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Abstract

Background – Research on empirical software engineering has increasingly

been conducted by analysing and measuring vast amounts of software systems.

Hundreds, thousands and even millions of systems have been (and are) consid-

ered by researchers, and often within the same study, in order to test theories,

demonstrate approaches or run prediction models. A much less investigated

aspect is whether the collected metrics might be context-specific, or whether

systems should be better analysed in clusters.

Objective – The objectives of this study are (i) to define a set of clustering

techniques that might be used to group similar software systems, and (ii) to eval-

uate whether a suite of well-known object-oriented metrics is context-specific,

and its values differ along the defined clusters.

Method – We group software systems based on three different clustering

techniques, and we collect the values of the metrics suite in each cluster. We

then test whether clusters are statistically different between each other, using

the Kolgomorov-Smirnov (KS) hypothesis testing.

Results – Our results show that, for two of the used techniques, the KS

null hypothesis (e.g., the clusters come from the same population) is rejected for
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most of the metrics chosen: the clusters that we extracted, based on application

domains, show statistically different structural properties.

Conclusions – The implications for researchers can be profound: metrics

and their interpretation might be more sensitive to context than acknowledged

so far, and application domains represent a promising filter to cluster similar

systems.

Keywords: FOSS (Free and open-source software), Application Domains,

Latent Dirichlet Allocation, Machine Learning, Expert Opinions, OO

(object-oriented)

1. Introduction

Research on empirical software engineering has increasingly used data made

available in online repositories or collective efforts. The latest trends for re-

searchers is to gather “as much data as possible” to (i) prevent bias in the

representation of a small sample, (ii) work with a sample as close as the popula-

tion itself, and (iii) showcase the performance of existing or new tools in treating

vast amount of data.

Considering the MSR1 series of events as an example, its researchers have

constantly grown the number of systems analysed in their papers. During its

2017 edition, for instance, the joint set of papers of the main track (i.e., 64 papers10

overall) collected and analysed altogether over 3 million software systems. A

10-year trend with the number of software systems jointly analysed by the MSR

papers is shown in Figure 1. One of the papers alone amassed some 900K

systems as its case studies [1]. Figure 2 shows the average number of analysed

FOSS projects per year while Figure 3 shows the median number of analysed

FOSS projects per year from 2008 to 2017 for the MSR series of events. The

highest average is observed in the 2016 edition where on average, 93,553 FOSS

projects were analysed. However, the highest median value is the 2017 edition,

1http://www.msrconf.org/
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with 532 projects, following a rise to 33 in 2016. The largest study containing

FOSS projects was registered in 2016, with 3,182,590 analysed projects. This20

study accounts for around 60% of the total and the massive growth as shown in

Figure 1.

C

Figure 1: Cumulative number of FOSS projects per year.

Figure 2: Average number of FOSS projects per year.

These always larger samples of systems have mostly overlooked their primary
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Figure 3: Median number of FOSS projects per year.

distinctive characteristics, their diversity, context, uniqueness and application

domain. Very few works have clearly stated the similarity (or differences) be-

tween systems in the interpretation of the results, either by explicitly proposing

explanations based on application domains [2, 3, 4], or by sampling the projects

to be analysed from a specific, restricted topic [5].

This present paper is based on the assumptions that a specific software

system might be similar to others to some degree, and that there are different30

approaches to defining their similarity. By applying one of those approaches,

a sample of software systems might get divided into subsets (or clusters), each

containing similar systems, and showing differences with other clusters.

Understanding the similarities among software projects allows for reusing

of source code and prototyping, or choosing alternative implementations [6,

7], thereby improving software quality [8]. Having access to similar software

projects helps developers speed up their development process. By looking at

similar Open Source Software (OSS) projects, for example, developers are able

to learn how relevant classes are implemented, and in some certain extent, to

reuse useful source code [6, 7, 9].40
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In the past, two software projects have been considered to be similar if they

implement some features being described by the same abstraction, even though

they may contain various functionalities for different domains [10]. In this paper,

we group similar systems into clusters based on different approaches: first, we

group them based on the similarities detected by the CrossSim algorithm [11,

12], which has been developed as part of the EU H2020 CROSSMINER project2.

Systems are similar, or connected, if they have a limited distance [11]. Second,

we use the clusters as manually extracted by [13, 14], that have grouped 5,000

software systems into 6 clusters. Third, we use a Python implementation of

the Latent Dirichlet Allocation (LDA) approach to automatically extract the50

descriptions of a project, and we group similar systems based on that extraction.

For all the clusters identified in this paper, we evaluated the metrics of an

object-oriented suite, based on the work by Chidamber and Kemerer (CK) [15]

and additional OO software metrics used in prior studies to complement the CK

metrics [16, 17, 18, 19].

The aim of this paper is to answer the following research question (RQ):

RQ: are OO metrics sensitive to the context of their clusters?

In other words, do different software clusters exhibit different OO metrics?

To answer that research question, we articulate this paper in the following parts:

Section 2 proposes a meta-model of the reasoning behind the need for clustering60

software systems. Section 3 deals with the related work. Section 4 describes the

experimental setup of the empirical study including statistical tests used, data

sources and extracted software metrics. Section 5 describes the three approaches

used to define an ecosystem that we use throughout this paper. Section 6

illustrates the datasets used. Section 7 provides the results of the statistical

tests, that aim to reject, for every OO metric m, the null hypothesis H0,m: the

samples are drawn from the same population.

Section 8 discusses the findings, while Section 9 describes the threats to

2https://www.crossminer.org
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validity. Finally, Section 10 summarises and concludes the paper.

2. Reasons for clustering70

Clustering is deemed to be among the fundamental techniques in knowledge

mining and information retrieval [20, 21]. In the context of software engineer-

ing, clustering has been used in the past, for reverse engineering and software

maintenance tasks, with the aim to categorise software artifacts [22, 23]. The

concept of similarity is a fundamental building block for any clustering tech-

nique, as well as a key issue in various contexts, such as detecting cloned code

[24, 25, 26, 27], software plagiarism [28], or reducing test suite size in model-

based testing [29, 30]. According to Walenstein et al. [31], a workable common

understanding for software similarity is as follows: “the degree to which two

distinct programs are similar is related to how precisely they are alike.” Never-80

theless, a globally exact and shared definition of similarity has not been agreed

upon yet: depending on the method used to compare items, various types of

similarity may be identified.

Clustering techniques have been exploited in other fields including biology to

classify plants or animals according to their properties [32], and geology to clas-

sify observed earthquake epicenters and thus to identify dangerous zones [33]. A

clustering algorithm attempts to distribute objects into groups of similar objects

so as the similarity between one pair of objects in a cluster is higher than that

between one of the objects to any objects in a different cluster [34, 35]. In recent

years, several clustering methods have been developed to solve a wide range of90

issues [36]. Among others, there are hierarchical and partitional clustering algo-

rithms [35]. The former use a criterion function to identify partitions while the

latter try to group similar partitions. Among partitioning-based algorithms,

there are K-Means, K-Medoids, CLARA, CLARANS [37, 38, 39]. Among

hierarchical-based algorithms, there are BIRCH [40], CURE [41], ROCK [42],

Chameleon [43], to name a few.

Several existing clustering techniques share the property that they can be
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applied when it is possible to specify a proximity (or distance) measure that al-

lows one to assess if elements to be clustered are mutually similar or dissimilar.

The basic idea is that the similarity level of two elements is inversely propor-100

tional to their distance. The definition of the proximity measure is a key issue

in almost all clustering techniques and it depends on many factors including the

considered application domain, available data, and goals. Once the proximity

measure has been defined, it is possible to produce a proximity matrix for the

related objects. Given that there are n objects to be clustered, an n× n prox-

imity matrix needs to be generated containing all the pairwise similarities or

dissimilarities between the considered objects.

Recommender systems rely heavily on similarity metrics to suggest suitable

and meaningful items for a given item [6, 44]. For example, for third-party li-

brary recommendation, it is important to find similar projects to a given project,110

and mine libraries from the most similar projects. Similarities are used as a

base by both content-based and collaborative-filtering recommender systems to

choose the most suitable and meaningful items for a given user [6]. In this

sense, failing to compute similarities means concurrently adding a decline in the

overall performance of these systems.

Nevertheless, measuring similarities between software systems has been con-

sidered as a daunting task [10, 45]. Furthermore, considering the heterogeneous

nature of artifacts in open source software repositories, similarity computation

becomes more complicated as many artifacts and several cross relationships

prevail. As a result, similarity computation among software and projects has120

attracted considerable interest from many research groups. In recent years, sev-

eral approaches have been proposed to solve the problem of software similarity

computation. Many of them deal with similarity for software systems, others are

designed for computing similarities among open source software projects. Such

approaches are domain specific and they can be classified according to the set

of mined features. In particular, there are two main types of software similarity

computation techniques as follows [45]. The first is called low-level similarity

and it is calculated by considering low-level data, e.g., source code, byte code,
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function calls, API reference, etc. Meanwhile, high-level similarity is based on

the metadata of the analysed projects e.g., similarities in readme files, textual130

descriptions, star events, to name a few.

3. Related Work

While the primary goal of empirical papers is to achieve the generality of

the results, the domain, context and uniqueness of a software system have not

been considered very often by empirical software engineering research. As in

the example reported in [46], the extensive study of all JSON parsers available

would find similarities between them or common patterns. That type of study

would focus on one particular language (JSON), one specific domain (parsers)

and inevitably draw limited conclusions. On the other hand, considering the

“parsers” domain (but without focusing on one single language) would show the140

common characteristics of developing that type of systems irrespective of their

language.

So far, several tools that capture the topics of software systems have been

proposed. Among others, CLAN [47], CrossSim [11], MUDAblue [48] and Re-

poPal [49] are some of the most notable tools, with various levels of precision

and accuracy. CLAN outperforms MUDAblue, furthermore it has also been

reported that the similarity scores of CLAN reflect the perception of humans

of similarity better than those of MUDAblue [47]. Meanwhile, RepoPal has

been proven to obtain a better performance compared to CLAN. Eventually,

CrossSim surpasses RepoPal with respect to various quality metrics, including150

computation time [11]. Even if such tools are available for researchers and prac-

titioners, their usage to practically inform development and project clustering

(finding similar projects) has been so far quite limited. For example, out of the

26 articles that have cited RepoPal [49], only two of them [11, 50] have actu-

ally adopted RepoPal for project clustering. The same applies to CrossSim [11]

where two among the 7 studies that cite the paper have adopted the tool for

project similarity detection [9, 51] . In addition, these few studies have adopted
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the tools when proposing or comparing a new software project similarity detec-

tion technique.

Wermelinger and Yu [52] posit that presenting two datasets from the same160

domain allows for future comparative studies and facilitates the reuse of data ex-

traction and processing scripts. On increasing the external validity of empirical

result findings, German et al. [53] have also highlighted the need to investigate

in particular systems belonging to different domains.

Prior research has shown that the number and size of open-source projects

are growing exponentially and open-source projects are becoming more diverse

by expanding into different domains [54, 55]. In view of this and to reduce the

effort required in manual categorisation of software projects, Tian et al. [56]

proposed a technique based on text mining to categorise software projects irre-

spective of the programming language used in their development.170

The following prior studies highlight the need for investigating empirical

software engineering research results by application domains as well as the adop-

tion of software categorisation or clustering techniques when evaluating software

quality.

Callau et al. [57] studied the use of dynamic programming features such

as method and class creation and removal at run-time e.g., during testing and

how much these features are actually used in practice, whether some are used

more than others, and in which kinds of projects. Their results revealed three

application domains that rely heavily on the usage of dynamic programming

features: (i) user interface applications, which make heavy usage of dynamic180

method invocation as a lightweight form of an event notification system, (ii)

frameworks that communicate with databases or implement object databases,

which make heavy usage of serialisation and de-serialisation of objects and (iii)

low-level system support code that uses object field reads and writes to imple-

ment copy operations, saving the state of the system to disk, and converting

numbers and strings from objects to compact bit representation.

Linares-Vasquez et al. [58] analysed the energy usage of API method calls in

55 different Android apps from different categories such as Tools, Music, Media
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and others. Results revealed GUI and image manipulation apps made use of

the highest number of energy-greedy API method calls followed by Database190

apps. Both categories represented 60% of the energy-greedy APIs in the studied

sample. In [57], authors made a study on the usage of dynamic programming

features in terms of the significant energy and memory usage of software in

the Databases category wherein database-based software made heavy usage of

serialisation and de-serialisation of objects.

In a related study, the focus is on energy management in Android applica-

tions [59] with an analysis of different power management commits (including

Power Adaptation, Power Consumption Improvement, Power Usage Monitoring,

Optimizing Wake Lock, Adding Wake Lock and Bug Fix and Code Refinement).

The studied projects were clustered into 15 categories. The top three categories200

in terms of the number of power management commits were found to be Con-

nectivity, Development and Games.

Previous studies [60, 61, 62] revealed that projects from different domains

use exception handling differently, and that poor practices in writing excep-

tion handling code are widespread. In a study on Java projects by Osman

et al. [2] they aimed to answer the following research question: “Is there any

difference in the evolution of exception handling between projects belonging

to different domains?” The researchers manually categorised 30 projects into

6 domains, namely compilers, content management systems, editors/viewers,

web frameworks, testing frameworks, and parser libraries. Their observations210

showed significant distinctions in the evolution of exception handling between

these domains, like the usage of java.lang.Exception and custom exceptions

in catch blocks. Concretely, content management systems consistently have

more exception handling code and throw more custom exceptions, as opposed

to editors/viewers, which have less error handling code and mainly use standard

exceptions instead.

In general, different results, trends or patterns have been observed in prior

empirical studies when more attention is paid to the categorisation of analysed

software projects based on predefined software categories or domains.
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Regarding the effect of application domains on software metric values or220

thresholds, Alves et al. [63] emphasise that the effective use of software metrics

is hindered by the lack of meaningful thresholds. The authors designed a method

that determines metric thresholds empirically from measurement data. Their

results did not focus on application domains, however in their sample selection

they did select 100 OO software systems from various application domains and

a combination of open and closed source.

On the other hand, Ferreira et al. [64] mentioned that software metrics are

not widely adopted in industry and one possibility could be the lack of availabil-

ity of reference values for most metrics. Thresholds can aid specialists to apply

metrics in their tasks and Medicine is an example of field in which the work of230

the specialist is strongly supported by metrics and their thresholds. The au-

thors presented a study on the structure of 40 open-source programs developed

in Java, of varying sizes and ensured that the projects were from 11 applica-

tion domains. They aimed to define thresholds for a set of OO metrics (e.g.,

LCOM, DIT, number of public methods, etc.) and evaluated the practicality

of the proposed thresholds. Four types of analyses were carried out: with the

entire dataset, which leads to general thresholds; by software system sizes; by

application domains; and by types of software systems (tool, library and frame-

work). Derived thresholds were broken down, for example for the LCOM metric

the derived thresholds for the entire dataset are as follows: Good: 0; regular:240

1-20; bad: greater than 20. These thresholds applied to only 2 (Clustering and

Database domains) out of the 11 studied domains. However, for the Hardware

domain, the LCOM thresholds are as follows: Good: 0; regular: 1-80; bad:

>80 while the LCOM thresholds for the Games domain are as follows: Good:

0; regular: 1-35; bad: >35. Their results show that the thresholds vary when

considering the application domains and that the proposed thresholds could be

used to support both the identification of classes which violate design principles,

as well as well-designed classes.

Oliveira et al. [65] rightly emphasised that “establishing credible thresholds is

a central challenge for promoting source code metrics as an effective instrument250
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to control the internal quality of software systems.” Thus, in an attempt to

resolve this challenge, they investigated 106 software projects and proposed the

concept of relative thresholds for evaluating software metrics data given that

source code metrics usually follow heavy-tailed distributions and it is natural to

have some outlier artefacts that will not strictly follow a specified threshold, e.g.,

p% of the entities should have Mmetric <= k, where M is a source code metric

calculated for a given software entity (method, class, etc.), k is the upper limit,

and p is the minimal percentage of entities that should follow this upper limit.

The application of their approach was evaluated on a sub-corpus of the original

corpus including systems sharing a common functional domain. They identified260

slight variances in the relative thresholds when looking at the Tools domain. For

example, the original threshold regarding all systems in the Qualitas Corpus3

for the FAN-OUT metric is as follows: 80% of the classes should have FAN-OUT

<= 15. However, the relative threshold for the same metric considering only

the Tools software category which consists of 26 projects making up 24.5% of

the original corpus is as follows: 85% of the classes should have FAN-OUT <=

20. This was observed because in the Tools sub-corpus, the tail classes tend to

be bigger than the typical tail classes in the whole corpus leading to a small

difference only in the last quantiles.

In a different study by De Souza and Maia [66], software coupling metrics270

were studied based on software categories to identify any impact of software

categories on coupling metrics (CBO4, DAC5, ATFD6 and AC7). The authors

emphasised the need to pay a special attention to software categories when com-

paring systems in distinct categories with predefined thresholds already available

in the literature. For example, empirical results from the study revealed that

out of ten distinct categories selected (including Audio and Video, Graphics,

3http://qualitascorpus.com/
4Coupling between Objects
5Data Abstraction Coupling
6Access to Foreign Data
7Afferent Coupling
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Security and Games) there is a different level of coupling among the different

categories. Games had a higher coupling level while the Development category

showed less coupling than others. Statistical tests conducted at a 0.01 signifi-

cance level supported these results which indicate the importance of analysing280

software engineering research results by domain or category.

Recently, Mori et al. [67] argued that while deriving reliable thresholds for

software metrics has been a ongoing research concern, there is still a lack of

evidence about threshold variation across different software domains. In an

attempt to address this limitation, the authors whether and how thresholds

vary across domains in a study on 3,107 software systems from 15 domains

(including communication, development, education, games and others) with a

focus on 8 well-known software metrics in terms of size (LOC, NOA, NOM),

complexity (WMC, LCOM, CBO) and inheritance (DIT, NOC). Presented re-

sults, showed that software domain and size affect thresholds and the follow-290

ing metrics: LCOM, WMC, and LOC are highly sensitive to the software do-

main. Furthermore, the authors investigated benchmark OO software datasets

namely Qualitas Corpus, AllSystems, MediumSystems and SmallSystems. Re-

sults showed that Qualitas Corpus and AllSystems have similar thresholds, al-

though they do not have any system in common. Observed results suggested

that if the benchmark is composed of a high enough number of heterogeneous

systems (i.e., from different domains and sizes), the metrics thresholds tend to

be comparable.

In general, earlier studies have shown that application domains indeed have

an effect on software metric values and thresholds. Therefore, developers should300

pay attention to this variation when using thresholds for these metrics in soft-

ware quality evaluation.

4. Experimental Design

In this section we detail the experimental design of our study, articulating
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it in techniques of clustering, research objectives, data sources, statistical tests

performed and null hypothesis.

• Clustering techniques: in this paper we compare three different techniques

to cluster software systems: the CrossSim tool, a manual clustering ap-

proach, and a LDA-based approach.310

• Research objective: considering the clusters generated by the three tech-

niques above, this study evaluates whether they differ with a statistical

significance, and based on Object-Oriented (OO) metrics.

• Data sources: as the data sources for this paper we consider:

[1] the project clusters derived with the CrossSim tool by using a sample

of 12 projects (6 pairs), from a larger population of 5,000 projects

extracted as part of the CROSSMINER project [68];

[2] the project clusters obtained by a manual classification, using a sam-

ple of 500 Java projects, as presented in [13, 14];

[3] the project clusters obtained by the LDA-based approach, using a320

sample of 100 GitHub Java projects, but also considering the Java

samples from [1] and [2] above.

• Measurements: for every software project analysed, we collected 9 well-

known OO attributes (NOC, DIT, CBO, RFC, WMC, LCOM, NIM,

IFANIN, NIV). We describe each attribute in more detail in section 3.

To evaluate the statitiscal hypotheses, we assigned the OO measurements

to the same pot, if the projects they belong are in to the same cluster.

• Statistical tests: for each dataset and clustering technique, we adopted the

Kolgomorov-Smirnov (KS) test [69] to detect whether the distribution of

software metrics in the compared domains are from the same population.330

The appropriate Bonferroni correction [70] was applied, due to the multi-

ple tests being carried out at the same time. As a consequence, the base

α value (i.e., 0.05) for each test varies, based on the number of clusters

considered for that test.
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• Null hypothesis: given the clustering technique c, two project clusters C1

and C2, an Object-Oriented metric m, the null hypothesis states: “using c

as clustering technique, the values of the metric m applied on the projects

in C1 and C2 come from the same population”

4.1. Metrics extracted340

The metrics extracted for the projects are well-known structural OO at-

tributes (NOC, DIT, CBO, RFC, WMC, LCOM, NIM, IFANIN, NIV) [71] de-

scribed as follows:

• NOC: Number of Children (CK): number of direct sub-classes of a class;

• DIT: Depth of Inheritance Tree (CK), is the length of the longest path

from a given class to the root class in the inheritance hierarchy;

• CBO: Coupling between Objects (CK), two classes are coupled if one acts

on the other8. Hence, CBO is the count of other classes coupled to a class.

• RFC: Response For a Class (CK), the sum of the number of methods

defined in a class and the cardinality of the set of methods called by them350

and belonging to external classes;

• WMC: Weighted methods per class (CK), a weighted sum of all the meth-

ods defined in a class;

• LCOM: Lack of Cohesion of Methods in a class (CK), the LCOM metric

is based on the concept of the similarity of methods in a class. The degree

of similarity of two methods M1 and M2 is the intersection set of instance

variables9 used by both methods for functionality. Based on this notion,

the LCOM of a class is the count of method pairs where the intersection

8If methods in a class use methods or instance variables defined by another class.
9Member variables declared in a class for which instances of the class own a separate copy.
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set is equal to zero (i.e., a null set) minus the count of method pairs whose

similarity is not zero10.360

• NIM: Number of instance methods, methods defined in a class that are

only accessible through an object of that class;

• IFANIN: Number of immediate base classes of a class;

• NIV: Number of instance variables, variables defined in a class that are

only accessible through an object of that class.

We extracted the metrics using the Understand c©tool available from scitools.

com. We were careful to only extract individual methods data, but not class-

wide or package-wide metrics. The latter ones contain aggregated metrics that

are less relevant for our analysis. Also, we considered both test and non-test

classes in our analysis.370

5. Techniques of clustering

In this section we present the three approaches that we used to cluster the

systems in our samples: the one illustrated in Section 5.1 clusters projects based

on how they are linked to external libraries and components.

The technique described in Section 5.2 is based on 6 pre-determined cate-

gories, and the subjective attribution of each project to a cluster. The approach

is based on the work proposed by the authors of [13, 14].

The last technique, illustrated in Section 5.3, uses the LDA algorithm to

first extract the topics of the software systems, and then it assigns each project

to one cluster.380

We provide the replication packages, and the datasets with our results, in

three collections available online11.

10If the number of similar methods is more than the non-similar methods, then the class is

more cohesive.
11CrossSim collection: https://figshare.com/s/0cd6925bf1601e2f0b74,
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5.1. Pairwise similarity via CrossSim

Linked Data is a representation method that allows for the interlinking and

semantic querying of data [72]. The core of Linked Data is an RDF12 graph that

is made up of several nodes and oriented links to represent the semantic relation-

ships among various artifacts. Thanks to this feature, the representation paves

the way for various computations. One of the main applications of RDF is simi-

larity computation for supporting recommender systems [73]. We designed and

implemented CrossSim [11] (Cross Project Relationships for Computing Open390

Source Software Similarity), a tool for computing similarity among OSS projects

by considering the analogy of typical applications of RDF graphs and the prob-

lem of detecting the similarity of open source projects. CrossSim exploits graphs

for representing different types of relationships in the OSS ecosystem. In par-

ticular, with the adoption of the graph representation, CrossSim transforms the

relationships among non-human artifacts, e.g., API utilisations, source code,

interactions, and humans (e.g., developers) into a mathematically computable

format, i.e., one that facilitates various types of computation techniques.

The architecture of CrossSim is depicted in Figure 4: the rectangles represent

artifacts, whereas the ovals represent activities that are automatically performed400

by the developed CrossSim tooling. In particular, the approach imports project

data from existing OSS repositories and represents them in a graph-based rep-

resentation by means of the OSS Ecosystem Representation module. Depending

on the considered repository (and thus to the information that is available for

each project) the graph structure to be generated has to be properly configured.

For instance, in case of GitHub, specific configurations have to be specified in

order to enable the representation in the target graphs of the stars assigned to

each project. Such a configuration is repository specific, e.g., SourceForge does

not provide the star based system available in GitHub.

Categorised collection: https://figshare.com/s/bd506aff8bff2b6ce29f,

LDA-based collection: https://figshare.com/s/93f5d997484705a937de
12https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
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Figure 4: Overview of the CrossSim approach [11].

The Graph similarity module implements the similarity algorithm that ap-410

plied on the source graph-based representation of the input ecosystems generates

matrices representing the similarity value for each pair of the input projects.

To demonstrate the utilisation of graphs in an OSS ecosystem, we consider

an excerpt of the dependencies for a pair of OSS projects, namely project#1

and project#2 in Figure 5. Using dependency information extracted from

source code and the corresponding metadata, this graph can be properly built

to represent the two projects as a whole. In this figure, project#1 contains

code file HttpSocket.java and project#2 contains FtpSocket.java with the

corresponding edges being marked with the semantic predicate hasSourceCode.

Both source code files implement interface#1 being marked by the semantic420

HttpSocket.java FtpSocket.java

API#1

project#1

h
as
S
ou

rc
eC

o
d
e

isU
sed

By

project#2

h
asS

ou
rceC

od
eisUsedBy

API#2

isUsedBy

dev#1

develops

dev#2

de
ve
lo
ps

Socket.java

im
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em

en
ts

im
plem

ents

Figure 5: Sample graph-based representation of OSS ecosystems [11].
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124

117

92... ×12 nodes

(139; 151; 153; 155; 163; 164; 171; 173; 176; 196; 201; 210)

992

eclipse/rdf4j

548

Legend

isUsedBy
stars

Figure 6: Sub-graph showing a fragment of the representation for three projects, i.e., As-

kNowQA/AutoSPARQL, AKSW/SPARQL2NL, and eclipse/rdf4j [11].

predicate implements. Project#1 and project#2 are also connected via other

semantic paths, such as API isUsedBy.

Based on the graph structure, one can exploit nodes, links and the mutual

relationships to compute similarity using existing graph similarity algorithms.

To the best of our knowledge, there exist several metrics for computing similarity

in graphs [74]. CrossSim adopts SimRank [75] as the mechanism for computing

similarities among OSS graph nodes. SimRank has been developed to calculate

similarities based on mutual relationships between graph nodes. Considering

two nodes, the more similar nodes point to them, the more similar the two

nodes are. We can compute the similarity between project#1 and project#2430

with regards to the semantic paths between them, e.g., the two-hop path using

hasSourceCode and implements, or the one-hop path using API isUsedBy. For

example, concerning isUsedBy, the two projects are considered to be similar

since with the predicate both projects originate from API#1. The hypothesis is

based on the fact that the projects are aiming at creating common functionalities

by using common libraries [10, 76].

Figure 6 is a concrete example to explain how the graph representation

is exploited in CrossSim. The sub-graph represents the relationships between

19

https://github.com/AskNowQA/AutoSPARQL
https://github.com/AskNowQA/AutoSPARQL
https://github.com/AKSW/SPARQL2NL
https://github.com/eclipse/rdf4j


two projects AskNowQA/AutoSPARQL and AKSW/SPARQ- L2NL. The or-

ange nodes are dependencies whose real names are listed in Table 1. The440

turquoise nodes are developers who already starred the repositories. Every

node is encoded using a unique number across the whole graph. The final

result that lies between 0 and 1 is the similarity between two projects As-

kNowQA/AutoSPARQL and AKSW/SPARQL2NL.

ID Name

139 org.apache.jena:jena-arq

151 org.dllearner:components-core

153 net.didion.jwnl:jwnl

155 net.sourceforge.owlapi:owlapi-distribution

163 net.sf.jopt-simple:jopt-simple

164 jaws:core

171 com.aliasi:lingpipe

173 org.dllearner:components-ext

176 org.apache.opennlp:opennlp-tools

196 org.apache.solr:solr-solrj

201 org.apache.commons:commons-lang3

210 javax.servlet:servlet-api

548 org.slf4j:log4j-over-slf4j

Table 1: Shared dependencies in Figure 6 [11].

5.2. Clustering based on projects descriptions

As the second approach to clustering, we consider the work proposed in [13,

14]. The authors state that “we manually classified the domain of each system

in our dataset. Initially, the first author of this paper inspected the description of

the top-200 repositories to provide a first list of application domains, distributed

over six domain types.”450

As the clustering unit, this approach uses the collection of software systems

sharing the same application domain. The relevance of application domains as

a driving factor for specific development approaches has been long recognised:

in Glass and Vessey’s seminal paper it is mentioned that “it has become clear
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that application-independent techniques and tools must be supplemented with an

application-specific approach” [77].

The projects here are the Java subset of the data dump available at https://

zenodo.org/record/804474#.XDi1S9_njCK. The dataset contains 5,000 project

names hosted on GitHub, and the authors pre-determined the following six cat-

egories:460

• Application Software (AS)

• Documentation (D)

• Non Web Libraries And Frameworks (NW)

• Software Tools (ST)

• System Software (SS)

• Web Libraries And Frameworks (WL)

In the original paper, each project was assigned, by one of the authors, to

one of those six categories, based on its characteristics. The assignment was

later validated by a second author. Albeit the process was triaged, it is difficult

to exactly reproduce the original classification.470

The work done in [13, 14] is a unique case of third-party assignment of

software projects to categories. Therefore, we make use of the sample, and the

classification, and treat it as a ‘manual’ clustering technique. On the other hand,

we cannot fully replicate their clustering approach in the other two samples: the

knowledge to assign the projects to the six categories is mostly informal, and

not fully reproducible.

5.3. LDA-informed clustering

This third clustering technique is similar to what presented in Section 5.2,

but it adds an automated step to extract the topics contained in a software

system. This should be helpful for the reproducibility of the approach.480
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For this purpose, we extracted the lexical content (e.g., its corpus) of each

Java class in two ways: (i) by considering their class names; and (ii) by parsing

their code and considering the variable names, comments and keywords. It

is worth noting that the parser that we built to extract the lexical content is

based on Java software, and its keywords. It could be further expanded into

other programming languages, by taking into account their specific constructs

and keywords. To facilitate future research, we made the parser available online

at https://figshare.com/account/projects/56009/articles/9785861.

The code of each Java class is converted into a text corpus where each line

contains elements of the implementation of a class. The corpus in this case490

(“dictionary” of terms derived from comments, keywords in source code) is

built at the class level of granularity [78]. The corpus includes the class name,

variable and method names and comments for each class.

Pre-processing of the system corpus is needed to eliminate common key-

words, stop words, split and to stem class names [79]. Also, we do not consider

as a term any of the Java-specific keywords (e.g., if, then, switch, etc.)13. Ad-

ditionally, the camelCase or PascalCase notations are first decoupled in their

components (e.g., the class constuctor InvalidRequestTest produces the terms

invalid, request and test). Second, each term goes through a phase of stemming

and lemmatisation, to extract its root.500

As an example of this lexical extraction, for the lines of code shown in Figure

7 (the UrSQLEntry.java class from the UrSQL project), we derive the following

corpus: {ur sql entri kei valu kei valu ur sql entiti entiti ur sql entri ur sql entri

queri split queri split ur sql control kei valu separ kei split valu split kei kei valu

valu}.

For each system, all the Java classes were reduced to a corpus of terms. All

these terms were then considered to create a model implementing the Latent

13The complete list of Java reserved words that we considered is available at https://en.

wikipedia.org/wiki/List_of_Java_keywords. The String keyword was also considered as a

reserved word, and excluded from the text parsing.
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Figure 7: UrSQLEntry.java Source Code Snippet.

Dirichlet Allocation (LDA) algorithm. Python is the programming language

used to program the models, and the gensim NLP package14 helped by the

machine learning side.510

To extract the main topics emerging from the corpus of a software project, we

utilize LDA which is a topic-modeling technique [80]. Each document is featured

using a Natural Language Processing approach termed the Term-frequency-

inverse document frequency (TF-IDF). In NLP, TF-IDF [81] is used to measure

the weight of a term within documents (in our case, the source code of a class).

With TF-IDF, words are assigned weights, as the product of term frequency and

inverse document frequency. We use TF-IDF as a pre-processing step to LDA:

the result is a representation of the source code contained in the Java classes,

where the same terms can appear multiple times (see Figure 7).

As an example, for the okhttp project15, the LDA model produces the fol-520

lowing topics from the corpus of its Java classes:

14https://radimrehurek.com/gensim/
15https://github.com/square/okhttp
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Topics extracted with the LDA approach

Topic 0: 0.003*”stream” + 0.003*”bodi” + 0.003*”header” + 0.003*”content” +

0.003*”id” + 0.002*”benchmark” + 0.002*”type” + 0.002*”ssl” + 0.002*”socket” +

0.002*”stori”

Topic 1: 0.002*”entiti” + 0.002*”url” + 0.002*”proxi” + 0.002*”slack” + 0.002*”event”

+ 0.001*”frame” + 0.001*”filter” + 0.001*”client” + 0.001*”equal” + 0.001*”session”

Topic 2: 0.005*”cooki” + 0.004*”header” + 0.004*”interceptor” + 0.003*”chain” +

0.003*”url” + 0.002*”bodi” + 0.002*”certif” + 0.002*”content” + 0.002*”client” +

0.002*”timeout”

Topic 3: 0.005*”cach” + 0.004*”socket” + 0.004*”connect” + 0.004*”bodi” +

0.003*”rout” + 0.003*”server” + 0.003*”web” + 0.003*”header” + 0.003*”client” +

0.003*”url”

Topic 4: 0.006*”event” + 0.006*”socket” + 0.005*”certif” + 0.005*”address” +

0.005*”cach” + 0.004*”file” + 0.003*”deleg” + 0.003*”connect” + 0.003*”server” +

0.003*”inet”

The topics extracted from the projects were finally assigned to a category

by two of the authors of this paper: in case of disagreement, a discussion was

held to reconcile the views. As the list of categories, we adopted in fact what

has been historically used by the SourceForge.net repository to classify the

hosted projects:

List of categories used in SourceForge.net

1. Communications
2. Database
3. Desktop Environment
4. Education
5. Formats and Protocols
6. Games/Entertainment
7. Internet
8. Mobile
9. Multimedia

10. Office/Business
11. Other/Nonlisted Topic
12. Printing
13. Religion and Philosophy
14. Scientific/Engineering
15. Security
16. Social sciences
17. Software Development
18. System
19. Terminals
20. Text Editors

24
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6. Datasets used for the Empirical Analysis

This section presents the datasets that have been used for performing the530

empirical analysis. In particular, the dataset used by CrossSim is presented

in Section 6.1. The categorised dataset as presented in [13] is summarized in

Section 6.2. The dataset used to apply the LDA-based technique is presented

in Section 6.3.

6.1. CrossSim dataset

The overall dataset gathered by the CROSSMINER project to evaluate the

CrossSim approach consists of 580 GitHub Java projects. Such a dataset was

collected from GitHub by considering the following requirements: (i) being

GitHub Java projects; (ii) providing the specification of their dependencies by

means of pom.xml or .gradle files (iii) for CrossSim, it is necessary to consider540

only projects that are of decent quality. Thus we selected only projects having

at least 9 external dependencies; (iv) having the README.md file available;

(v) possessing at least 20 stars. The rationale behind the selection of 9 libraries

and 20 stars is as follows. By performing various empirical evaluations on the

CrossSim tool [11, 51] we realized that a project including at least 9 libraries

is suitable to be used as input for the similarity computation. In the data

collection phase, we tried to cover a wide range of possibilities by taking into

consideration that many repositories in GitHub are of low quality, which is

especially true when they do not have many stars. Thus, we consider only

projects that have been starred by at least 20 developers. Such a number of550

stars has been used in some studies [7, 82] as a sign of a decent project. The

collected dataset and the CrossSim tool are available online for public usage

[68].

For the purpose of our analysis, 6 pairs of software systems were extracted

from the CROSSMINER dataset. The criteria of selection were:

• maximum similarity between projects within the pairs;

• minimum similarity between projects of different pairs.
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Cluster Projects Similarity (be-

tween pairs)

AB
A = JamsMusicPlayer16 1.95e-04

B = ACEMusicPlayer17

CD
C = sparql-plugin18

0.0027
D = neo4j-sparql-extension19

EF
E = jpmml-model20

7.32e-04
F = visitante21

GH
G = c2d-engine22

5.47e-04
H = LeanEngine-Server23

IJ
I = RestOpenGov24

0.00112
J = elasticsearch-analysis-lemmagen25

KL
K = jcabi-email26

0.0048
L = jcabi-jdbc27

Table 2: Clusters of projects identified by CrossSim.

The outcome of the extraction satisfying such criteria is shown in Table 2.

6.2. Manually categorised dataset (from [14])

From the original, overall sample of 5,000 projects, we extracted all the560

Java projects (520 projects in total), while maintaining the information about

their assigned category. Considering the Java subset, and using the categories

provided, we have the distribution of projects within the ecosystems as shown in

Table 3. We extracted the metrics for each project, then clustered those metrics

based on the six domains identified above. A statistical test was run between

16Available at git://github.com/psaravan/JamsMusicPlayer.git
17Available at git://github.com/C-Aniruddh/ACEMusicPlayer.git
18Available at git://github.com/neo4j-contrib/sparql-plugin.git
19Available at git://github.com/niclashoyer/neo4j-sparql-extension.git
20Available at git://github.com/jpmml/jpmml-model.git
21Available at git://github.com/pranab/visitante.git
22Available at git://github.com/lycying/c2d-engine.git
23Available at git://github.com/PeterKnego/LeanEngine-Server.git
24Available at git://github.com/RestOpenGov/RestOpenGov.git
25Available at git://github.com/vhyza/elasticsearch-analysis-lemmagen.git
26Available at git://github.com/jcabi/jcabi-email.git
27Available at git://github.com/jcabi/jcabi-jdbc.git
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Category Projects

Application Software 30

Documentation 48

Non Web Libraries And Frameworks 342

Software Tools 49

System Software 26

Web Libraries And Frameworks 25

Table 3: Number of Java projects in the categories extracted in [14].

each pair of domains, and per OO metric, to determine if the metrics come from

the same population.

6.3. LDA-based dataset

Leveraging GitHub, we collected the project IDs of the 100 most successful

Java projects hosted on GitHub as case studies.28 The “success” of the projects570

is determined by the number of stars received by the community of GitHub users

and developers, as a sign of appreciation. Forking is a means to contribute to

the original repositories [83], and there is a strong correlation between forks and

stars [84]. In this sense, we suppose that a project with a high number of stars

means that it gets attention from the OSS community, and thus being suitable to

identify popular repositories [85]. We used this approach to stratified sampling

because the projects obtained by this filter are likely to be used by a large pool

of users [86], and potentially have a good intake of new developers [87].

Smaller projects are less likely to be sampled by this stratified approach. To

prove this claim, let us consider the curated population of 14,118 Java projects,580

contained in the research published in [88]. When we extracted a random sample

of 100 Java projects from that population, we observed that 29 of these projects

contain less than or equal to 10 Java files. The violin boxplot in Figure 8 shows

how the smaller projects skew the distribution, as compared to the original

28The list of projects is available at https://figshare.com/s/c627af8e9e496a9025c4
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GitHub sample.

Figure 8: Number of Java files from a random sample of GitHub projects.

The source code of the selected systems was downloaded for the analysis:

only the ‘master’ branch of the systems was considered. The boxplots in Fig-

ure 9 show the basic characteristics of the sample analysed: the distributions of

duration of the projects (in days), the number of distinct developers (as authors)

and the total number of commits are plotted. In terms of most likely value of590

each distribution, we observed that the median in the project’s duration is 2,002

days; the median number of developers is 87; while the median in the number

of commits is 1,204.

Figure 10 shows the distribution of application domains in the sample of 100

Java projects, as extracted by the LDA algorithm, then assigned by the authors

of the paper, finally agreed between authors to ensure consistency.

A few of the basic domains, as used by SourceForge, are completely absent

from our sample: Desktop Environment, Education or Text Editor (and a few

others) are not represented when sampling projects based on their success (e.g.,

usage or further development).600

On the other hand, there are 4 domains that are more prominent than oth-

ers: Internet (with 27 projects), Mobile (11), Multimedia (11) and Software

Development (33). For the statistical analysis, we use only these 4 domains to

find differences between the distributions of metrics: using smaller sized clus-
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Figure 9: Distribution of duration (in days), number of developers (as authors) and number

of commits in the sample analysed with the LDA approach.

Figure 10: Domains extracted with the LDA approach.
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ters would suffer from a small effect size, and the relative results would be less

relevant.

7. Results

In this section we report the results of the analysis using the three clustering

techniques: the one implemented by the CrossSim algorithm (Section 7.1); the

mostly manual one (Section 7.2); and the semi-automated one (Section 7.3).610

7.1. CrossSim dataset – Results

In order to evaluate the rejection of (or the inability to reject) the null

hypothesis, we performed the KS statistical tests for each of the 6 project pairs

(AB, CD, EF, GH, IJ and KL) described in Section 6.1. We assigned a standard

threshold value α = 0.05 for the sensitivity of the test; the Bonferroni correction

resulted in αB = 0.0034137.

In Table 4 we summarise the tests by reporting the p-value of each KS

test. We reject the null hypothesis (i.e., “the two samples come from the same

distribution”) if the p-value of the KS test is lower than the corrected αB . This

is done for each metric, and for each pair of ecosystems. As an example, the KS620

test for the IFANIN metric, and the pair of ecosystems AB and CD produces a

p-value = 1: we reject the null hypothesis that the values of the IFANIN metric

come from the same population, when considering the AB and CD ecosystems.

The results of each KS test (in the form of p-values) are summarised in

Table 4: as an example, we rejected all the null hypotheses for the EF and

IJ clusters: none of the OO attributes can be considered to be sampled from

different populations. The most dissimilar pair of clusters appears to be the

AB and GH pairs: for most of the structural OO metrics, we could reject the

relative null hypothesis, therefore the IFANIN, NIM, NIV, WMC, RFC and DIT

values can be considered as drawn from different populations.630

In general however, for most of the metrics, and for most of the pairs of

ecosystems, the null hypothesis cannot be rejected. When we grouped projects
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IFANIN CBO NOC NIM NIV WMC RFC DIT LCOM

AB

v

CD

1 0.000 0.882 0.000 0.083 2.95e-06 2.51e-11 0.043 0.025

AB

v

EF

0.874 3.02e-07 0.000 0.006 3.51e-05 1.72e-14 0 3.02e-09 0.894

AB

v

GH

1.11e-10 0.009 0.051 7.07e-06 3.16e-05 4.41e-07 0 0 0.009

AB

v

IJ

0.077 0.146 0.339 0.192 0.640 0.533 0.371 1.19e-08 0.497

AB

v

KL

1.33e-15 1.17e-10 0.497 0.156 0.001 0.116 0.122 0 0.067

CD

v

EF

1.000 0.030 0.999 0.001 0.014 0.001 0.000 0.285 0.030

CD

v

GH

0.197 1.95e-06 1 0.001 0.031 1.46e-05 0.013 0.000 0.002

CD

v

IJ

0.558 0.004 0.967 0.005 0.672 0.000 6.43e-06 0.206 0.789

CD

v

KL

2.13e-06 0.128 1 8.69e-05 0.126 1.14e-05 9.31e-10 9.31e-10 0.001

EF

v

GH

0.001 6.13e-05 0.272 0.151 0.995 0.012 0.001 0.000 0.267

EF

v

IJ

0.337 0.484 0.999 0.363 0.155 0.190 0.014 0.040 0.333

EF

v

KL

2.17e-11 0.0046 0.979 0.567 0.002 0.185 0.000 0 0.154

GH

v

IJ

0.926 0.753 0.984 0.475 0.294 0.539 0.000 0.000 0.095

GH

v

KL

3.17e-06 5.60e-08 0.999 0.084 0.006 0.093 2.14e-10 0 0.516

IJ

v

KL

0.001 0.003 0.885 0.128 0.303 0.647 0.367 5.67e-05 0.033

Table 4: Results of the pair-wise statistical tests of the OO metrics analysed: AB, CD, EF,

GH, IJ and KL refer to the pairs of projects. Highlighted the p-values larger than αB .

based on the type of dependencies that they have, it is in general difficult to

conclude that the clusters are structurally different from each other.

The result is not surprising: the projects paired by CrossSim are associated

by what type of external libraries they include, as well as by the developers who
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have starred or contributed to them. The similarity computed by CrossSim

takes also into account the fact that a project has been starred or committed

by different developers. In this respect, the similarity among them could be low

even though they share some libraries in common.640

7.2. Manually categorised dataset (from [14]) – Results

The same approach to statistical testing was also applied for the second

dataset. Table 5 shows the results of the statistical analysis: as above, each cell

contains the p-value of the Kolgomorov-Smirnov (KS) test between two subsets

of the dataset. For example, the ASvD row contains the p-values of the KS

test between the projects in the Application Software domain, and the projects

in the Documentation domain. As above, the null hypothesis is rejected when

the p-value is lower than a threshold α: the Bonferroni correction produces a

corrected threshold of αB = 0.0033 (i.e., 0.05/15 where 15 is the number of

multiple tests performed).650

We have highlighted in Table 5 the specific OO attribute where we reject

the null hypothesis. As can be seen, the NOC, DIT and LCOM attributes

can be considered from the same distribution (e.g., we can not reject the null

IFANIN CBO NOC NIM NIV WMC RFC DIT LCOM

ASvD 0 0 0 0 0 0 0 0 4.76e-06

ASvNW 0 0 0 3.23e-12 0 2.22e-16 0 0 0

ASvSS 1.37e-06 0 0.0247 0 1.14e-10 0 0 0.476 0.204

ASvST 0 0 0 0 0 0 0 0 0

ASvWL 0 0 0 0 0 0 0 0 0

DvNW 0 0 1.79e-05 0 2.80e-14 0 0 0 0

DvSS 0 0 0 0 0 0 0 0 5.83e-10

DvST 0 0 4.66e-06 0 0 0 0 0 0

DvWL 0 0 4.90e-06 0 0 0 0 0 0

NWvSS 0 0 0 0 0 0 0 0 0

NWvST 0 0 0 0 6.14e-07 0 0 0 0

NWvWL 0 0 0.344 0 0 0 0 0 0

SSvWL 0 0 0 0 0 0 0 0 0

STvSS 0 0 0 0 0 0 0 0 0

STvWL 0 0 0 0 0 0 0 0 0

Table 5: Results of the pair-wise statistical tests of the OO metrics analysed: AS refers to

Application Software, D to Documentation, NW to Non Web Libraries And Frameworks,

ST to Software Tools, SS to System Software, and WL to Web Libraries And Frameworks.

Highlighted the p-values larger than αB .
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hypothesis), but only considering the subsets of projects in the Application

Software domain and those in the System Software domain. Similarly, for the

NOC attribute, and considering the Non Web Libraries And Frameworks and

Web Libraries And Frameworks clusters.

Considering all the other tests, the resulting p-values allow for a general

rejection of the null hypothesis: we can assume that the OO attributes come

from different populations.660

This is an interesting result: the clusters generated by a manual inspection

of the projects’ characteristics result in pools of attributes that are structurally

different from each other. As an example, the Software Tools (ST) category

rejects all the null hypotheses, for all the selected OO attributes, when compared

to any other category. This places the Software Tools cluster as a standalone

category, with specific (and unique) characteristics. In order to visualise this

result, we plotted in Figure 11 the distributions of three of the OO metrics

analysed when comparing the projects from the Software Tools category and the

category with most of the projects in that sample (i.e., the Non Web Libraries

And Frameworks category).670

7.2.1. LDA-informed categories for the manually categorised dataset

The manually categorised dataset was originally curated by the authors read-

ing the documentation and assigning each project to one of six categories.

In order to test the same project sample with the LDA-informed clustering

technique, the following steps were performed:

1. we extracted the corpora of the 500 Java projects from that sample;

2. we derived their topics using the LDA-based technique;

3. we assigned each project’s topics to one of the 20 SourceForge categories;

4. we gathered the projects’ OO data into their relative categories;680

5. we re-run the KS pair-wise tests to check whether each OO attribute can

be considered from the same population.
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Figure 11: Comparison of OO metrics distributions for the Software Tools (ST) and Non Web

Libraries And Frameworks (NW) categories.
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Figure 12 shows how the original categories are composed by SourceForge

categories found via the LDA-based technique. As visible, each ‘manual’ cate-

gory contains more than one of the SourceForge categories, when analysing it

via the LDA technique.

Figure 12: Original manually extracted categories broken down by the LDA-based technique.

”AS” stands for ApplicationSoftware, ”D” stands for Documentation, ”NW” stands for Non-

WebLibrariesAndFrameworks, ”ST” stands for SoftwareTools, ”SS” stands for SystemSoft-

ware, ”WL” stands for WebLibrariesAndFrameworks. 1 to 20 are the SourceForge categories,

available in the list in Section 5.3.

From the gathered results it is possible to notice that some categories (e.g., Re-

ligion, Social Sciences, Formats and Protocols) are not detectable via the LDA-

based techniques, whereas other categories (e.g., Software Development, Mobile)

are most easily found. This means that also the SourceForge taxonomy is too690

coarse in some parts (e.g., System, Software Development, etc), and too fine in

others (e.g., Religion).

7.3. LDA-based dataset – Results

Similarly to what has been done in Section 7.2, we clustered the projects in

the categories proposed in SourceForge. The OO data was then extracted, per

cluster, and one KS test executed per pair of clusters, and for all the metrics.
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IFANIN CBO NOC NIM NIV WMC RFC DIT LCOM

I v

SD
0 0 0 0 0 0 0 0 0

I v

Mob
0 0 0 0 0 0 0 0 0

I v

MM
0 0 0 0 0 0 0 0 0

SD

v

Mob

3.29e-09 0 0.868 9.24e-4 1.9e-4 3.27e-05 0 5.55e-16 7.12e-4

MM

v

Mob

6.68e-06 0 0.999 1.36e-11 0 1.59e-09 2.62e-13 0.57 4.08e-10

MM

v

SD

0.015 8.42e-09 4.56e-05 0 0 0 0 0 0

Table 6: Results of the pair-wise statistical tests of the OO metrics analysed: I refers to

Internet, SD to Software Development, Mob to Mobile and MM to Multimedia. Highlighted

the p-values larger than αB .

Table 6 summarises the tests by reporting the p-value of each test. High-

lighted are the metrics for which the p-value does not allow us to reject the null

hypothesis (‘the two samples come from the same distribution’) based on α =

0.05 and a Bonferroni correction at αB = 0.0083333.700

As shown in Table 6, and similarly to the results in Table 5, the NOC

attribute does not always allow for a clear differentiation between clusters. In

two cases, we could not reject the null hypothesis: the values of the NOC

attribute can be considered as drawn from the same population, at least in the

cases of the SD and Mob comparison, and the MM and Mob comparison. For the

other comparisons, we can reject all the other null hypotheses: we can conclude

that OO attributes are extracted from different populations, when considering

the clusters formed by an LDA-informed approach.

It is worth noting that for both Categorised dataset, and the LDA-informed

dataset, the DIT and NOC attributes are less sensitive to identify differences710

between samples. This is partly due to the distribution of values for the two

OO attributes in the sample: we observed an average value of DIT at 1.77

(median = 1), and an average value of NOC at 1.17 (median = 0). These

low values reflect a similar characteristic of the structure of Java software (i.e.,
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inheritance): shared design principles suggest that the DIT attribute should be

kept low. This is true for two main reasons:

• The deeper a class is in the hierarchy, the greater the total number of meth-

ods it is likely to inherit [89], making its behaviour less predictable [90].

• Khalid et al. [91] state that “DIT is directly proportional to complexity”

(i.e., an increased DIT will lead to higher maintenance efforts).720

On the other hand, the NOC attribute should also be kept low: a large CBO

increases the complexity of the system, and it adversely affects other quality

factors, such as maintainability, testability and reusability [92].

7.3.1. LDA-based results for the dataset in [14]

In order to cross-examine the three datasets with multiple techniques, we

ran the pair-wise statistical tests for the categories found via the LDA-based

technique, this time applied to the dataset from [14]. As before, we assigned a

standard threshold value α = 0.05 for the sensitivity of the test; we performed

36 parallel tests, so the Bonferroni correction resulted in αB = 0.00139. We730

gathered the results of the tests in Table 7.

Similarly to the manual clusters, presented in Table 5, the LDA-based tech-

nique applied to this 500-project sample does not always clearly reject the null

hypothesis regarding the NOC attribute. We could always reject the null hy-

pothesis for the DIT attribute, that was highlighted in Table 5. On the other

hand, we could not reject the null hypothesis, for a couple of pair-wise compar-

isons, regarding the IFANIN attribute. Considering the SourceForge categories,

the ID=3 (Desktop Environment) contains projects that overall are less clearly

differentiated from other categories (i.e., there is a larger likelihood not to reject

the null hypothesis).740

8. Discussion

In this section we add further insights as part of our discussion: in light of

our evidence, we studied past research works, specifically focused on the OO
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IFANIN CBO NOC NIM NIV WMC RFC DIT LCOM

1 V 2 0 0 1.23e-10 0 0 0 0 0 0

1 V 3 0 0 0 9.31e-12 1.61e-07 1.47e-13 0 0 0.05

1 V 7 0 0 0 2.46e-10 0 9.23e-14 0 0 1.45e-07

1 V 8 0 0 2.22e-16 0 0 0 0 0 0

1 V 9 0 0 0 0 0 0 0 0 0

1 V 14 0 0 0 0 3.99e-11 0 0 0 0

1 V 17 0 0 0 0 0 0 0 0 0

1 V 18 0 0 0 0 5.40e-12 0 0 0 0

2 V 14 0 0 0 0 6.48e-09 0 0 0 0.0001

2 V 17 0 0 0 0 0 0 0 0 0

2 V 18 0.06 0 8.82e-13 0 3.78e-05 0 0 0 1.57e-11

2 V 3 0 0 5.04e-09 0 0 0 0 5.42e-06 0

2 V 7 5.45e-12 0 1.11e-16 0 0 0 0 0 0

2 V 8 0 0 1.68e-06 0 0 6.61e-05 0 0 0

2 V 9 0 0 0 0 0 0 0 0 0

3 V 7 0 0 0.003 1.27e-06 8.40e-10 1.79e-09 0 0 1.60e-06

3 V 8 0 0 0.005 0 0 0 0 0 0

3 V 9 0 0 0.005 0 0 0 0 0 0

3 V 14 0.26 0 6.28e-06 0 7.77e-16 0 9.66e-15 0 0

3 V 17 4.84e-10 0 0.99 2.33e-10 1.18e-06 0 0 0 0

3 V 18 0 0 5.81e-06 0 0 0 0 6.46e-14 0

7 V 8 0 0 0.79 0 0 0 0 0 0

7 V 9 0 0 0 0 0 0 0 0 0

7 V 14 0 0 0 0 0 0 0 1.11e-16 0

7 V 17 0 0 0 0 9.74e-08 0 0 0 0

7 V 18 1.38e-12 0 6.69e-10 0 0 0 0 0 0

8 V 9 0 0 0 0 0 0 0 0 0

8 V 14 0 0 0 0.042 0 0.0015 0 0 0

8 V 17 0 0 1.84e-06 0 0 0 0 0 0

8 V 18 0 0 0.24 1.73e-10 0 0 9.75e-14 0 0

9 V 14 0 0 0.006 0 0 0 0 0 0

9 V 17 0 0 0 0 0 0 0 0 0

9 V 18 0 0 0 0 0 0 0 0 0

14 V 17 0 5.15e-13 0 0 0 0 0 0 0

14 V 18 0 0 0 5.15e-05 2.69e-09 2.60e-10 0 0 0.0003

17 V 18 0 0 0 0 0 0 0 0 0

Table 7: Results of the pair-wise statistical tests using the LDA-informed categories on the

manually clustered projects. The first column categories are taken from the list in Section 5.3.

Highlighted the p-values larger than αB .

metrics that we used, and we reflected on the importance of clustering.

In a prior study [93], we collected empirical results showing that projects

from the same domain exhibit common structural properties in terms of the

C&K metrics. In this work, we have expanded on those results: the results

that we have gathered above indicate that the projects clustered around the

domains (i.e., 2 of the 3 clustering techniques presented above) show indeed

a difference in the structural metrics. For interested stakeholders, this can750

imply that the structure of a software system (and its development and future
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maintenance) depends on domain-based factors common to projects in the same

domain. For example, projects from different domains making use of exception

handling differently [60, 62].

The discussion that we present here takes into consideration the correlations

between the OO metrics that we utilised above. The work reported by [94] has

already shown some correlation between pairs of metrics from the C&K suite,

for example, CBO and RFC, and RFC and LCOM. We want to know whether

these correlations change sensibly, when considering specific clusters. If indeed

there were a correlation in all the clusters analysed above, it would suggest an760

increased probability of falsely rejecting a null hypothesis within the clusters

shown in Figure 10.

In the analysis below, we report on the correlation study between pairs

of OO metrics, and when clustered by application domain. The value of the

correlation coefficient lies in the range [−1; 1], where −1 indicates a strong

negative correlation and 1 indicates a strong positive correlation. We adapt the

categorisation for correlation coefficients used in [95] ([0−0.1] to be insignificant,

[0.1− 0.3] low, [0.3− 0.5] moderate, [0.5− 0.7] large, [0.7− 0.9] very large, and

[0.9−1] almost perfect) if the rank correlation coefficient proves to be statistically

significant at the α = 0.01 level.770

Table 8 shows the correlations among pairs of OO metrics, when considering

the projects in the domain-driven clusters identified by the LDA technique. It

becomes clear that the metrics show collinearity, but depending on the cluster

considered, this collinearity could be stronger or weaker. An example of this is

between the RFC and WMC attributes: for the projects in the Internet cluster,

this association has a medium (M) strength; the association becomes large (L)

when considering the projects in the Mobile cluster; for the projects in the

MultiMedia category, the association becomes almost perfect (AP), thus being

larger than 0.9; when considering the projects in the Software Development

cluster, on the other hand, such collinearity becomes small (s), hence isolating780

these projects, and their characteristics, from the rest of the sample.

Considering the definition of the RFC and WMC attributes, a stronger cor-
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Internet

IFANIN CBO NOC NIM NIV WMC RFC DIT

CBO -i

NOC -i i

NIM s M i

NIV i M i M

WMC i M i AP M

RFC -i M i M s M

DIT -s i -i i -i i L

LCOM -i s i M M M M s

Mobile

IFANIN CBO NOC NIM NIV WMC RFC DIT

CBO i

NOC -i i

NIM s M s

NIV i M i XL

WMC i M s AP XL

RFC -i s s L M L

DIT -s s s s s s L

LCOM -i M s L L L M s

Multimedia

IFANIN CBO NOC NIM NIV WMC RFC DIT

CBO i

NOC i i

NIM i s i

NIV i M i M

WMC -i L i s i

RFC -i L i s i AP

DIT -M s i s i i s

LCOM i s i M L i i s

Software Development

IFANIN CBO NOC NIM NIV WMC RFC DIT

CBO i

NOC -i i

NIM i M i

NIV i i i i

WMC i M i AP i

RFC -i s i s i s

DIT -s i -i i i i M

LCOM -i M i M i M s s

Table 8: Correlation between OO pairs, after grouping projects within domain-driven clusters.

i stands for insignificant correlation; M for medium; L for large; XL for very large; and AP

for almost perfect.
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relation implies a larger complexity of the code: when the number of methods

(i.e., WMC) grows in a Java class, the response for that class (i.e., the RFC)

also grows. This is also an indication that more testing will be needed for that

class: the projects in the MultiMedia category show a different behaviour to

those belonging to the Software Development category.

Based on these results, it is possible to summarise our correlation findings

as follows:

The correlation among OO metrics can be extremely sensitive to appli-

cation domains
790

Thus, according to such a finding, evaluating the quality of a sytsem becomes

also dependent on what type of domain a project belongs to. For instance, the

metrics one should consider to analyse gaming software should be different from

those used to assess the quality of security software. For instance, the latter

is mainly characterized by incremental contributions aiming at fixing already

existing functionalities and making them more stable and secure. Such a par-

ticular attention to stability and security aspects can be less peculiar for gaming

software and consequently OO metrics, e.g., LOCs are less appropriate for as-

sessing the quality of security software or in general of mission critical software

systems.800

8.1. Clusters and their maturity

The maturity of the considered application domain (as cluster) is another

factor that can interfere with the analysis performed by means of OO met-

rics. Emerging domains are characterized by a plethora of new applications

even though while the domain becomes more “stable” and mature, only those

applications that managed to create a community (and thus that are actually

used and maintained) eventually survive. Thus, the population of the resulting

application domain is characterized by OO metrics that might be different from

those of the initial population:
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Emerging new application domains might show a larger variability in

their structural metrics, in comparison to established domains.
810

Finally, some domains consist of reusable libraries and frameworks instead

of ready-to-use applications. For instance, in the domain of automation testing,

we can have JUnit, Selenium, Jasmin, etc. Thus, the domain consists of a popu-

lation that overall shares only the same goal, but it is likely to be characterized

by an insignificant correlation in terms of OO metrics.

This research is part of a wider context, and it requires further multi-

disciplinary investigation: the similarity of software systems should follow the

same approach of compiling a biological taxonomy, where systems (or parts of)

are given a place (or rank) in a hierarchy. Lower levels share (OO-related) at-

tributes with higher levels in the same branch, whereas different branches of820

the taxonomy show the highest degree of dissimilarity. Such a taxonomy could

have a massive impact in how practitioners and researchers work and develop

software systems: ad-hoc techniques and tools would be needed and tailored to

domain-specific constraints. This has already started to emerge for the software

engineering techniques around gaming development [96]: we envisage that a

similar approach would be needed when new domains become established, and

their boundaries are clearer.

9. Threats to validity

This section distinguishes between threats to external, internal, and con-

struct validity as follows.830

9.1. External validity

Threats to external validity refer to the extent to which the results of our

study can be generalised. The projects we have analysed come from publicly

available repositories and the used clustering techniques also come from al-

ready validated works. However, we cannot claim that the resulting conclusion
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concerning the considered null hypotheses is generalisable, even though the per-

formed experiments provide us with an acceptable confidence about the general

validity of the reached conclusions.

9.2. Internal validity

Threats to internal validity concern any confounding factor that could in-840

fluence our findings. We attempted to avoid any bias in the building of the

ecosystems. To this end, we applied CrossSim and the LDA-based approach

by means of the corresponding supporting tools without any manual interven-

tion. However, the tools we have used and implemented could be defective. To

counter this threat, we have run several manual assessments and counter-checks.

Concerning the approach in [14] we used the categories as they are presented in

the original work without any change.

9.3. Construct validity

It pertains to any factor that can compromise the validity of inferences that

observations or measurement tools actually represent or measure the construct850

being investigated. A potential threat to construct validity is related to the

size of the analysed data. However, the datasets that have been considered for

the experiments come from the original works proposing CrossSim, the LDA-

based approach, and the categorization in [14]. Thus, we built on those datasets

that were considered to be big enough for experimenting and validating such

approaches.

The second threat to construct validity is based on the fact that the three

approaches proposed use three different samples of data. We could not use the

same sample because the approach described in Section 5.2 above is not fully

reproducible. On the other hand, the LDA-based approach was replicated for860

the CrossSim sample, and we concluded that the clusters grouped by CrossSim

represent the type of external libraries they use, while they could be implement-

ing very different features. They could be based on very different domains, but

still use a similar set of external libraries.
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10. Conclusion

This paper presented three techniques to cluster software projects, and eval-

uated how the clusters differ from each other, when comparing their internal

characteristics. The null hypothesis that we attempted to reject is that all the

clusters come from the same population. As metrics of assessment, we adopted

a suite of well known OO attributes.870

As the first technique we adopted the CrossSim algorithm [11], that draws

a similarity between projects based on their usage of external libraries. Inter-

estingly enough, with this technique we could not reject the null hypothesis:

projects might still be internally similar even if the CrossSim algorithms detect

a large distance between them.

The second technique was based on a subjective classification, based on

the description of a software project. With this technique we found a strong

foundation for rejecting the null hypothesis, although the steps of the clustering

process are not easily reproducible.

The third technique was also based on categories, but it automatically ex-880

tracted topics from a software systems, before assigning them to categories. Also

in this case, we could reject the null hypothesis for most of the OO metrics.

The implications of these findings can be profound: software projects can

manifest different characteristics, based on the domain or cluster that they

belong to. Empirical findings might need readjustment, and tailoring to one or

another cluster or domain, to fit with other findings in the same cluster.
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