/absence, to produce a detection history at each 222 sampling site comprising 6 replicate surveys. The naive occupancy for each species was checked and 223 confirmed to be >0.1, so that detection histories were not too sparse to fit single-species models. We first 224 created null models, without covariates, to represent equal probability of detection and/or occupancy 225 across all survey sites and days. We then developed models including covariates representing the areas of 226 different habitat types within 100m of the sampling location (from LCM2015 and Copernicus data), and 227 distance to the nearest road (as shown in Table 2). We anticipated that detection probability might change 228 over the course of the survey period (Campos-Cerqueira & Aide, 2016; Furnas & McGrann, 2018) due to 229 seasonal and weather reasons, and used Julian day of survey and 24-hour sun duration to represent this 230 information. All variables were scaled and centered around zero prior to analysis. The broadleaf and

coniferous covariates were excluded as these duplicated the TCDsum habitat type, and the LCM2015 data
were more zero-inflated than the Copernicus data. IMDsum was also rejected as the data were very
sparse. Covariates were applied first to the detection parameter, before the occupancy parameter. Each
model was inspected to check estimates, standard errors and convergence. All models tested are listed in
Table 2.

236 We assessed model fit using Akaike's Information Criterion (AIC), ranking and comparing models based 237 on AIC relative differences between the top ranked model and each other model (ΔAIC) and AIC 238 weights. We considered models with $\Delta AIC < 2$ to be equally supported (Burnham & Anderson, 2002) and 239 combined these by applying model averaging using the MuMIn package in R (Barton, 2018), to estimate 240 occupancy and detection for each species. Initially, models without occupancy covariates were fitted to 241 select the most appropriate covariates for detection. These covariates were then retained for all candidate 242 models when occupancy covariates were added. The models generated for each species were used to 243 assess occupancy levels at the study sites, define potential habitat areas and calculate provisional 244 population estimates.

245 3. RESULTS

246 3.1 Clustered Audio Segments

Kaleidoscope clustering of the complete audio dataset detected 28,775 phrases as individual .wav files, an
average of 109 phrases per site/day. Each phrase included bird vocalizations and other sounds. With a
mean duration of 6 seconds (range 2-20.9 sec), the clustered phrases comprised 48 hours of audio - 23%
of the total recorded dataset. The phrases were grouped into 55 clusters by the software.

- 251 Manual review of all the clustered phrases identified the three target species in the dataset, with 757
- 252 phrases across 30 sites having vocalizations of nightjar, 327 of woodlark at 7 sites, and 115 of Dartford
- 253 warbler at 14 sites. This gave a total of 1,199 phrases recorded for the three target species. Nightjar and

254 Dartford warbler were recorded at all three SPA sites, but woodlark was only recorded at Chobham and255 Thursley Commons.

256 3.2 Patterns in Activity

The total number of phrases recorded per day across all sampling sites varied from 1,974 on 30 May to 1,145 on 17 June. The daily number of phrases was relatively even between recording sessions 1 and 2, but declined for session 3 in mid-June. This pattern was matched somewhat by the daily numbers of target species vocalizations (Figure 2). Nightjar and Dartford warbler vocalizations were recorded throughout all three recording sessions, but woodlark was mostly confined to the early June session only - although this is likely to be related to presence at the sites being sampled at that time, rather than any reason to do with seasonal timing.

The most vocally active sites were 61C and 70C (north Chobham) for nightjar, 29C and 25C (south

265 Chobham) for woodlark, and 339T and 343T (central Thursley) for Dartford warbler - see locations at

Figure 1. Significant numbers of calls were not recorded for any species at the Horsell Common sites.

Page 13 of 34

Figure 2. Number of target species recorded per day across all sampling sites, for Dartford warbler
(DW), nightjar (NJ), and woodlark (WL).

270

271 3.3 Environmental Parameters

The recorders were placed in habitats that varied from open heath to mature forest (Figure 1). Thursley

273 Common can be divided into a western part, dominated by Heather, with the eastern part being

274 Coniferous and Broadleaved woodland. Chobham Common is a mosaic of Heather and Heather

275 grassland, with Coniferous and Broadleaved woodland around its fringes. This site has a much larger

276 cover of WAW than the two other sites. Horsell Common is mostly Coniferous and Broadleaved

277 woodland, with patches of Heather at its eastern end. The means and ranges of the GIS-measured

environmental parameters are listed in Table 1.

279

Habitat variable	Mean value	Range	Units
TCDsum	2570	0-6209	Sum of % per pixel
WAWsum	36.8	0-252	Sum of 1-4 index per pixel
Distance to Road (HubDist)	351	29-961	Metres
Heather	14459	0-31318	Sum of pixels
Heather grassland	4204	0-31060	Sum of pixels

280 Table 1. Measured habitat parameters (n=44 sampling sites)

282 3.4 Occupancy Modelling

Naive occupancy was calculated for each species, based on the presence of the species across all 44
sample sites in the study. The naive occupancy values, equal to the proportion of sites with positive
detections, were 0.68 for nightjar, 0.32 for Dartford warbler and 0.16 for woodlark.

- 286 Models incorporating covariates on the detection and occupancy parameters were generated for each
- species (Table 2). Two models for nightjar had equal support ($\Delta AIC < 2$) and so were averaged to produce
- 288 covariate estimates. The averaged model included Julian date (JULIAN), Tree Cover Density (TCDsum)
- and Water and Wetness (WAWsum) as detectability covariates with no covariates acting on occupancy.
- 290 The best fit model for nightjar (NJmdet3), with an AICwt of 53%, indicates an occupancy of 0.684 (SE
- 291 0.071) with a detectability of 0.740 (SE 0.035), varying only slightly from the null model (Ψ =0.682,

292 *p*=0.733).

- 293 There were four favoured models for Dartford warbler, including the null model, with TCDsum,
- 294 WAWsum, and distance to road (HubDist) featuring on the detectability parameter. Heather grassland
- was the only indicator for occupancy. The averaged model for Dartford warbler used only distance to
- road as a detectability covariate, with no covariates acting on occupancy. The best-fit model for Dartford
- warbler (DWmdet5), with an AICwt of 36%, indicates an occupancy of 0.449 (SE 0.107), with a
- detectability of 0.196 (SE 0.053), an increase from the null model occupancy of 0.382 (SE 0.091), but
- decrease in detectability from 0.258 (SE 0.057).

300 Woodlark had two favoured models, sharing Julian date, WAWsum, distance to road, Heather and

301 Heather grassland as detectability covariates, and WAWsum, Heather and Heather grassland for

- 302 occupancy covariates. The averaged model for woodlark had five significant covariates, and again, these
- 303 were all on the detection parameter. Julian date, WAWsum and Heather were all positively related to
- 304 detectability, while distance to road and Heather grassland were negative indicators. For woodlark, the
- 305 best-fit model (WLmocc2), with an AICwt of 59%, indicated an occupancy of 0.13 (SE 0.117), lower

than the null model figure of 0.162 (SE 0.056), and a detectability of 0.996 (SE 0.012), which varied

307	substantially from	the null model	detectability	of 0.491	(SE 0.081).

Model	Formula	AIC	ΔAIC	AICwt
Nightjar				
NJmdet3	\sim JULIAN + TCDsum + WAWsum ~ 1	259.62	0.00	0.528
NJmocc3	$\sim\!\!JULIAN + TCDsum + WAWsum \sim TCDsum$	260.64	1.02	0.317
NJmocc2	$\sim\!\!JULIAN + TCDsum + WAWsum \sim TCDsum + HubDist$	262.33	2.70	0.136
NJmocc1	$\sim JULIAN + TCDsum + WAWsum \sim TCDsum + WAWsum + HubDist + Heather + HeatherGrass$	267.64	8.02	0.010
NJm0	~1~1	267.79	8.17	0.009
Dartford W	/arbler			
DWmdet5	~TCDsum + HubDist ~ 1	157.11	0.00	0.364
DWmocc3	~HubDist + TCDsum ~ HeatherGrass	158.19	1.08	0.212
DWmdet4	\sim TCDsum + WAWsum + HubDist ~ 1	158.40	1.29	0.191
DWm0	~1~1	159.00	1.89	0.142
DWmocc2	\sim HubDist + TCDsum \sim WAWsum + HeatherGrass	160.06	2.95	0.083
DWmocc1	\sim HubDist + TCDsum \sim TCDsum + WAWsum + HubDist + Heather + HeatherGrass	164.89	7.79	0.007
Woodlark				
WLmocc2	\sim JULIAN + WAWsum + HubDist + Heather + HeatherGrass \sim WAWsum + Heather + HeatherGrass	69.31	0.00	0.593
WLmocc3	$\sim\!\!JULIAN + WAWsum + HubDist + Heather + HeatherGrass \sim WAWsum + HeatherGrass$	70.75	1.44	0.288
WLmocc1	~JULIAN + WAWsum + HubDist + Heather + HeatherGrass ~ TCDsum + WAWsum + HubDist + Heather + HeatherGrass	73.10	3.79	0.089
WLmdet3	$\sim JULIAN + WAWsum + HubDist + Heather + HeatherGrass \sim 1$	75.29	5.98	0.030
WLm0	~1~1	100.55	31.24	0.000

308 Table 2 Model selection list for all species - with detectability and occupancy covariates

309

310 Predicted occupancy varied little between sampling sites for nightjar and Dartford warbler (Figure 3), as

311 only single covariates were acting on these species - TCDsum and Heather grassland respectively.

312 Woodlark occupancy predictions varied more widely due to the number of habitat covariates acting on the

313 models for this species - including WAWsum, Heather and Heather grassland. Detectability predictions

314 were sensible for nightjar and Dartford warbler, but highly polarised to 0-1 in the models for woodlark,

315 due to the small number of positive sampling sites.

Figure 3. Model-averaged predicted occupancy and detectability across all sampling sites, for Dartford
warbler (DW), nightjar (NJ), and woodlark (WL).

319

316

320 Our results can be used to provide a baseline for assessing the population of the three heathland bird 321 species studied. We assumed that occupancy is a good surrogate for abundance (MacKenzie & Nichols, 322 2004) and that we could quantify the relative abundances of the bird species, based on the proportion of 323 sampling sites in which they were recorded to be present. Given the separation distances between recorder 324 locations in this study, it is considered reasonable to assume that each occupied sampling site represented 325 a separate territory/pair. Using the occupancy estimates from the null models for the three species we can 326 calculate that the areas of occupied habitat for each species, from a total 992 ha, are: nightjar 676 ha, 327 Dartford warbler 379 ha, woodlark 161 ha (Table 3). Combining these habitat areas with published 328 breeding densities of 0.074-0.078 males/ha for nightjar (Berry, 1979; Conway et al., 2007), 0.32-0.42 pairs/ha for Dartford warbler (Bibby & Tubbs, 1975), and 0.05 pairs/ha for woodlark (Langston et al., 329 330 2007; Sitters et al., 1996), gives estimated population levels of: nightjar 51 males, Dartford warbler 140 331 pairs, and woodlark 8 pairs (Table 3).

Page 17 of 34

Species	Occupancy (SE)	Occupied habitat (90% CI)	Density ha ⁻¹	Pairs (90% CI)
Nightjar	0.682 (0.0702)	676 ha (562-791)	0.075	51 (42-59)
Dartford warbler	0.382 (0.0914)	379 ha (230-528)	0.37	140 (85-195)
Woodlark	0.162 (0.0562)	161ha (69-252)	0.05	8 (3-13)

Table 3. Calculated areas of occupied habitat, based on intercept-only occupancy estimates

333

334 4. DISCUSSION

335 4.1 Bioacoustic Approach

To our knowledge, this is the first study in Europe to combine bioacoustic survey with occupancy
modelling. It is also the first in the UK to undertake a large scale survey for multiple bird species using
automated recorders. It therefore expands the geographic scope of case studies for these methods, and
applies them in a new habitat, beyond the American forested ecosystems in which most previous studies
have been located (Furnas & Callas, 2015; Campos-Cerqueira & Aide, 2016; Furnas & McGrann, 2018;
Wood et al., 2019).

342 We used species detection data from six repeated days of recording at 44 sampling sites, combining this 343 with environmental covariates to estimate occupancy and detectability for three bird species. Our results 344 show that the bioacoustic approach can be used effectively for the survey and monitoring of heathland 345 bird populations. Although we included models where habitat covariates could influence occupancy in 346 our candidate sets, the 'best' models for each species suggested that the habitat variables were not 347 important indicators of occupancy at the scale studied. This is possibly due to the fact that the study areas 348 were all lowland heathland sites, generally suitable for the study species, and so the distribution of 349 individuals was likely to relate to micro-habitat features that were not detectable at the scale of the field

350 survey, satellite and map data applied. The satellite data used was at 20m pixel size, but the average size 351 of the LCM polygons was 2.4 ha, equivalent to 87 m radius. Although the covariate data was sampled at a 352 similar scale (100 m radius) to previous studies (Furnas & Callas, 2015; Campos-Cerqueira & Aide, 353 2016), these were landscape-scale surveys less dependent on small habitat features to differentiate plots. 354 Thus, we would agree with the finding of Niedballa et al. (2015), that both the spatial scale of habitat 355 covariate data, and the radius sampled around survey sites, can affect the fit of occupancy models. Higher 356 resolution data is needed for a site-based scale of assessment, if habitat covariates are to be included in 357 analyses. For future studies, this should be gained from either field survey or high-resolution 358 aerial/satellite imagery, such as the 5m resolution RapidEye imagery used by Niedballa et al (2015).

359

360 Identification of species vocalizations is commonly done either by complete manual analysis or, 361 increasingly, by the use of automated recognizers, which require the *a priori* compilation and analysis of 362 a large library of known species vocalizations (Knight et al., 2017; Shonfield & Bayne, 2017). Our 363 analysis workflow included automated clustering of the acoustic data set, followed by manual validation 364 of candidate vocalizations of the target species (Abrahams & Denny, 2018). This process has two 365 benefits. Firstly, the automated clustering identified signals, that may be target bird species, but filtered 366 out noise. In the current study, this allowed 77% of the total acoustic dataset to be filtered out, before 367 identifications were attempted, significantly reducing the later workload in manually reviewing data for 368 target species vocalizations. The second benefit of the analysis approach taken here, was that the manual 369 validation step helped to minimize false-positive detections (Campos-Cerqueira & Aide, 2016;), which 370 are often a significant issue with automated species identification systems (Zwart et al., 2014; Salamon et 371 al., 2016). Misclassification errors such as this violate a major assumption of most occupancy models, and 372 can lead to substantial errors in occupancy estimates (MacKenzie et al., 2006; Banner et al., 2018). The 373 issue can potentially be addressed by complete manual identification of all recordings, but this is highly 374 time-consuming, while the hybrid automated/manual approach taken here reduced the workload in the

manual review stage to less than a quarter of what it would have been. The corollary is that the data
rejected by the automated clustering may contain target species vocalizations, and hence false-negatives
may result. However, with the summation of the detailed call data down to daily presence/absence at each
site, the potential loss of some target species phrases is considered unlikely to significantly affect the
occupancy and detectability estimates derived from the modelling (Shonfield et al., 2018). The combined
use of automated clustering and manual verification is therefore recommended as a valid approach for
identification in bioacoustic studies.

382 4.2 Spatial Sampling Design

383 In bioacoustic studies with static sampling locations, the layout of recorder placements is of high 384 importance. For occupancy modelling especially, the distance between sampling sites should be relevant 385 to the territory size of the taxa being recorded (Niedballa et al., 2015), while also ensuring that the 386 detection process is independent at each site by preventing overlap between the recording radius around 387 each recorder. While this distance is variable, for many bird species the effective recording radius of most 388 detectors is in the region of 50 m - although this is dependent on microphone model, variability and 389 condition (Furnas & Callas, 2015; Turgeon et al., 2017; Yip et al., 2017). Within our study, the closest 390 spacing between sampling sites was set by the ~ 250 m sampling grid. The mean nearest neighbour 391 distances of the recorder sites were 316 m for Chobham, 346 m for Horsell, and 329 m for Thursley 392 (range 202-703). Due to the sampling sites being spread across three survey sessions, the mean nearest 393 neighbour distances between recorders in each session were 608 m, 466m and 508m.

394 For nightjar, a threshold of 350 m distance between registrations has been proposed to differentiate

between male territories (Conway et al., 2007), while Stiffler et al (2018) applied a minimum spacing of

396 400 m for recording wetland birds. The spacing of the recorders within the current study related well to

these studies, and as a result, there can be a reasonable confidence that there was no double-counting for

the bird species being studied. A 250 m sampling grid, as set out in the draft protocol of Abrahams (2018)

is therefore considered to be appropriate for future studies, although additional refinement of detector

Page 20 of 34

400 placement may be warranted to maximise coverage of sites, dependent on the vocal and territorial

401 characteristics of the species being studied. For example, recent research has indicated that, for a desired

402 threshold of detection efficiency, careful selection of optimised placements based on topography,

403 vegetation and weather patterns, may be most efficient (Piña-Covarrubias et al., 2018).

404 4.3 Temporal Sampling Design

405 In any occupancy study, the balance between the number of sites and number of sampling events 406 differentially affects the accuracy and precision of the occupancy and detectability estimates. We 407 recorded for six days at 44 sites, which we considered likely to balance fieldwork resourcing with 408 sufficient sample site density. This was a longer deployment time than the two-three days used by Furnas 409 & Callas (2015) and Stiffler et al. (2018), and equivalent to that employed by Campos-Cerqueira & Aide 410 (2016) and Wood et al. (2019). For rare species with a high probability of detection (i.e. woodlark for this 411 study) the required survey effort should maximize the number of sites covered, while for common species 412 with low detection (i.e. Dartford warbler) the most efficient sampling approach is to increase the number 413 of survey occasions (Mackenzie & Royle, 2005). With the low occupancy for woodlark found here, it is 414 likely that an increased number of sampling sites (and lower number of survey days if necessary) would 415 be likely to improve the modelling results (Mackenzie & Royle, 2005; Banner et al., 2018). This modified 416 sampling approach would, however, have to be considered in terms of its costs/benefits, taking into 417 account the potential effects on Dartford warbler modelling and increased fieldwork time or equipment 418 requirements.

419 4.4 Detectability

420 Using the null models, without covariates, we estimated detectability as 0.73 for nightjar, 0.49 for

421 woodlark and 0.26 for Dartford warbler. The national Breeding Bird Survey (BBS) (Johnston et al., 2014)

422 found a much lower detectability of 0.30 for nightjar, which is perhaps unsurprising, due to the

423 difficulties with surveying this species within a standard (mostly daytime) survey method. However, the

BBS detectability estimates of 0.47 for woodlark and 0.37 for Dartford warbler are similar to those found
in this bioacoustic study. In this comparison, nightjar is much better detected by acoustic recorders (as
found by Zwart et al., 2014), but Dartford warbler less so, while detectability for woodlark is matched.
Taking detectability into account during traditional bird surveys requires repeated visits across the season.
The time often occurring between site visits may then invalidate the assumption that detection probability
remains constant across the survey events. The protocol used in this study enabled six days of back-to-

430 back recording, simultaneously at 16 sites, minimising the risk that detection probability would change

431 between sampling events. This would have been difficult to achieve without the use of automated

432 recorders. The greater number of survey replicates achievable with the bioacoustics approach is therefore

433 able to improve occupancy and detection estimates (MacKenzie et al., 2006; Stiffler et al., 2018).

434 We found that survey date, combined with habitat characteristics, explained detectability and improved 435 the performance for some of the species models generated here, similar to the finding of Furnas & Callas 436 (2015). Wetland (WAWsum) was a positive parameter on detectability for all three species, and woodland 437 (TCDsum) was also positive for nightjar, as was Heather for woodlark. The probability of detecting a 438 species during a bioacoustic survey is a function of both the probability of it vocalizing and the recorder 439 detecting the call. The vocalization rates of many birds vary due to age, sex, breeding status, time of day, 440 and seasonal variation (Campos-Cerqueira & Aide, 2016; Furnas & McGrann, 2018). As a consequence, 441 both survey timing and the number of visits need to accommodate species vocalizing behavior to ensure 442 accurate detection, particularly for species with sporadic vocalization patterns (La & Nudds, 2016). Age 443 and sex-specific variation in vocalization rates cannot be accounted for easily when using automated 444 recorders, but our methods allowed for the other variation factors, as we sampled over a relatively short 445 period of time during the breeding season, and sampled over a wide timeframe every day, thereby 446 minimising the potential for seasonal and diurnal variation in call rates. Our results, together with those of 447 Johnston et al. (2014), showing how detection probability varies by species, should be considered in

448 decisions about study design when planning to survey birds using automated recorders or traditional449 methods.

450 4.5 Occupancy

451 We calculated occupancy as 0.682 for nightjar, 0.382 for Dartford warbler and 0.162 for woodlark, 452 showing that nightjar is widespread across the study sites, while woodlark has a much more restricted 453 distribution. This is in line with other survey data for the sites, collected by traditional survey methods 454 (J.Eyre & J.Clark; D. Boyd pers. comms.), and previous occupancy studies (Furnas & Callas, 2015; 455 Campos-Cerqueira & Aide, 2016; Wood et al. 2019). Although the occupancy figures provide a 456 population estimate in themselves, they could potentially be used to generate an estimate of the number of 457 pairs, as the common measure for population size. We did this provisionally, using a combination of 458 habitat area and previously recorded breeding densities to give the following numbers: Dartford warbler 459 140, nightjar 51 and woodlark 8. 460 The occupancy modelling indicated a positive relationship between nightjar and TCDsum. This 461 corresponds to associations with woodland found in previous studies (Bright et al., 2007; Conway, 2010]. 462 The negative relationship between Dartford warbler and Heather Grassland was surprising, as this species 463 is generally associated with dry-humid heath, and gorse, sometimes with a grassy component (Bibby & 464 Tubbs, 1975). Woodlark occupancy was positively related to Heather Grassland, and negatively to 465 WAWsum and Heather. These results are more expected, as nest sites for this species are generally found 466 in tall/dense heather or grass (Mallord et al., 2007), while foraging sites have short grass and bare ground 467 (Conway et al., 2009).

469 5. CONCLUSION

470 Our study demonstrates the suitability of the bioacoustics approach to identify the distributions and assess 471 the populations of target bird species on heathland study areas. Occupancy and detectability estimates 472 were produced, taking into account imperfect detection. If carried out on a regular basis, this method 473 could provide a valuable new approach for monitoring of population levels and favourable conservation 474 status. For future studies in this setting, and with these species, methods might be improved by increasing 475 the number of sample sites at which recording takes place. This approach would be likely to improve the 476 modelling for woodlark, but would need to be balanced against potential effects on models for the other 477 two species studied.

478 The field of conservation biology is continuously adopting improved, cheaper and more easily available 479 technologies. In the near future, automated interpretation of recordings using machine learning methods 480 will become increasingly viable, allowing effective identification of a range of bird species (Brandes, 481 2008; Acevedo & Villanueva-Rivera, 2009; Knight et al., 2017; Shonfield & Bayne, 2017, Stowell et al., 482 2019). The permanent nature of bioacoustic recordings will allow these ongoing developments in call 483 analysis and automated identification to be used to re-analyse previously collected data, perhaps alongside 484 new recordings (Shonfield & Bayne, 2017; Stiffler et al., 2018). The use of bioacoustics will, therefore, 485 be indispensable for conducting long-term and potentially continuous monitoring over large spatial scales, 486 aiding understanding of the ongoing effects of threats and management practices on bird populations on 487 heathland and in other environments.

489 AUTHORS' CONTRIBUTIONS

- 490 CA conceived the ideas, designed methodology; collected and analysed the data. CA led the writing of the
- 491 manuscript, with MG contributing to establishment of occupancy modelling methods and development of
- 492 the text. Both authors contributed critically to the drafts and gave final approval for publication.

493 ACKNOWLDGEMENTS

494 This study was undertaken as part of a research project funded by Natural England.

495 DATA ACCESSIBILITY

496 Data, metadata and R script has been archived at Mendeley Data

497 **REFERENCES**

- Abrahams, C. (2018). Bird Bioacoustic Surveys developing a standard protocol. *In Practice*, *102*, 20–
 23.
- 500 Abrahams, C., & Denny, M. (2018). A first test of unattended, acoustic recorders for monitoring
- 501 Capercaillie Tetrao urogallus lekking activity. *Bird Study*. doi:10.1080/00063657.2018.1446904
- 502 Acevedo, M. A., & Villanueva-Rivera, L. J. (2006). Using Automated Digital Recording Systems as
- 503 Effective Tools for the Monitoring of Birds and Amphibians. *Wildlife Society Bulletin*, 34, 211–214.
- **504** doi:10.2193/0091-7648(2006)34[211:UADRSA]2.0.CO;2
- 505 Acevedo, M. A., Corrada-Bravo, C. J., Corrada-Bravo, H., Villanueva-Rivera, L. J., & Aide, T. M.
- 506 (2009). Automated classification of bird and amphibian calls using machine learning: A comparison of
- 507 methods. *Ecological Informatics*. doi:10.1016/j.ecoinf.2009.06.005

- 508 Acevedo, M., & Villanueva-Rivera, L. (2009). Using automated digital recording systems as effective
- tools for the monitoring of birds and amphibians. *Wildlife Soc B*, *34*.
- 510 Banner, K. M., Irvine, K. M., Rodhouse, T. J., Wright, W. J., Rodriguez, R. M., & Litt, A. R. (2018).
- 511 Improving geographically extensive acoustic survey designs for modeling species occurrence with
- 512 imperfect detection and misidentification. *Ecology and Evolution*, 8(12), 6144–6156.
- 513 doi:10.1002/ece3.4162
- 514 Barton, K. (2018). MuMIn: Multi-Model Inference. Retrieved from CRAN.R-
- 515 project.org/package=MuMIn
- 516 Bayne, E., Knaggs, M., & Solymos, P. (2017). How to Most Effectively Use Autonomous Recording Units
- 517 When Data are Processed by Human Listeners (p. 72). The Bioacoustic Unit.
- 518 Beason, R. D., Riesch, R., & Koricheva, J. (2018). AURITA: an affordable, autonomous recording device
- 519 for acoustic monitoring of audible and ultrasonic frequencies. *Bioacoustics*, 4622, 1–16.
- 520 https://doi.org/10.1080/09524622.2018.1463293
- 521 Berry, R. (1979). Nightjar habitats and breeding in East Anglia. *British Birds*, 72(5), 207–218.
- Bibby, C. J., & Tubbs, C. R. (1975). Status, habitats and conservation of the Dartford Warbler in England. *British Birds*, 68(5), 177–195.
- 524 Brandes, T. (2008). Automated sound recording and analysis techniques for bird surveys and
- 525 conservation. *Bird Conservation International*, *18*(2008), S163–S173. doi:10.1017/S0959270908000415
- 526 Burnham, K., & Anderson, D. (2002). Model Selection and Multimodel Inference. A Practical
- 527 Information-Theoretic Approach (Second Edi). Springer. doi:10.1002/1521-
- 528 3773(20010316)40:6<9823::AID-ANIE9823>3.3.CO;2-C

- 529 Campos-Cerqueira, M., & Aide, T. M. (2016). Improving distribution data of threatened species by
- 530 combining acoustic monitoring and occupancy modelling. *Methods in Ecology and Evolution*, 7(11),
- 531 1340–1348. doi:10.1111/2041-210X.12599
- 532 Celis-Murillo, A., Deppe, J. L., & Allen, M. F. (2009). Using soundscape recordings to estimate bird
- 533 species abundance, richness, and composition. *Journal of Field Ornithology*, 80(1), 64–78.
- 534 doi:10.1111/j.1557-9263.2009.00206.x
- 535 Clark, J. M., & Eyre, J. (2012). Dartford Warblers on the Thames Basin and Wealden Heaths. *British*536 *Birds*, *105*(6), 308–317.
- 537 Conway, G., Wotton, S., Henderson, I., Eaton, M., Drewitt, A., & Spencer, J. (2009). The status of
- 538 breeding woodlarks Lullula arborea in Britain in 2006. *Bird Study*. doi:10.1080/00063650902792163
- 539 Conway, G., Wotton, S., Henderson, I., Langston, R., Drewitt, A., & Currie, F. (2007). Status and
- 540 distribution of European Nightjars Caprimulgus europaeus in the UK in 2004. *Bird Study*, 54(1), 98–111.
- 541 doi:10.1080/00063650709461461
- 542 Darras, K., Batáry, P., Furnas, B., Celis-Murillo, A., Van Wilgenburg, S. L., Mulyani, Y. A., &
- 543 Tscharntke, T. (2018). Comparing the sampling performance of sound recorders versus point counts in
- 544 bird surveys: A meta-analysis. Journal of Applied Ecology, 1–12. doi:10.1111/1365-2664.13229
- 545 Fagúndez, J. (2013). Heathlands confronting global change: Drivers of biodiversity loss from past to
- 546 future scenarios. Annals of Botany, 111(2), 151–172. doi:10.1093/aob/mcs257
- 547 Farina, A., James, P., Bobryk, C., Pieretti, N., Lattanzi, E., & McWilliam, J. (2014). Low cost (audio)
- recording (LCR) for advancing soundscape ecology towards the conservation of sonic complexity and
- 549 biodiversity in natural and urban landscapes. Urban Ecosystems, 17(4), 923–944. doi:
- 550 10.1007/s11252-014-0365-0

Page 27 of 34

- 551 Fiske, I., & Chandler, R. (2011). unmarked: An R Package for Fitting Hierarchical Models of Wildlife
- 552 Occurrence and Abundance. *Journal of Statistical Software*, 43(10), 1–23. Retrieved from
- 553 http://www.jstatsoft.org/v43/i10/.
- 554 Furnas, B. J., & Callas, R. L. (2015). Using automated recorders and occupancy models to monitor
- common forest birds across a large geographic region. *Journal of Wildlife Management*, 79(2), 325–337.
 doi:10.1002/jwmg.821
- 557 Furnas, B. J., & McGrann, M. C. (2018). Using occupancy modeling to monitor dates of peak vocal
- activity for passerines in California. The Condor, 120(1), 188–200. doi:10.1650/CONDOR-17-165.1
- Hill, A. P., Prince, P., Covarrubias, E. P., Doncaster, C. P., Snaddon, J. L., Rogers, A., ... Rogers, A.
- 560 (2018). AudioMoth: Evaluation of a smart open acoustic device for monitoring biodiversity and the
- environment. *Methods in Ecology and Evolution*. doi:10.1111/2041-210X.12955
- 562 Holmes, S. B., McIlwrick, K. A., & Venier, L. A. (2014). Using automated sound recording and analysis
- to detect bird species-at-risk in southwestern Ontario woodlands. Wildlife Society Bulletin, 38(3), 591-
- 564 598. doi:10.1002/wsb.421
- Johnston, A., Newson, S. E., Risely, K., Musgrove, A. J., Massimino, D., Baillie, S. R., & Pearce-
- 566 Higgins, J. W. (2014). Species traits explain variation in detectability of UK birds. *Bird Study*, 61(3),
- 567 340-350. doi:10.1080/00063657.2014.941787
- 568 Klingbeil, B. T., & Willig, M. R. (2015). Bird biodiversity assessments in temperate forest: the value of
- point count versus acoustic monitoring protocols. *PeerJ*, *3*, e973. doi:10.7717/peerj.973
- 570 Knight, E. C., Hannah, K. C., Foley, G. J., Scott, C. D., Brigham, R. M., & Bayne, E. (2017).
- 571 Recommendations for acoustic recognizer performance assessment with application to five common
- automated signal recognition programs. Avian Conservation and Ecology, 12(2), art14. doi:10.5751/ACE-
- **573** 01114-120214

Page 28 of 34

- 574 La, V. T., & Nudds, T. D. (2016). Estimation of avian species richness: biases in morning surveys and
- 575 efficient sampling from acoustic recordings. *Ecosphere*, 7(4), e01294. doi:10.1002/ecs2.1294
- 576 Langston, R. H. W., Wotton, S. R., Conway, G. J., Wright, L. J., Mallord, J. W., Currie, F. A., ... Symes,
- 577 N. (2007). Nightjar Caprimulgus europaeus and Woodlark Lullula arborea Recovering species in
- 578 Britain? *Ibis*, *149*(SUPPL. 2), 250–260. doi:10.1111/j.1474-919X.2007.00709.x
- 579 Liley, D., & Fearnley, H. (2014). Trends in Nightjar, Woodlark and Dartford Warbler on the Dorset
- 580 Heaths, 1991-2013. Retrieved from https://www.footprint-ecology.co.uk/reports/Liley and Fearnley -
- 581 2014 Trends in Nightjar, Woodlark and Dartford Warbler .pdf
- 582 MacKenzie, D. I., & Nichols, J. D. (2004). Occupancy as a surrogate for abundance estimation. Animal
- 583 *Biodiversity and Conservation*, 27(1), 461–467. Retrieved from
- 584 http://abc.museucienciesjournals.cat/files/ABC-27-1-pp-461-467.pdf
- 585 Mackenzie, D. I., & Royle, J. A. (2005). Designing occupancy studies: General advice and allocating
- 586 survey effort. Journal of Applied Ecology, 42(6), 1105–1114. doi:10.1111/j.1365-2664.2005.01098.x
- 587 MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, A. A., & Langtimm, C. A. (2002).
- 588 Estimating site occupancy rates when detection probabilities are less than one. *Ecology*, 83(8), 2248–
- 589 2255. doi:10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2
- 590 MacKenzie, D., Nichols, J., Royle, J., Pollock, K., Bailey, L., & Hines, J. (2006). Occupancy estimation
- 591 *and modeling: inferring patterns and dynamics of species occurrence.* Elsevier/Academic Press.
- 592 Mallord, J. W., Dolman, P. M., Brown, A. F., & Sutherland, W. J. (2007). Linking recreational
- 593 disturbance to population size in a ground-nesting passerine. *Journal of Applied Ecology*, 44(1), 185–195.
- 594 doi:10.1111/j.1365-2664.2006.01242.x

- 595 Niedballa, J., Sollmann, R., Mohamed, A. bin, Bender, J. & Wilting, A. (2015). Defining habitat
- 596 covariates in camera-trap based occupancy studies. *Scientific Reports*, *5*(1), 17041.
- 597 doi:10.1038/srep17041
- 598 Noss, R. F. (1990), Indicators for Monitoring Biodiversity: A Hierarchical Approach. Conservation
- 599 Biology, 4: 355-364. doi:10.1111/j.1523-1739.1990.tb00309.x
- 600 Pereira, H.M. & Cooper H.D. (2006) Towards the global monitoring of biodiversity change. *Trends in*601 *Ecology and Evolution* 21, 123–129
- 602 Piña-Covarrubias, E., Hill, A. P., Prince, P., Snaddon, J. L., Rogers, A., & Doncaster, C. P. (2018).
- 603 Optimization of sensor deployment for acoustic detection and localization in terrestrial environments.
- 604 Remote Sensing in Ecology and Conservation. doi:10.1002/rse2.97
- 605 QGIS Development Team. (2018). QGIS Geographic Information System. Open Source Geospatial
- 606 Foundation Project. Retrieved from http://qgis.osgeo.org
- 607 R Core Team. (2013). R: A language and environment for statistical computing. R Foundation for
- 608 Statistical Computing, Vienna, Austria. Retrieved from http://www.r-project.org/
- 609 Rempel, R. S., Hobson, K. A., Holborn, G. W., Wilgenburg, S. L. V., Elliott, J., Van Wilgenburg, S. L.,
- 610 & Elliott, J. (2005). Bioacoustic monitoring of forest songbirds: interpreter variability and effects of
- 611 configuration and digital processing methods in the laboratory. *Journal of Field Ornithology*, 76(1), 1–11.
- 612 doi:10.1648/0273-8570(2005)076
- 613 Rowland, C., Morton, R., Carrasco, L., McShane, G., O'Neil, A., & Wood, C. (2017). Land Cover Map
- 614 2015 (vector, GB). NERC Environmental Information Data Centre. doi:https://doi.org/10.5285/6c6c9203-
- 615 7333-4d96-88ab-78925e7a4e73

- Royle, J. A., & Nichols, J. D. (2003). Estimating abundance from repeated presence-absence data or point
- 617 counts. *Ecology*. doi:10.1890/0012-9658(2003)084[0777:EAFRPA]2.0.CO;2
- 618 RStudio Team. (2015). RSudio: Integrated Development for R. RStudio, Inc., Boston, MA. Retrieved
- 619 from http://www.rstudio.com/ http://www.rstudio.com
- 620 Salamon, J., Bello, J. P., Farnsworth, A., Robbins, M., Keen, S., Klinck, H., & Kelling, S. (2016).
- 621 Towards the automatic classification of avian flight calls for bioacoustic monitoring. *PLoS ONE*, *11*(11),
- 622 e0166866. doi:10.1371/journal.pone.0166866
- 623 Schmeller, D., Henle, K., Loyau, A., Besnard, A., & Henry, P.-Y. (2012). Bird-monitoring in Europe a
- 624 first overview of practices, motivations and aims. *Nature Conservation*, *2*, 41–57.
- 625 doi:10.3897/natureconservation.2.3644
- 626 Sedláček, O., Vokurková, J., Ferenc, M., Djomo, E. N., Albrecht, T., & Hořák, D. (2015). A comparison
- 627 of point counts with a new acoustic sampling method: a case study of a bird community from the montane
- 628 forests of Mount Cameroon. Ostrich, 86(3), 213–220. doi:10.2989/00306525.2015.1049669
- 629 Shonfield, J., & Bayne, E. M. (2017). Autonomous recording units in avian ecological research: current
- 630 use and future applications. Avian Conservation and Ecology, 12(1)(1), 14. doi:10.5751/ACE-00974-
- 631 120114
- 632 Shonfield, J., Heemskerk, S., & Bayne, E. M. (2018). Utility of Automated Species Recognition For
- 633 Acoustic Monitoring of Owls. Journal of Raptor Research, 52(1), 42–56. doi:10.3356/JRR-17-52.1
- 634 Sitters, H. P., Fuller, R. J., Hoblyn, R. A., Wright, M. T., Cowie, N., & Bowden, C. G. (1996). The
- 635 Woodlark *Lullula arborea* in Britain: Population trends, distribution and habitat occupancy. *Bird Study*,
- 636 *43*(2), 172–187. doi:10.1080/00063659609461010

Stiffler, L. L., Anderson, J. T., & Katzner, T. E. (2018). Occupancy Modeling of Autonomously Recorded
Vocalizations to Predict Distribution of Rallids in Tidal Wetlands. *Wetlands*, 1–8. doi:10.1007/s13157-

639 018-1003-z

- 640 Stowell, D., Wood, M. D., Pamuła, H., Stylianou, Y., & Glotin, H. (2019). Automatic acoustic detection
- 641 of birds through deep learning: the first Bird Audio Detection challenge. *Methods in Ecology and*
- 642 *Evolution*, 10(3), 368-380.
- Turgeon, P. J., S. L. Van Wilgenburg, and K. L. Drake. 2017. Microphone variability and degradation:
- 644 implications for monitoring programs employing autonomous recording units. Avian Conservation and
- 645 *Ecology 12*(1):9. <u>https://doi.org/10.5751/ACE-00958-120109</u>
- 646 Venier, L. A., Holmes, S. B., Holborn, G. W., Mcilwrick, K. A., & Brown, G. (2012). Evaluation of an
- automated recording device for monitoring forest birds. *Wildlife Society Bulletin*, *36*(1), 30–39.
- 648 doi:10.1002/wsb.88
- 649 Wildlife Acoustics. (2017). Kaleidoscope Pro 4 Analysis Software. Boston, MA.
- 650 www.wildlifeacoustics.com
- Wood, C. M., Popescu, V. D., Klinck, H., Keane, J. J., Gutiérrez, R., Sawyer, S. C., & Peery, M. Z.
- 652 (2019). Detecting small changes in populations at landscape scales: a bioacoustic site-occupancy
- framework. *Ecological Indicators*, 98(November), 492–507. doi:10.1016/j.ecolind.2018.11.018
- 454 Yip, D. A., Leston, L., Bayne, E. M., Sólymos, P., & Grover, A. (2017). Experimentally derived detection
- distances from audio recordings and human observers enable integrated analysis of point count data.
- 656 Avian Conservation and Ecology, 12(1), art11. doi:10.5751/ACE-00997-120111
- 657 Zwart, M. C., Baker, A., McGowan, P. J. K., & Whittingham, M. J. (2014). The use of automated
- bioacoustic recorders to replace human wildlife surveys: An example using nightjars. *PLoS ONE*, 9(7).
- 659 doi:10.1371/journal.pone.0102770

Page 32 of 34

660 SUPPLEMENTARY INFORMATION: APPENDIX 1

- 661 Kaleidoscope 4.3.2 software settings
- File parameters:
- No subdirectories
- No split to max duration
- Split channels—yes.
- 666
- 667 Signal parameters:
- 668 Signal of interest 1500–7000 Hz
- 669
- Duration 2–20 s
- Maximum inter syllable gap 1 s
- 672
- 673 Scan and cluster recordings:
- Max distance 1.0
- 675 FFT window 5.33 ms
- Max states 12
- Max distance for building clusters 0.5
- Max clusters 500

680 Figure 4. Number of detection days for each species at each site.

681