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        Abstract 

Voluntary environmental agreements (VEAs) are often plagued by adverse selection 

problems, because the regulator has imperfect information about firm-specific 

production technologies and abatement costs. We explore this issue using the UK 

climate change agreement (CCA) as a case study. First, we present a theoretical 

emulation of the program. Second, we resolve the regulator’s asymmetric information 

problem by estimating unobserved energy efficiency using production theory. Third, 

we use microdata from three confidential manufacturing surveys to empirically test 

how limited information impacts resource allocation within the scheme. In line with 

the problem of limited information about firm production technologies, we find that 

firms with lower levels of energy efficiency receive higher CCA tax discounts. This 

finding holds over a range of robustness tests.  

 
 

 
1. Introduction 

Voluntary environmental agreements (VEAs) between environmental regulators and pollution-

generating units often represent a second-best policy tool to combat negative externalities 

arising from environmental pollution. VEAs have become key environmental policy 

instruments because they provide greater flexibility and preserve firms’ international 

competitiveness relative to traditional environmental policy instruments. However, these 

programs are often plagued by adverse selection challenges arising from (i) the voluntary/opt-

in nature of the programs and (ii) asymmetric information given the regulator’s incomplete 

information about firm-specific production technologies and abatement costs1. Consequently, 

the regulator faces a trade-off between productive efficiency and information rent extraction 

(Montero, 2000).  

 
1 For a detailed treatment of adverse selection in regulatory economics, see Laffont and Tirole (1993). For applications to 

incentive regulation and voluntary environmental programs, see Montero (2000), Hawdon, et al. (2007), Arguedas and Van 

Soest (2009). 
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A classic example of this trade-off is provided by UK climate change agreements 

(CCA), one of the two components of the Climate Change Levy (CCL) package- the UK’s 

most important policy instrument for limiting industrial carbon emissions (see HM 

Government, 2006; Martin et al., 2014). The CCL package was introduced in April 2001 and 

comprises (i) a climate change levy, i.e., a tax2 added to energy bills of non-domestic or 

business users and (ii) climate change agreements (CCA), a program of VEAs negotiated 

between sector associations of pollution-intensive industries and the UK environmental 

regulator (see Section 2 for details). When an energy intensive firm joins the CCA scheme, it 

enters a voluntary agreement to adopt energy efficiency or carbon reduction targets in exchange 

for a discount on its CCL liabilities.3  

While a healthy strand of the literature evaluates the incentive and impact of the tax 

component of the policy package (e.g. Cambridge Econometrics, 2005; Martin, et al., 2014), 

rigorous evaluation of the CCA scheme is scarce, especially in the context of how asymmetric 

information shapes the stringency and ultimately the resource allocation within the CCA 

scheme. This is potentially for two issues.  

First, a rigorous evaluation of the CCA scheme requires information on participants’ 

energy efficiency and abatement potential. However, this information is not observable to the 

regulator, underscoring the fundamental challenge in arriving at a convincing identification 

strategy for assessing the performance of the scheme. Second, a dearth of suitable 

microeconomic data has limited the scope for much-needed empirical analysis of the UK CCA 

scheme. Yet, the CCA scheme offers an appropriate case to investigate the linkages between 

asymmetric information, environmental policy stringency and resource allocation. For 

 
2 The fuels taxed under the scheme, along with their tax rates, are electricity (10.1%), natural gas (16.5%), coal (6.1%), and 

non-transport liquefied petroleum gas (LPG) (8.2%) (see Martin et al., 2014, p.3). Hence, the levy is a non-uniform tax, with 

different fuels having different rates, but which do not vary with their carbon content. Consequently, consistent with the 

extant literature, we treat the levy as an energy tax or an implicit carbon tax, rather than a pure carbon tax (see Pearce, 2006; 

Martin et al., 2014). 
3 Presently, participating plants can receive up to 90% CCL discount under a CCA, see http://www.cclevy.com/  

http://www.cclevy.com/
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instance, because CCA agreements are negotiated in the face of the regulator’s limited 

knowledge about participating firms’ underlying energy efficiency and control costs, there is 

ongoing concern about the stringency of the negotiated CCA targets (see Ekins and Etheridge, 

2006; Barker et al., 2007; Martin et al. 2014). Besides, the huge social costs4 associated with 

the CCAs further justify the evaluation of the potential misallocation within VEAs. Thus, our 

main contribution is twofold. 

First, we present a theoretical emulation of the program to provide insight into the 

mechanism through which information asymmetry impacts social allocation within the CCA 

scheme. We argue that the success of the CCA scheme depends on how the efficiency-

information trade-off implicates the social allocation problem facing the environmental 

regulator5. Second, we address the regulator’s asymmetric information problem by estimating 

the unobservable levels of energy efficiency using parametric production frontier analysis. This 

approach permits an informed assessment of the stringency of the CCA targets by gauging the 

slack between potential energy savings of firm production technologies and the negotiated 

CCA targets.  

The above approach also acknowledges that regulatory stringency is likely to become 

the crux of future policy discussions. Moreover, the present public perception that UK climate 

change policies are weak6 adds another layer of justification for a careful scrutiny of the CCAs’ 

regulatory stringency. It is therefore unsurprising that a recent paper by the Department for 

Business, Energy & Industrial Strategy stated inter alia: ‘The UK Government is currently 

 
4 This social cost is potentially two-fold. First, there is a direct financial cost arising from the loss of government revenue 

resulting from the tax discounts. Recent estimates suggest a total revenue loss of £940 million during the period 2013- 2017 

(HMRC, 2018). A second potential cost is the implicit social cost arising from higher emissions than with a more stringent 

policy. For instance, Cambridge Econometrics (2005) indicate that ‘the energy (and therefore carbon) saving and energy-

efficiency targets would have been met without the CCAs’ (p. 7). 
5 Despite the initial CCA design being a discovery process, it seems plausible that a rational government or environmental 

regulator would, in principle, prefer to minimize potential social misallocation by allocating higher CCL discounts to more 

efficient firms, rather than vice versa.  
6 In a recent YouGov survey, around two-thirds of respondents think that the UK government is not doing enough on climate 

change. See https://www.documents.clientearth.org/library/download-info/clientearths-climate-snapshot/. This view is also 

shared by the scientific community: https://www.theguardian.com/tv-and-radio/video/2019/jul/09/we-cannot-be-radical-

enough-david-attenborough-climate-emergency-video   

https://www.documents.clientearth.org/library/download-info/clientearths-climate-snapshot/
https://www.theguardian.com/tv-and-radio/video/2019/jul/09/we-cannot-be-radical-enough-david-attenborough-climate-emergency-video
https://www.theguardian.com/tv-and-radio/video/2019/jul/09/we-cannot-be-radical-enough-david-attenborough-climate-emergency-video
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evaluating the effectiveness of the CCA Scheme’ (BEIS, 2019, p.54). Thus, this research 

provides a timely contribution to the sparse body of evidence assessing the CCA scheme. To 

do so, we analyse an interesting but hitherto unexplored intersection between three different 

literatures: asymmetric information, environmental regulation and parametric efficiency 

analysis. 

The remainder of the paper is organized as follows. In Section 2, we provide an 

overview of the CCL scheme. Section 3 presents a theoretical emulation of the CCL package 

using a model that highlights the importance of policy stringency and how this may shape 

social (mis) allocation. We also resolve the regulator’s problem of imperfect information about 

firm7  production technologies by describing a production theory approach for identifying 

unobservable firm-level energy efficiency. Section 4 sets out our econometric methodology for 

empirically testing our model assertion. In Section 5, we provide details of our dataset, which 

we draw from three confidential UK manufacturing surveys. Section 6 contains the 

econometric results, while Section 7 concludes. 

 

2. Overview of the UK CCA Scheme 

The CCA scheme is a program of voluntary agreements 8  negotiated between sector 

associations of energy intensive industries and different UK environmental regulators across 

different time periods. At inception, negotiations were between sector associations and the 

Department for Environment, Food & Rural Affairs (DEFRA)9 which originally negotiated 44 

 
7 Participation in the CCA scheme is at the facilities level, hence the plant-level is the appropriate unit of analysis. In the 

theoretical analysis that follows, we set out our model in line with production theory using ‘firms’ rather than ‘plants’. 

However, in our empirical estimation, we follow the existing literature (e.g. Martin et al., 2012, 2014) by employing plant-

level microdata. Thus, our reference to firms connotes plant-level production units. 
8 There are two types of agreements (‘umbrella agreements’ and ‘underlying agreements’) under the CCA, reflecting that the 

energy efficiency targets are negotiated at two levels. Umbrella agreements pertain to sector-wide targets for energy 

consumption or emissions while underlying agreements embody reduction targets specific to a firm or facility with an 

umbrella agreement. See De Muizon and Glachant (2004) for details. 
9 In 2008, the Department of Energy & Climate Change (DECC) (now Department for Business, Energy and Industrial 

Strategy) assumed responsibility for the CCA negotiations with the sector associations, with The Environment Agency 

administering the scheme on behalf of the BEIS. 
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umbrella agreements (Martin et al., 2014). At the end of each target period, the sector 

associations were required to report industry-wide performance to verify that targets had been 

met. When a sector fell short of the negotiated target, DEFRA verified compliance at the unit 

or firm level. Subsequently, a non-compliant unit was not re-certified for the rebate in the 

following period.  

At the firm level, it is easy to identify a major challenge for regulatory stringency as 

participants may be unwilling to yield private information on their true energy efficiency 

savings. Given the absence of any direct mechanism for eliciting this private information, it is 

unsurprising that compliance rates were high in the three periods covered in this study: 88%, 

98% and 99%, respectively (AEAT, 2004, AEAT 2005, AEAT, 2007). Moreover, the 

compliance mechanism at the sector level poses an additional challenge to the scheme’s 

stringency, given that the lower bound to compliance cost was zero during the period of 

interest: plants were re-certified for CCA rebates even when they missed their efficiency 

targets, provided that sector-level targets as a whole were met (NAO, 2007; Martin et al., 2014). 

Despite the stringency discussions above, we note that the scheme was not initially 

conceived as a stringent policy intervention aimed at placing binding constraints on 

participants’ production decisions. Specifically, the initial design of the CCA scheme mirrored 

a discovery process in which plants evaluate their abatement potential towards identifying 

efficiency savings rather than place binding constraints on their production technology 

choices10. While the scheme aimed to offer some signal of the social marginal cost of energy 

consumption and pollution activities, in practice, other ‘political economy’ considerations (e.g. 

preserving the international competitiveness of affected sectors) featured prominently in the 

program’s design. Nevertheless, the program has evolved over the years 11  to reflect the 

 
10 We thank an anonymous referee for highlighting this important feature of the CCA scheme.  
11 See Martin et al. (2014), McEldowney and Salter (2016) for details. 
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increasing importance of environmental cost signalling through a vigorous anti-climate change 

policy stance as evidenced by some key changes to the CCA program.  

For instance, CCA eligibility was based on pollution-generating activities under the 

Pollution Prevention and Control (PPC) Act 1999, but this evolved into a wider eligibility rule 

to cover energy intensive activities. The eligibility rules were amended in 2006 to include 

energy intensive sectors that were hitherto not PPC-regulated, increasing the number of sectors 

with umbrella agreements from 44 to 5412. This new arrangement therefore widened sectoral 

eligibility and participation within the CCA, while also accounting for exposure to international 

competition13. Furthermore, the price signal and incentives available under the scheme have 

also evolved since inception. For instance, the EU Emissions Trading Scheme (EU ETS), 

introduced in 2005, potentially allowed compliant and non-compliant plants to trade carbon 

savings14 (Martin et al., 2014).  This may well have added another layer to the incentive 

provided by the CCA scheme. In April 2013, another crucial change raised maximum discount 

rate from 80% to 90%, to provide further incentive for firms to invest in energy efficient 

production technologies in the face of rising energy saving targets. 

Despite the significant modifications to the CCA program detailed above, we note that 

two persistent challenges remain. First, the lack of a direct mechanism for eliciting private 

information about firms’ production technologies and true energy efficiency savings is likely 

to inhibit regulatory stringency. Second, the strong bearing of international competitiveness 

considerations on the program’s design and implementation is likely to further weaken its 

 
12 The current scheme which started in 2013 contains 51 sectors, following the classification merger of some sectors. See 

sector list at https://www.gov.uk/government/publications/climate-change-agreement-cca-sector-contact-list 
13 These new sectors are subject to relative energy intensity (EI) and international competitiveness tests, such as (i) the share 

of energy consumed in total sectoral production value must be 3% or greater, and (ii) a sectoral import penetration level of 

50% or more is required. The joint importance of energy intensity and import penetration levels in the 2006 eligibility rules 

reflects the regulator’s intention to better reflect the social cost of emissions by widening CCA participation by energy 

intensive sectors while also attempting to preserve the sectors’ international competitiveness. This delicate balance is best 

seen in the fact that sectors that fail the 50% import penetration requirement must have energy intensity levels of 10% or 

more, rather than the baseline 3%. We thank an anonymous referee for providing invaluable insights on the evolution of 

CCA eligibility rules. 
14 A similar UK carbon market, the UK Emissions Trading Scheme (UK ETS), operated between 2002 and 2006. 

https://www.gov.uk/government/publications/climate-change-agreement-cca-sector-contact-list
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regulatory stringency. These matters are central to this study. While the CCA scheme is still in 

place today, our analysis focuses on its first three reporting periods covering 2001-2007, data 

limitations within the UK business microdata (see Section 5 for details). Thus, the empirical 

analysis does not evaluate potential information-efficiency trade-offs within the CCA scheme 

after 2007.  

 

3. Theoretical framework 

 

3.1 Emulation of the CCL package 

In this section, we emulate the CCL package (the tax liability and the rebate components) to 

examine the relationship between efficiency and the allocated discounts. Consider an 

imperfectly competitive market for a homogeneous good supplied by n firms. We denote firm 

𝑖’s (𝑖 =  1, . . . , 𝑛) output by 𝑦𝑖((𝑧𝑖(𝑒𝑖)), where 𝑧_𝑖 > 0 denotes emission intensity which is 

negatively affected by the efficiency level 𝑒𝑖 > 0 . Total output is denoted by 𝑌 =

∑ 𝑦𝑖
𝑛
𝑖=1 (𝑧𝑖(𝑒𝑖)) and total emissions by 𝑍 = ∑ 𝑧𝑖

𝑛
𝑖=1 (𝑒𝑖). Assume that output is increasing in 

emission intensity so 𝑦𝑧(𝑧𝑖(𝑒𝑖)) > 0. The inverse demand function illustrating the consumers’ 

benefit from the consumption of the good reads: 

        𝑃 = 𝑃(𝑌)       [1] 

The regulator adopts a pollution tax to reflect the social cost of emissions. However, to 

also preserve firms’ international competitiveness, it offers reduced tax liability through 

a CCA tax discount 𝑑𝑖(𝑒𝑖) in exchange for energy efficiency level 𝑒𝑖 (CCA scheme). The 

regulator’s problem is to maximize the following welfare function, which is the sum of 

consumer and producer surplus and tax revenues minus the discount given. This is subject 

to the constraint that the discount offered cannot exceed the tax:  

   max 𝑊 = 𝐶𝑆 + ∑ Π𝑖
𝑛
𝑖=1 + 𝑡(𝑍(𝑒1,...,𝑛)) − 𝐷(𝑒1,...,𝑛)     [2] 

𝑦𝑖 ≥ 0, 𝑧𝑖 ≥ 0, 𝑒𝑖 ≥ 0 
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s.t.          𝑡(𝑍(𝑒1,...,𝑛)) − 𝐷(𝑒1,...,𝑛) ≥ 0      

 

where the tax revenues are denoted by 𝑡(𝑍(𝑒1,...,𝑛)) and the discounts offered by 𝐷(𝑒1,...,𝑛) =

∑ d𝑖(𝑒𝑖)𝑛
𝑖=1 . Consumer surplus, 𝐶𝑆, which is reduced by the level of pollution (emissions) can 

be written as: 

  𝐶𝑆 = ∫ 𝑃(𝑣)𝑑𝑣 − 𝑃(𝑌)𝑌(𝑍𝑖(𝑒1,...,𝑛))
𝑌

0
− 𝑍𝑖(𝑒1,...,𝑛)𝑌(𝑍𝑖(𝑒1,...,𝑛))         [3] 

 

Profits, Π𝑖, are 

Π𝑖 = [𝑃(𝑌) − 𝐶𝑖(𝑧𝑖(𝑒𝑖))]𝑦𝑖(𝑧𝑖(𝑒𝑖)) − 𝑡(𝑧𝑖(𝑒𝑖)) + 𝑑𝑖(𝑒𝑖).    [4] 

The firm’s cost of production is denoted by 𝐶𝑖   and captures the innovation effort and 

implementation costs for attaining energy efficiency15; hence it is assumed to be increasing in 

efficiency 
𝜕𝐶𝑖

𝜕𝑒𝑖
> 0. 

Using [3] and [4] the first order condition of [2] w.r.t efficiency gives us16: 

𝜕𝑊

𝜕𝑒𝑖
= 𝑃(𝑌)

𝜕𝑌𝑖

𝜕𝑍𝑖

𝜕𝑍𝑖

𝜕𝑒𝑖
−

𝜕𝑍𝑖

𝜕𝑒𝑖
𝑌𝑖(𝑍𝑖(𝑒1,...,𝑛)) − 𝑍𝑖(𝑒1,...,𝑛)

𝜕𝑌𝑖

𝜕𝑍𝑖

𝜕𝑍𝑖

𝜕𝑒𝑖
−

           
𝜕𝐶𝑖

𝜕𝑍𝑖

𝜕𝑍𝑖

𝜕𝑒𝑖
𝑌𝑖(𝑍𝑖(𝑒1,...,𝑛)) − 𝐶𝑖(𝑍𝑖(𝑒1,...,𝑛))

𝜕𝑌𝑖

𝜕𝑍𝑖

𝜕𝑍𝑖

𝜕𝑒𝑖
+ 𝜆(

𝜕𝑡

𝜕𝑍𝑖

𝜕𝑍𝑖

𝜕𝑒𝑖
−

𝜕𝐷

𝜕𝑒𝑖
) = 0     

or   

𝜕𝐷

𝜕𝑒𝑖
=

𝜕𝑍𝑖
𝜕𝑒𝑖

  {
𝜕𝑌𝑖
𝜕𝑍𝑖

[𝑃(𝑌)−𝐶𝑖(𝑍𝑖(𝑒1,...,𝑛))−𝑍𝑖(𝑒1,...,𝑛)]−𝑌𝑖(𝑍𝑖(𝑒1,...,𝑛))(
𝜕𝐶𝑖
𝜕𝑍𝑖

+1)}+𝜆
𝜕𝑡

𝜕𝑍𝑖

𝜕𝑍𝑖
𝜕𝑒𝑖

𝜆
  [5] 

3.2 Potential misallocation within the CCA 

 
15 This implies that attaining energy efficiency savings is costly since this requires some firm effort such as R&D and 

implementation-related activities. 
16 The Lagrange multiplier is positive so that the constraint is binding. 
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Does the scheme result in the misallocation of discounts?  Eqn. [5] could help us explain when 

inefficient firms take advantage of this policy. In particular, this is the case when the numerator 

of the fraction on the RHS of eqn. [5] is negative, i.e., when17  

𝜕𝑡

𝜕𝑍𝑖
<

𝑌𝑖(𝑍𝑖(𝑒1,...,𝑛))(
𝜕𝐶𝑖
𝜕𝑍𝑖

+1) −  
𝜕𝑌𝑖
𝜕𝑍𝑖

[𝑃(𝑌)−𝐶𝑖(𝑍𝑖(𝑒1,...,𝑛))−𝑍𝑖(𝑒1,...,𝑛)]

𝜆
.  

This leads us to the following proposition.  

PROPOSITION 1. A negative relationship between the discount and energy efficiency is 

possible under the CCA scheme if  

𝜕𝑡

𝜕𝑍𝑖
<

𝑌𝑖(𝑍𝑖(𝑒1,...,𝑛))(
𝜕𝐶𝑖
𝜕𝑍𝑖

+1) −  
𝜕𝑌𝑖
𝜕𝑍𝑖

[𝑃(𝑌)−𝐶𝑖(𝑍𝑖(𝑒1,...,𝑛))−𝑍𝑖(𝑒1,...,𝑛)]

𝜆
. 

Proposition 1 says that the designed CCA policy would give higher discounts to the more 

efficient firms if the tax response to a change in emission intensity is large enough. However, 

when structural parameters are conducive to a situation where the response of tax to a change 

in emission intensity is small, then firms can take advantage of the policy, even when they are 

inefficient. In other words, a less stringent scheme could give opportunity to inefficient firms 

to take advantage of the program. 

It is interesting to understand why (i.e., the mechanism behind) the outcome above may 

happen. Let us consider, as an example, one firm in two different settings. First, suppose that 

there is a big enough response of tax to changes in emission intensity. In this case, the firm 

would have stronger incentives to achieve higher efficiency and decrease its emission intensity 

further, so as to further reduce its tax liability. Alternatively, when these incentives are weak, 

the firm would not strive to reduce emission intensity significantly as the tax would not change 

much. Hence, the tax it would pay would be higher in the latter setting compared to the former. 

 
17 See online appendix for a detailed derivation of the expression. 
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The way this policy is designed seems to play a key role in this outcome, as it implies that an 

inefficient firm in the latter setting would secure a higher discount, compared to the first setting, 

since the regulator aims to preserve international competitiveness and compensate for the 

higher tax by giving a higher discount. While we understand that the initial design of the 

scheme as a discovery process through target-setting, it is necessary, as mentioned above, to 

rigorously explore the efficiency-information trade-off and the mechanism behind a potential 

misallocation in the CCA scheme. This is because the CCA rebates (or any subsidy for that 

matter) are socially costly and society would prefer to reduce the public expenditure on such 

subsidies, especially if such subsidies enhance recipients’ profitability (Arguedas and van 

Soest, 2009).  Hence, it should be in the interest of a rational regulator to minimize 

misallocation within the scheme.                                                                              

3.3 Measuring energy efficiency: a production theory approach 

Theoretically, an omniscient regulator can observe firm-specific energy efficiency and assign 

the CCA discounts accordingly. In practice, however, the regulator cannot observe firm 

production technology and control costs. The efficiency targets of the CCA scheme are energy 

or carbon emission reduction targets, relative to a base year18. Nonetheless, we believe that a 

better approach would be to design sector and firm-level targets based on potential energy 

efficiency savings within production technologies. Therefore, our empirical analysis aims to 

uncover the efficiency in the use of one of the factor inputs (energy use) by comparing the 

observed level of energy consumption with its optimal use. Given that the derivation of energy 

services is a production process, we propose a measure of (unobservable) energy efficiency 

using production theory. We assume that producers are optimizers who seek to maximize 

feasible energy services given their energy consumption and available production technology.  

 
18 The energy reduction targets depend on ‘growth rate, hypothesis on technological evolution, market structure, negotiating 

skills of the sector association’ (De Muizon and Glachant, 2004, p.4) 
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The microeconomic foundation of productive efficiency analysis, which dates to Farrell 

(1957), provides a starting point for the definition of firm-level efficiency. Within this 

framework, not all producers attain this optimization objective (e.g. due to poor management 

practices), i.e. some are inefficient 19 , failing to maximize output given their inputs and 

production technology. This optimization failure can be estimated using production frontier 

analysis, in which technically inefficient producers lie beneath the (efficient) production 

frontier. The above theoretical arguments are often implemented empirically using Shepard’s 

(1953, 1970) distance functions that radially contract a multi-input vector to produce multiple 

outputs20.  

However, in this study, we are interested in the efficiency relating to the use of a single 

input (i.e., energy consumption), obtained via a non-radial distance function, rather than the 

radial input distance function which yields a broader measure of technical efficiency in the use 

of all factor inputs. The reason is twofold. First, the focus on the energy input allows for a more 

precise measure of energy efficiency (EE) that is consistent with the CCA scheme’s objective 

to improve energy efficiency rather than multi-input technical efficiency. Second, an energy-

specific efficiency measure is consistent with the assumption underpinning our theoretical 

model - that energy efficient technologies are costly, i.e., attaining energy efficiency savings 

requires some R&D effort and implementation-related activities:  
𝜕𝐶𝑖

𝜕𝑒𝑖
> 0. Given the foregoing, 

a radial efficiency measure would be inconsistent with our theoretical model since it yields an 

efficiency concept that is negatively related with input usage and costs. 

 
19 Leibenstein (1977) provides theoretical arguments treating inefficiency as a production problem relating to ‘the 

techniques of an input called management’ (p. 312). 
20 See Fare et al. (1994) and Khumbakar and Lovell (2003) for detailed discussions on distance functions. 
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There are two potential approaches to estimating our proposed non-radial efficiency 

measure. The first approach is based on a sub-vector energy distance function21 in which 

energy usage decreases for more efficient firms, such that efficiency improvements is costless: 

𝜕𝐶𝑖

𝜕𝑒𝑖
= 0. In other words, the production technology is somewhat strongly disposable (i.e. the 

energy efficiency improvement does not require an increase in effort or other inputs). However, 

this assumption is inconsistent with our theoretical model and is likely at variance with the 

more realistic scenario that efficiency savings are costly22. A second but more appropriate 

approach is the hyperbolic distance function (HDF) which permits a weakly disposable 

production technology. In its traditional formulation, efficiency improvements are achieved by 

the simultaneous contraction in inputs and bad outputs (usually emissions). Consequently, we 

adapt the HDF framework by treating energy as an undesirable input, such that reductions in 

energy use must be accompanied by a proportional increase in efforts or other input cost, 

holding output constant23.  

3.4. Hyperbolic energy distance function 

Consider a production technology in which capital (K), labor (L), and energy (E) are inputs 

employed to produce output (Y):  

𝑇 = {(𝐾, 𝐿, 𝐸, 𝑌) ∶ (𝐾, 𝐿, 𝐸) can produce 𝑌}    [6] 

The production technology T contains all the feasible input-output vectors and is assumed to 

be non-decreasing in the desirable output and non-increasing in the undesirable output (E in 

 
21 See Filippini and Hunt (2015) for an excellent technical discussion on non-radial energy efficiency. Empirical 

applications of the sub-vector energy input distance function in the energy and environmental economics literature can be 

found in Zhou et al. (2012) and Boogen (2017). 
22 Mehdiloo and Podinovski (2019) highlight that the strong disposability assumption may not be suitable for modelling 

situations where some inputs and/or outputs are closely related. In this case, strong disposability assumption is likely to yield 

meaningless efficiency measures (ibid). 
23 We thank an anonymous referee for providing excellent guidance on this modified hyperbolic distance function, and for 

aiding our empirical research direction. 
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this case) and inputs.24 Using the almost homogeneity property (Cuesta et al., 2009), we can 

express the traditional hyperbolic distance function (HDF) as: 

𝐷𝐻(𝒙, 𝜃𝑦, 𝜃−1𝑏) = 𝜃𝐷𝐻(𝒙, 𝑦, 𝑏), 𝜃 > 0       [7] 

where 𝒙 is the input vector, y denotes desirable output while b is the bad or undesirable output. 

The means that an increase in the desirable output y by a given proportion is accompanied by 

a contraction in the undesirable output b by the same proportion for a given input set, so that 

the HDF increases by that same proportion. However, because our aim is to estimate energy 

efficiency, we adapt the above HDF by treating energy as an undesirable input (i.e. the only 

input that requires further reductions). More succinctly, we can specify an energy saving 

hyperbolic distance function25 as: 

𝐷𝐸(𝐾, 𝐿, 𝐸, 𝑌) = sup {𝜃 > 0 ∶ (𝐾𝜃, 𝐿𝜃,
𝐸

𝜃
, 𝑌) ∈ 𝑇}    [8] 

The adapted HDF in [8] has a range 0 < 𝐷𝐸 ≤ 1 and it embodies the feasible contraction of 

the energy input E and the simultaneous or equi-proportional increase in efforts or other inputs 

K and L that places the firm on the boundary of the technology represented by T. We note that, 

while the above specification violates the input distance axiom that inputs are non-increasing, 

it crucially permits the reality that energy efficiency savings are costly in terms of effort and 

non-energy input usage26. Therefore, this formulation is more appropriate for the empirical 

estimation of our theoretical conception of energy efficiency improvement is Section 3. Using 

eqn. [7] and adopting the almost homogeneity property (i.e., 𝜃 =
1

𝐸
), we can obtain  

𝐷𝐸 (𝐾𝜃, 𝐿𝜃,
𝐸

𝜃
, 𝑌) =

1

𝐸
𝐷𝐸(𝐾, 𝐿, 𝐸, 𝑌)    [9] 

 
24 See Färe and Primont (1995) for some technical treatments of the axioms and properties of the technology. 
25 See Cuesta and Zofio (2005), Cuesta (2009), Zhang and Ye (2015), and Adenuga et al. (2019) for applications of the HDF 

in the empirical estimation of energy and environmental efficiency.  
26 The selective application of the weak disposability assumption has been suggested as a safe and suitable approach for 

modelling a set of closely related inputs and output (Mehdiloo and Podinovski, 2019). 
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By taking logarithm of both sides of eqn. [9] in conjunction with the elements, 𝑖 = 1, … , 𝑁; 𝑡 =

1, … , 𝑇, we can write a panel data energy distance function as:  

 ln(𝐷𝐸𝑖𝑡
/𝐸𝑖𝑡) = 𝑇𝐿(𝐾∗, 𝐿∗𝑌, 𝑡)𝑖𝑡 + 𝑣𝑖𝑡            [10] 

where 𝑇𝐿(𝐾∗, 𝐿∗𝑌, 𝑡)𝑖𝑡 represents the technology as the translog27 approximation to the log of 

the distance function; 𝐾𝑖𝑡
∗ = 𝐾𝑖𝑡 × 𝐸𝑖𝑡  and 𝐿𝑖𝑡

∗ = 𝐿𝑖𝑡 × 𝐸𝑖𝑡 , while t is a time index capturing 

technical progress. 𝑣𝑖𝑡  is the traditional symmetric error term representing sampling, 

specification and measurement errors. We can estimate the energy distance function using the 

stochastic frontier analysis (SFA) by Aigner et al. (1977) and Meeusen and Van den Broeck 

(1977): 

        −ln𝐸𝑖𝑡 = 𝑇𝐿(𝐾∗, 𝐿∗𝑌, 𝑡)𝑖𝑡 + (𝑣𝑖𝑡 − 𝑢𝑖𝑡)             [11] 

where 𝑢𝑖𝑡 represents the non-negative efficiency measure. Plant-specific energy efficiency in 

each period is then estimated as the conditional expectation of the one-sided error term, exp(𝑢), 

given the composed error, (𝑣 − 𝑢): 

𝐸𝐸𝑖𝑡 = 𝐸[𝑒𝑥𝑝(−𝑢𝑖𝑡)|𝜀𝑖𝑡]                         [12]     

 where  𝜀𝑖𝑡 = (𝑣𝑖𝑡 − 𝑢𝑖𝑡)             [13] 

A major advantage of SFA is that it eliminates random shocks in the estimation of 

energy efficiency: unlike other non-parametric approaches (e.g. data envelopment analysis, 

DEA); and it is less susceptible to the vagaries of random events because it embodies a 

stochastic (traditional) error term to capture elements such as measurement and sampling error, 

as well as other disturbances relating to bad luck or policy shocks. An important issue in applied 

SFA studies is the possibility to model the specific parameters of the density function for 𝑢𝑖𝑡 

 
27 We follow much of the literature (e.g. see studies in footnote 24 above) by using the Translog functional form because it 

is a more flexible approximation of the production technology (see Christensen et al., 1971, 1973). 
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as functions of firm characteristics (i.e. conditional heteroscedasticity) using two broad 

approaches. Under the first approach proposed by Battese and Coelli (1995), 𝑢𝑖𝑡 is assumed to 

follow the truncated normal distribution with a mean 𝜇𝑖𝑡  specific to each observation: 

𝑢𝑖𝑡~ 𝒩+(𝜇𝑖𝑡, 𝜎𝑖𝑡
2), where  𝜇𝑖𝑡 = 𝝋′𝑭𝑖𝑡  and 𝑭𝑖𝑡  contains firm-specific factors. In the second 

approach (Caudill and Ford, 1993), firm-specific effects are introduced into the inefficiency 

terms by scaling its distribution, so that its variance is a function of 𝑭𝑖𝑡: 𝑢𝑖𝑡~𝒩+(0, 𝜎𝑢𝑖𝑡
2 ) where 

𝜎𝑢𝑖𝑡
2 = exp (𝜸′𝑭𝑖𝑡).  

We favour the latter variance specification, because first, its scaling property is 

desirable as changes in 𝑭𝑖𝑡 affect the scale but not the shape of the distribution of 𝑢𝑖, unlike the 

former approach where 𝑭𝑖𝑡 enters the mean efficiency and alters the shape of its distribution.28 

Second, the scaling property provides an intuitive economic interpretation because 𝑢𝑖𝑡  is 

treated as the base level efficiency (firms’ natural capabilities), so that the extent to which these 

capabilities are exploited depends on firm-level conditions, captured by 𝐹𝑖𝑡. Finally, scaling 

functions (e.g. the exponential function) yield coefficients that are derivatives of the log of 

inefficiency w.r.t the exogenous variables, i.e., 𝛾 = 𝜕 ln (𝑢𝑖𝑡)/𝜕𝐹𝑖𝑡   for  𝑢𝑖𝑡 = exp(𝐹𝑖𝑡 , 𝛾) ∙

 𝑢𝑖𝑡
∗. This allows us to treat the coefficients on 𝐹𝑖𝑡 as the quantitative effects of exogenous 

variables on inefficiency. This is not the case with the mean efficiency specification, which has 

no quantitative interpretation in terms of the magnitude of the parameters of 𝐹𝑖𝑡. 

4. Empirical tests 

4.1 Econometric model  

In principle, the primary objective of UK CCAs is to offer discounted energy or carbon tax 

liabilities in exchange for energy efficiency targets. Hence, assuming three firms in a sector 

have varying levels of efficiency: 𝑒𝑚𝑎𝑥 ≥ 𝑒𝑖 ≥ 𝑒𝑚𝑖𝑛, their respective tax discounts are: 

 
28 See Alvarez et al. (2006) for a detailed technical discussion on the advantages of the scaling property. 
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𝐷𝑚𝑎𝑥 ≥ 𝐷𝑖 ≥ 𝐷𝑚𝑖𝑛             [14] 

This yields a discriminating incentive function: 

     𝐷′(𝑒) > 0; 𝐷′′(𝑒) > 0; 𝐷(0) = 0; 𝐷′(0) = 0           [15] 

We thus assume that the regulator aims for a regime where the tax discount is increasing in 

efficiency performance29, and which also embodies a disincentive function, i.e. the marginal 

tax discount to an emitting plant is zero if efficiency improvement is zero. Using the 

information above, we formulate a model to investigate the relationship between the tax 

discount and energy efficiency:   

           𝐷𝑖𝑡 = 𝛼0 + 𝛽1𝐷𝑖𝑡−1 + 𝛽2𝐸𝑓𝑓𝑖𝑡−1 +  𝒙𝑖𝑡
′ 𝒄 + 𝜇𝑖 + 𝑻 + ε𝑖𝑡                    [16] 

where i =1,…, N  is the plant identifier and t identifies the period of observation. 𝐷𝑖𝑡 is the tax 

discount of plant i in period t obtained from the CCA scheme, and 𝐷𝑖𝑡−1 is the tax discount of 

plant i measured in the previous period. This lagged dependent variable 𝐷𝑖𝑡−1 ensures that we 

capture the dynamics arising from the temporal negotiations between the regulator and the 

various sector associations, which could theoretically lead to a long-run level of CCA tax 

discounts. 𝐸𝑓𝑓𝑖𝑡−1 is the lag30 of the energy efficiency values estimated from the input distance 

frontier described in Section 3, 𝒙𝑖𝑡
′  is a vector of firm-level characteristics such as firm size, 

age and ownership, 𝜇𝑖 represents unobserved plant-specific effects. while  𝑻 is a vector of time 

dummies. ε𝑖𝑠𝑡 is a random error term that may vary across time periods, firms and sectors. 

𝛽1, 𝛽2 and 𝒄 are parameters to be estimated, but our primary focus is on the extent to which 

higher energy efficiency performance is rewarded under the CCA scheme, 𝛽2.   

 
29 We do not suggest that the program is designed to allocate CCA discounts to the most efficient firms. Rather, we motivate 

our empirical set-up with the plausible assumption that the environmental regulator aims to maximize social welfare. This 

assumption is consistent with our initial arguments that a rational regulator would, in principle, prefer to minimize social 

misallocation by allocating higher CCL discounts to more efficient firms. 
30 Using lagged values of energy efficiency fits with the program design that if a firm meets its efficiency target in one 

period, it continues to enjoy the CCA discount in the following period. This specification also mitigates problems arising 

from contemporaneous feedback effects.  
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𝜇𝑖  captures unobserved plant managers’ ability to achieve optimum output levels, 

which may be fixed over the timeframe where we observe the plants in our dataset. Because 

these managers’ abilities directly influence productive energy efficiency31, 𝜇𝑖  is potentially 

correlated with 𝐸𝑓𝑓𝑖𝑡−1. Moreover, although using 𝐸𝑓𝑓𝑖𝑡−1 mitigates the problem of reverse 

causality, this may not fully alleviate the possible simultaneity bias in the empirical model, 

considering that the energy efficiency targets and the CCA discounts are jointly determined or 

negotiated simultaneously. Furthermore, the dynamic modelling approach can be complicated 

by issues such as correlation between 𝐷𝑖𝑡−1 and ε𝑖𝑡, especially the firm-specific heterogeneity 

component 32  (Nickell 1981). Because 𝐷𝑖𝑡  is a function of the unobserved firm-specific 

heterogeneity embodied in ε𝑖𝑡, it follows that  𝐷𝑖𝑡−1, one of the regressors, is correlated with 

ε𝑖𝑡.  

A range of solutions are possible to address the above problems by exploiting the panel 

structure of our data set. For instance, we can define a set of instrumental variables to solve 

these problems by invoking the testable assumption that 𝑐𝑜𝑣(ε𝑖𝑡, 𝜀𝑖𝑡−1) = 0, 𝑙 = 1, … , 𝑇 − 1. 

This approach restricts the random shocks to be uncorrelated over time, conditional on the 

lagged dependent variable, the plant-specific effect, energy efficiency and the vector 𝒙𝑖𝑡
′ . Under 

this first solution, ∆𝐷𝑖𝑡−1, 𝑙 ≥ 1 can be employed as instrumental variables for 𝐷𝑖𝑡−1 in eqn. 

[16] since 𝑐𝑜𝑣(𝐷𝑖𝑡−1, 𝜇𝑖) > 0  but  𝑐𝑜𝑣(∆𝐷𝑖𝑡−1, 𝜇𝑖) = 0, 𝑙 ≥ 1 . Further, we note that  

∆𝐸𝑓𝑓𝑖𝑡−1, 𝑙 ≥ 1  can also be used as instrumental variables for 𝐸𝑓𝑓𝑖𝑡 . Although 

𝑐𝑜𝑣(𝐸𝑓𝑓𝑖𝑡 , ε𝑖𝑡) ≠ 0  and 𝑐𝑜𝑣(𝐸𝑓𝑓𝑖𝑡 , 𝜇𝑖) ≠ 0 , 𝑐𝑜𝑣(∆𝐸𝑓𝑓𝑖𝑡−1, ε𝑖𝑡) = 𝑐𝑜𝑣(∆𝐸𝑓𝑓𝑖𝑡−1, 𝜇𝑖) =

0, 𝑙 ≥ 1. Alternatively, we can address the endogeneity arising from the time-invariant plant-

specific effects 𝜇𝑖 by applying first differences to eqn. [16]: 

 
31 Martin et al. (2012) provide empirical evidence on the positive role of management practices and managerial abilities on 

energy intensity and productivity across a sample of UK manufacturing firms. 
32 This is often referred to as the Nickel bias. 
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        ∆𝐷𝑖𝑡 = 𝛼0 + 𝛽1∆𝐷𝑖𝑡−1 + 𝛽2∆𝐸𝑓𝑓𝑖𝑡 + ∆𝒙𝑖𝑡
′ 𝒄 + ∆𝑻 + ∆ε𝑖𝑡         [17] 

While the differencing in eqn. [17] removes the firm-specific effects, the transformed error 

term is now correlated with the right hand side (RHS) variables, i.e., ∆𝜀𝑖𝑡 = (𝜀𝑖𝑡 − 𝜀𝑖𝑡−1) is 

correlated with ∆𝐷𝑖𝑡−1 = (𝐷𝑖𝑡−1 − 𝐷𝑖𝑡−2) given that  𝑐𝑜𝑣(𝐷𝑖𝑡−1, 𝜀𝑖𝑡−1) ≠ 0. Hence, OLS is 

still inconsistent such that panel data (FE) estimators do not provide consistent estimates. 

However, we can obtain instrumental variables correlated with ∆𝐷𝑖𝑡−1 = (𝐷𝑖𝑡 − 𝐷𝑖𝑡−1) but 

orthogonal to ∆𝜀𝑖𝑡 = (𝜀𝑖𝑡 − 𝜀𝑖𝑡−1). For instance, a range of possible IV candidates can arise 

from the moment conditions on the error terms. In this case, we can combine the levels equation 

[16] and the first differenced equation [17] using the Generalized Method of Moments (GMM) 

estimator (Arellano and Bond, 1991). By suppressing the other exogenous variables for now, 

we can obtain the instrument matrix for each plant as33: 

   𝐙𝑖 = [
𝐸𝑓𝑓𝑖1 0 0

⋮ ⋮ ⋮
0 ⋯ ⋯

   
⋯ ⋯ 0
⋮ ⋮ ⋮
0 𝐸𝑓𝑓𝑖1 ⋯

   
0
⋮

𝐸𝑓𝑓𝑖𝑇−2

]             [18]         

These moment conditions can be approximated by equation: 

     𝐸(𝐙𝑖∆𝛆𝒊) = 0;       𝑖 = 1 … 𝑁              [19] 

where ∆𝛆𝒊 =  (∆𝜀𝑖3 … ∆𝜀𝑖𝑇)′. By applying a quadratic loss criterion with a weighting matrix 

that is inversely proportional to the variances of the moments, we can obtain the Arellano-Bond 

(AB) two-step difference GMM estimator (Arellano and Bond, 1991). In this estimator, the 

∆𝜺̂𝒊  are consistent estimates of the first difference residuals from the preceding consistent 

estimator. The difference estimator employs lagged levels of the dependent variable as 

instruments for the first difference equation, but these may be weak instruments, especially in 

cases where the series are highly persistent. Thus, we can combine the equations in levels [16] 

and in first differences [17] to obtain a more efficient two-step estimator (Arellano and Bover, 

 
33 We can expand the instrument matrix by adding the exogenous variables. 
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1995; Blundell and Bond, 1998). Although this estimator offers greater efficiency than the 

alternative one-step estimator, it suffers from downward bias in its standard errors. Hence, we 

apply Windmeijer’s (2005) finite sample correction to the standard errors.  

5. Data and descriptive statistics 

Our model estimations and analysis are based on a unique dataset, which we constructed from 

the most comprehensive restricted-use business microdata on UK manufacturing firms. 

Specifically, we gather information about the production technologies of 280 manufacturing 

firms by matching of data across three different confidential34 surveys held by the Office for 

National Statistics (ONS):  Quarterly Fuels Inquiry (QFI) SN: 6898, Quarterly Capital 

Expenditure Survey (QCES) SN: 6708 and the Annual Respondents Database (ARD) SN: 

6644.  

The QFI is a quarterly survey of over 1000 UK manufacturing plants, containing 

information on energy consumption, expenditures and CCL payments. The QCES is a quarterly 

survey that collects capital expenditure data by industry group across over 25,000 UK 

businesses. The QCES also contains core production function variables such as number of 

employees (our measure of labour, L) and total revenue which we employed as our measure of 

output Y. Our capital stock variable is constructed using the standard perpetual inventory 

method (PIM): 

        𝐾𝑖𝑡 = (1 − 𝛿)𝐾𝑖𝑡−1 + 𝐼𝑖𝑡             [20] 

Essentially, real capital stock in period t is assumed to be the depreciated35 capital stock in 

period t-1 plus the investment in period t. The PIM approach is necessitated by the fact that the 

capital expenditure in the QCES is merely a measure of fixed capital formation or investment.  

 
34 Access was obtained through the UK Data Service secure access program. 
35 We follow much of the literature in estimating capital stock and use a constant depreciation rate of 𝛿= 6%. 
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 The energy input variable (E) and the CCA tax discount, D are obtained from QFI data. 

Energy consumption includes quantities consumed for different fuels (medium and heavy fuel 

oil, gas oil, liquefied petroleum gas (LPG), coal, natural gas, and electricity). Although our 

analysis is focused on the VEAs embodied in the CCA scheme, deriving the CCA discount 

variable requires that we take into account the intertwined nature of the CCL and CCA as two 

different components of a single policy package. While the CCL is a moderate tax on energy 

that increased the typical energy bill in the business sector by roughly 15% (NAO, 2007), the 

CCA is a VEA scheme for plants in certain industries that receive discounted CCL tax 

liabilities36 but are also subject to energy use or efficiency target. Hence, we compute the 

discount variable as 𝐷𝑖𝑡 = 𝐸𝑖𝑡 × 0.8 𝐶𝐶𝐿𝑖𝑡; where 𝐸𝑖𝑡 is energy consumed, 𝐶𝐶𝐿𝑖𝑡 is the carbon 

tax liability, and 0.837 reflects that plants could obtain maximum rebates of 80% on their tax 

liabilities during our period of analysis. We refer to 𝐷𝑖𝑡 and 𝐶𝐶𝐿𝑖𝑡 as the effective levels of the 

CCA discount and CCL tax liabilities, respectively; given that 𝐶𝐶𝐿𝑖𝑡 pertains to the final tax 

liability across a range of fuels with different tax rates38. This data property confers the much-

needed requirement that 𝐶𝐶𝐿𝑖𝑡  varies across plants and over time within our empirical 

analysis39. Figure 1 provides a data plot of the CCL and CCA variables, confirming the 

variation in both variables for our data sample. This variation40 is consistent with the UK 

government review of the CCL policy package conducted by the National Audit Office (NAO) 

during our study period. The NAO review revealed that the average CCL component of end-

 
36 During our study period, plants could receive up to 80% discount on their CCL liability. 
37 This rebate rate varies across firms and is mostly less than the maximum 0.8.    
38 See Pearce (2006) and Martin et al. (2014) for useful discussions on CCL tax liabilities on energy and carbon content by 

fuel type. 
39 The CCL variable also embodies additional exogenous variation resulting from normalizing the tax liabilities to real terms 

using producer price indices.  
40 In addition to the visual test afforded by Fig 1, significance tests from our empirical analysis indicate that the level of 

variation in the CCL and CCA variables is not a problem in our empirical set-up, considering that insufficient variation will 

likely yield t-values that are too low to be significant. 
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use electricity (gas) prices ranged from around 12% (17%) in 2001 to 7% (8%) in 2006 (see 

NAO, 2007, p. 19).  

Figure 1: CCL and CCA discount plots 

 
Source: Authors’ calculations based on QFI data 

 

Our sample period covers the period from the introduction of the CCL (Q2:2001) to 

Q4: 2007. Our dataset ends in 2007 for two main reasons. First, roughly around 800 plants 

have consistent QFI data across all periods to 2007. That said, when the QFI data are matched 

with the QCES, our matching scheme yields a drastic fall in the number of plants with 

consistent data to around 280. Going beyond 2007 sees the number of plants with continuous 

data falling below 100. This is not surprising given the random sampling in the QCES, which 

means that we do not have QCES data for all QFI plants.   

Given that our final dataset contains information on 280 plants, a potential concern is 

that this sample may be inadequate to assess the impact of the CCA scheme. This may be 

further compounded by the high turnover of facilities within the CCA scheme, due in part to 

‘min-met’ (mineralogical and metallurgical) exemptions.41 That said, we believe that the data 

 
41 For further details, see https://www.envantage.co.uk/what-is-the-min-met-ccl-exemption-scheme.html 

https://www.envantage.co.uk/what-is-the-min-met-ccl-exemption-scheme.html
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sample limitation reflects the difficulty or challenge arising from a severe lack of suitable 

microdata to evaluate energy and carbon policy programs. This situation is underscored by the 

dearth of microeconometric evaluation of the CCL/CCA package despite being the UK’s single 

most important climate change policy. We therefore believe that our study still makes an 

important contribution to the small body of literature on the CCL-CCA package.  

Further to this, our analysis covers the early days of the CCA scheme when the number 

of participants was limited due to the high fixed costs of participating in the CCA scheme42. 

These costs only incentivized large energy-intensive plants that could receive larger absolute 

discounts on their CCL liability to participate in a CCA (see Martin et al., 2014, p.4). Hence, 

our data sample is reasonable to analyse the CCA during our study period. Indeed, our sample 

size is broadly comparable to those in related studies (Martin et al., 2012, 2014). Furthermore, 

our study period (2001-07) avoids the serious data complications that may arise due to the high 

churn rates attributable to the ‘min-met’ exemptions which came into effect in 2014. 

Table 1 provides descriptive statistics for the variables in our data sample, which 

contains 280 firms and 5458 observations. All monetary values are deflated by the 

manufactured output and input producer price indices, obtained from the ONS database. Firm 

size is an indicator variable such that firms with 250 employees or more in 2000 were defined 

as big. We include additional information to account for other observable heterogeneity across 

sampled firms using the Interdepartmental Business Register (IDBR) available through the 

Annual Respondents Database (ARD) SN: 6644. We calculate firm age using information on 

year of establishment and we create an ownership dummy variable using the foreign ownership 

marker.  

 
42 As far as we know, the most comprehensive analysis of the CCA’s participation to date was conducted by Martin et al. 

(2014) who merged both the DEFRA and HM Revenue and Customs (HMRC) list of CCA facilities during a period that 

overlaps with our study period (see their data appendix for detailed discussions). Their uptake calculations indicate that 

fewer than 2000 plants participated in the CCA during the earlier period. 
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Table 1: Summary Statistics 

Variables Mean SD 

Output (£ ‘000) 116,435.80 240,006 

Capital stock (£ ‘000) 71555.13 65217.48 

Labor (employee headcount) 702.41 863.04 

Energy consumption (tonnes) 28879.27 105609.50 

CCA discount (£) 27947.77 134626.80 

Size (Big=1 if employees>250, 0 otherwise) 0.785 0.411 

Age (years) 23.75 7.52 

Ownership (=1 if foreign owned, 0 otherwise) 0.549 0.498 

Gas share of energy (%) 42.0 32.5 

Electricity share of energy (%) 45.1 32.4 

R&D (=1 if firm undertook R&D program in previous year) 0.508 0.496 

Observations  5458 
Source: Authors’ calculations 

 
 
6. Empirical results 

 

6.1 Hyperbolic distance function (HDF) estimates 

Table 2 presents the maximum likelihood estimates (MLE) of the two non-radial approaches 

described in Section 3.3. In Column 1, we estimate the sub-vector energy distance function 

while Column 2 presents results from our preferred HDF model specification. In both models, 

we control for firm fixed effects using the True Fixed Effect frontier model (TFE) (Greene, 

2005a,b) and heteroscedasticity in 𝑢𝑖𝑡. Given our theoretical assumption on the contributions 

of innovation effort towards efficiency improvements, we model the variance of 𝑢𝑖𝑡 as function 

of lagged R&D activities. The estimation data for the HDF are all log-normalized (i.e., mean-

adjusted), allowing us to interpret the first-order coefficients of the translog model as output 

and input elasticities at the sample mean of the data.  

Focusing on the input elasticities, we observe that the coefficients on the labour and 

capital inputs in the sub-vector energy distance function are negative, reflecting that energy 

efficiency savings do not necessarily require higher non-energy usage or costs. However, in 

the HDF estimates in Column 2, we obtain positive coefficients on both inputs, implying that 
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any increase in the value of the labour and capital inputs would reduce distances to the frontier. 

This ensures the relaxation of the traditional axiom that the HDF is non-increasing in inputs, 

while crucially permitting our underlying theoretical assumption that energy efficiency 

improvements require reductions in energy use that are accompanied by proportional increases 

in both capital and labor43. Hence, the subsequent estimations in the second stage of our 

empirical analysis are based on the HDF.  

In terms of the efficiency effect, we estimate negative coefficients on the lagged R&D 

variable across both model specifications, implying that R&D efforts reduces energy 

inefficiency. The average energy efficiency score44 for our preferred model is around 81%, 

which indicates the feasibility of a 19% reduction in energy consumption by the typical firm, 

relative to the best practice production technology in the data sample. The distribution of this 

efficiency index is presented in Figure 2. In comparison to the efficiency scores from the sub-

vector specification, the HDF efficiency score is slightly lower. This lower efficiency score is, 

in a way, expected since the HDF specification employs non-energy input cost expansion to 

attain efficiency savings; unlike the sub-vector distance function where efficiency savings are 

costless.  

 

 

 

 

 

 
43 The positive coefficients on both inputs can also be interpreted as positive derivatives of non-energy costs with respect to 

energy efficiency improvements, i.e. that energy efficiency improvements are costly. 
44 We emphasize that the energy efficiency measure is obtained from inefficiency estimates that are measured in relative 

terms (i.e. in percentages) rather that in physical units, as in a pure standard additive directional function. Therefore, changes 

in energy efficiency must be interpreted in relation to the best-practice production activities across the sampled firms. 
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Table 2: Estimated distance function parameters 

Der var: − ln 𝐸𝑛𝑒𝑟𝑔𝑦𝑖𝑡 (1) 

 

(2) 

Output -0.654*** -0.518*** 

 [0.029] [0.009] 

Capital -0.113*** 0.026*** 

 [0.010] [0.009] 

Labour -0.184*** 1.008*** 

 [0.044] [0.018] 

Time -0.008 -0.022 

 [0.021] [0.015] 

Output-squared -0.030*** -0.025*** 

 [0.002] [0.001] 

Capital-squared 0.009*** 0.004*** 

 [0.001] [0.000] 

Labour-squared 0.129*** -0.007*** 

 [0.032] [0.001] 

Time-squared 0.031** -0.014*** 

 [0.013] [0.003] 

Output*capital -0.010 0.004* 

 [0.007] [0.002] 

Output*labour -0.133*** 0.008** 

 [0.021] [0.003] 

Capital*labour -0.029*** -0.005*** 

 [0.010] [0.001] 

Output*time -0.021 -0.030 

 [0.013] [0.032] 

Capital*time -0.007** -0.006*** 

 [0.003] [0.001] 

Labour*time 0.015 0.011*** 

 [0.021] [0.002] 

Constant -9.635*** 0.583*** 

 [0.075] [0.071] 

𝑅&𝐷𝑡−1  -1.936* -1.898* 

 [1.180] [1.158] 

Average energy efficiency level 83.02% 81.01% 

Log likelihood function 9984.33 9940.21 

Number of observations 5458 5458 
Source: Authors’ calculations 

Notes: This table contains estimations from the input distance function. Column 1 contains estimates from the sub-vector 

energy distance function, while column 2 presents the results from the hyperbolic distance function (HDF). Both models 

controls for firm effects and heteroscedasticity in the errors. ***, ** and * denote statistical significance at 1%, 5% and 10%, 

respectively.  
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Figure 2: Estimated energy efficiency index 

 
 
 
6.2 Is the CCA discount increasing in energy efficiency? Baseline results 

 
Based on the HDF efficiency scores45 , we estimate the model in eqn. [16] using pooled 

Ordinary Least Squares (OLS), Fixed Effects (FE) and System-GMM. The estimation results 

for the three models are reported in Table 3 for comparison purposes. Columns (1) and (2) are, 

respectively, pooled OLS and FE estimations of the discount model. Both show a negative 

relationship between the CCA discount and energy efficiency. In Column (3), we treat energy 

efficiency as endogenous, and we address the challenges arising from the dynamic panel model 

formulation using the System-GMM. For our analysis, we will focus on the system-GMM 

model results, as being more efficient and consistent than the OLS and FE results. The System-

GMM results (Table 3, column 3) also indicate a negative relationship between the allotted tax 

discount and energy efficiency.  

 

 
45 For robustness checks, we re-estimate our second stage regressions using the efficiency scores from the sub-vector model 

specification. The results from these re-estimations are presented in the online appendix and the underlying findings from 

these alternative estimations are qualitatively similar to those obtained from the HDF specification. Therefore, we argue that 

our findings are robust to variations in the disposability properties of the estimated production technology.  
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Table 3: Energy efficiency and CCA discount 

Der var.: Discount OLS FE GMM-SYS 

Discountt-1 0.644*** 0.204*** 0.243*** 

 [0.018] [0.020] [0.031] 

Energy efficiencyt-1 -0.106*** -0.102*** -0.543*** 

 [0.033] [0.035] [0.148] 

Size -0.198 0.485* -1.755* 

 [0.313] [0.273] [0.959] 

Age -0.903** -0.902** -1.185 

 [0.393] [0.381] [0.933] 

Foreign ownership -0.629* -0.764* -1.907*** 

 [0.336] [0.456] [0.694] 

Firm dummies N Y Y 

Quarter dummies N Y Y 

Year dummies N Y Y 

Wald/F test 0.000 0.000 0.000 

AR1 - - 0.000 

AR2 - - 0.144 

Hansen p-value - - 0.101 

No. of instruments - - 251 

R-squared 0.439 0.479 - 

Number of firms 280 280 280 

Number of observations 5077 5077 5077 
Source: Authors’ calculations 

Notes: The dependent variable ‘Discount’ is the log of the CCA discount amount (in £). Energy efficiency is computed from 

the HDF in column 2 of Table 2. Robust standard errors in parentheses are clustered at the industry level. ***, ** and * denote 

statistical significance at 1%, 5% and 10%, respectively. For the GMM model, we use the Windmeijer (2005)-corrected 

standard errors. Wald/F test: p-value from test of joint significance of parameter estimates. Arellano-Bond tests for first- and 

second-order serial correlation in the first-differenced residuals, asymptotically distributed N(0,1) under the null of no serial 

correlation. Hansen test of the over-identifying restrictions is asymptotically chi sq. distributed under the null that the 

instruments are orthogonal to the errors.   

 
The AR parameter on the lagged discount variable is 0.243 and it lies between the OLS 

and the FE estimates of 0.644 and 0.204, respectively, indicating reasonable degree of state 

dependence and stable convergence towards equilibrium discount values. As Bond (2002) 

notes, the bounds provided by the OLS and FE estimates of the lagged dependent variable 

represent a useful check on results from the proposed GMM estimator. Specifically, the OLS 

model yields a naive estimate of the lagged discount variable that is upward biased, since the 

lagged discount variable is positively correlated with the error term, whereas the opposite is 

the case with the FE estimates. Hence, an informal test of the credibility of the true AR 

parameter, as theoretically assumed by the SYS-GMM estimator is that it should between the 

OLS and FE estimates (Roodman, 2009). 
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The SYS-GMM estimator consists of a system of two simultaneous equations where 

lagged first differences are used as instruments in the levels equation; and where lagged levels 

are used as instruments in a first differenced equation. To test the validity of these instruments, 

we apply a test of over-identifying restrictions under the null hypothesis that there is no 

correlation between instruments and errors, i.e. that they are properly excluded. Further, we 

also apply the Arellano-Bond (AR) test under the null hypothesis of no second-order 

autocorrelation. Using the p-values on both specification tests, we fail to reject the 

overidentifying restrictions, suggesting that instruments are valid, while the Arellano-Bond test 

confirms that there is no second-order serial correlation in the first differenced error-term. 

The coefficient on lagged energy efficiency can be interpreted as the social return on 

the CCA discount. The point estimate of the SYS-GMM regression is -0.543 which is both 

economically and statistically significant at the 1%- level. Thus a 10% improvement in energy 

efficiency is rewarded with approximately a 5.43% reduction in CCA discounts. The benefits 

of controlling for endogeneity bias is evident from the sizable differences between the GMM 

estimates and the OLS estimates (-0.106 and -0.102) which are upward biased. Economically, 

if the CCA efficiency targets are stringent enough or binding on plant energy use, the allotted 

tax discount ought to be positively correlated with plant energy efficiency. The empirical 

results in Table 3 indicate that less efficient plants received disproportionately higher tax 

discounts under the CCA scheme.  

Surprisingly, we also find a negative relationship between the CCA discount and plant 

size, although the estimated coefficient on plant size is only significant at the 10% level. 

Similarly, we find that older plants received lower discount amounts, albeit this effect is not 

statistically significant in the GMM model. These results on plant size and plant age are 

encouraging, as it suggests larger and older plants, likely to have energy intensive production 

technologies, received lower discounts under the CCA scheme during the study period. In terms 
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of plant ownership, we find that foreign owned plants received significantly lower discounts 

under the CCA scheme. The GMM coefficient (-1.907) on the foreign dummy variable suggests 

that foreign firms received around 191% less discount than their domestic (British) 

counterparts.   

6.3 Robustness test: Exploring an alternative measure of energy efficiency performance 

 

So far, our analysis has relied on productive energy efficiency from an input-based frontier, 

where we radially contract energy consumption (and other inputs) for a given level of output. 

However, it is possible that our results are inferred incorrectly because the efficiency measure 

from the distance function does not properly capture energy efficiency. Therefore, we check 

the robustness of our results using an alternative measure of energy efficiency performance. 

We re-estimate the discount model using an output-based measure of energy efficiency: the 

ratio of output to energy use; see Table 4. 

The regression results presented in Table 4 show that the relationship between the 

discount and energy productivity remains negative and statistically significant, implying that 

plants with better energy productivity receive lower CCA discounts. In general, the coefficients 

on the control variables remain largely similar, except for the size variable where the sign on 

the coefficient turns positive; albeit its coefficient from the GMM model is not statistically 

significant.  Overall, these results indicate that less efficient plants received disproportionately 

higher tax discounts under the CCA scheme. 
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Table 4: Energy productivity and CCA discount 

Der var.: Discount OLS FE GMM-SYS 

Discountt-1 0.625*** 0.222*** 0.272*** 

 [0.027] [0.022] [0.027] 

Output per energy unit t-1 -0.419*** -0.320** -0.704*** 

 [0.150] [0.135] [0.180] 

Size 0.473 0.977*** 0.972 

 [0.295] [0.232] [0.639] 

Age -0.869** -1.133*** -1.174 

 [0.388] [0.396] [0.765] 

Foreign ownership -0.549* -0.674* -1.012* 

 [0.314] [0.404] [0.577] 

Firm dummies N Y Y 

Quarter dummies N Y Y 

Year dummies N Y Y 

Wald/F test 0.000 0.000 0.000 

AR1 - - 0.000 

AR2 - - 0.101 

Hansen p-value - - 0.245 

No. of instruments - - 251 

R-squared 0.445 0.473 - 

Number of firms 280 280 280 

Number of observations 5077 5077 5077 
Source: Authors’ calculations 

Notes: The dependent variable ‘Discount’ is the log of the CCA discount amount (in £). Energy productivity is computed as 

the ratio of output to energy consumption, a proxy for energy productivity. Robust standard errors in parentheses are clustered 

at the industry level. ***, ** and * denote statistical significance at 1%, 5% and 10%, respectively. For the GMM model, we 

use the Windmeijer (2005)-corrected standard errors. Wald/F test: p-value from test of joint significance of parameter 

estimates. Arellano-Bond tests for first- and second-order serial correlation in the first-differenced residuals, asymptotically 

distributed N(0,1) under the null of no serial correlation. Hansen test of the over-identifying restrictions is asymptotically chi 

sq. distributed under the null that the instruments are orthogonal to the errors.   

 

 
 

6.4 Robustness test: Accounting for energy intensity in CCA discount received 

One could argue that the baseline result is only a simple approximation of the aggregate 

relationship between the discount variable and energy efficiency, given that our estimations 

have so far used total discount value received under the CCA program. Consequently, we 

employ an alternative dependent variable – the ratio of total carbon discount to energy 

consumed – in a re-estimated model. This allows us to check the robustness of our result 

accounting for the implicit discount incentive, while also controlling for the intensity of firm-

specific production technologies. Table 5 presents the re-estimated regressions based on 

discount per unit of energy (DPE). The results are qualitatively consistent with those estimated 

in the baseline specification: the energy efficiency coefficient remains negative. 
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Table 5: Energy efficiency and CCA discount using discount per unit of energy 

Source: Authors’ calculations 

Notes: The dependent variable is log of Discount per unit of Energy (DPE). Energy efficiency is computed from the HDF in 

column 2 of Table 2. Robust standard errors in parentheses are clustered at the industry level. ***, ** and * denote statistical 

significance at 1%, 5% and 10%, respectively. We use the Windmeijer (2005)- corrected standard errors. Wald/F test: p-value 

from test of joint significance of parameter estimates. Arellano-Bond tests for first-and second-order serial correlation in the 

first-differenced residuals, asymptotically distributed N(0,1) under the null of no serial correlation. Hansen test of the over-

identifying restrictions is asymptotically chi sq. Distributed under the null that the instruments are orthogonal to the errors. 
 

 

6.5 Robustness test: Accounting for variation in energy technology  

There is considerable variation in tax rates across different fuels, upon which the CCA 

discounts are calculated. In particular, given the higher tax rates on gas and electricity, plants 

with gas or electricity-intensive technologies incur greater tax liabilities, which then shapes the 

size of the CCA discount. Hence, we re-estimate the baseline regressions using split samples 

based on ‘High’ (‘Low’) electricity and gas intensities, delineated using the pre-sample average 

in year 2000. Table 6 presents the results from split-sample fuel technology regressions and 

indicate that misallocation in the CCA discount scheme is common across both fuel 

Der var.: Discount per unit of Energy (DPE) OLS FE GMM-SYS 

DPEt-1 0.600*** 0.201*** 0.214*** 

 [0.023] [0.019] [0.027] 

Energy Efficiencyt-1 -0.084*** -0.060* -0.365*** 

 [0.029] [0.031] [0.119] 

Size -0.445* 0.112 -1.391* 

 [0.267] [0.236] [0.848] 

Age -1.019*** -0.973*** -1.524* 

 [0.389] [0.344] [0.806] 

Foreign ownership -0.558* -0.698* -1.668*** 

 [0.325] [0.411] [0.632] 

Firm dummies N Y Y 

Quarter dummies N Y Y 

Year dummies N Y Y 

Wald/F test 0.000 0.000 0.000 

AR1 - - 0.000 

AR2 - - 0.297 

Hansen p-value - - 0.127 

No. of instruments - - 249 

R-squared 0.380 0.419 - 

Number of firms 280 280 280 

Number of observations 5077 5077 5077 
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technologies, supporting the conclusion that the negative relationship between the CCA 

discount and energy efficiency is robust to variation in fuel technologies.  

Table 6: Discount regressions by fuel intensity: sub-samples (GMM estimates) 

Source: Authors’ calculations 

Notes: The dependent variable ‘Discount’ is the log of the CCA discount amount (in £). Energy efficiency is computed from 

the HDF in column 2 of Table 2. ‘High’ and ‘Low’ electricity intensities are based on the average pre-sample electricity share 

(45.1%) of total energy use such that High > 45.1% and Low < 45.1%. For gas intensities, these are High > 42% and Low < 

42%. 

 

 

6.6 Evaluating efficiency savings: Reported CCA performance versus SEDF performance  

In the final analysis, we collect efficiency savings information from the published CCA sector 

performance data46 and conduct a comparative analysis of these energy efficiency savings 

versus our estimated input distance function (IDF) for three different target periods (TPs); see 

Table 7. We add a caveat that the estimated efficiency savings under the IDF pertain to 

information on a random sample of unidentified plants in the UK microdata, while the CCA 

performance data are based on a larger sample of identified participating plants. 

 
46 World and Scott (2011). 

 Electricity intensity     Gas intensity 

Der var.: Discount High Low  High Low 

Discountt-1 0.181*** 0.322***  0.228***   0.206*** 

 [0.051] [0.061]  [0.038] [0.047] 

Energy Efficiencyt-1 -0.366*** -0.438***  -0.387** -0.306* 

 [0.115] [0.152]  [0.169] [0.181] 

Size -0.243 -1.925**  -1.616 -0.419 

 [1.082] [0.966]  [1.256] [1.292] 

Age -0.901 -1.774*  -0.801 -1.947* 

 [1.121] [0.944]  [1.449] [1.007] 

Foreign ownership -2.107** -1.361**  -1.552 -2.032*** 

 [0.978] [0.682]  [1.058] [0.767] 

Firm dummies Y Y  Y Y 

Quarter dummies Y Y  Y Y 

Year dummies Y Y  Y Y 

Wald/F test 0.000 0.000  0.000 0.000 

AR1 0.000 0.000  0.000 0.000 

AR2 0.068 0.795  0.396 0.066 

Hansen p-value 0.081 0.355  0.229 0.074 

No. of instruments 177 177  177 177 

Number of firms 204 233  208 218 

Number of observations 2231 2846  2739 2338 
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Notice that the efficiency savings reported under the CCA performance data are at least 

twice as large as the efficiency savings estimated from the IDF. This finding is indicative of 

the trade-off between productive efficiency and information rent extraction in the CCA scheme, 

given that the energy efficiency of participating plants is not directly observable from the 

energy use and carbon emissions data reported for compliance monitoring. This is also in line 

with our theoretical analysis of the scheme’s design, which raises the likelihood of a stringency 

problem.47 CCA negotiations are based on reductions in energy use/carbon emissions, relative 

to a base year; and this is likely to be less stringent than negotiations driven by potential 

reduction based on firm production technologies.  

7. Policy discussion and conclusion  

The UK climate change agreements (CCAs) are voluntary agreements between UK 

environmental regulators and sector associations to reduce energy use. Given the susceptibility 

of such programs to information asymmetry, this paper explores the potential trade-off between 

productive efficiency and information rent extraction within the CCA scheme. Using a panel 

of manufacturing plants drawn from the confidential UK business register during 2001-07, our 

empirical results indicate that plants with higher levels of energy efficiency received lower 

CCA discounts. We believe that, with more information about sector or firm-level efficiency 

savings potential, the UK environmental regulator is very likely to allocate the discounts in a 

way that better mirrors energy efficiency levels. We therefore conclude that this outcome is 

largely due to asymmetric information.  

There is discussion in the literature (see Ekins and Etheridge, 2006; Barker et al., 2007; 

Martin et al. 2014) around the role of the stringency of this policy and our finding stresses its 

importance. However, given data limitations, our results may be sensitive to uncertainty and 

 
47 This stringency problem appears to be supported by the data plots in Fig. 2, which indicate that the average CCL tax rate 

declined over time, thereby weakening the program’s stringency. 
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should not be interpreted as an unambiguous call for increasing the stringency of the policy as 

this would require perfect information. In this case, a perfectly informed government will 

choose a combination of tax discount and reduction targets to induce at least as much abatement 

as under the full tax rate (Smith and Swierzbinski, 2007). Howbeit, in the real world, there is 

information asymmetry (see Montero, 2000), while the regulator may also choose to maintain 

international competitiveness. Hence, the scenario in which less efficient firms secure higher 

discounts, as suggested by our analysis (as in Montero, 1999, who examined the U.S. acid rain 

program) may arise.  

Given current efforts to evaluate the effectiveness of the CCA scheme, there is a strong 

possibility that the UK government will seek to increase the stringency of environmental 

regulations. Our reasoning derives from the recent announcement by the government to end 

UK's contributions to global warming by 2050.48 In this context, a practical suggestion arising 

from this study is the possibility for the regulator to conduct its negotiations based on sectoral 

efficiency benchmarks obtained from production frontiers, rather than assumptions about 

sectoral growth rates and technological evolution. This benchmark approach has been 

successfully employed by regulators in other UK sectors49. While we concede that a common 

problem in regulatory benchmarking is that participating firms may be reluctant to share 

information about strategic variables, this problem can be mitigated by the increasing 

availability of business microdata.  

 
48 https://www.gov.uk/government/news/pm-theresa-may-we-will-end-uk-contribution-to-climate-change-by-2050 
49 See for instance: (i) https://www.ofgem.gov.uk/sites/default/files/docs/2003/09/4720-

background_cepa_report_and_efficiency_dpcr300903.pdf 

(ii) https://www.ofcom.org.uk/__data/assets/pdf_file/0019/69400/benchmarking-report.pdf  

(iii) https://www.ofwat.gov.uk/wp-content/uploads/2018/03/Testing-the-use-of-Ofwats-cost-benchmarking-models-in-

merger-analysis-Final-report.pdf 

https://www.gov.uk/government/news/pm-theresa-may-we-will-end-uk-contribution-to-climate-change-by-2050
https://www.ofgem.gov.uk/sites/default/files/docs/2003/09/4720-background_cepa_report_and_efficiency_dpcr300903.pdf
https://www.ofgem.gov.uk/sites/default/files/docs/2003/09/4720-background_cepa_report_and_efficiency_dpcr300903.pdf
https://www.ofcom.org.uk/__data/assets/pdf_file/0019/69400/benchmarking-report.pdf
https://www.ofwat.gov.uk/wp-content/uploads/2018/03/Testing-the-use-of-Ofwats-cost-benchmarking-models-in-merger-analysis-Final-report.pdf
https://www.ofwat.gov.uk/wp-content/uploads/2018/03/Testing-the-use-of-Ofwats-cost-benchmarking-models-in-merger-analysis-Final-report.pdf
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Table 7: Comparison of efficiency savings: HDF vs. reported CCA savings (%) 

 

Source: Authors’ calculations 

Notes: This table contains a comparison of estimated HDF efficiency savings versus the reported efficiency savings by the UK regulator (World and Scott, 2011). The comparisons relate to three 

target periods (TP) namely TP1 (2001-02), TP2 (2003-04) and TP3 (2005-06) 

 

 

Sector 

 
TP1   TP2   TP3 

No of firms 
HDF CCA DIFF  HDF CCA DIFF  HDF CCA DIFF 

Basic metals 

 

26 1.80 31 -29.2  2.35 24 -21.65  6.95 23 -16.05 

Chemicals and chemical products 

 

32 2.27 15 -12.73  2.29 20 -17.71  4.59 20 -15.41 

Fabricated metal products 

 

22 1.97 10 -8.03  2.94 18 -15.06  4.08 16 -11.92 

Food and beverage 

 

36 2.26 10 -7.74  2.19 10 -7.81  7.25 14 -6.75 

Machinery and equipment NEC/motor machinery man 

 

31 3.05 17 -13.95  2.61 30 -27.39  2.60 41 -38.4 

Other non-metallic mineral products 

 

20 1.04 14 -12.96  2.39 16 -13.61  4.51 19 -14.49 

Pulp paper and paper products 

 

21 1.26 32 -30.74  2.17 35 -32.83  9.73 38 -28.27 

Rubber and plastic products 

 

22 1.25 15 -13.75  1.82 31 -29.18  7.16 34 -26.84 

Textiles 

 

23 0.86 8 -7.14  3.93 19 -15.07  5.26 16 -10.74 
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SN: 6644 , http://dx.doi.org/10.5255/UKDA-SN-6644-2. This matching exercise employs the 

reporting unit reference, a unique identifier, which permits the persistent linking of information 

across the datasets and over time.  
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