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Abstract

GB virus B (GBV‐B) is a new world monkey‐associated flavivirus used to model acute

hepatitis C virus (HCV) infection. Critical for evaluation of antiviral or vaccine approaches

is an understanding of the effect of HCV on the liver at different stages of infection.

In the absence of longitudinal human tissue samples at defined time points, we have

characterized changes in tamarins. As early as 2 weeks post‐infection histological changes

were noticeable, and these were established in all animals by 6 weeks. Despite high levels

of liver‐associated viral RNA, there was reversal of hepatic damage on clearance of

peripheral virus though fibrosis was demonstrated in four tamarins. Notably, viral RNA

burden in the liver dropped to near undetectable or background levels in all animals

which underwent a second viral challenge, highlighting the efficacy of the immune re-

sponse in removing foci of replication in the liver. These data add to the knowledge of

GBV‐B infection in New World primates which can offer attractive systems for the

testing of prophylactic and therapeutic treatments and the evaluation of their utility in

preventing or reversing liver pathology.

K E YWORD S
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1 | INTRODUCTION

Infection with hepatitis C virus (HCV) remains a worldwide public

health issue. While there have been recent advances in novel direct‐
acting antivirals (DAA), the availability and accessibility of these

globally is not certain. The long‐term effects such as viral resistance

and side‐effects are not yet established. Further, a crucial target

population—those unaware of their infection status—is not easily

defined. Thus, the need remains to implement an effective prophy-

lactic vaccine in a cost‐effective manner. While 75% to 85% of in-

fected individuals develop chronic infection, for reasons that are not

clear, 15%‐25% of HCV‐infected individuals appear able to clear their
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peripheral viremia. If the mode of control in acute infection was fully

understood, then it would provide a guide for the rational design of

effective vaccine and treatment strategies. Such a description would

need to include liver pathology as well as events detectable in the

peripheral blood.

The clinical study of acute HCV is difficult, not only from the

challenges of acquiring appropriate information about the liver in a

noninvasive manner, but also identifying individuals with inapparent

infections in the absence of compromising concomitant infections or

lifestyles. Model systems of HCV infection are also imperfect, whe-

ther it be in chimpanzees or humanized mice. As a result, we and

others have explored surrogate models.

GB virus B (GBV‐B) is a flavivirus phylogenetically and functionally

closely related to HCV and known to infect New World primates.1 The

authors noted that infection of owl monkeys (family Aotidae) resulted in

lower peak viral titers and lower incidence of viral hepatitis than seen in

tamarins (family Callitrichidae). Experimental infection with GBV‐B
results in high viremia, typically followed by a viral clearance from

the periphery within 18 weeks of infection (reviewed in Reference 2);

rechallenge following clearance is typically readily controlled.3 The

potential utility of a New World primate Hepacivirus model in the

investigation of liver‐associated pathology concomitant with peripheral

viremia is highly important. In characterizing early liver pathology, the

effect of candidate immunotherapies may then be evaluated not only

against the control of circulating viral RNA but also the prevention or

reversal of virus‐associated damage to the liver.4

Few studies on the histology and immunopathology of GBV‐B
have been reported but these include both marmosets and tamarins.

Hepatitis in the marmoset was characterized at 4 weeks post‐
infection by a large number of infiltrating CD3+ cells within portal

tracts and hepatic parenchyma and CD20+ cells in the portal tracts,

though there was an absence of CD4+ cells.5 We and others have

shown that in both the tamarin and marmoset models, CD8+ T cells

have been shown to produce interferon‐γ (IFN‐γ) in response to

peptide stimulation with nonstructural proteins.6,7 A number of im-

munohistochemical and histopathological studies have been reported

for the marmoset,5,6,8,9 but fewer for tamarins.10‐12 Martin and col-

leagues noted a single tamarin at 107 weeks post‐infection (wpi) with

lymphocyte infiltrate within expanded portal tracts, filtering into the

parenchyma, confirmed that tamarins are capable of developing on-

going hepatitis.11 To date, complications that are associated with

HCV infection such as fibrosis have only been reported in marmosets

challenged with either GBV‐B alone8,9,13 or chimeric GBV‐B/HCV in

the presence or absence of an immunosuppressant, FK506.14,15

Knowledge of the comparative pathology between tamarin and

marmoset as a result of Hepacivirus infection would highlight ad-

vantages in the use of either species.

We have expanded on previous reports in which pathology at

defined time points has been assessed. Here, we have characterized

the progression of GBV‐B‐associated liver pathology by im-

munohistochemistry in 18 red‐bellied (white‐lipped; Saguinus

labiatus) tamarins to provide the first longitudinal study of pathology

development. In the early stages of infection, tissue morphology was

broadly unchanged but there was an advanced degree of immune

infiltrate in the liver. A range of liver dysmorphia and immune in-

filtrate was seen in animals convalescent from primary infection. In

the ten animals subjected to a secondary exposure to GBV‐B, liver
immunopathology on termination was advanced in those animals

receiving a higher dose of virus. Importantly, we report for the

first time that, akin to the genus Callithrix (Atlantic marmosets),

acutely‐infected red‐bellied tamarins (Saguinus labiatus; genus

Saguinus mystax) are capable of developing fibrosis following GBV‐B
infection which mimics disease progression often associated with

chronic HCV infection. Thus the GBV‐B/tamarin model remains a

valid model to support research into hepacivirus infection2 and fur-

ther offers an opportunity to study virus‐induced liver pathology,

including fibrosis development. We have demonstrated that it could

be utilized to evaluate the ability of novel prophylactic and ther-

apeutic treatments to prevent or reverse viremia and liver damage.

Such information could inform the clinical application of these

treatments in humans with HCV infection.

2 | MATERIALS AND METHODS

2.1 | Animals and biological samples

Purpose‐bred, weaned (and less than 24 months of age), red‐bellied
tamarins (Saguinus labiatus) were housed, and all animal procedures

were performed in strict accordance with UK Home Office guidelines,

under a licence granted to the host establishment by the Secretary of

State for the Home Office which approved the work described.

Tamarins were group‐housed in same‐sex groups for the duration of the

study, with daily feeding and access to water ad libitum. Of the

18 tamarins, 10 were male and 8 were female. Animals were weighed

weekly: pre‐study weights of males ranged from 541 to 770 g (mean,

682 g; median 669 g); pre‐study weights for females ranged from 441 to

837 g (mean, 678 g; median, 684 g). The availability of tamarins pre-

cluded age, sex, and weight matching but this was not central to the

study outcome. Regular modifications to the housing area and en-

vironmental enrichment were made by husbandry staff. The environ-

mental temperature was appropriate for tamarins and rooms were

subject to a 12‐hour day/night cycle of lighting. Animals were acclima-

tized to their environment and deemed to be healthy by the named

veterinary surgeon before inclusion in the study.

All animals were inoculated with a stock of GBV‐B‐infected
serum derived from the original ATCC inoculum after serial passage

through two red‐bellied tamarins. All surgical procedures were per-

formed under anesthesia with recovery. Animals were bled through

the femoral vein and serum separated. Where required a liver section

(wedge biopsy) (approximately 5 mm3) was removed at a single time

point during infection by surgical laparotomy with recovery, and

further samples were available at termination. Liver sections were

fixed in 10% formalin and embedded in paraffin wax using a Leica

ASP100 automated processor. Sections (4 µm) of each tissue were

cut and mounted onto glass slides. Before any treatment, all slides
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were deparaffinated using xylene (Fisher Scientific UK Ltd, Leices-

tershire, UK) and rehydrated using an ethanol series.

Groups of tamarins were treated thus: Group A: six tamarins (S2,

S3, T20, V6 [male] and T18, V2 [female]) were infected with 1 × 107

genome equivalents (ge) GBV‐B. A liver section was taken at 2 wpi, with

recovery. Following a period of undetectable peripheral viremia, the

tamarins underwent challenge with homologous virus; 1 × 107 ge

GBV‐B. Group B: four tamarins (W1, W2, W4, W11; all female) were

infected with 1 × 107 ge GBV‐B and terminated 6 wpi. Group C: four

tamarins (V7, V8, W3, W5; all male) were infected with 1 × 107 ge

GBV‐B and terminated approximately 26 wpi when peripheral viremia

had been undetectable for a minimum of 2 weeks. Group D: four

tamarins (T10, V1 [female] and T21, V3 [male]) were infected with

1 × 105 ge GBV‐B. A liver section was taken at 2 wpi, with recovery.

Following a period of undetectable peripheral viremia, the tamarins

underwent a challenge with the homologous virus, 1 × 105 ge GBV‐B.
Group E: Tissues from four tamarins (F21, G13, M7, P6) not infected

with GBV‐B (naïve) were available for this study from an archive of such

materials, thus reducing the need for additional animals for the study.

Infection profiles for Groups B and C tamarins have been re-

ported previously.7 Virus inoculum for all animals was identical.

2.2 | Viral load quantification

Viral RNA was isolated from serum using the QIAamp viral RNA

extraction kit (Qiagen) according to the manufacturer's instructions.

Quantification of the GBV‐B genome was performed by real‐time

PCR using a method adapted from Beames et al.16 GBV‐B Core

sequences were quantified in duplicate using the RNA Ultrasense

One‐step qRT‐PCR system on a MX3000P system (Stratagene).

Primers 558F (5′‐AAC GAG CAA AGC GCA AAG TC‐3′) and 626R

(5′‐CAT CAT GGA TAC CAG CAA TTT TGT‐3′) were used at a

concentration of 400 and 900 nM, respectively. A dual‐labelled probe

(5′ FAM‐AGC GCG ATG CTC GGC CTC GTA AT‐BHQ1 3′) was used

at a concentration of 200 nM. Reverse transcription consisted of a

single incubation at 50°C for 15 minutes followed by 40 cycles of

DNA amplification comprising 95°C at 1 minute, 62°C at 30 seconds

and 72°C at 30 seconds. Standards used to determine genome

equivalents were derived from synthetic GBV‐B Core RNA in vitro

transcribed from a plasmid using the MEGAscript SP6 Kit (Ambion).

The limit of quantification of the assay was 102 ge/mL.

Liver tissue taken from animals at termination was available for the

quantification of GBV‐B vRNA. Total RNA was extracted from a 0.5 cm3

frozen section of liver in 1mL RLT buffer (Qiagen RNeasy Mini Kit;

Qiagen, UK). The tissue samples were placed into Precellys 24 homo-

genization tubes (Peqlab, UK), and homogenization was performed

using a Precellys 24 cell lysis and tissue homogenizer (Bertin Technol-

ogies, France). A program of 2 × 20 seconds at 3000 g was used. RNA

was purified from the homogenate using the RNeasy Mini Kit (Qiagen)

following the manufacturer's instructions. RNA was quantified and the

concentration adjusted to 0.2 μg/μL. vRNA was quantified as described

for serum vRNA levels and titers expressed per 400 ng total

RNA (equating to approximately 10 000‐15000 cells). The limit of

quantification was 7.6 × 102 copies/400 ng total RNA.

2.3 | Quantification of serum liver enzymes

Alanine aminotransferase (ALT) is the primary biomarker of liver

injury, however in studies of human liver damage glutamate dehy-

drogenase (GLDH) correlated highly with ALT across a range of

disease permutations. GLDH is also a more liver‐specific biomarker

and thus a more clinically informative indicator of liver disease.17 To

indirectly assess liver damage, serum levels of ALT and GLDH were

measured using a Kodak Ektachem automated analyzer (Kodak

Ltd UK Suppliers, Orthochemical Diagnostics, Amersham, UK).

Pre‐infection samples were also assessed for each animal.

2.4 | Assessment of tissue morphology

To assess general morphology, sections were incubated in Harris’

hematoxylin (Thermo Fisher Scientific, UK) for 15 minutes, followed

by 1% acid alcohol (1% HCl in 70% IMS) for 40 seconds and coun-

terstained with eosin (Thermo Fisher Scientific) for 10 minutes. Ex-

cess stain was removed using distilled H2O. Sections were air‐dried
and mounted under a coverslip using Locktite superglue. To assess

the extent of collagen deposition in tissue, indicative of fibrotic tis-

sue, sections were taken into 0.1% fast green for 10 seconds, washed

in distilled H2O and incubated in 0.1% sirius red for 15 minutes

before being dried at 60°C for 15 minutes and mounted using DPX

mountant (all Sigma‐Aldrich, UK). All data were referenced to

sections from GBV‐B‐naïve tamarins unless stated otherwise.

2.5 | Detection of cellular proteins by
immunohistochemistry

Immunohistochemistry (IHC) was performed using a Leica Bond Max

processor following the manufacturer's instructions (Leica, UK). Tissue

sections were treated with monoclonal or polyclonal antibodies against a

range of host proteins using either the “IHC Protocol F‐10” or the “ABC 2

Intense R” program. The antibodies were evaluated against tissues from

naïve and infected tamarins. Various antibodies, including anti‐human

clones, demonstrated cross‐reactivity with tamarin tissue, and were

selected for use. Polyclonal Rabbit CD3 anti‐human (A0452; Dako),

monoclonal mouse CD4 (Clone 4B12; Vector, UK) and monoclonal mouse

CD8 (Clone UCH‐T4; Santa Cruz) were used to detect broadly reactive

T cells. Monoclonal mouse CD20cy anti‐human (Clone L26, M0755;

Dako) and monoclonal mouse CD68 anti‐human (Clone KP1, M0814;

Dako) were used to identify B cells and macrophages, respectively.

Polyclonal goat CXCL10 (IP‐10; Clone C‐19; Santa Cruz) was used as an

indirect marker for IFN‐γ release. Ki‐67 (Clone K2, PA0230; Leica, UK)

and monoclonal mouse anti HLA DP, DQ, DR antigen (Clone CR3/43,

M0775; Dako) were used to detect cell proliferation and the presence of
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MHC Class II as an indirect marker for CD4 responses and B cell reg-

ulation, respectively. Secondary antibodies included a universal antibody

and an anti‐goat antibody (both Leica). All data were referenced to

sections from GBV‐B‐naïve tamarins unless stated otherwise. A lack of

cross‐reactive antibodies against known tamarin CD markers restricts

characterization of the hepatic infiltrate in tamarins and marmosets to

the identification of certain T cells and B cells. Data are presented in the

results figures with reference to a representative tissue section.

2.6 | Analysis of tissue staining

Following staining each tissue section was visualized using a Nikon

Eclipse E400 microscope set to 10 to ×20 magnification using

the Metaview software (Meta Imaging software, MDS Analytical

Technologies, UK). A scoring index for the breadth of staining present

(percentage of stained cells) and intensity of the staining was used, as

previously described.18 The scoring system to determine the extent

of fibrosis was the modified histological activity index (HAI19).

3 | RESULTS

3.1 | Serum viral load and liver enzymes

All inoculated animals became infected (Figure 1A‐D). Data previously

reported for animals in Groups B and C7 are included to facilitate com-

parison. While most of the animal had viremia profiles that were con-

sistent with published reports, tamarin V1 had viral loads that fluctuated

from undetectable to a maximum of approximately 107 ge/mL, and

tamarin T10 maintained a detectable viral load for nearly 40 weeks.

Following challenge with 105 ge GBV‐B virus was undetectable in the

blood of T10 and this animal was terminated 3 wpc as a result of a non‐
experiment‐related injury. Weights fluctuated throughout the study, and

transient weight loss was recorded in 12 animals either after first or

second challenge. However, there was no overt association of weight

gain/loss dynamics and viral burden or hepatic pathology.

Raised serum liver enzyme levels (Figure 1A‐D) in animals T20

and V6 (Group A) were not apparent in primary infection but were

observed on secondary exposure to virus. In all other Group A and C

animals, a rise in ALT and GLDH levels was coincident with the point

at which peripheral viremia started to decline. No overt link between

levels of enzymes and overall pathology was noted.

3.2 | Liver‐associated viral RNA loads

Levels of intracellular vRNA were assessed in all animals at termi-

nation (Figure 2). Detectable viral loads were dramatically lower in

animals which had cleared their challenge virus. Low levels of virus

only, were detectable in just six of the ten tamarins across Groups A

and D irrespective of original inoculum dose. vRNA was not detected

in naïve tamarins (Group E).

3.3 | Liver immunopathology throughout primary
infection, clearance, and rechallenge

Liver pathology for Groups B and C animals has been reported7: here

detailed analysis facilitates comparison with animals from the other

groups (Table 1). Representative images are shown to illustrate the

immunostaining patterns (Figure 3). The intensity and breadth of

staining is documented in Figure S1.

3.4 | Liver immunopathology associated with
GBV‐B infection at 2 wpi

Of the animals which received the higher dose inoculum (Group A),

immune infiltrate identified by hematoxylin and eosin (H&E) staining

was observed in S2 and T18 and to a lesser extent in V6. The re-

maining Group A animals and Group D animals had minimal mor-

phological changes (data not shown). Lymphocyte infiltration and cell

proliferation was observed (Figure 3), as evidenced by slightly ele-

vated levels of CD3, CD4, CD20, and Ki‐67 stained cells in three of

the six Group A animals (S2, T18 and V6; and V2 for Ki‐67 only) and

one Group D tamarin (V3). A marginal increase in CD68‐stained cell

levels was detected in the parenchyma of all animals and the portal

tracts of S3 (Group A) and V3 (Group D). Levels of other markers

were broadly comparable to those in the naïve animals.

3.5 | Development of liver immunopathology
at 6 wpi

Liver sections from three Group B tamarins (W1, W2, and W11)

showed only slight lymphocyte infiltration of the portal tracts.

Tamarin W4 displayed hepatocyte swelling and lymphocyte infiltra-

tion from the portal tracts into the parenchyma (data not shown). By

IHC a distinct increase in lymphocyte infiltration (CD3, CD4, and

CD20 cells) was observed above that at the 2 wpi time point in both

the portal tracts and parenchyma of all animals. The increased level

of cell proliferation, as evidenced by Ki‐67 staining in all animals, was

comparable to that seen in 5 of 10 animals at 2 wpi. Periportal de-

tection of CD8‐stained cells and increased cytoplasmic staining for

IP‐10 in the parenchyma was noted in all animals compared to those

studied at 2 wpi. In contrast, staining levels for CD68 cells were

unchanged and only a marginal increase in MHCII cells was observed.

Images from W4 are shown as representative (Figure 3).

3.6 | Liver immunopathology following acute
primary infection

Varying degrees of morphological changes to the liver were observed

by H&E staining in the four tamarins terminated at 26 wpi. The

greatest morphological changes were noted in W5 (viremia detected

to 22 wpi): hepatocyte ballooning, leukocyte infiltrate in the portal
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F IGURE 1 Infection profiles for all tamarins during primary infection and challenge. Serum viral loads in log10 genome equivalents

per mL (solid line), serum Alanine aminotransferase (ALT) (dotted line), and serum glutamate dehydrogenase (GLDH) (dashed line),

both in International Units, are shown for Group A (A), Group B (B), Group C (C), and Group D (D) tamarins
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tracts and a degree of erythrocyte aggregation in sinusoids.

Extensive immune infiltrates of portal tracts and aggregates within

swollen sinusoids were shown in the liver of V7 liver (viremia

detected to 14 wpi). In contrast, tamarins W3 and V8 (viremia de-

tected to 14 and 19 wpi, respectively) displayed levels of immune

infiltrates comparable to naïve tissue (data not shown). Notably,

there was an absence of CD3 staining and minimal accumulation of

CD4 and CD8‐stained cells.

By IHC the greater degree of immune infiltrate staining was

seen in W5 and V7 but levels of CD3, CD4, CD68 and IP‐10
stained cells in the liver were not greatly above those seen in the

naïve tamarins, with some foci of CD4 staining in the portal tracts

(Figure 3). CD8, CD68, and CD20 staining levels were compar-

able to those observed at 6 wpi. V8 and W3 had similar low levels

of immunostaining not greatly different from earlier time points

(Figure 3; Table 1).

3.7 | Liver immunopathology following clearance of
rechallenge virus

At this time point the altered location of stained cells was more

apparent when compared with earlier time points. When liver mor-

phology (expansion of the portal tracts and expanded sinusoids

containing infiltrating leukocytes in the liver and hepatocyte bal-

looning) was considered by H&E staining on termination, of the six

Group A tamarins infected and challenged with 107 ge GBV‐B, three
(S3, T20, V2) exhibited moderate immunopathological changes and

F IGURE 1 (Continued)
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three (S2, T18, V6) exhibited extensive liver damage. There were two

males and 1 female in each of these categories.

The extensive liver damage in S2, T18, and V6 included hepa-

tocyte ballooning, extended portal tracts and the presence of fat

vacuoles. A high degree of extramedullary erythropoiesis (EME) in-

filtration of the portal tracts, which expanded into the parenchyma

and immediate sinusoids was observed (data not shown). These

changes did not correlate with cell proliferation levels as evidenced

by Ki‐67 staining levels which were still high in the portal tracts and

parenchyma of 5/6 Group A animals (not V2). Overall, more intense

IHC staining levels were observed in these animals (Figure S1).

CD3, CD4, and CD20 staining was observed in the portal tracts and

parenchyma of all three animals, with the fewest CD4 cells observed

in S2 and V6. The CD4 staining pattern was punctate. CD8‐stained
cells were detected in both the portal tracts and parenchyma of V6,

and only in the parenchyma of S2. CD68‐stained cells were numerous

in the parenchyma of S2 and V6 but fewer were found in the portal

tracts. IP‐10 cytoplasmic staining was equivalent to that from the

F IGURE 1 (Continued)
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early time‐points but now observed in the parenchyma and portal

tracts (Figure 3, Table 1). Of the remaining three tamarins from

Group A, animals S3 and T20 had similar staining patterns to those

above but with variations on staining intensity and location (Table 1).

Animal V2 had high levels of MHCII staining but all other tissues

resembled those from the naïve animal.

Of the four tamarins in Group D only a male, T21, demonstrated

liver damage (comparable to that in S2 and V6; Group A, males), with

portal tract expansion and EME infiltration expanding into the par-

enchyma. In animal T21, CD3, CD20, and IP‐10, positive staining was

generally observed in the portal tracts and parenchyma. Cell proliferation

(Ki‐67 staining) was particularly evident in the portal tracts. There was an

absence of CD8 staining, CD4 positive cells were only detected in the

portal tracts and CD68 cells were only identified in the parenchyma. T10

(Group D; female) displayed no notable immunopathology. Images from

V3 are shown as illustrative of the pathologies post‐challenge for the

remaining Group B tamarins (Figure 3, Table 1).

3.8 | Development of fibrosis

Evidence of fibrosis was observed in the liver sections from one tamarin

terminated at 26 wpi and three which were terminated post‐challenge
(Figure 4). W5 (Group C; male), was terminated post‐primary infection

and displayed mild focal portal expansion, scoring 1 on the HAI scale.

Immune infiltration of the portal areas was observed. Of the three

animals terminated on clearance of the rechallenge virus, T21 (Group D;

male) and V6 (Group A; male) showed signs of focal bridging of the

portal tracts, scoring 3 on the HAI scale. S2 (Group A; male) displayed

extensive fibrosis evidenced by the formation of fibrotic nodules near

the portal tracts, in addition to the focal bridging of the portal tracts,

and scored 3+ on the HAI scale. The animals that displayed fibrosis had

extensive immune infiltration, whereas T18 (female) had had extensive

infiltrate but no evidence of fibrosis. None of the animals in Group B

(all females) displayed signs of fibrosis. Fibrotic tissue was not observed

in naïve tissue.

4 | DISCUSSION

We describe hepacivirus‐associated liver pathology development in a

New World primate, Saguinus labiatus from early GBV‐B infection

through to secondary challenge by longitudinal study of three tamarin

cohorts. Despite high peripheral viral loads, liver morphological changes

and lymphocyte infiltrate were minimal at 2 wpi indicating a delayed or

low immune response and that structural damage does not necessarily

develop at this early stage of infection. Liver sections from three of the

four animals terminated 6 wpi displayed broadly normal morphology,

comparable levels of immunostaining for assessed markers and high

intracellular levels of viral RNA in the liver. While there was evidence of

lymphocytes in the portal tracts of one animal (W4) these data suggest

an early window during which viral infection could be treated with

minimal lasting morphological effects on the liver.

An increased immune infiltrate appeared in the liver by 6 wpi and

persisted to post‐challenge. This infiltrate typically comprised equal

proportions of T and B cells or a slight bias towards CD4 T cells, in

contrast to GBV‐B infected marmosets,5 suggesting the involvement of

both T‐cell subsets in the tamarin response to GBV‐B. Increased IP‐10
levels occurred in the parenchyma; this cytokine has been shown to

attract CXCR3‐expressing CD4 and CD8 TH1 cells in the liver of acute

HCV‐infected chimpanzees and in chronically‐infected HCV patients.20,21

The return of IP‐10 expression to naïve levels in tamarins that cleared

GBV‐B infection in the periphery at 26 wpi (W5 and V8) coincided with

decreased infiltration of both CD4 and CD8 T cells and likely reflects a

decrease in IFN stimulation. The CD4 and CD8‐stained cells were de-

tected in the absence of CD3 staining suggesting that cells such as NK,

macrophage and dendritic cells may be present. These data support our

previous observations for isolated intrahepatic lymphocytes.7 Complexes

of suitable antibodies are required to distinguish these cells and in the

current absence of such reagents suitable for IHC, this characterization is

outwith the scope of this study, though supported by alternate studies.8

In the primary infection there was an absence of CD8 cells 2 wpi,

while there is a modest increase was observed at 6 and 26 wpi. These

data mirror those from the PMBC and intrahepatic lymphocytes of

these tamarins.7 This may suggest a delayed T‐cell response in acute

infection while an exhausted population may result in the similar lack

of CD8 cell accumulation observed at 2 wpc. Control of GBV‐B is

associated with increased levels of anti‐NS3 antibodies (reviewed in

Reference 2). We identified CD20 cells as major contributors to the

hepatic infiltrate in the tamarins at 26 wpi and post‐challenge, sup-
porting an active antibody component to viral control.

By 26 wpi it was evident that varying degrees of morphological

damage could still be detected. Tamarins W5 (representative sample,

Figure 3) and V7 had morphological damage and immune infiltration

of the portal tracts and parenchyma. Increased CD20 B cells suggest

a local humoral response. By contrast the livers of W3 and V8 had no

signs of immune infiltrate and were morphologically comparable to

F IGURE 2 Viral load in the liver presented as genome

equivalents (ge) of GB virus B (GBV‐B) per 400 ng total RNA
(approximately 10 000‐15 000 cells) for each animal. The limit of
quantification was 7.6 × 102 ge/400 ng total RNA. Tamarin
identifications within the experimental groups are shown
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TABLE 1 Summary of morphological and immunostaining data from GBV‐B‐infected tamarins from Groups A‐D

Morphology Immunostaining

Time point Group ID H&E Sirius red CD3 CD4 CD8 CD20 CD68 IP10 Ki67 MHCII

2 wpi A S2 LI + + + + + + + + (+) P +

S3 (+) P/PT (+)

T18 LI + + + + + (+) P (+) + +

T20 (+) P

V2 (+) P +

V6 LI (+) + + + + + (+) P +

D T10 (+) P

T21 (+) P

V1 (+) P

V3 + + + (+) P/PT (+) +

6 wpi B W1 LI (+) PT + + + P/PT + + + P/PT + PP + + +

P/PT

(+) + P + (+)

W2 LI (+) PT + + + P/PT + + + P/PT + PP + + +

P/PT

(+) + P + (+)

W4 Swollen

hepatocytes;

LI from PT

to P

+ + + P/PT + + + P/PT + PP + + +

P/PT

(+) + P + + (+)

W11 LI (+) PT + + + P/PT + + + P/PT + PP + + +

P/PT

(+) + P + (+)

Post‐primary

infection

C V7 LI + + PT;

aggregates

in swollen

sinusoids

(+) PT + PP + + +

P/PT

(+) (+) P + + + + +

V8 LI (+) (+) PT + PP + + P/PT (+) (+) P (+) + +

W3 LI (+) (+) PT + PP + + P/PT (+) (+) P (+) + +

W5 Hepatocyte

ballooning,

LI PT,

erythrocyte

aggregation

in S

Mild focal

portal

expansion;

LI of P;

HAI 1

(+) PT +/+ + PP + + +

P/PT

(+) (+) P + + + +

Post‐challenge A S2 Hepatocyte

ballooning;

extended

PT; fat

vacuoles;

EME + + in

P, S

Fibrotic

nodules

at PT;

focal

bridging

of PT;

HAI 3+

+ + + + P only + + (+) + + + P/PT (+)

S3 + + + + + + + + (+) + + + P/PT (+)

T18 As S2 + + (+) + + +

P/PT

T20 + + + + + + + + + + + P/PT (+)

V2 + + + +

V6 As S2 Focal bridging

of PT;

HAI 3

+ + + + + + + + +

P/PT

+

D T10

T21 Comparable

to S2

As V6 + + P, PT +, PT + P, PT + + P, PT + +, PT + +

V1 +

V3 + + + + (+) + + + + +

Note: (+), +, + +, + + +, minimal, mild, moderate, substantial change (morphology, immunostaining) over naïve tissue. Representative images are presented

in Figure 3.

Abbreviations: HAI, histology activity index for assessment of fibrosis; LI, lymphocyte infiltration; P, parenchyma; PP, periportal; PT, portal tract;

S, sinusoids.
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the naïve animal suggesting significant reduction of GBV‐B in the

liver and recovery of normal tissue morphology.

Thus, while it would appear that the livers of some animals may

undergo a degree of recovery, the process does not coincide with the

absence of peripheral viremia: tamarins V7 and W3 had almost

identical peripheral viremia and liver enzyme profiles yet very dif-

ferent liver pathology. With modern DAA treatments this is the

benchmark of efficacy, thus recognizing that recovery does not

F IGURE 3 Immunohistochemistry staining for eight cell markers is shown for naïve tamarin and for animals representative of different

pathologies at 2 wpi (V6, V3; Group indicated), 6 wpi (W4), post‐primary infection (W5, V8) and post‐challenge (secondary infection; V6, V3).
Animals were inoculated with 107 ge (V6, W4, W5, V8) or 105 ge GBV‐B (V3). Positive cells are stained brown. The portal tract (PT) is indicated
in two panels for the 2 wpi groups (V6, CD4; V3, CD3). Magnification ×20

F IGURE 4 Sirius Red staining of
collagen is shown for five GB virus B

(GBV‐B)‐infected tamarins and a naïve
animal (N). Fibrosis is indicated in the
portal tract (arrow) in W5 (post‐primary

infection; 26 wpi) and in S2, V6 and T21
(post‐challenge). Magnification ×10
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necessarily coincide with viraemia is of importance. In fact, the pre-

sence of considerable levels of intracellular vRNA in the liver sug-

gesting low‐level replication of GBV‐B, reveals a temporal difference

in clearance from the periphery and the liver likely impacting on the

recovery of the tissue. Interestingly, even when peripheral virus was

undetectable, immune infiltrate and morphological damage were still

evident in the liver indicating either a lag between clearance of virus

from the liver and tissue repair, or that the virus has yet to be era-

dicated from the tissue, given that this is the main site of viral

replication.

We have previously reported the detection of high levels of

vRNA in the liver in the absence of detectable peripheral serum

viremia following convalescence from primary viremia.7 While there

have been contrary reports for the occurrence of occult infection in

marmosets6,9; our observations are consistent with the idea of occult

HCV infection in humans (reviewed in Reference 22) and support

recent studies in marmosets.9 Often, animals had comparable per-

ipheral viral kinetics but varying degrees of liver damage, irrespective

of inoculation dose and time point post‐infection. Tamarins S2 and S3

(twins) displayed comparable viremia profiles yet only S2 developed

extensive liver damage and fibrosis. Thus, peripheral viral load is not

a reliable indicator of the hepatic immune response.

To mimic the scenario in which individuals infected by HCV may

undergo subsequent exposures to virus we challenged ten tamarins

with a dose of virus equivalent to the original inoculum and assessed

the effect on the liver. Compared to primary infection, secondary

peripheral viremia is readily controlled, consistent with Bukh et al3; we

also observed effective clearance of vRNA from the tissue. Yet, despite

the absence of high vRNA levels, following rechallenge with 107 ge

GBV‐B three tamarins showed extensive immunopathological liver

damage; the remaining three had mild damage and lymphocyte in-

filtrate. It is possible that the 107 ge dose was sufficiently high that

damage occurring following primary infection was exacerbated upon

challenge, but as one animal receiving 105 ge showed comparable

morphological damage, that the damage is dose‐related is not con-

clusive. This highlights that an appropriately designed vaccine should

be able to minimize, if not prevent, the impact of the virus on the liver.

Of particular interest, we report fibrosis in male red‐bellied ta-

marins. A link between fibrosis and gender in HCV‐infected individuals

suggested that males are more susceptible to liver damage than are

premenopausal females23; this may be reflected in this red‐bellied
tamarin model where all four fibrotic animals were male. Virus‐
associated fibrosis was dependent on measurable viremia but was not

restricted to those animals receiving the higher inoculum, nor did fi-

brosis development correlate absolutely with advanced liver damage.

It has been postulated that elevated CD8+ T cells in the liver of a HCV‐
infected individual contribute to cytopathic damage more than the

virus itself thus leading to fibrosis.24‐27 By contrast, of the five ta-

marins in this study with elevated CD8‐stained cells, two displayed

naïve liver morphology. Furthermore, CD8 staining did not always

correlate with raised cell proliferation marker levels. These observa-

tions suggest that the cause of bystander damage is not limited to

CD8+ T cells alone though we cannot exclude the possibility that

CD8‐stained cells were masked by extensive immune and EME in-

filtration. Furthermore, damage may also be caused by activated

macrophages which, in response to IFN‐γ release, develop into

antigen‐presenting cells (APC) leading to an increase in MHC class II

presentation to CD4+ T cells.28,29 The development of fibrosis may be

a cause of the ongoing immune response observed in the tamarins that

had seemingly eliminated peripheral viremia; close proximity of NK

cells and stellate cells allows for control of the latter in driving liver

fibrosis (reviewed in Reference 30). Those animals displaying signs of

fibrosis and exhibiting an immune response, despite peripheral clear-

ance of viremia, also had sinusoidal immune infiltrate most likely

comprising NK cells.7 Since only some of these animals had detectable

intrahepatic GBV‐B vRNA, this ongoing immune response might not be

directed against the vRNA but instead a response to limit the forma-

tion of fibrosis. While animals that displayed fibrosis had extensive

immune infiltration, the reverse was not the rule: the presence of

extensive infiltrate did not necessarily lead to fibrosis; for example, the

female T18 had such infiltrate but no evidence of fibrotic tissue.

The availability of direct‐acting antiviral drugs is a key step

forward in the management of advanced HCV infections while a

vaccine would have a major impact on the worldwide disease burden.

Understanding the impact of infection on the liver would inform

therapeutic development and applications thus knowledge of when

and how liver morphology could be compromised is crucial for ef-

fective clinical intervention. By infecting red‐bellied tamarins with an

hepacivius closely related to HCV, we found that liver morphology is

altered soon after infection and fibrosis can develop in this species.

This model offers another attractive system for the testing of pro-

phylactic and therapeutic treatments and the evaluation of their

utility in preventing or reversing liver pathology that may develop in

early infection. Our data add to the corpus of comparative GBV‐B
pathology in NewWorld primates and particularly complement those

reported for the Callithrix jacchus, common marmoset, model. Our

data support the importance of the Saguinus labiatus and Callithrix

models of HCV infection in man. Understanding the similarities and

differences in hepacivirus‐associated pathology in these species will

optimize the selection of models for specific studies thereby in part

addressing the 3Rs in animal research. GBV‐B infection of the ta-

marin typically yields greater peak viral titers than does the mar-

moset, and its larger size, allowing for greater clinical sample size and

collection frequency and obviating the need for serial sacrifice, may

enhance its suitability as a model for acute infection assessment and

vaccine evaluation. The smaller common marmoset has advantages

as a tractable model for antiviral development and assessment.

In conclusion, we provide the first description of the develop-

ment of liver pathology in red‐bellied tamarins through successive

time points in primary and secondary infections, which has implica-

tions on identifying clinically critical windows in which HCV‐infected
individuals could be treated to minimize liver damage. While longer‐
term studies are required to determine whether GBV‐B replicates in

the liver for protracted periods to establish a true occult infection, as

has been reported for the common marmoset9 we have demon-

strated that an infection may persist in the liver in the absence of
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detectable virus in the serum. To our knowledge this is the first

report of fibrosis in tamarins; it supports data observed in the

common marmoset.8,9,13,14 Our observation that fibrosis affects male

tamarins over female animals, is novel and mirrors the gender bias

seen in HCV‐infected humans. Furthermore, this is evidence that

fibrotic tissue can appear in acute infection; reversal of such pa-

thology would be a valuable outcome of DAA. This further estab-

lishes the red‐bellied tamarin this animal as an important surrogate

model for early HCV pathology. We are now able to assess the ef-

ficacy of candidate vaccines and immunotherapeutic interventions

against damage in virus‐associated hepatitis, both of which are an

unmet need in the context of HCV infection in man.
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