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Abstract  

 
To determine genetic factors causing variation in survival into old age, several genome-wide 

association studies (GWAS) have been carried out on panels of long-lived individuals. The 

findings from a number of these GWAS studies were somewhat inconclusive, owing to the 

small sample sizes investigated. It is for this reason that model organisms such as Drosophila 

melanogaster have become increasingly important in identifying genetic factors underlying 

longevity. 

In this study we hypothesised that co-location of novel genes/genomic regions with genes, 

known to be associated with longevity, that share biological function with co-located genes, 

make them good candidates for novel genomic regions, linked to longevity. We further 

hypothesised that single nucleotide polymorphisms (SNPs) residing within these co-located 

regions may influence longevity either individually (when a SNP in one of these genes causes 

a particular phenotype) or collectively (when one or several SNPs in these regions occur in 

the same individual thus causing the phenotype). Summary statistics of datasets of SNPs 

generated by two GWAS (Burke et al., 2013; Ivanov et al., 2015) which include position of 

each SNP and a corresponding statistic (D or P- value) showing the strength of association 

with longevity were used in this study to guide the initial choice of genes/loci strongly 

associated with longevity. 

    First, a network approach was applied to predict novel genes/genomic regions/SNPs, 

playing a role in longevity, which integrated three-dimensional (3D) chromosome 

conformation data (Hi-C) and two GWAS datasets. Networks were created using 

genes/genomic regions, known to associate with longevity, as original nodes with additional 

nodes (regions) later added to these networks if they strongly interacted (i.e. came into close 

proximity as measured by the Hi-C data) with the original nodes. Various network measures 

were calculated, in order to identify important previously unknown regions. These previously 

unknown regions were further explored and longevity associated genes were found including 

Rim and Tpi with a ‘long-lived’ phenotype, and some newly found regions were observed to 

be common between both GWAS datasets. A human ortholog search of genes found in this 

analysis resulted in matches to human genes with functions related to lifespan. Subnetworks 

of these GWAS-based networks were sought for enrichment in GO terms and several genes 
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with no previous association with longevity but enriched in longevity-related terms were 

identified.  

Second, SNPs residing in non-coding regions, e.g. within transcription factor binding sites 

(TFBSs) recognised by transcription factors (TF) and borders between Topologically Associated 

Domains (TADs) were analysed. Each TF typically recognises a collection of often dissimilar 

DNA motifs. Here we hypothesised that TFs may recognise a certain structure, e.g. non-B DNA 

structures, rather than sequence motifs. Structures such as slipped, cruciform, triplexes and 

tetraplexes, formed on direct, inverted and mirrored repeats and G-quartets were considered 

and SNPs residing within these structures were analysed. For the study of SNPs in TAD borders 

we hypothesised that SNPs residing in these border regions may cause a severe disruption to 

the way in which regulation usually occurs within these TADs. We found that a significant 

proportion (~2%) of non-coding SNPs, reported in the DGRP GWAS dataset, resided in TAD 

border regions on the Drosophila genome, when compared to a match control dataset (𝑃 =

1.0376 × 10−75).  

 

Finally, potential target genes for non-coding SNPs were explored, taking a different approach 

to the assumption that these target genes are usually the nearest on the linear genome. Using 

intra-chromosomal Hi-C data with finer resolution we identified regions highly interacting 

with those non-coding SNPs. These interacting regions were further analysed, focusing on the 

genes they harboured and the functions of these genes. Many regions found to have long-

range interactions in both GWAS datasets analysed were observed to harbour genes not 

directly associated with longevity but with phenotypes displaying longevity-related functions. 

Eleven genes were found in common between the two GWAS datasets, where several were 

matched to human orthologs.  

In conclusion, the network and other bioinformatics approaches which have been used in this 

study have enabled the identification of factors associated with longevity that were previously 

unknown, or overlooked. 
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Chapter 1 

INTRODUCTION 

 

Given the increasing rate of survival into advanced (≥85 years) and exceptionally advanced 

(≥100 years) age in humans, achieving healthy ageing is becoming increasingly important. 

With healthy ageing being described as the process of developing and maintaining the 

functional ability that enables wellbeing through to older age, this is important to ensure that 

humans are able to continue what it is that they value, meeting basics needs, being mobile 

and contributing to society. Human twin studies suggest that 20-30% of variation in survival, 

besides maintaining a healthy life style, is determined by heritable genetic factors (Herskind 

et al., 1996). Studies have looked at the variation in the age at death between monozygotic 

and dizygotic twins. These twin studies have found that around 25% of the variation in human 

longevity can be attributed to genetic factors, with the genetic component being higher at 

older ages and more important in males than females (Herskind et al., 1996; Skytthe et al., 

2003; Hjelmborg et al., 2007). The identification of these genetic factors causing such 

variation has therefore become of great interest in the research area of ageing. 

Model organisms such as Drosophila melanogaster have become increasingly important for 

studying and understanding genetic factors affecting longevity; their short, simple 

reproduction cycle and large number of offspring make it an ideal organism for the study of 

human genetics (He and Jasper, 2014).    

Fairly recent genome-wide association studies (GWAS) have enabled to identify DNA 

alterations in the Drosophila genome, resulting in phenotypic change. Dependant on the rate 

that these changes occur, we refer to them as either single nucleotide polymorphisms (SNPs) 

which occur in more than 1% of the population, or mutations, which occur in less than 1% of 

the population. Although it is acknowledged that a single mutation/SNP often does not cause 

phenotypic change by itself, the specific accumulation of these SNPs may result in such 

change. These SNPs are often scattered across the genome and located in different regions, 

where the biological relationship between these SNP harbouring regions is not well 

understood. Therefore it is interesting to explore whether these regions share a common 

feature or biological function.  
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SNPs are individual base pair changes on a chromosome and are not often observed to cause 

positive/negative effects to organisms. However, those SNPs that do induce such effects are 

important to note, no matter the severity of its effect. The impact of SNP effects (or their 

significance) have been obtained via GWAS, in which SNPs are identified and analysed across 

the genomes of individuals from both healthy and diseased populations, as well as long lived 

and non-long lived populations as studied here. These latter GWAS datasets can provide detail 

as to which SNPs are most significantly associated with longevity.  

In the following sections of this chapter, the ageing process is introduced along with theories 

of ageing proposed to attempt to explain such a complex process. Longevity studies in both 

humans and Drosophila are also discussed, with findings from previous ageing studies. SNPs 

are introduced and genome-wide association studies (GWAS) and their main focus is 

explained. GWAS carried out in previous studies on both humans and Drosophila are also 

discussed, along with their findings, and specific bioinformatics techniques used for 

identifying important SNPs in GWAS data are described. Finally this chapter introduces the 

hypotheses, aims and objectives of this study. 
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1.1 AGEING 
 

1.1.1 The Ageing Process 
 

Ageing is associated with changes in several processes of an organism, ranging from social 

and environmental to biological and physiological. Such age-associated changes in humans 

include those considered to have very small or zero impact on the way in which a person lives 

their normal life, for example hair turning grey, or age-spots spearing on the skin. However, 

one of the most important reasons for the study of ageing is to target the changes which are 

found to reduce the quality of life a person can live. This includes changes which result in a 

decline in the functioning of senses and daily life activities, and very importantly those 

changes which result in increased susceptibility to disease, frailty and disability. Ageing is 

already known to be associated with the development of serious chronic diseases in humans 

(Fontana, 2009), which is one main reason for studies aiming to uncover theories and 

mechanisms that can be used to explain ageing.   

 

Systematic research in ageing came into existence only 50-60 years ago, and in this relatively 

short time a great deal has been discovered and understood about human ageing. However, 

one of these discoveries was the actual complexity of ageing and the difficulty of controlling 

the factors by which it is influenced. For example, the rate at which an individual ages has 

been observed to largely depend on interactions with environmental factors (Geller and 

Zenick, 2005), for which every human is different. Such dependency on environment means 

that the rate of ageing for humans is highly individualised, causing problems in studies of 

longevity for which it is impossible to compare mean values of measured variables across 

populations.  

 

Many different definitions of biological ageing have been proposed over the years. Some 

describe ageing as an increased risk of mortality or death (Medawar, 1952), which would be 

an appropriate definition for some species in which death and ageing are the same. For 

example, in the Mayfly, after the completion of adult development death occurs very soon 

after, complicating measurement of the rate at which Mayflies age. However, such definition 

is not useful for those who try to correlate biological events to ageing outcomes in individuals. 
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For example, hair turning grey in an elderly woman is a clear sign of ageing, but this change 

in the hair colour not significantly increase mortality risk of this individual. 

  

Those who correlate biological events with the rate of ageing are likely to use functional-

based definitions of ageing. Some suggest that ageing is a result of ‘deteriorative changes with 

time during post maturational life that underlie an increasing vulnerability to challenges, 

thereby decreasing the ability of the organism to survive’ (Masoro, 1995). ‘Senescence is a 

term mainly used to describe age-related changes in an organism that adversely affect its 

vitality and functions but most importantly, increase the mortality rate as a function of time. 

Senility represents the end stage of senescence, when mortality risk is approaching 100%’ 

(Finch, 1994). Both of these considerations advantageously specify a time period to look for 

ageing, which is once an organism has reached full growth. These definitions also identify 

processes associated with advanced age, which can be measured and tracked over time. The 

limitation to these definitions however, is that they both address only the ageing of an 

organism as a whole, as opposed to ageing at a lower level of organization, for example 

cellular function. There is also no consideration in either definition for events that occur 

during development which may have a direct impact on post maturational life. Finally, in 

these definitions it is uncertain when ageing starts, as it is possible that whilst some 

physiological functions begin, others will still be developing.  

 

The discovery of the cause of cellular ageing, reflecting the random accumulation of damaged 

proteins that result from an organism’s interaction with the environment (López-Otín et al., 

2013), allows more conclusive definitions to be drawn about biological ageing. Acknowledging 

these points, we will consider that ageing is the result of both the passing of time and an 

individual’s interaction with the environment, causing random changes in the structure and 

function of molecules, cells and therefore an organism as a whole. The probability of the 

death of an organism is positively correlated with the process of ageing.  

 

1.1.2 Theories of Ageing 
 

In an attempt to explain the process of ageing, many theories have been proposed, of which 

none have individually succeeded in explaining the process. Most theories have been found 
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to fall into two main categories, with the first category stating that ageing is a natural process 

and programmed into the body (programmed theories), and the second category stating that 

ageing is a result of accumulation of damage to the body over time, known as error theories 

(Jin, 2010). Although considered as two different categories, neither are necessarily mutually 

exclusive, and many agree that as well as ageing varying across different species, the build-

up of damage suggested in the second category can be accelerated by programmed 

senescence suggested in the first category (Weinert and Timiras, 2003). As well as these two 

categories, evolutionary theories of ageing have also been proposed in which, according to 

these theories, ageing is a by-product of natural selection.  

 

Evolutionary Theories of Ageing 

The concept of the evolution of ageing was first introduced by Ronald Fisher in 1930 (Fisher, 

1930). Since this initial introduction, innovative thinkers like Peter Medawar (Medawar, 

1952), George Williams (Williams, 1957), Thomas Kirkwood (Kirkwood, 1977), and others, 

have established cogent evolutionary theories to help explain why ageing evolved (Johnson 

et al., 2019). Theories under this concept believe that extrinsic mortality, for example 

predation, disease and starvation, is a primary evolutionary determinant of the rate at which 

an organism will age. Key evolutionary theories include the ‘mutation accumulation’ theory, 

‘antagonistic pleiotropy’ theory and ‘disposable soma’ theory, where all three theories 

predict than an increase in extrinsic mortality should select for the evolution of shorter 

lifespans and vice versa.  

 

According to the mutation accumulation theory, from the evolutionary perspective, ageing is 

an inevitable result of the declining force of natural selection with age (Medawar, 1952). For 

example, a mutant gene that kills young children will be strongly selected against and 

therefore will not be passed to the next generation, whereas a lethal mutation which effects 

only people over the age of 70 will experience no selection because by that age, people with 

that mutation will have already passed it to their offspring. Over successive generations, late-

acting deleterious mutations will accumulate, leading to an increase in mortality rates late in 

life (Bengtson and Settersten, 2016).  
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The antagonistic pleiotropy theory suggests that late-acting deleterious genes may even be 

favoured by selection and be actively accumulated in populations if they have any beneficial 

effects early in life (Williams, 1957). The main difference between both theories is that in the 

mutation accumulation theory, genes with detrimental effects at old age accumulate 

passively from one generation to the next whereas in the antagonistic pleiotropy theory, 

these genes are actively kept in the gene pool by selection (Le Bourg, 2001). It is important to 

note that both of these theories are not mutually exclusive, and both mechanisms may 

operate at the same time. These theories were also later formalised mathematically and 

further developed by Hamilton (1966).  

 

The antagonistic pleiotropy theory was further studied in an attempt to specify in more details 

how one gene could have both deleterious and beneficial effects. In doing so, the disposable 

soma theory was proposed (Kirkwood, 1977), postulating a special class of gene mutations 

with antagonistic pleiotropic effects. This theory is more mechanical and energy-focused, 

emphasising that because resources are limited, most organisms will be better off investing 

their finite energy into mechanisms that increase reproduction instead of non-reproductive 

mechanisms. Both the antagonistic pleiotropy and disposable soma theories expect a trade-

off between ageing and fecundity (Flatt and Partridge, 2018).   

 

Programmed Theories of Ageing 

Theories stating that ageing is programmed claim that an organism is designed to age, and 

that for each organism there is a specific biological timeline that an organism follows 

(Kirkwood and Melov, 2011). Such theory defends ageing as an essential and innate part of 

the biology of organisms, to prevent living forever. The main claim of this theory is that ageing 

is about evolution as opposed to biology, which supports claims of ageing being inherent in 

an organism and dismisses those of the environment or disease being important factors. 

Evidence supporting this theory includes the following question: if the body is able to repair 

and renew itself, on all biological levels, then there is no reason for the body wearing out. The 

lack of variation in overall lifespan within species, other than in cases in which factors such as 

nutrition or medical care are heavily influential, is another argument for the theory of 

programmed ageing.  
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Within this theory, there are more questions about the way in which an organism is designed 

to age. For example, there are those who support the Endocrine theory that believe it is 

hormones controlling the function of organs, which are the cause of ageing (Van Heemst, 

2010). The endocrine system is vital in the secretion and controlling of hormones regulating 

many of the body’s processes, including metabolism, growth and development. During 

ageing, the efficiency of such systems decreases, and it is changes such as this that are 

suggested by the hormone theory to be the cause of the effects of ageing. Evidence that 

supports this theory includes studies in which the pituitary gland, which controls much of the 

endocrine system, is removed from mice and all hormones identified in mice are 

supplemented. Results concluded that mice without the pituitary gland survived longer than 

those mice in the control group that did have their pituitary gland. This result leads to the 

conclusion that this gland must secrete another hormone, currently unknown, which has a 

negative impact on ageing (Brown-Borg, 2007). Other research, on a variety of organisms, has 

shown that mutations reducing levels of insulin-like growth factor 1 (IGF-1) have resulted in 

extended lifespan. However, this reduction in IGF-1 has had inconsistent effects when 

observed in age-related diseases in humans. Observations of a reduction in IGF-1 have led to 

reduced risk of age-related diseases in some, but lead to increased risk in others, specifically 

metabolic syndrome which includes cardiovascular disease (Aguirre et al., 2016).    

 

Another belief under the theory of programmed ageing is that the immune system is 

programmed to decline over time, resulting in an organism’s increased susceptibility to 

disease, also known as the immunological theory (Walford, 1964). The belief that the rate of 

ageing is controlled mainly by the immune system, reverses the suggestion that changes in 

the immune system in the elderly are a result of the ageing process, and instead suggests that 

symptoms of ageing such as chronic disease are in fact caused by these changes in the 

immune system. It is widely known that changes in the immune system that accompany old 

age are able to impact a person’s longevity directly, and that the potential for such changes 

to cause damage to the body increases with age. However, although there are strong 

suggestions that dysfunction of the immune system related to old age may cause some of the 

known aspects of the ageing process (Franceschi and Campisi, 2014), the triggers of changes 

in immune system and the way in which they develop and progress remain largely unknown 
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(Barnett and Barnett, 1998; Montecino-Rodriguez et al., 2013; Castelo-Branco and Soveral, 

2014; Fuentes et al., 2017).  

 

Error Theories of Ageing 

As well as beliefs in ageing being programmed, there are also theories that state that ageing 

is a result of damage to our body’s systems caused by the environment, over time. In contrast 

to the programmed theory of ageing, error theories state that ageing is a result of a series of 

errors, as opposed to an event which is programmed. Error theories include the popular belief 

that ageing is due to wear and tear, that over time cells and body systems become 

progressively damaged and in the end our body is ‘worn out’, and therefore unable to 

function adequately (Jin, 2010). Such damage can be caused by a number of processes, for 

example damage of genes due to exposure to radiation, or the inability for proteins to work 

efficiently due to oxidative damage resulting in the cross-linking of proteins. Even just the 

essential functioning of our body, for example the metabolism of oxygen, can result in the 

damage of cells and tissues due to free radical production. This theory, makes logical sense 

as it fits very closely with the perceived sense in which we age, and on a cellular level functions 

are observed to decline with age. However, this theory also faces strong criticisms, especially 

by the knowledge that we have of our bodies ability to repair the damage (Mitteldorf, 2010). 

Our DNA contains DNA repair genes with a specific function to repair genetic damage. There 

is also the argument that organisms are observed to grow stronger in their growth phase, 

building strength and resilience with age, however in a wear and tear theory it would be 

logical to assume that an organism would start life at the peak of performance. Finally, the 

wide variation of lifespans between different species of animal is also questioned under this 

theory. 

 

Cross-linking is another theory, which is a complicated process observed to happen slowly 

between proteins, DNA and other structural molecules in the body (Bjorksten and Tenhu, 

1990). Evidence has suggested that a variety of post-translational modifications and oxidative 

stress may contribute to cross-linking, where crosslinking mechanisms have been proposed 

dependent on the cross-linked compounds observed (Wang et al., 2014). These mechanism 

proposals include identified compounds such as advanced glycation end products (Nagaraj et 

al., 1991) and c-glutamyl-e-lysine (Lorand et al., 1981). The cross-linking theory describes 
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bonding occurring between structural molecules in the body, causing chemical changes, over 

time leading to ageing. Once molecules are cross-linked, their ability to function properly 

deteriorates, and if enough cross-links form, they can accumulate in tissues causing further 

problems. The cross-linking of molecules results in the stiffening of the tissues in which these 

molecules reside, and many symptoms related to ageing are associated with the stiffening of 

tissues. For example, it is believed that heart attack and stroke risk is increased with the 

hardening of arteries (Kumosani et al., 2011).  

 

Finally, and probably the most important theory in relation to the research in this thesis is the 

somatic mutation theory, in which it is stated that what happens to our genes once they are 

inherited is an important determinant in ageing. A mutation can be caused by a variety of 

factors, and results from incorrect copying of a gene during cell division. It is also important 

to note that mutations can also occur outside of genes. Often the body is able to correct or 

destroy any mutations, however when this is not the case, mutated cells can accumulate, 

copy themselves and cause age-related issues in the functioning of the body systems. Like all 

ageing theories discussed here, and those not covered, each only seems to explain one part 

of the question of ageing. Although for many theories there is a supporting evidence, it cannot 

be proved that any of these factors play the most important role in ageing.  

 

1.2 LONGEVITY STUDIES IN HUMANS 
 

The search for genetic determinants of human longevity has, and most likely will always be, 

challenged due to lack of studies producing datasets with large numbers of participants 

reaching extremely old age. Therefore, despite the evidence given for a genetic contribution 

to longevity, the identification of specific genes that associate with human longevity has been 

difficult (Christensen et al., 2006). The survival and health characteristics in families of long-

lived subjects have been studied, and the evidence from such studies suggest that healthy 

ageing and longevity have a hereditary component. One of these studies involved conducting 

a sib pair study in very old subjects to map longevity loci, and then looked at families with at 

least two long-lived siblings (Schoenmaker et al., 2006). Statistical analysis included the 

calculation of standardised mortality ratios (SMRs), comparing the mortality of various 

generations with the general population; the mortality between different groups then being 
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compared using Cox regression analysis. From the results obtained it was concluded that 

familial clustering of extended survival was unlikely to be caused by ascertainment bias or 

environmental factors, and therefore it was concluded that the long-lived individuals were 

genetically enriched for extreme survival. Similar conclusions, to that of genetic enrichment 

for extreme survival, have also been drawn from other studies (Perls et al., 2002; Montesanto 

et al., 2011). A study by Kerber et al. (2012) found regions of interest in the vicinity of D3S3547 

on chromosome 3p24.1; interestingly, this chromosome loci had also previously been 

reported in relation to longevity by Boyden and Kunkel (2010), on an almost identical region 

of the chromosome. This study by Kerber et al. (2012) also corroborated the linkage of 

exceptional longevity to 3p22-24, another loci also found by Boyden & Kunkel (2010), 

strengthening the case that genes found in these regions affect variation in longevity, and 

therefore play a role in the regulation of human lifespan. In this linkage study by Boyden & 

Kunkel (2010), several additional novel loci were identified as having significant association 

with longevity, e.g. on chromosomes 9q31-34, 12q24 and 4q22-25.  

 

1.3 SINGLE NUCLEOTIDE POLYMORPHISMS 
 

SNPs are individual base pair changes on a chromosome, and in the human genome are the 

most common type of genetic variation. An example of such base pair change is shown in 

Figure 1.1. The effect a SNP has on a protein in which it resides will depend on the type of 

SNP, of which there are two types: synonymous (silent) or non-synonymous. Synonymous 

SNPs are considered to have no effect on the proteins it is involved with, whereas non-

synonymous SNPs result in an alteration to an amino-acid sequence. This alteration occurs 

either via missense polymorphisms, which alter an amino acid sequence or via nonsense 

polymorphisms that stop the function of proteins after inducing a premature stop codon.  The 

regions of the genome on which SNPs reside, as well as the number of SNPs, also indicates 

the effect in which they may have (Shastry, 2009). For example, some SNPs may occur in non-

coding regions such as an enhancer, therefore affecting the expression of specific genes. 

Regions on the genome in which SNPs are found in greater abundance would often be 

expected to experience larger mutational effect, for example more important phenotypic 

changes, and in this situation the probability of the mutations being deleterious would also 

increase.   
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Figure 1.1 A visual representation of an individual base pair change (SNP) across 
chromosomes for three humans (https://www.whatisdna.net/wp-
content/uploads/2016/11/SNP.png). 

 

1.4 GENOME-WIDE ASSOCIATION STUDIES 
 

A genome-wide association study (GWAS) is an approach that involves rapidly scanning many 

genomes with markers, with the intent to find common genetic variations associated with a 

particular phenotype; in many cases, this is a particular disease. Such association testing on 

an unbiased, genome-wide scale is possible due to advances in genotyping technology and 

statistical methods, as well as improved understanding of genomic variation. Often, GWAS 

focuses on associations between single-nucleotide polymorphisms (SNPs), which are changes 

of a single base in the DNA known to vary between individuals, and a particular disease or, in 

the case of this PhD investigation, longevity. These studies are designed to enable a 

comparison between the frequencies of an allelic variant in a case versus a control sample. 

For example, SNPs in the genome in those with a particular disease may be compared against 

those without the disease. This comparison enables the recognition of any genotypes that 

may occur more often or less frequently in individuals with the disease. As a very basic 

example in Figure 1.2, the genomes of a population of individuals found to have a specific 

disease have been scanned to find all SNPs that these genomes harbour. The same is then 

done for a population that does not have this disease, and the quantity of each SNP found in 

the population with the disease is then compared with the quantity of the same SNP found in 

the population without. For example, in Figure 1.2 the red dots in some individuals represent 

a specific SNP, in this example SNP ‘A’, residing in the genome of this individual. For SNP ‘A’, 

observations showed that both populations had the same number of individuals harbouring 

https://www.whatisdna.net/wp-content/uploads/2016/11/SNP.png
https://www.whatisdna.net/wp-content/uploads/2016/11/SNP.png
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this SNP, and therefore it would not be logical to assume that SNP ‘A’ had any association 

with this disease. However, for SNP ‘B’, it is clear to see by looking at the yellow dots 

representing this SNP in the genome of the individual, that SNP ‘B’ occurs more frequently in 

individuals in the population with disease than the population without. As SNP ‘B’ is found to 

be more common in the individuals with disease, the assumption that this SNP may have 

association with this specific disease can be made.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1.2 Four groups of individuals, in which two groups contain diseased individuals and 
two do not. Red dots in some individuals represent a specific SNP, in this example SNP ‘A’, 
residing in the genome of this individual. Yellow dots in some individuals represent a specific 
SNP, in this example SNP ‘B’, residing in the genome of this individual.  

 

This example described is more simplistic than the process actually is, and in reality, there are 

more statistics involved and in fact once a well-defined phenotype has been selected for a 

study population and genotype data is collected, a series of single-locus statistical tests are 

carried out. These tests involve the individual examination of each SNP to look for association 

with the phenotype selected, and often in dichotomous cases (also referred to as the primary 

trait/phenotype) logistic regression is used for analysis. Logistic regression, shown in the 

equations below (equation 1.1), predicts the probability of each SNP having disease status 
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given a genotype class. Logistic regression also includes a measure of effect size, which 

provides adjusted odds ratios and allows for adjustment for clinical covariates.  

 

Wanting to test whether there is a difference in the distribution of genotypes between case 

and control groups in the study, hypotheses can be written in terms of the conditional 

probabilities of genotype given case/control status, where the null hypothesis is 

parameterized by 𝑝 =  {𝑝0, 𝑝1,  𝑝2} . To describe this regression analysis, the following 

notation is introduced: GWAS data consists of healthy or diseased phenotypes (𝑦𝑖∈ {0, 1}) and 

the genotype at the typed locus (𝑥𝑖∈ {0, 1, 2}) with an effect size of 𝛽𝑖. The effect size is simply 

a quantifier for the size of difference between two groups, in this case, the difference 

between the healthy and diseased groups. In logistic regression, odds ratios are often used to 

calculate effect size, determining whether a particular exposure is a risk factor for a particular 

outcome, for example disease. In the calculation of logistic regression, the regression 

coefficient 𝛽1 is the estimated increase in the log odds of the outcome per unit increase in 

the value of the exposure. The relationship between 𝑦  and 𝑥  is then modelled using the 

likelihood method: 

 

               𝐿(𝛽) =  ∏ 𝑝𝑖
𝑦𝑖(1 − 𝑝𝑖)

(1−𝑦𝑖)𝑛
𝑖=1       where       log (

𝑝𝑖

1−𝑝𝑖
) =  𝛽0 + 𝛽1𝑥𝑖.                 (1.1) 

 

This whole-genome analysis of genetic variants in humans has provided insight into the 

architecture of complex traits and along the way revealed dozens of longevity-associated loci.  

 

1.5 GWAS OF HUMAN LONGEVITY  
 

To determine genetic factors of longevity in humans, several genome-wide association 

studies have been carried out on panels of (exceptionally) long-lived individuals, with ages of 

participants ranging from 90+ in two studies, and between 95 years to 119 years  in another 

(Puca at el., 2001; Newman et al., 2010; Sebastiani et al., 2012). Variation in many loci, e.g. 

near the D4S1564 (Puca et al., 2001), MINPP1 (Newman et al., 2010), HLA-DQA1/DRB1 and 

LPA (Joshi et al., 2017) genes, have been identified as contributing to survival into old age, but 

only SNPs in TOMM40/APOE and FOXO3 loci were found to robustly associate with longevity. 
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The two loci commonly associated with longevity in previous independent studies, APOE 

(Apolipoprotein E) and FOXO3 (Forkhead Box O3), are also identified by GWAS (Lu et al., 2014; 

Broer et al., 2014; Zeng et al., 2016). The APOE gene combines with lipids (fats) in the body, 

forming lipoproteins, which play a role in packaging and transporting fats, including 

cholesterol, through the bloodstream. Maintaining cholesterol levels is essential to prevent 

cardiovascular diseases, for example strokes and heart attacks. The FOXO3 gene is a 

transcriptional activator, which, in the absence of survival factors, triggers apoptosis. This 

includes neuronal cell death upon oxidative stress.  

 

Newman et al. (2010) confirmed the association of rs4420638 SNP on chromosome 19q13.32, 

representing the TOMM40/APOE/APOC1 locus, with longevity. Both the TOMM40 

(Translocase of Outer Mitochondrial Membrane 40) gene and APOC1 (Apolipoprotein C1) 

gene are associated with Alzheimer Disease.  APOC1 is also related to lipoproteins, playing a 

central role in high density lipoprotein (HDL) and very low density lipoprotein (VLDL) 

metabolism. The TOMM40 gene is part of the mitochondrial outer membrane (TOM) complex, 

which is essential for the importing of protein precursors into mitochondria. Flachsbart et al. 

(2016) used a combined sample of 3208 long-lived individuals and 8919 younger controls of 

European origin, and performed a large-scale case control study, targeting known immune-

associated loci. The first part of analysis by Flachsbart et al. (2016) performed a large-scale 

association study on 1458 German long-lived individuals (mean age 99 years) and 6368 

controls (mean age 57.2 years). Findings in the German groups of this study further supported 

the association of the TOMM40/APOE region with longevity, finding significantly associated 

SNP rs2075650 in this region. The same study also reported a novel locus for longevity, 

RAD50/IL13 region on chromosome 5q31.1, harbouring rs2706372 SNP. RAD50 is known to 

be involved in the biological processes DNA repair and inflammation, making it a credible 

longevity candidate.  

 

Deelen et al. (2014) performed GWAS meta-analysis of 7729 long-lived individuals of 

European descent (≥85 years) and 16,121 younger controls (<65 years), observing genome-

wide significant association of rs2149954 SNP (intergenic) with longevity at the novel locus 

on chromosome 5q33.3. The same SNP was also found in the Han Chinese and European 

population (Zeng et al., 2016). The APOE locus has also been associated with longevity in large 
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population-based linkage studies, alongside TOMM40/APOC1 loci (Beekman et al., 2013). 

Beekman et al. (2013) performed the largest genome-wide linkage scan reported so far, 

observing four regions showing linkage with longevity. A fixed-effect meta-analysis approach 

at the APOE/TOMM40/APOC1 gene locus identified a single SNP, rs4420638, showing a 

significant (P-value = 9.6 × 10−8) association with longevity.  

 

Despite the use of GWAS to investigate human longevity, a lot of studies were underpowered, 

due to the availability of small sample sizes only. For this reason, model organisms such as 

Drosophila melanogaster have become increasingly important for studying and 

understanding genetic factors affecting longevity. GWAS have proven as extremely useful in 

the discovery of genomic variants responsible for traits in species such as Drosophila. GWAS 

have been used for identification of susceptibility loci for phenotypes including aggression 

(Shorter et al., 2015), brain size (Zwarts at al., 2015) and longevity (Ivanov et al., 2015) in 

Drosophila.    

 

1.6 LONGEVITY STUDIES IN DROSOPHILA  
 

Drosophila melanogaster, known generally as the common fruit fly or vinegar fly, is an 

extensively studied model organism in the field of genetics and developmental biology. 

Technology has advanced in ways that allow for further unfolding of the biology of ageing 

using fly as a model organism (Paaby and Schmidt, 2009). The lifespan of Drosophila 

melanogaster is affected by several factors including differences in environmental conditions, 

diet and overcrowding. In a controlled environment (including temperature, humidity, diet 

and exposure to carbon dioxide) in the laboratory the average lifespan of Drosophila is found 

to be >50 days, where the lives of adult males were observed to be shorter than those of 

females (Linford et al., 2013). Mutations in specific genes have been found to increase the 

lifespan of Drosophila. For example, a mutation within the mth (Methuselah) G protein-

coupled receptor gene, which leads to the partial loss-of-function, has been found to extend 

the average lifespan of Drosophila by 35% (Lin et al., 1998). Mutant versions of the Indy (I'm 

not dead yet) gene, which encodes an amino acid transporter, has been shown to double the 

average lifespan (Rogina et al., 2000). In addition, it was shown that single gene mutations in 

the target of rapamycin (TOR) and the insulin/IGF-1 signalling (IIS) pathways can slow down 
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the ageing process in model organisms (Fontana et al., 2010). The Drosophila GWAS have 

identified millions of naturally occurring SNPs that potentially influence longevity; however, 

none of these SNPs reached genome-wide significance level prompting the hypothesis of 

possible combined effect of sets of SNPs on longevity.  

Commonly in statistics, P-values are used as an indication of the significance of a result, 

whereby if a P-value calculated is less than 0.05, it is said to be statistically significant. In 

hypothesis testing, there is always a small chance (usually around 5%) that a false significant 

result will be produced in a single test. As the number of tests run increases, the number of 

these false significant results increases dramatically, and this is referred to as the multiple 

testing problem. This can be corrected for by adjusting P-values, taking into account how 

many hypothesis tests are actually running.  Due to the scale and size of statistical analysis in 

GWAS, significance levels such as P<0.05 are adapted, for which a P-value threshold of 5 ×

 10−8  has become a standard for GWAS.  This threshold is calculated by considering the 

commonly used P-value of 0.05 at a 5% significance level in hypothesis testing, and taking into 

account the number of SNPs that are observed in studies, typically up to 106. 

 

The identification of many ageing genes in Drosophila has been made possible because of the 

association made between stress and lifespan. The best determination of whether ageing is 

altered as a result of oxidative stress or damage is an alteration in lifespan. Observations in 

relation to this have been contradictory, which could mean that oxidative stress plays a very 

limited, if any, role in ageing or that the role of oxidative stress in ageing is dependent on 

environment. In relation to environmental factors, environments in which minimal stress 

results in oxidative damage are reported to play little role in ageing, whereas under chronic 

stress, oxidative stress plays a much greater role. Under chronic stress, enhanced antioxidant 

defences exert an ‘anti-ageing’ action, resulting in changes in lifespan (Salmon et al., 2010). 

Increasing the expression of genes that promote antioxidant defences have demonstrated 

increased organismal longevity. Over-expression of Catalase (Cat), a gene found to reduce 

oxidative damage to biomolecules and protect cells from toxic effects of reactive oxygen 

species, is one example (Orr and Sohal, 1994). Another example is Superoxide dismutase 

(SOD), a gene found to detoxify superoxide radicals in mitochondria, in which a loss of this 

gene generates endogenous oxidative stress resulting in reduced activity of critical 

mitochondrial enzymes (Orr and Sohal, 1994). Over-expression of glucose-6-phosphate 
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dehydrogenase (G6PD) has been shown to increase lifespan. G6PD is an enzyme that 

participates in a metabolic pathway, its main function is to produce NADPH, which is an 

electron donor that defends against oxidizing agents and plays an important role in reductive 

biosynthetic reactions (Legan et al., 2008). Screening for genes in Drosophila that show 

differences in gene expression between normal and stress conditions has identified two new 

loci affecting lifespan, heat shock protein (hsp) genes hsp26 and hsp27 (Wang et al., 2004). 

Several loci that have already been shown to affect lifespan were also identified in these 

screenings, including hsp70, Cu/ZnSOD and catalase.  

In Drosophila, the 14-3-3-epsilon gene has been found to antagonize dFOXO function whereby 

in oxidative stress, the loss of this in vivo interaction results in the loss of 14-3-3-epsilon, 

causing increased stress-induced apoptosis and growth repression and, in turn, extends 

lifespan (Nielsen et al., 2008). In the nervous system, the overexpression of Eip71CD has been 

observed to increase lifespan by up to 70% through increase of resistance to oxidative stress 

and delaying the onset of senescence-induced decline in activity levels (Ruan et al., 2002). 

The relationship between ageing and DNA repair was studied by measuring lifespan of 

Drosophila melanogaster males in the absence of the mei-41 excision repair and comparing 

it to transgenic flies with 1 or 2 extra copies of the mei-41 wild-type gene. In the absence of 

repair, the lifespan of Drosophila was significantly reduced whereas with an extra copy of the 

gene coding for excision repair, the lifespan of Drosophila was significantly increased 

(Symphorien and Woodruff, 2003).  

 

It has been demonstrated that continuous over-expression of the dFOXO (Forkhead box class 

O transcription factor) gene, a homolog of the FOXO3 gene, in adult fat body reduces 

mortality rate throughout adulthood (Giannakou et al., 2007). Further, Hwangbo et al. (2004) 

showed that limited activation of dFOXO reduces expression of the Drosophila insulin-like 

peptide dilp-2, as well as represses endogenous insulin-dependent signalling in peripheral 

body fat. This finding, along with the previously mentioned observations of dFOXO over-

expression in humans reducing mortality rate, suggests that the combining of autonomous 

and non-autonomous roles of insulin signalling can control ageing.  

 

The silent information regulator 2 (Sir2 or Sirtuin) family of proteins has been shown to affect 

various aspects of physiology, including that of stress response (Imai and Guarente, 2010; 
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Haigis and Sinclair, 2010). Such findings have led to the questioning of the effects that Sir2 

may have on lifespan in Drosophila. Evidence has suggested that Sir2 in Drosophila can 

mediate life span extension through caloric restriction and research findings have implicated 

Sir2 in a number of beneficial effects of caloric restriction that have been shown to extend 

lifespan (Frankel et al., 2011). Rogina and Helfand (2004) demonstrated that an increase in 

expression of the Sir2 gene extends lifespan, and in cases of a decrease in Sir2 the lifespan-

extending effect of calorie reduction is blocked. Whitaker et al. (2013) showed that increased 

expression of Sir2 extended lifespan in a dose-dependent manner; life span is consistently 

extended when expression is increased to moderate levels (approximately 2-5 fold increase 

over normal) and expression below this range or slightly above it inconsistently extends 

lifespan. It was also found that significantly higher levels of expression are detrimental to 

lifespan; for example, over-expression can induce JNK signalling which is generally a ‘death’ 

signalling pathway, controlling the cell response to harmful extracellular stimuli, including 

programming cell death (apoptosis).  

 

First documented by McCay et al. (1935) over 80 years ago, caloric restriction has continued 

to stand out as the most effective dietary intervention to extend both average and maximum 

lifespan, as well as to delay the onset of age-related pathologies (Anderson and Weindruch, 

2012).This effect of caloric restriction on longevity is conserved across a diverse range of 

species, where numerous factors have been associated with the beneficial factors. Caloric 

restriction has been observed to effect multiple signalling pathways that regulate growth, 

metabolism, oxidative stress response, damage repair, inflammation, autophagy and 

proteostatis, in turn modulating the ageing process (Lopez-Lluch and Navas, 2016). Focussing 

on caloric restriction in flies, with appropriate techniques it has been possible to extend the 

lifespan of Drosophila by reducing food intake. A table provided in supplementary data in 

Piper and Partridge (2007) summarises various dietary restriction experiments performed 

with flies (Table S1: Piper and Partridge, 2007). Dietary restriction experiments have obtained 

divergent results. Some studies involving food dilution or nutrient manipulation resulted in 

no lifespan extension by food reduction but the majority of observations resulted in lifespan 

extension. 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Frankel%20S%5BAuthor%5D&cauthor=true&cauthor_uid=20728527
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The GADD45 protein family plays an important role in stress signalling. A single D-GADD45 

ortholog, when over-expressed in the Drosophila nervous system, has been shown to 

significantly increase lifespan without a decrease in fecundity and locomotor activity 

(Plyusnina et al., 2011). This effect is more noticeable in males than females, with the median 

lifespan of males extending by 73-77%, and that of females by 22-46%, in line with other 

findings showing effects to be dependent on factors such as sex. Over-expression of this gene 

results in more efficient recognition and repair of DNA damage (Barreto et al., 2007) and is 

therefore assumed to be the cause for increased longevity in Drosophila.  

 

It is thought that the insulin/insulin-like signalling (IIS) pathway regulates various physiological 

processes that include the regulation of lifespan as well as stress responses, growth and 

development. Examination of the IIS pathway in Drosophila has determined genes that, by 

reduction of insulin signalling, are able to extend lifespan (Giannakou and Partridge, 2007). 

Processes regulating lifespan extensions by dietary restriction include metabolism, nutrient 

sensing and determination of body size, all of which are regulated by the IIS pathway, leading 

to the interest in testing the role of this pathway in lifespan extensions in mice (Weindruch et 

al., 1986). The identification of the nematode insulin receptor homolog daf-2 as an ageing 

gene also contributed to the interest in testing this pathway in worms (Kenyon et al., 1993). 

Insulin signalling can be reduced via independent disruption of the Insulin-like Receptor (InR), 

a gene which regulates body and organ size and is involved in the development of the 

embryonic nervous system.  

 

The IIS pathway of Drosophila is made up of many components, these include the insulin/IGF 

receptor (dInR) and the insulin receptor substrate (chico); the independent disruption of 

either the insulin/IGF receptor or substrate reduces insulin signalling and, in turn, increases 

lifespan. This pathway also includes the Drosophila transcription factor FOXO (dFOXO) which, 

when phosphorylated, through activation of dInR, reduces insulin signalling due to over-

expression and, in turn, extends lifespan. Nuclear localization of dFOXO is promoted by the 

PTEN gene which, when over-expressed, causes genes involved in longevity to be upregulated 

by dFOXO (Altintas et al., 2016). Figure 1.3 demonstrates how in the IIS pathway, transcription 

factors eventually regulate the expression of target genes, contributing to longevity. Insulin-

like peptides (ILPs) bind to insulin/IGF-1 receptor (dInR) resulting in its phosphorylation. 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Plyusnina%20EN%5BAuthor%5D&cauthor=true&cauthor_uid=21153055
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Binding to the insulin receptor substrate, chico, is reduced due to inhibition of the insulin/IGF-

1 receptor, decreasing the activity of PI3K and the levels of PIP3 converted. This decrease 

leads to decreased activities of dPDK1 and dAkt1 as well as causing the activation of the 

transcription factor dFOXO, which regulates the expression of target genes which contribute 

to longevity.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Conserved longevity-regulatory components of insulin/IGF-1 signalling pathway in 
Drosophila (image reproduced from Altintas et al. (2016)).  

 

As well as genes involved in the IIS pathway, potential ageing genes in other pathways have 

been evaluated. The common property of the genes found is that they are members of 

pathways that appear to connect with the IIS pathway. The target of rapamycin (TOR) 

pathway, a regulator of body size, is one of these pathways connecting with IIS. Inhibition of 

TOR signalling by single gene modulation (modulation of a single gene from this pathway) has 

been found to increase lifespan in Drosophila; this includes expression of dominant-negative 

forms of dTOR or dSK6 or over-expression of dTsc1 or dTsc2 (Kapahi et al., 2004).  

A pathway activated in response to stress, which antagonises IIS is the Jun-N-terminal Kinase 

(JNK) pathway. JNK is known to phosphorylate a variety of transcription factors, enhancing 
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their transcriptional activation potential. This pathway causes nuclear localization of dFOXO, 

for which an increase in JNK signalling is dependent. Extension in lifespan due to this increase 

in JNK signalling has been demonstrated several times including by over-expression of both 

JNK kinase hemipterous (hep), and hsp68 which is induced by JNK signalling (Wang et al., 

2003). JNK signal transduction in Drosophila is summarised in Figure 1.4.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 JNK signal transduction in Drosophila, in which JNKK is encoded by hemipterous 
(hep) and JNK is encoded by basket (Bsk). Phosphorylation activates the AP-1 transcription 
factor complex, where puckered (puc), a phosphatase of Bsk, is induced by AP-1 causing it to 
downregulate the pathway (Wang et al., 2003).  

 

Disruption of the JNK phosphatase, puckered (puc), has also been demonstrated to extend 

lifespan; puc is activated when Drosophila Plenty of SH3s (DPOSH) is over-expressed, which 

also extends lifespan (Seong et al., 2001). A potential ageing gene evaluated based on its role 

in hypothesised mechanisms of ageing, is the elongation factor EF-1alpha, which is required 

for protein synthesis. Reduction of EF-1alpha is associated with senescence whilst over-

expression can extend lifespan (Shepherd et al., 1989).  

 

Research in Drosophila has also identified a critical role for Ras-Erk-ETS signalling in the ageing 

process (Slack et al., 2015). It was shown that inhibition of Ras downstream of IIS signalling 

causes an increase in Drosophila lifespan. The direct reduction of Ras or Erk activity was 

shown to lead to an increased lifespan. In the study by Slack et al. (2015), aop was identified 
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as playing central role in lifespan, as a result of reduced IIS or Ras attenuation. Treatment 

using trametinib, a highly specific inhibitor of the Mek kinase, was found to extend lifespan in 

Drosophila through the prevention of activation of Erk by Ras. A graphical abstract of these 

activities in the Ras-Erk-ETS signalling pathway are shown in Figure 1.5.  

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 1.5 A visual representation of Ras and MEK inhibition in Ras-Erk-ETS signalling and the 
effect that they have on lifespan of Drosophila (extracted from a figure in Slack et al. (2015), 
https://creativecommons.org/licenses/by/4.0/). 

 

Histone deacetylases, Sir2 and rpd3, are genes through which lifespan extension has been 

demonstrated, both of which may operate through mechanisms related to IIS as well as 

dietary restriction. Increased levels of Sir2 have been found to increase lifespan, whilst it is a 

reduction in the levels of rpd3 that have been found to result in lifespan extension. A common 

mechanism between the processes of IIS and dietary restriction has been suggested due to 

the observation of reduced rpd3 levels extending lifespan when diet is not restricted, and not 

having the same effect under dietary restriction (Rogina et al., 2002). RNA levels of Sir2 are 

increased due to reduction of rpd3 expression, directly extending lifespan (Rogina and 

Helfand, 2004). The activity between Sir2 and rpd3, and their relationship with IIS, is further 

observed in findings including the lifespan extension in C. elegans by sir-2.1, an ortholog of 

Sir2 (Partridge et al., 2005).  

https://creativecommons.org/licenses/by/4.0/
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Candidates mediating lifespan have been identified through mutation screening for longevity 

genes. The disruption of both the G-protein coupled receptor methuselah (mth) and the Krebs 

cycle co-transporter Indy have been found to extend lifespan in Drosophila (Lin et al., 1998; 

Rogina et al., 2000). This effect on Indy, however, does not seem to be due to the activity of 

the gene itself but an artefact of genetic background and Wolbachia infection (Toivonen et 

al., 2007). Endogenous peptide ligands of mth, a G protein-coupled receptor, are encoded by 

the stunted (sun) gene, which when mutated have been shown to cause an increase in 

lifespan (Cvejic et al., 2004). The characterization of two endogenous peptide ligands of 

Methuselah, Stunted A and B have been reported. An increase in lifespan is observed where 

flies with mutations in the mth gene encode these ligands, as well as an observation of 

resistance to oxidative stress. The Stunted-Methuselah system is therefore concluded to have 

an involvement in the control of animal ageing. 

 

1.7 GWAS IN DROSOPHILA 
 

Single-gene association studies have been carried out, comparing the allele frequency 

between long-lived subjects and younger controls and allowing for genotype-specific relative 

mortality risks to be estimated. APOE and FOXO3A are the only genes consistently replicated 

across Drosophila populations in such studies (Gerdes et al., 2000; Bathum et al., 2006).  

 

Burke et al. (2013) used next-generation DNA sequencing and compared estimated allele and 

haplotype frequencies in the oldest surviving Drosophila with those of randomly sampled 

Drosophila. Gene Ontology (GO) enrichment analysis was used to make sense of the findings, 

which provides a system for classifying genes based on their molecular functions, biological 

processes and cellular components. In this analysis, each gene may be described by multiple 

terms, and allows for the grouping of genes that may share common functions or processes. 

Findings in the Burke et al. (2013) study showed GO enrichment terms ‘defence response’ and 

‘glutathione metabolic process’ being most common in their genes found under significant 

peaks, leading to association between bacterial defence and glutathione transferase genes 

with extreme longevity. This study observed that five out of eight regions with significant 

effects on longevity were in regions of suppressed recombination, which are much more likely 
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to harbour unconditionally deleterious alleles of large effect compared to regions of normal 

recombination. Such regions of suppressed recombination include telomeric and centromeric 

regions of the chromosome, suggesting that in future longevity research, these would be 

areas of interest to further investigate.  

 

Ivanov et al. (2015) used lines from the Drosophila melanogaster Genetic Reference Panel 

(DGRP) to perform GWAS, observing considerable genetic variation in lifespan and broad-

sense heritability. Polygenic score analysis was used to find the additive effects of common 

SNPs, causing a small proportion of the lifespan variation observed (~4.7%). Several of the 

longevity associated genes found by this study are involved in processes which are known to 

impact ageing, however the function of others is not known but provide opportunity for 

further, promising experimental examination. Several genes were identified in this study, 

including through gene-based analysis, in either gene regions or gene regions extended into 

±5 Kb of flanking sequences. These genes included CG11523, a gene found to have a GSK3𝛽 

interaction domain that is known to be a crucial component of the TOR pathway in human 

cell lines and the Neprilysin gene that has been suggested to be essential for female fitness 

(Ivanov et al., 2015). Among the top-ranked 100 genes in this study (P<4.79 x 10−6), Chrb, slif, 

mipp2, dredd, RpS9 and dm were also found to contribute significantly to the enrichment of 

the TOR pathway with GO enrichment analysis highlighting genes involved in carbohydrate 

metabolism as important for lifespan. However, none of these SNPs reached genome-wide 

significance level prompting the hypothesis of possible combined effect of sets of SNPs on 

longevity. 

 

Longevity associated genes in Drosophila, discussed in this chapter, have been summarised 

below in Table 1.1. 
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Longevity gene Additional observations Genetic 
Manipulation 

Lifespan increase Publication 

mth (Methuselah) Overexpression of Methuselah (mth) in the insulin-
producing cells of the brain, extends lifespan and 
enhances stress resistance in flies. 

Over expression 9-28% in males and 25-33% in females 
maximum lifespan 

Gimenez et al., 2013 

 Reducing signalling through Methuselah (mth), 
targeted to the insulin-producing cells of the brain, 
extends lifespan and enhances stress resistance in 
flies. 

RNA interference  Maximum lifespan extended by 37% and 50% 
in males and females respectively 

Gimenez et al., 2013 

 Mutants displayed enhanced resistance to various 
forms of stress. 

Mutation Maximum lifespan approximately 35% higher Lin et al., 1998 

chico (chico)  Knockout Lifespan extension up to 48% increase Clancy et al., 2001 

Indy (I’m Not Dead 
Yet) 

Flies heterozygotic for a disruption have extended 
maximum lifespan of 45% and those homozygotes 
for the disruption show only a 10-20% increase in 
mean lifespan. 

Knockout Extended maximum lifespan of 45% and a 10-
20% increase in mean lifespan 

Rogina et al., 2000 

 Reduction of Indy leads to a significant lifespan 
extension. 

Mutations Average female lifespan is 11% higher; 
Average male lifespan is 26% higher 

Wang et al., 2008  

Cat (Catalase) Overexpression of catalase results in a slower rate 
of mortality acceleration and a delayed loss in 
physical performance. 

Over expression Lifespan is one-third higher Orr et al., 1994  

Sod (Superoxide 
dismutase) 

Overexpression of catalase results in a slower rate 
of mortality acceleration and a delayed loss in 
physical performance. 

Over expression Lifespan is one-third higher Orr et al., 1994  

G6PD 
(Zwischenferment) 
 

 Over expression  Luckinbill et al., 1990  

Hsp26 and Hsp27 
(Heat shock 
protein 26 and 27) 

Overexpression increased stress resistance. Over expression Average lifespan is 30% higher Wang et al., 2004 

mei-41 (meiotic 
41) 

 Over expression  Symphorien & 
Woodruff, 2003 

dFOXO (forkhead 
box, sub-group O) 
 

Age-specific mortality analysis showed that 
overexpression of dFOXO in the fat-body of adult 
females increased median lowered the age-specific 

Over expression Median lifespan is 21-33% higher Giannakou et al., 2007 

Table 1.1 Summary of longevity genes in Drosophila discussed in Chapter 1. 
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mortality compared to control flies at all ages. The 
effects of removal of dFOXO overexpression at 
different ages closely mirrored those of induction of 
expression. 

Sir2 (Sirtuin 2) Moderate (3-fold) Sir2 overexpression in the fat 
body during adulthood only can promote longevity 
in both sexes. 

Over expression Average lifespan is 13% higher Hoffmann et al., 2013 

 Decreased expression of the Sir2 gene in all cells 
caused lethality during development. Suppression 
of the Sir2 in neurons (10-30% median lifespan 
reduction) and ubiquitous silencing of the Sir2-like 
genes shortened lifespans.  

RNA interference Median lifespan is 10-30% higher Kusama at al., 2006 

 A decrease in Sir2 blocks the life-extending effect of 
caloric reduction or rpd3 mutations. 

Over expression Lifespan is up to 57% higher Rogina & Helfand, 2004  

GADD45 (Growth 
arrest and DNA 
damage-inducible 
45) 

Overexpression in the nervous system leads to a 
significantly increase of Drosophila lifespan without 
a decrease in fecundity and locomotor activity.  

Over expression Maximum lifespan is up to 59% and 50% 
higher in males and females respectively. 
Median lifespan is up to 77% and 46% higher 
in males and females respectively. 

Plyusnina et al., 2011 

dInR (Insulin-like 
receptor) 
 

Mutations result in dwarf females with extended 
lifespan of up to 85% and dwarf males with reduced 
late age-specific mortality 

Mutation Average female lifespan is up to 85% higher Tatar et al., 2001 

dTOR (Target of 
rapamycin) 

 Dominant negative 
mutation 

 Kapahi et al., 2004 

dSk6  Dominant negative 
mutation 

 Kapahi et al., 2004 

dTsc1 (dTsc1)  Over expression  Kapahi et al., 2004 

dTsc2 (dTsc2)  Over expression  Kapahi et al., 2004 

Hep (hemipterous)  Over expression  Wang et al., 2003 

hsp68 (Heat shock 
protein 68) 

 Over expression  Wang et al., 2003 

 Genetic manipulations that improve proliferative 
homeostasis extend lifespan. 

Over expression Average lifespan is 20% higher Biteau et al., 2010 

puc (puckered) Heterozygous loss-of-function mutations extend 
lifespan and increase resistance to oxidative stress. 

Mutation  Wang et al., 2003 

EF-1alpha 
(eukaryotic 
translation 

The decrease in protein synthesis that accompanies 
ageing is preceded by a decrease in elongation 
factor EF-1 alpha protein and mRNA. 

Over expression  Shepherd et al., 1989 
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elongation factor 1 
alpha 1) 

Rpd3 (Histone 
deacetylase 1) 

 Mutation Mutations extend lifespan by 33% and 52% in 
males and females respectively.  

Rogina et al., 2002 

DPOSH (Plenty of 
SH3s) 

 Over expression Average lifespan is 14% higher Seong et al., 2001 

Eip71CD 
(Methionine 
sulfoxide 
reductase A) 

Overexpression in the nervous system extended 
lifespan by up to 70%, increased resistance to 
oxidative stress, and delayed the onset of 
senescence-induced decline in activity levels and 
reproductive capacity. 

Over expression Lifespan is up to 70% higher Ruan et al., 2002 

14-3-3-epsilon (14-
3-3-epsilon) 

Loss of 14-3-3e results in increased stress-induced 
apoptosis, growth repression and extended lifespan 
of flies, in a dFOXO dependent manner.  

Mutation Average male lifespan is up to 25% higher; 
average female lifespan is up to 49% higher 

Nielsen et al., 2008 

Cat (Catalase) Overexpression of catalase and Sod1 result in a one-
third lifespan extension, a slower rate of mortality 
acceleration, and a delayed loss in physical 
performance. 

Over expression Lifespan is one third higher Orr and Sohal, 1994 

Cu/ZnSOD 
(Copper- and zinc-
containing 
superoxide 
dismutase ) 

 Over expression Average lifespan is up to 48% higher Sun and Tower, 1999 

sun (stunted) Mutations increase lifespan and resistance to 
oxidative stress. 

Mutation  Cvejic et al., 2004 
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1.8 BIOINFORMATICS TECHNIQUES USED IN ANALYSES OF GWAS DATA 
 

GWAS have identified novel genetic variants for a wide variety of phenotypes, however these 

genetic variants often only account for a small percentage of the inherited component of 

phenotype. In recent years, longevity GWAS data have been meta-analysed, revolutionizing 

the field of human genetics by allowing the quantitative combination of data from multiple 

studies. This data combination improves the power to detect more associations to longevity 

and investigates the heterogeneity of these associations across diverse datasets and study 

populations.  

 

Single SNP association analysis is the most commonly applied approach in GWAS, however, 

often SNPs identified have small effects from which limited biological insight can be inferred. 

More advanced approaches have therefore been used to interpret GWAS data, analysing the 

combined effect of a SNP set grouped per pathway or gene region. Gene and gene-set analysis 

are more powerful types of analyses, in comparison with single-SNP analysis (Wang et al., 

2011). Whereas gene analysis tests the joint association of all SNPs in a gene that share the 

same phenotypes, gene-set analysis tests phenotypic association with genetic variants in a 

group of functionally related genes. An advantage of grouping genes as described is that this 

significantly reduces the amount of testing required, and potentially allows for the detection 

of any effects that weaker associations may have but would otherwise have been missed.  

 

In gene-set analysis for all species, gene boundaries are to be set for which the criteria often 

differ between approaches. For example, it has been proposed by Wang et al. (2007) to use 

500 Kb both upstream and downstream of the gene coding regions, to incorporate SNPs in 

non-coding regions, whereas the region proposed by Chen et al. (2010) was much smaller at 

5 Kb. A gene region is often defined to include both genic region and boundary region, with 

linkage disequilibrium (LD) and gene regulation pattern taken into consideration. Approaches 

have also been proposed which involve the inclusion of SNPs in LD with the gene; such 

strategies proposed by Bush et al. (2009) and Hong et al. (2009) are aimed to cover SNPs 

playing regulatory roles in gene expression and/or linking to causal variants within the same 

LD block. However, the signal strength for a gene set using this approach may be reduced due 
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to the unavoidable inclusion of additional irrelevant SNPs or exclusion of regulatory regions 

located outside 5 Kb or 500 Kb flanking regions (e.g. enhancers).  

 

An approach, based on multiple linear regression, has recently been developed incorporating 

LD between markers and detecting multi-marker effects, and is known as MAGMA (Multi-

marker Analysis of GenoMic Annotation) (de Leeuw et al., 2015). This is a tool used for gene- 

and gene-set analysis of GWAS data, mapping the SNP matrix for a gene onto its principle 

components, eliminating those principle components with very small contribution. The linear 

regression model then uses the remaining principle components as predictors for 

phenotypes, and an F-test to compute the gene P-value. The results of a study by de Leeuw 

et al. (2015) showed MAGMA being not only quicker than other methods used, but also 

obtaining greater statistical power. When raw genotype data is not available for analysis, 

MAGMA also provides a SNP-wise model for so called summary statistics, for cases in which 

only SNP P-values are available. This analyses the individual SNPs in a gene, then combines 

the resulting SNP P-values into a gene test-statistic.  

 

When individual genotype data is available, an approach suggested in Lips et al. (2012) could 

be used. In their study the authors used two data samples, ISC (International Schizophrenia 

Consortium) case control sample and GAIN (Genetic Association Information Network) 

schizophrenia dataset, in which all SNPs associations were analysed using additive models of 

allele counts. For association analyses of both datasets, Cochran-Mantel-Haenszel tests 

implemented in PLINK (Purcell et al., 2007), a tool set that allows rapid manipulation and 

analysis of large datasets. Analysis was carried out separately for the datasets, with GAIN 

being split into two samples. Using Stouffer’s weighted Z-transport method (Whitlock, 2005), 

empirical P-values from the three datasets were combined and an overall P-value was 

obtained.  

 

Often it is the results calculated to be most significant in mutation studies that are reported 

by researchers, however, in some cases SNPs may be assigned weights, dependent on the 

probability that they seem plausible in biological terms. For example, previously to assign 

weights to SNPs in GWAS, information on genome-wide linkage has been incorporated 
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(Roeder et al., 2006) as well as the knowledge of previous probabilities of disease association 

(Pe’er et al., 2006).  

 

Wang et al. (2007) demonstrated that pathway-based approaches might complement the 

most significant SNPs/genes approach for interpreting GWAS data in complex studies. This 

study tested two alternative approaches to achieve single P-values for each gene. The first 

approach looked at all SNPs surrounding a gene and assigned the SNP with the most 

significant P-value to this gene. However, this approach increased bias in the study, as there 

were likely to be more-significant P-values around larger genes. The second approach 

computed a P-value from multiple SNPs, using a Simes method (Sarkar & Chang, 1997). For N 

SNPs ranked by their P-value, 𝑝(1), … , 𝑝(𝑁), the Simes P-value is calculated as min {𝑝(𝑖)N/i}, 

where 1≤ i ≤ N (Simes, 1986). This approach calculates an overall P-value for the group of 

ranked SNPs, however the use of this over-conservative approach may lead to loss of power.   

 

Genetic linkage analysis is a tool often used to detect the chromosomal location of genes 

which cause disease. Often linkage studies require the identification of genetic markers, 

usually SNPs, on a region of a chromosome. The length of this selected region is then reduced 

and narrowed until the gene of genetic variant of interest is identified. A whole-genome scan 

for genetic linkage was performed by Kerber et al. (2012) on individuals from the Utah 

Population Database, in which high levels of both familial longevity and individual longevity 

were exhibited. 

 

For the enrichment of modest associations with a complex disease or trait, pre-specified gene 

sets can be evaluated, using Meta-Analysis Gene-set Enrichment of variant Associations 

(MAGENTA) (Segrè et al., 2010). This approach maps SNPs onto genes, with each gene then 

being assigned a gene association score, where this score is a function of its regional SNP 

association P-values. Next, cofounding effects on gene association scores are identified and 

corrected for, enabling the use of meta-analyses without requirement of genotype data. The 

final step involves a Gene Set Enrichment Analysis (GSEA)-like statistical test being applied to 

predefined biologically relevant gene sets, comparing these to randomly sampled gene sets 

from the genome, to determine whether any of the gene sets are enriched for highly ranked 

gene association scores.  
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These bioinformatics techniques described, although providing some powerful analyses of 

SNPs, do not explain their distribution across the genome or consider the physical 3D 

organization of the genome that governs co-location and co-regulation of seemingly distant 

regions within the 3D space of the cell nucleus. The knowledge of the physical structure of 

the genome generated by chromosome conformation capture techniques (so called Hi-C 

interaction datasets) and available for the Drosophila genome, combined with GWAS datasets 

via a network approach is proposed in this study aiming to shed a new light onto novel genetic 

factors associated with longevity.  

 

1.9 HYPOTHESES, AIMS AND OBJECTIVES OF THIS STUDY 
 

To predict novel genomic regions associated with longevity, we hypothesised that the 3D 

architecture of the genome governs the co-location of longevity-associated genes/genomic 

regions with novel unknown regions that may share biological functions of importance to the 

process of longevity.  

To identify novel longevity-associated genes we further hypothesised that SNPs in genes, 

residing within co-located genomic regions and sharing the same biological function, may 

influence longevity either independently or have a cumulative effect on longevity i.e. 

alterations in one or several genes may be responsible for the same longevity-related 

phenotype.  

To explore the role of non-coding SNPs we hypothesised that SNPs residing in topologically 

associated domain (TAD) border regions may cause disruption to TADs and a change in 

expression of the nearby gene(s) by forming looping interactions with regions in adjacent TADs 

and “hijacking” regulatory elements residing within these adjacent interacting regions.  

To assess the occurrence of non-coding SNPs in transcription factor binding sites (TFBSs), we 

hypothesised that transcription factors may recognise a certain genomic structure, e.g. non-B 

DNA structures, rather than specific sequence motifs.  

We further hypothesised that both non-coding SNPs and their potential target genes also 

reside within co-located loci.   
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The aims of this study were to develop a mathematical model based on network approaches 

that utilise the knowledge that we have of the 3D structure of the Drosophila genome and 

two GWAS datasets, along with known longevity-associated genes for predicting novel 

genes/genomic regions that may play a role in longevity. This approach considered the 

biological functions of genes observed, focussing on those that are longevity related.  

To explore the occurrence of SNPs in real datasets for TADs and TFBSs, their occurrences were 

compared against matched control datasets. For TFBSs, their occurrence in non-B DNA 

structures such as slipped, cruciform, triplexes and tetraplexes, formed on direct, inverted and 

mirrored repeats and G-quartets were considered and over-representation of non-coding 

SNPs in these structures was explored. 

To identify target genes for non-coding SNPs, Hi-C data with a higher resolution was used. 

This analysis sought for regions that had the strongest interaction frequencies with regions 

containing non-coding SNPs, where genes residing in these highly interacting regions were 

then further explored as target genes for these non-coding SNPs.  

 

1.10 STRUCTURE OF DISSERTATION 
 

Following from this introduction chapter, in Chapter 2 the data used in the analyses of this 

dissertation is described and the laboratory techniques used to obtain this data are discussed. 

In Chapter 3, networks are introduced and various network measures are discussed. In this 

chapter, the statistical tests and bioinformatics techniques used in the subsequent analyses 

performed in this study are also described, as well as the software used for biological 

interpretation. The methods and results of network analysis for coding SNPs are discussed in 

Chapter 4. The method and results for the analysis of non-coding SNPs in TAD borders and 

TFBS regions and for identification of target genes for non-coding SNPs are discussed in 

Chapter 5. The results from all analyses described in Chapters 4 and 5 are then summarised 

in Chapter 6, and their implications are discussed.  
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Chapter 2 

2                            DATA DESCRIPTION 
 

This study focuses on the use of two Drosophila longevity GWAS datasets along with Hi-C data 

providing fine resolution chromatin structure insight of Drosophila. We discuss how the GWAS 

data was obtained and also look at different molecular techniques used over the last few 

decades which have allowed for interactions between loci in the genome to be quantified and 

consider their strengths and weaknesses. In this study, a number of datasets have been used 

to look at specific genes or regions on the genome for further exploration of their structures 

and how they interact. In this chapter we describe the datasets used to map positions of 

Transcription Factor Binding Sites (TFBS) and Topologically Associated Domains (TADs) to the 

Drosophila genome, and also explain how matched control datasets were created for 

comparative analysis.  
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2.1 GWAS DATASETS OF DROSOPHILA USED IN THIS STUDY  
 

The published datasets generated by Burke et al. (2013) and Ivanov et al. (2015), containing 

respectively ~2.3 million and ~2 million SNPs, were used as references sources in this study. 

In both datasets, the data presented allowed for the calculation of, or provided information 

about, each recorded SNP’s significance of association with longevity. 

 

2.1.1 Dataset 1: Synthetic GWAS Dataset 
 

The first dataset was obtained from a study by Burke et al. (2013) in which a “synthetic” 

population of Drosophila was derived from a small number of inbred founders; it will be 

referred to as the Synthetic GWAS dataset. These founders consisted of two independent sets 

of seven inbred Drosophila lines with another founding line added to both sets were crossed 

to initiate two synthetic recombinant populations, A and B. Populations A and B were then 

maintained as four independent large populations (A1/A2, B1/B2). Next-generation 

sequencing was used to identify allele frequencies in the ‘young’ control group, comprising 

120 14-day-old females, and the last surviving ~2% of females from the same cohort (an ‘old’ 

group) (see Figure 2.1 for a timeline summary). The occurrence of SNPs in each of the eight 

‘old’ samples and eight ‘young’ control samples was recorded, resulting in ~1.2M SNPs in the 

A populations and ~1.1M SNPs in the B populations [see Burke et al. (2013) for details]. The 

SNPs for both populations were combined and for this dataset, when duplicates of SNPs were 

observed across populations, each was recorded only once by combining the haplotype data 

for each and summing the allele frequencies for calculation.  
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Figure 2.1 A timeline summarising the way in which DNA was extracted to form the control and older dataset in the Synthetic GWAS dataset 
(produced using information from Burke et al. 2013).

Four synthetic populations, 

during standardization 

generation, flies develop in vials 

with cornmeal-dextrose medium. 

Flies moved into plexiglass 

cages and fed media 

supplemented with live 

yeast paste to stimulate 

oviposition. 

Eggs collected within 12-hour oviposition windows to ensure 

that individuals in the subsequent generation were as close to 

the same age as possible. 

During cohort assay, 120 14-day-old females (from egg) 

were collected from each cohort and their DNA extracted in 

bulk for later genomic library preparation (control).  

Approximately 12,000 

14-day-old individuals 

then transferred from 

vials and equally 

divided into 12 

plexiglass cages in 

which to age.  

Flies fed fresh media every other day and before 

feeding, dead flies were removed and counted. 

For 1 of the 12 cages per 

population, flies were 

removed, counted and sexed 

every day (to allow 

generation of detailed 

population survivorship 

curves. 

For the remaining 11 of the 

12 cages per population, flies 

were removed and counted 

every other day (to ensure 

that excess dead flies did not 

accumulate in each cage, 

and to verify the number of 

flies allocated to each cage. 

The last surviving ~2% 

of females in each 

cage were retained for 

genomic DNA library 

preparation (older). 

DAY 0 DAY 14 
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2.1.2 Dataset 2: Drosophila Genetic Reference Panel (DGRP) GWAS Dataset 
 

The second dataset was obtained from a study by Ivanov et al. (2015) in which GWAS was 

performed on the Drosophila Genetic Reference Panel (DGRP), Freeze 2.0 (Mackay et al., 2012, 

Huang et al., 2014). This comprises 205 D. melanogaster lines derived from 20 generations of 

full-sib mating from inseminated wild-type females caught from Raleigh, North Carolina. 

Lifespan data was available for virgin females for 197 DGRP lines, with ~25 females per line. 

A total of 2,193,745 SNPs were recorded together with the corresponding P-values, 

quantifying association with lifespan. P-values were calculated using linear regression under 

an additive model with four first principal components and the presence/absence of 

Wolbachia pipientis infection included as a covariate [see Ivanov et al. (2015) for details]. 

Henceforth, this dataset will be referred to as the DGRP GWAS data. 

 

2.2 BIOLOGICAL TECHNIQUES FOR UNRAVELLING 3D CHROMATIN STRUCTURE  
 

Chromosome conformation capture (3C) techniques have been developed to study chromatin 

structure at a much finer resolution than by using microscopy. Chromosome conformation 

capture (3C) technique is a set of molecular biology methods used to quantify interactions 

between loci in the genome. The protocol determines DNA contact frequencies by quantifying 

the number of interactions between loci which is inversely proportional to the distance 

between loci within the 3D cell nucleus. These interactions include those between loci 

separated on the linear genome by up to thousands of nucleotides or that even occur on 

different chromosomes. Such interactions may result in biological functions, for example 

promoter-enhancer interaction may influence expression. In 2002, Dekker et al. (2002) were 

the first to report 3C assay, and since then it has become the most frequently used method 

to demonstrate interactions between two unique loci (Dekker et al., 2002).  

 

2.2.1 Chromosome Conformation Capture (3C) 
 

Evolving both qualitatively and quantitatively, 3C based methods have gradually improved as 

technology has advanced. There are now several 3C methods available, with the main 

difference between them being their scope. The method with the smallest scope is 3C, known 



41 
 

as a ‘one versus one’ strategy, which quantifies the interactions between two predefined loci 

on the genome, which can be either inter- or intra- chromosomal (Fullwood et al., 2009). The 

interaction frequency measured between two fragments correlates to their spatial closeness 

in the 3D structure of the genome.  

The initial step in 3C and 3C-derived methods is to establish a representation of the 3D 

organization of the DNA (de Wit & de Laat, 2012). Chromatin in the DNA is fixed, often using 

formaldehyde as a fixative (Dekker et al., 2002) and restriction enzymes recognizing a certain 

sequence of base pairs (bp) are then used to cut the fixed chromatin. A simple example of this 

cutting is given in Figure 2.2, in which it is shown where DNA would be cut at a selected 2 bp 

and 3 bp sequence pattern recognised by restriction enzymes. The sticky ends of the cross-

linked DNA fragments are re-ligated under diluted conditions to promote intramolecular 

ligations, for example between cross-linked fragments. This allows for the ligation of those 

DNA fragments that co-localise in 3D space but are not in close proximity on a linear genome. 

The 3D conformation of a locus is then established by measuring the number of ligation 

events between neighbouring or non-neighbouring sites. In 3C, this is done by PCR 

amplification of selected ligation junctions (de Wit & de Laat, 2012). The steps of this method, 

and all other 3C methods discussed in this chapter, are illustrated in Figure 2.3. 

Resolution of this technique will depend on the size of restriction enzyme used. A large base 

cutter results in less frequent digestion of fragments of DNA, resulting in larger distances 

between cuts of DNA and therefore lower resolution of data. Although more complex, a small 

base cutter provides a higher resolution of analysis due to more frequent digestion of 

fragments of DNA, resulting in shorter distances between cuts.  

 

 

 

 

 

Figure 2.2 A hypothetical 2 bp cutter shown on the first string of DNA, in which the DNA is cut 
at a recognised pattern ‘TA’, resulting in shorter DNA fragment cuts and therefore higher 3C 
resolution than the second string using a 3 bp cutter, recognising the base pattern ‘TAG’.  
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Figure 2.3 An overview of the 3C-derived methods described in this chapter, where the top 
panel shows the steps common to all methods, and the vertical panels below explain the 
following steps, which are specific to each different 3C method. ‘H’ represents a 6 bp cutter 
restriction enzyme and ‘D’ a 4 bp cutter restriction enzyme (de Wit & de Laat, 2012).  

 

3C is most effectively used in cases when there is prior knowledge about the region/s of 

interest as this technique works most efficiently when just one region (or a small number of 

regions) are selected to explore. As well as 3C’s inefficiency to create large libraries of 

interaction frequencies with ease, there are other limitations of this technique, which 

includes the inability to determine the proximity of individual haplotype chromosomes – 

lacking the ability to distinguish whether the long-range contact is made between the 

paternal or the maternal chromosome, or both (Barutcu et al., 2016). The accuracy of 

detection of interactions is also limited, those within a range of approximately 1 megabase 

(Mb) are attainable, however as interaction distance range increases, accuracy of technique 

decreases.   
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2.2.2 Chromosome Conformation Capture (4C) 
 

The larger the distances become between separated sites, the more infrequent ligation 

products become to allow accurate quantifying by 3C. A new technique was required whereby 

if there was no prior knowledge about interacting region/s, for example, if we consider target 

genes for SNPs in non-coding regions, in which the position of a SNP is known but their target 

genes are not. The position of a SNP’s target gene is not necessarily that lying directly next to 

each SNP on the genome, and so an approach was required in which the interactions between 

one region with all other regions are specified.  

A solution for this was the combination of 3C technology with microarrays, used to analyse 

the contacts of a selected genomic site with all of the genomic fragments that are represented 

on the array. A number of approaches referred to as ‘one versus all’ were developed, all 

referred to as 4C methods. These methods include chromosome conformation capture-on-

chip (ChIP), open-ended 3C, olfactory receptor 3C and circular 3C, in which interactions are 

captured between one locus and all other genomic loci. The most popularly of these methods 

is ChIP which, in brief, processes the ligated 3C template with a second round of DNA 

digestion and ligation to create small DNA circles (de Wit & de Laat, 2012). These DNA circles 

are then used to perform inverse PCR, allowing the known sequence to amplify the unknown 

sequence ligated to it. These sequences are then analysed using microarrays (de Wit & de 

Laat, 2012).  

Results obtained from a 4C experiment should be carefully looked at to ensure that for all 

cases, high interaction frequencies correspond to existing long-range interactions. If this is 

not the case, it may be that frequent ligation events have caused poor crosslinking during 

experiment, resulting in a high false positive rate from frequent random ligation events 

(Barutcu et al., 2016).  

 

2.2.3 Chromosome Conformation Capture Carbon Copy (5C) 
 

Similar to 3D methods, prior knowledge of regions is required for 5C techniques, however 

with the difference, and advantage, being the size of the predefined region/s of interest. 

Unlike the 3C method, this 5C method is able to explore a group of neighbouring regions, 
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hence why this approach is known as a ‘many versus many’ strategy. This method processes 

the ligated 3C template again, with detections then made by ligating universal primers to all 

fragments. DNA is recombined back into double-helix form at ligation junctions, as it was 

found in the original 3C library, with the use of hundreds of primers. Finally, DNA fragments 

are amplified using PCR and deep sequencing is used to detect genomic location (Ferraiuolo 

et al., 2012).  

Such technique design has useful biological implications, for example for identifying  

important processes in the genome occurring as the result of physical interactions between 

enhancers and promotors with genes, with a detection range from a few base pairs up to 

approximately 1Mb. However, one disadvantage of this technique due to a somewhat limited 

detection range is its inability to measure more remote interactions, with another 

disadvantage being that with a relatively low coverage, it is deemed unsuitable for conducting 

genome-wide complex interaction search, and therefore in order to derive useful results, 

prior knowledge is again required.   

 

2.2.4 Hi-C 
 

Finally, the first of the 3C methods to be truly genome-wide is Hi-C. Using high-throughput 

sequencing to find the nucleotide sequence of fragments, this was the first ‘all versus all’ 

strategy to be developed. In this method, the procedure for creating a 3C template is slightly 

adjusted, and before ligation, the restriction enzymes are filled in with biotin-labelled 

nucleotides (Lieberman-Aiden et al., 2009). This facilitates selective purification of ligation 

junctions that are then directly sequenced (Dekker et al., 2013). This ‘all versus all’ approach 

is ideal for the exploration of genome folding in which there is no prior knowledge of regions 

of interest in a study, especially in the case of my studies in which the aim is to discover new 

regions of the genome containing genes with potential to influence longevity.  

Despite being the most advanced of the techniques previously discussed, Hi-C still has its 

limitations, with the first being due to the way in which the interaction frequencies are 

obtained. Such interactions are measured between millions of cells at one time, with data 

from these interactions resulting from a so-called ‘snapshot’ or a population average and 
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therefore from this data it is not possible to draw conclusions about 3D proximity within 

specific cells. Another aspect of this technique to consider is the heterogeneity of fragment 

digestion, which does not guarantee the specific whereabouts of restriction enzymes cutting 

at their target sequence. The inability to control the lengths of fragments being cut is 

something that should be taken into consideration when choosing the size of binned regions 

to explore interactions for, with smaller bin regions having a higher frequency resolution due 

to the way in which technique is performed and interactions are counted. All chromosome 

conformation capture techniques discussed are summarised in Figure 2.4, in which the 

coloured boxes represent different interacting fragments on the genome and the coloured 

arrows between these fragments indicate the interactions identified by different techniques. 

 

 

Figure 2.4 Schematic representation of fragment interactions measured by chromosome 
conformation capture techniques, 3C, 4C, 5C and Hi-C. 

 

Interaction frequencies presented in Hi-C datasets take values greater than 1 due to the way 

in which these frequencies are measured, as shown in Figure 2.5. Chromosomes are cut using 

restriction enzymes recognizing a specific pattern, as previously mentioned in Figure 2.3 as 

‘H’ and ‘D’, in this example ‘AATAGC’. The interactions between these unevenly cut portions 

are then measured. These unevenly cut portions are then binned (grouped and separated) 

into 80,000 base regions, in this example. The frequency of the interactions previously 

measured by 3C techniques are then counted between these 80 Kb bins. In the example in 

Figure 2.5, there would be one interaction counted between bin 1 and itself, one interaction 

between bin 1 and bin 2, two interactions between bin 2 and itself and between bin 2 and 3 

there would also be two interactions counted. 

 

3C                                        4C                                          5C                                           Hi-C  
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Figure 2.5 Counting interaction frequencies, a basic example of how a restriction enzyme 
would be used to cut a chromosome and the way in which interaction frequencies are 
measured between the cut portions.  

 

2.3 HI-C INTERACTION DATASET FOR DROSOPHILA  
 

To measure co-location of genomic regions, datasets of intra- and inter-chromosomal 

interactions at 10 Kb and 80 Kb resolution, obtained by Sexton et al. (2012) and normalised 

to avoid any biases introduced by the experimental procedure, were downloaded from GEO 

database (accession number GSM849422). A low-frequency Hi-C read processing was used to 

normalise this interaction data (Yaffe and Tanay, 2011). A dataset of chromosome positions 

and their corresponding bins (example for 80 Kb bins shown in Table 2.1), is used to interpret 

Hi-C data and to identify the exact positions for which interaction data is provided. 
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Table 2.1 An example of Hi-C bin position data and corresponding genomic regions.  

 

 

 

 

 

 

 

*Note that in this Hi-C dataset, bins 1-287 correspond to chromosome 2L, bins 288-551 to 
chromosome 2R, bins 552-858 to chromosome 3L, bins 859-1207 to chromosome 3R, bins 1208-1223 
to chromosome 4 and bins 1224-1503 to chromosome X. 

 

An example of a Hi-C interaction dataset shown in Table 2.2, consists of three columns. The 

first two columns describing 80 Kb regions, are represented by the corresponding bin 

numbers, with bin 1 containing positions 0-80,000, bin 2 containing positions 80,000-160,000 

and so on as recorded in Table 2.1. The third column contains the observed frequency of 

interactions between these two bins stated.  

 

Table 2.2 Format in which Hi-C interaction data is recorded.  

 

 

 

 

 

 

 

 

Bin number Chromosome Start position End position 

1 2L 0 80000 

2 2L 80000 160000 

3 2L 160000 240000 

4 2L 240000 320000 

5 2L 320000 400000 

6 2L 400000 480000 

7 2L 480000 560000 

8 2L 560000 640000 

9 2L 640000 720000 

10 2L 720000  800000 

bin1 bin2 normalised count 

1 1 2457 

1 2 984 

1 3 204 

1 4 152 

1 5 92 

1 6 83 

1 7 78 

1 8 56 

1 9 44 

1 10 36 



48 
 

2.4 TRANSCRIPTION FACTOR BINDING SITE/CIS-REGULATORY MODULES DATASET 
 

A comprehensive database of experimentally verified Drosophila regulatory sequences, 

comprising of both cis-regulatory modules (CRMs) such as enhancers, silencers and proximal 

promotor sequences and TFBSs is provided by RedFly (http://redfly.ccr.buffalo.edu). The 

CRMs dataset, in which there are currently 23,990 CRMs associated with 1604 genes, provides 

genomic positions for all modules. The TFBS dataset provides the names of all recorded TFBSs 

in Drosophila. This database includes all experimentally verified fly regulatory elements, 

including recorded start and end genome positions of each TFBS, its corresponding binding 

TF and in some cases, a target gene. Sequences for each TFBS were also given by this database, 

with sizes ranging from 3 bp to over 1000 bp, and for many TFs, there were a number of 

corresponding TFBSs with sequences recorded. The total number of TFBS sequences recorded 

in this dataset at the time of analysis was 2209. These 2209 recorded TFBSs recognised by 192 

transcription factors, acting on 248 target genes. 

Each TFBS sequence was extended by 50 bp both up- and down-stream during the pre-

processing of data, using TFBS positions and whole chromosome datasets. This extension of 

sequences enabled the taking into account of flanking regions and allowing for consideration 

of the true size of the TFBS not just the region to which a specific TF binds.  

2.5 TOPOLIGICALLY ASSOCIATED DOMAINS DATASET 
 

A database from Supplementary Data 1 in Ramírez et al. (2018) was used, in which TAD region 

positions (beginning and end) were recorded for the Drosophila genome. The authors 

achieved a high sequencing depth, with the use of Dpnll as a restriction enzyme to identify 

these TADs. A total of 2846 TAD regions were recorded with a median TAD length being 26 

Kb. This study by Ramírez et al. (2018) obtained Hi-C data for Kc167 cells from Li et al. (2015) 

and Cubeñas-Potts et al. (2017), producing corrected Hi-C contact matrices at restriction-

fragment resolution. This TAD data was post-processed to compile TAD border regions for 

further exploration in this study. 

The post-processing of TAD data in this study involved selecting the borders of each TAD by 

taking the base position at which a TAD ends and the next adjacent TAD to this begins and 

adding 100 bp to each side of this position. Therefore, a total of 2847 TAD borders were 

http://redfly.ccr.buffalo.edu/
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selected, where all TAD border regions had a length of 200 bp. This selected length took into 

consideration the smallest and largest lengths of TAD regions recorded, ensuring that the TAD 

border region allowed for observation of a large enough region without any overlapping with 

other TAD border regions. Matched controls (see below) were also created for the “real” TAD 

border regions. A total of 100 controls were created for each TAD border region, each of 

length 200 bp selected from the same chromosome but not overlapping with any “real” TAD 

borders.  

  

2.6 CREATION OF MATCHED CONTROL DATASETS 
 

To assess the significance of findings, matched control datasets of TFBSs and TAD boundary 

regions were created for statistical analysis. For each sequence constituting TFBS or TAD 

boundary regions recorded in the “real” dataset, a control sequence was selected from the 

same chromosome from which the real data was derived and matching the length of the real 

sequence. These control sequences were also selected from regions on the genome which do 

not harbour a gene or region of interest (TFBSs or TAD boundary regions). This process was 

repeated 100 times creating 100 control datasets. The frequencies of searched features were 

then averaged (divided by 100) to obtain a matched control frequency to compare with the 

corresponding frequency of the searched feature in the real dataset. A simple example of how 

a dataset of controls is created is shown in Figure 2.6. 
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Figure 2.6 Flow chart summarising how matched control datasets are obtained for a given 
DNA sequence from the real dataset. 

All bp positions between 

𝑅 and 𝑅 + (𝑙 − 1) are 0  

Step 2: Hypothetical DNA sequence feature of length 13 bp from the real dataset found in   

Chr2L: position 25-37 ‘ATAGCATATGATT’. 

 

Step 1: Example of a hypothetical chromosome of length 70 bp. 

CAAGTTAGACGTTTTCTCAGTACAATAGCATATGATTTCTAAAACTTTTGTAATTATACAAGTTAATGTT 

Step 3: Known gene on Chr2L: position 4-23 ‘GTTAGACGTTTTCTCAGTAC’. 

CAAGTTAGACGTTTTCTCAGTACAATAGCATATGATTTCTAAAACTTTTGTAATTATACAAGTTAATGTT 

Step 4: Bases available for control sequence selection labelled ‘0’, those unavailable labelled ‘1’. 

0001111111111111111111101111111111111000000000000000000000000000000000 

Step 5: First control sequence selected – Chr2L: position 50-62, returning control sequence 

‘GTAATTATACAAG’. 

CAAGTTAGACGTTTTCTCAGTACAATAGCATATGATTTCTAAAACTTTTGTAATTATACAAGTTAATGTT 

Step 6: Process repeated 100 times under the same condition for this real sequence. 

Step 5: Generate random number ‘𝑅’, between 1 and (length of chromosome – length of 

TAD/TFBS + 1), to select the start position on the chromosome for the matched control sequence. 

Example. 𝑅 randomly generated as 50. Control sequence length (𝑙) required is 13 bp.  

NO  

YES  
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Chapter 3 

3  NETWORKS AND BIOINFORMATICS TECHNIQUES  
                          USED IN THIS STUDY 

 

In this chapter we introduce both the fundamentals of network theory and a specific 

statistical test that was carried out in the analyses of this study, which are used for identifying 

novel genomic regions and target genes (see section 1.1). To ease the understanding we 

accompany our explanations with examples. We also discuss additional statistical and 

bioinformatics techniques that were used in this study. The bioinformatics techniques used 

for the pre-processing of GWAS data and enabling further analysis together with an 

explanation how the genes suggested for exploration by our analysis results can be analysed 

to enable important biological interpretation are discussed in this chapter. The software used 

for biological interpretation is also described. 
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3.1 NETWORKS  
 

3.1.1 Introduction to Networks 
 

Mathematically speaking, a network, 𝑁, is a pair of disjoint sets (𝑉, 𝐸) in which 𝑉 is a non-

empty finite set of elements referred to as nodes or vertices and 𝐸 is a finite set of distinct 

pairs of elements of these vertices, referred to as edges (Newman, 2018). In networks, nodes 

are the points of interest, for example representing people, and edges exist between these 

nodes if there is a relationship or connection between what these nodes represent, therefore 

in this example this could be friendships. Figure 3.1 shows a simple example of a network, in 

which nodes are labelled by numbers from 1 to 6, and the lines joining these nodes are edges. 

In a more biological setting, the nodes of a network could represent genomic regions and the 

edges connecting these nodes would then represent some biological relationship between 

such regions. Similarly, edges can also be points of interest, e.g., in some graph-based genome 

assembly methods. Information such as this is most likely to be displayed in what is known as 

a simple network, in which a node cannot have a loop, which is an edge that connects a node 

to itself, and any two nodes cannot be connected by more than one edge. Networks can be 

labelled as either directed or undirected; directed networks are networks where all edges are 

directed from one node to another and undirected are networks in which all edges are 

bidirectional.  

 

3.1.2 Adjacency Matrices 
 

Networks can be represented in matrix form. The most commonly used representation is the 

adjacency matrix, also referred to as the connection matrix, which contains rows and columns 

labelled by graph nodes. Consider an example of a network shown in Figure 3.1, in which 𝑁 =

(𝑉, 𝐸) where 𝑉 = {1,2,3,4,5,6} and 𝐸 = {(1,2), (2,3), (2,4), (2,6), (4,5), (4,6), (5,6)}, (|𝑉| =

6) where, for example, the first edge (1,2) represents a connection between node 1 and 2. 

The elements of the adjacency matrix depend upon whether the network’s edges are 

weighted or not. In non-weighted cases, the matrix is binary, in which a ‘1’ or ‘0’ indicates the 

presence of a corresponding edge in a network or not. For cases in which edges are weighted, 

whereby each edge is assigned a weight according to the strength of the interaction between 
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two connecting nodes, the matrices are also weighted, for example if nodes represented cities 

then the edge weights could represent the distance between these cities. 

 

 

 

 

 

 

 

 

 

Figure 3.1 An example of a simple, undirected and non-weighted network. 

The adjacency matrix of the network shown in Figure 3.1 is given below:  

𝐴 =

(

  
 

0 1 0 0 0 0
1 0 1 1 0 1
0 1 0 0 0 0
0 1 0 0 1 1
0 0 0 1 0 1
0 1 0 1 1 0)

  
 

. 

Looking at this matrix, it is clear that it is symmetric, with 𝐴 = 𝐴𝑇 , which is a property of 

matrices for undirected networks. 

 

Directionality can also be incorporated into networks, this can happen when edges existing 

between 𝑖,𝑗 do not necessarily exist between 𝑗,𝑖 and vice versa. An example of a directed 

network is shown in fo. 
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Figure 3.2 An example of a directed, non-weighted network.  

 

The adjacency matrix of the network shown in Figure 3.2 is given below: 

𝐴 =

(

  
 

0 1 0 0 0 0
0 0 1 1 0 1
0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0)

  
 

. 

 

Note that this matrix is not symmetric, which is common in a lot of cases for directed networks. 

However, if a network is weighted, the elements in the corresponding matrices take values 

from the real number line. If we were to take a simple example of a group of friends (each 

friend represented by a node) and how often they visit each other every month (represented 

by the interactions between each of the nodes), in a network for this example, the higher 

weights represent more frequent visits between two friends, and are shown on a network by 

the thickness of the edge between the two nodes, with a thicker edge representing a larger 

number of visits. Therefore we can see in the network example in Figure 3.3 that the friends 

who visit each other most often are friends 4 and 6. 
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Figure 3.3 An example of weighted, undirected network in which the thickness of an edge 
indicates the weight.  

 

The adjacency matrix of a network shown in Figure 3.3 is given below:  

𝐴 =

(

  
 

0 1 0 0 0 0
1 0 4 3 0 2
0 4 0 0 0 0
0 3 0 0 3 5
0 0 0 3 0 1
0 2 0 5 1 0)

  
 

. 

 

3.1.3 Network Properties and Statistics 

 

Degree distribution  

In a network, the degree of a node is the number of connections it has to other nodes. Relating 

this back to adjacency matrices, the degree of node 𝑣𝑖  can be calculated by summing the 𝑖𝑡ℎ 

row of the adjacency matrix. In the case of a directed network, an in- and out-degree for each 

node can be calculated, in which the in-degree sums the number of incoming edges and the 

out-degree sums the number of outgoing edges. From the adjacency matrix, the in-degree for 

each node can be computed by summing the entries of the corresponding column and the 

out-degree can be computed by summing the entries of the corresponding row.  
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The degree distribution shows the degrees of nodes across the whole network, and plots the 

probabilities of choosing a node with degree k as 

𝑃(𝑘) =
𝑛𝑘

𝑛
 , 

where n is the total number of nodes in the network and 𝑛𝑘 is the number of nodes with 

degree k. Separate degree distributions, in- and out- degrees, are calculated for directed 

networks.  

 

Path length  

A path is defined as a finite sequence of edges connecting node 𝑣𝑖  to node 𝑣𝑗  through a chain 

of distinct nodes. It is possible for many paths to exist connecting these nodes together, 

especially when the network is big, however in unweighted networks the path containing the 

fewest number of edges is known as the shortest path, denoted by 𝑑𝑖𝑗. In weighted networks 

𝑑𝑖𝑗  is calculated by taking into consideration not the number of edges, but the weights 

attached to these edges. For example, if edges were weighted according to the distance 

between buildings, there may be a direct path between nodes 𝑣𝑖  and 𝑣𝑗  of let say 3km, but 

there may also be two shorter edges at 1km each connecting 𝑣𝑖  and 𝑣𝑗 , via a node 𝑣𝑧, in which 

case the shortest path would not have the smallest number of edges. In this case, the edge 

weights have been summed and the smallest was chosen to select the shortest pathway. 

However, there are some networks in which the most important edges connecting nodes will 

be represented by the highest weights. In cases such as these, often the reciprocals of these 

weights are calculated, and the weights of all edges between 𝑣𝑖  and 𝑣𝑗  are summed, with the 

shortest path still representing the desired path.  

Characteristic path length  

The most commonly computed path-length of a network is the ‘characteristic path-length’, 

which for any connected graph 𝐺, is defined as the average distance between pairs of nodes. 

In this computation, for any two nodes 𝑣 and 𝑣’ in 𝑉(𝐺), let 𝐿(𝑣, 𝑣’) denote the shortest path 

length connecting 𝑣 to 𝑣’. 𝐿(𝑣) then denotes the average of 𝐿(𝑣, 𝑣’) across all nodes 𝑣’ in 
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𝑉(𝐺) where 𝑣’ is not equal to 𝑣. The characteristic path length 𝐿(𝐺) of 𝐺 is then defined as 

the average of 𝐿(𝑣) across all nodes 𝑣 in 𝑉(𝐺).  

 

Clustering Coefficient 

The clustering coefficient is a measure of how a node’s neighbours are connected with each 

other in a network or the degree to which these nodes tend to cluster together. There are 

two main clustering coefficients used in the studies of networks: Watts-Strogatz (Watts and 

Strogatz, 1998), which can be defined both locally and globally; and the transitivity index 

(Wasserman and Faust), which is a global measure of clustering. In this study, only Watts-

Strogatz clustering was considered.  

The Watts-Strogatz clustering coefficient of a node, with a degree ≥ 2, is the probability that 

any two randomly chosen neighbours of this node are linked together. A node’s clustering 

coefficient can be calculated by counting the number of triangles formed including this node 

and dividing by the number of possible edges between its neighbours.   

The formula for the clustering coefficient can be written as: 

 

𝐶(𝑖)  =  
𝑡𝑖

𝑘𝑖(𝑘𝑖 − 1)/2
 =  

2𝑡𝑖
𝑘𝑖(𝑘𝑖 − 1)

 

 

in which 𝑘𝑖 is the degree of the 𝑖𝑡ℎ node and 𝑡𝑖  is defined as the total number of triangles 

centred on node 𝑖.  

A simple example can be used to show how to calculate the local clustering coefficient of 

reference node, N, the red node shown in Figure 3.4. The three steps shown in Figure 3.4 

explain how to calculate local clustering coefficient, looking at the original connections of a 

network, specifically those with the reference node, finding all possible edges that would 

connect the neighbouring nodes of the reference node and observing which of these possible 

edges actually exist in the network. Using this example, for node N, a local clustering 

coefficient is calculated as 𝐶(N) = 
5

6
  = 0.833. 
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Figure 3.4 An example of how to calculate the local clustering coefficient of red reference 
node, N. The three steps shown calculate as follows: (a) the original network in which the 
edges between N and its neighbours are shown with bolder black lines. (b) All possible edges 
connecting the four neighbouring nodes of N, of which there are six, shown in green. (c) The 
five connections actually existing in the network, between the four neighbouring nodes of N, 
shown in blue.  

 

The global clustering coefficient (𝐶̅) does not look at each node individually, but instead looks 

at how connected a network is relative to its number of nodes. The global clustering 

coefficient of a network is calculated by taking the average of local coefficients: 

 

𝐶̅ =
1

𝑛
∑ 𝐶(𝑖)𝑛
𝑖=1 , 

 

where 𝑛 is the number of nodes in the network and 𝐶(𝑖) is a local coefficient. The calculation 

of global clustering coefficients enable comparison between different networks and assess 

the extent to which they cluster.  

This global measure can be applied to both undirected and directed networks, however 

cannot be applied to weighted networks. Instead, a generalization of the global clustering 

coefficient to weighted networks was proposed by Opsahl and Panzarasa (2009). This 

generalization requires a triplet value to be defined, for which there are several methods 

proposed, including the arithmetic mean, geometric mean, and the maximum and minimum 

of the two tie weights that make up the triplet. The method chosen for defining this triplet 

value should be appropriately selected due to its impact on the outcome of the coefficient 

and should bear in mind the way in which the strength of the ties are incorporated into 

(a) (b) (c) 

𝑁 𝑁 𝑁 
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weights.  The value of closed triplets is then divided by the value of all triplets of the weighted 

network. 

 

Modularity  

Modularity measures the structure of a network by looking at the number of clusters formed 

by nodes, also referred to as modules. By looking at the way in which nodes group together, 

the strength of the division of a network can be calculated; therefore, a higher modularity 

score for a network suggests more dense connections between nodes that have been 

categorized in the same module, but fewer connections between nodes belonging to different 

modules. To extract the community structure of networks, Blondel et al. 2008 developed a 

heuristic method based on modularity optimization.  

The problem of community detection requires the partition of a network into communities of 

densely connected nodes, where the nodes that belong to different communities are only 

sparsely connected. A number of algorithms have been proposed to find these network 

partitions required, and the quality of these selected partitions is commonly measured using 

the so-called modularity of the partition. For unweighted networks, the modularity of a 

partition is given as a scalar value between -1 and 1 where this value measures the density of 

links inside communities as opposed to links between communities. However, in the case of 

weighed networks, the modularity of a partition can be defined as  

 

𝑄 =  
1

2𝑚
∑[𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
]𝛿(𝑐𝑖, 𝑐𝑗),

𝑖,𝑗

 

 

where 𝐴𝑖𝑗 represents the weight of the edge between nodes 𝑖 and 𝑗, 𝑘𝑖 = ∑ 𝐴𝑖𝑗𝑗  is the sum 

of the weights of the edges attached to node 𝑖 , 𝑐𝑖  is the community to which node 𝑖  is 

assigned, the 𝛿-function 𝛿(𝑢, 𝑣) is 1 if 𝑢 = 𝑣 and 0 otherwise, and 𝑚 =
1

2
∑ 𝐴𝑖𝑗 .𝑖𝑗  

 

The community detection algorithm by Blondel et al. 2008 is divided into two phases. The first 

assigns a different community to each node of the network, and therefore in the first partition 

the number of communities is equal to the total number of nodes in the network. The 
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neighbours of each node 𝑖 are then considered, 𝑗, and the gain of modularity that would occur 

if 𝑖 was removed from its community and instead placed in the community of 𝑗 is evaluated. 

Once evaluated, the node 𝑖 is placed in the community for which this gain is maximum, but 

this is only done in cases for which the gain is positive. If there is no positive gain, 𝑖 remains 

in its original community. This process is repeated sequentially for all nodes and this first 

phase is completed when a local maxima of the modularity is attained and can no longer be 

improved. This gain in modularity ∆𝑄 can be achieved by moving an isolated node 𝑖 into a 

different community 𝐶 can easily be computed by  

 

∆𝑄 =  [
𝛴in+2𝑘𝑖,in

2𝑚
− (

𝛴tot+𝑘𝑖

2𝑚
)
2

] − [
𝛴in

2𝑚
− (

𝛴tot

2𝑚
)
2
− (

𝑘𝑖

2𝑚
)
2

] , 

 

where 𝛴in is the sum of the weights of the links inside 𝐶, 𝛴tot is the sum of the weights of the 

links incident to nodes in 𝐶, 𝑘𝑖  is the sum of the weights of the links incident to node 𝑖, 𝑘𝑖,in 

is the sum of the weights of the links from 𝑖 to nodes in 𝐶 and 𝑚 is the sum of the weights of 

all the links in the network (Blondel et al., 2008).  

The second phase of the algorithm builds a new network in which the nodes are now the 

communities found through applying the first phase. This is done by calculating the weights 

of the links between the new nodes as the sum of the weight of the links between nodes in 

the corresponding two communities. Links between nodes of the same community lead to 

self-loops for this community in the new network (see Blondel et al. 2008 for more details). 

Once this second phase is completed, the first phase of the algorithm can then be reapplied 

to the resulting weighted network and iterated.  

 

PageRank 

The PageRank measure of a network node indicates the importance of the node, not only by 

considering its degree, but also the influence that neighbouring nodes may have on the node’s 

importance. The basic idea being that a node having lots of neighbours isn’t enough for a 

node to be considered important, but that it also depends on how important those 

neighbours are. The PageRank algorithm was first introduced by Brin and Page (Page et al., 

1999), as a concept employed to rank webpages on the World Wide Web (WWW). Google 
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uses this algorithm, modelling the WWW as a network in which the webpages are nodes and 

hyperlinks existing between these webpages are edges, with each edge weighted according 

to the out-degree of each node. PageRank scores for each node are obtained by using a 

Markov chain on a network, with the calculated score being proportional to the amount of 

time spent by a surfer at that node. Other than for use in Web search algorithms, PageRank 

is well defined for any given network. As a simple example in Figure 3.5, we show the results 

of applying PageRank to a toy network with six nodes. We see that despite the red node 

containing more incoming links than the orange node, the orange node has a higher PageRank 

score as those incoming links that the orange node does have, have a larger influence than 

those that the red node has. 

 

 

 

 

 

 

 

 

 

Figure 3.5 A network in which the size of each node (webpage) is roughly proportional to the 
probability that a surfer is at that webpage. The orange node has only two incoming links, but 
both are from nodes of a larger size than any of the three incoming links to the red node; 
therefore, the orange node has a higher PageRank than the red node.  

 

Weighted edges of the network 𝑁 = (𝑉, 𝐸) in PageRank lead to a weighted adjacency matrix 

of the form 

                              𝐻 = 𝐷𝑜𝑢𝑡
−1 𝐴,     (here 𝐷𝑜𝑢𝑡 = diag (𝑘1

𝑜𝑢𝑡, 𝑘2
𝑜𝑢𝑡, … , 𝑘𝑛

𝑜𝑢𝑡))                           (3.1) 
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which is a row stochastic matrix referred to as the hyperlink matrix. The structure of the 

WWW causes issues to arise, including the existence of web pages with no out-going links. 

These are referred to as ‘dangling nodes’ and act as dead-ends from which the random surfer 

cannot escape. To avoid this issue, the above equation (3.1) was modified and the actual 

Google matrix is given by  

𝐺 = 𝛼𝑆 + 
1 −  𝛼

𝑛
𝟏𝟏𝑇 

 

where  𝑆 = 𝐻 + a (1/𝑛𝟏𝑇), 𝑎𝑖 = 1 if page 𝑖 is ‘dangling’, and 𝟏𝑖 = 1, ∀𝑖. Resulting in a 

matrix which is both stochastic and irreducible.  

This modification, however, had not been addressed from a computational point, where this 

matrix representation for a network the size of the WWW would result in a completely dense 

matrix. To overcome this problem, 𝐺 can be rewritten as a rank-one update to the sparse 

hyperlink matrix 𝐻 as 

𝐺 = 𝛼(𝐻 + 1/𝑛a𝟏𝑇) + (1 − 𝛼)1/𝑛𝟏𝟏𝑇 

= 𝛼𝐻 + (𝛼a + (1 − 𝛼)𝟏)1/𝑛𝟏𝑇 .   

 

3.2 NETWORK APPROACH TO IDENTIFY NOVEL CANDIDATE REGIONS ASSOCIATED 

WITH LONGEVITY 
 

3.2.1 Creation of Original Networks 

To identify novel candidate regions associated with longevity, we hypothesised that the 3D 

architecture of the genome governs the co-location of longevity-associated genes/genome 

regions with novel unknown regions that share biological functions of importance to the 

process of longevity. Networks were created using Hi-C data at a resolution of 80 Kb and SNP 

information from the Synthetic and DGRP GWAS dataset. The Hi-C data provided interaction 

information between regions 80,000 bp in length (see section 2.3), and it was these regions 

which were represented as nodes on the Synthetic and DGRP GWAS-based networks. For 



63 
 

both the Synthetic and DGRP GWAS dataset, each SNP recorded has a calculated D or P-value, 

indicating its potential significance of association with longevity (see section 3.3.1). Regions 

were selected as nodes on each of the original networks if they harboured SNPs that satisfied 

selected predefined thresholds of D and P-values (see section 4.2). Next, intra- and inter-

chromosomal interaction frequency distributions were analysed and interactions with 

frequencies exceeding a threshold corresponding to 1% of the strongest interactions were 

selected as strong interactions. Edges, between the nodes in the original networks, were then 

added if there were strong interactions between these nodes. The original network was 

therefore produced only using regions known to harbour SNPs with high association to 

longevity.  

 

3.2.2 Extension of Original Networks (Extended Networks) 

The Hi-C data at a resolution of 80 Kb was then further utilised to add nearest neighbouring 

nodes, i.e. residing in close proximity within the cell nucleus, to the original networks. The 

same thresholds for intra- and inter- chromosomal interactions, as above, were used. 

However, this time original networks were extended by adding new nodes/regions, which 

were those connected to original nodes with frequencies exceeding identified thresholds. 

These new regions do not necessarily contain any SNPs identified by GWAS studies, and it is 

these additional nodes that are further explored as our novel nodes. These extended 

networks are therefore now produced using original regions known to contain SNPs with 

longevity association, as well as novel regions selected due to their strong physical 

interactions with these original regions.  

 

3.3 ADDITIONAL BIOINFORMATICS TECHNIQUES USED IN THIS STUDY 
 

3.3.1 Identifying Significant SNPs in Synthetic GWAS Dataset 

To identify SNPs with divergent haplotype frequencies in the control and old groups in the 

Synthetic GWAS dataset, Euclidean distances between the control and old groups were 

calculated for haplotype data for populations A1/A2 and B1/B2 combined. All duplicates were 

removed.  
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The Euclidean distance for a given SNP was calculated as suggested in (Burke et al. 2013): 
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where ℎ𝑂,𝑗  is the haplotype frequency of the 𝑗𝑡ℎ  founder in the old samples, ℎ𝑌,𝑗 is the 

haplotype frequency of the 𝑗𝑡ℎ  founder in the young control sample, 𝑛 is the number of 

haplotypes found at that position. SNP positions with the largest calculated 𝐷 values were 

those showing the largest differences between haplotype frequencies in the control and old 

groups, and it was therefore these SNPs that were indicated as most likely to have association 

with longevity. Using a stringent selection process, as suggested by Burke et al. (2013), SNPs 

with a genome-wide significance corresponding to 𝐷 ≥ 7.9 (genome-wide alpha of 5% 

significance), were used in the following study. 

 

3.3.2 Lift-over of Gene Positions from BDGP Release 6/dm6 to BDGP Release 5/dm3 

To identify Drosophila genes, residing within regions of interest, a list of genes and their 

genomic coordinates according to the BDGP Release 6/dm6 assembly (dos Santos et al., 2014) 

was downloaded from the FlyBase database (http://flybase.org/). To align the Hi-C data and 

GWAS SNP positions, all gene positions were lifted over to BDGP Release 5/dm3. This was 

done using a LiftOver tool (https://genome.ucsc.edu/cgi-bin/hgLiftOver) that converts 

genomic coordinates between assemblies.  

 

3.3.3 Gene Ontology Enrichment Analysis 

To further analyse specific groups of genes, the FlyBase database was also used to find 

phenotypes for genes of interest. The FlyMine software (http://www.flymine.org/) was used 

to analyse the enrichment of the set of identified genes in Gene Ontology (GO) terms for 

cellular component, biological process and molecular function. Genes used in GO analysis 

were those genes residing in influential nodes found when network measures were calculated 

for each network. Genes found in both original and novel regions were taken into 

consideration during analysis, with those genes in novel regions of most interest, as these 

http://flybase.org/
https://genome.ucsc.edu/cgi-bin/hgLiftOver
http://www.flymine.org/
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were new regions with no previously published association with longevity. Each gene was also 

compared with a list of longevity genes recorded in the GenAge database 

(http://genomics.senescence.info/genes/models.html), to determine if any novel genes, not 

present in the original datasets but found by network analysis, were previously known as 

associated with longevity. 

 

3.4 STATISTICAL APPROACHES USED 

 

3.4.1 Test for Difference in Proportions 

The Chi-squared test is used for testing for difference between proportions of an event 

considered as a “success” are the same across different populations/groups.  Hypotheses for 

this Chi-squared test are stated as 𝐻0:  𝑝𝑟𝑒𝑎𝑙 = 𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 𝑝   (there is no difference in 

proportions) and 𝐻1: 𝑝𝑟𝑒𝑎𝑙 ≠ 𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙, 𝐻1: 𝑝𝑟𝑒𝑎𝑙 > 𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙 or 𝐻1: 𝑝𝑟𝑒𝑎𝑙 < 𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙 (there is a 

difference in proportions). 

Observations of the proportions for analysis are expressed in a 2x2 contingency table (Table 

3.1), in which the observed frequencies recorded are then tested against expected 

frequencies calculated from generated controls.   

 

Table 3.1 Contingency table showing observations for case and control samples. 

 

 
Success Failure Total 

Real Case 1 𝑎 𝑏 𝑎 + 𝑏 

Control Case 2 𝑐 𝑑 𝑐 + 𝑑 

Total 𝑎 + 𝑐 𝑏 + 𝑑 𝑛 

 

Fisher’s Exact Test, which is a modification of the chi-squared test, can be used for 2x2 

contingency tables and is most commonly used in cases of small observation counts. In this 

test, a P-value is given which corresponds to the probability of obtaining the observed 

proportion of frequencies under the assumption that the proportions between these two 

samples are equal.  

http://genomics.senescence.info/genes/models.html
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The formula used to calculate this P-value is given as: 

 

𝑝 =
(𝑎+𝑏)!(𝑐+𝑑)!(𝑎+𝑐)!(𝑏+𝑑)!

𝑎!𝑏!𝑐!𝑑!𝑛!
. 

 

A calculated P-value greater than significance level of 0.05 means that we are unable to reject 

the null hypothesis, concluding that there is no significant difference between two 

proportions. If a P-value less than or equal to 0.05 was calculated, this would allow the null 

hypothesis to be rejected in favour of the alternative hypothesis, concluding that there is a 

significant difference between the two proportions observed. 

 

 

3.5 IMPLEMENTATION AND SOFTWARE USED 
 

MATLAB Programming Language 

MATLAB was used for implementation of all software tools for analyses. For calculating 

PageRank and other network measures of the networks produced, the Brain Connectivity 

Toolbox was downloaded from brain-connectivity-toolbox.net and used.  

 

Gephi 

To visualize and explore our data, an open-source software, Gephi, was downloaded from 

https://gephi.org/. Using this software, data was able to be visualised as networks, and tools 

in Gephi also allowed calculation of network measures, for example modularity and clustering 

coefficient.   

 

IBM SPSS Statistics 

IBM SPSS Statistics v24 software package was used for statistical analyses of data, whether 

simple or complex. SPSS offers several programs for exploring and analysing data, including a 

Statistics Program providing basic statistical functions, including frequencies, cross tabulation 

and Chi-square statistics.  

 

file:///F:/Thesis%20as%20of%202309/brain-connectivity-toolbox.net
https://gephi.org/
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Chapter 4 

4      NOVEL LONGEVITY-ASSOCIATED CANDIDATE      

       REGIONS IDENTIFIED VIA NETWORK APPROACH 
 

In this chapter we describe novel genomic regions identified by network approaches, 

described in Chapter 3. Various network measures were calculated, identifying important 

previously unknown regions, with some regions observed to be common between both 

GWAS-based networks. Using literature search and other bioinformatics resources, these 

newly discovered genes/regions were investigated with the aim to find association with 

longevity. Subnetworks of these networks were also explored, and Gene Ontology 

enrichment analysis was performed with the aim of identifying genes/regions, enriched in 

longevity-related terms, with no previously known association with longevity. 
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4.1 EXPLORATION OF HI-C DATA 
 

4.1.1 Heat Maps 
 

To visually explore the strength of inter- and intra-chromosomal interactions, Hi-C data was 

visualised using heat maps, as shown in Figure 4.1. Here, both the 𝑋 and 𝑌 axis represent bin 

numbers from the Hi-C data. Each pixel represents interaction frequency between an 80 Kb 

region with another 80 Kb region. More dense areas of redness are regions in which there are 

high interaction frequencies between bins. From observation, these denser areas occur intra-

chromosomally, meaning that more interactions are observed between bins closer together 

on a linear model of the genome within the same chromosome, which is what would be 

expected. The areas of the heat maps in which the points plotted are lighter shades indicate 

low interaction frequencies between these bins, and as expected these occur more commonly 

inter-chromosomally.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 A heat map produced using normalised Hi-C data at a resolution of 80 Kb for the 
Drosophila genome. 
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4.1.2 Hi-C Interaction Frequency Distributions 
 

Interaction frequency distributions, plotted as histograms in Figure 4.2, show right-skewed 

distributions for all intra-chromosomal and inter-chromosomal graphs. This means that for all 

chromosomes in the Drosophila genome, intra- and inter-chromosomal interactions of 

smaller interaction frequencies are much more frequent than higher interaction frequencies. 

Distributions for chromosome 2, 3 and X all presented similar patterns in the plotted data and 

therefore only one histogram, which shows the data for chromosome 2, was shown in Figure 

4.2(a). Note that interaction frequencies are inversely proportional to the distance between 

regions within the cell nucleus.  
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Figure 4.2 Intra-chromosomal interaction frequency distribution histograms for (a) 
chromosome 2, (b) chromosome 4 and (c) inter-chromosomal interaction frequency 
distribution histogram for all chromosomes, in which the x-axes represents interaction 
frequencies and the y-axes represent the number of times this interaction frequency is 
observed between 80 Kb regions in this chromosome.  
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4.2 CHOICE OF INTERACTION FREQUENCY THRESHOLDS AND GENOME-WIDE 

SIGNIFICANCE LEVELS 
 

To assess the strength of the interactions between intra- and inter-chromosomal genomic 

regions, distributions of interacting frequencies described in section 4.1 were analysed (Figure 

4.2). Values corresponding to the 1% of the strongest intra-chromosomal interactions were 

calculated individually for each chromosome. This 1% of strongest interactions corresponds 

to interactions frequencies ≥ 247 for chromosome 2, ≥ 215 for chromosome 3, ≥ 1308 for 

chromosome 4 and ≥ 342 for chromosome X. The threshold for interaction frequency for 

inter-chromosomal interactions, corresponding to 1% strongest interactions, was found to be 

≥ 10; the highest frequency was 111. Interactions with frequencies exceeding threshold are 

referred to as “strong” interactions. The maximum number of intra-chromosomal interactions 

for each chromosome varied being 3098 for chromosome 2, 3708, for chromosome 3, 1732 

for chromosome 4 and 1976 for chromosome X.  

Genome-wide significance level, required for finding association between ~106 SNPs, is 

usually set to P < 5×10-8. This value corresponds to 0.05 level of significance after Bonferroni 

correction for multiple testing. In our case, each SNP is binned into an 80 Kb region and there 

are 1503 distinct 80 Kb regions recorded in the Drosophila Hi-C data. Taking this into account, 

the required significance level was corrected as 0.05/1503=3.33×10-5  for the selection of SNPs 

in the DGRP GWAS dataset. The threshold used for SNPs in the Synthetic GWAS dataset was 

D ≥ 7.9, which corresponds to genome-wide alpha of < 0.05 [see Burke et al. (2013) for details]. 

 

4.3 PROPERTIES OF GWAS-BASED NETWORKS 

 

4.3.1 Network of Interactions Originated from the Synthetic GWAS Dataset 

Each 80 Kb region harbouring at least one SNP with D ≥ 7.9 was represented by a node; these 

nodes will be referred to from now on as original nodes. Edges between nodes were added if 

the frequency of interaction lay in the highest 1% of frequency interaction data found in the 

Hi-C dataset, either intra- or inter- chromosomally, calculated individually for each 

chromosome. Hi-C data for all genomic interactions was then further utilised to add nearest 

neighbouring nodes to the current network, using the same thresholds for intra- and inter-
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chromosomal interactions as used previously (see Figure 4.3). These nodes will be referred to 

from now on as novel nodes not necessarily genotyped by GWAS. The network for the 

Synthetic GWAS dataset, including both original and novel nodes, from now on will be referred 

to as the extended Synthetic GWAS-based network.  

Clustering coefficient and PageRank network measures were calculated for the Synthetic 

GWAS-based network shown in Figure 4.3. This network consisted of 1099 nodes and 4489 

edges and comprised a single component. These 1099 nodes harboured ~75% (69,951) of 

SNPs recorded in the Synthetic GWAS dataset, of which 2409 resided in a coding region. The 

node with the highest degree was bin 547 corresponding to region Chr2R: 20800000-

20880000, with a degree of 150. The clustering coefficient scores for nodes in this network 

ranged from 0 to 1, with an average score of 0.256. In total, 89 nodes had a score of 1. 

PageRank scores for nodes in the Synthetic GWAS network ranged from 0.000139 to 0.009349. 
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Figure 4.3 Extended network of interactions between genomic regions harbouring significant SNPs identified in the Synthetic GWAS dataset. 
Nodes colour coded, with red nodes corresponding to chromosome 2, blue nodes corresponding to chromosome 3, black nodes corresponding 
to chromosome 4 and green nodes corresponding to chromosome X. 
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4.3.2 Network of Interactions Originated from the DGRP GWAS Dataset 

Each 80 Kb region harbouring at least one SNP, satisfying 𝑃 ≤ 3.33 ×  10−5 was represented 

by a node. As in the Synthetic GWAS-based network (see section 4.3.1), edges were added to 

this network, if they met interaction frequency cut offs, and nearest neighbouring nodes were 

also included (see Figure 4.4). The network for the DGRP GWAS dataset, including both 

original and novel nodes, from now on will be referred to as the extended DGRP GWAS-based 

network. 

Clustering coefficient and PageRank network measures were calculated for the extended 

DGRP GWAS-based network shown in Figure 4.4. This network consisted of 671 nodes and 

1137 edges, where the number of connected components in this network was six. The 671 

nodes harboured ~50% (1,093,533) of SNPs recorded in the DGRP GWAS dataset where 114 

of these SNPs resided in coding regions. The node with the highest degree in this network was 

bin 1183 corresponding to region Chr3R: 25920000-26000000, with a degree of 68. The 

clustering coefficient scores for nodes in this network ranged from 0 to 1, with an average 

score of 0.157. In total, 38 nodes had a score of 1. PageRank scores for nodes in the extended 

DGRP GWAS-based network ranged from 0.000232 to 0.020202.  

Nodes in both extended GWAS-based networks with clustering coefficients equal to 1, with 1 

being the highest possible score, were selected as clustering coefficient influential nodes and 

therefore all genes residing in these selected regions were grouped together for further 

analysis. As mentioned previously, the PageRank score of a node indicates its importance in 

a network relative to the other nodes scores, and therefore those nodes in both extended 

GWAS-based networks with the highest PageRank scores were considered most important. 

Once PageRank scores had been calculated for all nodes in each of the networks, they were 

then ranked in descending order and the top 10% of nodes with the highest scores were 

selected as PageRank influential nodes and all genes residing in these regions were grouped 

together for further analysis.  

 

4.3.3 Novel Nodes with the Highest Degrees in Extended GWAS-Based Networks  

In both extended GWAS networks, novel nodes that had the highest degrees were selected 

for further analysis along with the nodes in the clusters centred around these novel regions. 
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All genes residing within these interacting nodes in each cluster were grouped together for 

GO enrichment analysis, with the aim to find any common biological function between these 

genes, to infer that this novel region may play a role in the way in which these genes with 

common biological functions work together or that the function of genes found in these novel 

regions may be influenced by the common biological processes of genes with which it 

interacts. 

Novel region corresponding to bin 928 in the Synthetic GWAS-based network (Table 4.1), was 

found to interact with regions harbouring genes that enriched in the GO terms ‘apoptotic 

process’ and ‘nervous system development’, shown in Table 4.2. Fourteen genes, residing in 

seven regions interacting with bin 928, were enriched in the GO term ‘apoptotic process’. 

Sixteen genes were enriched in the GO term ‘nervous system development’, most of which 

were different genes than in the previous enrichment groups; these genes resided in nine 

regions interacting with bin 928. All 23 genes found to reside in bin 928 were explored, where 

trbd and CG8412 had the phenotype ‘short-lived’. The loss of the trbd gene, a negative 

regulator of the Drosophila immune-deficiency pathway, has previously been observed to 

reduce lifespan (Fernando et al., 2014). A number of genes in this novel region, including dmt, 

hyd, CG16908 and CG9471, were found to have phenotypes ‘increased mortality’ and ‘lethal’. 

The MED6 gene was found to have a phenotype of ‘cell lethal’ and is known to be required 

for elevated expression of a distinct set of developmentally regulated genes. This gene is 

essential for viability and/or proliferation of most cells and mutants of this gene have 

previously been observed to fail to pupate, dying in the third larval instar with severe 

proliferation defects in imaginal discs and other larval mitotic cells (Gim et al., 2001). Finally, 

bin 928 also contained the FoxP gene, a protein that encodes a transcription factor expressed 

in the nervous system. This gene has recently been shown to be important for regulating 

several neurodevelopmental processes and behaviours that are related to human disease or 

vertebrate disease model phenotypes (Castells-Nobau et al., 2019). Bin 928 was further 

explored for any enhancers that reside in this genomic region, where there were several 

found. One enhancer had a known target gene alphaTub85E residing in bin 928, this gene is 

known to affect the pattern of proprioceptive chordotonal organs (ChO) cell elongation 

(Hassan et al., 2018). ChOs are a group of specialised sensory organs that innervate the joints 

of an insect body, and therefore involved with the nervous system which has previously been 
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discussed in this thesis in relation to association with longevity. All other target genes for this 

enhancer were unspecified. It can be speculated that these enhancers target one or more of 

these genes discussed that share a common longevity-associated phenotype or biological 

process, influencing their expression.  

Exploration of the genes listed in Table 4.2 showed that some of these genes have previously 

been found to associate with ageing or have phenotypes which could link to association with 

longevity. All genes with this association were found to have a negative effect on longevity, 

with genes sidpn, hook and CG12935 having a ‘short-lived’ phenotype. Loss-of-function 

mutation in the hook gene has been found to reduce maximum lifespan by up to 30% 

(Simonsen et al., 2007). Mutant flies lacking mitochondrial Top3alpha have also been found 

to show decreased maximum lifespan by up to 25%, in which a premature ageing phenotype 

was demonstrated and mobility defects were observed (Tsai et al., 2016). Several genes in 

Table 4.13 were also found to have an ‘increased mortality’ phenotype, e.g. RpL30, Eps-15, 

Nipped-B and RPA2. 

The novel region, bin 1220, also in the Synthetic GWAS-based network, was found to interact 

with regions harbouring genes enriched in the GO term ‘DNA repair’. Interestingly, this novel 

region is positioned on chromosome 4 of the Drosophila genome, a chromosome seen as an 

anomaly because of its small size compared to other chromosomes in the genome, and its 

chromatin structure. Due to its size, this chromosome is often ignored, however it is known 

to harbour at least 16 genes where many of them are thought to have male-related functions, 

and these genes also include the well-known eyeless gene (Carvalho, 2002). A search for 

enhancers in this novel region on chromosome 4 found enhancers targeting lncRNA sphinx 

and the transcription factor toy, as well as enhancers with unknown target genes. Therefore 

it can be speculated that these enhancers, with unknown target genes, could target genes co-

located in the 3D organization, meaning those regions residing within the same cluster 

centred around bin 1220.    
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Table 4.1 A summary table of novel nodes with the highest degree in the extended 
Synthetic GWAS-based network with interacting regions enriched in longevity-related GO 
terms. 

Novel 

node 

Degree Interacting nodes within the 

extended Synthetic GWAS-based 

network  

Total number of genes in 

interacting regions 

1220 20 244, 295, 262, 245, 923, 255, 270, 

271, 272, 273, 275, 276, 277, 302, 

305, 334, 359, 799, 848, 920 

188 

928 15 11, 545, 233, 536, 531, 456, 409, 

370, 234, 238, 265, 343, 360, 361, 

366 

290 

 

Table 4.2 Genes enriched in longevity-related GO terms interacting with novel regions with 
the highest degree in the extended Synthetic GWAS-based network. 

Novel 
node 

GO term enrichment 
for genes in 
interacting regions 

P-value Genes enriched in GO term Number of gene 
harbouring 
regions/total number 
of interacting regions 

928 Apoptotic process 

 

2.27E-04 E2f2, lola, egr, Ret*, Vps25, 
TER94, ptc, eEF5(CG3186), 
snama, ninaA, yki, sigmar, 
l(2)tid, Mcm10 

7 bins/16 bins 

928 Nervous system 
development 

 

4.37E-04 CG10339, amos, CG10431, 
Sidpn**, RpL30, hook, 
Dap160, enok, lola, dgo, egr, 
CG12935, Ret, Pka-R2, Eps-15, 
Galphao 

9 bins/16 bins 

1220 DNA repair 0.0294 Top3alpha, PCNA2(CG10262), 
Nipped-B, CG9272, RPA2 

4 bins/21 bins 

* Genes residing within original nodes, i.e. harbouring SNPs with D>7.9 are underlined. 

** Genes previously found to have association with longevity as recorded in FlyBase or GenAge 
resources are shown in bold.  

 

Novel region, bin 28, in the DGRP GWAS-based network (Table 4.3), was found to interact 

with regions harbouring genes that enriched in the GO term ‘Immune System Process’ shown 

in Table 4.4. Exploration of the enriched genes showed some of these genes have previously 

been found to associate with ageing or have phenotypes which could link to association with 
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longevity. Flies heterozygous for the Stat92E mutation have been found to have a maximum 

lifespan up to 30% shorter than those of wild-type control flies (Larson et al., 2012). Lifespan 

of Drosophila was found to be increased through post developmental RNA interference of 

GlyP, causing an increase in mean lifespan by up to 17.1% (Bai et al., 2013). Enhancers found 

residing in novel regions included those with target genes CG34172, ush and the 

transcriptional-repressor protein aop; the latter has been strongly associated with longevity 

previously and is found to play a crucial role in lifespan extension caused by reduced IIS or 

Ras attenuation (Slack et al., 2015). The aop gene was a gene enriched in the ‘immune system 

process’ GO term, however CG3417 and ush were not. Both aop and CG34172 also reside in 

the novel bin 28, whereas the ush gene resides in bin 6 which is a region not interacting with 

bin 28 in the extended DGRP GWAS-based network. Enhancers in this region were also found 

with unspecified target genes, which can be speculated to target other co-located genes 

residing within the same cluster centred around bin 28.  

Novel region, bin 2, in the DGRP GWAS-based network, was found to interact with regions 

harbouring genes that enriched in the GO term ‘cellular response to stress’ shown in Table 

4.4. The genes residing in this novel region, bin 2, were explored using a phenotype search. 

Despite no genes in this novel region being found to be enriched in the GO term ‘cellular 

response to stress’, bin 2 harboured 21 genes in total, where several genes had the ‘lethal’ 

and ‘increased mortality’ phenotypes, including genes net, Sam-S, ND-15, CG4822 and Gs1. 

This region also harbours the Zir gene, with the phenotype ‘immune response defective’, and 

also previously found to play an important role in cellular immune response through the 

activation of the Rho-family GTPases Rac2 and Cdc42 (Sampson et al., 2012). The Nhe1 gene 

with phenotypes ‘lethal’ and ‘short-lived’ was also found to reside in this region. Bin 2 was 

then further explored for any enhancers that reside in this genomic region, in which three 

enhancers were found for which all target genes were unspecified. One can speculate that 

these enhancers could target other co-located genes residing within the cluster, i.e. in close 

proximity within the cell nucleus. Among these genes which have been found to have a 

positive effect on lifespan is Cat, where an overexpression of this gene has been found to 

result in an increase in lifespan by up to a third (Orr et al., 1994). Several genes enriched in 

the GO term ‘cellular response to stress’ were also found to have phenotypes associated with 

ageing, including Clbn and Atg16 with a ‘short-lived’ phenotype, and the BI-1 gene which as 
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well as having a ‘short-lived’ phenotype, also had ‘long-lived’ phenotype. Genes kay and 

HipHop also had phenotypes for increased mortality, and the aop gene, previously discussed, 

was also found in this analysis. These genes with ageing phenotypes residing in regions in the 

same cluster as novel region bin 2 can be speculated to influence genes residing in novel 

region bin 2 that have similar biological functions, to have an effect on ageing. 

 

Table 4.3 A summary table of novel nodes with the highest degree in the extended DGRP 

GWAS-based network with interacting regions enriched in longevity-related GO terms. 

Novel 

node 

Degree Interacting nodes within the 

extended Synthetic GWAS-

based network  

Total number of genes in 

interacting regions 

28 7 29, 30, 1063, 1124, 1152, 1179, 

27 

114 

2 14 1178, 699, 1120, 736, 1131, 

1132, 787, 1152, 670, 655, 660, 

576, 1183, 1179 

255 

 

 

Table 4.4 Genes enriched in longevity-related GO terms interacting with novel regions with 

the highest degree in the extended DGRP GWAS-based network. 

Novel 
node 

GO term enrichment 
for genes in 
interacting regions 

P-value Genes enriched in GO term Number of gene 
harbouring 
regions/total number 
of interacting regions 

28 Immune system 
process 

0.021515 Vps16B, Cad99C, aop, 
DPCoAC(CG4241), Stat92E, 
Mtl, GlyP 

4 bins/8 bins 

2 Cellular response to 
stress 

0.006104 CG11498, Clbn, CG13473, 
CG14130, Sld5, mu2, Atg16, 
kay, CG3448, Rad9, Mtl, 
Grx1(CG6852), Cat, HipHop, BI-
1, Wdr24(CG7609), Drice 

13 bins/15 bins 

* Genes residing within original nodes, i.e. harbouring SNPs with D>7.9 are underlined. 

** Genes previously found to have association with longevity as recorded in FlyBase or GenAge 
resources are shown in bold.  
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Figure 4.4 Extended network of interactions between genomic regions harbouring significant SNPs identified in the DGRP GWAS dataset. Nodes 
colour coded, with red nodes corresponding to chromosome 2, blue nodes corresponding to chromosome 3, black nodes corresponding to 
chromosome 4 and green nodes corresponding to chromosome X. 



81 
 

4.4 COMMON REGIONS/GENES IDENTIFIED BY EXTENDED SYNTHETIC AND DGRP 

GWAS-BASED NETWORKS  
 

Several regions selected as original regions, and therefore containing significant SNPs, for 

each extended GWAS-based network were found to be in common. A total of 14 common 

nodes were shared between the GWAS-based networks, covering 1.12 Mb of the Drosophila 

genome. All 14 regions were observed to harbour genes, with a total of 168 genes residing 

between these regions. However, only five of these genes were found in the FlyBase database 

to have a phenotype of ‘long-lived’, including genes Rim2, GlyP, aop, HDAC1 and Tpi. The 

majority of these 14 regions were found to harbour SNPs, where the highest mutated genes 

were the same in both GWAS datasets, including genes nmo, sima, axo, CG9967, eys, chinmo 

and dpr3 (full list in Appendix Table S4.1). Of all 168 genes, 43 genes were found to harbour 

91 significant SNPs (D≥7.9) in the Synthetic GWAS dataset, where genes CG4168, axo and 

aop harboured the highest number of significant SNPS (≥ 8). Only 10 of these 168 genes 

harboured significant SNPs in the DGRP GWAS dataset, in which a total of 19 SNPs were found.  

Additional regions extending these GWAS-based networks increased the number of regions 

in common from 14 to 527, covering 42.16 Mb of the Drosophila genome. In this case, 15 

common regions were found to harbour no genes, and the regions that did harbour genes 

contained from 1 gene in many of the regions to 43 genes in bin 518. A total of 7413 genes 

resided in these 527 common regions, where almost 30% of the genes did not harbour any 

SNPs in the Synthetic GWAS dataset and approximately 3% of the genes did not harbour any 

SNPs in the DGRP GWAS dataset. Again, in both GWAS datasets, a number of genes found in 

common extended regions were highly mutated including kirre, Ptp61F, CG45186, Sema-1a, 

Con and Ptp99A. Only a small percentage of genes found in these common regions were found 

to harbour significant SNPs from each GWAS dataset. In the extended Synthetic GWAS-based 

network, a total of 433 genes harboured 717 significant SNPs in total, where CG42732 

contained the highest number of significant SNPs, 40. In the extended DGRP GWAS-based 

network, a total of 48 genes harboured 57 significant SNPs in total, where previously 

mentioned sima contained the highest number of significant SNPs. The only genes found 

common to both extended GWAS-based networks that also contained significant SNPs from 

both GWAS datasets were CG42389, Fur1, sima and Lpt.  
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4.5 MODULARITY MEASURES OF EXTENDED SYNTHETIC AND DGRP GWAS-BASED 

NETWORKS 
 

The modularity measures of the extended networks in Figure 4.3 and Figure 4.4 were 

calculated, for which modular structures were produced and are shown in Figure 4.5 and 

Figure 4.6 respectively. These network modules were detected using Gephi software, which 

uses the Louvain modularity method (Blondel et al., 2008) as a community detection 

algorithm. This algorithm had a tunable ‘resolution’, that enabled the changing of focus 

towards the number of detected of communities, where a smaller resolution meant more 

communities and a greater resolution meant less communities [for more information on 

resolution factors, see Lambiotte et al. (2008)]. This resolution parameter was explored in our 

study, and a resolution of 0.1 was selected, at which point the quantity and sizes of modules 

in each network appeared to remain at similar values as the resolution was further decreased. 

These networks in Figures 4.5 and 4.6 present a better visualisation of the community 

structure in each network and, from visual inspection alone, patterns emerge in the clustering 

of nodes. For example, the majority of regions found to cluster as a group all appear to be of 

the same colour node, and therefore are regions residing on the same chromosome. The 

extended Synthetic GWAS-based network comprised of 81 communities, with the smallest 

consisting of 3 nodes and the largest of 72 nodes. The extended DGRP GWAS-based network 

comprised of 61 communities, where the smallest also consisted of 3 nodes and the largest 

of 42 nodes. For both networks, overlapping of communities was observed in most cases, 

especially between the larger communities harbouring many nodes. Communities were also 

observed to stand alone, however these tended to be those with sizes of less than 5 nodes.    
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Figure 4.5 Modular structure of the extended Synthetic GWAS-based network. 
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Figure 4.6 Modular structure of the extended DGRP GWAS-based network.
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The largest of the communities in the extended Synthetic GWAS-based dataset (Figure 4.5), 

modularity class 21, consisted of 218 nodes in which two of the significant nodes common 

between our datasets were found using PageRank analysis [bins 534 (Chr2R: 19760000-

19840000) and 535 (Chr2R: 19840000-19920000)]. Out of the 12 common bins found based 

on PageRank measure, nine of these bins were found to reside in the larger communities in 

the extended Synthetic GWAS-based network (modularity classes 0, 21, 23 and 41). Bin 32 

found in common between both networks based on clustering coefficient measure also 

resided in modularity class 0. The largest of the communities in the extended DGRP GWAS-

based network (Figure 4.6), modularity class 38, consisted of 72 nodes, in which four of the 

significant nodes common between our datasets identified by PageRank analysis were found: 

bins 1180 (Chr3R: 25680000-25760000), 1182 (Chr3R: 25840000-25920000), 1183 (Chr3R: 

25920000-26000000) and 1184 (Chr3R: 26000000-26080000). The same is true for the 

extended DGRP GWAS-based network, of the 12 common bins found based on PageRank 

measure, nine of these bins were found to reside in the larger communities of this network 

(modularity classes 0, 14, 20 and 38). Bin 32 (Chr2L: 2480000-2560000) found in common 

between both datasets based on clustering coefficient measure also resided in modularity 

class 0. 

 

4.6 GENE ONTOLOGY ENRICHMENT ANALYSIS 
 

Tables 4.5-4.8 below show the results of Gene Ontology enrichment analyses, in which GO 

terms are stated along with their P-values generated and the number of genes from each 

group found to share this GO term. Note that P-values are not corrected for multiple testing. 

 

4.6.1 GO Term Enrichment Analysis for Genes Residing in Nodes Defined Using Clustering 

Coefficient Measure  
 

Genes, found in nodes characterised by high clustering coefficient and enriched in longevity-

related GO terms, most often resided in novel nodes of the extended Synthetic GWAS-based 

network (Table 4.5). For all GO enrichment analysis in this study, P-values are not corrected 

for multiple testing. None of the genes found enriched in these GO terms in original regions 
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had been previously reported to be associated with longevity, only two genes found in novel 

regions, genes esg and Sema-5c, were found to have previous reports on associations with 

longevity. GO term analysis for genes residing in regions found using clustering coefficient 

measure included terms ‘respiratory system development’ and ‘defence response’, biological 

processes which could potentially have an effect on longevity in Drosophila. 

 

Table 4.5 Gene Ontology (GO) enrichment analysis of genes found in regions with high 
clustering coefficient in the extended Synthetic GWAS-based network. 

GO Term Total number 
of genes 
enriched in 
GO term 

P-value  Genes found within novel regions 

Respiratory 
system 
development 

13 0.049031 esg*, Rac2, aPKC, ct, Tor, Vha68-2, cold, sano 

Defence 
response 

20 0.045648 Mtk, SPE, PPO1, sphinx1, sphinx2, akirin, Atg18a, Hat1, 
Rac2, DptB, Dronc, ECSIT, GILT2, Glt, Mst57Da, Rm62, aPKC, 
polyph 

System process 40 0.005027 nan, Or22a, Or22b, Or49b, CG2121, Fas3, Obp47a, Obp83a, 
Obp83b, Or67a, Or67c, CG32698, HEATR2, Obp18a, PrBP, 
SKIP, brv1, ct, dpr10, dpr13, dpr6, f, sbb 

Multicellular 
organismal 
process 

158 0.003284 aPKC, Dronc, raw, Rac2, sna, vg, D, Tor, esg, cv-c, Fas3, sbb, 
C15, jeb, lilli, nan, nclb, MED24, dpn, elF4E3, f, pip, CSN7, 
Sema-5c, bic, jagn, pcs, stwl, tra2, CG17575, Glt, Mst57Da, 
Mst57Db, Mst57Dc, Or22a, Or22b, Or49b, Ote, PPO1, 
ProtA, Ptp4E, Ptth, Rbp9, Rdl, RecQ4, antr, Atg18a, CG2121, 
CG9932, HEATR2, Hr3, Lcp1, Lcp2, Lcp3, Mes2, Obp47a, 
Obp83a, Obp83b, Or67a, Or67c, PrBP, Vha68-2, ckn, dgrn, 
dor, kat-60L1, nuf, nwk, rols, sano, sdk, BG642167, Blos1, 
BoYb, CG10131, CG10257, CG11131, CG12404, CG15283, 
CG30486, CG31661, CG31926, CG32698, CG34129, 
CG34130, CG3740, CR45727, Cpr76Ba, Cpr76Bb, Cpr76Bc, 
Drep1, ERR, Fim, Gld2, Ipk2, Lcp4, LpR2, NPFR, Nmt, 
Obp18a, SKIP, Sec61beta, Sfp96F, Slh, Sp1, a6, akirin, brv1, 
cold, disp, dpr10, dpr13, dpr6, ect, haf, hfw, hll, lace, lectin-
21Ca, mir-1, ms(2)35Ci, ms(3)76Ba, mthl7, mtt, nht, nrm, 
oaf, pnut, polyph, scramb1, soti, sphinx1, sphinx2, tut, vnc 

* Genes previously found to have association with longevity are shown in bold. 

 

Genes, found in nodes defined using clustering coefficient measure, in the extended DGRP 

GWAS-based network are enriched in different GO terms (Table 4.6) to those of the extended 
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Synthetic GWAS-based network, with many of the genes found residing in novel bins. Here, 

the longevity associated gene esg was also enriched in GO terms in the clustering coefficient 

measure for the extended DGRP GWAS-based network. This analysis found enrichment in the 

‘detoxification’ and ‘cellular chemical homeostasis’ GO terms, which again are biological 

processes that could potentially play a role in longevity.  

 

Table 4.6 Gene Ontology (GO) enrichment analysis of genes found by using clustering 

coefficient measure in the extended DGRP GWAS-based network. 

GO Term Total number 
of genes 
enriched in GO 
term 

P-value Genes found within novel regions 

RNA 
modification 

9 3.036714𝑒−4 Nop60B, l(2)35Bd, CG3808, CG6745, THG, 
snoRNA:Me28S-G1083a, snoRNA:Me28S-G1083b, 
snoRNA:Me28S-G1083c, snoRNA:Me28S-G1083d 

Detoxification 6 0.003181 CG5948, GstO1, GstO2, GstO3, Txl, se 

Cellular chemical 
homeostatis 

8 0.009417 CG11619, CG18135, CG3942, CG6125, Dop1R2, MCO3, 
MICU1, foi 

Negative 
regulation of 
gene expression 

21 0.022001 Spn-E, Su(H), esg*, CG15262, Elba2, NC2beta, drm, 
sob, stc, Atx2, PCID2, Rh6, SmydA-2, Usp47, hdc, insv, 
lin-52, mir-2c, rhea, svp, vig 

Negative 
regulation of 
cellular 
biosynthetic 
process 

18 0.023316 esg, Su(H), Elba2, NC2beta, drm, insv, sob, spn-E, stc, 
Atx2, CG15262, GABA-B-R1, Rh6, Usp47, lin-52, mir-2c, 
rhea, svp 

* Genes previously found to have association with longevity are shown in bold. 

 

4.6.2 GO Term Enrichment Analysis for Genes Residing in Nodes Identified Using PageRank 

Measure 
 

Genes, found in nodes identified using PageRank measure, enriched in GO terms were mostly 

located in original bins in the extended Synthetic GWAS-based network (Table 4.7). Some of 

these original bins contained genes already known as associated with longevity, including 

ATPCL and chm (Peleg et al., 2016) and Nf1 (Tong et al., 2007). These genes, along with genes 
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found in novel regions, were found to be enriched in GO terms for processes involved in 

regulation processes of the organism. The Atg7 gene, along with genes found in original 

regions and one gene found in a novel region, was also enriched in the GO term ‘regulation 

of apoptotic process’, an important function in the ageing process.  

 

Table 4.7 Gene Ontology (GO) enrichment analysis of genes found by using PageRank 
measure in the extended Synthetic GWAS-based network. 

GO Term Total 
number of 
genes 
enriched in 
GO terms 

P-value Genes found within novel regions Genes with 
longevity 
relation found 
within original 
regions 

Regulation of 
biosynthetic 
process 

141 0.032552 CG3328, dimm, Anp, CG33786, pcs chm*, dpp, Nf1 

Regulation of 
glucose metabolic 
process 

27 0.011477 Eno ATPCL, chm 

Regulation of 
membrane 
potential  

15 0.034068 CG7912 
 

Regulation of 
apoptotic process 

26 0.036777 app Atg7 

* Genes previously found to have association with longevity are shown in bold. 

 

Genes, found in nodes identified using PageRank measure, in the extended DGRP GWAS-

based network were enriched in different GO terms (Table 4.8) to those of the extended 

Synthetic GWAS-based network, including the GO term ‘ageing’, but many of the genes 

enriched came from original bins. Here, more longevity associated genes were found, with 

the well-known longevity genes Indy (Rogina and Helfand, 2013) and chico (Clancy et al., 2001) 

occurring among enrichments for GO terms ‘ageing’, ‘developmental process’ and ‘immune 

response’. A longevity gene, EcR (Tatar et al., 2003), was also found to be enriched in some of 

these terms along with other novel regions.  
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Table 4.8 Gene Ontology (GO) enrichment analysis of genes found by using PageRank 

measure in the extended DGRP GWAS-based network. 

GO Term Total 
number of 
genes 
enriched in 
GO terms 

P-value Genes found within novel regions Genes with 
longevity relation 
found within 
original regions 

Ageing 18 0.007864 EcR* chico, GlyP, Nf1, 
Thor, mle 

Developmental 
process 

192 0.027609 EcR, Chi, drm, Axn, spn-A, CSN1b, 
Sox14, HSPC300, Sry-delta, sob, 
Unc-89, sima, Alas, CG15515, 
CecA1, CecB, EbpIII, Phm, RpS28a, 
Sry-alpha, Tbce, janA, janB, mr 

Pten, chico, Nf1, 
Thor, mle, GlyP, 
Indy 

Immune response 32 5.083𝑒−4 Anp, CecA1, CecA2, CecB, CecC, Sr-
CIV, sima 

Thor, GlyP, Pten, 
chico 

Regulation of 
gene expression 

95 0.011513 EcR, sob, orb, Ars2, drm, Chi, sima, 
Sry-delta, SmydA-5, Sox14, ZIPIC, 
thoc5 

mle, Thor, bsk 

* Genes previously found to have association with longevity are shown in bold. 

 

4.7 COMPARISON OF NETWORKS FOR BOTH GWAS STUDIES 

 

4.7.1 Common Regions Identified between extended DGRP and Synthetic GWAS-based 

Networks using Network Measures  

Nodes identified using network measures were found in common between the extended 

DGRP and Synthetic GWAS-based network. These common regions included original bins in 

each network, as well as novel bins. Among the significant bins found using clustering 

coefficient measures, bins 32 (Chr2L: 2480000-2560000), 192 (Chr2L: 15280000-15360000), 

195 (Chr2L: 15520000-15600000), 702 (Chr3L: 12000000-12080000), 1129 (Chr3R: 21600000-

21680000) and 1134 (Chr3R: 22000000-22080000) were found in common between the 

extended Synthetic GWAS-based network and extended DGRP GWAS-based network. All six 

of these bins were novel in both networks. All genes in each region were analysed one-by-

one, using FlyBase database tools to find their genetic phenotypes. All genes were also 

compared to the list of longevity genes in the GenAge database. In these six bins, two genes 

already associated with longevity, esg in bin 192 (Chr2L: 15280000-15360000) and Sema-5c 
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in bin 702 (Chr3L: 12000000-12080000), as well as genes oaf (Chr2L:2492955-2498846) and 

Ald (chr3R:22079791-22087313) were found to have the phenotype ‘increased mortality’. All 

genes found in these six common bins were grouped together and analysed for GO term 

enrichment, however the results were not significant for any terms that may be related to 

longevity. 

Twelve bins identified using PageRank Measure were found in common between the two 

extended GWAS-based networks: 22 (Chr2L: 1680000-1760000), 30 (Chr2L: 2320000-

2400000), 534 (Chr2R: 19760000-19840000), 535 (Chr2R: 19840000-19920000), 660 (Chr3L: 

8640000-8720000), 989 (Chr3R: 10400000-10480000), 1097 (Chr3R: 19040000-19120000), 

1131 (Chr3R: 21760000-21840000), 1180 (Chr3R: 25680000-25760000), 1182 (Chr3R: 

25840000-25920000), 1183 (Chr3R: 25920000-26000000) and 1184 (Chr3R: 26000000-

26080000). However, only one of these bins was a novel bin in both datasets, bin 1184. Bin 

1184 contained 31 genes, for which phenotypic data was not readily available, however the 

CG9747 gene with a phenotype of ‘increased mortality’ was present. Bin 1184 also contained 

five genes known to play a role in immune response, four of these being antimicrobial 

peptides known as cecropins: CecA1, CecA2, CecB and CecC, as well as the Anp gene. 

Antimicrobial peptides are known to be important defence molecules of the innate immune 

system, and in Drosophila cecropins are synthesised as a response to infections (Kylsten et al., 

1990). The induced expression of antimicrobial peptides Drosocin and CecropinA1 have 

previously been found to significantly prolong lifespan of adult flies (Loch et al., 2017).  

Bin 535 was common to both networks but only novel in the extended DGRP GWAS-based 

network. This bin was found to contain seven genes: Chi, Alas, mr, Gadd34, Sox14, Phm and 

Adk2, with a phenotype of ‘increased mortality’. The phenotypes of genes found in the 

remaining ten common bins were also searched for, for which numerous ageing related 

phenotypes were observed. These included frtz, Atxn7, CG5339, CG4434 and Zip99C genes 

found to have phenotypes of ‘short lived’ and Rim2 and Tpi found to have phenotypes of ‘long 

lived’. Sixteen genes analysed were also found to have a phenotype of ‘increased mortality’: 

cpb, Eno, VGlut, DCP1, Lpt, SERCA, Galphas, h, stumps, put, l(3)L1231, Cdc16, E(spl)mdelta-

HLH, dgt1, spn-A and sima. All genes found in the twelve bins common between both 

networks were grouped together and analysed for enrichment in GO terms. Among the 
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significant terms found in this analysis were ‘phagocytosis’, ‘processes in the tracheal system’ 

and ‘regulation of homeostatic processes’. 

4.7.2 Human Ortholog Search 

Drosophila are commonly used as a model organism for reasons previously discussed in this 

thesis, with one main reason for which they are so useful being due to the ability to apply 

findings in this organism to humans. So far, all findings in this study have been related only to 

genes in Drosophila, and so the next step was to see if we are able to map these findings onto 

humans, by searching for human orthologs of the genes found to be significant in the studies 

reported above.  

For all genes found in the common regions observed in both extended GWAS-based networks, 

each Drosophila gene was analysed for the mapping of any human orthologs onto this gene 

using an Integrative Ortholog Prediction Tool available at https://www.flyrnai.org/cgi-

bin/DRSC_orthologs.pl. All human orthologs found to match with Drosophila genes were 

further analysed by looking at the function of this ortholog and exploring any association that 

this could have with longevity. Numerous Drosophila genes were found to have a human 

ortholog, of which several were found to have biological functions, which could suggest a link 

to longevity/ageing.  

The CG5886 gene in Drosophila, an uncharacterized protein, was found to have the human 

ortholog TXLNA, which is a gene related to the Innate Immune System pathway. One major 

function of the innate immune system is to control inflammation and maintain the cytokine 

balance; therefore, defects in this system may diminish the ability to combat infection. At the 

site of infection, cellular components of the innate immune system, for example, neutrophils 

and macrophages are found and therefore any alterations in innate immunity role of such 

cellular components in inflammatory response could therefore have an impact of human 

health, consequently longevity (Solana et al., 2006). The esg gene in Drosophila, enriched in 

‘respiratory system development’, was found to have the human ortholog SNAI2, a protein 

that has anti-apoptotic activity. Apoptosis is a process that goes on continuously throughout 

life, eliminating unneeded, damaged and senescent cells from the body and is therefore 

essential in optimising cell functions. Dysregulation of apoptosis, therefore, could lead to a 

https://www.flyrnai.org/cgi-bin/DRSC_orthologs.pl
https://www.flyrnai.org/cgi-bin/DRSC_orthologs.pl
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decline in immune function, therefore effecting chances of longevity (Joaquin & Gollapudi, 

2001).  

The CG15262 Drosophila gene, another uncharacterized protein, was found to have the 

human ortholog CNOT2, a gene that encodes a subunit of the multi-component CCR4-NOT 

complex. This complex regulates mRNA synthesis and degradation which is an essential 

determinant in the regulation of gene expression. Gene expression control is achieved at the 

level of the mRNA clearance, as well as mRNA stability and accessibility to other molecules. 

The assembly and function of specific mRNA granules that harbour the mRNA decay 

machinery can be modulated to promote stress resistance to adverse conditions (Borbolis & 

Syntichaki, 2015), and therefore over time affect the ageing process and lifespan of an 

organism. The Ald gene, involved in glucose homeostasis and related to phenotypes 

‘increased mortality’ and ‘lethal’, was found to have the human ortholog ALDOA, a gene 

related to the metabolic pathway. Biological processes that can be associated to longevity, 

such as altered metabolism, are considered not just as a consequence of old age, but also a 

potential driving force of longevity (Häsler et al., 2017). The ALDOA gene is also related to the 

Sudden Infant Death Syndrome (SIDS) pathway, otherwise known as cot death or crib death, 

which is the sudden unexplained death of a child less than one year of age. 

Another gene found to have a human ortholog which relates to a pathway associated with 

lifespan regulation is the Slh gene in Drosophila, a gene involved with response to toxic 

substance and phenotypes ‘lethal’ and ‘neuroanatomy defective’. The Slh gene has human 

ortholog SCFD1, which is related to pathways including subsequent modification of proteins, 

and for all organisms from yeast to human, lifespan is known to be regulated by protein 

modification. For example, the gene encoding sirtuin, modifies proteins as a protein 

deacetylase and is a well-known marker of life span regulation (Lee et al., 2018). 

Several of the Drosophila genes searched were found to have human orthologs which are 

associated with diseases that can potentially have an effect on the lifespan of a human. These 

included the Drosophila gene CG17770, which is associated with the biological process 

calcium-mediated signalling, having the human ortholog CALML6. Among the related 

pathways for this ortholog is the Apelin signalling pathway. Apelin is the endogenous ligand 

of APJ, the orphan G protein-coupled receptor. The apelin–APJ signal transduction pathway 

is widely expressed in the cardiovascular system and is crucial in cardiovascular homeostasis, 
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such pathway is often related to heart diseases with high morbidity in the elderly, including 

heart failure and atrial fibrillation (Zhou at al., 2017). The human ortholog found for the 

Drosophila genes CG9743 and CG9747 was SCD. These Drosophila genes are both involved in 

the biological process oxidation-reduction process and have phenotypes ‘increased mortality’ 

and ‘lethal’. The human gene SCD is associated with many diseases including Reye Syndrome 

and Fatty Liver Disease. In Reye Syndrome abnormal accumulations of fat begin to develop in 

the liver and other organs of the body, as well as a dramatic increase of fluid pressure in the 

brain. Unless diagnosed and treated successfully, death is common, often within a few days, 

and even a few hours. The CG1983 Drosophila gene, an uncharacterized protein, was found 

to have the human ortholog PLPBP, which is known to have a tumour suppressor effect on 

hepatocellular carcinoma, which is the most common type of primary liver cancer. Liver 

cancer is rarely detectable early, at which point it is most treatable, making this cancer very 

difficult to cure and leading to fairly low survival rates in humans.  

The Drosophila gene kek3, for which the biological processes are unknown, was found to have 

the human ortholog LRRC4C, which is associated with Extragonadal Seminoma. Primary 

extragonadal seminoma (EGS) is a rare tumour found in young adults, which often presents 

with bulky primary tumours and metastatic disease where primary cancer cells break away 

and travel through the blood or lymph system, forming new tumours in other parts of the 

body. The LRRC4C gene is related to the Cell Adhesion Molecules pathway; cell adhesion 

molecules are glycoproteins expressed on cell surfaces and play critical roles in biological 

processes including the immune response and inflammation. The Drosophila gene Sema-5c 

was found to have the human ortholog gene SEMA5B. This Sema-5c gene is associated with 

biological processes including axon guidance and central complex development, its 

phenotypes include ‘long lived’ and this gene has previously been observed in a screening for 

longevity genes in Drosophila (Seong et al., 2001). Its ortholog SEMA5B encodes a member of 

the semaphorin protein family. This protein family is known to regulate axon growth during 

development of the nervous system, in which the axon carries all data humans use to sense 

environment and carry out behaviours. The nervous system plays an important role in 

processing complex information from the environment, which could have a major influence 

on an animal's ageing and longevity (Alcedo et al., 2013), meaning that any factor effecting 

the way in which a nervous system functions may have an effect on longevity. 
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4.7.3 SNP Counts in Significant Regions/Genes 

For the novel bins common between these extended GWAS-based networks when applying 

network measures, the total number of SNPs recorded in both the Synthetic GWAS and DGRP 

GWAS datasets were counted for each novel region; counts displayed in Table 4.9. In both 

SNP datasets, the number of SNPs found to reside in each of the bins is fairly high, with bin 

1184 harbouring the highest number of SNPs as compared to any of the total 1503 80 Kb bins 

recorded. 

Table 4.9 Number of SNPs recorded in novel bins identified by using various network 
measures and common for both networks. 

 

For all common bins in both extended GWAS-based networks that have high clustering 

coefficient or PageRank scores, all genes residing in these bins were found and the number 

of SNPs residing in each of the genes was counted. The 20% of genes with the highest number 

of SNPs are listed separately for common regions found by each network measure in Tables 

4.10 and 4.11 (see Appendix Tables S4.2 and S4.3 for full lists). These lists contained genes 

that have been previously found to associate with longevity, including Sema-5c, Ald, oaf, pnt 

and Nf1. 

 

 

 

 

Bin 

number 

Bin position Number of SNPs recorded 

in Synthetic GWAS dataset 

Number of SNPs recorded in 

DGRP GWAS dataset 

32 Chr2L: 2480000-2560000 92 2158 

192 Chr2L: 15280000-15360000 76 2225 

195 Chr2L: 15520000-15600000 61 1592 

702 Chr3L: 12000000-12080000 106 2706 

1129 Chr3R: 21600000-21680000 75 1774 

1134 Chr3R: 22000000-22080000 91 1783 

1184 Chr3R: 26000000-26080000 123 3102 
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Table 4.10 Genes in common regions identified by clustering coefficient measure between 
extended Synthetic and DGRP GWAS-based networks, containing the highest number of 
SNPs.  

Gene Gene position Bin Number of 

SNPs 

recorded in 

Synthetic 

GWAS 

dataset  

Number of 

SNPs 

recorded in 

DGRP 

dataset  

Percentage of 

total number 

SNPs in 

Synthetic 

GWAS dataset  

Percentage 

of total 

number of 

SNPs in 

DGRP 

dataset 

rols Chr3L:12001325-

12057959 

702 76 1884 0.0811 0.0860 

CR44320 Chr3R:22020972-

22055990 

1134 34 711 0.0363 0.0324 

CR46061 Chr3R:22061047-

22078654 

1134 25 466 0.0267 0.0212 

kek3 Chr2L:15552723-

15583978 

195 22 591 0.0235 0.0269 

Sema-5c Chr3L:12060611-

12074930 

702 18 503 0.0192 0.0229 

Ald Chr3R:22079791-

22087313 

1134 9 158 0.0096 0.0072 

oaf Chr2L:2492955-

2498846 

32 4 114 0.0042 0.0052 

CG6793 Chr3L:12035487-

12037317 

702 4 75 0.0042 0.0034 

CG12290 Chr3R:22055970-

22060422 

1134 4 71 0.0042 0.0032 

Slh Chr2L:2488197-

2492671 

32 4 69 0.0042 0.0031 

CG3515 Chr2L:2551145-

2552825 

32 4 50 0.0042 0.0022 

CG15263 Chr2L:15285000-

15286047 

192 4 50 0.0042 0.0022 
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Table 4.11 Genes in common regions identified by PageRank measure between extended 
Synthetic and DGRP GWAS-based networks, containing the highest number of SNPs.  

Gene Gene Position Bin Number of 
SNPs 
recorded in 
Synthetic 
GWAS 
dataset  

Number of 
SNPs 
recorded in 
DGRP 
dataset  

Percentage of 
total number 
SNPs in 
Synthetic 
GWAS dataset  

Percentag
e of total 
number of 
SNPs in 
DGRP 
dataset 

sima Chr3R:25884033
-25947520 

1182 81 1865 0.086532 0.085145 

pnt Chr3R:19115953
-19171889 

1097 57 1316 0.060893 0.060081 

CG2970 Chr2R:19836724
-19839982 

534 38 1107 0.040595 0.038036 

stumps Chr3R:10402939
-10433801 

989 28 803 0.029912 0.03666 

AdoR Chr3R:25960578
-25975328 

1183 24 536 0.025639 0.018417 

CG17646 Chr2L:1732524-
1750612 

22 23 501 0.024571 0.022873 

CG4467 Chr3R:19053449
-19074625 

1097 22 609 0.023503 0.020925 

CG31038 Chr3R:25702781
-25728953 

1180 22 442 0.023503 0.015187 

VGlut Chr2L:2391660-
2410662 

30 21 514 0.022434 0.023466 

kcc Chr2R:19795177
-19812589 

534 19 418 0.020298 0.014362 

CG10904 Chr2R:19856464
-19857596 

535 17 568 0.018161 0.025932 

orb Chr3R:19086332
-19106578 

1097 17 245 0.018161 0.011185 

Axn Chr3R:25848564
-25861033 

1182 16 403 0.017093 0.013847 

Adk2 Chr2R:19911730
-19913400 

535 15 390 0.016024 0.0134 

DNA-ligI Chr2R:19778035
-19780700 

534 14 381 0.014956 0.017394 

Rim2 Chr2L:1716244-
1724388 

22 14 247 0.014956 0.011277 

CG7886 Chr3R:10452398
-10468285 

989 13 367 0.013888 0.01261 

Nap1 Chr2R:19792698
-19794817 

534 12 311 0.01282 0.010686 

EbpIII Chr2R:19913695
-19915041 

535 12 279 0.01282 0.012738 

CG11498 Chr3R:25978744
-25986195 

1183 11 279 0.011751 0.012738 

Mgat2 Chr3R:25841235
-25847943 

1182 11 255 0.011751 0.011642 

Nf1 Chr3R:21808735
-21821459 

1131 11 200 0.011751 0.009131 
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Cad88C Chr3R:10456200
-10467498 

989 10 295 0.010683 0.013468 

CG17658 Chr2R:19782586
-19784520 

534 10 277 0.010683 0.009518 

CG3121 Chr2R:19904944
-19907419 

535 10 260 0.010683 0.01187 

CG42261 Chr3R:21795802
-21808458 

1131 10 241 0.010683 0.011003 

CG9743 Chr3R:26022082
-26028720 

1184 10 218 0.010683 0.009953 

Alas Chr2R:19852295
-19854280 

535 9 210 0.009615 0.009587 

Gadd34 Chr2R:19863122
-19864778 

535 9 186 0.009615 0.008492 

CG31036 Chr3R:25733829
-25738614 

1180 8 144 0.008546 0.006574 

mr Chr2R:19859954
-19862931 

535 8 136 0.008546 0.006209 

trp Chr3R:25740243
-25746011 

1180 7 163 0.007478 0.007442 

CG14853 Chr3R:10435364
-10444709 

989 6 273 0.00641 0.00938 

CG9747 Chr3R:26011145
-26016974 

1184 6 164 0.00641 0.007487 

CR44806 Chr2R:19795997
-19796398 

534 6 137 0.00641 0.006255 

Zip99C Chr3R:25689423
-25694617 

1180 6 131 0.00641 0.005981 

CG15528 Chr3R:25874357
-25877834 

1182 6 120 0.00641 0.004123 

Eno Chr2L:1724768-
1729636 

22 6 115 0.00641 0.00525 

frtz Chr2L:1711302-
1715851 

22 6 114 0.00641 0.003917 

CR46082 Chr3R:25960730
-25963303 

1183 6 90 0.00641 0.004109 

CG9733 Chr3R:26069700
-26072425 

1184 5 145 0.005341 0.00662 

CG31028 Chr3R:25992353
-25996929 

1183 5 139 0.005341 0.006346 
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4.8 EXPLORING SUBNETWORKS  
 

For each extended GWAS network, subnetworks were found using modularity scores 

calculated as described in Chapter 4.5. These subnetworks produced using the Louvain 

modularity measure (see Figures 4.5 and 4.6) were further explored with the aim to identify 

novel genes/regions that co-located with genes, known to be associated with a specific 

phenotype, and enriched in the same GO terms as known genes. First, we compiled a list of 

genes residing in the regions of these individual subnetworks, and then performed Gene 

Ontology Enrichment analysis on these genes. The idea of this approach was that if genes, 

residing in original or novel regions, in the same subnetworks were found to be enriched in 

the same GO term, this would act as a proof of concept that there may be one SNP residing 

in one gene that has an effect by itself on the biological function shared or that more than 

one SNP in these functionally-related genes may have a cumulative effect on the shared 

biological function and therefore on longevity.  

A division into dominant and other nodes in the next part of this analysis is done simply to 

distinguish between different subnetworks; despite this subdivision all regions corresponding 

to nodes within subnetworks occur in close proximity within the cell nucleus. 

 

4.8.1 Subnetworks of Extended Synthetic GWAS-Based Network 
 

A modularity score for the extended Synthetic GWAS-based network was 0.868 and produced 

81 communities (modules). Figure 4.7 shows a modularity size distribution graph, where for 

each module in the network, the number of nodes within the module is recorded. Several 

subnetworks that appeared to have one dominant node were further explored for each 

dataset, where all genes found in both the dominant node and all neighbouring nodes in the 

same module were grouped together for each subnetwork and entered for GO enrichment 

analysis. The extended Synthetic GWAS-based network was found to have 7 subnetworks in 

which a dominant node was apparent; Table 4.12 summarises the nodes found in each of 

these subnetworks, along with the number of genes found in these nodes which were then 

used for GO term enrichment analysis. 
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Figure 4.7 The distribution of sizes of modularity classes for the extended Synthetic GWAS-
based network. 

 

Table 4.12 A summary table of subnetworks in the extended Synthetic GWAS-based 
network chosen for further analysis. 

Modularity 

class 

Main 

node 

All other nodes in module  Total nodes in 

module (including 

main node) 

Total 

genes in 

module 

4 93 94, 92, 89, 90, 91, 95, 1319, 96 9 92 

5 128 125, 129, 130, 131, 711, 929, 124, 

126, 127, 740 

11 229 

11 210 578, 203, 205, 209, 211, 206, 207, 

916, 204, 208, 982, 1431, 930, 1436, 

198, 199, 200, 201, 202, 1049 

21 249 

23 334 335, 332, 337, 330, 336, 331, 333, 

749 

9 141 

29 397 401, 400, 393, 395, 394, 396, 399, 

398, 402, 403, 961, 1044, 1338 

14 222 

60 822 818, 821, 476, 1218, 820, 826, 824, 

823, 827, 313, 385, 819, 825 

14 174 

67 1082 1081, 1086, 502, 1079, 1080, 1078, 

1083, 1084, 1085, 1386 

11 150 
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Once GO enrichment analysis was performed on groups of genes found in these subnetworks, 

those with most significant relation to longevity were selected, and genes found to be 

enriched in selected longevity related GO terms are displayed in Table 4.13. The number of 

nodes in which these genes were found was also counted, to show that genes found to be 

enriched in the same GO term reside in different nodes (regions). Novel genes residing in 

close proximity to, and sharing the same longevity related biological processes with known 

longevity genes can be considered as good longevity candidate genes. 

 

Table 4.13 Genes residing within subnetworks of the extended Synthetic GWAS-based 
network and enriched in longevity-related GO terms. 

Modular 
class 

GO term P-value Genes enriched in GO term Number of 
gene 
harbouring 
nodes/total 
number of 
nodes 

4 cellular response 
to stimulus 

0.004503 Rab39, Tom40, santa-maria, Mnn1*, 
sem1, Pvf2, Gr28b, Pvf3, Ziz, RapGAP1, 
Wnt4, wg, Wnt6, Wnt10**, ninaC, 
CG5160, CG5181, mir-305 

6/9 

4 localization 0.007119 Rab39, Tom40, Sem1, Pvf2, CG13793, 
CG13794, CG13795, CG13796, CG31904, 
CG31907, CG33296, Pvf3, Ndae1, Wnt4, 
ninaC, Ntl, ATPsynGL, Nuf2 

5/9 

4 cell 
communication  

0.023993 Rab39, santa-maria, Mnn1, Pvf2, Gr28b, 
Pvf3, Ziz, RapGAP, Wnt4, wg, Wnt6, 
Wnt10, ninaC, CG5160, mir-305 

7/9 

5 macromolecule 
modification  

0.003413 Atg1, Ptp69D, Cnot4, RluA-1, CG32847, 
CG33303, CG34183, CG42366, Fkbp59, 
CG4839, Ror, CG4968, Sps2, gny, STUB1, 
Sp27A, LManI, Bug22, Cdk1, Cand1, 
Usp14, CYLD, Utx, Pten, bsk, Dref, RluA-
2, LMannII, FBXO11 

9/11 

5 cellular catabolic 
process 

0.020971 Atg1, lft, CG32847, CG4592, CG4594, 
CG4598, yip2, Prosalpha6, RpS27A, 
CG5367, Usp14, Utx, Pten, CG5676, bsk, 
chico, CG5731, CG8526, FBXO11 

9/11 

11 DNA repair 0.021953 CG17329, ku80, CG31807, CG33552, 
EndoGI, CG5316 

5/21 

11 developmental 
process 

0.010492 cact, Cas, chif, cni, crp, dac, foxo, fzy, 
glue, goe, grp, heix, her, mdy, mir-9b, 
mir-9c, sing, squ, twe, wek, yellow-b, 
BicC, BuGZ, CG17328, CG32572, CG4793, 
CG5953, Ca-alpha1D, Cyp303a1, Cyt-c-d, 
EndoGI, GMF, Idgf1, Idgf2, Idgf3, Mhc, 
Npc2b, Syx5, TwdIX, TwdIY, TwdIZ, 

14/21 
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TwdIalpha, VhaSFD, beat-Ia, beat-Ib, 
beat-Ic 

23 apoptotic process 0.033954 azot, tor, cathD, Cul1, fwe, mir-263b 4/9 

23 positive regulation 
of gene expression 

0.028920 CG12769, Rpt1, Kdm4A, udd, Nup50, 
nito, CG6244, Lpin, lig 

6/9 

29 negative regulation 
of transcription, 
DNA-templated 

0.024472 CG10038, spt4, wuc, Iz, seq, Kdm4B, sug, 
Psc, Su(z)2, Iswi 

7/14 

60 gene expression 5.603132e-4 CG10474, Rpb8, sa, CG11906, mip40, Pc, 
croc, barc, CRIF, Hr78, wbl, rib, Tsr1, eg, 
CycH, CG7414, Nopp140, mub, RpLPO, 
Cdk12, TfAP-2 , rho-7 

9/14 

* Genes previously found to have association with longevity as recorded in FlyBase or GenAge 

resources are shown in bold.  

** Genes residing within original nodes, i.e. harbouring SNPs with D>7.9 are underlined. 

 

GO analysis found an enrichment in the term ‘DNA repair’ for modular class 11 (P-value = 

0.021953), for which six genes that share this term were found to reside in five different 

regions of the subnetwork. The ability for a cell or tissue, and therefore organism, to function 

efficiently relies on the maintenance of stability of its unit components. Such stability is 

dependent on the differentiated state of the system, whereby the higher the differentiated 

state, the greater amount of stability is required. The process of DNA repair is one way in 

which stability can be achieved, therefore making DNA repair essential in order to avoid 

problems effecting organism function. For example, it has been shown that unrepaired DNA 

damage that arises in stem cells over time leads to stem cell exhaustion which has been 

proposed to be a principle mechanism of ageing (Nijnik A et al., 2007). The gene ku80, 

enriched in ‘DNA repair’, is identified as a candidate gene in longevity, found to have a positive 

effect on the lifespan of Drosophila via DNA repair (Shaposhnikov et al., 2015). A phenotype 

search for this gene also states ‘short-lived’. The ENDOGI gene is involved in positive 

regulation of the Notch signalling pathway, and an ‘increased mortality’ phenotype. Notch 

signalling is important for cell-cell communication, and therefore plays a role in important 

processes such as neuronal function and development (Gaiano and Fishell, 2002). Notch 

signalling is also dysregulated in many cancers (Bolós et al., 2007) and faulty signalling is 

implicated in many diseases (Harper et al., 2003). The other four genes CG17329, CG31807, 

CG33552 and CG5316 enriched in the ‘DNA repair’ GO term are genes that are currently 

uncharacterized. In relation to DNA repair, longevity associated gene FOXO3a, discussed in 

Chapter 1 of this thesis, has also been found to stimulate the DNA Repair Pathway through 
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the Gadd45 protein which has also been associated with ageing (Tran et al., 2002). It has also 

been revealed that most premature ageing syndromes are due to mutations found in genes 

that encode proteins involved in DNA repair (Karanjawala and Lieber, 2004).   

Six genes in modular class 23 were enriched in the ‘apoptotic process’ GO term (P-value = 

0.033954). One major role of apoptosis is to remove cells in the organism, which may harm 

the way in which an organism functions as a whole. The apoptotic process is almost an 

alternative to the previously discussed GO term ‘DNA repair’, whereby when DNA is damaged, 

the checkpoint protein p53 is activated and the decision is made as to whether replication 

should be stopped and the DNA should be repaired, or made to die by apoptosis (Warner, 

1999). The decline in immune response with ageing has been well established, with the 

decline in cellular immune response, which is mediated by T lymphocytes, being observed 

(Miller, 1996). Apoptosis has been found to regulate the size of the lymphocyte population in 

an organism (Mountz et al., 1996), and impaired functions as a result of age associated 

immune decline are known to concern mainly T lymphocyte, for which the relationship 

between autoimmune diseases increasing with age, and age-related autoreactivity has been 

also studied in relation to T cell reactivity and autoantibodies production (Makinodan and Kay, 

1980; Candore et al., 1997). Studies have also found that in mammals, at least in part, 

apoptosis plays an important role in the process of ageing and tumorigenesis and that age-

enhanced apoptosis may work as a protective mechanism against age-associated 

tumorigenesis (Higami and Shimokawa, 2000). The six genes in this enrichment group include 

CathD, a gene with phenotypes including those associated with apoptosis such as ‘increased 

cell death’ as well as longevity associated phenotype ‘short-lived’. The Drosophila gene azot 

has the phenotype ‘long-lived’ and has previously been observed to result in a longer lifespan 

(Proshkina et al., 2015). Another gene enriched in this GO term is Cul1, this gene has 

phenotypes of ‘increased mortality’ and ‘neuroanatomy defective’. The Fwe gene encodes a 

transmembrane protein that mediates win/lose decisions in cell competition and neuronal 

culling curing development and ageing, again this gene has longevity related phenotypes 

‘increased mortality’ and ‘lethal’. Genes residing in modularity class 23, sharing the same 

biological function process ‘apoptotic process’ and coming into close proximity with longevity 

genes CathD and azot can be speculated to have an effect on longevity in the same way as 

these known longevity genes. 
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Some genes enriched in the GO terms displayed in Table 4.13 have been shown previously to 

have association with longevity or display phenotypes associated with ageing in which most 

cases this association is with increased lifespan. This includes chico, a gene encoding an insulin 

receptor substrate that functions in an insulin/insulin-like growth factor (IGF) signalling 

pathway and is found to increase lifespan by up to 48% (Clancy et al., 2001). The Pten gene, 

when activity is increased, has been shown to delay the process of proteostatis and therefore 

result in a decrease in the loss of muscle strength during muscle ageing. This increase in Pten 

activity has been found to increase maximum lifespan by up to 7.7% in comparison with 

matched controls (Demontis and Perrimon, 2010). In the same modularity class, the Atg1 

gene was found. Neuronal-specific upregulation of this Atg1 gene during adult-onset has been 

found to result in increased median lifespan by up to 25% (Ulgherai et al., 2014). These three 

genes residing in the modular class 5 subnetwork, chico, Pten and Atg1 harbour 80, 61 and 

506 SNPs from the DGRP GWAS dataset, however none of these residing SNPs had a 

significant P-value.  We can speculate that the SNPs residing in these longevity-associated 

genes, could work collectively or with the SNPs that are found to reside in the genes not yet 

associated with longevity but enriched in the ‘cellular catabolic process’ GO term. As a result 

of this, the SNPs in these three longevity genes can influence genes found in the same 

subnetworks, sharing the same biological functions to also having ageing effects. The dFOXO 

gene, a transcription factor also involved in the regulation of the insulin signalling pathway, is 

a commonly known longevity gene in Drosophila (Giannakou et al., 2004; Giannakou et al., 

2007; Hwangbo et al., 2004). In all cases it was found that overexpression of this gene results 

in an increase in maximum lifespan. Genes VhaSFD and sug were both identified in the same 

study (Landis et al., 2003), when overexpressed, to result in an increase in mean life span by 

5-10%. The mub gene has previously been found to have association with longevity when 

mutated; a study showed that the insertion of a p-element in the gene results in longer lived 

Drosophila. These longevity genes foxo, Mnn1, VhaSFD and mub were all found to harbour a 

number of SNPs from the DGRP GWAS dataset. The highest SNP enriched gene of these was 

mub, which harboured 1649 SNPs where the lowest P-value was 1.04 × 10−5 . Foxo also 

harboured a large number of SNPs, 715, with a lowest P-value of 4.88 × 10−5. Genes Mnn1 

and VhaSFD harboured 118 and 92 SNPs respectively, however their minimum P-values were 

not significant. Novel genes residing in close proximity to, and sharing the same longevity 
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related biological processes with known longevity genes mub and foxo can be considered as 

good longevity candidate genes.  

Several genes in Table 4.13 were found to display the phenotype ‘increased mortality’ in a 

search using the FlyBase database. These included the CYLD gene, a cancer consensus gene 

responsible for tightly limiting the immune response duration (Zerofsky et al., 2005). 

Generated Drosophila CYLD (dCYLD) mutant has been proven to be essential for JNK-

dependent oxidative stress resistance and normal lifespan and has also been indicated to play 

a critical role in modulating TNF-JNK-mediated cell death (Xue et al., 2007). The Mnn1 gene 

also displays this phenotype, for which this gene has been suggested to have a role in the 

regulation of stress response in Drosophila (Papaconstantinou et al., 2005). The association 

between stress and lifespan has often been made, and previous studies have observed 

differences in gene expression when comparing normal and stress conditions which has 

resulted in the identification of ageing genes in Drosophila. The genes found to reside in the 

same subnetworks as these genes previously shown to play roles in biological processes 

associated with longevity were found to harbour a number of SNPs themselves. We can 

speculate that the SNPs residing in these genes and SNPs residing in genes CYLD and Mnn1 

have a cumulative effect, which results in these genes being involved with the same biological 

process of ‘regulation of immune system process’ 

There are several genes in Table 4.13 which have shown previously to be associated with 

decreased lifespan in Drosophila. Two genes were found to have a ‘short-lived’ phenotype 

when searched for in the FlyBase database, these being CathD and ku80. This study observed 

an increase in lifespan by up to 21.4% (Magwire et al., 2010). The rho-7 gene has also been 

found to decrease lifespan where a study showed that knockout flies were found to have 

severe neurological defects as well as much reduced lifespan (McQuibban et al., 2006). 

Another gene found to cause a decrease in lifespan of Drosophila, this time in cases of RNA 

interference, was the bsk gene. Such interference in intestinal stem cells results in short life 

due to impaired intestinal homeostasis and tissue regeneration and has been found to reduce 

mean lifespan by 16.4% and 10.2% in males and females, respectively (Biteau et al., 2010). 

These genes known to have association with longevity can be speculated to interact with 

novel genes found in the same subnetworks sharing the same GO terms. Novel genes residing 
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in close proximity to, and sharing the same longevity related biological processes with these 

known longevity genes can be considered as good longevity candidate genes. 

For all subnetworks shown in Table 4.12, all nodes selected as the main node were original 

node regions in the extended Synthetic GWAS-based network and the majority of other nodes 

in the subnetworks were novel (additional) regions of the extended Synthetic GWAS-based 

network. Therefore, many of the genes shown in Table 4.13, enriched in the specific GO terms, 

reside in novel regions of the extended Synthetic GWAS-based network.  

 

4.8.2 Subnetworks of Extended DGRP GWAS-Based Network 
 

For the extended DGRP GWAS-based network, a modularity score was 0.917 and 61 

communities (modules) were observed. Figure 4.8 shows a modularity size distribution graph, 

where for each module in the network, the number of nodes within each subnetwork is 

recorded. Subnetworks that appeared to have one dominant node (node with a high degree 

compared to all other nodes in the same subnetwork) were then further explored, where 

genes found in both the dominant node and all neighbouring nodes in the same module were 

grouped together for each subnetwork and entered for GO enrichment analysis. The 

extended DGRP GWAS-based network was found to have 9 subnetworks in which a dominant 

node was apparent; Table 4.14 summarises the nodes found in each of these subnetworks, 

along with the number of genes found in these nodes which were then used for GO term 

analysis. 
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Figure 4.8 The distribution of sizes of modularity classes for the extended DGRP GWAS-

based network. 

 

Table 4.14 A summary table of subnetworks in the extended DGRP GWAS-based network 

chosen for further analysis. 

Modularity 
class 

Main 
node 

All other nodes in module  Total nodes in 
module (including 
main node) 

Total number 
of genes in 
module 

4 56 53, 55, 57, 58, 61, 54, 59, 60, 1078, 
1079, 1338 

12 125 

18 529 530, 523, 527, 531, 560, 524, 525, 
526, 528, 1253 

11 155 

20 576 521, 575, 104, 453, 573, 578, 105, 
478, 572, 574, 577, 579, 580, 581, 
1227 

16 256 

26 660 329, 412, 499, 658, 661, 321, 445, 
659, 662, 663, 1324, 1367, 1418 

14 223 

28 670 672, 330, 669, 673, 344, 366, 413, 
671, 1419 

10 177 

34 778 776, 785, 318, 777, 779, 780, 781, 
782, 783, 784 

11 103 

40 989 1210, 103, 458, 426, 983, 985, 986, 
987, 988, 990, 991, 992, 1336 

14 156 

44 1091 448, 1095, 1089, 1094, 361, 429, 
1090, 1092, 1093 

10 156 

49 1152 1151, 1147, 1153, 1154, 1155, 63, 
457, 1148, 1149, 1150 

11 142 
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Once GO analysis was performed on groups of genes residing within these subnetworks, those 

with most significant relation to longevity were selected, and the genes found to be enriched 

in selected longevity related GO terms are displayed in Table 4.15.  

 

Table 4.15 Genes residing within subnetworks of the DGRP GWAS-based network and 
enriched in longevity-related GO terms. 

Modularity 
class 

GO term P-value Genes enriched in GO term Number of 
gene 
harbouring 
nodes/total 
number of 
nodes 

4 development growth 0.030823 Elp3, ine, bdl, ft, CASK, tsl 4/12 

18 nervous system process 0.033071 Or59c, bw, Gr59c, Gr59a, Gr59b, 
Gr59d, Gr59e, Gr59f, Or59b, Or59a, 
tko 

4/11 

20 organelle assembly  0.016230 Oseg2, Pp2A-29B, Rcd4, sls, Oseg4, 
CG42787, hts, Cnb, RpL11, Ar16, 
mtsh, RpL23A 

9/14 

20 immune system 
process 

0.035555 CG10764, asrij, HBS1, sls, Rap1, ac, 
ecd, cnk, Ostgamma, Bgb, Bro, 
Btk29A, par-1 

9/14 

26 regulation of immune 
system process 

0.019532 Traf6, PGRP-SA, CG1572, Cyt-b5, 
GNBP3, GstO2, Sod2, Spn42Dd 

8/14 

34 response to stimulus 0.031506 geko, skl, AstC-R2, Adf1, Dic4, Trap1, 
geminin, Bap170, Debcl, Chmp1, 
GNBP2, not, CG4306, rpr, grim, hid, 
CG6893, GNBP1 

8/11 

40 open tracheal system 
development  

0.001555 stumps, Cad88C, cv-c, grh, btsz, thr, 
put, scb 

5/14 

* Genes previously found to have association with longevity as recorded in FlyBase or GenAge 

resources are shown in bold.  

** Genes residing within original nodes, i.e. harbouring SNPs with 𝑃 ≤ 3.33 ×  10−5 are underlined. 

 

GO analysis found an enrichment in the terms ‘immune system process’ for modular class 20 

(P-value = 0.035555) and ‘regulation of immune system process’ for modular class 26 (P-value 

= 0.019532), for which eight genes found to reside in eight different regions of the subnetwork 

shared this term. Immune senescence is the deterioration of immune function with age, in 

which the body’s resistance to infection is highly reduced. As well as resistance to infection, 

immune senescence may also reduce resistance to cancer in humans and reduce chronic 

activation of the immune system as a result of infection of cancer. Immune senescence has 
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also been found to induce changes in immune response in humans that are very similar to 

those changes in elderly individuals (Tarazona et al., 2002). Alterations in the innate immune 

system were found to contribute to age-associated morbidity and mortality, which allowed 

for determination of the relative roles in which these immune pathways play (Huang et al., 

2005). In response to ageing, most physiological functions are altered, for example the decline 

in cellular and humoral immunity. The most sensitive immune cells to ageing appeared to be 

T cells, and the most critical component of immunological ageing is known to be changes in 

the T lymphocyte compartment, concluded by studies on ageing humans (Goronzy et al., 

2015), documenting significant changes in the functional and phenotypic profiles of T cells. 

Further analysis of literature has also suggested that the inability of the innate immune 

system working efficiently is a contributing factor to the development of many diseases 

observed in the elderly (Gomez et al., 2008).  

Some genes enriched in the GO terms displayed in Table 4.15 have been found previously to 

have association with longevity, with many of them being associated with a decrease in life 

span. It has been found that Drosophila, heterozygous for the tumour suppressor gene ft, had 

a shorter lifespan, where it was proposed that this mortality effect was associated with the 

interaction between this ft tumour suppressor and signal transduction pathways mediated by 

the Hippo pathway (Kopyl et al., 2014). Phenotype searches for genes in this table found a 

number of genes to express the phenotypes ‘increased mortality’ and ‘lethal’ including genes 

grim, Btk29A, Rap1, cnk, ecd, Ostgamma and tko. The sls gene had a ‘stress response 

defective’ phenotype and Chmp1 was found to express the phenotype ‘short-lived’. An 

increase in the proapoptotic protein grim has been shown to significantly reduce lifespan in 

female Drosophila by up to 34% in median lifespan and 25% in maximum lifespan (Bauer et 

al., 2005). Btk29A, as well as Traf6, are genes found in Table 4.15 that are dFOXO targets in 

the JNK (Jun-N-terminal Kinase) signalling pathway. This signalling pathway is stress-activated 

and involved in developmental and metabolic regulation, immune responses and lifespan 

extension (Biteau et al., 2011; Karpac et al., 2009).  

The Sod2 gene has been observed, in separate studies, to have both a positive and negative 

effect on lifespan in Drosophila. When over expressed, the gene was found to result in a 20% 

increase in both mean and maximum lifespan (Curtis et al., 2007), and RNA interference-

mediated silencing of Sod2 caused an increase in oxidative stress which lead to early-onset 
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mortality in young adults (Kirby et al., 2002). The PGRP-SA gene has also been observed as 

one of few genes to show age-related changes in expression without being affected by diet, 

allowing this gene to be considered a candidate marker of ageing (Doroszuk et al., 2012). 

Other genes found within this subnetwork and sharing the same biological function as known 

longevity-associated genes may influence longevity in the same way as the known gene 

discussed.  

 

4.8.3 Further Analysis of Subnetworks 
 

Subnetworks found using GO enrichment analysis, containing genes which shared common 

biological processes with potential association to longevity, were then further explored. A 

search for longevity significant SNPs, highlighted previously in this study, was carried out 

within each subnetwork and they were further investigated.   

 

Subnetworks with a dominant region not containing genes enriched in longevity related GO 

term 

Subnetworks were observed in this analysis, whereby a dominant region was present, 

however this region itself did not contain any genes found to be enriched in the GO term 

observed in this subnetwork. The term ‘dominant’ is used here to indicate its relationship 

with other regions of the network. One has to remember that all interacting regions reside 

within close proximity to each other within the cell nucleus, e.g. all genes enriched in this GO 

term resided in the regions coming into close proximity with this dominant region. This was 

the case for a subnetwork in the extended Synthetic GWAS-based network (modularity class 

11), which was found to contain six genes enriched in the GO term ‘DNA repair’. In this 

example, the dominant region (bin 210) did not contain genes enriched in this GO term. All 

genes enriched in this GO term contained SNPs, but none with a calculated significant D value. 

This dominant region (bin 210) was then explored for presence of any enhancers which may 

reside in this region. Only enhancers found to target the Mhc gene, a gene found in bin 210, 

that harbours several longevity significant SNPs (D≥7.9). Using GO enrichment analysis, the 

Mhc gene did not show any enrichment, however a study has previously identified mutations 
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in the Mhc gene that lead to hypercontraction and subsequent degeneration of flight muscles 

in Drosophila, ultimately causing remodelling of the muscle cytoskeleton. This kind of 

alteration in muscle contraction is known to lead to a large array of diseases (Montana and 

Littleton, 2006). This enhancer can be speculated to also influence the expression not just of 

this gene but also other genes in close proximity.  

A second example was in the DGRP GWAS-based network, in a subnetwork (modularity class 

20) in which bin 576 was the dominant region. Thirteen genes in this subnetwork were 

enriched in the GO term ‘immune system process’, but none of these genes resided within 

the dominant node. However, the dominant node contained fifteen genes, and further 

exploration of these genes found several to have longevity associated phenotypes including 

CG5687 and Mfap1 with ‘increased mortality’ and ‘lethal’, and Dbx with the phenotype 

‘neuroanatomy defective’. The gene mv was also found to reside in the dominant node, which 

has the phenotypes ‘immune response defective’, ‘stress response defective’ and ‘increased 

mortality’ and in a previous study mutants in this gene are shown to enhance susceptibility 

to infections, cause a defect in the cellular immune response as well as affect autophagy due 

to growth of auto phagosomes beyond their normal size (Rahman et al., 2012). The 13 genes 

enriched in this immune system process GO term resided in nine regions of the subnetwork. 

These regions were all found to contain many SNPs, with some of these SNPs found to reside 

in all genes enriched in the GO term, however none with significant P values. This dominant 

region was further explored for any enhancers, which may be residing in this area, however 

none were found.  

A final example of this case in the DGRP GWAS-based network was in a subnetwork 

(modularity class 26) found to contain eight genes enriched in the GO term ‘regulation of 

immune system process’. In this subnetwork the dominant region (bin 660) again did not 

contain genes enriched in this GO term but came into close proximity to eight regions which 

did. All eight regions were found to contain SNPs, some of which resided in all the GO term 

enriched genes, however none of them with a longevity significance. We speculate that SNPs 

coming into close proximity work together, resulting in the genes in which these SNPs reside 

to be involved with the same biological process of ‘regulation of immune system process’.  

Next, this dominant region was further explored for enhancers, in which many were found. 

This included enhancers for which the target genes were known, the h gene and enhancers 
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which had unspecified target genes. These enhancers found to have unspecified target genes 

can be speculated to influence the expressions of the genes sharing this longevity related 

biological process, found within this subnetwork. A search on genes residing in bin 660 found 

eight genes other than h, where a phenotype search on these genes found gene h to have 

phenotypes ‘increased mortality during development’ and ‘partially lethal’, and the SrpRbeta 

and Cp18 genes to have a ‘lethal’ phenotype. This bin also harboured three uncharacterized 

genes CR44526, CG6511 and CG43965. Another gene residing in this bin Pex7, a peroxisome 

biogenesis gene, is responsible for matrix enzyme import and receptor recycling in Drosophila 

(Fujiki et al., 2014). Mutations in many peroxin genes have been observed to lead to various 

forms of peroxisome biogenesis disorder (PBD), also known as Zellweger syndrome (ZS) in 

humans (Wanders and Waterham, 2006). 

 

Subnetworks with dominant region containing genes enriched in GO term, where these genes 

do not contain significant SNPs 

The second group comprises subnetworks in which the dominant region was found to contain 

genes enriched in the GO term. However, all SNPs that resided in these genes did not show 

significant association with longevity. For a subnetwork (modularity class 23) found in the 

extended Synthetic GWAS-based network, the dominant region (bin 334) and three regions 

coming into close proximity contained six genes enriched in the GO term ‘apoptotic process’. 

Despite this dominant region containing significant SNPs, none of these SNPs residing in the 

genes enriched in this GO term were. All genes enriched in the ‘apoptotic process’ GO term 

were found to harbour SNPs, however none with a longevity significance (D≥7.9). This 

dominant region was then further explored for presence of any enhancers that may reside in 

this bin, and two enhancers were found. One of these enhancers was found to target the 

Or43b gene, a chemoreceptor that mediates response to volatile chemicals, which resides in 

bin 334. The target gene for the other enhancer was unspecified, and so can be speculated to 

influence the expression of any of the genes found in this subnetwork to be enriched in this 

longevity related biological process, potentially more than just one gene.  

A similar observation was made for a subnetwork (modularity class 4) in the extended DGRP 

GWAS-based network, which contained six genes enriched in the GO term ‘developmental 
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growth’. Bin 56 was the dominant region in this subnetwork, and this region harboured 

significant SNPs, however none of them resided in any of the genes enriched in this GO term. 

Three regions coming into close proximity to this dominant region were also found to harbour 

genes enriched in the ‘developmental growth’ GO term, where all genes enriched harboured 

non-significant SNPs. Non-significant SNPs residing in all genes enriched in this GO term are 

therefore speculated to work together, as these six genes come into close proximity, playing 

a role in developmental growth. This dominant region, bin 56, was then explored further for 

presence of any enhancers, in which four were found, all with an unspecified target gene. 

These enhancers could potentially target genes residing in other regions of the subnetwork, 

which are associated with the ‘development growth’ GO term.  

 

Subnetworks with genes harbouring significant SNPs 

A subnetwork found in the extended Synthetic GWAS-based network (modularity class 11), 

harbouring 46 genes enriched in ‘developmental process’ was found to contain significant 

SNPs (D>7.9) in three of the genes residing in the dominant region of this subnetwork: yellow-

b, BuGZ and glu (bin 210). This region was found to be in close proximity to 13 regions, also 

containing genes enriched in the ‘developmental process’ GO term. Four of these regions 

were also found to harbour genes containing significant SNPs, including mdy, Cas, VG5953, 

grp and Ca-alpha1D with the remaining nine regions found to contain genes harbouring SNPs, 

but none with significant P-values. Therefore from this observation we conclude that genes 

BuGZ, glue, mdy, Cas, VG5953, grp and Ca-alpha in this subnetwork, harbouring significant 

SNPs, are influencing the biological function ‘development process’ of genes which reside in 

the nine regions coming into close proximity, containing no significant SNPs.  

A subnetwork (modularity class 18), found in the extended DGRP GWAS-based network with 

its dominant region bin 529, contained 11 genes enriched in the GO term ‘nervous system 

process’. All 11 genes harboured SNPs, with two of these genes, Orc59c and bw, residing in 

the dominant region and containing SNPs with a low P-value ( 𝑃 = 8.11𝑒−05 and 𝑃 =

2.26𝑒−05). This dominant region was found to be in close proximity to three novel regions, 

also containing genes enriched in this GO term, in which SNPs also resided but had less 

significant P-values. One can speculate that the significant SNPs residing in genes Orc59c and 
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bw may work independently to influence the biological processes ‘nervous system process’ 

whereas other genes in close proximity which contain SNPs with no longevity significance may 

influence this longevity related biological process collectively.   

 

4.9 EXPLORATION OF NOVEL REGIONS IN ONE EXTENDED GWAS-BASED NETWORK 

HARBOURING SIGNIFICANT SNPS IN THE OTHER GWAS DATASET  
 

Both GWAS networks were compared to find regions, which were selected as original nodes 

in one GWAS network but added as novel nodes in the other. Note that original nodes are 80 

Kb regions harbouring at least one significant SNP (either with 𝐷 ≥ 7.9 or𝑃 ≤ 3.33 ×  10−5). 

This comparison found 43 regions selected as novel regions in the extended Synthetic GWAS-

based network that harbour significant SNPs in the DGRP GWAS dataset (see Appendix Table 

S4.4), and 85 novel regions in the extended DGRP GWAS-based network that harbour 

significant SNPs in the Synthetic GWAS dataset (see Appendix Table S4.5).  

For those novel regions in the extended Synthetic GWAS-based network, the significant SNPs 

in the DGRP GWAS dataset residing in these regions were found. The genes that harboured 

these SNPs were searched for in all results from previous network analysis for both GWAS 

datasets. One of these genes, bw, was previously found to be enriched in the GO term 

‘nervous system process’ in the subnetwork analysis for the extended DGRP GWAS-based 

network (see Table 4.15). Two genes, Wnt4 and sdk, were also found to reside within a 

subnetwork of the extended Synthetic GWAS-based network enriched in ‘cellular response to 

stimuli’, ‘localization’ and ‘cell communication’ GO terms (see Table 4.13) and in GO 

enrichment analysis of genes found in regions with high clustering coefficient in the extended 

Synthetic GWAS-based network (see Table 4.5), where this gene was enriched in ‘multicellular 

organismal process’. These genes harbouring significant DGRP SNPs, residing in novel regions 

of the Synthetic GWAS network, were then compared with those findings of Ivanov et al. 

(2015) in which 14 genes were found listed in their table of the top 50 important SNPs and 

their genes/nearby genes [Supplementary Table 3 in Ivanov et al. (2015)]. These genes 

included CG10019, Blimp-1, CG10361, bmm, CG14073, CG32204, ATPsynD, CG4467, CG31510, 

Mlc1, Doa, CG7601, sdk and bves. Genes found to harbour significant SNPs in the DGRP GWAS 

dataset that resided in novel regions of the extended Synthetic GWAS-based network were 
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also found listed in the top 30 genes found by gene-based analysis [Supplementary Table 4 in 

Ivanov et al. (2015)], this included CG4972, CG10361 and ATPsynD as well as the CG33700 

gene listed in the top 30 genes found by gene-based analysis when genes ±5 Kb of flanking 

regions were considered [Supplementary Table 5 in Ivanov et al. (2015)].  

All genes found in novel regions of the extended Synthetic GWAS-based network harbouring 

significant SNPs from the DGRP GWAS dataset were also searched for the ‘long-lived’ 

phenotypes. The ATPsynD gene was found to have the ‘long-lived’ phenotype and is a gene 

known to be essential for normal development and interaction of this gene with TOR 

signalling has been shown to modulate protein homeostatis and lifespan in Drosophila (Sun 

et al., 2014).  

For those novel regions in the extended DGRP GWAS-based network, the significant SNPs in 

the Synthetic GWAS dataset residing in these regions were also found. The genes that 

harboured these SNPs were searched for in all results from previous network analysis for both 

GWAS datasets. Several genes had been found in previous subnetwork analysis of the 

Synthetic GWAS-based network (see Table 4.13) including the Wnt10 gene which was 

enriched in GO terms ‘cellular response to stimulus’ and ‘cell communication’ and the CG5953 

gene was enriched in ‘developmental process’ GO term. Also in the analysis for novel nodes 

with the highest degrees, both Galphao and lola genes were found enriched in GO terms (see 

Table 4.2) including ‘apoptotic process’ and ‘nervous system development’. Finally, 

subnetwork analysis that focused on those subnetworks containing a dominant region 

(modularity class 11) in Table 4.13 also observed the grp gene to be enriched in the GO term 

‘developmental process’. The genes that harboured these significant SNPs from the Synthetic 

GWAS dataset were also searched for in all results from previous analysis for the DGRP GWAS-

based network. In this case, four genes were found: aop, vig, rhea and GstO2. The aop gene 

was found in analysis of novel nodes with the highest degrees in the extended DGRP GWAS-

based network, where it was enriched in the GO term ‘immune system process’ (see Table 

4.4). The genes vig and rhea were found to be enriched the GO term ‘negative regulation of 

gene expression’ (see Table 4.6). Finally, the GstO2 gene appeared in results of the analyses 

of the extended DGRP GWAS-based network as enriched in the GO term ‘detoxification’ (see 

Table 4.6) and ‘regulation of immune system process’ (see Table 4.15).   
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All genes found in novel regions of the extended DGRP GWAS-based network harbouring 

significant SNPs from the Synthetic GWAS dataset were also searched for the ‘long-lived’ 

phenotypes. Several genes were found to have the ‘long-lived’ phenotype including aop, 

CG8677, hebe, magu and CG30427. The aop gene and its relation to longevity has been 

previously discussed in this chapter (see Section 4.8.3). The CG8677 gene has also been 

identified as a gene that is crucial for extension of longevity in Drosophila (Seong et al., 2001), 

and the CG30427 gene known to be involved with the biological process of determination of 

adult lifespan was identified by Paik et al. (2012) who studied factors associated with 

controlling Drosophila ageing. Genes hebe and magu are also involved with the biological 

process of determination of adult lifespan, where both genes when over-expressed in adults 

have been observed to increase life span and modulate late-age female fecundity (Li and 

Tower, 2009).  

 

Chapter 4 Conclusions 

To identify novel regions associated with longevity, networks were created using 

genes/genomic regions that are quantified to associate with longevity as original nodes 

(regions) of the network, with additional nodes (regions) later added to these networks if they 

strongly interacted (co-localise) with original nodes. Various network measures were 

calculated, identifying important previously unknown regions. All of the important regions 

and genes they harbour were further explored using Gene Ontology enrichment analysis. A 

number of these genes were found to be enriched in biological processes with longevity 

relation. These processes included: ‘ageing’, ‘immune response’ and ‘defence response’, 

where genes enriched in these GO terms were found to reside in both novel and original 

regions of the networks, and included genes already known to have association with longevity, 

such as Indy and chico.  

Regions were found in common between both extended GWAS-based networks when their 

clustering coefficient and PageRank scores were considered, where these regions included 

both original and novel nodes of the networks. Further exploration of these common regions 

found genes with longevity related phenotypes. These included the genes Rim and Tpi with 

‘long-lived’ phenotypes, and frtz, Atxn7, CG5339, CG4434 and Zip99C with ‘short-lived’ 
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phenotypes, as well as numerous genes found to have a phenotype of ‘increased mortality’. 

It was also found that these genes are enriched in ‘phagocytosis’, ‘processes in the tracheal 

system’ and ‘regulation of homeostatic processes’.  Many of the newly found genes in this 

analysis were observed to harbour SNPs that did not reach the predefined genome-wide 

significance level, and therefore speculation was made that the SNPs residing within genes 

enriched in the same GO term may influence longevity collectively as opposed to a SNP 

causing a phenotype by itself.  

A human ortholog search taken on genes found to reside in common regions showed several 

matches to human genes with functions related to the lifespan. The Drosophila gene CG5886 

was found to have the human ortholog, gene TXLNA, a gene related to the Innate Immune 

System pathway. The Drosophila gene esg had the human ortholog, human gene SNAI2, which 

is a protein with anti-apoptotic activity. The Drosophila gene Ald was found to have a human 

ortholog that related to the metabolic pathway, human gene ALDOA. The Drosophila gene Slh 

was found to have human ortholog SCFD1 which is a gene that plays a role in protein 

modification. Drosophila genes CG17770, CG9743/CG9747, CG1983, and Kek3 had human 

orthologs CALML6, SCD, PLPBP and LRRC4C, respectively, which are all genes known to be 

involved with diseases known to affect the lifespan of humans. Finally, the Drosophila gene 

Sema-5c was found to match the human gene SEMA5B, a gene known to be involved in the 

development of the nervous system.  

Further analysis of subnetworks of the previously produced networks was also undertaken. 

The results showed that genes with no previous association with longevity, were found to be 

enriched in longevity-related GO terms. These subnetworks analysed harboured genes that 

enriched in GO terms including ‘DNA repair’, ‘apoptotic process’, ‘developmental process’, 

‘nervous system process’ and ‘immune system process’. Some of these enrichments included 

genes that have previously been found to associate with longevity, including ku80, foxo, 

VhaSFD, CathD, ft, grim and Chmp1. Genes in these subnetworks were observed to harbour 

both significant and non-significant SNPs, leading to speculation that SNPs residing in genes 

involved in the same biological processes may influence longevity either independently or 

cumulatively. Enhancers residing in regions of these subnetworks were also explored.  
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Chapter 5 

5                 SNPS IN NON-CODING REGIONS 
 

In this chapter we explore SNPs occurring in non-coding regions of the Drosophila genome 

where a total of 26,499 non-coding SNPs were recorded in the Synthetic GWAS dataset and 

653,030 non-coding SNPs in the DGRP GWAS dataset. These non-coding SNPs were first 

searched in regions including topologically associated domain (TAD) borders and transcription 

factor binding sites (TFBSs). Alterations of TAD borders and their structure are known to cause 

disruption to the way in which regulations occurs within these TAD regions on the genome, 

therefore in this study we hypothesised that SNPs residing in these border regions may cause 

disruption to the regulation that usually occurs within these TADs via looping interactions. 

Alterations to TFBSs may also cause disruption, by affecting the binding ability of transcription 

factors (TFs) which play a crucial role in controlling important processes in the genome. Whilst 

it is believed that TFs recognise a specific sequence pattern to which it binds, this may not be 

the case and it has been suggested that TFs, instead, recognise certain genomic structures. In 

this study we hypothesised that TFs may recognise a certain structure, e.g. non-B DNA 

structures, rather than sequence motifs.   

First, we introduce topologically associated domains (TADs) and calculate the proportion of 

SNPs occurring within TADs’ borders. Disruption to these borders as a result of residing SNPs 

may lead to interactions between TADs that would not usually occur because of the borders 

by which they are separated. To assess the significance of findings, a matched control dataset 

of non-coding SNPs was generated as described in section 2.6 and Chi-square test for 

proportion (Fisher’s Exact Test) was used. In addition, non-coding SNPs found to reside in 

binding architectural proteins were also quantified and discussed.  

We then explore the occurrence of SNPs in TFBSs, the sites to which TFs bind, by first 

considering DNA sequence patterns through the use of consensus sequence logos, then 

turning focus onto non-B DNA structures. These non-B DNA structures form when base pair 

sequence repeats occur in the genome. In this study we considered four types of repeats - 

direct, inverted, mirror repeats and G-quartets – described in section 5.3. SNPs in repeats 
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were quantified for all TFBSs recorded in a TFBS dataset, and then compared to a matched 

control dataset produced. This comparison to a matched control dataset allowed statistical 

analysis to determine if there was any significant difference in the number of SNPs in 

sequence repeats found in the binding sites recorded in the TFBS dataset.  

Finally, we explored potential target genes for non-coding SNPs, taking a different approach 

to the usual assumption that these target genes are those that are nearest to each SNP on 

the linear genome. This is explored using intra-chromosomal Hi-C data with finer resolution 

and considering those non-coding SNPs which have highest interactions with regions not in 

the immediate vicinity of SNPs. These interacting regions are then selected for further analysis, 

focusing on the genes they harbour and the functions of these genes.  
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5.1 TOPOLOGICALLY ASSOCIATED DOMAINS (TADs) 
 

Topologically associating domains (TADs) are genomic regions, in which DNA sequences 

residing within each TAD physically interact with each other more frequently than with DNA 

sequences in other TADs. TADs range from thousands to millions of DNA bases in length, 

varying between ~880 Kb and 1Mb in mammals and up to 60 Kb in Drosophila, and have been 

proven to play important roles in genome organization and gene regulation. TAD borders, 

when disrupted, have also been shown to lead to disease through disruption of gene 

regulation through changes in 3D organization of genomes (Lupiáñez et al., 2016).  

 

TADs can be clearly visualised using heat maps (Figure 5.1), in which areas of dense red colour 

represent high frequency of interactions between regions on the genome, and areas of less 

dense red colour represent low frequency of interactions between regions on the genome. It 

is clear that these denser areas are found between regions that lie close to each other along 

the genome, with those regions further apart sharing fewer interactions. It is these areas of 

low frequencies that create the borders between different TADs. Figure 5.1 shows an example 

of a weak border, in which interactions are present between regions in different TADs, but 

not at high frequencies. A much stronger border is shown further along the genome, whereby 

there are fewer or zero interactions between regions across the TADs that this border 

separates. TADs can be further split into subTADs, in which triangular patterns of interactions 

formed are less obvious, but recognisable.   

 

 

 

 

 

 

 

Figure 5.1 A diagram showing TADs, regions of the genome characterised by high frequency 
of local interactions, and their separation by borders whereby regions of the genome with 
low frequency of interaction (Gómez-Díaz and Corces, 2014).  
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5.1.1 Counting the Number of SNPs in TAD Border Regions 
 

A total of 2846 TAD regions were recorded in Supplementary Data 1 (Ramírez et al., 2018), 

and after post-processing (see Section 2.5) a total of 2847 TAD border region positions were 

recorded. A matched control dataset was produced (described in Section 2.6) to create the 

exact same number of regions for comparative analysis. Using SNP position data, non-coding 

SNPs residing in each TAD border region in the real dataset were counted and non-coding 

SNPs residing in the matched control dataset for each TAD border region were counted. The 

total number of non-coding SNPs found to reside within all TAD borders was totalled 

separately for the real and matched control TAD dataset. This number of SNPs, for each 

dataset, was then subtracted from the total number of non-coding SNPs found across the 

whole genome. This created Table 4.16, on which Chi-Squared test was able to be carried out, 

to test for any differences in proportions between the number of non-coding SNPs observed 

in the TAD borders in the real dataset and the matched control dataset. Table 5.1 shows 

counts for non-coding SNPs found only in the DGRP GWAS dataset. Similar calculations were 

performed for the Synthetic GWAS dataset, but the totalled values were so low that the 

results were not considered for further analysis.  

 

Table 5.1 Number of non-coding SNPs residing in TAD border regions and outside TAD 
borders in real and control datasets.  

 
 

Real dataset Control dataset 

Non-coding SNPs residing in TAD borders 11982 9321.24 

Non-coding SNPs not residing in TAD borders 641048 643708.76 

 
 

Fisher’s Exact Test shows that the proportion of non-coding SNPs residing within TAD borders 

in the real dataset is significantly (𝑃 = 1.0376 × 10−75) higher than in the control dataset. 

This higher than expected count of SNPs in TAD border regions can be speculated to cause 

disruption in regulation pattern of gene/genes by forming looping interactions with distal 

enhancer, and as discussed previously such disruption can affect processes such as the 

expression of nearby genes, as well as enable more long-range interactions to occur across 

the genome, allowing regions that wouldn’t usually come into contact to interact. 
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Alternatively, these observations could result in speculation that reduced interaction 

frequency at TAD borders may predict neutrality of SNPs accumulating where they are less 

likely to be injurious to the carrier. This speculation would contradict our hypothesis previously 

made but, of course, could be plausible. Table 1.1 (Section 1.8) shows examples of genes 

which have an effect on longevity when overexpressed; the overexpression of these genes 

could occur due to mutations in TAD regions that reside near to said genes.   

 

5.2 SNPS IN TRANSCRIPTION FACTOR BINDING SITES  
 

5.2.1 Transcription Factor Binding Sites 
 

Transcription factors (TFs) are proteins in the genome that are crucial for controlling many 

important processes. A TF recognises and binds to a specific site on the DNA known as a 

transcription factor binding site (TFBS). SNPs could disrupt the interactions between these TF 

proteins and the DNA (TFBSs) and any defects in these interactions can contribute to the 

occurrence of various diseases, or in the case for our study, longevity. For this reason, it is 

important to look at the SNPs that occur within TFBSs.  

It is known that TFs interact with DNA in two primary ways: sequence-specific interactions 

with the genomic bases and interactions with the back bone of the DNA structure known as 

a non-sequence-specific interaction. The role of DNA shape as a determinant of protein-DNA 

binding specificity has previously been shown to be important (Rohs et al., 2009; Rohs et al., 

2010; Parker & Tullius, 2011). Many sequence-specific interactions occur via what is known 

as the major groove of DNA, as illustrated in Figure 5.2 for B-DNA, major grooves occur when 

the backbones of DNA are far apart. Such interactions are commonly linked to direct hydrogen 

bonding between specific DNA bases and DNA-binding domain amino acids (Garvie and 

Wolberger, 2001). Opposite the major groove, also illustrated in Figure 5.2, is the minor 

groove, showing a shorter distance measured between the two backbone strands of DNA. 

Both grooves run continuously along the entire DNA molecule and are due to the antiparallel 

arrangement of the backbone strands, however these grooves are not just consequence of 

the way in which the backbones align but are an actual structural feature. 
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Figure 5.2 The major and minor groove labelled in a segment of DNA 
(https://www.scalarlight.com/articles/?p=454). 

 

The role of numerous DNA shapes in binding sites on the genome recognised by TFs has been 

demonstrated (Slattery et al., 2011; Dror et al., 2014; Gordan et al., 2013). Structures such as 

the minor groove in human DNA influencing the way in which interactions between TFs and 

TFBSs occur along the genome, include a type of interaction, which is dependent on the shape 

of the minor groove in DNA, also conferring partial sequence specificity. Such DNA structure-

based-binding motif occurs in cases whereby the binding sequence of a TF is flanked by a 

stretch of either A or T bases and is very common in different TF families (Jolma et al., 2013). 

Interactions such as these may be important in regulatory elements, in relation to the 

formation of consecutive TFBSs. This recognition of DNA is based on the shape of DNA, 

therefore the base preferences of TFs in these regions flanked by A and T bases may also be 

affected by any shape changes induced in cases where multiple TFs bind in close proximity to 

each other (Jolma et al., 2013). Findings of interactions occurring between TFs and DNA, as a 

result of the recognition of DNA structures including the major and minor groove,  has sparked 

interest in further exploration of the other structures that form in TFBSs along the DNA, and 

under what circumstances these occur. DNA shapes can also explain why sequences flanking 

TFBSs are important to consider when exploring binding specificity of TFs (Gordan et al., 2013). 

 

 

 

https://www.scalarlight.com/articles/?p=454
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5.2.2 Creation of Consensus Sequence Logos 
 

Consensus sequence logos were produced with the aim to observe whether experimentally 

validated TFBSs have common consensus sequences. The extended sequences of 

experimentally validated TFBSs (see section 2.4) were aligned using Clustal Omega, a multiple 

sequence alignment program (https://www.ebi.ac.uk/Tools/msa/clustalo/) to allow for 

analysis of consensus sequences using consensus sequence logos. Such logos are a graphical 

representation, in this case of a DNA multiple sequence alignment, in which each position of 

a sequence (x-axis) is represented by a stack on the graph, formed using symbols of the 

nucleotides (A, T, C and G). The overall height of each stack indicates the sequence 

conservation at that position, and the height of each symbol in this stack indicates the 

frequency in which this nucleic acid occurs on this position. This analysis allowed for 

observation of any similarities between the positions of nucleic bases in sequences for the 

same TF.  

WebLogo (Crooks et al., 2004; Schneider and Stephens, 1990) was used to generate sequence 

logos for each TF, an example of the logos produced for the binding sites of the TF Adb-A is 

shown in Figure 5.3. The addition of 50 bp to each side of the original sequences increased 

sequence lengths significantly; therefore, the sequence alignments for this TFBS were 

generated as five separate alignments, resulting in five different consensus sequence logos 

being produced. 

 

5.2.3 Analysis of Consensus Sequence Logos 
 

For all 2209 TFBS sequences recognised by 192 transcription factors, the consensus sequence 

logos produced for each TF did not show any highly conserved regions in which specific 

nucleotide bases were enriched at the same positions on sequences. An example of one 

consensus sequence logo produced for the TFBS sequences recorded for the TF Adb-A is 

shown in Figure 5.3. In this example there are no interesting observations, as in most positions 

of the alignment three or more different bases were observed. Low conservation of the 

sequences is also apparent in several areas of the logos where there is no stack for an x-axis 

value, or where stacks are short.  It is also only in these shorter stacks where, in some cases, 

https://www.ebi.ac.uk/Tools/msa/clustalo/
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just one nucleic base is recorded for this alignment position. Across all consensus sequence 

logos for all TFBSs analysed, no consensus sequences were found. These observations were 

the motivation for the exploration of structure recognition in TFBSs, and the reason for the 

approach taken for analyses described in this chapter. 
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Figure 5.3 Consensus sequence logos for the TFBSs recorded for the TF Adb-A extended by 
±50 bp. 
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5.3 THE ROLE OF DNA SHAPE IN TF-TFBS BINDING SPECIFICITY 

 
Normal cell functions in many biological systems are highly dependent on the principle 

genetic molecule, DNA. As has been discussed previously in this thesis, the role of DNA is 

constantly challenged by mutations in the genome, ranging from mutations caused by 

environmental factors to those caused by chemical reactions. The majority of DNA in the 

genome is in the B conformation, in which sequences adopt the orthodox right-handed B form 

described as the Watson-Crick (W-C) Model of DNA (Watson and Crick, 1993). However, 

previous studies have demonstrated that non-B DNA conformations, of which there are at 

least ten, have been found to adopt at specific naturally occurring repeat sequences and are 

also known to be mutagenic (Mirkin, 2007; Wells et al., 2005).  

Non-B DNA conformations have been found to form at specific sequence motifs; these 

structures include slipped structures (direct repeats), cruciform (inverted repeats), triplexes 

(mirrored repeats) and tetraplexes (G-quartets). These conformations, in vivo, are believed to 

form in higher energy states during metabolic processes in DNA such as transcription, 

replication and repair (Wang and Vasquez, 2014). All non-B DNA conformations are found to 

contain contorted bond angles or nucleotides which are unpaired, as is shown in Figures 5.4–

5.11 below. The formation of such non-B DNA conformations requires that direct, inverted 

and mirrored repeats are greater or equal to 5 bp in length, and each repeated sequence is 

no more than 20 bp apart from each other (Ball et al., 2005). The formation of tetraplex 

structures require four runs of guanine bases, in which each is the same length of either 2, 3 

or 4 bp with each being separated by 1-7 bp (Rouleau et al., 2014).  
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Direct Repeats – Slipped structure 

Slipped structures are found to rely in part or exclusively on non-W-C interactions. Such 

structures form when complementary stands, containing direct repeats, pair together in a 

slipped fashion. An example of a direct repeat is shown in Figure 5.4.  

 

 

 

Figure 5.4 Example of a direct repeat in DNA strands. 

 

An example of this structure is shown in Figure 5.5, where the region containing the direct 

repeat can be seen to unwind and its complementary strand then pairs with the second direct 

repeat further down the sequence. Thus far, slipped structures have only been detected in 

DNA containing short nucleotide repeats.  

 

 

 

 

 

 

 

 

Figure 5.5 Slipped structure, corresponding to direct repeats.  
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Inverted Repeats – Cruciform structure 

Cruciform structures form in regions where inverted repeats occur, such repeats are defined 

as reverse complement to each other on a single stranded DNA. An example of an inverted 

repeat is shown in Figure 5.6.  

 

 

 

Figure 5.6 Example of an inverted repeat in DNA strands. 

 

This structure is a non-B DNA structure that contains base pairs in the W-C conformation and, 

as shown in Figure 5.7, contains strands folding at the centre of symmetry at the inverted 

repeat where the organization of the strand then forms an intramolecular B-helix capped by 

a single-stranded hoop which can range from a few bp to several Kb in length (Bacolla and 

Wells, 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 Secondary structure of a cruciform, corresponding to inverted repeats.  
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Symmetric Repeats – Triplex structure 

Triplex DNA structures form in regions in which mirror symmetric repeats occur, of which an 

example is shown in Figure 5.8.  

 

 

 

Figure 5.8 Example of a mirrored repeat in DNA strands.  

 

A triplex structure is formed when the major groove of the DNA double helix is occupied by 

pyrimidine or purine bases on a single-stranded region, in turn forming a three-stranded helix. 

Triplex DNA is able to be classified dependant on the positioning and structure of this third 

helix strand, and whether it forms either Hoogsteen or reverse-Hoogsteen hydrogen bonds 

with the purine-rich strand of the duplex DNA. Such DNA is known as an R∙R-Y triplex (Figure 

5.9a) in cases where this third strand is purine-rich and anti-parallel to the complementary 

strand. In cases of a pyrimidine-rich third stand parallel to the complementary strand, this is 

known as a Y∙R-Y triplex (Figure 5.9b). The conditions under which both triplexes form are 

also different, R ∙R-Y triplexes form under conditions of physiological pH whereas Y ∙R-Y 

triplexes are found to form under conditions of acidic pH.  

 

Figure 5.9 Secondary structure of a triplex corresponding to mirrored repeats. (a) R∙R-Y 
triplex and (b) Y∙R-Y triplex. 

(a) (b) 
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G-Quartets Repeats – Tetraplex structure 

A tetraplex structure, also known as a guanine tetrad, is formed in regions of the genome 

where there are four repeats of sequences containing only the guanine base (known as G-

quartets); an example is shown in Figure 5.10 in which there are four runs of guanine bases 

with a length of 3 bp.  

 

 

 

 

Figure 5.10 Example of G-quartets in a DNA strand. 

 

This structure is a square coplanar array of four guanines, which is formed of guanine tetrads 

stacked on top of each other, as shown in Figure 5.11. The number of guanine bases per 

repeat is important in terms of stack height, for which repeats of three or more guanine bases 

are favoured.   

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11 Secondary structure of a tetraplex, corresponding to G-quartets.  

 

Code was written and implemented in Matlab for the identification of these repeats discussed 

in section 5.3. 
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5.3.1 Non-B DNA Conformation of Transcription Factor Binding Sites 

The TFBS dataset previously used for the creation of consensus sequences was then sought 

for the occurrence of any non-B DNA conformations through a search for sequence repeats 

described in section 5.3. This search was done for all 2209 TFBSs recorded, for which direct 

repeats, inverted repeats and mirrored repeats of length 5 bp and 6 bp and separated by ≤

20 bp were quantified individually, and G-quartets of length 2, 3 and 4 bp and separated by 

≤ 7 bp were recorded.  

For each TFBS sequence, the presence or absence of repeats was recorded. A summary of 

occurrence of repeats in TFBSs for a selected number of TFs is given in Table 5.2.  A total of 

192 TFs were recorded, not including those unspecified. This table included TFs for which 

different numbers of TFBSs were recorded, those of most interest were the ones with the 

highest number recorded. Therefore, of these 192 TFs, those with ≥ 10  binding sites 

recorded were selected and used as our real dataset. This resulted in a real TFBS dataset in 

which 49 TFs and their 1276 binding sites were recorded. For each of these binding sites, the 

number of SNPs residing within TFBSs were counted. An average SNP count for all sequences 

recorded under each of these 49 TFs was calculated, and the TFs with the binding sites 

containing the highest average number of SNPs are shown in Table 5.3 (see Appendix Table 

S5.1 for full list).   

 

Table 5.2 A fragment of results summarising the total number of repeats found across TFBS 
sequences recorded for a given number of TFs, and the total number of sequences recorded 
for each of the TFs. 

TF name Number of 

direct repeats 

(5 bp) 

Number of 

inverted repeats 

(5 bp) 

Number of 

mirrored repeats 

(5 bp) 

Number of G-

quartets (2  bp) 

Total number of 

TFBS recorded 

sequences 

Abd-A 38 38 40 0 43 

Antp 16 13 12 1 16 

aop 7 8 6 1 9 

ap 10 13 13 0 14 

bcd 50 42 43 9 55 

br 4 4 4 3 4 

brk 19 12 18 4 21 

cad 11 13 10 0 13 
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Table 5.3 TFs with TFBS sequences harbouring the highest average number of SNPs. 
 

TF name Total number of SNPs counted 

across all TFBS sequences recorded 

Average number of 

SNPs per sequence 

ap   69 4.928571429 

vvl   54 3.857142857 

sd   67 3.045454545 

sna   37 2.916666667 

ey   43 2.866666667 

Dref   80 2.857142857 

kni   111 2.846153846 

fkh   30 2.727272727 

pnr   38 2.714285714 

bcd   143 2.6 

pho   26 2.6 

grh   31 2.583333333 

Br-Z3   43 2.529411765 

srp   61 2.44 

usp   26 2.363636364 

 

 

Overrepresentation of non-B DNA forming repeats in TFBSs  

To assess the significance of findings, a matched control dataset was produced for the real 

TFBS dataset. Before such sequences were selected, all positions on which genes or TFBSs 

were already known to reside were masked from the genome, meaning that the control 

sequences could not overlap these positions. 100 matching control datasets were created as 

described in Section 2.6. Repeat counts were taken for each of the control sequences, creating 

100 tables similar to that of Table 5.2. All counts for each repeat were then averaged across 

the 100 controls, creating one table used as the matched control dataset to carry out 

statistical analysis and compare with our original TFBS table.  
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The Chi-Square test for proportion was used, in which P-values were calculated to find if there 

was any significant differences in proportion of each sequence repeat between those 

sequences from the original TFBS dataset and those from the matched control dataset 

produced. An example is shown in Table 5.4 for direct repeats of base pair length five in 

sequences recorded for the TF Br-Z2, for which a total of 22 sequences were recorded in the 

original TFBS dataset, in which 20 of these sequences contained direct repeats, and two 

sequences did not. In the matched control dataset, an average of 11.82 sequences were found 

to contain this direct repeat of base pair length five, with an average of 10.18 sequences found 

not to contain these repeats.   

 

Table 5.4 An example of frequency data used for Chi-Squared analysis, for direct repeats 
with a bp-length of five in the TF Br-Z2. 

 

 
Real dataset Control dataset 

Contains direct repeat 5 bp 20 11.82 

Does not contain direct repeat 5 bp 2 10.18 

 

Chi-Squared tests were calculated using SPSS software, selecting chi-squared testing under 

cross tabulation in the Descriptive Statistics tab. P-values (one-sided) were calculated for each 

sequence repeat (direct, inverted and mirrored) for all TFBS sequences recorded under each 

TF name, for lengths 5 bp and 6 bp. Results that showed to be significant are summarised in 

Table 5.5.  
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Table 5.5 TFs for which significant enrichment in sequence repeats in TFBSs were identified.  

*For correction for multiple testing Bonferroni correction was used. 

 

In Table 5.5, all TFs were found to have a significantly higher frequency of the stated repeats 

in their binding sequences as compared to the control dataset. This observation confirms our 

hypothesis that the non-B DNA structures formed by the sequence repeats in these TFBSs 

recorded, may be what is recognised by these TFs as opposed to them binding due to 

sequence recognition. SNPs were also counted for each of these TFs recorded, where several 

TFs such as ap, Br-Z2, EcR, Mad and vnd were found to be highly mutated in the DGRP GWAS 

dataset, however no SNPs were found to be significant. Although no SNPs were found to be 

significant, the number of SNPs residing in these TFs can be speculated to cause a mutational 

effect through accumulation of these SNPs, which could affect the binding affinity of these 

TF 

name 

TFBSs enriched 

in 

P-value 

(corrected 

for 

multiple 

testing*) 

Number 

of TFBSs 

used for 

analysis 

DGRP 

GWAS 

dataset 

SNP 

count 

for TF 

Synthetic 

GWAS 

dataset 

SNP count 

for TF  

Lowest P-

value 

recorded  

Highest 

D value 

recorded 

ap 

  

Direct (6 bp) 0.036 14 241 9 0.005105 4.295596 

Mirrored (6 bp) 0.044 14     

Br-Z2 

  

  

  

Direct (5 bp) 0.014 22 877 24 0.005082 3.746626 

Mirrored (5 bp) 0.002 22     

Direct (6 bp) 0.032 22     

Mirrored (6 bp) 0.014 22     

EcR Mirrored (6 bp) 0.008 19 743 37 0.000285 5.821549 

fkh Direct (5 bp) 0.022 11 45 2 0.01481 4.959279 

hb Direct (5 bp) 0.044 95 47 3 0.01698 3.813478 

Mad Direct (6 bp) 0.046 64 387 13 0.026691 5.908299 

tin Inverted (6 bp) 0.018 24 42 1 0.1088 3.547556 

vnd 

  

Inverted (5 bp) 0.026 13 106 6 0.03056 2.807962 

Mirrored (5 bp) 0.06 13     

zen Direct (6 bp) 0.044 23 7 2 0.146 4.541991 
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TFs. The TF EcR was previously found and discussed in results in section 4.5.2, under the 

enrichment of the GO term ‘ageing’. No other TFs in Table 5.5 have previously been found to 

show any association in relation to longevity. 

 

5.3.2 Overrepresentation of non-coding SNPs in non-B DNA forming TFBSs 
 

For the TFBSs found to contain repeats with significant differences to their matched control 

data, SNPs were counted for each of the sequences to which they bind. SNPs were also 

counted in each of the 100 controls, and then divided for an average to be compared with. 

The SNP counts were then grouped and averaged for each TF, for which the results for these 

SNP counts are shown in Table 5.6. Results for SNP counts in TFBSs for TFs in both the real 

data and control data were found to be similar, with only the ap TF showing any real 

difference between these counts. 

 

Table 5.6 Average number of SNPs for the TFBS sequences in the real dataset and the 
control dataset, under each of the TFs with significant P-values. 

TF name Average DGRP GWAS dataset SNP 

count for real sequences 

recorded under TF 

Average DGRP GWAS dataset SNP 

count for control sequences 

recorded under TF 

ap 4.928571429 1.326428571 

Br-Z2 2.045454545 1.798636364 

EcR 2.071428571 1.544285714 

fkh 2.727272727 1.4 

hb 2.136842105 1.554210526 

Mad 1.5 1.5728125 

tin 1.666666667 1.75125 

vnd 0.615384615 1.287692308 

zen 2.347826087 1.885652174 
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5.4 SNPS IN ARCHITECTURAL PROTEINS 
 

Architectural proteins, also referred to as insulator proteins, appear to play a vital role in the 

three-dimensional organisation of the genome (Cubeñas-Potts & Corces, 2015). Architectural 

proteins have the ability to facilitate the formation of long-range contacts between DNA 

sequences, which makes sense as TAD borders have been observed to be enriched in binding 

sites for architectural proteins, as well as actively transcribed genes (Hou et al., 2012). Eleven 

different DNA binding architectural proteins, for which positions and SNP counts are shown 

in Table 5.7, have been known in Drosophila, with each recognizing a unique DNA motif. All 

eleven architectural proteins were observed to harbour SNPs in the DGRP GWAS dataset, and 

although their P-values were not significant, could potentially cause disruption to not only 

their own function of facilitating interactions, but also the functions of the TAD border in 

which their binding site resides in. Such disruption could cause physical interactions to occur 

more frequently between genomic regions in different TADs, changing 3D organization of the 

genome and as a result affect gene regulation which could influence longevity.  
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Table 5.7 Number of SNPs residing in architectural proteins in Drosophila. 

Architectural 

Protein 

Reference Chromosome 

position 

DGRP GWAS 

dataset SNP 

count 

Synthetic 

GWAS dataset 

SNP count 

Minimum 

SNP P-value 

CCCTC-binding 

factor (CTCF) 

Bushey et al., 

(2009) 

chr3L:7346678-

7349813 

20 0 0.05816 

Suppressor of 

Hairy-wing 

(Su(Hw)) 

Gurudatta et al., 

(2013) 

chr3R:10130177-

10134311 

117 5 0.000597 

Boundary 

Element 

Associated Factor 

23 (BEAF-32) 

Gurudatta et al., 

(2013), Yang et 

al. (2012) 

chr2R:10657974-

10660135 

39 3 0.1993 

DNA Replication 

Related Element 

binding Factor 

(DREF) 

Gurudatta et al., 

(2013) 

chr2L:9964147-

9967229 

61 2 0.1072 

Transcription 

Factor IIIIC (TFIIIC) 

Van Bortle K et 

al., (2014) 

Gene has not been 

mapped to the 

genome sequence 

  
 

putzig (pzg) Eggert et al., 

(2004) 

chr3L:21279199-

21283410 

22 0 0.09363 

Early Boundary 

Activity DNA-

binding Factor 

(Elba) (see below) 

Aoki et al., 

(2012) 

   
 

Elba2  chr2L:2577687-

2579179 

25 0 0.0411 

Elba 3  chr2L:4687511-

4688956 

32 1 0.01376 

Pita Maksimenko et 

al., (2015) 

chr2R:19436490-

19442235 

87 0 0.001291 

Zinc Finger 

Interacting with 

CP190 (ZIPIC) 

Maksimenko et 

al., (2015) 

chr3R:25860962-

25862592 

16 1 0.04711 

Insulating binding 

factor 1 (Ibf1) 

Cuartero et al., 

(2014) 

chr3R:5084686-

5086122 

10 0 0.005227 

Insulating binding 

factor 2 (Ibf2) 

Cuartero et al., 

(2014) 

chr3R:5083449-

5084223 

6 0 0.5573 

 

 

 

 

 



138 
 

5.5 TARGET GENES FOR NON-CODING SNPS 
 

Longevity-associated nucleotide changes in non-coding regions of the genome, both in 

Drosophila and humans is an area of research yet to be explored in depth. However, previous 

GWAS studies identified that disease-associated nucleotide changes are often found in non-

coding regions of the human genome (Freedman et al., 2011; Blattler et al., 2014), in many 

cases corresponding to promoters or enhancers (Yao et al., 2014). Many studies have been 

carried out, comprising a range of analytical and experimental steps to find the way in which 

a non-coding SNP can be associated with an increased risk of a specific disease. Some of these 

approaches focus on the identification of target genes of non-coding SNPs, which has been 

found in many cases to be a difficult task. It is often assumed that a SNP found to reside within 

a gene may influence the expression/function of that particular gene, and similarly a non-

coding SNP may target the gene residing closest to the promotor or enhancer on which the 

SNP resides. In many cases, if this corresponding gene carries out biological functions which 

are related to the disease being studied, this gene is automatically of great interest to the 

researcher. However, due to the observation of looping interactions between different 

promoters (Sahlen et al., 2015) and the postulation that promoters can have enhancer activity 

which may influence the expression of other genes (Andersson et al., 2015), it is not possible 

to say for sure that SNPs are only involved in regulation of the nearest genes.  

To identify potential target genes Hi-C data with finer resolution, of 10,000 bp regions, was 

utilised by assigning each non-coding SNP, separately for the Synthetic GWAS and DGRP 

GWAS dataset, to a 10 Kb bin. This then allowed for the identification of the regions along the 

genome with which the region harbouring this non-coding SNP interacts most strongly. This 

was done to enable observation of regions harbouring non-coding SNPs that have strong long-

range interactions with regions that may not necessarily be in close proximity, to prove the 

hypothesis that SNPs in non-coding regions may in fact target genes which are not nearest in 

distance. For each 10 Kb bin harbouring non-coding SNPs, the top three interacting bins for 

each was selected and the distance between them was calculated. For example, if bin 25 

corresponding to regions Chr2L:240,000-250,000, was found to harbour SNPs and bins with 

the most interactions were bins 24, 27 and 28, the three distances calculated would be 10,000 

bp, 20,000 bp and 30,000 bp. For all regions harbouring non-coding SNPs, the distances 
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calculated between them and their first, second and third strongest interacting regions were 

grouped separately and the number of times each distance was recorded was quantified. 

Histograms of distances are shown in Figures 5.12 and 5.13. These histograms proved what 

was to be expected in most cases, i.e. the regions being most highly interactive are either 

those 10 Kb regions interacting with themselves (distance equal to 0) or interacting with 

adjacent regions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12 Histograms of interactions depending on the distances between regions 
containing non-coding SNPs in the Synthetic GWAS dataset and the (a) first highest interacting 
region, (b) second highest interacting region and (c) third highest interacting region with 
regions containing non-coding SNPs in the Synthetic GWAS dataset. 

 

(a) (b) 

(c) 
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Figure 5.13 Histograms of interactions depending on the distances between regions 
containing non-coding SNPs in the DGRP GWAS dataset and the (a) first highest interacting 
region, (b) second highest interacting region and (c) third highest interacting region with 
regions containing non-coding SNPs in the DGRP GWAS dataset. 

 

For all 10 Kb bins in which non-coding SNPs resided, in both the Synthetic GWAS dataset and 

DGRP dataset, the bin with which it had the strongest recorded interaction frequency was 

selected. For many of these bins, as shown in Figures 5.12 and 5.13, the strongest interacting 

region was itself or adjacent. However, there were regions containing non-coding SNPs for 

which the strongest interacting regions was as distant as 50,000 bp in the Synthetic GWAS 

dataset and 100,000 bp in the DGRP GWAS dataset. The top 30 regions containing non-coding 

SNPs with their most strongly interacting regions being long-range were selected for both 

datasets. For each of these regions, the 10 Kb bins containing non-coding SNPs are recorded 

(a) (b) 

(c) 
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in Tables 5.8 and 5.9, along with their SNP counts, strongest interacting region and distance 

between interacting regions. Table 5.8 also includes the highest SNP D values and Table 5.9 

includes the highest and lowest SNP-values recorded in each SNP containing region. The D 

values and P-values of non-coding SNPs residing in the strongly interacting regions were also 

recorded, the highest and lowest values are shown in the same tables, next to each of their 

corresponding regions.  

For all non-coding SNPs residing in regions selected for the Synthetic GWAS dataset, many 

SNPs did not have calculated D values that reached the genome-wide level of significance of 

≥7.9 used previously. However, one region, bin 2006, contained non-coding SNPs with a 

highest recorded D value of 12.009, for which the strongest interacting region was 30,000 

base pairs upstream. Non-coding SNPs residing in regions selected for the DGRP GWAS 

dataset were observed to have what would be considered a low P-value, however after 

correcting the commonly used significance level value of 0.05 by taking into account the 

number of 10 Kb regions recorded in this Hi-C data, 0.05/11839 = 4.22 × 10−6, no SNPs were 

found to reach this level of significance.  

Genes residing in all regions strongly interacting with bins containing non-coding SNPs, 

recorded in Tables 5.8 and 5.9, were selected for further analysis. A total of 73 genes were 

found in the 30 regions selected for the Synthetic GWAS dataset, and 59 genes were found in 

the 30 regions selected for the DGRP GWAS dataset. No genes were found to reside in several 

of these bins across the findings for both the Synthetic and DGRP GWAS dataset. These bins 

included 1165, 4366, 7816 and 7887, which correspond to regions 2L: 11,680,000-11,690,000, 

3L: 380,000-390,000, 3R: 10,760,000-10,770,000 and 11,470,000-11,480,000, respectively.   
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Table 5.8 Summary of regions containing non-coding SNPs from the Synthetic GWAS 
dataset and the distance to regions with which they have the strongest interaction.  

Non-coding SNP region Interacting region 

Bin 
number 

Number of 
SNPs 
residing  

Highest 
recorded 
SNP D value 

Strongest 
interacting 
bin 

Distance 
(Kb) 

Number of 
SNPs 
residing 

Highest 
recorded 
SNP D value 

2367 3 2.727 2362 50 2 0 

3982 7 5.421 3987 50 16 6.984 

5470 9 5.765 5465 50 13 7.528 

2459 4 5.170 2463 40 6 4.538 

4370 12 7.189 4366 40 10 6.499 

4560 4 3.814 4566 40 10 3.580 

5656 9 6.284 5660 40 16 6.943 

11643 2 5.029 11647 40 6 4.721 

1605 7 7.657 1608 30 9 8.794 

2006 3 12.009 2003 30 7 11.435 

2461 1 4.592 2464 30 6 3.839 

3146 13 3.468 3149 30 13 2.270 

3447 1 2.160 3444 30 10 5.985 

4837 8 6.213 4840 30 15 5.733 

5702 1 3.582 5705 30 8 6.758 

6981 6 4.577 6978 30 4 4.689 

7819 4 3.189 7816 30 6 4.767 

7883 6 5.029 7886 30 11 6.846 

7884 4 5.989 7887 30 12 7.530 

8958 11 4.396 8995 30 11 5.912 

155 14 7.658 153 20 6 6.028 

229 7 7.550 227 20 10 6.394 

324 3 5.987 326 20 15 6.438 

556 11 6.606 554 20 10 5.888 

592 1 2.066 590 20 12 4.761 

945 6 4.168 943 20 10 5.766 

994 5 5.459 996 20 3 3.321 

1167 10 6.455 1165 20 13 7.420 

1173 7 6.222 1171 20 10 4.701 

1174 11 5.694 1176 20 9 5.360 
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Table 5.9 Summary of regions containing non-coding SNPs from the DGRP GWAS dataset 
and the regions with which they have the strongest interaction.  

Non-coding SNP region Interacting region 

Bin 
number 

Number of 
SNPs 
residing  

Lowest 
recorded 
SNP P-value 

Strongest 
interacting 
bin 

Distance 
(Kb) 

Number of 
SNPs 
residing 

Lowest 
recorded 
SNP D value 

2388 8 0.3858 2378 100 168 0.008851 

3644 26 0.1303 3637 70 190 0.002221 

2458 34 0.06431 2464 60 171 0.05381 

2367 53 0.05865 2362 50 74 0.03473 

2957 16 0.06397 2962 50 228 0.009989 

3982 256 0.007077 3987 50 205 0.01519 

5470 280 0.003503 5465 50 420 0.0122 

2457 28 0.08089 2453 40 81 0.0515 

2459 73 0.5731 2463 40 120 0.02168 

4370 297 0.008632 4366 40 192 0.01473 

4560 88 0.02264 4566 40 280 0.009818 

5656 222 0.002052 5660 40 307 0.01401 

11643 51 0.05711 11647 40 138 0.005184 

1605 95 0.0236 1608 30 230 0.001396 

2006 64 0.01037 2003 30 153 0.000732 

2124 14 0.0354 2121 30 22 0.02479 

2283 17 0.1617 2286 30 62 0.0776 

2372 68 0.01846 2375 30 128 0.06902 

2456 44 0.01432 2453 30 81 0.0515 

2461 32 0.04341 2464 30 171 0.05381 

3146 377 0.006937 3149 30 295 0.00241 

3447 44 0.13 3444 30 285 0.008249 

4837 181 0.007141 4840 30 359 0.02119 

5702 27 0.01703 5705 30 322 0.006609 

6981 87 0.00301 6978 30 83 0.000805 

7639 11 0.09939 7636 30 126 0.003609 

7819 238 0.001871 7816 30 203 0.003442 

7883 108 0.007967 7886 30 234 0.001484 

7884 120 0.006706 7887 30 255 0.002598 

8958 222 0.001062 8955 30 197 0.01518 

 

Further analysis of the potential target genes found in the long-range interacting regions was 

done using phenotype data, in which each gene was analysed individually. Lists of genes found 

to have phenotypes which could be associated with longevity, for both the Synthetic and 

DGRP GWAS datasets, including ‘increased mortality’, ‘lethal’ and ‘immune response 

defective’ are shown in Tables 5.10 and 5.11. For the interacting bins containing more than 
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one gene with longevity related phenotypes, we can speculate that a single enhancer that 

harbours non-coding SNPs may target several genes found in the same region, influencing 

their expressions and phenotypes.   

 

Table 5.10 Summary table of phenotypes of genes found in regions most strongly 
interacting with regions containing non-coding SNPs found in Synthetic GWAS dataset. 

Bin 
harbouring 
SNP(s) 

Possible 
target gene 

Longevity related phenotypes 

4560 
  

CG45186 lethal; increased mortality during development; increased 
mortality 

CG32298 partially lethal - majority die; flightless 

5656 
  

SNCF lethal - all die during P-stage 

CG14107 partially lethal - majority die; some die during pupal stage; 
lethal - all die during P-stage 

1605 Ca-alpha1D* increased mortality during development; lethal - all die 
before end of P-stage 

2461 jing locomotor behaviour defective; cell death defective 

3146 AttC partially lethal; some die during pupal stage; neuroanatomy 
defective 

4837 
  

CG4597 some die during pupal stage; partially lethal - majority die 

CG4611 lethal - all die during P-stage 

5702 Hml immune response defective 

7883 CG43335 partially lethal - majority die; some die during pupal stage; 
partially lethal 

556 GluRIIA locomotor behaviour defective; neurophysiology defective; 
neuroanatomy defective; lethal 

GluRIIB neuroanatomy defective; neurophysiology defective 

945 numb decreased cell number; some die during embryonic stage; 
increased mortality; increased cell number; lethal - all die 
before end of prepupal stage; flight defective; tumorigenic 

994 bib lethal - all die before end of pupal stage 

1174 crol locomotor behaviour defective; increased occurrence of cell 
division; increased mortality; cell death defective 

* Genes previously found to have association with longevity as recorded in FlyBase or GenAge 

resources are shown in bold.  
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Table 5.11 Summary table of phenotypes of genes found in regions most strongly 
interacting with regions containing non-coding SNPs found in DRGP GWAS dataset. 

Bin 
harbouring 
SNP(s) 

Possible 
target gene 

Phenotypes 

2461 jing locomotor behaviour defective; cell death defective 

2957 en lethal - all die during embryonic stage; size defective; planar 
polarity defective; increased cell death; some die during 
pupal stage; partially lethal - majority die 

2457 Pld developmental rate defective; partially lethal - majority die; 
some die during embryonic stage; neurophysiology 
defective; lethal - all die before end of embryonic stage 

2459 jing locomotor behaviour defective; cell death defective 

4370 trh neuroanatomy defective; partially lethal - majority die; 
lethal; some die during embryonic stage; lethal - all die 
before end of embryonic stage 

4560 
  

CG45186 lethal; increased mortality during development; increased 
mortality 

CG32298 some die during pupal stage; partially lethal - majority die; 
flightless 

5656 
  

SNCF lethal - all die during P-stage 

CG14107 partially lethal - majority die; some die during pupal stage; 
lethal - all die during P-stage 

1605 Ca-alpha1D* increased mortality during development; lethal - all die 
before end of P-stage 

2283 RpL38 increased mortality; increased mortality during 
development; developmental rate defective 

2372 laccase2 lethal; partially lethal; lethal - all die during embryonic 
stage; 

2456 Pld developmental rate defective; partially lethal - majority die; 
some die during embryonic stage; neurophysiology 
defective; lethal - all die before end of embryonic stage 

2461 jing locomotor behaviour defective;  cell death defective 

3146 AttC partially lethal; some die during pupal stage; neuroanatomy 
defective 

4837 
  

CG4597 some die during pupal stage; partially lethal - majority die 

CG4611 lethal - all die during P-stage 

5702 Hml immune response defective 

7639 timeout increased mortality; lethal - all die before end of P-stage; 
some die during P-stage 

7883 CG43335 partially lethal - majority die; some die during pupal stage; 
partially lethal 

8958 CG33970 lethal; sleep defective; flightless 

* Genes previously found to have association with longevity as recorded in FlyBase or GenAge 

resources are shown in bold.  
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5.6 SIMILARITIES BETWEEN REGIONS OBSERVED IN TARGET GENE ANALYSIS FOR 

SYNTHETIC AND DGRP GWAS DATASETS AND HUMAN ORTHOLOG SEARCH 

  

A number of genes with longevity-associated phenotypes were found in common between 

both GWAS datasets: CG45186, CG32298, SNCF, CG14107, Ca-alpha1D, jing, AttC, CG4597, 

CG4611, Hml and CG43335. Searches for human orthologs were carried out on these genes, 

for which there were matches for five of the genes. The Drosophila gene CG45186 matched 

human ortholog SVIL, CG4611 matched PTCD1, jing matched AEBP2, Ca-alpha1D was found 

to match the two human genes CACNA1D and CACNA1S and finally Hml was found to match 

with four human genes: SSPO, VWF, OTOG and MUC5B. These human ortholog genes were 

then further explored to look for any known association that these genes may have with 

longevity, however this search only found that the SSPO gene is involved in the modulation 

of neuronal aggregation and has been suggested to be involved in developmental events 

during the formation of the central nervous system (Meiniel et al., 2003). Although there were 

no other human genes in this ortholog search found to previously have any biological 

association with longevity, we can speculate that the findings of their Drosophila orthologs 

having longevity-associated phenotypes in this analysis may indicate that their human 

orthologs may play a role in human longevity that is thus far unknown. This observation of 

SNPs in non-coding regions targeting genes that are not within closest proximity on the 

Drosophila genome is one that can be speculated to apply to non-coding SNPs on the human 

genome and their target genes.  

A literature search was also taken on these Drosophila genes in Tables 5.10 and 5.11 for any 

previous research in which they may have been associated with longevity. A study by 

Doroszuk et al. (2012), previously mentioned in Chapter 4, found that the antimicrobial 

peptide encoding gene AttC shows age-related changes in expression and therefore 

considered it to be a candidate marker of ageing.  
 

5.7 COMPARISON OF TARGET GENES SELECTED FOR NON-CODING SNPS IN  DGRP 

GWAS STUDY WITH THOSE OBTAINED USING FINER RESOLUTION HI-C DATA  
 

To incorporate SNPs with the highest calculated P-values residing in non-coding regions, 

Ivanov et al. (2015) performed a gene-based analysis with gene positions extended by 5 kb 
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upstream of the 5′ and downstream of 3′ ends in the DGRP GWAS study. Therefore, the 50 

top SNPs with the lowest P-values identified by Ivanov et al. (2015) were assigned either to a 

gene (coding SNPs) if they reside within the extended gene sequence; otherwise non-coding 

SNPs were assigned to two nearby genes located upstream and downstream which this SNP 

was assumed to target. The non-coding SNPs in this list were further explored in this study by 

assigning each of these SNPs to a 10 Kb region and utilising the finer 10 Kb resolution Hi-C 

data once again, to identify the strongest interacting gene-harbouring regions interacting 

with regions that contain these non-coding SNPs. Table 5.12 shows these selected non-coding 

SNPs from the top 50 SNPs, their positions and the genes with which they were associated 

according to Ivanov et al. (2015). The two regions strongly interacting with the non-coding 

SNP containing region are displayed in the last two columns, where for many the strongest 

interacting or second strongest interacting regions coincide with the SNP-harbouring region. 

However, for a few cases, neither of the strongest interacting bins were the same as itself. 

This was the case for SNPs 2L: 1835028, 2L: 2279849 and 3L: 17762728. The strongest 

interacting regions with bin 182 were bins 181 and 184, and so genes residing within these 

regions were sought. Bin 181 harboured genes CG31933 and CG31664 and bin 184 harboured 

genes wry and CG31663. The wry gene was also selected for this SNP by Ivanov et al. (2015), 

however its association with Notch signalling was not mentioned or discussed. The wry gene 

has previously been identified as a notch ligand and notch signalling has been shown to be 

critically important for the maintenance of normal heart function in the adult fly (Kim et al., 

2010). This signalling pathway has been previously discussed in Chapter 4 of this thesis when 

discussing other gene findings. A search for the other three genes residing in these strongest 

interacting regions found that no phenotypic data was available and biological processes in 

which these three genes are involved are unknown. For the SNP 2L: 2279849, both genes 

CG17242 and CG4271 assigned by Ivanov et al. (2015) were genes found in the strongest 

interacting regions selected in this analysis, however a number of other genes were also 

found in bins 225 and 227. These included genes CG34049, CG4270, CR43754, CG31681, 

CG42658 and CG17237, however again a search for these genes resulted in unknown 

biological processes and lack of phenotypic data available. The third SNP, 3L: 17762728, was 

found in a region which strongly interacted with bins 6097 and 6096 which harboured six 

genes in total, of which only one of these genes was selected by Ivanov et al. (2015) as a target 

gene for this non-coding SNP, gene Adgf-A. Two other genes, Adgf-A2 and Adgf-B, also resided 
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in these interacting regions, both of which are known to be involved in growth factor activity. 

Again other genes were found in this region for which biological processes were unknown, 

including genes CG32182 and CG32181, but there was one gene found in bin 6096 for which 

more information was available. This was the Ccn gene, which is involved with negative 

regulation of cell death and has phenotypes including ‘increased mortality’ and ‘lethal’. Lack 

of knowledge about many of the genes found in these strongly interacting regions gives room 

for speculation that the non-coding SNPs with which they strongly interact may be influencing 

the expression of these genes and their biological processes. The interaction between SNP 3L: 

17762728 and gene Ccn, with longevity related features, may suggest that it is in fact this 

gene that could be of interest instead of the CG42815 gene selected by Ivanov et al. (2015).   

 

Table 5.12 Non-coding SNPs in the top 50 SNPs recorded in the DGRP GWAS dataset. 

Non-

coding 

SNP 

position 

Chr SNP bin start 

position (bin 

number) 

P-value 5' 3' 1st 

strongest 

interacting 

region 

2nd 

strongest 

interacting 

region 

1632386 2L 1630000 (164) 5.90x10−8 chinmo RFeSP 164 165 

1632388 2L 1630000 (164) 3.74x10−7 chinmo RFeSP 164 165 

1835028 2L 1830000 (182) 1.11x10−5 c-cup wry 181 184 

2279849 2L 2270000 (226) 2.21x10−6 CG17242 CG4271 225 227 

3480710 2L 3480000 (347) 6.77x10−7 CG15414 Thor 347 348 

4308343 2R 4300000 (2654) 8.41x10−6 CSN7 CG43296 2653 2654 

4308355 2R 4300000 (2654) 7.86x10−6 CSN7 CG43296 2653 2654 

17762728 3L 17760000 (6098) 1.13x10−5 Adgf-A CG42815 6097 6096 

18140585 3L 18140000 (6135) 6.51x10−6 CG7330 gk 6135 6134 

5319539 3L 5310000 (4859) 1.12x10−5 shep lama 4858 4859 

8650506 3L 8650000 (5188) 6.13x10−6 h Pex7 5187 5188 

15950064 3R 15950000 (8334) 1.17x10−5 Gr92a CG5023 8333 8334 

23482833 3R 23480000 (9085) 9.26x10−6 Mlc1 tau 9085 9086 

25189263 3R 25180000 (9255) 1.05x10−5 Cnx99A Ptp99A 9255 9256 
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A search for human orthologs for these genes previously discussed resulted in matches for 

the Drosophila genes wry, CG17242, Adgf-A and Ccn which had human orthologs DNER, 

PRSS36, ADA2 and CTGF, respectively. Like its Drosophila ortholog, the human gene DNER is 

related to the notch signalling pathway in humans, where mutations in notch signalling 

pathway members have been shown to cause developmental phenotypes that affect the liver, 

skeleton, heart and vasculature (Penton et al., 2012) which can all have effects on lifespan 

and ageing. The human gene ADA2 is related to the innate immune system pathway and 

associated with human diseases including Vasculitis, Autoinflammation, Immunodeficiency 

and Hematologic Defects Syndrome in which patients are known to suffer recurrent strokes 

resulting in neurologic dysfunction (Zhou et al., 2014).  Finally, the human gene CTGF, also 

known as CCN2, has important roles in biological processes including skeletal development, 

tissue wound repair and cell proliferation, this gene is also critically involved in fibrotic disease 

and several forms of cancers 

 

Chapter 5 conclusions 

In this chapter we have shown that a significant proportion of non-coding SNPs, recorded in 

the DGRP GWAS dataset, were residing in TAD border regions on the Drosophila genome 

when compared to a match control dataset. Architectural proteins binding around these TAD 

border regions were also found to contain a reasonable number SNPs recorded in this GWAS 

datasets, with the Suppressor of Hairy-wing (Su(Hw)) and the DNA Replication Related 

Element binding Factor (DREF) being the most mutated. SNPs in experimentally identified 

TFBSs of 49 TFs were analysed. To find whether specific regions of the TFBSs were affected 

by SNPs, we created consensus sequence logos for TFBS sequences recorded. Although in 

some instances the logos showed clear positions in which there was a dominant nucleotide 

base present, overall no consistency was observed which could lead to the assumption that 

all binding sequences for each TF recorded had an obvious base pair pattern which could be 

recognised by each TF. Next, we looked whether there are specific structural features such as 

non-B DNA conformation. This analysis resulted in TFBSs for a number of TFs: ap, Br-Z2, EcR, 

fkh, hb, Mad, tin, vnd and zen, being enriched in non-B DNA conformation. SNP counts for 

each of the sequences recorded under each of these TFBSs, in both the real and control 

http://www.malacards.org/card/vasculitis_autoinflammation_immunodeficiency_and_hematologic_defects_syndrome
http://www.malacards.org/card/vasculitis_autoinflammation_immunodeficiency_and_hematologic_defects_syndrome
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dataset, were quantified, where only one TF ap was found to show any real difference 

between these counts.   

In the analysis for target genes, many regions which were found to have strong long-range 

interactions with regions found to contain non-coding SNPs in the Synthetic and DGRP GWAS 

datasets were observed to harbour genes exhibiting longevity-related phenotypes such as 

‘increased mortality’ and ‘lethal’. Interacting regions were found to harbour genes not directly 

associated with longevity but they had longevity related phenotypes. Commonly observed 

phenotypes included ‘lethal’ and ‘increased mortality’, with ‘immune response defective’ and 

‘cell death defective’ also found to be present in the genes in these interacting regions. These 

interacting regions were also then compared between the two GWAS datasets, in which there 

were a number of regions and therefore genes found in common. A total of 11 genes were 

found in common between these GWAS datasets, also having phenotypes that we could 

assume to have longevity association. These were genes: CG45186, CG32298, SNCF, CG14107, 

Ca-alpha1D, jing, AttC, CG4597, CG4611, Hml and CG43335. Further exploration of these 

genes found the AttC gene to have previously been considered as a candidate marker of 

ageing. Five of these Drosophila genes: CG45186, CG4611, jing, Ca-alpha1D and Hml, were 

also found to have strong human ortholog matches. These human orthologs were found to 

be SVIL, PTCD1, AEBP2, CACNA1D, CACNA1S, SSPO, VWF, OTOG and MUC5B. A search for any 

association these human genes had to longevity was carried out, with the only findings being 

the suggestion of the SSPO gene being involved in developmental events during the formation 

of the central nervous system.  
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CHAPTER 6 

6                                  CONCLUSIONS 
 

In this study we applied a network approach to predict novel genes/genomic regions/SNPs, 

playing a role in longevity by integrating three-dimensional chromosome conformation data 

and two GWAS datasets. We demonstrated that co-location of novel genes/genomic regions 

with genes, known to be associated with longevity, and their enrichment in the same 

biological function or pathway as known genes, make them good candidates for novel 

genomic regions, linked to longevity. We further demonstrated that SNPs residing within 

these regions may influence longevity either individually (when a SNP in one of these genes 

could cause a phenotype) or collectively (when one or several SNPs in these regions occur in 

the same patient to cause the phenotype). This study also analysed SNPs in non-coding 

regions, looking at TFBSs first, and found that TFs may recognise a certain structure, e.g. non-

B DNA structures, rather than sequence motifs. Structures such as slipped, cruciform, triplexes 

and tetraplexes, formed on direct, inverted and mirrored repeats and G-quartets were 

considered. TADs were also explored, where we hypothesised that SNPs residing in these 

border regions may cause disruption to the way in which regulation usually occurs within 

these TADs via looping interactions. Such disruption may lead to interactions between TADs 

that would not usually occur because of the borders by which they are separated. Finally this 

study looked at potential target genes for non-coding SNPs, taking a different approach to the 

assumption that these target genes are usually the nearest on the linear genome. 

In this chapter our results are summarised, their implications are discussed and ideas for 

future work are suggested.  
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6.1 NOVEL LONGEVITY-ASSOCIATED CANDIDATE REGIONS IDENTIFIED VIA NETWORK 

ANALYSIS  

 

The ability to successfully identify new regions/genes on the Drosophila genome which we 

can say for sure have a direct effect on longevity is a challenge, however with the qualitative 

data available and hypotheses that make sense both mathematically and biologically, an 

attempt can be made. The first hypothesis we made in this thesis was that the 3D architecture 

of the Drosophila genome dictates the co-location of specific genes/genomic regions, both 

known to be associated with longevity and novel unknown regions that may be potentially 

important in longevity. Networks were created using genes/genomic regions, quantified to 

associate with longevity, as original nodes with additional nodes (regions) later added to 

these networks if they strongly interacted (co-localise) with original nodes. Various network 

measures were calculated, identifying important previously unknown regions of the genome. 

All regions found to be of interest using these network measures were further explored, and 

their residing genes were used in GO enrichment analysis, where they were found to enrich 

in biological processes with longevity relation. 

Regions of each extended GWAS network were selected as important by network measures. 

For regions in the extended Synthetic GWAS-based network, GO enrichment found genes 

residing in these regions to be enriched in processes related to longevity such as ‘respiratory 

system development’, ‘defence response’, and ‘regulation of apoptotic process’. Among 

these genes were previously longevity associated genes Sema-5c and esg found to reside in 

novel regions. For regions in the extended DGRP GWAS-based network, GO enrichment found 

genes residing in these regions to be enriched in processes such as ‘ageing’, ‘immune 

response’, ‘detoxification’ and ‘defence response’. Again, among these genes enriched, 

longevity genes Indy and chico were also observed but this time in original regions of the 

network, the longevity gene EcR found in a novel region was also enriched. 

Regions selected by network measures were found in common between both extended 

GWAS networks datasets, in which genes with longevity related phenotypes were found to 

reside. This included the genes Rim and Tpi with ‘long-lived’ phenotypes, and frtz, Atxn7, 

CG5339, CG4434 and Zip99C with ‘short-lived’ phenotypes. A human ortholog search taken 

on genes found to reside in common regions showed several matches to human genes with 
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functions related to the lifespan of an organism. Genes were found to match human orthologs, 

where a number of these orthologs were found to relate to biological processes and functions 

known to relate to ageing/disease or effect lifespan of humans. These human genes included 

TXLNA, SNAI2, ALDOA, SCFD1, CALML6, SCD, PLPBP, LRRC4C and SEMA5B. Common regions 

between extended GWAS networks were also observed to harbour a fairly large number of 

SNPs. 

Subnetworks in these extended GWAS networks were then further explored, where 

enrichment in Gene Ontology terms identified genes/regions with no previous association 

with longevity. This analysis was based on the hypothesis stating that SNPs residing within co-

located genomic regions influence longevity either independently or have a cumulative effect. 

Subnetworks in the extended Synthetic GWAS-based network harboured genes that enriched 

under biological processes in GO analysis including ‘DNA repair’, ‘apoptotic process’ and 

‘developmental process’. Some of the genes had previously been found to associate with 

longevity, including ku80, foxo, VhaSFD and CathD. Other genes were found to have longevity 

related phenotypes including ‘increased mortality’, ‘lethal’ and the azot gene had a ‘long-lived’ 

phenotype. SNPs in genes of these subnetworks were counted, where genes such as mub and 

foxo harboured significant SNPs and were therefore speculated to independently influence 

genes in the same subnetwork in relation to longevity. Many genes in these subnetworks 

were observed to harbour a number of SNPs but none of which were significant, leading to 

speculation that in these cases longevity may be influenced through a cumulative effect of 

several SNPs.  

Subnetworks in the extended DGRP GWAS-based network harboured genes that enriched in 

biological processes in GO analysis including ‘developmental growth’, ‘nervous system 

process’, ‘immune system process’ and ‘regulation of immune system process’. Genes known 

to have longevity association, including genes ft, grim and Chmp1 were enriched in these GO 

terms. These genes were found to be associated with a shortened lifespan in Drosophila as 

well as other genes including Sod2, PGRP-SA, Btk29A and Trag6 involved in pathways and 

processes associated with ageing. These genes were observed to harbour SNPs, leading to 

speculation that they could influence the function of genes, coming into close proximity and 

sharing the same GO terms, in the same way as the known longevity associated genes. 
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Subnetworks found to contain genes which shared common biological processes associated 

with longevity were then further explored.  Regions of each of these subnetworks selected 

were explored for the occurrence of significant SNPs which were highlighted earlier in this 

study. This further subnetwork exploration also looked at enhancers that reside in regions of 

these subnetworks. 

 

6.2 SNPS IN NON-CODING REGIONS  

 

In the genome, there are many different structures and features which have been proved to 

play important roles in the organization of the genome and gene regulation. The disruption 

of these structures or features have been hypothesised and proven to have a detrimental 

effect on the role they are supposed to play, and as a result lead to disease. This analysis first 

focussed on TAD boundary regions and non-coding SNPs within these regions. There was 

found to be a significantly higher proportion of non-coding SNPs, recorded in the DGRP GWAS 

dataset, residing in TAD border regions in the real dataset when compared to a matched 

control dataset. Architectural binding proteins known to bind around these TAD border 

regions were also found to contain a reasonable number of non-coding SNPs recorded in this 

GWAS dataset, with the Suppressor of Hairy-wing (Su(Hw)) and the DNA Replication Related 

Element binding Factor (DREF) being the most mutated.  

Transcription factors are functional elements in the genome that are crucial for controlling 

many important processes, along with the sites of the DNA to which they bind, known as 

transcription factor binding sites. TFs are known to interact with DNA in two primary ways, 

through non-sequence-specific interactions or sequence-specific interactions and the role of 

DNA shape as a determinant of protein-DNA binding specificity has been shown to be 

important. Non-B DNA conformations have been found to form at specific sequence motifs 

and are believed to form in higher energy states during metabolic processes in DNA such as 

transcription, replication and repair. This chapter further explored TFBSs, by first considering 

base pair sequence patterns in DNA by producing consensus sequence logos, and then 

focussing on non-B DNA structures and their potential role in TF binding.   
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Using a dataset containing recorded binding site positions for TFs in Drosophila, consensus 

sequence logos were created for each TF. In some positions of the logos, dominant nucleotide 

bases were apparent, however this observation was not consistent enough to conclude that 

all binding sequences for each TF recorded had an obvious base pair pattern which could be 

recognised by this TF. The creation of a matched control TFBS sequence dataset enabled 

analysis, using chi-squared, between the frequencies of sequence repeat counts in TFBS 

sequences from the real dataset with those from the control dataset.  

Statistical analysis found a number of TFBSs for TFs: ap, Br-Z2, EcR, fkh, hb, Mad, tin, vnd and 

zen, to show significant enrichment in the proportion of recorded sequences containing 

repeats between those in the real dataset when compared with those recorded in the control 

dataset. SNP counts for each of the TFBS sequences recorded under each of these TFs, in both 

the real and control dataset, were then quantified, where only TFBSs for the TF ap was found 

to show any real difference between these counts.  

GWAS-identified disease-associated nucleotide differences are often found to reside in non-

coding regions of the genome, where many have looked to find the way in which a non-coding 

SNP can be associated with an increased risk for a specific disease. Approaches to do so often 

focus on the identification of the target genes for these non-coding SNPs, where is has often 

been assumed that the target gene of such a SNP corresponds to the gene to which it resides 

closest in physical distance, but this is not possible to confirm. The strongest interacting 

regions with regions containing non-coding SNPs in the Synthetic and DGRP GWAS datasets, 

using higher resolution Hi-C data at 10 Kb, were found. Regions containing non-coding SNPs 

which have strongest interacting regions at the longest distances were of most interest, and 

were then selected for further analysis, focusing on the genes they harbour and the functions 

of these genes.  

Interacting regions found to harbour genes were further explored, where it was found that 

numerous genes, although not found to be directly associated with longevity, had phenotypes 

displaying longevity related functions. Commonly observed phenotypes included ‘lethal’ and 

‘increased mortality’, with ‘immune response defective’ and ‘cell death defective’ also found 

expressed in the genes in these selected regions. A total of 11 genes were found in common 

between the extended GWAS networks, also with phenotypes that we could assume to have 

longevity association, these were: CG45186, CG32298, SNCF, CG14107, Ca-alpha1D, jing, AttC, 
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CG4597, CG4611, Hml and CG43335. Further exploration of these genes found AttC to have 

previously been considered as a candidate marker of ageing and five of these Drosophila 

genes: CG45186, CG4611, jing, Ca-alpha1D and Hml, were also found to have strong human 

ortholog matches. These human orthologs were found to be SVIL, PTCD1, AEBP2, CACNA1D, 

CACNA1S, SSPO, VWF, OTOG and MUC5B. A search for any relation these human genes had 

to longevity was carried out, with the only findings being the suggestion of the SSPO gene 

being involved in developmental events during the formation of the central nervous system. 

 

6.3 FUTURE WORK 
 

All network analysis in this thesis utilised Drosophila longevity GWAS data from the Synthetic 

and DGRP GWAS datasets described. For future work, it would be of interest to use datasets 

that could be considered ‘designed long-lived Drosophila’ datasets to repeat the analyses 

performed in this thesis. If and when available, such datasets would include GWAS for 

Drosophila in environmentally controlled states, including specifically, calorie-restricted 

Drosophila and Drosophila in temperature-controlled environments. These conditions have 

commonly been shown to effect lifespan in Drosophila, and so the ability to analyse this data 

in a similar way to GWAS previously analysed in this thesis and comparison with the results 

reported in this thesis, could provide new information on genes and genomic regions of 

Drosophila in relation to longevity. Also in relation to networks approaches used in this thesis, 

future work could also be done to test the reliability of networks produced. This could be 

done by considering the percolation of networks, in which a percolation model is generated 

to assess the robustness of a network. In the percolation theory, the failure of a node/edge 

of network is modelled by removal of a subset of nodes with their adjacent edges and in short, 

this theory can help to understand the macroscopic failure behaviour of networks in relation 

to the microscopic states of the network components (Li et al., 2015). This assessment could 

be carried out for all networks produced in order to understand the behaviour of the 

networks and its ability to maintain its modularity. 

Since the time that this study was started, results of human longevity GWAS have been 

published (Pilling et al., 2017), in which 25 genetic loci associated with longevity were 

identified through analysis of 389,166 UK biobank participants. The analysis carried out in this 
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PhD study of Drosophila has produced findings which have enabled the identification of a set 

of human homologs/orthologs/paralogs as potential longevity gene candidates. Therefore, 

direction for future work would be to utilise the recently published human longevity GWAS, 

comparing their findings with those found throughout this study. The human longevity GWAS 

would also be useful for justifying the hypothesis of the co-location of 

homologs/orthologs/paralogs in 3D space within the cell nucleus. The availability of human 

longevity GWAS would also allow the application of the modelling used in this PhD study of 

Drosophila, repeating the techniques developed and analysis used. Results in this PhD study 

using Drosophila longevity GWAS and the results from repetition of techniques and analysis 

using human longevity GWAS could then be compared for any similarities, where these 

similarities could strengthen the conclusions of the findings in this PhD study. For modelling 

using human longevity GWAS, identification of a suitable cell line would be required, for which 

chromosome conformation capture data is available, and analysis of available eQTL would be 

important.  
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APPENDIX 
 

Table S4.1 All genes found to reside in common original regions identified between the 

extended Synthetic and DGRP GWAS-based networks. Genes with ‘long-lived’ phenotype 

are shown in bold. 

Gene 
name 

Bin SNP count 
Burke 

SNP count 
Ivanov 

Significant SNP 
count Burke 

Significant SNP 
count Ivanov 

AdoR 1183 24 536 0 0 

AIF 27 0 33 0 0 

alrm 1124 1 30 0 0 

aop 27 17 399 8 0 

Arr2 660 3 60 1 0 

Atxn7 30 2 83 1 0 

axo 609 67 1747 10 0 

Axud1 30 4 75 0 0 

Cad88C 989 10 295 0 1 

c-cup 23 0 21 0 0 

CG10635 619 2 14 0 0 

CG11498 1183 11 279 0 0 

CG11723 27 3 34 0 0 

CG12674 27 2 35 0 0 

CG13562 534 3 48 1 0 

CG13716 609 1 12 0 0 

CG14853 989 6 273 0 0 

CG15382 27 1 14 0 0 

CG15390 30 0 13 0 0 

CG15529 1183 4 67 0 0 

CG16995 29 3 42 1 0 

CG17234 29 1 3 0 0 

CG17237 29 0 19 0 0 

CG17239 29 2 21 0 0 

CG17242 29 2 33 0 0 

CG17646 22 23 501 0 0 

CG17648 22 0 19 0 0 

CG17650 22 2 15 0 0 

CG17652 22 2 31 0 0 

CG17658 534 1 26 1 0 

CG17660 22 4 70 0 0 

CG17712 22 3 36 0 0 

CG2812 534 4 54 1 0 

CG2970 534 1 56 1 0 

CG31028 1183 5 139 0 0 

CG31029 1183 2 89 0 0 
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CG31030 1183 5 79 0 0 

CG31437 1124 1 19 0 0 

CG31664 23 2 74 0 0 

CG31681 29 2 32 0 0 

CG31815 208 0 44 0 0 

CG31933 23 2 54 0 0 

CG31937 22 1 40 0 0 

CG31949 29 0 26 0 0 

CG32022 660 0 13 0 0 

CG32246 609 2 33 1 0 

CG34049 29 1 66 0 0 

CG3557 30 1 13 0 0 

CG3597 30 1 24 0 0 

CG3609 30 1 54 0 0 

CG3735 534 2 61 1 0 

CG4168 190/191 21 784 12 0 

CG42540 609 33 855 0 0 

CG4259 27 1 24 0 0 

CG42658 29 0 29 0 0 

CG4267 29 4 83 0 0 

CG4270 29 3 27 0 0 

CG4271 29 0 8 0 0 

CG43230 191 1 27 1 0 

CG43750 30 3 61 0 0 

CG43880 651 0 10 0 0 

CG43965 660 0 3 0 0 

CG44094 989 0 5 0 0 

CG45072 1183 3 54 0 0 

CG45073 1183 0 39 0 0 

CG4631 208 4 97 0 0 

CG4882 534 2 23 1 0 

CG5339 534 0 15 0 0 

CG5597 534 1 33 0 0 

CG6511 660 0 91 0 0 

CG7886 989 13 367 0 1 

CG7987 989 2 65 0 0 

CG8038 651 1 14 0 0 

CG8042 651 3 57 0 0 

CG8209 651 1 19 0 0 

CG9870 30 3 71 0 0 

CG9967 29/30 45 1225 0 1 

chinmo 22 44 1142 0 2 

Cp18 660 0 18 0 0 

cpb 22 4 33 0 0 
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CR42859 29 2 44 0 0 

CR43357 191 0 32 0 0 

CR43682 191 2 57 0 0 

CR43753 29 6 213 0 0 

CR43754 29 0 44 0 0 

CR43853 190 0 21 0 0 

CR43854 190 0 11 0 0 

CR44055 27 1 32 0 0 

CR44073 23 1 7 0 0 

CR44151 208 0 3 0 0 

CR44196 191 1 7 0 0 

CR44515 619 0 20 0 0 

CR44516 619 0 7 0 0 

CR44526 660 1 23 0 0 

CR44706 190 0 16 0 0 

CR44770 190 2 13 1 0 

CR44771 190 0 15 0 0 

CR44787 29 0 13 0 0 

CR44788 29 0 10 0 0 

CR44806 534 0 12 0 0 

CR44808 27 0 4 0 0 

CR44976 22 2 16 0 0 

CR44982 30 0 7 0 0 

CR45438 609 0 15 0 0 

CR45743 619 0 12 0 0 

CR45926 534 1 26 0 0 

CR46082 1183 6 90 0 0 

CR46112 1183 1 18 0 0 

CR46153 989 0 1 0 0 

Cul3 191 2 90 1 0 

dao 191 5 107 2 0 

DCP1 534 0 11 0 0 

DIP-delta 619 24 526 3 0 

DNA-ligI 534 4 40 1 0 

dpr3 27 42 1095 10 0 

Eno 22 6 115 0 0 

Eogt 30 1 29 0 0 

exex 651 3 115 0 0 

eys 29/30 43 1190 0 1 

frtz 22 6 114 0 0 

fzr2 534 1 20 1 0 

Galphas 534 2 89 1 0 

GlyP 27 4 99 1 0 

Gr22a 23 4 61 0 0 
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Gr22b 23 4 32 1 0 

Gr22c 23 1 44 1 0 

Gr22d 23 1 42 0 0 

Gr22e 23 0 21 0 0 

Gr22f 22 3 34 0 0 

h 660 3 59 0 0 

HDAC1 609 4 76 0 1 

His4r 989 0 11 0 0 

HP4 651 1 16 1 0 

Ir64a 619 8 193 0 1 

kcc 534 6 195 2 0 

ken 534 4 31 4 0 

l(2)35Cc 191 1 21 1 0 

l(3)L1231 989 1 159 0 0 

Lpt 534 4 113 1 1 

Membrin 619 0 16 0 0 

mir-2280 23 0 1 0 0 

Mlc2 1183 3 55 0 0 

mRpL48 22 2 33 0 0 

Muc96D 1124 1 13 0 0 

Nap1 534 1 36 0 0 

nmo 651 74 2128 2 0 

Orcokinin 534 3 43 1 0 

Pex7 660 5 136 1 0 

PHDP 534 2 19 0 0 

Pol32 191 3 25 0 0 

Ppi1 1183 4 91 0 0 

put 989 4 91 0 0 

Rab5 30 2 117 0 0 

Rim2 22 14 247 1 0 

RNaseX25 651 1 29 0 0 

robl22E 29 1 20 0 0 

Rrp40 22 2 24 0 0 

Send1 29 0 18 0 0 

Ser12 29 1 8 0 0 

SERCA 534 6 153 2 0 

Sfp35C 191 0 7 0 0 

sima 1183 81 1865 1 3 

Src64B 609 38 917 3 0 

Srp9 651 3 25 0 0 

SrpRbeta 660 0 41 0 0 

stumps 989 28 803 1 0 

syd 651 10 224 0 0 

Taldo 534 4 33 1 0 
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TBCD 27 4 77 1 0 

Tengl1 29 1 22 0 0 

tho2 27 4 77 0 0 

TM4SF 534 0 11 0 0 

Tpi 1183 1 27 0 0 

tRNA:L:35
C 

190 0 0 0 0 

UK114 191 0 22 0 0 

Upf3 534 0 41 0 0 

VGlut 30 21 514 2 0 

wry 23 30 650 0 0 

yuri 191 6 138 2 0 

ZnT35C 191 19 476 5 0 

 

 

Table S4.2 SNP counts for genes residing in common novel regions between both GWAS 
dataset networks identified using a clustering coefficient network measure.  

Gene Bin Number of SNPs 

recorded in 

Synthetic GWAS 

dataset  

Number of 

SNPs 

recorded in 

DGRP dataset  

Percentage of 

total number 

SNPs in 

Synthetic 

GWAS dataset  

Percentage of 

total number 

of SNPs in 

DGRP dataset 

rols 702 76 1884 0.08119051 0.08601263 

CR44320 1134 34 711 0.03632207 0.03246018 

CR46061 1134 25 466 0.0267074 0.02127489 

kek3 195 22 591 0.02350252 0.02698167 

Sema-5c 702 18 503 0.01922933 0.02296409 

Ald 1134 9 158 0.00961467 0.00721337 

oaf 32 4 114 0.00427318 0.00520459 

CG6793 702 4 75 0.00427318 0.00342407 

CG12290 1134 4 71 0.00427318 0.00324145 

Slh 32 4 69 0.00427318 0.00315014 

CG3515 32 4 50 0.00427318 0.00228271 

CG15263 192 4 50 0.00427318 0.00228271 

CR46069 32 4 28 0.00427318 0.00127832 

CR43847 1129 3 49 0.00320489 0.00223706 

CR43764 192 3 46 0.00320489 0.0021001 

CG5886 1129 3 33 0.00320489 0.00150659 

esg 192 3 32 0.00320489 0.00146094 

CG3528 32 3 24 0.00320489 0.0010957 

CG31380 1129 2 50 0.00213659 0.00228271 

alpha4GT2 1129 2 45 0.00213659 0.00205444 
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CG15256 195 2 31 0.00213659 0.00141528 

CG15262 192 2 29 0.00213659 0.00132397 

Acam 1129 2 24 0.00213659 0.0010957 

CG17770 1129 2 24 0.00213659 0.0010957 

CG6073 1134 2 24 0.00213659 0.0010957 

CG4956 1129 2 22 0.00213659 0.00100439 

CG31086 1134 2 15 0.00213659 0.00068481 

CR45652 1129 2 11 0.00213659 0.0005022 

CR43632 1129 2 10 0.00213659 0.00045654 

CR43761 195 1 39 0.0010683 0.00178052 

CR45654 1129 1 26 0.0010683 0.00118701 

CG15260 192 1 25 0.0010683 0.00114136 

CG4960 1129 1 25 0.0010683 0.00114136 

BG642167 1129 1 20 0.0010683 0.00091309 

CG17195 1129 1 19 0.0010683 0.00086743 

CG34130 1134 1 19 0.0010683 0.00086743 

CG5024 1129 1 18 0.0010683 0.00082178 

CG43993 702 1 16 0.0010683 0.00073047 

CG14354 1129 1 16 0.0010683 0.00073047 

CR43631 1129 1 15 0.0010683 0.00068481 

nht 192 1 14 0.0010683 0.00063916 

CR45655 1129 1 12 0.0010683 0.00054785 

CR46062 1134 1 12 0.0010683 0.00054785 

CR43994 702 1 11 0.0010683 0.0005022 

Mst57Dc 1129 1 8 0.0010683 0.00036523 

CR44607 32 1 5 0.0010683 0.00022827 

CR44949 1129 0 38 0 0.00173486 

CG17196 1129 0 26 0 0.00118701 

Skadu 195 0 20 0 0.00091309 

CG43638 702 0 18 0 0.00082178 

ms(2)35Ci 192 0 17 0 0.00077612 

CR44113 32 0 16 0 0.00073047 

CR45349 192 0 16 0 0.00073047 

CG34129 1134 0 15 0 0.00068481 

CG14545 1129 0 14 0 0.00063916 

CR43634 1129 0 14 0 0.00063916 

CR44112 32 0 12 0 0.00054785 

CR45656 1129 0 11 0 0.0005022 

Mst57Da 1129 0 10 0 0.00045654 

CG31093 1129 0 9 0 0.00041089 

CR45653 1129 0 8 0 0.00036523 

CR45728 195 0 4 0 0.00018262 



182 
 

CR45657 1129 0 4 0 0.00018262 

Sfp96F 1129 0 4 0 0.00018262 

Mst57Db 1129 0 3 0 0.00013696 

CR43633 1129 0 2 0 9.1309E-05 

 

 

Table S4.3 SNP counts for genes residing in common novel regions between both GWAS 
dataset networks identified using a PageRank network measure.  

Gene Bin 
 

Number of 

SNPs 

recorded in 

Synthetic 

GWAS 

dataset  

Number of 

SNPs 

recorded 

in DGRP 

dataset  

Percentage 

of total 

number SNPs 

in Synthetic 

GWAS 

dataset  

Percentage 

of total 

number of 

SNPs in DGRP 

dataset 

sima 1182 81 1865 0.08653199 0.085145199 

pnt 1097 57 1316 0.060892882 0.060081009 

CG2970 534 38 1107 0.040595255 0.038036322 

stumps 989 28 803 0.029912293 0.036660372 

AdoR 1183 24 536 0.025639108 0.018416864 

CG17646 22 23 501 0.024570812 0.022872785 

CG4467 1097 22 609 0.023502516 0.020925131 

CG31038 1180 22 442 0.023502516 0.015187041 

VGlut 30 21 514 0.02243422 0.023466291 

kcc 534 19 418 0.020297627 0.014362405 

CG10904 535 17 568 0.018161035 0.025931621 

orb 1097 17 245 0.018161035 0.011185294 

Axn 1182 16 403 0.017092739 0.013847008 

Adk2 535 15 390 0.016024443 0.01340033 

DNA-ligI 534 14 381 0.014956146 0.017394274 

Rim2 22 14 247 0.014956146 0.011276603 

CG7886 989 13 367 0.01388785 0.012610055 

Nap1 534 12 311 0.012819554 0.010685905 

EbpIII 535 12 279 0.012819554 0.012737539 

CG11498 1183 11 279 0.011751258 0.012737539 

Mgat2 1182 11 255 0.011751258 0.011641837 

Nf1 1131 11 200 0.011751258 0.009130852 

Cad88C 989 10 295 0.010682962 0.013468007 

CG17658 534 10 277 0.010682962 0.009517671 

CG3121 535 10 260 0.010682962 0.011870108 

CG42261 1131 10 241 0.010682962 0.011002677 

CG9743 1184 10 218 0.010682962 0.009952629 

Alas 535 9 210 0.009614666 0.009587395 
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Gadd34 535 9 186 0.009614666 0.008491693 

CG31036 1180 8 144 0.008546369 0.006574214 

mr 535 8 136 0.008546369 0.00620898 

trp 1180 7 163 0.007478073 0.007441645 

CG14853 989 6 273 0.006409777 0.009380231 

CG9747 1184 6 164 0.006409777 0.007487299 

CR44806 534 6 137 0.006409777 0.006254634 

Zip99C 1180 6 131 0.006409777 0.005980708 

CG15528 1182 6 120 0.006409777 0.004123179 

Eno 22 6 115 0.006409777 0.00525024 

frtz 22 6 114 0.006409777 0.00391702 

CR46082 1183 6 90 0.006409777 0.004108884 

CG9733 1184 5 145 0.005341481 0.006619868 

CG31028 1183 5 139 0.005341481 0.006345942 

Pex7 660 5 136 0.005341481 0.004672936 

CG5339 534 5 114 0.005341481 0.005204586 

CG31030 1183 5 79 0.005341481 0.002714426 

wda 1097 5 76 0.005341481 0.002611346 

CR45350 535 4 148 0.004273185 0.005085254 

Phm 535 4 116 0.004273185 0.003985739 

CR44046 1182 4 115 0.004273185 0.00525024 

put 989 4 91 0.004273185 0.003126744 

Ppi1 1183 4 91 0.004273185 0.003126744 

CG5597 534 4 87 0.004273185 0.002989304 

CG11388 535 4 80 0.004273185 0.003652341 

CG30178 535 4 77 0.004273185 0.003515378 

Axud1 30 4 75 0.004273185 0.002576987 

CG17660 22 4 70 0.004273185 0.003195798 

CG1983 1184 4 69 0.004273185 0.003150144 

CG15529 1183 4 67 0.004273185 0.002302108 

CG15530 1184 4 67 0.004273185 0.003058836 

CG16787 535 4 59 0.004273185 0.002693601 

RpS8 1180 4 58 0.004273185 0.00199287 

CG3163 535 4 53 0.004273185 0.001821071 

Cog7 1180 4 50 0.004273185 0.002282713 

cpb 22 4 33 0.004273185 0.001133874 

CG4882 534 4 31 0.004273185 0.001065154 

CG34133 1180 3 95 0.003204889 0.004337155 

boss 1131 3 92 0.003204889 0.004200192 

HSPC300 535 3 91 0.003204889 0.004154538 

CG13562 534 3 90 0.003204889 0.004108884 

CG9737 1184 3 84 0.003204889 0.002886225 
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CG18404 1184 3 79 0.003204889 0.002714426 

CG9870 30 3 71 0.003204889 0.003241453 

EloA 1097 3 63 0.003204889 0.002164669 

CG43750 30 3 61 0.003204889 0.002095949 

CG13827 1097 3 61 0.003204889 0.002095949 

Arr2 660 3 60 0.003204889 0.002739256 

h 660 3 59 0.003204889 0.002693601 

Mlc2 1183 3 55 0.003204889 0.002510984 

CG15531 1184 3 55 0.003204889 0.002510984 

CG45072 1183 3 54 0.003204889 0.00246533 

Sry-alpha 1182 3 53 0.003204889 0.001821071 

Sry-beta 1182 3 53 0.003204889 0.002419676 

CG4434 1097 3 39 0.003204889 0.001340033 

CG17712 22 3 36 0.003204889 0.001236954 

CG15515 1180 3 36 0.003204889 0.001643553 

Gr22f 22 3 34 0.003204889 0.001552245 

Capa 1180 3 31 0.003204889 0.001415282 

CG7943 1182 3 31 0.003204889 0.001065154 

CG34213 535 3 27 0.003204889 0.001232665 

Rab5 30 2 117 0.002136592 0.004020099 

CG31029 1183 2 89 0.002136592 0.004063229 

Atxn7 30 2 83 0.002136592 0.003789304 

CG4324 535 2 63 0.002136592 0.002164669 

CG34299 1184 2 63 0.002136592 0.002164669 

Lpt 534 2 61 0.002136592 0.00278491 

RpS7 1184 2 61 0.002136592 0.00278491 

CG4449 1097 2 58 0.002136592 0.002647947 

Sox14 535 2 52 0.002136592 0.002374022 

CG7946 1182 2 52 0.002136592 0.002374022 

CG9682 1184 2 50 0.002136592 0.001717991 

Fmo-1 535 2 45 0.002136592 0.001546192 

dgt1 1180 2 45 0.002136592 0.001546192 

Bet5 1184 2 38 0.002136592 0.001305673 

mRpL48 22 2 33 0.002136592 0.001133874 

CG17083 1097 2 33 0.002136592 0.001506591 

CG6763 1097 2 33 0.002136592 0.001506591 

CG17652 22 2 31 0.002136592 0.001065154 

CR31032 1180 2 30 0.002136592 0.001369628 

CR46111 1182 2 28 0.002136592 0.000962075 

Rrp40 22 2 24 0.002136592 0.000824636 

spn-A 1182 2 24 0.002136592 0.001095702 

CecB 1184 2 24 0.002136592 0.000824636 
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Upf3 534 2 18 0.002136592 0.000821777 

Cec-Psi1 1184 2 18 0.002136592 0.000618477 

CR44976 22 2 16 0.002136592 0.000730468 

CG2812 534 2 16 0.002136592 0.000730468 

E(spl)mbeta-
HLH 

1131 2 16 0.002136592 0.000549757 

CG17650 22 2 15 0.002136592 0.000684814 

l(3)L1231 989 1 159 0.001068296 0.007259028 

CG3609 30 1 54 0.001068296 0.00246533 

CG31937 22 1 40 0.001068296 0.00182617 

CG43448 1184 1 40 0.001068296 0.00182617 

Cdc16 1097 1 37 0.001068296 0.001689208 

alpha-Man-Ic 1180 1 37 0.001068296 0.001271313 

CG30172 535 1 32 0.001068296 0.001099514 

janA 1182 1 30 0.001068296 0.001369628 

Eogt 30 1 29 0.001068296 0.001323974 

mir-1009 535 1 29 0.001068296 0.000996435 

Unc-89 535 1 29 0.001068296 0.001323974 

Chi 535 1 28 0.001068296 0.001278319 

CG43116 1131 1 28 0.001068296 0.000962075 

Tpi 1183 1 27 0.001068296 0.001232665 

Pask 535 1 25 0.001068296 0.001141357 

CG3597 30 1 24 0.001068296 0.000824636 

CG14540 1131 1 24 0.001068296 0.000824636 

CR44526 660 1 23 0.001068296 0.000790276 

CG15522 1180 1 23 0.001068296 0.000790276 

CG7824 1180 1 23 0.001068296 0.000790276 

CG15514 1180 1 22 0.001068296 0.000755916 

CecC 1184 1 22 0.001068296 0.001004394 

DCP1 534 1 21 0.001068296 0.000721556 

Taldo 534 1 21 0.001068296 0.00095874 

CR46112 1183 1 18 0.001068296 0.000618477 

CG13566 535 1 16 0.001068296 0.000549757 

CG3860 535 1 16 0.001068296 0.000549757 

ZIPIC 1182 1 16 0.001068296 0.000730468 

CecA2 1184 1 15 0.001068296 0.000684814 

E(spl)mdelta-
HLH 

1131 1 14 0.001068296 0.00063916 

CG3557 30 1 13 0.001068296 0.000593505 

CR45926 534 1 13 0.001068296 0.000593505 

Orcokinin 534 1 13 0.001068296 0.000593505 

E(spl)malpha-
BFM 

1131 1 12 0.001068296 0.000547851 
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Sry-delta 1182 1 9 0.001068296 0.000309238 

CG3803 535 1 8 0.001068296 0.000365234 

CG6511 660 0 91 0 0.003126744 

SrpRbeta 660 0 41 0 0.001871825 

CG45073 1183 0 39 0 0.001340033 

Galphas 534 0 38 0 0.001734862 

CecA1 1184 0 34 0 0.001168234 

fzr2 534 0 31 0 0.001065154 

CG42557 1180 0 29 0 0.000996435 

CG42558 1180 0 29 0 0.001323974 

CG3907 535 0 26 0 0.001187011 

CR45037 1131 0 26 0 0.001187011 

CG15517 1180 0 26 0 0.001187011 

CG34317 1182 0 26 0 0.001187011 

CG7950 1182 0 26 0 0.000893355 

CG3065 535 0 22 0 0.000755916 

CG3735 534 0 21 0 0.00095874 

TM4SF 534 0 21 0 0.000721556 

CG15526 1182 0 21 0 0.00095874 

alpha-catenin-
related 

535 0 20 0 0.000687196 

CG17648 22 0 19 0 0.000652837 

Cp18 660 0 18 0 0.000821777 

E(spl)mgamma-
HLH 

1131 0 18 0 0.000618477 

RpL32 1182 0 18 0 0.000821777 

SERCA 534 0 17 0 0.000584117 

thoc5 535 0 17 0 0.000584117 

janB 1182 0 16 0 0.000549757 

RpS28a 1182 0 16 0 0.000549757 

Anp 1184 0 16 0 0.000730468 

CR44262 1184 0 15 0 0.000515397 

Cec2 1184 0 14 0 0.00063916 

CG15390 30 0 13 0 0.000593505 

CG32022 660 0 13 0 0.000446678 

ocn 1182 0 12 0 0.000412318 

His4r 989 0 11 0 0.000377958 

PHDP 534 0 10 0 0.000456543 

Jon99Ci 1180 0 10 0 0.000456543 

CR44982 30 0 7 0 0.000240519 

or 535 0 6 0 0.000206159 

CR44045 1182 0 6 0 0.000273926 

CG44094 989 0 5 0 0.000228271 
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CR45039 1131 0 5 0 0.000228271 

CR45038 1131 0 4 0 0.000137439 

CG43965 660 0 3 0 0.000136963 

Jon99Ciii 1180 0 3 0 0.000136963 

snoRNA:Psi18S-
1377c 

1184 0 3 0 0.000103079 

snoRNA:Psi28S-
2626 

1184 0 3 0 0.000136963 

snoRNA:Or-CD8 1180 0 2 0 6.87196E-05 

snoRNA:Psi28S-
2149 

1184 0 2 0 9.13085E-05 

CR46153 989 0 1 0 4.56543E-05 

snoRNA:Me28S-
A2564 

1180 0 1 0 4.56543E-05 

snoRNA:Psi18S-
1377a 

1184 0 1 0 3.43598E-05 

snoRNA:Psi18S-
1377b 

1184 0 1 0 4.56543E-05 

snoRNA:Psi18S-
1377d 

1184 0 1 0 4.56543E-05 

snoRNA:Psi18S-
1377e 

1184 0 1 0 3.43598E-05 

Jon99Cii 1180 0 0 0 0 

tRNA:CR31023 1184 0 0 0 0 

tRNA:CR31383 1184 0 0 0 0 

 

Table S4.4 Novel bins in extended Synthetic GWAS-based network harbouring significant 
SNPs in DGRP GWAS dataset. 

Novel bins in extended 
Synthetic GWAS-based 
network harbouring 
significant SNPs in DGRP 
GWAS dataset 

Chromosome Significant 
SNP 

P value  SNP harbouring gene 

21 2L 1632386 5.90E-08 
 

 
2L 1632388 3.74E-07 

 

34 2L 2712044 2.56E-05 CG31690 

46 2L 3618373 2.22E-05 
 

47 2L 3752571 2.35E-07 CG10019  
2L 3746990 1.14E-05 CG10019 

56 2L 4401879 2.36E-05 CG33003 

89 2L 7048386 1.59E-05 milt 

91 2L 7258591 1.54E-05 Wnt4  
2L 7252498 2.70E-05 CG13786 

123 2L 9826990 1.67E-05 nAChRalpha6 

126 2L 10070707 6.77E-06 CG44153  
2L 10068812 9.41E-06 CG44153 
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129 2L 10315909 1.55E-05 CG4972 

311 2R 1885907 2.08E-05 Src42A 

340 2R 4308355 7.86E-06 
 

 
2R 4308343 8.41E-06 

 

529 2R 19425848 2.26E-05 bw 

562 3L 824939 1.82E-05 
 

576 3L 1966180 7.14E-06 SCOT 

618 3L 5319539 1.12E-05 
 

 
3L 5320154 1.46E-05 

 

 
3L 5320475 2.15E-05 

 

 
3L 5320661 2.42E-05 

 

622 3L 5636181 2.69E-06 Blimp-1 

668 3L 9310689 2.78E-05 
 

670 3L 9507749 2.97E-06 CG33700 

698 3L 11687861 2.56E-05 CG11652 

699 3L 11792808 5.37E-06 CG10361  
3L 11792799 2.19E-05 CG10361 

729 3L 14162655 2.93E-05 
 

736 3L 14781414 1.45E-06 Tdrd3  
3L 14778725 3.50E-06 bmm  
3L 14778027 3.71E-06 bmm  
3L 14780164 4.00E-06 Tdrd3 

774 3L 17762728 1.13E-05 
 

778 3L 18140585 6.51E-06 
 

787 3L 18810814 4.36E-06 CG14073 

788 3L 18934159 1.06E-05 CG32204 

873 3R 1174299 1.79E-05 mtd 

1045 3R 14921157 1.15E-05 ATPsynD 

1063 3R 16347543 2.12E-05 
 

 
3R 16347541 3.06E-05 

 

1091 3R 18577501 5.63E-06 Usp12-46, CG7029 

1097 3R 19071977 5.64E-07 CG4467  
3R 19082073 2.52E-05 wda 

1120 3R 20944700 9.10E-06 CG31108, CG31510 

1131 3R 21833264 1.49E-05 
 

 
3R 21833263 1.62E-05 

 

1132 3R 21913681 1.04E-05 dysf 

1152 3R 23482833 9.26E-06 Mlc1 

1168 3R 24748071 1.19E-05 Doa  
3R 24748001 1.73E-05 Doa 

1173 3R 25189263 1.05E-05 
 

1178 3R 25562159 5.27E-06 CG7601  
3R 25562054 1.33E-05 CG7601  
3R 25526160 2.94E-05 
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1199 3R 27244251 1.36E-05 Gprk2  
3R 27245123 2.80E-05 Gprk2 

1231 X 604933 8.31E-06 sdk  
X 601759 1.98E-05 sdk 

1261 X 2997707 1.66E-05 kirre  
X 2997709 1.81E-05 kirre 

1485 X 20940365 4.95E-06 bves 

 

 

Table S4.5 Novel bins in extended DGRP GWAS-based network harbouring significant SNPs 

in Synthetic GWAS dataset. 

Novel bins in extended 
DGRP GWAS-based 
network harbouring 
significant SNPs in 
Synthetic GWAS dataset 

Chromosome Significant 
SNP 

D value  SNP harbouring gene 

11 2L 826143 7.913430734 dock  
2L 830057 8.139679995 dock  
2L 837910 8.316410473 drongo  
2L 835407 8.387239025 drongo 

12 2L 952524 8.079787385 CG4341  
2L 931835 8.14332228 CG4341  
2L 927174 8.813519969 CG4341  
2L 916065 9.470033426 GluRIIC 

14 2L 1105961 7.996222372 mtRNApol  
2L 1099941 8.208956173 CG4629  
2L 1014551 9.237906397 IA-2 

15 2L 1123177 8.667261632 Pino  
2L 1155301 7.901374128 capt  
2L 1131236 7.983946876 CG4552  
2L 1178569 7.996034724 CG4896  
2L 1151212 8.559932329 Vps29  
2L 1148233 8.930734981 l(2)10685 

17 2L 1283879 8.135716428 robo3 

24 2L 1904413 7.948992874 CG7337  
2L 1911695 8.045435095 CG7337  
2L 1889232 8.156835797 CG7337  
2L 1917529 8.373709195 CG7337  
2L 1874447 8.406752111 CG31663  
2L 1901024 8.468424042 CG7337  
2L 1915485 8.73900548 CG7337 

25 2L 1929405 8.026218568 CG7337  
2L 1934894 8.187206607 CG7337  
2L 1936961 8.241995114 CG7337 
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2L 1920199 8.405161345 CG7337  
2L 2005275 7.984234108 CG33543  
2L 1929405 8.026218568 CG7337  
2L 1911695 8.045435095 CG7337  
2L 1950350 8.117007768 erm  
2L 1889232 8.156835797 CG7337  
2L 1934894 8.187206607 CG7337  
2L 1936961 8.241995114 CG7337  
2L 1955401 8.338093138 erm  
2L 1917529 8.373709195 CG7337  
2L 1961205 8.397049762 erm  
2L 1920199 8.405161345 CG7337  
2L 1988867 8.449057083 Npc2a  
2L 1901024 8.468424042 CG7337  
2L 1945334 8.610575689 CG15357  
2L 1958746 8.714808353 erm  
2L 1915485 8.73900548 CG7337  
2L 1998001 9.087747357 CG33543  
2L 1987099 9.168572049 Got2  
2L 1976747 9.326228485 CG15356  
2L 1985412 9.433835942 Got2  
2L 1978896 9.738595965 CG15356  
2L 1983091 9.806585669 CG7289  
2L 1981203 9.820670657 CG15362  
2L 1998001 9.087747357 CG33543 

26 2L 2005275 7.984234108 CG33543  
2L 2026220 8.030508805 CG4238  
2L 2071535 8.113756722 dpr3  
2L 2022829 8.179535278 CG4238  
2L 2029663 8.345478443 CG4238  
2L 2039069 8.541166134 Su(dx)  
2L 2046036 8.764865447 Kebab  
2L 2012579 8.774584291 CG4238  
2L 2068318 8.789641927 dpr3  
2L 2015464 9.03661616 CG4238  
2L 2018025 9.201295403 CG4238  
2L 2009049 9.551478447 Nplp4  
2L 2071535 8.113756722 dpr3  
2L 2068318 8.789641927 dpr3 

28 2L 2168185 8.284752379 aop  
2L 2173842 8.367070889 aop  
2L 2164521 8.594890484 aop  
2L 2160218 8.869791186 aop  
2L 2210836 7.956956677 CG15385 
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2L 2168185 8.284752379 aop  
2L 2173842 8.367070889 aop  
2L 2216709 8.398047541 CG15386, CG42371  
2L 2164521 8.594890484 aop  
2L 2231172 8.615514941 Sec24CD  
2L 2160218 8.869791186 aop  
2L 2222232 8.891994166 papi  
2L 2182110 8.942315968 CR43751  
2L 2206990 8.991297737 CG33124  
2L 2187134 9.471822997 CR44066  
2L 2195103 10.01293322 CG34172  
2L 2191209 10.19746239 CG10874, CR44065 

31 2L 2407844 8.372823989 VGlut  
2L 2435403 8.076461663 dpp  
2L 2450708 8.130006578 dpp  
2L 2407844 8.372823989 VGlut  
2L 2431174 9.122685221 dpp  
2L 2414822 9.321642147 CG18641  
2L 2419104 9.435656194 CG34447  
2L 2421989 10.32301113 CG9886 

93 2L 7363970 8.137811972 Wnt10  
2L 7367097 8.179864852 Wnt10 

128 2L 10216704 7.992298701 Npc1a 

166 2L 13259566 8.338614244 CG31730 

187 2L 14959571 9.614838315 CG42313  
2L 14969191 9.641481299 CG42313  
2L 14912792 9.79416925 CG42313  
2L 14965929 9.82393229 CG42313  
2L 14921880 10.29006228 CG42313  
2L 14926230 10.31176121 CG42313, CG3491  
2L 14917849 10.3233364 CG42313  
2L 14954267 10.33806256 CG42313  
2L 14949702 10.54090147 CG42313  
2L 14939003 10.66965032 CG42313  
2L 14932967 10.86810467 CG42313 

188 2L 15024079 8.73447932 GABA-B-R1  
2L 14993422 8.793673011 mol  
2L 15027203 9.345127787 GABA-B-R1, CG33310  
2L 15006259 9.48730524 DCTN5-p25  
2L 15009715 9.543385878 l(2)35Bc  
2L 14959571 9.614838315 CG42313  
2L 14969191 9.641481299 CG42313  
2L 15029307 9.722862963 GABA-B-R1, CG33310  
2L 15020521 9.761576829 GABA-B-R1 
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2L 14981938 9.779007515 mol  
2L 14912792 9.79416925 CG42313  
2L 14965929 9.82393229 CG42313  
2L 15034311 9.843897127 GABA-B-R1  
2L 14979114 10.26286969 mol  
2L 14921880 10.29006228 CG42313  
2L 14926230 10.31176121 CG42313, CG3491  
2L 14917849 10.3233364 CG42313  
2L 14954267 10.33806256 CG42313  
2L 14976077 10.46813555 mol  
2L 15017629 10.47348805 GABA-B-R1  
2L 14949702 10.54090147 CG42313  
2L 14939003 10.66965032 CG42313  
2L 14932967 10.86810467 CG42313  
2L 15038696 11.23563303 CIAPIN1 

189 2L 15076131 8.259623256 CG15270  
2L 15087196 8.371539528 CG15270  
2L 15080877 8.531753341 CG15270  
2L 15090266 9.466825628 CG15270  
2L 15065225 10.10835162 solo, vas, vig  
2L 15051047 10.2379874 ck  
2L 15045278 10.93336965 ck 

207 2L 16633684 7.914845957 CG42389  
2L 16583833 8.017132063 CG42389  
2L 16647072 8.031415715 CG42389  
2L 16565774 8.066606913 CG42389  
2L 16581210 8.137045149 CG42389  
2L 16562212 8.204347712 CG42389  
2L 16534143 8.233518282 CR45354  
2L 16586830 8.255059157 CG42389  
2L 16506016 8.381684825 Tpr2  
2L 16530492 8.387006659 CG5953  
2L 16610301 8.449556615 CG42389  
2L 16522776 8.706708717 CG5953  
2L 16637297 8.726073526 CG42389  
2L 16526499 8.849867261 CG5953  
2L 16508145 8.920175504 CG5953  
2L 16504874 8.996306533 Tpr2  
2L 16519489 9.02442891 CG5953  
2L 16659290 9.239070028 CG42389  
2L 16642641 10.22936235 CG42389 

209 2L 16633684 7.914845957 CG42389  
2L 16583833 8.017132063 CG42389  
2L 16647072 8.031415715 CG42389 
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2L 16565774 8.066606913 CG42389  
2L 16581210 8.137045149 CG42389  
2L 16562212 8.204347712 CG42389  
2L 16586830 8.255059157 CG42389  
2L 16610301 8.449556615 CG42389  
2L 16709477 8.604740457 CG31808  
2L 16637297 8.726073526 CG42389  
2L 16705625 8.809591385 CG31808  
2L 16664927 9.134490514 Trpgamma  
2L 16659290 9.239070028 CG42389  
2L 16715915 9.339220455 CG31808, Cyt-c-d  
2L 16712926 9.361004466 CG31808  
2L 16698691 9.396219953 grp  
2L 16692565 9.485458298 grp  
2L 16684100 9.776822465 grp  
2L 16675692 9.884971888 Trpgamma  
2L 16670176 10.10933892 Trpgamma  
2L 16642641 10.22936235 CG42389  
2L 16702028 10.82083259 CR43670 

218 2L 17401169 9.477977562 CLIP-190  
2L 17363745 9.494387876 CG31804  
2L 17396361 10.47869367 CLIP-190  
2L 17370596 10.84661996 Lrch  
2L 17409708 10.99985303 Rpb11  
2L 17405130 11.06097347 CLIP-190  
2L 17428917 11.09336575 Dif  
2L 17425463 11.2363135 Dif  
2L 17393434 11.34936673 CLIP-190  
2L 17445865 11.37230587 dl  
2L 17431306 11.53367196 Dif  
2L 17390408 11.53844491 CLIP-190  
2L 17375012 11.54956483 Lrch  
2L 17415410 11.55721837 Dif  
2L 17378258 11.60644747 Lrch  
2L 17419440 11.68953153 Dif  
2L 17422294 11.7236514 Dif  
2L 17442938 11.78471038 dl  
2L 17435322 11.81837315 CG5043  
2L 17383125 12.07172352 Lrch  
2L 17387106 12.3382856 CLIP-190  
2L 17438871 12.98333043 dl 

233 2L 18620751 8.375597724 MESR3  
2L 18548323 8.950408659 Pde11  
2L 18534021 9.024866934 Pde11 
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2L 18617300 9.314780069 MESR3  
2L 18543661 9.395924029 Pde11  
2L 18594055 9.697563697 CG15160  
2L 18573351 9.844553872 Pde11  
2L 18590039 10.34254036 Pde11  
2L 18568994 10.35461386 Pde11  
2L 18538240 10.44167447 Pde11  
2L 18552571 10.44975269 Pde11  
2L 18541301 10.45568606 Pde11  
2L 18577286 10.47107399 Pde11  
2L 18586552 10.47228858 Pde11  
2L 18580705 10.68932593 Pde11  
2L 18562331 10.9343188 Pde11  
2L 18603107 11.12889517 CG10413  
2L 18555514 11.34336166 Pde11  
2L 18622621 11.37846888 MESR3  
2L 18625093 11.43628597 MESR3  
2L 18659607 11.87661316 MESR3  
2L 18627588 12.1689362 MESR3  
2L 18655428 13.12263328 MESR3  
2L 18607167 13.30907581 CG10333  
2L 18631460 13.43371042 MESR3  
2L 18652001 13.7995579 MESR3, Cyp310a1  
2L 18647569 13.8801458 MESR3  
2L 18611181 14.7508588 Atac2  
2L 18642477 15.06951324 MESR3 

243 2L 19396892 9.772517141 CG17544  
2L 19372230 10.23676715 CG17349  
2L 19392368 10.94372431 CG17544  
2L 19401404 11.02817897 Pax  
2L 19393967 11.07647656 CG17544  
2L 19425513 11.49652551 Pax, CG16771, CG13085  
2L 19388437 11.65474048 CG17549  
2L 19429195 11.85641717 CG16771, CG13085  
2L 19385426 11.87857343 fon  
2L 19419520 12.09199289 Pax,lectin-37Db  
2L 19413784 12.16729873 Pax  
2L 19382434 12.1918126 CG17350  
2L 19433505 12.43549977 Rab9  
2L 19405437 12.53110015 Pax  
2L 19410347 12.55913781 Pax  
2L 19344262 12.61859912 dnt  
2L 19436514 12.65827922 CG10237  
2L 19339596 12.69074402 dnt 
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2L 19363030 12.71358295 dnt  
2L 19439754 13.55662644 CG10237 

244 2L 19525002 12.29698328 CG10132  
2L 19436514 12.65827922 CG10237  
2L 19494518 13.35544371 swm  
2L 19439754 13.55662644 CG10237  
2L 19513743 13.57857952 CG10186  
2L 19506716 13.94984239 CG10188  
2L 19449969 14.29068081 Top2 

249 2L 19818677 8.902116029 sick  
2L 19928031 9.149767796 sick  
2L 19814784 9.261677958 sick  
2L 19906914 9.641595094 sick  
2L 19925189 9.747072175 sick  
2L 19812082 9.755517426 sick  
2L 19900890 9.930997273 sick  
2L 19903534 10.04485792 sick  
2L 19897884 10.15571853 sick  
2L 19809561 10.23326875 sick  
2L 19910321 10.25247139 sick  
2L 19806642 10.61980518 sick  
2L 19854256 10.66798106 sick  
2L 19821795 10.66835826 sick  
2L 19914368 10.70181493 sick  
2L 19922727 10.7178283 sick  
2L 19857961 10.79666133 sick  
2L 19920292 10.82418858 sick, CR43828  
2L 19866821 10.87971247 sick  
2L 19845828 10.94343847 sick  
2L 19917081 10.95307879 sick  
2L 19800945 11.05154803 sick  
2L 19849450 11.05198489 sick  
2L 19954020 11.07239713 sick  
2L 19824302 11.12220092 sick  
2L 19803776 11.17299903 sick  
2L 19892551 11.21784385 sick  
2L 19945313 11.24101283 sick  
2L 19942015 11.28627009 sick  
2L 19895268 11.28760575 sick  
2L 19931878 11.40450655 sick  
2L 19851815 11.41550141 sick  
2L 19949356 11.51230404 sick  
2L 19839189 11.52165276 sick  
2L 19886638 11.54470816 sick 
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2L 19883874 11.56354874 sick  
2L 19889044 11.61822355 sick  
2L 19871268 11.63935837 sick  
2L 19843393 11.64379763 sick  
2L 19827684 11.74625239 sick  
2L 19874296 11.93298412 sick  
2L 19878201 11.99381723 sick  
2L 19881730 12.04142042 sick  
2L 19797922 12.0832266 sick  
2L 19835274 12.19556981 sick  
2L 19831689 12.89080648 sick  
2L 19934731 13.30270361 sick  
2L 19938543 13.62534782 sick 

261 2L 20801263 10.57057931 CG9328  
2L 20809509 11.23260707 CG9328  
2L 20807250 11.30978097 CG9328  
2L 20865777 11.31392457 CG9338  
2L 20860823 11.50655728 CG9336  
2L 20869266 11.57073299 CG31675  
2L 20835780 11.60666898 Oseg5  
2L 20841257 11.65581679 CG31676  
2L 20803816 11.7654823 CG9328  
2L 20856550 11.80156294 twit  
2L 20815775 11.91397464 CG33322  
2L 20829765 11.96127357 CG31673  
2L 20825566 12.18072446 CG9331  
2L 20908231 12.25537046 sky, CG43739  
2L 20847306 12.43572922 CG31676  
2L 20912924 12.58707497 sky, CG43739  
2L 20900300 12.6804374 sky, CG43739  
2L 20884904 12.79996614 sky, CG43739  
2L 20889472 12.81151924 sky, CG43739  
2L 20880910 12.83822097 sky, CG43739  
2L 20852626 12.84289714 twit  
2L 20798471 13.25879876 CG9328  
2L 20874913 13.37732227 sky, CG43739, CR44981 

266 2L 21217693 12.62281546 Atg18b, CG8679  
2L 21240816 12.68856184 Hr39  
2L 21231505 12.83034877 CG8677  
2L 21253149 12.85846706 Hr39  
2L 21263836 13.51529453 CG8671  
2L 21276328 13.61969003 CG8671 

267 2L 21319064 10.02811035 crc  
2L 21334900 10.64621471 dimm 
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2L 21301206 10.65940745 Mondo  
2L 21312214 11.05279055 crc  
2L 21307093 11.32135662 Mondo  
2L 21295670 12.2690877 Mondo, Gr39a  
2L 21291132 13.01304247 Mondo, Gr39a  
2L 21282927 13.24188425 Cyp6t2Psi  
2L 21263836 13.51529453 CG8671  
2L 21276328 13.61969003 CG8671 

342 2R 4479321 7.911827459 CG14752  
2R 4457000 8.034438204 Cyp6a15Psi 

343 2R 4511904 8.080954426 Cirl  
2R 4516154 8.293785626 CG14749  
2R 4505735 8.316558277 Cirl  
2R 4488792 8.485888632 rgr  
2R 4496559 8.628184125 rgr  
2R 4500423 8.692729392 CG8642  
2R 4492774 8.744648683 rgr 

344 2R 4644568 7.934034645 CG8740  
2R 4582765 8.254366073 CG8586 

349 2R 5031590 8.400764798 Prp38 

358 2R 5733814 8.093695411 Orc6  
2R 5719683 8.176431727 hebe  
2R 5739624 8.185300157 PCB  
2R 5685806 8.270568616 CG1688  
2R 5708487 8.279119383 CG34033  
2R 5667360 8.344410123 CG1688  
2R 5745390 8.41754215 PCB  
2R 5677198 8.531761519 CG1688, CR44208  
2R 5663224 8.626809511 CG1688, CR44207  
2R 5706873 8.93496721 CG1648  
2R 5723585 8.936302964 hebe  
2R 5716443 8.979694244 hebe  
2R 5712273 8.984813152 dila  
2R 5673096 9.004005551 CG1688  
2R 5759407 9.050150775 cbx, CG18446  
2R 5729152 9.442057217 Vamp7  
2R 5658089 9.457556526 CG1688 

359 2R 5824288 8.139613978 Mef2  
2R 5833457 8.202627946 Mef2  
2R 5819950 8.405902734 Mef2  
2R 5828828 8.485392842 Mef2  
2R 5845421 8.684809801 Mef2  
2R 5759407 9.050150775 cbx, CG18446  
2R 5773718 9.178210057 CG1513 
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2R 5811302 9.214694542 Mef2  
2R 5837098 9.251193774 Mef2  
2R 5815948 9.326837515 Mef2  
2R 5782050 9.769793811 CG30007  
2R 5806472 9.838125595 Mef2  
2R 5789089 10.19560362 CG1441  
2R 5794612 10.69997677 FMRFa  
2R 5799770 10.94460218 Etf-QO 

361 2R 5978445 8.347401584 CG2269  
2R 5992617 8.525233016 14-3-3zeta  
2R 5984444 8.549790598 Jra  
2R 6002190 8.617669454 Pfk  
2R 5924574 8.651113943 oys  
2R 5951919 9.093808231 CG2292  
2R 5941647 9.393171004 magu  
2R 5946505 9.411175958 magu  
2R 5969110 9.903767415 egr  
2R 5960383 10.17791354 CG1371  
2R 5955652 10.48311845 Cdc2rk  
2R 5974318 11.00134627 CG2269, sut4 

364 2R 6207149 8.021101025 Ndg  
2R 6282722 8.030936444 CG42732  
2R 6280007 8.104777245 CG42732  
2R 6285415 8.167426022 CG42732  
2R 6176817 8.389592586 CAP  
2R 6294935 8.47461854 CG42732, CG12898  
2R 6172930 8.598260512 CAP  
2R 6250772 8.636715323 CG42732, Gr47a  
2R 6296707 8.680105991 CG42732, CG33477  
2R 6203252 8.896988427 Ndg  
2R 6180745 8.995117815 CAP  
2R 6229900 9.018407532 CG42732  
2R 6169222 9.022196302 CAP  
2R 6260162 9.022531389 CG42732  
2R 6214618 9.078388577 CG42732  
2R 6233532 9.078936166 CG42732  
2R 6226379 9.140896745 CG42732  
2R 6248379 9.23817985 CG42732  
2R 6245099 9.298597555 CG42732  
2R 6223429 9.383556115 CG42732  
2R 6219343 9.439792379 CG42732  
2R 6256992 9.671348417 CG42732  
2R 6159065 9.681507906 CAP  
2R 6198098 9.719766457 CG12909 
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2R 6185338 9.781438438 CAP  
2R 6236914 9.82730856 CG42732  
2R 6241450 10.36507958 CG42732, CG12907  
2R 6266541 10.40542062 CG42732, Ir47a  
2R 6264173 10.49405527 CG42732, Ir47b  
2R 6188427 10.71251724 CAP  
2R 6195132 10.91332588 JhI-1  
2R 6191565 11.18797107 CAP 

366 2R 6334187 8.020877605 Galphao  
2R 6362626 8.184129821 whd  
2R 6402198 8.513201452 lola  
2R 6396694 8.768630428 lola 

369 2R 6631659 8.06337521 CG33144 

540 2R 20262675 8.192767981 bs  
2R 20268811 8.226784362 mAChR-A  
2R 20255160 8.431539493 bs, CR44811  
2R 20249400 8.771286522 bs, CR44811  
2R 20318927 8.89625056 Pgam5-2  
2R 20237112 8.95416988 bs  
2R 20258303 9.056489502 bs  
2R 20275182 9.095427714 mAChR-A  
2R 20280808 9.581279777 Slik  
2R 20310579 9.679717994 prom  
2R 20314951 9.805264192 prom  
2R 20289603 9.904039251 Slik, Rpn8  
2R 20300562 10.05570806 CG45068, CG45069  
2R 20307414 10.19834748 prom  
2R 20297228 10.24690081 SerT  
2R 20304878 10.42217698 prom 

541 2R 20367109 8.461292163 CG13579  
2R 20352800 8.583582238 CG13579  
2R 20371688 8.676782793 CG13579  
2R 20361364 8.832082187 CG13579, CG3492  
2R 20318927 8.89625056 Pgam5-2  
2R 20364396 8.941530822 CG13579  
2R 20400512 9.095130262 Letm1  
2R 20381381 9.098004564 CG13590  
2R 20356578 9.240450931 CG13579  
2R 20349022 9.354203756 CG13579  
2R 20378157 9.425973249 CG13579  
2R 20388490 9.472135098 Prosalpha4T2  
2R 20344983 9.551221517 CG13579  
2R 20339431 9.684010631 CG4563 

542 2R 20400512 9.095130262 Letm1 
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2R 20422474 9.304204989 CG4622  
2R 20410940 9.356308865 CG4612  
2R 20405592 9.387205425 Ir60c  
2R 20439282 9.734759559 CG4622, ITP  
2R 20432522 9.738821019 CG4622, ITP  
2R 20418172 9.781457021 Ir60e  
2R 20484017 10.44811643 pio  
2R 20471821 10.52611413 pio  
2R 20459321 10.61491257 Fcp1, CG3511  
2R 20475989 10.66633371 pio 

543 2R 20527263 8.403006673 CG3640  
2R 20508727 8.641716644 CG13594  
2R 20512939 8.89497285 CG13594  
2R 20517386 9.063847917 CG13594  
2R 20503679 9.550149224 CG13594  
2R 20493569 9.683279442 CG4707  
2R 20484017 10.44811643 pio  
2R 20471821 10.52611413 pio  
2R 20475989 10.66633371 pio 

544 2R 20610503 8.173945534 Mid1  
2R 20604295 8.221945207 Mid1  
2R 20623818 8.405656896 Mid1  
2R 20637353 9.159156717 Usp15-31 

545 2R 20637353 9.159156717 Usp15-31  
2R 20703653 9.174322254 Dll  
2R 20667705 9.37511708 Lcp9  
2R 20682012 9.557757391 CR43257  
2R 20714399 9.672662733 Dll 

546 2R 20781528 8.398746174 NaCP60E  
2R 20768289 8.617764651 CG44247  
2R 20757872 8.819680511 Atf-2  
2R 20703653 9.174322254 Dll  
2R 20714399 9.672662733 Dll 

547 2R 20781528 8.398746174 NaCP60E  
2R 20811348 8.557563769 pain  
2R 20831763 8.934341339 CG15861  
2R 20822788 9.265029309 CG30427  
2R 20896979 9.584750485 zip  
2R 20868369 9.660600445 emp  
2R 20883043 9.805000775 zip 

548 2R 20936282 8.445072864 gsb-n  
2R 20930062 8.725627463 gsb-n  
2R 20922725 8.781822343 Nplp1  
2R 20950781 8.898137587 gsb 
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2R 20916983 9.256021923 uzip  
2R 20910311 9.573993017 uzip  
2R 20906158 9.581787398 uzip  
2R 20896979 9.584750485 zip 

549 2R 20999197 8.307430746 lov  
2R 21022346 8.368120951 lov  
2R 21026518 8.45171267 lov, CG43106  
2R 20962613 8.452644726 gol  
2R 21011096 8.969266308 lov  
2R 21002964 9.330791873 lov  
2R 21006399 9.381893174 lov  
2R 21018708 9.516199853 lov 

550 2R 21077475 8.608352879 CG9380  
2R 21096574 8.810341072 CG9380  
2R 21072792 8.864909148 CG9380  
2R 21084101 9.183423115 CG9380  
2R 21079766 9.205515185 CG9380  
2R 21088898 9.425762385 CG9380  
2R 21092965 9.563802455 CG9380  
2R 21100988 9.767904737 CG9380 

607 3L 4411303 8.365550335 DOR 

610 3L 4652769 8.10617432 axo  
3L 4655227 8.956726024 axo  
3L 4665781 9.182704337 axo  
3L 4658252 9.387576332 axo  
3L 4661203 9.47773455 axo  
3L 4652769 8.10617432 axo  
3L 4655227 8.956726024 axo  
3L 4665781 9.182704337 axo  
3L 4658252 9.387576332 axo  
3L 4661203 9.47773455 axo 

613 3L 4995774 7.967347575 Con, CG32232 

614 3L 4995774 7.967347575 Con, CG32232 

616 3L 5184159 7.919026141 shep  
3L 5193437 8.048705646 shep 

617 3L 5184159 7.919026141 shep  
3L 5193437 8.048705646 shep 

619 3L 5434425 8.006141367 DIP-delta  
3L 5430091 8.149984978 DIP-delta  
3L 5426490 8.179270556 DIP-delta 

620 3L 5508026 8.078125601 Lkr  
3L 5514406 8.528357509 Lkr 

621 3L 5554181 7.923059898 sinu  
3L 5508026 8.078125601 Lkr 
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3L 5514406 8.528357509 Lkr 

625 3L 5890819 8.020681031 CG5592 

656 3L 8330319 7.989422084 Cpr66Cb  
3L 8376901 8.132212625 ImpE1  
3L 8382712 8.188048465 ImpE1  
3L 8335478 8.256094523 DNApol-alpha50, 

CG7083  
3L 8373245 8.43583655 ImpE1  
3L 8341064 8.493413831 GAPcenA  
3L 8394690 8.561538683 CG7120  
3L 8353190 8.664767933 Idh  
3L 8344746 8.784729323 GAPcenA  
3L 8348301 8.817704078 CG17352  
3L 8390378 9.028586235 CG7120 

657 3L 8406515 7.918677933 Exo70, mtrm  
3L 8401872 8.284220426 Oseg1 

658 3L 8557247 7.942725669 rhea  
3L 8560432 7.959301534 rhea  
3L 8555270 7.989406124 rhea  
3L 8563681 8.078552947 rhea  
3L 8538373 8.09233012 rhea  
3L 8526183 8.230693706 foi  
3L 8523530 8.278826054 foi  
3L 8520362 8.28402805 foi  
3L 8514769 8.391871142 GstO2  
3L 8552986 8.424453929 rhea  
3L 8530411 8.518915607 ergic53  
3L 8557247 7.942725669 rhea  
3L 8555270 7.989406124 rhea  
3L 8538373 8.09233012 rhea  
3L 8552986 8.424453929 rhea 

659 3L 8560432 7.959301534 rhea  
3L 8563681 8.078552947 rhea  
3L 8571048 8.127538028 CG43078  
3L 8568834 8.432503473 CG6638  
3L 8630889 8.636979223 Zasp66  
3L 8633981 8.668593147 Cpr66D  
3L 8638486 9.41115768 CG13305  
3L 8636312 9.539676587 Cpr66D 

667 3L 9275428 8.962785021 GluRIB  
3L 9275428 8.962785021 GluRIB 

673 3L 9776740 7.980860934 CG8177  
3L 9705980 8.270482595 SH3PX1  
3L 9769339 8.359399417 CG8177  
3L 9701052 8.539011487 CG16711 
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3L 9716652 8.571594906 defl 

700 3L 11872520 8.108926634 CG44837, Sprn 

701 3L 11872520 8.108926634 CG44837, Sprn 

732 3L 14407896 7.985191979 bbg 

733 3L 14407896 7.985191979 bbg 

764 3L 17032285 8.029365359 scaf6  
3L 16960379 9.984936617 Nc73EF 

790 3L 19064896 7.925997862 Mkp3  
3L 19060381 8.65286812 Mkp3  
3L 19054504 8.931791805 CG3797 

792 3L 19182883 7.975482599 fz2 

882 3R 1918978 8.042751691 Gasp 

883 3R 1918978 8.042751691 Gasp 

988 3R 10342379 8.117181822 Pde6 

1082 3R 17780676 7.914143692 Eip93F  
3R 17840803 8.095620087 CG6332  
3R 17874306 8.160191078 how  
3R 17850805 8.613944922 CG6028  
3R 17846079 8.709548583 Mitofilin  
3R 17843065 8.791370954 CG6439 

1098 3R 19136450 8.104903395 pnt  
3R 19136450 8.104903395 pnt 

1099 3R 19286990 8.303204481 CG4374 

1100 3R 19286990 8.303204481 CG4374  
3R 19309845 8.443308541 Ir94g 

1105 3R 19717639 8.413817534 tbrd-1 

1130 3R 21750347 8.033025284 CCAP-R  
3R 21750347 8.033025284 CCAP-R 

1180 3R 25758236 8.40783802 Cog7  
3R 25757489 8.556456688 Cog7 

1187 3R 26297991 8.135591915 PH4alphaEFB 

1305 X 6450844 7.993819816 CG34417  
X 6524040 8.004217577 pigs  
X 6445958 8.190374429 CG34417  
X 6506212 8.447558626 pigs  
X 6440925 8.775819635 CG34417  
X 6437894 8.805067599 CG34417  
X 6518856 9.121203709 pigs  
X 6514002 9.277793286 pigs 

1353 X 10426959 9.29046566 spri  
X 10433992 9.870449686 spri 

1354 X 10426959 9.29046566 spri  
X 10433992 9.870449686 spri 

1421 X 15831668 8.087824816 Stim 
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Table S5.1 Average SNP count for all sequences recorded under each of the 49 selected TFs. 

TF name Total number of SNPs 

counted across all TFBS 

sequences recorded 

Average number of 

SNPs per sequence 

abd-A   37 0.860465116 

Abd-B   49 1.96 

Antp   18 1.125 

ap   69 4.928571429 

bcd   143 2.6 

bin   48 1.411764706 

br-Z1   32 2.285714286 

Br-Z2   45 2.045454545 

Br-Z3   43 2.529411765 

cad   12 0.923076923 

da   23 1.4375 

dl   112 2.285714286 

Dref   80 2.857142857 

EcR   39 2.071428571 

en   44 1.517241379 

eve   25 1.923076923 

exd   22 1.466666667 

ey   43 2.866666667 

fkh   30 2.727272727 

ftz   108 2.29787234 

grh   31 2.583333333 

hb   203 2.136842105 

jing   18 1.5 

kni   111 2.846153846 

Kr   68 1.511111111 

Mad   96 1.5 

Med   41 1.366666667 

pan   87 2.289473684 

pho   26 2.6 
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pnr   38 2.714285714 

pnt   23 1.4375 

prd   16 1.333333333 

sd   67 3.045454545 

sna   37 2.916666667 

srp   61 2.44 

Su(H)   40 1.904761905 

tin   40 1.666666667 

tll   71 1.918918919 

Trl   64 1.361702128 

ttk   21 1.75 

twi   35 2.1875 

Ubx   101 1.463768116 

usp   26 2.363636364 

vfl   15 1.5 

vnd   8 0.615384615 

vvl   54 3.857142857 

z   69 1.769230769 

zen   54 2.347826087 

 


