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Abstract 
 
Industry 4.0 has increased the research attention to apply artificial intelligence (AI) into 
production planning and control (PPC). The use of artificial intelligence in PPC for SMEs 
have in the past received mix reactions from researchers. This paper aims to explore this 
gap through a case study to review a Decision Support System (DSS) developed by 
integrating knowledge-based algorithm with a Simplified Drum Buffer Rope based PPC. 
Based on recent research development on application of Machine Learning (ML) in PPC, 
the possible activity areas where ML could potentially be further explored in the current 
DSS system is proposed.     
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Introduction 
Over the years, researchers and practitioners have proposed various production planning 
and control (PPC) approaches to improve the performance of production system. Given 
the uncertainties in production environment, the main challenge to PPC approaches is to 
generate a practical production plan that is feasible to execute (Schragenheim, 2010:213; 
Wiendahl et al. 2005).  

In addition to practicality issues which arises from the operational perspective, PPC is 
also crucial from the strategic perspective. With the emphasis of alignment between 
supply chain/operations management strategy and marketing strategy (Fisher, 1997; 
Stratton, 2018), PPC has evolved into a Decision Support System (DSS) (McKay and 
Black, 2007). To effectively support DSS, PPC in MTO environment must explicitly 
include customer enquiry stage into its planning horizon (Hendry and Kingsman, 1991; 
Stevenson et al., 2005).  

With the recent increased research attention in Industry 4.0, the applicability of 
artificial intelligence (AI), such as machine learning (ML) in PPC has received increased 
attention (Cadavid et al., 2020; Mezzegori et al., 2019; Priore et al., 2014). The concern 
where organisations blindly copy a best practice or trend to improve production 
performance has been highlighted by researchers (Sousa and Voss, 2008). The 
complexity and sophistication associated with AI in PPC could have possibly reduced its 
adoption by practitioners in SMEs (Hendry and Kingman, 1989; Tenhiala, 2011). Given 
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that SMEs are characterised by limited resources, the objective of this paper is to review 
and explore the practicality of AI in PPC for SMEs in MTO environment. 

The remainder of this paper is structured as follows. PPC approaches towards 
uncertainties will firstly be reviewed. This is followed by reviewing the potential use of 
AI, (i.e. machine learning) in PPC. A case study is presented to illustrate the successful 
integration of AI algorithm with S-DBR algorithm, followed by a discussion on potential 
enhancement using machine learning algorithm. 
 
PPC and Uncertainties   
PPC approaches to improved production include simulation models, analytical models, 
heuristic, and artificial intelligence. Details on these approaches have been reviewed by 
researchers such as Aytug et al. (1994) and Priore et al. (2006). Underpinning these PPC 
approaches are different inherent assumptions concerning uncertainties in production 
environment (Aytug et al., 2005).  

The traditional PPC approaches view planning as a mere mathematical problem, static 
in nature, and able to be modelled into algorithms (Deblaere et al., 2007; Pinedo, 2008). 
Once planned, it is assumed to be executable with full adherence. The development in 
technology (such as in big data and artificial intelligence) has propelled the use of 
sophisticated algorithm to model uncertainties. These predictive approaches are 
potentially suitable only in tightly controlled and integrated automation environments 
where uncertainties are relatively low.          

The reliance on predictive approaches is deemed impractical in dynamic production 
environment such as Engineering-to-Order (ETO) and Make-to-Order (MTO) where 
reactive approaches are advocated (Aytug et al., 2005; Szelke and Kerr, 1994). Such 
approaches require PPC to react dynamically to real time events: resource-related and 
job-related (Ouelhadj and Petrovic, 2008). Resource-related events include machine 
breakdown, unavailability of personnel due to illness, shortage in raw materials, etc. Job-
related events include change in due date, cancellation, processing time, etc. Reactive 
approaches are further categorised into completely reactive, predictive-reactive and 
robust proactive. Detailed reviews can be found in Aytug et al. (2005), Oelhadj and 
Petrovic (2009) and Priore et al. (2014).     

Completely reactive approaches do not generate a firm schedule in advance. Rather, 
they are based on resource and job-related attributes, such as priority dispatching rules, 
used to determine the next job to be processed. This approach involves less sophisticated 
computational algorithms and intuitive rules, easily understood by users (Aytug et al., 
2005; Waschneck et al., 2016). However, these myopic dispatch rules are criticised for 
being sub-optimal within a wider production system. Attempts to align dispatching rules 
with the organisation’s wider objectives have been made through AI algorithms. This 
includes empirical work by Petroni and Rizzi (2002) which uses fuzzy logic methodology 
to evaluate and select the best dispatch rules based on organisation objectives. Other 
reported methodologies include decision trees (Piramuthu et al., 1991), neural networks 
(Chen and Yih, 1996), genetic learning (Aytug et al., 1994), iterative simulation 
(Kunatnoglu and Sabuncuoglu, 2001), etc.  

A robust proactive approach is the opposite of reactive and attempts to create a schedule 
which can accommodate dynamic environments. These approaches utilise the concept of 
a buffer to dampen the effect of uncertainty. For example, buffer time by Mehta and 
Uzsoy (1999) and buffer capacity in the form of under-capacity planning by Horiguchi et 
al. (2001).  

The third category: predictive-reactive scheduling is most commonly used in dynamic 
scheduling (Ouelhadj and Petrovic, 2009). Conceptually, it inherits the benefits of both 
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prior discussed reactive approaches. The downside is the sophistication in algorithm and 
the turn-around time of rescheduling. To increase feasibility, researchers have limited  the 
scope to reschedule. These range from the simplest method of right-shift rescheduling, 
the more practical schedule repair, and the complete regeneration (Viera et al., 2003). 
Although complete regeneration is theoretically desirable as it provides an optimal 
solution, the immense computation times makes it impractical. Ouelhadj and Petrovic 
(2009) cautioned against frequent schedule regeneration as it might increase system 
nervousness and discontinuity to shop floor operation. With AI developments (such as 
big data availability and machine learning algorithms). , attention has been directed to 
evaluate the theory-practice gap for such solutions. A detailed review of the past ten 
years’ achievements is conducted by Priore et al. (2014). Figure 1 attempts to represent 
the PPC approaches discussed in this section in a continuum of planning and execution. 
 

 
Figure 1: Representation of PPC Approaches in Continuum of Planning and Execution 

 
AI in PPC 
The use of AI in PPC has been explored since the early 80s where it is also referred to as 
knowledge-based systems or expert systems (ES) (Aytug et al. 1994; Kanet and 
Adelsberger, 1987). According to Bensana et al. (1986), there are two types of PPC 
related knowledge: (i) the theoretical and empirical knowledge on PPC; and (ii) the 
practical knowledge of the shopfloor, where the source in both types is human experts. 
Through AI, the thinking process and decision-making process of human experts are 
captured as idiosyncratic knowledge. This codified knowledge is built alongside 
inference mechanisms to mimic human decision making (Metaxiotis et al., 2002). 

Although AI is better than the traditional mathematical representation in dealing with 
uncertainties, concerns have been raised regarding how fast the knowledge database can 
be updated (Fox and Smith, 1984; Hendry and Kingsman, 1989). The applicability of AI 
in PPC in a dynamic production environment depends on the learning capability and 
capacity exhibited (Nakasuka and Yoshida, 1992).   

With the advancement in AI, the term now includes analytics, big data, and the use of 
computers (instead of a human) in problem solving (Olsen and Tomlin, 2020). The 
advancement in learning algorithms, such as machine learning and the availability of real-
time data, creates a pathway towards an active learning PPC (Arnott and Pervan, 2014; 
Aytug et al., 1994; Misic and Perakis, 2020; Weichert et al, 2019). The knowledge learnt 
comes  from data sources, including management data (e.g. ERP, CRM), equipment data 
through IoT (Internet of Things) technologies, user data (from ecommerce and social 
media platforms), product data through IoT (such as product performance, usage related), 
public data (available through government) and artificial data (generated through 
simulation) (Tao et al., 2018; Cadavid et al., 2020). Although this could potentially 
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improve production performance, Priore et al. (2006) cautioned against the potential 
pitfalls due to the uncertainty of the production environment. 
In machine learning, problems are solved by using previously acquired knowledge in 
solving similar problems. To acquire knowledge, machine learning algorithms will learn 
through past knowledge, known as training examples. Attributes are used to define each 
example and the solution to each example is part of the attributes, known as class. A 
review on the development machine learning in PPC by Priorie et al. (2014) categorised 
learning approaches into inductive learning, neural networks (NN), case-based reasoning 
(CBR), support vector machines (SVMs), reinforcement learning, mixed approaches and 
others. The review by Cadavid et al. (2020) took a step further by reviewing the activity 
areas where machine learning has been reportedly used since 2010. These activities are 
(i) Data acquisition, (ii) Data exploration, (iii) Data cleaning and formatting, (iv) Feature 
selection, (v) Feature extraction, (vi) Feature transformation, (vii) Hyperparameter tuning 
and architecture design, (viii) Model training, validation, testing and assessment, (ix) 
Model comparison and selection, (x) Contextualised analysis or application, and (xi) 
Model update. It was reported that the proposed application of machine learning in PPC 
has mainly centred around model development and assessment, with less than half related 
to contextualised analysis. The low usage of machine learning in data acquisition and 
exploration related activities raises concerns over the integration of PPC with the Internet 
of things (IoT) technologies in obtaining real-time data regarding the manufacturing 
system status. The least reported activities in the (ix) Model update shows a lack of 
research in adapting models to the dynamic manufacturing environment. To address this 
need this paper explores how AI could potentially be applicable to SMEs using a case 
study.      

 
Case Study: Phase One 
The SME case company: Company A, is a planters and bins manufacturer. The 
manufacturing process utilises rotary moulding and is labour intensive in a Make-To-
Order environment. The company intends to improve its competitiveness in the market 
by digitising its manufacturing process. An incremental change approach is adopted in 
two phases. Phase one is to design and implement a PPC, followed by exploring the 
potential use of AI in phase 2. The following section will introduce the first phase of this 
project, followed by a discussion regarding the second phase.  

Using a reactive approach, the PPC was designed and implemented using the Theory 
of Constraints (TOC) based Simplified Drum-Buffer-Rope (S-DBR). Details of S-DBR 
can be found in Schragenheim and Dettmer (2000) and Schragenheim et al. (2009). S-
DBR consists of three pillars: constraints management (CM), load management (LM) and 
buffer management (BM). CM adopts a systemic approach acknowledging system 
throughput is dictated by the constraint within a system. In S-DBR, the market is viewed 
as the ultimate constraint. Company operations and resources are to be aligned and 
subordinated to support this constraint. In the context of MTO environment, the alignment 
is to provide customers with feasible due dates that corresponds to the planning and 
execution in PPC. To effectively align planning and execution, S-DBR obtains real-time 
data on the system status through the other two pillars: LM and BM.  

In LM, planned load (PL) is used to monitor the load of internal resources. Instead of 
monitoring all resources, only resources which potentially will become internal constraint 
are monitored. These resources are called critical capacity resource (CCR). PL is the total 
load for all firm orders on CCR. It provides a means to proactively validate CCR capacity 
against market demand in the planning horizon. PL is also used to quote feasible delivery 
date to customers. As shown in Figure 2, with the assumption that position of CCR is in 
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the middle section of the production process, feasible delivery date is determined by 
adding one half production buffer (PB) to the earliest available date of CCR. A factor is 
multiplied to the PB to represent the relative position of CCR in the production route (Lee 
et al., 2010). S-DBR explicitly acknowledges the existence of uncertainties in 
manufacturing environments by adding buffer time to the production touch time. The sum 
of production touch time and buffer time is known as PB. The amount of buffer time 
added is to allow orders to complete in around half of the PB, the yellow zone in Buffer 
Management (BM). This allows time for expediting  if an order enters the red zone.    

 

 
Figure 2: Planned Load (PL) at Critical Capacity Resource (CCR) 

 
BM is a signalling tool for execution where there are four functions:  prioritise, 

expedite, escalate and target (Stratton and Knight, 2010). As both the planning and 
execution stages are due date aligned, BM is represented in time unit, divided into three 
equal zones: green, yellow, and red. The buffer status (BS) of each work order is 
referenced against the three zones, with red zone having the highest urgency. BS is the 
ratio between available time and PB. An illustration of BM is shown in Figure 3 and 
detailed calculations for LM and BM can be found in Lee et al. (2010) and Yeong (2019).   

 

 
Figure 3: Illustration of Buffer Management 

 
In Company A, the potential CCR is identified as the moulding machines, positioned 

at the front-end of the production route. The total load on moulding machines are 
monitored using PL. As the industrial accepted lead time is three weeks, a red line is 
drawn on PL to represent 15 working days, as shown in Figure 4 where the red line allows 
management to proactively intervene. In Company A, visualisation of total load allows 
management to strategically deploy additional resource capacity, at the appropriate time 
and with adequate quantity. This has successfully exposed hidden resource capacity, 
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evident from Company A not needing to deploy additional shifts during the peak season 
for the first time. To further assist planning, a simulation tool is developed to allow the 
user to visualise the impact of varying resource capacity on the CCR and buffer status of 
work orders. For example, instead of deploying a full shift, management can simulate and 
observe the resource capacity necessary for the system to return to the three-week safety 
zone.  

 

 
Figure 4: Plan Load and the use of Red Line in Company A 

 
In addition to resource planning, together with BM, new work orders can be planned 

according to the system status. During the customer enquiry stage, there are three 
scenarios about the order due date: (i) willing to accept any due date proposed, (ii) has a 
negotiable due date, or (iii) has a fixed due date. A feasible due date is determined to 
facilitate the decision to accept, renegotiate, or reject an order. This is calculated by 
adding PB of this work order to the earliest available date of a moulding machine 
resource. If the due date falls later than the fixed due date, the order is rejected. If it falls 
in yellow or green zones of BM, the order is accepted. If it falls in the red zone, the order 
will be renegotiated. A customer query module is built to offer two simulated scenarios. 
The first is by adding the new order to the end of the total load; and the second is by 
considering it as an accepted order and analyse how it affects the buffer status of other 
orders. The simulation result will also highlight the constraint which causes an order to 
fall outside of the industrial accepted lead time. This allows management to make 
informed decisions and take an appropriate intervention in the planning stage.  

 

 
Figure 5: Work Orders with Buffer Status to facilitate execution 

 
In the execution stage, as shown in Figure 5, the buffer status of all accepted work 

orders is calculated and made visual to all relevant personnel. Given that the contextual 
environment has various uncertainties, shop floor personnel are empowered to utilise tacit 
knowledge to response to the buffer status of the orders. The prioritise and expedite 
functions of BM avoids cherry-picking behaviour on shop floor. It also empowers shop 
floor personnel to utilise tacit knowledge to intervene appropriately. Where the BM 
signals growing instability, this needs to be escalated to higher management for more 
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extreme intervention. The final function of BM utilises a record of reasons for red zone 
penetration that can be targeted continuous improvement.    

Calculation of the buffer status and repopulation of the plan load are triggered by a 
combination of events and time. Periodically, they are regenerated daily manually 
refreshed by users allowing the PPC system to react in real-time.    

Although the above discussion addresses the issue of when and which work order to 
process it did not address the relatively complex routing issues in Company A. In 
Company A, there is no dedicated production line with all resources shared. For example, 
the CCR is the moulding machines and there are multiple machines with multiple arms 
on which here are multiple positions to mount the moulds (as shown in Figure 6). The 
increased number of moulds on each arm will increase the production throughput. 
However, increasing the number of moulds will increase the setup time. The more 
crowded the moulds, the more time consuming it is for setup, as it normally involves the 
use of overhead cranes. Production throughput (capacity) of moulding machine is a trade-
off between number of moulds mounted and setup time required. This is further 
complicated by factors such as moulding materials, mould size, mould opening design, 
mount frame, type of plastic resin, machine familiarity of personnel, physical condition 
of personnel, ambient temperature, etc. The existence of multiple machine resources with 
similar capacity also poses parallel machine related issues. 

 

 
Figure 6: Illustration of physical requirements on machine arms 

 
With the purpose of developing a practical resource allocation system, a combination 

of knowledge base and search algorithm are used. The knowledge base is developed based 
on the observation of practice and verbalised knowledge by experts on shop floor. This 
knowledge includes the thinking process regarding machine resource allocation and shop 
floor best practices through trial and error over the years and passed down by seniors. 
Most of the information is not crisp, with the conversation normally ending with “it 
depends”.  

Through further analysis, the collected data and thinking process are firstly developed 
into attributes and test cases. To address fuzziness, a wildcard test case is used, where a 
wildcard mould is assigned onto a wildcard machine resource. A new order will firstly 
be filtered through the test cases. The purpose of the filtering is to mimic the existing 
thinking process and to reduce the number of searches to be conducted in the subsequent 
step. A search algorithm has been developed to test the production buffer on each possible 
route to determine the one with the earliest deliver date, DDE. To minimise the search 
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time, each resource group will nominate a best candidate (for example, earliest 
availability date or preferred machine position). This is followed by determining the 
buffer status of the work order before placing it into the queueing pool, which will be 
subjected to the S-DBR algorithm. 

To address the issue of fuzziness in data and thinking process, shop floor personnel, 
the human experts, are the ones who makes the final decision on machine resource 
allocation. Personnel can use the PPC system developed to simulate other combination 
before physically assign a work order onto a machine resource. To facilitate intervention, 
a more detailed view of plan load is developed, as shown in Figure 7. Each work order is 
colour coded according to its buffer status, allowing personnel to make decision to over-
right system proposed allocation. 

 

 
Figure 7: Detailed plan load view 

 
Three years after implementation, the system successfully it has more than doubled its 
production throughput and through its integration with the Sage system, it has 
successfully become an integral part of the business process. This reactive PPC has been 
developed into a Decision Support System (DSS) with the integration of knowledge-
based search algorithm and S-DBR algorithm. Detailed account can be found in Yeong 
(2019). 
 
Case Study: Phase 2 
Moving forward, in addition to the knowledge learnt from human experts in phase one, 
phase 2 intends to acquire knowledge by learning through data collected. This will be 
discussed by adopting the eleven activity areas reviewed in the earlier section. The eleven 
activity areas are further grouped into five categories to explore applicability of machine 
learning in the PPC of company A. 
 
(i) Data acquisition, exploration, cleaning and formatting  
Resource allocation data (such as moulding machine resource vs mould) can potentially 
be explored through inferential statistics for initial insights. Decision support systems 
could potentially be further explored to provide business intelligence by exploring market 
related data, such as product type. 
 
(ii) Feature selection, extraction and transformation  
From the machine vs mould and product data acquired from (i), further analysis such as 
statistical techniques or expert insights can be adopted to identify potential features to 
develop machine learning model. 
 
(iii) Hyperparameter tuning and architecture design, model training, validation, testing 
and assessment. 
Based on the findings in (i) and (ii), a machine learning model architecture will be 
developed, trained, validated and assessed. As the system has been successfully run for 
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three years, data from year 1 and 2 can potentially be used as test cases and validated 
using year 3 data. Search algorithms used in the resource allocation could potentially be 
improved by developing new model. 
 
(iv) Model Comparison and Selection 
The activity area (iii) could potentially be repeated using different models to compare 
performance. In real time, multiple machine resource allocation model could potentially 
be used to triangulate a best proposal.  
 
(v) Contextualised analysis and model update 
Based on the existing successful platform, in addition to simulation-based activity in (iv), 
there is potential of conducting prototype testing in company A. The insights discovered 
through (i), (ii) and (iii) could potentially refine the existing algorithm used in resource 
allocation. 
 
Conclusion 
Noticing the theory-practice gap in PPC, researchers are driven to adopt a reactive 
approach to address the issue of uncertainties. Based on the recent review by Cadavid et 
al. (2020), the practicality of machine learning based PPC is still in the development stage. 
Of the forty papers reviewed since 2010, the simulation skewed research offers potential 
research area for empirical and case studies. As the industry trends towards adopting AI, 
the applicability of AI in PPC for SMEs warrant further research to avoid SMEs falling 
into the trap of merely jumping onto the bandwagon. The case study presented in this 
paper offers an insight into how knowledge-based AI could potentially be integrated with 
management philosophy based S-DBR. The synergy between both: business analytics, 
could potentially offer higher value to SMEs where the whole is greater than the sum of 
its parts. 
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