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Abstract 
 

The studies described in this thesis were undertaken to examine the effect of physical fitness, 

adiposity and acute bouts of ecologically valid exercise on risk factors for cardiometabolic 

diseases in adolescents. Specifically, the relationship between physical fitness (measured as 

performance on the multi-stage fitness test (MSFT), the blood lactate response to submaximal 

exercise and V̇O2 peak) and adiposity with traditional (insulin sensitivity and blood pressure) 

and novel (pro- and anti-inflammatory cytokine concentration) risk factors for cardiometabolic 

diseases during adolescence was examined. In addition, a series of studies was undertaken to 

examine the inflammatory, glycaemic and insulinaemic responses to acute bouts of games-

based activity (60 min of basketball) and high intensity intermittent exercise in adolescents. 

The effect of differing exercise durations (30 vs. 60 min) on the glycaemic and insulinaemic 

responses to intermittent activity was also examined (Chapter VI). Finally, the effect of 

continuous training versus remaining inactive on performance on physical capacity tests, V̇O2 

peak, adiposity and risk factors for cardiometabolic diseases was examined in adolescents 

across a 2-year follow-up.  
 

Throughout the present thesis a comprehensive panel of inflammatory cytokines (including IL-

1β, IL-6, IL-10, TNF-α) and C-reactive protein was measured alongside blood glucose and 

plasma insulin concentration. For the epidemiological studies presented in Chapters Ⅳ and ⅤII 

the inflammatory cytokines measured were an indication of low-grade chronic inflammation 

in the adolescents, whilst the blood glucose and plasma insulin concentrations were used to 

calculate the homeostatic model assessment of insulin resistance (HOMA-IR). In contrast, in 

Chapters V and Ⅵ, the measurement of pro-inflammatory (IL-1β, TNF-α and CRP) and anti-

inflammatory (IL-6 and IL-10) cytokines, blood glucose and plasma insulin concentrations 

were used to examine the inflammatory, glycaemic and insulinaemic responses to acute bouts 

of games-based and high intensity intermittent activity.   
 

The first experimental study (Chapter Ⅳ) examined the effect of performance on the MSFT, 

V̇O2 peak and adiposity on risk factors for cardiometabolic diseases in adolescents. Following 

ethical approval, 121 adolescents (10 - 12 years) were recruited from local secondary schools 

and sports clubs. Risk factors for cardiometabolic disease (inflammatory cytokines, blood 

glucose and plasma insulin concentrations) were determined from a fasted capillary blood 

sample. Participants were separated into quartiles based upon distance run during the MSFT, 

the blood lactate response to submaximal exercise, V̇O2 peak, and sum of four skinfolds. Data 

were analysed using two-way between-subjects ANCOVA and multiple linear regression. 

Participants with the lowest performance on the MSFT had higher blood concentrations of IL-

6 (3.25 ± 0.25 pg.mL-1) and IL-1β (4.78 ± 0.54 pg.mL-1) and lower concentrations of IL-10 

(1.80 ± 0.27 pg.mL-1) when compared with all other quartiles (all p < 0.05). Yet, when 

categorised into V̇O2 peak quartiles no differences existed for any of the inflammatory 

mediators (all p > 0.05). Adiposity was the only predictor of plasma insulin concentration (β = 

0.515; p < 0.001) and blood pressure (diastolic β = 0.259; p = 0.042; mean arterial pressure β 

= 0.322; p = 0.011). In conclusion, performance on the MSFT, but not V̇O2 peak, was 

associated with a favourable inflammatory profile in adolescents; whilst adiposity was 

adversely associated plasma insulin, diastolic and mean arterial blood pressure. These findings 

demonstrate that enhanced performance on the MSFT and maintenance of a healthy body 

composition attenuate the presence of risk factors for cardiometabolic diseases in adolescents. 

 

The second experimental chapter (Ⅴ) aimed to investigate the inflammatory, glycaemic and 

insulinaemic responses to an acute bout of ecologically valid games-based activity in 

adolescents. Thirty-nine school children aged 11 - 13 years were recruited to the present study 
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and completed exercise (E) and rested (R) trial in a counterbalanced, randomised crossover 

design. Following a standardised breakfast, participants completed 1 h games‐based activity 

(basketball). Capillary blood samples were taken at baseline, immediately and 1 h post‐exercise 

and 30, 60 and 120 min following a standardised lunch. A final fasted capillary blood sample 

was taken the next morning. Data were analysed using repeated measures ANOVA. IL‐6 

concentration was higher on day one of the exercise trial (E 3.4 ± 0.4: R 2.7 ± 0.4 pg.mL−1; p 

= 0.006), as was the anti‐inflammatory IL‐6: TNF‐α ratio (E 5.53 ± 0.93: R 3.75 ± 0.45; p = 

0.027). Anti‐inflammatory cytokine IL‐10 increased on day two of the exercise trial (E 2.11 ± 

0.23: R 1.66 ± 0.16 pg.mL−1; p = 0.032). Insulin sensitivity was also enhanced on the exercise 

trial with a reduction in postprandial plasma insulin iAUC (E 2310 ± 834: R 3122 ± 1443 

mU.L−1x120 min; p < 0.001). Such findings suggest that games‐based activity is an 

ecologically valid mode of exercise to elicit beneficial effects on risk factors for 

cardiometabolic diseases in adolescents. 

 

The third experimental chapter (Ⅵ) examined the effects of differing durations (30 min vs. 60 

min) of high intensity intermittent activity on postprandial glycaemic and insulinaemic 

responses in adolescents. Thirty-one participants (13.6 ± 0.49 years) were recruited and 

completed a 30 min exercise trial, 60 min exercise trial and rested control trial in a randomised, 

counter-balanced order. The Loughborough Intermittent Shuttle Test was the chosen mode of 

high intensity intermittent exercise. Capillary blood samples were taken at baseline, 

immediately and 1 h post‐exercise and 30, 60 and 120 min following a standardised lunch. On 

day two of the study following the consumption of a standardised breakfast further blood 

samples were taken at 30 min, 60 min and 120 min to observe the postprandial glycaemic and 

insulinaemic responses. Data were analysed using a three-way repeated measures ANOVA 

(trial*time*sex). The pattern of change in blood glucose concentration differed across trials (p 

= 0.001) as postprandial blood glucose concentration was lower 1 h post-exercise during the 

30 min (3.8 ± 0.6 mmol.L-1; p = 0.022) and 60 min trials (3.8 ± 0.6 mmol.L-1; p = 0.017) 

compared to the rested control trial (4.2 ± 0.9 mmol.L-1). Furthermore, postprandial plasma 

insulin concentration was lower 1 h following the standardised lunch during the 60 min LIST 

trial when compared with the rested control trial (60 min LIST: 199.1 ± 125.9 pmol.L-1: rested 

trial 259.4 ± 193.7 pmol.L-1; p = 0.015). There was no difference in blood glucose 

concentration, plasma insulin concentration and HOMA-IR across trials on day two of the 

study. The present study suggests that 60 min high intensity intermittent running is an 

ecologically valid mode of exercise that enhances the regulation of blood glucose and insulin 

sensitivity in adolescents. Furthermore, a shorter bout of high intensity intermittent exercise 

(30 min) was also as effective in improving the regulation of blood glucose concentration as 

60 min of exercise in adolescents. Such findings support the government physical activity 

guidelines that suggest young people should participate in 60 min of moderate-to-vigorous 

physical activity per day. 

 

The final experimental study (Chapter Ⅶ) longitudinally examined (during a 2-year follow-

up) the effect of continued training in comparison to remaining recreationally active during 

childhood and adolescence on traditional and novel risk factors for cardiometabolic diseases 

and performance on physical capacity tests. In addition, change in performance and V̇O2 peak 

and change in risk factors for cardiometabolic diseases were examined to identify whether a 

relationship existed between training and adolescent health during puberty. From the original 

cross-sectional sample, 61 adolescents (12 – 14 years) agreed to complete the study. In 

conjunction with the methods employed in Chapter Ⅳ, low-grade chronic inflammation, blood 

glucose and plasma insulin concentrations were determined from a fasted capillary blood 

sample. Participants completed a MSFT and a V̇O2 peak test, whilst body composition was 
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assessed as the sum of four skinfolds and waist circumference. Data were analysed via a mixed 

methods ANOVA (training group*time*sex). Overall, the trained group had lower 

concentrations of pro-inflammatory cytokines IL-6 (trained 3.52 ± 1.54 pg.mL-1: untrained 4.49 

± 1.81 pg.mL-1; p = 0.005) and IL-1β (trained 3.52 ± 2.11 pg.mL-1: untrained 5.46 ± 3.95 pg.mL-

1; p = 0.007) than the untrained group, yet had higher concentrations of anti-inflammatory 

cytokine IL-10 (trained 3.31 ± 2.81 pg.mL-1: untrained 2.37 ± 1.36 pg.mL-1; p = 0.008). Overall, 

the trained group had a lower HOMA-IR than the untrained group (trained 1.4 ± 1.6: untrained 

2.7 ± 3.5; p = 0.019). Finally, change in distance run on the MSFT was inversely associated 

with change in plasma insulin concentration (r (46) = -0.28; p = 0.062) and change in blood 

lactate concentration during submaximal exercise was negatively correlated with change in 

HOMA-IR (r (21) = -0.42; p = 0.055); whereas, V̇O2 peak was not related to any of the risk 

factors for cardiometabolic diseases. The findings of the present study suggest that continued 

training from childhood into adolescence improves cardiometabolic health, as evidenced by a 

favourable inflammatory profile and enhanced insulin sensitivity. Furthermore, as the change 

in performance on distance run on the MSFT and the blood lactate response to submaximal 

exercise (which are both indicators of training status) was inversely associated with change in 

risk factors for metabolic health there is further support of a causal relationship between 

physical fitness and cardiometabolic health in adolescents. 
 

 

Overall, the findings from the present thesis suggest that regular participation in exercise (of 

sufficient intensity to enhance performance on the MSFT or to reduce the blood lactate 

response to submaximal exercise) reduces the presence of both traditional and novel risk 

factors for cardiometabolic diseases in healthy, normal weight adolescents. Furthermore, 

intermittent activity (performed as games-based activity and high intensity intermittent 

running) is an ecologically valid mode of exercise that stimulated an inflammatory, glycaemic 

and insulinaemic response in adolescents that elicited protective effects for cardiometabolic 

health, including an anti-inflammatory cascade and enhanced insulin sensitivity. If repeated 

regularly such exercise has the potential to reduce cardiometabolic risk factors in young people, 

thus preventing the early development of chronic diseases such as cardiovascular disease and 

type 2 diabetes. Taken together, the findings of this thesis have important practical 

implications, emphasising that regular exercise optimises cardiometabolic health during 

adolescence, which should be considered by Government health policy makers when 

developing recommendations for lifelong health. In particular, the findings of this thesis 

suggest that adolescents should participate in intermittent activity on a daily basis, to enhance 

their cardiometabolic health.   

 

Key Words: Adolescents; Risk Factors for Cardiometabolic Diseases; Intermittent Exercise; 

Insulin Sensitivity; Inflammation 
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Chapter Ⅰ 

Introduction 

 

Hypokinetic diseases are non-communicable conditions that develop, in part, from insufficient 

movement or physical activity, and include but are not limited to cardiovascular disease, type 

2 diabetes, overweight and obesity (Hardman & Stensel, 2009). The risk factors implicated in 

the pathophysiology of cardiovascular disease and type 2 diabetes are closely aligned, and as 

such are often examined together and termed cardiometabolic diseases. The metabolic 

dysfunction that aligns the two conditions is characterised by hyperglycaemia, insulin 

resistance, dyslipidaemia, hypertension and low-grade chronic inflammation (Hardman & 

Stensel, 2009). Cardiovascular disease is the second leading cause of death in the UK, 

accounting for 168,000 deaths annually (British Heart Foundation, 2018).  In contrast, type 2 

diabetes is a more recent concern in the UK with the number of people diagnosed with the 

condition having doubled in the last 20 years (4.6 million people living with type 2 diabetes in 

2018), with a further 12.8 million people at risk of developing the condition (Diabetes UK, 

2018). 

 

The risk factors for cardiometabolic diseases develop as early as childhood, with children as 

young as three years presenting with atherosclerotic lesions and impaired insulin sensitivity 

(Magnussen et al., 2012). In the past two decades, there has been a steady rise in the presence 

of risk factors for cardiometabolic diseases in young people, which has led to a 7 % increase 

in the incidence of type 2 diabetes in children (observed between 2000 to 2006) (Chen et al., 

2012). Such adverse cardiometabolic health trends, including the increasing prevalence of 

impaired insulin sensitivity, prediabetes and atherosclerotic plaques, in young people will 

result in prolonged exposure to the risk factors of cardiometabolic diseases and undoubtedly 
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lead to the early onset of cardiovascular disease and type 2 diabetes, which will impact the 

severity of the associated symptoms during adulthood (Pinhas-Hamiel & Zeitler, 2007; 

TODAY Study Group, 2012). In addition, the presence of risk factors for cardiometabolic 

diseases are known to track from childhood into adulthood (Nicklas et al., 2002), which also 

emphasises the need to address the presence of risk factors of cardiometabolic diseases during 

the earlier stages of life. It is therefore of high importance that effective therapeutic 

interventions that enhance cardiometabolic health in childhood and adolescence, whilst being 

age-appropriate and achievable, are developed to counter the adverse health trends observed.  

 

The Framingham Heart Study (1948) was one of the first to identify the risk factors associated 

with cardiometabolic diseases (O’Donnell & Elosua, 2008). The risk factors were categorised 

as either non-modifiable, and included sex and family history, or modifiable risk factors, such 

as lifestyle and environmental risk factors (O’Donnell & Elosua, 2008). As cardiometabolic 

diseases are defined as hypokinetic, it is not surprising that low physical activity levels, low 

physical fitness and increased adiposity were identified as modifiable risk factors for 

cardiovascular disease and type 2 diabetes. Such information led to early epidemiological 

research, to identify whether an association existed between occupational physical activity 

levels and risk of cardiovascular disease morbidity and mortality (Morris et al., 1953). The 

occupational physical activity affected the incidence of coronary heart disease, with bus drivers 

in their inactive roles at increased risk when compared with the physically active bus 

conductors. Epidemiological studies in adults have since examined the relationship between 

different types of physical activity (occupational, household, and recreational) and 

cardiovascular disease morbidity and mortality, and there is general agreement that an inverse 

association exists, suggesting that higher physical activity levels are protective against the 

development of cardiometabolic diseases (Ross et al., 2016).  
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Whilst there is growing evidence in adults to suggest that physical activity levels are inversely 

associated with cardiometabolic health, such findings are not directly applicable to children 

and adolescents. Firstly, the relationship observed in adults was between physical activity, 

physical fitness and body composition with cardiovascular disease morbidity or mortality (with 

disease diagnosis being the outcome variable of interest). By contrast, young people do not 

exhibit cardiometabolic disease morbidity and mortality; and thus the risk factors for 

cardiometabolic diseases become the outcome variables of interest. Furthermore, adolescence 

is characterised by several physiological and behavioural changes, which impact on both 

physical activity and the physiological responses to exercise (Boisseau and Delamarche, 2002). 

The changes observed during adolescence, which includes transient insulin resistance (Moran 

et al., 1999), which is not yet fully understood, mean that the responses to exercise might differ 

between young people and adults; therefore, research specific to young people is high priority.  

 

Early findings of cross-sectional research in children and adolescents suggest that enhanced 

physical activity and performance on physical capacity tests are associated with a lowering of 

a select number of risk factors for cardiometabolic diseases, including markers of low-grade 

chronic inflammation and insulin sensitivity (Buchan et al., 2015; Bugge et al., 2012; Silva et 

al., 2017). There are though several limitations that should be considered when interpreting the 

findings of these early studies. Firstly, when selecting the physical capacity test as an indicator 

of physical fitness there has been limited consideration as to whether the measurement is 

appropriate in children and adolescents and whether the measurement effectively tracks 

changes in performance and training status. Of particular concern is the predominant use of 

V̇O2 peak across previous literature in young people (Bailey et al., 2012; Bugge et al., 2012; 

Steene-Johannessen et al., 2013). V̇O2 peak is limited by central systems (including 

cardiovascular and respiratory) which have a strong genetic predisposition (Joyne & Carsten, 

2018). Therefore, V̇O2 peak is not that sensitive for tracking peripheral adaptations to training 
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such as enhanced exercise tolerance and improved efficiency of mitochondrial biogenesis 

(Joyce & Carsten, 2008). As such, the method of determining physical fitness should be 

considered, ensuring that the selected measure is sensitive to the peripheral adaptions to 

training, such as distance run on the multi-stage fitness test (MSFT) or the blood lactate 

response to submaximal exercise (Edwards, Clark & Macfayden, 2003). Furthermore, previous 

cross-sectional studies in adolescents have been restricted in the number of outcome variables 

examined, particularly when assessing inflammatory mediators implicated in the development 

of low-grade chronic inflammation (Petersen & Pedersen, 2005); consistently these have been 

limited to pro-inflammatory cytokines interleukin-6 (IL-6), tumour necrosis factor-alpha 

(TNF-α) and C-reactive protein (CRP). To appropriately develop understanding as to the 

management of low-grade chronic inflammation in young people, a comprehensive panel of 

inflammatory mediators including each of the inflammatory cytokines involved in the 

pathogenesis of low-grade chronic inflammation should be measured, including interleukin-1β 

(IL-1β), IL-6, TNF-α, interleukin-1 receptor antagonist (IL-1ra), interleukin-10 (IL-10) and 

CRP. Of particular interest is acute phase protein CRP, which has been identified as the best 

predictor of cardiovascular disease morbidity and mortality in adults (Emerging Risk Factors 

Collaboration, 2012), yet little is known about the role of CRP in determining cardiometabolic 

disease risk in children and adolescents.  

 

An inverse relationship has also been observed between adiposity (sum of skinfolds) and 

several traditional risk factors for cardiometabolic diseases, particularly those implicated in the 

development of type 2 diabetes (Bugge et al., 2012; Rizzo et al., 2008; Silva et al., 2017). Yet, 

there is limited understanding of the relationship between adiposity and novel risk factors for 

cardiometabolic diseases in adolescents, such as the relationship between pro-inflammatory 

cytokines, associated with low-grade chronic inflammation, and adiposity (Artero et al., 2013; 

Bugge et al., 2012). Such limited understanding is the result of conflicting findings across 



5 
 

previous research with no relationship (Artero et al., 2013), as well as positive relationships 

between adiposity and pro-inflammatory cytokines having previously been observed (Bugge 

et al., 2012). Therefore, to advance understanding into the relationship between adiposity and 

inflammation there is a need for a holistic analysis of inflammation that includes both pro- and 

anti-inflammatory cytokines and the moderating effect of pubertal development on the 

relationship between adiposity and inflammation in an adolescent population.  

 

The physiological responses to acute bouts of physical activity and exercise, particularly the 

inflammatory, glycaemic and insulinaemic responses, are important because they may reflect 

the mechanisms which underpin the relationship between physical activity levels and risk 

factors of cardiometabolic health in young people and adults (Gleeson et al., 2012). The 

inflammatory response to exercise (which is based on the findings of in vitro studies), is 

stimulated from skeletal muscle contraction, which results in a transient increase in IL-6 

concentration in the systemic circulation (Petersen and Pedersen, 2005). As IL-6 concentration 

increases there is a cascade whereby anti-inflammatory mediators (IL-1ra and IL-10) are 

stimulated and pro-inflammatory cytokines are inhibited (IL-1β, TNF-α and CRP). These 

transient changes, if repeated regularly, are hypothesised to reduce low-grade chronic 

inflammation, which is implicated in the development of atherosclerosis and type 2 diabetes. 

In conjunction with the inflammatory response, exercise is also suggested to enhance insulin 

sensitivity by mediating a reduction in blood glucose and plasma insulin concentrations, as a 

result of increased non-insulin dependent glucose uptake into the skeletal muscle for several 

hours post-exercise (Mendham et al., 2012; 2013; 2015). Yet, there have been limited studies 

that have assessed the transient inflammatory, glycaemic and insulinaemic responses to acute 

bouts of exercise in both young people and adults.  
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In adults (middle-aged men, 38-48 years), the inflammatory, glycaemic and insulinaemic 

responses to small-sided games (modified rugby) and traditional endurance activity (40 

minutes of stationary cycling at ~ 80 % heart rate max) elicited a protective anti-inflammatory 

response and reduced glycaemic and insulinaemic responses for up to 4 h post-exercise 

(Mendham et al., 2012; 2013; 2015). For children and adolescents much less is known about 

the physiological responses and the inflammatory responses post-exercise, however, IL-6 and 

anti-inflammatory cytokine IL-1ra have been shown to increase immediately following 90 min 

wrestling practice in adolescent boys (Nemet et al., 2002). However, the response of a 

comprehensive panel of inflammatory mediators is yet to be examined, as is the response of 

these mediators for up to several hours post-exercise (which is especially important given that 

in vitro studies suggest IL-10 and CRP are elevated 24-48 h after physical activity; Gleeson et 

al., 2012). Research on the glycaemic and insulinaemic responses to exercise in adolescents is 

also relatively limited, although findings to date examining continuous moderate intensity 

running for 45 – 60 min in boys aged 9 – 15 years suggest that endurance activity transiently 

enhances postprandial insulin sensitivity in children and adolescents (improvements between 

6 - 13% in plasma insulin total area under the curve) (Cockcroft et al., 2012; Short et al., 2013).  

 

Whilst the early research examining the effect of acute bouts of exercise on the inflammatory, 

glycaemic and insulinaemic responses in adolescents suggests that acute bouts of continuous 

moderate intensity exercise increases IL-6 concentration for up to 60 min, it remains unknown 

whether the increase in IL-6 post-exercise stimulates a protective inflammatory cascade 

(including the stimulation of anti-inflammatory mediators and inhibition of pro-inflammatory 

cytokines) and the time scale in which such a response ensues. Furthermore, the inflammatory, 

glycaemic and insulinaemic responses to exercise in adolescents have consistently been 

observed following moderate intensity continuous exercise which is of limited ecological 

validity in adolescent populations (Howe et al., 2010). Typically, adolescents engage with short 
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bursts of high intensity intermittent activity that is interspersed with periods of rest (Howe et 

al., 2010), similar to the activity patterns of games-based exercise. Therefore, future research 

should establish whether or not such exercise mediates the protective inflammatory, glycaemic 

and insulinaemic responses, as reported in early research in adolescents (Cockcroft et al., 2012; 

Short et al., 2013). Furthermore, it is important that the physiological responses are observed 

in conjunction with potential moderating variables that adolescents encounter during their 

everyday lives, which will include the consumption of ecologically valid meals.  

 

Finally, there are several variables (including frequency, intensity, and duration) relating to the 

chosen mode of exercise that should be examined, to establish how best to optimise the 

protective cardiometabolic responses in adolescents, whilst ensuring the exercise is achievable 

to ensure physical activity recommendations are met. This is a particularly important area for 

future research as fewer than 20 % of adolescents in the UK currently meet the recommended 

guidelines of 60 minutes of moderate to vigorous physical activity each day) (NHS England, 

2019). Should a lower duration of exercise elicit glycaemic and insulinaemic responses that 

could be protective against the development of risk factors for cardiometabolic and type 2 

diabetes, this could have major implications for future physical activity policies and guidelines.  

 

Given the limited understanding of the relationship between performance on physical capacity 

tests, adiposity and novel risk factors for cardiometabolic diseases in adolescents and how 

under-explored the inflammatory, glycaemic and insulinaemic responses following 

ecologically valid modes of exercise are in adolescents, the present thesis will address such 

gaps in the literature through the following research questions and thesis objectives. 
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Research Questions: 

1) Does a relationship exist between performance on physical capacity tests, V̇O2 peak 

and adiposity with traditional and novel risk factors for cardiometabolic health in a 

heterogeneous sample (in terms of physical fitness) of adolescents? Furthermore, does 

the chosen physical capacity test mediate the relationship between physical fitness and 

cardiometabolic health in adolescents? 

2) Does an ecologically valid mode of intermittent activity (such as basketball, which is 

suitable for both boys and girls) stimulate an anti-inflammatory response (transiently 

increasing IL-6 and IL-10 and reducing IL-1β and TNF-α) and enhance postprandial 

insulin sensitivity in healthy adolescents?  

3) Can a shorter 30 min bout of intermittent activity when compared with a traditional 60 

min of intermittent exercise (which achieves the Government guidelines of 60 min 

moderate-to-vigorous physical activity per day) reduce postprandial blood glucose and 

plasma insulin concentration in healthy adolescents; thus providing a realistic duration 

of physical activity for young people to adhere to? Furthermore, it is unknown the 

timeframe in which the transient glycaemic and insulinaemic responses remain and 

whether exercise duration effects the length of such responses.  

4) What effect does continuous training throughout adolescence vs. remaining inactive 

(during a 2 year follow-up) have on novel and traditional risk factors for 

cardiometabolic diseases? In addition, which physical capacity tests are most sensitive 

to tracking changes in training status in the trained and inactive adolescents across 

time? 

 

 

 



9 
 

Thesis Objectives and Hypotheses:  

Therefore, the purpose of the present thesis is to examine the chronic and acute effects of 

exercise on risk factors for cardiometabolic diseases in adolescents. The objectives are:  

1) To examine the relationship between performance on the multi-stage fitness test, V̇O2 

peak and adiposity and the cardiometabolic health of adolescents aged 10-12 years; 

testing the hypothesis that adolescents with a higher distance run on the MSFT or/and 

a lower blood lactate response to submaximal exercise and to a lesser extent higher V̇O2 

peak and adiposity will have lower risk factors for cardiometabolic health.  

2) To determine the glycaemic, insulinaemic and inflammatory responses to an acute bout 

of high intensity intermittent activity (performed as games-based activity) in young 

people; testing the hypothesis that intermittent games-based activity will stimulate an 

inflammatory cascade triggered by an increase in IL-6, and enhance insulin sensitivity 

as observed by reduced postprandial blood glucose and plasma insulin concentration. 

3) To investigate whether a shorter 30 min bout of intermittent exercise when compared 

with a more traditional 60 min bout, improves postprandial insulin sensitivity in young 

people and the timeframe in which insulin sensitivity remains enhanced; thus testing 

the hypothesis that 30 min of high intensity intermittent exercise may be adequate to 

enhance postprandial insulin sensitivity both on the day and the day following exercise 

in adolescents. 

4) To longitudinally examine the effect of continuous training in comparison to being 

recreationally active during childhood and adolescence on risk factors for 

cardiometabolic diseases, including novel (inflammatory cytokines) and traditional 

(fasting blood glucose, plasma insulin, HOMA-IR and blood pressure) risk factors; 

testing the hypothesis that involvement in training over several years will be protective 
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in reducing the risk factors for cardiometabolic disease and will continue to be 

protective during early adolescence. 

 

These thesis objectives were met through a series of four studies. The initial study was cross-

sectional and determined whether performance on physical fitness tests and sex had an effect 

on risk factors for cardiometabolic disease (Chapter Ⅳ). The second (Chapter Ⅴ) and third 

(Chapter Ⅵ) studies of the thesis focused on the effect of acute bouts of intermittent activity 

on the pro- and anti-inflammatory responses and the glycaemic and insulinaemic responses in 

adolescents. Specifically, the second study established the inflammatory, glycaemic and 

insulinaemic responses to a 60 min bout of games-based activity, performed as a basketball 

training session, up to 24 h post-exercise. Whilst the third study of the thesis investigated the 

glycaemic and insulinaemic responses to different durations (30 min vs. 60 min. vs. rested 

control trial) of high intensity intermittent activity (performed as the Loughborough 

intermittent shuttle test; LIST) up to 24 h post-exercise. Finally, the participants recruited to 

the first study were subsequently followed-up two years later to examine whether or not 

training advantages (in terms of reducing risk for cardiometabolic diseases) were sustained 

across puberty (Chapter Ⅶ). 
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Chapter Ⅱ 

Review of the Literature 

 

2.1 Overview of the Review of the Literature 

The review will begin with a definition of key terms that will be used throughout the thesis 

(2.1.1) and will then progress to discuss and critically evaluate cross-sectional and longitudinal 

research that has examined the association between performance on physical capacity tests and 

adiposity with risk factors for cardiometabolic diseases in children, adolescents and adults 

(section 2.2). Finally, section 2.3 will review and critically evaluate research that has examined 

the inflammatory, glycaemic and insulinaemic responses to acute bouts of exercise in children, 

adolescents and adults.    

 

2.1.1 Physical Activity, Physical Fitness, and Exercise  

Physical activity, physical fitness and exercise are terms that whilst inter-related, are distinct. 

It is widely accepted that physical activity is defined as ‘any bodily movement produced by 

skeletal muscle that results in energy expenditure’ (Caspersen et al., 1985). In contrast, 

physical fitness is complex and may be separated into subcomponents of functional capacity 

and health-related physical fitness. Functional capacity pertains to ‘an individual’s ability to 

perform daily activities with vigor and alertness’ (Caspersen et al., 1985), whilst health-related 

physical fitness is the ‘demonstration of traits and capacities associated with low risk of 

premature development of the hypokinetic diseases’ (Pate, 1988). Health-related physical 

fitness can further be categorised into cardiorespiratory endurance, muscular endurance, body 

composition and flexibility (Caspersen et al., 1985). Physical fitness is predominantly 

determined by lifestyle factors, with participation in physical activity/ exercise imperative to 

the enhancement of fitness (Blair et al., 2001). For clarity, exercise is a ‘subset of physical 
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activity that is planned, structured and repetitive, done to improve one of more components of 

physical fitness’ (Caspersen et al., 1985).  

 

2.1.2 Health, Hypokinetic Diseases and Cardiometabolic Health 

The World Health Organisation (1948) defines health as ‘a state of complete physical, mental 

and social wellbeing and not merely the absence of disease or infirmity’. There has been 

increased interest in the potential for physical activity and physical fitness to be utilised as 

therapeutic interventions to enhance and maintain health through the prevention of chronic 

diseases (Lee et al., 2012). Specifically, regular participation in physical activity prevents the 

development of hypokinetic diseases, which given that hypokinetic refers to insufficient 

movement or low decreased motor activity, are non-communicable conditions that have an 

inverse relationship with physical activity and physical fitness (Berryman, 2010). Hypokinetic 

diseases include, but are not limited to cardiovascular disease, type 2 diabetes, obesity, 

osteoporosis and some cancers (Berryman, 2010). The present thesis will focus on risk factors 

for cardiometabolic disease, which are a series of physiological risk factors (hypertension, 

dyslipidaemia, hyperglycaemia and low-grade chronic inflammation) that increase the risk of 

atherosclerotic cardiovascular disease and type 2 diabetes (Ruilope et al., 2007).  

 

2.1.3 Cardiovascular Disease 

Cardiovascular disease is a collective term given to a group of disorders, which impede the 

critical functions of the cardiovascular system (Perk et al., 2012; World Health Organisation, 

2015). Cardiovascular disease remains the leading cause of mortality worldwide (World Health 

Organisation, 2015), accounting for 7.1 million deaths annually (Bhatnagar et al., 2015); a 

figure which is anticipated to rise to 23.6 million by 2030 (Smith et al., 2012).  
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Cardiovascular disease develops chronically across the lifespan with symptoms typically 

presenting during the fifth decade of life, when the disease has progressed towards an advanced 

stage (Magnussen et al., 2012). Atherogenesis is the process through which atherosclerotic 

lesions develop and increase the risk of developing cardiovascular disease (Magnussen et al., 

2012). Atherosclerosis is ‘an inflammatory process characterised by the aggregation of lipids, 

macrophages and smooth muscle cells within the intima layer of epicardial arteries’ (Hardman 

& Stensel, 2009). The ‘Response to Injury’ hypothesis, as presented in Figure 1, suggests that 

hemodynamic resistance, dyslipidaemia, hyperglycaemia and low-grade chronic inflammation 

induce injury to the outer layer of the endothelium and initiates atherogenesis (Hansson, 2005). 

At the site of the injury macrophages, oxidized lipids and smooth muscle cells aggregate in the 

intima layer and plaque develops (Sun et al., 2000). Plaque development becomes of clinical 

concern when blood flow is restricted by ≥ 45 % (the clinical threshold), leading to ischemia 

of tissues and organs and symptoms associated with cardiovascular disease (Hardman & 

Stensel, 2009).  

 

Figure 1. Illustration of the ‘Response to Injury’ hypothesis of atherogenesis which results in 

the development of atherosclerotic plaques, adapted from Hardman & Stensel, (2009).  
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The Framingham Heart Study (1948) was the first to identify risk factors associated with 

cardiovascular disease and categorised them as non-modifiable or modifiable (O’Donnell & 

Elosua, 2008). Non-modifiable risk factors include sex, with males at increased risk compared 

to their female counterparts, and genetic susceptibility, with genetic markers and family history 

increasing the risk of cardiovascular disease (O’Donnell & Elosua, 2008). Modifiable risk 

factors for cardiovascular disease include lifestyle and environmental factors, such as physical 

activity levels, diet, alcohol consumption, and smoking (O’Donnell & Elosua, 2008).  

 

Modifiable and non-modifiable risk factors for cardiovascular disease increase the presence of 

biochemical and physiological markers in the systemic circulation. Such markers include 

traditional risk factors such as triglycerides, total cholesterol (LDL-c and HDL-c), hypertension 

and hyperglycemia. Novel biochemical risk factors include pro-inflammatory cytokines and C-

reactive protein (CRP), an acute phase protein (Gleeson et al., 2012). The increase in 

inflammatory cytokines and CRP in the systemic circulation is referred to as low-grade chronic 

inflammation, which is defined as ‘a chronic two- to three-fold elevation in pro-inflammatory 

(IL-1β, IL-6, and TNF-a), and anti-inflammatory cytokines (IL-1ra and IL-10)’ (Pedersen & 

Petersen, 2005). The increasing presence of physiological and biochemical markers increases 

the likelihood of an injury to the outer endothelium, triggering the response to injury hypothesis 

and thus is considered a key risk factor for cardiometabolic disease. 

 

2.1.4 Metabolic Diseases: Type 2 Diabetes  

Diabetes is a major cause of morbidity and mortality in children, adolescents and adults 

(Diabetes UK, 2014; Oliveira et al., 2012). There are two forms of the disease: type 1 and type 

2 diabetes. Type 1 diabetes typically originates during childhood and is characterised by insulin 

deficiency, which occurs due to beta-cell autoimmune destruction (Zeitler et al., 2007). Type 

2 diabetes is characterised by peripheral insulin resistance, progressive pancreatic beta-cell 
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failure and chronic hyperglycaemia (American Diabetes Association, 2000; Pinhas-Hamiel & 

Zeitler, 2007). During the early stages of type 2 diabetes blood glucose homeostasis is 

maintained through increased insulin synthesis; however, with disease progression 

hyperinsulinaemia cannot be sustained and pancreatic beta-cell failure ensues (Rhodes, 2005). 

Risk factors associated with type 2 diabetes include increasing age, obesity, sedentary 

behaviour, ethnicity and genetic susceptibility (Pinas-Hamiel & Zeitler, 2007). Some of the 

symptoms associated with chronic hyperglycaemia and the development of type 2 diabetes 

include glucosuria, and polydipsia (Reinehr, 2013; Scott et al., 1997; Zdravkovic et al. 2004).  

 

Plasma glucose homeostasis in healthy individuals is regulated with a fasting blood glucose 

concentration of between 4.5 - 6 mmol.L-1 (Saltiel & Kahn, 2001) and is regulated through the 

action of insulin (an anabolic hormone) on hepatic gluconeogenesis, glycogenolysis and the 

uptake of glucose into peripheral tissues (Bouchard et al., 2007; Seino, 2012). The beneficial 

effects of physical activity centre around the action of insulin on peripheral tissues, particularly 

on skeletal muscles, whereby in healthy individuals, insulin binds to receptors on the surface 

of skeletal muscles to activate an insulin-signalling cascade. The cascade ends with the 

translocation of GLUT-4 to the plasma membrane to transport glucose into the cell to maintain 

blood glucose homeostasis (Saltiel & Kahn, 2001).  

 

Peripheral insulin resistance is a key characteristic of hyperglycaemia and the subsequent 

development of type 2 diabetes and is defined as ‘a state of decreased responsiveness of target 

tissues to normal circulating concentrations of insulin’ (Sesti, 2006). There are many theories 

that attempt to explain the pathogenesis of peripheral insulin resistance, which include the 

accumulation of lipids in skeletal muscle impairing the function of insulin; an impairment in 

the insulin signalling pathway resulting in impaired GLUT-4 translocation and modifications 

in the insulin receptors (for review see, Sesti, 2006). Chronic insulin resistance leads to 
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hyperglycaemia and the development of type 2 diabetes, with the compensatory increase in 

plasma insulin eventually leading to pancreatic beta-cell failure.  

 

2.1.5 Assessment of Cardiometabolic Disease Risk  

The present thesis intends to establish the effect of physical activity, physical fitness and 

exercise on adolescent cardiometabolic health. The present thesis intends to focus on 

cardiovascular risk factors associated with low-grade chronic inflammation, which include pro-

inflammatory mediators IL-1β, IL-6, IL-10, and TNF-α, and acute phase protein CRP (Gleeson 

et al., 2012). The named inflammatory mediators (interleukins) are small, secreted proteins 

known as cytokines (Zhang & An, 2009). When assessed chronically the inflammatory 

mediators are typically pro-inflammatory (IL-1β, IL-6, TNF-α) and contribute towards the 

presence of low-grade chronic inflammation, which is a novel risk factor for cardiometabolic 

diseases. However, there are several inflammatory cytokines that have anti-inflammatory 

properties (IL-1ra, IL-6 and IL-10), which if elevated in the systemic circulation might have 

the potential to protect against low-grade chronic inflammation.  

 

It is important to note that IL-6 has both pro- and anti-inflammatory properties dependent upon 

whether the interleukin is raised chronically or transiently, such as following an acute bout of 

exercise (Pedersen & Petersen, 2005). When IL-6 is increased chronically in the fasted, rested 

and disease-free state (free from acute infections), the increased concentration of IL-6 

contributes towards the development of low-grade chronic inflammation (Pedersen & Petersen, 

2005) and thus is a cardiometabolic risk factor that is implicated in the aetiology of several 

chronic diseases including cardiovascular disease and type 2 diabetes (Gleeson et al., 2012). 

However, IL-6 also has anti-inflammatory properties when increased transiently, as is the case 

following an acute bout of exercise that is of sufficient duration and intensity (Pedersen & 

Petersen, 2005; Gleeson et al. 2012). When increased transiently IL-6 is stimulates an anti-
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inflammatory cascade, which mechanistically reduces low-grade chronic inflammation 

(Gleeson et al. 2012). Therefore, careful consideration must be taken when measuring IL-6 

(including whether chronic or acute concentrations are measured) given the dual effects of the 

inflammatory mediator on cardiometabolic health (Gleeson et al. 2012).  

 

Inflammatory cytokine IL-6 is suggested to increase transiently following acute bouts of 

prolonged running in adults (> 60 minutes in duration), providing the exercise mode is of 

sufficient intensity and duration (Gleeson et al., 2012). Furthermore, in vitro studies suggest 

that an increase in IL-6 in the systemic circulation has the potential to increase the 

concentration of cytokines with anti-inflammatory properties (IL-1ra, and IL-10) (Gleeson et 

al., 2012). Therefore, the response of these mediators to acute bouts of physical activity are of 

interest when trying to establish modes of physical activity that reduce chronic cardiometabolic 

risk factors. However, few human studies, particularly in children and adolescents, have 

examined the inflammatory responses to exercise. 

 

When determining the inflammatory response to exercise, the timing of measurements is also 

of importance. In vitro studies suggest that the transient inflammatory cascade initiated by IL-

6 stimulates the production of inflammatory mediators (IL-10 and CRP) up to 24 - 48 h post 

the initial stimulus (Petesen & Pedersen, 2005). As such, it is important that the inflammatory 

response be analysed immediately and up to 24 - 48 h post-exercise, where possible, to 

ascertain the response of each inflammatory marker accurately. To determine the inflammatory 

response post-exercise, a baseline measurement is necessary for comparison. It is important 

that baseline measurements are taken when participants are rested and fasted, as physical 

activity and food consumption transiently alters concentrations of inflammatory mediators. 

Similarly, when assessing inflammatory cytokines (IL-1β, IL-6, IL-10, TNF-α) and CRP 
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chronically, as a measure of low-grade chronic inflammation, the same variables must be 

controlled to ascertain an accurate representation of cardiometabolic risk.  

 

There are numerous methods available to determine peripheral insulin resistance; however, the 

method selected depends upon a multitude of factors including patient age, test applicability 

and availability of resources. The gold standard assessment of diabetes mellitus is the 

hyperglycaemic clamp technique; however, this relies on intravenous administration of 

exogenous glucose, which is not ethically acceptable in a non-patient paediatric population 

(DeFronzo et al., 1979). Simple indices of insulin resistance such as the oral glucose tolerance 

test (OGTT), the homeostasis model assessment (HOMA-IR) of insulin resistance and 

biochemical markers (such as leptin, adiponectin, glycated haemoglobin (HbA1c) and 

inflammatory markers) are desirable alternatives in establishing risk in adolescents (Barr et al., 

2014; Stefan et al., 2014). However, the OGTT lacks ecological validity as it does not consist 

of a mixture of macronutrients, whilst HOMA-IR is a measure of hepatic insulin sensitivity 

and thus may not be sensitive to the changes in peripheral insulin sensitivity stimulated by 

exercise.  Therefore, the glycaemic and insulinaemic responses to standardised meals are 

ecologically valid, yet understudied, alternatives to assess peripheral insulin sensitivity. 

 

2.1.6 Adolescents  

Adolescence is ‘the interval between childhood and the assumption of adult roles and 

responsibilities, a broad interval of maturation encompassing physical, mental and emotional 

development’ (Dorn et al., 2006). Following birth, human growth and development can be 

categorised into five stages of infancy, childhood, juveniles, adolescence and adulthood 

(Bogin, 1993). Each stage is distinguished by changes in growth, development and sexual 

maturation, with each progressing towards the ‘mature adult state’. The adolescent stage 

follows the juvenile stage and commences with the onset of puberty, typically commencing at 
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the chronological age of 10 in girls and 12 in boys (Bogin & Smith, 1996).  Adolescents are 

often categorised, particularly in an academic and sport setting, based on their chronological 

age. Due to the physiological interaction of puberty with biochemical markers, physical activity 

levels and physical fitness in young people it is imperative maturation is considered when 

interpreting findings.  

 

There are several methods to assess maturation including the gold standard X-ray of the left 

wrist, or field-based alternative assessments of secondary sexual characteristics or age from 

peak height velocity (APHV) (Bogin & Smith, 1996; Mirwald et al., 2002). Ethically, 

determining APHV is considered the most appropriate method to assess adolescent maturation. 

In the present thesis, APHV will not be used to classify participants as children or adolescents 

as APHV is indicative of maturity timings (the age at which specific maturational events occur) 

and not maturity status (level of maturation at the time of assessment) (Koziel & Malina, 2018). 

Therefore, APHV will be utilised as an indication of maturity timing, whilst chronological age 

will be used as an alternative to classify participants as children or adolescents with individuals 

aged 11 to 16 classified as ‘adolescents’ and participants aged under 11 categorised as children. 

 

2.1.7 Cardiometabolic Disease Risk in Adolescence 

Whilst cardiometabolic diseases typically present during the fifth decade of life, 

cardiometabolic risk factors are present during childhood and adolescence (May et al., 2014), 

with children as young as three years presenting with atherosclerotic lesions (Magnussen et al. 

2012). Furthermore, risk factors for cardiometabolic diseases in young people track into 

adulthood, increasing the risk of early onset cardiovascular disease (Berenson et al., 1980). 

Similarly, the prevalence of prediabetes in young people, measured by impaired fasting 

glucose, has increased from 7.0 % in 1999–2000 to 13.1% in 2005–2006 (Chen et al., 2012) 

and type 2 diabetes (which was once a disease almost exclusive to adults) is now the most 
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common diagnosis of diabetes in young people (Chen et al., 2012). The increasing prevalence 

of risk factors for cardiometabolic diseases and type 2 diabetes in youth is of major concern as 

prolonged exposure will lead to the early onset of such conditions and increased severity of the 

associated symptoms (Pinhas-Hamiel & Zeitler, 2007; TODAY Study Group, 2012). It is 

therefore imperative that therapeutic interventions target young people to enhance their 

cardiometabolic health.  

 

2.1.8 Literature Review Methods 

The following literature review consists of a search for key terms (including children, 

adolescents or adults, physical fitness, physical activity, cardiovascular disease, type 2 diabetes 

and cardiometabolic risk factors) on PubMed and Google Scholar. To be included in the 

literature review the paper needed to be an original research article, with systematic reviews 

and meta-analyses excluded from the present review (due to the inclusion of research that has 

not been peer-reviewed). Furthermore, examining original research articles ensures that a 

thorough review of key aspects of study design can be conducted. Finally, research in young 

people was excluded if the participants had a chronic condition (excluding overweight/ 

obesity), as the aim of the present thesis was to examine the association between physical 

fitness and cardiometabolic health in healthy adolescents. These criteria are applicable to all 

sections of the literature review (sections 2.2, 2.3 and 2.4) as throughout the thesis the aim was 

to assess the effect of training and acute bouts of exercise on risk factors for cardiometabolic 

diseases in healthy young people. 
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2.2 Association between Physical Activity, Physical Fitness & 

Cardiometabolic Health 

The following sections (2.2.1, 2.2.2 and 2.2.3) will review cross-sectional research that has 

assessed the association between physical activity levels, physical fitness and adiposity with 

novel and traditional risk factors for cardiometabolic health and cardiometabolic 

morbidity/mortality in adults, children and adolescents.  

 

2.2.1 Adults 

The first observations of inverse relationships between physical activity and cardiovascular 

disease were reported in cross-sectional studies in adults in the 1950s (Morris et al., 1953). The 

series of observational studies assessed differences in cardiovascular disease morbidity and 

mortality across occupations with varying physical activity levels, primarily in middle-aged 

men (Morris et al., 1953; 1958; 1966). Initial findings revealed that physically active jobs (such 

as bus conducting) halved the risk of myocardial infarctions and cardiovascular disease 

mortality in comparison to inactive occupations (such as bus driving) (Morris et al., 1953). 

Furthermore, the series of studies highlighted that middle-aged men in physically active jobs 

with cardiovascular disease were diagnosed later in life and had less severe symptoms than 

their inactive counterparts (Morris et al., 1958) suggesting that physical activity protects 

against and delays the development of cardiovascular disease.   

 

Since establishing the initial association between occupational physical activity and 

cardiovascular disease, there has been an abundance of research investigating the potential for 

different modes of physical activity to prevent and manage cardiovascular disease in adults 

(Ross et al., 2016). The scope of such research is extensive due to the diversity of physical 

activity, with potential associations between occupational, leisure-time (including exercise) 

and household physical activity with cardiovascular disease. In addition, physical activity can 
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vary by mode, intensity, duration and frequency, with each variable moderating the relationship 

between physical activity and cardiovascular disease risk. The Harvard Alumni study was the 

first to explore the diverse nature of physical activity and the relationship with cardiovascular 

disease (Paffenbarger et al., 1978). Male graduates from Harvard University (1916 – 1950) 

completed extensive physical activity questionnaires, which detailed sports played during their 

time at university, the amount of walking/ stairs climbed daily, recreational and sporting 

activities, and a composite physical activity index (Paffenbarger et al., 1978). Adult estimated 

energy expenditure derived from physical activity levels was inversely associated with risk of 

myocardial infarction, with men with the lowest physical activity index (≤ 2,000 kcal of energy 

expenditure per week) 64 % more likely to suffer a myocardial infarction than men with the 

highest physical activity index (≥ 3500 kcal per week). In addition, the impact of physical 

activity on myocardial infarction risk was independent of varsity-athlete status during college. 

These findings emphasise that to prevent and manage cardiovascular risk physical activity 

levels should be maintained throughout the entire lifespan.  

 

The most common critique of physical activity research relates to measurement error, which 

commonly arises from the imprecision of physical activity questionnaires, recall error and 

limited reliability for select intensities of exercise (Hardman & Stensel, 2009). As such, a 

preferred method to assess the benefits of prolonged participation in physical activity and 

exercise is to assess an individual’s physical fitness; thus reducing the likelihood of the 

misclassification of individuals, strengthening the validity of the relationship. Typically, in 

such research, performance in physical tests categorises participants into quartiles and the 

prevalence of risk factors for cardiovascular disease, and cardiovascular disease morbidity and 

mortality is compared across the groups. A review of the most recent literature in adult 

populations suggests that participants’ physical capacity to perform well in exercise tests is 

inversely associated with cardiovascular disease risk (Ross et al., 2016). Furthermore, the 
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inverse associations were seen in healthy men and women, cardiovascular disease patients, and 

those with existing comorbidities such as obesity and type 2 diabetes, with each population 

benefitting from the protective effects of greater performance on physical capacity tests (Ross 

et al., 2016).  

 

Inverse relationships have also been observed between, muscular endurance, muscular strength 

and body composition, and cardiovascular disease risk, morbidity and mortality in adults 

(Artero et al., 2012). However, a review of such research is beyond the scope of the current 

thesis and the focus will remain on the prevention of risk factors for cardiometabolic diseases 

in young people.  

 

2.2.2 Young People  

Research to date examining the association between physical activity levels and risk factors for 

cardiometabolic diseases has predominantly been conducted in mixed populations that consist 

of children and adolescents without consideration for the physiological and behavioural 

differences between the two populations (McCabe et al., 2004). Section 2.2.2.2 will review 

research that focuses on adolescent physical activity levels, physical fitness and body 

composition and the relationship of each of these variables with risk factors for cardiometabolic 

diseases. 

 

2.2.2.1 Children 

As explained in section 2.1.7, whilst children do not typically suffer from cardiovascular 

disease unless presenting with congenital heart conditions, it is during childhood that 

biochemical and physiological markers associated with cardiometabolic diseases present in the 

systemic circulation (Magnussen et al., 2012). The presence of such risk factors leads to the 

development of atherosclerotic plaques (Magnussen et al., 2012), which if not managed 
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appropriately will lead to early onset cardiovascular disease and type 2 diabetes. In the past 

decade, the incidence of risk factors for cardiometabolic diseases and the diagnosis of type 2 

diabetes in children has increased by 14% (May et al., 2012), with such statistics highlighting 

that conditions which were once associated with adulthood, can present in children if risk is 

not managed appropriately. Whilst information is available to suggest the presence of these 

risk factors is increasing, there is little information as to which of these risk factors is most 

important for determining childhood cardiometabolic health, despite the known predictive 

potential of CRP for cardiovascular disease morbidity in adulthood (Emerging Risk factors 

Collaboration, 2012). Furthermore, observational research in adults has suggested that physical 

activity and enhanced physical fitness can reduce cardiovascular disease morbidity and 

mortality (Blair et al., 1989; Paffenbarger et al., 1978), but there is very limited research 

examining the impact of physical activity and enhanced fitness on cardiovascular disease risk 

factors in children.  

 

The limited number of studies undertaken in children are summarised in Table 1 (note some 

studies also include the adolescent age-group but data for children only has been presented). 

Studies have examined similar risk factors for cardiometabolic diseases (e.g. waist 

circumference, blood pressure, triglycerides, total and HDL-cholesterol), but there are 

equivocal findings concerning the relationship between objectively (accelerometers) measured 

physical activity and these risk factors (e.g. positive relationship observed by Cliff et al., 2014 

and no relationship observed by Jimenez-Pavon et al., 2013). Such discrepancies could be the 

result of differences in confounders across studies, including the socio-economic status, 

education, ethnicity and family history of non-communicable diseases of the participants.  

 

The strongest relationships between physical activity and traditional risk factors for 

cardiometabolic health in children have been observed when composite or clustered risk scores 
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were calculated instead of assessing the relationship with individual risk factors (Carson & 

Janssen, 2011; Cliff et al., 2014; Jiminez-Pavon et al., 2013). It has been reported that 

moderate-to-vigorous physical activity (MVPA), after adjustment for sedentary behaviour, was 

independently and inversely associated with cardiometabolic risk score (calculated from 

traditional risk factors of waist circumference, systolic blood pressure, non-high-density 

lipoprotein and CRP). The strength of the relationship between MVPA and the cardiometabolic 

risk score was supported by the dose-response relationship between the two variable which 

provides some evidence in support of causality (Carson & Janssen, 2011). Yet, despite such 

relationships and the evidence for causality, other studies in the field have questioned the 

clinical significance of the relationship between MVPA and clustered scores of 

cardiometabolic risk factors (Ekelund et al., 2012), given the small inverse associations 

reported (Ekelund et al., 2012).  

 

The weight of available evidence in the literature also suggests that more vigorous physical 

activity is most effective in reducing risk factors for cardiometabolic disease. This was recently 

highlighted by Jimenez-Pavon et al., (2013) when the relationship between MVPA (assessed 

by accelerometry) and a composite risk score, was strongest in younger boys (with no 

relationship observed in boys > 6 y or girls) when the intensity of physical activity was vigorous 

( ≥ 1,003 counts.min-1) with no relationship observed with light or moderate physical activity 

levels). Whilst this study suggests that physical activity must be vigorous in intensity to 

enhance childhood cardiometabolic health, it is currently a standalone epidemiological study 

and thus the findings must be viewed with caution until replicated and observed in girls and 

other age-groups. Future research should continue to investigate the intensity of physical 

activity necessary to achieve reductions in risk factors for cardiometabolic diseases, as well as 

progressing to determine the duration and frequency of physical activity that elicits the greatest 

beneficial effects on children’s health.  
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Research in children that has determined the relationship between performance on endurance 

capacity tests and risk factors for cardiometabolic diseases is limited (in comparison to physical 

activity research) and has focused on traditional (rather than novel) risk factors for 

cardiometabolic diseases (Hosick et al. 2013; Nightingale et al. 2017; Steene-Johannessen et 

al. 2013) (Table 1.). Nightingale et al., (2017) measured the most comprehensive panel of risk 

factors for cardiometabolic diseases in children (Table 1 for overview). As part of the study, 

nine-year old boys and girls completed an 8 min submaximal step test, which estimated peak 

oxygen consumption from heart rate response during and 1 min after the test. Strong inverse 

associations between estimated V̇O2 peak and metabolic risk factors existed, with fasting 

insulin concentration and HOMA-IR reduced by 20% for each interquartile range increase in 

estimated V̇O2 peak. The strongest relationship existed between estimated V̇O2 peak and CRP 

(41% reduction in CRP per increase in interquartile range for V̇O2 peak) a finding of significant 

importance as CRP is considered the best predictor of cardiovascular disease in adults (Karakas 

& Koenig, 2009). Despite the agreement of the studies in the field that have assessed childhood 

endurance capacity and markers of cardiometabolic health (Table 1), further research is 

necessary (that assesses whether a dose-response relationship exists and explores the 

relationship across different populations) before a causal relationship in children is inferred. 

 

Although the Nightingale et al. (2017) study estimated V̇O2 peak they actually measured 

endurance capacity or physical fitness using a performance test. Only one study has extended 

the examination of the relationship between endurance capacity or physical fitness and 

cardiometabolic disease risk factors by including measures of body composition (Steene-

Johannessen et al., 2013). Endurance capacity (measured by a cycle ergometer test to 

exhaustion) and body composition (measured as waist circumference) were assessed in the 9-

year old children. Regression analysis revealed that performance on the exhaustive cycle 
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ergometer test was inversely associated with CRP, whilst waist circumference was positively 

associated with CRP (results that are consistent with the findings of Nightingale et al., 2017). 

Despite these promising findings, which suggest that enhanced endurance capacity and a 

smaller waist circumference are associated with reduced CRP concentration in children, further 

research is necessary to ascertain whether physical fitness and body composition enhances a 

comprehensive range of risk factors for cardiometabolic diseases (inclusive of traditional and 

novel risk factors for cardiometabolic diseases) in children. 
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Table 1. A review of the studies examining the effect of physical activity levels, physical fitness and adiposity on risk factors for cardiometabolic diseases in 

children 

Study Details Methodology Findings 

Authors Study n Age of 

Participants 

(y) 

Assessment of Physical 

Activity/ Physical Fitness/ 

Body Composition 

Risk Factors of 

Cardiometabolic Diseases 

Assessed 

Adjustment for 

Confounders 

Relationship Direction 

Carson & 

Janssen, 

(2011) 

2527 6 - 19 MVPA assessed by 

accelerometry 

Waist Circumference 

Systolic Blood Pressure 

Non-high density 

lipoprotein 

CRP 

Age 

Gender 

Ethnicity 

Socioeconomic 

status 

Diet 

Yes MVPA reduced 

cardiometabolic 

risk score 

Dose-response 

relationship 

Cliff et al., 

(2014) 

120 8.3 ± 1.1 MVPA assessed by 

accelerometry 

Triglycerides 

HDL-cholesterol 

Glucose & Insulin 

Systolic/ Diastolic Blood 

Pressure 

Clustered Cardiometabolic 

Risk (cMet) 

Waist 

Circumference 

BMI 

Sedentary 

Behaviour 

Yes Inverse 

association with 

diastolic blood 

pressure and 

cMET 

Ekelund et 

al., (2012) 

20871 4 – 18  

11.3 ± 2.9 

MVPA assessed by 

accelerometry 

Waist Circumference 

Systolic Blood Pressure 

Fasting Triglycerides 

HDL-cholesterol 

Insulin 

Sex 

Age 

Wear Time 

Waist 

Circumference 

Yes Small, inverse 

association with 

all risk factors 
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Hosick et 

al., (2013) 

124 8 - 12 Submaximal cycle 

ergometer test to predict 

maximal oxygen 

consumption 

Serum concentrations of 

IL-6 and TNF-α 

 

Body fat Yes IL-6 

concentration 

higher in low fit 

group than high 

fit group  

Jimenez-

Pavon et al., 

(2013) 

3120 2 - 9 MVPA assessed by 

accelerometry 

 

Fitness measured using the 

20 m MSFT in children 

older than 6 y 

Composite cardiovascular 

risk score: 

Triglycerides 

Total Cholesterol 

HOMA-IR 

Sum of Skinfolds 

Age 

Adjustment for 

Country 

Yes Vigorous 

physical activity 

inversely 

correlated with 

composite risk 

in younger boys 

Nettlefold 

et al., 

(2012) 

102 8 - 11 MVPA assessed by 

accelerometry 

Large & Small Artery 

Compliance 

Body Surface Area 

BMI 

Systolic Blood 

Pressure 

Yes MVPA 

explained 5.8 % 

variance in 

small artery 

compliance 

Nightingale 

et al., 

(2017) 

1445 9 – 10  Fitness determined by 

submaximal step test 

Blood Pressure 

Glucose/ Insulin/ HOMA 

HbA1c 

CRP 

Blood Lipids 

Sex 

Age 

Ethnic Group 

Month of 

Measurement 

Height 

Yes VO2 inversely 

associated with 

fasting insulin, 

blood glucose, 

HOMA, CRP, 

triglyceride, 

LDL-c & blood 

pressure.  

VO2 positive 

association with 

HDL-c 
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Owen et al., 

(2010) 

2049 9 - 10 MVPA assessed by 

accelerometry 

 

Questionnaire on cycling 

and swimming 

Total Cholesterol 

Triacylglycerol 

Glucose & Insulin 

HOMA 

CRP 

Age 

Sex 

Ethnicity  

Random Effect for 

School 

Yes Inverse 

association for  

physical activity 

& insulin, 

HOMA, 

triacylglycerol, 

CRP, & BP 

Steene-

Johannessen 

et al., 

(2013) 

1467 9 - 10 Performance capacity 

determined by a cycle 

ergometer test to 

exhaustion 

 

Muscular fitness by 

handgrip strength test, 

standing broad jump and a 

sit up test 

Serum concentrations of 

adiponectin, leptin, IL-6, 

and TNF-α 

Age 

Sex 

Pubertal Stage 

Yes Inverse 

association for  

endurance 

capacity & 

inflammation 

Willis et al., 

(2015) 

395 7.6 ± 0.6 Length of MVPA assessed 

by accelerometry 

BMI Percentile 

Waist Circumference 

Blood Pressure 

Total Cholesterol/ HDL-c 

Glucose & Insulin  

Triglycerides 

Age 

Sex 

BMI Percentile 

Yes MVPA 

inversely 

associated with 

BMI Percentile 

and Waist 

Circumference 
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2.2.2.2 Adolescents 

As children reach puberty their bodies undergo several physiological and psychological 

changes, which alters not only their biochemistry but their behaviour (McCabe et al., 2004). 

Observational studies report that during puberty, in young girls especially, physical activity 

levels progressively decline with increasing age (from 9 to 15 y), with almost all children aged 

9 y completing the recommended 60 min of MVPA, which declined to only 31 % of adolescents 

aged 15 y meeting the government guidelines (Nader et al., 2008).  Given the changes during 

maturation (including hormonal changes and body composition, (Ridder et al., 1991), the 

decline in physical activity in boys and girls between ages 9 and 15 y (Nader et al., 2008), the 

fact that physical activity during adolescence tracks into adulthood (Telama et al., 2005) and 

the increasing prevalence of type 2 diabetes and risk factors for cardiometabolic diseases in 

adolescents in the past decade (May et al., 2012), it is essential that research is conducted 

specifically in adolescents. Findings from children and adults may not be applicable in the 

adolescent population and physical activity behaviour during adolescence may impact upon 

risk factors for cardiometabolic disease in adulthood.   

 

Research in adolescents assessing the relationship between physical activity levels and risk 

factors for cardiometabolic diseases is limited (Table 2). Of the available evidence, physical 

activity has consistently been measured objectively using accelerometers (Bailey et al., 2012; 

Barker et al., 2018; Rizzo et al., 2008) and traditional risk factors for cardiometabolic diseases 

(such as blood glucose and plasma insulin) have been examined. The measurement of physical 

activity levels using accelerometers, as well as being objective is also advantageous as it 

enables the physical activity to be assigned an exercise intensity, based on metabolic equivalent 

(METs) (ACSM Guidelines, 2014), which is particularly important for exercise prescription 

for enhanced cardiometabolic health. In brief, the physical activity is categorised as either light 

(< 3 METs), moderate (3-6 METs) or vigorous (>6 METs). However, across previous 
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epidemiological research, moderate and vigorous physical activity have been assessed in 

conjunction rather than separately and is referred to as moderate-to-vigorous physical activity 

(MVPA).  

 

Despite the consistencies and the advantages of the methods used to assess physical activity 

levels in adolescents, discrepancies exist when examining the potential for MVPA to predict 

adolescent cardiometabolic health. Bailey et al., (2012) reported that in 100 adolescents (59 

girls) vigorous physical activity was inversely associated with diastolic blood pressure (r = -

0.27), whilst there were no other relationships between moderate or vigorous physical activity 

levels with any other traditional risk factors (including waist circumference, systolic blood 

pressure, blood lipids, and fasting blood glucose). Similarly, Barker et al., (2018) reported an 

inverse relationship between vigorous physical activity and waist circumference, whereas no 

relationship was observed between moderate physical activity levels and other traditional risk 

factors for cardiometabolic diseases. Whilst these studies suggest that moderate physical 

activity is not associated with cardiometabolic health in youth, a relationship did exist between 

vigorous physical activities and select risk factors for cardiometabolic diseases. Yet, there is 

little agreement as to the specific risk factors vigorous physical activity affects in adolescents.  

 

Whilst most research suggests that moderate intensity physical activity is not related to 

metabolic risk factors, Rizzo et al., (2008) reported that in 613 adolescents (352 girls) 

moderate, vigorous and total physical activity levels were inversely associated with fasting 

glucose, insulin and HOMA-IR. Furthermore, the relationship continued to exist when BMI, 

waist circumference and skinfold thickness were added to the regression analysis, suggesting 

that physical activity levels were associated with insulin resistance independently of body 

composition in adolescents. However, these findings oppose those of recent studies stating that 
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there is no relationship between MVPA and insulin sensitivity in adolescents (Bailey et al., 

2012; Barker et al., 2018).  

 

The inconsistent findings might relate to the difficulties of measuring physical activity levels, 

as even when physical activity is measured objectively by accelerometers some activities such 

as cycling and swimming cannot be recorded, levels of different activities may vary with 

season and day of the week and participants may modify their activity while wearing the 

accelerometers (Strath et al., 2012). In addition, further inconsistencies might exist due to the 

varying durations of activity measured in the adolescents and the different modes of activity 

undertaken, which might confound the relationship between physical activity and 

cardiometabolic health during adolescence (see Table 2 for overview of studies and potential 

mediating variables relating to physical activity).  

 

Given the limitations associated with the measurement of physical activity levels in 

adolescents, physical fitness is a preferred method to assess the benefits of prolonged 

participation in physical activity. Fitness has been poorly defined in earlier studies and often 

directly measured or estimated V̇O2 peak during graded treadmill tests (e.g. Bugge et al., 2012; 

Ischander et al., 2007, Silva et al., 2014) or graded cycle ergometer tests (e.g. Bailey et al., 

2012) has been used as the fitness measure, but as discussed earlier this has a large genetic 

component. There has also been a series of studies recently that determined fitness or endurance 

capacity (accepted as the measure of fitness in this thesis) by performance on the multi-stage 

fitness test (MSFT) (e.g. Barker et al., 2018; Buchan et al., 2015; Silva et al., 2017). Given the 

vast array of performance tests used to measure endurance capacity, it is unsurprising that there 

are discrepancies across previous research relating to which risk factors for cardiometabolic 

diseases are associated with endurance capacity (see Table 2). For example, Bailey et al., 

(2012) determined V̇O2 peak using a maximal cycle ergometer test in adolescent boys and girls 
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and reported that of the comprehensive list of traditional risk factors for cardiometabolic 

diseases measured, only waist circumference (r= -0.43), diastolic blood pressure (r = -0.26) 

and triglycerides (r = -0.20) were correlated with V̇O2 peak, whilst no relationship was 

observed with systolic blood pressure, total cholesterol, HDL-c or blood glucose). In contrast, 

when endurance capacity was measured by the MSFT, a relationship was observed with body 

composition (sum of skinfolds) (r = -0.43) and a clustered cardiovascular disease risk score (r 

= -0.31) (composed of traditional risk factors, Bailey et al., 2012).  

 

Thus far, this review has focused on the relationship between physical fitness and traditional 

risk factors for cardiometabolic diseases. However, given the suggested role of low-grade 

chronic inflammation in the development of atherosclerosis and the increasing prevalence of 

inflammation in young people (Magnussen et al., 2012); it is important to determine whether a 

relationship exists between physical fitness, body composition and the novel risk factor, low-

grade chronic inflammation. The definition of low-grade chronic inflammation encompasses 

pro-inflammatory (IL-1β, IL-6, and TNF-a) and anti-inflammatory cytokines (IL-1ra and IL-

10) (Pedersen & Petersen, 2005). However, the effect of physical activity and fitness on 

inflammatory mediators (as a risk factor for cardiometabolic diseases) has to date been limited 

to an examination of pro-inflammatory cytokines IL-6, TNF-α and CRP (Platat et al., 2006, 

Buchan et al., 2015, Bugge et al., 2012). An inverse association was reported in adolescents 

aged 14 – 16 y between IL-6, CRP and TNF-a and V̇O2 peak (Buchan et al., 2015, Bugge et 

al., 2012), muscular fitness (Buchan et al., 2015) and body composition (Platat et al., 2006, 

Bugge et al., 2012). However, to appropriately determine whether there is a relationship 

between physical fitness and cardiometabolic health in adolescents an array of pro- and anti-

inflammatory cytokines that are implicated in the development of low-grade chronic 

inflammation must be measured in heterogeneous population of adolescents (Gleeson et al. 

2012).   
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Only one study to date has appropriately assessed the effect of training and body composition 

on low-grade chronic inflammation, by measuring a comprehensive panel of pro-inflammatory 

and anti-inflammatory mediators (Jürimäe et al., 2017). Healthy, pubertal girls (n=30, aged 10 

– 12 y) who trained in rhythmic gymnastics for 10-12 h per week and competed at national 

level were recruited. The rhythmic gymnasts were compared against 30 untrained controls, 

who were healthy but only recreationally active, completing two sessions of physical activity 

at school each week. Fasted blood samples were analysed for 12 markers of inflammation 

(which included anti-inflammatory cytokines IL-1ra and IL-10 and a panel of pro-

inflammatory cytokines including IL-6) and leptin concentration. Interestingly, there were no 

differences between the trained gymnasts and the untrained controls for any of the 12 

inflammatory mediators measured, nor were the inflammatory markers related to body 

composition (measured by DEXA) of the rhythmic gymnasts. These findings oppose those of 

previous research in adolescents whereby select pro-inflammatory markers were related to 

physical fitness (Platat et al., 2006, Buchan et al., 2015, Bugge et al., 2012). However, the 

discrepancies might exist as Jürimäe et al. (2017) did not objectively measure any component 

of physical fitness, and instead compared well-trained and recreationally active young girls. 

Therefore, the relationship between physical fitness, body composition and low-grade chronic 

inflammation remains unknown, particularly in young people due to the limitations of previous 

research; and thus warrants further investigation. 

 

Cross-sectional research that examines the association between physical fitness, adiposity and 

cardiometabolic health in adolescents that addresses the limitations of previous research is 

necessary to continue developing understanding of the variables that are most important in 

determining cardiometabolic health in young people. Such information can be used to inform 

future health policy and guidelines, emphasising the importance of a physically active lifestyle 

and providing details relating to the most appropriate performance tests to be conducted in 
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adolescents (particularly given the potential to track training status and subsequent capability 

to predict cardiometabolic health). Such tests could subsequently be used in a school-based 

setting to evaluate the physical fitness of young people and track their cardiometabolic health 

through puberty via a non-invasive measurement, thus providing the opportunity to target at-

risk individuals and develop appropriate goals to reverse the current adverse health trends 

(Health Survey for England, 2016). 

 

2.2.3 Recommendations for future research in adolescents 

From reviewing the literature to date the following recommendations for future research, 

assessing the relationship between physical fitness and risk factors for cardiometabolic health 

in young people can be made:  

 

 Studies should be designed so that if a dose-response relationship between physical 

activity/ physical fitness/ body composition exists, this can be evidenced. 

 The method for measuring physical fitness should appropriate for young people and 

sensitive enough to track the changes in physical fitness that occur with participation 

in physical activity and structured exercise. This is particularly important given the 

limitations of directly measured V̇O2 peak due to the large genetic contribution to 

maximum oxygen uptake, despite this being the gold standard traditional measure of 

cardio-respiratory fitness.  

 A comprehensive panel of inflammatory mediators should be measured when assessing 

whether a relationship exists between physical fitness and body composition with low-

grade chronic inflammation. The list of analytes should include each of the 

inflammatory mediators defined in low-grade chronic inflammation and include both 

pro- and anti-inflammatory cytokines. 
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 The heterogeneity of the population recruited to the study, particularly the 

heterogeneity of physical fitness/ body composition should be considered, with 

relationships more easily identified with a diverse population.  
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Table 2. A review of studies examining the effect of physical activity levels, physical fitness and adiposity on risk factors for cardiometabolic diseases in 

adolescents 
Study Details Methodology Findings 

Authors Study n Age of 

Participants 

(y) 

Type and Assessment 

Physical Fitness/ Body 

Composition 

Risk Factors of 

Cardiometabolic Diseases 

Assessed 

Adjustment for 

Confounders 

Relationship Direction 

Artero et 

al., (2013) 

639 12.5 – 17.5 Muscular fitness: Handgrip 

Strength & Standing Long 

Jump 
 

Body Composition: Sum of 

skinfolds 

White Blood Cell Count 

Complement factors C3 & 

C4 

Leptin 

CRP 

Age 

Sex 

Pubertal Status 

 

Muscular 

fitness: Yes 

Muscular fitness 

inversely 

associated with 

inflammation, 

partly explained by 

body composition 

Bailey et 

al., (2012) 

100 11.8  ± 1.3 MVPA assessed by 

accelerometry 
 

Endurance capacity: 

Maximal Cycle Ergometer 

Test 

Cardiometabolic risk score: 

Waist Circumference  

Triglycerides 

Total/ HDL-c 

Glucose 

Blood Pressure 

Sex  

Age 

Ethnicity 

Socio-economic 

status 

 

MVPA: No 
 

Endurance 

capacity: Yes 

 

Endurance: 

negatively 

associated with 

WC triglycerides, 

diastolic BP & 

clustered score 
 

VPA: negatively 

correlated with 

diastolic BP 

Barker et 

al., (2018) 

534 14.7 ± 1.3 MVPA assessed by 

accelerometry 
 

Endurance capacity: MSFT 

BMI 

Waist Circumference 

Blood Pressure 

Fasting Triglycerides 

HDL-cholesterol 

HOMA-IR 

Clustered score 

Sex 

Age 

Tanner Stage 

MVPA: No 
 

Endurance 

capacity: Yes 

Endurance and 

Muscular fitness 

had independent 

relationship with 

body composition 

& clustered score 
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Buchan et 

al., (2015) 

192 16.7 ± 0.6 Endurance capacity: MSFT Composite risk:  

IL-6 PAI-1, CRP and 

adiponectin 

 

Sex 

Age 

Physical Activity 

Endurance 

capacity: Yes 

Endurance capacity 

negatively 

associated with 

composite 

cardiovascular risk 

Bugge et 

al., (2012) 

413 13.4 ± 0.3 Endurance capacity: VO2 

peak test (treadmill) 
 

Body Composition: Sum of 

Skinfolds 

HOMA-IR 

CRP 

IL-1ra  

IL-6  

TNF-α 

Sex 

Pubertal 

Development 

Endurance 

capacity: Yes 
 

Body 

Composition: 

Yes 

CRP, IL-6 and 

TNF-α negatively 

related to VO2 peak 

& sum of skinfolds 

Ischander 

et al., 2007) 

74 15.5 ± 0.69 Physical Activity Levels: 3 

d questionnaire 
 

Body Composition: DEXA 

HOMA-IR 

CRP 

IL-1ra  

IL-6  

TNF-α 

IGF-1 

--- Physical 

Activity Levels: 

Yes 

Inactive group has 

higher 

concentration of 

inflammatory 

mediators  IL-6, 

IL-1ra, and TNF-α 

compared to the 

physically active 

group 

Jurimae et 

al., (2017) 

60 11.1 ± 0.6 Trained (Rhythmic 

Gymnasts) vs. Untrained 

populations 

Leptin 

IL-1a, IL-1β, IL-2, IL-4, 

IL-6, IL-8, IL-10,  TNF-α 

and VEGF 

--- No --- 
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Magnussen 

et al., 

(2012) 

1642 15  Muscular fitness: 

Isokinetic Dynamometers/ 

Standing Long Jump/ 30 s 

Push-Up Test 

Total Cholesterol/ HDL-c 

Blood Pressure 

BMI 

Waist Circumference 

Age 

Sex 

Body Mass 

Muscular 

fitness: Yes 

Muscular strength, 

power and 

endurance 

inversely 

associated with 

clustered risk 

Rizzo et al., 

(2008) 

613 15.5 ± 0.5 MVPA assessed by 

accelerometry 

 

Body Composition: Waist 

Circumference and Sum of 

Skinfolds 

Fasting Glucose, Insulin 

and HOMA-IR 

Sex 

Waist 

Circumference 

Pubertal Status 

MVPA: Yes 
 

Body 

Composition: 

Yes 

Inverse association 

between MVPA 

but not LPA with 

insulin sensitivity 
 

Negative 

association 

between body 

composition and 

HOMA 

Silva et al., 

(2014) 

53 12.3 ± 1.7 Endurance Capacity:  VO2 

peak test (treadmill) 

Blood Pressure 

Fasting glucose and Insulin 

Total/ HDL-c 

Triglycerides 

CRP 

--- Endurance 

Capacity: Yes 

VO2 peak test 

inversely correlated 

with CRP 

Silva et al., 

(2017) 

957 12 - 13 Endurance capacity: MSFT 

 

Body Composition: 

Skinfold Thickness 

Waist Circumference 

Blood Pressure 

HDL-c 

Glucose  

Triglycerides 

Age 

Sex 

Age from Peak 

Height Velocity 

Endurance 

Capacity: Yes 
 

Body 

Composition: 

Yes 

Independent 

inverse associations 

with cardiovascular 

risk score 
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2.3 Physical Activity, Physical Fitness, Body Composition and Risk Factors 

for Cardiometabolic Health: Longitudinal Studies 

 

Whilst cross-sectional studies are useful for examining the relationship between exposure 

variables and disease outcomes (such as the association between risk factors for 

cardiometabolic diseases with physical activity, physical fitness and body composition), the 

design of cross-sectional research is associated with several limitations. These limitations 

include the potential for unevenly distributed confounding variables to create a false positive 

associations between exposure and outcome (including socio-economic status, education, 

ethnicity), the potential for sampling frames to lead to selection bias and recall bias from the 

participants, and the nature of the study design meaning cause and effect cannot be 

distinguished as participants are only assessed at one time point. Longitudinal studies 

(sometimes referred to as cohort studies), which recruit two groups of participants (a sample 

group exposed to the mediating variable, typically a physical activity intervention, and a 

control group, who are not exposed to the intervention) and follow them across time, correct 

some of the aforementioned limitations of cross-sectional studies. To further understanding 

of the relationship between physical activity, physical fitness and adiposity with risk factors 

for cardiometabolic diseases, section 2.3 will review the longitudinal research in the field.  

  

2.3.1 Adults 

As per the cross-sectional studies reviewed in section 2.2.1, the early longitudinal studies in 

the field of exercise and cardiometabolic health in adult populations focused on the 

relationship between physical activity levels and cardiovascular disease morbidity and 

mortality (for a thorough review of such research in adults see Blair, Cheng & Holder, 2001). 

The first cohort study to observe a relationship between physical activity levels and all-cause 

mortality (part of the Harvard Alumni studies, n = 16,936) was conducted in men aged 35 - 
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74 years who were followed up between 1962 and 1978. The recruited participants completed 

physical activity questionnaires which assessed blocks walked, stairs climbed and the sports 

they participated in, detailing the duration of such activities. Each activity was then expressed 

as kilocalories of energy expended each week and participants were categorised into three 

distinct groups based on a physical activity index. The main finding of the study was that men 

expending < 2000 kcal per week (lowest physical activity index) had a 38 % greater risk of 

all-cause mortality than men expending > 3500 kcal per week (highest physical activity index) 

during the 12 -16-year follow-up.  

 

More recent longitudinal research has focused on the relationship between physical activity 

and cardiometabolic diseases. Consistently across such research, self-reported physical 

activity levels (assessed by mail-back questionnaires) were inversely associated with 

cardiovascular disease morbidity and mortality in men and women; as evidenced by the 

increased relative risk ratios of 1.98 – 3.58 in participants in the lowest physical activity 

groups compared with the highest (Bijnen et al., 1998; Haapanen et al., 1996; Haapanen et 

al., 1997). Similarly, Helmrich et al., (1991) reported that in 5,990 male alumni (University 

of Pennsylvania) leisure time physical activity was inversely related to relative risk of type 2 

diabetes in 5990 male university alumni (with reduced relative risk of 0.65 in men 

participating in moderate and vigorous sporting activity versus no sport) (Helmrich et al., 

1991). 

 

A promising finding of this early research is the consistent dose-response relationship 

observed between physical activity levels and the prevalence of cardiovascular disease and 

type 2 diabetes. For example, the relative risk of developing type 2 diabetes in 5,990 male 

Harvard alumni was 0.90 for those originally classified as moderately active, 0.69 for those 

originally classified as vigorously active and 0.65 for the two groups combined moderate and 
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vigorous physical activity combined (Helmrich et al., 1991). The dose-response relationships 

reported support the idea of a causal relationship between physical activity levels and risk of 

cardiometabolic diseases in adults (for review, see Blair, Cheng & Holder, 2001).   

 

Given the limitations associated with measuring physical activity levels, as discussed 

throughout section 2.2, the focus of research has progressed to examine the relationship 

between physical fitness (variously measured) and the risk of cardiometabolic diseases in 

adults across time (Blair, Cheng & Holder, 2001). The most noted of such research is that of 

Blair et al., (1989), whereby test duration during a V̇O2 max test on a treadmill and risk of 

cardiovascular disease mortality was determined in 13,344 participants (10,224 men and 

3,120 women) in the United States. Participants were categorised into physical fitness 

quintiles at baseline (based on test duration during the V̇O2 max test, which is a better 

indicator of fitness than V̇O2 max itself) and relative risk for cardiovascular disease mortality 

calculated for each group at follow-up. Average follow-up time was 8 years, during which a 

total of 283 deaths were identified on national registers. Cardiovascular disease mortality 

showed a strong gradient across the physical fitness quintiles in men (age-adjusted death rates 

per 100,000 years: least fit quintile = 25.0, moderate fitness quintile = 7.8, and most fit 

quintile = 3.1) and women (age-adjusted death rates per 100,000 years: least fit quintile = 7.4, 

moderate fitness quintile = 2.9, and most fit quintile = 0.8). Interestingly, the greatest 

reduction in cardiovascular disease mortality existed between the first (lowest fitness) and 

second quintiles, suggesting that moderate physical fitness, which should be attainable for 

most adults, protects against cardiovascular disease mortality (Blair et al., 1989).  

 

Further longitudinal research has examined the potential mediating effect of body 

composition on the relationship between physical fitness and cardiometabolic health (Lee, 

Blair & Jackson, 1999). This observational cohort study was of a similar design to the earlier 
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research of Blair et al. (1989), in that 21,295 men were followed-up for 8 years and physical 

fitness was accepted as V̇O2 max determined from a maximal oxygen uptake treadmill test. 

In addition, body composition was assessed by hydrostatic weighing and skinfold thickness. 

Participants were categorised as ‘fit’ or ‘unfit’ males who were either lean, normal weight or 

obese. Relative risk (RR) of cardiovascular disease mortality was positively related to body 

composition (men categorised as lean and fit were the reference group to which risk 

comparisons were made). However, physical fitness mediated the relationship between body 

composition and risk of cardiovascular disease mortality, with a reduced risk in the fit men 

across each body composition category (for example obese, fit males: RR = 1.35 whereas, 

obese, unfit males: RR = 4.08). These findings emphasise the importance of considering both 

physical fitness and body composition in cohort studies when considering exposure variables 

for cardiometabolic diseases in individuals of all ages.  

 

Finally, it is important to highlight that longitudinal studies facilitate examination of changes 

in physical activity and physical fitness over time and how such changes affect 

cardiometabolic disease risk (for review, see Hardman & Stensel, 2009). The first cohort 

study to assess the changes in physical activity and risk of mortality, again was part of the 

Harvard Alumni Health Study (Paffenbarger et al., 1993). Participants completed physical 

activity questionnaires at baseline (1962 – 1966) and completed follow-up questionnaires in 

1977. For each of the observations the participants were categorised based on weekly energy 

expenditure and participation in moderate-to-vigorous intensity sporting activities. By 1977 

participants who were originally inactive and increased their physical activity levels between 

the two observations reported a reduction in RR (0.85) compared to the originally inactive 

men who did not increase their activity. Furthermore, originally active individuals who 

reduced physical activity levels during 1962 – 1977, had the same relative risk as their 

consistently inactive counterparts (RR = 1.1).  
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A similar design study examining fitness (treadmill maximum oxygen uptake) rather than 

physical activity (Blair et al., 1995), showed that participants who improved physical fitness 

between the two observations had a reduced relative risk of mortality (RR = 0.56), in 

comparison to participants who remained inactive throughout the follow-up of 5 years. Thus, 

previous activity or fitness alone is not sufficient to define mortality risk in adults and 

individuals need to sustain or increase physical activity/fitness during adulthood to enhance 

health. 

 

2.3.2 Children and Adolescents  

Cross-sectional studies have provided a preliminary insight into the potential relationships 

between physical activity levels, physical fitness and body composition with cardiometabolic 

health in children and adolescents (see section 2.2 for review). This section reviews the 

longitudinal research in young people (given the cohort study design, children are typically 

recruited at baseline and followed-up during adolescence, hence the use of the term young 

people throughout this section), to determine whether a relationship exists between physical 

activity and/or physical fitness and risk factors for cardiometabolic diseases and whether this 

is of clinical relevance for future therapeutic interventions.  

 

As evidenced in Table 3, there is general consensus that moderate-to-vigorous physical 

activity levels in young people, are inversely associated with peripheral insulin resistance, 

with change in physical activity over time being related to change in peripheral insulin 

resistance over time. Hendersen et al., (2016), directly examined the relationship between 

physical activity levels and peripheral insulin resistance (measured through an oral glucose 

tolerance test; OGTT) in young people. In total, 630 children (8 – 10 years) wore an 

accelerometer for 7 days to detail time spent in moderate-to-vigorous physical activity. Body 

composition was measured using dual-energy X-ray absorptiometry (DEXA), which 
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determined free fat mass and fat mass. Each measurement was completed at baseline and at 

follow-up two years later. The main finding was that for every 10 min per day increase in 

moderate-to-vigorous physical activity, insulin sensitivity improved by 4.8 % at follow-up. 

In addition, adiposity was also a strong predictor of insulin sensitivity across time, with a 1 

% increase in fat mass associated with a 3.2 % decrease in insulin sensitivity. These findings 

are in agreement with those of Hjorth et al., (2014), whereby changes in total physical activity 

levels and moderate-to-vigorous physical activity levels in young people during a two-year 

cohort study (children aged 10 years at baseline), were inversely associated with changes in 

insulin resistance (measured by HOMA-IR). Such corroborating findings suggest that 

physical activity levels during childhood predict adolescent insulin sensitivity.  

 

Whilst there is agreement that changes in physical activity levels mediate positive effects on 

insulin sensitivity in young people, there are inconsistencies across longitudinal research as 

to the relationship between physical activity levels and other risk factors for cardiovascular 

disease (see Table 3). For example, in the study of Hjorth et al., (2014), a 10 minute increase 

per day (during the 2 year follow-up) in total and moderate-to-vigorous physical activity 

levels was positively associated with HDL-c (+ 0.02 mmol.L-1 per 10 min increase in 

moderate–to-vigorous physical activity) and negatively associated with triglyceride 

concentration (-0.02 mmol.L-1 per 10 min increase in moderate–to-vigorous physical 

activity). However, there was no relationship between total, moderate or vigorous physical 

activity and blood pressure, BMI z-score or a clustered score of risk factors for 

cardiometabolic diseases.  

 

In contrast, Carson et al., (2014) stated that baseline vigorous physical activity levels (in 

adolescents aged 12 years) predicted systolic blood pressure at follow-up 2 years later, with 

participants performing the most vigorous physical activity presenting with reduced systolic 
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blood pressure (β = - 2.41) in comparison to the reference group undertaking the least amount 

of vigorous physical activity. Further inconsistencies are apparent in the study of Telford et 

al., (2015), whereby physical activity levels in 8-year old children, assessed by pedometers 

during a 4 year follow-up, were not associated with dyslipidaemia (total cholesterol, HDL-c 

and triglycerides). Such inconsistencies in part might relate to differences in the measurement 

of physical activity, the age of the participants at baseline and the different confounding 

variables adjusted for in the statistical analysis (evidenced in Table 3). Thus, further research 

is necessary to establish the specific relationship between physical activity (i.e. moderate, 

vigorous, total physical activity levels or a combination) and risk factors for cardiometabolic 

diseases, so that the findings can be used to inform health practices in young people.   

 

There have been more consistent findings across the longitudinal studies examining the 

relationship between fitness (as oppose to physical activity) and risk factors for 

cardiometabolic disease in young people (see Table 3). A recent study recruited children 

(aged 6-11 years) from 8 European countries and used performance in the MSFT as a measure 

of fitness. The selected traditional risk factors for cardiometabolic diseases were blood 

pressure, triglycerides and HDL-c as a measure of dyslipidaemia, and insulin resistance 

assessed by HOMA-IR. The measurements were completed at baseline and 2 years later at 

follow-up. Linear regression analysis (adjusted for sex, age, parental education, BMI and 

physical activity levels) showed that performance on the MSFT enhanced a composite score 

of risk factors for cardiometabolic diseases (β = - 0.06). Yet, when examining the relationship 

between performance on the MSFT with isolated risk factors, only waist circumference was 

longitudinally predicted by performance on the MSFT (β = - 0.05). Similar findings have 

been observed in children aged 6 years, during a 2-year cohort study (Andersen et al., 2011), 

with low V̇O2 peak at baseline moderately predicting a clustered risk score 2 years later, as 
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calculated from HOMA-IR, total cholesterol, HDL-c, triglycerides and blood pressure (r = 

0.49). 

 

Longitudinal studies to date have only focused on the relationship between physical fitness 

and traditional risk factors for cardiometabolic diseases (see section 2.1.3 for detailed 

description), with no consideration of the relationship between performance on endurance 

capacity tests with novel markers (such as the pro- and anti-inflammatory cytokines that are 

implicated in the pathogenesis of low-grade chronic inflammation) or clinical measures of 

cardiometabolic health (such as flow-mediated vasodilation). Furthermore, often the 

statistical analysis did not account for the potential mediating effects of pubertal development, 

with chronological age the only mediating variable considered in the analysis of previous 

research (see Table 3). Yet, as discussed in section 2.1.6, pubertal development accounts for 

physiological and behavioural changes that might influence the relationship between physical 

fitness and adolescent health, which chronological age cannot. As a result, there is little 

information relating to the effect of changes in physical fitness across time on changes in 

traditional and novel risk factors for cardiometabolic health in adolescents during puberty.  

 

Furthermore, to date, only one study has considered the potential for the method for the 

measurement of body composition and the distribution of fat mass to affect the strength of 

the association between adiposity and traditional risk factors (with no studies including novel 

risk factors) for cardiometabolic diseases in young people (Lawlor et al., 2010). The Lawlor 

et al. (2010) study employed a longitudinal, population-based cohort design, which consisted 

of 5235 young people. Participants attended three clinics at aged 9-10, 11-12 and 15-16 years 

and had their body composition assessed by BMI z-score, waist circumference, and a DEXA 

scan. At the final clinic the adolescents had a fasted blood sample taken, which was 

subsequently analysed for total cholesterol, HDL-c, LDL-c and triglycerides. All three 
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measures of childhood adiposity were prospectively associated with adverse cardiovascular 

profiles in adolescence, with similar magnitudes of association at each age group (increased 

outcome odds ratios of 1.03 - 1.99 for traditional risk factors for cardiometabolic diseases 

including blood pressure and insulin sensitivity). Whilst these findings suggest that the 

measure of adiposity, whether the gold standard or a field measure, does not mediate the 

relationship between body composition and adolescent cardiometabolic health, it remains 

unknown which measurement of physical fitness is most appropriate for the prospective 

prediction of risk factors for cardiometabolic disease in adolescents.  

 

2.3.3 Future Recommendations for Cohort Studies in Young People 

The following recommendations are suggested for future cohort studies in young people that 

directly assess the relationship between physical activity, physical fitness and body 

composition with risk factors for cardiometabolic health in young people:  

 To longitudinally examine how continuous training versus remaining inactive during 

adolescence effects performance on physical capacity tests, V̇O2 peak, adiposity and 

traditional and novel risk factors for cardiometabolic diseases. Such information is 

crucial for the maintenance and enhancement of adolescent cardiometabolic health.   

 To longitudinally assess how changes in performance on physical capacity tests, V̇O2 

peak and adiposity are related to the changes in risk factors for cardiometabolic diseases 

in adolescents across time. 

 To consider the potential confounding variables that are likely to affect the relationship 

between physical fitness, body composition and risk factors for cardiometabolic health 

throughout adolescence, with particular consideration to the effect of pubertal status. 

 Future studies should consider the performance test selected to assess physical fitness 

and the method for measuring body composition to ensure that should a relationship 

exist, the measurement is sensitive enough and able to detect an association across time. 
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Furthermore, the measurement should be applicable to children, adolescents and adults 

to allow for continuation of the study throughout the participant’s lifetime.  

 As there have been no studies to date that have examined the association between 

inflammatory mediators with physical fitness and body composition future studies 

should address this and determine whether a relationship exists across time. The list of 

analytes should be comprehensive and include each of the inflammatory mediators 

defined in low-grade chronic inflammation, especially as this is one of the main risk 

factors implicated in the development of cardiometabolic diseases.  

 Whilst early research has suggested that physical activity levels are associated with 

insulin sensitivity throughout adolescence, there is yet to be a study that has examined 

whether physical fitness is directly associated with risk of type 2 diabetes in young 

people (with previous studies assessing cardiovascular and metabolic health 

collectively within a composite or clustered risk score). Such information is important, 

given the increasing prevalence of type 2 diabetes in young people in the United 

Kingdom and the increasing need for therapeutic interventions to reverse current trends. 
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Table 3. A review of longitudinal studies that have examined the effect of training, performance on physical capacity tests and adiposity on risk factors for 

cardiometabolic health in adolescents  
Study Details Methodology Findings 

Authors Study n Age of 

Participants 

(y) 

Type and Assessment 

Physical Fitness/ Body 

Composition 

Risk Factors of 

Cardiometabolic Diseases 

Assessed 

Adjustment for 

Confounders 

Relationship Direction 

Andersen et 

al., (2011) 

Baseline: 

484 
 

Follow-

up: 

434 

Baseline:  

6.8 ± 0.4 
 

Follow-up: 

9.5 ± 0.8 

MVPA assessed by MTI 

activity monitor 

 

Endurance capacity:  Maximal 

Treadmill Test 

Glucose/ Insulin (HOMA-IR) 

Total Cholesterol/ HDL-c 

Triglycerides 

Blood pressure 

Age 

Sex 

Sum of Skinfolds 

 

MVPA: No 
 

Endurance 

capacity: Yes 

Low physical fitness 

at age 6 predicted 

later development of 

clustered CVD risk. 

Carson et 

al., (2014) 

Baseline: 

315 

Baseline:  

12.2 ± 0.8 
 

Follow-up: 2 

years 

MVPA assessed by 

accelerometry 

Waist Circumference 

BMI z score 

Systolic Blood Pressure 

Sex  

Age 

Dietary Intake 

 

MVPA: Vigorous 

Physical Activity 

Only 

 

Time spent in VPA at 

baseline was the 

primary predictor of 

cardiometabolic 

health 2 y later 

Hjorth et al., 

(2014) 

Baseline: 

723 

 

Follow-

up: 

632 

Baseline:  

10.0 ± 0.6 
 

Follow-up: 2 

years 

MVPA assessed by 

accelerometry 

 

BMI z score 

Blood Pressure 

Glucose/Insulin (HOMA-IR) 

Fasting Triglycerides 

HDL-cholesterol 

Clustered score 

Sex 

Age 

Pubertal Status 

Baseline movement 

behaviour 

Baseline risk marker 

of interest 

MVPA: Yes Changes in total PA 

and MVPA both 

associated with HDL-

c and HOMA-IR.  

MVPA inversely 

associated with 

triglycerides 
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Henderson  

et al., (2016) 

Baseline: 

630 

 

Follow-

up: 

564 

Baseline:  

9.6 ± 0.9 
 

Follow-up: 

11.7 ± 0.9 

 

MVPA assessed by 

accelerometry 
 

Body Composition: DEXA 

Oral Glucose tolerance Test 

Glucose/Insulin (HOMA-IR) 

Fasting Triglycerides 

Total cholesterol/ HDL-c 

 

Season 

Endurance Capacity 

MVPA: Yes 
 

Body 

Composition: Yes 

Every 10 min 

increase in MVPA 

was associated with a 

3.5% decrease in 

body fat & 4.8% 

increase in insulin 

sensitivity. 

Klakk et al., 

(2014) 

Baseline:  

729 
 

Follow-

up: 365 

Baseline:  

9.4 ± 0.8 
 

Follow-Up: 2 

years 

Endurance capacity: Andersen 

Intermittent Test (treadmill) 
 

Body Composition: DEXA 

and waist Circumference 

Blood Pressure 

Composite Risk Score: 

HOMA-IR, SBP, Total 

Cholesterol/HDL-c, 

Triglycerides 

Sex 

Age 

Pubertal Development 

Endurance 

capacity: Yes 
 

Body 

Composition: Yes 

Baseline adiposity 

and endurance 

capacity inversely 

associated with 

composite risk score. 

Lawlor et 

al., (2010) 

Baseline:  

5235 

Baseline:  

9 - 10 

 

Follow-Up: 

15 - 16 

Body Composition:  

BMI z score 

Waist Circumference 

DEXA 

Blood Pressure 

Insulin/ Glucose/ HOMA-IR, 

Total Cholesterol/ HDL-c / 

LDL-c  

Triglycerides 

Household 

Occupation 

Parental Education 

Birth Weight 

Height 

Gestational Age 

Parental BMI 

Age 

Pubertal Status 

Yes BMI, Waist 

Circumference and 

FM from the DEXA 

were associated with 

increased odds of 

adverse SBP, HDL-c, 

LDL-c, triglycerides, 

and insulin. 

Telford et 

al., (2015) 

Baseline:  

694 
 

First 

Follow-

up: 563 
 

Second 

Follow-

Up: 

469 

Baseline:  

8.1 y 

 

First Follow-

Up: 10.1 y 

 

Second 

Follow-Up: 

12.1 y 

Endurance capacity: MSFT 
 

Body Composition: DEXA  
 

Physical Activity: Pedometer 

Total Cholesterol/ HDL-c 

Triglycerides 

Age 

Height 

Body Mass 

Body Surface Area 

Endurance 

capacity: Yes 

 

Body 

Composition: Yes  

 

Physical Activity: 

No 

Individual blood lipid 

markers inversely 

associated with 

endurance capacity 

and body 

composition 
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Zaquot et 

al., (2016) 

Baseline:  

1635 

Baseline:  

6 - 11 

 

2 y follow-up 

Endurance capacity: MSFT SBP/ DBP 

Triglycerides 

HDL-c 

Insulin Resistance – HOMA-

IR 

Sex 

Age 

Parental Education 

Socio-demographic 

status 

 

Endurance 

capacity:  Yes  

Following adjustment 

endurance capacity 

was the only 

significant 

longitudinal predictor 

of metabolic 

syndrome 
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2.4  Physiological Responses to Acute Bouts of Exercise 

 

The epidemiological studies reviewed in section 2.2 and 2.3 collectively suggest that there is a 

relationship between physical activity, physical fitness and body composition with traditional 

risk factors of cardiometabolic diseases in children, adolescents and adults. Yet, as discussed 

cross-sectional and longitudinal studies only determine associations between exposure and 

outcome variables, and therefore cannot infer causality. The effect of an acute bout of exercise 

on traditional and novel risk factors for cardiometabolic diseases has been used to identify the 

potential mechanisms that in part explain the associations between exposure and outcome 

variables. Section 2.4 will review the available research that has examined the physiological 

responses (with a particular focus on the inflammatory, glycaemic and insulinaemic responses) 

to acute bouts of exercise in young people and adults. Mechanistically, if such responses are 

repeated regularly it is hypothesised that this would reduce the risk of cardiometabolic diseases 

(Petersen & Pedersen, 2005; Gleeson et al., 2012).   

 

2.4.1 Adults 

Several studies in adults have examined the effect of acute exercise on traditional risk factors 

for cardiometabolic diseases (such as postprandial lipemia, postprandial glycaemic and 

insulinemic responses, and endothelial function) (for review, see Freese et al., 2013). Few 

studies though have examined the moderating effect of the consumption of standardised meals 

on the exercise response which is important as a large portion of awake time is spent in the 

postprandial state. 

 

The postprandial state is characterised by elevated triglyceride concentration (regular exposure 

to elevated triglyceride concentration is a physiological risk factor of cardiovascular disease, 

see section 2.1.3). In their quantitative review, Freese et al., (2013) reported that an acute bout 
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of aerobic exercise (in a pooled sample of 574 healthy males and females, taken from 70 

studies) had a moderate, inverse effect on triglyceride incremental area under the curve (iAUC) 

following the consumption of a standardised meal (Cohen’s d = - 0.58). Interestingly, the effect 

of prior exercise was stronger with increased exercise intensity (which was of shorter duration 

given the increased intensity), as high intermittent exercise was associated with a larger 

reduction in triglyceride iAUC following the consumption of a standardised meal than 

moderate intensity exercise (Cohen’s d = - 1.49). The collective findings of previous research 

suggest that an acute bout of exercise successfully reduces postprandial lipemia following the 

consumption of a high fat meal in healthy adults, with exaggerated effects in women and 

following high intensity interval exercise.  

 

Hypertension and reduced compliance of blood vasculature (traditional risk factors of 

cardiometabolic diseases) are risk factors of atherosclerosis, as both can lead to injury to the 

intima layer of a blood vessel and the response to injury hypothesis (see section 2.1.3). A 

common method employed to assess the compliance of the blood vasculature and to determine 

how well accustomed the blood vessels are responding to shear stress, is flow-mediated dilation 

(FMD) (Gonzales et al., 2010; McClean et al., 2015). It was recently shown that shear stress 

was significantly higher immediately after high intensity cycling exercise (5 min at 100% V̇O2 

max) when compared with exercises of lesser intensity (30 min at 55% V̇O2 max, 20 min at 

75% V̇O2 max and 5 min at 100% V̇O2 max) (McClean et al., 2015). The authors suggested 

that the increased shear stress post-exercise (causing vessels to dilate), if repeated regularly, 

could explain the relationship between endothelial function and chronic physical activity 

levels. Such findings have implications for public health recommendations relating to the type 

of exercise that is best suited for the prevention of risk factors of cardiometabolic diseases in 

adults. However, more research is required to determine whether the responses to acute bouts 
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of exercise are responsible for the chronic benefits to cardiometabolic health that result from 

long-term participation in physical activity.  

 

The glycaemic and insulinaemic responses to acute bout of exercise also have a role in the 

prevention of traditional risk factors of cardiometabolic diseases in adults (particularly 

metabolic health, such as the prevention of type 2 diabetes). As discussed in section 2.1.5, there 

are several methods to assess the glycaemic and insulinaemic response to acute bouts of 

exercise. The most common of these methods employed across previous research in adults is 

the change in blood glucose and plasma insulin concentration across time (pre- and up to 

several hours post-exercise) (Mendham et al., 2012, 2013, 2015). In a series of studies 

conducted in Australian middle-aged men (38 – 48 years), the glycaemic and insulinaemic 

responses to small-sided games (modified rugby) and traditional endurance activity (40 min of 

stationary cycling at ~ 80 % heart rate max) were observed up to 4 h post-exercise (Mendham 

et al., 2012, 2013, 2015). The main findings of the studies were consistent with previous 

literature (Fischer, 2006; Kramer and Goodyear, 2007), as the endurance and games-based 

activity elicited favourable glycaemic and insulinaemic responses (with a reduced plasma 

insulin from baseline in both trails). Additionally, fasted HOMA-IR (a measure of insulin 

resistance) measured the morning after the exercise, was also reduced from baseline in each of 

the exercise trials (baseline: 4.50; cycling trial: 1.76; rugby trial: 1.54 the morning following). 

Whilst such findings suggest that endurance and games-based activity in middle-aged men 

elicit transient reductions in fasted blood glucose and plasma insulin concentrations, it remains 

unknown whether the response differs in magnitude when assessed in the postprandial state. 

As such, future studies should consider the ecological validity of the study design, considering 

the consumption of standardised meals to ensure that insulin sensitivity post-exercise remains 

enhanced when the participants are exposed to additional variables that are incorporated into 

their everyday lives.  
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Finally, as described in section 2.1.5, the inflammatory responses to acute bouts of exercise are 

suggested to have anti-inflammatory properties that could over-time mediate reductions in low-

grade chronic inflammation, which is the leading predictor of cardiovascular events in adults 

(Gleeson et al., 2011). Recently, high intensity intermittent exercise (10 x 60 s cycling at 90% 

maximum power) (Dorneles et al., 2016) and games-based activity (modified rugby) 

(Mendham et al., 2015) in middle-aged men induced a transient increase (~ 60% from baseline 

to 30 min post-exercise) in cytokines with anti-inflammatory properties (IL-6, IL-1ra and IL-

10); whereas, moderate intensity exercise (10 x 60 s cycling at 75 % maximum power) did not 

induce a change in any of the inflammatory mediators measured (including IL-1ra, IL-6, IL-8, 

IL-10 and IL-17) (Dorneles et al., 2016). Such findings suggest that high intensity exercise and 

games-based activities might be the most effective potential therapeutic interventions (in 

comparison with lower intensity activities) to reduce low-grade chronic inflammation and the 

enhancement of cardiometabolic health in adults. However, it is unknown whether the 

inflammatory response observed in middle-aged men is applicable to other populations, 

including women, children, adolescents and older adults. This is particularly important for 

young people given that childhood health tracks into adult health (Herman et al., 2009).  

 

2.4.2 Children and Adolescents  

 

Given the limited number of studies in children examining the transient response to acute bouts 

of exercise (only two studies, see Table 4), this section will review previous research in children 

and adolescents together and will include an evaluation of studies that have examined the 

response of triacylglycerol, endothelial function, insulin sensitivity and inflammation to acute 

bouts of exercise.  

 

As mentioned throughout section 2.4.1, regular exposure to elevated triacylglycerol is a key 

risk factor in the development of cardiometabolic diseases, particularly in the aetiology of 
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atherosclerosis (Hardman and Stensel, 2009). The consumption of high fat meals, which has 

become increasingly common in young people in western countries (Taveras et al., 2005), 

increases postprandial triacylglycerol concentration (Sedgwick et al., 2013), and is therefore 

of concern for adolescent cardiometabolic health. An acute bout of prior exercise is suggested 

as a potential intervention to reduce exposure to postprandial triacylglycerol in young people 

(Bond et al., 2015b; Sedgwick et al., 2013; 2014). Recently, acute bouts of moderate intensity 

exercise, performed as continuous exercise on a treadmill (Sedgwick et al., 2013) or a cycle 

ergometer (Bond et al., 2015b), reduced plasma triacylglycerol iAUC following the 

consumption of a high fat meal by 34 % one hour post-exercise (Bond et al., 2015b) and by 

24% the day following exercise (Sedgwick et al., 2013) in comparison to a rested control trial. 

An acute bout of high intensity cycling at 90 % peak power (a time efficient mode of activity 

for young people) was also successful in reducing postprandial lipemia in adolescent girls (-

38%) following the consumption of a high fat meal (Bond et al., 2015a).  

 

Whilst such findings are promising, such activity is not replicative of the activity patterns of 

adolescents (Howe et al., 2012), which consist of sporadic, intermittent bouts of activity, 

similar to the activity patterns observed during games-based exercise. Only one study to date 

in 15 adolescent boys aged 12 years has examined the effect of games-based activity (small-

sided soccer) on postprandial lipaemia in comparison with treadmill exercise (Smallcombe et 

al., 2018). Interestingly, the games-based activity (48 min) elicited a large reduction in fasting 

triacylglycerol concentration (-30 %) compared with a rested control trial, which was greater 

than the effect (-16 %) observed following moderate exercise on a treadmill (48 min at 65 % 

V̇O2peak) (Smallcombe et al., 2018). Although promising, these findings need corroborating and 

extending before games-based activity can be promoted to reduce postprandial lipemia in 

adolescents. 
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In conjunction with the assessment of postprandial lipemia, Sedgwick et al., (2013, 2014) also 

examined the effect of an acute bout of moderate intensity treadmill walking (at 60% V̇O2peak 

for 60 min) and high intensity cycling (40 x 6 s maximal sprints on a cycle ergometer) on 

endothelial function in adolescent boys aged 12-14 years. The consumption of a high fat 

breakfast and lunch during a rested control trial, reduced FMD by 20 % and 27 %, respectively. 

A reduction in FMD is a suggested risk factor for cardiometabolic diseases as a reduced ability 

of the blood vasculature to dilate, increases the risk of an injury occurring to the intima layer 

of the blood vessel and as such could result in the response to injury hypothesis (see section 

2.1.3 for overview). Interestingly, the moderate and high intensity activity undertaken the day 

prior to the consumption of the high fat meals, reversed the postprandial endothelial 

dysfunction in the adolescent boys (Sedgwick et al., 2013, 2014). Such findings suggest that 

prior day exercise, successfully reduces the adverse responses to endothelial function that occur 

following the consumption of a high fat meal. However, for both postprandial lipemia and 

vascular function the optimum intensity of exercise to elicit such responses are unknown. 

Furthermore, there have been no studies to specifically examine the effects of games-based 

activity on postprandial lipemia or endothelial function in adolescent girls or children aged < 

11 years and as such research in these populations should be of high priority.  

 

The glycaemic and insulinaemic responses to acute bouts of exercise in children and 

adolescents is relatively unexplored to date and studies have not been ecologically valid (see 

Table 4). As a secondary aim, the studies of Barret et al., (2007) and Sedgwick et al., (2013, 

2014) assessed postprandial blood glucose and plasma insulin tAUC to a meal following 

continuous, moderate intensity and high intensity intermittent activity in adolescent boys. 

Interestingly, there was no effect of exercise (whether of high or moderate intensity) on blood 

glucose or plasma insulin tAUC the day following the exercise. Across each of these studies, 

the standardised breakfast and lunch consumed the day following exercise had a high fat 
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content (1.25 – 1.5g of fat per kg body mass), as the primary aim of the study was to assess 

postprandial lipemia. It might be that the high fat content of the meals, which lacked ecological 

validity, was not appropriate or sensitive to the potential changes in the glycaemic and 

insulinaemic responses. Furthermore, as the glycaemic and insulinaemic responses were 

observed the day following exercise it might be that these particular responses are not residual 

and do not remain beyond 24 h post-exercise. Thus there is a need to determine the time course 

of the glycaemic and insulinaemic responses to acute exercise bouts to determine the optimum 

exercise frequency that maintains enhanced insulin sensitivity in young people. 

 

The glycaemic and insulinaemic responses to same-day high intensity intermittent (8 x 1 min 

sprints at 90% peak power) and moderate intensity cycling (work-matched to the high intensity 

exercise, performed at 90% of the gas exchange threshold) have recently been observed in 

children (Cockcroft et al., 2017) and adolescents (Cockcroft et al., 2015). Ten minutes post-

exercise, 75 g of glucose in 300 mL of water was consumed (a method commonly used to 

assess insulin sensitivity, referred to as the oral glucose tolerance test) and the postprandial 

glycaemic and insulinaemic responses were observed for up to 2 h. In both the children and 

adolescents, blood glucose and plasma insulin tAUC were reduced following the moderate 

intensity and high intensity intermittent activity (by 6 - 13%) when compared to a rested trial 

(Cockcroft et al., 2015). 

  

The glycaemic and insulinaemic responses observed, were concluded to have enhanced insulin 

sensitivity in the male participants and the high intensity activity was deemed a time efficient 

alternative to enhance cardiometabolic health. It is important to note that the studies of 

Cockcroft et al., (2015, 2017) do have several limitations that should be considered when 

interpreting the findings. The first is that the studies were conducted in a relatively small 

sample of healthy boys. Given that sex differences exist in the glycaemic and insulinaemic 
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responses to the consumption of standardised meals (Cooper et al., 2017), which are attributed 

to pubertal differences between the sexes, it is especially important that findings in adolescent 

boys are not applied directly to adolescent girls. Furthermore, the oral glucose tolerance test, 

whilst a commonly used measure of insulin sensitivity in young people, is not ecologically 

valid given that meals usually contain a mixture of macronutrients, which this specific test does 

not. Future research should consider such limitations to enhance understanding as to the 

glycaemic and insulinaemic responses to standardised mixed meals in male and female 

adolescents, for application in future interventions that aim to enhance insulin sensitivity in 

young people.  

 

As the physiological responses to acute bouts of exercise are transient in nature, it is also 

important to determine the time course of the responses, to inform decisions relating to exercise 

frequency. To date, only one study has considered the acute and residual glycaemic and 

insulinaemic responses to a standardised meal following 45 min endurance-based activity in 

adolescents (Short et al., 2013). Participants completed three trials, with the rested control trial 

on the first week and the two exercise trials (same-day and prior-day exercise) completed in a 

randomised order thereafter. The exercise consisted of 45 min moderate intensity activity, 

which included 15 min treadmill walking, 15 min cycling and 15 min boxing on a video game. 

The mixed meal (which was high in fat) was consumed either 40 min (same-day) or 17 h post-

exercise (prior-day). Insulin sensitivity was enhanced on both trials, as evidenced by the 

reduced glycaemic and insulinaemic response to the high fat meal, however when beta-cell 

responsivity was examined on the exercise day a greater improvement in insulin sensitivity 

was observed than when assessed the day following exercise (78 % vs. 45 % improvement for 

same-day and prior-day, respectively).  
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Whilst these findings enhance understanding of the acute and residual glycaemic and 

insulinaemic responses to moderate intensity, continuous exercise in adolescents, again there 

are several limitations.  Only endurance exercise was assessed, which has limited application 

in young people given that adolescents tend to participate in sporadic, intermittent activity 

(Howe et al., 2010). Therefore, it remains unknown whether games-based activity (an 

ecologically valid alternative) improves insulin sensitivity in young people. Furthermore, there 

has previously been no consideration for the optimum duration of exercise (for any mode of 

activity) for the enhancement of insulin sensitivity in young people.  Exercise duration is of 

high importance considering that young people currently fail to meet current recommendations 

of 60 min moderate-to-vigorous physical activity per day, and as such it is important to 

ascertain whether shorter durations of exercise elicit similar benefits to those observed 

following a 45-60 min bout of continuous activity (Cockcroft et al., 2015; Short et al., 2013). 

 

The response of inflammatory mediators (including anti-inflammatory cytokines IL-1ra, Il-6 

and IL-10) to acute bouts of exercise are deemed important for the prevention of low-grade 

chronic inflammation in young people (Petersen & Pedersen, 2005), as explained in section 

2.1.5. Despite the potential role of the inflammatory response to exercise in the prevention of 

low-grade chronic inflammation, few studies have examined the pro- and anti-inflammatory 

response to acute bouts of exercise in young people (Table 4). In a series of studies, Nemet et 

al., (2002, 2003, 2009) assessed the response of select inflammatory mediators (IL-1ra, IL-6, 

and TNF-α) to different modes of exercise, including 90 min wrestling, 90 min water polo and 

60 min cross-country running in adolescent boys and girls. Whilst each of the different modes 

of exercise transiently increased the concentrations of the inflammatory mediators immediately 

post-exercise, the magnitude of the response was dependent on the mode of exercise 

undertaken. For example, wrestling practice increased IL-6 concentration 7-fold, whereas 

cross-country only elicited a 2-fold increase.  
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Given the variation in the magnitude of the inflammatory responses to the different types of 

exercise, it is important to determine the inflammatory response to an ecologically valid mode 

of exercise to determine whether such activity can enhance cardiometabolic health in 

adolescents. Furthermore, in previous studies that have assessed the inflammatory response to 

exercise, only a limited number of cytokines have been measured post-exercise (IL-1ra, IL-6, 

and TNF-α). Given the findings of in vitro studies (as described in section 2.1.5), it is important 

to determine whether pro-inflammatory mediators are inhibited (IL-1β, TNF-α and CRP) and 

anti-inflammatory cytokines stimulated (IL-1ra, IL-6, IL-10) post-exercise. Future studies 

should therefore measure a comprehensive panel of inflammatory mediators following an 

ecologically valid acute bout of exercise, such as games-based activity. 

 

The series of studies conducted by Nemet et al., (2002, 2003, 2009) specifically examined the 

inflammatory response pre- and immediately post-exercise in adolescents and did not extend 

the observation beyond this time point. Whilst the response immediately post-exercise is 

important, it does not allow for the potential changes that could result up to several hours post-

exercise to be observed. Such information is necessary as several inflammatory mediators (e.g. 

anti-inflammatory cytokine IL-10 and CRP) are suggested to increase 24 - 48 h post-exercise 

(Petersen & Pedersen, 2005). The longest time post-exercise studied to date is 6 h (600 kcal 

treadmill running at 65% V̇O2peak) in adolescent boys (MacEneaney et al., 2009). Following 

treadmill exercise, IL-6 concentration increased by 95% from baseline, whereas TNF-α and 

CRP concentration remained unchanged post-exercise, but the time-course to the 6 h point was 

not studied and nor were any responses examined beyond this point. Future studies should 

detail the inflammatory response to acute bouts of exercise across the course of the day to 

enhance understanding into the response of each of the inflammatory mediators of interest, 

which should again include a comprehensive panel of inflammatory mediators, (such as, IL-

1β, IL-6, IL-10, TNF-α and CRP) and not be limited to a select number of cytokines, as with 
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previous research. Such studies would therefore become ecologically valid, as the responses to 

exercise would be observed in conjunction with the daily habits of young people (including the 

consumption of standardised meals and the diurnal variation of the inflammatory mediators 

observed). 

 

The physiological responses to acute bouts of exercise are important mechanistically, as these 

responses (including the inflammatory, glycaemic and insulinaemic responses) when repeated 

regularly facilitate the relationships observed between physical fitness and risk factors for 

cardiometabolic health (Gleeson et al. 2012). Knowledge of the inflammatory, glycaemic and 

insulinaemic responses to exercise and the timescale for which these responses remain are 

important for the development of physical activity guidelines, particularly when determining 

the type, intensity, duration and frequency of exercise that should be completed to stimulate a 

protective response in adolescents. These details are currently under-researched, despite their 

importance for exercise prescription when aiming to improve cardiometabolic health. It is 

essential future research examining the physiological responses to acute bouts of exercise 

continues, whilst addressing the aforementioned limitations and gaps in understanding, to 

ensure that effective physical activity guidelines, which are ecologically valid and appropriate 

for adolescents, are developed. 
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Table 4. A review of the studies examining the cardiometabolic responses to acute bouts of exercise in children and adolescents 

Study Details Outcome 

Authors Study n Participant 

Details 

Design and Conditions Vascular Function Postprandial Lipemia Blood glucose/ 

Plasma insulin/ 

HOMA 

Inflammation 

Barrett et al., 

(2007) 

n = 19 
 

Continuous 

Exercise 

(CE) = 10 
 

Intermittent 

Games (IG) 

= 9 

All males 
 

Age (CE) = 

15.3 ± 0.1 y 
 

Age (IG) = 

15.4 ± 0.1 y 

Randomised, Between Measures 

Design (separated by 7 d) 
 

CE: 4 x 15 min treadmill walking at 

59% VO2peak vs. rested control trial 
 

IG: 4 x 18 min intermittent shuttle 

running at 69% VO2peak vs. rested 

control trial 

 

Test Meal: 1.25g fat, 1.07g CHO, 

67 kJ per kg body mass 

 CE Triacylglycerol 

tAUC: 14% 

reduction compared 

to rested control trial 
 

IG  Triacylglycerol 

tAUC: 26%  

reduction compared 

to rested control trial 
 

No effect of either 

mode of exercise on 

iAUC  

triacylglycerol vs. 

control 

CE: No effect on 

iAUC or tAUC on 

blood glucose 

concentration 
 

IG:  No effect on 

iAUC or tAUC on 

blood glucose 

concentration  

Bond et al., 

(2015a) 

n = 20 10 males, 10 

females 
 

Age: 14.1 ± 

0.3 y 

 

Counterbalanced, within-measure 

design 
 

HIIE: 8 x 1 min at 90% peak power 
 

MIE: work-matched cycling at 90% 

of gas exchange threshold 
 

Rested Control Trial 

HIIE: FMD 

decreased 

immediately post, 

increased 2 h post 

from 8.7 – 11.8% 

 

MIE: No effect on 

FMD post-

exercise 
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Bond et al., 

(2015b) 

n = 19 9 males, 10 

females 
 

Age: 14.3 ± 

0.3 y 

 

Counterbalanced, within-measure 

design 
 

HIIE: 8 x 1 min at 90% peak power 
 

MIE: work-matched cycling at 90% 

of gas exchange threshold 
 

High Fat Meal = 1.5g.kg-1 fat 

consumed 1 h post-exercise 

 

 No effect of HIIE or 

MIE on 

triacylglycerol 

concentration (tAUC 

post-exercise) 
 

In girls, 

triacylglycerol iAUC 

decreased by 38% 

following HIIE and 

34% following MIE 

No effect of HIIE or 

MIE on blood 

glucose 

concentration (tAUC 

or iAUC) 

 

Cockcroft et 

al., (2015) 

n = 9 All males 
 

Age: 14.2 ± 

0.4 y 

 

Within Measures, Counterbalanced 

Design 
 

HIIE: 8 x 1 min at 90% peak power 
 

MIE: work-matched cycling at 90% 

of gas exchange threshold 
 

Oral Glucose Tolerance Test 10 min 

post-exercise: 75g CHO 
 

  HIIE: Blood glucose 

tAUC decreased 

(8%); plasma insulin 

tAUC decreased 

(13%) 
 

MIE: Blood glucose 

tAUC decreased 

(6%); plasma insulin 

tAUC decreased 

(12%) 
 

Insulin Sensitivity 

11% & 8% increase 

in HIIE & MIE, 

respectively 

 

Cockcroft et 

al., (2017) 

n = 11 All males 
 

Age: 8.8 ± 

0.8 y 

Within Measures, Counterbalanced 
 

HIIE: 8 x 1 min at 90% peak power 
 

MIE: work-matched cycling at 90% 

of gas exchange threshold 
 

Oral Glucose Tolerance Test 10 min 

post-exercise: 75g CHO 

  Insulin sensitivity 

increased 10% after 

HIIE and 7% after 

MIE 
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Eliakim et 

al., (2015) 

n = 57 Age: 14 - 16 

y 

Between Subjects Design 

 

Inflammatory response to games-

based training sessions (water polo, 

volleyball and wrestling) 

   Pre- to post-exercise 

IL-6 concentration 

increase between 1 - 

6-fold 

 

Pre- to post-exercise 

IL-1ra concentration 

increase up to 92 % 

 

 

 

MacEneaney  

et al., (2009) 

n = 10 All males 
 

Age:  15.6 ± 

0.7 y 
 

Normal 

Weight 

600kcal treadmill exercise at 65% 

VO2 max 
 

Rested Control Trial 
 

Oral Fat Tolerance Test consumed 

the morning following exercise (97g 

fat, 124g CHO, 1,450kcal per 2 m2 

body surface area) 

 Total  cholesterol 

increased (5%) 

during the rested 

control trial, whereas 

no change post-

exercise 

 IL-6 concentration 

increased during the 

rested control trial 

(107%) & exercise 

trial (95%) 
 

No changes in TNF-

α or CRP on either 

trial 

Nemet et al., 

(2002) 

n = 11 All males 

 

Age: 16.5 ± 

0.5 y 

Within Subjects Design 

 

Wrestling Practice 1.5 h – warm up, 

technique drills and a match 

   Pre- vs. Post-

Exercise 
 

IL-6: 700% increase 
 

IL-1ra: 92% increase 
 

TNF-α: 37% 

increase 
 

IL-1β: 123% 

increase 
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Nemet et al., 

(2003) 

n = 10 All girls 
 

Age: 14 - 16 

y 

Water Polo Practice 1.5 h – warm 

up, technique drills and a match 

   IL-6 (244%) and IL-

1ra (60%) increased 

post-exercise, 

whereas TNF-α did 

not change 

Nemet et al., 

(2009) 

n = 8 All girls 

 

Age: 16.75 ± 

0.5 y 

 

Cross Country Training 1 h – warm 

up (10 min), continuous run (50 

min) 

   Pre- vs. Post-

Exercise 

 

IL-6: 100% increase 

 

IL-1ra: 48% increase 

 

TNF-α: 17% 

increase 

Sedgwick et 

al., (2013) 

n = 13 All males 
 

Age:  13.6 ± 

0.6 y 
 

Normal 

Weight 

Within Measures Design 
 

Treadmill walking at 60% VO2peak 

for 60 min 
 

Rested Control Trials 
 

High Fat Breakfast & Lunch on Day 

2: 1.5g fat and 1.8g CHO 

Basal and peak 

diameter 

increased 

following the high 

fat meals 
 

Postprandial FMD 

was improved 

following the 

exercise trial 

compared to the 

rested control trial 

Plasma 

triacylglycerol tAUC 

was 22% lower 

following the 

exercise trial 

compared to the 

rested trial 
 

Plasma 

triacylglycerol iAUC 

24% lower following 

the exercise trial 

compared to the 

rested trial 
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Sedgwick et 

al., (2014) 
n = 9 

All males 
 

Age:  13.1 ± 

0.6 y 

Within Measures Design 
 

40 x 6 s maximal cycle sprints on 

Day 1 
 

High Fat Breakfast & Lunch on Day 

2: 1.5g fat and 1.8g CHO 

No change in 

fasted FMD 

following exercise 
 

Exercise 

prevented decline 

in FMD following 

consumption of 

the high fat 

breakfast and 

lunch (-20% & -

27%, 

respectively) 

Plasma 

triacylglycerol tAUC 

was 13% lower 

following the 

exercise trial 

compared to the 

rested trial 
 

Plasma 

triacylglycerol iAUC 

15% lower following 

the exercise trial 

compared to the 

rested trial 

No effect on blood 

glucose or plasma 

insulin tAUC 

 

Short et al., 

(2013) 
n = 12 

7 Males/ 5 

females 
 

Age:  14 ± 2 

y 

Within Measures Design 
 

No Exercise Trial 
 

Prior Day Exercise Trial and Same 

Day Exercise Trial (45 min 

moderate intensity at 75% peak HR 

– walking cycling, boxing game) 

 

 

  

Prior Day Exercise: 

45% increase in 

insulin sensitivity 
 

Same Day Exercise: 

78%  increase in 

insulin sensitivity 

 

Timmons et 

al., (2006) 
n = 58 

Young Girls 

(n=14), 

Young Boys 

(n=20) aged 

12 y 

Older Girls 

(n=11), 

Older Boys 

(n=13), aged 

14 y 

Between Subject Design 
 

60 min cycling at 70% VO2 max 
   

No effect of exercise 

on TNF-α or IL-8 
 

Increase in IL-6 only 

in older girls and 

young boys 60 min 

post-exercise (284% 

and 89% increase, 

respectively) 
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2.4.3 Recommendations for Future Research Concerning the Inflammatory, Glycaemic 

and Insulinaemic Responses to Acute Bouts of Exercise in Adolescents 

 

The following recommendations for future research assessing the inflammatory, glycaemic and 

insulinaemic response to an acute bout of exercise can be made: 

 Where possible, studies should employ a counterbalanced, randomised, cross-over 

study design to control for potential confounding variables affecting the study 

outcomes.  

 Both chronological age and pubertal development of the participants should be 

recorded, especially given that previous studies assessing the postprandial glycaemic 

and insulinaemic responses to standardised meals observed sex differences that were 

attributed to maturation (Cooper et al., 2017).  

 When assessing the inflammatory, glycaemic and insulinaemic responses to acute bouts 

of exercise, the mode of activity employed should be ecologically valid to ensure that 

young people are likely to adhere to such exercise should it elicit protective benefits for 

cardiometabolic health. Games-based activity is a suggested mode of exercise that 

should be explored by future studies given the similarity of such exercise (sporadic, and 

intermittent in nature) to the activity patterns young people are already engaging with 

(Howe et al., 2010) and the potential for games-based activity, which is deemed 

enjoyable by young people, to lead to long term adherence. 

 When assessing the inflammatory response to exercise it is important that a 

comprehensive panel of inflammatory mediators (pro- and anti-inflammatory) be 

assessed, to ascertain whether there is inhibition of pro-inflammatory cytokines (IL-1β, 

TNF-α and CRP) and an increase in anti-inflammatory cytokines (IL-1ra, IL-6, IL-10) 

that will mediate a reduction in low-grade chronic inflammation if repeated regularly. 
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 Finally, the timescale of the inflammatory, glycaemic and insulinaemic responses to 

acute bouts of exercise should be examined. To date, information pertaining to pre- and 

immediately post-exercise comparisons are available and little is known about the 

delayed effects of exercise, which are important for determining the frequency of 

exercise necessary to maintain the protective cardiometabolic responses in young 

people. 

 

In summary, the review of the literature that has identified several limitations and gaps in 

understanding that future research needs to address; to enhance understanding of the effects of 

exercise on cardiometabolic health in children and adolescents. The present thesis will aim to 

address these limitations through a series of studies, which will each require data collection in 

the target population of adolescents. The general methods (Chapter Ⅲ) will provide detailed 

descriptions of the equipment and procedures frequently used throughout the present thesis.  

 

 

 

 

 

 

 

 

 



72 
 

Chapter Ⅲ 

General Methods 

 

The general methods provide an overview of the methodologies undertaken in the studies 

(Chapters IV - VII) presented in this thesis. The first section (section 3.1) describes the 

procedures for participant recruitment, including the attainment of participant assent and 

parental consent. The second section (section 3.3) outlines the preliminary measurements 

completed during the familiarisation sessions, which included anthropometric measurements 

and the determination of age from peak height velocity. The following four sections describe 

the procedures completed during each main experimental trial, including field and laboratory 

exercise tests, body composition and the measurement of blood pressure (section 3.4), the 

collection and analysis of capillary blood samples (section 3.5), the standardised meals 

consumed (section 3.6) and the exercise protocols employed (section 3.7). The final section 

(3.8) details the statistical analysis conducted.  

 

3.1 Training  

Prior to data collection for the experimental chapters, several training courses were required to 

ensure that the methods presented in this thesis were undertaken safely, accurately and reliably. 

Initial training included completing First Aid training to ensure that when working in the field 

(primarily in schools), as lead investigator, there was always someone on site who was first aid 

trained in case of emergency. In addition, all investigators completed a level 1 accredited 

course with the International Society for Advanced Kinanthropometry to ensure that all 

anthropometric measurements (stretched stature and stretched sitting stature), waist 

circumference and skinfold measurements were accurate and reliable. As part of the training, 

candidates were assessed for reliability of measurements at each site and only passed once 
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criterion validity was <5%.  Finally, prior to taking capillary blood samples from young people, 

several hours of practice taking capillary blood samples from colleagues was required to ensure 

confidence and validity in the measurement.  

 

3.2 Participant Recruitment 

Following ethical approval from the Nottingham Trent University Ethical Advisory 

Committee, adolescents were recruited from local secondary schools, swimming and football 

clubs in the East Midlands (Nottingham, Derby and Mansfield, UK). The head teacher or the 

lead coach were contacted and informed of the study aims to ascertain whether they would be 

interested in their school/ sports club participating. Thereafter, potential participants met with 

lead researchers and were informed of the study aims and provided with an outline of the 

experimental procedures. During the meeting participants were able to ask questions and were 

informed of their right to withdraw from the study at any given time without providing a reason 

for their withdrawal.  

 

Interested participants were provided with an information booklet, which was taken home to 

their parents/ guardians. Once participation was agreed, participants and their parent and/or 

guardian completed the participant assent form (Appendix A), the parental consent form 

(Appendix B) and a health screen questionnaire (Appendix C). A lead investigator assessed the 

health screen questionnaires to ensure that any participant with a health condition that would 

pose undue risk or bias to the findings of the study did not participate. The telephone numbers 

and email addresses of the research team were provided in the information booklets to ensure 

parents/ guardians were provided with the opportunity to ask any questions. 
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 3.3 Preliminary Measurements and Familiarisation 

For each study presented in this thesis, participants underwent several preliminary 

measurements, which were completed during familiarisation sessions, including 

anthropometric measures of stature, body mass, sitting stature and waist circumference. The 

familiarisation sessions also consisted of a capillary blood sample and for the studies presented 

in Chapters Ⅴ and Ⅵ participants completed the multi-stage fitness test (see section 3.3.1).  

 

Stretched stature was measured using a Leicester Height Measure (Seca, Hamburg, Germany), 

accurate to 0.1cm. Stretched stature was measured with the participant’s head placed in the 

Frankfort plane, whilst an investigator applied a gentle upward pressure using their hands 

(placed on the side of the face, with fingers placed on the mastoid process) to lift their head to 

obtain maximum height. Body mass was measured using Seca 770 digital scales (Seca, 

Hamburg, Germany), accurate to 0.1kg. Stretched stature (cm) and body mass (kg) were used 

to calculate Body Mass Index (BMI) (body mass (kg) / height squared (m2)). For the 

measurement of stretched sitting height, participants were seated on an anthropometric 

measuring box (the sitting height box is a sturdy wooden box (40 cm width x 40 cm depth x 

50 cm height); the same box was used throughout all experimental chapters presented in this 

thesis). To obtain a stretched measurement the same technique was applied as described for 

stretched stature. The measurement of stretched sitting stature was read from a ruler that had 

been taped to the wall and aligned using a spirit level. Investigators trained to level two in 

anthropometric assessment (International Society for the Advancement of Kinanthropometry) 

completed the anthropometric measurements. 

 

Sitting stature and stretched stature were used to calculate participant leg length (stretched 

height - sitting height), which is required to predict age from peak height velocity (APHV). 

APHV is an estimate of adolescent maturity offset (y pre- or post-APHV) and estimates 
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pubertal development. APHV throughout the present thesis has been calculated in accordance 

with the equations developed by Mirwald et al. (2002; Eq. 1.1a & 1.1b); as the APHV sex-

specific equations have a correlation coefficient of 0.83 with skeletal age offset from 

chronological age (the gold standard assessment), indicating a strong maturational 

commonality between the two methodologies (Mirwald et al., 2002). The use of APHV 

maturity offset is advantageous as it is not personally intrusive to the participant or the adult 

responsible for the participant (Malina et al., 2012).  

 

Maturity Offset (Girls) =  

-16.364 + 0.0002309 * LLSH + 0.006277 *ASH + 0.179 * L:H + 0.0009428 * AW 

(Eq. 1.1a) 

Maturity Offset (Boys) = 

-26.769 + 0.0003007 * LLSH – 0.01177 * ALL + 0.01639 * ASH + 0.445 * L:H   

(Eq. 1.1b) 

 

Where LLSH is the leg length and sitting height interaction, ASH is the age and sitting height 

interaction, L: H is the leg length to height ratio, AW is the age and weight interaction and 

ALL is the age and leg length interaction (Mirwald et al. 2002).  
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3.4 Performance and Health Measures 

3.4.1 Multi-Stage Fitness Test 

Participants completed the MSFT, a field endurance performance test which has also been used 

to predict maximal oxygen consumption (Leger et al. 1988; Ruiz et al., 2009). Participants 

completed the MSFT in groups of 10-12, which for the cross-sectional (Chapter Ⅳ) and 

longitudinal study (Chapter Ⅶ) were organised based on training status with swimmers, 

footballers and school children only performing the MSFT with participants of the same cohort. 

Prior to completing the MSFT, participants were provided with a buffet-style breakfast (which 

included options of fresh fruit, toast and cereals) and water was allowed ad libitum. The 

breakfast provided was consistent across testing sessions and across time (2 y follow-up), to 

control for potential effects of diet and hydration. A standardised warm-up led by a member of 

the research team preceded the test, which consisted of a 2-min jog around the sports hall and 

a series of full body, dynamic stretches.  

 

Participants were fitted with a heart rate monitor (First Beat Technologies Ltd., Finland) and 

heart rate was monitored live throughout the MSFT. All MSFT was performed indoors on a 

wooden sports hall floor for consistency (Ramsbottom et al., 1988). During the MSFT 

participants, completed progressive 20 m shuttle runs dictated by an audio signal; which starts 

at a pace of 8.5 km.h-1 and increases by 0.5 km.h-1 for each 1-min stage completed thereafter. 

To complete a shuttle run, participants had to place a foot either on or behind the line before, 

or at the same time as the audio signal. Participants were informed that the aim of the MSFT 

was to complete as many shuttle runs as possible before either failure to follow the pace of the 

audio signal for three successive shuttle runs or the point of volitional exhaustion. A well-

familiarised member of the research team set the pace of the MSFT, to ensure that participants 

did not run too fast during the early stages of the test and to encourage maximal performance. 

Verbal encouragement was provided for each participant as they began to find keeping pace 
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with the audio signal difficult, thus ensuring they completed the MSFT to the point of volitional 

exhaustion. The verbal encouragement was provided by the same staff members across testing 

sessions to ensure consistency between groups. The final shuttle and level achieved was 

recorded as the criterion measure and for Chapters Ⅳ and Ⅶ was converted into distance run 

in metres. In Chapter Ⅴ an adolescent specific equation (which accounted for the age and sex 

of the participant) was used to predict V̇O2 peak:  

 

Predicted V̇O2 peak in Adolescents = 25.9 – 2.21 * Gender – 0.8 * Age + 3.4 * Speed 

(Barnett et al., 1993) 

Where gender represents the sex of the participant (male = 0, female = 1), age is the age on the day 

of the test and speed is the final speed at the point of volitional exhaustion. 

 

3.4.2 Blood Lactate Response to Submaximal Exercise  

In Chapter Ⅳ a sub-sample of participants performed a submaximal, incremental treadmill test 

on a calibrated treadmill (Technogym, Italy). Prior to participation, heart rate monitors were 

fitted (First Beat Technologies Ltd., Finland) and maximum heart rate during the final minute 

of each stage was recorded. Participants completed three to six, 4-min runs, interspersed with 

1-min rest during which a capillary blood sample was taken (see description in section 3.4). 

The first stage of the test was completed at an individualised speed that was comfortable for 

the participant (starting speed varied between 6-10 km.h-1), which increased by 1 km.h-1 for 

each stage completed thereafter. The speeds throughout the duration of the test were such that 

participants worked sub-maximally. The blood lactate concentration at 8.5 km.h-1 was the 

criterion measure in Chapter Ⅳ. The blood lactate concentration was calculated by 

mathematically fitting a curve to the blood lactate-running speed relationship. 
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3.4.3 V̇O2 Peak Test 

Following the measurement of blood lactate response to submaximal exercise, the same sub-

sample of participants completed an incremental uphill treadmill test to measure V̇O2 peak 

(ml.kg-1.min-1). The speed of the test was constant and individualised for each participant based 

on the speed that corresponded with 85% HRmax during the submaximal test (described in 

section 3.3.2). The gradient of the treadmill increased by 1 % each minute of the test completed. 

Participants were required to run to the point of volitional exhaustion, which was indicated by 

the participant’s rating of perceived exertion on a 6 – 20 Borg scale (Borg, 1998, Appendix D) 

in conjunction with live monitoring of their heart rate. Prior to the exercise laboratory tests, all 

participants were shown the Borg scale and given an age appropriate explanation of the 

information provided from this psychological evaluation of perceived exertion. Participants 

were instructed to point to the scale to indicate the rating indicating how intense the exercise 

felt when they were shown the scale. Verbal encouragement was provided as the participant 

neared predicted maximum heart rate (220-age) and during the final minute of the test to ensure 

the participant completed the test to the point of volitional exhaustion. 

 

During the final minute of the test, participants expired air into a Douglas Bag, which was later 

analysed on a Servomex 1440 Gas Analyser (Servomex, USA) to calculate V̇O2 peak (ml.kg-

1.min-1). Although it is accepted that all young people may not reach maximum oxygen uptake 

as indicated by the criteria used in adult exercise testing all participants recorded an RPE of 19 

/ 20 and heart rate was at or above 220 – age at the end of the test. The expired air sample 

collected during the final minute of exercise was analysed for percentage of oxygen and carbon 

dioxide, and the volume and temperature of the expired air using a Harvard Dry Gas Meter 

(Hugo Sachs, Harvard Apparatus, Germany).  Barometric pressure on the day of testing was 

determined using a Fortin barometer (F. D. and Company, Watford, UK). The Haldane 
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transformation was used to calculate the inspired gas volumes, for oxygen uptake to be 

calculated thereafter.  

 

3.4.4 Body Composition 

Skinfold thickness was the preferred measure of body composition in the present thesis, as it 

is reported as an effective, valid and reliable method that also meets the ethical constraints in 

young people (Bugge et al., 2012; Yeung & Hui, 2010). Skinfold thickness was measured using 

a Harpenden Caliper (Baty International, Burgess, Hill, UK) at four sites (tricep, subscapular, 

supraspinale, and front thigh). All measurements were taken twice in rotation and on the right-

hand side of the body. The mean of the two measurements was taken unless the difference 

between the two measurements was > 5 %. Under such circumstances, a third measurement 

was taken and the median value used as the criterion measure. All skinfold measures were 

completed by trained kinanthropometrists whom adhered to methods described in the 

International Standards for Anthropometric Assessment manual (2001). The sum of skinfold 

thickness scores was the preferred assessment of body composition in the present study, as 

estimating body fat percentage from skinfold thickness is associated with large random error 

and significant systematic error (Reilly et al., 1995).  

 

3.4.5 Blood Pressure 

In Chapters Ⅳ and Ⅶ, blood pressure was the first measurement taken upon arrival to the 

exercise laboratory. Participants arrived to the laboratory in a fasted and rested state from 9 pm 

the previous evening, having been informed only water could be consumed (thus abstaining 

from caffeine consumption) until all health measurements were complete. In addition, it was 

emphasised to participants and their parents/ guardians that vigorous physical activity must be 

avoided on the morning of the blood pressure measurements, with examples provided as a 

reminder to ensure compliance (such as there should be no running into the building or down 
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corridors, as this constitutes a short bout of vigorous physical activity).  Participants were 

seated quietly for 5 min prior to two blood pressure measurements from the left arm, which 

was rested at chest height, using an HBP-1300-UK sphygmomanometer (Omron, Milton 

Keynes, UK).  The mean of the two blood pressure measurements was used as the criterion 

value, unless systolic blood pressure differed by > 5 mmHg, then a third blood pressure 

measurement was taken and the median value used as the criterion measure. Mean arterial 

blood pressure (MAP) was determined using the following calculation as described by 

Smeltzer et al., (2010):  

 

Diastolic blood pressure + ((0.33 * (systolic blood pressure – diastolic blood pressure))) 

 

3.5 Capillary Blood Sampling 

Throughout all experimental chapters capillary blood samples were obtained, treated and 

analysed for concentrations of blood glucose, plasma insulin, C-reactive protein (CRP) and 

inflammatory cytokines (IL-1β, IL-6, IL-10 and TNF-α). Capillary blood samples were 

preferred over venous blood samples in the present thesis due to the ethical constraints of 

working with young people. Furthermore, when examining postprandial glycaemic and 

insulinaemic responses in adolescents, capillary blood samples are more sensitive to changes 

in glycaemic responses and have a lower inter-individual variation than venous blood samples 

(Wolever et al., 1991, Kuwa et al., 2001).  

 

3.4.1 Collection and Treatment of Capillary Blood Samples 

Baseline capillary blood samples were taken in the morning following an overnight fast (from 

~ 9 pm the previous evening). To ensure sufficient blood flow for sampling, participants’ hands 

were warmed via submersion in warm water to increase capillary blood flow. The participants’ 

hands were dried and a single-use Unistik lancet (Unistick extra, 21G guage, 2 mm depth, 
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Owen Mumford LTd., UK) was used to facilitate collection of whole blood into three 300-µl 

EDTA coated microvettes (Sarstedt LTd., UK).  

 

For the determination of blood glucose (all studies) and blood lactate (Chapter Ⅳ), whole 

blood was collected into a 25-µl plain pre-calibrated glass pipette (Hawslet LTd., UK) and 

dispensed into a 1.5 ml plastic vial containing 250-µl of 2.5% v/v perchloric acid for 

deproteinisation (Eppendorph 5415C, Hamburg, Germany). The microvettes and plastic vials 

were centrifuged at 5000 rev.min-1 for 4 min (accuSpin Micro 17R, Fisher Scientific, UK). 

Plasma was removed from the microvettes and placed into 500-µl plastic vials. All samples 

were stored at -20 °C until transferred to the -80 °C freezer at Nottingham Trent University 

within a few hours. All samples remained in the freezer until analysis.  

 

3.5.2 Analysis of Capillary Blood Samples 

Blood glucose concentrations were determined in duplicate using a commercially available 

assay (GOD/PAP method, GL364, Randox, Ireland) and read spectrophotometrically. Plasma 

insulin concentrations were determined using a commercially available ELISA (Mercodia Ltd., 

Sweden). Fasted blood glucose and plasma insulin concentration were used to calculate the 

HOMA-IR index (fasting plasma insulin (μU.mL-1) x fasting blood glucose (mmol.L-1)/22.5), as 

a measure of insulin resistance in adolescents (Keskin et al., 2005). Incremental area under the 

curve (IAUC) and total area under the curve (tAUC) were calculated for the glycaemic and 

insulinaemic responses to standardised meals in Chapters Ⅴ - Ⅵ, using the trapezoid methods 

described by Wolever & Jenkins (1986). Blood lactate concentrations were determined in 

duplicate using a commercially available assay (PAP method, LC2389, Randox, Ireland) and 

were analysed spectrophotometrically.  
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Inflammatory cytokine concentrations (IL-1β, IL-6, IL-10 and TNF-) were determined using 

an AimPlex, flow cytometry-based multiplex immunoassay (YSL Bioprocess Development 

Company, Pomona, USA) and a Beckman Coulter Gallios™ flow cytometer and Kaluza™ 

acquisition and analysis software (Beckman Coulter, London, United Kingdom). CRP 

concentrations were determined using the same approach, but on a separate plate.  

 

The coefficients of variation were determined for each of the variables analysed from the 

capillary blood samples. Ten repeat measurements from a human capillary blood sample were 

assessed using the methods described above. The coefficient of variation calculation was 

calculated as:  

Coefficient of Variation (CV) = (Standard Deviation / Mean) * 100 % 

(Cohen & Holliday, 1982).  
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Table 5. Intra-assay coefficient of variation based on ten repeat measurements for blood 

glucose, plasma insulin, inflammatory mediators and blood lactate. 

 

 

 

 

 

 

 

3.6 Standardised Meals Consumed 

In Chapters Ⅴ and Ⅵ, participants arrived at the main trials in a fasted state from ~ 9 pm the 

previous evening. Participants consumed a standardised breakfast following the fasted 

capillary blood sample, which consisted of cornflakes, milk, and toast with margarine (Table 

6a). For the standardised lunch participants consumed a chicken sandwich (with a cheese 

alternative provided for vegetarians), baked salted crisps and an apple (Table 6b). Each 

standardised meal contained 1.5 g carbohydrate per kg body mass. Analysis of the meals was 

conducted using Microdiet (Microdiet, Downlee Systems Ltd., UK). An example of the food 

composition for the standardised breakfast and lunch for a 50 kg child is presented in Table 6a 

and 6b respectively. Participants had 15 min to consume each of the meals. If following the 15 

min, food remained it was re-weighed and on the following trial adjustments were made 

accordingly. Water was allowed ad libitum.  

 

 

 

 

 

 

 Coefficient of Variation (%) 

Blood Glucose 2.3  

Plasma Insulin 3.2  

IL-6 15.9  

IL-1β 17.4  

TNF-α 14.7  

IL-10 13.2  

CRP 10.4  

Blood Lactate 6.7  
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Table 6a. Example of a standardised breakfast for a 50 kg participant. 

Food Item Mass (g) 

Cornflakes a 55 

White Bread b 42 

Margarine c 6 

1 % fat milk d 216 

Food Quantity 319 

a Cornflakes (Kellogs Ltd., UK) 
b Lightly toasted white bread (Kingsmill soft white thick slice, UK) 
c Margarine (Flora Original, UK) 
d 1 % fat milk (Sainsbury’s Ltd., UK) 

 

Table 6b. Example of a standardised lunch for a 50 kg participant. 

Food Item 

Mass (g) 

Standard Vegetarian Option 

White Bread a 70 70 

Margarine b 8 8 

Chicken c 115  

Cheese d  34 

Crisps e 35 35 

Apple f 120 120 

Food Quantity 348 267 

a White bread (Kingsmill soft white thick slice, UK) 
b Margarine (Flora Original, UK) 
c Sainsbury’s roast chicken slices (Sainsbury’s Ltd., UK) 
d Sainsbury’s medium cheddar (Sainsbury’s Ltd., UK) 
e Walkers ready salted baked crisps (Walkers, UK) 
f Braeburn apple 
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3.7 Exercise Protocols 

In Chapter Ⅴ during the exercise trial, participants completed a mid-morning bout of exercise, 

for comparison against the rested control trial. The bout of exercise consisted of 60-min 

intermittent exercise (a basketball session led by Austin Grant, a Level 4 basketball coach who 

has over 30 years’ experience in coaching basketball to young people and adults in Nottingham; 

and was recently awarded a Lifetime Contribution Award (Roll of Honour) from Sport 

Nottinghamshire), which commenced 1-h after breakfast on day 1. An experienced basketball 

coach delivered the sessions to groups of 10 participants in a school sports hall. The basketball 

session consisted of a warm-up (5 min of jogging on the court followed by whole body, 

dynamic stretches), skill-based drills (which included, 30 min of passing, dribbling and 

shooting drills) and small-sided games (25 min) at the end of the session. Participants were 

fitted with heart rate monitors (First Beat Technologies Ltd., Finland) at the start of the main 

trials, and the heart rate system was lapped during the 60 min of exercise to determine average 

and maximum heart rate as a marker of exercise intensity.  

 

In Chapter Ⅵ, participants completed 30 min and 60 min of intermittent activity performed as 

the Loughborough Intermittent Shuttle Test (LIST) and rested during the control trial. During 

the LIST, participants ran between two markers, set 20 m apart, at pre-determined speeds 

dictated by an audio signal. The exercise pattern consisted of three shuttles at walking pace, a 

15 m sprint, three shuttles at 95% V̇O2 peak (fast running) and three shuttles at 55% of V̇O2 

peak (percentage of V̇O2 peak was determined from performance on the MSFT, described in 

section 3.3.1). Sprint times were recorded using infrared timing gates (Brower Timing Systems 

IRD-T173, Utah, USA) and average sprint times for each set was calculated for comparative 

purposes. Each exercise pattern was repeated eight times to create a block of exercise, which 

lasted ~12-min (Fig. 2). Exercise blocks were separated by 3 min of active recovery, when 

participants walked around the sports hall and drank water ad libitum.  
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Figure 2. Overview of the Loughborough Intermittent Shuttle Test used during the 30 min and 

60 min exercise trial. 

 

3.8 Statistical Analysis 

All analysis was completed in SPSS (Version 24, SPSS Inc, Chicago, IL, USA), using a variety 

of statistical techniques that included; ANOVA, multiple regression, multi-level modelling, 

and paired and independent sample t-tests. All data were assessed for normality using the 

Kolmogorov-Smirnov test and for homogeneity of variance using Mauchly’s test of Sphericity. 

For all analysis, significance was accepted as P < 0.05. Where significant interactions were 

observed, post‐hoc pairwise comparisons were performed using a Bonferroni correction. 

Furthermore, where significant effects or trends existed for main effect of trial and/or trial by 

time interactions, effect sizes were calculated as Cohen's d (small effect sizes d = 0.2, medium 

effect sizes d = 0.5, large effect sizes d = 0.8) (Cohen, 1988): 

 

Cohen’s d = M1 – M2 / SDPooled 

Where M1and M2 are the means for the two comparative groups, and SDpooled is the pooled 

standard deviation of the groups. 
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Due to the scope of the analysis conducted, a more detailed overview of each statistical test is 

provided in each of the relevant chapters. 
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Chapter Ⅳ 

Multi-stage Fitness Test Performance, V̇O2 peak & adiposity: 

effect on risk factors for cardiometabolic disease in adolescents 

 

4.1 Introduction  

 

Low-grade chronic inflammation is a key risk factor in the pathogenesis of cardiometabolic 

diseases (including hypertension, hyperglycemia and early insulin resistance) and 

atherosclerotic plaques (Balagopal et al., 2011). The presence of low-grade chronic 

inflammation is currently the strongest predictor of cardiovascular events in adults, bettering 

traditional markers of dyslipidemia and hypertension (Petersen and Pedersen, 2005). Although 

cardiovascular disease typically presents during adulthood, the prevalence of low-grade 

chronic inflammation in adolescents (Balagopal et al., 2011) is of concern, as early and 

continued exposure increases the risk of early onset cardiovascular disease and type 2 diabetes 

(Gleeson et al., 2011). 

 

Low-grade chronic inflammation is defined as a chronic, 2- to 3- fold elevation in the 

concentrations of inflammatory mediators, including interleukin-1β (IL-1β), interleukin-6 (IL-

6), interleukin-1 receptor antagonist (IL-1ra), tumor necrosis factor-α (TNF-α) and acute phase 

protein C-reactive protein (CRP) (Petersen and Pedersen, 2005). Acute bouts of physical 

activity are implicated in the prevention of low-grade chronic inflammation through the anti-

inflammatory response that occurs post-exercise (Gleeson et al., 2011). Recently, it has been 

shown that acute bouts of games-based activity transiently increased concentrations of anti-

inflammatory mediators IL-10 and IL-1rα in middle-aged men (Mendham et al., 2015). 

Increased concentrations of IL-10 and IL-1ra are reported to inhibit the synthesis of pro-

inflammatory cytokines (IL-1β and TNF-α) and improve insulin sensitivity when assessed in 
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vitro (Gleeson et al., 2011). Furthermore, regular participation in physical activity prevents 

excessive adiposity (Van der Heijden et al., 2012) and reduces adiposity in overweight 

adolescents (Rey et al., 2017) and adults (Alrushud et al., 2017). Although such findings 

support regular moderate intensity physical activity as a potential therapeutic intervention that 

protects against the development of risk factors for cardiometabolic disease, the chronic effects 

of regular training resulting in enhanced physical fitness on low-grade chronic inflammation 

in adolescents are relatively unknown.  

 

When assessing the effect of physical fitness on low-grade chronic inflammation a 

comprehensive range of inflammatory mediators (IL-1β, IL-6, TNF-α and CRP) should be 

measured (Petersen and Pedersen, 2005). Yet, in adolescents and adults, research has focused 

on the relationship between physical fitness and a limited number of pro-inflammatory 

mediators (IL-6, TNF-α and CRP) (Platat et al., 2006, Buchan et al., 2015, Bugge et al., 2012, 

Ischander et al., 2007). In adolescents, the findings of previous studies assessing the 

relationship between physical fitness and inflammatory mediators IL-6, TNF-α and CRP are 

inconclusive with no apparent relationship (Platat et al., 2006; Steene-Johannessen et al., 

2013), or inverse associations observed (Buchan et al., 2015; Bugge et al., 2012; Silva et al., 

2014). Furthermore, the relationship between physical fitness and concentrations of anti-

inflammatory mediator IL-10 is unknown despite the potential of IL-10 to reduce low-grade 

chronic inflammation and improve insulin sensitivity (Petersen and Pedersen, 2005). 

Increasing adiposity reduces the expression of IL-10 in normal weight and overweight 

individuals (Esposito and Giugliano, 2004; Utsal et al., 2013), whereas the effect of physical 

fitness on IL-10 concentration has only been studied once, in healthy, normal weight adults 

(Jürimäe et al., 2017a) and once in pubertal girls (Jürimäe et al., 2017b). Jürimäe et al. (2017a) 

reported no relationship between maximal oxygen uptake and IL-10 concentration in well-

trained adult rowers. These null findings might relate to the well-trained study population, in 
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that the variability of fitness among the participants was not diverse enough for a relationship 

to be established. However, when comparing well-trained, female adolescent rhythmic 

gymnasts against untrained counterparts, there was still no difference across 12 markers of 

inflammation, which included anti-inflammatory mediator IL-10 (Jürimäe et al., 2017b). 

Whilst the inflammatory profiles of the trained gymnasts and the untrained controls were 

similar, there was no measurement of physical fitness or body composition in the pubertal girls; 

therefore, the relationship between physical fitness, inflammatory markers and IL-10 

concentration remains unknown, particularly in young people.  

 

In previous studies in adolescents and adults, the effect of long-term training on risk factors for 

cardiometabolic disease has been determined by peak oxygen consumption when using graded 

treadmill tests (Bugge et al., 2012; Ischander et al., 2007; Silva et al., 2014) and graded cycle 

ergometer tests (Steene-Johannessen et al., 2013). The discrepant findings of previous research 

could relate to the limitations of V̇O2 peak as a measure of physical fitness (Coyle et al., 1983), 

as V̇O2 peak is considered to be relatively insensitive to changes in training status, with up to 

50% of an individual’s V̇O2 peak being determined by genetics (Bouchard, 2012). Regular 

participation in moderate-to-vigorous activity moderates an individual’s exercise capacity and 

is the mechanism that stimulates the transient inflammatory response that prevents low-grade 

chronic inflammation (Gleeson et al., 2011). When focusing on the relationship between 

physical fitness and risk factors for cardiometabolic disease the measurement of fitness should 

therefore be sensitive to changes in an individual’s ability to perform prolonged exercise 

(Strasser and Burtscher, 2018). The blood lactate response to submaximal exercise is more 

sensitive to changes in training status than maximal oxygen uptake in both adults (Edwards, 

Clark & Macfayden, 2003) and young people (Grant, 2001). Furthermore, the submaximal 

nature of the test allows the assessment of a heterogeneous population and therefore allows the 

comparison of individuals from inactive, recreationally active and well-trained backgrounds. 
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Performance on the MSFT is also a commonly used, reliable and easy to administer, field 

measure of physical fitness in young people (Ortega et al., 2008) and is sensitive to changes in 

training status (Aziz et al., 2005). Therefore, the blood lactate response to submaximal exercise 

and the MSFT are potentially better suited for examining the relationship between physical 

fitness (capacity to perform prolonged exercise) and risk factors for cardiometabolic disease.  

 

As excessive adiposity mediates an increase in low-grade chronic inflammation, several studies 

have assessed the relationship between different measures of body composition and levels of 

the pro-inflammatory mediators IL-6 and TNF-α (Bugge et al., 2012; Utsal et al., 2013; 

Galcheva et al., 2011; Lopez-Alcaraz et al., 2014). Findings are inconclusive in that adiposity 

has been reported to have no effect on the pro-inflammatory mediators in several studies 

(Steene-Johannessen et al., 2013, Lopez-Alcaraz et al., 2014). However, increased adiposity 

has been associated with higher IL-6 and TNF-α concentration in adolescents in other studies 

(Bugge et a., 2012; Utsal et al., 2013, Galcheva et al., 2011). Of the studies that have examined 

adiposity, only one has considered the potential mediating effects of physical fitness (Silva et 

al., 2014). In the study of Silva et al. (2014) maximal oxygen uptake test was associated with 

metabolic risk (calculated from traditional risk factors including blood pressure and 

dyslipidemia). Although these findings suggest that physical fitness is important for the 

prevention of traditional cardiometabolic risk factors, it remains unknown whether physical 

fitness or adiposity best predicts, or whether these variables additively predict, risk factors for 

cardiometabolic disease in adolescents.  

 

Therefore, the aim of the present study was to determine the effect of fitness, as measured by 

MSFT performance and the blood lactate response to submaximal exercise, V̇O2 peak and 

adiposity on a comprehensive panel of pro- and anti-inflammatory cytokines in conjunction 

with traditional cardiometabolic risk factors in adolescents. A secondary aim of the study was 
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to determine whether peak oxygen uptake (also influenced by genetics), MSFT performance 

or blood lactate concentration during sub-maximal exercise (better markers of the capacity to 

perform prolonged exercise) or adiposity better predict risk factors for cardiometabolic disease 

in adolescents. 

 

4.2 Methods 

4.2.1 Participant Characteristics 
 

A cross-sectional sample of 140 adolescents aged 10-12 years were recruited to participate in 

the present study. Adolescents were recruited from local secondary schools, swimming clubs 

and football clubs following contact being made with teachers and coaches. A number of 

existing personal contacts with teachers and coaches were used first; these contacts 

subsequently provided our research group with contact details of external colleagues, with 

whom contact was made. Typically, meetings were then held to detail the study protocol and 

the information that participants would receive relating to their health and performance was 

discussed. Given that 19 participants withdrew from the study (n = 10 due to illness, n = 5 due 

to injury which occurred as part of training practice outside the study, and n = 4 due to 

reluctance to provide a capillary blood sample), 121 young people (61 male, 60 female, age 

11.3 ± 0.8 y) participated. All participants underwent anthropometric measures of body mass, 

height and sitting stature to predict age at peak height velocity (APHV, calculated using the 

method described in Moore et al., 2015), as the preferred measure of maturation. Body mass 

was measured using a Seca 770 digital scale which is accurate to 0.1 kg (Seca, Hamburg, 

Germany), and height was measured using a Leicester Height Measure which is accurate 0.1 

cm (Seca, Hamburg, Germany), to allow the determination of body mass index (BMI, 

(calculated as body mass (kg) / stature (m)2). Participant characteristics were; height 151.9 ± 

7.2 cm, body mass 43.1 ± 9.5 kg, BMI Percentile 52.3 ± 29.3; years from peak height velocity 

1.9 ± 0.7 y (males -2.0 ± 0.7 y; females -1.9 ± 0.8 y).  
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4.2.2 Study Design 
 

Ethical approval was received from the Nottingham Trent University’s Ethical Advisory 

Committee (SPOR-400). Participants were recruited from local secondary schools and sports 

clubs in the East Midlands, United Kingdom. Written parental consent and verbal child assent 

was obtained during recruitment. Health screen questionnaires were completed by the 

participants’ parent/guardian and checked by a lead investigator to ensure there were no 

medical conditions that might affect participation in the study.   

 

All trials were separated by a minimum of 7 d (further details of which are provided below). 

The field measurements (completed during the first trial) consisted of anthropometric measures 

(body mass, stature and sitting stature), skinfolds and the MSFT, in that order. The health 

measurements (completed during the second trial, which commenced at ~8.30 am) consisted 

of resting blood pressure followed by a resting capillary blood sample (fasted from 9 pm the 

previous evening). Finally, a sub-sample of participants (68 participants, 30 male, age: 11.6 ± 

0.6; APHV: -1.9 ± 0.7 y) completed exercise laboratory tests including a submaximal treadmill 

test and a V̇O2 peak test, which were separated by 20 min passive recovery. Only a sub-sample 

of participants from the study population volunteered to complete the final part of the study. 

Those that removed themselves from the exercise laboratory tests did so as they were not 

willing to take an additional day off school. Prior to all measurements, participants were asked 

to refrain from moderate-to-vigorous physical activity for 24 h. A telephone call was made to 

parents/guardians the evening prior to the testing sessions to ensure compliance with the study 

requirements. 

 

4.2.3 Field Measures 

 

4.2.3.1 Body Composition 

Skinfold thickness was measured using a Harpenden Caliper (Baty International, Burgess, Hill, 

UK) at four sites (tricep, subscapular, supraspinale, front thigh). All measurements were taken 
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twice in rotation and on the right-hand side of the body as described in the general methods. 

The use of skinfolds in assessing body composition in young people is reported as an effective, 

valid and reliable method in young people (Bugge et al., 2012; Yeung & Hui, 2010). 

Specifically, the sum of the four skinfold thickness scores was the preferred assessment of body 

composition in the present study, as estimating body fat percentage from skinfold thickness 

has been associated with large random error and significant systematic error (Reilly et al., 

1995).  

 

4.2.3.2 Multi-Stage Fitness Test (MSFT)  

During the MSFT, participants completed progressive 20 m shuttle runs until the point of 

volitional exhaustion (Ramsbottom et al., 1988). The MSFT started at a speed of 8.5 km.h-1 and 

increased by 0.5 km.h-1 for each 1-min stage completed. Participants were fitted with a heart 

rate monitor (First Beat Technologies Ltd., Finland) prior to the start of the test and heart rate 

was monitored in real-time throughout its duration. Verbal encouragement was provided 

throughout to ensure participants worked to the point of volitional exhaustion. The distance ran 

during the MSFT was used as the criterion measure.  

 

4.2.4 Health Measures  

 

4.2.4.1 Blood Pressure 

On arrival at the exercise laboratory following an overnight fast, participants were seated 

quietly for 5 min prior to the measurement of blood pressure which was undertaken as 

described in the general methods. Mean arterial blood pressure was determined using the 

following calculation (Smeltzer et al., 2010): diastolic blood pressure + ((0.33 * (systolic blood 

pressure – diastolic blood pressure))).  
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4.2.4.2 Capillary Blood Samples 

Capillary blood samples were obtained early in the morning following an overnight fast and 

during the speed lactate treadmill test (baseline and following each progressive stage). Section 

3.4.1 details the methods undertaken for the collection of capillary blood samples. In brief, a 

Unistik single-use lancet (Unistik Extra, 21G gauge, 2.0 mm depth, Owen Mumford Ltd., UK) 

was used and blood collected into three 300 µl EDTA microvettes (Sarstedt Ltd., UK). A 25 

µl whole blood sample was collected and dispensed into 250 µl of ice-cooled 2.5% v/v 

perchloric acid. The whole blood samples and diluted perchloric acid samples were centrifuged 

at 1500 g for 5 min (Eppendorf 5415C, Hamburg, Germany). Plasma was pipetted and 

immediately frozen at -20°C and transferred to a -80°C freezer at the earliest opportunity. 

 

Blood glucose, plasma insulin, cytokine and CRP concentrations were determined using the 

methods described in section 3.4.2.. Following methodological issues with the analysis of CRP 

beyond our control (separate instructions and diluent were not sent to our laboratory from the 

manufacturer resulting in CRP not being detected by the flow cytometer), there was a reduced 

participant n for this analyte, which led to the analysis being underpowered. For all future 

analysis of CRP our research group will be aware that the samples need to be diluted before 

undertaking the assay and will therefore know to check the manufacturer has sent all necessary 

materials and instructions.  

 

4.2.5 Exercise Laboratory Measures 

 

4.2.5.1 Blood Lactate during Sub-maximal Exercise  

A sub-sample of participants (n = 68) completed a submaximal test on a calibrated treadmill 

(Technogym, Italy) and blood lactate concentration was determined at the end of each 4-min 

stage as described in the general methods. The blood lactate concentration at 8.5 km.h-1 was 



96 
 

used as the criterion measure and was calculated by mathematically fitting a curve to the blood 

lactate-running speed relationship. 

 

4.2.5.2 V̇O2 Peak Test 

A sub-sample of participants (n = 68) completed an uphill treadmill running to determine V̇O2 

peak (ml.kg-1.min-1) as described in the general methods. During the final minute of the test, 

participants breathed expired air into a Douglas Bag, which was later analysed on a Servomex 

1440 Gas Analyser (Servomex, USA) to calculate V̇O2 peak (ml.kg-1.min-1). Verbal 

encouragement was provided throughout the test to ensure the participant worked to the point 

of volitional exhaustion.  

 

4.2.6 Statistical Analysis  

An a priori power calculation was performed using GPower 3.1.9.2 and based on IL-6 data in 

previous research (Ischander et al., 2007), with an alpha probability level of 0.05, 4 groups and 

1 covariate; a total sample size of 107 was required. 

 

Participants were separated into distinct fitness quartiles quantified by distance run on the 

MSFT, blood lactate concentration at 8.5 km.h-1, V̇O2 peak and adiposity quartiles quantified 

from the sum of skinfolds (Table 7). Quartiles were selected based on the participant n; with 

quartiles resulting in ~30 participants per quartile (total n = 121), which was deemed suitable 

for these analyses. The first quartile (which included participants with values ≤ 25% of all 

values in the present study) included participants with the lowest physical fitness and highest 

adiposity. For each distinct fitness and adiposity quartile, risk factors for cardiometabolic 

health were calculated as mean ± S.E.M. and inferential statistics performed.  

 

All analyses were performed in SPSS (Version 24, SPSS Inc, Chicago, Il, USA). The effect of 

physical fitness and adiposity quartile on each risk factor for cardiometabolic disease was 
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analysed via two-way (physical fitness or adiposity * sex) between subjects ANCOVA, with 

maturation (APHV) used as a covariate. When significant interactions were observed, post-hoc 

comparisons were performed using a least significant difference (LSD) correction. In order to 

assess differences between boys and girls in each quartile, independent samples t-tests were 

used. Where significant effects existed, effect sizes were calculated as Cohen’s d. Multiple 

linear regression was used to examine the relationship (adjusted for APHV) between 

independent variables (distance on the MSFT, V̇O2 peak and adiposity) and each 

cardiometabolic risk factor (IL-6, IL-1β, IL-10, TNF-α, CRP, fasted blood glucose and plasma 

insulin, HOMA-IR, systolic, diastolic and mean arterial blood pressure). Blood lactate 

concentration during sub-maximal exercise was not examined in the multiple linear regression, 

as the sample size did not meet the minimum criteria necessary for four predictor variables 

(Vanvoorhis and Morgan, 2007). For all analysis significance was accepted as P < 0.05 and 

data are presented as mean ± S.E.M.. 

 

4.3 Results 

 

Quartiles for each variable (distance run on the MSFT, V̇O2 peak, blood lactate concentration 

at 8.5 km.h-1 and adiposity) were separately determined for boys and girls (Table 7). When 

considering the effect of sex on MSFT performance, boys ran further than their female 

counterparts across all quartiles (all p < 0.001). Similarly, boys in quartiles one to three had a 

higher peak oxygen consumption, a lower blood lactate concentration at 8.5 km.h-1 and lower 

adiposity when compared with their female counterparts (all p < 0.001). There was no 

difference between boys and girls in V̇O2 peak (p = 0.970) or adiposity (p = 0.086; Table 7) in 

quartile four.  
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Table 7. Performance on the multi-stage fitness test (distance run), V̇O2 peak, Blood lactate at 8.5 km.h-1 on the speed lactate test and adiposity 

from sum of skinfolds separated by sex and into quartiles (Mean ± S.E.M). * denotes significant differences between boys and girls in respective 

quartiles. 

 

Quartile 

MSFT Distance (m) V̇O2 Peak (ml.kg-1.min-1) 

Blood Lactate at 8.5 km.h-1 on 

the Speed Lactate Test 

(mmol.L-1) 

Adiposity from Sum of 

Skinfolds (mm) 

Boys Girls Boys Girls Boys Girls Boys Girls 

1 860 ± 56 470 ± 48* 40.2 ± 3.2 34.1 ± 1.5* 2.71 ± 0.17 5.20 ± 0.96* 56.4 ± 2.6 97.3 ± 3.1* 

2 1300 ± 21 900 ± 31* 49.9 ± 0.6 42.9 ± 0.8* 2.30 ± 0.27 3.62 ± 0.79* 39.5 ± 0.7 54.4 ± 1.7* 

3 1500 ± 14 1160 ± 14* 52.7 ± 0.4 48.9 ± 0.7* 1.95 ± 0.38 2.62 ± 0.54* 33.6 ± 0.5 39.0 ± 0.8* 

4 1800 ± 41 1540 ± 47* 57.9 ± 1.2 58.0 ± 1.3 1.07 ± 0.22 1.61 ± 0.88 27.2 ± 0.5 28.8 ± 0.8 
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4.3.1 Inflammation 

 

IL-6: When separating participants into quartiles based on distance run on the MSFT, IL-6 

concentration was higher in quartile one when compared with participants in the third (p = 

0.011, d = 0.6) and fourth quartiles (p = 0.009, d = 0.7; main effect: F(3,90)=  2.9, p = 0.038; Fig. 

3; Table 8). There was no difference in IL-6 concentration when separating participants by V̇O2 

peak, blood lactate concentration at 8.5 km.h-1 or adiposity (all p > 0.05), nor was there any 

difference between boys and girls (main effect of sex: all p > 0.05; interaction effect: all p > 

0.05).  The multiple regression analysis (Table 9) revealed that distance run on the MSFT was 

the only statistically significant predictor of IL-6 concentration, after adjustment for APHV, 

with a negative relationship observed between the two variables (β = -0.291, p = 0.031). 

 
 

Figure 3. IL-6 concentration (pg.mL-1) separated into quartiles by distance run on the multi-

stage fitness test (MSFT). Participants in quartile one covered the shortest distance. Mean ± 

S.E.M., main effect of training status p = 0.038. ∗denotes significant difference from quartile 

one. 
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IL-1β: When separating participants into quartiles based on distance run on the MSFT, IL-1β 

concentration was higher in quartile one when compared with participants in the third (p = 

0.039, d = 0.6) and fourth quartiles (p = 0.008, d = 0.8; main effect: F(3,96) = 3.1, p = 0.032; Fig. 

4; Table 8). There was no difference in IL-1β concentration when separating participants by 

V̇O2 peak, blood lactate concentration at 8.5 km.h-1 or adiposity (all p > 0.05). When 

considering the effect of sex, IL-1β concentration was higher in boys than girls (boys; 4.26 ± 

0.44 pg·mL-1, girls; 2.94 ± 0.45 pg·mL-1; main effect of sex: F(1,96) = 4.4, p = 0.039, d = 0.4). 

The effect of fitness or adiposity was not different between boys and girls (interaction: all p > 

0.05). The multiple regression analysis (Table 9) revealed that distance run on the MSFT was 

the only statistically significant predictor of IL-1β concentration, after adjustment for APHV, 

with a negative relationship observed between the two variables (β = -0.405, p = 0.005). 

 

 
Figure 4. IL-1β concentration (pg.mL-1) separated into quartiles by distance run on the multi-

stage fitness test. Participants in quartile one covered the shortest distance. Mean ± SEM; main 

effect of training status p = 0.032. ∗denotes significant difference from quartile one. 
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IL-10: When separating participants into quartiles determined by blood lactate concentration 

at 8.5 km.h-1, IL-10 concentration was lower in quartile one when compared with participants 

in quartile four (p = 0.006, d = 0.9; main effect: F(3, 27) = 3.6, p = 0.035, Fig. 5; Table 8). There 

was no difference in IL-10 concentration when separating participants by distance run on the 

MSFT, V̇O2 peak or adiposity (all p > 0.05), nor was there any difference between boys and 

girls (main effect of sex: all p > 0.05; interaction: all p > 0.05). The multiple regression analysis 

(Table 9) revealed that distance run on the MSFT was the only statistically significant predictor 

of IL-10 concentration, after adjustment for APHV, with a positive relationship observed 

between the two variables (β = 0.325, p = 0.021). 

 

 

Figure 5. IL-10 concentration (pg.mL-1) separated into quartiles by blood lactate concentration 

at 8.5 km h-1. Participants in quartile one had the lowest training status. Mean ± SEM, main 

effect of training status p = 0.035. ∗denotes significant difference from quartile one. 

 

TNF-α and CRP: When separating participants into quartiles by distance covered on the 

MSFT, V̇O2 peak, blood lactate concentration at 8.5 km.h-1 and adiposity there was no 

difference in TNF-α or CRP concentration across quartiles (all p > 0.05, Table 8). Furthermore, 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

Distance on MSFT Quartile

IL
-1

0
 (

p
g.

m
L-

1
)

Quartile 1

Quartile 2

Quartile 3

Quartile 4

* 

* 



102 
 

there was no difference between boys and girls (main effect of sex: all p > 0.05; interaction: all 

p > 0.05). Multiple regression revealed no statistically significant predictors of TNF-α or CRP 

concentration (Table 9). 
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Table 8. Inflammatory cytokines (IL-6, IL-1β, IL-10, TNF-α) and CRP separated into quartiles determined from distance run on the multi-stage 

fitness test, blood lactate concentration at 8.5 km.h-1 during the speed lactate test, V̇O2 peak and adiposity (Mean ± S.E.M). * denotes significantly 

different from quartile one.  

 Distance Run on the MSFT (m) V̇O2 Peak (ml.kg-1.min-1) 
Blood Lactate at 8.5 km.h-1 during 

Speed Lactate Test (mmol.L-1) 

Adiposity from Sum of Skinfolds 

(mm) 

 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 

IL-6 

(pg.mL-1) 
3.25 ± 

0.25 

3.10 ± 

0.50 

2.48 ± 

0.30* 

2.37 ± 

0.30* 

3.76 ± 

0.54 

3.47 ± 

0.29 

2.60 ± 

0.37 

2.60 ± 

0.32 

3.57 ± 

0.52 

3.72 ± 

0.57 

2.70 ± 

0.50 

2.88 ± 

0.53 

3.05 ± 

0.26 

3.23 ± 

0.35 

2.95 ± 

0.29 

2.47 ± 

0.29 

IL-1β 

(pg.mL-1) 
4.78 ± 

0.85 

4.34 ± 

0.47 

2.96 ± 

0.29* 

2.47 ± 

0.29* 

4.67 ± 

1.70 

3.14 ± 

0.63 

3.16 ± 

0.62 

3.25 ± 

0.71 

7.35 ± 

2.60 

3.15 ± 

0.65 

2.72 ± 

1.25 

2.82 ± 

0.68 

5.51 ± 

1.06 

3.36 ± 

0.39 

3.58 ± 

0.44 

2.86 ± 

0.34 

IL-10 

(pg.mL-1) 
1.80 ± 

0.31 

2.08 ± 

0.19 

2.41 ± 

0.41 

3.80 ± 

0.77 

2.27 ± 

0.43 

2.17 ± 

0.23 

2.18 ± 

0.37 

3.82 ± 

1.23 

1.65 ± 

0.45 

2.61 ± 

0.48 

2.96 ± 

0.61 

3.62 ± 

0.45* 

2.18 ± 

0.31 

2.11 ± 

0.31 

2.97 ± 

0.76 

2.40 ± 

0.38 

TNF- 

(pg.mL-1) 
1.93 ± 

0.53 

1.47 ± 

0.20 

1.47 ± 

0.19 

1.42 ± 

0.24 

1.71 ± 

0.34 

1.24 ± 

0.15 

1.59 ± 

0.23  

1.74 ± 

0.32 

2.32 ± 

0.62 

2.00 ± 

0.57 

1.21 ± 

1.91 

1.86 ± 

0.42 

1.89 ± 

0.17 

1.60 ± 

0.26 

1.65 ± 

0.24 

1.89 ± 

0.54 

CRP  

(mg.L-1) 

0.52 ± 

0.14 

0.47 ± 

0.21 

0.52 ± 

0.31 

0.35 ± 

0.19 

0.43 ± 

0.14 

0.45 ± 

0.15 

0.41 ± 

0.16 

0.30 ± 

0.10 

0.69 ± 

0.21 

0.68 ± 

0.28 

0.86 ± 

0.39 

0.45 ± 

0.20 

0.52 ± 

0.14 

0.47 ± 

0.14 

0.45 ± 

0.16 

0.38 ± 

0.10 
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4.3.2 Blood Glucose, Plasma Insulin Concentration and HOMA-IR 

 

Fasting Blood Glucose: When separating participants into quartiles determined by distance 

run on the MSFT, blood glucose concentration was higher in quartile one when compared with 

quartile two (p = 0.025, d = 0.5), three (p < 0.001, d = 1.1) and four (p < 0.001, d = 1; main 

effect: F(3,110) = 7.1, p < 0.001; Table 10). When separating participants into V̇O2 peak quartiles, 

blood glucose concentration was higher in quartile one when compared with participants in the 

fourth quartile (p = 0.001, d = 1.1; main effect: F(3,68) = 3.9, p = 0.013; Table 10). When 

considering the effect of sex there was no difference between boys and girls (main effect of 

sex: all p > 0.05; interaction: all p > 0.05). The multiple regression analysis (Table 9) revealed 

that distance run on the MSFT was the only statistically significant predictor of blood glucose 

concentration, after adjustment for APHV, with a negative relationship observed (β = -0.545, 

p < 0.001). 

 

When separating participants into adiposity quartiles, blood glucose concentration was higher 

in quartile one when compared with participants in quartile four (p = 0.012, d = 0.6; main 

effect: F(3,115) = 3.0, p = 0.035; Table 10). Participants in quartile two also had higher blood 

glucose concentration when compared with quartile four (second quartile; p = 0.011, d = 0.5). 

There was no difference in blood glucose concentration across all quartiles between boys and 

girls (main effect of sex: p = 0.637). There was an effect of adiposity on sex (interaction: F(3,115) 

= 3.4, p = 0.019), in that girls in the first quartile had higher blood glucose concentration (4.81 

± 0.59 mmol.L-1) when compared with quartiles two (4.12 ± 0.44 mmol.L-1, p = 0.001, d = 1.3), 

third (4.23 ± 0.52 mmol.L-1, p = 0.004, d = 1) and four (4.14 ± 0.46 mmol.L-1, p = 0.001, d = 

1.3). There was no difference in blood glucose concentration across adiposity quartiles in boys 

(all p > 0.05).  

 

Fasting Plasma Insulin: When separating participants into quartiles determined by distance 

run on the MSFT, plasma insulin concentration was higher in quartile one when compared with 



105 
 

participants in quartiles three (p = 0.005, d = 0.8) and four (p < 0.001, d = 1; main effect: F(3,102) 

= 5.5, p = 0.002; Table 10). When separating participants into quartiles determined by V̇O2 

peak, plasma insulin concentration was higher in participants in quartile one when compared 

with participants in quartiles three (p = 0.009, d = 0.7) and four (p < 0.001, d = 1; main effect: 

F(3, 62) = 5.8, p = 0.002; Table 10). Participants in quartile two also had higher plasma insulin 

concentrations when compared with quartile four (p = 0.009, d = 0.7). When separating 

participants into quartiles determined from blood lactate concentration at 8.5 km.h-1, plasma 

insulin concentration was higher in quartile one when compared with participants in quartile 

four (p = 0.012, d = 0.9; main effect: F(3,28) = 3.8, p = 0.043 Table 10). When considering the 

effect of sex, plasma insulin concentration was higher in girls (7.73 ± 0.58 mU.L-1) than boys 

(boys; 6.05 ± 0.55 mU.L-1; main effect of sex: F(1,101) = 4.4, p = 0.037, d = 0.4). 

 

When separating participants into quartiles determined by adiposity, plasma insulin 

concentration was higher in quartile one when compared with participants in quartiles two (p 

= 0.003, d = 0.9), three (p = 0.044, d = 0.6) and four (p = 0.004, d = 0.8; main effect: F(3,105) = 

4.0, p = 0.010; Table 10). When considering the effect of sex, plasma insulin concentration 

was higher in girls (7.59 ± 0.56 mU.L-1 vs 5.86 ± 0.57 mU.L-1; main effect of sex: F(1,105) = 4.7, 

p = 0.033, d = 0.4). There was an effect of adiposity on sex (interaction: F(3,105) = 3.5, p = 

0.018), in that girls having the highest adiposity had higher plasma insulin concentrations than 

boys in the same quartile (boys; 6.15 ± 0.82 mU.L-1, girls; 11.81 ± 1.67 mU.L-1, F(1,97) = 12.9, 

p < 0.001, d = 1). Girls in quartile one had increased plasma insulin concentration when 

compared with girls in quartiles two (6.56 ± 0.86 mU.L-1, p < 0.001, d = 1.2) three (6.85 ± 0.57 

mU.L-1, p = 0.002, d = 1.1) and four (5.11 ± 0.57 mU.L-1, p < 0.001, d = 1.4). There was no 

difference in plasma insulin concentration in boys across quartiles (all p > 0.05). The multiple 

regression analysis (Table 9) revealed that adiposity was the only statistically significant 
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predictor of plasma insulin concentration, after adjustment for APHV, with a positive 

relationship observed between the two variables (β = .515, p < 0.001). 

  
HOMA-IR: When separating participants into quartiles determined by distance run on the 

MSFT, HOMA-IR was higher in quartile one when compared with participants in quartiles two 

(p = 0.002, d = 0.8), three (p = 0.002, d = 0.8) and four (p < 0.001, d = 1.4; main effect: F(3,101) 

= 9.4, p < 0.001; Table 10). When separating participants into quartiles based on V̇O2 peak, 

HOMA-IR was higher in quartile one when compared with participants in quartiles three (p = 

0.003, d = 0.8) and four (p = 0.001, d = 1.1; main effect: F(3,60) = 5.7, p = 0.002; Table 10). 

Participants in quartile two also had increased HOMA-IR when compared with participants in 

quartile four (p = 0.019, d = 0.7). When considering the effect of sex, HOMA-IR was higher 

in girls (1.50 ± 0.13) than boys (1.14 ± 0.12; main effect of sex: F(1,99) = 4.1, p = 0.046, d =0.4), 

yet the effect of VO2 peak on HOMA-IR did not differ between boys and girls (all p > 0.05). 

When separating participants into quartiles by blood lactate concentration at 8.5 km.h-1 there 

was no difference in HOMA-IR across quartiles (all p > 0.05, Table 10). 

 

When separating participants into quartiles determined by adiposity, HOMA-IR was higher in 

quartile one when compared with participants in quartiles two (p = 0.002, d = 0.9), three (p = 

0.005, d = 0.8) and four (p < 0.001, d = 1; main effect: F(3,103) = 5.6, p = 0.001; Table 10). When 

considering the effect of sex, HOMA-IR was higher in girls (1.52 ± 0.12 vs 1.10 ± 0.12; main 

effect of sex: F(1,103) = 5. 9, p = 0.017, d = 0.5). There was also an effect of adiposity on sex 

(interaction: F(3,103) = 4.0, p = 0.010, d = 1.5), in that girls in quartile one had higher HOMA-

IR (2.58 ± 0.44) than their male counterparts (1.22 ± 0.19). Girls with the highest adiposity 

also had increased HOMA-IR when compared with girls in quartiles two (1.36 ± 0.19, p = 

0.001, d = 0.9), third (1.18 ± 0.25, p < 0.001, d = 1.1) and four (0.94 ± 0.15, p < 0.001, d = 

1.3). There was no difference in HOMA-IR across adiposity quartiles in boys (all p > 0.05). 
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The multiple regression analysis (Table 9) revealed that adiposity was the only statistically 

significant predictor of HOMA-IR, after adjustment for APHV, with a positive relationship 

observed between the two variables (β = .506, p < 0.001). 

 

4.3.3 Blood Pressure 

 

Systolic Blood Pressure: When separating participants into quartiles based on distance run 

during the MSFT, V̇O2 peak and blood lactate concentration at 8.5 km.h-1 during the speed 

lactate test or adiposity, there was no difference in systolic blood pressure (all p > 0.05, Table 

10). When considering the effect of sex there was no difference in systolic blood pressure 

between boys and girls (main effect of sex: all p > 0.05; interaction: all p > 0.05). The regression 

model for systolic blood pressure identified no statistically significant predictors. 

 

Diastolic Blood Pressure: When separating participants into adiposity quartiles, diastolic 

blood pressure was higher in quartile one when compared with participants in quartiles three 

(p = 0.003, d = 0.7) and four (p = 0.046, d = 0.5; main effect: F(3,116) = 3.3, p = 0.023; Table 

10). There was no difference in diastolic blood pressure across quartiles when participants were 

separated by distance run during the MSFT, V̇O2 peak and blood lactate concentration at 8.5 

km.h-1 during the speed lactate test (all p > 0.05), nor was there any difference between boys 

and girls (main effect of sex: all p > 0.05; interaction: all p > 0.05). The multiple regression 

analysis (Table 9) revealed that adiposity was the only statistically significant predictor of 

diastolic blood pressure, after adjustment for APHV, with a positive relationship between the 

two variables (β = 0.259, p = 0.042). 

 

Mean Arterial Pressure: When separating participants into adiposity quartiles, mean arterial 

pressure was higher in quartile one when compared with quartile two (p = 0.021, d = 0.6), three 

(p = 0.004, d = 0.7) and four (p = 0.017, d = 0.6; main effect: F(3,116) = 3.5, p = 0.018; Table 4). 

There was no difference in mean arterial pressure when participants were separated by distance 
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run during the MSFT, V̇O2 peak or blood lactate concentration at 8.5 km.h-1 during the speed 

lactate test (all p > 0.05), nor was there any difference between boys and girls (main effect of 

sex: all p > 0.05; interaction: all p > 0.05). The multiple regression analysis (Table 9) revealed 

that adiposity was the only statistically significant predictor of mean arterial pressure, after 

adjustment for APHV, with a positive relationship observed between the two variables (β = 

.322, p = 0.011). 
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Table 9. Standardised regression summary for distance run on the MSFT, V̇O2 peak and sum of skinfolds (adiposity) with individual risk factors. 

* denotes significant relationship. 

 

 

 

 

 

 

MSFT Distance (m) V̇O2 Peak (ml.kg-1.min-1) Sum of Skinfolds (mm) 

 R2 adj. β p R2 adj. β p R2 adj. β p 

IL-6 (pg.mL-1) .085 -.291 .031* .035 .060 .800 -.004 -.005 .978 

IL-1β (pg.mL-1) .164 -.405 .005* .244 .313 .106 .004 .004 .981 

IL-10 (pg.mL-1) .108 .325 .021* .134 .151 .419 .118 .173 .419 

TNF- (pg.mL-1) .098 .167 .397 .054 .107 .489 .120 .178 .420 

Blood Glucose (mmol.L-1) .297 -.545 < .001* -.113 -.145 .390 .152 .190 .246 

Plasma Insulin (mU.L-1) -.079 -.097 .563 -.150 -.172 .269 .266 .515 < .001* 

HOMA-IR -.096 -.127 .488 -.105 -.122 .450 .256 .506 < .001* 

Systolic Blood Pressure 

(mmHg) 
.060 -.091 .666 -.025 -.102 .855 .031 .142 .825 

Diastolic Blood Pressure 

(mmHg) 
.094 .135 .472 .000 .000 .998 .067 .259 .042* 

Mean Arterial Pressure (mmHg) .115 .163 .383 -.018 -.023 .892 .088 .332 .011* 
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Table 10. Cardiometabolic risk factors including blood glucose, plasma insulin, HOMA and blood pressure separated into quartiles determined 

from distance run on the multi-stage fitness test, blood lactate concentration at 8.5 km.h-1 during the speed lactate test, V̇O2 peak and sum of 

skinfolds (Mean ± S.E.M). * denotes significantly different from quartile one; † significantly different from quartile two.  

 MSFT Distance (m) V̇O2 Peak (ml.kg-1.min-1) 

Blood Lactate at 8.5 km.h-1 

during Speed Lactate Test 

(mmol.L-1) 

Sum of Skinfolds (mm) 

 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 

Blood 

Glucose 

(mmol.L-

1) 

4.60 ± 

0.44 

4.35 ± 

0.48* 

4.08 ± 

0.44* 

4.11 ± 

0.53* 

4.63 ± 

0.58 

4.32 ± 

0.57 

4.25 ± 

0.49 

4.00 ± 

0.54* 

4.48 ± 

0.52 

4.32 ± 

0.65 

4.36 ± 

0.78 

3.82 ± 

0.53 

4.54 ± 

0.68 

4.27 ± 

0.44 

4.19 ± 

0.56 

4.20 ± 

0.44*† 

Plasma 

Insulin 

(mU.L-1) 

8.99 ± 

1.04 

6.71 ± 

0.76 

5.60 ± 

0.54* 

4.86 ± 

0.82* 

8.49 ± 

1.24 

7.07 ± 

0.66 

5.18 ± 

0.63* 

4.02 ± 

0.54*† 

7.00 ± 

0.87 

5.60 ± 

0.90 

6.23 ± 

0.67 

3.51 ± 

0.88* 

9.08 ± 

1.07 

5.55 ± 

0.69* 

6.68 ± 

0.74* 

5.70 ± 

0.80* 

HOMA 
2.00 ± 

0.68 

1.22 ± 

0.18* 

1.21 ± 

0.18* 

0.78 ± 

0.18* 

1.81 ± 

0.32 

1.48 ± 

0.18 

0.90 ± 

0.09* 

0.78 ± 

0.13*† 

1.35 ± 

0.14 

1.61 ± 

0.17 

1.01 ± 

0.13 

0.60 ± 

0.21 

1.90 ± 

0.27 

1.14 ± 

0.14* 

1.20 ± 

0.15* 

1.01 ± 

0.12* 

Systolic 

Blood 

Pressure 

(mmHg) 

112 ± 

2 

112 ± 

2 

111 ± 

2 

111 ± 

2 

111 ± 

2 

108 ± 

2 

110 ± 

2 

110 ± 

3 

104 ± 

2 

111 ± 

2 

106 ± 

2 

113 ± 

3 

115 ± 

2 

109 ± 

2 

112 ± 

2 

110 ± 

2 

Diastolic 

Blood 

Pressure 

(mmHg) 

69 ± 2 67 ± 1 70 ± 1 73 ± 1 70 ± 2 72 ± 2 68 ± 1 65 ± 1 74 ± 1 70 ± 2 66 ± 1 68 ± 1 73 ± 1 72 ± 2 
67 ± 

1* 

69 ± 

1* 

Mean 

Arterial 

Pressure 

(mmHg) 

86 ± 2 84 ± 1 82 ± 1 83 ± 1 83 ± 2 84 ± 1 82 ± 1 80 ± 1 84 ± 1 83 ± 2 79 ± 2 83 ± 1 87 ± 1 
83 ± 

1* 

82 ± 

1* 

83 ± 

1* 
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4.4 Discussion 

 

The primary finding of the present study was that adolescents categorised below the 25th centile 

for distance run on the MSFT exhibited increased concentrations of pro-inflammatory 

cytokines IL-6 and IL-1β and reduced concentrations of the anti-inflammatory mediator IL-10 

when compared with those categorised above the 25th centile. The present study is the first to 

report that distance run on the MSFT and the blood lactate response to exercise were the only 

measures to influence inflammatory cytokine concentrations in adolescents, both of which are 

deemed more sensitive measures of an individual’s endurance fitness - the physical capacity to 

perform prolonged exercise. In addition, the multiple regression revealed that the MSFT was 

the only significant predictor of inflammation in adolescents (with no relationship observed for 

V̇O2 peak or adiposity). Furthermore, adolescents categorised below the 25th percentile with 

the lowest distance run on the MSFT and V̇O2 peak exhibited increased metabolic risk factors 

(including fasted blood glucose, plasma insulin and HOMA-IR), whilst adolescents with the 

highest adiposity also presented with increased diastolic and mean arterial blood pressure 

compared to adolescents in all other quartiles. These findings emphasise the importance of 

enhancing the physical capacity to perform prolonged exercise, as evidenced by performance 

on the MSFT, and maintaining a healthy body composition during adolescence in order to 

attenuate the risk of developing early onset cardiovascular disease and type 2 diabetes. 

 

Adolescents with the lowest MSFT performance in the present study exhibited increased 

concentrations of pro-inflammatory cytokines IL-6 and IL-1β, and reduced concentrations of 

anti-inflammatory mediator IL-10 in comparison to adolescents in all other quartiles. These 

findings are novel as the present study is the first to measure a range of inflammatory cytokines 

that are reflective of low-grade chronic inflammation in a heterogeneous population of male 

and female adolescents (Gleeson et al., 2011). The finding that adolescents with the lowest 

physical fitness have increased concentrations of pro-inflammatory mediators is consistent 
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with previous studies in adolescents in that increased concentrations of IL-6 (Buchan et al., 

2015, Bugge et al., 2012) and CRP (Buchan et al., 2015) are observed in participants in the 

lowest quartile for physical fitness. However, the present study is the first to report that 

participants with the lowest MSFT performance have reduced circulating concentrations of IL-

10. These findings are in contrast to those of Jürimäe et al. (2017b) whereby IL-10 

concentration was similar in female rhythmic gymnasts and untrained controls. These 

discrepant findings might relate to the different methods used to categorize participants, as the 

present study measured the participant’s physical capacity to perform prolonged exercise and 

body composition, whereas Jürimäe et al. (2017b) categorized participants solely based on 

participation in rhythmic gymnastics or not. Therefore, the present study assessed the objective 

relationship between performance in submaximal and maximal exercise tests and anti-

inflammatory mediator IL-10. Increased concentrations of IL-10 protect against risk factors for 

cardiometabolic diseases, as in vitro studies report that IL-10 inhibits the synthesis of IL-1β 

and TNF-α which promote the development of low-grade chronic inflammation (Petersen and 

Pedersen, 2005). As acute bouts of physical activity transiently increase IL-10 concentrations 

(Petersen and Pedersen, 2005), it is not surprising that participants with the lowest performance 

on the MSFT had significantly reduced concentrations of the potent anti-inflammatory 

mediator. Furthermore, there were no differences between pro- or anti-inflammatory cytokine 

concentrations in adolescents categorised above the 25th percentile, which is consistent with 

previous research in adolescents (Buchan et al., 2015). These findings suggest enhanced 

physical capacity to perform prolonged exercise protects against low-grade chronic 

inflammation in adolescents by reducing exposure to pro-inflammatory mediators and 

increasing systemic concentrations of the anti-inflammatory cytokine IL-10.  

 

Performance on the MSFT and the blood lactate response to submaximal exercise were the 

only measures to influence inflammation in adolescents in the present study. This finding was 
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also observed in the multiple regression model, which revealed that distance run on the MSFT 

was the only significant predictor of inflammation in adolescents, whilst V̇O2 peak and 

adiposity were not related to inflammation. Previous studies in adolescents that used V̇O2 peak  

as an indicator of fitness (Ischander et al., 2007, Steene-Johannessen et al., 2013) also reported 

no relationship between pro-inflammatory mediators (IL-6, TNF-α and CRP) and physical 

fitness in adolescents. In contrast, inverse associations between pro-inflammatory mediators 

(IL-6, TNF-α, CRP) and physical fitness have been observed in adolescents when MSFT 

performance was the preferred measure of fitness (Buchan et al., 2015; Silva et al., 2014).  

 

To the authors’ knowledge, the present study is the first to consider that the methodology used 

to measure an individual’s capacity to perform prolonged exercise influences the relationship 

between physical fitness and risk factors for cardiometabolic diseases in adolescents. The acute 

anti-inflammatory response stimulated post-exercise reduces low-grade chronic inflammation 

in adolescents if repeated regularly (Mendham et al., 2015). Increased engagement with regular 

physical activity improves exercise tolerance and initiates peripheral adaptations in the muscle, 

including enhanced efficiency of mitochondrial biogenesis and increased fat oxidation (Joyne 

and Carsten, 2018). The MSFT performance and blood lactate response to sub-maximal 

exercise reflect such peripheral changes and are therefore considered to be sensitive to changes 

in the ability to perform prolonged exercise. In contrast, V̇O2 peak is limited when measuring 

peripheral adaptations as it is predominantly determined by central systems (cardiovascular 

and respiratory) that have a strong genetic predisposition (Joyne and Carsten, 2018). 

Consequently, the MSFT and blood lactate response to sub-maximal exercise are better suited 

in the measurement of physical fitness specifically for metabolic risk in young people. These 

findings suggest that adolescents can reduce low-grade chronic inflammation by enhancing 

distance run on the MSFT, and that improving the capacity to perform prolonged exercise is a 
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potential therapeutic intervention to prevent the development of risk factors for 

cardiometabolic diseases.  

 

Adolescents categorised below the 25th centile for distance run on the MSFT, V̇O2 peak and 

adiposity exhibited increased blood glucose and plasma insulin concentrations, and HOMA-IR 

when compared with adolescents in all other quartiles. The participants categorised below the 

25th centile for HOMA-IR, the chosen measure of insulin resistance, were above the reference 

cut off values for insulin resistance (> 1.65 in girls and > 1.9 in boys) in healthy adolescents 

(Rocco et al., 2011). Whereas, participants categorised ≥ 25th centile were below the reference 

cut off values for insulin resistance. These findings agree with those of Silva et al. (2014) 

whereby increased adiposity and reduced maximal oxygen uptake increased metabolic risk 

(calculated from traditional risk factors; blood pressure, blood glucose, triglycerides and HDL 

cholesterol) in adolescents. The multiple regression model showed that adiposity was the best 

predictor for metabolic risk factors (plasma insulin and HOMA-IR) and blood pressure in 

adolescents. This finding is consistent with previous research in adults, which reported the sum 

of skinfold thickness to be the strongest predictor of insulin resistance (Abate et al., 1995) and 

adiposity to be associated with systolic and diastolic blood pressure in adolescents (Paradis et 

al., 2004). Studies in rodents report that increasing adiposity drives an influx of free fatty acids, 

which deactivate insulin receptors and reduce insulin sensitivity (Capurso and Capurso, 2012). 

Yet, the mechanisms relating adiposity with higher blood pressure in adolescents are relatively 

unknown, with disturbances in autonomic function being a potential mechanism (Paradis et al., 

2004). These findings have enhanced understanding of the lifestyle factors that are associated 

with risk factors for metabolic disease in adolescents and emphasise the importance of 

maintaining a healthy body composition in conjunction with enhancing physical performance 

(through regular participation in physical activity).  
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The present study also reports that girls with the highest adiposity had elevated plasma insulin 

concentration and reduced insulin sensitivity (HOMA-IR) when compared with their male 

counterparts (boys categorised below the 25th centile for adiposity). These findings may be 

explained by the significantly increased adiposity of girls in quartile one when compared with 

boys and girls in all other quartiles (Table 7). These findings also support previous studies, 

which have reported that girls exhibited reduced postprandial insulin sensitivity when 

compared with boys of the same chronological age (Cooper et al., 2017). However, there was 

no difference in APHV between boys and girls in the present study and APHV was a covariate 

in the analysis to account for the potential confounding effects of maturation. Therefore, it is 

not feasible to suggest that the increased adiposity and insulin resistance observed in the girls 

in the present study was the result of differences in pubertal development. However, the 

potential confounding effect of puberty on the relationship between adiposity and insulin 

resistance in both males and females does warrant further research. Regardless of the 

mechanisms involved, it is apparent that adolescent girls with increased adiposity exhibit 

reduced insulin sensitivity when compared with their male counterparts. As such, future 

interventions should focus on promoting healthy body composition and physical fitness in 

adolescent girls, as the findings of the present study report that both variables can mediate 

improvements in insulin sensitivity.  

 

The present study has several strengths including the measurement of a comprehensive panel 

of inflammatory cytokines in a heterogeneous sample of adolescents with diverse endurance 

capacities and adiposity, which allowed for the relationship between these variables and 

cardiometabolic health to be determined. The heterogeneity of performance capacity 

(measured using the distance run on the MSFT) in the present study ranged from the 30th-95th 

percentile for boys and the 20th - 95th percentile for girls, when compared with normative data 

in European adolescents (Tomkinson et al., 2018). Similarly, the adiposity of the adolescents 
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in the present study ranged from the 5th to > 95th percentile for BMI, which also supports the 

heterogeneity of the participants recruited to the present study. The diversity of the adolescents 

analysed in the present study allows for broad dissemination of the main findings of the study. 

However, a limitation to the present study was the lack of power for the blood lactate response 

to submaximal treadmill running and thus its exclusion from the multiple regression model. 

Future research should determine more fully the effect of the blood lactate response to exercise 

(as a measure of adolescent training status) on adolescent cardiometabolic health. A further 

limitation of the present study is the absence of CRP data following the methodological issues 

that occurred. CRP is reported as the best predictor of cardiovascular events in adults (Gleeson 

et al., 2012). However, the relationship of CRP with training status, V̇O2 peak and adiposity in 

adolescents is yet to be examined, despite the importance of reducing CRP across the lifespan 

in preventing clinical manifestation of cardiometabolic disease in adulthood (for review, see 

section 2.2.2.2). Further limitations include the absence of measurements pertaining to the 

ethnicity, daily dietary habits and the typical physical activity levels of the participants. Each 

of these measures are potential confounders in the relationship between performance tests and 

the risk factors measured in the present study (Hardman & Stensel., 2009). Nevertheless, given 

the difficulties of data collection in this age group and population the present study is the most 

comprehensive yet to examine fitness and the risk factors for cardiometabolic disease in 

adolescents. 

 

In conclusion, the present study shows that a higher ability to perform prolonged exercise (as 

indicated by distance run on the MSFT) in adolescents protects against the development of 

cardiometabolic risk indicators that increase the likelihood of early onset cardiovascular 

disease and type 2 diabetes. These findings suggest that all young people can benefit from 

enhancing their ability to perform prolonged exercise as evidenced by the differences across 

quartiles based on MSFT performance. Furthermore, these findings are particularly important 
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for those categorised below the 25th centile, as the benefits for metabolic risk factors were 

observed for those categorized above the 25th centile and for markers of inflammation for those 

above the 50th centile based on distance run on the MSFT. Although there were also benefits 

of a high V̇O2 peak and low adiposity, these were not as marked as the benefits of enhanced 

performance on the MSFT. Thus, enhancing performance on the MSFT is a key factor in 

successfully reducing cardiometabolic risk in young people and thus, training interventions 

should be given substantial attention in public policy interventions for young people. Future 

research should determine the type, duration, intensity and frequency of an ecologically valid 

mode of exercise that will enhance performance on the MSFT in adolescents and subsequently 

enhance cardiometabolic health. 
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Chapter Ⅴ 

Cytokine, glycaemic and insulinaemic responses to an 

acute bout of games-based activity in adolescents 

5.1 Introduction 

The findings of Chapter Ⅳ suggest that a relationship exists between performance on the 

MSFT, the blood lactate response to submaximal exercise and novel (inflammatory cytokines) 

and traditional (markers of insulin resistance) risk factors for cardiometabolic diseases in 

adolescents. Therefore, the aim of Chapter Ⅴwas to examine the inflammatory, glycaemic and 

insulinaemic responses to an acute bout of exercise to suggest some of the potential 

mechanisms that lead to regular participation in exercise chronically reducing the presence of 

risk factors for cardiometabolic diseases in young people. 

 

Low-grade chronic inflammation is involved in the pathogenesis of several chronic diseases, 

including cardiovascular disease and type 2 diabetes (Gleeson et al., 2011; Nassis et al., 2005; 

Petersen & Pedersen, 2005; Sarzynski et al., 2013). Although such conditions typically present 

during adulthood, the development of cardiometabolic risk factors for these diseases originate 

during childhood, with low-grade chronic inflammation, atherosclerotic plaques, and insulin 

resistance observed in pubertal children (Beresnon et al., 1998; Ehtisham et al., 2000; 

Warnberg et al., 2008). Low-grade chronic inflammation is defined as a 2-3 fold increase in 

systemic concentrations of pro-inflammatory cytokines, including IL-6, IL-1β, TNF-α and the 

acute phase protein CRP (Petersen & Pedersen, 2005). The inflammatory response that follows 

an acute bout of exercise (reflected by increased IL-6, produced by the contraction of skeletal 

muscle, subsequently stimulating a systemic increase in the concentration of anti-inflammatory 

cytokines) is a mechanism that stimulates muscle regeneration and reduces low-grade chronic 
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inflammation and insulin resistance in adults (Gleeson et al., 2011; Petersen & Pedersen, 2005), 

with in vitro studies reporting that IL-10 inhibits the synthesis of chronic pro-inflammatory 

mediators TNF-α and IL-1β (Petersen & Pedersen, 2005). Furthermore, in the plantaris muscle 

of mice increased IL-6 post-exercise increases the expression of glucose transporter-4, which 

increases glucose uptake (Ikeda et al., 2016), suggesting that a rise in IL-6 post-exercise 

triggers an anti-inflammatory response and enhances insulin sensitivity. 

  

Despite the presence of low-grade chronic inflammation and insulin resistance in young people 

(Berenson et al., 1998), information on the inflammatory response to an acute bout of exercise 

in adolescents is limited. Previous studies have examined the response of inflammatory 

mediators, IL-6 and TNF-α, to an acute bout of endurance exercise and increases (Nemet et al., 

2002; Scheet et al., 1999), decreases (Nemet et al., 2003), and no changes (Timmons et al., 

2006; Paltoglou et al., 2017) have been observed. However, young people do not typically 

participate in endurance exercise, with intermittent activity being both enjoyable (important 

for long-term adherence) (Howe et al., 2010) and replicative of their physical activity patterns 

(Rowland et al., 2008). Eccentric exercise is an alternative mode of physical activity that elicits 

an increase in pro-inflammatory cytokines (IL-6 and IL-1β) in response to the muscle damage 

incurred (Jamurtas et al., 2012; Paschalis et al., 2010). Furthermore, games-based activities, 

such as basketball (which is characterised by repeated eccentric muscle contractions), are 

intermittent in nature and replicate the activity patterns of young people whilst also having 

previously been reported to induce muscle damage and an inflammatory response (increased 

IL-6 and IL-1β) in adults (Chatzinikolaou et al., 2014). Therefore, it is important to determine 

whether intermittent games-based activity elicits a protective anti-inflammatory response 

beneficial to cardiometabolic health in young people (Gleeson et al., 2011; Petersen & 

Pedersen, 2005).  
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Only two studies in young people have assessed the effect of intermittent exercise on 

inflammatory mediators (Scheet et al., 1999; McMurray et al., 2007). McMurray et al. (2007) 

reported that 10 x 2 min bouts of high intensity intermittent cycling in pubertal adolescents 

increased the anti-inflammatory IL-6: TNF-α ratio by 80% 2-h post-exercise. Whereas, Scheet 

et al. (1999) observed that 90-min of soccer in pre-pubertal children increased IL-6 (125%) 

and TNF-α (18%) 2-h post-exercise, yet did not affect anti-inflammatory mediator IL-10. The 

differences in exercise intensity and duration might explain these discrepant findings. 

Importantly, these studies have only assessed IL-6, TNF-a and IL-10 for 2-h post-exercise, 

despite in vitro studies reporting that inflammatory mediators (IL-10 and CRP) remain elevated 

for up to 24-h post-exercise (Gleeson et al., 2011; Petersen & Pedersen, 2005). To fully 

examine the inflammatory response to exercise a complete range of pro-inflammatory (IL-1β, 

TNF-α and CRP) and anti-inflammatory (IL-6, IL-10 and IL-6: TNF-α) cytokines should be 

measured up to 24-h post-exercise.  

 

Another important aspect of cardiometabolic health is the glycaemic and insulinaemic response 

following a meal. Previously, a 45-min bout of aerobic exercise residually enhanced insulin 

sensitivity in adolescents for up to 17-h, as demonstrated by reduced postprandial glycemic 

and insulinaemic responses following a high fat meal (Short et al., 2013). Furthermore, high 

intensity intermittent and moderate intensity cycling in adolescent boys reduced the glycemic 

and insulinemic responses by 24-29%, following an oral glucose tolerance test, in comparison 

to a rested control trial (Cockcroft et al., 2014). However, the impact of exercise on the 

glycemic and insulinemic response to an ecologically valid meal remains unknown and no 

studies have examined the association between the inflammatory and glycemic/insulinemic 

responses post-exercise, despite the anti-inflammatory response being associated with insulin 

sensitivity (Straczkowski et al., 2005). 
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The present study aims to investigate if an acute bout of intermittent games-based activity 

stimulates an anti-inflammatory and metabolic response in young people.  

 

5.2 Methods 

5.2.1 Study Design 

The institutional ethical advisory committee approved all procedures (approval number SST-

417). Participants were recruited from secondary schools and written informed parental consent 

alongside child assent obtained. The following exclusion criteria were applied (a) a medical 

history of chronic diseases, including but not limited to cardiovascular disease, diabetes and 

hypertension, (b) prescription of regular medication that may affect participation in the study 

and (c) any factor that would cause an inability to complete the exercise components of the 

study. A parent/guardian completed a health screen questionnaire on behalf of the participant 

to ensure there were no medical conditions affecting participation in the study. 

 

The familiarisation session preceded the main experimental trial by 7 d. During familiarization, 

the experimental protocol was explained to participants and they were familiarized with the 

methods included in the main trials. Participants completed the multi-stage fitness test (MSFT) 

as a performance test of endurance fitness (Ramsbottom et al., 1988) and peak oxygen uptake 

was estimated from these test results (50.3±4.4 ml.kg-1.min-1) using an adolescent specific 

calculation (Barnett et al., 1993). 

 

5.2.2 Participant Characteristics 

Forty-one schoolchildren aged 11-13 y were recruited to the present study. Two participants 

did not complete the study (as they decided they did not want to miss the required time from 

school lessons), therefore, 39 participants (20 males, 19 females) were included in the analysis. 

During familiarization body mass (Seca 770 digital scale, Hamburg, Germany), height and 
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sitting height (Leicester Height Measure, Seca, Hamburg, Germany) were measured, to 

determine age at peak height velocity (Moore et al., 2015). Waist circumference and the sum 

of four skinfold were measured. The participants’ anthropometric characteristics were (mean 

± SD): age 12.3±0.7 y; height 155.7±7.5 cm; body mass: 46.0±9.5 kg; predicted years from 

peak height velocity: -0.37±1.1 y; waist circumference: 65.4±5.7 cm and sum of skinfolds: 

44.9±19.5 mm. 

 

5.2.3 Main Trials 

The study employed a randomised, counterbalanced, crossover design consisting of an exercise 

and rested (control) trial, separated by 7 d. As one of the main trials incorporated an exercise 

session, participants were not blinded to the trial condition. The experimental protocol is 

displayed in Figure 6. 

 

Figure 6. Schematic of protocol for the assessment of an acute bout of games-based activity 

on inflammatory, glycaemic and insulinaemic responses in adolescents. 

 

Participants recorded their dietary intake for 24 h preceding the first main trial and during 

evening one of the study; recorded diets were replicated for the subsequent main trial. 

Participants arrived at school fasted from 9 pm the previous evening on day one and day two 

of the main trials. Participants were asked to refrain from physical activity 24 h prior to and 

during all main trials. A telephone call was made to parents/guardians prior to each main trial 

to ensure compliance. 
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On arrival at school (8.30 am) participants were fitted with a heart rate monitor (Team Sports 

System, Firstbeat Technologies Ltd, Finland) which was worn during main trials. A 

standardized breakfast (cornflakes, milk, toast, margarine) and lunch (chicken sandwich, baked 

crisps, apple) were provided, each containing 1.5 g carbohydrate per kg body mass, as used in 

previous research (Cooper et al., 2012). Prior to participation, parents and guardians completed 

a health questionnaire, which provided them with the opportunity to also state any food 

allergies and preferences of their child/dependent. In the present study there were no allergies 

to the foods consumed, however had this been the case suitable alternatives would have been 

provided. Participants had 15 min to consume each meal.  

 

5.2.4 Capillary Blood Samples  

Capillary blood samples were taken at baseline, immediately post-exercise and 60 min post-

exercise (Fig 1). Additional blood samples were taken 30 min, 60 min (2 h post-exercise) and 

120 min (3 h post exercise) following a standardized lunch. A final fasted capillary blood 

sample was taken the following morning (day two) using previously described methods 

(Cooper et al., 2012). 

 

Blood glucose and plasma insulin concentrations were measured in duplicate using 

commercially available kits (glucose: GOD/PAP method, GL364, Randox, Ireland; insulin: 

ELISA, Mercodia Ltd, Sweden). Blood glucose and plasma insulin iAUC following the 

standardized lunch were calculated (Brouns et al., 2005; Wolever & Jenkins, 1986).  

 

Cytokine (IL-1β, IL-6, TNF-α and IL-10) concentrations were determined using a flow 

cytometry-based multiplex bead approach (AimPlex™ multiplex assay, YSL, Pomona, USA) 

using a Beckman Coulter Gallios™ flow cytometer and Kaluza™ data acquisition and analysis 
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software (Beckman Coulter, London, UK). CRP concentrations were determined using the 

same approach, but in a separate assay due to a greater sample dilution being required.  

 

5.2.5 Exercise Protocol 

The exercise trial incorporated a 60 min basketball session, which commenced 1 h after 

breakfast on day 1 (Fig 1). An experienced basketball coach delivered the sessions to groups 

of 10 participants in a school sports hall. The basketball session consisted of a warm-up (5 min 

of jogging on the court followed by dynamic stretches), skill-based drills (30 min passing, 

dribbling and shooting drills) and small-sided games (25 min) to finish. Immediately post-

exercise, participants returned to the classroom and rested quietly for the remainder of the day. 

During the control trial, participants rested in the classroom throughout the day.  

 

5.2.6 Statistical Analysis  

A power calculation was performed using GPower 3.1.9.2 based on the previously reported 

effects of exercise on IL-6 in young people (Nemet et al., 2002) and an estimated effect size of 

0·3 (two-tailed significance), the power analysis yielded a required total sample size of 38. 

 

All data was assessed for normality using the Kolmogorov-Smirnov test prior to statistical 

analysis. Inflammatory cytokine, blood glucose and plasma insulin concentration data were 

analyzed in SPSS (Version 24, SPSS Inc, Chicago, USA) via three-way (trial*time*sex) 

Analysis of Variance (ANOVA) with repeated measures for trial and time. Separate ANOVAs 

were conducted for day one and between resting measures on day one and day two. Where 

significant interactions were observed, post-hoc pairwise comparisons were performed using a 

Bonferonni correction. Blood glucose iAUC, plasma insulin iAUC and heart rate were 

compared using a paired samples t-test. Where significant effects existed for main effect of 

trial and trial by time interactions, effect sizes were calculated as Cohen’s d. For discussion 
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purposes, percentage change was calculated for variables that were significantly different 

between trials (Percentage change = [Trial 1 value / Trial 2 value] * 100). For all analysis, 

significance was accepted as p<0.05 and data are presented as mean ± S.E.M..  

 

5.3 Results 

5.3.1 Heart Rate  

Mean heart rate during the basketball was 157 ± 11 beats.min-1 (76 ± 5 % of maximum heart 

rate achieved during the MSFT; HRmax) and maximum recorded mean heart rate was 197 ± 9 

beats.min-1 (96 ± 4 % HRmax).  Consequentially, mean heart rate was higher during the 

exercise trial than the control trial (exercise: 104 ± 14 beats.min-1, 51 ± 7% HRmax; resting: 

90 ± 10 beats.min-1, 44 ± 5 % HRmax; t(38)= -7.2, p<0.001). 

 

5.3.2 Inflammatory and Metabolic Responses 

At baseline, there was no difference in inflammatory cytokine, blood glucose or plasma insulin 

concentration between the exercise and control trials (all p > 0.05). When considering the effect 

of sex there were no differences in inflammatory cytokine concentrations between the boys 

and girls at baseline or post-exercise (all p > 0.05).  

 

5.3.2.1 Inflammatory Variables 

The response of the inflammatory variables can be found in Table 11. Overall, IL-6 

concentration was higher during day one of the exercise trial when compared with the control 

trial (exercise: 3.4 ± 0.4, resting: 2.7 ± 0.4 pg.mL-1; main effect trial, F(1,35)= 8.7, p = 0.006; d 

= 0.3). Furthermore, IL-6 concentration increased across time during both trials on day one 

(main effect time, F(1,35)= 11.3, p < 0.001). No trial * time interaction effect was observed for 

IL-6 concentration on day one (p = 0.604), nor were there any differences 24 h post-exercise 

(main effect trial, p = 0.422; trial * time interaction, p = 0.852).  
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Overall, IL-10 concentration did not differ between the exercise and control trial on day one 

(main effect trial, p = 0.569); nor were there changes across time (main effect time, p = 0.151), 

nor a trial*time interaction (p = 0.161). However, when considering the response of IL-10 24 

h post-exercise, there was a trial * time interaction (F(1,38)= 5.9, p = 0.020; d = 0.4, Table 11) 

whereby IL-10 concentration was higher on day two of the exercise trial than the control trial 

(t(34)= -2.2, p = 0.032).  

 

Overall, there were no differences in TNF-α concentration between the exercise and control 

trials on day one (main effect trial, p = 0.400), nor were there changes across time (main effect 

time, p = 0.197). There was a trial * time interaction for TNF-α concentration during day one 

(F(4,108)= 2.5, p = 0.048, Table 11), whereby 2 h post-exercise there was a tendency for TNF-α 

concentration to increase during the exercise trial in contrast to the control trial (t(27)= 2.3, p = 

0.076, d = 0.2). When considering the response of TNF-α 24 h post-exercise, there was no 

difference between trials (main effect trial, p = 0.680; trial * time interaction, p = 0.083).  

Overall, IL-1β concentration did not differ between the exercise and control trials on day one 

(main effect trial, p = 0.220), nor were there any differences in IL-1β concentration across time 

(main effect time, p = 0.647). Furthermore, the pattern of change in IL-1β concentration was 

similar between trials during day one (trial * time interaction, p = 0.952). When considering 

the response of IL-1β 24 h post-exercise, there was no difference between trials (main effect 

trial, p=0.068; trial * time interaction, p = 0.621).  

 

Overall, CRP concentration did not differ between the exercise and control trials on day one 

(main effect trial, p = 0.967), nor were there any differences in CRP concentration across time 

(main effect time, p = 0.190). The pattern of change in CRP concentration was similar between 

trials during day one (trial*time interaction, p = 0.593). When considering the response of CRP 
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24 h post-exercise, there was no difference between trials (main effect trial, p = 0.716; trial * 

time interaction, p = 0.116).  

 

Overall, the IL-6: TNF-α ratio was higher during day one of the exercise trial when compared 

with the control trial (exercise: 5.53 ± 0.93, resting 3.75 ± 0.45; main effect trial, F(1, 24)= 5.5, 

p = 0.027; d = 0.5). Furthermore, the IL-6:TNF-α ratio increased across time during both trials 

on day one (main effect time, F(4, 96)= 3.3, p = 0.043). There was no trial * time interaction 

effect observed for the IL-6: TNF-α ratio on day one (p = 0.764), nor was there a difference 

between trials 24 h post-exercise (main effect trial, p = 0.827; trial * time interaction, p = 

0.348). 
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Table 11.  Summary of the inflammatory responses following 60 min high intensity, intermittent, games-based activity and during the rested 

control trial. Levels of inflammatory mediators reported as Mean ± S.E.M. * Significant differences between trials, p < 0.05. 

 

Rest Post Exercise 
1 h Post 

Exercise 
2 h Post Exercise 

3 h Post 

Exercise 
Day 2 Rest 

IL-6 (pg.ml-1) 

     Exercise 2.07 ± 0.34 2.46 ± 0.35 3.51 ± 0.56 4.28 ± 0.49 4.81 ± 0.84 2.30 ± 0.45 

     Control 1.98 ± 0.33 2.06 ± 0.35 2.88 ± 0.50 3.19 ± 0.70 3.77 ± 0.42 2.14 ± 0.33 

IL-10 (pg.mL-1) 

     Exercise 1.45 ± 0.14 1.63 ± 0.19 1.43 ± 0.14 1.74 ± 0.15 1.75 ± 0.19 2.11 ± 0.23* 

     Control 1.80 ± 0.17 1.73 ± 0.18 1.44 ± 0.12 1.60 ± 0.14 1.72 ± 0.13 1.66 ± 0.16 

TNF-α (pg.mL-1) 

     Exercise 1.08 ± 0.21 1.00 ± 0.19 0.98 ± 0.20 1.28 ± 0.33* 1.17 ± 0.24 1.18 ± 0.26 

     Control 1.17 ± 0.19 0.99 ± 0.14 0.93 ± 0.14 0.98 ± 0.17 0.96 ± 0.14 1.02 ± 0.15 

IL-1β (pg.mL-1) 

     Exercise 3.13 ± 0.29 2.95 ± 0.31 3.05 ± 0.31 3.08 ± 0.35 3.02 ± 0.35 3.17 ± 0.34 

     Control 2.85 ± 0.23 2.68 ± 0.22 2.85 ± 0.25 3.01 ± 0.37 2.94 ± 0.27 2.73 ± 0.23 

CRP (mg.L-1) 

     Exercise 0.24 ± 0.06 0.25 ± 0.06 0.20 ± 0.04 0.21 ± 0.06 0.23 ± 0.06 0.25 ± 0.08 

     Control 0.26 ± 0.05 0.25 ± 0.05 0.22 ± 0.05 0.20 ± 0.04 0.19 ± 0.04 0.17 ± 0.04 

IL-6: TNF-a 

     Exercise 2.38 ± 0.30 5.21 ± 1.80 5.48 ± 0.90 7.25 ± 1.83 7.27 ± 2.61 2.66 ± 0.37 

     Control 2.19 ± 0.28 3.06 ± 0.50 3.95 ± 0.85 4.58 ± 0.68 4.94 ± 0.81 3.15 ± 0.85 
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5.3.2.2 Metabolic Variables 

The response of the metabolic variables can be found in Table 12. Overall blood glucose 

concentration did not differ between the exercise and control trial (main effect trial, p = 0.087), 

yet did differ over time (main effect time, F(6,210)= 61.2, p < 0.001). Furthermore, the pattern of 

change in blood glucose concentration differed between trials (trial*time interaction, F(6,210)= 

8.8, p < 0.001); whereby blood glucose concentration was higher immediately post-exercise 

during the exercise trial compared to the control trial (t(35)= 3.1, p < 0.001, d = 0.9). Blood 

glucose concentration was also lower 1-h post-exercise on the exercise trial compared to the 

control trial (t(35)= 2.3, p < 0.001, d = 0.8). No differences were evident at any other time point 

on day one (all p > 0.05). On day two, fasting blood glucose concentration was lower for the 

exercise trial compared to the control trial (t(35)= 3.3, p = 0.027, d = 0.6). When considering the 

effect of sex, blood glucose concentration was higher at baseline and immediately post-exercise 

in females compared with males (trial * sex interaction, F(1,35)= 6.5, p = 0.016). Blood glucose 

iAUC did not differ between the exercise and the control trial (main effect trial, p = 0.084), nor 

was there an effect of sex on blood glucose iAUC following the standardized lunch (trial * sex 

interaction, p = 0.083).  

 

Overall, plasma insulin concentration was lower during the exercise trial than the control trial 

(exercise: 20.8 ± 2.5, resting: 24.2 ± 1.7 mU.L-1; main effect trial, F(1,23)= 6.7, p = 0.016, d = 

0.3, Table 12) and changed across time (main effect time, F(6, 138)= 55.9, p < 0.001). The pattern 

of change in plasma insulin concentration differed between trials (trial * time interaction, 

F(6,138)= 7.9, p < 0.001). Specifically, during the exercise trial plasma insulin concentration 

reached a higher peak than the control trial immediately post-exercise (t(23)= -1.33, p = 0.011, 

d = 0.5), whereas plasma insulin concentration 1 h post-exercise was lower on the exercise trial 

when compared to the control trial (t(23)= 0.29, p = 0.039, d = 0.3). Plasma insulin concentration 

was lower during the exercise trial compared to the control trial 30-min post-lunch (t(23)= 1.35, 
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p < 0.001, d = 0.7) and 60 min post-lunch (t(23)= 0.61, p = 0.048, d = 0.4). When considering 

the effect of sex, the response to exercise did not differ between boys and girls (trial * sex 

interaction, p = 0.082). 

 

Plasma insulin iAUC following the consumption of the standardized lunch was lower during 

the exercise trial compared to the control trial (exercise: 2310 ± 834, resting: 3122 ± 1443 

mU.L-1x120 min, t(24)= 3.0, p < 0.001, d = 0.7), but this effect was not different between the 

sexes (trial * sex interaction, p = 0.170). 

 

HOMA-IR was calculated for the fasted blood samples on day one and day two, with no 

difference between trials (main effect trial, p = 0.136), or between day one and day two (main 

effect time, p = 0.519). Furthermore, the change in HOMA-IR between day one and day two 

was similar between trials (trial * time interaction, p = 0.439). 
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Table 12.  Summary of the glycaemic and insulinemic responses following 60 min high intensity, intermittent games based activity and during 

the rested control trial. Glycaemic and insulinemic responses reported as Mean ± S.E.M. * Significant differences between trials, p < 0.05. 

 
Rest Post Exercise 

1 h Post 

Exercise 

30 min Post 

Lunch 

60 min Post 

Lunch 

120 min Post 

Lunch 
Day 2 

Blood Glucose 

(mmol.L-1) 

 

     Exercise 

 

 

4.38 ± 0.06 

 

 

5.82 ± 0.16 * 

 

 

4.25 ± 0.07 * 

 

 

5.89 ± 0.13 

 

 

5.01 ± 0.07 

 

 

4.93 ± 0.08 

 

 

4.38 ± 0.06 

     Control 4.54 ± 0.08 5.07 ± 0.10 4.74 ± 0.13 6.07 ± 0.17 5.09 ± 0.12 4.90 ± 0.08 4.72 ± 0.12 

Plasma Insulin 

(mU.L-1) 

 

     Exercise 

 

7.26 ± 0.86 

 

35.95 ± 4.03 * 

 

7.83 ± 1.60 * 

 

36.64 ± 3.90 * 

 

28.84 ± 2.31 * 

 

20.11 ± 2.05 

 

7.22 ± 0.72 

     Control 8.17 ± 0.94 25.98 ± 3.39 10.50 ± 1.98 59.01 ± 7.84 33.26 ± 2.81 26.28 ± 3.19 8.70 ± 1.18 

HOMA-IR 

 

     Exercise 

 

 

1.55 ± 0.63 

 

 

- 

 

 

- 

 

 

- 

 

 

- 

 

 

- 

 

 

1.40 ± 0.75 

     Control 1.64 ± 0.86 - - - - - 1.59 0.93 
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5.4 Discussion 

The findings of Chapter Ⅳ suggested that distance run on the MSFT and the blood lactate 

response to submaximal exercise, as performance measures, were inversely related to both 

novel and traditional risk factors for cardiometabolic diseases in adolescents. Whilst these 

findings are promising the mechanisms that leads to enhanced performance on such tests 

predicting cardiometabolic disease risk have previously been unexplored. As such the main 

aim of Chapter Ⅴ was to examine the inflammatory, glycaemic and insulinaemic responses to 

an ecologically valid mode of exercise in adolescents, which if repeated regularly, could result 

in the chronic relationship between distance run on the MSFT and cardiometabolic health. 

 

The primary finding of the present study was that an acute bout of intermittent games-based 

activity elicited an anti-inflammatory response with a 132 % increase in IL-6 concentration 

and a 200 % rise in the anti-inflammatory IL-6: TNF-α ratio 3 h post-exercise when compared 

with the rested trial. Furthermore, there was a 27 % increase in concentration of anti-

inflammatory cytokine IL-10 24 h post-exercise in comparison with the rested trial. The pro-

inflammatory cytokine IL-1β and acute phase protein CRP were unaffected by the 60 min bout 

of games-based activity, whereas the concentration of TNF-α increased following exercise. In 

addition, the insulinemic response to a standardized lunch was reduced by 35 % following the 

games-based exercise when compared with the control trial. This is the first study to examine 

a range of inflammatory cytokines and the glycaemic and insulinemic responses up to 24 h 

following games-based activity in adolescents. 

 

The response of IL-6 in the present study is consistent with the one other paper examining 

games-based activity in young people, where a 91 % increase was observed 1 h post-exercise 

in pre-pubertal boys (Scheet et al., 1999). The present study is novel as it is the first to report 

that the IL-6 concentration continues to increase in healthy adolescents 3 h post-exercise, 
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whereas previous studies suggested IL-6 concentration increased transiently and returned to 

resting levels 1 h post-exercise (Gleeson et al., 2011). The increase in IL-6 concentration 

stimulated a 2-fold increase in the anti-inflammatory IL-6: TNF-α ratio 3 h post-exercise and 

a 27 % increase in IL-10 concentration 24 h post-exercise. The 200 % increase in the IL-6: 

TNF-α ratio was greater than the 80 % increase following 10 x 2 min bouts of high intensity 

intermittent cycling in adolescents (McMurray et al., 2007), whilst the present study is the first 

to report an increase IL-10 concentration 24 h post-exercise in young people. The greater 

inflammatory response observed in the present study may relate to the longer duration of the 

exercise session compared to previous studies. Alternatively, this might relate to the mode of 

exercise undertaken, as basketball has an intense eccentric component, which in adults induces 

muscle damage that stimulates an inflammatory response of similar magnitude to that observed 

in the present study (Chatzinikolaou et al., 2014). However, these suggestions are speculative 

and future research should examine the optimum duration and intensity of games-based activity 

for eliciting an inflammatory response.  

 

The increase in IL-6 concentration post-exercise has both pro- and anti-inflammatory role in 

exercise induced inflammation (Petersen & Pedersen, 2005), as indicated by the 31 % increase 

in pro-inflammatory cytokine TNF-α 2 h post-exercise. The increase in TNF-α concentration 

in the present study is consistent with the ~10 – 30 % increase reported in young people 

following moderate-to-vigorous exercise (McMurray et al., 2007; Nemet et al., 2002, 2009). 

Although a chronic increase in TNF-α is suggested to increase cardiometabolic disease risk in 

adults (Green et al., 2004), the transient increase in TNF-α following exercise in adolescents 

in the present study may also elicit cardiometabolic health benefits. Previous research has 

suggested that following damage to skeletal muscle during moderate-to-vigorous exercise, the 

transient increase in pro-inflammatory cytokine TNF-α advances muscle regeneration and 

augments glucose uptake with the increased expression of GLUT-1 (Tidball, 2005), potentially 
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contributing to the enhanced insulin sensitivity associated with regular participation in 

exercise.  

 

IL-1β and CRP were the only inflammatory markers in the present study to be unaffected by 

the acute bout of games-based activity. The lack of an effect of exercise on IL-1β concentration 

is consistent with one previous study that reported no change following 90 min games-based 

activity in pre-pubertal boys (Scheet et al., 1999).  The present study is the first to the authors’ 

knowledge to assess the response of CRP following an acute bout of exercise in adolescents. 

However, one previous study in adults reported a small increase in CRP concentration the day 

following a marathon race (Petersen & Pedersen, 2005). It is therefore possible that longer 

duration bouts of exercise lead to greater increases in the systemic concentration of 

inflammatory mediators. Further research is required to determine the relationship between 

exercise intensity, duration and the subsequent inflammatory response. However, it is 

important to note that the milieu of cytokine responses observed in the present study is likely 

to arise from the release of IL-6 as a result of the contraction of skeletal muscle during the 

games-based activity. 

 

In the present study, the glycaemic response to a standardized lunch was similar between trials, 

with no difference in blood glucose iAUC observed. Yet, postprandial plasma insulin iAUC 

was 35 % lower and peak plasma insulin was 61% lower following the games-based activity. 

An acute bout of high intensity intermittent exercise (lasting ~ 22 min) has previously resulted 

in a 29 % reduction in postprandial blood glucose iAUC and a 24 % reduction in plasma insulin 

iAUC in adolescent boys (Cockcroft et al., 2014). It is important to note that the present study 

is the first to report an exercise-induced reduction in peak plasma insulin concentration 

following an ecologically valid meal; and the reduction in insulin iAUC as a result of games-
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based activity was of greater magnitude than in previous studies using different types of 

exercise.   

 

The greater enhancement in insulin sensitivity may relate to the training status and higher peak 

oxygen uptake of participants in the present study (Cockcroft et al., 2014; Short et al., 2013) 

which may have enabled exercise at higher absolute intensities. Although it has previously 

been proposed that the capacity for insulin sensitivity to change following exercise is reduced 

in well-trained participants (Cockcroft et al., 2014), the present study suggests that, if higher 

fit adolescents sustain overall higher absolute exercise intensities they experience a greater 

enhancement in insulin sensitivity post-exercise. Future research could also explore how 

relative exercise intensity (perhaps by asking participants to rate their perceived exertion of the 

exercise) affects these responses. Nonetheless, the enhanced insulin sensitivity observed in the 

present study reduces the risk of developing chronic diseases such as type 2 diabetes, 

highlighting the importance of games-based activity for adolescent health. 

 

Finally, the intermittent games-based activity employed in the present study is considered an 

enjoyable mode of exercise for adolescents (Howe et al., 2010) and can be undertaken during 

the school day, thereby facilitating participation for all young people. These issues of 

appropriateness and accessibility of physical activity are particularly important given that only 

23 % of adolescents currently meet the recommended guidelines of 60-min moderate-to-

vigorous physical activity per day (Rowland et al., 2008).  

 

The present study shows that an acute bout of games-based activity in adolescents elicits anti-

inflammatory effects as evidenced by the increase in systemic concentrations of anti-

inflammatory cytokines (IL-6, IL-10) and a higher anti-inflammatory IL-6: TNF-α ratio, 

alongside a reduced insulinemic response to a standardized lunch; demonstrating a beneficial 
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effect across these cardiometabolic disease risk factors. These findings have important 

implications for the health of young people, especially given that the anti-inflammatory effects 

are evident up to 24-h post-exercise, thus if such exercise was repeated regularly it would elicit 

beneficial effects on cardiometabolic health in adolescents. These findings are of interest to 

those responsible for designing and implementing physical activity interventions in schools, 

with information available as to the mode and duration of exercise that will successfully 

enhance cardiometabolic health in adolescents. Such interventions are particularly important 

given that less than one in four young people currently meet physical activity guidelines 

(Rowland et al., 2008) and adherence may be enhanced with games-based activity (Howe et 

al., 2010). Future research should aim to further quantify the optimum intensity and duration 

of exercise for cardiometabolic health in adolescents and identify effective interventions for 

the implementation of this in practice, whilst considering the inclusion of behaviour change 

models to ensure long-term adherence to the physical activity intervention(s). Collaborative 

research that examines the physiological responses to exercise to understand details of the 

optimum type, intensity and duration of exercise to improve health, alongside the psychological 

constructs to evoke behaviour change, will enhance the likelihood of increasing physical 

activity levels in adolescents thus reversing current adverse health trends (Sarzynski et al., 

2013). 

 

The findings of Chapter Ⅴ suggest that an anti-inflammatory response is stimulated and insulin 

sensitivity enhanced following an acute bout of games-based activity in healthy adolescents. 

These promising findings suggest that an ecologically valid mode of activity, deemed suitable 

for young people, if repeated regularly will result in enhanced performance and reduced risk 

factors for cardiometabolic diseases, as observed in Chapter Ⅳ. However, the duration of 

activity required to elicit such beneficial effects is unknown and forms the basis of Chapter Ⅵ.  
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Chapter Ⅵ 

Effects of Exercise Duration on Acute Glycaemic and 

Insulinaemic Responses in Adolescents* 

 

6.1 Introduction  

The key findings of the thesis thus far suggest that performance on the MSFT is inversely 

associated with pro-inflammatory cytokines, insulin resistance and blood pressure in 

adolescent boys and girls (Chapter Ⅳ). Furthermore, performance on the MSFT was the best 

predictor of fasted concentrations of anti-inflammatory mediator IL-10. These novel findings 

suggest that regular participation in physical activity/exercise, which is of sufficient intensity 

and duration to enhance performance on the MSFT, is a potential therapeutic intervention to 

reduce the presence of risk factors for cardiometabolic diseases in otherwise healthy 

adolescents. The findings of Chapter Ⅴ further support this hypothesis as an acute bout 

intermittent activity successfully elicited an anti-inflammatory response and enhanced insulin 

sensitivity in healthy adolescent boys and girls. Whilst the findings of Chapter V promote 

intermittent activity as an effective and ecologically valid mode of exercise to enhance cardio-

metabolic health in adolescents, there are necessary details relating to the duration of such 

exercise and the time course in which these protective responses persist, which are essential 

for exercise prescription for cardiometabolic health in adolescents.  

 

The effect of exercise duration on the glycaemic and insulinaemic responses to intermittent 

activity is yet to be determined in children, adolescents or adults and will therefore be 

examined in this Chapter.  Recently, 60 min of high intensity intermittent cycling (Cockcroft 

et al., 2017) and 60 min of games-based activity (Chapter V), which are deemed ecologically 

valid modes of exercise in adolescents (Howe et al., 2010), both reduced plasma insulin 

incremental area under the curve (iAUC) by 24 – 30 % in adolescents, which is a greater 
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response than the 12 – 15 % reduction following 60 min moderate intensity exercise (Cockcroft 

et al., 2015; Short et al., 2013, 2018). Whilst such findings suggest that intermittent activity of 

~60 min in duration can enhance insulin sensitivity, information regarding whether a shorter 

duration of intermittent activity also elicits these beneficial effects is unknown. Exercise 

duration is particularly important given that the majority of adolescents in England (~ 80%) 

do not meet the recommended Government guidelines of 60 min moderate-to-vigorous 

physical activity per day (Health Survey for England, 2015). Therefore, it is important to 

determine whether shorter durations of high intensity intermittent activity of ≤ 30 min elicit 

similar protective glycaemic and insulinaemic responses to those observed following a 60 min 

bout of intermittent activity. Current data suggest that even those adolescents who are the least 

active currently achieve ~30 min physical activity per day (Health Survey for England, 2015). 

However, the effect of this reduced amount of physical activity on cardiometabolic health 

remain unknown. 

 

In addition, the time course in which the protective glycaemic and insulinaemic responses to 

acute bouts of intermittent activity persist are yet to be observed and will therefore be examined 

in the present Chapter. When promoting physical activity as a therapeutic intervention in 

adolescents it is also important to understand how long the beneficial effects on insulin 

sensitivity persist, to allow for exercise frequency recommendations to be made. Yet, there is 

limited information relating to the effect of intermittent activity on insulin sensitivity beyond 

1 h post-exercise (Cockcroft et al., 2015, 2018, Chapter V). Furthermore, when insulin 

sensitivity has been assessed up to 24 h post-exercise, the homeostatic model assessment 

(HOMA-IR) has been the main measure of insulin resistance (Cockcroft et al., 2015, 2018, 

Chapter Ⅵ). Following high intensity intermittent cycling (Cockcroft et al., 2015, 2018) and 

games-based activity (Chapter Ⅵ) no change in HOMA-IR was observed when compared with 

a rested control trial. HOMA-IR is a fasted measure of hepatic insulin sensitivity and is 
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therefore not sensitive to the changes in peripheral insulin sensitivity that are suggested to 

occur post-exercise (Cockcroft et al., 2017). The oral glucose tolerance test (OGTT) and 

postprandial glycaemic and insulinaemic response to a standardised meal are more suitable for 

assessing peripheral insulin sensitivity. To date, only the OGTT has been utilised in research 

and there was a 13% improvement in insulin sensitivity 24 h post high intensity intermittent 

cycling  (Cockcroft et al., 2018), when compared to a rested trial. However, the OGTT lacks 

ecological validity and the response to a mixed meal has not been measured in adolescents 

beyond 1 h post intermittent activity.  

 

Finally, throughout adolescence differences in insulin sensitivity exist between the sexes, with 

the post-prandial insulinaemic response to a standardised mixed meal being 30-40% greater in 

adolescent girls (for peak plasma insulin concentrations) when compared with adolescent boys 

(Cooper et al., 2017). Whilst adolescent girls consistently present with increased insulin 

resistance throughout puberty when compared with boys of the same chronological age (Moran 

et al., 1999), there has been no research to date to ascertain whether an acute bout of exercise 

can enhance insulin sensitivity in adolescent girls, which could if repeated regularly, lessen the 

differences in insulin sensitivity currently observed between the sexes. 

 

Therefore, the main aim of the present study was to examine the effects of differing durations 

(30 min vs. 60 min) of high intensity intermittent activity on postprandial glycaemic and 

insulinaemic responses in adolescents. A secondary aim of the study aims was to establish the 

postprandial glycaemic and insulinaemic responses to a standardised mixed meal up to 24 h 

post-exercise, to inform the exercise frequency necessary to enhance adolescent metabolic 

health. Finally, the present study aimed to determine whether intermittent activity could reduce 

the magnitude of the difference in insulin sensitivity between adolescent boys and girls. 
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6.2 Methods  

6.2.1 Participant Characteristics 

Thirty-three participants (13.6 ± 0.5 y) were recruited to participate in the present study. 

However, based on exclusion criteria two participants were removed from the study due to an 

inability to undertake the 60 min of high intensity intermittent activity (n = 1) and the presence 

of a congenital heart condition (n = 1). Therefore, thirty-one participants (12 males and 18 

females) completed the study. During familiarisation, body mass (Seca 770 digital scale, 

Hamburg, Germany), stature and sitting stature (Leicester  Height  Measure,  Seca,  Hamburg, 

Germany) were measured and subsequently used to calculate age at peak height velocity 

(Moore et al., 2015). For descriptive purposes, four skinfold sites (including tricep, 

subscapular, supraspinale and front thigh) and waist circumference were measured. The sum 

of skinfolds was the preferred measure of body composition for the present study. The 

participants’ anthropometric characteristics were (mean ± SD): age 13.5 ± 0.51 y; height 158.4 

± 7.4 cm; body mass: 45.2 ± 7.4 kg; predicted years from peak height velocity: -1.4 ± 0.6 y; 

waist circumference: 64.8 ± 5.3 cm and sum of skinfolds: 44.4 ± 15.4 mm. 

 

6.2.2 Study Design 

The Nottingham Trent University Ethical advisory committee approved all procedures 

(approval number SST-503). Following recruitment written informed parental/ guardian 

consent and participant assent were obtained. Parent/guardians also completed a health screen 

questionnaire on behalf of the participant to ensure there were no medical conditions affecting 

participation in the study. 

 

Participants completed a familiarisation session and three main trials (each separated by a 

minimum of 7 d). During familiarisation, participants had the main experimental protocol 

explained to them and were allowed the opportunity to ask any questions they may have. In 

groups of eight, the participants then completed the multi-stage fitness test (MSFT) and peak 
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oxygen consumption (44.5 ± 4.6 mL.kg-1.min-1) was predicted using an adolescent specific 

equation (Barnett et al., 1992). Participants then returned to the classroom and were 

familiarised with a capillary blood sample. Following 60 min passive recovery, to ensure the 

participants were able to comply with the high intensity intermittent activity, a 15 min block 

of the Loughborough Intermittent Shuttle Test (LIST) was performed. 

 

6.2.3 Main Trials 

Participants completed three main trials (a 30 min exercise trial, a 60 min exercise trial and a 

rested control trial) in a randomised, counterbalanced, crossover order (each separated by at 

least 7 d). Figure 7 displays the experimental protocol. Participants recorded food diaries 24 h 

prior to the first main trial and during the evening of day one of the study. Recorded diets were 

repeated for the subsequent experimental trials. Participants refrained from physical activity 

24 h prior to and during all experimental trials. Parents/ guardians were contacted the evening 

before each main trial to ensure compliance with these requirements. 

 

Following an overnight fast (from 9 pm the previous evening on day one and two of the study) 

participants arrived at school (~ 8.30 am) and were fitted with a heart rate monitor (Team Sports 

System, Firstbeat Technologies Ltd, Jyvaskyla, Finland), which was worn throughout day one 

of the experimental trial. Participants consumed a standardised breakfast (cornflakes, milk, and 

toast with margarine) on day one and two, and a standardised lunch (chicken sandwich, baked 

salted crisps and an apple) on day one only. Each meal contained 1.5 g carbohydrate per kg 

body mass. Participants had 15 min to consume the standardised meals and water was allowed 

ad libitum. 
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Figure 7. Protocol schematic, detailing consumption of standardised meals and timing of 

capillary blood samples. 

 

6.2.3.1 Capillary Blood Samples 

During day one of the main trials, capillary blood samples were taken at baseline, immediately 

post-exercise and 60 min post-exercise (Fig. 7). Further capillary blood samples were taken 30 

min, 60 min (2 h post-exercise) and 120 min (3 h post-exercise) following the standardised 

lunch. On day two of the main trials, a fasted capillary blood sample was taken. Following the 

consumption of the standardised breakfast further blood samples were taken at 30 min, 60 min 

and 120 min to observe the postprandial glycaemic and insulinaemic responses.  

 

The concentrations of blood glucose and plasma insulin were determined in duplicate using 

commercially available kits (glucose: GOD/PAP method, GL364, Randox, Crumlin, Ireland; 

insulin: ELISA, Mercodia Ltd, Uppsala, Sweden). Blood glucose and plasma insulin tAUC 

following the standardised lunch on day one and the standardised breakfast on day two were 

calculated (Wolever & Jenkins, 1986). HOMA-IR was calculated as fasted insulin (mU.L-1) x 

fasting glucose (nmol.L-1) / 22.5. 

 

6.2.3.2 Exercise Protocol 

During the exercise trials, participants completed either 30 min or 60 min of high intensity 

intermittent activity, in the form of the Loughborough Intermittent Shuttle Test (LIST). During 

the LIST, participants ran between two markers, separated by 20 m, to pre-determined speeds 
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dictated by an audio signal. The exercise pattern consisted of three 20 m shuttles at walking 

pace, a 15-m sprint followed by rest (8 s total duration), three 20 m shuttles at 85% V̇O2 peak 

and three 20 m shuttles at 55% of V̇O2 peak (percentage of V̇O2 peak determined from 

performance on the MSFT). Sprint times were recorded using infrared timing gates (Brower 

Timing Systems IRD-T173, Utah, USA) and average sprint times for each block were 

calculated. The above pattern was repeated eight times, lasting ~12 min (as presented in Figure 

2, Chapter Ⅲ).  The 30 min trial consisted of 2 blocks and the 60 min trial 4 blocks, with 3 min 

recovery provided between blocks. 

 

6.2.4 Statistical Analysis 

All data were analysed using SPSS (Version 24, SPSS Inc, Chicago, IL, USA). Data were 

assessed for normality using the Shapiro‐Wilk test, which revealed that all dependent variables 

were normally distributed (all P > 0.05). Blood glucose, and plasma insulin concentration data 

were analysed via three‐way (trial * time * sex) analysis of variance (ANOVA) with repeated 

measures for trial and time. Separate ANOVAs were conducted for day one and day two 

separately. Where significant interactions were observed, post‐hoc pairwise comparisons were 

performed using a Bonferroni correction. Blood glucose tAUC, plasma insulin tAUC, sprint 

times and heart rate were compared using two-way mixed method ANOVA, with sex as the 

between subjects factor. Where statistically significant differences existed effect sizes were 

calculated (Cohen’s d). For all analysis, significance was accepted as P < 0.05 and data are 

presented as mean ± S.E.M. 

 

6.3  Results 

6.3.1 Performance Variables 

Average heart rate during the 30 min LIST trial was 104 ± 12 beats.min-1 and maximum 

recorded heart rate during the LIST exercise was 196 ± 9 beats.min-1; during the 60 min LIST 

trial average heart rate was 118 ± 8 beats.min-1 and maximum recorded heart rate was 199 ± 8 
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beats.min-1 and average heart rate during the rested control trial was 88 ± 10 beats.min-1. 

Maximum heart rate was higher on the 60 min exercise trials when compared to the 30 min 

exercise trial (t(29) = -4.2, p = < 0.001). Average sprint times during the 30 min LIST trial (block 

1: 3.08 ± 0.29 s; block 2: 3.11 ± 0.29 s) and 60 min LIST trial (block 1: 3.04 ± 0.19 s; block 2: 

3.11 ± 0.22 s; block 3: 3.13 ± 0.27 s; block 4: 3.15 ± 0.27 s) were similar across each block of 

exercise completed (main effect of trial, F(5, 135) = 2.50, p = 0.966).  

 

6.3.2 Glycaemic Response  

6.3.2.1: Day One 

Overall, blood glucose concentration on day one of the study did not differ between the 30 min 

LIST trial, 60 min LIST trial and the rested control trial (main effect of trial, p = 0.401), yet 

did change across time (main effect of time, F(5,120) = 43.8, p < 0.001). The pattern of change 

in blood glucose concentration differed across trials (trial * time interaction, F(6,168) = 4.2, p = 

0.001; Fig. 15); whereby postprandial blood glucose concentration was lower 1 h post-exercise 

during the 30 min LIST trial (30 min LIST: 3.8 ± 0.6 mmol.L-1, F(2,27) = 4.8, p = 0.022, d = 

0.533) and the 60 min LIST trial (60 min LIST: 3.8 ± 0.6 mmol.L-1, F(2,27) = 4.8, p = 0.017, d 

= 0.536) compared to the rested control trial (rested: 4.2 ± 0.9 mmol.L-1). When considering 

the effect of sex, the glycaemic response did not differ between males and females (main effect 

of sex, p = 0.200), nor did the pattern of change in the glycaemic response differ between males 

and females (trial * sex interaction, p = 0.82; time * sex interaction, p = 0.77, trial * time * sex 

interaction, p = 0.572).  

 

The tAUC for postprandial blood glucose concentration following the standardised lunch did 

not differ between trials (main effect of trial, p = 0.216), between the sexes (main effect of sex, 

p = 0.187), nor was there an interaction between trial and sex (trial * sex interaction, p = 0.705).  
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Figure 8. Glycaemic response during the 30 min LIST trial, 60 min LIST trial and rested 

control trial on day one of the study (Mean ± SD), trial * time interaction, F(6,168) = 4.2, p = 

0.001; * 30 min LIST trial < rested control trial, p = 0.022, † 60 min LIST trial < rested control 

trial, p = 0.017). 

 

6.3.2.2: Day Two 

Overall, blood glucose concentration following the consumption of the standardised breakfast 

(day two) did not differ between the 30 min LIST trial, the 60 min LIST trial and the rested 

control trial (main effect of trial, p = 0.453), yet did differ across time (main effect of time, 

F(3,81) = 65.7, p < 0.001). Furthermore, the pattern of change in postprandial blood glucose 

concentration did not differ between trials (trial*time interaction, p = 0.741). When considering 

the effect of sex, the glycaemic response did not differ between males and females (main effect 

of sex, p = 0.583), nor did the pattern of change in the glycaemic response differ between males 

and females (trial * sex interaction, p = 0.44; time*sex interaction, p = 0.69, trial * time * sex 

interaction, p = 0.858).  Finally, the tAUC for blood glucose concentration following the 
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standardised breakfast did not differ between trials (main effect of trial, p = 0.751), or sexes 

(main effect of sex, p = 0.181), nor was there an interaction between trial and sex (trail * sex 

interaction, p = 0.526).  

 

6.3.3 Insulinaemic Response  

6.3.3.1: Day One 

Overall, plasma insulin concentration on day one of the study did not differ between the 30 

min LIST trial, 60 min LIST trial and the rested control trial (main effect of trial, p = 0.287), 

yet did change across time (main effect of time, F(5,125) = 56.1, p < 0.001). The pattern of change 

in plasma insulin concentration differed across trials (trial*time interaction, F(10,270) = 3.6, p = 

0.004, Fig. 16), with increased plasma insulin concentration immediately post-exercise during 

the 60 min LIST trial when compared with the rested control trial (60 min LIST: 177.0 ± 97.7 

pmol.L-1, rested trial: 131.4 ± 75.9 pmol.L-1, F(2,26) = 4.7, p = 0.011, d = 0.52). Furthermore, 

postprandial plasma insulin concentration was lower 1 h following the standardised lunch 

during the 60 min LIST trial when compared with the rested control trial (60 min LIST: 199.1 

± 125.9 pmol.L-1, rested trial: 259.4 ± 193.7 pmol.L-1, F(2,26) = 5.0, p = 0.015, d = 0.38). When 

considering the effect of sex, overall plasma insulin concentration was lower in males when 

compared with females (males: 137.3 ± 15.3 pmol.L-1, females: 184.3 ± 15.3 pmol.L-1, main 

effect of sex, F(1,27) = 5.5, p = 0.033). However, the pattern of change in plasma insulin 

concentration did not differ between males and females (trial * sex interaction, p = 0.376, time 

* sex interaction, p = 0.09, trial * time * sex interaction, p = 0.812).  
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The tAUC for the insulinaemic response to the standardised lunch was lower on the 60 min 

LIST trial when compared to the rested control trial (60 min LIST: 23867 ± 10689 pmol.L-1 x 

120min, resting: 28899 ± 14734 pmol.L-1 x 120min, main effect of trial, F(1,28) = 4.3, p = 0.030, 

d = 0.40, Fig 17). When considering the effect of sex, tAUC was lower in males compared to 

females (males: 20445 ± 9556 pmol.L-1 x 120min, females: 29876 ± 15748 pmol.L-1 x 120min, 

main effect of sex, F(1,28) = 7.4, p = 0.011, d = 0.751), yet the pattern of change did not differ 

between the sexes across trials (trial * sex interaction, p = 0.677).  

Figure 9. Insulinaemic response during the 30 min LIST trial, 60 min LIST trial and the rested 

control trial on day one of the study (Mean ± S.E.M), trial*time interaction, F(10,270) = 3.6, p = 

0.004, * 60 min LIST trial > rested control trial, p = 0.011, † 60 min LIST trial < rested control 

trial, p = 0.015).  
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Figure 10. Plasma insulin total area under the curve following the consumption of a 

standardised lunch on the 30 min LIST trial, 60 min LIST trial and the rested control trial 

(Mean ± S.E.M), main effect of trial, F= 4.3, p = 0.030, * 60 min LIST trial < rested control 

trial, p = 0.011).  

 

6.3.3.2: Day Two 

Overall, the plasma insulin concentration following the consumption of the standardised 

breakfast (day two) did not differ between trials (main effect of trial, p = 0.356), yet did change 

across time (main effect of time, F(3,84) = 104.3, p < 0.001). The pattern of change in the 

insulinaemic response post-breakfast did not differ across time between the trials (trial*time 

interaction, p = 0.138). When considering the effect of sex, the postprandial insulinaemic 

response was lower in males when compared with females (males: 200.7 ± 24.4 pmol.L-1, 

females: 279.5 ± 19.9 pmol.L-1; main effect of sex, F(1,28) = 6.3, p = 0.029). Furthermore, peak 

plasma insulin concentrations was lower in males than females (time * sex interaction, F(1,28) = 

7.5, p = 0.015), whereby 30 min post-breakfast plasma insulin concentration in females was 

greater than in males. Finally, the tAUC for the insulinaemic response to a standardised 

breakfast did not differ across trials (main effect of trial, p = 0.299), but was lower in males 

compared to females (males: 26684 ± 3291 pmol.L-1 x 120min, females: 37050 ± 2688 pmol.L-
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1 x 120min, main effect of sex, F(1,28) = 6.0, p = 0.022, d = 0.82). However, the pattern of change 

in the tAUC insulinaemic response did not differ across trials between males and females (trial 

* sex interaction, p = 0.100).  

 

6.3.4 HOMA-IR 

HOMA-IR was calculated for the fasted blood samples on day one and day two, with no overall 

difference between trials (main effect trial, p = 0.231), or between day one and day two (main 

effect time, p = 0.098). Furthermore, the pattern of change in HOMA-IR between day one and 

day two was similar between trials (trial*time interaction, p = 0.842). When considering the 

effect of sex there was no difference in HOMA-IR between males and females (main effect of 

sex, p = 0.28), nor did the pattern of change in HOMA-IR differ between the sexes (trial * sex 

interaction, p = 0.362; time * sex interaction, p = 0.791, trial * time * sex interaction, p = 

0.874). 

 

6.4 Discussion 

The present study is the first to examine the glycaemic and insulinaemic responses to high 

intensity intermittent exercise of different durations, for up to 24 h post-exercise, whilst 

considering the potential moderating effect of sex on these responses during adolescence. The 

main finding of the study was that 30 min and 60 min of high intensity intermittent exercise 

(performed as the LIST) reduced postprandial blood glucose concentration by 10 % 1 h post-

exercise when compared to a rested control trial. Furthermore, the 60 min bout of high intensity 

intermittent exercise successfully reduced postprandial plasma insulin concentration, with a 23 

% reduction 1 h following the consumption of a standardised lunch. The reduction in plasma 

insulin concentration was supported by a 17 % decrease in plasma insulin tAUC following the 

60 min exercise trial in comparison to the rested control trial. In contrast, fasted and 

postprandial blood glucose and plasma insulin concentration was not different between trials 

on day two of the study. Furthermore, when considering the effect of sex on insulin sensitivity 
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on day one and two of the study, females had consistently higher plasma insulin concentrations 

in comparison to their male counterparts.  

 

The 10% reduction in blood glucose concentration observed 1 h following 30 min and 60 min 

of high intensity intermittent exercise is consistent with previous findings, whereby blood 

glucose concentration was reduced by 11% following 60 min of games-based activity (Chapter 

Ⅵ) and by ~ 15% following 45 min of moderate intensity activity (Short et al., 2013). The 

findings of the present study are novel as the reduction in blood glucose concentration was 

consistent across exercise trials of differing durations with a 30 min bout of high intensity 

intermittent activity proving to be as effective as 60 min for enhancing the regulation of blood 

glucose concentration in healthy adolescents. Such findings are promising, as the majority of 

young people in the UK do not currently meet the recommended physical activity guidelines 

(60 min moderate-to-vigorous physical activity per day) and those that do, do so through 

shorter accumulated bouts (Rowlands et al., 2008). Therefore, the findings of the present study 

have important practical implications and suggest that blood glucose homeostasis can be 

improved through shorter bouts of intermittent activity that are replicative of the activity 

patterns of young people (Rowlands et al., 2008).  

 

Future work should continue to assess the effect of exercise duration on blood glucose 

concentration to determine whether accumulative, shorter bouts (< 30 min) of exercise enhance 

blood glucose homeostasis. Such information is particularly important given the increasing 

prevalence of type 2 diabetes in adolescents (May et al., 2012), in which hyperglycaemia is a 

major risk factor. Information pertaining to the regulation of blood glucose concentrations 

through ecologically valid exercise modes can subsequently be used to inform future 

therapeutic interventions that are achievable for young people to implement into their daily 
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lives and to reverse the adverse cardiometabolic health trends currently observed in young 

people (May et al., 2012). 

 

There were no differences in the postprandial glycaemic response to a standardised meal 

(tAUC) between trials in the present study. These findings are consistent with those of Chapter 

Ⅵ, whereby 60 min of games-based activity did not reduce the glycaemic response to a 

standardised meal. Whilst these corroborating findings suggest that intermittent activity in 

adolescents does not affect postprandial blood glucose concentration, high intensity 

intermittent cycling (8 x 1 min cycling at 90% peak power) has previously reduced the 

glycaemic response (8% reduction in tAUC) following an OGTT in adolescent boys (Cockcroft 

et al., 2015).  

 

The discrepant findings between the present study and the study of Cockcroft et al. (2015) 

might relate to the different test meals used, in that the high concentration of glucose in the 

OGTT facilitated a reduced glycaemic response post-exercise (in Cockcroft et al., 2015), 

whereas the standardised mixed meal did not (in the present study). The discrepancies might 

also be explained by the different characteristics of the participants, as the V̇O2 peak of the 

participants in the present study is on the 75th percentile for adolescents (Eisenmann et al., 

2011), whereas participants from previous studies are ≤ 50th percentile for their chronological 

age (Cockcroft et al., 2015). Participants with a greater predicted V̇O2 peak might require a 

more intense exercise stimulus to reduce the postprandial glycaemic response following 

exercise, whereas individuals with a V̇O2 peak ≤ 50th percentile might respond to a lower 

exercise stimulus (Eisenmann et al., 2011). The moderating effect of V̇O2 peak on the 

glycaemic response post-exercise is yet to be examined in adolescents, despite such 

information being essential for the individualisation of physical activity recommendations.  
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In the present study plasma insulin concentration was reduced by 30% 2 h following 60 min of 

high intensity intermittent exercise when compared to a rested control trial, which was 

supported by a 17% reduction in postprandial plasma insulin tAUC on the 60 min exercise trial 

compared to the rested control trial. The reduction in postprandial plasma insulin in the present 

study agrees with previous research whereby plasma insulin tAUC decreased by 13% following 

8 min of high intensity intermittent cycling (Cockcroft et al., 2015) and 24% following 60 min 

games-based activity (Chapter Ⅴ). The reduction in postprandial plasma insulin concentration 

following high intensity intermittent activity is indicative of enhanced insulin sensitivity in 

healthy adolescents, with less insulin required to regulate blood glucose homeostasis. 

Therefore, the findings of the present study suggest that 60 min of high intensity intermittent 

running, which replicates the activity patterns of young people, is sufficient to enhance insulin 

sensitivity on the day the exercise was undertaken. In contrast, the 30 min bout of high intensity 

intermittent running examined in the present study was not sufficient to enhance insulin 

sensitivity in healthy adolescents. Whilst the findings of the present study suggest that shorter 

bouts of intermittent activity are not suitable for improving insulin sensitivity, Cockcroft et al., 

(2015) previously reported that as little as 8 min of high intensity cycling enhances insulin 

sensitivity (13% reduction in postprandial plasma insulin tAUC). Furthermore, the findings of 

the present study and trends across previous research suggest that exercise duration mediates 

the magnitude of the insulinaemic response, with graded improvements in postprandial plasma 

insulin tAUC with increased exercise duration (Cockcroft et al., 2015; Chapter Ⅴ). As such, 

there appears to be a complex relationship between exercise intensity and duration that must 

be explored to inform the development of successful therapeutic interventions aimed at 

enhancing insulin sensitivity in adolescents. 

 

The secondary aim of the present study was to examine the residual glycaemic and 

insulinaemic response to a standardised breakfast the day following exercise in comparison to 
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a rested control trial. Interestingly, there was no difference in the postprandial glycaemic and 

insulinaemic responses to the standardised breakfast across trials, which was further supported 

with HOMA-IR remaining consistent across the exercise trials and rested control trial on day 

two of the study. The effect of exercise on residual insulin sensitivity (examined primarily 

using the response to a test meal) has been discrepant across previous research. Intermittent 

activity has previously had no effect on postprandial blood glucose and plasma insulin tAUC 

in adolescent boys the day following exercise across several studies (Barrett et al., 2007; 

Sedgwick et al., 2014); whereas Short et al. (2013) reported a 45% improvement in insulin 

sensitivity 17 h following moderate intensity exercise. The findings of the present study suggest 

that exercise only enhances blood glucose homeostasis and insulin sensitivity on the day that 

the exercise was undertaken. In relation to exercise frequency for the enhancement of 

cardiometabolic health, such findings would recommend daily physical activity in young 

people, which is consistent with the government physical activity guidelines. However, it 

should be acknowledged that inconsistencies across previous research could result from 

differences in the participant characteristics, the exercise examined (mode, intensity, and 

duration), and the composition of the macronutrients in the standardised meal provided (with 

previous studies providing participants with high fat meals). As such, to determine the optimum 

frequency of exercise, whereby cardiometabolic health is enhanced and the frequency is 

attainable in a population that are not currently meeting the daily recommendations, future 

research should examine different exercise models and ascertain whether the reduced 

glycaemic and insulinaemic responses can remain up to and beyond 24 h post-exercise.  

 

Finally, in the present study plasma insulin concentrations were consistently higher in girls 

than boys throughout the study, yet the response to exercise did not differ between the sexes. 

The finding that female adolescents exhibit greater insulin resistance during adolescence is 

consistent with previous research whereby the insulinaemic response to a mixed meal was 30-
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40% higher in girls than boys (Cooper et al., 2017). The present study aimed to examine 

whether high intensity intermittent running could reduce the insulinaemic differences observed 

between the sexes and attenuate the insulin resistance observed in adolescent girls. However, 

on the day the exercise was undertaken and the following day, the insulin response was 

consistently elevated in girls compared with boys. Future studies should assess whether 

different modes and intensities of exercise are able to attenuate the difference in insulin 

sensitivity observed between the sexes during adolescence.  

 

It was also the intended purpose of this study to examine the cytokine responses to different 

durations of exercise, but the addition of IL-15 to the cytokine plate resulted in none of the 

assays working. IL-15 is a cytokine that is implicated in reducing adipose tissue (Nielsen & 

Pedersen, 2007) and has recently been reported to increase following an acute bout of exercise, 

but only in animal studies (Shamsi et al., 2015). Therefore, the inclusion of IL-15 would have 

been an additional novel finding that would have advanced understanding of the potential 

mechanisms that facilitate the relationship between regular participation in physical activity 

and cardiometabolic health in young people. Unfortunately, despite a second run of the assays 

on remaining plasma by the manufacturer supplying the plates, the assay was again 

unsuccessful (we now understand this is due to cross-reactivity of IL-10 and IL-15 within the 

same assay). Hence this chapter examines only the glycaemic and insulinaemic responses to 

different durations of exercise.   

 

In conclusion, the findings of the present study suggest that 60 min high intensity intermittent 

running is an ecologically valid mode of exercise that enhances the regulation of blood glucose 

and insulin sensitivity in healthy adolescent boys and girls. Furthermore, the main finding of 

the study suggests that a shorter bout of high intensity intermittent exercise (30 min) is as 

effective at improving blood glucose homeostasis as 60 min of exercise in adolescents. Yet, 
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the effect of the exercise on blood glucose and plasma insulin was only maintained on the day 

the exercise was performed, with no effect on the glycaemic and insulinaemic response to a 

standardised breakfast the following day. The findings of the present study support the 

government physical activity guidelines that suggest young people should participate in 60 min 

of moderate-to-vigorous physical activity per day.  
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Chapter Ⅶ 

Protective Effects of Chronic Training on Cardiometabolic 

Health and Performance in Adolescents: A Longitudinal Study 

 

7.1 Introduction 

Physiological risk factors associated with cardiometabolic diseases present as early as 

childhood (Magnussen et al., 2012); progressing until a clinical threshold develops (typically 

in adulthood) and cardiometabolic diseases present. Whilst the management of such risk factors 

in adulthood is commonplace, in the last decade there has been additional emphasis on 

attenuating risk factors for cardiometabolic diseases in young people, as some cardiometabolic 

diseases now present in early adulthood and even adolescence (Ayer et al., 2016; Candler et 

al., 2018). Of major concern is the 36 % increase in the incidence of type 2 diabetes in 

adolescents (aged < 17 years) in the United Kingdom, as reported in a recent quantitative 

analysis from 2005 to 2015 (Candler et al., 2018). In adults, acute phase protein CRP is deemed 

the best predictor of cardiovascular disease and type 2 diabetes morbidity (Emerging Risk 

Factors Collaboration, 2012), however in young people little is known about the role of specific 

risk factors in the development of such conditions and how best to manage the prevalence of 

these specific risk factors in adolescents. Given the limited information available there is 

concern relating to the future burden that could result from the early onset of cardiometabolic 

diseases.  

 

In Chapter IV an inverse association was found between endurance capacity (assessed by 

distance run on the MSFT) and body composition with traditional (blood pressure and insulin 

resistance) and novel (pro- and anti-inflammatory cytokine concentrations) risk factors of 

cardiometabolic diseases in children and adolescents aged 10 - 12 years from various sporting 
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backgrounds. However, cross-sectional studies cannot infer causality and as such the effect of 

long-term training on risk factors for cardiometabolic diseases throughout adolescence is 

unknown. To address such limitations, longitudinal studies have been conducted, although only 

one study to date has prospectively assessed the effect of continued training versus remaining 

inactive during puberty on risk factors for cardiometabolic diseases in adolescents (Vosoberg 

et al., 2014). Vosoberg et al., (2014) examined the effect of training (gymnastics) versus 

remaining untrained across a three-year follow-up in adolescent girls on appetite regulation 

hormones leptin, ghrelin and adiponectin. When compared with the untrained group, the 

rhythmic gymnasts had a lower BMI, lower percentage body fat and higher concentrations of 

adiponectin (implicated in the regulation of blood glucose concentration). Such findings 

suggest that long-term training during adolescence, enhances aspects of cardiometabolic 

health, however it remains unknown whether chronic training in adolescent boys and girls is 

related to traditional (blood glucose, plasma insulin, HOMA-IR and blood pressure) and novel 

(pro- and anti-inflammatory cytokines) risk factors for cardiometabolic health.   

 

In Chapter Ⅳ, performance on the MSFT was adversely associated with pro-inflammatory 

cytokines (IL-1β and IL-6) and positively associated with anti-inflammatory cytokine IL-10. 

Whereas, V̇O2 peak (which has a strong genetic component, limiting the capacity to track 

changes in performance) was not associated with any of the novel markers of low-grade chronic 

inflammation. Given these findings, distance run on the MSFT is hypothesised to be a more 

sensitive marker of training status and childhood cardiometabolic health. However, the effect 

of longer-term training, of several months or years, on MSFT performance (and for comparison 

V̇O2 peak) has not been examined particularly during the adolescent stage of development.  

 

Therefore, the main aim of the present study was to examine whether the continuation of 

training elicits protective effects on traditional (blood pressure, blood glucose concentration, 
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plasma insulin concentration and HOMA-IR) and novel (pro- and anti-inflammatory 

cytokines) risk factors for cardiometabolic diseases in adolescents during a two-year follow-

up. A secondary aim of the study was to determine the performance of young people who were 

undertaking chronic training in comparison with those remaining recreationally active on 

endurance capacity tests (distance run on the MSFT and V̇O2 peak) which have previously 

been reported to be associated to select risk factors of cardiometabolic diseases in adolescents 

(Chapter Ⅳ). 

 

7.2 Methods 

7.2.1 Participant Characteristics 

From the original cross-sectional sample (Chapter Ⅳ), 61 adolescents (from 121 at baseline) 

aged 12-14 years agreed to complete the follow-up study two years later (baseline analysis 

completed during 2015/2016, follow-up during 2017/18). Contact was initially made with 

school teachers and coaches from the relevant schools and sports clubs to contact the 

participants to enquire whether they would be interested in completing the follow-up study. 

Where participants had left the school or sports club contact details of parents/guardians were 

used to determine whether the participant was interested in being recruited to the follow-up. 

Participants were lost to follow-up for various reasons, including being no longer contactable 

through the original details provided to the research team (n = 45), choosing to withdraw from 

the study as they no longer participated in regular exercise and did not feel confident continuing 

(n = 8), and having suffered a long-term injury (n = 7). As a result of the loss to follow-up there 

were no instances of participants who were originally trained that had become untrained during 

the follow-up; similarly verbal confirmation from parents/guardians of the untrained group 

confirmed that there were no instances whereby untrained adolescents had become trained 

during the follow-up period. As in Chapter IV, at follow-up all participants underwent 

anthropometric measures of body mass and stature to calculate body mass index (BMI; 
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calculated as body mass (kg)/stature (m)2) and also sitting stature to predict age from peak 

height velocity (APHV; calculated using methods described by Moore et al., 2015). 

Specifically, body mass was measured using a Seca 770 digital scale, accurate to 0.1 kg (Seca, 

Hamburg, Germany) and stature was measured using a Leicester Height Stadiometer, accurate 

to 0.1 cm (Seca, Hamburg, Germany).  

 

Participants were categorised into two groups based on whether they were recruited from a 

local sports clubs (trained group, consisted of footballers training with local academies training 

twice weekly and participating in matches at the weekend and swimmers training with the 

county swimming club participating in 7 training sessions per week) or from local secondary 

schools (untrained control group, whom verbally confirmed their physical activity consisted 

only of physical education lessons at school, twice weekly).  

 

7.2.2 Study Design 

Ethical approval was received from the Nottingham Trent University Ethical Advisory 

Committee (Reference: SPOR-400). Details of baseline recruitment are provided in Chapter 

Ⅳ. At follow-up participants were contacted initially through their original school, or sports 

club, unless the child had since left the school/ club, then contact was made through a telephone 

call to the participants’ parent/ guardian. Written parental consent and verbal assent from the 

participant was obtained prior to familiarisation. Health screen questionnaires were completed 

by the participants’ parent/ guardian and checked by a lead investigator to ensure there were 

no medical conditions that might affect participation in the study. 

 

As in Chapter IV, each of the trials were separated by a minimum of 7 d (trial 1: field measures, 

trial 2: health measures and trial 3: exercise laboratory measures). The field measures consisted 

of anthropometrics, skinfolds and the MSFT, in that order, and the health measurements 
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consisted of rested and fasted blood pressure measures and capillary blood samples. 

Participants that completed the exercise laboratory tests at baseline were also invited to 

complete the treadmill tests (a submaximal test and a V̇O2 peak test, separated by 20 min 

passive recovery) at follow-up. Prior to each of the trials, participants were asked to refrain 

from moderate-to-vigorous physical activity for 24 h. A telephone call was made to 

parents/guardians the evening prior to the testing sessions to ensure compliance with the study 

requirements. Detailed descriptions of each of the measurements is provided in Chapters Ⅲ 

and IV, and as a result only a brief description of each measurement is provided below. 

 

7.2.3 Field Measures 

7.2.3.1 Body Composition 

The sum of four skinfolds and waist circumference were used to measure body composition.  

Skinfold thickness was measured using Harpenden Calipers (Baty International, Burgess, Hill, 

United Kingdom) at four sites (tricep, subscapular, supraspinale, front thigh). Waist 

circumference was measured with a tape measure at the narrowest point of the torso between 

the xiphoid process and the iliac crest, to the nearest 0·1 cm.  

 

7.2.3.2 Multi-Stage Fitness Test (MSFT) 

All participants completed the MSFT, which in brief consisted of progressive 20 m shuttle runs 

to the point of volitional exhaustion (Ramsbottom et al., 1988). Prior to the test participants 

were fitted with a heart rate monitor (First Beat technologies Ltd., Finland) and heart rate was 

monitored live throughout the MSFT. Participants were verbally encouraged throughout to 

ensure the test was completed to the point of volitional exhaustion. Total distance run was used 

as the criterion measure. 
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7.2.4 Health Measures 

7.2.4.1 Blood Pressure 

Following an overnight fast (~ 9 pm the previous evening) participants arrived to the exercise 

laboratory and were seated quietly for 5 min. Two blood pressure measurements were taken 

from the left arm, which was rested at chest height, using an HBP-1300-United Kingdom 

sphygmomanometer (Omron, Milton Keynes, United Kingdom) and a third measurement if 

necessary as described in the general methods. Mean arterial blood pressure was determined 

using the following calculation (Smeltzer et al., 2010): diastolic blood pressure + {[0.33∗ 

(systolic blood pressure – diastolic blood pressure)]}. 

 

7.2.4.2 Capillary Blood Samples 

Fasted capillary blood samples were taken following the measurement of blood pressure. 

Participants’ hands were warmed via submersion in warm water to increase capillary blood 

flow. A Unistik single-use lancet (Unistik Extra, 21G gauge, 2.0 mm depth, Owen Mumford, 

Ltd., United Kingdom) was used and blood was collected into three 300 µl EDTA microvettes 

(Sarstedt Ltd., United Kingdom). A 25 µl whole blood sample was collected using a plain pre-

calibrated glass pipette (Hawksley Ltd., United Kingdom) and dispensed into 250 µl of cooled 

2.5% v/v perchloric acid for deproteinisation. Blood samples were then centrifuged at 15000 x 

g for 5 min (Eppendorf 5415C, Hamburg, Germany). Plasma was pipetted from the whole 

blood samples and distributed into three 500 µl plastic vials. All samples were frozen 

immediately at - 20°C and transferred to a −80°C freezer as soon as was possible.  

 

Blood glucose, plasma insulin, cytokine and CRP concentrations were determined using the 

methods described in section 3.4.2.  
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7.2.5 Exercise Laboratory Measures 

A total of 27 participants completed the exercise laboratory tests at baseline and follow-up 

(Males: n = 12, Females: n = 15). Two participants that had completed this aspect of the study 

at baseline opted not to continue due to apprehension about completing the V̇O2 peak test. 

Throughout the duration of the test participants wore heart rate monitors (First Beat 

Technologies Ltd., Finland) and heart rate was monitored live during each test. The V̇O2 peak 

test and submaximal test were completed on a calibrated treadmill (Technogym, Italy) as 

described in the general methods. The submaximal test was performed at the same initial speed 

as conducted at baseline, however progressed up to a maximum of 13 km.h-1. Heart rate was 

measured throughout the submaximal treadmill test and the speed which corresponded with 

80% HRmax determined the speed that at which the subsequent V̇O2 peak test would be 

completed.    

 

7.2.6 Statistical Analysis 

All data was assessed for normality using the Kolmogorov-Smirnov test prior to statistical 

analysis. Statistical analysis was conducted in SPSS (Version 24, SPSS Inc., Chicago, Il, 

United States). Each outcome variable (inflammatory cytokines, blood glucose, plasma insulin, 

HOMA-IR and blood pressure) was analysed via a mixed methods ANOVA (group * time * 

sex). Where significant interactions existed, post hoc comparisons were performed using a 

Bonferroni correction. Where significant effects existed, effect sizes were calculated as 

Cohen’s d. Finally, to determine the relationship between change in distance run on the MSFT, 

V̇O2 peak and adiposity on the change in risk factors for cardiometabolic diseases, Pearson 

correlations were calculated.  For all analysis significance was accepted as P < 0.05 and data 

are presented as mean ± S.E.M. 
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7.3 Results 

7.3.1 Anthropometry and Pubertal Development 

Anthropometric and pubertal development data are shown in Table 13. During the two year 

follow-up, both groups (trained and untrained) increased in stature (main effect of time, F(1,53) 

= 641.88, p < 0.001), body mass (main effect of time, F(1,53) = 340.17, p = < 0.001) and BMI 

(main effect of time, F(1,53) = 24.17, p < 0.001) (Table 13). For stature, there was an interaction 

effect (group * time interaction, F(1,53) = 6.16, p = 0.016) whereby at baseline there was no 

difference between the groups but at follow-up there was a tendency for the trained group to 

be taller than the untrained group (trained: 167.6 ± 9.4 cm, untrained: 162.4 ± 6.2 cm, F(1,53) = 

3.51, p = 0.067). Furthermore, there was a tendency at follow-up for boys to be taller than the 

girls (boys: 171.1 ± 8.2 cm; girls: 161.9 ± 6.1 cm, F(1,53) = 3.18, p = 0.080), which did not exist 

as baseline causing an interaction effect for stature between time and sex (time * sex 

interaction, F(1,53) = 5.76, p = 0.020). In contrast, there was no main effect of group, sex or 

interaction effects for body mass or BMI (all p > 0.05). 

 

Overall, adiposity (measured as the sum of four skinfolds) was greater in the untrained group 

when compared with the trained group (trained: 39.6 ± 13.8 mm, untrained: 58.4 ± 30.2 mm, 

main effect of group, F(1,57) = 7.42, p = 0.009, Table 13), yet did not change across time (main 

effect of time, p = 0. 571). When considering the effect of sex the girls had greater adiposity 

than the boys (boys: 36.1 ± 21.1 mm, girls: 54.4 ± 29.6 mm, main effect of sex, F(1,57) = 12.06, 

p = 0.002). However, there were no interaction effects for adiposity (all p > 0.05).  
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Table 13. Participant anthropometrics, adiposity and maturity offset in trained and untrained 

adolescents at baseline and at follow-up 2 years later. * group by time interaction (p < 0.05); 

† Change from pre to post within group (p<0.05).  

 Trained Group Untrained Group 

 Baseline Follow-up Baseline Follow-up 

Stature (cm) 152.8 ± 8.1 167.6 ± 9.4 151.4 ± 6.4 162.9 ± 5.8* 

Body Mass (kg) 41.5 ± 6.8 53.1 ± 7.7 45.8 ± 11.2 55.8 ± 12.4 

BMI (kg/m2) 17.7 ± 1.9 18.8 ± 1.5 19.9 ± 4.4 20.6 ± 4.3 

Sum of Skinfolds 
(mm) 

41.5 ± 15.0 37.7 ± 12.3† 57.5 ± 35.4 59.4 ± 29.2† 

Maturity Offset 
(y) 

-2.5 ± 1.7 0.3 ± 0.8† -1.6 ± 0.5 -0.2 ± 0.8†* 

 

The pubertal development of the participants, measured by maturity offset, progressed in both 

groups during the two year follow-up (main effect of time, F(1,109) = 231.68, p < 0.001, Table 

13). When considering the effect of sex, overall girls were more mature than boys (maturity 

offset: girls: -0.73 ± 1.29 years; boys: -1.21 ± 1.68 years, main effect of sex, F(1,109) = 11.97, p 

< 0.001). Furthermore, the pattern of change in maturity offset was different between the 

trained and untrained group across time (group*time interaction, F(1,109) = 4.10, p = 0.001), 

whereby at baseline the trained group were less mature than the untrained group (trained: -2.50 

± 1.69 years, untrained: -1.64 ± 0.53 years, F(1,109) = 6.17, p = 0.046) and at follow-up the 

trained group were more mature than the untrained group (trained: 0.28 ± 0.78 years, untrained: 

-0.23 ± 0.78 years, F(1,109) = 12.37, p = 0.006).  

 

7.3.2 Inflammation  

IL-6: Overall, the trained group had lower concentrations of pro-inflammatory cytokine IL-6 

when compared with the untrained group (trained 3.52 ± 1.54 pg.mL-1, untrained: 4.49 ± 1.81 

pg.mL-1, main effect of group, F(1,49) = 8.45, p = 0.005, d = 0.6) (Table 14, Figure 11). 
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Furthermore, concentrations of IL-6 increased in both groups (trained and untrained) during 

the two year follow-up (main effect of time, F(1,49) = 50.07, p < 0.001). However, the pattern 

of change in IL-6 concentration over the two-year follow-up was similar between the trained 

and untrained groups (group * time interaction, p = 0.804). When considering the effect of sex, 

there was no main effect or interactions for IL-6 concentration (all p > 0.05).  

 

Figure 11. IL-6 concentration (pg.mL-1) in trained and untrained adolescents at baseline (Time 

1) and two years later at follow-up (Time 2). Mean ± SD, main effect of group; p = 0.005. 

 

IL-1β: Overall, the trained group had lower concentrations of pro-inflammatory cytokine IL-

1β when compared with the untrained group (trained: 3.52 ± 2.11 pg.mL-1, untrained: 5.46 ± 

3.95 pg.mL-1, main effect of group, F(1,51) = 7.89, p = 0.007, d = 0.6) (Table 14, Figure 12), yet 

did not change across time (main effect of time, p = 0.316). Furthermore, the pattern of change 

in IL-1β concentration was similar between the groups across time (group * time interaction, 

p = 0.992). When considering the effect of sex, there was no main effect nor were there any 

interactions for IL-1β concentration (all p > 0.05). 
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Figure 12. IL-1β concentration (pg.mL-1) in trained and untrained adolescents at baseline 

(Time 1) and two years later at follow-up (Time 2). Mean ± SD, main effect of group; p = 

0.007. 

 

IL-10: Overall, the trained group had higher concentrations of anti-inflammatory cytokine IL-

10 when compared with the untrained group (trained: 3.31 ± 2.81 pg.mL-1, untrained: 2.37 ± 

1.36 pg.mL-1, main effect of group, F(1,52) = 6.54, p = 0.008, d = 0.4) (Table 14, Figure 13), yet 

did not change across time (main effect of time, p = 0.099). Furthermore, the pattern of change 

in IL-10 concentration was similar between the groups across time (group * time interaction, 

p = 0.404). When considering the effect of sex, there was no main effect nor were there any 

interactions for IL-10 concentration (all p > 0.05). 
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Figure 13. IL-10 concentration (pg.mL-1) in trained and untrained adolescents at baseline 

(Time 1) and two years later at follow-up (Time 2). Mean ± SD, main effect of group; p = 

0.008. 

 

TNF-α and CRP: Overall, concentrations of pro-inflammatory mediators TNF-α and CRP 

were similar between the trained and untrained groups (all p > 0.05), yet increased across time 

in both groups (main effect of time for TNF-α, F(1,45) = 29.41, p < 0.001; main effect of time 

for CRP, F(1,40) = 9.41, p < 0.001). The pattern of change in TNF-α and CRP concentration was 

similar between the groups across time (all p > 0.05). When considering the effect of sex, there 

was no main effect nor were there any interactions for TNF-α and CRP concentration (all p > 

0.05). 
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Table 14. Inflammatory cytokine concentration (pg.mL-1) in trained and untrained adolescents 

at baseline and at follow-up 2 years later. * denotes significant main effect of time and † 

denotes significant difference between groups, all p < 0.005. 

 Trained Group Untrained Group 

 Baseline Follow-up Baseline Follow-up 

IL-6 (pg.ml-1)† 2.61 ± 1.14 4.44 ± 1.35 3.64 ± 1.57 5.36 ± 1.64 

IL-1β (pg.ml-1)† 3.28 ± 1.82 3.77 ± 2.38 5.15 ± 3.94 5.78 ± 4.02 

IL-10 (pg.ml-1)† 2.93 ± 2.79 3.70 ± 2.85 2.24 ± 1.65 2.50 ± 1.00 

TNF-α (pg.ml-1) 1.59 ± 1.16 9.40 ± 6.41* 1.90 ± 1.89 9.97 ± 9.23* 

CRP (mg.L-1) 0.31 ± 0.32 0.83 ± 0.68 0.41 ± 0.52 0.78 ± 0.55 

 

7.3.3 Blood Glucose, Plasma Insulin Concentration and HOMA-IR 

Blood Glucose: Overall, the trained group had a lower fasted blood glucose concentration than 

the untrained group (trained 4.19 ± 0.50 mmoL-1, untrained: 4.41 ± 0.58 mmoL-1, main effect 

of group, F(1,47) = 9.51, p = 0.003, d = 0.4), yet did not change across time (p = 0.793). The 

pattern of change in blood glucose concentration over the two year follow-up differed between 

the trained and untrained groups (group * time interaction, F(1,47) = 10.71, p = 0.002, Table 15, 

Figure 14), whereby at baseline the untrained group had higher blood glucose concentration 

than the trained group (trained: 4.06 ± 0.10 mmol.L-1, untrained: 4.72 ± 0.11 mmol.L-1, F(1,47) 

= 7.16, p = 0.010), yet at follow-up blood glucose concentration was similar between the groups 

(p = 0.609). When considering the effect of sex, there was no main effect nor were there any 

further interaction effects for blood glucose concentration (all p > 0.05).  
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Figure 14. Fasted blood glucose concentration (mmol.L-1) in trained and untrained adolescents 

at baseline (Time 1) and two years later at follow-up (Time 2). Mean ± STDEV, main effect of 

group; p = 0.003. 

 

Plasma Insulin: Overall, the trained group had a lower fasted plasma insulin concentration 

than the untrained group (trained 7.18 ± 7.78 uU.L-1, untrained: 13.59 ± 16.76 uU.L-1, main 

effect of group, F(1,47) = 5.58, p = 0.022, d = 0.5; Table 15, Figure 15). Furthermore, plasma 

insulin concentration increased in both groups (trained and untrained) during the two year 

follow-up (main effect of time, F(1,47) = 6.47, p = 0.014). However, the pattern of change in 

plasma insulin concentration over the two-year follow-up was similar across groups (group * 

time interaction, p = 0.320). When considering the effect of sex, there was no main effect nor 

were there any further interaction effects for plasma insulin concentration (all p > 0.05).  
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Figure 15. Fasted plasma insulin concentration (uU.L-1) in trained and untrained adolescents 

at baseline (Time 1) and two years later at follow-up (Time 2). Mean ± SD, main effect of 

group; p = 0.022, main effect of time; p = 0.014.  

 

HOMA-IR: Overall, the trained group had a lower HOMA-IR than the untrained group 

(trained 1.4 ± 1.6, untrained: 2.7 ± 3.5, main effect of group, F(1,47) = 5.59, p = 0.019, d = 0.5, 

Table 15, Figure 16) . Furthermore, HOMA-IR increased in both groups (trained and untrained) 

during the two year follow-up (main effect of time, F(1,47) = 5.83, p = 0.020). However, the 

pattern of change in HOMA-IR over the two-year follow-up was similar across groups (group 

* time interaction, p = 0.440). When considering the effect of sex, there was no main effect nor 

were there any further interaction effects for plasma insulin concentration (all p > 0.05).  
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Figure 16. Fasted HOMA-IR in trained and untrained adolescents at baseline (Time 1) and two 

years later at follow-up (Time 2). Mean ± SD, main effect of group; p = 0.019, main effect of 

time; p = 0.020. 

 

Table 15. Risk factors for metabolic diseases in trained and untrained adolescents at baseline 

and at follow-up 2 years later. * denotes significant main effect of time and † denotes 

significant difference between groups, all p < 0.005. 

  Trained Group Untrained Group 

Baseline Follow-up Baseline Follow-up 

Blood Glucose 

Concentration 

(mmol.L-1) † 

Overall 4.06 ± 0.10 4.33 ± 0.09 4.72 ± 0.10 4.35 ± 0.11 

Boys 3.94 ± 0.17 4.34 ± 0.16 4.62 ± 0.15 4.48 ± 0.19 

Girls 4.16 ± 0.12 4.32 ± 0.11 4.79 ± 0.12 4.27 ± 0.13 

Plasma Insulin 

Concentration 

(mU.L-1) † 

Overall 5.00 ± 0.60 9.37 ± 2.20* 9.12 ± 1.00 18.06 ± 4.16* 

Boys 4.13 ± 0.47 4.79 ± 1.18 6.72 ± 0.78 18.45 ± 4.90 

Girls 5.72 ± 1.05 13.18 ± 3.77 10.81 ± 1.51 17.79 ± 3.38 

HOMA-IR † Overall 0.90 ± 0.11 1.87 ± 0.47* 1.93 ± 0.23 3.55 ± 0.87* 

Boys 0.73 ±0.10 0.94 ± 0.23 1.38 ± 0.17 3.99 ± 2.01 

Girls 1.04 ± 0.19 2.65 ± 0.81 2.31 ± 0.36 3.24 ± 0.52 
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7.3.4 Blood Pressure 

Overall, systolic, diastolic and mean arterial blood pressure were similar in both the trained 

and untrained groups (all p > 0.05), yet systolic blood pressure and mean arterial blood pressure 

increased in both groups (trained and untrained) during the two year follow-up (main effect of 

time: systolic blood pressure, F(1,53) = 15.49, p < 0.001; mean arterial blood pressure, F(1,57) = 

5.69, p = 0.021). The pattern of change in systolic blood pressure, diastolic blood pressure and 

mean arterial pressure over the two-year follow-up was similar across groups (group * time 

interaction, all p > 0.05). When considering the effect of sex, there was no main effect nor were 

there any further interaction effects for blood pressure (all p > 0.05).  

 

Table 16. Blood pressure in trained and untrained adolescents at baseline and at follow-up 2 

years later.  

  Trained Group Untrained Group 

Baseline Follow-up Baseline Follow-up 

Systolic Blood 

Pressure 

(mmHg) 

Overall 110 ± 9 120 ± 13 112 ± 8 114 ± 8 

Boys 113 ± 8 117 ± 14 106 ± 23 109 ± 23 

Girls 109 ± 9 117 ± 9 105 ± 27 111 ± 28 

Diastolic Blood 

Pressure 

(mmHg) 

Overall 69 ± 7 70 ± 9 72 ± 9 71 ± 7 

Boys 69 ± 7 68 ± 9 66 ± 16 67 ± 15 

Girls 71 ± 9 73 ± 6 67 ± 18 67 ± 17 

Mean Arterial 

Blood Pressure 

(mmHg) 

Overall 82 ± 6 87 ± 9 85 ± 7 85 ± 6 

Boys 84 ± 7 84 ± 10 79 ± 17 81 ± 17 

Girls 84 ± 7 87 ± 6 81 ± 20 81 ± 19 

 

7.3.5 Distance Run on the MSFT  

Overall, the trained group ran further during the MSFT than the untrained group (trained 1580 

± 460 m, untrained: 800 ± 460 m, main effect of group, F(1,53) = 63.51, p < 0.001, d = 1.7) 
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(Table 17, Figure 17). Furthermore, distance ran on the MSFT increased in both groups (trained 

and untrained) during the two year follow-up (main effect of time, F(1,53) = 55.63, p <0.001). 

The pattern of change in distance ran on the MSFT over the two year follow-up differed 

between the trained and untrained groups (group * time interaction, F(1,53) = 12.03, p = 0.001), 

whereby the trained group ran further on the MSFT than the untrained group at baseline 

(trained: 1400 ± 400 m, untrained: 760 ± 400 m, F(1,53) = 42.78, p < 0.001, d = 1.6) and at 

follow-up two years later (trained: 1740 ± 460 m, untrained: 860 ± 500 m, F(1,53) = 68.27, p < 

0.001, d = 1.8), resulting in a greater increase over the two years in the trained group. When 

considering the effect of sex boys ran further on the MSFT than girls (boys: 1580 ± 480 m, 

girls: 940 ± 520 m, main effect of sex, F(1,53) = 46.36, p < 0.001, d = 1.2), yet there were no 

interaction effects for distance run on the MSFT (all p > 0.05). 

 

Figure 17. Distance ran on the MSFT in trained and untrained adolescents at baseline (Time 

1) and two years later at follow-up (Time 2). Mean ± SD, main effect of group; p < 0.001, main 

effect of time; p < 0.001, group by time interaction; p = 0.001. 

 

7.3.6 V̇O2 Peak Test 

Overall, the trained group had a higher V̇O2 peak than the untrained group (trained: 58.13 ± 

7.15 ml-1.kg-1.min, untrained: 40.05 ± 9.07 ml-1.kg-1.min, main effect of group, F(1,23) = 34.50, 
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p < 0.001, d = 1.3, Table 17) , yet V̇O2 peak did not change across time (main effect of time, p 

= 0.230). Furthermore, the pattern of change in V̇O2 peak was similar between the groups 

across time (group * time interaction, p = 0.714). When considering the effect of sex, there was 

no main effect nor were there any interactions for V̇O2 peak (all p > 0.05). 

 

Table 17. MSFT performance and V̇O2 peak in trained and untrained adolescents at baseline 

and at follow-up 2 years later. * denotes significant main effect of time and † denotes 

significant difference between groups, all p < 0.005. 

 

  Trained Group Untrained Group 

Baseline Follow-up Baseline Follow-up 

Distance Ran on 

MSFT (m)† 

Overall 1400 ± 400 1740 ± 460* 760 ± 400 860 ± 500* 

Boys 1580 ± 360 2020 ± 360 1160 ± 320 1380 ± 380 

Girls 1240 ± 360 1520 ± 400 520 ± 220 560 ± 260 

V̇O2 peak  

(ml.kg-1.min-1)† 

Overall 56.6 ± 6.7 59.7 ± 7.5 39.5 ± 9.5 40.6 ± 8.9 

Boys 54.7 ± 7.8 61.8 ±9.1 43.3 ± 11.2 44.8 ± 11.1 

Girls 59.7 ± 4.8 57.2 ± 4.7 36.7 ± 7.6 37.4 ± 5.7 

 

7.3.7 Relationship between changes in performance, V̇O2 peak and adiposity with 

changes in risk factors for cardiometabolic diseases 

Change in distance run on the MSFT, V̇O2 peak and adiposity (sum of four skinfolds and waist 

circumference) were not significantly correlated with change in any of the analysed risk factors 

for cardiometabolic health during the two-year follow-up (all p > 0.05). However, there were 

tendencies for change in distance run on the MSFT to be negatively correlated with change in 

plasma insulin concentration (r (46) = -.28, p = 0.062) and for change in blood lactate 

concentration during submaximal exercise to be negatively correlated with change in HOMA-

IR (r (21) = -.42, p = 0.055). Furthermore, when assessing change in CRP concentration during 
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the two-year follow-up, a positive correlation was observed with change in diastolic blood 

pressure (r (33) = .56, p = 0.002) and mean arterial pressure (r (33) = .48, p = 0.005).  

 

7.4 Discussion 

The main finding of the present study was that continuous training during adolescence 

compared to remaining recreationally active during a two-year follow-up, reduced 

concentrations of pro-inflammatory cytokines (30% lower IL-6 and 55% lower IL-1β 

concentration) and increased concentrations of anti-inflammatory mediator IL-10 (28% higher 

in trained adolescents compared with untrained). Furthermore, traditional risk factors for 

cardiometabolic diseases, including metabolic risk factors of blood glucose concentration, 

plasma insulin concentration and HOMA-IR, were lower in the trained adolescents than their 

untrained counterparts. A secondary aim of the present study was to prospectively examine 

changes in the MSFT performance and V̇O2 peak in trained and untrained adolescents. MSFT 

performance and V̇O2 peak were higher in the trained participants than the untrained controls 

at baseline and at follow-up, but after the two years of continued training MSFT improved 

whereas V̇O2 peak was unchanged. Finally, the change in distance run on the MSFT and the 

blood lactate response to exercise tended to be negatively related to change in plasma insulin 

concentration and HOMA-IR in the adolescents, whereas change in V̇O2 peak was not related 

to any of the risk factors for cardiometabolic health. 

 

Overall, trained adolescents exhibited lower concentrations of pro-inflammatory cytokines (IL-

6 and IL-1β) and higher concentrations of anti-inflammatory mediator IL-10 during the two- 

year follow-up, when compared with untrained adolescents. These findings are novel as the 

present study is the first to longitudinally assess a comprehensive panel of pro- and anti-

inflammatory mediators, which are implicated in the development of low-grade chronic 

inflammation, a major risk factor for cardiometabolic diseases (Gleeson et al., 2011). However, 
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the finding that trained adolescents present with favourable inflammatory profiles builds upon 

previous research (presented in Chapter Ⅳ), whereby performance on the MSFT was 

negatively associated with pro-inflammatory cytokines (IL-6 and IL-1β) and positively 

associated with anti-inflammatory mediator IL-10. Furthermore, rhythmic gymnasts have 

previously been reported to present with increased concentrations of adipocytokines 

(predominantly adiponectin) when compared with untrained controls (Vosoberg et al., 2014). 

Such findings further support those of the present study as adiponectin elicits beneficial 

metabolic actions (such as suppressing glucose production in the liver and enhancing fatty acid 

oxidation in skeletal muscle) and reduces inflammation (Wang & Scherer, 2016). Whilst such 

corroborative findings suggest chronic training during adolescence is a potential therapeutic 

intervention to regulate inflammation further research is necessary to build on the findings of 

the present study.  

 

The present study also reported that overall, trained adolescents exhibited lower blood glucose 

concentration (-6 %), plasma insulin concentration (-89 %) and HOMA-IR (-93 %) when 

compared with untrained adolescents, findings that suggest the trained group are more insulin 

sensitive when compared with the untrained counterparts. These findings build on those 

presented in Chapter Ⅳ, whereby adolescents with the lowest distance ran on the MSFT were 

less insulin sensitive, as measured by HOMA-IR, than adolescents who performed well on the 

endurance capacity test. Whilst promising, the findings of the present study must be endorsed 

by future studies, particularly training intervention studies, before training in young people be 

recommended as a therapeutic intervention that enhances cardiometabolic health in 

adolescents.  

 

Overall, in the present study distance run on the MSFT and V̇O2 peak test was significantly 

greater in the trained group than the untrained group. Such findings confirm that long-term 
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training enhances endurance capacity in young people which previously, and in this study, has 

been associated with better cardiometabolic health in young people (Klakk et al., 2014; Telford 

et al., 2015; Zaquot et al., 2016). However, it is also important to consider that the trained group 

were significantly taller than the untrained group, which is a potential confounding variable 

(given that typically swimmers and footballers tend to be, in part, recruited to the sport for their 

stature) affecting performance on the MSFT. Future research should consider the mediating 

effect of stature on performance on physical capacity tests. Irrespective, only performance on 

the MSFT tracked improvements in the trained group compared to the untrained group during 

the two-year follow-up, whereas V̇O2 peak was not sensitive to such changes. Furthermore, 

changes in distance run on the MSFT and the blood lactate response to submaximal exercise 

were the only measures of training status that tended to be related to risk factors of 

cardiometabolic health (change in plasma insulin concentration and HOMA-IR), whilst change 

in V̇O2 peak was not related to any of risk factor. These findings support those of Chapter Ⅳ, 

which suggests that performance on the MSFT is better suited to assess an individual’s capacity 

to perform prolonged exercise, as the MSFT is a better indicator of the peripheral changes that 

result from participation in regular training (Joyne & Carsten, 2018) and is therefore a better 

prediction of adolescent cardiometabolic health. Future studies should progress the findings of 

the present study to assess whether the MSFT or V̇O2 peak best longitudinally predict 

cardiometabolic health, as such information will have implications for future policies.  

 

A novel finding of the present study was that change in CRP concentration during adolescence 

was moderately and positively related to change in diastolic and mean arterial blood pressure. 

In adult populations CRP has been identified as the best predictor of cardiovascular events 

(Emerging Risk Factors Collaboration, 2012), yet the presence of this novel risk factor and the 

relationship with cardiovascular disease risk in young people is unknown. Given the moderate 

relationship between change in CRP and change in diastolic and mean arterial blood pressure, 
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which are both major risk factors of hypertension (a form of cardiovascular disease), the present 

study has identified CRP as also being of high importance for monitoring cardiovascular health 

throughout childhood and adolescence, as well as during adulthood as suggested by previous 

research (Emerging Risk Factors Collaboration, 2012).  

 

Finally, the present study observed that trained adolescents had significantly lower adiposity, 

measured using the sum of four skinfolds, when compared to the untrained adolescents. 

Furthermore, when considering the effect of sex, the girls exhibited greater adiposity than the 

boys. Previous research has repeatedly highlighted that adolescent girls are more likely to 

display reduced physical activity levels, physical fitness and greater adiposity than adolescent 

boys (for overview, see Hardman & Stensel, 2009). Therefore, such information in conjunction 

with the findings of the present study suggest that adolescent girls, given their elevated 

adiposity, warrant particular attention and future interventions should focus specifically on this 

population. It is therefore essential that behaviour change specialists, in conjunction with 

exercise and health physiologists, determine effective interventions that adolescent girls will 

adhere to and also have the desired physiological benefits, as documented in this study.  

 

The findings of the present thesis are novel, as there have been no previous studies to 

specifically assess the effect of long-term training during adolescence on markers of 

cardiometabolic health. Future research should however examine how the differences that 

occur during adolescence manifest as clinically meaningful changes during adulthood. The 

findings of the present study provide a novel insight into the development of risk factors across 

the lifespan, highlighting that adolescents as young as 12-14 y not engaging with regular 

exercise warrant early intervention to prevent the early onset of cardiometabolic diseases. 

Specifically, the initial findings of the present study suggest that young people can enhance 

their cardiometabolic health and reduce their risk of type 2 diabetes, which is a current concern 
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in Western societies with a 36% increase in the number of cases in young people in the last 

decade (Candler et al., 2018), by engaging with regular training (as participants evidenced by 

the participants recruited from local swimming and football clubs). 

 

The present study has several strengths including the longitudinal assessment of a 

comprehensive panel of novel pro- and anti-inflammatory cytokines and traditional risk factors 

for cardiometabolic diseases in adolescents. Furthermore, the present study is the first to the 

authors’ knowledge to assess the effect of long-term training on different measures of 

endurance capacity in young people to ascertain which assessment is most appropriate for 

tracking changes throughout adolescence. However, the present study was limited as no 

information relating to the ethnicity, dietary habits and typical physical activity levels of the 

adolescents was collated.  

 

In conclusion, the present study reported that adolescents participating in continuing training 

during a two-year follow-up study, presented with a favourable inflammatory profile and 

greater insulin sensitivity than their untrained counterparts. Furthermore, the trained group 

consistently performed better on performance tests, which measured their ability to perform 

prolonged exercise, and had lower adiposity. In conjunction, these findings suggest that 

continued training during adolescence is an effective means to protect against the development 

of risk factors for cardiometabolic diseases, which is currently of high importance given the 

increasing incidence of such risk factors in young people in the United Kingdom (Ayer et al., 

2016; Candler et al., 2018). Such information can be utilised in the future to develop 

interventions for adolescents to reverse the current adverse health trends being observed.   
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Chapter Ⅷ 

General Discussion 

8.1 Overview of Key Findings 

 Performance on the multi-stage fitness test (MSFT distance run) was inversely 

associated with risk factors for cardiometabolic diseases, including pro-inflammatory 

cytokines (IL-1β and IL-6), insulin resistance and blood pressure. Furthermore, 

distance run on the MSFT was a better predictor of inflammation in adolescents than 

V̇O2 peak, with an inverse relationship between MSFT distance and pro-inflammatory 

cytokines (IL-1β and IL-6) and a positive relationship with anti-inflammatory cytokine 

IL-10, but no such relationships with V̇O2 peak (Chapter Ⅳ). 

 Body composition (measured as sum of skinfolds) was the only predictor of metabolic 

health (fasted plasma insulin concentration and HOMA-IR) and blood pressure in 

adolescents, with a positive relationship between the exposure and outcome variables 

(Chapter Ⅳ). 

 An acute 60 min bout of games-based activity (basketball) effectively stimulated an 

anti-inflammatory response in healthy adolescent boys and girls, as evidenced by the 

increased concentrations of anti-inflammatory mediators (IL-6 and IL-10, deemed anti-

inflammatory when transiently increased following exercise given the anti-

inflammatory effects), and the anti-inflammatory IL-6: TNF-α ratio up to 24 h post-

exercise (Chapter V).  

 The acute bout of games-based activity also enhanced peripheral insulin sensitivity 

following the consumption of a standardised lunch, with reduced plasma insulin iAUC 

following a standardised lunch on the exercise trial when compared to the rested control 

trial (Chapter V). 
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 When considering the duration of high intensity intermittent exercise undertaken, a 

shorter bout of 30 min high intensity intermittent running (performed as the 

Loughborough Intermittent Shuttle Test; LIST) was as effective as 60 min for the 

management of blood glucose concentration on the day of exercise including a 

standardised lunch (Chapter VI). However, the effect of exercise on blood glucose 

homeostasis did not remain 24 h post-exercise. 

 In contrast, only 60 min of high intensity intermittent running (performed as the LIST), 

in comparison with 30 min, effectively enhanced postprandial insulin sensitivity in 

healthy adolescents, with a similar response observed between 30 min of high intensity 

intermittent running and the rested control trial (Chapter VI). 

 When assessed longitudinally, performance on the MSFT (distance run) increased in 

adolescents who trained continuously during a two-year follow-up whilst V̇O2 peak 

remained unchanged. However, both MSFT performance and V̇O2 peak were higher at 

baseline and after two-years of follow-up in the trained in comparison with the control 

group (Chapter VII). 

 Longitudinally, trained adolescents had significantly lower concentrations of pro-

inflammatory cytokines (IL-1β and IL-6), higher concentrations of anti-inflammatory 

cytokine IL-10, and enhanced insulin sensitivity when compared to untrained 

adolescents during a two-year follow-up (Chapter ⅤII).  

 Changes in distance run on the MSFT and blood lactate response to submaximal 

exercise (across the two-year follow-up period) were inversely related to changes in 

plasma insulin concentration and HOMA-IR; whilst changes in V̇O2 peak were not 

related to changes in any of the risk factors for cardiometabolic health throughout 

adolescence (Chapter ⅤII).  
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 Finally, changes in CRP concentration throughout adolescence were positively related 

to changes in diastolic and mean arterial blood pressure, indicative of CRP 

concentration predicting cardiovascular health in young people as well as in adult 

populations as evidence by previous research (Chapter ⅤII). 

 

8.2 Effect of MSFT performance, the blood lactate response to sub-maximal exercise and 

V̇O2 peak on risk factors for cardiometabolic disease in adolescents. 

8.2.1 Inflammation 

In the studies presented in this thesis the effect of performance on the MSFT (distance run), 

V̇O2 peak, adiposity and adolescent training status (trained vs. untrained) on risk factors for 

cardiometabolic diseases were examined cross-sectionally (Chapter Ⅳ) and longitudinally 

(Chapter Ⅶ). Several inflammatory mediators were analysed as a measure of low-grade 

chronic inflammation in adolescents, including pro-inflammatory cytokines IL-1β, IL-6, TNF-

α and CRP, alongside the anti-inflammatory cytokine IL-10.  

 

Overall, the findings of the experimental studies presented in this thesis suggest that distance 

run on the MSFT (Chapter Ⅳ), the blood lactate response to submaximal exercise (Chapter 

Ⅳ) and chronic participation in regular exercise (Chapter Ⅶ) were inversely related to pro-

inflammatory cytokines (IL-1β and IL-6) and positively related to anti-inflammatory cytokine 

IL-10, whereas, distance run on the MSFT and V̇O2 peak were not related to pro-inflammatory 

cytokine TNF-α or CRP. Furthermore, a regression analysis reported that performance on the 

MSFT was the best predictor of pro-inflammatory cytokine concentration (IL-1β and IL-6) and 

the blood lactate response to submaximal exercise was the best predictor of IL-10 (anti-

inflammatory cytokine). In contrast, V̇O2 peak did not predict the concentration of any of the 

inflammatory mediators measured in the present thesis.  
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The finding in Chapters Ⅳ and Ⅶ that distance run on the multi-stage fitness test is inversely 

related to pro-inflammatory cytokines (IL-6, TNF-α and CRP) is consistent with some of the 

findings, but contradicts other findings, in the just two earlier papers that have examined this 

relationship in adolescents (Buchan et al., 2015; Bugge et al., 2012). Buchan et al. (2015) used 

the multi-stage to predict V̇O2 peak in boys and girls (age 16.7 years) and consistent with the 

present study found that that multi-stage performance (used to predict V̇O2 peak) was inversely 

related to a panel of inflammatory cytokines. Bugge et al., (2012) reported that V̇O2 peak, 

directly measured during a treadmill test, was inversely associated with a clustered z-score of 

inflammatory mediators (including IL-6, TNF-α, CRP and adiponectin) (β = - 0.387) and IL-6 

concentration (β = - 0.151) in a cross-sectional sample of adolescents aged 13 – 14 years, which 

contradicts the findings of the present study where no relationship was found between directly 

measured V̇O2 peak and inflammatory cytokines.  When considering longitudinal changes in 

markers of inflammation in young people, the present study was the first to examine a 

comprehensive panel of inflammatory mediators (IL-1β, IL-6, IL-10, TNF-α, CRP) and assess 

how low-grade chronic inflammation changed across time in trained and untrained adolescents. 

The present study was also the first to report that untrained adolescents display reduced 

concentrations of anti-inflammatory mediator IL-10 in comparison to trained adolescents. 

Jürimäe et al., (2017) is the only other study to date, to the author’s knowledge, which has 

examined IL-10 concentration in trained and untrained adolescents, although these findings 

contradict those presented in Chapter Ⅶ, with no difference observed in IL-10 concentration 

between the trained and untrained girls. Such discrepancies could be due to several factors, 

including the physical fitness of the athletes (which was not measured by Jürimäe et al., 2017) 

and participant characteristics such as age, pubertal development, socio-economic status and 

ethnicity. For example, age was 11 years in the Jürimäe study, but ranged from 10 -13 across 
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the studies in this thesis, whereas socio-economic status and ethnicity were not measured by 

Jürimäe and colleagues or in the present study (Jürimäe et al., (2017). 

 

The effect of training status (as measured by performance on physical capacity tests) on 

inflammation in adolescents is particularly important given that low-grade chronic 

inflammation is a key risk factor for cardiometabolic diseases (Gleeson et al., 2011). In western 

societies young people are increasingly exposed to risk factors for cardiometabolic diseases 

(Ayer et al., 2016). As such, information relating to the reduction of such risk factors is 

becoming essential for the enhancement of cardiometabolic health. The novel and 

corroborative findings of the studies presented in this thesis suggest that enhancing 

performance on physical capacity tests, particularly the MSFT, and the continuation of training 

throughout adolescence reduces concentrations of pro-inflammatory cytokines (IL-6 and IL-

1β) and increases anti-inflammatory mediator IL-10. The effect of training on adolescent 

cardiometabolic health is further supported given that performance on the MSFT was the only 

significant predictor of inflammation (Chapter Ⅳ), whereas V̇O2 peak did not predict 

inflammation. The MSFT was a more sensitive indicator of training status, as evidenced in 

Chapter Ⅶ, as in the trained adolescents distance run on the MSFT improved across time, 

whereas V̇O2 peak did not change in either group across time, which could potentially be 

explained by the strong genetic component of V̇O2 peak (Joyne & Carsten, 2018). Such 

findings are novel, as little consideration has previously been given to the mediating effect of 

the method for determining physical fitness (which best reflects training status) on the 

relationship between fitness and metabolic health. 

 

Overall, the studies presented in this thesis suggest that enhancing performance on physical 

capacity tests (that assess the peripheral changes that occur with regular training) and the 

continuation with training during adolescence is an effective means to reduce the concentration 
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of inflammatory cytokines, which are implicated in the development of low-grade chronic 

inflammation. Furthermore, the findings in the thesis have shown for the first time that training 

can increase concentrations of IL-10 in the systemic circulation, contributing to an anti-

inflammatory environment and an enhancement of cardiometabolic health.   

 

8.2.2 Effect of MSFT performance, the blood lactate response to sub-maximal exercise, 

V̇O2 peak and adiposity on insulin sensitivity 

In the studies presented in Chapters Ⅳ and Ⅶ, insulin sensitivity was assessed cross-

sectionally and longitudinally using fasted blood glucose concentration, fasted plasma insulin 

concentration and HOMA-IR. Section 8.2.2 will discuss the effect of distance run on the MSFT 

and the blood lactate response to sub-maximal exercise (sensitive indicators of training status) 

and V̇O2 peak and adiposity (assessed as sum of skinfolds) on insulin sensitivity in adolescents.  

 

In the present thesis, a cross-sectional analysis of adolescent boys and girls (10 – 12 years) 

showed that participants categorised below the 25th percentile for distance run on the MSFT, 

V̇O2 peak and adiposity had increased fasted concentrations of blood glucose and plasma 

insulin, and were more insulin resistant (with increased HOMA-IR) than adolescents in all 

other quartiles (Chapter IV). The regression analysis also revealed that adiposity was the best 

predictor of HOMA-IR in adolescents, with a positive relationship observed between the two 

variables (β = 0.506). In addition, the longitudinal analysis revealed that adolescents who 

trained consistently during the two-year follow-up had lower plasma insulin concentrations and 

HOMA-IR than their untrained counterparts (Chapter VII). These cumulative findings taken 

from Chapters IV and VII were further supported by the moderate inverse relationship reported 

between change in distance run on the MSFT and change in risk factors for metabolic diseases 

(plasma insulin concentration and HOMA-IR) during adolescence. Such findings support a 

causal relationship between performance on the MSFT, which is deemed to be more sensitive 
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(than V̇O2 peak) to changes in the peripheral adaptations that occur with continuous and 

prolonged training, and adolescent cardiometabolic health.   

 

Consistent with the findings of the present thesis, inverse associations have previously been 

observed between performance on physical capacity tests (including the MSFT and run time 

to exhaustion during a V̇O2 peak graded treadmill test) and insulin resistance as measured by 

HOMA-IR in adolescent boys and girls (Bugge et al., 2012; Ischander et al., 2007). 

Furthermore, in a two- year longitudinal follow-up study, Zaquot et al., (2016) in adolescents 

reported that performance on the MSFT significantly predicted risk factors for metabolic 

syndrome, including HOMA-IR, following adjustment for confounding variables such as sex, 

age, and the socio-demographic status. As the findings of the present thesis and those of 

previous research suggest that distance run on the MSFT and adiposity are related to metabolic 

health, an additional analysis was undertaken on the fasted/ rested data from Chapters Ⅳ 

through Ⅵ to provide further support in favour of the argument that enhanced performance on 

the MSFT and reduced adiposity is important for adolescent cardiometabolic health. A 

moderate inverse association between distance run on the MSFT and blood glucose 

concentration (r(171) = -0.30, p < 0.001) and HOMA-IR (r(181) = -0.39, p = < 0.001) was observed 

in of adolescents (total 190, boys 93, girls 97) recruited to the studies presented in Chapters Ⅳ 

- Ⅵ. Furthermore, adiposity (defined as sum of four skinfolds) was moderately and positively 

related to blood glucose concentration (r(171) = 0.27, p < 0.001) and HOMA-IR (r(171) = 0.46, p 

< 0.001) in the adolescents. Taken together, these findings continue to support a major role for 

participation in regular training of sufficient intensity to enhance distance run on the MSFT in 

adolescents to help reduce the presence of risk factors for metabolic health during puberty. 

 

Overall, the findings presented in this thesis suggest that regular training, reduced adiposity 

and enhanced performance on physical capacity tests effectively reduce fasted concentrations 
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of blood glucose and plasma insulin, and subsequently HOMA-IR. Such findings are 

particularly important given that the incidence of type 2 diabetes in children and adolescents 

has increased by 36 % from 2005 to 2015 in adolescents (aged < 17 years) in the United 

Kingdom (Candler et al., 2018). As such, the prevention and management of insulin resistance, 

a major risk factor of type 2 diabetes, in young people has become increasingly important in 

recent years. Therefore, the suggestion that training and reduced adiposity in adolescents, can 

reduce markers of insulin resistance is particularly important for future policies and 

interventions that aim to enhance cardiometabolic health in young people.  

 

8.3 Effect of acute bouts of intermittent activity on inflammatory, glycaemic and 

insulinaemic responses in adolescents 

8.3.1 Inflammatory Response  

The findings of the experimental studies presented in this thesis suggest that a 60 min bout of 

intermittent games-based activity (basketball) elicits a transient anti-inflammatory response up 

to 24 h post-exercise in healthy adolescents (Chapter V). The anti-inflammatory response 

consisted of increased concentrations of anti-inflammatory cytokines IL-6 and the anti-

inflammatory ratio IL-6: TNF-α up to 3 h post-exercise and IL-10 24 h post-exercise. In 

contrast, the acute bout of games-based activity did not have an effect on acute phase protein 

CRP with a similar response observed on the exercise and rested control trial.  

 

The inflammatory response of a select number of inflammatory cytokines to acute bouts of 

exercise has been previously observed following wrestling, water polo and cross-country in 

adolescent boys and girls up to one hour post-exercise but no study has examined the response 

of an array of pro- and anti-inflammatory cytokines up to 24 h post-exercise (Eliakim et al., 

2015; Nemet et al., 2002, 2003, 2009). Following such exercise between 2- to 7-fold increases 

in IL-6 concentration have been reported which are consistent with the 2-fold increase observed 
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following 60 min games-based activity (basketball) in the present thesis. An increase in IL-6 

concentration post-exercise is suggested to stimulate a transient anti-inflammatory response to 

exercise, which if repeated regularly, is hypothesised to reduce low-grade chronic 

inflammation (Gleeson et al., 2011). Therefore, such promising findings could be implicated 

in the management of cardiometabolic health in young people. However, it is important to note 

that the magnitude of the increase in IL-6 concentration varies significantly across previous 

studies and could potentially be related to the mode, intensity and duration of exercise 

undertaken. The findings of the present thesis are the first to demonstrate that 60 min of games-

based activity, which is an ecological valid mode of activity in young people that is deemed to 

be practical and enjoyable, stimulates an anti-inflammatory response in healthy adolescents. 

However, future research should continue to investigate the optimum mode of activity 

(including the intensity and duration of such activity) that best elicits an increase in IL-6 

concentration.   

 

The response of anti-inflammatory cytokine IL-10 has not previously been examined following 

acute bouts of exercise. As such, the present study advanced understanding by suggesting that 

an acute bout of games-based activity successfully elicits an increase in potent anti-

inflammatory cytokine IL-10 up to 24 h post-exercise, which following in vitro studies is 

suggested to reduce low-grade chronic inflammation if the exercise is repeated regularly 

(Gleeson et al., 2011). In vitro studies suggest that the inflammatory cascade that follows a 

transient increase in IL-6 concentration remains for up to 24-48 h for select mediators including 

IL-10 and CRP (Pedersen & Petersen, 2005). Therefore, it is feasible that the response of anti-

inflammatory mediator IL-10 remains elevated beyond 24 h post-exercise. However, this is yet 

to be assessed in human studies. Given the implications of such findings for exercise 

prescription, such as detailing the frequency of exercise required to chronically reduce low-
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grade chronic inflammation, future research should examine the residual effects on 

inflammation up to 48 h post-exercise in children, adolescents and adults. 

 

In conclusion, the findings of Chapter Ⅴ suggest that a 60 min bout of games-based activity in 

healthy adolescents is effective in stimulating an anti-inflammatory response to exercise up for 

up to 24 h post-exercise. This response was evidenced by increased concentrations of anti-

inflammatory mediators IL-6 and anti-inflammatory ratio IL-6: TNF-α up to 3 h post-exercise 

and IL-10 up to 24 h post-exercise. The present study was novel as it was the first to examine 

the inflammatory response beyond 1 h post-exercise and was the first to the author’s knowledge 

to measure anti-inflammatory mediator IL-10; therefore, the findings of the present study add 

to the existing literature by documenting these effects. 

 

8.3.2 Glycaemic and Insulinaemic Responses 

The studies presented in this thesis have also examined the glycaemic and insulinaemic 

responses to acute bouts of intermittent games-based activity (Chapter Ⅴ) and high intensity 

intermittent running (Chapter Ⅵ). The postprandial blood glucose and plasma insulin response 

to a standardised lunch was measured in Chapters Ⅴ and Ⅵ, and the response to a standardised 

breakfast 24 h post-exercise was determined in Chapter Ⅵ. Furthermore, Chapter Ⅵ 

progressed current knowledge by examining whether exercise duration had an effect on the 

glycaemic and insulinaemic responses to ecologically valid standardised meals.  

 

Overall, the findings of the present thesis suggest that 60 min of intermittent games-based 

activity (Chapter Ⅴ) and 60 min of high intensity intermittent running (performed as the LIST; 

Chapter Ⅵ) successfully enhanced insulin sensitivity post-exercise, as evidenced by the 23-35 

% reduction in postprandial plasma insulin tAUC during the exercise trial when compared with 

the rested control trial. In contrast, neither study reported an effect of the exercise trial on 
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HOMA-IR on day two of the study when compared with the rested control trial. Furthermore, 

when considering the effect of exercise duration (Chapter Ⅵ), 30 min of high intensity 

intermittent running elicited a similar postprandial insulinaemic response following a 

standardised lunch as the rested control trial in the healthy adolescents on day one and day two 

of the study; suggesting that 60 min exercise is required to enhance insulin sensitivity. 

 

The findings observed in the present thesis are consistent with previous research, whereby high 

intensity intermittent cycling (8 x 1 min at 90 % peak power) reduced plasma insulin tAUC 

following an OGTT by 13 % in healthy adolescent boys (Cockcroft et al., 2015). Short et al., 

(2013) also reported that an acute bout of moderate intensity exercise (45 min of walking, 

cycling and boxing) in healthy adolescent boys, enhanced insulin sensitivity by 45 % following 

the consumption of a high fat meal. Whilst the findings are consistent with those of previous 

studies, the modes of exercise chosen in the present thesis (games-based activity and the LIST 

which is replicative of intermittent activity) and the standardised meals consumed are deemed 

ecologically valid in young people (Howe et al., 2010) and as such have greater application for 

future physical activity interventions that aim to enhance insulin sensitivity in young people.  

 

The study presented in Chapter Ⅵ improved upon limitations of previous studies relating to 

the measurement of insulin sensitivity the day following exercise, as previously only HOMA-

IR has been measured and as an assessment of hepatic insulin sensitivity, is unlikely to detect 

the peripheral changes in insulin sensitivity that are suggested to occur post-exercise. 

Therefore, in the present thesis HOMA-IR was assessed in conjunction with the response to a 

standardised breakfast (a measure of peripheral insulin sensitivity) the day following exercise. 

In summary, there was no effect of the high intensity intermittent running (on the 30 min or 60 

min exercise trials) on HOMA-IR or the glycaemic and insulinaemic response (on the second 

day of the study) to the consumption of the standardised breakfast when compared with the 
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rested control trial. Whilst such findings suggest there is no effect of high intensity intermittent 

running on the postprandial glycaemic and insulinaemic responses the day following exercise, 

this is the only study to date to examine such responses in young people. Therefore, future 

studies should continue to investigate whether peripheral insulin sensitivity remains enhanced 

the day following exercise in adolescents, by examining the effect of different modes, 

intensities and durations of activity that best elicit and prolong the enhancement in insulin 

sensitivity post-exercise.  

 

8.4 Mechanisms 

The inflammatory response to an acute bout of exercise is one of several mechanisms suggested 

to mediate the cardiometabolic health benefits reported with regular participation in physical 

activity in young people and adults (Gleeson et al., 2011; Fiuza-Luces et al., 2013). In brief, at 

the onset of exercise the contraction of skeletal muscle stimulates the release of IL-6 into the 

systemic circulation. The increase in IL-6 concentration is suggested to increase with exercise 

intensity and duration (Gleeson et al., 2011; Petersen & Pedersen, 2005). The acute rise in IL-

6 concentration is the suggested mechanism that initiates many of the cardiometabolic health 

benefits of exercise. One of the proposed mechanisms is that the acute increase in IL-6 

concentration post-exercise augments insulin sensitivity. This was recently supported by a 

study in mice, whereby IL-6 was injected (50-100 pg.mL-1) into the plantaris muscle and an 

increase in GLUT4 expression and insulin sensitivity was observed (Ikano et al., 2016).  

 

The acute increase in IL-6 post-exercise is also suggested to mediate the stimulation of anti-

inflammatory cytokines (IL-1ra and IL-10) and the inhibition of pro-inflammatory cytokines 

(IL-1β and TNF-α) through the stimulation of their antagonistic receptors. The stimulation of 

anti-inflammatory cytokines IL-10 and IL-1ra inhibit the synthesis of further pro-inflammatory 

cytokines, including IL-1α, IL-1β, and TNF-α (Nimmo et al., 2013). The cascade initiated from 
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the acute rise in IL-6 concentration suggests a mechanistic link between the contraction of 

skeletal muscle during exercise and the prevention of low-grade chronic inflammation (a key 

risk factor for cardiometabolic disease).  

 

Overall, the findings of the present thesis suggest that regular participation in exercise improves 

glucose tolerance and insulin sensitivity in adolescents. The response of blood glucose and 

plasma insulin to acute bouts of exercise in adolescents are suggested to mechanistically 

enhance insulin sensitivity long-term (for review, see Holloszy, 2006). The repeated 

contraction of skeletal muscle (which occurs during prolonged exercise) stimulates non-insulin 

dependent glucose uptake through the translocation of GLUT-4 (glucose transporter) to the cell 

membrane (Hardman & Stensel, 2009). As the acute effect of exercise subsides, it is suggested 

that insulin receptors on the cell membrane are modified and insulin sensitivity is enhanced. 

Another proposed mechanism for the chronic enhancement in insulin sensitivity that results 

from participation in regular exercise is the prevention of glucotoxicity that leads to 

mitochondrial defects and increased risk of type 2 diabetes (Lowell & Shulman, 2005).  

 

Whilst the determination of the exact mechanisms that reduces risk factors for cardiometabolic 

diseases in trained adolescents was beyond the direct remit of the present thesis, by examining 

the inflammatory, glycaemic and insulinaemic responses to acute bouts of exercise speculation 

has been possible. The acute responses to high intensity intermittent activity in healthy 

adolescents, whereby an anti-inflammatory response and reduced glycaemic and insulinaemic 

responses were observed, are in agreement with the previously suggested mechanisms. Future 

studies should continue to investigate the mechanisms relating to enhanced cardiometabolic 

health in young people, as such information is important for the development of future physical 

activity interventions and policies. 
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8.5 Conclusions  

 From the studies presented in the present thesis several patterns have emerged relating to the 

beneficial effects of exercise on risk factors for cardiometabolic diseases in adolescents. 

Specifically:  

 The importance of training and enhancing performance on physical capacity tests for 

cardiometabolic health during adolescence: The results of the cross-sectional analysis 

(presented in Chapter Ⅳ) and longitudinal follow-up (Chapter Ⅶ) clearly suggest that 

participating in regular training and enhancing performance on physical capacity tests 

during adolescence reduces the presence of pro-inflammatory cytokines (IL-1β and IL-

6) in the systemic circulation and also reduces fasted blood glucose and plasma insulin 

concentrations. Furthermore, training was associated with increased concentrations of 

potent anti-inflammatory cytokine IL-10. The reduction in the risk factors for 

cardiometabolic diseases suggest that regular training protects against the early onset 

of conditions such as type 2 diabetes in young people.  

 The measurement of physical fitness in adolescents: The cross-sectional analysis 

(presented in Chapter Ⅳ) and longitudinal follow-up (Chapter Ⅶ) both suggest that 

distance run on the MSFT is the best measure of physical fitness in adolescents, when 

assessing the role of performance on physical capacity tests on cardiometabolic health 

in young people. Performance on the MSFT consistently throughout the thesis detected 

significant effects on the concentration of pro-inflammatory cytokines (IL-1β and IL-

6) and fasted blood glucose and plasma insulin concentration across a heterogeneous 

sample of adolescents.  

Furthermore, in the longitudinal follow-up study, after two years of continued training 

performance in the MSFT improved showing sensitivity to change in training status 

whereas V̇O2 peak was unchanged. This was further supported by the Pearson 
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correlations that revealed that longitudinally and across the collated data from Chapters 

Ⅳ - Ⅵ that only the MSFT was related to risk factors for metabolic health. Therefore, 

when assessing physical fitness, as a marker of cardiometabolic health and performance 

in adolescents, the present thesis suggests that the MSFT is the most suitable measure.  

 The importance of CRP in adolescence as a predictor for cardiometabolic disease risk: 

In the present thesis change in CRP concentration during adolescence was related to 

change in diastolic and mean arterial blood pressure. CRP in adulthood is deemed the 

strongest predictor of a cardiovascular event, and given the relationship between change 

in CRP and change in blood pressure (a major risk factor for hypertension which is a 

form of cardiovascular disease) as observed, it can be suggested that CRP is important 

throughout the entire lifespan and should be measured consistently from childhood to 

monitor cardiometabolic disease risk. 

 The inflammatory, glycaemic and insulinaemic responses to acute bouts of intermittent 

activity: The findings presented in this thesis suggest that an acute bout of high intensity 

intermittent exercise (60 min in duration) successfully stimulated an anti-inflammatory 

response (Chapter Ⅴ) and reduced the glycaemic and insulinaemic response to a 

standardised lunch (Chapters Ⅴ and Ⅵ). Such protective responses suggest that 

intermittent activity, which is an ecologically valid mode of exercise in young people, 

would be a suitable mode of activity to elicit the inflammatory, glycaemic and 

insulinaemic responses that are associated with enhanced cardiometabolic health.  

 The time course of the effect: Finally, the present thesis was novel in that the studies 

conducted prolonged the time course in which the inflammatory, glycaemic and 

insulinaemic responses to acute bouts of exercise were observed. Through assessing the 

inflammatory response up to 24 h post-exercise, an anti-inflammatory response was 

reported with increased IL-10 concentrations. Furthermore, through determining that 
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the glycaemic and insulinaemic responses to a standardised breakfast the day following 

exercise did not differ from a rested control trial, the present thesis suggests that in 

conjunction with the government physical activity guidelines, young people should 

participate in 60 min of exercise per day to benefit from the enhanced insulin sensitivity 

achieved post-exercise.  

 

To ensure the findings reported in the present thesis have impact on adolescents, beyond those 

that participated in the research, there will be a concerted effort to discuss the main conclusions 

with key stakeholders such as Nottingham City Council and the Active Partnership Trust 

(Active Notts and Active Derbyshire), with the ultimate aim of engaging young people with 

physical activity. The information will be used to emphasise the role of physical activity and 

exercise as a modifiable lifestyle factor for the enhancement of cardiometabolic health in young 

people, which is often an oversight with the emphasis frequently placed on nutrition practices 

in adolescents and their families. The information will be used to detail the potential for 

intermittent exercise of 30 min in duration to enhance metabolic health in adolescent girls, 

where overweight, obesity and physical inactivity are of major concern (for overview, see 

Hardman & Stensel, 2009). The findings of the present thesis are a good foundation for this 

practice but further research is warranted to elucidate the optimum exercise duration, intensity 

and frequency to attenuate risk factors for cardiometabolic diseases in adolescents; and how 

these can be incorporated in to the everyday lives of young people (with consideration of the 

most appropriate behaviour change models).     

 

8.6 Recommendations for Future Research  

To continue to advance knowledge regarding the prevention of risk factors for cardiometabolic 

diseases in adolescents, the following suggestions are recommended for future research:  
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 Given the limited longitudinal research available in young people, a series of studies 

should be undertaken that examine the effect of training on risk factors for 

cardiometabolic diseases throughout adolescence and, where possible, tracking these 

changes into adulthood. 

 A series of investigations to determine the optimum mode, intensity, duration and 

frequency of exercise that best elicits the protective post-exercise inflammatory, 

glycaemic and insulinaemic responses should be undertaken. 

 Given young people typically accumulate their daily physical activity through shorter 

bouts of exercise, a series of studies investigating the effect of accumulated bouts of 

intermittent activity vs. prolonged bouts on the inflammatory, glycaemic and 

insulinaemic responses in adolescents are recommended. 

 Finally, to continue to develop understanding of the relationship between physical 

activity and exercise with risk factors for cardiometabolic diseases, training/ 

intervention studies which focus on ecologically valid modes of exercise in young 

people should be completed to aid with the development of future interventions and 

policies for the enhancement of cardiometabolic health. 

 

In all future studies it remains important to assess a comprehensive panel of inflammatory 

cytokines alongside the glycaemic and insulinaemic responses. These studies could progress 

the findings of the present thesis and assess additional inflammatory cytokines including IL-

1ra, IL-4, IL-13 and IL-15, which are additional anti-inflammatory cytokines. Furthermore, the 

measurement of the risk factors in young people should be ecologically valid (e.g during 

periods of time that include the consumption of meals) and should accurately measure the 

metabolic responses in acute studies (such as selecting a measure of peripheral and not hepatic 

insulin sensitivity).  
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8.7 Reflections  

Throughout the five years in which I have completed my PhD I have developed many new 

skills, established through the leadership of my supervisory team and the novel experiences 

that each of the experimental chapters provided. The main learning was that research conducted 

in the field, particularly when working with children and adolescents, requires a team of 

researchers that have an array of different skills and copious energy to set up a temporary 

laboratory in a classroom before conducting a full day of data collection in inquisitive young 

people. This was a learning curve as I have always been independent in my learning but soon 

realised that if I continued with this mind-set, data collection for the experimental chapters 

would not be successful. This realisation coincided with the development of leadership skills 

during the testing sessions, which were essential as other members of the research team would 

not know the study protocol in detail and thus relied on my instructions and timings throughout 

the day to ensure timely measurements were made.  

 

Another reflection that warrants mention is that there is a limit to the number of measurements 

young people (or participants of any nature) can be expected to complete. Whilst consideration 

and measurement of all potential confounding variables that might affect the study outcomes 

is important, it is not feasible to expect participants to complete an infinite number of 

measurements, whilst maintaining sufficient motivation to complete each of the chosen 

measurements well. This was a learning curve during my initial experimental chapter, which 

in addition to all reported measurements included the completion of a physical activity 

questionnaire (Appendix E). Despite several attempts, the majority of participants did not 

complete nor return the physical activity diaries and as such the data has not been examined 

due to incompleteness. 
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Finally, if I were to be provided with the opportunity to complete the PhD again there are a few 

changes that I would make to improve the thesis. These include changing the participants that 

were recruited to experimental Chapters Ⅴ and Ⅵ, thus examining the effects of acute bouts 

of intermittent exercise on the inflammatory, glycaemic and insulinaemic responses in 

overweight/obese adolescents. The change to the weight classification of the participants would 

be made, as following the cross-sectional findings, these individuals present with increased 

risk factors for cardiometabolic diseases and thus warrant intervention. Advancing 

understanding of the physiological responses to acute bouts of intermittent exercise in 

overweight adolescents would provide pertinent information relating to modes and durations 

of exercise that can be prescribed in this specific population. Furthermore, for experimental 

Chapters Ⅴ and Ⅵ, I would have collaborated with a psychologist to examine the perceptions 

of the exercise, to determine whether intermittent activity is deemed engaging and fun by 

adolescents, as currently this is only speculated throughout the thesis. These reflections provide 

further scope for future research within the field to advance understanding and also increase 

the likelihood of the research having impact in wider society. 
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Appendix A 

Exercise and Health Study 

PARTICIPANT ASSENT FORM 

 I have read the participant information sheet and understand what I am being asked 

to do in this study. 

 I have talked about this with my parent/guardian/care-giver and they agree that I can 

take part in the study. 

 The purpose and details of the study have been explained to me and I understand 

that the study involves: 

- Completing intermittent running exercise 

- Consuming breakfast (cornflakes and toast) and lunch (sandwich, crisps and apple) 

- Blood pressure measurements 

- Capillary (fingertip) blood samples 

- Completing computerised cognitive function tests (short computer tests) and a mood 

questionnaire 

 

 I have had an opportunity to ask any questions about taking part in the study. 

 I understand that there are some risks of taking part in this study but these risks have 

been minimised and I am not worried about taking part.  

 I have been told that I can stop taking part at any time if I change my mind and that I 

will not have to provide a reason for this. 

  If I am worried or want to stop taking part, I just have to talk to Karah Dring 

(karah.dring@ntu.ac.uk). I can also ask my parent/guardian/care-giver to talk to 

Karah Dring (karah.dring@ntu.ac.uk) if I am worried but do not want to say so 

myself. 

 

I agree to take part in this study 

 

Name of participant:  …………………………………………………………… 

 

Signature of participant:  …………………………………………………………… 

 

Signature of Researcher:  ……………………………………………..................... 

 

Date:    …………………………………………………………… 
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Appendix B  

Parental Consent 
 

1)  I, ………………………………… [name of parent/guardian] agree for my child/dependent, 
………………………………. [name of participant] to partake as a participant in the above study. 

 
2)  I understand from the participant information sheet, which I have read in full, and from my 
discussion(s) with ……………………… [name of investigator] that this will involve my child/dependent 
completing a familiarisation session and three main trials consisting of differing durations of high 
intensity intermittent running to determine the effect of exercise duration on adolescent health and 
cognitive function. My child/dependent will undergo health measures including fingertip blood 
samples, blood pressure, exercise tests and cognitive function tests. 
 
3)  It has also been explained to me by ………………………… [name of investigator] that the risks and side 
effects which may result from my child/dependent’s participation are as follows: slight bruising on the 
fingertips from the blood samples, maximal exercise may cause delayed onset muscle soreness and 
the high intensity exercise may result in risks to health and in extreme cases can be a cause of sudden 
death. However, in active individuals the risks are minimal and all individuals who wish to take part in 
this study will complete a health history questionnaire beforehand which will be thoroughly checked 
by the lead investigator. 
 

4)  I confirm that the study has been explained to my child/dependent and that I and my 
child/dependent have had the opportunity to ask questions about the study.  Where we have 
asked questions, these have been answered to our satisfaction. 

 

5)  I undertake to abide by University regulations and the advice of researchers regarding safety.  
 

6)  I am aware that I can withdraw my consent for my child/dependent to participate in the procedure 
at any time and for any reason, without having to explain my withdrawal and their personal data 
will be destroyed. 

 
7) I understand that any personal information regarding my child/dependent, gained through their 

participation in this study, will be treated as confidential and only handled by individuals relevant 
to the performance of the study and the storing of information thereafter. Where information 
concerning my child/dependent appears within published material, their identity will be kept 
anonymous.  

 

8)  I confirm that I have had the University’s policy relating to the storage and subsequent destruction 
of sensitive information explained to me.  I understand that sensitive information provided 
through my child/dependent’s participation in this study, in the form of health screens, 
questionnaires, blood samples and cognitive function test data will be handled in accordance with 
this policy. 

 

9) I confirm that I have completed the health questionnaire and know of no reason, medical or 
otherwise that would prevent my child/dependent from partaking in this research. 

If you wish, you can be contacted at the end of the study to be made aware of the results. 
To be completed by parent/guardian/care-giver:  
 
Parent/Guardian signature:       Date: 
 
Independent witness signature:       Date: 
 
Primary Researcher signature:       Date: 
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Appendix C 
Health Screen Questionnaire 

 
To be completed by parent/guardian/care-giver 
 
Name or Number   ...............……………… 
 
Please complete this brief questionnaire to confirm fitness of your child/ dependent to 
participate: 
 
1. At present, do you have any health problem for which you are: 

(a) on medication, prescribed or otherwise  Yes      No      

(b) attending your general practitioner  Yes      No      

(c) on a hospital waiting list  Yes      No      

 
2. In the past two years, have you had any illness which require you to: 

(a) consult your GP Yes      No      

(b) attend a hospital outpatient department Yes      No      

(c) be admitted to hospital Yes      No      

 
3. Have you ever had any of the following? 

(a) Convulsions/epilepsy Yes      No      

(b) Asthma Yes      No      

(c) Eczema Yes      No      

(d) Diabetes Yes      No      

(e) A blood disorder Yes      No      

(f) Head injury Yes      No      

(g) Digestive problems Yes      No      

(h) Heart problems Yes      No      

(i) Problems with bones or joints    Yes      No      

(j) Disturbance of balance / coordination Yes      No      

(k) Numbness in hands or feet Yes      No      

(l) Disturbance of vision Yes      No      

(m) Ear / hearing problems Yes      No      

(n) Thyroid problems Yes      No      

(o) Kidney or liver problems Yes      No      

(p) Allergy to nuts, alcohol etc. Yes      No      
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(q) Any problems affecting your nose e.g. recurrent nose bleeds Yes      No       

(r) Any nasal fracture or deviated nasal septum Yes      No      

 
4. Has any, otherwise healthy, member of your family under the age of 50 

 died suddenly during or soon after exercise?  Yes       No      

5. Are there any reasons why blood sampling may be difficult?  Yes        No      

6. Have you had a blood sample taken previously? Yes        No      

7.  Have you had a cold, flu or any flu like symptoms in the last Yes        No     

Month? 
 

8. Does your child/dependent have any dietary requirements we need to be aware of? 

 Yes        No      

If YES, please describe briefly the dietary requirements of your child/dependent:  
..................................................................................................................................................................
..............................................................................................…….……………………...…………………………………
……………………………………………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………………………………………
… 
 
 
Please complete the below contact details so that a member of our research team are able to 
contact you in the event of an emergency:  
 
Name: _______________________ 
 
Relationship to child/dependent: _______________________ 
 

Contact Telephone Number: _________________________ 
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Appendix D 
RPE Scale (Borg, 1998) 

 

 
 
 
 
 
 
 
 
 
 



218 
 

Appendix E 
Physical Activity Diary Example 
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