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Helper and Equivalent Objectives: An Efficient
Approach for Constrained Optimisation

Tao Xu and Jun He and Changjing Shang

Abstract—Numerous multi-objective evolutionary algorithms
have been designed for constrained optimisation over past two
decades. The idea behind these algorithms is to transform con-
strained optimisation problems into multi-objective optimisation
problems without any constraint, and then solve them. In this
paper, we propose a new multi-objective method for constrained
optimisation, which works by converting a constrained opti-
misation problem into a problem with helper and equivalent
objectives. An equivalent objective means that its optimal solution
set is the same as that to the constrained problem but a helper ob-
jective does not. Then this multi-objective optimisation problem
is decomposed into a group of sub-problems using the weighted
sum approach. Weights are dynamically adjusted so that each
subproblem eventually tends to a problem with an equivalent
objective. We theoretically analyse the computation time of the
helper and equivalent objective method on a hard problem
called “wide gap”. In a “wide gap” problem, an algorithm needs
exponential time to cross between two fitness levels (a wide gap).
We prove that using helper and equivalent objectives can shorten
the time of crossing the “wide gap”. We conduct a case study for
validating our method. An algorithm with helper and equivalent
objectives is implemented. Experimental results show that its
overall performance is ranked first when compared with other
eight state-of-art evolutionary algorithms on IEEE CEC2017
benchmarks in constrained optimisation.

Index Terms—constrained optimisation, constraint handling,
evolutionary algorithms, multi-objective optimisation, algorithm
analysis, objective decomposition

I. INTRODUCTION

Optimisation problems in the real world usually are subject
to some constraints. A single-objective constrained optimisa-
tion problem (COP) is formulated in a mathematical form as

min f(~x), ~x = (x1, · · · , xD) ∈ Ω,

subject to
{
gIi (~x) ≤ 0, i = 1, · · · , q,
gEi (~x) = 0, i = 1, · · · , r,

(1)

where Ω = {~x | Lj ≤ xj ≤ Uj , j = 1, · · · , D} is a bounded
domain in RD. D is the dimension. Lj and Uj denote lower
and upper boundaries respectively. gIi (~x) ≤ 0 is an inequality
constraint and gEi (~x) = 0 is an equality constraint. A feasible
solution satisfies all constraints, and an infeasible solution
violating at least one. The sets of optimal feasible solution(s),
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infeasible solutions and feasible solutions are denoted by Ω∗,
ΩI and ΩF respectively.

Evolutionary algorithms (EAs) have been applied to solv-
ing COPs using different constraint handling methods, such
as the penalty function, repairing infeasible solutions and
multi-objective optimisation [1]–[4]. A multi-objective method
works by transforming a COP into a multi-objective opti-
misation problem without inequality and equality constraints
and then, solving it by a multi-objective EA. A popular
implementation is to minimise the original objective function
f and the degree of constraint violation v simultaneously.

min ~f(~x) = (f(~x), v(~x)), ~x ∈ Ω. (2)

The constraint violation degree in this paper is measured by
the sum of each constraint violation degree.

v(~x) =
∑q
i=1 v

I
i (~x) +

∑r
i=1 v

E
i (~x). (3)

vIi (~x) is the degree of violating the ith inequality constraint.

vIi (~x) = max{0, gIi (~x)}, i = 1, · · · , q. (4)

vEi (~x) is the degree of violating the ith equal constraint.

vEi (~x) = max{0, |gEi (~x)| − ε}, i = 1, · · · , r, (5)

where ε is a user-defined tolerance allowed for the equality
constraint.

Multi-objective EAs for constrained optimisation have been
proposed over past two decades. Many empirical studies have
demonstrated the efficiency of the multi-objective method [4].
Intuitively, the more objectives a problem has, the more
complicated it is. Thus, this raises a question why the multi-
objective method could be superior to the single objective
method. So far few theoretical analyses have been reported
for answering this question.

In fact, none of EAs in the latest IEEE CEC2017/18
constrained optimisation competitions adopted multi-objective
optimisation [5]. The competition benchmark suite includes
50 and 100 dimensional functions. For a multi-objective op-
timisation problem, the higher dimension, the more complex
Pareto optimal set. This raises another question whether multi-
objective EAs are able to compete with the state-of-art single-
objective EAs in the competition.

The above questions motivate us to further study the multi-
objective method for COPs. Our work is inspired by helper
objectives [6]. The use of helper objectives has significantly
improved the performance of EAs for solving some combi-
natorial optimisation problems, such as job shop scheduling,
travelling salesman and vertex covering [6], [7]. Our work is
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also inspired by objective decomposition, which was recently
adopted in multi-objective EAs for COPs [8]–[11]. Because
the goal of COPs is to seek the optimal feasible solution(s)
rather than a Pareto optimal set, decomposition-based multi-
objective EAs with biased weights are flexible than those based
on Pareto ranking.

This paper presents a new equivalent and helper objectives
method for COPs. A COP is converted into an optimisation
problem consisting of equivalent and helper objectives but
without any constraint. Here an equivalent objective means its
optimal solution set is identical to Ω∗, but a helper objective
does not. Then this problem is solved by a decomposition-
based multi-objective EA.

Our research hypothesis is that the helper and equivalent
objective method can outperform the single objective method
on certain hard problems. We make both theoretical and
empirical comparisons of these two methods.

1) In theory, the “wide gap” problem [12], [13] is regarded
as a hard problem to EAs. We aim at proving using helper
and equivalent objectives can shorten the hitting time of
crossing such a “wide gap”.

2) A case study is conducted for validating our theory.
We aim at designing an EA with helper and equivalent
objectives and demonstrating that it can outperform EAs
in CEC2017/18 competitions.

This paper is a significant extension of our two-page poster
in GECCO2019 [14]. The algorithm described in the current
paper is a slightly revised version of HECO-DE in [14].
HECO-DE was ranked 1st in 2019 in IEEE CEC Competition
on Constrained Real Parameter Optimization when compared
with other eight state-of-art EAs [5].

The paper is organised as follows: Section III is literature re-
view. Section IV describes the helper and equivalent objective
method. Section IV theoretically analyses this method. Sec-
tion V conducts a case study. Section VI reports experiments
and results. Section VII concludes the work.

II. LITERATURE REVIEW

Multi-objective EAs have been applied to COPs since
1990s [15], [16]. Segura et al. [4] made a literature survey of
the work up to 2016. Thus, this section focuses on reviewing
most recent work. Following the taxonomy in [4], [17], a
classification of these EAs is built upon the type of objectives.

1) Scheme I with two objectives, the original objective f
and a degree of violating constraints v [8], [10], [11],
[18]–[21].

2) Scheme II with many objectives, he original objective f
and degrees of violating each constraint vi [22], [23].

3) Scheme III with helper objective(s) besides the original
objective or the degree of constraint violation [24]–[27].
For example, the penalty function forms helper objective.

The first scheme is the most widely used one so far. Ji et
al. [28] converted a berth allocation problem with constraints
into problem (2) and solved it by a modified non-dominated
sorting genetic algorithm II. Ji et al. [29] transformed a COP
into problem (2) and solved it by a differential evolution (DE)

algorithm. They combined multiobjective optimization with an
ε-constrained method.

Recently, decomposition-based multi-objective EAs have
applied to solving problem (2). Xu et al. [8] decomposed
problem (2) into a tri-objective problem using the weighted
sum method with static weights and solved it using a Pareto-
ranking based DE algorithm. Wang et al. [11] decomposed
problem (2) using the weighted sum method into a number
of subproblems with dynamical weights and solved these
subproblems by DE. Peng et al. [10] decomposed problem (2)
using the Chebyshev method. Weights are biased and adjusted
dynamically for maintaining a balance between convergence
and population diversity.

The second scheme converts a COP into a many-objective
optimisation problem but is less used. Li et al. [23] solved the
many-objective optimization problem by dynamical constraint
handling.

The third scheme has an advantage of designing a helper
objective. Zeng et al. [9] designed a niche-count objective
besides the original objective and a constraint-violation ob-
jective and proposed an dynamic constrained multiobjective
evolutionary algorithm (DCMOEA). The niche-count objective
helps maintain population diversity. They applied three differ-
ent multiobjective EAs (ranking-based, decomposition-based,
and hype-volume) to the tri-objective optimisation problem.
Jiao et al. [26] converted a COP into a dynamical bi-objective
optimisation problem consisting of the original objective and a
niche-count objective. Recently, these EAs with dynamic con-
strained multi-objectives were further improved by adding the
feasible-ratio control technique [30] and a dynamic constraint
boundary [31].

The helper and equivalent objective method proposed in this
paper belongs to the third scheme. One objective is designed as
an equivalent objective. The equivalent objective has the same
optimal set as that to the original COP. Helper objectives are
also used to add more search directions. Under this framework,
we have designed HECO-DE and HECO-PDE [27]. HECO-
PDE is an enhanced version of HECO-DE with principle
component analysis. A multi-population implementation of
HECO-DE is designed in [32] which is suitable for parallel
processing.

In order to speed up the convergence of EAs for COPs,
Deb and Datta [24] observed that the hybridisation of multi-
objective EAs and local search can reduce the number of
fitness evaluations by one or more orders of magnitude.
However, the current paper will not discuss the benefit of
hybridisation but only focus on using helper and equivalent
objectives.

The theoretical analysis of multi-objective EAs for con-
strained optimisation is still rare and limited to combinatorial
optimisation. He et al. [33] proved that a multi-objective EA
with helper objectives is a 1/2-approximation algorithm for
the knapsack problem. Recently, Neumann and Sutton [34]
analysed the running time of a variant of Global Simple Evo-
lutionary Multiobjective Optimizer on the knapsack problem.
Nevertheless, no general theoretical analysis exists for the
multi-objective EAs in continuous COPs.
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III. THE HELPER AND EQUIVALENT OBJECTIVE METHOD

A. Helper and Equivalent Objectives

We start from a problem existing in the classical bi-objective
method for solving problem (2). The Pareto optimal set to (2)
is often significantly larger than Ω∗.

Example 1: Consider the following COP. Its optimal solu-
tion is a single point Ω∗ = {0}.{

min f(x) = x, x ∈ [−1000, 1000],
subject to g(x) = sin( xπ

1200 ) ≥ 0.

The degree of constrain violation is

v(x) = max{0,− sin(xπ/1200)}. (6)

The Pareto optimal set to the bi-objective problem min(f, v) is
{−1000}∪ [−200, 0], significantly larger than Ω∗. The Pareto
front is shown in Fig. 1.

-200-1000

0.5

1
v

f0

Pareto front

Fig. 1. Pareto front.

This example shows that using two objectives makes the
problem more complicated. Thus, it is difficult to explain why
the multi-objective method is more efficient.

In order to develop a theory of understanding the multi-
objective method for COPs, we introduce two concepts,
equivalent and helper objectives. The term “helper objective”
originates from [6].

Definition 1: A scalar function g(~x) defined on Ω is called
an equivalent objective function with respect to the COP (1)
if it satisfies the condition:

arg min{f(~x); ~x ∈ Ω} = Ω∗. (7)

A scalar function g(~x) is called a helper objective function if
it does not satisfy the above condition.

Equivalent functions can be obtained from single objective
methods for constrained optimisation. For example, a simple
equivalent function is the death penalty function. Let ΩF
denote feasible solutions and ΩI infeasible ones.

min e(~x) =

{
f(~x), if ~x ∈ ΩF ,
+∞, if ~x ∈ ΩI .

(8)

But the objective function f is not an equivalent function
unless all optimal solution(s) to min f are feasible. The con-
straint violation degree v is not an equivalent function unless
all feasible solutions are optimal. Hence, except particular
COPs, min(f, v) is a two helper objective problem.

In practice, it is more convenient to construct an equivalent
function e(~x) which is defined on population P , rather than Ω.
In this case, the definition of helper and equivalent functions
is modified as follows.

Definition 2: Given a population P such that Ω∗ ∩ P 6= ∅,
a scalar function g(~x) defined on P is called an equivalent
objective function with respect to the COP (1) if it satisfies
the following condition:

arg min{f(~x); ~x ∈ Ω ∩ P} = Ω∗ ∩ P. (9)

A scalar function g(~x) defined on P is called a helper
objective function if it does not satisfy the above condition.
For a population P such that Ω∗ ∩ P = ∅, we can not
distinguish between equivalent and helper functions defined
on the population.

An example is the superiority of feasibility rule [35] which
is described as follows. Given a population P ,

1) A feasible solution with a smaller f value is better than
one with a larger f value;

2) A feasible solution is better than an infeasible solution;
3) An infeasible solution with smaller constraint violation is

better than one with larger constraint violation.
The above rule leads to an equivalent function on P as

e(~x) =

{
f(~x), if ~x ∈ ΩF ∩ P,
v(~x) + fF (P ), if ~x ∈ ΩI ∩ P,

(10)

where fF (P ) = max{f(~x), ~x ∈ ΩF ∩ P} if ΩF ∩ P 6= ∅ or
fF (P ) = 0 otherwise.

B. The Helper and Equivalent Objective Method

Once an equivalent objective function is obtained, the
COP (1) can be converted to a single-objective optimisation
problem without any constraint.

min e(~x), ~x ∈ P. (11)

In practice, an EA generates a population sequence {Pt; t =
0, 1, · · · } and e(~x) relies on population Pt.

A single-objective EA (SOCO) for problem (11) is de-
scribed as follows.

1: population P0 ← initialise a population of solutions;
2: for t = 0, · · · , Tmax do
3: population Ct ← generate a population of solutions

from Pt subject to a conditional probability Pr(Ct | Pt);
4: Pt+1 ← select optimal solution(s) to min e(~x), ~x ∈
Pt ∪ Ct; remove repeated solutions.

5: end for
Tmax is the maximum number of generations. Pr(Ct | Pt)

is a conditional probability determined by search operator(s).
The population size |Pt| is changeable so that Pt is able to
contain all found best solutions.

Besides the equivalent function e(~x), we add several helper
functions hi(~x), i = 1, · · · , k, and then obtain a helper and
equivalent objective optimisation problem on population P .

min ~f(~x) = (e(~x), h1(~x), · · · , hk(~x)), ~x ∈ P. (12)

Furthermore, we decompose problem (12) into several sin-
gle objective problem. Decomposition-based multi-objective
EAs have been proven to be efficient in solving multiobjective
optimisation problems [36], [37]. The decomposition method
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in the present work adopts the weighted sum approach, adding
the helper objective onto the equivalent objective such that

minw0e(~x) +
∑k
j=1 wjhj(~x), ~x ∈ P, (13)

where wj ≥ 0 are weights.
Problem (12) is transformed into λ single-objective op-

timisation subproblems by assigning λ tuples of weights
~wi = (w0i, w1i, · · · , wki).

min fi = w0ie+
∑k
j=1 wjihj , i = 1, · · · , λ. (14)

At least one fi is chosen to an equivalent objective function.
We minimise all fi simultaneously.

Since the ranges of e and h might be significantly different,
one of them may play a dominant role in the weighted sum. It
is therefore, helpful to normalise the values of each function
to [0, 1] so that none of them dominates others in the sum. The
min-max normalisation method is adopted within a population
P . Given a function g(~x), it is normalised to [0, 1].

g(~x)←
g(~x)−max~y∈P g(~y)

max~y∈P g(~y)−min~y g(~y)
. (15)

A helper and equivalent objective EA (HECO) for problem
(14) is described as follows.

1: population P0 ← initialise a population of solutions;
2: for t = 0, · · · , Tmax do
3: adjust weights;
4: population Ct ← generate a population of solutions

from Pt subject to a conditional probability Pr(Ct | Pt);
5: Pt+1 ← select optimal solution(s) to min fi(~x), ~x ∈
Pt∪Ct for i = 1, · · · , λ where fi is calculated by formula
(14); remove repeated solutions.

6: end for
HECO selects optimal solution(s) to min fi(~x), ~x ∈ Pt∪Ct

with respect to each function fi (called elitist selection), but
it does not select all non-dominated solutions with respect to
(e, h1, · · · , hk) (no Pareto-based ranking).

Since our goal is to find the optimal solution(s) to min e(~x)
but not to minhi(~x), it is not necessary to generate solutions
evenly spreading on the Pareto front. Thus, the decomposition
mechanism proposed herein differs from that employed in
traditional decomposition-based multi-objective EAs [36]. The
weights are chosen dynamically over generations t so that each
fi eventually converges to an equivalent objective function.
Thus, the adjustment of weights follows the principle:

lim
t→+∞

w0i,t > 0 and lim
t→+∞

wji,t = 0 for j > 0. (16)

HECO has two characteristics:
1) SOCO is one-dimension search along the direction e in

the objective space. HECO is multi-dimensional search
along several directions (e, h1, · · · , hk). e is the main
search direction for SOCO, while h1, · · · , hk are aux-
iliary directions added by HECO. Intuitively, if SOCO
encounters a “wide gap” along the direction e, HECO
might bypass it through other auxiliary directions. This
initiative discussion will be rigorously analysed later.

2) The dynamically weighting ensures that at the beginning,
HECO explores different directions e, h1, · · · , hk, while

at the end, HECO exploits the direction e for obtaining
an optimal feasible solution.

HECO is a general framework which covers many variant
algorithm instances. Equivalent and helper functions can be
constructed in a different way, such as (8) and (10). Search
operators can be chosen from evolutionary strategies, differ-
ential evolution, particle swarm optimisation and so on.

C. Implicit Equivalent Objective

Without the aid of an equivalent objective, a decomposition-
based multi-objective EA for COPs faces a problem. The
solution set found by the algorithm is often larger than Ω∗.
This claim is shown through Example 1. We assign λ pairs of
weights in objective decomposition: (1, 0), (wi, 1−wi), (0, 1)
where i = 2, · · · , λ−1 and wi > 0 and obtain λ subproblems
with a bounded constraint x ∈ [−1000, 1000]. min f1(x) = f,

min fi(x) = wif + (1− wi)v, i = 2, · · · , λ− 1,
min fλ(x) = v.

The optimal solution to min f is x = −1000. The optimal
solution to min fi, i = 2, · · · , λ − 1 is infeasible. The opti-
mal solution to min v is [0, 500]. The solution set to the λ
subproblems consists of infinite solutions, much larger than
Ω∗ = {0}. Using dynamical adjustment of weights does not
help here.

However, in practice, it is common to utilise the superi-
ority of feasibility rule to select solutions. Using the rule,
an infeasible solution such as x = −1000 is not selected.
Among feasible solutions x ∈ [0, 500], only the minimal point
x = 0 is selected. But the superiority of feasibility rule is an
equivalent objective (10), thus, many multi-objective EAs for
COPs implicitly utilise an equivalent objective. Based on this
argument, multi-objective EAs for COPs are classified into
three types.

1) Type I is to optimise helper objectives only;
2) Type II is to optimise helper objectives but select so-

lutions by the superiority of feasibility rule (an implicit
equivalent objective);

3) Type III is to explicitly optimise both helper and equiv-
alent objectives.

In this paper, the notation HECO refers to type III. It has
some advantages: an explicit equivalent objective is utilised
and it can be designed more flexibly beyond the superiority
of feasibility rule.

IV. A THEORETICAL ANALYSIS

A. Preliminary Definitions and Lemma

Intuitively, an equivalent objective ensures a primary search
direction towards Ω∗ and avoid an enlarged Pareto optimal
set. Helper objectives provide auxiliary search directions. If
there exists an obstacle like a “wide gap” on the primary
direction, auxiliary directions can help bypass it. In theory,
we aim at mathematically proving the conjecture: using helper
and equivalent objectives can shorten the time of crossing the
“wide gap”. First we introduce several preliminary definitions
and a lemma.
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For the sake of analysis, the search space Ω is regarded as a
finite set. This simplification is made due to two reasons. First,
any computer can only represent a finite set of real numbers
with a limited precision. Secondly, population Pt consists of
finite individuals (points). But the probability of Pt at finite
points always equals to 0 in a continuous space. To handle
this issue, we assume that possible values of Pt are finite.

Let ~f(~x) = (f1(~x), · · · , fk(~x)) be a scalar function (k = 1)
or a vector-valued function (k > 1). Consider a minimisation
problem with bounded constraints:

min ~f(~x), ~x ∈ Ω. (17)

If k = 1, it degenerates into a single-objective problem.
Definition 3: Given the optimisation problem (17), ~f(~x) is

said to dominate ~f(~y) (written as ~f(~x) � ~f(~y) ) if
1) ∀i ∈ {1, · · · , k} : fi(~x) ≤ fi(~y);
2) ∃i ∈ {1, · · · , k} : fi(~x) < fi(~y).

If k = 1, the two conditions degenerate into one inequality
f(~x) < f(~y).

Based on the domination relationship, the non-dominated
set and Pareto optimal set are defined as follows.

Definition 4: A set S ⊂ S′ is called a non-dominated set in
the set S′ if and only if ∀~x ∈ S, ∀~y ∈ S′, ~x is not dominated
by ~y. A set S is called a Pareto optimal set if and only if it
is a non-dominated set in Ω.

Given a target set, the hitting time is the number of
generations for an EA to reach the set [38]. The hitting time
of an EA from one set to another is defined as follows.

Definition 5: Let {Pt; t = 0, 1, · · · } be a population se-
quence of an EA. Given two sets S1 and S2, the expected
hitting time of the EA from S1 to S2 is defined by

T (S2 | S1) : =
∑+∞
t=0 Pr(P0 ⊂ S2, · · · , Pt ⊂ S2),

where the notation S denotes the complement set of S.
From the definition, it is straightforward to derive a lemma

for comparing the hitting time of two EAs.
Lemma 1: Let {Pt; t = 0, 1, · · · } and {P ′t ; t = 0, 1, · · · } be

two population sequences and S1 and S2 two sets such that
S1 ∩ S2 = ∅. Let P0 = P ′0 = S1. If for any t,

Pr(P0=S1⊂S2,··· ,Pt⊂S2)≥Pr(P ′0=S1⊂S2,··· ,P ′t⊂S2), (18)

then T (S2 | S1) ≥ T ′(S2 | S1). Furthermore, if the inequality
(18) holds strictly for some t, then T (S2 | S1) > T ′(S2 | S1).

This lemma provides a criterion to determine whether an EA
has a shorter hitting time than another EA. The comparison
is qualitative because no estimation of the hitting time is
involved. For a quantitative comparison, it is necessary to
utilise more advanced tools such as average drift analysis [38].
This will not be discussed in the current paper.

B. Fundamental Theorem

Now we compare SOCO for the single-objective prob-
lem (11) and HECO for the helper and equivalent objective
problem (14). In order to make a fair comparison, a natural
premise is that both EAs use identical search operator(s).

The main purpose of using HECO is to tackle hard problems
facing SOCO. Yet, what kind of problems are hard to SOCO?

According to [12], [13], hard problems to EAs can be classified
into two types: the “wide gap” problem and the “long path”
problem. The concept of “wide gap” is established on fitness
levels. In the helper and equivalent objective method, the
equivalent function e(~x) plays the role of “fitness”. In con-
strained optimisation, function f(~x) is not suitable as “fitness”
because the minimum value of f might be obtained by an
infeasible solution.

The values of e(~x) are split into fitness levels: FL0 <
FL1 < · · · < FLm and the search space Ω is split into disjoint
level sets: Ω = ∪mi=0Li where L = {~x; e(~x) = FL}. Given
a fitness level FL and its corresponding point set L, let Lb

denote points at better levels Lb := {~x; e(~x) < FL}. A “wide
gap” between L and Lb is defined as follows.

Definition 6: Given an EA, we say a wide gap existing
between L and Lb if for a subset A ⊂ L, the expected
hitting time T (Lb | A ⊂ L) is an exponential function of
the dimension D.

Several conditions are needed for mathematically comparing
SOCO and HECO. Let {Pt; t = 0, 1, · · · } represent the
population sequence from SOCO and {P ′t ; t = 0, 1, · · · } from
HECO. Assume P0 = P ′0 are chosen from the fitness level FL.
For SOCO, thanks to elitist selection, its offspring are either
at the level FL or better fitness levels. For HECO, because
of selection on both equivalent and helper function directions,
offspring may include points from worse fitness levels too.
This observation is summarised as a condition.

Condition 1: Assume that P0 = P ′0 ⊂ L. For SOCO, Pt ⊂
L ∪ Lb for ever. Provided that Pt = X = (~x1, · · · , ~xm) ⊂ L,
there is a one-to-many mapping from Pt to P ′t where P ′t is in
the set

Map(X)={X′=(~x1,··· ,~xm,∗)|∗=∅ or ∗⊂L∪Lb}.

The event of Pt = (~x1, · · · , ~xm) ⊂ L requires ~x1 ∈ L, · · · ,
~xm ∈ L. The probability of this event happening is larger than
that of the event P ′t = (~x1, · · · , ~xm, ∗) where ∗ = ∅ or ∗ ⊂
L ∪ Lb} because the latter event requires ~x1 ∈ L, · · · , ~xm ∈ L
and also ∗ ⊂ L ∪ Lb. This leads to the following conditions.

Condition 2: Let P0 = P ′0 = A ⊂ L. For any t, it holds

Pr(P0=A⊂L,··· ,Pt=Z⊂L)

≥∑
∗⊂Lb ···

∑
∗⊂Lb Pr(P ′0=A

′⊂Lb,··· ,P ′t=Z
′⊂Lb).

Condition 3: For some t, the above inequality is strict.
Thanks to elitist selection and equivalent objective(s), Con-

ditions 1 and 2 are always true. Condition 3 could be true, for
example, if the transition probability from ∗ to Lb is greater
than 0. Using the above conditions, we prove a fundamental
theorem of comparing HECO and SOCO.

Theorem 1: Consider SOCO for the single objective prob-
lem (11) and HECO for the helper and equivalent objec-
tive problem (14) using elitist selection and identical search
operator(s). Assume that SOCO faces a wide gap, that is,
T (Lb | A ⊂ L) is an exponential function of D for a subset
A. Let initial population P0 = P ′0 = A. Under Conditions 1
and 2, the expected hitting time T (Lb | A) ≥ T ′(Lb | A).
Furthermore, under Condition 3, T (Lb | A) > T ′(Lb | A).



6

Proof: From Conditions 1 and 2, it follows for any t,

Pr(P0⊂Lb,··· ,Pt⊂Lb)=
∑

A⊂L···
∑

Z⊂L Pr(P0=A,··· ,Pt=Z)

≥Pr(P ′0⊂Lb,··· ,P ′t⊂Lb)

=
∑

A⊂L···
∑

Z⊂L

∑
∗⊂Lb ···

∑
∗⊂Lb Pr(P0=A,··· ,Pt=Z

′). (19)

From Lemma 1, it is known T (Lb | A) ≥ T ′(Lb | A). The
second conclusion is drawn from Condition 3.

Theorem 1 proves that the hitting time of HECO crossing
a wide gap is not more than SOCO under Conditions 1 and
2 (always true) and shorter than SOCO under Condition 3
(sometimes true). In Conditions 2 and 3, the part ∗ · · · ∗ is
a path of searching along helper directions and intuitively is
regarded as a bypass over the wide gap. Theorem 1 reveals if
such a bypass exists, HECO may shorten the hitting time of
crossing the wide gap. Nevertheless, Theorem 1 is inapplicable
to the multi-helper objective method, because the one-to-many
mapping in Condition 1 cannot be established.

Example 2: Consider the COP below,{
min f(x) = x, x ∈ [−500, 3000]

subject to g(x) = sin( xπ
1000 ) ≥ 0.

(20)

Its optimal solution is x = 0. The feasible region is ΩF =
[0, 1000]∪ [2000, 3000]. The objective function f(~x) is not an
equivalent function because its minimal point is x = −500,
an infeasible solution.

First, we analyse a SOCO algorithm using elitist selection
and the equivalent objective from the superiority of feasibility
rule.

min e(x) =

{
f(x), if x ∈ ΩF ,
v(x) + 3000, if x ∈ ΩI .

(21)

where v(x) = max{0,− sin( xπ
1000 )}.

Mutation is y = x+U(−1, 1), where x is the parent and y
its child. U(−1, 1) is a uniform random number in (−1, 1).

Assume that SOCO starts at L = {2000}. Then Lb =
[0, 1000]. Because of elitist selection, the EA cannot accept
a worse solution. Then it cannot cross the infeasible region
(1000, 2000), a wide gap to SOCO. Thus, Pt ∈ L for ever.

Secondly, we analyse a HECO algorithm employing elitist
selection, identical mutation but two objectives.

min ~f(x) = (e(x), f(x)), x ∈ [−500, 3000]. (22)

Its Pareto front is displayed in Fig. 2.

3000-500

3000
3001

e

f0

Pareto front

Fig. 2. Pareto front to the two-objective optimisation problem (22)

We assign two pairs of weights: ~w1 = (1, 0) and ~w2 = (0, 1)
on (e, f). Assume that SOCO starts at L = {2000}. For any

x ∈ Pt ∩ [1000, 2000], after mutation, some point y such that
y < x − 1

2 is generated with a positive probability. Since
f(y) < f(x), y is selected to P ′t . Thus, P ′t makes a downhill-
search along the direction f . Repeating this procedure for 2000
generations, Pt can reach the set Lb = [0, 1000] with a positive
probability. This implies for t ≥ 2000,

Pr(P ′0 ⊂ Lb, · · · , P ′t ⊂ Lb) < 1.

According to Theorem 1, T ′(Lb | L) < T (Lb | L). Fig. 3
visualises the bypass in the objective space.

30001000

2000

3000 C
e

f2000

1000

B

D

A

0

C B

D

A
A

Fig. 3. A bypass in objective space: A(2000, 2000)→ B(2000−ε1, 3000+
ε2)→ C(1000− ε3, 3000+ ε4)→ D(1000, 1000) where εi ∈ (0, 1) over
the wide gap between fitness levels e(x) = 2000 and e(x) = 1000.

V. A CASE STUDY

A. Search Operators from LSHADE44

In order to validate our theory, we follow Occam’s ra-
zor, that is to construct a HECO algorithm from a SOCO
algorithm such that their search operators are identical but
their objectives are different. No extra operation is added to
HECO. For comparative purpose, LSHADE44 [39] is chosen
as the SOCO algorithm because it is ranked only 4th in
the CEC2017/18 competition [5]. If the constructed HECO
algorithm outperforms LSHADE44 and winer EAs in the
competition, then we have a good reason to claim the helper
and equivalent objective method works.

For the sake of a self-contained presentation, search opera-
tors in LSHADE44 are summarised as follows.

LSHADE44 employs two mutation operators. The first one
is current-to-pbest/1 mutation (see (6) in [40]). Mutant point
~ui is generated from target point ~xi by

~ui = ~xi + F (~xpbest − ~xi) + F (~xr1 − ~xr2), (23)

where ~xpbest is chosen at random from the top 100p% of
population P where p ∈ (0, 1). ~xr1 is chosen at random from
population P , while ~xr2 at random from P ∪ A where A
represents an archive. Mutation factor F ∈ (0, 1).

The second mutation is randrl/1 mutation (see (3) in [41]).

~ui = ~xr1 + F (~xr2 − ~xr3), (24)
~ui = ~xr∗1 + F (~xr∗2 − ~xr∗3 ). (25)

In (24), mutually distinct ~xr1 , ~xr2 and ~xr3 are randomly
chosen from population P . They are also different from ~xi. In
(25), ~xr1 , ~xr2 and ~xr3 are chosen as that in (24) but then are
ranked. ~xr∗1 denotes the best, while ~xr∗2 and ~xr∗3 denote the
other two.
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LSHADE44 employs two crossover operators. The first
one is binomial crossover (see (4) in [42]). Trial point ~yi is
generated from target point ~xi and mutant ~ui by

yi,j =

{
ui,j , if randj(0, 1) ≤ CR or j = jrand,
xi,j , otherwise, (26)

where integer jrand is chosen at random from [1, D].
randj(0, 1) is chosen at random from (0, 1). Crossover rate
CR ∈ [0, 1]. The second crossover is the exponential crossover
(see (3) in [43]).

The combination of a mutation operator and a crossover
operator forms a search strategy. Thus, four search strate-
gies (combinations) can be produced. LSHADE44 employs
a mechanism of competition of strategies [44], [45] to create
trial points. The kth strategy is chosen subject to a probability
qk. All qk are initially set to the same value, i.e., qk = 1/4.
The kth strategy is considered successful if a generated trial
point y is better than the original point x. The probability qk
is adapted according to its success counts:

qk =
nk + n0∑4
i=1(ni + n0)

, (27)

where nk is the count of the kth strategys successes, and n0 >
0 is a constant.

LSHADE44 adapts parameters F and CR in each strategy
based on previous successful values of F and CR [39]. Each
strategy has its own pair of memories MF and MC for saving
F and CR values. The size of a historical memory is H .

LSHADE44 uses an archive A for the current-to-pbest/1
mutation [39]. The maximal size of archive A is set to |A|max.
At the beginning of search, the archive is empty. During a
generation, each point which is rewritten by its successful trial
point is stored into the archive. If the archive size exceeds
the maximum size |A|max, then |A| − |A|max individuals are
randomly removed from A.

LSHADE44 takes a mechanism to linearly decrease the
population size [39], [46]. For population Pt, its size must
equal to a required size Nt. Otherwise its size is reduced. The
required initial size is set to N0 and the finial size to NTmax

.
The required size at the tth generation is set by the formula:

Nt = round
(
N0 − t

Tmax
(N0 −NTmax

)
)
. (28)

If |Pt| > Nt, then |Pt|−Nt worst individuals are deleted from
the population.

B. A New Equivalent Objective Function

Two equivalent functions (8) and (10) have been constructed
from the death penalty method and the superiority of feasibility
rule respectively. However, measured by these functions, a
feasible solution always dominates any infeasible one. To
reduce the effect of such heavily imposed preference of
feasible solutions, we construct a new equivalent function.

Let ~x∗P be the best individual in population P ,

~x∗P =

{
arg min{v(~x); ~x ∈ P}, if P ∩ ΩF = ∅,
arg min{f(~x); ~x ∈ P ∩ ΩF }, if P ∩ ΩF 6= ∅.

For each ~x ∈ P , ẽ(~x) denotes the fitness difference between
f(~x) and f(x∗P ).

ẽ(~x) = |f(~x)− f(~x∗P )| (29)

ẽ itself is not an equivalent function because in some
problems, the fitness of an infeasible solution is equal to f(~x∗P )
too. An equivalent function on population P is defined as

e(~x) = w1ẽ(~x) + w2v(~x), (30)

where w1, w2 > 0 are weights, which are used to control
the contribution of ẽ and v to the equivalent function e. The
number of such equivalent functions is infinite because w1 ∈
(0,+∞), w2 ∈ (0,+∞).

Theorem 2: Function e(~x) given by (30) is an equivalent
objective function for any weights w1 > 0, w2 > 0.

Proof: Given any P satisfying Ω∗ ∩ P 6= ∅, we have
min{e(~x); ~x ∈ P} = 0. On one hand, for any ~x ∈ Ω∗ ∩ P ,
ê(~x) = 0 and v(~x) = 0, then e(~x) = 0. On the other hand, for
~x ∈ P such that e(~x) = 0, it holds v(~x) = 0, then ~x ∈ Ω∗.

If two solutions ~x1 (infeasible) and ~x2 (feasible) in popu-
lation P satisfy

w1|f(~x1)− f(~x∗P )|+ w2v(~x1) < w1|f(~x2)− f(~x∗P )|, (31)

then under the equivalent objective function e, infeasible ~x1
is better than feasible ~x2. This feature may help search the
infeasible region. For example, in Fig. 4, assume that f(~x1)−
f(~x∗P ) = 0 and f(~x2)−f(~x∗P ) = 1, v(~x)1 = 0.5 and w1 = w2.
Then we have e(~x1) = 0.5e(~x2). Starting from ~x1, it is much
easier to reach the left feasible region in which the optimal
feasible solution ~x∗P locates.

𝑥∗

feasible region

𝑥1

𝑥2

𝑥𝑃
∗

feasible solution

best solution in population P

search space

optimal feasible solution

infeasible solution

Fig. 4. There exist two feasible regions. An infeasible ~x1 satisfying (31)
is better than ~x2 under the equivalent objective function e. This may help
population P = (~x1, ~x2, ~x∗P ) move from the right feasible region to the left
feasible region in which the optimal feasible solution ~x∗ locates.

We choose f as a helper function and then obtain a problem
with helper and equivalent objectives.

min ~f(~x) = (e(~x), f(~x)), ~x ∈ P, (32)

The problem is decomposed into λ single objective subprob-
lems through the weighted sum method: for i = 1, · · · , λ,

min fi(~x) = w1iẽ(~x) + w2iv(~x) + w3if(~x). (33)

An extra term ẽ is added besides the original objective function
f and constraint violation degree v.
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C. A New multi-objective EA for Constrained Optimisation

A HECO algorithm is designed which reuses search opera-
tors from LSHADE44 [39]. We call it HECO-DE because it is
built upon HECO and DE. Different from the single-objective
method LSHADE44, HECO-DE has three new multi-objective
features: helper and equivalent objectives, objective decompo-
sition and dynamical adjustment of weights. The procedure of
HECO-DE is described in detail as below.

1: Initialise algorithm parameters, including the required
initial population sizes N0 and final size NTmax

, the
maximum number of fitness evaluations FESmax, circle
memories for parameters F and CR, the size of historical
memories H; initial probabilities qk of four strategies, and
external archive A;

2: Set the counter of fitness evaluations FES to 0, and the
counter of generations t to 0;

3: Randomly generate N0 solutions and form an initial
population P0;

4: Evaluate the value of f(~x) and v(~x) for each ~x ∈ P0;
5: Increase counter FES by N0;
6: while FES ≤ FESmax (or t ≤ Tmax) do
7: Adjust weights in objective decomposition.
8: Assign sets SF and SCR to ∅ for each strategy. The

sets are used to preserve successful values of F and CR
for each search strategy respectively. The set C (used for
saving children population) is also set to ∅.

9: Randomly select λ individuals (denoted by Q) from
P and then denote the rest individuals P \Q by P ′;

10: for xi in Q, i = 1, . . . , λ do
11: Select one strategy (say k) with probability qk and

generate mutation factor F and crossover rate CR from
respective circle memories;

12: Generate a trail point ~yi by applying the selected
strategy;

13: Evaluate the value of f(~yi) and v(~yi);
14: Add ~yi to subpopulation Q, resulting in an en-

larged subpopulation Q′;
15: Normalise ẽ(~x), f(~x) and v(~x) for each individual

~x in Q′.
16: Calculate fi value for ~xi and ~yi according to

formula (33).
17: if fi(~yi) < fi(~xi) then
18: Add ~yi into children C and ~xi into archive A;
19: Save values of F and CR into respective sets

SF and SCR and increase respective success count;
20: end if
21: end for
22: Update circle memories MF and MCR using respec-

tive sets SF and SCR for each strategy (see its detail in
LSHADE44 [39]);

23: Merge subpopulation P ′ (not involved in mutation and
crossover) and children C and form new population P ;

24: Calculate the required population size Nt;
25: if Nt < |P | then
26: Randomly delete |P | −Nt individuals from P ;
27: end if
28: Calculate the required archive size |A|max = 4Nt;

29: if |A| > |A|max then
30: Randomly delete |A| − |A|max individuals from

archive A;
31: end if
32: Increase counter FES by λ and counter t by 1;
33: end while

There are several major differences between HECO-DE and
LSHADE44 which are listed as below.

Lines 12: in HECO-DE, mutation is applied to subpopula-
tion Q, rather than the whole population P . Thus, current-to-
pbest/1 mutation and randr1/1 mutation must be modified be-
cause the ranking of individuals is restricted to subpopulation
Q. Given target xi and subpopulation Q, xQbest is chosen to
be the individual in Q with the lowest value of fi(~x). Hence,
current-to-pbest/1 mutation (23) is modified as

~ui = ~xi + Fk(~xQbest − ~xi) + Fk(~xr1 − ~xr2), (34)

This new mutation is called current-to-Qbest/1 mutation. For
randr1/1 mutation (25), ~xr1 , ~xr2 and ~xr3 are not compared but
just randomly selected from subpopulation Q. Thus it returns
to the original rand/1 mutation (24).

Lines 12 and 16: ranking individuals is used in both
mutation (23) and calculation of the equivalent function (30).
Because ranking is restricted within subpopulation Q and its
size λ is a small constant, the time complexity of ranking
is a constant. This is different from LSHADE44 in which
individuals in the whole population P are ranked. Its time
complexity if a function of dimension D.

Lines 17-20: if fi(~yi) < fi(~xi), then ~yi is accepted and
added into children population C. HECO-DE minimises λ
functions fi simultaneously. In Line 7, the weights on each
fi are dynamically adjusted (detail in Subsection V-D). This
is the most important difference from LSHADE44.

Since λ is a small constant, the number of operations in
HECO-DE is only changed by a constant when compared with
LSHADE44. Thus, the time complexity of HECO-DE in each
generation is the same as LSHADE44 [39].

D. A New Mechanism of Dynamical Adjustment of Weights

We propose a special mechanism for dynamically adjusting
weights. Function fi in subproblem (33) is a weighted sum of
helper and equivalent functions:

fi(~x) = w1iẽ(~x) + w2iv(~x) + w3if(~x), (35)

where w1i, w2i, w3i are the weights on functions ẽ, v and f
respectively. Weights are adjusted according to the following
principle: each fi converges to an equivalent function. Thus,

lim
t→+∞

w1i,t > 0, lim
t→+∞

w2i,t > 0, lim
t→+∞

w3i,t = 0.

In HECO-DE, weights are designed to linearly increase
(for w1, w2) or decrease (for w3) over t and also linearly
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increase (for w1, w2) or decrease (for w3) over i. In more
detail, weights are given by

w1i,t =
t

Tmax
· i
λ
, (36)

w2i,t =
t

Tmax
· i
λ

+ γ, (37)

w3i,t =

(
1− t

Tmax

)
·
(

1− i

λ

)
, (38)

where λ is the number of subproblems. Tmax is the maximal
number of generations. γ ∈ (0, 1) is a bias constant which is
linked to the number of constraints. The more constraints, the
larger γ and w2.

Figures 5 and 6 depict the change of normalised weights
over t/Tmax. For λth individual, weights w1λ > 0, w2λ > 0
but w3λ = 0. This individual minimises an equivalent func-
tion fλ. For 1st individual, weight w31 initially is set to a
large value. Thus, at the beginning of search, this individual
focuses on minimising a helper function f1. Subsequently w31

decreases to 0. It turns to minimise an equivalent function f1
at the end of search.
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Fig. 5. The change of weights for 1st and λth individuals on CEC2006
benchmark functions. γ = 0.7.
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Fig. 6. The change of weights for 1st and λth individuals on CEC2017
benchmarks. γ = 0.1.

VI. COMPARATIVE EXPERIMENTS AND RESULTS

A. Experimental Setting

HECO-DE was tested on two well-known benchmark sets.
The first set is from IEEE CEC2017 Competition and Spe-
cial Session on Constrained Single Objective Real-Parameter
Optimization [5] which consists of 28 scalable functions with
dimension D = 10, 30, 50, 100 (total 4×28 benchmarks). The
second set is from the IEEE CEC2006 Special Session on
Constrained Real-parameter Optimization [47] which consists
of 24 functions. According to [47], there is no feasible
solutions for function g20 and it is extremely difficult to find
the optimum of function g22. Thus, these two functions are
excluded in the comparison.

Tables I and II list the parameter setting used in HECO-DE.
In Table I, parameters inherited from LSHADE44 are set to
values similar to LSHADE44 [39].

TABLE I
PARAMETERS INHERITED FROM LSHADE44

historical memory size H = 5
number of strategies K = 4

constant in strategy adaption n0 = 2
threshold in strategy adaption δ = 1/20

the maximum size of archive A |A|max = 4Nt

tolerance for equivalent constraints σ = 0.0001

In Table II, population size N0, the number of subproblems
λ and constraint violation bias γ are set to different values
on CEC2006 and CEC2017 benchmarks. Since CEC2006
benchmarks include more constraints, both the values of λ
and γ are set higher on CEC2006 benchmarks than that on
CEC2017. The initial population size N0 is set to a constant
on CEC2006 benchmarks, while it is set to 12D on CEC2017
benchmarks because the dimension D ranges from 10 to 100.
As required by the competitions, twenty five independent runs
were taken on each benchmark.

TABLE II
DIFFERENT PARAMETER SETTING IN CEC2006 AND CEC2017

CEC2006
FESmax from CEC2006 benchmarks FESmax = 500, 000

required population sizes N0 = 450, NTmax = λ
population size of Q λ = 45

constraint violation bias γ = 0.7
CEC2017

FESmax from CEC2017 benchmarks FESmax = 20000D
required population sizes N0 = 12D, NTmax = λ

population size of Q λ = 20
constraint violation bias γ = 0.1

B. Experimental results on IEEE CEC2017 benchmarks

HECO-DE was compared with seven single-objective
EAs in CEC2017/18 constrained optimisation competitions,
which are CAL-SHADE [48], LSHADE44+IDE [49],
LSHADE44 [39], UDE [50], MA-ES [51], IUDE [52],
LSHADE-IEpsilon [53], and one decomposition-based
MOEA, DeCODE [11].

HECO-DE was also compared with its two variants. The
first variant is to remove the equivalent function from HECO-
DE. In the weighted sum (35), ẽ(~x) is replaced by f(~x). We
call it HCO-DE. The second variant is to choose the superiority
of feasibility rule as the equivalent function. In the weighted
sum (35), ẽ(~x) is replaced by e(~x) given by (10). We call it
HECO-DE(FR). The three algorithms adopt same parameter
setting.

According to the CEC2017/18 competition rules [5], EAs
under comparison were ranked on the experimental results
against the use of 28 benchmarks under D = 10, 30, 50, 100,
in terms of the mean values and median solution. All results
were compared at the precision level of 1e − 8 in the same
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way as the official ranking source code [5]. The rank value of
each algorithm on each dimension was calculated as below:

Rank value =
∑28
i=1 ranki(by mean value)

+
∑28
i=1 ranki(by median solution).

(39)

The total rank value is the sum of rank values on four
dimensions.

Table III summarises the ranks of EAs on four dimensions
and total ranks. HECO-DE is the top-ranked amongst all
compared. This result clearly demonstrates that HECO-DE
consistently outperforms other EAs on all dimensions. Without
the equivalent function, HCO-DE is worse than HECO-DE and
HECO-DE(FR). HECO-DE(FR) which uses the superiority of
feasibility rule as the equivalent objective is slightly worse than
HECO-DE. Tables IV and V provide a sensitivity analysis of
parameters λ and γ. HECO-DE with all five λ and γ values
had obtained lower total ranks than other EAs.

Due to the paper length restriction, more experimental
results are provided in the supplement.

TABLE III
TOTAL RANKS OF HECO-DE AND OTHER EAS ON IEEE CEC2017

BENCHMARKS

Algorithm/Dimension 10D 30D 50D 100D Total
CAL LSAHDE(2017) 421 420 469 478 1788
LSHADE44+IDE(2017) 310 394 422 392 1518
LSAHDE44(2017) 332 344 342 342 1360
UDE(2017) 341 372 377 438 1528
MA ES(2018) 271 261 273 282 1087
IUDE(2018) 198 261 269 327 1055
LSAHDE IEpsilon(2018) 222 278 324 372 1196
DeCODE(2018) 239 297 302 328 1166
HCO-DE 282 253 255 219 1009
HECO-DE(FR) 158 194 186 202 740
HECO-DE 154 139 156 205 654

TABLE IV
TOTAL RANKS OF HECO-DE WITH VARYING λ AND OTHER EAS ON IEEE

CEC2017 BENCHMARKS

Algorithm/Dimension 10D 30D 50D 100D Total
CAL LSAHDE(2017) 507 508 569 582 2166
LSHADE44+IDE(2017) 381 486 524 483 1874
LSAHDE44(2017) 409 431 431 422 1693
UDE(2017) 431 479 480 537 1927
MA ES(2018) 326 321 341 347 1335
IUDE(2018) 250 343 345 424 1362
LSAHDE IEpsilon(2018) 277 354 420 472 1523
DeCODE(2018) 301 381 390 410 1482
HECO-DE(λ = 15) 172 199 218 261 850
HECO-DE(λ = 20) 194 149 181 242 766
HECO-DE(λ = 25) 177 174 197 241 789
HECO-DE(λ = 30) 195 192 204 210 801
HECO-DE(λ = 35) 189 208 200 222 819

C. Experimental results on IEEE CEC2006 benchmarks

HECO-DE was compared with five EAs, which are
CMODE [20], NSES [54], FROFI [55], DW [10] and De-
CODE [11], on IEEE CEC2006 benchmarks.

Table VI summarises experiment results, where “Mean”
and “Std Dev” denote the mean and standard deviation of
objective function values, respectively. As suggested in [47],

TABLE V
TOTAL RANKS OF HECO-DE WITH VARYING γ VALUES AND OTHER EAS

ON IEEE CEC2017 BENCHMARKS

Algorithm/Dimension 10D 30D 50D 100D Total
CAL LSAHDE(2017) 508 511 572 583 2174
LSHADE44+IDE(2017) 373 485 518 482 1858
LSAHDE44(2017) 405 428 427 422 1682
UDE(2017) 423 471 465 532 1891
MA ES(2018) 329 320 334 349 1332
IUDE(2018) 249 317 315 419 1300
LSAHDE IEpsilon(2018) 276 341 415 475 1507
DeCODE(2018) 296 362 370 398 1426
HECO-DE(γ = 0.0) 254 207 243 287 991
HECO-DE(γ = 0.1) 186 177 186 234 783
HECO-DE(γ = 0.2) 182 186 197 223 788
HECO-DE(γ = 0.3) 190 220 229 210 849
HECO-DE(γ = 0.4) 209 262 283 261 1015

a successful run is a run during which an algorithm finds
a feasible solution ~x satisfying f(~xbest) − f(~x∗) ≤ 0.0001,
where f(~xbest) is the best solution found by the algorithm
and f(~x∗) is the optimum. In Table VI, “*” denotes that the
algorithm satisfies this successful rule in 25 runs for a test
problem.

As shown in Table VI, the performance of HECO-DE is
similar to NSES, FROFI, DeCODE, which can always find
optimum of all test problems. HECO-DE performs better
than CMODE and DW. CMODE cannot find the optimum
of problem g21 and DW cannot find the optimum of g17 with
100% success rate.

HECO-DE was also compared with HCO-DE and HECO-
DE(FR) on four functions g02, g10, g21, and g23. Table VII
shows that HECO-DE always find the optimum on all test
functions. But without an equivalent objective, HCO-DE has
a lower success rate or feasible rate. HECO-DE(FR) faces
performance degradation on g10, g21, and g23, probably
because the superiority of feasibility rule has a higher selection
pressure than the equivalent function (30).

VII. CONCLUSIONS

This paper has proposed a helper and equivalent objective
method for constrained optimisation. It is theoretically proven
that for a hard problem called “wide gap”, using helper and
equivalent objectives can shorten the time of crossing the“wide
gap”. This general theoretical result shows the strengths of
multi-objective EAs in solving COPs.

A case study has been conducted for validating our method.
An algorithm, called HECO-DE, has been implemented which
employs both helper and equivalent objectives and reuses
search operators from LSHADE44 [39]. A new equivalent
function and a new mechanism of dynamically weighting are
designed in HECO-DE. Experimental results show that the
overall performance of HECO-DE is ranked first when com-
pared with other state-of-art EAs on CEC2017 benchmarks.
HECO-DE also performs well on CEC2006 benchmarks.

For future work, we will consider each constraint violation
degree as an individual helper objective and then design a
many helper and equivalent objectives EA for COPs.
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TABLE VI
COMPARATIVE EXPERIMENT RESULTS ON IEEE CEC2006 BENCHMARKS. * DENOTES THE NUMBER OF SATISFYING SUCCESSFUL RULE

CMODE
Mean±Std Dev

NSES
Mean±Std Dev

DW
Mean±Std Dev

FROFI
Mean±Std Dev

DeCODE
Mean±Std Dev

HECO-DE
Mean±Std Dev

g01 -1.5000E+01±0.00E+00* -1.5000E+01±4.21E-30* -1.5000E+01±5.02E-14* -1.5000E+01±0.00E+00* -1.5000E+01±0.00E+00* -1.5000E+01±0.00E+00*
g02 -8.0362E-01±2.42E-08* -8.0362E-01±2.41E-32* -8.0362E-01±9.99E-08* -8.0362E-01±1.78E-07* -8.0362E-01±3.12E-09* -8.0362E-01±1.21E-06*
g03 -1.0005E+00±5.29E-10* -1.0005E+00±5.44E-19* -1.0005E+00±4.27E-12* -1.0005E+00±4.49E-16* -1.0005E+00±4.00E-16* -1.0005E+00±3.54E-09*
g04 -3.0666E+04±2.64E-26* -3.0666E+04±2.22E-24* -3.0666E+04±0.00E+00* -3.0666E+04±3.71E-12* -3.0666E+04±3.71E-12* -3.0666E+04±0.00E+00*
g05 5.1265E+03±1.24E-27* 5.1265E+03±0.00E+00* 5.1265E+03±4.22E-10* 5.1265E+03±2.78E-12* 5.1265E+03±2.78E-12* 5.1265E+03±0.00E+00*
g06 -6.9618E+03±1.32E-26* -6.9618E+03±0.00E+00* -6.9618E+03±0.00E+00* -6.9618E+03±0.00E+00* -6.9618E+03±0.00E+00* -6.9618E+03±0.00E+00*
g07 2.4306E+01±7.65E-15* 2.4306E+01±.37E-09* 2.4306E+01±5.28E-10* 2.4306E+01±6.32E-15* 2.4306E+01±8.52E-12* 2.4306E+01±1.77E-14*
g08 -9.5825E+02±6.36E-18* -9.5825E+02±2.01E-34* -9.5825E+02±2.78E-18* -9.5825E+02±1.42E-17* -9.5825E+02±1.42E-17* -9.5825E+02±0.00E+00*
g09 6.8063E+02±4.96E-14* 6.8063E+02±1.10E-25* 6.8063E+02±2.23E-11* 6.8063E+02±2.23E-11* 6.8063E+02±2.54E-13* 6.8063E+02±5.57E-14*
g10 7.0492E+03±2.52E-13* 7.0492E+03±2.07E-24* 7.0492E+03±4.43E-08* 7.0492E+03±3.26E-12* 7.0492E+03±6.34E-10* 7.0492E+03±1.35E-06*
g11 7.499E-01±0.00E+00* 7.499E-01±0.00E+00* 7.499E-01±1.06E-16* 7.499E-01±1.13E-16* 7.499E-01±1.13E-16* 7.499E-01±0.00E+00*
g12 -1.00E+00±0.00E+00* -1.00E+00±0.00E+00* -1.00E+00±0.00E+00* -1.00E+00±0.00E+00* -1.00E+00±0.00E+00* -1.00E+00±0.00E+00*
g13 5.3942E-02±1.04E-17* 5.3942E-02±1.98E-34* 5.3942E-02±6.03E-14* 5.3942E-02±2.41E-17* 5.3942E-02±2.13E-17* 5.3942E-02±1.30E-17*
g14 -4.7765E+01±3.62E-15* -4.7765E+01±0.00E+00* -4.7765E+01±3.47E-10* -4.7765E+01±2.34E-14* -4.7765E+01±2.93E-14* -4.7765E+01±2.60E-15*
g15 9.6172E+02±0.00E+00* 9.6172E+02±0.00E+00* 9.6172E+02±4.47E-13* 9.6172E+02±5.80E-13* 9.6172E+02±5.80E-13* 9.6172E+02±0.00E+00*
g16 -1.9052E+00±2.64E-26* -1.9052E+00±2.62E-30* -1.9052E+00±0.00E+00* -1.9052E+00±4.53E-16* -1.9052E+00±4.53E-16* -1.9052E+00±0.00E+00*
g17 8.8535E+03±1.24E-27* 8.8535E+03±2.51E-23* 8.8802E+03±3.63E+01 8.8535E+03±0.00E+00* 8.8535E+03±3.23E-08* 8.8535E+03±2.98E-08*
g18 -8.6603E-01±6.51E-17* -8.6603E-01±4.62E-33* -8.6603E-01±3.30E-07* -8.6603E-01±6.94E-16* -8.6603E-01±2.47E-16* -8.6603E-01±0.00E+00*
g19 3.2656E+01±1.07E-10* 3.2656E+01±1.52E-05* 3.2656E+01±3.37E-07* 3.2656E+01±2.18E-14* 3.2656E+01±2.25E-14* 3.2656E+01±4.17E-10*
g21 2.6195E+01±5.34E+01 1.9372E+02±1.62E-22* 1.9372E+02±3.66E-09* 1.9372E+02±2.95E-11* 1.9372E+02±4.82E-10* 1.9372E+02±5.17E-11*
g23 -4.0006E+02±7.33E-11* -4.0006E+02±9.08E-26* -4.0006E+02±6.49E-06* -4.0006E+02±1.71E-13* -4.0006E+02±1.66E-05* -4.0006E+02±4.37E-09*
g24 -5.5080E+00±.24E-28* -5.5080E+00±0.00E+00* -5.5080E+00±0.00E+00* -5.5080E+00±9.06E-16* -5.5080E+00±9.06E-16* -5.5080E+00±0.00E+00*
* 21 22 21 22 22 22

TABLE VII
COMPARISON OF HECO-DE WITH HCO-DE AND HECO-DE(FR) ON

FUNCTIONS G02, G10, G21, AND G23

CEC2006 Mean (Success Rate%)[Feasible Rate%]
HCO-DE HECO-DE(FR) HECO-DE

g02 -0.8032(96)[100] -0.8036(100)[100] -0.8036(100)[100]
g10 6815.3984(76)[80] 7013.3762(80)[84] 7049.2480(100)[100]
g21 23.2469(12)[12] 7.4898(4)[4] 193.7245(100)[100]
g23 -376.0544(96)[100] -376.0436(92)[100] -400.0551(100)[100]

REFERENCES

[1] Z. Michalewicz and M. Schoenauer, “Evolutionary algorithms for con-
strained parameter optimization problems,” Evolutionary computation,
vol. 4, no. 1, pp. 1–32, 1996.

[2] C. A. Coello Coello, “Theoretical and numerical constraint-handling
techniques used with evolutionary algorithms: A survey of the state of
the art,” Computer Methods in Applied Mechanics and Engineering, vol.
191, no. 11-12, pp. 1245–1287, 2002.

[3] E. Mezura-Montes and C. A. Coello Coello, “Constraint-handling in
nature-inspired numerical optimization: Past, present and future,” Swarm
and Evolutionary Computation, vol. 1, no. 4, pp. 173–194, 2011.

[4] C. Segura, C. A. C. Coello, G. Miranda, and C. León, “Using multi-
objective evolutionary algorithms for single-objective constrained and
unconstrained optimization,” Annals of Operations Research, vol. 240,
no. 1, pp. 217–250, 2016.

[5] P. N. Suganthan. (2020) Comparison of results in 2019 on
CEC Competition on Constrained Real Parameter Optimization
2017. Accessed on 1 March 2020. [Online]. Available: https:
//github.com/P-N-Suganthan/CEC2017

[6] M. T. Jensen, “Helper-objectives: Using multi-objective evolutionary
algorithms for single-objective optimisation,” Journal of Mathematical
Modelling and Algorithms, vol. 3, no. 4, pp. 323–347, 2004.

[7] T. Friedrich, J. He, N. Hebbinghaus, F. Neumann, and C. Witt, “Analyses
of simple hybrid algorithms for the vertex cover problem,” Evolutionary
Computation, vol. 17, no. 1, pp. 3–19, 2009.

[8] T. Xu, J. He, C. Shang, and W. Ying, “A new multi-objective model for
constrained optimisation,” in Advances in Computational Intelligence
Systems: the 16th UK Workshop on Computational Intelligence, P. An-
gelov, A. Gegov, C. Jayne, and Q. Shen, Eds. Springer, 2017, pp.
71–85.

[9] S. Zeng, R. Jiao, C. Li, X. Li, and J. S. Alkasassbeh, “A general frame-
work of dynamic constrained multiobjective evolutionary algorithms for
constrained optimization,” IEEE transactions on Cybernetics, vol. 47,
no. 9, pp. 2678–2688, 2017.

[10] C. Peng, H.-L. Liu, and F. Gu, “A novel constraint-handling technique
based on dynamic weights for constrained optimization problems,” Soft
Computing, vol. 22, no. 12, pp. 3919–3935, 2018.

[11] B.-C. Wang, H.-X. Li, Q. Zhang, and Y. Wang, “Decomposition-based
multiobjective optimization for constrained evolutionary optimization,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018.

[12] J. He and X. Yao, “Towards an analytic framework for analysing the
computation time of evolutionary algorithms,” Artificial Intelligence, vol.
145, no. 1-2, pp. 59–97, 2003.

[13] T. Chen, J. He, G. Chen, and X. Yao., “Choosing selection pressure for
wide-gap problems,” Theoretical Computer Science, vol. 411, no. 6, pp.
926–934, 2010.

[14] T. Xu, J. He, and C. Shang, “Helper and equivalent objective different
evolution for constrained optimisation,” in Proceedings of the Genetic
and Evolutionary Computation Conference Companion, 2019, pp. 9–10.

[15] P. D. Surry and N. J. Radcliffe, “The COMOGA method: constrained
optimisation by multi-objective genetic algorithms,” Control and Cyber-
netics, vol. 26, pp. 391–412, 1997.

[16] E. Camponogara and S. N. Talukdar, “A genetic algorithm for con-
strained and multi-objective optimization,” in 3rd Nordic Workshop on
Genetic Algorithms and Their Applications (3NWGA), Vaasa, Finland,
1997.

[17] E. Mezura-Montes and C. A. C. Coello, “Constrained optimization
via multiobjective evolutionary algorithms,” in Multiobjective Problem
Solving from Nature, J. Knowles, D. Corne, K. Deb, and D. Chair, Eds.
Springer Berlin Heidelberg, 2008, pp. 53–75.

[18] Y. Zhou, Y. Li, J. He, and L. Kang, “Multi-objective and MGG
evolutionary algorithm for constrained optimisation,” in Proceedings
of 2003 IEEE Congress on Evolutionary Computation. Canberra,
Australia: IEEE Press, 2003, pp. 1–5.

[19] Z. Cai and Y. Wang, “A multiobjective optimization-based evolutionary
algorithm for constrained optimization,” IEEE Transactions on Evolu-
tionary Computation, vol. 10, no. 6, pp. 658–675, 2006.

[20] Y. Wang and Z. Cai, “Combining multiobjective optimization with
differential evolution to solve constrained optimization problems,” IEEE
Transactions on Evolutionary Computation, vol. 16, no. 1, pp. 117–134,
2012.

[21] ——, “A dynamic hybrid framework for constrained evolutionary opti-
mization,” IEEE Transactions on Systems, Man, and Cybernetics, Part
B: Cybernetics, vol. 42, no. 1, pp. 203–217, 2012.

[22] C. A. C. Coello and E. Mezura-Montes, “Handling constraints in genetic
algorithms using dominance-based tournaments,” in Adaptive Computing
in Design and Manufacture V. Springer, 2002, pp. 273–284.

[23] X. Li, S. Zeng, C. Li, and J. Ma, “Many-objective optimization with
dynamic constraint handling for constrained optimization problems,”
Soft Computing, vol. 21, no. 24, pp. 7435–7445, 2017.

[24] K. Deb and R. Datta, “A bi-objective constrained optimization algorithm
using a hybrid evolutionary and penalty function approach,” Engineering
Optimization, vol. 45, no. 5, pp. 503–527, 2013.

https://github.com/P-N-Suganthan/CEC2017
https://github.com/P-N-Suganthan/CEC2017


12

[25] R. Datta and K. Deb, “Uniform adaptive scaling of equality and inequal-
ity constraints within hybrid evolutionary-cum-classical optimization,”
Soft Computing, vol. 20, no. 6, pp. 2367–2382, 2016.

[26] R. Jiao, S. Zeng, J. S. Alkasassbeh, and C. Li, “Dynamic multi-objective
evolutionary algorithms for single-objective optimization,” Applied Soft
Computing, vol. 61, pp. 793–805, 2017.

[27] W. Huang, T. Xu, K. Li, and J. He, “Multiobjective differential evolution
enhanced with principle component analysis for constrained optimiza-
tion,” Swarm and Evolutionary Computation, p. 100571, 2019.

[28] B. Ji, X. Yuan, and Y. Yuan, “Modified NSGA-II for solving continuous
berth allocation problem: Using multiobjective constraint-handling strat-
egy,” IEEE Transactions on Cybernetics, vol. 47, no. 9, pp. 2885–2895,
2017.

[29] J.-Y. Ji, W.-J. Yu, Y.-J. Gong, and J. Zhang, “Multiobjective optimization
with -constrained method for solving real-parameter constrained opti-
mization problems,” Information Sciences, vol. 467, pp. 15–34, 2018.

[30] R. Jiao, S. Zeng, and C. Li, “A feasible-ratio control technique for
constrained optimization,” Information Sciences, vol. 502, pp. 201–217,
2019.

[31] S. Zeng, R. Jiao, C. Li, and R. Wang, “Constrained optimisation by solv-
ing equivalent dynamic loosely-constrained multiobjective optimisation
problem,” International Journal of Bio-Inspired Computation, vol. 13,
no. 2, pp. 86–101, 2019.

[32] T. Xu and J. He, “A multi-population helper and equivalent objective
differential evolution algorithm,” in 2019 IEEE Symposium Series on
Computational Intelligence (SSCI). IEEE, 2019, pp. 2237–2244.

[33] J. He, B. Mitavskiy, and Y. Zhou, “A theoretical assessment of solution
quality in evolutionary algorithms for the knapsack problem,” in Pro-
ceedings of 2014 IEEE Congress on Evolutionary Computation. IEEE,
2014, pp. 141–148.

[34] F. Neumann and A. M. Sutton, “Runtime analysis of evolutionary
algorithms for the knapsack problem with favorably correlated weights,”
in International Conference on Parallel Problem Solving from Nature.
Springer, 2018, pp. 141–152.

[35] K. Deb, “An efficient constraint handling method for genetic algorithms,”
Computer methods in applied mechanics and engineering, vol. 186, no.
2-4, pp. 311–338, 2000.

[36] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Transactions on evolutionary computa-
tion, vol. 11, no. 6, pp. 712–731, 2007.

[37] A. Trivedi, D. Srinivasan, K. Sanyal, and A. Ghosh, “A survey of
multiobjective evolutionary algorithms based on decomposition,” IEEE
Transactions on Evolutionary Computation, vol. 21, no. 3, pp. 440–462,
2017.

[38] J. He and X. Yao, “Average drift analysis and population scalability,”
IEEE Transactions on Evolutionary Computation, vol. 21, no. 3, pp.
426–439, 2017.
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