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Abstract

Near-field acoustic holography (NAH) has proved to be an enormously successful sound

source identification technique, which is widely used in field of acoustics and noise con-

trol. The work presented in this thesis aims at developing a novel method for modelling

near-field acoustic holography, where the particle velocity on the surface of a vibrating

structure is recovered from measurements taken in the exterior field. The model devel-

oped will form a powerful predictive tool for identifying sources of acoustic radiation for

applications in mechanical and audio engineering.

Inspired by advances in the solution of ill-posed problems in imaging science using the

so-called compressed sensing, we seek to develop new compressed or sparse reconstruction

methods for the NAH problem. A sparse superposition method will be developed and

implemented based on the inverse method of superposition (MoS), or equivalent source

method as it is often known. The method should be able to reconstruct the normal

velocity of a vibrating object using a very small number of charge points. Two primary

reasons this is beneficial are; one can potentially reduce the amount of measured data

required, and one could also detect sources of noise when small clusters of charge points

are identified. The sparse inverse MoS will then be applied to reconstruct the surface

velocity of a loudspeaker from measurements of the sound pressure field taken in a semi-

anechoic chamber. The development of the new sparse inverse MoS and its experimental

verification form the primary contributions to knowledge of this thesis.
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Chapter 1

General introduction

1.1 Introduction

The problem of Near-field Acoustic Holography (NAH) is to reconstruct the vi-

brational response of a structure from measurements of its radiated exterior acous-

tic field. The aim of the research presented in this thesis is to develop improved

and novel methods for modelling NAH. The importance of such models arises in

their application to inverse acoustics problems from mechanical, naval and audio

engineering. In fact, we consider several methods to reconstruct the vibrations of

an object’s surface such as Fourier acoustics, inverse boundary element methods

and the inverse Method of Superposition (MoS). Fourier methods are limited to

specific geometries and the inverse boundary element method is complicated and

requires a large number of measurement points to reconstruct the vibration of an

object’s surface with appropriate accuracy, which makes it difficult to apply in

practice. The main aim will therefore be to find a practical method to model

NAH with a relatively small number of measurement points, low computational

overheads and reasonable accuracy.
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The methodological approach taken to meet these aims will be based on the

inverse MoS together with modern sparse regularisation procedures in order to

achieve a relatively straightforward and efficient numerical method. We will demon-

strate that for the forward Neumann boundary value problem associated to NAH,

the MoS outperforms the boundary element method in terms of accuracy, requires

far lower computational times and is simpler to implement due to not having to

calculate singular integrals. In addition, the MoS shares the advantage of the

boundary element method in terms of not being limited to simple geometrical

settings like the Fourier based methods. Furthermore, the combination of the

inverse MoS with sparse regularisation methods allows the reconstruction of the

vibrational behaviour of a structure using relatively few degrees of freedom in the

model and is also robust to reduced measurement data sets.

In Chapter 1, we will give a thorough literature review of numerical methods

for near-field acoustic holography. The review includes several important points of

reference, from the first study on NAH in the early eighties, until the present day

state-of-the-art.

In Chapter 2, the boundary element method will be considered for the solu-

tion of the Helmholtz equation in an unbounded exterior domain. Then, a direct

boundary integral representation of the solution will be detailed and followed by

the numerical solution using the collocation method.

In Chapter 3, the concept of Fourier acoustics methods for solving the inverse

problem of NAH will be described, and the vibrational behaviour of a structure

will be reconstructed from acoustic pressure data in the near-field. Then, Fourier

transforms and the convolution theorem will be applied to solve this integral equa-

tion for either the pressure or the Neumann data on the plate, given the acoustic

pressure data in the near-field above the plate.
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Chapter 4 will extend the methods in Chapter 2 to give a reformulation of

the boundary integral equation for the Helmholtz equation, for solving the inverse

problem of NAH. Reconstructions of the Neumann boundary data will then be

computed on general three-dimensional structures, given noisy acoustic pressure

data in the exterior domain.

Chapter 5 will describe the method of superposition (MoS) and its numerical

application to solve both the forward Neumann problem, and the inverse NAH

problem. The numerical results of using the MoS for the forward Neumann problem

and for the inverse problem of NAH will be compared with the BEM results from

Chapters 2 and 4, respectively.

In Chapter 6, the theory of compressive sampling, including the key concepts

of sparsity and incoherence will be introduced. Then, the possibility of a sparse

solution representation using `1 optimization techniques based on the method of

superposition applied to three dimensional NAH problems will be discussed. The

method of superposition based on compressive sampling will be applied to a cuboid

that has similar dimensions to a typical loudspeaker.

In Chapter 7, the validity of the sparse inverse method of superposition for

NAH presented in Chapters 5 and 6 will be verified by using measured pressure

data for a loudspeaker in a semi-anechoic chamber. The final chapter will conclude

our findings and propose several potential areas for further work.

1.2 Background

In the following sections we describe a number of different acoustics models

and their applications, before focusing an our problem of interest, NAH. We then

survey the current state-of-the-art numerical methods for the NAH problem.
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1.2.1 Interior and exterior acoustic problems

A distinction can be made between interior and exterior acoustic problems. For

interior problems the acoustic waves are reflected in an enclosure resulting in a

sound field which is dominated by resonant behaviour (for example, noise inside

an engine). On the contrary, when an object radiates sound into an unconfined

free space, the problem is described as an exterior problem (for example, noise

radiation from an aircraft). The study of near-field acoustic holography is classed

as an exterior problem since it is based on measurements of a sound field taken in

an anechoic chamber, and hence the experimental set-up is designed to replicate

an unbounded exterior domain [1].

Exterior acoustic problems can be divided into two main types: scattering prob-

lems and radiation problems. In scattering problems, the acoustic wave impinges

on an object (or scatterer) and the acoustic characteristics of the scattered sound

field have to be determined. On the other hand, in radiation problems a non-zero

boundary condition on the surface of the object is prescribed and the resulting

acoustic field has to be predicted. Near-field acoustic holography falls under the

category of a radiation problem, since the acoustic field originates from the object

and not from an incident external wave field.

1.2.2 Forward and inverse problems in acoustics

In a forward problem, the solution process involves finding effects based on a com-

plete description of their causes. An inverse problem involves the determination of

the unknown causes based on the observation of their effects. The exterior acoustic

radiation problem belongs to the class of forward problems because the cause is

prescribed (that is the vibration of a structure) and the effects (the sound field)

have to be determined. The inverse problem associated with the exterior acoustic
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radiation problem is precisely the problem encountered in NAH [2]. In this prob-

lem we take measurements of the radiated exterior acoustic field (the effect) and

from this we seek to determine the structural vibrations that created this measured

field.

1.2.3 Near-field acoustic holography

Near-field acoustic holography has proved to be an enormously useful sound

source identification technique, and is widely used in the fields of acoustics and

noise control [3]. The first numerical techniques for NAH were developed by

Williams and Maynard [1]. In general, acoustic holography involves measuring

the sound pressure and analysing the field radiated from an object [4]. Tradition-

ally, measurements were taken on a hologram plane facing a vibrating plate [1],

but nowadays a conformal surface is often used for more general geometries [5].

Noise and vibration issues are of great interest across a number of industrial

sectors, including automotive, aircraft and home appliance manufacturers. Im-

proving the noise and vibration performance of a product requires a diagnosis of

the root causes of any undesirable noise and vibration, as well as knowledge of

their interrelationships. A common approach is to scan a structure using a sound

intensity probe to identify any regions of significantly high acoustic energy in the

surrounding fluid medium [38]. According to Wu [6], the advantage of NAH is that

it enables us reconstruct all acoustic quantities, at any point in space and on the

source surface, by measuring the acoustic pressure in the near field of the radiating

source surface.

This research will focus on developing numerical methods for reconstructing

the acoustic field on a radiating structure, such as loudspeaker or an automotive

5



engine. The normal velocity on the surface and hence the surface pressure can

be reconstructed, and from this the acoustic intensity may be calculated. The

acoustic intensity is of interest since it gives more information about the acoustic

field than the pressure alone. For example, the radiating part of a field can be

separated from the reactive part. In this work we focus mainly on reconstructing

the normal velocity on the surface, assuming that the surface geometry is known.

1.2.4 Fourier based NAH

Fourier acoustics based NAH uses an acoustic double layer potential to repre-

sent the sound radiated from a two-dimensional planar region. Since the double

layer potential is essentially the convolution of the normal derivative of the half-

space Green’s function with the acoustic pressure in the two-dimensional planar

region, the latter quantity may be recovered by using Fourier transforms and the

convolution theorem. More detail is given in Chapter 3.

Fourier methods were the first numerical techniques to be developed for solv-

ing the NAH problem [7]. Note that unlike the other methods discussed in this

chapter, Fourier methods are not themselves numerical approximation methods.

However, since the reconstructions are based on discrete and finite data sets, then

the discrete Fourier transform is used to approximate the Fourier (and inverse

Fourier) transform, and in that respect we consider these Fourier methods to be

numerical techniques. The acoustic pressure at any point in a source free region

can be reconstructed by taking the inverse Fourier transform to obtain the acous-

tic pressure in the space frequency domain on the two-dimensional planar region.

The particle velocity can be reconstructed in a similar way through a different

propagator, see Section 3.3.2. Once the acoustic pressure and the particle veloc-

ity are reconstructed, the acoustic intensity can be specified. Therefore, once the
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acoustic pressure on a hologram surface is measured, then all the other acoustic

quantities can be determined [1,8]. Theoretically, the measurement (or hologram)

plane must be of infinite extent and without the presence of any other source or

boundary surface. However, in reality, such a source free region is non-existent.

In later work, variations of NAH, such as patch NAH have been developed by

Williams [9], where measurements are only required on a small region of the total

surface. However, the reconstruction accuracy would deteriorate using patch NAH,

unless the acoustic field was null away from the patch. In addition, acoustically

radiating manufactured structures are rarely as geometrically simple as a planar

surface and so Fourier based NAH is limited in its range of applications. Whilst

Fourier based NAH can also be applied to separable geometries in other coordinate

systems, such as spheres and cylinders, alternative technologies are usually needed

to apply NAH to more general structures.

1.2.5 Boundary element method

Numerical approximation methods enable the simulation of sound fields for a

wide variety of geometries and boundary conditions. In the low and medium

frequency ranges two important methods exist: the Finite Element Method (FEM)

and the Boundary Element Method (BEM). Whereas FEM involves numerically

solving a differential equation (for example, the Helmholtz equation), the BEM

uses a boundary integral formulation as its basis [10]. To reach a reasonable

accuracy, a sufficient number of nodes per acoustic wavelength is required for both

the BEM and the FEM. Since the wavelength shortens with increasing frequency,

the number of elements must increase accordingly to maintain the same level of

accuracy. For this reason, these element based approaches are restricted to low

and medium frequency applications.
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(a) Exterior problem. (b) Interior problem.

Figure 1.1: Interior and exterior domain modelling using boundary element meth-

ods.

Pederson and Munch [11], and Hodgson and Underwood [12] have applied the

BEM to solve a wide range of practical problems in acoustics, such as the mod-

elling of sound generated by loudspeakers or received by microphones [13]. The

BEM approach was also adapted by Chandler-Wilde et al. [14] to achieve accu-

rate approximations at high frequencies with a relatively low number of degrees of

freedom.

Boundary element methods are naturally suited to modelling unbounded do-

mains since they only require the discretization of a finite boundary surface to

obtain a solution anywhere in the unbounded domain (see Fig. 1.1). Not only

does this reduce the dimensionality of the problem considered by one, but it also

eradicates the need for the application of non-reflecting boundary conditions re-

quired in full domain discretisation methods such as the finite element and finite

difference methods [15–17]. Along with the fact that simple expressions for the

fundamental solution are well-known, these factors make the BEM a popular tool

for exterior acoustic problems.
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The inverse boundary element method (IBEM) is the boundary element method

applied to solve the inverse problem of NAH [6]. The IBEM was the first tech-

nique for modelling NAH problems with arbitrary geometries. In 1988, Gardner

and Bernard [18] applied the IBEM to reconstruct vibroacoustic quantities on an

arbitrarily shaped structure. A large number of articles on IBEM have since been

published, including [19,20]. More recently the IBEM has been combined in hybrid

methods, which use particular solutions of the Helmholtz equation to enrich the

measured data [21,22].

The IBEM has a number of advantages for NAH simulations, including its ver-

satility for general geometries, measurement point locations and solution point lo-

cations [6]. However, difficulties can arise at higher frequencies as for the forward

BEM discussed above. Another potential difficulty that the IBEM also inherits

from the forward BEM is that in their simplest (and most tractable) form, the

integral equations for the exterior problem do not have a unique solution at the

resonance frequencies of the associated interior problem. This is in contrast with

the Helmholtz equation description of the exterior problem, which does have a

unique solution [23, 24]. More complex methods and integral equation formula-

tions, such as the Burton and Miller formulation can be used in order to obtain an

accurate solution in the vicinity of these problematic frequencies [2]. One further

deficiency of the IBEM is that the integral representation of the sound pressure

is near singular when the measurement points are taken very close to the surface

element to be integrated over. For the forward BEM, this would only affect the

accuracy in the very near field [25], but for the application of the IBEM to NAH it

imposes a limitation on how close the measurement points can be to the radiating

structure.
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1.2.6 Basis approximation methods

A number of alternative methods to the IBEM have since been proposed for the

numerical solution of NAH problems with arbitrary geometries. These methods

effectively fit the measured pressure data to a linear combination of basis functions,

and then use the coefficients determined through this approximation to determine

the normal velocity of the vibrating object. The most well-known of these methods

with respect to NAH are the Helmholtz equation least squares (HELS) method pro-

posed by Sean Wu and co-workers [26,27] and the method of superposition, which

was applied to NAH in Refs. [28, 29], including a comparison against boundary

element approaches in the latter case. For HELS, the basis functions are chosen

as particular solutions to the Helmholtz equation in an idealized domain, typically

a sphere. In the case of the superposition method then it is the free space Green’s

functions that are usually employed for the basis.

It is shown in Ref. [30] that the superposition method for an exterior acoustic

problem is equivalent to the Helmholtz integral equation. This is one reason for

favouring the superposition approach to HELS, where the chosen basis is typically

only complete outside the minimum sphere enclosing the radiating object [27]. This

would be a drawback for approximating near-field radiation from objects that are

far from spherical. Koopman et al. [30] also argue that the superposition method

will not suffer from the same irregular frequency problem as the boundary element

method since the set of source points chosen for the superposition (after truncating

the superposition integral to a finite sum) will not form a unique boundary surface

inside the interior volume. However, the computations in Ref. [30] were only

performed with small numbers of source points, and irregular frequency problems

may arise should the source points more closely represent an interior boundary

surface [31,32].
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One of the main challenges involved in the superposition method is obtaining

an optimal choice of source (or charge) points over which to compute the super-

position. In particular, research on (forward) interior Helmholtz problems [33]

suggests that the source points should be chosen close to the radiating surface so

that no singularities of the analytically continued solution lie between the charge

points and the radiating surface. However, for the exterior problem, Koopman et

al. [30] report that choosing the charge points too close to the radiating surface

degrades the accuracy of the method, whilst choosing charge points too far from

the surface leads to very poor conditioning. Applying the superposition method

together with a nonlinear optimization algorithm to optimise the accuracy of the

solution over both the charge point strengths and locations is known as the method

of fundamental solutions, see for example Refs. [34, 35]. For NAH problems, the

charge points are typically chosen as the reflection of the measurement points with

respect to the radiating surface [28,29].

1.2.7 Regularisation

Near-field acoustic holography provides an example of a linear, ill-posed inverse

problem due to the existence of evanescent waves that decay rapidly as the distance

from the vibrating structure is increased. After discretisation, the problem is re-

duced to the solution of an ill-conditioned linear system of the form Ax = b. The

goal of regularisation methods is to prevent the solution x from becoming domi-

nated by contributions arising due to noise in the vector b, which typically come

from experimental error/noise in NAH. An overview of regularization techniques

for NAH is given by Williams in Ref. [36].

A number of regularisation techniques are available for linear inverse problems

such as NAH. However, many regularisation schemes, from a practical point of
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view, produce the same regularised solutions [37]. Two of the most commonly used

methods are the truncated singular value decomposition (SVD) and Tikhonov reg-

ularization [36]. Both methods rely on the careful choice of a particular parameter

value. In the truncated SVD it is the value of the minimum singular value that

should be included in the SVD. For Tikhonov regularization it is the value of the

regularisation parameter λ, where instead of Ax = b we are solving the perturbed

linear system (
ATA+ λ2LTL

)
x = ATb. (1.1)

Here L is known as the Tikhonov matrix, which is most simply taken to be the

identity matrix. This is a sound choice when no further information is known about

the solution of the unperturbed system (when λ = 0). Tikhonov regularisation is

intrinsically connected to the SVD, and its effect is to filter the smaller singular

values to suppress their contribution, rather than to cut them off entirely as in

the truncated SVD. A number of methods for choosing the parameter λ exist

and are surveyed by Williams in [36]. The best selection method is an open and

problem dependent question. For Fourier based NAH, Williams [36] suggests to use

generalised cross validation (GCV), which is statistical technique for approximately

minimising the mean square error. Hansen [37] suggests to plot the norm of Lx

against the norm of the residual Ax − b, for a range of λ values. The plot is

known as the L-curve and often has a distinctive corner, where the two norms

are approximately minimised, and hence gives the optimum choice of λ. Whilst

this process could be computationally expensive for large system, typically this is

not a problem for NAH where the size of the system is constrained by the size of

the measurement data obtained. Another common method for choosing λ is the

Morozov discrepancy principle, however this technique requires prior knowledge of

the variance of the noise in the vector b. Therefore, we do not discuss it further

here, since in NAH such information is typically not known.
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1.2.8 Sparse regularization using compressed sensing

Compressed sensing (CS) was first introduced in 2006 by two groundbreaking

papers by Donoho [38] and Candés et al. [39]. It is now a widely accepted method

that enables a potentially large reduction in the sampling and computation data for

sensing signals that have a sparse or compressible representation [40]. Compressed

sensing was first applied to NAH problems using a plane wave basis by Chardon

et al. [41]. They applied compressed sensing based on the sparsity of the normal

velocity for convex homogeneous plates with arbitrary boundary conditions to

identify the vibrating sources. The results demonstrate that there is potential to

reconstruct sparse signals with a small number of measurements and high accuracy.

These methods are also related to Tikhonov regularisation as discussed in [41],

and the main difference arises from the choice of norm to be minimised. Tikhonov

regularisation is based on `2 norm minimisation, whereas sparse methods seek to

minimise `1 norms.

Over the last few years, a number of publications on compressed sensing for

NAH problems have emerged, which use the inverse method of superposition to

reconstruct the vibrations of an acoustically radiating structure [42, 43]. The first

of these papers, by Jorgen Hald, introduced the wideband acoustical holography

method, which makes use of compressed sensing principles [43]. In Ref. [43], wide-

band acoustical holography was tested on a vibrating plate and successfully located

and quantified the main sources of noise.

More recently, CS theory has been applied with the inverse method of super-

position to 2D and 3D radiating objects [44, 45]. Fernandez-Grande and Xenaki

proposed a wave expansion method, based on measurements with a spherical mi-

crophone array, formulated in the framework provided by compressed sensing [46].

Hald also expanded his wideband acoustical holography method to represent the

sound field in a given three-dimensional region, with measurements taken using
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an irregular two-dimensional array [47]. Active research in this area is ongoing

and new sparse methods are frequently being developed, such as the compressed

modal equivalent point source method (CMESM) proposed by Bi et al. [48], and

the improved source optimisation methods recently proposed by Hald [49].

1.3 Summary

In this chapter, we considered the general concept of interior and exterior prob-

lems in acoustics and discussed the nature of the problem of NAH as an inverse

exterior acoustic problem. We also discussed some numerical techniques for NAH

problems, starting with the first technique, Fourier acoustics based NAH. Then

we discussed more recent developments, such as the inverse boundary element

method, which can be applied to solve the inverse problem of NAH for general

geometries. We then detailed a number of approaches that can be described as

basis approximation methods. These methods can be used to gain more efficient

numerical solutions and shorter computational times. Finally, we discussed regu-

larisation techniques such as the truncated singular value decomposition, Tikhonov

regularization and sparse reconstruction methods.
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Chapter 2

Exterior acoustic modelling and the

boundary element method

2.1 Introduction

In this chapter we present a summary of the boundary element method (BEM)

for the solution of the Helmholtz equation in an unbounded exterior domain. We

derive a direct boundary integral representation of the solution and discuss its nu-

merical solution via the collocation method. The derived boundary integral repre-

sentation will also be important for the subsequent chapters on Fourier acoustics

based NAH (Chapter 3), as well as the inverse boundary element method based

NAH described in Chapter 4. We describe a singularity subtraction method for

evaluating the weakly singular integrals that are present in the boundary inte-

gral equations, before finally providing some numerical results to demonstrate the

capability of the method.

Let Ω− ⊂ R3 be a domain in R3, interior to the boundary surface Γ where we

assume that Γ is continuous and piecewise C2. Also, let Ω+ = R3 \ Ω̄− denote
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the unbounded exterior domain, which is assumed to be filled with a homogeneous

compressible acoustic medium with density ρ and speed of sound c.

It is well known that acoustic waves of small amplitude propagate through Ω+

according to the linear wave equation [50]

4Φ(x, t) =
1

c2

∂2Φ(x, t)

∂t2
, (2.1)

where Φ(x, t) is the excess pressure at x ∈ Ω+ and time t. We require all radiated

waves to be outgoing at infinity and this can be expressed by the following radiation

condition

lim
R→∞

R

{
∂Φ

∂R
+

1

c

∂Φ

∂t

}
= 0, (2.2)

where R is the distance from x to a fixed origin y ∈ Γ, i.e. R = |x− y|.

In this chapter we assume that Φ(x, t) has harmonic time dependence with a

constant frequency f . This means that we can write Φ(x, t) = φ(x)e−iωt, where

ω = 2πf is the angular frequency and φ(x) is the amplitude of Φ at x ∈ Ω+.

Substituting this into (2.1) we obtain the Helmholtz’ (or reduced wave) equation

4φ(x) + k2φ(x) = 0, x ∈ Ω+ (2.3)

where k := ω/c is called the acoustic wavenumber. Applying the same (time

harmonic) substitution to (2.2), we obtain the Sommerfeld radiation condition

lim
R→∞

R

{
∂φ

∂R
− ikφ

}
= 0. (2.4)

We also require a boundary condition on Γ and together with (2.3) and (2.4) this

defines the governing boundary value problem (BVP) for our exterior acoustic
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problem. We assume this boundary condition is one of the following:

(a) φ(x) = f(x) x ∈ Γ (Dirichlet condition)

(b)
∂φ(x)

∂n̂
= f(x) x ∈ Γ (Neumann condition)

(c)
∂φ(x)

∂n̂
+ h(x)φ(x) = f(x) x ∈ Γ (Robin condition),

(2.5)

where the functions f, h : Γ → C are known and n̂ is the outward unit normal to

Ω−. The existence and uniqueness of solutions to the BVP (2.3, 2.4, 2.5) given

Re(k) > 0 and Im(k) ≥ 0 are shown in [24, 51] for (2.5 (a) and (b)). It is also

shown for the Robin case in [24] for functions h such that either Im(h) > 0, or

Im(h) >
Im(k)

Re(k)
Re(h). The remainder of this chapter considers how we can use the

BEM to numerically solve the exterior acoustic BVP.

2.2 The surface Helmholtz integral equation

There are two methods commonly used to reformulate the above BVP into an

integral equation, either indirectly using layer potentials or directly using Green’s

identities. The indirect formulations are so-called because the resulting integral

equation is not solved for a field quantity such as φ or ∂φ/∂n̂, but for a quantity

called a layer density, which in general has no physical significance (see [23] for

further details). Since our eventual aim is to model real applications using experi-

mentally obtained data, it would be preferable to obtain a field quantity from our

solution which would have some physical meaning. We proceed using the direct

formulation for precisely this reason.

We begin by considering the first two Green’s identities in three dimensions [52].

We adopt the notation dV to denote a volume integral and dΓ to denote a surface

integral.
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Theorem 2.1 Green’s first identity for the Laplace operator.

Let V ∈ R3 be a domain with closed boundary surface Σ = ∂V and let φ1, φ2 :

V → C be C2 functions, then∫
V

(φ14φ2 +∇φ1 · ∇φ2) dV =

∫
Σ

φ1
∂φ2

∂n̂
dΓ. (2.6)

Proof.

Consider the following easily verified identity

φ14φ2 + (∇φ1) · (∇φ2) = ∇ · (φ1∇φ2).

Integrating over V we obtain∫
V

(φ14φ2 +∇φ1 · ∇φ2) dV =

∫
V

∇ · (φ1∇φ2)dV,

and so applying Gauss’ divergence theorem to the right hand side gives∫
Σ

(φ1∇φ2) · n̂ dΓ =

∫
Σ

φ1(∇φ2 · n̂) dΓ.

�

Corollary 2.1 Green’s second identity for the Laplace operator.

Let V , Σ, φ1 and φ2 be as above, then∫
V

(φ14φ2 − φ24φ1) dV =

∫
Σ

(
φ1
∂φ2

∂n̂
− φ2

∂φ1

∂n̂

)
dΓ. (2.7)

Proof.

Immediate by interchanging φ1 and φ2 in the first identity, then subtracting this

from (2.6) and using the symmetry of the scalar product.

�
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We cannot apply this result directly on the unbounded exterior region Ω+ and so

we apply it on the region BR \Ω where BR is a closed ball of radius R centered at

the origin such that Ω ⊂ BR. We set φ1 = φ and φ2 = Gk, where φ is the solution

we require from our BVP (2.3, 2.4, 2.5) and Gk is the free space Green’s function

(or fundamental solution) for Helmholtz’ equation in three dimensions given by

Gk(x,y) =
eik|x−y|

4π|x− y|
. (2.8)

This means that Gk satisfies

4Gk(x,y) + k2Gk(x,y) = −δ(x− y) (2.9)

in both variables and the radiation condition (2.4), where δ denotes the Dirac delta

function. Physically Gk(x,y) represents the effect at y of a unit point source at x

radiating into free-space. Substituting all this into (2.7) we obtain∫
BR\Ω

(φ4Gk −Gk4φ) dV =

∫
Γ∪ΣR

(
φ
∂Gk

∂n̂
−Gk

∂φ

∂n̂

)
dΓ, (2.10)

where ΣR = ∂BR. Since Γ ∩ ΣR = ∅, the union we are integrating over is disjoint

and so we can write the RHS of (2.10) as the sum of two integrals with the same

integrand, one over Γ and one over ΣR. Taking the limit R→∞, BR \Ω becomes

Ω+ and using the radiation condition (2.4) we can show the integral over ΣR is

zero. This follows immediately from the fact that we can rewrite this integral as∫
ΣR

(
φ(y)

[
∂Gk(x,y)

∂n̂y

− ikGk(x,y)

]
−Gk(x,y)

[
∂φ(y)

∂n̂y

− ikφ(y)

])
dΓy, (2.11)

where dΓy and n̂y denote that the surface integral and the outward unit normal

taken with respect to the point y ∈ ΣR respectively. Hence we are left with∫
Ω+

(φ(y)4Gk(x,y)−Gk(x,y)4φ(y)) dVy =∫
Γ

(
φ(y)

∂Gk(x,y)

∂n̂y

−Gk(x,y)
∂φ(y)

∂n̂y

)
dΓy.

(2.12)
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Using Helmholtz’ equation (2.3) we can rewrite the volume integral as∫
Ω+

φ(y)
(
4Gk(x,y) + k2Gk(x,y)

)
dVy. (2.13)

The position of the point x dictates the value of (2.13). If x ∈ Ω−, then Gk

satisfies Helmholtz’ equation and so (2.13) is just zero. If x ∈ Ω+, then Gk is

singular when x = y and so we do not satisfy the assumptions needed for the use

of Green’s identities. However, we can avoid this singularity by taking a closed

ball Bε(x) with radius ε, centre x and boundary surface Σε. We then integrate

over the remaining volume and this gives an extra integration over Σε. Taking the

limit as ε→ 0 we obtain [51]∫
Ω+

φ(y)
(
4Gk(x,y) + k2Gk(x,y)

)
dVy = φ(x), x ∈ Ω+. (2.14)

If x ∈ Γ we use a similar procedure as for the exterior case except that now we

take the exterior part of the closed ball centered at x with radius ε. Assuming

that Γ is locally differentiable at x (this will be true at all but a finite number of

points by our assumption earlier), Σε becomes a hemisphere when ε is sufficiently

small and taking the limit as ε→ 0 gives [51]∫
Ω+

φ(y)
(
4Gk(x,y) + k2Gk(x,y)

)
dVy =

1

2
φ(x), x ∈ Γ. (2.15)

Combining (2.12), (2.13), (2.14) and (2.15) gives the Helmholtz integral formula

for the exterior problem

∫
Γ

(
φ(y)

∂Gk(x,y)

∂n̂y

−Gk(x,y)
∂φ(y)

∂n̂y

)
dΓy =


0 x ∈ Ω−

1
2
φ(x) x ∈ Γ

φ(x) x ∈ Ω+.

(2.16)

In the case of x ∈ Γ we can rewrite (2.16) in the form

−1

2
φ(x) +

∫
Γ

φ(y)
∂Gk(x,y)

∂n̂y

dΓy =

∫
Γ

Gk(x,y)
∂φ(y)

∂n̂y

dΓy, (2.17)
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which is commonly referred to as the surface Helmholtz’ equation (SHE). If we

assume that we have a Neumann boundary condition, then (2.17) is a second-kind

Fredholm integral equation for φ. This is the case we will consider in our test

problems, since it is the forward problem associated with the inverse problem of

NAH. Note that both Gk and ∂Gk
∂n̂y

have a weak singularity at x = y and so the

integrals in (2.17) will need to be evaluated using appropriate quadrature rules.

2.3 Discretisation using the collocation method

In order to solve equation (2.17) numerically we represent the boundary Γ as

a triangulated surface consisting of dn flat three-noded triangles (linear surface

interpolation). The solution function φ is approximated by

φ(y) =
n∑
j=1

φjψj(y), (2.18)

where ψ1(y), ψ2(y),... , ψn(y) are set of known basis functions and φ1, φ2, ...φn

are set of constants to be determined. Likewise, the normal derivative of φ can be

approximated using the same basis in the form

∂φ(y)

∂n̂
=

n∑
j=1

vjψj(y). (2.19)

The simplest collocation scheme to implement is based on a piecewise constant

approximation. Denote the dn triangular sub-surfaces that form Γ as T1, ..., Tdn

and define the basis functions to be

ψj(y) =

 1 if y ∈ Tj
0 otherwise

j = 1, ..., dn. (2.20)

In the case of the piecewise constant basis functions above then note that dn = n

since we have exactly one unknown per triangle.
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Substituting the piecewise constant basis functions (2.20) and equations (2.18)

and (2.19) into equation (2.17) yields

1

2

n∑
j=1

φjψj(x) =
n∑
j=1

∫
Tj

ψj(y)

(
∂Gk

∂n̂y
(x,y) φj −Gk(x,y) vj

)
dΓy. (2.21)

Since we integrate over Tj, then y ∈ Tj and so ψj(y) = 1. This means that

equation (2.21) can be simplified to

1

2

n∑
j=1

φjψj(x) =
n∑
j=1

∫
Tj

(
∂Gk

∂n̂y

(x,y) φj −Gk(x,y) vj

)
dΓy, (2.22)

where φj, j = 1, ..., n, are unknown, and vj are provided by the Neumann boundary

data.

We move the unknowns to the right and evaluate the solution at the collocation

points

x = xi ∈ Ti, i = 1, ..., n.

For a piecewise constant basis, the collocation points xi, i = 1, ..., n, are usually

taken to be the centroids of the triangles Ti. Making this choice, equation (2.22)

can be rewritten as follows

n∑
j=1

vj

∫
Tj

Gk(xi,y)dΓy = −1

2

n∑
j=1

φjψj(xi) +
n∑
j=1

φj

∫
Tj

∂Gk(xi,y)

∂n̂y

dΓy . (2.23)

Finally, we note that because ψj(xi) = 0 unless i = j, then

n∑
j=1

vj

∫
Tj

Gk(xi,y) dΓy = −1

2
φi +

n∑
j=1

φj

∫
Tj

∂Gk(xi,y)

∂n̂
dΓy. (2.24)

To solve equation (2.24), we can write it as a matrix-vector equation by setting

Kij =

∫
Tj

∂Gk

∂n̂y
(xi,y) dΓy,

Vij =

∫
Tj

Gk(xi,y) dΓy .

(2.25)

22



Hence, Eq. (2.24) may be written in the matrix-vector form

V v =
(
−1

2
I +K

)
φ, (2.26)

where I is the n× n identity matrix and φ and v are vectors of length n given by

φ = [φ1, φ2, ..., φn]T and v = [v1, v2, ..., vn]T , respectively.

2.3.1 Weakly singular integration

We now consider methods for evaluating weakly singular integrals since the

second integral (Vii) in Eq. (2.25) has a weak singularity when y = xi. If the

collocation point is in a different triangle to the one we integrate over, then the

integrals are non-singular and so they can easily be evaluated numerically. How-

ever, when the collocation point is in the same triangle that we integrate over,

then i = j and we have a weak singularity.

In the case of the integral in the definition of Kii, the integrand evaluates to

zero on a flat surface since
∂Gk

∂n̂y

=
∂R

∂n̂y

∂Gk

∂R
,

where R = |xi − y|. On a flat surface

∂R

∂n̂y

= n̂y · ∇yR = 0

since

∇yR =
1

R
(y − xi),

and n̂y and (y − xi) are orthogonal vectors. This is because Ti, i = 1, 2, ..., n are

flat triangles and the vector (y − xi) lies in the same plane as Ti.
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In the case of the integral in the definition of Vii in equation (2.25), we adopt a

singularity subtraction technique and rewrite Vii as

Vii =

∫
Ti

(eik|xi−y| − 1)

4π|xi − y|
dΓy +

∫
Ti

1

4π|xi − y|
dΓy. (2.27)

Using the Taylor expansion

eik|xi−y| = 1 + ik|xi − y| + O(|xi − y|2) (2.28)

and substituting equation (2.28) into the first term on the right side of equation

(2.27) gives

eik|xi−y| − 1

4π|xi − y|
=

1 + ik|xi − y| + O(|xi − y|2) − 1

4π|xi − y|

=
ik + O(|xi − y|)

4π
.

(2.29)

Therefore the first term on the right hand side of equation (2.27) is non-singular

and may be evaluated numerically using standard quadrature rules. The second

term is weakly singular, but can be evaluated analytically using polar coordinates

and trigonometry.

Let us consider integrals of the type arising in the second term of (2.27), where

we integrate over a triangle Ti with centroid xi. The integral over Ti may be

rewritten in polar coordinates by setting r = |xi − y| to be the radial distance

from the integration point y to the collocation point xi, and setting θ to be the

angular coordinate defined with respect to a fixed origin at xi. We obtain∫
Ti

1

|xi − y|
dΓy =

∫ 2π

0

∫ Rθ

0

1

r
r dr dθ =

∫ 2π

0

∫ Rθ

0

1dr dθ =

∫ 2π

0

Rθdθ, (2.30)

where Rθ corresponds to the radial distance from xi to the edge of the triangle Ti

for each angle 0 6 θ < 2π. We now split the integral with respect to θ into three

sub-integrals by subdividing Ti into three smaller triangles formed by connecting

24



Figure 2.1: Splitting the triangle Ti at the centroid for analytic integration.

the centroid to each vertex as shown in Fig. 2.1. We label these three smaller

triangles I1, I2 and I3 and label the edge they share with Ti as d1, d2 and d3,

respectively.

Figure 2.2: Quantities involved in the trigonometric interpretation of the radial

distance Rθ.
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Referring to Fig. 2.2 and using the sine rule of trigonometry, within sub-triangle

I1 we have that

Rθ =
R2 sin(α1)

sin(π − θ − α1)
.

Hence the integral (2.30) restricted to sub-triangle I1 can be expressed as

Figure 2.3: Quantities involves in the analytic integration formula for the integrals

over I1, I2 and I3 .

∫ L1

0

Rθdθ =

∫ L1

0

R2 sinα1

sin(π − θ − α1)
dθ,

where L1 denotes the range of θ values within I1 as shown in Fig. 2.3. Finally one

integrates the above expression leading to the following formula for the sub-integral

over I1:∫
I1

1

|xi − y|
dΓy = R2 sin(α1)

[
log(cosec(α1 + L1)− cot(α1 + L1))

− log

(
(1− cot(α1) sin(α1))

sin(α1)

)]
.

(2.31)

The integrals over I2 and I3 can be done by following the same procedure again.

Adding the three integrals together leads to the analytic calculation of the second

integral on the right hand side of (2.27).
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2.4 Numerical results

In order to generate test problems for an arbitrary geometry, we shall use point

sources to generate both the boundary data and the exact solution. Numerical

results for the acoustic radiation from two geometrically different problems are

considered. First, a unit sphere discretized by flat triangular elements, and second

a cuboid of similar dimensions to a typical loudspeaker cabinet (0.28 × 0.28 ×

0.42)m3. In the case of the unit sphere the interior eigenfrequencies are known a

priori. These are of interest since one well-known shortcoming of the boundary

integral formulation introduced in Section 2.2 is that its solution is not uniquely

defined at interior eigenfrequencies. The boundary data will be generated by a

single unit point source at y = (0, 0, 0.1) ∈ Ω−, where Ω− is centred at the origin.

All numerically estimated integrals are approximated using product 3 × 3 point

Gaussian quadrature.

Table 2.1: The relative errors for different k values with different numbers of

elements on the cuboid.

n Err (k = 1) Err (k = 10) Err (k = 17.52) Err (k = 25)

256 0.005887 0.015854 0.621088 0.058899

576 0.003528 0.008761 0.770646 0.028206

1024 0.002570 0.005796 0.493295 0.017181

1600 0.002078 0.004254 0.260537 0.011819

Table 2.1 shows the values of the `2 relative errors in the solution on the cuboid

for different values of the wavenumber and different numbers of the elements. The
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error is computed using the formula

Err =

√
n∑
i=1

(φi − φ(xi))2√
n∑
i=1

φ(xi)2

. (2.32)

It was found numerically that k = 17.52 corresponds to an interior eigenfrequency

of the cuboid and one notices a considerable increase in the error for this value of

k. The errors are also approximately halving as n is doubled, which is the expected

O(n−1) convergence rate for piecewise constant collocation [53]. This is shown in

Figure 2.4 for k = 1, 10 and 25. We also notice that, in general, the error is larger

for larger k values.
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Figure 2.4: Relative error for the cuboid

Table 2.2 shows the relative errors in solutions on the sphere for different values

of the wavenumber and different numbers of elements. It is known that k = π

corresponds to an internal resonance of the unit sphere. However, since here we

are using a triangulated representation of the sphere, the problematic wavenumber
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Table 2.2: The relative errors for different k values with different number of ele-

ments on the sphere.

n Err (k = 1) Err (k = 3.19) Err (k = 5)

80 0.026678 0.120742 0.036765

320 0.006372 27.511925 0.009127

1280 0.001486 0.047489 0.002497

5120 3.32E-04 0.011564 7.51E-04

corresponds to k = 3.19 when n = 320 triangular elements are used and larger

errors are observed in this case. However, k = 3.19 does not correspond to an

internal resonance for other choices of n and so the results improve for these cases.

That is, because the unit sphere has been represented using linear flat triangles, the

surface geometry changes each time n changes, which therefore causes the internal

resonance positions to change a small amount.

0 1000 2000 3000 4000 5000 6000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Number of elements (n)

R
el

at
iv

e 
er

ro
r

Relative error for the sphere

 

 
k=1
k=5

Figure 2.5: Relative error for the sphere
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Figure 2.5 illustrates the relative errors in solutions on the sphere for k = 1 and

k = 5 with different numbers of elements. Here we can see the same behaviour as

for the cuboid. In general the error is larger for larger k values. We also observe

the expected O(n−1) convergence rate since the errors are again approximately

halving as n is doubled.

2.5 Summary

In this chapter, the surface Helmholtz equation (2.17) for the exterior acoustic

problem of the Helmholtz equation has been derived. The discretisation using the

collocation method has been detailed for the solution of the surface Helmholtz

equation with a given Neumann boundary condition. Moreover, methods for eval-

uating the arising weakly singular integral have been discussed. Finally, we consid-

ered numerical examples on a cuboid and a sphere and obtained accurate results

in both cases.
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Chapter 3

Fourier acoustics and near-field

acoustic holography

3.1 Introduction

In this chapter we will discuss some of the introductory concepts of Fourier

acoustics and scrutinise how this theory can be used in formulating models for

near-field acoustic holography, that is, the inverse problem of reconstructing struc-

tural behaviour from measurements of the surrounding sound field. Here, we refer

to Fourier acoustics as the application of Fourier transform based methods to

solve the governing boundary integral equations. Fourier acoustics based NAH

uses an acoustic double layer potential to describe the sound radiation from a two-

dimensional planar region. In view of the fact that the double layer potential is

effectively the convolution of the normal derivative of the half-space Green’s func-

tion with the acoustic pressure in a two-dimensional planar region, the structural

data may be obtained by using Fourier transforms and the convolution theorem.
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3.2 Integral equations and Green’s functions

Figure 3.1: A vibrating plate at z = zI and a parallel hologram plane at z = zH

where the pressure data is sampled in NAH.

Our aim is to reconstruct the surface velocity field on a radiating flat plate

from known values of the pressure in a parallel plane at a small distance from the

plate. Let the plane z = zI be the (infinite) surface of the vibrating plate, and

the plane z = zH be the measurement (or hologram) plane, as shown in Figure

3.1. Let us now assume that x′ = (x′, y′, zI) is a point on the vibrating plate and

x = (x, y, z) ∈ R3 with z > zI .

We consider the sound pressure φ at the point x, which is given by the Helmholtz

integral equation as follows

φ(x) =

∫ ∞
−∞

∫ ∞
−∞

(
φ(x′)

∂G̃k

∂n̂′
(x,x′) − ∂φ

∂n̂′
(x′) G̃k(x,x

′)

)
dx′dy′. (3.1)
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Here n̂′ = (0, 0, 1) denotes the unit normal vector to the infinite plate, pointing into

the half-space above. Note that (3.1) is simply equation (2.16) for x ∈ Ω+ with

Γ = R2 and the free-space Green’s function Gk replaced with a half-space Green’s

function G̃k. We now discuss how to obtain the half-space Green’s function G̃k for

the plate radiation problem in the half-space z ≥ zI using the so-called method of

images. The starting point is to again consider the free-space Green’s function for

the Helmholtz equation in three dimensions, which is given by

Gk(x,x
′) =

eik|x−x
′|

4π|x− x′|
, (3.2)

where |x−x′| =
√

(x− x′)2 + (y − y′)2 + (z − zI)2. We shall construct the Green’s

function G̃k to represent the physics of our half-space problem and, as a result,

simplify the integral equation (3.1). Using the method of images, we consider the

Green’s function Gk evaluated at the reflection of the point x in the plane z = zI .

This reflection point is located at x̂ = (x, y, 2zI − z) and hence we obtain

Gk(x̂,x
′) =

eik
√

(x−x′ )2+(y−y′ )2+(zI−z)2

4π
√

(x− x′)2 + (y − y′)2 + (zI − z)2
= Gk(x,x

′). (3.3)

Subtracting the reflected Green’s function from original Green’s function yields

our modified Green’s function

G̃k(x,x
′) := Gk(x,x

′)−Gk(x̂,x
′), (3.4)

which is therefore zero.

In order to evaluate the integral equation (3.1), then we also need to find

∂G̃k/∂n̂
′ = ∂G̃k/∂zI . Using the definition (3.4) leads to

∂G̃k

∂zI
=
∂Gk

∂zI
(x,x′)− ∂Gk

∂zI
(x̂,x′)

=
∂Gk

∂zI
(x,x′) +

∂Gk

∂zI
(x,x′),
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since from (3.3)

Gk(x̂,x
′) = f(x− x′, y − y′, zI − z), (3.5)

where

f(x, y, z) =
eik
√

(x)2+(y)2+(z)2

4π
√

(x)2 + (y)2 + (z)2
, (3.6)

whereas

Gk(x,x
′) = f(x− x′, y − y′, z − zI). (3.7)

Note the change of sign in the third argument.

As a result we end up with the expression

∂G̃k

∂zI
=

1

2π

∂

∂zI

[
eik
√

(x−x′ )2+(y−y′ )2+(z−zI)2√
(x− x′)2 + (y − y′)2 + (z − zI)2

]
. (3.8)

Equation (3.1) can now be rewritten using that G̃k = 0 to give

φ(x) =

∫ ∞
−∞

∫ ∞
−∞

∂G̃k

∂n̂′
(x,x′)φI(x

′)dx′dy′, (3.9)

and hence from (3.8) we obtain

φ(x) =
−1

2π

∫ ∞
−∞

∫ ∞
−∞

∂

∂ζ

[
eik
√

(x−x′ )2+(y−y′ )2+ζ2√
(x− x′)2 + (y − y′)2 + ζ2

]∣∣∣∣∣
ζ=z−zI

φI(x
′, y′, zI)dx

′dy′.

(3.10)

Note that in equation (3.9) and (3.10) we have introduced the notation φI to

specify the acoustic pressure φ in the plane z = zI .

3.3 Fourier methods

In this section we describe the application of Fourier transforms and the convolu-

tion theorem to solve the integral equation (3.9) for the acoustic pressure φI in the

plane z = zI . A review of some background theory on Fourier transforms is given

in Appendix A.
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3.3.1 Solution as a convolution equation

We note that equation (3.9) is a two-dimensional convolution integral and may

be written in the form

φ =
∂G̃k

∂n̂′
∗ φI . (3.11)

Hence we may evaluate φI by taking Fourier transforms to give

Fφ = F

(
∂G̃k

∂n̂′
∗ φI

)
=

(
F ∂G̃k

∂n̂′

)
(FφI) (3.12)

using the convolution theorem (see Appendix A). Therefore the sound pressure φI

at the surface of the plate is given by

φI = F−1

[
(Fφ) /

(
F ∂G̃k

∂n̂′

)]
. (3.13)

Unfortunately, the numerical evaluation of F
(
∂G̃k
∂n̂′

)
using a discrete Fourier trans-

form causes numerical instabilities. Since F
(
∂G̃k
∂n̂′

)
frequently takes values con-

taining small errors and that are approximately zero, division by F
(
∂G̃k
∂n̂′

)
comes

instabilities. In Section 3.3.3 we describe how this Fourier transform may be com-

puted exactly using an integral identity known as the Weyl integral.

3.3.2 Neumann boundary data for plane wave radiation

If instead of computing the sound pressure φI , we wish to reconstruct the Neu-

mann boundary data ∂φI
∂n̂′ on the flat plate, then we can proceed as follows in the

case of plane wave radiation from an infinite flat plate. Let us assume that the

radiated wave vector at the point x has wave vector k = (kx, ky, kz), which has

length k = |k|. Since a radiated plane wave of amplitude A may be written in the

form Aeik·x, then in the plate at z′ = zI it follows that

∂φI
∂n̂′

=
∂φI
∂z′

= ikz φI . (3.14)
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Let kB be the wavenumber for the flexural vibration of the plate. Then by continu-

ity of the wave vector at the interface between the plate and the acoustic medium

above, we have that the wave vector in the plate must be (kx, ky) and hence

kB =
√
k2
x + k2

y. On the plate at z = zI , we therefore have that k2
B + k2

z = k2.

Combining this with equation (3.14) leads to

φI =
1

i
√
k2 − k2

B

∂φI
∂n̂′

. (3.15)

Now substitute equation (3.15) into equation (3.9) and re-arrange to give

φ(x) =

∫ ∞
−∞

∫ ∞
−∞

[
1

i
√
k2 − k2

B

∂G̃k

∂n̂′
(x,x′)

]
∂φI
∂n̂′

(x′)dx′dy′. (3.16)

We may evaluate ∂φI
∂n̂′ by Fourier transforming equation (3.16) and following the

procedure outlined in equations (3.11) to (3.13). Letting

Fk(x,x
′) =

1

i
√
k2 − k2

B

∂G̃k

∂n̂′
(x,x′), (3.17)

then the result is that
∂φI
∂n̂′

= F−1 [(Fφ) / (FFk)] . (3.18)

3.3.3 Application of the Weyl integral

In this section we derive the expression

∂G̃k

∂n̂′
(x,x′) = F−1

[
eiζ
√
k2−(k2x+k2y)

]
(3.19)

for the Fourier transform of ∂G̃k/∂n̂
′, using a classical result known as the Weyl

integral. Here kx, ky and kz are the Fourier k-space coordinates, as before, so that

kz =
√
k2 − k2

x − k2
y and ζ = z − zI > 0. The use of the Weyl integral [54] to

derive the identity (3.19) is described in Ref. [55], and the argument given there is

expanded below. Weyl’s integral provides an expansion of the free space Green’s
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function in terms of plane waves as follows:

eik|x−x
′|

|x− x′|
=

i

2π

∫ ∞
−∞

∫ ∞
−∞

eiζ
√
k2−(k2x+k2y) eikx(x−x′) eiky(y−y′ )√

k2 − (k2
x + k2

y)
dkxdky. (3.20)

First, we differentiate both sides of Eq. (3.20) with respect to zI = z − ζ and

restrict to z > zI to give

∂

∂zI

(
eik|x−x

′|

|x− x′|

)
=

1

2π

∫ ∞
−∞

∫ ∞
−∞

eikx(x−x′ ) eiky(y−y′ )eiζ
√
k2−(k2x+k2y) dkxdky. (3.21)

Multiplying both sides by 1
2π

leads to ∂G̃k/∂n̂
′ on the left hand side (see equation

(3.8) and thus

∂G̃k

∂n̂′
(x,x′) =

1

4π2

∫ ∞
−∞

∫ ∞
−∞

eikx(x−x′ ) eiky(y−y′ )eiζ
√
k2−(k2x+k2y) dkxdky. (3.22)

Using the definition of the inverse Fourier transform in two-dimensions (see Ap-

pendix A) we find

F−1
[
eiζ
√
k2−(k2x+k2y)

]
=

1

4π2

∫ ∞
−∞

∫ ∞
−∞

eiζ
√
k2−(k2x+k2y) eikx(x−x′ ) eiky(y−y′ ) dkxdky.

(3.23)

Now, combining equations (3.22) and (3.23) completes the derivation of the result

(3.19). We may use the results given above to solve the NAH problem on an

infinite periodic plate as described in the next section.

3.4 Numerical results

We consider the example of modelling plane wave acoustic radiation from an

infinite vibrating plate, as discussed in Sect. 3.3.2. As in the previous chapter, we

denote the density of the acoustic medium as ρ and use c to denote the speed of

sound. We now derive an expression for the acoustic wave radiated by a flexural

plane wave propagating within an infinite flat plate lying in the plane z = zI .
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Only a sketch is given here; full details are included in Appendix B and can also

be found in many texts on structural acoustics, such as [56, 57]. We will then use

the derived expressions for the plate velocity and the radiated acoustic pressure

to test our Fourier acoustics formulation for the inverse problem of NAH for the

same example.

Assuming that the wavenumber of the flexural wave is kB, that it has amplitude

u0 and that it is directed parallel to the y-axis leads to an expression for the

displacement of the plate in the z-direction (i.e. the normal displacement) of the

form u = u0e
ikBy. Since time-harmonic waves of angular frequency ω have a time-

dependent factor of the form e−iωt, then we may write the normal velocity as

v = −iωu0e
ikBy = v0e

ikBy. (3.24)

Applying continuity of the wave vector at the surface of the plate z = zI , then the

radiated acoustic pressure wave can be expressed in the form

φ = φ0e
ikByeikzz, (3.25)

where k2 = k2
B +k2

z . The frequency domain form of the linearised Euler’s equation

∂φ

∂n̂′
= iωρv (3.26)

can then be applied to find a relation between the amplitude coefficients v0 and

φ0. The result is that the radiated pressure must satisfy

φ(x) =
ωρv0√
k2 − k2

B

eikByei
√
k2−k2B(z−zI). (3.27)

Note that the solution is independent of x due the assumed form of the flexural

wave in the plate. See Appendix B for further details. The expression (3.27)

only describes a propagating acoustic wave for k > kB, since for k < kB the final

exponential term becomes exponentially decaying. This means that φ will decay
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exponentially in the z-direction. Waves of this type are known as evanescent. At

k = kB the coefficient at the front of the expression (3.27) is undefined, and so

for simplicity we will restrict our NAH study in this chapter to the propagating

acoustic radiation case k > kB.

We now give numerical results for the NAH problem where the pressure data φ

is provided by the formula (3.27) with parameters v0 = 1, ρ = 1.21kg/m3, and

c = 340m/s, which are commonly used parameters for air. Figure 3.2 shows the

results of using the Fourier acoustics solution (3.18) (right column) in comparison

to the exact solution (left column) for the Neumann data on the plate z = zI = 0.

Note that this exact solution may be obtained by combining the formulae (3.24)

and (3.26). The three rows of the plot show the effect of varying the height of the

hologram plane z = zH (see Fig. 3.1), where the pressure data (3.27) is sampled

over a uniform grid (x, y) ∈ [−1, 1] × [−1, 1] with 64 × 64 sample points. In each

case we have taken the wavenumbers to be k = 10 and kB = 2π. The latter

choice is important since it means that our sampled domain in the x − y plane

from y = −1 to y = 1 provides a periodic segment of the infinite plane. Hence the

solution over this region corresponds to the infinite plane after making repeated

copies of the sampled region and placing them side by side. This combination of

flexural and acoustic wavenumbers means that kz =
√
k2 − k2

B = 2
√

25− π2 =

7.7796 and so the wavelength of the propagated acoustic wave in the z-direction is

λz = 2π/kz = 0.8077. We investigate choices of the hologram plane z = zH within

the acoustic near-field 0 < zH < 0.8077.
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(c) ZH = 0.35
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(f) ZH = 0.4

Figure 3.2: Exact and Fourier based NAH results for the Neumann data on an

infinite vibrating plate at z = zI = 0. Here we model plane wave radiation with

acoustic wavenumber k = 10 and flexural wavenumber kB = 2π directed along

the y-axis. The results are shown for different positions of the measurement (or

hologram) plane at z = zH .
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The results in the first row of Figure 3.2 (i.e. plots (a) and (b)), show the case

where zH = 0.05 and so the hologram plane is relatively close to the vibrating

plate at z = 0. In this case, the Fourier acoustics NAH reconstruction matches

the exact solution very well. This would be expected since the measurements are

taken sufficiently far inside the acoustic near-field. Plots (c) and (d) in the second

row of Figure 3.2 show the case when zH = 0.35. The measurements points are

now sufficiently far away from the plate to introduce errors into the Fourier NAH

reconstructed solution, and one can notice small but visible differences between

the plots (c) and (d). In the third row of Figure 3.2 we consider the case when

zH = 0.4. Now the distance between the plate and the measurement plane is

large enough to have a catastrophic effect on the reconstructed results, and the

reconstruction bears no resemblance to the exact solution. Note that since NAH is

an ill-posed inverse problem, the reconstruction could potentially be improved by

applying a regularisation procedure such as Tikhonov regularisation. This will be

discussed further in the next chapter for NAH problems with noisy pressure data.

Here we note that in general, even after a regularisation method has been applied,

we will still obtain poor results when zH is taken to be sufficiently large due to

the loss of evanescent (exponentially decaying) wave contributions in the pressure

data. We also note that the loss of evanescent wave contributions occurs when

sampling the acoustic pressure data far from the vibrating plate. In the near-field

these waves can still be detected and are therefore included in NAH.
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Figure 3.3: Exact and Fourier based NAH results for the Neumann data on an

infinite vibrating plate at z = zI = 0. Here we model acoustic radiation at

wavenumber k = 101 due to a flexural plane wave directed along the y-axis. The

measurement data for the acoustic pressure is sampled on a regular grid in the

plane z = zH = 0.05. The results are shown for different flexural wavenumbers kB

close to the Nyquist sampling limit.

Figure 3.3 again shows the results of using the Fourier acoustics solution (3.18)

(right column) in comparison to the exact solution (left column) for the Neumann

data on the plate z = zI = 0. However, now the two rows of the plot show the
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effect of increasing the flexural wavenumber kB to values in the vicinity of the

Nyquist limit with a fixed hologram plane at z = zH = 0.05. The pressure data is

sampled over a uniform grid (x, y) ∈ [−1, 1]× [−1, 1] with 64×64 sample points, as

before, meaning that the Nyquist limit for the wavenumber kB in the y-direction is

given by kNyq
B = 64π/2 = 32π. Note that a brief introduction to sampling theory

and the Nyquist limit can be found in Appendix C. In each case we have taken

the acoustic wavenumber to be k = 101 > 32π and kB to be a multiple of 2π. This

ensures periodicity of the reconstructed solution, as before.

The results in the first row of Figure 3.3 show the case where kB = 30π. Plot

(b) in the right column shows the Fourier NAH reconstruction of the Neumann

data, which matches very well with the exact solution shown in plot (a). In the

second row we see that when the wavenumber is increased to correspond to the

Nyquist sampling rate at kB = 32π, then the accuracy of the reconstruction is

completely lost. The exact solution shown in plot (c) differs from the reconstruction

shown in plot (d) by an order of magnitude. We therefore conclude that our

implementation of Fourier acoustics based NAH only gives reliable results below

the Nyquist sampling rate.

3.5 Summary

In this chapter, we introduced Fourier acoustics methods for solving the inverse

problem of NAH on a flat plate, whereby the vibrational behaviour of the plate is

reconstructed from acoustic pressure data in the near- field. We first described an

integral equation formulation for modelling acoustic radiation from an infinite flat

plate using a modified Green’s function given by the method of images. We then

applied Fourier transforms and the convolution theorem to solve this integral equa-

tion for either the pressure or the Neumann data on the flat plate, given acoustic
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pressure data in near field above the plate. Finally, we described some numerical

experiments for reconstructing flexural plane wave vibrations in the plate, given

the associated pressure data in the near-field. We compared our reconstructions

with an exact solution to investigate the effect of changing both the location of

the given pressure data, and the wavenumber, on the quality of the reconstructed

solutions.
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Chapter 4

Inverse boundary element method for

near-field acoustic holography

4.1 Introduction

In Chapter 2, the application of the BEM to the forward Neumann problem was

described. For this problem we computed the acoustic pressure φ on Γ and in Ω+,

given ∂φ/∂n̂ on Γ. If we instead find the acoustic sources on an emitting object,

given the measured sound field surrounding the radiating object, then this is an

example of an inverse problem. The reason for our study of BEM for the forward

Neumann problem is that the corresponding inverse problem, to determine ∂φ/∂n̂

on Γ given a set of values of φ in Ω+, is precisely the NAH problem studied in

the previous chapter. Applying the BEM to this inverse problem is known as the

inverse boundary element method (IBEM).
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4.2 Inverse boundary element method

The first step towards reformulating the boundary integral equations introduced

in the Chapter 2 for the inverse problem of NAH is to consider equation (2.16) for

x ∈ Ω+ thus

−φ(x) +

∫
Γ

φ(y)
∂Gk(x,y)

∂n̂y

dΓy =

∫
Γ

Gk(x,y)
∂φ(y)

∂n̂y

dΓy. (4.1)

Let us now define the acoustic single and double layer integral operators at x ∈ Ω+

as

Sφ(x) :=

∫
Γ

Gk(x,y)φ(y)dΓy, (4.2)

and

Dφ(x) :=

∫
Γ

∂Gk(x,y)

∂n̂y

φ(y)dΓy, (4.3)

respectively. Solve (4.1) for φ ∈ Ω+:

φ(x) = Dφ− S ∂φ
∂n̂

(4.4)

In the case x ∈ Γ we make a distinction and instead label these operators as V

and K, respectively. Then, we can write the solution procedure for equations (4.1)

and (2.17) together to give φ in Ω+ in terms of these integral operators acting on

∂φ/∂n̂ as follows

φ(x) =

(
D

[(
−1

2
I +K

)−1

V

]
− S

)
∂φ

∂n̂
, x ∈ Ω+. (4.5)

The solution of the inverse problem of NAH is given by solving Eq. (4.5) for

∂φ/∂n̂, given a set of known values for φ in Ω+. Unfortunately this inverse problem

is ill-posed because the solution ∂φ/∂n̂ does not depend continuously on the data

φ(pi), where pi, i = 1, ...,m, are a discrete set of points in Ω+ where φ is known.

Equation (4.5) may be written in the following discrete form

[φ(pi)]i=1,...,m =

(
D

[[
−1

2
I +K

]−1

V

]
− S

)
v, (4.6)
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where K and V are as given in (2.25), v is the vector of values of ∂φ/∂n̂ at the

collocation points on Γ and

Dij =

∫
Tj

∂Gk(pi,y)

∂n̂y

dΓy,

Sij =

∫
Tj

Gk(pi,y)dΓy.

(4.7)

Recall from Chapter 2 that we are using a piecewise collocation method on a

boundary element mesh with (flat triangular) elements Tj, j = 1, . . . , n, and the

collocation points are taken at the centroids of these elements.

The solution of the discretised inverse problem (4.6) requires solving an ill-

conditioned linear system, even in the case m = n. This is a result of the ill-

posedness of the underlying continuous inverse problem (4.5) described earlier. In

order to overcome this problem we use Tikhonov regularisation as described in the

next section.

4.3 Regularisation techniques

In this section we describe the application of Tikhonov regularisation to the ill-

conditioned linear system (4.6). We restrict to the case m = n and apply regulari-

sation to improve the stability of the reconstructed solution when noise is present

in the acoustic pressure data. For NAH this data is provided by measurements,

typically using a microphone array, and so some degree of noise will invariably be

present. To simplify notation we write the n × n matrix given in round brackets

on the right of equation (4.6) as A. Then our linear system is given by Av = b,

with b = [φ(pi)]
T
i=1,...,m. This is an ill-conditioned linear system meaning that the

output is unstable to small changes in the input, and so any noise or infidelity in

the pressure data vector b will badly corrupt the reconstructed Neumann bound-
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ary data v. In order to avoid this problem we replace the original linear system

with the perturbed system

(
ATA+ λ2LTL

)
v = ATb, (4.8)

where λ > 0 is a small parameter to be determined called the regularisation pa-

rameter and L is the so-called Tikhonov matrix. In this work we apply a zero

order regularisation scheme, which means that we set L to be the n × n identity

matrix. More sophisticated choices of L are possible if we have additional infor-

mation about the nature of the system to be solved. A zero order scheme is both

simple and effective for the problem under consideration here assuming no a priori

knowledge of the properties of the noise. For details of some higher order schemes

that are suitable for NAH applications see Ref. [36].

The choice of the parameter λ is a more important issue to consider. If λ is

too small, then we still have an ill-conditioned problem that is difficult to solve

accurately. If λ is too large, this leads to change the original problem by a large

amount, so the solution is not close to the solution of the original problem. In fact,

several methods to predict the best λ exist, such as the L-curve method, Gener-

ated Cross Validation (GCV) and the Morozov discrepancy principle. Hansen [37]

compared these methods and deduced that the L-curve method is more robust to

different types of noise. However, Williams [36] reviewed these methods for NAH

applications and reported that a modified GCV based scheme is favourable. In

fact, the best choice of method is highly problem dependent. In this work, since

the exact solution is known (see Sect. 4.4), an optimal choice of λ can be found by

calculating the error in the approximate solution for a range of λ values and then

choosing the value to minimise this error.
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Figure 4.1: The relative error plotted against the regularisation parameter λ for

100 values of λ between 10−3 and 103 on a logarithmic scale. For the plot given,

we used k = 1 and added 5% uniformly distributed white noise to the pressure

data vector.

Fig. 4.1 shows an example where the optimum value of λ is chosen to minimize

the relative error over a range of regularisation parameters. Here, the minimum

error in the reconstructed Neumann boundary data is 0.1388 and the corresponding

value of λ is 0.0123. Fig. 4.1 shows how sensitive the error is to the choice of λ

and that a poor choice can lead to large errors. In this plot the noise level in the

vector of pressure data is set to be 5% of the signal and the wavenumber is taken

to be k = 1.
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4.4 Numerical examples

Two geometrically different test problems are considered here. First, a cuboid of

similar dimensions to a typical loudspeaker with dimensions (0.28×0.28×0.42)m3,

discretized by 576 triangular elements and second, a unit sphere discretized by 320

flat triangular elements. In both cases we consider boundary data generated by

three different point sources at (0, 0, 0), (0, 0, 0.1) and (0, 0,−0.1), with wavenum-

ber k = 1. Uniformly distributed and additive white noise will be applied to the

pressure data vector b in order to more closely replicate experimental observations.

The use of Gaussian noise was also considered and, in general, led to slightly more

accurate reconstructions than uniformly distributed noise. However, the quality

of reconstructions also fluctuated more widely when using different Gaussian noise

vectors (of the same norm) than for uniformly distributed noise. Thus, we present

the results for uniformly distributed noise since we believe they give a more in-

dicative and repeatable measure of the performance of our reconstruction methods.

We denote the added noise vector as w and specify the ratio

w =
‖w‖2

‖b‖2

, (4.9)

referring to w as the level of added noise in the sequel. The notation ‖ − ‖2 refers

to the Euclidean norm.

For the cuboid, the location of the points at which the pressure data are sam-

pled is taken to be at a distance of 0.05m from the centroid of each element in the

direction normal to the element surface. The horizontal distance between the cen-

troid of each adjacent triangle is approximately 0.03m. For the sphere, a distance

of 0.2m has been considered as the distance from the centroid of each element to

the pressure data sampling position in the direction normal to the element surface.
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The horizontal distance between the centroid of each adjacent triangle is approxi-

mately 0.2m in this case. The wavenumber corresponding to the Nyquist frequency

here is knyq = π/h, where h is the distance between adjacent pressure data points,

see Appendix C. For the cuboid geometry we have that knyq = π/0.03 ≈ 104.7m−1

and for the sphere, the Nyquist wavenumber knyq = π/0.2 ≈ 15.5m−1. Thus, we

note that for both geometries the value of k = 1 used here is much smaller than

the value of knyq, meaning that we should expect to be able to obtain good recon-

structions from the generated pressure data. Note that we have chosen the data

points to lie a similar distance from the object as the collocation points are spaced

apart by. This is to avoid problems with near-singular behaviour of the Green’s

function for points close to the boundary. As discussed in Chapter 3, it is also

beneficial to take the data points as close to the object as possible, to avoid the

loss of evanescent wave contributions.

Assume that x = (x1, x2, x3) is the location of a data point in Ω+ and xp =

(0, 0, z) is a point source inside the object Ω−, generating this data. Then the

acoustic pressure φ at the point x is given by the free space Green’s function as

φ(x) =
eik|x−xp|

4π|x− xp|
, (4.10)

where

|x− xp| =
√
x2

1 + x2
2 + (x3 − z)2.

We use data generated as described above, including additional noise, to re-

construct ∂φ/∂n̂ on Γ using equation (4.6). An exact expression for ∂φ/∂n̂ is also

available in this case, which will be useful for comparison with our reconstructed

solution. The exact solution is found by taking x ∈ Γ in equation (4.10) and then

calculating (n̂ · ∇φ)(x) to gives

∂φ/∂n̂ =
1

4π

(
ny · (x− xp)

|x− xp|3
(1− ik|x− xp|)eik|x−xp|

)
(4.11)
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We now give numerical results for the NAH problem for the two proposed three-

dimensional geometries (spherical and cuboid shapes) using IBEM. As before, all

numerically estimated integrals are computed using 3× 3 point product Gaussian

quadrature

Figure 4.2 shows the reconstructed Neumann data on Γ for the two geometries

proposed using different positions of the point sources to generate the exterior

pressure data. The values of λ used are stated in the figure. Figure 4.3 displays

the exact Neumann data on Γ using different positions of the point sources to

generate the exterior pressure data.

The first rows in Figure 4.2 and Figure 4.3 display the reconstructed and the

exact Neumann boundary data for a point source at (0, 0, 0), respectively. The

corresponding plots show that there is a good agreement between the reconstructed

Neumann boundary data and the true solution values. By good agreement, we

mean that the accuracy is comparable to the level of noise added, which in the

results here is taken to be 15%, i.e., w = 0.15, see equation (4.8). The results in

the second rows of Figure 4.2 and Figure 4.3 demonstrate a loss of symmetry when

the point source is moved from (0, 0, 0) to (0, 0, 0.1), since the point source has

moved upwards away from the centre of the object. The third rows of Figure 4.2

and Figure 4.3 illustrate the effect of the downward movement of the acoustic point

source to (0, 0,−0.1). Figures 4.2 and 4.3 show that there is a good agreement

between the reconstructed Neumann boundary data and the true solution values,

particularly for the cuboid case. Therefore the NAH problem has been successfully

numerically modelled for general three-dimensional geometries using the IBEM.

From the above results, one can see that although NAH is an ill-posed inverse

problem, applying a regularisation method such as Tikhonov regularisation can

lead to reasonably accurate reconstructions of the boundary data.
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Figure 4.2: The reconstructed Neumann boundary data on Γ for different positions

of the point source used to generate the exterior pressure data with k = 1.
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Figure 4.3: The exact Neumann boundary data on Γ for different positions of the

point source used to generate the exterior pressure data with k = 1.
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Figure 4.4: The exact and reconstructed Neumann boundary data on Γ for exterior

pressure data with k = 17.52, corresponding to an approximate interior resonance.

We now investigate the behaviour of the method for an alternative value of the

wavenumber k. In particular, we consider how the method performs when k is

chosen to correspond to a non-uniqueness frequency or resonance of the associated

interior problem. That is, a resonance of the interior Helmholtz problem inside

Ω− with homogeneous Neumann boundary conditions. In Chapter 2 we identified

one of these critical wavenumbers of the cuboid studied here numerically, at ap-

proximately k = 17.52. The results shown in Figure 4.4, again with 15% added

noise, demonstrate that even though k < knyq, the accuracy of the model becomes

degraded and the interior resonance frequencies pose problems for the IBEM for

exterior problems, see also Ref. [2]. It was found in Ref. [2] that these problems can

be overcome by using a Burton-Miller type integral equation formulation instead,

where one takes a linear combination of the surface Helmholtz integral equation

(2.17) and its directional derivative with respect to n̂. Other methods, such as
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the Combined Helmholtz Integral Equation Formulation (CHIEF) could also be

applied to cure the problem at critical values of k, see Amini et al. [23] for a survey

of these methods.

4.5 Summary

In this chapter, the boundary integral equations for the Helmholtz equation

have been reformulated to solve the inverse problem of NAH. Reconstructions of

the Neumann boundary data have been computed on general three-dimensional

structures, given noisy acoustic pressure data in the exterior domain. However,

the application of IBEM is a complicated and computationally intensive process,

particularly if additional measures are required to handle critical values of the

wavenumber k. In the next chapter we will aim to develop more easily imple-

mentable and computationally efficient approaches by studying the method of su-

perposition.
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Chapter 5

Method of superposition

5.1 Introduction

In this chapter, we introduce the method of superposition (MoS) and discuss

how it can be applied to numerically solve the forward Neumann problem of the

Helmholtz equation. We compute numerical results for the forward Neumann

problem given by a single point source in Ω− using the MoS, with different values

of wavenumber k and for different numbers of terms in the superposition. We

then reformulate the method of superposition for the inverse problem of NAH.

The results of numerical experiments using the MoS for the NAH problem are

considered for the two geometrically different test problems given in Chapters 2

and 4. Finally, we compare the results of the MoS with those obtained by the

IBEM, and the exact solution described in Chapter 4.
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5.2 Method of superposition for the forward Neumann

problem

The method of superposition is free from numerical integration and mesh gen-

eration, and is a boundary type meshless numerical method. The MoS was first

proposed by Kupradze and Aleksidze in Ref. [58]. Mathon and Johnston [59] were

among the first to provide the mathematical fundamentals for the MoS. In their

work, the source strengths of MoS are considered as unknown variables over which

the accuracy of the solution should be optimised. The MoS was first applied in

acoustics by Koopman et al. in the late eighties [30].

The idea of the MoS is to approximate the solution of Helmholtz equation (2.3)

φ by a linear combination of fundamental solutions of the form:

φ(x) ≈
n∑
j=1

φj Gk(x,yj), (5.1)

where Gk is the fundamental solution of the Helmholtz equation defined in (2.8). In

this section we consider the solution of the forward Neumann problem as discussed

in Chapter 2. In this problem, we need to find the source strengths φj, j = 1, ..., n,

given the Neumann boundary data ∂φ/∂n̂ on Γ.

In order to find φj for j = 1, 2, ...., n we therefore solve

∂φ(x)

∂n̂
=

n∑
j=1

φj
∂Gk(x,yj)

∂n̂
, (5.2)

where yj, j = 1, ..., n are the locations of a set of charge points on an interior source

surface inside Ω−. To obtain a set of n equations to solve for our n unknowns φj,

we evaluate (5.2) at a set of collocation points x = xi ∈ Γ for i = 1, 2, ...., n. This

leads to solving the set of equations
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Figure 5.1: Problem setup for the MoS for the forward Neumann problem.

∂φ(xi)

∂n̂
=

n∑
j=1

φj
∂Gk(xi,yj)

∂n̂
. (5.3)

The collocation points are taken to be the centroids of the triangular elements

from a BEM mesh. Whilst the MoS is in principle a mesh free method, we find

it convenient to make use of the BEM meshes used in Chapters 2 and 4 to help

us select the collocation points on our three dimensional objects. Equation (5.3)

may be expressed in matrix-vector form by setting v to be the vector containing

the entries ∂φ(xi)
∂n̂

and φ to be the vector containing the entries φi for i = 1, 2, ..., n.

Setting the matrix K to contain the entries Kij = ∂Gk
∂n̂

(xi, yi) then we obtain the

matrix system v = Kφ, which we solve for φ. The internal charge points are

positioned on a surface inside Ω−, which is just a scaled-down version of Γ with

scaling factor α ∈ (0, 1). For example, a value of α = 0.5 corresponds to a surface

of internal charge points whose dimensions are exactly half those of Γ. Assuming

that Ω− is centred at the origin, we simply take a collocation point xi ∈ Γ and
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multiply by α to obtain the corresponding internal charge point yi thus,

yi = αxi (5.4)

for i = 1, 2, ...., n. In the next section we put these ideas into practice via a number

of numerical experiments.

5.3 Numerical results for the forward Neumann prob-

lem
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Figure 5.2: Relative error for the cuboid using the MoS.

We again consider numerical results for the acoustic radiation from two geo-

metrically different test problems as described in Section 2.4. As in Chapter 2,

the Neumann boundary data will be generated by a single unit point source at

(0, 0, 0.1) ∈ Ω−, where Ω− is centred at the origin. Figures 5.2 and 5.3 show the

relative errors when using the MoS to solve the exterior Neumann problem with
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Figure 5.3: Relative error for the sphere using the MoS.

different values of k and n. For the choice of the parameter α, we note that taking

too small a value of α will lead to severe ill conditioning as the charge points be-

come very close together [30], but Ref. [30] also suggests that choosing too large a

value of α will lead to poor results. A choice in the range α = (0.1, 0.6) is advised

in Ref. [30]. For all the numerical results in this section we therefore set the pa-

rameter α = 0.5.

We notice in both cases that the errors are generally decreasing as the number

of charge points n is increased, with the exception of one anomalous case. The

results are plotted on a log-log scale and the errors become very small indeed for

n > 1000. For the case of the sphere shown in Fig. 5.3, the errors are close to

machine precision. Note that these errors are far smaller than those arising in the

BEM, as can be seen from the results in Tables 2.1 and 2.2. This increase in ac-

curacy compared with the BEM is a great advantage when one also considers the

relative simplicity and efficiency of the corresponding computations. Figures 5.2

and 5.3 also show results for wavenumbers k corresponding to internal resonances
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of the radiating objects, as discussed in Chapter 2. We notice that for the MoS, it

is not the resonances internal to Γ that pose problems. Instead, it is the interior

resonances of the surface of charge points inside Ω− where issues can arise. For

α = 0.5 as used in these examples, an interior resonance for the surface of charge

points inside the cuboid will be found at approximately k = 17.52/α ≈ 35.

Table 5.1: The relative errors for different k values, including the interior resonance

at k = 35.08423 with different numbers of charge points n inside the cuboid.

n Err (k = 17.52) Err (k = 35.08423) Err (k = 36)

256 1.439e-03 0.0851 7.327e-04

576 2.637e-05 0.2661 2.162e-05

1024 3.582e-07 0.1069 4.403e-07

1600 6.929e-08 0.1269 3.559e-07

Table 5.1 compares the relative errors for different numbers of interior charge

points n, including at a wavenumber k = 35.08423 corresponding to an approx-

imate interior resonance of the surface of charge points for the cuboid example.

The errors at k = 17.52, corresponding to an approximate interior resonance of

the cuboid Ω− and for a larger wavenumber k = 36 are also given for reference.

One can clearly see a significantly larger error for k = 35.08423 and the peak in

the error is local to this value of k. For k = 17.52 and k = 36, the errors are far

lower and the fast convergence and small errors are similar to the results shown in

Figure 5.2. Figure 5.4 shows the results of Table 5.1 in graphical form, including

the large errors at k = 35.08423. For this choice of wavenumber there is also no

evidence of convergence since the error actually increases as n is increased from

256 to 576 and from 1024 to 1600. However, it is very simple to obtain accurate

results with the MoS for k = 35.08423. All that we need to do is change the value
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Figure 5.4: relative error for the MoS for the forward Neumann problem including

a problematic k value.

of α. Doing this leads to the results shown in Table 5.2, which repeats the results

of Table 5.1, but with α = 0.4. In this case the results all reflect those shown in

Figure 5.2.

Table 5.2: The relative errors for different k values, with α = 0.4 and for different

numbers of charge points n inside the cuboid.

n Err (k = 17.52) Err (k = 35.08423) Err (k = 36)

256 2.702e-04 1.408e-03 2.333e-03

576 1.084e-05 8.161e-06 8.613e-06

1024 6.113e-07 2.162e-07 4.948e-07

1600 1.637e-07 1.168e-07 3.818e-08
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5.4 Method of superposition for the inverse NAH prob-

lem

In the NAH problem, we are given values of the acoustic pressure φ at a discrete

set of points in the acoustic near field within Ω+. We will assume that the data

points xi, i = 1, ...,m lie on a surface Γ∗ ⊂ Ω+. Note that the pressure data is

usually obtained from measurements using a microphone array. However, in this

chapter, we generate the pressure data numerically as described in Section 4.4. The

NAH problem is to use the given pressure data to recover the Neumann boundary

data on Γ. Solving this problem via the method of superposition is then a matter

of finding the set of source strengths φj, j = 1, ..., n, that reproduce the acoustic

pressure data to some desired accuracy in the least squares sense. That is, φj are

chosen so that the `2 norm of the residual vector r, with entries given by

ri = φ(xi)−
n∑
j=1

φjGk(xi,yj) (5.5)

for i = 1, ..,m, is smaller than a desired error tolerance. Once the source strengths

have been obtained then the Neumann boundary data can be recovered from

∂φ

∂n̂
(x) ≈

n∑
j=1

φj
∂Gk

∂n̂
(x,yj), (5.6)

where n̂ is the outward unit normal to Γ. As shown in Appendix B, the linearized

Euler equation for time harmonic waves leads to the following simple relationship

between the Neumann boundary data computed here, and the normal velocity v

of the radiating object:
∂φ

∂n̂
= iωρv. (5.7)

As described in Section 4.3, regularization is always required in general, even

for n = m, since NAH is an ill-posed inverse problem (see for example [2]). For

experimental problems, the pressure measurements will contain errors and the
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ill-posedness of the problem means that these errors are amplified in the (unregu-

larized) solutions, often rendering them meaningless. Most previous work on NAH

has concentrated on using Tikhonov regularization, together with generalized cross

validation (GCV) [36]. We will therefore use this combination of methods for the

numerical results in the next section.

5.5 Numerical results for the inverse problem

In this section, the results of numerical experiments using the method of super-

position for the NAH problem are considered. The same two three-dimensional ge-

ometries described in Section 4.4 are considered for verification of the MoS method.

That is, a cuboid and a unit sphere with the same dimensions and the same num-

bers of charge and collocation points are treated. As in the case of the forward

Neumann problem described in Section 5.2, we choose the parameter α = 0.5,

which governs the locations of the MoS internal charge points. The results ob-

tained using the MoS are compared to the IBEM, using the same three point

sources to generate the pressure data with wavenumber k = 1, as described in

Section 4.4. The locations of the external pressure data sampling points are also

chosen as described in Section 4.4. That is, in the case of the cuboid they are placed

at a distance 0.05m from Γ in the direction normal to the surface. For the sphere,

they are placed at 0.2m from Γ, again in the direction normal to the surface. We

also introduce uniformly distributed white noise to the generated pressure data as

before, where the `2 norm of the added noise vector is 5% of the `2 norm of the

noise free data vector.

In order to treat the ill-posedness of the inverse NAH problem, we apply

Tikhonov regularisation as described in Section 4.3. However, rather than use
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the exact solution to determine the regularisation parameter λ that leads to the

minimal error, we instead apply Generalised Cross Validation (GCV). The reason

for this is to provide a fair means of comparison for the sparse regularization meth-

ods to be introduced in the next chapter. The GCV is the most popular method

for selecting the parameter λ for NAH applications [36]. The main advantage of

the GCV is that it does not require prior knowledge of the noise variance. This

method eliminates a measurement point at a time and compares the reconstruction

at the missing data point with the real data there, minimizing this difference [36].

The function to be minimized for the standard form of Tikhonov regularization

is [36,60]

J(λ) =
‖r‖2

[Tr(I − ARλ)]
2
2

, (5.8)

where the entries of the matrix A are given by

Aij = Gk(xi,yj) (5.9)

and

Rλ = (ATA+ λ2LTL)−1AT , (5.10)

using the notation of Section 4.3. We take L to be the identity matrix as before

and note that r is the residual vector defined in equation (5.5), where ‖r‖ denotes

its `2 norm. The notation Tr refers to the trace of the matrix, meaning the sum

of its diagonal entries. A derivation of (5.8) can be found in Section 2 of [60], and

is based on the definition of the GCV as the minimiser of

‖ARλb− b‖2 = ‖(I − ARλ)b‖2, (5.11)

where b is the vector of pressure data values as before. We implement the above

described regularisation procedure very simply by making use of the ‘Regtools’

Matlab toolbox by Hansen [61].
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Figure 5.5: The reconstructed Neumann boundary data using the MoS for different

positions of the point source used to generate the exterior pressure data with k = 1.
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We now give the numerical results for the NAH problem using the MoS and

compare with the results that are obtained by the IBEM and the exact solution

shown in Figures 4.2 and 4.3, respectively. The first rows in Figure 5.5 and Figure

4.3 demonstrate the reconstructed solution using the MoS and the exact solution

for a point source at (0,0,0), respectively. The comparison between these two plots

shows that there is a good agreement between the solutions obtained by the MoS

method and the true solution values. The results shown in the middle rows in

Figure 5.5 and Figure 4.3 display the reconstructed solution found by the MoS

and the exact Neumann boundary data for the second point source at (0,0,0.1). In

both cases, we can see that the peak moved upwards away from the centre of the

object and this result is as would be expected. The last row in Figure 5.5 and Fig-

ure 4.3 shows the comparison between the solution obtained by the MoS method

and the exact solution for the point source at (0,0,-0.1). Comparing Figures 5.5

and 4.3 clearly demonstrates that the MoS is effective and gives a precise result

for both the cuboid and the sphere. It is also evident from comparing Figure 5.5

with both Figure 4.2 showing the IBEM results, and Figure 4.3 showing the exact

solution, that the MoS gives more accurate reconstructions than the IBEM. This

is particularly evident for the case of the sphere.

Table 5.3 compares the IBEM and the MoS with respect to the computational

time to obtain the results, and the errors. The comparison was made for both

geometrical configurations (cuboid and sphere), using a Windows laptop with an

Intel Core i5, 2.5 GHz processor. For the cuboid shape, the first three columns

show that the error using the IBEM is much greater than the error for the MoS. The

errors for the MoS are typically around half the errors for the IBEM. Furthermore,

for the IBEM the computational time is approximately twenty times as long as

68



for the corresponding experiment using the MoS. Clearly the MoS is much faster

and reaches a superior result compared to the IBEM. A similar pattern of results

an be observed for the sphere, except now the improvement in the error values is

even more stark. Again, the computations are faster using the MoS by a factor

of approximately twenty. We can also notice from Table 5.3 that the smallest

errors and computational times are observed when the source point generating the

pressure data is in the centre (0,0,0). This can possibly be attributed to the fact

that the solution to be reconstructed has more symmetry and less local variability

in this case.

Table 5.3: Comparison between the MoS and IBEM in regards to the computa-

tional time and the error.

Cuboid (n = 576)

Source Point Position IBEM MoS

Error Time (sec) Error Time (sec)

(0, 0, 0) 0.1509 224.46 0.05090 11.46

(0, 0, 0.1) 0.1707 228.27 0.0899 11.47

(0, 0,−0.1) 0.1781 237.87 0.0979 11.36

Sphere (n = 320)

Source Point Position IBEM MoS

Error Time (sec) Error Time (sec)

(0, 0, 0) 0.0871 19.97 0.0065 1.08

(0, 0, 0.1) 0.0858 19.35 0.0074 1.14

(0, 0,−0.1) 0.0915 19.39 0.0099 1.16

69



5.6 Summary

In this chapter we introduced the MoS and applied it to numerically solve both

the forward Neumann problem, and the NAH problem. The numerical results of

using the MoS for the forward Neumann problem showed fast convergence leading

to smaller errors than the corresponding numerical experiments using the BEM

in Chapter 2. This provided motivation to further apply the MoS to solve the

NAH problem. The results for the numerical experiments utilizing the MoS for

the inverse problem of NAH demonstrated that the MoS can give more accurate

solutions than the inverse BEM with faster computational times. Moreover, the

treatment of non-uniqueness frequencies at interior resonances is simpler for the

MoS compared to the BEM. In the next chapter, we will study the combination

of the MoS with sparse reconstruction methods with the aim of generating solu-

tions more efficiently using fewer charge points, but without any significant loss of

accuracy.
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Chapter 6

Sparse reconstructions for the inverse

method of superposition

6.1 Introduction

In this chapter we introduce the theory of compressive sampling, including the

key concepts of sparsity and incoherence. We then discuss the possibility of a sparse

solution representation using `1 optimization techniques based on the method of

superposition applied to three dimensional NAH problems. The results of numeri-

cal tests where the exterior acoustic field is generated by a monopole point source

inside the structure will be considered for a cuboid that has similar dimensions to a

typical loudspeaker. We will also study the case of reconstructing the vibrations of

a locally vibrating structure, where only a small region of the structure is vibrating

and the location of any singularities of the continuation of the acoustic field into

Ω− are unknown, which is usually the case in practice.
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6.2 Compressive sampling

The traditional method of sampling and reconstruction of a desired quantity

from the samples follows Shannon’s sampling theorem, which states that the sam-

pling rate must not be less than twice the maximum frequency present in the signal

(the so-called Nyquist rate): see Appendix C. This principle underlies nearly all

signal acquisition procedures in end user audio and visual electronics, medical

imaging devices and radio receivers [62], including signal (or pressure data) ac-

quisition in Nearfield Acoustic Holography. Compressive sampling, also known

as compressed sensing (CS), is an innovative sensing/sampling paradigm, which

goes in contradiction of the common wisdom in data acquisition. The theory of

CS declares that one can recover signals and images from far fewer samples or

measurements than traditional methods use. In order to make this possible, CS

requires two principles: sparsity, which relates to the signals of interest, and inco-

herence, which relates to the sensing modality.

Sparsity refers to the concept that the “information rate” of a continuous sig-

nal may be much smaller than recommended by its bandwidth, or that a discrete

signal be dependent on a number of degrees of freedom that is comparably much

smaller than its (finite) length. Concisely, CS exploits that many natural signals

are sparse or compressible, in the sense that they have concise representations

when expressed in an appropriate basis. Incoherence exploits the duplicity be-

tween physical space and frequency space (or k-space) and expresses the notion of

objects having a sparse representation in a particular basis. Fundamentally, this

means that CS exploits that a signal which is spread out in physical space, such

as a fixed frequency wave sampled in NAH, has a very localised representation in

k-space. In this case it is just a Dirac delta spike corresponding to the single fixed

frequency. However, incoherence states that unlike the signal of interest, the sam-
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pling/sensing waveforms have a very dense representation. The key observation

is that one can design effective sensing or sampling procedures that capture the

valuable information content entrenched in a sparse signal and condense it into a

small amount of data. These procedures are non-adaptive and just require asso-

ciating the signal with a small number of fixed waveforms, which are incoherent

with the sparsifying basis. These sampling procedures permit a sensor to efficiently

seize the information in a sparse signal without trying to understand that signal.

Compressive sampling is a very simple and effective signal acquisition procedure

which samples in a signal independent fashion, at a low rate and later uses com-

putational power for reconstruction from what appears to be an incomplete set of

measurements [62].

6.3 Sparse reconstructions for NAH

The work reported in this section is taken from our paper [44]. Recall that the

reconstruction of solutions to the NAH problem using the MoS requires that we

somehow control the size of the `2 norm of the residual vector r defined in (5.5).

In particular, making ‖r‖2 as small as possible would lead to the best possible

reconstruction, and this is the aim of Tikhonov regularization. Note that we have

introduced the notation ‖r‖2 for the `2 norm of r, in order to distinguish it from

the `1 norm ‖r‖1 which will also be needed later. The application of Tikhonov

regularization to minimise ‖r‖2 may be written concisely as follows [41]:

φ̂ = arg min
φ

{
‖r‖2

2 + λ2‖Lφ‖2
2

}
, (6.1)

where L is the Tikhonov matrix (most simply chosen as the identity matrix as

before) and λ > 0 is a regularization parameter to be determined. We have also

introduced the notation φ = [φ1 φ2 . . . φn ]T for the vector containing the source
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strengths, and likewise φ̂ is the vector containing the regularized and reconstructed

source strengths for the n interior charge points.

In this chapter, we adopt an alternative regularization approach of Chardon et

al. [41], which favours sparse representations of the solution. In other words, it

(approximately) minimizes |φ|0, the number of non-zero entries of φ. As noted by

Chardon et al. [41], the possibility of a sparse reconstruction is highly dependent

on the basis functions used to represent the solution. In the superposition method,

these basis functions are the fundamental solution of the Helmholtz equation at a

set of distinct interior charge points. The results in Koopman et al. [30] suggest

the feasibility of sparse solution representations for a large range of wavenumbers

using the superposition method. The results presented in the next section will

investigate the conditions whereby high quality sparse representations are indeed

possible. For the examples considered here we expect that the quality of the

solutions attainable will be highly dependent on the location of the interior charge

points used for the superposition. The acoustic pressure data is created by either

a single interior monopole, or by applying the BEM to approximate the acoustic

field radiated from a relatively small vibrating patch. We will investigate whether

the sparse reconstruction approach can pick out solutions φ that make use of the

underlying sparsity in these examples, where this sparsity arises either due to the

low number of monopoles needed to generate the field in the former case, or due

to the relatively small region over which the reconstructed field is dominant in the

latter case.

Directly minimizing |φ|0 is often intractable due to non-convexity [41], see Ap-

pendix D for a brief introduction to optimization and the importance of convexity.

We therefore instead seek to minimize the `1 norm

‖φ‖1 =
∑
j

|φj|. (6.2)
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The use of the `1 norm allows one to apply powerful convex optimization algorithms

and still promotes sparsity by making many of the components of φ negligibly

small, meaning that they can be well-approximated by zero without degrading the

reconstructed solution. The following procedure will be applied to find a sparse

representation φ̂ of the source strengths φ:

φ̂ = arg min
φ
‖φ‖1 subject to ‖r‖2

2 ≤ ε. (6.3)

This procedure will be implemented using the convex optimization toolbox CVX

[63]. This procedure requires a data fidelity constraint ε to be specified. Choosing

this parameter involves a trade off between allowing sparser solutions with larger

values of ε and achieving more accurately reconstructed solutions with smaller

values of ε. Chardon et al. [41] recommend a choice of ε of the order 20% to 30%

of the `2 norm of the measured pressure data. However, a good choice of ε is likely

to depend on how noisy the pressure data is and hence will be problem dependent.

For completeness, and to emphasize the links between the `1 regularization

approach and Tikhonov regularization we note that (6.3) may be expressed in the

form [41,64]

φ̂ = arg min
φ

{
‖r‖2

2 + λ2‖φ‖1

}
. (6.4)

This procedure is known as the basis pursuit denoising (BPDN) and is introduced

in Section 5.1 of Ref. [64], where the interested reader can find further details,

including a discussion of suitable choices of λ in the presence of standard Gaussian

noise. Here, we simply note the parallels between the expression (6.4) and Eq.

(6.1), and remark that one of the main differences is the norm employed in the

final term. In particular, the `1 norm replaces the square of the `2 norm in the

Tikhonov case, and it is this difference that promotes sparsity in the `1 approach.

Note also that the `1 approach (6.1) does not seek to minimise ‖r‖2 like Tikhonov

regularization (6.4). Instead it seeks out the solution with optimal sparsity, pro-
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vided ‖r‖2 is below some acceptable tolerance level controlled by the parameter ε.

The differences between these two approaches will be investigated numerically in

the next section.

6.4 Numerical results

The numerical results reported in this section are taken from our paper [44].

Numerical results will be computed for acoustic radiation from the same cuboid

as before, which has similar dimensions to a typical loudspeaker cabinet (0.28m×

0.28m × 0.42m). As before, we will use a triangulation of the cuboid to generate

the points at which the pressure data are computed, as well as the internal charge

points and the points at which we reconstruct the solution on Γ. In particular,

for a given triangulation of Γ we reconstruct the Neumann boundary data at the

centroid of each triangle and project (from each centroid) a distance δ along the

normal vector to Γ into Ω+ to obtain the points where the exterior pressure data is

sampled. The internal charge points are positioned on a cuboid inside Ω−, which

is just a scaled down version of Γ with scaling factor α ∈ (0, 1), as in Chapter 5.

Initially we reconstruct the boundary data generated by a point source at x0 =

(0, 0, z0) ∈ Ω−, where Ω− is centred at the origin. The pressure data is therefore

of the form

(φ0)j = a
eik|x0−xj |

|x0 − xj|
, j = 1, ..., n, (6.5)

where a ∈ C is the strength of the source, which in these examples is arbitrarily

taken to be a = 3 − i. The boundary data generated at y ∈ Γ may also be

obtained for the case of a point source at x0 = (0, 0, z0) by replacing xj in (6.5)

by y ∈ Γ, differentiating in the direction of ny and evaluating at the centroids of

the triangulation y = yj for j = 1, ..., n to give
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(v)j = a

(
nyj · (x0 − yj)

|x0 − yj|3
(1− ik|x0 − yj|)eik|x0−yj |

)
, j = 1, ..., n. (6.6)

In equation (6.6), v is the vector of values of ∂φ/∂n̂ at the points yj on Γ. Using

this calculation it is possible to verify the accuracy of the (Tikhonov or `1) reg-

ularised approximate solutions with different wavenumbers and singularity point

positions z0. We will also investigate the behaviour of the method at irregular fre-

quencies of the volume enclosed by the interior charge points, and the dependence

on the dimensions / location of the interior charge point surface controlled by the

parameter α.

Uniformly distributed and additive white noise will be applied to φ0 in order

to more closely replicate experimental observations, as in Chapters 4 and 5. We

denote the added noise vector as w and specify the ratio

w =
‖w‖2

‖φ0‖2

, (6.7)

referring to w as the level of added noise in the sequel.

Finally, we consider the case of reconstructing a locally vibrating structure,

where only a small region of the structure is vibrating. Such an assumption is

typical for the case of a loudspeaker and also allows us to study a case where the

locations of any singularities of the continuation of the acoustic field into Ω− are

unknown, as is usually the case in practice. Here the acoustic pressure data will

be generated using the boundary element method applied to the forward Neu-

mann problem as described in Chapter 2. Through this example we demonstrate

the broader applicability of the sparse reconstruction algorithm, where the mea-

sured signal should have a sparse structure, but not necessarily the basis for the

superposition method.
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6.4.1 Comparison with Tikhonov regularisation

First consider the case k = 1 and z0 = 0.05, where the frequency is relatively low,

is not close to an irregular frequency, and x0 is relatively close to the origin and will

lie inside the surface on which the interior charge points are located. Under such

conditions the superposition method is expected to work well. Table 6.1 shows

the `2 percentage errors in the reconstructed Neumann boundary data for three

different regularisation strategies and differing noise levels. The three solution

strategies to be compared are (i) `1 regularisation and taking the sum over all

interior charge points, (ii) sparse `1 regularisation where only contributions from

dominant charge points are considered, and (iii) standard Tikhonov regularisation

using GCV (see Section 5.5) to determine the regularisation parameter. In the

latter case the computations have been performed using Hansen’s regularisation

toolbox [61]. In the case of the sparse reconstruction, the criteria used to determine

whether the jth charge point is dominant is if

log

(
|φj|

mini |φi|

)
> β log

(
maxi |φi|
mini |φi|

)
.

We will use the notation N∗(β) for the number of dominant charge points satisfying

this condition, taking β = 0.5 by default and so we denote N∗ = N∗(0.5). The `2

percentage error in the reconstructed solution v̂ is calculated using

‖v̂ − v‖2

‖v‖2

× 100%. (6.8)

The pressure data are specified at a distance δ = 0.035m from Γ and the internal

source surface is scaled down to have dimensions α = 1/3 the size of Γ. We note

that these choices should lead to good results based on the fact that δ should be

chosen small enough to capture evanescent contributions to the pressure field, but

still large enough to be a practical distance for taking experimental measurements.

For the parameter α, recall that a choice in the range α ∈ (0.1, 0.6) is advised in
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Ref. [30]. It is also beneficial for the charge point surface to enclose any singularities

of the associated interior problem [33]. For these experiments the number of charge

points, the number of measurement points and the number of points at which we

reconstruct the solution are all equal to 576. This is achieved by triangulating the

internal source surface in an identical way to Γ and taking the charge points at

the triangle centroids.

Table 6.1: The `2 percentage error in the reconstructed Neumann boundary data

generated from a source point on the z−axis at z0 = 0.05 with added noise and

k = 1.

Noise level (%) % error: `1 full % error: `1 sparse % error: Tikhonov

0 6.2091e-3 0.1097 1.009e-7

5 3.850 3.850 3.549

15 6.428 6.429 6.017

The results in Table 6.1 show that in the noise free case, the reconstruction

errors for both the full `1 method and Tikhonov regularisation are very small,

with Tikhonov reconstruction performing better. A sparse representation of the

solution is not feasible here in general unless one of the charge points coincides

with the monopole generating the acoustic field; the `1 optimisation identifies a

relatively large number N∗ = 98 of dominant sources and the error of the ‘sparse’

reconstruction increases significantly compared with the reconstruction using all

576 source points. However, once noise is present in the pressure data, then sparse

representations of the solution can be obtained with a similar level of accuracy to

the Tikhonov approach. The reason for this can be explained by considering how
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the data fidelity parameter ε is chosen in (6.3). In particular we take

ε = (max{εmin, w})2‖φ0‖2
2, (6.9)

where w is the level of noise added to the pressure data as before. Recall that

larger choices of ε permit sparser solution representations. However, it only makes

sense to choose a larger ε for noisy data, otherwise it leads to less accurate recon-

structions. The parameter εmin ≥ 0 is included as a tolerance level that is used

for the low or zero noise case. A relatively large choice of εmin will lead to sparser

reconstructions at the expense of accuracy, and the converse is true for small εmin.

The results in this work have been obtained with εmin = 1e-6.

Figure 6.1 highlights the differing nature of the solutions reconstructed using

the Tikhonov and `1 approaches. The plots show that `1 regularisation is more

effective at promoting sparsity in the case of noisy data, and hence larger values

of the data fidelity constraint ε. In these cases the distribution of the size of

the coefficients |φj|, j = 1, 2, ..., n, is dominated by only a few values for the `1

approach, due to the minimisation of ‖φ‖1 in (6.3). In particular, when noise is

added the solutions can be accurately reconstructed using only 10 to 15 of the 576

source points. For the Tikhonov reconstruction, sparsity is not promoted by the

algorithm and the distribution of |φj| is more even. This is further illustrated in

Figure 6.2, which shows the reconstructed solution with noise level w = 0.15 using

each of the three solution strategies described above. The exact solution is also

shown for reference.

In all three cases we achieve a faithful reconstruction of the Neumann data

on the cuboid since the match to the exact solution is very good. Plots of the

cases w = 0 and w = 0.05 are omitted for brevity, since as shown in Table 6.1,

the reconstruction errors in these cases are even smaller and the likeness to the

exact solution shown in Figure 6.2 would be even stronger. The main result of

this section is that `1 sparse regularisation can give similar accuracy to Tikhonov
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regularisation for noisy data, but with a small fraction of the number of charge

points required to produce the reconstruction.

0 200 400 600
10

−10

10
−5

10
0

Charge point j

|φ
j|

0 200 400 600
10

−5

10
0

Charge point j

|φ
j|

0 200 400 600
10

−10

10
0

Charge point j

|φ
j|

0 200 400 600
10

−5

10
0

Charge point j

|φ
j|

0 200 400 600
10

−10

10
−5

10
0

Charge point j

|φ
j|

Tikhonov

0 200 400 600

10
−5

10
0

Charge point j

|φ
j|

l1

 
Dominant charge points

 

w=0
N*=98

w=0.05
N*=15

w=0.15
N*=10

Figure 6.1: Left and centre columns: Comparison of the charge point strengths

using the Tikhonov and `1 approaches for k = 1 and exterior pressure data gen-

erated by a point source at (0, 0, 0.05). Right column: locations of the dominant

charge points for the `1 approach. The top row shows the case of clean pressure

data and the other rows show the results for differing levels of added noise w.
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Figure 6.2: Neumann boundary data on a cuboid generated by a point source at

(0, 0, 0.05) with wavenumber k = 1 and 15% added noise. The plots compare the

exact solution against those reconstructed using Tikhonov regularisation, the `1

approach with all charge points and the sparse `1 approach using only dominant

charge points.

6.4.2 Higher and irregular frequencies

We now investigate the behaviour of the method for some potentially problematic

choices of the wavenumber k. First we look at the case when the frequency is in-

creased, including when the Nyquist frequency (see Appendix C) is exceeded. Since

our measurements are taken at triangle centroids, then the resulting measurement

grid is irregular and so the Nyquist frequency is not well-defined. We therefore
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choose the Nyquist frequency associated with the regular grid given by the tri-

angle vertices, as a value approximately representative of the Nyquist frequency.

For the discretisation considered in the previous section with 576 triangles, the

grid spacing is ∆x = 0.04667, meaning that the wavenumber corresponding to the

Nyquist frequency is knyq = π/∆x = 67.32. We also investigate the performance

of the method close to other typical threshold frequencies for numerical solution

approaches, such as the six grid points per wavelength rule of thumb for finite and

boundary element methods, which gives a maximum wavenumber of k = 22.44 for

the grid described above. The performance of the method at irregular frequen-

cies will also be investigated. For the method of superposition, these irregular

frequencies are the resonances of the region enclosed by the interior source surface

as identified in Chapter 5. Numerical studies indicate that one such frequency is

close to k∗ = 17.54/α, which here is k = 52.62. Note that α is the scaling factor

for the internal charge point surface, see equation (5.4).

Table 6.2 gives the reconstruction error for a range of wavenumbers k using `1

reconstruction techniques and compares the accuracy of the reconstruction using

all 576 charge points, and using two different values of the sparsity parameter β.

In particular, we compare the default choice used in the last section of β = 0.5

with the choice β = 0.9, which uses fewer charge points but at the potential cost

of poorer accuracy. The maximum wavenumber studied corresponds to the wave-

length being close to (but still greater than) the exterior measurement distance

δ. The results show that both irregular and high frequencies lead to a degrada-

tion in the accuracy of the reconstruction, and lead to a loss of sparsity in the

reconstructions. Accurate and reasonably sparse reconstructions can be generated

provided there are at least 3 data points per wavelength since for up to k = 44.88

we can reconstruct the solution with a smaller error than the level of added noise

(15%) and with at least an order of magnitude reduction from the total number
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Table 6.2: The `2 percentage error in the reconstructed Neumann boundary data

generated from a source point on the z−axis at z0 = 0.05, with internal source

surface at α = 1/3 and 15% added noise over a range of wavenumbers k.

k % error: full % error: β = 0.5 N∗(0.5) % error: β = 0.9 N∗(0.9)

1 6.428 6.429 10 12.27 6

22.44 2.369 2.369 11 4.752 9

44.88 4.358 4.358 37 6.904 25

52.62 9.458 9.462 162 4797 74

67.32 6.937 6.937 108 17.18 67

134.6 11.15 11.15 189 17.86 128

179 18.89 18.89 324 26.87 212

of charge points (576). These results are consistent with the findings of Ref. [33],

where it is also suggested that a superposition method will give accurate results

provided there are at least 3 degrees of freedom per wavelength. We note that if

the surface of interior charge points includes the location of the monopole gener-

ating the acoustic field then one would obtain exact representations for arbitrarily

high frequencies.

In addition to the general trend of increased errors for higher frequencies, one

also observes a local peak in the error at the characteristic wavenumber k = 52.62.

Here, by characteristic wavenumber we means a wavenumber corresponding to an

internal resonance of the charge point surface. Also, we can see here that the

error is particularly poor for the sparse reconstruction with β = 0.9, and that

there is also a local peak in the number of dominant charge points. This suggests

that sparse reconstructions are not feasible at higher frequencies or at irregular
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frequencies. However, the reconstruction error is lower than the noise level for

the schemes using all charge points or with β = 0.5 for all frequencies tested

up to twice the Nyquist frequency. The results of this section therefore suggest

that the method of superposition with `1 regularisation can provide excellent re-

constructions for frequencies up to around twice the Nyquist frequency, and that

sparse reconstructions are feasible provided we have at least three data points per

wavelength. Irregular frequencies degrade both accuracy and sparsity. However,

if a more accurate and sparsely reconstructed solution was required at k = 52.62,

then we could change the scaling of the internal source surface (i.e. change α),

which would move the location of the irregular frequency. Changing α from 1/3

to 0.4 leads to a percentage error of 6.131% for both the full reconstruction and

the sparse scheme with β = 0.5, which identifies N∗(0.5) = 102 dominant charge

points. For β = 0.9, the error increases to 16.00% with N∗(0.9) = 63. Note that

these results are far more consistent with the other results shown in Table 6.2 and

the removal of the local error peaks is shown more clearly in Fig. 6.3, where the

square and diamond symbols show the values computed with α = 0.4 for β = 0.5

and β = 0.9, respectively.

The results presented by Chardon et al. [41] using sparse plane wave recon-

structions indicate that randomising the exterior data point locations (measure-

ment locations) within the hologram plane facilitates sparse reconstructions above

the Nyquist limit. Unfortunately, the reconstructed solutions using the method

of superposition lose their sparsity at frequencies around and above the Nyquist

limit and randomising the data point locations has been observed to degrade the

accuracy of the reconstructed solution, in general, across the range of wavenumbers

studied in Fig. 6.3. These observations are consistent with the findings in Ref. [65].

The main result of this section is that although in certain special cases `1 sparse

regularisation could give exact representations up to arbitrarily high frequencies,
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in general the reconstruction accuracy will decrease at higher frequencies. Irreg-

ular frequencies can also be treated simply by perturbing the surface of interior

charge points.
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Figure 6.3: The accuracy and sparsity of the reconstructed solutions with 15%

added noise, α = 1/3 and z0 = 0.05. The plots show the effect of changing the

wavenumber k, including the effect of irregular frequencies and values above the

Nyquist frequency. The square and diamond symbols in each plot show the results

recomputed using α = 0.4 when k = 52.62 for each value of β.
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6.4.3 Dependence on the singularity and charge point locations

The results in the previous subsections all reconstructed the Neumann data gener-

ated from a point source located on the z−axis at z0 = 0.05. This ensured that the

singularity in the solution of the related interior problem was located within the

interior charge point surface for α = 1/3. We now consider how the accuracy and

sparsity of our reconstructed solutions depends on both the position of an interior

source point generating the exterior pressure data, and the relative size/position

of the internal charge point surface controlled by the parameter α as described by

Eq. (5.4).

Fig. 6.4 shows both the percentage errors for the sparse reconstructions and

the value of the sparsity parameter N∗(0.5) for different sized interior charge point

surfaces and for different positions of the point source generating the exterior data.

These quantities have been computed for values of α between 0.1 and 0.8, and for

z0 between z0 = 0 and z0 = 0.15. Instead of showing values of the parameter α,

Fig. 6.4 shows the corresponding z−coordinate where the interior charge point

surface intersects the positive z−axis. In this way we are able to indicate the size

of the interior charge point surface relative to the location of z0 on the same axes.

Note that since Γ intersects the positive z-axis at z = 0.21 (it is centred at the

origin with total height 0.42m), then the internal source surface with, for example,

α = 0.5 will intersect the positive z-axis at z = 0.105, and this is the value used

along the horizontal axis in Fig. 6.4. In all cases the added noise level is 15%.

Note that the relative errors obtained when reconstructing the solution using all

charge points differs from that given by the sparse reconstruction by less than 1%.
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Figure 6.4: The accuracy and sparsity of the reconstructed solutions with k = 1

and 15% added noise. The plots show the effect of using a range of different sized

interior charge point surfaces and different positions for the source point generating

the boundary data.

Each subplot of Fig. 6.4 shows four curves, corresponding to each of four

choices of z0. The left subplot shows the percentage errors for different choices of

the interior charge point surface. We notice that the errors are minimised when the

size of the interior charge point surface is such that it intersects the positive z−axis

close to z = z0. Likewise, the right subplot shows that the number of charge points

N∗ needed to obtain a sparse reconstruction is also minimal when the size of the

interior charge point surface is such that it intersects the positive z−axis close to
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z = z0. In general, the solutions are reasonably accurate for charge point surfaces

intersecting the positive z−axis between z = 0.05 and z = 0.1, corresponding to

choosing α = 0.3 or α = 0.4. Choosing α = 0.8 so that the charge point surface

intersects the positive z−axis at z = 0.168 gave the worst results in general. The

results of this section suggest that it does not seem to be critical whether or not

the surface of interior charge points encloses any singularities in the modelled wave

field. Furthermore, the results also point to important potential applications of

the sparse superposition method developed here for source identification problems

in general.

6.4.4 Example of a locally radiating structure

In this section we consider the problem of reconstructing the vibrations of a struc-

ture which is rigid, except over a relatively small region. This is both a typical

assumption for the application to modelling loudspeakers, and is also typical of

problems commonly modelled using the method of patch NAH, whereby measure-

ments and reconstructions only take place in the vicinity of the vibrating region

(see for example Refs. [9, 28]). In the present study we use such an example for

verification of the sparse superposition method for a problem where the pressure

data is not generated by a monopole point source, and hence an optimal choice for

the surface of internal charge points would not be related to the location of such

a monopole.

We consider reconstructing Neumann boundary data given by a raised cosine

function
∂φ

∂nx
(x) =

1

2
(1 + cos(10π|x− x0|))) , (6.10)

inside the circle defined by Γ ∩ {x : 10|x− x0| < 1}, with x0 = (0.14, 0,−0.0525).

Outside of this circle we let the Neumann boundary data be zero. The exterior

pressure data at a distance δ = 0.035m from Γ are generated using the BEM
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as described in Chapter 2. The triangulation has been refined compared to the

results in previous sections and now has 1024 triangles / interior charge points and

1024 exterior data points. This has been done to improve the resolution of both

the boundary data representation and the BEM approximation of the exterior

pressure data. Note that here there is an extra source of noise (in addition to

the 15% added noise) in the acoustic pressure data due to the numerical error in

the BEM approximation. The results of the sparse reconstruction technique for

wavenumber k = 1 are shown in Fig. 6.5. We found that a value of α between 0.3

and 0.4 gave the best results, which is consistent with the previous section, and

hence we have taken α = 1/3.

The upper subplots of Fig. 6.5 show that the sparse superposition method

produces a good reconstruction of the vibrating region for the prescribed locally

vibrating boundary data. The computations shown use β = 0.5 to generate the

sparse scheme leading to N∗ = 30 dominant charge points (of 1024 in total). The

percentage error in the sparse reconstruction is 21.19%, which is the same (up

to the quoted level of accuracy) as the error using all 1024 charge points for the

reconstruction. We note that the boundary data to be reconstructed has 52 out of

1024 entries that are non-zero. Relatively significant errors arise in the rigid regions

of the locally vibrating object (we consider the entire surface Γ to have unknown

Neumann boundary data), close to the edges of the cuboid that are nearest the

vibrating region. If we instead assume prior knowledge of the non-vibrating regions

and consider only the accuracy of the reconstruction over the vibrating region, then

the error reduces to 9.843% for both the sparse and full data reconstructions. A

plot of this post-processed result is shown in the lower left subplot of Fig. 6.5.

The lower right subplot of Fig. 6.5 shows the result of reconstructing the Neu-

mann boundary data starting only with the 30 dominant source points identified

by the sparse reconstruction method and using a reduced data set sampled from
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Figure 6.5: The Neumann boundary data for a locally radiating structure with

1024 charge points, 1024 data points, k = 1 and α = 1/3. Comparison of the

exact solution (upper left) with the sparsely reconstructed boundary data (upper

right), the sparsely reconstructed boundary data after post-processing (lower left)

and a reconstruction using only 28 charge points and a reduced data set with 800

values (lower right).

the full data set at 800 randomly selected points. The same post-processing pro-

cedure as described above has been applied to fix the solution in the non-vibrating

regions to zero. The results shown are computed using Tikhonov regularisation

(with only the 30 charge points identified by the initial sparse reconstruction),

which gave slightly better accuracy than using the sparse reconstruction algorithm

for a second time. The percentage error in the plotted reconstruction is 18.89%,

compared with 26.36% for the reconstruction without post-processing. Using the

sparse algorithm to reconstruct the solution instead gave errors around 3% higher
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in each case. Note that these results all show an improvement on the reconstruc-

tion obtained from the same reduced acoustic data set, but using a basis with all

1024 charge points. In this case the percentage error was more than doubled to

58.87%, and improved to 46.52% after post-processing. We remark that the re-

construction using the full basis with reduced data is an under-determined problem

(the acoustic data are fewer than the number of unknowns), whereas the recon-

struction from the sparse basis is over-determined. This suggests that reducing

the number of charge points and changing the under-determined problem into an

over-determined one is an important step for the efficient implementation of NAH

with reduced data using the method of superposition.

The main result of this section is that sparse reconstruction methods can still be

applied when a suitable choice of dictionary of basis functions for the sparse re-

construction is not obvious, provided there is some inherent sparsity that can be

exploited. Sparse reconstructions can also be used in conjunction with reduced

acoustic field data sets, giving reasonable results. In particular, the sparse basis

representation leads to better accuracy and more efficient calculations than using

the full basis with the reduced data set.

6.5 Summary

In this chapter the ideas behind compressive sampling have been introduced,

along with the concepts of the sparsity and incoherence. Then, a sparse regular-

isation procedure using `1 optimization techniques has been combined with the

method of superposition and applied to solve three dimensional NAH problems.

The developed sparse superposition method is able to reconstruct the normal ve-

locity of a vibrating object using only a very small number of charge points in

many cases, in contrast with a standard Tikhonov reconstruction. In particular,
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it appears that competitive sparse reconstructions can be generated provided the

wavenumber is not too large and that the data can be assumed to be sufficiently

noisy to permit a data fidelity parameter of at least 5% of the size of the `2 norm of

the exterior pressure data. Sparsity also appears to be an important factor when

considering reduced acoustic field data sets, where reconstructions using a sparse

basis gave a considerable improvement in accuracy over using the full basis with

all charge points.
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Chapter 7

Experimental verification for a

loudspeaker

7.1 Introduction

In this chapter, the validity of the sparse inverse method of superposition for

NAH will be verified by using measured pressure data for a loudspeaker in a semi-

anechoic chamber. In Section 7.2 we give the details of the experimental set up

and the use of a laser vibrometer to measure the normal velocity on the surface

of the loudspeaker. Next, in Section 7.3 the method of superposition for NAH

in an infinite half-space is detailed. Numerical results for a sparse reconstruction

approach computed with synthetic acoustic pressure data from a cuboid of similar

dimensions to a typical loudspeaker have then been described in Section 7.4. After

that, in Section 7.5 the numerical results for the loudspeaker are presented and the

reconstructed surface velocity is compared with the measurements from the laser

vibrometer. Finally, in Section 7.6 a summary of possible sources of error is given

for both the measurements and the mathematical modelling.
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7.2 Experimental set up

In order to verify the inverse method of superposition for near field acoustic holog-

raphy, experiments to measure the acoustic radiation from a cuboid shaped speaker

with similar dimensions to the cuboid described in Chapters 2 and 4 were under-

taken. In particular, a loudspeaker with a cabinet of size 0.51m× 0.32m× 0.305m

and a cone of radius 9.5cm has been used. To prevent the sound reflecting back

from the walls and the ceiling, experiments have been performed in a semi-anechoic

chamber at the Acoustics Research Centre in the University of Salford. The walls

and ceiling of the semi-anechoic chamber are covered in absorbent foam and the

sound reflections only come from the rigid floor. This makes the room behave ap-

proximately as an infinite half-space. In order to implement a MoS model for this

type of space we will need to apply the method of images and modify the Green’s

function as described in the next section.

Figure 7.1: The loudspeaker positioned on its back with the cone facing upwards,

and the microphones positioned close by.

For all experiments described in this section, the loudspeaker has been posi-

tioned on its back with the cone facing upwards as shown in Figure 7.1. The

acoustic pressure data were measured via a series of microphones placed in arrays

adjacent to the loudspeaker in a matrix form. The top plane was arranged in 10
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columns and 6 rows, as shown in Figure 7.1. Faces A and C have been arranged

into a matrix with 6 columns and 5 rows, while the faces B and D have been

arranged into 10 columns and 5 rows, as shown in Figure 7.2. The pressure mea-

surements have been taken near to each face at a distance of approximately 2cm

and always within one wavelength from the surface of the speaker. The array has

12 microphones, as illustrated in Figure 7.2, so the total set of results have been

assembled by repeating the measurements many times with the microphones at

different locations to cover the entire speaker.

The microphones have been fixed on two types of stands. The first stand

consists of bolt holes arranged in an array separated by 328mm horizontally and

82mm vertically for the position adjustments, and a microphone array looking

sideways as shown in the left plot of Figure 7.3. The second stand consists of two

columns holding the microphone array facing downwards with a fixed height of 325

mm from the ground, as shown in the right plot of Figure 7.3. For both cases, the

microphone spacing is fixed at 5cm, which gives a square grid with knyq = 62.8 for

the Nyquist wavenumber, and a corresponding Nyquist frequency of approximately

3.4kHz.

In order to verify the accuracy of the reconstructions from the measured acous-

tic pressure data, a laser vibrometer was used to measure the normal velocity of

the surface of the loudspeaker. The experiments were carried out by placing the

loudspeaker on its back as before and the laser vibrometer facing downwards per-

pendicular to the loudspeaker as depicted in Figure 7.4. The laser vibrometer was

directed to points on a rectangular grid on the loudspeaker, where it measures the

normal velocity.
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(a) Face A: the measurement points ar-

ranged into 6× 5 matrix with the array

of 12 microphones.

(b) Face B: the measurement points ar-

ranged into 10×6 matrix with the array

of 12 microphones.

(c) Face C: the measurement points ar-

ranged into 6× 5 matrix with the array

of 12 microphones.

(d) Face D: the measurement points ar-

ranged into 10×6 matrix with the array

of 12 microphones.

Figure 7.2: The loudspeaker faces with the distribution of the measurement points

and the microphones positioned close to each face.

7.3 Method of superposition for NAH in a semi-anechoic

chamber

The work reported in this section is adapted from our conference paper [66]. Con-

sider a three-dimensional half-space of the form H = {x ∈ R3 : x3 > 0}, where

x = (x1, x2, x3) and let Ω− ⊂ H be a finite domain with boundary surface Γ ⊂ H̄.
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Figure 7.3: Stand 1 (left) with the microphone array looking sideways and stand

2 (right) with the microphone array looking downwards.

One can think of H as the space represented by a semi-anechoic chamber with

a rigid floor and fully absorbing walls and ceiling that behaves approximately as

an infinite half-space. The object Ω− represents an acoustically radiating object

placed in H, such as the loudspeaker under consideration here. We decompose Γ

into two parts, ΓH ⊂ H and Γ0 = Γ ∩ {x ∈ R3 : x3 = 0} so that Γ = Γ0 ∪ ΓH and

Γ0 ∩ ΓH = ∅. In a practical setting, Γ0 corresponds to the part of the acoustically

radiating object that is in contact with the floor of the semi-anechoic chamber.

The superposition method approximates the acoustic pressure φ at some point

x ∈ H \ Ω̄− using a basis expansion of the form

φ(x) ≈
n∑
j=1

φjGH(x,yj), (7.1)

where GH is the Green’s function for the Helmholtz equation in the half-space H,

which is given by the method of images as

GH(x,y) =
eik|x−y|

4π|x− y|
+

eik|x
′−y|

4π|x′ − y|
. (7.2)
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Figure 7.4: Laser vibrometer facing downwards towards to the loudspeaker below.

Here x
′

= (x1, x2,−x3) corresponds to the reflection of the point x = (x1, x2, x3)

in the plane ∂H = {x ∈ R3 : x3 = 0}. The points yj ∈ Ω−, j = 1, ..., n are the

charge point locations and φj are the corresponding coefficients, which are deter-

mined by application of the method. Note that the half-space Green’s function

GH corresponds to the Neumann Green’s function with

∂GH

∂x3

(x,y) = 0 (7.3)

whenever x ∈ ∂H. We can show this directly by differentiating (7.2) to give
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∂GH

∂x3

(x,y) =
(y3 − x3)eik|x−y|(1− ik|x− y|)

4π|x− y|3
−

(y3 + x3)eik|x
′−y|(1− ik|x′ − y|)

4π|x′ − y|3
.

(7.4)

For x ∈ ∂H, then x3 = 0 and the two terms in equation (7.4) cancel. Hence, the

Green’s function GH satisfies the rigid floor boundary condition (7.3). As before,

the coefficients φj are chosen so that the `2 norm of the residual vector r, with

entries given by

ri = φ(xi)−
n∑
j=1

φjGH(xi,yj) (7.5)

for i = 1, .., n, is smaller than a desired error tolerance. Once the coefficients φj

have been obtained, then the Neumann boundary data can be recovered from

∂φ

∂n̂
(x) ≈

n∑
j=1

φj
∂GH

∂n̂
(x,yj). (7.6)

We will apply the sparse regularisation approach described in Chapter 6 to

minimise ‖φ‖1, the `1 norm of φ = [φ1, φ2, ..., φn]T , for a fixed acceptable discrep-

ancy level ‖r‖2
2 ≤ ε. The possibility of a sparse reconstruction is highly dependent

on the basis functions used to represent the solution. In the modified superpo-

sition method here, these basis functions are the half-space Green’s functions for

the Helmholtz equation at a set of distinct interior charge points. In the next

section we will investigate whether this choice of basis functions can yield a sparse

reconstruction for synthetic pressure data generated by an interior point source.

7.4 Numerical results for a cuboid with synthetic pres-

sure data

Before applying the inverse MoS to the experimental data obtained as described

in Section 7.2, we first test our reformulated MoS for infinite half-space using
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synthetic pressure data, as in Chapter 6. The numerical results reported here are

taken from our paper [66] and are computed for acoustic radiation from a cuboid of

similar dimensions to a typical loudspeaker cabinet (0.28m×0.28m×0.42m). The

base of the cuboid Γ0 lies in the plane x3 = 0. We will use a triangulation of ΓH to

generate the points at which the pressure data are computed, as well as the internal

charge points and the points at which we reconstruct the solution on ΓH . In

particular, for a given triangulation of ΓH we reconstruct the Neumann boundary

data at the centroid of each triangle and project (from each centroid) a distance

δ along the normal vector to Γ into Ω+ to obtain the points where the exterior

pressure data are recorded. The internal charge points are positioned inside Ω−,

on a scaled down version of ΓH with scaling factor α ∈ (0, 1), as described in

Chapters 5 and 6.

We will reconstruct the boundary data generated by a point source at x0 ∈ Ω−.

The pressure data is then constructed using the half-space Green’s function as

follows:

(φ0)j = a

(
eik|xj−x0|

|xj − x0|
+
eik|x

′
j−x0|

|x′j − x0|

)
, j = 1, ..., n. (7.7)

Here, a ∈ C is the strength of the source, which in these examples is arbitrarily

taken to be a = 3 − i. The boundary data generated at y ∈ ΓH may also be

obtained for the case of a point source at x0 by replacing xj in (7.7) by y ∈

ΓH , differentiating in the direction of n̂y and evaluating at the centroids of the

triangulation y = yj for j = 1, ..., n to give

(v)j
a

=
n̂yj · (x0 − yj)

|yj − x0|3
(1− ik|yj − x0|)eik|yj−x0|

+
n̂yj · (x′0 − yj)

|y′j − x0|3
(1− ik|y′j − x0|)eik|y

′
j−x0|.

Using this calculation it is possible to verify the accuracy of the regularised ap-

proximate solutions with different wavenumbers and point source positions x0 ∈ Ω.

Uniformly distributed and additive white noise will be applied to φ0 in order to
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more closely replicate experimental observations. We compute the level of added

noise w as described previously in equation (6.7).

For these experiments the number of charge points, the number of measurement

points and the number of points at which we reconstruct the solution are all equal

to 504. This is achieved by triangulating the internal source surface in an identical

way to ΓH and taking the charge points at the triangle centroids. The data fidelity

parameter ε appearing in equation (6.3) is chosen as

ε = (max{εmin, w})2‖φ0‖2
2, (7.8)

where w is the level of noise added to the pressure data as before. The results in

this section have been obtained with εmin = 1e-6.

Consider the case k = 1 and x0 = (0, 0, 0.1), where the frequency is relatively

low, is not close to an irregular frequency and x0 is relatively close to the origin and

will lie inside the surface on which the interior charge points are located. Under

such conditions the superposition method is expected to work well as noted in

Chapter 5. The pressure data are specified at a distance δ = 0.035m from ΓH and

the internal source surface is scaled down to have dimensions α = 1/3 the size of

Γ. We note that these choices should lead to good results as discussed in Section

6.4.1.

Figure 7.5 shows the sparse reconstruction of the Neumann data with noise

level w = 5%. The exact solution is also shown for reference and appears almost

identical to the sparse reconstruction. The right sub-plot shows the charge point

strengths φj, j = 1, . . . , 504 given by the sparse reconstruction algorithm. Note

that many of the φj, j = 1, . . . , 504 are suppressed and are close to O(10−6), but

13 dominant terms can be picked out which are close to O(10−1). The sparse

reconstruction shown in the left sub-plot was created using only these 13 values.

We note that the half-space sparse superposition approach is performing similarly

to the free-space method reported in Chapter 6. In particular, parallels can be
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Figure 7.5: Neumann boundary data on a cuboid generated by a point source at

x0 = (0, 0, 0.1) with wavenumber k = 1 and w = 5% added noise. The plots

compare the exact solution against the `1 reconstruction approach using only the

N∗ = 13 dominant charge points of largest magnitude shown in the right sub-plot.

drawn between Figs. 6.1, 6.2 and 7.5. We are therefore confident that the method

is working as expected for the half-space reformulation and in the next section we

proceed to apply it to the experimental data described in Sect. 7.2.

7.5 Numerical results for a loudspeaker with measured

pressure data

An experimental study was conducted to apply the inverse MoS model for near-

field acoustic holography with the acoustic pressure data obtained at the University
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of Salford, in order to reconstruct the normal velocity on the surface of a loud-

speaker. The loudspeaker geometry with the dimensions described in Section 7.2

was implemented and the corresponding mesh is shown in Figure 7.6. The internal

charge points yj with j = 1, 2, ..., 288 have been generated by taking the location

of the measurement points surrounding the loudspeaker and multiplying them by

a factor of 0.5. This leads to a set of charge points positioned on the upper five

faces of a cuboid in the interior of the loudspeaker, and is analogous to the set up

used in Section 7.4. Note therefore that the measurement points and the charge

points are not conformal to the geometry of the loudspeaker. This is due to the

difficulty involved in placing the microphones at a fixed distance from the cone.

−0.2

−0.1

0

0.1

0.2

−0.1

0

0.1

0

0.05

0.1

0.15

0.2

xy

z

Figure 7.6: The loudspeaker geometry employed for the computational model.

To investigate the performance of the method of superposition for this inverse

NAH problem, we test the model using a frequency range from 100 to 6800 Hz.

The lower limit is taken as a result of the measured data being unreliable due

to measurement noise below 100 Hz. The upper limit is at approximately twice

the Nyquist frequency, and corresponds to a wavelength of approximately 5cm,
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meaning that the measurement distance of 2cm always lies within one wavelength

of the radiated acoustic wave. The results obtained utilizing the sparse recon-

struction method are compared to the measured data from the laser vibrometer.

The data fidelity parameter ε is chosen similarly to in equation (7.8), but the

mean coherence of the measured data (given by the NAH experiments) is used in

place of the added noise level w. The coherence value is calculated directly by

the NAH measurement software and estimates the extent to which the measured

data may be predicted using a least squares approximation. A coherence value

close to 1 indicates ill-conditioned data and requires a much larger value of ε than

when the coherence is significantly smaller than 1. The typical values of ε used

in these experiments range from 50% of the `2 norm of the measured pressure

data for low frequencies where the coherence is close to 1, down to around 7% of

the `2 norm of the pressure data at higher frequencies where the coherence is lower.

Figure 7.7 demonstrates the comparison between the sparse reconstructed and

the measured values for four approximately equally spaced frequencies between

100 Hz and 2550 Hz. These frequencies are all below the Nyquist frequency and

the reconstructions show reasonably good correspondence to the normal velocities

measured using the laser vibrometer, particularly for the higher frequency cases.

We note that for frequencies below the Nyquist limit, traditional Tikhonov regu-

larization with GCV should also work reasonably well. Figure 7.8 shows the results

of using Tikhonov regularisation for the same set of experiments. We note that the

sparse reconstructions are significantly more accurate and use only a fraction of

the number of degrees of freedom in the numerical method; the plots in Figure 7.7

use between 19 (100 Hz) and 167 (2550 Hz) internal charge points from a total of

288. Clearly, the Tikhonov regularisation process has failed and the ill-conditioned

nature of the problem has led to the results in Figure 7.8 being meaningless.
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Figure 7.7: The reconstructed results for the normal velocity using sparse regulari-

sation compared to the measured data at different frequencies f below the Nyquist

frequency.
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Figure 7.8: The reconstructed results for the normal velocity using Tikhonov reg-

ularization compared to the measured data at different frequencies f below the

Nyquist frequency.
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Figure 7.9: The reconstructed results for the normal velocity using sparse regu-

larisation compared to the measured data at different frequencies f around and

above the Nyquist frequency.
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Figure 7.9 shows the results of using the sparse reconstruction method for fre-

quencies around and exceeding the Nyquist frequency (3400 Hz) up to a maximum

of 6800 Hz. Whilst the reconstructed velocity at the Nyquist frequency is reason-

ably accurate, the more the frequency is increased above this level, the poorer the

reconstructions become. From the results obtained previously in this section, we

conclude that the sparse superposition method has good accuracy at frequencies

up to and including the Nyquist rate. Beyond the Nyquist rate, the data sampling

is not sufficient to produce an accurate reconstruction.

7.6 Sources of error

There are a number of factors that could influence the accuracy of the results

presented in the previous sections and may account for some of the differences ob-

served between the computational results and the measurements. In this chapter,

all the numerical approximations will contain some degree of error as a result of

both interpolating the solution over a discrete mesh and representing the measured

pressure as a finite sum of Green’s functions. Some possible additional sources of

error for the case of loudspeaker modelling include:

Mesh geometry: The numerical model used for the loudspeaker geometry was

generated using measurements when the loudspeaker was switched off. When

the loudspeaker is switched on and operated, the cone raises up slightly due to

switching on the magnetic field and then vibrates to radiate sound. Therefore the

geometric data used in the model is only approximate and hence is subject to error.

Measurement noise: Even though the measurement of the sound pressure was per-
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formed in a semi-anechoic chamber, there is still some reflected and exterior noise

that could affect the accuracy of the measurement.

Inaccuracy of the measurement position: The position of the microphone utilized

for the pressure measurements can only be given to within a few millimetres and

consequently the exact points at which the measurements are taken are unknown.

Speed of sound: The speed of sound is very sensitive to the temperature. Thus,

during the measurement, the temperature could be vary and hence the speed of

sound may be different to the value of c = 346ms−1 used in the simulations here.

7.7 Summary

In this chapter we described the experimental procedure for sampling the acous-

tic pressure in the near-field and the use of the laser vibrometer to measure the

normal velocity on the surface of the loudspeaker. The method of superposi-

tion was then reformulated for NAH in an infinite half-space, in order to apply

a mathematical model that more closely represents the experimental set up. The

numerical results for the sparse regularisation approach were then computed for

synthetic acoustic pressure data to test the reformulated model before applying

it to the measured data. Next, the model was verified at different frequencies

between 100 Hz and 2550 Hz. The results of the sparse regularisation procedure

compared favourably with the values measured using the laser vibrometer. We also

found that the sparse regularisation procedure considerably out-performed a stan-

dard Tikhonov based approach for these experiments. We then tested the sparse

regularisation procedure for higher frequencies around and above the Nyquist fre-

quency. Both the accuracy of the reconstruction and the level of sparsity were
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degraded as the frequency was increased. The results obtained in the above exper-

iments illustrated that the sparse inverse method of superposition has reasonably

good accuracy for frequencies up to and including the Nyquist rate, and that the

accuracy decreases above the Nyquist frequency. Finally, a summary of possible

sources of error was given in order to explain the relative lack of precision in the

results here, compared with those for the simpler test problems studied earlier in

the thesis.
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Chapter 8

Conclusions and further work

The work presented in this thesis aimed at developing a novel method for mod-

elling near-field acoustic holography, where the acoustic field on the surface of a

vibrating structure was recovered from measurements taken in the exterior field.

To achieve this target, existing numerical techniques for NAH were surveyed and

the study included Fourier acoustics based NAH, the inverse BEM and the inverse

MoS. All these methods have been implemented, compared and discussed. The

Fourier acoustics based NAH was used to solve the inverse problem of NAH on

a flat plate, given acoustic pressure data in the near-field above the plate. The

results showed that this method is simple to use and that fast, accurate numerical

schemes can be applied using the fast Fourier transform. However, this method

is limited to separable geometries such as spheres, cylinders and flat plates. The

inverse boundary element method (IBEM) for near-field acoustic holography was

applied to general three-dimensional geometries. The calculation was relatively

slow and complicated, particularly if characteristic frequencies are to be properly

treated. Next, the inverse method of superposition for NAH problems was formu-

lated and applied to two geometrically different test problems (cuboid and sphere).

The results demonstrated that the MoS for the inverse problem of NAH was simple
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to implement, more accurate than the IBEM and had faster computational times.

However, it is difficult to know (without heavy use of trial and error) what are the

optimal internal charge point locations.

A sparse superposition method was developed and implemented for the inverse

MoS. The method is able to reconstruct the normal velocity of a vibrating object

using a very small number of charge points. Two primary reasons this is beneficial

are firstly, one can potentially reduce the amount of measured data required, and

secondly, we can also detect sources of noise when a small number of clustered

charge points are identified. The sparse inverse MoS was then successfully applied

to reconstruct the surface velocity of a loudspeaker from measurements of the

sound pressure field taken in a semi-anechoic chamber. The development of the new

sparse inverse MoS and its experimental verification form the primary contribution

to knowledge of this thesis.

8.1 Conclusions

In Chapter 1 we described the background to this research, and gave a review

of the literature related to numerical techniques for NAH. The general concept

of interior and exterior problems was considered. Numerical techniques for NAH

problems such as Fourier acoustics based NAH, and the inverse boundary element

method were discussed. Then, a number of alternative methods to the IBEM

that have been suggested for the numerical solution of NAH problems were also

discussed. Finally, some regularisation procedures have been surveyed, such as

the truncated singular value decomposition (SVD), Tikhonov regularization and

sparse reconstruction methods.

The boundary element method for the solution of the Helmholtz equation in an

unbounded exterior domain was presented in Chapter 2, and the surface Helmholtz
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equation for the exterior acoustic problem of the Helmholtz equation was derived.

Then, the application of the BEM for the forward Neumann problem has been

described. The corresponding inverse problem is the NAH problem to determine

the Neumann boundary condition given a set of pressure data in the exterior

domain. Accurate numerical results were obtained for examples on a cuboid and

a sphere.

The Fourier acoustics method for solving the inverse problem of NAH was

introduced in Chapter 3, where the vibrational behaviour of a flat plate was re-

constructed from acoustic pressure data in the near-field. The integral equation

formulation for modelling acoustic radiation from an infinite plate using a modified

Green’s function given by the method of images was detailed. Fourier transforms

and the convolution theorem were then applied to solve this problem for either the

pressure or the Neumann data on the flat plate. The results of using the Fourier

acoustics solution were compared against an exact solution for an infinite flat plate,

and the effect of changing both the location of the prescribed pressure data, and

the wavenumber have been investigated.

Chapter 4 gave a reformulation of the boundary integral equation for the

Helmholtz equation given in Chapter 2, to solve the inverse problem of NAH.

This inverse problem is ill-posed because the solution of the Neumann boundary

data does not depend continuously on the given data. In order to overcome this

problem, Tikhonov regularization was applied, and it was shown that subject to a

suitable choice of the regularisation parameter λ, reasonably accurate reconstruc-

tions could be obtained. The behaviour of the method was investigated, given noisy

acoustic pressure data in the exterior domain and two geometrically different test

problems (a cuboid and sphere) were considered. In the both cases, numerical

results were presented for pressure data generated by three different point sources

and good agreement with the exact solution was obtained in each case.
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In Chapter 5, the method of superposition and its numerical application to

solve both the forward Neumann problem, and the inverse NAH problem were

detailed. The numerical results with different values of wavenumber k and for

different numbers of terms in the superposition were demonstrated. The results

showed fast convergence leading to smaller errors than the corresponding numerical

experiments using the BEM in Chapter 2. The results of the numerical experiments

for the MoS for the inverse problem of NAH demonstrated that the MoS can give

more accurate solutions than the inverse BEM with faster computational times.

In Chapter 6, the theory of compressive sampling was introduced, together

with the key concepts of sparsity and incoherence. Then a sparse regularization

procedure using `1 optimization was applied to solve the three dimensional in-

verse NAH problem. The behaviour of the method, in terms of the error and the

sparsity of the reconstructions, was investigated for different wavenumbers and

different types of noisy synthetic pressure data. The results suggested important

potential applications of the sparse superposition method in both source identifica-

tion and in reducing the number of measurements necessary to obtain an accurate

reconstruction.

In Chapter 7, the sparse method of superposition for NAH was validated by

utilizing measured pressure data for a loudspeaker in a semi-anechoic chamber.

First, the set up details of the experimental procedure for sampling the acoustic

pressure in the near-field, and the use of the laser vibrometer to measure the nor-

mal velocity on the surface of the loudspeaker were provided. Then, the method

of superposition was detailed for NAH in an infinite half-space. Next, numerical

results for the sparse regularisation approach were calculated for synthetic acoustic

pressure data to test the reformulated model before applying it to the measured

data. After that, the method was applied at different frequencies between 100 Hz

and 6800 Hz, and the results of the sparse regularisation procedure were compared
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with the values measured using the laser vibrometer. The results that were ob-

tained from the experimental work demonstrated that the sparse inverse method

of superposition was reasonably accurate for frequencies up to and including the

Nyquist rate, but above the Nyquist frequency the accuracy reduced greatly.

8.2 Further work

8.2.1 Extension to other radiating objects

In this work, we developed a sparse inverse MoS numerical model for near-field

acoustic holography, where the acoustic field on the surface of a vibrating structure

is recovered from measurements taken in the exterior field. The model was applied

to a loudspeaker in a semi-anechoic chamber. The loudspeaker is a complex, com-

posite structure and the results showed a good agreement with sufficient accuracy

for identifying the vibrating region of the loudspeaker. However, the sparse inverse

MoS approach is applicable to general three-dimensional geometries and so, this

model can be extended to other radiating objects such as musical instruments,

other types of loudspeaker and car engines, for example, where the identification

of the source region of the radiated noise is of interest. These applications would

require further experimental work as well as optimisation of the charge points and

the model parameters.

8.2.2 Reconstruction beyond the Nyquist limit

Hald [47] uses a pseudo-random microphone array to obtain accurate reconstruc-

tions at frequencies above the Nyquist rate. The microphone array has partial

rotational symmetry, but is only for planar measurements. The design of a suit-

able pseudo-random array in three dimensions is an open question. In Chapter 6,
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we reported that randomising the measurement locations by randomly removing

data points did not enhance our results. This suggests that achieving accurate

reconstructions beyond the Nyquist limit for general three-dimensional structures

is an interesting challenge for future work.

8.2.3 Time-domain NAH

In this thesis the frequency domain was used to investigate the performance of

the method of superposition for the inverse NAH problem. An alternative is to

consider time-domain near-field acoustic holography (TNAH) for non-stationary

sound fields [67]. The inverse NAH problem in the time domain is different from

the frequency domain (it is based on the acoustic wave equation instead of the

Helmholtz equation), but similar methods can be applied [67]. The development

of sparse NAH methods in the time-domain is therefore a significant area where

new research can be performed.

8.2.4 Compressed modal equivalent point source method

The sparse inverse method of superposition developed in this thesis was con-

cerned with identifying the sound source of a vibrating structure, when the vibra-

tions were localised on one small area, such as the conic region of a loudspeaker.

Recently, the compressed modal equivalent point source method (CMESM) has

been proposed [48] to reconstruct the vibrational behaviour of a globally vibrating

structure. This method is also based on compressive sensing, but instead uses the

eigenvalue decomposition matrix as the basis for computing the source strengths.

The method is based on the idea that even though the vibrations are non-local,

the number of structural modes excited may be relatively small.
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8.2.5 New sparse optimisation methods

In Chapter 6, we reconstruct the solution of the NAH problem using the MoS

with sparse regularization methods. Hald [49] reports that there are many more

compressive sampling optimisation methods that have been developed in the field

of imaging science, which could be applied to NAH problems. These methods

include (a) single-step iterative shrinkage thresholding algorithms, (b) two-step

iterative shrinkage thresholding algorithms, which converge faster than the single

step methods, and (c) Iteratively Reweighted Least Squares (IRLS). The latter

method solves for each iteration a Tikhonov regularized problem, and more weight

is given to the highest source amplitudes. The results in Hald [49] suggest that

method (c) IRLS, will be the best method for the NAH problem using the inverse

MoS. The IRLS method would therefore our starting point for further research in

this direction.
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Appendix A

The Fourier transform in

two-dimensions

Let f : R2 → C. The Fourier transformation in two-dimensions is defined to be

the map F : f → f̃ :

f̃(k) =

∫ ∞
−∞

∫ ∞
−∞

f(x)e−ik·xdx dy,

where here we denote x = [x, y]T and k = [kx, ky]
T . If this integral exists, then

f̃ = Ff is called the Fourier transform of f . In the case when F is bijective, the

inverse transformation F−1 : f̃ → f is given by

f(x) =
1

4π2

∫ ∞
−∞

∫ ∞
−∞

f̃(k)eik·xdkxdky.

Lemma A.1 (Differentiation).

Let f ∈ S(R2), the Schwartz space of rapidly decreasing functions- infinitely dif-

ferentiable functions f with ‖f‖α, p := supx∈R2

∣∣∣xαyβ ∂pf∂xp
∂qf
∂yq

∣∣∣ < ∞ for all vectors

of non-negative integers α = [α, β], p = [p, q]. Then for any m = 0, 1, 2, . . . and

∀ k ∈ R2 we have,(
F
[
∂mf

∂xm

])
(k) = (ikx)

m(Ff)(k) and

(
F
[
∂mf

∂ym

])
(k) = (iky)

m(Ff)(k).

(A.1)
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Proof.

We give the proof for m = 1. For m > 1 the result follows by induction. For the

first result one uses integration by parts for the integral with respect to x, and

for the second result one instead integrates by parts in the y integral. We detail

the first case only since, given the above, the procedure for the second is entirely

analogous. Writing out the definition for m = 1 gives(
F
[
∂f

∂x

])
(k) =

∫ ∞
−∞

∫ ∞
−∞

∂f

∂x
e−i(kxx+kyy)dxdy

=

∫ ∞
−∞

e−ikyy
∫ ∞
−∞

∂f

∂x
e−ikxxdxdy

=

∫ ∞
−∞

e−ikyy
([
f(x)e−ikxx

]∞
−∞ +

∫ ∞
−∞

f(x)(ikx)e
−ikxxdx

)
dy.

The first term in the integration by parts vanishes since f ∈ S(R2) decays rapidly

to zero as x→ ±∞. We are left with(
F
[
∂f

∂x

])
(k) = ikx

∫ ∞
−∞

∫ ∞
−∞

f(x)e−i(kxx+kyy)dxdy = ikx(Ff)(k). �

Corollary A.1 (Gradient and Laplacian operators).

Let f ∈ S(R2), then ∀ k ∈ R2 we have,

(F [∇f ]) (k) = ik(Ff)(k) and (F [4f ]) (k) = −|k|2(Ff)(k). (A.2)

Proof.

Since ∇f =

[
∂f

∂x
,
∂f

∂y

]T
, then

(F [∇f ]) (k) =


F
[
∂f

∂x

]
(k)

F
[
∂f

∂y

]
(k)

 =

 ikx(Ff)(k)

iky(Ff)(k)

 = ik(Ff)(k).
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Since 4f =
∂2f

∂x2
+
∂2f

∂y2
, then

(F [4f ]) (k) = F
[
∂2f

∂x2

]
(k) + F

[
∂2f

∂y2

]
(k)

= −k2
x(Ff)(k)− k2

y(Ff)(k)

= −(k2
x + k2

y)(Ff)(k)

= −|k|2(Ff)(k). �

Note that analogous results to the above lemma and corollary also hold for f ∈

S(Rn), where n is any positive integer.

For f, g ∈ L1(R2), (i.e.
∫
R2 |f(x)|dx,

∫
R2 |g(x)|dx <∞) define their (two-dimensional)

convolution as:

(f ∗ g)(x) =

∫
R2

f(x− x′)g(x′)dx′,

where (in this appendix) x′ = [x′, y′]T .

Theorem A.1 (Convolution).

Let f, g ∈ L1(R2), then

F(f ∗ g) = (Ff)(Fg). (A.3)

Proof.

F [(f ∗ g)(x)](k) =

∫
R2

e−ik·x
(∫

R2

f(x− x′)g(x′)dx′
)
dx

=

∫
R2

e−ik·x
′
g(x′)

(∫
R2

e−ik·(x−x
′)f(x− x′)dx

)
dx′ (set u = x− x′)

=

∫
R2

e−ik·x
′
g(x′)

(∫
R2

e−ik·uf(u)du

)
dx′

=

(∫
R2

e−ik·x
′
g(x′)dx′

)(∫
R2

e−ik·uf(u)du

)
= (Ff)(k)(Fg)(k). �
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Note also that this theorem can be directly generalised to f, g ∈ L1(Rn), for

any positive integer n.
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Appendix B

Exact solution for plane wave

radiation from an infinite plate

In this appendix we will describe how to determine the acoustic radiation into the

half-space z > zI due to a flexural plane wave travelling through a thin plate at

z = zI . This is a classical problem in structural acoustics and similar derivations

can be found in many texts; see for example Chapter 7 of Ref. [56] or Chapter 3

of Ref. [57]. We consider a periodic cell of an infinite plate in the plane z = zI

as described in Section 3.4. We implement this by choosing a square cell in the

x − y plane with (x, y) ∈ [−1, 1] × [−1, 1] and considering a flexural plane wave

directed parallel to the y-axis with wavenumber kB = nπ for some n = 1, 2, 3, . . ..

Assuming that this flexural wave has amplitude u0 leads to an expression for the

displacement of the plate in the z-direction (i.e. the normal displacement) of the

form u = u0e
ikBy. Since time-harmonic waves of angular frequency ω have a time-

dependent factor of the form e−iωt, then we may write the normal velocity as

v = −iωu0e
ikBy = v0e

ikBy. (B.1)
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Applying continuity of the wave vector at the surface of the plate z = zI , then the

radiated acoustic pressure wave can be expressed in the form

φ = φ0e
ikByeikzz. (B.2)

Substituting the expression (B.2) for the sound pressure into the Helmholtz equa-

tion (2.3) we find that

4φ+ k2φ = 0− k2
Bφ0e

ikByeikzz − k2
zφ0e

ikByeikzz + k2φ0e
ikByeikzz

= (k2 − k2
B − k2

z)φ = 0,

and hence for non-trivial solutions φ 6≡ 0, the square of the acoustic wavenumber

must satisfy k2 = k2
B + k2

z . Assuming that kB and k are specified by the problem

then we use this relation to obtain kz =
√
k2 − k2

B.

The linearised Euler’s equation

∂Φ

∂n̂
= −ρdV

dt
(B.3)

can now be applied to find a relation for the amplitude coefficient φ0 in Eq. (B.2),

given an assumed value for the amplitude of the plate vibration velocity v0 (see

Eq. B.1). Here ρ is the density of the acoustic medium, Φ(x, t) is the time-

dependent sound pressure and V (x, t) is the velocity. Again, we consider time-

harmonic waves of angular frequency ω so that Φ and V can be expressed in the

form Φ(x, t) = φ(x)e−iωt and V (x, t) = v(x)e−iωt, respectively. Hence

dV

dt
= −iωV,

and we obtain the following frequency domain form of the linearised Euler’s equa-

tion
∂φ

∂n̂
= iωρv. (B.4)
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For the case of our flat plate structure, then

∂φ

∂n̂
=
∂φ

∂z

evaluated at z = zI . Hence using this fact and substituting the plane wave expres-

sions Eq. (B.1) and Eq. (B.2) into Eq. (B.4) at z = zI leads to

ikzφ0 e
ikBy eikzzI = iωρv0e

ikBy. (B.5)

Using that kz =
√
k2 − k2

B and rearranging for the acoustic wave amplitude term

φ0 yields

φ0 =
ωρv0√
k2 − k2

B

e−i
√
k2−k2BzI . (B.6)

As a result, we can substitute this expression into Eq. (B.2) to give the radiated

sound pressure at a point x = (x, y, z) in the half-space z > zI as

φ(x) =
ωρv0√
k2 − k2

B

ei
√
k2−k2B(z−zI)eikBy. (B.7)

Hence given a flexural plane wave in the infinite plate at z = zI described by

Eq. (B.1), we may use the formula (B.7) to calculate the radiated acoustic wave

in the half-space z > zI .
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Appendix C

Sampling theory and the Nyquist

limit

In this appendix we will describe Shannon’s sampling theorem and some related

topics. Sampling is the process of converting a signal (e.g., a function of continuous

time or space) into a numerical sequence ( e.g., a function of discrete time or space).

Shannon’s sampling theorem states that:

If a function x(t) contains no frequencies f higher than B Hertz, then x(t) can be

completely determined from its values at a set of points spaced 1/(2B) seconds

apart.

In order to ascertain a sufficient sample-rate therefore we must take at least

2B samples per second. Equivalently, a sample rate r would lead a perfect recon-

struction for a bandlimit B < r/2.

For a signal whose bandlimit is too high (or when there is no bandlimit), the

reconstruction exhibits imperfections known as aliasing. The two thresholds, 2B

and r/2 are respectively called the Nyquist rate and the Nyquist frequency. The

theorem would also be applicable to the functions of space, such as in the case
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of a digitized image or the sampling problems we meet in NAH. The only change

would be the units of measure applied to t, r, and B.

C.1 Shannon’s Proof

Assume that X(ω) is the one dimensional Fourier transform of x(t), then

x(t) =
1

2π

∫ ∞
−∞

X(ω)eiωtdω =
1

2π

∫ 2πB

−2πB

X(ω)eiωtdω. (C.1)

Note the analogy with two-dimensional Fourier transform discussed in Appendix

A. The final expression follows since X(ω) is presumed to be zero outside the band

|f | = | ω
2π
| < B. Letting

t =
n

2B

where n is any positive or negative integer, we obtain

x
( n

2B

)
=

1

2π

∫ 2πB

−2πB

X(ω)eiω
n
2B dω, (C.2)

where the left-hand expression gives the values of x at the sampling points. The

integral on the right can be identified as the nth coefficient in a Fourier-series

expansion of the function X(ω) with the interval −B to B as the period. Conse-

quently, this means the values of samples x( n
2B

) can be determined by the Fourier

coefficients in a series expansion of X(ω). Therefore they determine X(ω), since

X(ω) is zero for frequencies greater than B, and for lower frequencies X(ω) is

determined if its Fourier coefficients are determined. Since X(ω) determines the

original function x(t) completely, then the original samples determine the function

x(t) completely.
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C.2 Application to spatial sampling in nearfield acous-

tic holography

In this thesis we consider the solution of the Helmholtz equation (2.3) with

wavenumber, or spatial frequency, k = 2π/λ, where λ is the wavelength. We are

therefore interested in how the Nyquist sampling limit applies in the context of

measurements of an acoustic field, which is assumed to satisfy the Helmholtz equa-

tion.

In particular, for a given measurement surface with a separation between sub-

sequent measurement points of distance h, we would like to know the Nyquist

sampling rate, and consequently the corresponding maximum wavenumber knyq

for which the classical sampling theory tells us we should be able to reconstruct

solutions of the Helmholtz equation. If the sampling distance is h, then the maxi-

mum spatial frequency will therefore be knyq = 2π/(2h) = π/h m−1.
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Appendix D

Convex optimization

In this appendix we will give a brief introduction to some concepts related to op-

timization. Optimization is the act of obtaining the best possible result under

a given set of circumstances [68]. The main target of all such procedures is ei-

ther to maximize benefit or to minimize effort. The benefit or the effort can be

expressed as a function of some design variables. Therefore, optimization is the

process of obtaining the condition that gives the maximum or the minimum value

of a function. In what follows, we only focus on function minimization because

the minimum value of a function f is also the maximum value of the function −f .

Consequently, without loss of generality, optimization can be taken to mean the

minimization of a function.

There are several methods available for solving optimization problems effi-

ciently. The minimization problems described above are known as mathematical

programming problems, which are a branch of operations research. In the general

mathematical programming problem of minimizing a function f over a set S, there

may be local minima of f which are not the global minimum. It is usually difficult

to find the global minimum when there are lots of local minima. However, if the
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Figure D.1: Convex and non-convex functions on an interval.

function f is convex then the process is simplified considerably.

A set S ⊆ Rn is a convex set if λx + (1 − λ)y ∈ S for all x,y ∈ S and

0 ≤ λ ≤ 1. In other words, the line segment joining x and y lies in S. A function

f : S → Rn is convex if the set above its graph is convex [69]. The difference

between convex and non-convex functions is illustrated in Fig. D.1. Minimization

of convex functions, or convex optimisation, is a much simpler problem than the

general function minimization problems described above. This is because any local

minimum of a convex function is also the global minimum [69], and so the problem

is reduced to finding a single local minimum.
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