
The Effect of Multiple Developers on Structural
Attributes: A Study Based on Java Software

Andrea Capiluppia, Nemitari Ajienkab, Steve Counsella

aDepartment of Computer Science
Brunel University London (UK)

bDepartment of Computer Science
Edge Hill University (UK)

Abstract

Context: Long-term software projects employ different software developers

who collaborate on shared artifacts. The accumulation of changes pushed by

different developers leave traces on the underlying code, that have an effect on

its future maintainability, and even reuse.

Objective: This study focuses on the how the changes by different devel-

opers might have an impact on the code: we investigate whether the work of

multiple developers, and their experience, have a visible effect on the structural

metrics of the underlying code.

Method: We consider nine object-oriented (OO) attributes and we measure

them in a GitHub sample containing the top 200 ‘forked’ projects. For each of

their classes, we evaluated the number of distinct developers contributing to its

source code, and their experience in the project.

Results: We show that the presence of multiple developers working on

the same class has a visible effect on the chosen OO metrics, and often in the

opposite direction to what the guidelines for each attribute suggest. We also

show how the relative experience of developers in a project plays an important

role in the distribution of those metrics, and the future maintenance of the Java

classes.

Conclusions: Our results show how distributed development has an effect

on the structural attributes of a software system and how the experience of

developers plays a fundamental role in that effect. We also discover workarounds

Preprint submitted to Journal of Systems and Software (JSS) May 20, 2020



and best practices in 4 applied case studies.

Keywords: Object oriented, Metrics, Collaborative development, Open

source, Software structure

1. Introduction

Collaborative development, and open source software, have been two major

paradigm shifts in software development. Loosely coupled developers coordinate

their work via distributed versioning systems, code reviews and priority-led bug

tracking systems. This development approach allows many different developers

to input additional source code to the same source artifact. Developers do

not need to interact or coordinate their effort: their work, if accepted by the

community, leaves traces behind that might have an effect on maintainability

for future developers.

The presence of many, different developers in the same project has generally

been considered a positive factor [1, 2]. However, there is a dimension that has

been studied less often in the evolution and maintenance of OO systems, and

this is the effect of multiple developers who worked on the same Java class. The

global nature of OSS systems usually allows many developers to work distribut-

edly, and at different times, on the same artefacts. The branching feature of

most new versioning control systems (e.g., Git) made this feature even more

efficient [3].

Very few research papers have analysed in detail the repercussions of having

many developers working on the same artifacts, and throughout the evolution

of a software system [4, 5, 6, 7].

The idea behind this paper is based on a common scenario: software con-

tributions get stacked on each other over time, and the underlying structure

evolves too [8]. What is not clear is how additional developers, with various

levels of experience in a specific project, add to that structure, and how that

relates to the size or structural complexity of the code.

As a way of an example, and as thrust of this research, let us consider the

2



ThriftHiveMetastore.java file, contained in the Apache hive project1: 14

different developers have worked so far on its 32 revisions, with commits to

the same code repository. Along the changes, the values of structural metrics

(for example, those described in the Object-oriented metrics suite in [9]) have

also evolved [10, 11]. The inclusion and removal of functionality, modification

of condition expressions in control structures, and the insertion and deletion of

else-parts of code [12] have resulted in the Coupling Between Objects (CBO)

metric of ThriftHiveMetastore.java to escalate to a very large value: at its

latest revision, the CBO of the class has reached 6482.

We argue that, if not managed properly, the contributions of multiple devel-

opers on the same artifacts could potentially make them more complex than

those where only a limited amount of developers make their contributions.

From opposite sides of the spectrum, we observed various Java classes that

got code contributions from hundreds of developers, and their structural com-

plexity seems unbounded, with attributes that steadily and continuously grow.

In other cases, we observed classes that maintained a minimal structural com-

plexity, while still having dozens of new developers joining in the effort.

This paper investigates the effects that multiple developers have had on the

structural attributes of Java software, throughout its evolution. We consider a

population of over 470,000 Java classes, and we cluster them by the number of

developers who worked on each during their growth: the one-developer classes

are separated from the two-developer classes, three-developer classes and so on.

Using the OO metrics on these developer clusters, we analysed how each OO

metric grows in each of the developer clusters. The analysis is exploratory in

nature, since no previous studies have attempted to establish a link between

OO metrics and number of developers. The two underlying research questions

can be articulated as follows:

1As available at https://github.com/apache/hive
2Since the CBO of a class measures the number of other classes coupled to it, the value

should be kept low.

3

https://github.com/apache/hive


1. are OO structural metrics of Java classes invariant to the number of con-

tributions received?

2. is the relative experience of developers in a project a factor for the distri-

bution of the OO metrics?

The remainder of the paper is structured as follows: Section 2 reviews past

work on the selected OO metrics: it also formulates a guideline (e.g., ‘high’,

or ‘low’) for each metric. Section 3 describes the empirical approach that was

used to extract the OO metrics as well as the developers, and their experience.

Section 4 summarises the results, while Section 5 presents four case studies from

our sample, that show how the OO metrics grow, and how contributions change.

Section 6 discusses the findings and the threats to validity; Section 7 evaluates

the related work, while Section 8 concludes.

2. Review of Selected OO Metrics

This section provides a background on the OO software metrics utilised in

this paper. For each, we provide a guideline that has been agreed upon by

researchers, as a result of past investigations.

In 1994, Chidamber and Kemerer [9] proposed a suite of object-oriented

(OO) metrics3. It included coupling between objects (CBO)4, weighted methods

per class (WMC), depth of inheritance tree (DIT), number of children (NOC),

response for a class (RFC) and lack of cohesion in methods (LCOM). The pur-

pose of these metrics was to provide a theoretical basis for software measures

and complexity metrics.

The use of the C&K metrics (and other derived metric suites e.g., Briand’s

coupling metrics [13]), has become an established field of research [14]. The

3Generally referred to as Chidamber and Kemerer Java Metrics (CKJM) or C&K.
4Class A is coupled to B if and only if at least one of them acts upon the other, A is said to

act upon B if the history of B is affected by A, where history is defined as the chronologically

ordered states that a thing traverses in time.

4



C&K metrics, in particular, were evaluated against the nine complexity met-

ric properties proposed by Weyuker [15] albeit concerns on their efficacy were

raised [16, 17].

The C&K metrics have been adopted by researchers in many different scenar-

ios: when predicting software maintainability [18]; studying class dependencies

in OO software [19]; evaluating the impact of inheritance types on the met-

rics [20]; evaluating software cohesion and comprehension [21]; and to validate

models to predict failures and defects [22, 23, 24, 25, 26, 27].

2.1. WMC (Weighted Methods per Class)

WMC is a count of the number of methods in a class and is directly linked

to Bunges’ definition of the complexity of a thing as “the numerosity of its com-

position” [28]. Chidamber and Kemerer’s as well as other researchers outlook

on WMC is as follows:

• The larger the number of methods in a class, the greater the potential

impact (e.g., lower maintainability) on children, since children will inherit

all the methods defined in the class.

• High WMC values could lead to high number of software faults as classes

with of a high number of methods are difficult to reuse and maintain [29].

Guideline: the WMC attribute should be kept low.

2.2. DIT (Depth of a class in the Inheritance Tree)

In OO, the notion of inheritance describes a scenario whereby a class (sub-

class) takes on properties of an ancestor class or base class or superclass. The

DIT measures the position of a class in the inheritance hierarchy. In summary:

• The deeper a class is in the hierarchy, the greater the total number of

methods it is likely to inherit [9], making its behaviour less predictable [30].

• Khalid et al. state that “DIT is directly proportional to complexity” (i.e.,

an increased DIT will lead to higher maintenance efforts) [31].

Guideline: the DIT attribute should be kept low.

5



2.3. NOC (Number of Children)

NOC is the count of the number of direct child classes that have inherited

properties of (or from) a given parent class [30]. In summary:

• It is related to the scope of properties, and it is a measure of how many

sub-classes directly inherit the methods of the parent class [9].

• The higher the number of children, the greater the reuse since inheritance

is a form of reuse. However, a higher inheritance means that the class

design will become more complex to test [31] due to the influence of the

class and number of children.

Guideline: the NOC attribute should be in general kept low. Higher values

could be a direct measure to actively promote reuse within code.

2.4. CBO (Coupling Between Objects)

Two classes are coupled if one acts on the other 5 and CBO is the number of

other classes coupled to a class. Briand et al. [13] described various forms of cou-

pling6 and defined and compared various mechanisms that constitute software

coupling including methods invoking other methods and classes being ancestors

of other classes. In summary:

• In order to enhance modularity and promote encapsulation, inter-object

class dependencies should be reduced. A large CBO increases the com-

plexity of the system, and it adversely affects other quality factors, such

as maintainability, testability and reusability [32].

• A measure of coupling is linked to how complex the testing of various parts

of a design are likely to be [19]. The higher the inter-class coupling, the

more rigorous the testing needs to be. Excessive coupling between classes

is also detrimental to modular design and it limits reuse.

5If methods in a class use methods or instance variables defined by another class
6Such as message passing coupling (MPC), data abstraction coupling, efferent (Ce) and

afferent (Ca) coupling, and information-flow-based coupling (ICP).

6



Guideline: the CBO attribute should be kept low.

2.5. RFC (Response for a Class)

According to Li and Henry [18] “The response set of a class consists of a

count of all local methods and all the methods called by local methods”. This

number ranges from 0 to N (a positive integer) and is a measure of the potential

communication between the class and other classes since it includes methods

called from outside the class [9]. As such, if a large number of methods can

be invoked in response to a message, the testing and debugging of the class

will become more complicated since it requires a greater level of understanding

required on the part of the tester.

Guideline: the RFC attribute should be kept low.

2.6. LCOM (Lack of Cohesion of the Methods in a class)

The LCOM metric is based on the notion of the similarity of methods. The

degree of similarity of two methods M1 and M2 is the intersection set of instance

variables7 used by both methods for functionality. Based on this notion, the

LCOM of a class is the count of method pairs where the intersection set is equal

to zero (i.e., a null set) minus the count of method pairs whose similarity is not

zero8. Researchers outlook on LCOM is as follows:

• Cohesiveness of methods within a class is desirable because it promotes

encapsulation [9].

• Lack of cohesion implies classes should probably be split into two or more

subclasses [33, 34] with cohesive method functionalities.

• Measuring the disparate nature of component methods helps to identify

complexity and pitfalls in the design of classes [35, 36].

Guideline: the LCOM attribute should be kept low.

7Member variables declared in a class for which instances of the class own a separate copy.
8If the number of similar methods is more than the non-similar methods, then the class is

more cohesive.

7



2.7. NIM (Count of Instance Methods) and NIV (Count of Instance Variables)

A method is an operation on an object that is defined as part of the decla-

ration of the class. Every instance of a class has the defined and implemented

methods of the class as its properties. The NIM metric has been defined by

Lorenz and Kidd [37] as the number of instance methods. These are the meth-

ods defined in a class, local to the class [38, 39] and are only accessible through

an object of that class.

On the other hand, an instance variable stores a unique value in each instance

of a class. Destefanis and Counsell [39] defined NIV as the number of instance

variables of a class. These are variables defined in a class that are only accessible

through an object of that class.

Guidelines: similarly to the WMC attribute, the NIM and NIV attributes

should be kept low.

2.8. IFANIN (Count of Base Classes)

The IFANIN of a class is the number of immediate or direct base classes [39].

In Object-Oriented Programming (OOP), a base class is a class from which other

classes are derived or inherit properties from. Therefore, in an inheritance tree

the base class(es) of a class will be the class(es) directly above it from which it

directly inherits from. In a deep inheritance tree, the same concerns pertaining

DIT (as explained in section 2.2) apply to the IFANIN measurement. Differently

from the NOC metric (described in section 2.3) which refers to the count of

classes derived from a class C, IFANIN refers to the number of classes from

which a class D inherits its features from [40].

Guideline: the IFANIN attribute should be kept low.

3. Empirical Approach

The study presented here is based on the collection of Java classes, their OO

metrics and the meta-data of which developers created or modified what classes

in a system. The methodology of how to extract such data is explained in this

section, together with a working example.

8



The dump of the database used for extracting the results is made available

under https://figshare.com/projects/OO_metrics_vs_Developers/60404.

A replication package is made available at https://github.com/acapiluppi/

oometrics_developers.git.

3.1. Hypotheses

From the research question described above, we formulate the following hy-

potheses:

H0,1 the OO metrics correlate between them, independently of the number of

developers modifying the classes.

Test: this hypothesis will be tested by means of a Spearman’s ρ test.

H0,2 the value of individual OO attributes do not change, as long as more

developers contribute to the same Java class.

Test: this hypothesis is tested by the growth trends of the OO attributes,

depending on the number of developers. The OO attributes of the classes

developed by, e.g., one developer will be tested against the attributes of

the classes developed by two developers, three developers and so on.

H0,3 the value of individual OO attributes do not change, as long as developers

with different experience contribute to the same Java class.

Test: similar to the hypothesis above, this hypothesis is tested using by

the growth trends of the OO attributes, but using the relative experience

of a developer in a project as a factor.

The value of the correlation coefficient lies in the range [−1; 1], where −1

indicates a strong negative correlation and 1 indicates a strong positive cor-

relation. We adapt the categorisation for correlation coefficients used in [41]

([0 − 0.1] to be insignificant, [0.1 − 0.3] low, [0.3 − 0.5] moderate, [0.5 − 0.7]

large, [0.7 − 0.9] very large, and [0.9 − 1] almost perfect) if the rank correlation

coefficient proves to be statistically significant at the α = 0.01 level.

9

https://figshare.com/projects/OO_metrics_vs_Developers/60404
https://github.com/acapiluppi/oometrics_developers.git
https://github.com/acapiluppi/oometrics_developers.git


The correlation between any two vectors is assessed using the Spearman’s

rank correlation coefficient [42]. Spearman’s rank correlation is a non-parametric

test and is chosen because neither the OO metrics, nor the number of developers

per class, has a normal distribution overall, and in each project. We tested each

OO metric for normality, using the Kolgomorov-Smirnov test: we could reject

the probability of these distributions to be associated to a normal distribution

with p-values lower than our threshold (α = 0.05).

Various correlation coefficients have been considered including Pearson, Ken-

dall and Spearman. Nevertheless, for Pearson’s to be valid the data has to follow

a normal distribution [42, 43] (the mean, median and mode have to be the same)

while Kendall’s tau is adopted in scenarios with small sample sizes and where

there are multiple values with the same score [44] and interpreted based on the

probability of concordant and discordant observations. In addition, p-values

derived from Kendall’s tau are more accurate with smaller sample sizes.

3.2. Dataset used

In this study, we have investigated the link between the structural attributes

and collaboration in OO software. Leveraging the GitHub repository, we col-

lected the project IDs of the 200 most forked Java projects hosted on GitHub

as case studies. As such, our data set does not represent a random sample,

but a stratified sample based on one attribute (i.e., forking) that is related to

successful development. Other GitHub attributes might be more related to the

successful usage of individual projects (e.g., the number of stars that it received

from other users); the ‘number of forks’ attribute is an indirect measure of

parallel development, since it shows how many further developers decided to

contribute to the project.

As a result of the data extraction, we collected 474,197 Java classes, con-

tained in 293,047 Java files. The SQL dump of this data is available at https:

//figshare.com/projects/OO_metrics_vs_Developers/60404.

The repository of each project was downloaded and stored, with its metadata

(i.e, the list of revisions for each class, and for the whole project, the developer

10

https://figshare.com/projects/OO_metrics_vs_Developers/60404
https://figshare.com/projects/OO_metrics_vs_Developers/60404


IDs, as well as the date and time of each change), using the CVSAnalY set of

tools9,10. These revisions do not contain files without the .java extension11.

We extract the metadata of each Java class change, as stored on GitHub.

Metadata comprises the unique class ID, the date and hour of each change on

this class, the developer responsible for the change and the explanation of such

change. Java classes can be developed by one or many developers, and on one

or many parallel branches of development, as allowed by the Git technology.

This data extraction produces a list of classes and an associated number

of distinct developers. Irrespective of the projects they come from, we group

classes into ‘clusters’ if they are developed by a similar number of developers,

resulting in the one-developer cluster, two-developer cluster and so on.

The largest number of revisions was found in the elasticsearch project, with

over 89,000 revisions, while the median of the number of revisions per project is

2,000. The project with the larger number of classes is a similar value is found

for the median number of .java classes per project.

3.3. Size: number of classes and SLOCs

The 200 selected systems are all mostly written in Java, but the number

of classes contained in each system varies: a small number of outliers shows

a number of classes to be larger than 2,000; most systems were considerably

smaller. The average number of classes in that set was 473, while the median

of the set was 166 classes.

A correlation was computed between the number of classes and the number

of revisions: a Pearson correlation test (ρ) was performed between the set of

values representing the number of revisions, and the set of values with the

number of classes. We observed that the number of classes and the number

9http://metricsgrimoire.github.io/CVSAnalY/
10Installation steps can be found at: https://sites.google.com/site/arnamoyswebsite/

Welcome/updates-news/howtoinstallandruncvsanaly2inubuntu1110
11All the raw data, contained in SQL tables, is hosted at https://figshare.com/articles/

MySQL_dump_of_analysed_projects/9988553.

11

http://metricsgrimoire.github.io/CVSAnalY/
https://sites.google.com/site/arnamoyswebsite/Welcome/updates-news/howtoinstallandruncvsanaly2inubuntu1110
https://sites.google.com/site/arnamoyswebsite/Welcome/updates-news/howtoinstallandruncvsanaly2inubuntu1110
https://figshare.com/articles/MySQL_dump_of_analysed_projects/9988553
https://figshare.com/articles/MySQL_dump_of_analysed_projects/9988553


of revisions are strongly correlated (rho = 0.88): larger systems (in number of

Java classes) are more likely to undergo a larger number of revisions, i.e. their

historical maintenance work has been much larger.

The size of each class was also measured counting the source lines of code

(SLOCs), per Java file, using the cloc tool12, that aggregate the lines of code

and separates them from comments and blank spaces.

3.4. Extraction of OO attributes

The OO attributes were extracted using the Scitools Understand tool13, that

extracts each C&K attribute, together with the NIM and NIV attributes too.

Abstract classes, interfaces and inner classes were also considered in the data

extraction.

The pair (“project ID”, “full path of Java class”) was used as the pri-

mary key of the SQL table containing the OO attributes. This was later

matched with the same pair, as extracted from the table containing the in-

formation of how many developers worked on each class, per project. The

scripts to reproduce this step are available in the GitHub project at https:

//github.com/acapiluppi/oometrics_developers.

3.5. Extraction of developer metadata

All the projects in the case study presented below are taken from the GitHub

online repository. Several developers are currently working on each of those

projects in parallel: in particular, the mechanism of the project forking facili-

tates the parallel development, and collaboration on different classes. For the

purpose of this paper, we have counted the number of distinct developers who

have modified at some point any parts of a Java class.

The Git mechanics allow to log the metadata of individuals as either com-

mitters or authors: in the former case, these are the individuals who actually

committed the code in the code-base, but they might have not written it in the

12http://cloc.sourceforge.net/
13https://scitools.com/

12

https://github.com/acapiluppi/oometrics_developers
https://github.com/acapiluppi/oometrics_developers
http://cloc.sourceforge.net/
https://scitools.com/


first place. In the latter case, individuals are acknowledged and mentioned as

authors, whilst not being committers to the code-base: this is the typical case

where a branch was successfully merged in the main trunk. Our definition of

developers is based on the data gathered on the authors of each system.

3.5.1. Removing duplicate authors

An important factor for the extraction of developer metadata is to avoid

to include multiple times the same individuals. In this section we detail how

this process was performed, in a semi-automatic way. The Perl script that

achieve these steps are shared in the GitHub project https://github.com/

acapiluppi/oometrics_developers, for inspection and potential further con-

tributions by other interested researchers.

Names in the development log typically appear in three main forms:

1. in the ‘Name Surname’ form (e.g., Adam Smith)

2. in the ‘moniker ’ form (e.g., asmith).

3. in the ‘Name Surname and Name1 Surname1 ’ form, to acknowledge where

two developers worked together (e.g., Adam Smith and John M Keynes).

In all the above cases, a distinct developer ID was automatically assigned in

the database. The aim of this procedural step was to reconcile cases 1) and 2)

onto the same developer ID; and to separate the two developers of case 3) while

assigning new developer IDs.

In order to merge the cases 1) and 2), we isolated both the Name and

Surname fields of the former, and looked for the same pattern in the latter.

This means that each surname in the form 1), e.g. ‘Smith’, was lower-cased,

and looked up via a regular expression search on all the monikers of form 2).

The same process was applied for the names of form 1). A sample of these

cases was manually verified. In case that was found, the two developer IDs

were merged (i.e., reconciled) into one. An example of this approach is shown

in Table 1 below, where ‘Travis’ retrieves the ‘travisc’ moniker via a regular

expression.

13

https://github.com/acapiluppi/oometrics_developers
https://github.com/acapiluppi/oometrics_developers


The script that performs the reconciliation of names from a project, start-

ing from the metadata stored by CVSAnalY, is available inside the replication

package at https://github.com/acapiluppi/oometrics_developers.

Table 1: Reconciliation of duplicate IDs in the developers metadata

project Dev name Dev ID Reconciled dev ID

robolectric petrcermak 11136 11015

robolectric cermak 11015 11015

robolectric Travis Collins 10894 10894

robolectric travisc 11097 10894

Figure 1 shows the average and median number of authors per Java class,

when considering each of the analysed project. The graph shows that a large

number of projects (99 out of 200) have one single developer as the middle of

the developers’ distribution (i.e., median = 1). Another 69 out of 200 projects

have a duo of developers as the median.

Figure 1: Average and median number of developers per Java class, and per project

We investigated whether larger projects (in terms of overall number of Java

14

https://github.com/acapiluppi/oometrics_developers


classes) could be connected to a lower average (or median) number of developers

per class: the correlation found was very weak for both average and median (0.03

and -0.042, respectively). We concluded that the size of the software systems in

our sample is not a predictor of how many developers on average work on their

classes.

The tables with the base and reconciled IDs, together with the reconciling

script, are made available in the shared repository under https://figshare.

com/projects/OO_metrics_vs_Developers/60404, for inspection and feedback.

3.5.2. Developer clusters

Figure 2 illustrates the data extraction for two example projects, M and N:

in project M, class A has been modified by 3 developers, while B and C by

one developer only. In project N, class D has also been modified by only one

developer, E and G by two developers, and F by three developers.

Classes B, C and D store their OO metrics (shown in the green colored

squares beside each class) in the same cluster ; the same applies for classes E

and G whose corpora are stored in the two-developer cluster. Finally, the OO

metrics of classes A and F are stored in the three-developer cluster.

Figure 2: Assignment of class corpora to developer clusters

15

https://figshare.com/projects/OO_metrics_vs_Developers/60404
https://figshare.com/projects/OO_metrics_vs_Developers/60404


From the projects analysed, we observe that the size of these clusters is

heavily biased: out of an overall 474,197 classes, there are 127,314 classes that

have been modified by only one developer; 78,680 are modified by 2 developers,

and 54,837 modified by 3 developers. For the sake of coarseness, in the empirical

analysis we used the following clusters:

1. Java classes worked on by one developer only;

2. Java classes worked on by 2 to 5 developers;

3. Java classes worked on by 6 to 10 developers;

4. Java classes worked on by more than 10 developers.

The one-developer cluster identifies classes that are either very simple (thus

not needing further contributions), or very complex (such that other developers

do not feel like contributing [5]. The cluster ‘2 to 5’ developers helps in isolating

the work that is traditionally considered the remit of small teams [45]. We use

these categories to separate medium-sized teams (between 6 and 10 developers)

from larger teams (over 10) [46]. Similar categorisation has been adopted in

prior research [47, 48].

3.6. Deriving developers experience

Apart from dealing with duplicate authors, and devising a method to deal

with them (see section 3.5.1 above), we also designed an approach to evaluate

the relative experience of developers in a specific project. This way, we can

tune our previous results in a more specific scenario, specifically dealing with

how (project-specific) experienced and less-experienced developers collaborate,

and whether experience plays a role. It is important to notice that we did not

measure the overall (or personal) experience of any developer, but just their

experience relatively to the project under investigation.

We describe our approach in the steps below: it is based on a project-by-

project basis.

1. First, we considered all the commits that affected Java source files (i.e.,

where the files committed had a ”.java” extension) in every project of our

sample;

16



2. we excluded those commits that modified more than 100 Java files in the

same commit14;

3. using the remaining commits, we derived, per developer, the sum of dif-

ferent (e.g.,distinct) Java files that they worked on15;

4. using this sum, for all developers in a project, we created a distribution,

and evaluated its minimum, maximum, together with the first and third

quartiles (see the boxplot in Figure 3 (top));

5. based on this distribution, we divided a project’s developers in three cat-

egories:

• Top Developers (TD) – those developers who committed a total num-

ber of Java files larger than the third quartile (Q3) and less or equal

the maximum number of Java files;

• Middle Developers (MD) – those developers who committed a num-

ber of Java files larger than Q1 but smaller than Q3;

• Bottom Developers (BD) – those developers who committed a num-

ber of Java files smaller than Q1;

The definitions of TD, MD and BD are suggested by a recurring type of

distribution of developers’ effort, and its skewness: this is shown in an example

project (e.g., project ID = 2) in the graph of Figure 3 (bottom). Few devel-

opers work on the large majority of Java files, and that clearly separates them

from the other two types of developers (the trend represents the distribution of

developers’ experience for project ID = 2).

Considering the sample of analysed projects, we found that the proportion

14There are 6,143 commits in our database that, alone, modify or amend over 100 Java

files: in the majority of those commits, the message by the developer mentions “moving” or

“move”, hence the commit can be considered as non-maintenance related. Commits affecting

over 1,000 Java files are typically the very first commit onto the GitHub platform, or license

updates.
15The file copies database table keeps track of files that have been ‘moved’ or ‘copied’, so

that we can follow the same file with different IDs.

17



Figure 3: Extraction of developers experience: boxplot perspective (top) and its evaluation

on project ID = 2

of top developers (TD) has a low variability (see the TD boxplot of Figure 4 for

the vast majority of projects: around 1 in 4 (25%) of developers are in the top

spectrum. Coupled with how the TD term is evaluated, it is possible to sum-

marise that some 25% of every development team in our sample is responsible

for 75% (and over) of the Java classes in a system.

The remaining 75% of a development team is evenly distributed between the

MD and BD types of developers: the middle tier of developers spreads between

20% and 55% of a project’s team, with the median at 41% of developers (as

in the MD boxplot of Figure 4; whereas the BD tier of developers has a lower

median (33%).

In order to study the third research hypothesis H3,0, we firstly considered

the scenario where only top developers worked on the Java code: we created

the buckets of files touched by 1 top developer, 2 top developers etc; and we

analysed the trends of the OO metrics described above.

18



Figure 4: Rates of Top (TD), Middle (MD) and Bottom (BD) developers, per project

Secondly, we considered two further scenarios where Java files have been

worked on by a team of Top, Middle and Bottom developers: one with a majority

of Top developers (e.g., TD > (MD+BD)); and one with a majority of either

Middle or Bottom developers (e.g., (MD+BD) > TD). Also in those cases we

produced the buckets of 1 developer, 2 developers and so on.

4. Results

In this section we present the results that we obtained running the first

two tests. We group the findings by the hypotheses that were presented in the

sections above: in section 4.2 we investigate whether the C&K metrics of the

Java classes show some significant correlation between each other, considering

all the classes in our sample, or the developer clusters (section 4.3). This analysis

is not purely a correlation study: it will show how developer clusters might be

useful to put past research into a new perspective (as discussed in section 6.1).

Section 4.4 presents the results of the second research hypothesis (H2), and it

shows the trends that we observed while plotting the values of each C&K metric

against the number of developers. Section 4.5 deals with the third hypothesis

(H3) and it evaluates the effects of the experience of developers (relative to the

project that they contributed to) on the distribution of OO metrics.

19



4.1. Relationship between SLOCs, OO Metrics and Contribution Teams – H0,1

Each Java class produces a set of 9 measurements related to the selected OO

metrics. We evaluated the Spearman’s correlation between each metric and the

size of the class in SLOCs, to determine if there is indeed a correlation between

OO attributes and lines of code. We could only consider the Java files containing

one class (some 215k Java files, out of a total of 270k in the sample): in the

case of multiple classes within the same Java file, each class would produce a

different set of OO measurements, but we could collect only the size in SLOCs

of the overall file.

We group the correlation coefficients into the intervals defined by [41]. We do

accept that other intervals for labelling the strength of correlation are perfectly

reasonable (the process is largely subjective), but use the previous definitions

simply to remain consistent with that work and to also allow comparisons with

the same work to be made. We note that none of the correlation tests was

deemed to be non-statistically significant.

At the project level, we obtained a distribution of correlation coefficients,

one per OO metric. As an example, Table 2 summarises the mockito project16.

Table 2: Spearman’s correlations (and their relative correlation intervals) between each OO

attribute and SLOCs (mockito project)

IFANIN CBO NOC NIM NIV WMC RFC DIT LCOM

ρ 0.17 0.35 0.21 -0.27 0.35 0.49 0.37 0.31 0.23

band l M l (l) M M M M l

The correlations that we observe for the mockito example project are con-

sistently either of low or medium strength, the hierarchical metrics (e.g., NOC

and DIT) showing a low correlation with the lines of code of the affected classes.

When considering all the classes in the sample we obtained a similar dis-

tribution of correlations: overall, the IFANIN, CBO, NIM and LCOM have all

low (or insignificant) correlations with the SLOCs, while as seen for the mock-

16https://github.com/mockito/mockito

20

https://github.com/mockito/mockito


ito example project, the NOC, NIV, WMC, DIT and RFC lie in the moderate

correlation band.

Table 3: Spearman’s correlations between OO metrics and SLOCs (overall sample)

IFANIN CBO NOC NIM NIV WMC RFC DIT LCOM

ρ 0.032 0.317 0.116 -0.15 0.368 0.473 0.428 0.304 0.110

band i M l (l) M M M M l

We conclude that:

none of the OO structural metrics is strongly correlated with the size of the

classes, when evaluated in source lines of code (SLOCs)

4.1.1. Relationship between SLOCs and contribution teams

Finally, we also measured whether the lines of source code in a Java file have

any relationship with the number of different contributors to Java file. For the

overall sample, we obtained a Spearman’s ρ of 0.231 between the two attributes

(with statistical significance granted to the test). We concluded that:

there is no correlation between the size of classes in SLOCs and the size of

their contribution teams

4.2. Correlation between C&K metrics

In this section, we consider the overall sample of Java classes: each OO metric

was extracted for all classes, and correlation coefficients evaluated for each pair

of OO metrics. Table 4 shows the results of the correlation (Spearman’s test)

between the metrics extracted: all tests were statistically significant.

• Almost perfect (0.9 - 1]: no relationship between C&K metrics was ob-

served in this category.

• Very large (0.7 - 0.9]: there is only one relationship whose correlation

shows a very large coefficient, and that is the pair (NIM v WMC).

21



• Large (0.5 - 0.7]: several pairs of attributes show a large correlation coef-

ficient, as provided by the Spearman’s ρ. The majority of these pairs are

composed of intra-class OO attributes (e.g. RFC v NIM, RFC v WMC,

WMC v LCOM and NIM v NIM); the pair RFC v DIT on the other hand,

also includes inter-classes OO attributes (e.g. DIT).

• Moderate (0.3 - 0.5]: as above, many pairs of OO attributes show corre-

lation coefficients in the moderate category. Most of these pairs include

either CBO, LCOM or NIV.

• Low (0.1 - 0.3]: one third of the pairs of OO attributes (12 out of 36) shows

a correlation coefficient in the low range. The IFANIN in particular, is an

attribute that correlates quite weakly to the other OO attributes (apart

with NIV). Similarly, the NOC attribute shows weak or insignificant links

with any of the other metrics.

• Insignificant (0 - 0.1]: one fourth of the pairs of OO attributes (9 out of

36) show an insignificant correlation coefficient. NOC and DIT are the two

attributes that show the lowest correlation coefficients with the other OO

metrics. The only exception is the DIT v RFC relationship that manifests

a large (L) correlation between the two attributes.

From the correlations between OO metrics, we observed that:

most of the OO metrics do not correlate with each other, apart from those

that, directly or indirectly, measure the number of OO methods

4.3. Spearman’s Correlation – Developer Clusters

Section 4.2 has shown the correlations between OO attributes for the over-

all sample of Java classes. This section analyses the relationship between OO

attributes when there is more than one developer developing the code of a Java

class.

We grouped developers into the following further clusters: 2 to 5 developers,

6 to 10 developers, and more than 10 developers. Table 5 summarises the

22



Table 4: Correlation types between C&K metrics, when all the classes are considered. High-

lighted the ”very large” and ”large” correlations

IFANIN CBO NOC NIM NIV WMC RFC DIT

CBO 0.080 1

NOC -0.180 -0.049 1

NIM 0.197 0.316 0.119 1

NIV 0.223 0.161 -0.016 0.564 1

WMC 0.184 0.378 0.093 0.915 0.521 1

RFC 0.013 0.298 0.038 0.613 0.274 0.628 1

DIT -0.127 0.073 -0.140 0.081 -0.093 0.007 0.535 1

LCOM 0.249 0.253 -0.043 0.510 0.596 0.591 0.367 -0.011

correlation coefficients in the proposed bands (insignificant, low, moderate, etc),

and how they change when more developers are working on the same Java class.

In the table, we highlight in grey the relationships that change at least once in

any of the developer clusters. We ordered the table by the correlation bands

(insignificant, low, moderate, etc).

When the developers increase, we observed that several correlations change

(once or more) their correlation bands, as compared to the overall sample. As an

example, the IFANIN v NIM correlation coefficient increases to a Moderate (up

from low) correlation coefficient level when the number of developers working

on the classes is larger than 10.

We also observed that certain OO attributes are more prone to change their

correlation bands: IFANIN, LCOM and RFC (WMC and DIT to a lesser ex-

tent) are the attributes that show the largest variability in the correlation with

another attribute. On the other hand, CBO not only shows a very low correla-

tion with any of the other attributes, but its correlation levels do not change as

long as more or less developers develop the Java classes. Finally, the boundary

values in developer clusters (e.g., only one developer, and more than 10 devel-

opers) drive most of the variability of the correlation bands: as an example, the

RFC v DIT correlation drops to a moderate level for the classes developed by

one developer, while it stays in a large band for all the other developer clusters.

23



Table 5: Bands of correlation coefficients in four developer clusters (only 1 developer; 2 to 5

developers; 6 to 10 developers; and more than 10 developers), as compared to the overall class

sample

Developer clusters

OO attribute pairs All classes 1 2 to 5 6 to 10 Over 10

NOC v WMC i i i l l

IFANIN v RFC i l i -l -l

NOC v RFC i i i i l

CBO v DIT i -l l i i

NIM v DIT i l i i i

WMC v DIT i i -l -l i

IFANIN v NIV l M l l l

CBO v NIV l i l l M

CBO v RFC l l M M L

NIV v RFC l M l l M

IFANIN v LCOM l M l l l

CBO v LCOM l l l M M

CBO v NOC -l -l -l i i

NOC v NIV -l -l -l i l

NIV v DIT -l -l -M -M -l

NOC v LCOM -l -M -l i l

DIT v LCOM -l i -l -l -l

CBO v WMC M l M M L

CBO v NIM M l M M L

RFC v LCOM M M M M L

IFANIN v NOC -M -M -M -M -l

IFANIN v DIT -M -l -l -M -M

NOC v DIT -M -M -M -l -l

NIV v WMC L L M L L

WMC v RFC L XL L L XL

RFC v DIT L L L L M

NIM v LCOM L M L L L

NIV v LCOM L M L L L

NIM v WMC AP XL AP AP AP

24



We concluded that:

most of the correlations between OO metrics are affected by the number of

developers who contributed to the classes

4.4. OO Metrics and Developers – H0,2

In this section we report on the analysis that we carried out regarding the

relationship between single OO metrics and number of developers. We analysed

the subset of OO metrics as clustered by number of developers, and extracted

the average, median and variance of the subset, per OO metric, and per cluster.

Table 6 displays the trends of each OO metric, when considering the clusters

(one developer, two developers and so on) of code contributions to Java classes.

For example, all the CBO measurements of the classes modified by at most one

developer were pooled together and averaged to 4,670.

Table 6: Growth of the OO metrics in the developer clusters (average values)

Dev’s CBO DIT IFANIN LCOM NIM NIV NOC RFC WMC

1 4.670 1.759 1.371 29.750 5.360 1.404 0.627 19.840 5.919

2 4.866 1.783 1.275 26.708 5.647 1.514 0.785 20.368 6.249

3 4.671 1.779 1.230 24.828 5.507 1.507 0.662 20.445 6.096

4 4.865 1.867 1.250 25.514 5.423 1.524 0.644 22.442 6.034

5 4.980 1.929 1.239 24.644 5.361 1.449 0.613 24.902 6.105

6 5.586 1.928 1.277 27.529 5.816 1.664 0.672 25.339 6.764

7 5.692 1.906 1.316 28.144 5.862 1.605 1.742 23.562 6.471

8 5.614 1.818 1.362 28.270 6.623 1.744 0.672 22.384 7.382

9 6.083 1.875 1.369 28.866 6.803 1.833 0.703 22.543 7.507

10 6.158 1.830 1.357 29.642 6.926 1.934 0.944 22.974 7.861

10+ 7.179 1.757 1.391 28.163 8.660 2.230 1.137 21.698 9.895

20+ 9.170 1.705 1.355 31.481 10.502 2.897 0.849 21.533 12.505

50+ 9.290 1.599 1.427 22.894 9.524 2.862 0.497 17.623 12.822

100+ 5.140 1.233 1.023 8.837 9.674 1 0.047 12.651 12

What we observed in the analysed sample is an increasing trend for several of

the OO metrics, as long as the number of developers increases. This is especially

25



visible in Table 6, where the CBO, NIM and WMC average values more than

double, as long as the number of developers on the Java classes increase from 1

to over 20. While for most of the metrics this might be problematic, the most

prominent increasing trend is shown by the LCOM measure: the interaction of

an increasing number of developers deteriorates a few of the other structural

characteristics, but it has a positive effect on the cohesion of the underlying

classes, thus increasing their maintainability. Table 7 summarises the findings

that were observed from the sample of projects, as opposed to the guidelines ex-

pected by previous research. When the team of contributors becomes extremely

large (in our sample, over 100) the classes have a higher chance to show lower

values of the selected OO attributes.

It is important to note that, from the distribution of Figure 1), most classes

are developed by a relatively small number of developers. It is nonetheless

important to determine the relationship between large and very large teams of

developers and OO structural attributes, although they represent extreme cases

of the developers distribution. In section 5.4 we show in practice how a very

large team of contributors has managed to keep a Java class relatively simple,

from the structural point of view.

Table 7: Summary of guidelines for the selected OO metrics, and the relative observations

OO Metric Guideline Observed

CBO LOW ↑

DIT LOW ↔

IFANIN LOW ↔

LCOM LOW ↓

NIM LOW ↑

NIV LOW ↗

NOC LOW ↗

RFC LOW ↑

WMC LOW ↑

From this analysis we concluded that

26



there is a clear effect on the structural attributes of a Java class when the

number of its contributors increases

4.5. The Effect of Experience of Developers on OO Metrics – – H0,3

The analysis reported in 4.4 is repeated below, but this time considering the

experience of developers as a factor in the interpretation of the results. As a

reminder, we considered types of developers (Top, Middle and Bottom) based

on how they worked on the codebase of each project, and how many Java files

overall they created or modified. In order to avoid bias in the attribution of

effort, we did not consider those commits where the amount of files touched

exceeded a certain threshold (in our case, 100 Java files).

We analysed the influence of the experience in four cases: (i) when only

considering the Java files worked on by Top developers; (ii) when consider-

ing a mixed team of contributions, committed mostly by top developers (e.g.,

TD > MD+BD); (iii) when considering contributions from middle and bottom

developers mostly (e.g., MD + BD > TD); and (iv) when the top developers

are not involved in any way on some specific Java file (e.g., TD = 0).

We present the analysis of these scenarios below, and Table 8 summarises

the average values of each OO metric, per scenario.

4.5.1. OO Metrics and Top Developers

The results of the average for each OO metric (in relation to only Top de-

velopers) are reported in the two parts of Table 8. Every row contains the

developer clusters (1 developer, 2 to 5 developers, 6 to 10 developers, more than

10 developers) of the Java files modified only by Top developers.

The metrics observed when only one (Top) developer is involved serve as

the benchmark for the rest of the clusters: we observed a drop to an ideal (i.e.,

minimum) state when only one developer worked on the Java files. Increasing

the number of developers has an impact on all metrics: in particular, the CBO,

RFC and WMC metrics follow a steep growing curve that, for example, brings

to 8̃ the average value of coupling between objects.

27



Table 8: Growth of the OO metrics in different scenarios of developers experience)

Only Top Developers

CBO DIT IFANIN LCOM NIM NIV NOC RFC WMC

1 4.596 1.756 1.383 29.697 5.349 1.368 0.632 19.917 5.892

2 to 5 4.859 1.850 1.264 25.491 5.417 1.453 0.732 22.406 5.964

6 to 10 5.763 2.019 1.280 25.450 5.490 1.458 1.262 27.786 6.132

>10 7.853 1.890 1.318 29.250 7.307 1.985 2.871 27.466 8.256

TD >MD+BD

1 4.596 1.756 1.383 29.697 5.349 1.368 0.632 19.917 5.892

2 to 5 4.834 1.833 1.259 25.685 5.514 1.479 0.714 21.809 6.121

6 to 10 5.738 1.885 1.325 28.195 6.188 1.707 0.980 23.956 6.969

>10 7.228 1.761 1.394 28.522 8.700 2.209 1.166 21.824 9.947

MD + BD >TD

1 5.420 1.787 1.250 30.292 5.472 1.774 0.577 19.055 6.192

2 to 5 4.686 1.554 1.185 26.262 5.522 2.065 0.635 14.687 6.348

6 to 10 4.919 2.290 1.178 22.235 6.274 1.577 0.424 15.583 6.838

>10 5.880 1.610 1.333 17.900 7.591 2.219 0.364 14.452 8.495

TD = 0

1 5.420 1.787 1.250 30.292 5.472 1.774 0.577 19.055 6.192

2 5.749 1.702 1.209 29.499 5.514 2.215 0.472 20.068 6.598

3 7.790 1.395 1.086 26.457 6.667 2.358 2.370 25.840 7.741

4 8.688 2.375 1.188 37.750 8.313 3.688 3.063 31.313 8.688

28



4.5.2. OO Metrics and Mixed Teams of Contributors

We considered the scenarios of mixed teams, and a majority of top develop-

ers: the results that we obtained are mostly aligned with those by Top developers

only (second part of Table 8).

When the contributions are mostly committed by Middle and Bottom de-

velopers, we observed a decrease in the value of the OO metrics (third section

of Table 8); but when we considered the Java files worked on by anyone but

Top developers, we observed the highest values of the sample (final section of

Table 8). From the various analyses above we concluded that

less experienced developers contribute more to the decay of structural charac-

teristics than more experienced developers

5. Case Studies

In this section we closely analyse 4 cases where the interaction (or lack of)

between developers had an effect on the structural attributes of the underlying

Java classes. We separate two case studies (sections 5.1 and 5.2) where only

one developer worked on a specific class with higher-than-average structural

complexity; from two further cases (sections 5.3 and 5.4) where multiple devel-

opers input code to the same Java class, also resulting in higher-than-average

structural complexity.

5.1. One Developer, High Complexity, No Maintenance

The first case study is based on a test Java class, named Annotations57649Test,

from the j2objc project17. It represents the Java class with the highest value of

coupling between objects (CBO) in our entire sample, as seen in the following

breakdown (see Table 9):

This class is a stub for a large number of further tests, and the Table above

reflects how its CBO measurement is affected by the number of tests. The

17https://github.com/google/j2objc

29

https://github.com/google/j2objc


Table 9: Structural attributes for the Annotations57649Test class, from the j2objc project

Attribute IFANIN CBO NOC NIM NIV WMC RFC DIT LCOM

Value 1 6,009 0 1 0 3 15 2 0

coupling is a result of the multiple invocations to the Retention mechanism in

Java, as in the following code snippet:

(...)

@Retention(RetentionPolicy.RUNTIME) @interface A0 {}

@Retention(RetentionPolicy.RUNTIME) @interface A1 {}

@Retention(RetentionPolicy.RUNTIME) @interface A2 {}

(...)

The file was added to the codebase by one of the top developers, and it

never underwent any changes since its initial creation. This is because the test

file belongs to a third-party project, the Android’s libcore library, and it was

deemed as functional by the developer who imported and adapted it to the

j2objc project.

Although the class has a large structural complexity (in the form of a large

CBO), further changes to this class were not needed, as long as the project

evolved. This class is an example of a single-developer Java class, that encap-

sulates high complexity, but does not need further maintenance.

5.2. One Developer, High Complexity, Large Maintenance

The second case study is based on the aws-sdk-java project18, and the

AWSGlueClient class. The class was originally created as a large, 2K lines

of source code (not considering comments or blank lines), that has grown to 4K

in two years. AWSGlueClient is a large, structurally complex class, as shown

by each of the measured OO attributes (especially CBO and RFC). The latest

18https://github.com/aws/aws-sdk-java

30

https://github.com/aws/aws-sdk-java


distribution (e.g., at the time of sampling) of its structural metrics is presented

in Table 10.

Table 10: Structural attributes for the AWSGlueClient class, from the aws-sdk-java project

Attribute IFANIN CBO NOC NIM NIV WMC RFC DIT LCOM

Value 2 540 1 254 2 256 318 2 83

This class underwent 33 changes since its inception, and only one GitHub

developer has been in charge of its maintenance so far, for the last couple of

years. On closer inspection, the file is maintained by developers of the AWS

(Amazon Web Services) project, who commit under the same GitHub name

(i.e., “AWS”). No other GitHub developers have worked on this Java file.

From the git log command, we established the revision hash of the commits

where this class was modified. Through the git reset mechanism, we restored

the aws-sdk-java project to each of the revisions when the AWSGlueClient was

modified19, then we re-evaluated the OO metrics of the project at that stage.

This way, we were able to obtain the growth trend for the OO metrics of the

AWSGlueClient class: we plotted the CBO trend in Figure 5, together with the

evolution of the class in source lines of code.

A shown in the graph, the AWSGlueClient class has so far an unbounded

growth in both lines of code, and its structural characteristics: the correlation

coefficients between any of the OO metrics collected, and the SLOCs attribute

is consistently above 0.9. In addition, the container Java file20 does not contain

further (inner) classes other than the AWSGlueClient class. This is an example

of a Java class that constantly grows its structural complexity, but does not

benefit from other developers’ work.

19For example, the git reset --hard 6cd91c1f6a4cabea5b1f877e5204247e60069f89 com-

mand will restore the aws-sdk-java project to the state when the AWSGlueClient class was

first introduced.
20Its full path is aws-java-sdk-glue/src/main/java/com/amazonaws/services/glue/AWSGlueClient.java

31



Figure 5: Growth of lines of code and CBO for the AWSGlueClient class

5.3. Many Developers, Large Maintenance, High complexity

The third case study is based on the cassandra project21, and specifically

about the main class contained in the file StorageService.java. The latest OO

metrics that we collected for this class are displayed in Table 11. What is also

listed in the first column of the Table is the cumulative number of authors that

made changes on the class, since its inception: we counted up to 116 distinct

author IDs that made changes to this class throughout its growth, and up until

our sampling date.

Similarly to what was noted in the case study of section 5.2 above, this class

shows the attributes of high structural complexity (e.g., CBO=150, NIM=341)

while remaining relatively simple from the hierarchical point of view (e.g.,

NOC=0, DIT=2).

This class underwent some 1,700 revisions in its evolution: similarly to what

was done for the AWSGlueClient class above, we restored the project to each

21https://github.com/apache/cassandra

32

https://github.com/apache/cassandra


Table 11: Structural attributes for the StorageService class, from the cassandra project

Authors IFANIN CBO NOC NIM NIV WMC RFC DIT LCOM

116 3 150 0 341 28 348 348 2 95

intermediate revision and recorded its structural characteristics at those revi-

sions. Figure 6 shows the growth of the CBO attribute, alongside the number

of source lines of code, against the cumulative number of developers.

Figure 6: Growth of number of authors, lines of code and CBO (StorageService class)

The effects of multiple authors, and the basic difference with the AWSGlue-

Client class, is visible in the number of different branches of development that

this class benefits from (as shown in the parallel lines of SLOC and CBO data

from the Figure). The influence of multiple developers is also visible in the num-

ber of inner classes that have grown inside the main one: in its inception, only

one further inner class was present (the static class BootstrapInitiateDoneVerb-

Handler), then two inner classes were developed beside the StorageService one,

while the latest revisions revert to a single inner class (e.g., RangeRelocator).

Even so, the main class had a five-fold growth in terms of size, and three-fold

33



in terms of CBO; the cumulative number of developers is positively correlated

with the size of the Java file, but the structural complexity does not seem to be

bounded.

5.4. Many Developers, Large Maintenance, Low Complexity

The last case study that we propose is based on the teammates project.

We focused on the Const class, that, in our sample, has the largest number of

distinct authors working on the same class (i.e., 133).

We collected the OO attributes in the first and last revisions, for comparison

(see Table 12). In both revisions, the OO metrics are at their lowest possible

values, while the total number of lines of code doubles from 552 (with 432 source

lines of code) to 1,131 (857 source lines of code).

Table 12: Structural attributes for the Const class, from the teammates project at its initial

revision (first row) and latest revision (second row)

Authors IFANIN CBO NOC NIM NIV WMC RFC DIT LCOM

1 1 0 0 2 0 2 2 1 100

133 1 1 0 1 0 1 1 1 100

We also observed that the class underwent 854 revisions: for each we noted

the source lines of code, and the number of cumulative developers that worked

on the class. Same as above, we evaluated the structural attributes of the

class at each revision, and Figure 7 plots the cumulative number of developers,

alongside the size of the class.

What we also plotted in Figure 7 is the growth of (the number of) inner

classes (from the initial 8 to 24) that have been (and are) part of the Const.java

source file, alongside the main Const class.

What we observed in this case study and from the plot (i.e., Figure 7) is

that there is virtually no correlation between the growth in OO metrics or the

class size and the number of its authors. The structural growth of the source

file is achieved via the number of newly added inner classes, each remaining

34



Figure 7: Multiple Developers Making Commits for and with the Same Class

minimally complex, from the structural point of view. Observing the SLOC

and inner classes plots in Figure 7, it can be observed that when there is a drop

in the SLOC (red), there is also a drop in the number of inner classes (green).

On the other hand, a drop in the SLOC plot (red) does not imply a drop in the

number of authors plot (yellow).

6. Discussion and Threats to Validity

In this section we discuss the results from our findings, dividing them into

two parts: the correlation levels between OO metrics (section 6.1), and the rela-

tionship between individual OO metrics and number of developers (section 6.2).

6.1. Literature Findings on Correlations

Considering the overall number of classes contained in the sampled projects

(474,197), we observed some strong correlations in action. Past research has

already established correlations between OO metrics, and at varying levels of

35



strength. What we discuss below is how our results could be used (i) to comple-

ment existing, established results from the literature, and (ii) to shed new light

towards potentially new explanations for the results obtained in past research.

As one of the first research studies attempting to find correlations between

OO metrics, Systa et al. [49] found strong correlations between RFC and other

attributes: WMC, LCOM, DIT and CBO. The results from our sample of Java

classes concur with those results: all of those correlations (plus a few more) were

found to be significant. What we observed is that these correlation levels are

not always stable for any number of developers. For instance, the RFC v WMC

relationship shows an overall moderate correlation coefficient, but it becomes

large when considering only the classes developed by only one developer, or

the classes where over 10 developers input their code. We posit the following:

what is reported by Systa et al. [49] might be due to the specificity of the

analysed system (the FUJABA project, developed at the host institution), and

the number of developers involved in that project (less than 5).

As a second example of correlation results reported in the literature, Olague

et al. [50] examined 6 versions of Rhino, an open source implementation of

JavaScript. The authors reported that the versions of Rhino analysed in the

paper have been developed by 3 programmers. Their correlation study indicates

that WMC strongly correlates with RFC, CBO and LCOM. This is consistent

with our results, when considering the clusters of developers, and Rhino being

in the [2 - 5] bracket. The authors further state that:

‘Rhino’s CK-RFC metric correlated more strongly with CK-CBO and CK-

LCOM than occurred in previous studies’

They also observe that:

‘...(the) primary differences between this study and previous studies were

NOC in this study had either no correlation or minor correlation with CBO

(previous studies showed no correlation) and CBO had a moderate to large cor-

relation with LCOM (previous studies showed a small or no correlation)’

As above, the differences observed by the authors can be ascribed to the

fact that Rhino belongs to the [2 - 5] developer bracket: the other cited studies

36



have performed such correlation analysis without taking into consideration the

number of developers involved.

As a further example of a past correlation study reported in the literature,

the work reported by Gyimothy et al. [51] used Mozilla as a case study to

evaluate the correlation between the C&K metrics: the authors compared their

results with what found by Basili et al. [52], and observed a few differences,

in particular a higher correlation between WMC and RFC, as well as between

WMC and CBO. This is consistent with what we report in Table 5: the system

studied by Gyimothy et al. [51] is a large Open Source system (i.e., Mozilla)

whose classes are modified by a large number of developers. On the other hand,

the systems studied by Basili et al. [52] were student projects: the set of results

proposed by the authors [52] are more in line with the correlations found in

presence of only one developer.

Subramanyam and Krishna [30] reported that a high CBO combined with

a high DIT of classes has a higher effect on software defects in C++ compared

to Java. However, the authors acknowledge that the sample was skewed, with

a small number of classes with high values of DIT.

6.2. Trends in OO metrics and developers

The trends shown in Table 7 demonstrate that most of the OO metrics

studied increase as the number of developers working on a class increases. While

we might reasonably expect this trend as the number of developers increases

(since system LOC will also generally increase correspondingly), there are a

number of implications for rises in the value of certain metrics evident Table 7

and these are worth exploring.

6.2.1. CBO

Software maintenance research generally emphasizes the need to keep metrics

low. For example, it has been shown that an increase in the CBO for a class can

lead to an increase in the required maintenance effort, defects and a reduction

in the reusability [53, 30]. This is because the higher the CBO of a class, the

37



more sensitive the software (i.e., other coupled classes) will be to changes made

to that class. Results from Table 7 show that CBO rises significantly as number

of developers increases; in terms of both mean and median values, there appears

to be a more dramatic rise after five developers in each case. Perhaps it is at

this level (of developers) that the complexity of the system reaches a tipping

point. In other words, coupling is added indiscriminately through a lack of

system understanding and poor communication, the net result of which is a

large technical debt [54, 55].

6.2.2. DIT

In terms of DIT, the deeper a class is in the hierarchy (i.e., has a high

DIT value), the greater the number of methods it is likely to have inherited

from parent classes, making its behaviour more complex to predict. On the

other hand, classes with a small DIT have much potential for reuse. Table 7

shows that the DIT values remain relatively static as the number of developers

increases. This is not entirely unexpected. A number of previous studies have

shown that DIT values tend to be generally low and that, if anything, inheritance

hierarchies will tend to collapse over time (becoming shallower) rather than

deeper [56, 52, 57]. Typically, this leads to systems with low median DIT values

of one or two, as Table 7 shows. From the same figure, we actually see a small

fall in the DIT value as number of developers increases. A number of suggestions

can be put forward for why DIT exhibits this trends. There is some research

to show that beyond a certain level of inheritance, developer comprehension

becomes lowered [58, 59]. Another way of describing this is in terms of the

cognitive load on developers. While the original intention of inheritance was

to promote reuse through relatively deep levels of inheritance (and developers

would therefore always strive to add depth to inheritance hierarchies to achieve

this), it seems developers prefer simplicity of shallow structures instead.

38



6.2.3. NOC

The NOC values are also interesting and show two peaks (at developer 4

and >10), before returning to a low level (approximately 1). We can only spec-

ulate as to why these peaks occurred (we note that the median values remain

static). One suggestion is that at the point in the system there was a significant

re-engineering or refactoring effort which collapsed the overall hierarchy tem-

porarily. This would have had little effect on the other OO metrics, but would

significantly increase the mean NOC values as shown. It is remarkable that the

median NIV value also jumps at this point (0 to 1), further pointing to possible

large-scale merging of classes at the same time as the hierarchy being collapsed;

again this is speculation only, but is often an activity applied to systems when

they show signs of decay.

6.2.4. LCOM

As well as CBO, the LCOM metric also shows a steep rise in both mean and

median values; for median LCOM values, this is particularly noticeable after the

3 developer level. A raised LCOM implies that a class is becoming increasingly

fragmented and losing much of its functional coherence. The LCOM value is

influenced by many factors and from the data it is difficult to pinpoint why the

LCOM should rise so steadily. One suggestion, however, is that as the number

of methods in a class rises (according to WMC), the distribution of instance

variables around the classes of the system become more thinly spread. The

result of this is a lowering of cohesion (and consequent rise in the LCOM value).

In other words, if the responsibilities of a class become less related, then class

cohesion will inevitably suffer as a result.

6.2.5. Summary Observations

One observation that seems to hold true is that as more developers are

added, a number of key OO metrics measuring coupling, size and cohesion

worsen. It would be easy to say that this is inevitable due to systems naturally

decaying [60]. We cannot ignore the fact that more developers usually means

39



more room for human error (through communication and misunderstanding)

implies. Brooks’ Law may have played a large part in what we observed [61].

Another observation relates to the link between number of developers and

the OO metrics used. One criticism of the work is that we do not need to study

the link between developer numbers and metrics. Clearly however, there are

significant changes in some of the OO metrics as number of developers increases.

We would largely expect that (and for those metrics to worsen). However, it

is the specific interesting cases for example of CBO, NOC and LCOM which

highlights the synergy between the number of developers and the metrics and

which makes this analysis worthwhile.

6.3. Repercussions on Software Maintenance

The evaluation of the hypotheses H1, H2 and H3 above pointed to an increase

in values for most of the structural metrics that were examined: when more

developers have worked on the same Java files, their structure have deteriorated,

according to shared guidelines in software maintenance and evolution.

In this part of the discussion we further analyse what are the repercussions

on software maintenance, and whether more developers have an impact on the

number of changes that a Java file undergoes, hence its future maintainability.

In order to do so, we counted the total number of commits where a Java file

was modified, but discounted of the number of developers that worked on each

Java files. As an example, the Java file with ID=989965 was modified by an

overall 13 developers, and it received an overall 39 commits in its evolution.

Discounting 13 commits (one for each developer), we noted an additional 26

commits that this class received in its maintenance. We repeated this approach

for all the Java classes, while still avoiding the commits where more than 100

Java files were modified at the same time.

The results are found in Table 13 below: we separate the scenarios where all

the classes are considered; from those where only Top developers are involved;

from those where there is a majority of Middle and Bottom developers.

40



Table 13: Average and median number of additional commits per cluster of developers, and

considering experience as a factor

Overall sample

Dev. clusters all 1 2 to 5 6 to 10 10+

Further commits (AVG) 8.11 2.95 11.47 26.26 47.48

Further commits (MED) 4 2 9 22 42

ONLY TOP DEVELOPERS

Dev. clusters 1 2 to 5 6 to 10 10+

Further commits (AVG) 0.74 2.67 11.56 24.49

Further commits (MED) 0 1 8 17.5

MD + BD >TD

Dev. clusters 1 2 to 5 6 to 10 10+

Further commits (AVG) 0.29 2.06 16.82 59.32

Further commits (MED) 0 1 9 37

When considering all the Java classes in our sample (section “Overall sam-

ple” in Table 13) we observed that, on average, the classes modified by one

developer are those that needed the least further maintenance (less than 3 ad-

ditional commits, on average; and 2 further commits as a median value). When

2 to 5 developers have worked on a Java class, the additional commits become

more than 11 on average, and 3 as a median. The additional maintenance be-

comes much more visible in the “6 to 10” developers per class, and extremely

high for the classes that were modified by more than 10 developers. In the

former scenario, we recorded a median of 22 additional commits; in the latter a

median of 42 additional commits.

The same trend is visible when only the Top developers (section ”ONLY TOP

DEVELOPERS” in Table 13) are involved but with a difference: the average

and median values of additional commits are kept lower than the general case

where all developers are considered. Classes with an increasing number of Top

developers tend to degrade structurally (see section 4.5.1) but they do not need

41



as much further maintenance as compared to classes with mixed Top, Middle

and Bottom developers.

This second finding is confirmed by the analysis of classes whereby the num-

ber of Middle and Bottom developers that have modified the class is higher than

the number of top developers that have modified the class (section “MD+BD >

TD” or the last three rows in Table 13). The development of Java classes by

developers with mixed experience levels shows a visible effect on their mainte-

nance, requiring a lot more further commits (both in average and median) than

when the only Top developers work on the code. For example when looking at

the classes modified by 6 to 10 developers in section “MD+BD > TD” or the

last three rows in Table 13 compared to section “ONLY TOP DEVELOPERS”

in Table 13, the average number of further changes needed is much higher in

the former (16.82) compared to the later (11.56).

As a way of an example, Figures 8 and 9 show two recurring types of main-

tenance (both examples are taken from the AndroidAnnotations22 project): the

former where a majority of Top developers was active in the evolution of the

Java file, and the latter where more Middle and Bottom developers have been

modifying the class, as opposed to the Top developers. Each change that the two

files underwent was assigned to a developer, and each developer was assigned

to one of the TD, MD or BD categories.

The pattern observed in Figure 8 is sufficiently recurrent in other Java classes

where most developers are in the TD category. The maintenance is relatively

regular and evenly scattered, although a gap of over a year separates a first

and a second phase of maintenance (highlighted by different colours). On the

other hand, the pattern observed in Figure 9 shows a heavy involvement of MD

and BD types of developers, but only for roughly half of its life-cycle. In the

second part of its maintenance, the support of Middle and Bottom becomes

virtually null, whilst the maintenance of this second half is carried forward by

Top developers.

22https://github.com/androidannotations

42

https://github.com/androidannotations


Figure 8: Maintenance for the TracedActivity.java file

Figure 9: Maintenance for the AndroidAnnotationProcessor.java file. Ticks indicate indi-

vidual changes

6.4. Threats to Validity

In this Section we present the external, internal and construct threats to

validity of this study.

External validity – This paper presents the results of an empirical analysis

that should be applicable to all OSS projects. We cannot generalize our findings

43



on any other sample of OSS projects, or from any other repository. Nonetheless,

in order to make the findings from our study more generalisable and represen-

tative of OSS projects, we have carried out our analysis on a significant sample

of projects, with different sizes and number of developers.

Internal validity – Another threat to the study is a possibility of a migra-

tion of projects between open source forges. We acknowledge that some of the

projects might have been migrated from one repository to another. This could

mean that there are subtle inaccuracies in the number of developers observed to

have accessed a class. However, to mitigate this threat we examined the initial

commit logs of the studied projects by means of SQL queries on the commit logs

and parsed these to identify whether the developers’ commit messages indicate

any migrations from another repository.

We identified as initial commit messages: “Create README.md”, “Hello

World!”, “Initial commit”, “Initial release. As a proof of concept, it already

works in javadoc and eclipse!” and “first commit”. Second commit messages

include “Updated README.md”, “Updated .gitignore”, “Make sure our Guice-

Container is a singleton”, “Formatted readme” and “Project description”.

One other internal validity threat alluded to in the previous section is the

interplay between size of the system and number of developers. A criticism that

could be levelled at the study is that the C&K metric values are only a reflection

of the size of the systems as they evolve and not due to the increasing number

of developers (i.e., size is a confounding factor). In defence of this threat, we

accept that as the number of developers increases, the size of the system will

grow (notwithstanding Brooks Law and that the C&K metrics will tend to

worsen; however, the size and number of developers are effectively surrogates

for each other and do not invalidate the analysis.

Construct validity – To assess the presence of a linear correlation between

the software metrics as well as the number of developers accessing a class we

adopted the Spearman’s rank correlation coefficient. This is because it does

not assume a normal distribution. The test has its disadvantages: it takes into

consideration the ranked order of the attributes and not the values themselves.

44



In other words, as long as the order of the C&K metrics remain the same the

resulting coefficient will stay the same. As such, the results rely upon the time

or period at which the studied sample has been collected.

Additionally, the scope of our sample of projects was limited to open-source

software projects written in the Java programming language (object-oriented),

thus we encourage investigating commercial projects for our results to be inclu-

sive and completely validated.

It is also important to note that the study that we proposed is a quantitative

evaluation of internal attributes of Java systems. We tried to triangulate these

findings with the case studies presented in Section 5. Further insights could

get unearthed by conducting a mixed-approach research [62], including ques-

tionnaires and interviews with managers and developers. We believe that the

scale of our research does not lend well to that type of research though: mixed-

research methods are particularly efficient when a limited number of systems are

analysed, and more precise research questions are formulated regarding specific

systems.

Finally, our study used (i) test and non-test classes, (ii) small, medium and

large systems size and (iii) experience of developers as three possible controlling

factors for the trend of the CK metrics. We acknowledge that many other factors

could play a role in these patterns: the type of systems, above all, should be

further investigated to unearth relationships between structural characteristics

and developers [63]. Also, the level of involvement of commercial companies

in open source systems (the so-called hybrid OSS systems [64, 65]) would have

a role to play. Company-specific development standards would become more

visible in company-driven OSS projects: in this way, it would also be possible

to compare them to volunteer-based OSS projects.

7. Related Work

Section 2 provides a background review of the studied OO metrics. These

metrics have also been evaluated with nine criteria for OO software complex-

45



ity metrics [15]. They are: (1) non-coarseness, (2) non-uniqueness, (3) design

details importance, (4) monotonicity, (5) non-equivalence of interaction, (6)

interaction increases complexity, (7) complexity in response to the order of

statements and the interaction among statements, (8) renaming and equality

in complexity (9) program growth and increased complexity.

The WMC metric meets the first and second metric properties defined by

Weyuker [15] as not every class can have the same number of methods but some

classes can. In addition, the functionality of a class does not define the number

of methods the class can contain. Therefore, the WMC metric also satisfies the

third property. The choice of number of methods is a design decision and is not

based on functionality.

The DIT metric satisfies property 1 given that the depth of inheritance of a

leaf class is always greater than that of the root class. Furthermore, there will

also exist at least two classes with the same depth of inheritance since every

tree has at least some nodes with siblings. As such the DIT metric also satisfies

property 2.

However, the DIT metric fails to satisfy property 4 in cases where two classes

are in a parent-descendant relationship. This is because the distance from the

root of a parent cannot be greater than one of its children. It is noteworthy that

not satisfying property 6 may not be an essential aspect of OO design. This is

because, developers have identified that the division of classes into more classes

can increase complexity too (in terms of memory management and runtime

detection of errors when there are more classes to deal with). On the other

hand, developers can make use of the WMC, DIT and NOC metrics to check if

an OO software is getting “top heavy” (i.e., too many classes at the root level

declaring many methods) or use the RFC and CBO metrics to check whether

there are unneeded interconnections between various parts of the application.

In contrast to Weyuker, Ma et al. [66] categorized software complexity met-

rics based on their purpose or the general software properties they measure and

their limitations. Their categorization of the CK metrics are as follows: Inheri-

tance (DIT, NOC), Coupling (CBO), Collaboration (RFC), Cohesion (LCOM),

46



Complexity (WMC).

7.1. Comparison of software attributes

Gyimothy et al. [51] performed a comparison of the CK metrics and it was

discovered that there is no linear relationship between NOC and the other met-

rics. In addition, DIT only correlated with RFC. Another notable correlation

is that of WMC and LCOM. Finally, LOC correlated with WMC, RFC, CBO,

and LCOM but not DIT and NOC. This implies that the degree of cohesiveness

of a class23 can determine its number of lines of code (LOC). Counsell et al. [67]

state that the LCOM metrics is an implementation metric required earlier in

the development process (at design time).

Similarly, in a different study on fault prediction with a different data set,

Zhou and Leung [68] identified a significant linear correlation at the 0.01 level

between DIT and RFC. In addition, SLOC correlated with WMC, RFC, CBO,

DIT and LCOM but NOC. Though a low correlation with LCOM (0.24) and

DIT (0.35).

It can be inferred from both studies performed with distinct case studies or

data sets, that NOC and lines of code of a class have no relationship. Further-

more, the DIT and NOC metrics for classes in studies of OO software are usually

low. This indicates that deep inheritance values are not used significantly in

OO software. On the other hand, a high CBO is evident among classes which

means that the dependencies between classes which is not caused by inheritance

is high [68, 52, 69].

Table 14 summarizes the known C&K metric relationships identified sta-

tistically using correlation measurements as well as key findings regarding the

metrics. The first column shows the metric name, the second column lists other

correlated metrics, the third column summarizes some key findings about the

metric and relationships and the fourth and last column shows the studies that

23A cohesive class is one in which the same instance variables appear in most or all of the

methods.

47



Table 14: Summary of OO Metrics Relationship and Operationalisation

Metric Metric Links Findings Study

LCOM
LOC LOC is correlated with LCOM [51]

SLOC SLOC correlated with LCOM [68]

DIT SLOC SLOC correlated with DIT [68]

CBO
LOC LOC correlated with CBO [51]

CBO SLOC correlated with CBO [68]

NOC The higher the number of children a class has, the

greater its reuse since inheritance is a form of reuse.

However, a higher inheritance means that the class

design will be complex to test

[9]; [31]

RFC

DIT; LOC DIT and LOC correlated with CBO [51]

SLOC SLOC correlated with RFC [68]

DIT High CBO combined with a high DIT produces a

higher effect on defects in OO software classes

[30]

Excessive coupling between classes is detrimental to

modular design and lowers the chances of reuse

[9]

CBO increases complexity of the system and ad-

versely affects the quality factors such as maintain-

ability, testability and reusability

[32]

A measure of coupling is important to determine how

complex the testing of various parts of a design are

likely to be

[19]

WMC
LCOM WMC correlated with LCOM [51]

SLOC SLOC correlated with WMC [68]

A high value of WMC could result in a high num-

ber of software faults as classes with a high number

of methods are more difficult to reuse and maintain.

Increasing the average of WMC also elevates com-

plexity but lowers quality

[29]

The larger the number of methods in a class, the

greater the potential impact on children, since chil-

dren will inherit all the methods defined in the class

[9]

48



have statistically proven the metric pair correlations and other findings.

In a survey of metrics available for UML diagrams [70], only three (WMC,

DIT and NOC) of the CK metrics were available for UML diagrams and ap-

plied equally to models and code [71]. These metrics can be used to measure

design complexity in relation to their impact on external quality attributes (e.g.,

maintainability and reusability).

The DIT metric is seen as a length measure while the NOC metric is a

size measure. According to Briand et al. [72] DIT and NOC both have opposite

effects on fault detection. The higher the DIT metric, the greater the chances of

detecting a fault in a class. On the other hand, the higher the NOC metrics, the

lower the chances of fault detection [70]. However, deeper inheritance hierarchies

did not speed up maintenance, so DIT in itself is not an important factor for

maintenance effort. Similarly, Aggarwal et al. [36] hypothesized that a class with

less cohesion is more likely to be fault prone than a class with high cohesion.

While a class with more depth in its inheritance tree is more likely to be fault

prone than a class with less depth in its inheritance tree.

7.2. Software attributes and collaborative development

Bird et al. [5] demonstrated that code ownership has a relationship with soft-

ware defects considering size, churn and complexity metrics extracted from the

Windows Vista and Windows 7 software projects. The authors recommended

that changes made by minor contributors should be reviewed with more effort

than changes made by major contributors or developers who are experienced

with the source code for a component to minimise defects. This is as commits

with large number of files or changes have been associated with less useful re-

views for the author of the change [73]. Similarly, our results have shown in

terms of number of developers that OO quality metrics such as DIT and NOC

are correlated with the number of developers of a class. In addition, we analysed

developer experience per project based on the number of Java files committed

and identified that when the count of developers that have worked on a class

increases or the count of the less experienced developers surpasses the expe-

49



rienced developers working on a class, its structure degrades and more future

maintenance is required.

Understanding component and task coupling would, for example, allow or-

ganisations to be better informed about the need for more effective coordination

(and resource allocation) [27], team co-location and code ownership [74]. Herb-

sleb proposed the need to measure architectural and organisational fit as well as

the need for tactics to better adjust an organization to the software architecture,

or the architecture to the organization [75]. This is because there is little knowl-

edge on the coordination and communication requirements that architectural

decisions impose on teams. For example, considering the link between task de-

pendency and component coupling/dependencies, decoupling components might

or might not decouple tasks [76]. In addition, adding an intermediary where the

most difficult dependencies are semantic rather than syntactic may in fact make

the task coordination problem harder.

In a study on two large and mature software projects (Firefox and Eclipse)

by Parnin et al. [77], the researchers investigated the effects of distributed de-

velopment (in terms of organisationally and geographically distributed teams)

on software quality. With regards to Firefox, components that are geographi-

cally distributed were found to be larger and complex with more contributors.

On the other hand, Eclipse showed a low geographic distribution at the compo-

nent level (i.e., almost every component is developed largely in one location).

Generally, geographically distributed components had more defects though the

effects of distribution lessen in later releases. While organisationally distributed

components had less defects. In a different study, organizational metrics when

applied to data from Windows Vista were able to statistically and significantly

predict failure-proneness [26]. Prediction model performance metrics (precision

and recall) were higher when the prediction of failure-prone binaries compared

to using traditional metrics like churn, complexity, coverage, dependencies, in-

cluding pre-release bug measures.

According to Matsumoto et al. [6] the injection of faults in software does

not solely depend on attributes of the source code, but also on attributes of

50



the developers involved in software projects. The authors investigated the re-

lationship between developer attributes (e.g., number of code churns made by

each developer, the number of commitments made by each developer and the

number of developers for each module) and the number of faults in software.

The developer attributes were also evaluated for performance improvements of

fault prediction models and the Eclipse project was used as a case study. Their

results revealed that modules touched by multiple developers contained more

faults and developer-based metrics improved the performance fault prediction

models. Differently from their study on fault prediction, we have investigated

the attributes of classes in relation to developers and identified that the correla-

tion between OO software metrics is influenced by the number of developers that

have touched a class. When considering developer experience, we also identified

that the experience of developers touching a class plays a role in the complexity

of the class.

Similarly to Matsumoto et al. [7], Ostrand et al. [7] investigated whether files

modified by an individual developer consistently contain either more or fewer

faults than the average of all files in the system with the aim of determining

whether the information about which particular developer modified a file is able

to improve defect predictions. The authors also evaluated the use of counts of

the number of developers who modified a file as predictors of the files’ future

faultiness. Their study confirmed that counts of the cumulative number of

different developers changing a file over its lifetime can help to improve fault

predictions, but only by a small amount. Differently to this study, the authors

did not investigate the experience of developers in their prediction models. In

addition, we identified that when the count of developers that have worked on a

class increases, its structure degrades and more future maintenance is required.

In an earlier study by Mockus and Weiss [78] the relationship between change

quality and four different developer variables, mainly evaluating developers ex-

perience is used in a logistic regression model to predict whether a change leads

to a software failure using a telephone switching system as a case study. The

four developer variables used included: a measure of a developer’s overall ex-

51



perience (the number of changes made to files in a project before a change in

focus), developers recent experience (recent changes are weighted more than

older changes), and their experience with a specific subsystem (changes made

to files within a subsystem that a change touches), as well as the number of

developers who made modifications to satisfy a change request. Their results

showed that the only statistically significant variable was the one that measured

the developer’s overall experience level. In this study, we have analysed devel-

oper experience per project based on the number of Java files committed per

developer and found that developers overall experience in a project has a role

to play in the overall structural quality of classes they work on.

8. Conclusion and Future Work

This paper proposed an extensive study on the relationship between a selec-

tion of structural OO metrics and the number of distinct developers who add,

delete or modify parts of Java classes.

We collected three sets of results from our analysis. First, we found that

the OO metrics of a class are correlated to the number of its contributors, but

not to its size in SLOCs. As long as more developers work on the same code,

their correlation with other metrics increases. This result helps to put in context

past literature findings: the stronger or weaker correlations found by researchers

depend on the number of developers who worked on the code.

Second, we found that the experience of developers plays a role: the more

inexperienced developers have a visible effect on the structural characteristics

of the code that they work on, degrading it more as compared to when only

experienced developers commit to Java files.

Third, we observed that the degradation in OO metrics is linked to an in-

crease in further maintenance: when more developers work on the same Java

code, its structure degrades AND the number of further commits needed will in-

crease. This is even more visible when less experienced developers have worked

(or still work) on the code itself.

52



We believe that these results open a new research area for the maintainability

of software. Further work could be directed towards the effectiveness of repeated

partnerships between developers, especially when experienced developers are

found in pairs in several projects. Also, our set of findings could be linked to

the on-boarding activities of community software projects, especially for those

developers who belong to the Middle or Bottom layers of collaborators.

REFERENCES

[1] I. Steinmacher, M. A. Gerosa, How to support newcomers onboarding to open source

software projects, in: L. Corral, A. Sillitti, G. Succi, J. Vlasenko, A. I. Wasserman (Eds.),

Open Source Software: Mobile Open Source Technologies, Springer Berlin Heidelberg,

Berlin, Heidelberg, 2014, pp. 199–201.

[2] B. Lin, G. Robles, A. Serebrenik, Developer turnover in global, industrial open source

projects: Insights from applying survival analysis, in: 2017 IEEE 12th International

Conference on Global Software Engineering (ICGSE), IEEE, 2017, pp. 66–75.

[3] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, D. Damian, The

promises and perils of mining github, in: Proceedings of the 11th working conference on

mining software repositories, ACM, 2014, pp. 92–101.

[4] B. Norick, J. Krohn, E. Howard, B. Welna, C. Izurieta, Effects of the number of developers

on code quality in open source software: A case study, 2010. doi:10.1145/1852786.

1852864.

[5] C. Bird, N. Nagappan, B. Murphy, H. Gall, P. Devanbu, Don’t touch my code!: examining

the effects of ownership on software quality, in: Proceedings of the 19th ACM SIGSOFT

symposium and the 13th European conference on Foundations of software engineering,

ACM, 2011, pp. 4–14.

[6] S. Matsumoto, Y. Kamei, A. Monden, K.-i. Matsumoto, M. Nakamura, An analysis of

developer metrics for fault prediction, in: Proceedings of the 6th International Conference

on Predictive Models in Software Engineering, ACM, 2010, p. 18.

[7] T. J. Ostrand, E. J. Weyuker, R. M. Bell, Programmer-based fault prediction, in: Pro-

ceedings of the 6th International Conference on Predictive Models in Software Engineer-

ing, ACM, 2010, p. 19.

53

http://dx.doi.org/10.1145/1852786.1852864
http://dx.doi.org/10.1145/1852786.1852864


[8] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, A. Mockus, Does code decay? assessing

the evidence from change management data, IEEE Transactions on Software Engineering

27 (1) (2001) 1–12.

[9] S. R. Chidamber, C. F. Kemerer, A metrics suite for object oriented design, IEEE Trans-

actions on software engineering 20 (6) (1994) 476–493.

[10] B. Fluri, M. Wursch, H. C. Gall, Do code and comments co-evolve? on the relation

between source code and comment changes, in: 14th Working Conference on Reverse

Engineering (WCRE 2007), IEEE, 2007, pp. 70–79.

[11] H. A. Nguyen, A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, H. Rajan, A study of repet-

itiveness of code changes in software evolution, in: Proceedings of the 28th IEEE/ACM

International Conference on Automated Software Engineering, IEEE Press, 2013, pp.

180–190.

[12] M. Foucault, J.-R. Falleri, X. Blanc, Code ownership in open-source software, in: Pro-

ceedings of the 18th International Conference on Evaluation and Assessment in Software

Engineering, ACM, 2014, p. 39.

[13] L. C. Briand, J. W. Daly, J. K. Wüst, A unified framework for coupling measurement in

object-oriented systems, IEEE Transactions on software Engineering (1) (1999) 91–121.

[14] B. Kitchenham, Whats up with software metrics?–a preliminary mapping study, Journal

of systems and software 83 (1) (2010) 37–51.

[15] E. J. Weyuker, Evaluating software complexity measures, IEEE transactions on Software

Engineering 14 (9) (1988) 1357–1365.

[16] J. C. Cherniavsky, C. H. Smith, On weyuker’s axioms for software complexity measures,

IEEE Transactions on Software Engineering 17 (6) (1991) 636–638.

[17] M. Shepperd, D. Ince, Derivation and Validation of Software Metrics. International Series

of Monographs on Computer Science, Oxford University Press, 1993.

[18] W. Li, S. Henry, Object-oriented metrics that predict maintainability, Journal of systems

and software 23 (2) (1993) 111–122.

[19] G. A. Oliva, M. A. Gerosa, On the interplay between structural and logical dependencies

in open-source software, in: Software Engineering (SBES), 2011 25th Brazilian Sympo-

sium on, IEEE, 2011, pp. 144–153.

[20] A. Chhikara, R. Chhillar, S. Khatri, Evaluating the impact of different types of in-

heritance on the object oriented software metrics, International Journal of Enterprise

Computing and Business Systems 1 (2) (2011) 1–7.

54



[21] S. Counsell, E. Mendes, S. Swift, Comprehension of object-oriented software cohesion:

the empirical quagmire, in: Proceedings of the 10th International Workshop on Program

Comprehension (IWPC), Citeseer, 2002.

[22] M. D’Ambros, M. Lanza, R. Robbes, An extensive comparison of bug prediction ap-

proaches, in: Mining Software Repositories (MSR), 2010 7th IEEE Working Conference

on, IEEE, 2010, pp. 31–41.

[23] K. El Emam, W. Melo, J. C. Machado, The prediction of faulty classes using object-

oriented design metrics, Journal of Systems and Software 56 (1) (2001) 63–75.

[24] D. Radjenović, M. Heričko, R. Torkar, A. Živkovič, Software fault prediction metrics: A

systematic literature review, Information and Software Technology 55 (8) (2013) 1397–

1418.

[25] L. F. Capretz, J. Xu, An empirical validation of object-oriented design metrics for fault

prediction, Journal of Computer Science 4 (7) (2008) 571.

[26] N. Nagappan, B. Murphy, V. Basili, The influence of organizational structure on software

quality, in: 2008 ACM/IEEE 30th International Conference on Software Engineering,

IEEE, 2008, pp. 521–530.

[27] T. Zimmermann, N. Nagappan, Predicting defects using network analysis on dependency

graphs, in: 2008 ACM/IEEE 30th International Conference on Software Engineering,

IEEE, 2008, pp. 531–540.

[28] M. Bunge, Treatise on basic philosophy: Ontology I: the furniture of the world, Vol. 3,

Springer Science & Business Media, 1977.

[29] D. K. Srivastava, A. Singh, Classification of technical and management metrics in object

oriented software engineering, in: Proceedings of International Conference on Communi-

cation and Networks, Springer, 2017, pp. 277–286.

[30] R. Subramanyam, M. S. Krishnan, Empirical analysis of ck metrics for object-oriented

design complexity: Implications for software defects, IEEE Transactions on software

engineering 29 (4) (2003) 297–310.

[31] S. Khalid, S. Zehra, F. Arif, Analysis of object oriented complexity and testability using

object oriented design metrics, in: Proceedings of the 2010 National Software Engineering

Conference, ACM, 2010, p. 4.

[32] U. L. Kulkarni, Y. Kalshetty, V. G. Arde, Validation of ck metrics for object oriented

design measurement, in: Emerging Trends in Engineering and Technology (ICETET),

2010 3rd International Conference on, IEEE, 2010, pp. 646–651.

55



[33] G. Bavota, A. De Lucia, R. Oliveto, Identifying extract class refactoring opportunities

using structural and semantic cohesion measures, Journal of Systems and Software 84 (3)

(2011) 397–414.

[34] N. Ajienka, A. Capiluppi, S. Counsell, Managing hidden dependencies in oo software: a

study based on open source projects, in: Empirical Software Engineering and Measure-

ment (ESEM), 2017 ACM/IEEE International Symposium on, IEEE, 2017, pp. 141–150.

[35] A. Marcus, D. Poshyvanyk, R. Ferenc, Using the conceptual cohesion of classes for fault

prediction in object-oriented systems, IEEE Transactions on Software Engineering 34 (2)

(2008) 287–300.

[36] K. Aggarwal, Y. Singh, A. Kaur, R. Malhotra, Empirical analysis for investigating the

effect of object-oriented metrics on fault proneness: a replicated case study, Software

process: Improvement and practice 14 (1) (2009) 39–62.

[37] M. Lorenz, J. Kidd, Object-oriented software metrics, Vol. 131, Prentice Hall Englewood

Cliffs, 1994.

[38] C. Van Koten, A. Gray, An application of bayesian network for predicting object-oriented

software maintainability, Information and Software Technology 48 (1) (2006) 59–67.

[39] G. Destefanis, S. Counsell, G. Concas, R. Tonelli, Software metrics in agile software: An

empirical study, in: International Conference on Agile Software Development, Springer,

2014, pp. 157–170.

[40] F. Zhang, A. Mockus, Y. Zou, F. Khomh, A. E. Hassan, How does context affect the

distribution of software maintainability metrics?, in: Software Maintenance (ICSM), 2013

29th IEEE International Conference on, IEEE, 2013, pp. 350–359.

[41] A. Marcus, D. Poshyvanyk, The conceptual cohesion of classes, in: 21st IEEE Interna-

tional Conference on Software Maintenance (ICSM’05), IEEE, 2005, pp. 133–142.

[42] L. Yu, Understanding component co-evolution with a study on linux, Empirical Software

Engineering 12 (2) (2007) 123–141.

[43] R. R. Pagano, Understanding statistics in the behavioral sciences, 6th Edition,

Wadsworth-Thomson Learning, Australia;United Kingdom;, 2001.

[44] A. P. Field, Discovering statistics using SPSS: and sex and drugs and rock ’n’ roll, 3rd

Edition, SAGE, London;Los Angeles;, 2009.

[45] M. A. Cusumano, How microsoft makes large teams work like small teams, MIT Sloan

Management Review 39 (1) (1997) 9.

56



[46] B. Tessem, Individual empowerment of agile and non-agile software developers in small

teams, Information and software technology 56 (8) (2014) 873–889.

[47] C. Wambui, A. Njuguna, The effect of financial governance on financial management

system effectiveness in health oriented civil society organizations, American Journal of

Health, Medicine and Nursing Practice 1 (1) (2016) 52–67.

[48] E. Defere, M. Abawa, K. Fenta, Prevalence and associated factors of internalized stigma

among patients with severe mental disorder: The case of amanuel specialized mental

health hospital, Ethiopian Renaissance Journal of Social Sciences and the Humanities

4 (2).

[49] T. Systa, P. Yu, H. Muller, Analyzing java software by combining metrics and program

visualization, in: Software Maintenance and Reengineering, 2000. Proceedings of the

Fourth European, IEEE, 2000, pp. 199–208.

[50] H. M. Olague, L. H. Etzkorn, S. Gholston, S. Quattlebaum, Empirical validation of three

software metrics suites to predict fault-proneness of object-oriented classes developed

using highly iterative or agile software development processes, IEEE Transactions on

software Engineering 33 (6) (2007) 402–419.

[51] T. Gyimothy, R. Ferenc, I. Siket, Empirical validation of object-oriented metrics on open

source software for fault prediction, IEEE Transactions on Software engineering 31 (10)

(2005) 897–910.

[52] V. R. Basili, L. C. Briand, W. L. Melo, A validation of object-oriented design metrics as

quality indicators, IEEE Transactions on software engineering 22 (10) (1996) 751–761.

[53] B. M. Goel, P. K. Bhatia, Analysis of reusability of object-oriented system using ck

metrics, Analysis 60 (10).

[54] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim, A. MacCormack,

R. Nord, I. Ozkaya, et al., Managing technical debt in software-reliant systems, in: Pro-

ceedings of the FSE/SDP workshop on Future of software engineering research, ACM,

2010, pp. 47–52.

[55] P. Kruchten, R. L. Nord, I. Ozkaya, Technical debt: From metaphor to theory and

practice, Ieee software 29 (6) (2012) 18–21.

[56] M. Cartwright, M. Shepperd, An empirical investigation of an object-oriented software

system, IEEE Transactions on software engineering 26 (8) (2000) 786–796.

57



[57] E. Nasseri, S. Counsell, M. Shepperd, Class movement and re-location: An empirical

study of java inheritance evolution, Journal of Systems and Software 83 (2) (2010) 303–

315.

[58] J. W. Daly, A. Brooks, J. Miller, M. Roper, M. Wood, Evaluating inheritance depth

on the maintainability of object-oriented software, Empirical Software Engineering 1 (2)

(1996) 109–132.

[59] R. Harrison, S. Counsell, R. V. Nithi, Experimental assessment of the effect of inheritance

on the maintainability of object-oriented systems, Journal of Systems and Software 52 (2-

3) (2000) 173–179.

[60] M. M. Lehman, On understanding laws, evolution, and conservation in the large-program

life cycle, J. Syst. Softw. 1 (1984) 213–221.

[61] F. P. Brooks, Jr., The Mythical Man-month (Anniversary Ed.), Addison-Wesley Long-

man Publishing Co., Inc., Boston, MA, USA, 1995.

[62] W. G. Axinn, T. E. Fricke, A. Thornton, The microdemographic community-study ap-

proach: Improving survey data by integrating the ethnographic method, Sociological

Methods & Research 20 (2) (1991) 187–217.

[63] A. Capiluppi, N. Ajienka, The relevance of application domains in empirical findings, in:

Proceedings of the 2nd International Workshop on Software Health, IEEE Press, 2019,

pp. 17–24.

[64] S. K. Shah, Motivation, governance, and the viability of hybrid forms in open source

software development, Management Science 52 (7) (2006) 1000–1014.

[65] E. Capra, C. Francalanci, F. Merlo, An empirical study on the relationship between

software design quality, development effort and governance in Open Source Projects,

Software Engineering, IEEE Transactions on 34 (6) (2008) 765–782.

[66] Y.-T. Ma, K.-Q. He, B. Li, J. Liu, X.-Y. Zhou, A hybrid set of complexity metrics for

large-scale object-oriented software systems, Journal of Computer Science and Technol-

ogy 25 (6) (2010) 1184–1201.

[67] S. Counsell, S. Swift, J. Crampton, The interpretation and utility of three cohesion met-

rics for object-oriented design, ACM Transactions on Software Engineering and Method-

ology (TOSEM) 15 (2) (2006) 123–149.

[68] Y. Zhou, H. Leung, Empirical analysis of object-oriented design metrics for predicting

high and low severity faults, IEEE Transactions on software engineering 32 (10) (2006)

771–789.

58



[69] L. C. Briand, J. Wüst, J. W. Daly, D. V. Porter, Exploring the relationships between

design measures and software quality in object-oriented systems, Journal of systems and

software 51 (3) (2000) 245–273.

[70] M. Genero, M. Piattini, C. Calero, A survey of metrics for uml class diagrams, Journal

of object technology 4 (9) (2005) 59–92.

[71] J. A. McQuillan, J. F. Power, On the application of software metrics to uml models, in:

International Conference on Model Driven Engineering Languages and Systems, Springer,

2006, pp. 217–226.

[72] L. C. Briand, S. Morasca, V. R. Basili, Property-based software engineering measurement,

IEEE transactions on software Engineering (1) (1996) 68–86.

[73] A. Bosu, M. Greiler, C. Bird, Characteristics of useful code reviews: An empirical study

at microsoft, in: 2015 IEEE/ACM 12th Working Conference on Mining Software Repos-

itories, IEEE, 2015, pp. 146–156.

[74] J. D. Herbsleb, D. Moitra, Global software development, IEEE software 18 (2) (2001)

16–20.

[75] J. D. Herbsleb, Global software engineering: The future of socio-technical coordination,

in: Future of Software Engineering (FOSE’07), IEEE, 2007, pp. 188–198.

[76] A. Mockus, J. Herbsleb, Challenges of global software development, in: Proceedings

seventh international software metrics symposium, IEEE, 2001, pp. 182–184.

[77] C. Parnin, C. Bird, E. Murphy-Hill, Java generics adoption: how new features are in-

troduced, championed, or ignored, in: Proceedings of the 8th Working Conference on

Mining Software Repositories, ACM, 2011, pp. 3–12.

[78] A. Mockus, D. M. Weiss, Predicting risk of software changes, Bell Labs Technical Journal

5 (2) (2000) 169–180.

59


	Introduction
	Review of Selected OO Metrics
	WMC (Weighted Methods per Class)
	DIT (Depth of a class in the Inheritance Tree)
	NOC (Number of Children)
	CBO (Coupling Between Objects)
	RFC (Response for a Class)
	LCOM (Lack of Cohesion of the Methods in a class)
	NIM (Count of Instance Methods) and NIV (Count of Instance Variables)
	IFANIN (Count of Base Classes)

	Empirical Approach
	Hypotheses
	Dataset used
	Size: number of classes and SLOCs
	Extraction of OO attributes
	Extraction of developer metadata
	Removing duplicate authors
	Developer clusters

	Deriving developers experience

	Results
	Relationship between SLOCs, OO Metrics and Contribution Teams – H0,1
	Relationship between SLOCs and contribution teams

	Correlation between C&K metrics
	Spearman's Correlation – Developer Clusters
	OO Metrics and Developers – H0,2
	The Effect of Experience of Developers on OO Metrics – – H0,3
	OO Metrics and Top Developers
	OO Metrics and Mixed Teams of Contributors


	Case Studies
	One Developer, High Complexity, No Maintenance
	One Developer, High Complexity, Large Maintenance
	Many Developers, Large Maintenance, High complexity
	Many Developers, Large Maintenance, Low Complexity

	Discussion and Threats to Validity
	Literature Findings on Correlations
	Trends in OO metrics and developers
	CBO
	DIT
	NOC
	LCOM
	Summary Observations

	Repercussions on Software Maintenance
	Threats to Validity

	Related Work
	Comparison of software attributes
	Software attributes and collaborative development

	Conclusion and Future Work

