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S1. SIZE DISTRIBUTION OF THE TM50
SILICA DISPERSION

The size distribution of the industrially produced
TM50 silica nanoparticle dispersion was estimated by nu-
merical inversion of small-angle x-ray scattering data de-
scribed elsewhere [1]. The experimental SAXS data were
obtained from measurements carried out on the ID02 in-
strument at the European Synchrotron Radiation Facil-
ity in Grenoble, France. The wavelength of the X-rays
was 0.1 nm, and the q-range was 0.012− 4.7 nm−1. The
TM50 colloidal dispersion was diluted to a volume frac-
tion φ =0.1 % in mass.

The experimental radius distribution of TM50 parti-
cles was found to extend over the range 10.0− 17.3 nm.
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FIG. S1. Radius distribution, f(r), of the TM50 silica
nanoparticle dispersions including: experimental distribution
obtained from SAXS data (black circles); best-fit curve of
a continuous normal distribution, average radius 13.75 nm
and polydispersity 9.5% (blue continuous curve); and discrete
distribution made of 21 bins used in the numerical simula-
tions, average radius 13.75 nm and polydispersity 7% (red
histogram).

It is shown in Fig. S1 (black circles) and compared
with the best-fit normal distribution with average radius
R = 13.75 nm and polydispersity 9.5% (blue curve). The
polydispersity is conventionally defined as the ratio be-
tween the standard deviation and the average value of
the distribution. The distribution of the TM50 colloidal
dispersion and the parameters of the distribution agree
well with the conclusions of Ref. 2.

In the simulations, we used a discretized radius distri-
bution made of 21 regular particle bins whose radii vary
linearly between 10.725 nm and 16.725 nm. The same
R as, but somewhat lower polydispersity δ = 7% than,
measured was used. This distribution is represented in
Fig. S1 as the discrete distribution (red histogram).
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S2. INTERDIFFUSION EXPERIMENTS

Samples of Ludox TM50 were dialysed against aque-
ous solutions of pH 9 (by addition of NaOH) and var-
ious concentrations of NaCl and PEG, as in the main
text. A capillary tube (∼ 7 cm long, 1 mm diameter)
was carefully filled with two selected dispersions pipetted
respectively into the bottom, then top half of the tube
(with the heavier, higher density dispersion at the bot-
tom). This created an initially sharp interface between
dispersions of different volume fractions, but otherwise
identical properties. A series of such capillary tubes were
prepared, sealed and their samples were allowed to age,
prior to scanning at ESRF. This allowed the dispersions
to inter-diffuse, creating a continuous gradient in volume
fractions. X-ray spectra were gathered at intervals (typi-
cally 100 µm) along the tubes, and scattering peaks used
to identify the phases present at each position. Volume
fractions were inferred from the location of the smallest-q
peak (or the broad first liquid-like peak of the glass sam-
ples), as described in Section S3. Some data are missing
due to the presence of a sample holder, which blocked the
beam at certain positions. However, a small but measur-
able jump in volume fraction between the crystal and
jammed states was seen in all samples (see Fig. S2).
The samples reported here for 5 mM initially contained
dispersions with φ = 0.190 and φ = 0.317, and were re-
peated for samples of age 5, 8, 15 and 23 days, with the
location of the fcc/bcc/glass phase boundaries consistent
to within ±0.5%. A single experiment was tested at 10
mM, with an interface between φ = 0.178 and φ = 0.349
prepared 5 days before scanning.

FIG. S2. Phases observed in interdiffusion experiments at
steady state versus local particle volume fraction. When com-
pared with Fig. 3 of the main text one can notice that the
phase sequence fcc, fcc-bcc and bcc for increasing φ is pre-
served. However, the transitions do not appear at the same
φ positions, most probably due to the density gradient of the
colloids.

S3. EXPERIMENTAL CALIBRATION AND
NUMBER DENSITIES

The average solid volume fractions, φ, of all experi-
mental samples were measured by weighing sub-samples
before and after drying in an oven overnight at 120◦C,

following the methods in Refs. [3, 4]. From these data
we produced calibration curves. For the bcc and fcc crys-
tals the positions qhlk(φ) of the scattering peaks from the
(hkl) planes vary with volume fraction, and were used as
calibrations for the inter-diffusion experiments. The po-
sition of any such peak scales inversely to the distance
between the crystal planes, so φ ∼ q3hkl. The calibra-
tion curves for the fcc and bcc data are shown in Figure
S3(a), based on the smallest-q peak: (110) for bcc and
(111) for fcc. For the high-φ glass phase, we measured
the position of the first liquid-like peak, as in Ref. [3]. As
shown in Fig. S3(a), the glass phase also follows the em-
pirical relationship φ ∼ q3peak, and a fit to this data was
used to infer φ for the glass phase of the inter-diffusion
experiments. Additionally, the crystal structure allows
us to compare the particle number density of the vari-
ous phases (although the actual volume fraction in each
phase cannot be determined absolutely, if there is any
fractionation). For this, we calculate the number density
of the fcc phase as

Nfcc =
q3111

6
√

3π3
, (S1)

for the bcc phase as

Nbcc =
q3110

8
√

2π3
, (S2)

and for the total, or bulk, sample as

N0 =
3φ

4πR3
. (S3)

As is shown in Fig. S2(b) the experimentally determined
number densities in the two crystal phases are consis-
tent with each other, and with the system-wide number
density, to within experimental error.

S4. MODEL AND SIMULATION DETAILS

The silica dispersion was modeled at the scale of the
colloids with a multi-component model (MCM) for titrat-
able polydisperse colloids detailed elsewhere [5]. In brief,
within the MCM the colloids are defined by their ra-
dius Ri and renormalized charge number Z∗i and interact
through density-dependent effective hard core Yukawa
pair potentials,

βw∗ij(r) = λBZ
∗
i Z
∗
j fifj

exp(−κ∗r)
r

(S4)

when r > Ri +Rj , and

βw∗ij(r) =∞ (S5)

otherwise. 1/κ∗ is the renormalized screening length,
λB = 0.7105 nm is the Bjerrum length and β = 1/kBT
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FIG. S3. Calibration and measurement of particle number densities. (a) To calibrate the inter-diffusion samples we fit the
volume-fraction dependencies of the scattering peak positions of the various phases. For the glassy phase, this was the position
of the first broad liquid-like peak, for the bcc phase the (110) peak, and for the fcc phase the (111) peak. (b) From the same
crystal peak positions we also calculated the number densities of particles, which are consistent with the number densities
inferred from the volume fraction of the bulk samples, N0.

where kB is the Boltzmann constant and T = 298 K. fi
is a form factor which for an homogeneous silica sphere
reads

fi =
exp(−κ∗Ri)

(1 + κ∗Ri)
. (S6)

Both Z∗i and κ∗ are density dependent due to the
multi-body interactions arising in concentrated suspen-
sions [6]. The set of Z∗i (Ri, φ) and κ∗(φ) parameters
were calculated using the polydisperse cell model (PCM)
detailed in Ref. 5. The PCM further accounts for the
charge regulation of the silica colloids arising from the pH
dependent ionization of their surface silanol groups [7, 8],
i.e. Si-OH −−⇀↽−− Si-O− + H+. The latter was modeled
by a one pK Stern model parametrized with an indepen-
dent experimental data set [9]. The details of the PCM
used are described elsewhere [5]. The source code for the
PCM employed, along with examples, are available at:
https://github.com/guibar64/polypbren.

The so-defined MCM for silica suspensions only de-
pends on well defined experimental quantities that is the
pH and cs of the bulk solution and the particle size dis-
tribution. It is thus free of adjustable parameters.

The MCM was solved with “in-house” Monte Carlo
simulations in the NVT and NPT ensembles which, com-
bined with a swap move [10], allow for the efficiently
sampling of phase space up to high φ [11]. The prob-
ability of swap moves was set to 0.3. The simulations
were carried out in a cubic box with periodic boundary
conditions and the minimum image convention. Simula-
tions were performed with N = 19991, unless otherwise
stated. A spherical cutoff of radius rc was applied to the
pair potential. rc was set according to the interactions
between the largest particles such that βu(rc) ≤ 0.1. A
tail correction was applied to the total calculated energy.
Simulations were further accelerated with the use of a
cell decomposition [12]. Up to several tens of million of

MC cycles (1 MC cycle = N MC moves) for equilibration
were used. Production runs lasted for 105 MC cycles.

FIG. S4. Mean bond order parameter map of CS particles
in various (thermalized) crystalline phases and in the fluid
phase.

The mean local bond order parameters q̄6 and q̄4, in-
troduced and detailed by Lechner et al. [13], were used
to analyze the obtained structures. As illustrated in Fig.
S4(a), they allow for accurate discrimination between the
phases of interest in this study, namely the fluid as well
as the bcc, hcp and fcc solid phases. Note that we used
only the nearest neighbors in the calculation of qlm(i).

The equation of state (EoS) was calculated by employ-
ing the analytical correction term (volume term) derived
by Boon et al. [6], which, when added to the usual virial
pressure of the MCM, PMCM , has been shown to provide
a very good approximation of the EoS calculated at the
level of the full primitive model. The EoS defined as such

https://github.com/guibar64/polypbren
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reads

ΠEoS = PMCM + kT
κ∗2

8πlB

(
1−

( κ
κ∗

)2)2

(S7)

where κ is the inverse screening length of the bulk solu-
tion.

S5. CHARGE AND INTERACTION
POLYDISPERSITY

As for the size polydispersity, the charge polydisper-
sity is defined as the ratio of its standard deviation to
its mean value. The interaction polydispersity can be
defined in the same way and is independent of the par-
ticle separation by virtue of the functional form of the
Yukawa potential, Eq. S4. At a given separation r, size
and charge distribution, the mean value of the Yukawa
potentials can be defined as

βw∗(r) = λD
exp(−κr)

r

1

N

N−1∑
i=1

N∑
j=i+1

fifjZ
∗
i Z
∗
j (S8)

and its standard deviation as

SD(w∗(r)) = λD
exp(−κr)

r

√√√√√ 1

N − 1

N−1∑
i=1

N∑
j=i+1

fifjZ∗i Z∗j − 1

N

N−1∑
i=1

N∑
j=i+1

fifjZ∗i Z
∗
j

2

. (S9)

The interaction polydispersity is then given by

λw∗ =

√
1

N−1
∑N−1

i=1

∑N
j=i+1

(
fifjZ∗i Z

∗
j − 1

N

∑N−1
i=1

∑N
j=i+1 fifjZ

∗
i Z
∗
j

)2
1
N

∑N−1
i=1

∑N
j=i+1 fifjZ

∗
i Z
∗
j

. (S10)

S6. CONVERGENCE AND EQUILIBRIUM
STATE OF THE SIMULATIONS

As a check of the consistency and equilibration of our
simulation results, in the region where crystals were ob-
served, we repeated some of the cs - φ state points with
about 4000 and 40 000 particles. As it can be seen in Fig-
ure S5, the fraction of the various solid phases is very well
reproduced when the system size is increased from 20 000
to 40 000 particles. In contrast, we found that simula-
tions with only 4000 particles resulted in large variations
in the relative fractions of the solid phases. This indi-
cates that the correlation length is very large and that
caution should be taken with the choice of the system
size. We are working in the limit where system size ef-
fects are minimised.

Although pragmatic and efficient in predicting the ex-
perimental observations, the MC simulations employed
are limited in two senses: (i) the exact phase boundaries
and coexistence regions of the equilibrium phase diagram
are not accessible; and (ii) the fractionation, relaxation
and density fluctuation of the system may be limited due
to finite size and interfacial effects [14]. In the specific
case of interest here, after noting that the fluid compo-
sition and the size polydispersity of the different phases
formed are rather insensitive to the volume fraction, a

FIG. S5. Number fraction of the phases found in the sim-
ulations as a function of the particle volume fraction for the
TM50 dispersion equilibrated with a bulk solution containing
5 mM of a monovalent salt at pH 9. Full lines give the results
obtained with N = 19991 particles, while the symbols those
with N = 40009.

better approximation of the phase diagram might be ob-
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tained by thermodynamic integration combined with the
corrected equation of state, S7, derived by Boon et al. [6].
However, this method would be incapable of determining
the truly thermodynamic phase behavior in the region of
the observed glass-forming liquid. In principle, the semi-
grand isobaric ensemble developed by Wilding et al. [14]
could solve these issues. This method is nonetheless com-
plicated by the density and composition dependence of
the effective pair potentials. This is not only a ques-
tion of technical difficulties. Indeed, in the thermody-
namic limit, relevant when one is interested in comput-
ing/determining a phase diagram, each phase may have
its own particle size distribution and density. The effec-
tive pair potentials would thus need to be computed for
each specific density and composition visited during the
course of the simulations, for example. Obviously, one
can always disregard this problem, as has been done in
the present work, where it seems to be a good approxima-
tion. However, when a high degree of fractionation is at
work this approximation might break down, introducing
inaccuracies into the phase diagram.

S7. SIMULATION SNAPSHOTS AT PHASE
COEXISTENCE

Two representative simulation snapshots of the TM50
dispersions, equilibrated with a solution containing 5 mM
of salt and at pH 9, illustrating the phase coexistence in
the dominant equilibrium domain of the fcc phase (φ =
18.5%) and just after the fcc-bcc phase transition (φ =
20.5%) are shown in Fig. S6. A stratified structure is
observed when the hcp and fcc crystalline phases coexist.
On the other hand, an intermixed structure between the
hcp and bcc phase is found at higher volume fractions.
This finding, together with the obtained ramified texture
(as best illustrated by the cluster analysis given in Table
I), suggests a spinodal decomposition of the dispersion,
or at least that the interfacial free energy between the
two phases is very low.

The particles in fcc arrangements, on the other hand,
form many small and independent crystals, as detailed
in Table I. The fluid particles are essentially located at
the interface between the hcp and fcc or the bcc and fcc
domains but not between the hcp and bcc phases. This
further indicates that the surface tension of the hcp and
bcc phases is very small and that of the fcc crystals is
comparatively high.

S8. PHASE COMPOSITION AND
POLYDISPERSITY

Details of the polydispersity of the particles within in-
dividual phases, and at different φ, are shown in Fig.
S7. There is a slight fractionation of particles, increasing
with φ. As the crystal phases exclude certain particles
at the extreme ends of the particle size distribution, the

(a)

(b)

FIG. S6. Simulation snapshots at (a) φ = 0.185 and (b)
φ = 0.205 of the TM50 dispersion equilibrated with a bulk
solution containing 5 mM of a monovalent salt at pH 9. The
same colors as in Fig. S4 are used, that is black for the bcc
phase, red for the hcp phase, green for fcc phase and blue
for the fluid phase. The simulations are performed with N
= 19991. The cubic box side lengths are equal to 1059.9 nm
and 1025 nm in (a) and (b), respectively.
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TABLE I. Solid phase analysis of equilibrated TM50 silica suspension at φ = 20.5% pH 9 and cs = 5mM as obtained for two
different system sizes (N). The analysis is here limited to one snapshot. A cluster analysis is used to determine the size of the
largest cluster.

N = 40009 N = 19991

Phase i Ni
a largest clusterb Ni

a largest clusterb

bcc 10476 10266(0.98) 5100 5049(0.99)

hcp 17991 17980(0.999) 8704 8694(0.999)

fcc 8335 2144(0.26) 4533 1230(0.27)

a Ni gives the number of particles belonging to phase i.
b The largest cluster of the phase i is defined by the number of particles to which they belongs. Bracketed values give the corresponding

number fraction.

polydispersity of the coexisting liquid phase increases as
that of the crystal phases decreases.

Furthermore, for one set of experimental conditions,
at pH9, cs = 5 mM and φ = 0.22, we performed simula-
tions by changing the polydispersity of the system. Ex-
perimentally, these conditions give rise to a coexistence
between bcc and fcc phases here, and were shown previ-
ously [4] to have a coexistence between a MnZn2 Laves
phase and a bcc phase, at higher δ. The simulations, de-
tailed in Fig. S8, accurately reproduce this shift in phase
equilibrium.

FIG. S7. Variation of the particle polydispersity in the various
phases with the volume fraction of an aqueous silica disper-
sion at pH 9 and cs 5 mM. The polydispersity of the parent
suspension is indicated by the dotted-dashed line. Jump in
polydispersities is found at phase transitions. The particle
polydispersity of the bcc phase is systematically higher than
that of the fcc phase, showing that it is more tolerant of poly-
dispersity.

S9. LATTICE SIMULATION DESCRIPTION
AND RESULTS

In order to better understand the mechanisms at play
in the stabilization of the bcc solid phase in the polydis-

FIG. S8. Variation of the phase composition with the polydis-
persity (normal distribution) of an aqueous silica dispersion
at pH 9, cs = 5 mM and φ = 22%. Note the appearance of a
MgZn2 Laves phase for polydispersities larger than 8%. The
simulations were performed with 4000 particles.

perse TM50 silica dispersion at high salt concentrations
and volume fractions we also performed simple lattice
simulations, identical to that used in our previous stud-
ies [4, 15]. In short, the lattice simulations are performed
in the Gibbs ensemble with 40000 particles assuming the
coexistence between the bcc and fcc lattice structures.
For simplicity, the hcp phase was not considered here.
The system consists of two simulation boxes, one with
a bcc lattice and one with a fcc lattice, each filled with
a predefined number of particles randomly distributed
over the lattice sites. The simulation boxes are allowed
to change their volume while keeping the total system
volume constant. Pairs of particles can swap their lat-
tice positions if they belong either to the same or to a
different box. The number of particles/lattices per box
are, however, not allowed to change during the course
of a simulation. Instead, separate simulations are per-
formed with various pre-set fraction of bcc particles/sites,
xbcc = Nbcc/Ntot, but keeping the same total number of
particles/sites, Ntot = Nbcc +Nfcc.
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(a)

(b)

FIG. S9. Lattice simulation results of the difference in the to-
tal system energy, ∆E, between a system constituted of only
one fcc solid phase xbcc = 0 and a system made of the coexis-
tence of bcc and fcc lattice structures varying the fraction of
particles in the bcc lattice structure, xbcc, at various particle
volume fraction, φ. Negative values of ∆E indicate that the
two solid phases in coexistence are more stable than a pure
fcc structure. (b) Variation of the particle fraction in the fcc
solid phase at equilibrium as a function of φ. The equilib-
rium is approximated here as being the minimum in the total
system energy (or equivalently the minimum in ∆E).

The difference in the total system energy when vary-
ing the fraction of bcc particles, xbcc, at various (total)
particle volume fractions is shown in Fig. S9. Note that
the salt concentration is set to 5 mM and the pH to 9.
Similarly to the continuous simulations, the proportion
of particles in the bcc lattice is found to increase with
increasing the volume fraction. Interestingly enough, the
volume fraction where the particles start to fill the bcc
lattice is found to be very near to that for which a stable
bcc solid phase start to form in the continuous simula-
tions. Though, their proportion is somewhat lower (com-

(a)

(b)

FIG. S10. (a) Variation of the particle size distribution in the
bcc lattice and fcc lattice with φ as obtained with the lattice
simulations. (b) Simulation snapshot of the simulation box
defined with a bcc lattice at φ = 0.24, cs = 5mM and pH 9.

pare Figure S9(b) and Fig. 4 of the main manuscript).
Also, in good agreement with the continuous simulations
the particle fractionation between the two solid phases is
found to be limited as illustrated by their particle distri-
butions plotted in Fig. S10(a).

A clear distinction is obtained, however, when one
compares the shape of the particle size distributions.
Contrary to the continuous simulations and the exper-
iments, the particles in the bcc lattice present a bimodal
distribution, see Fig. S10(a). This is explained by the
formation of a CsCl superlattice as it can be clearly seen
in the simulation snapshot shown in Fig. S10(b).
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FIG. S11. Experimental observations of the amorphous phases. (a) The structure factor S(q) is shown for (i) a colloidal liquid,
just below the volume fraction at which crystals were seen and (ii) the re-entrant amorphous phase, just above the last volume
fraction at which crystals were seen (data for cs = 5 mM). (b) The maximum height of the structure factor, Smax is known
to characterise the stability of a colloidal liquid. Data are shown here for the low-φ liquid phase (circles) and high-φ glass
phase (stars). Colloidal crystals are seen at the intermediate volume fractions. Their first appearance is consistent with the
Verlet-Hansen criterion, shown as a dashed line.

S10. CHARACTERISATION OF LIQUID AND
GLASS PHASES

To experimentally characterise the structure of the liq-
uid and glass phases, we calculated the structure factor
S(q) by taking the ratio of the scattering intensity I(q)
and a corresponding form factor measured in the dilute
limit where φ = 0.1%. The results were normalised so
that S(q) = 1 at high q. Example structure factors for
dispersions of 5 mM NaCl are given in Fig. S11(a). At
all salt concentrations studied, the first appearance of
crystals agreed with the Verlet-Hansen criterion [16, 17],
which states that the liquid phase should be unstable
when the maximum value of the structure factor, Smax

exceeds 2.85 (Fig. S11(b)). The high-φ glass phase con-
sistently has a higher Smax. The second peak of the
glassy structure factor is also split, as demonstrated in
Fig. S11(a).

For our simulations, Fig. S12 provides the coordina-
tion number (CN) of the particles in the fluid and glass
forming liquid at pH 9, for cs = 5 mM (note that other
salt concentrations give very similar results). The CN is
defined as the number of particles within a cut-off radius
taken as the first minimum of the radial distribution func-
tion. For the low-φ fluid phase, the coordination number
is found to be rather constant, with CN= 13.2 ± 0.02
above φ ≈ 10%, which can be viewed as the thresh-
old value that delimits the diluted from the semi-diluted
regime. This threshold increases with cs and pH. The
CN= 13 ± 0.02 of particles in the glassy phase is also
rather constant and is nearly identical to that observed
in the fluid phase, though slightly lower. A local struc-
ture analysis well inside the glassy phase reveals particles
with icosahedral packing, which are virtually absent in

the equilibrium fluid phase. Those particles are charac-

FIG. S12. Average coordination number of the particles in
the fluid and glass forming liquid as obtained from MC simu-
lations of aqueous TM50 silica dispersions at pH 9 and cs = 5
mM. The discontinuity in the curve corresponds to the solid
phase region where not a good statistic for the CN of fluid
particles could be obtained mainly because they are located
at the interface between solid crystals.

terized by a high q6 and low q4 values (local bond or-
der parameters) as well as a negative crystallinity fac-
tor, as defined by Leocmach, Russo and Tanaka [18]. A
non-negligible fraction of particles (≈ 10%) are part of
an icosahedral motif, similar to polydisperse hard sphere
glass formers [19]. This local structuring of the particles
is thought to be responsible for the high Smax values and
doubling of the second peak observed in the structure
factor depicted in Fig. S11.
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Roij, and Monica Olvera de la Cruz, “Effective charges
and virial pressure of concentrated macroion solutions,”
PNAS 112, 9242–9246 (2015).

[7] G. H. Bolt, “Determination of the Charge Density of Sil-
ica Sols,” J. Phys. Chem. 61, 1166–1169 (1957).

[8] Christophe Labbez, Bo Jonsson, Michal Skarba, and
Michal Borkovec, “Ion- ion correlation and charge rever-
sal at titrating solid interfaces,” Langmuir 25, 7209–7213
(2009).

[9] P. M. Dove and C. M. Craven, “Surface charge density on
silica in alkali and alkaline earth chloride electrolyte solu-
tions,” Geochim Cosmochim Acta 69, 4963–4970 (2005).

[10] Tomás S. Grigera and Giorgio Parisi, “Fast Monte Carlo

algorithm for supercooled soft spheres,” Phys Rev E 63,
045102 (2001).

[11] Carolina Brito, Edan Lerner, and Matthieu Wyart,
“Theory for Swap Acceleration near the Glass and Jam-
ming Transitions for Continuously Polydisperse Parti-
cles,” Phys. Rev. X 8, 031050 (2018).

[12] D. Frenkel and B. Smit, Understanding Molecular Simu-
lation (Academic Press, San Diego, 2002).

[13] Wolfgang Lechner and Christoph Dellago, “Accurate de-
termination of crystal structures based on averaged lo-
cal bond order parameters,” The Journal of Chemical
Physics 129, 114707 (2008).

[14] Nigel B. Wilding and Peter Sollich, “Phase behavior of
polydisperse spheres: Simulation strategies and an appli-
cation to the freezing transition,” The Journal of Chem-
ical Physics 133, 224102 (2010).

[15] Robert Botet, Bernard Cabane, Lucas Goehring,
Joaquim Li, and Franck Artzner, “How do polydis-
perse repulsive colloids crystallize?” Faraday Discuss.
186, 229–240 (2016).

[16] Loup Verlet, “Computer ”Experiments” on Classical Flu-
ids. II. Equilibrium Correlation Functions,” Phys. Rev.
165, 201–214 (1968).

[17] Jean-Pierre Hansen and Loup Verlet, “Phase Transitions
of the Lennard-Jones System,” Phys. Rev. 184, 151–161
(1969).

[18] Mathieu Leocmach, John Russo, and Hajime Tanaka,
“Importance of many-body correlations in glass transi-
tion: An example from polydisperse hard spheres,” The
Journal of Chemical Physics 138, 12A536 (2013).

[19] Daniele Coslovich, Misaki Ozawa, and Ludovic Berthier,
“Local order and crystallization of dense polydisperse
hard spheres,” J. Phys.: Condens. Matter 30, 144004
(2018).

http://dx.doi.org/10.1107/S0021889812012812
http://dx.doi.org/10.1107/S0021889812012812
http://dx.doi.org/ 10.1002/ppsc.200800002
http://dx.doi.org/10.1021/la203549g
http://dx.doi.org/ 10.1103/PhysRevLett.116.208001
http://dx.doi.org/10.1063/1.5066074
http://dx.doi.org/10.1073/pnas.1511798112
http://dx.doi.org/ 10.1021/j150555a007
http://dx.doi.org/10.1103/PhysRevE.63.045102
http://dx.doi.org/10.1103/PhysRevE.63.045102
http://dx.doi.org/ 10.1103/PhysRevX.8.031050
http://dx.doi.org/10.1063/1.2977970
http://dx.doi.org/10.1063/1.2977970
http://dx.doi.org/ 10.1063/1.3510534
http://dx.doi.org/ 10.1063/1.3510534
http://dx.doi.org/10.1039/C5FD00145E
http://dx.doi.org/10.1039/C5FD00145E
http://dx.doi.org/10.1103/PhysRev.165.201
http://dx.doi.org/10.1103/PhysRev.165.201
http://dx.doi.org/10.1103/PhysRev.184.151
http://dx.doi.org/10.1103/PhysRev.184.151
http://dx.doi.org/10.1063/1.4769981
http://dx.doi.org/10.1063/1.4769981
http://dx.doi.org/ 10.1088/1361-648X/aab0c9
http://dx.doi.org/ 10.1088/1361-648X/aab0c9

	Supplemental material for: Packing polydisperse colloids into crystals: when charge dispersity matters
	Contents
	Size distribution of the TM50 silica dispersion
	Interdiffusion experiments
	Experimental calibration and number densities
	Model and simulation details
	Charge and interaction polydispersity
	Convergence and equilibrium state of the simulations
	Simulation snapshots at phase coexistence
	Phase composition and polydispersity
	Lattice simulation description and results
	Characterisation of liquid and glass phases
	References


