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Abstract

The development of membrane inlet mass spectrometry strategies for semi- 
volatile and volatile organic compounds has been investigated. Linear 
quadrapole and ion trap mass spectrometers have been used for detection of 
tar get analytes related to the pharmaceutical industry.

In-membrane pre-concentration membrane inlet mass spectrometry has been 
employed for the analysis of semi-volatile organic compounds in aqueous 
samples. A drying stage between in-membrane pre-concentration and thermal 
desorption has been incorporated into the technique, increasing sensitivity. 
Matrix and pH studies have also been carried out to optimise the effects caused 
to MIMS analysis.

The in-membrane pre-concentration procedure has been applied to 
biodegradation monitoring. The technique compared well with HPLC and ion 
chromatography methods for the at-line monitoring of 4-FBA and 4-FCA 
biodegradation process. An on-line monitoring system was also developed and 
validated. The technique has been demonstrated for the biodegradation of a 
mixture of nitrogen compounds relevant to the pharmaceutical industry.

Reversed-phase membrane inlet mass spectrometry incorporating a hollow fibre 
Nafion® membrane has been developed for the determination of methanol and 
ethanol in chloroform. The hydrophilic Nafion® membrane preferentially 
transports methanol and ethanol, whilst discriminating against a chloroform. The 
system has been evaluated for the monitoring of a chloroform recovery process 
using a residual gas analyser and the data compared to an established GC/MS 
analyser.

A temperature controlled membrane inlet has been constructed as a universal 
interface for hollow-fibre silicone membranes. The membrane temperature is 
controlled by an electrical heater and sub-ambient temperatures were obtained 
using a flow of cooled nitrogen gas. The device has been linked to mass 
spectrometry and GC/MS for the determination of volatile and semi-volatile 
organic compounds in aqueous and air samples at temperatures in the range -70- 
250°C.



Acronyms

3BHP 3-bromo-hydroxypyridine

3 BP 3 -bromo pyridine

4-FAP 4-fluoroacetophenone

4-FBA 4-fluorobenzoic acid

4-FCA 4-fluorocinnamic acid

APCI Atmospheric pressure chemical ionisation

CF A 2-chloro-5-trifluormethylaniline

Cl Chemical ionisation

CID Collision-induced dissociation

COD Chemical oxygen demand

CSTB Continuous stirred tank bioreactor

DIMP Direct insertion membrane probe

DMF Dimethylformamide

DMSO Dimethylsulfoxide

El Electron ionisation

FBA Flurobenzoic acid

FMA 3-trifluoromethyl aniline

FHA 3 -trifluoromethyl-hydroxy aniline

GC Gas chromatography

HPLC High performance liquid chromatography

IC Ion chromatography

IMP In-membrane preconcentration



IMP-MIMS In-membrane preconcentration membrane inlet mass

spectrometry

IMP-MIMS/MS In-membrane preconcentration membrane inlet tandem

mass spectrometry

LC Liquid chromatography

MI Membrane inlet

MS Mass spectrometry

MSM Mineral salt medium

MS/MS Tandem mass spectrometry

MSn Multi-stage tandem mass spectrometry

NMP N-methylpyrrolidinone

RGA Residual gas analyser

RP-MIMS Reversed-phase membrane inlet mass spectrometry

S:N Signal to noise ratio

s v o c Semi-volatile organic compound

TCMI Temperature controlled membrane inlet

TCMI-MS Temperature controlled membrane inlet mass spectrometry

TCMI-GC/MS Temperature controlled membrane inlet gas

chromatography mass spectrometry

TFA Trifluoroacetic acid

THF Tetrahydrofuran

TMEDA tetramethylethylenediamine

VOC Volatile organic compound

WWTP Wastewater treatment plant
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Introduction
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1.1. Mass spectrometry

1.1.1. Introduction

Mass spectrometers have been in use since the beginning of this century [1], but 

mass spectrometry did not become a more commonly used technique until its 

application to the characterisation of organic molecules in the petroleum industry 

40 years later [2], The coupling of mass spectrometry with electrophoretic [3, 4] 

and chromatographic [5, 6] separation systems has led to the widespread use of 

mass spectrometiy today.

Mass spectrometers work at low pressures, normally between 1 O'3 and 1 O'7 torr, 

achieved by multi-stage vacuum pumps. At such low pressures, ion-molecule 

scattering and the oxidation of hot metallic surfaces such as lenses and filaments 

is eliminated, therefore lengthening the lifetime of the instrument. As inlet 

systems are normally held at atmospheric pressure, the system must take this into 

consideration and be able to provide conditions needed for sample volatilisation. 

The system used for introduction of the sample into the ion source depends on 

the physical state of the sample: gas, liquid or solid.

Three different processes take place in any mass spectral analysis: formation of 

gas-phase sample ions, separation o f ions according to their mass-to-charge ratio 

(m/z) and detection and electronic recording of their relative intensities. In order 

to obtain a mass spectrum, four different instrumental components are required: a 

sample inlet system, an ionisation source, a mass analyser and a detector. The
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ionisation step requires the introduction of sample molecules into close proximity 

with the ion source, where destructive ionisation takes place (normally 

consuming picograms of sample during this step).

1.1.2. Inlet systems

Liquid samples may be introduced into the system via a liquid reservoir, 

consisting of a glass vial connected to the spectrometer vacuum manifold via a 

fine-control needle valve and shut-off toggle valve. This method is also suitable 

for the introduction of other liquids that are volatile at room temperature, even if 

they are not used as calibration gases. Less volatile liquids can be injected into 

the mass spectrometer by gently heating them in a vial prior to injection. Gases at 

atmospheric pressure can be injected by a similar device. The inlet system is 

flushed with the sample until a valve is opened. Then, part of the sample diffuses 

into the ion source.

For solids or veiy involatile liquids, samples are introduced with the help of a 

probe. The probe is normally made of stainless steel and the sample is loaded 

inside a quartz or silica tube. This whole assembly is introduced into the entrance 

of the ionisation chamber, through a vacuum lock. This process requires the four 

following steps. Firstly, the sample is placed into the clean sample holder. The 

probe is then introduced into the vacuum lock, which is pumped to the required 

pressure. The valve between the vacuum lock and the main vacuum chamber 

containing the ion source is then opened, so that the probe can pass through it in 

order to bring the sample holder into the source, where the sample is finally

3



desorbed. Once a spectrum is obtained, the sample holder is withdrawn from the 

ion source and then from the vacuum lock, making sure vacuum inside the mass 

spectrometer is maintained during the whole process. Such probes can be 

independently heated by a probe-controller assembly at various rates, to 

temperatures in excess of 400°C. The desorption of thermally unstable 

compounds requires rapid heating, so that the substance can pass into the gaseous 

state before thermal decomposition takes place.

Another method of introducing samples into a mass spectrometer is by coupling 

to either gas chromatography (GC/MS) or liquid chromatography (LC/MS). The 

difficulty in coupling a chromatograph to a mass spectrometer is the increase in 

pressure in the ion source caused by the carrier gas or liquid eluate from the 

chromatograph. Two different types of coupling can be used, depending on the 

type of chromatographic column: direct introduction of the capillary into the ion 

source is possible when using capillary columns, while packed columns require 

separators. In direct coupling interfaces, the end of the chromatographic capillary 

passes into the ion source through a glass-lined stainless-steel capillary that is 

heated to the required temperature by a resistance heater.

A jet separator can be used when coupling with a gas chromatograph, if the 

mobile phase flow is high. This kind of separator is based on the fact that the 

velocity of a gas molecule is a function of the molecular weight (Graham’s law 

of diffusion). As low molecular weight species tend to be carrier gases or eluant 

solvents, they can be removed by pumping down during their passage towards 

the ion source. Therefore the gas flow reaching the source is enriched with the
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higher molecular weight species. Membrane separators have also been used to 

interface gas chromatography with mass spectrometry, based on the relative 

permeability of a membrane for different molecules.

When coupling with a liquid chromatograph, the mobile phase can be easily 

evaporated, but the mass spectrometer would not be able to handle die large 

amount of gas produced. A more efficient way o f overcoming this problem is by 

atmospheric pressure ionisation (API), in which the analyte is desolvated and 

ionised at atmospheric pressure before being introduced into the mass 

spectrometer.

1.1.3. Ionisation methods

Neutral molecules must be ionised before mass analysis and there are many 

ionisation methods available, including some for solids and less volatile liquid 

samples, such as laser desorption, fast atom bombardment, electrospray, 

inductively coupled plasma and atmospheric pressure chemical ionisation. 

However, only electron and chemical ionisation have been used in this work and 

are discussed below.

1.1.3.1. Electron ionisation

Electron ionisation (El) has been in use for many years, and is still in widespread 

use. This source was devised by Dempster [7] and improved by Blealdey [8] and 

Nier (Figure 1.1) [9], When an electric current (normally between 80 and 100 

pA) is passed through a filament (tungsten or rhenium), electrons are emitted
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from the surface. A 70 V potential accelerates the electrons across the source 

housing to a collector plate, creating a 70 eV electron beam. This value is known 

as the standard energy for ionisation under El conditions, as it gives good ion 

yield (on average, one ion is produced for eveiy 1000 molecules entering the 

source) and reproducibility (Figure 1.2).
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Figure 1.1: An electron ionisation source

In electron ionisation, a gaseous sample molecule (M) will undergo the following 

process if an electron interacts strongly enough with the sample:

M + e (70 eV) ^  M+ + 2e" (eq. 1.1)

This process leads to the formation of a characteristic molecular radical cation 

(M+*) for each compound. El is quite inefficient, as less than 1% of the 

molecules are ionised, but the high sensitivity of modem detectors compensates 

for this inefficiency. However, as the average ionisation energy of most
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compounds lies below 15eV. the El process imparts a large amount of excess 

internal energy to a significant proportion of the radical cations formed. This 

leads to a rapid cleavage of chemical bonds in the sample molecule-ion, resulting 

in the presence of fragment ions in the mass spectrum. Fragmentation is in 

general a useful tool for structural determination, but in some cases, electron 

ionisation is too hard and the molecular ion (M+‘) is not present in the spectrum. 

A way to determine the molecular weight of such molecules is then by applying a 

smaller energy to the sample during the ionisation step. This is possible by using 

chemical ionisation.

C2H2

10 50 102 103 104
Electron energy (ev)

Figure 1.2: Ion current vs. electron energy for electro ionisation
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I.I.3.2. Chemical ionisation

Chemical ionisation (Cl) has become a widely accepted ionisation technique, 

used to complement El and overcome the fragmentation problems associated 

with El analysis of some molecules. Chemical ionisation was invented in 1966 

by Munson and Field [10] and was quickly commercialised and applied to many 

different analytes. Instrumentally, the Cl source is similar to the El source, 

except that the ionisation region must contain a high pressure (0.1 to 2 torr) of 

reagent gas, which is typically ammonia, methane, iso-butane or water. The 

introduction of these gases normally takes place using a regulated supply or with 

the sample effluent. Under these conditions, primary ions rapidly undergo ion- 

molecule reactions to form secondary reagent ions. For example, Cl with 

ammonia would involve the following process:

Primary ion formation:

NH3 + e"  >  NH3+* + 2e' (eq. 1.2)

and then

Secondary ion formation:

NH3+* + NH3 -------------► NH4+ + NH2* (eq. 1.3)

The other common Cl gases react in a similar way, producing CHs+ for methane, 

C4Hc>+ for iso-butane and H30 + for water as reagent ions.



On introduction of sample molecules (M) into a Cl source, any of the following 

reactions may occur (using ammonia as an example, but similar reactions occur 

with other reagents):

N H / + M --------- ► NH3 + [M+H]+ (proton transfer) (eq. 1.4)

N H / + M ---------► [M+NH4]+ (electrophilic addition) (eq. 1.5)

NH4+ + M ---------►NFCA + TST1' (anion abstraction) (eq. 1.6)

NH3+* + M ^  NH3 + M+* (charge exchange) (eq. 1.7)

The most important reaction is proton transfer, leading to a pseudo-molecular 

ion, [MH]+. The thermodynamics of such reaction are as follows:

AH° = -R.T In K = [proton affminty (M) -  proton affinity (Cl gas)] (eq. 1.8)

where proton affinity is defined as:

P. A. (M) = -AH° (M + H+ —» [M+H]0 (eq. 1.9)

This has very important consequences. Firstly, the difference in proton affinities 

for any combination of common reagent and sample molecules is much less than 

the excess energy associated with electron impact, and the [M+H]+ ions formed 

will have little excess internal energy. Therefore, chemical ionisation spectra 

have prominent molecule-ions, with little or no fragmentation, making Cl a 

technique of choice for molecular weight determination. Secondly, by careful 

choice of reagent gas, the exothermicity can become the key to the selectivity of 

the process. For example methane has a proton affinity of 536 kJ mol'1, enabling 

it to protonate most organic molecules, while ammonia, with a proton affinity of 

847 kJ mol'1, will only ionise polar molecules, in particular amines. This opens
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the possibility of selectively ionising certain components in a mixture at the 

expense of others. Much work has been done on the selective Cl, using many 

different reagent ions, for the analysis of a wide range of compounds [11-14],

Negative chemical ionisation is possible through an acid-base reaction using 

reagent ions such as OH" or NHfe'. The major mechanisms of ionisation are 

proton abstraction and nucleophilic addition, both of which are analogous to the 

processes observed in positive Cl, In some cases, the detection sensitivity is 

better with negative Cl than with positive Cl. The need to detect 

tetrachlorodioxins with high sensitivity has contributed to the developments of 

negative ion chemical ionisation,

1.1.4. Mass analysers

This part of the mass spectrometer performs the separation of the ions according 

to their mass-to-charge ratio (m/z). As ions produced by El or Cl usually have a 

charge state of one, the m/z ratio tends to dictate the mass alone. The three main 

characteristics of an analyser are the upper mass limit, the transmission and the 

resolution. The mass limit determines the highest value of the m/z ratio that can 

be measured. The transmission is the ratio between ions reaching the detector 

and ions produced in the source. The resolving power is the ability of the 

analyser to yield distinct signals for two ions with a small mass difference. There 

are a number of methods of mass analysis, all of which are commercially 

available: linear quadrupole, quadrupole ion trap (QIT), time-of-flight (TOF), 

magnetic sector and Fourier transform ion cyclotron resonance (FTICR). Only

10



linear quadrupole and quadrupole ion trap mass analysers were used in this work 

and will be discussed in detail.

A calibration standard, which the ionisation of gives a characterised response 

allowing accurate placement of detected mass-to-charge ratios, is needed to 

calibrate the mass spectrometer. This calibration standard is normally a volatile 

liquid, and the most widely used is perfluorotributylamine (PFTBA or FC-43).

1.1.4.1. L inear quadrupoles

The design of a linear quadrupole was first reported in 1953 by Paul and 

Steinwegen [15] and was patented in 1956 [16]. These devices are the most 

common lands of mass analysers in environmental laboratories, as they provide 

powerful detection, mainly for GC separations, and are economically affordable.

Linear quadrupole analysers consist of four rods with circular or, ideally, 

hyperbolic sections. A schematic diagram of a quadrupole analyser is shown in 

Figure 1.4 and a picture is shown in Figure 1.5. Diagonally opposite pairs of rods 

are electrically paired and coupled to direct current voltages (U) and a radio 

frequency potential (Vcos cot). A positive ion entering the space between the rods 

will be drawn toward a negative rod. If the potential changes sign before it 

discharges itself on the rod, the ion will change direction. Ions travelling along 

the z axis are subjected to the influence of a total electric field (O0) resulting 

from the application of the potentials upon the roads:

<t>o = U + Vcos cot (eq. 1.10)

11



while the potential (<J>> at any point (x,y) in the quadrupole field is:

O = <D0 (x2 -  y2)/r(,2 (eq. 1.11)

Detector

Source

Figure 1.4: Linear quadrupole analyser schematic.

Figure 1.5: Photograph of a linear quadrupole analyser.

Ions travelling down the quadrupole have complex periodic motion, the 

equations for which can be given under Mathieu’s equation (derived from the 

second law of Newton) [17j.
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d ^ u
~~ 2(jucos2̂ jf)u — 0 êq j 12)

where u represents either x or y and % is reft, t is time; f  is frequency; a and q are 

dimensionless constants, which have the following equations in a quadrupolar 

field:

8eU

a* “ a>' _ mr2Q 2 (eq l l3)o o

4eV
and ~  m r 2Q  2 (eq. 1.14)

where an ion of mass m and single charge e travels through a quadrupole of radius 

rG, operating with RF and DC potentials Vo-p and U respectively and an RF drive 

frequency C±qI2%. For a given quadrupole r0 is constant, co = 2%f is maintained 

constant. U and V are the variables. Therefore, for an ion of any mass, x and y 

displacements can be determined as a function of U and V. For ions to pass 

unhindered along a linear quadrupole, they must be stable in both x and y 

directions and the Mathieu stability diagram, has one such significant region, 

shown enlarged (Figure 1.6), where this occurs. Ions in this region possess 

frequencies, £2:

_
- ~ Y ~  (eq. 1.15)

where (3 is a parameter directly related to the ion frequency, which can take values 

between 0 and 1. Ions with the same a and q coordinates possess the same 

fundamental, or "secular", frequency.
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From the dimensionless parameters a and q given in equations 1.13 and 1.14, for 

given values of U, V, © and ro, the a and q values will depend on m/e, and since 

a/q is equal to 2U/V and independent of m/e, © and ro, the a, q co-ordinates 

corresponding to different m/e values will lie on a line of slope a/q drawn in the 

stability diagram. This line, called working line, cuts the stability boundary at 

two points, corresponding to two m/e values, mi/e and m2/e. All ions with m/e 

values between these will be transmitted by the filter and detected. Ions having 

the same m/e value will have the same a,q co-ordinates. The resolution will 

depend on the slope of the working line. The closer the line comes to the apex of 

the stability boundary, the greater the resolution, as a narrower “window” of m/z 

values are stable. The apex is at a = 0.237 and q = 0.706. Mass scanning is done 

by varying U and V simultaneously, while keeping their ratio and © constant.

r  =  100
a

m,

x -y  motion 
unstable

.2-

y—z motion 
unstable stability

region
.1*

1,0

Figure 1.6: Stability diagram for a quadrupole, where a and q are dimensionless 

solutions derived from the Mathieu equation. The mass scan lines correspond to 

resolutions I, 10 and 100: mi, m2 and m3 represent three singly charged ions of 

increasing mass.
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When working under high resolution conditions, transmission will suffer, making 

the quadrupole an inherently low-to-medium resolution device. The advantages 

o f the quadrupole are the low cost, easy to use and compact size.

1.1.4.2. Quadrupole ion traps

The original public disclosure of the quadrupole ion trap, filed in 1953 is to be 

found in the same patent as that describing the operating principle of the 

quadrupole mass spectrometer [16]. The quadrupole ion trap is directly related to 

the linear quadrupole in that it can be visualised as being a solid of revolution 

generated by rotating the hyperbolic rod electrodes about an axis perpendicular 

to the z axis and passing through the centres o f two opposing rods. This results in 

one pair of rods joining up to form a doughnut-shaped ring electrode and the 

other two forming end-cap electrodes, which are moved closer together. A design 

o f it is shown in Figure 1.7 and two pictures of a quadrupole ion trap are shown 

in Figure 1.8.

Fundamental RF
Ion Detector

Supplementary RF

. Ring electrodeEnd-cap electrodes;

Gate

Electron filament

Figure 1.6: Quadrupole ion trap schematic.
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As shown in Figures 1.7 and 1.8, the system is axially symmetric, and for ideal 

field geometry within the trap, the surfaces should also be hyperbolic. The field 

can be generated by applying the same RF and DC voltages between the ring 

electrode and the pair of end-cap electrodes as those applied to the linear 

quadrupole. However, it is more common to keep the end-cap electrodes at 

ground potential and apply an RF-only supply to the ring electrode.

Figure 1.8: Quadrupole ion trap photographs.

Ions inside the trap exhibit complex periodic motion, in three dimensions. 

Mathieu equations (eq. 1.13 and 1.14) used for linear quadrupoles, can also be 

applied to ion traps by linking equations 1.13 and 1.14 to equation 1.16 [18],

r02 = 2zo2 (eq. 1.16)

where zo is the closest distance between opposing end-cap electrodes and r0 is the 

internal radius of the ring electrode.
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Mathieu equations linked to eq. 1.16 can be solved to give a stability diagram, 

which is shown in Figure 1.9. Ions that exhibit stable trajectories can be trapped 

within the trapping volume o f the three electrodes [19]. The investigation of ion 

motions in the ion trap has provided the opportunity to compare the predicted 

trajectories with those actually observed by photographing charged particles in 

dynamic equilibrium inside an ion-cage built from copper mesh. This 

phenomenon is called the Lissajous trajectory (Figure 1.10) [20].

M ass-selective 
instability s m

-0 3

Figure 1,9: Stability diagram for quadrupole ion trap.

Whilst linear quadrupoles were widespread in the laboratory environment, ion 

trap mass spectrometers found little applications due to the lack of effective scan 

routines for accurate mass-to-charge ratio of the trapped ions. Some results were 

obtained [21, 22], but these were limited by long scan times, making the
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technique incompatible with chromatographic coupling, that requires a higher 

scan rate. Ion traps were therefore used for mass-selective detection and for 

mass-selective storage.

Figure 1.10: Ion motion in a three dimensional trap of metallic particles 

following a Lissajous trajectory.

However in 1983, Stafford and co-workers announced and patented a new scan 

method [23, 24]: the mass selective-instabilitv scan. In this simple arrangement, 

an RF voltage was applied to the ring electrode instead of to all electrodes. After 

ion formation by electron bombardment of neutral molecules inside the trapping 

volume from gated electrodes, the RF potential (U) is linearly increased, to a 

maximum value of 15 kV. The q value of all trapped ions increases 

proportionally as a function of U until qz = 0.908, at the boundary of the stability

diagram (P=l). Resonant coupling of the drive and secular frequency ( Q = —- )
2

occurs, ion oscillations in the z direction exponentially increase until ejection

18



takes place. Around 50% the population is ejected towards each end cap, so 

nearly half of all trapped ions are detected, giving ion trap mass spectrometers 

their inherent sensitivity. Performance of the ion trap was also aided by the 

discovery that the presence that a light buffer gas such as helium or hydrogen, at 

a pressure of approximately 0.1 Pa significantly improves sensitivity, resolution 

and detection limit. This is due to ion-buffer gas collisions, as they tend to cool 

down the ion volume inside the trap to a dense cloud at the trap centre, 

minimising the scattering effect. [25] These improvements on the ion trap led to 

commercialisation of the instruments by Finningan MAT (San Jose, CA, USA), 

as a GC detector, the ITD and as a research instrument, the ITMS1m. A 

schematic of a typical scan routine in the ITMS™ is shown in Figure 1.11.

The early ion traps suffered a loss of mass resolution at high analyte 

concentrations. This was due to a phenomenon known as space charging, which 

occurs when the total number of trapped ions exceeds a certain limit (generally 

between KF and 106). Above this upper limit, a significant proportion of the 

potential felt by each ion is due to coulombic repulsion. Therefore ions with 

same m/z values occupy different points in the stability diagram and are ejected 

at different times during the mass scan, leading to peak broadening. High analyte 

concentrations also resulted in ion-molecule reactions, mainly leading to 

enhanced [M+H]+ peak intensities. These problems were overcome by a software 

modification, called automatic gain control (AGC). [26] This new scan function, 

developed by Finnigan MAT for ion trap instruments under computer control, 

allows a brief ionisation pulse of about 200 ps after which the intensity of 

fragment ions up to those o f m/z 45 is measured. The total ion intensity is
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Figure 1.11: a) Schematic diagram of an ion trap mass separator and b) a typical 

scan routine for elution ionisation.
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assessed by the computer, which then determines an appropriate duration for the 

second ionisation pulse so as to maximise sensitivity at a minimum acceptable 

level of space-charge perturbation.

The wide acceptance of ion trap mass analysers after all these improvements to 

the original design now promotes the sensitive and selective analysis of many 

complex samples. The principles and applications of ion trap mass spectrometry 

have been detailed in a number of reviews [27, 28],

1.1.5. Ion trap  tandem mass spectrometry

Tandem mass spectrometry (MS/MS) is a method in which a precursor of a 

selected m/z ratio ion is isolated in the ion trap and then fragmented to yield 

product ions and neutral fragments. The product ions are then mass analysed in 

the usual way to give the product ion spectrum. This technique was developed to 

provide structural information from a peak in a mass spectrum and to enhance 

selectivity in the analysis of complex mixtures.

Fragmentation of selected precursor ions may be carried out using a variety of 

techniques including collision-induced dissociation (CID). CID consists of two 

steps. The first step corresponds to the collision between the ion and a target gas 

(ion activation), while the second step is the unimolecular decomposition of the 

activated ion (ion dissociation). CID in tandem mass spectrometry can therefore 

be described by the following processes:
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Ion activation: Mi+ + N -»  M r  + N (eq. 1.17)

Ion dissociation: Mi* —> M2+ + M3 (eq. 1.18)

where

Mi+ is the accelerated precursor ion with high translational energy 

N is the neutral target gas (e.g. helium or nitrogen)

M r is the activated ion (E>Eo)

M2+ is the resultant fragment ion 

M3 is the neutral fragment formed

The energy and momentum conservations imply that only a fraction of the 

translational energy is converted into internal energy under inelastic conditions. 

This energy fraction is given by the following equation:

E con  = E ja b  —  -M '  (eq. 1.19)M t + M a

where Ma is the ion mass, Mt is the target mass, Eiab is the ion kinetic energy in 

the laboratory frame of reference and Econ is the maximum energy fraction 

converted into internal energy. Consequently, an increase in the ion kinetic 

energy or in the target gas mass increases the energy available for the conversion.

The selectivity of tandem mass spectrometry can be improved by carrying out 

multi-stage tandem mass spectrometry (MS/MS/MS or MSn). As the number of 

ions transmitted in every stage decreases due to the ionic species trajectory
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lengths and the presence of the collision gas, the technique is generally limited in 

the number of stages of tandem mass spectrometry to three or four, although 

MS12 has been reported before [29]. However, at each stage the chemical noise 

decreases more than the analyte ionic signal, so by using tandem mass 

spectrometry, the signal to noise ratio improves, enhancing selectivity.

MSn is most commonly performed in the quadrupole ion trap and FTICR, as ion 

isolation and product ion analysis in different stages are temporally, but not 

spatially, separate. This leads the ion trap to be referred as a “tandem-in-time” 

instrument [30, 31].

1.1.6. Detectors

Once the beam analyser has passed through the mass analyser, it is detected and 

transformed into a usable signal by a detector. There are different kinds of 

detectors, divided in two categories: Faraday cage and photographic plate, which 

allow a direct measurement of the charges that reach the detector, while electron 

or photomultiplier detectors and array detectors increase the intensity of the 

signal. During this work only electron multipliers have been employed, so they 

will be discussed in more detail.

Electron multipliers (see Figure 1.12) are used as detectors, where a positive or 

negative ion reaching the plate causes the emission of several secondary 

particles. These second particles can be cations, anions, electrons and neutrals. 

These secondaiy particles are accelerated into the continuous-dynode electron 

multiplier. They strike the cathode with enough energy to dislodge electrons as
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they collide with the inner walls. These electrons pass into the electron 

multiplier, still striking the walls, causing the emission of more and more 

electrons as they travel toward the ground potential. Thus a cascade of electrons 

is created that finally results in a measurable current at the end of the multiplier. 

Although these detectors are not as precise as Faraday plates, due to their great 

sensitivity (being able to reach up to 107 counts), they allow rapid scanning.

+ HV conversion dynode 
negative ions

electron multiplier 
witii continuous 

dynode

Quadrupole
js  HV conversion dynode

positive ions amplified current 
toward electrometer

Figure 1.12: Schematic of an electron multiplier.

24



1.2. Chromatography

1.2.1. Introduction

The term chromatography has been applied to cover the “science of separations”. 

Chromatography embraces techniques that enable samples of chemical mixtures 

to be separated by exploiting differences in their chemical and physical 

properties. There are different kinds of chromatographic separations, liquid and 

gas, but the principle is similar for both types.

1.2.2. Principles of chromatography

Column chromatography is based on the separation of components of a mixture 

by establishing conditions under which the individual components flow at 

different rates through the column, under the influence of a mobile and a 

stationary phase. The stationary phase is the column packing material (the 

material of the column will interact reversibly with the different analytes), and 

the mobile phase may be a liquid (liquid chromatography or ion 

chromatography) or a gas (gas chromatography). The stronger the interactions 

between the analyte and the stationary phase, the longer it will be retained on the 

column, therefore the separation process is due to chemical properties of the 

different analytes. This phenomenon can be quantified and is determined by the 

partition coefficient K of the analyte, which is defined by the following 

expression (equation 1.20):

K  = (eq. 1.20)
M

25



where Cs and Cm are the concentrations of analyte in the stationary and mobile 

phase respectively.

The capacity factor (,k ’) is a measure of the amount of solute in each phase and 

therefore, the amount spent in each, and can be defined as (eq. 1.21):

C V V
k'= S-S- = K -Z -  (eq. 1.21)

c mvm Vm

where Vm and Vs are the mobile and stationaiy phase volumes.

As the capacity factor is specific to a single solute in a given chromatographic 

system, it can also be calculated by measuring the retention time of two solutes 

one retained Or) and the other unretained (tm).

k '= *R- t,n (eq. 1.22)

hi order to describe the solute separation in a chromatographic analysis, two 

different parameters can be used: resolution and selectivity. Resolution (Rs) is 

calculated by dividing the distance between adjacent peak maxima (tRi and tR2) 

by their mean base width (Wbi and Wb2) (equation 1.23). Selectivity (a) is 

expressed as the ratio of the capacity factors of the two components of interest 

(equation 1.24).
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0.5 (Wb2+Wm)
(eq. 1.23)

t'R0 k \  K ?
t\ k \ K,

(eq. 1.24)

where 1’r -  tR-to

hi cliromatography, the narrower the width of the eluted peaks, the greater 

chance of separating a multi-component mixture in a column. The ability of a 

column to produce sharper peaks is determined by the efficiency of a column. 

The efficiency in all chromatographic techniques is expressed quantitatively as 

the number of theoretical plates (N) for the column. This value is calculated from 

the following expression (eq. 1.25):

where Wb is the base width of the peak.

The concept of a plate has its origin in the theoretical treatment of fractional 

distillation columns in the petroleum industry. In fractional distillation the 

greater the number of metal plates and the narrower gap between them, the 

narrower the boiling point that can be isolated. The concept, in chromatography, 

is then analogous to fractional distillation.

(eq. 1.25)
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1.2.3. Gas chromatography

Gas chromatography separates a mixture into its individual components using a 

gas mobile phase (carrier gas). The invention of the first gas chromatograph took 

place in 1954 by Cremer [32] for the analysis of volatile organic mixtures, but 

since then the technique has progressed rapidly. Modern capillary GC is able to 

achieve a higher resolution than any other chromatographic technique. However 

analytes must be in the vapour phase, for separation to occur, the column must be 

at a high temperature, making the technique suitable for only volatile and 

thermally stable compounds.

A gas chromatograph has the following components: an injector, a column, an 

oven and a detector. The sample can be introduced using splitless, on-column or 

direct split injection.

There are two different kinds of GC columns: capillary and packed. Packed 

columns were used during the early stages of the development of the technique, 

but they did not offer the resolution that capillary columns give. Capillary GC 

columns used to link the mass spectrometer to the MIMS device will be 

discussed in section 1.3.3. Capillary columns are constructed from fused silica 

with an outer protective coating of polyimide. Dimensions are in the range of 15 

to 100 m in length and 0.1 to 0.53 mm internal diameter. The inner surface of the 

column is coated with a stationary phase. This inner coating is normally based on 

a polysiloxane backbone with various functional groups, such as methyl, vinyl or 

phenyl.
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The selection of mobile phases in GC is not very important for the separation of 

the components. Helium, nitrogen or hydrogen can be used, depending upon 

relative costs, desired speed of analysis and type of detector used. However, it is 

possible to modify the chromatographic conditions in a GC separation, by 

altering the column temperature. Therefore, a GC column is normally placed in a 

GC oven. In general heating enables more volatile compounds to elute first, then 

as the temperature rises, less volatile compounds begin to elute.

There are several detectors for GC, such as the flame ionisation detector (FID) 

and mass spectrometer (MS). GC/MS was used in this work, and a schematic of a 

gas chromatograph using a mass spectrometer as a detector is shown in Figure 

1.13. Mass spectrometers have been discussed in section 1.1.4.

Original GC columns consisted of packed glass or steel tubes, with flow rates of 

up to 40 ml/min. Mass spectrometers could not manage large amounts of gas, so 

many interfaces were constructed to remove the carrier gas selectively from the 

eluting analytes, allowing the mass spectrometer to retain a suitable vacuum. 

However, with the invention of capillary GC columns, interfaces were no longer 

needed, due to the direct coupling capacity of the capillary columns. GC 

capillary columns have flow rates of around 1 ml/min of helium, which modem 

mass spectrometry pumps can cope with, allowing direct coupling of the GC 

column into the source, giving total column eluant transmission and no analyte 

loss.
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In flame ionisation detectors, analytes leaving the column enter a small metal jet, 

at the tip of which bums a hydrogen/air flame below a tubular collector 

electrode. The potential of the collector relative to the flame is generally between 

-100V and -400V. Analytes entering the flame undergo a series of reactions, 

producing cationic species, which are attracted to the collector. The current 

produced is finally converted into a signal.

injector

detectorion source mass analyser

oven

transfer line mass spectrometer

vacuum pump

Figure 1.13: Schematic of a gas chromatograph combined with a mass 

spectrometer detector.

1.2.4. High performance liquid chromatography

High performance liquid chromatography (HPLC) is a method of separation of 

the components of a mixture by partioning between an immobilised stationary 

phase and a liquid mobile phase. Separation by HPLC is based on the different 

affinities of the compounds between the stationary and mobile phases. Some of
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the components will travel more slowly than the others, as a result o f their affinity 

for the stationary phase.

Two techniques of elution are used for the separation of a mixture of small 

molecules supplied to a HPLC column. Analytes may be separated by using 

isocratic elution where the mobile phase make-up remains constant during the 

analysis or by a gradient programme, which generally begins with a high 

aqueous composition and runs to high'organic content.

The HPLC instruments consist of four parts: a pump, an injector, a separation 

column and a detector (Figure 1.14).

pump

sample
mobile phase 

reservoir

column 

sample collector
detector

 A j k j L
data output

Figure 1.14: Schematic representation of HPLC.

The pump provides a constant flow of liquid through the separation column (the 

range of flow-rate of eluant solution is between 100 nL min'1 to 2 mL min*1
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depending on the analytical column). The injector regulates the amount of 

compound introduced onto the column and also permits automatic injection of 

samples. The separation takes place in the column, where equilibria of the 

different compounds between stationary and mobile phase are established. A 

column is normally between 30 and 150 mm long and has a diameter of around 1 

to 5 mm. A typical analytical column uses Ci8 packing (a silica backbone 

attached to an 18-carbon hydrocarbon chain) (Figure 1.15). The detector can be 

UV, photometric, fluorescence, refractive index or mass spectrometric. For the 

work described in this thesis, a UV detector was used. UV detectors respond to 

substances that absorb ultraviolet light, and the relationship between absorbance 

of light and solute concentration is given by the Beer Lambert's law:

where A is the absorbance, e is the molar absorptivity of the solute, 1 is the path 

length of the flow cell and c is the concentration of the solute.

A=elc (eq. 1.26)

Figure 1.15: Cis polymeric HPLC column packing
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1.2.5. Ion chromatography

Ion chromatography (IC) is a liquid chromatography technique using ion 

exchange mechanisms and suppressed conductivity detection for the separation 

and determination of anions and cations. It is a suitable technique for the 

determination of trace ionic contaminants. It is also useful for monitoring acidic 

anion content in the industrial environment. In this work IC was used for the 

determination of halide ion concentration in samples containing biodegraded 

halogenated compounds.

The ion chromatograph consists in the following components: a pump, an 

injector, a separation column, a suppressor column and a detector (Figure 1.16).
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suppressor
column m :

pump

inject
valve

detector V  column
L-.-I

sample collector

data output

Figure 1.16: Schematic standard ion chromatogram.
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The pump provides a constant flow of liquid through the column. The injector 

regulates the amount of compound introduced onto the column. The main 

differences between IC and HPLC are the column and the detector. There are two 

different kinds of ion chromatography: anionic and cationic. Anion exchangers 

are typically composed of a gel with functional groups such as diethylaminoethyl 

or quarternaiy ammonium, whereas cation exchange resins usually have 

functional groups such as carboxymethyl or methyl sulfonate. A suppressor 

column reduces background conductivity and therefore enhances sensitivity. 

Suppression consists of the neutralisation of the salt by a weak acid or base. With 

suppression, the background conductivity of eluant is lowered and the response 

of the analyte is increased. There are also several types of detectors: 

conductimetiic, amperometric, spectrophotometric, or fluoresence. In this work 

the detector used was a suppressed conductimetiic detector. This type of detector 

consists of a cell with a small void volume and electrodes with a very small 

surface area which are placed very close together (the smaller their area and the 

closer together they are, then the higher the sensitivity).
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1.3. Membrane inlet mass spectrometry

1.3.1. Introduction

MIMS was first reported by Hoch and Kok [33] in 1963, with the purpose of 

sampling gases dissolved in liquid samples. However it was not until the 1980s 

that MIMS saw wide use for environmental, biological or chemical applications 

due to the modernisation of mass spectrometric techniques and interfacing 

devices.

MIMS is a technique based on the transport of analytes across a membrane. In its 

simplest form, MIMS generally consists on a hydrophobic membrane (usually 

silicone derivative) linked to a mass spectrometer. One side of the membrane is 

in contact with the sample (gas or aqueous) at atmospheric pressure, while the 

other side is interfaced to the vacuum system of a mass spectrometer on a flow of 

inert gas (He) that is directed towards die mass spectrometer.

The main advantage of MIMS is the sampling simplicity of the technique, as no 

sample pre-treatment is required. This makes MIMS amenable for on-line 

monitoring processes. The main disadvantage of the technique is the fact that 

analytes may not be fully separated, so in very complex mixtures, identification, 

or monitoring, of certain compounds can become a difficult task. This may be 

overcome by the selectivity of the membrane for a range of compounds, whilst 

discriminating against other analytes.
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1.3.2. Principles of MIMS

The process of analyte transport across a semi-permeable membrane in MIMS is 

called pervaporation, which is a three-stage process, shown in Figure 1.17. The 

analyte is transferred from the sample to the membrane surface by diffusion; it 

crosses the membrane and then is evaporated from the other side to be directly 

transported to the mass spectrometer with the help of a stream of inert gas, 

generally helium.

Diffusion of analyte to 
membrane surface

_______ Diffusion
through
membrane

/  Evaporation into carrier
f  gas stream

Figure 1.17: Pervaporation process at the membrane surface.

The main criteria for polymeric membranes for MIMS are the discrimination 

against the matrix, the permeability of the analyte and the maximum flow across 

the membrane and the time required to complete the analysis of one sample. 

These parameters determine the response sensitivity and the sampling frequency 

[34],

Volatile organic compounds (VOCs) diffuse across the membrane readily unless 

cryotrapping (discussed in section 1.3.6.5.) takes place, but semi-volatile organic
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compounds (SVOCs) diffuse slowly through the membrane and tend to 

accumulate in the membrane.

Pick’s law of diffusion describes the behaviour of the analyte in a membrane 

sampling system. The flux (F) of an analyte across a membrane is directly 

proportional to the area of the membrane (A), the diffusion coefficient of the 

analyte (D) and the concentration of the analyte (C), while it is inversely 

proportional to the membrane thickness (x) (equation 1.27).

For a hollow fibre membrane (used for all the work carried out in this work), 

Fick’s first law can be expressed as:

where L is the length of the membrane.

The negative sign shows the decrease of analyte in the diffusion direction along 

the concentration gradient.

In MIMS, it is assumed that the fluid around the membrane is well mixed and 

that analyte transport across the membrane is one-dimensional. If it is also 

assumed that the diffusion constant (D) on the membrane surface is constant over 

time, we can express the following equation, which corresponds to Fick’s second 

law:

(eq. 1.27)

(eq. 1.28)
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When combining the two Fick laws together, the mathematical solution obtained 

for diffusion through a membrane of thickness 1 is shown in equation 1.30:

F, + (eq. 1.30)

where Fss is the flux at steady state.

The permeation process exhibits an asymptotic approach to steady state [35], 

therefore the time required to achieve steady state may be difficult to determine. 

If the time taken for the response to rise from 10 to 90% (tio-90%) is calculated, 

the following solution applies:

It can be seen that both equations are directly proportional to the square of the 

membrane thickness and inversely proportional to the diffusion coefficient.

In addition, if the concentrations are expressed in partial pressures following 

Henry’s law (equation 1.33), equation 1.34 can be used to calculate the steady 

state molecular flow of an analyte through the membrane.

0.237 (eq. 1.31)

Whilst for 50% (t5o%) the result is:

vD s
(eq. 1.32)



where S is the solubility constant and Ps the vapour pressure of the analyte on the 

sample side, L is the membrane length, D is the diffusion constant and I the 

membrane thickness.

Despite these theoretical simplifying assumptions, the most important limiting 

factor for the analyte transport across selective non-porous membranes is that 

their transport properties are related to the chemical structure of the membrane 

material. Therefore, the analyte must be able to dissolve in the membrane before 

the diffusion phenomena can take place.

1.3.3. MIMS interfaces

There are three different lands of membrane interfaces; the flow-over, flow­

through and direct insertion membrane probe (DIMP). The interface geometry is 

veiy important, as this determines which material and membrane configuration 

(flat sheet or hollow fibre) can be used.

1.3.3.1. Flow-over interfaces

These devices were used at early stages of MIMS [36] and consist o f a membrane 

probe situated at the end of a long transfer line. One side of the membrane is in



contact with the bulk sample, while the other side is connected to the evacuated 

transfer line that goes to the mass spectrometer. Hoch et a l  [33] first recorded 

MIMS application for kinetic studies measuring gases, where a simple silicone 

probe was dipped in the sample.

Despite the fact that this device was used for several applications, including 

industrial process monitoring [35, 37, 38], the long distance between the 

membrane probe and the mass spectrometer resulted in a very slow response to 

changes in analyte concentration at the membrane surface. High detection limits 

were also observed due to membrane memory effects. [39] Analyte adsorption 

and condensation in the transfer line were also significant disadvantages, mainly 

when the system remained unheated.

Flow-over devices were also coupled to gas chromatography packed columns. 

[40] This type of device had limited success for a variety of reasons, including 

the selectivity of the membrane, the lack of reproducibility and memory effects 

(Figure 1.18a).

I.3.3.2. Flow-through interfaces

A significant advance in MIMS was reported by Weaver et al. [41], who used a 

flow-through interface for the analysis of low molecular weight volatile 

compounds such as methanol, formaldehyde or ethanol. This device allowed the 

solution to flow through a hollow fibre membrane, with the other side of the
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membrane connected to the mass spectrometer vacuum system by a transfer line 

[42] or a small helium purge [43],

Degn [44] carried out an experimental comparison between the flow-over and 

flow-through hollow-fihre membrane interfaces, concluding that a higher 

sensitivity could be achieved with the later device. The main reason was the long 

connecting transfer line of the flow-over device, as it causes retardation and loss 

of analyte. There are also minimal memory effects with this type of interface.

This kind of interface is still in use, employing a hollow fibre or a flat membrane. 

Figure 1.18b shows an example of this interface using a hollow fibre membrane 

(this interface has been used in this work).

I.3.3.3. Direct insertion membrane probe (DIMP)

A new type of membrane interface that allowed the aqueous sample to flow 

through the hollow-fibre membrane instead of over the external surface of a flat 

membrane was introduced by Cooks research group in collaboration with Dow 

Chemical [45-48].

The probe was constructed by modifying an existing Finnigan TSQ insertion 

probe allowing the membrane to be introduced through the probe lock into the 

vacuum system. The device was placed in close proximity to the mass 

spectrometer ion source. The work on volatile organic compounds in water such
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Figure 1.18: MIMS interfaces, a) Flow-over interface, b) flow-through interface,

c) direct insertion membrane probe interface.
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as tetrahydrofuran or benzene with a direct insertion membrane probe was 

reported [49], Figure 1.18c shows a diagram of a DIMP interface.

1.3.4. Membrane types

Polymers used as membrane materials for MIMS are divided in two different 

categories: microporous and non-porous or semi-permeable membranes.

I.3.4.I. Microporous membranes

Microporous membranes lack the selectivity of non-porous membranes because 

the transport is determined by laminar flow and size exclusion through the pores 

rather than diffusion across the membrane. The high sample flow through micro­

porous membranes also requires that analyses are carried out using solvent 

chemical ionisation mass spectrometry (CI-MS) [50].

Examples of the use of a microporous polypropylene membrane include the 

analysis of organometallics (such as ferrocene molybdenum) in air [51], organic 

compounds such as methanol, ethanol, dimethylsulfoxide and benzene in hexane 

[50]. Kasthunkrishnan et a l [52] used zeolite-filled polydimethylsiloxane micro­

porous membranes for the analysis of benzene, carbon tetrachloride, 

chlorobenzene, toluene and trans-l,2-dichloroethane in methanol and hexane. 

The analysis of several gases including oxygen, carbon dioxide, helium and 

argon was achieved by a polymeric microporous membrane carried out with 

Krytox (a high-vacuum fluorinated grease) [53].
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1.3.4.2. Semi-permeable membranes

Semi-permeable, or non-porous, membranes are chemically selective to different 

kinds of analytes. They are divided in hydrophilic and hydrophobic membranes.

I.3.4.2.I. Hydrophobic membranes

These are the most common types of membrane used for MIMS applications. 

Hydrophobic polymers discriminate in favour of polar compounds and against 

non-polar compounds. This application is called normal phase MIMS. The most 

used material is a poly(dimethyl)siloxane or silicone rubber membrane. This is 

due to several reasons: silicone is widely available in a large number of 

geometries, it is a robust material that can be used for a large number of non­

polar compounds showing high selectivity over complex air or water matrices.

Several studies have been carried out evaluating other membrane materials such 

as latex, poly(vinyl chloride) (PVC), Teflon, polyurethane, polyimide and 

polyethylene.

Maden et al. [54] performed comparative studies on polymer sheet membranes, 

including silicone, latex, PVC, Teflon, polyurethane, polyethylene and nitrile, for 

MIMS. Polymide and Teflon showed very poor organic permeability and higher 

water permeability, and are therefore not suitable for normal phase MIMS. These 

experiments showed that all materials had a veiy similar performance to silicone, 

and as silicone is a more readily available material than the others, this makes it
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the most suitable membrane material for MIMS. Similar studies carried out by 

Stone et al. [55] using polyphosphazene materials for the analysis of benzene, 

toluene, trichloroethylene, isopropanol, tetrahydrofuran and methylethylketone in 

water. Results from this worked to similar conclusions as those obtained by the 

Maden group.

Liquid membranes have also been used as hydrophobic membranes. Low vapour 

pressure liquids sandwiched between microporous membranes offer a flexibility 

of surface area obtaining any desired thickness or shape [56]. Polyphenyl ether, 

alkylated cyclopentane, peril urinated ether and silicone oil were the chosen 

liquids. They were coated on a micro-porous polypropylene substrate for support 

and mounted on a direct insertion probe. Johnson et al. [57] applied these 

membranes to the study of an on-line reaction monitoring of epochloridine in 

water.

1.3.4.2.2. Hydrophilic membranes

Hydrophilic membranes discriminate in favour of non-polar compounds against 

polar compounds. This application is called reverse-phase MIMS (RP-MIMS) 

and has not been widely exploited.

A poly(ethylene terephthalate) membrane was used by Bohatka et al. [58] to 

determine selectivity traces of water in butanol, hexanol and octanol, and Bauer et 

a l  [59] employed a poly(vinyl alcohol) (PVA) membrane in the RP-MIMS 

analysis of VOCs, including acetone, methylethylketone, methanol and
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tetrahydrofuran in hexane. Although the PVA membrane discriminated against 

the solvent, hexane was used as the reagent gas for Cl analysis. Maden et a l [54] 

investigated the use of polyimide membrane for the RP-MIMS analysis of water, 

ethanol, chloroform, acetone, acetic acid and ethyl acetate in hexane. The 

polyimide material was permeable to polar compounds, including water or 

ethanol, but showed limited discrimination against the permeation of non-polar 

compounds, such as chloroform and ethyl acetate. The flux of hexane permeating 

the membrane was sufficiently high that El spectra were observed to have Cl 

characteristics.

1,3.5. M embrane geometry

Two different kinds of membrane geometry have been used in MIMS: flat sheet 

and hollow-fibre.

Hollow-fibre membranes have been shown to be more efficient for the extraction 

of analytes from a matrix due to higher exchange area [35, 38, 60], although flat 

sheet membranes are more useful when they need to be replaced very often.

In comparative studies of different materials [54], sheet membranes were found to 

be more appropriate, due to the fact that fewer materials are commercially 

available on the hollow-fibre form.
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1.3.6. MIMS assisted desorption

Strategies to widen the range of compounds of amenable analysis to MIMS have 

been investigated recently, linking MIMS to other techniques and using more 

sofisticated temperature control systems.

1.3.6.1. Laser-assisted release

Laser desorption MIMS or LD-MIMS is an important technique for extending 

the range of compounds of analysis by MIMS. In this technique a low-powered 

carbon dioxide laser (10.4 pm wavelength, < 5 Watts) was used to irradiate the 

low-pressure side of a silicone membrane during a typical MIMS analysis of an 

aqueous solution [61]. This resulted in direct membrane heating, enabling rapid 

desorption of permeate molecules with a sensitivity and response time 

improvement for compounds with high molecular weight and low volatility. In 

this study, Soni et al. were able to monitor ppb concentrations of naphthalene, 

anthracene, pyrene, chrysene, indenopyrene and benzofluoranthracene.

An improvement of this technique was achieved by using a KrF eximer laser (X = 

248 nm), and analytes were ionised by resonance-enhanced multiphoton 

ionisation (REMPI) [62]. This approach was used to monitor polyaromatic 

hydrocarbons at ppt concentrations. The increase in sensitivity was due to the 

replacement of electron ionisation by REMPI, since the REMPI technique is 

selective to this kind of molecular structure, therefore avoiding background
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interference from contaminants such as sample matrix or membrane degradation 

products.

1.3.6.2. Liquid chromatography MIMS

Liquid chromatography membrane inlet mass spectrometry (LC/MIMS) has been 

reported by Ouyang et a l  [63] for the determination o f compounds with identical 

quantitation ions, taking advantage of the good MIMS performance for VOCs. In 

this work, a Ci§ column and a mobile phase (methanol/water) were used for the 

chromatographic separation in conjunction with a DIMP interface. The method 

showed a lower analysis time than purge-and-trap GC/MS and a simpler sample 

pre-treatment.

1.3.6.3. Fast Gas chromatography MIMS

Combining chromatography with MIMS offers an opportunity for taking 

advantage of chromatography as a separation method, while MIMS is ideal as a 

real time interface for analyte identification and quantification [64, 65]. 

However, coupling MIMS with GC, the on-line monitoring characteristic is lost 

as it takes over 10 minutes for a conventional capillary GC separation.

With the recent appearance of short columns for fast separation (Fast GC), a 

significant reduction in separation time can be achieved by the on-line coupling 

of GC with MIMS, without losing the on-line monitoring characteristic of
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MIMS. A study of trihalomethanes in chlorinated water was monitored by a fast 

GC-MIMS system, achieving low ppt limits of detection [65].

1.3.6.4. Purge and trap or trap and release MIMS

This technique involves membrane cooling by a continuous flow of sample 

solution passing through the inlet for sample pre-concentration. The membrane is 

then heated in order to allow analytes to desorb from the membrane. However, in 

a typical experiment, optimum sample response requires 20 minutes pre- 

concentration, followed by 20 seconds of heating initiated by injecting plugs of 

air into the membrane. This technique was reported for the first time by Leth et 

a l  in 1995 [66] for the analysis of SVOCs in aqueous solution. Samples were 

introduced at 0°C (they were placed on ice and pumped using a peristaltic pump). 

Then the membrane was heated by electron bombardment and analytes dissolved 

in the membrane were thermally desorbed. Compounds analysed by this 

technique included phenol and some chlorophenois. Other workers have since 

reported the use of this technique for VOCs [67-70],

A variation of this technique is the purge-and-membrane MS (PAM-MS) 

approach. In PAM-MS of VOCs, analytes are purged from the sample with an 

inert gas, directing the stream towards the membrane interface [71-73],

Another variation of this technique is referred to single-sided MIMS, reported by 

Riter et a l [74], This system consists on a combination of the features of the trap 

and release method with surface partioning. The interface allows sample
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injection (only useful for air samples) and analytes are retained in the membrane. 

By fast electrical heating (12V and 3A), compounds that had been 

preconcentrated in the membrane, are then desorbed and detected by the mass 

spectrometer. This system is only useful for SVOCs, as VOCs are released 

immediately from the membrane without pre-concentration. Air samples were 

prepared using a gas dilution apparatus. Compounds detected by this technique 

were lindane (a pesticide), hexahydro-l,3,5-trinitro-l,3,5-triazine (an explosive), 

butylated hydroxitoluene , 1,2-dichlorobenzene, dimethyl ethylphosphonate and 

naphthalene.

1.3.6.5. Cryotrapping MIMS (CT-MIMS)

This technique consists on placing a liquid nitrogen cooled tube between the 

membrane interface and the mass spectrometer [75], The tube is then veiy 

rapidly heated releasing the condensed VOCs. The main advantage of this 

technique compared to purge and trap is the fact that cryotrapping does not use 

trapping material but it is performed using external liquid nitrogen, followed by 

fast heating.

Mendes et al. [75] reported the application of this technique for the first time. 

They used it for the analysis of VOCs such as chloroform, benzene, toluene and 

chlorobenzene in the ppt region. Moraes et a l [16] also used this device for the 

selective quantitation of cyanogenic glycosides by previously hydrolysing the 

sugars and then monitoring the released ketones (acetone and butan-2-one).

50



Creaser et a l  [77] used a cryotrapping system linked to a membrane inlet in one 

side and a short chromatographic column in the other. The outlet of the capillary 

GC column was connected directly to the mass spectrometer via a heated transfer 

line. This system was evaluated for the on-line determination of YOCs and also 

SYOCs: 4-fluorobenzoic acid, 3,5-fluorobenzoic acid, 2-chlorophenol, p-tert- 

butylphenol, DMSO and toluene.

1.3.7. Applications of MIMS and recent developments

Membrane inlet mass spectrometry has been applied widely in the chemical and 

biological fields. There have been several MIMS reviews [78, 79] including 

applications such as environmental monitoring [80, 81], biological reaction 

monitoring [82], and process control [83],

There is a general need to widen the range of compounds amenable to be 

monitored by MIMS (to include less volatile, more polar and a higher molecular 

weight). Sensitivity is also an important issue.

X.3.7.1. Monitoring of industrial processes

In 1985 Dow Chemical was interested in MIMS for industrial applications, as the 

technique had potential to be used for reaction monitoring. The use of liquid 

membranes for on-line monitoring of reactions of epochloridine [57] was an 

alternative approach to off-line monitoring using solid-phase extraction or solid- 

phase microextraction followed by gas chromatography. Despite the fact that
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MIMS did not offer such low limits of detection, the procedure was much faster 

and could be used on-line due to the simplicity for sample introduction.

Nogueira et a l  [84] carried out an on-line photo catalytic degradation study of 

phenol and trichloroethylene in water, by monitoring the amount of carbon 

dioxide gas liberated using MIMS. Another on-line monitoring application of 

MIMS involved a chlorination reaction of organics in water [85], MIMS has also 

been applied to the analysis of beverages. Ketola et al. [86] carried out a 

classification of cola beverages by MIMS combined with statistical computing 

methods. An investigation of the aroma fraction of some Italian wines was also 

performed using MIMS [87], while Bocchini et al. [88] monitored the presence 

of volatile organohalogens (such as chloroform, bromoform or 

bromodichloromethane) in drinking water at the ppb levels.

1.3.7.2. Biological applications

The first MIMS report [33] had a biological application for the measurement of 

gases in a photosynthetic study. Since then, other more complex analytes have 

been detected by MIMS. The most significant biological publications are 

described below.

Heindricher et al. [89] studied protein oxidative products by MIMS. Products 

detected were tyrosine, 4-vinylanisole and p-methoxyphenylethylamine. Mono- 

and sesquiterpenes such as a-pinene, limonene, terpinene or geraniol in aqueous 

samples were analysed by MIMS and compared by static headspace gas
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chromatography (HSGC) [90]. These studies concluded that MIMS is more 

suitable for on-line analysis and is less time consuming than HSGC.

Lauristen et a l [70] detected large fat-soluble biomolecules such as testosterone, 

cholesterol or vitamin E by MIMS and desorption chemical ionisation. As large 

biomolecules have too high a polarity for transport across a hydrophobic 

membrane at ambient temperatures, samples were accumulated in the membrane 

and then released when the membrane was heated in the ion source of the mass 

spectrometer at 300°C. Analysis times were close to 30 minutes and limits of 

detection were around 1 pM, which is too high for blood analysis. Less than a 

year later the same group were able to increase the limits of detection to low ppb 

levels in order to determine steroid hormones in birth control pills. The reported 

improvement included the Cl gas by isobutene and by sealing more tightly the 

ion source with ceramic fittings [91].

Haddad et a l  [92] were able to determine the total homocysteine concentration 

directly from human plasma by trap and release MIMS. The limit of detection 

was 2 pM by monitoring m/z 234 (as lower m/z ions created higher interferences 

with other molecules), enough for the 5 pM threshold of homocysteine in human 

plasma.

Moraes et a l [76] were able to monitor cyanogenic glycosides by cryotrap 

MIMS. They hydrolysed the cyanogenic glycosides and analysed the released 

ketones (acetone and butan-2-one).
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1.3.7.3. Environmental applications

I.3.7.3.I. Soil

In-situ soil analysis techniques consisting of membrane inlets linked to a mass 

spectrometer via an evacuated tube have been reported [93-96]. Dissolved gas 

concentrations such as oxygen, methane and carbon dioxide were monitored to 

obtain ecological data related to gas exchange and bacterial growth. Sensitivity 

for in-situ processes is limited, so the technique has been mainly focused on the 

analysis of ambient gases rather than VOCs or SVOCs, where more complex 

analytical techniques are required.

Ex-situ techniques offer greater sensitivity for dissolved organics using efficient 

heating and purging of samples prior to analysis. Kostiainen et al. [71] analysed 

VOCs in water and soil samples by puige-and-membrane mass spectrometry 

(PAM MS). In this method, VOCs are purged from the sample with an inert gas, 

directing the stream through a sheet membrane module. Toluene, benzene, 

xylenes, dichlorobenzene and ethyl acetate were detected to ppb levels with this 

technique.

A different approach consisted of headspace MIMS (HS-MIMS) for trace level 

analysis of VOCs such as toluene and chloroform in soil [97] or for SVOCs such 

as phenyl acetic acid by acidifying samples prior to analysis [98], For this kind of 

analysis an air-tight oven heated to 90°C is used, releasing analytes from soil and 

pre-concentrating them in the gas phase prior to analysis.
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I.3.7.3.2. Microbiological studies

MIMS has been used for microbiological studies of fermentation or 

biodegradation products [99-104] and dynamic respiratory measurements [105], 

A good example is the on-line monitoring of phenoxyacetic acid (b.p. 285°C), a 

precursor of penicillin V, during Penicillum chrysogenum fermentation. [101] 

Johnson et al. [106] monitored on-line fermentation broths in a pilot plant by 

MIMS. A 9000-litre fermentation reactor was used and samples were 

continuously taken by splitting flow from the fermentation broth and analysed 

for ethanol content by flow injection. Minor components such as acetic acid and 

lactic acid were also identified.

The identification of VOCs from the growth of the fungus Bjerkandera adjusta 

has been reported [99], allowing chloromethoxybenzaldehyde, a major 

fermentation product, not previously described, be identified using MS/MS 

techniques.
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CHAPTER 2

in-membrane preconcentration membrane inlet mass 

spectrometry (IMP-MIMS) fundamentals
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2.1. Introduction

The analysis of volatile organic compounds (VOCs) in both air [1,2] and aqueous 

[3] samples by MIMS has been widely studied. The technique has been proved to 

be rapid and sensitive for these compounds, giving limits of detection in the low 

ppb region for compounds such as benzene and toluene, [1, 3] VOCs diffuse 

through the membrane by continuous infusion. MIMS has been combined with 

tandem mass spectrometiy (MS/MS) [4] and on-line cryotrapping and rapid GC 

separation [5] to reduce limits of detection to the ppt region and increase 

selectivity.

The analysis of semi-volatile organic compounds (SVOCs) has been less studied, 

as SVOCs diffuse slowly through the membrane at temperatures lower than 

100°C (boiling point of aqueous samples). The various strategies developed to 

overcome this limitation for the analysis of SVOCs were described in section

1.3.6.

The approach used to analyse SVOCs by MIMS in the work presented in this 

chapter is based on the in-membrane pre-concentration MIMS (IMP-MIMS) 

technique, and was first reported by Creaser et al. for the analysis of compounds 

such as 2-chlorophenol, 4-fluorobenzoic acid, 3,5-difluorobenzoic acid or 

dimethylsulfoxide (DMSO) in aqueous samples. [6] In IMP-MIMS the 

membrane is exposed to the analytes in an aqueous or gaseous matrix for a 

defined amount of time, by pumping the sample through the membrane at a low 

temperature (40°C). This is the pre-concentration step, where the SVOCs enter,
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but do not diffuse through the membrane. The membrane is then heated in a 

rapid cycle using the GC oven (40-200-40°C) in order to thermally desorbe the 

analytes that had been previously preconcentrated in the membrane. The IMP- 

MIMS technique extends MIMS to a wider range of analytes, but sensitivity is 

compromised by the water released with the analytes during the desorption step. 

This chapter describes studies directed at overcoming the limitation and 

optimising the MIMS technique for VOCs and SVOCs.

2.2. Preliminary work

Preliminary MIMS studies involved the analysis of both air and aqueous samples 

containing VOCs. The limits of detection for toluene and benzene in air were 

determined to be approximately 1.5 ppbv and 2.5 ppbv respectively in a Varian 

Saturn 4D ion trap (Varian Associates, Walnut Creek, CA, USA) demonstrating 

the pervaporation efficiency of these volatile analytes. The responses for less 

volatile analytes in the same instrument were significantly lower, with limits of 

detection of 0.5 mg L'1 for dimethylformamide (DMF) and 0.3 mg L '1 for 

dimethylsulfoxide (DMSO). Further work was therefore concentrated on the 

determination of SVOCs, including DMSO, DMF and fluorobenzoic acids in 

aqueous samples by an IMP-MIMS technique using both the ion trap and the 

quadmpole mass spectrometers.

Samples of water containing DMSO and DMF were analysed by IMP-MIMS 

using the method reported previously, but problems often occurred when an 

aqueous sample was introduced into the membrane followed by thermal
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desorption. The system often failed during the desorption stage due to excessive 

water pressure in the mass spectrometer source. The effect of water in MIMS has 

been suppressed by the use o f a Nation® membrane (discussed in Chapter 4) 

after the silicone membrane [7-9]. However, for the analysis of SVOCs, IMP- 

MIMS requires the membrane to be heated to temperatures higher than 100°C, 

which are beyond the operating range of Nation® (it becomes black, rigid and 

breaks). Therefore a different strategy had to be used to reduce the excessive 

pressure arising from the thermal desorption step.

2.3. Drying stage

The addition of a drying stage between pre-concentration and thermal desorption 

was investigated. The following parameters were varied in order to optimise the 

mass spectrometric sensitivity:

a) D lying time

b) Drying temperature

c) Drying gas

2.3.1. Experimental

Several membrane drying parameters were investigated in order to determine 

their effect on the mass spectrometric response for DMF using the IMP-MIMS 

technique. The temperature vs. time profile used is shown in Figure 2.1. The 

conditions were as follows:
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a) Desorption temperature: 200°C selected for all experiments.

b) Preconcentration temperature: 40°C selected for all experiments.

c) Drying time: the membrane drying time was varied from 0 to 54 minutes.

d) Drying temperature: varied between 40 and 80°C.

e) Nitrogen drying gas flow: varied between 15 and 100 ml/min.

Thermal desorption 
of analyte

4
Drying stepSample intro­

duction and 
in-membrane 
pre-concentration 
(5 min)

0
u.isKJ
0Q_
E
0

Figure 2.1: Temperature vs. time profile for IMP-MIMS with a sample drying 

step.

These experiments were carried out using a HP 5970 quadrapole MS coupled to 

a HP 5890 GC oven (Hewlett Packard, Palo Alto, California, USA). The silicone 

membrane interface (0.635 mm o.d. x 0.305 mm id, Dow Corning, Silastic, 

Sanitech, USA) shown in Figure 2.2 was constructed in-house and located inside 

the GC oven in place of the capillary GC column. [10] The scan range was 

between m/z 50 and 150 at a scan rate of 2.6 scan/s. The addition of a drying 

stage for IMP-MIMS was tested with water samples containing DMF or DMSO.
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Figure 2.2: Silicone hollow fibre membrane interface schematic.

2.3.2. Results and discussion

2.3.2.I. Effects of the membrane drying time

The effect of the membrane drying time, following analyte preconcentration, is 

shown in Table 2.1 and Figure 2.3 for aqueous samples of DMF (40 mg L '1) 

using 50 mL min 1 of nitrogen as the drying agent. For drying times greater than 

24 minutes no difference was observed in the DMF responses, so it appears that 

the optimum drying time for DMF under these conditions is 24 minutes. This is a 

significant length of time for the analysis, so other parameters were investigated 

in order to reduce the time of the analysis. The MIMS response for DMS using a 

24 minute drying time and a 40-200-40°C thermal desorption programme is 

shown in Figure 2.4.
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Figure 2.3: Peak area vs. drying time for 40 mg L 1 DMF aqueous samples.

Table 2.1: Results for IMP-MIMS analysis of 40 mg L '1 aqueous samples of 

DMF using different drying times. The drying gas was nitrogen at 50 mL min'1.

Drying time

(min)

Retention time

(min)

Peak width (Wm) m/z 73 peak area

0 9.201 0.903 814453

4 13.672 1.017 1105349

9 18.255 1.159 1326697

14 23.467 0.976 1915892

24 33.266 1.068 3566876

34 43.322 1.142 3493864

44 53.393 1.071 3568635

54 63.279 1.047 3725236
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Figure 2.4: DMF single ion response and mass spectrum for a 40 mg L '1 

aqueous solution obtained on a quadrupole MS using a drying time of 24 min and 

a nitrogen flow of 50 mL m in1.

O
CO
£
Q
co
CD
N
E
o
CB
©

1.4E+07
1.2E+07
1.0E+07
8.0E+06
6.0E+06
4.0E+06
2.0E+06
0.0E+00

0 20 40 60
Drying time (minutes)

80

Figure 2.5: Drying time vs. peak area for DMSO IMP-MIMS analysis.
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Table 2.2: IMP-MIMS results for the analysis of DMSO (220 mg L '1) in water 

using different drying times. Drying agent was nitrogen at 50 ml min"1.

Drying time

(min)

Retention time

(min)

Peak width (W 1/2) m/z 73 peak area

0 10.090 0.712 766264

5 15.167 0.802 1354828

10 19.981 0.772 2312802

20 29.814 0.935 6539540

30 39.725 0.945 7323978

40 49.705 1.017 11506747

60 69.593 1.087 12354950

m/z 63
15000

10000

5000 -

10.00 20.00 30.00 40.00 50.00

63

78
10000

5000

94 9 7  101 109  1 141 1 7  122125 131 135138141  146150

50 100 110 120 130 140 150

Figure 2.6: DMSO single ion response and mass spectrum for a 220 mg L"1 

aqueous solution in the quadrupole MS using a drying time of 40 min and a 

nitrogen flow o f 50 mL min’1.
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DMSO was analysed using a similar procedure to that for DMF. For samples 

containing 200 mg L '1 of DMSO, the optimum drying time was found to be 40 

minutes at 40°C (See Table 2.2 and Figures 2.5 and 2.6).

It can be seen from the results for DMF and DMSO, that although both 

compounds show a similar trend (the longer the diying time, the greater the 

analyte response until a steady response is obtained), the drying time is different 

for each compound. These results show that the membrane diying step reduces 

suppression of the analyte response resulting from the release of water during 

thermal desorption step. However, relatively large diying times were required for 

DMSO and DMF to achieve optimum responses.

2.3.2.2. Effects of diying temperature

The effect of the drying temperature was investigated in order to reduce the 

drying time. The drying time chosen for these experiments was 24 minutes 

(optimum drying time), with a nitrogen flow of 50 mL min'1. A range of diying 

temperatures were investigated in the range 40 to 80°C using the IMP-MIMS 

profile shown in Figure 2.7. The effect of membrane drying temperature was 

tested on the DMF response for a 40 mg L '1 aqueous sample and the results are 

shown in Table 2.3.
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Figure 2.7: IMP-MIMS temperature vs. time profile with changing drying 

temperature.

Table 2.3: Results for the IMP-MIMS analysis of 40 mg L '1 aqueous samples of

DMF using different drying temperatures.

Drying temperature

(°C)

Retention time

(min)

Peak width (W 1/2) m/z 73 peak area

40 33.384 1.096 2706673

60 34.216 1.049 2289599

80 34.414 1.022 856231
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The results in Table 2.3 indicate that, as expected, the higher the drying 

temperature, the lower the signal observed for DMF. This is presumably due to 

losses of DMF due to diffusion through the membrane and evaporation during 

the membrane drying step. The use of high drying temperatures (between 60 and 

80°C) with shorter drying times also gave lower signals than using a drying 

temperature of 40°C.

2.3.2.3. Effects of the drying gas

a) Drying agent

The use of an inert gas such as nitrogen has been shown to dry the membrane 

efficiently and protect it from oxidation when heated, leading to an increased 

life-time. The results of an experiment carried out to compare nitrogen and air as 

a drying gas for DMF aqueous samples (40 mg L"1) showed that nitrogen (50 mL 

min"1) gave a higher MIMS response than atmospheric air pumped through the 

membrane (3 mL min"1) o f almost 20% (see Table 2.4).

Table 2.4: Response obtained for 40 mg L"1 DMF in the quadrupole MS using 

nitrogen or pumped air as the drying agent.

Drying agent Retention time Peak width (W 1/2) Area

(min)

Nitrogen (50 mL min"1) 33.378

Pumped air (3 ml min"1) 33.282

1.082

1.210

2649917

2228331



b) Effect of the flow of nitrogen drying gas

The nitrogen flow used to dry the membrane was expected to be an important 

parameter determining the MIMS response for SVOCs. Studies were carried out 

by changing the nitrogen flow between 10 and 100 mL min"1. Samples 

containing 40 mg L"1 o f DMF were analysed using a drying time of 24 minutes.

The optimum flow rate was found to be 50 mL min'1, but flow rates between 40 

and 70 mL min' 1 did not show significant differences in analyte responses (see 

Table 2.5 and Figure 2.8). At a nitrogen flow rate of 90 mL min"1, the DMF 

response was reduced, presumably as a result of evaporative losses, whilst at 

flow rates below 40 mL min' 1 incomplete drying of the membrane resulted in ion 

suppression in the El source.

Table 2.5: IMP-MIMS analysis of a 40 mg L ' 1 DMF aqueous sample with N2 

drying gas flow between 15 and 100 mL min*1.

Nitrogen flow Retention time Peak width (W1/2) m/z 73 peak area

(mL m inL) (min)

15 33.608 0.903 994539

30 33.538 1.017 1379995

40 33.526 1.159 1790277

50 33.440 0.976 1940952

60 33.363 1.068 1753042

70 33.442 1.142 1771632

1 0 0 33.459 1.071 1414398



LL
s
Q
coh-
N
E
H-o
O

2.5E+06

2.0E+06

1.5E+06

1.0E+06

5.0E+05

O.OE+OO
0 20 40 60 80 100 120

Nitrogen flow (mL min-1)
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2.3.2.4. Linearity

A calibration curve was measured for DMSO with quadrupole MS detection, 

using the optimised IMP-MIMS conditions. Results showed a good linearity (r2 =

0.9943) in the concentration range between 50 and 220 mg L' 1 (See Figure 2.9).
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Figure 2.9: Calibration curve for DMSO between 50 and 220 mg L '1.
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2.4. Ion trap studies

2.4.1. Introduction

Once the system had been optimised using the quadrupole MS, characterisation 

of model compounds was carried out using an ion trap MS. The main advantage 

of using the Varian Saturn 4D ion trap instead of the HP5970 quadrupole 

spectrometer is the possibility of using tandem mass spectrometry (MS/MS) and 

chemical ionisation.

2.4.2. Experimental

Experiments were carried out using a Varian Saturn 4D ion trap (Varian 

Associates, Walnut Creek, CA, USA). Samples were analysed in full scan mode 

with a m/z range between 50 and 150.

In the ion trap experiments were carried out using water reagent chemical 

ionisation (Cl) or electron ionisation (El). Cl using water as the ionisation agent 

was carried out because ion trap spectral quality is veiy susceptible to the 

presence of water, which affected the quality of the El spectra. In chemical 

ionisation, water permeating the membrane was used to generate H3O reagent 

ions, which yielded protonated molecular ions.

Benzene and toluene were analysed by continuous infusion MIMS with the GC 

oven at 40°C, while THF was measured by continuous infusion MIMS with the
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GC oven at 80°C. DMF, DMSO and fluorobenzoic acids were measured by IMP- 

MIMS following the temperature profile shown in Figure 2.1. All samples were 

prepared in water.

2.4.3. Results and discussion

The optimum conditions observed for benzene and toluene in aqueous samples 

by continuous infusion were obtained using EL For DMF, DMSO and THF in 

water the best conditions were obtained using Cl, with a sample infusion time of 

2.5 minutes. TFIF infused through the membrane significantly at 80°C by MIMS, 

but for DMF and DMSO IMP-MIMS had to be used with a thermal desorption 

cycle of 40-200-40°C. Figure 2.10 shows a single ion response (m/z 78+79) and a 

mass spectrum obtained for the analysis of DMSO.

Better limits of detection were obtained using the ion trap than the quadrupole 

mass spectrometer. The limits of detection determined for some VOCs and 

SVOCs using the ion trap mass spectrometer in full scan are shown in Tables 2.6 

and 2.7. The limits of detection could be improved for SVOCs by use of a longer 

sample infusion time. Limits of detection were measured by obtaining a 3:1 

signal to noise ratio.
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Figure 2 .1 0 : 220 mg L' 1 DMSO using an ion trap in Cl mode (a) extracted single 

ion response for m/z 78+79 and (b) mass spectrum.
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Table 2.6: Limits of detection obtained in the ion trap mass spectrometer for

different VOCs and SVOCs in aqueous samples.

Compound Limit o f detection

Benzene 0.9 pgL ' 1

Toluene 2 . 1  pgL ' 1

DMSO 0.3 mg L' 1

DMF 0.5 mg L‘l

THF <0.1 mg L' 1

For the analysis of fluorobenzoic acids (FBA), the temperature profile (Figure 

2.1) was the same as that for DMF and DMSO: sample injection and membrane 

drying step were carried out at 40°C, and then the system was heated to 200°C to 

thermally desorb the FBA, before being cooled back down to 40°C again. The 

limits of detection are presented in Table 2.7 and Figure 2.11 shows a single ion 

response (m/z 123) and a mass spectrum obtained for the analysis of 4- 

fluorobenzoic acid (4-FBA). Optimum drying time was 10 minutes for 2- 

fluorobenzoic acid (2-FBA) and 3-fluorobenzoic acid (3-FBA), while 20 minutes 

for 4-FBA.

Table 2.7: Limits of detection obtained for FBA using IMP-MIMS 

FBA Isomer Limits of detection Ionisation mode Optimum drying time

(mg L '1) (min)

2-FBA 0 5  El U T

3-FBA 0.3 El 10

4-FBA 0.2 El 20
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Figure 2.11: 10 mg L' 1 4-FBA using an ion trap in El mode (a) extracted single 

ion response for m/z 123 and (b) mass spectrum.

81



Limits of detection (S:N 3:1) below 1 mg L ' 1 were observed for all three 

fluorobenzoic acids. However, it should be noted that whilst DMF and DMSO 

sensitivities were improved by using Cl, better sensitivity for the three 

fluorobenzoic acid isomers was achieved using EL It can be seen in Figure 2.11 

that the mass spectrum is of lower quality than expected, because of overloading 

the trap causing space charge effects due to the presence of water in the trap.

2.5. Tandem mass spectrometry

Tandem mass spectrometry (MS/MS) can be used to improve the limits of 

detection or to gather structural information on selected ions. MS/MS was used 

for 4-FBA, 4-fluorocinnamic acid (4-FCA) and 4-fluoroacetophenone (4-FAP). 

Biodegradation studies carried out for 4-FBA and 4-FCA (Chapter 3) showed 

that 4-FCA biodegrades into 4-FAP before converting into 4-FBA. Therefore a 

mixture of the three compounds is present when 4-FCA biodegrades. 4-FBA and 

4-FCA can be quantified as they have characteristic ions that do overlap with any 

of the other compounds (m/z 140 for 4-FBA and m/z 166 for 4-FCA). However, 

quantification of 4-FAP is problematic, as this compound does not have 

characteristic ions of its own (it shares m/z 123 with 4-FBA and m/z 138 with 4- 

FCA). Therefore MS/MS studies of these compounds were carried out.

2.5.1. Experimental

Experiments were carried out using a Varian Saturn 4D ion trap (Varian 

Associates, Walnut Creek, CA, USA). Collision induced activation voltage
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(CID) applied was 0.5 V for 4-fluoroacetophenone (4-FAP) and 1.00 V for 4- 

FBA. A CID frequency of 48.00 and a 3 mass unit window were chosen for both 

compounds. Standards solutions of 4-FBA (3.5 mg L '1) and 4-FAP (100 mg L '1) 

in water were prepared and run by IMP-MIMS/MS.

Experiments were carried out using the silicone membrane interface shown in 

Figure 2.2. Analytes were introduced to the membrane at a flow rate of 3 mL 

min' 1 for 5 min, followed by a 15 min diying step using pumped air at 3 mL min' 

1 through the outer wall of the membrane at 40°C. For thermal desorption of the 

analyte the membrane was heated to 200°C at a rate of 45°C min' 1 and then 

cooled back down to 40°C.

2.5.2. Results and discussion

MS/MS can give structural information that may be used for the identification of 

unknown metabolites in processes such as the ones described in Chapter 3. By 

applying MS/MS, sensitivity can also be improved.

4-FAP cannot be quantified by MIMS when present with 4-FBA and 4- 

fluorocinnamic acid (4-FCA), as both peak ions for 4-FAP are common to 4- 

FBA and 4-FCA (see Chapter 3). Therefore 4-FAP and 4-FBA were analysed by 

MIMS/MS.

The main peaks of 4-FAP by MIMS are m/z 138 (M+) (present in 4-FCA) and 

123 ([M-CH3]4)  (present in 4-FBA). When IMP-MIMS/MS was applied to m/z
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123 or m/z 138 of 4-FAP a fragment with m/z 112 ([M-C2H2]+) was observed. 

When IMP-MIMS/MS was applied to m/z 123 ([M-OH]4)  or m/z 140 (M+ ) for 4- 

FBA, a fragment of m/z 112 ([M-CO]4) was also formed. Therefore IMP- 

MIMS/MS could be successfully applied but no individual peaks corresponding 

to the MS/MS fragmentation of 4-FAP were observed.

IMP-MI(MS) 3 was applied successfully for 4-FBA (Figure 2.12) on peaks m/z 

123 and m/z 140, obtaining mainly a fragment on m/z 112.
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Figure 2.12: IMP-MI(MS) 3 single ion response for a 4-FBA (3.5 mg L’1) 

aqueous sample (a) m/z 140, (b) m/z 123, (c) m/z 112.
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2.6. pH and mineral salt effects on 4-FBA and 4-FCA by MIMS

2.6.1. Introduction

As 4-FCA and 4-FBA are both acids, it was considered that the pH of the 

solution could significantly affect the permeation of the product across the 

membrane, facilitating the process when 4-FBA and 4-FCA were under acidic 

conditions. 4-FBA and 4-FCA were chosen to evaluate the importance of the pH 

and matrix effect by MIMS, as both compounds would be studied during 

biodegradation monitoring (Chapter 3). When the samples were prepared at GSIC 

for biodegradalion, the two analytes were dissolved in a mineral salt medium 

(MSM) necessary for bacteria to grow efficiently. As the effect of these ions in 

MIMS was unknown, a test was also carried out in order to find out if the 

presence of ions in solution affected the response.

2.6.2. Experimental

Standard solutions (100 mg L"1) of the analytes (4-FBA and 4-FCA) were 

dissolved in water. When necessary these solutions were diluted with an MSM 

solution (see Table 2.8 for composition) to test the salt effect. pH was regulated 

using HC1 (50-50% v/v concentrated HCI-H2O) and NaOH (0.5M).

MIMS analysis was carried out using a Hewlett Packard HP5970 quadrupole MS 

coupled to a HP 5890 GC (Hewlett Packard, Palo Alto, California, USA). The 

interface containing a silicone hollow-fibre membrane (0.635 mm o.d. x 0.305
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mm i.d., Dow Coming Silastic, Sanitech, USA) was constructed in-house and 

located inside the GC oven in place of the capillary GC column (Figure 2.2) [10]. 

Aqueous samples were pumped through the interface using a peristaltic pump 

(Watson-Marlow Bredel Pumps Limited, United Kingdom) for 5 minutes at a 

rate of 2.5 mL min*1 with the oven temperature set to 40°C. The membrane was 

dried for 15 minutes by drawing air through the interface using the pump (4- 

FBA) or a nitrogen flow at 50 mL min'1 (4-FCA). The oven temperature was 

then heated to 200°C at 45°C min'1 to desorb the preconcentrated analytes before 

being cooled down to 40°C again. The MS was set to acquire full scan El mass 

spectrum in the range m/z 70 and 170 at a scan rate of 2.6 scan/second.

Table 2.8: Composition of MSM solution.

Chemical Concentration

( g l / 1)

Stock solution A KH2P 0 4 8.5

K2HPO4 21.75

Na2HP04.2H20 33.4

NFLCl 0.5

Stock solution B CaCl2 27.5

CaCl2.2H20 36.4

Stock solution C MgS04.7H20 22.5

Stock solution D FeCl3.6H20 0.25
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In order to prepare the MSM solution, 10 mL of stock solution A and 1 mL of 

stock solutions B, C and D were dissolved in water and made up to 1 litre 

volume. The MSM solution was prepared as shown in Table 2.8. [11]

2.6.3. Results and discussion

2.6.3.1. Reproducibility

The reproducibility of the MIMS analytes was tested for both 4-FBA and 4-FCA. 

In each case 6 subsamples of 100 mg L '1 solution of each acid were analysed 

using the method described in Section 2.6.2. The %RSD for 4-FBA and 4-FCA 

were 3.3% and 3.5% respectively.

2.6.3.2. pH effect for 4-FBA and 4-FCA.

Standard solutions containing 100 mg L '1 of 4-FBA or 4-FCA were prepared. pH 

was modified by adding NaOH or HC1. The pH range used for the different 

solutions was between 2 and 8, as the membrane degrades rapidly under alkaline 

or highly acidic conditions. Results are shown in Figures 2.13 and 2.14.
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Figure 2.14: pH effect for 100 mg L 1 4-FCA solutions.

As expected, the effect of pH in the analysis of 4-FBA and 4-FCA by MIMS is a 

significant parameter (see Figures 2.13 and 2.14). For both compounds, 

acidification of the sample enhances the response by facilitating the transport of 

the undissociated acids across the silicone membrane. Looking at the profile of 

both graphs (Figures 2.13 and 2.14), there is a clear indication of a pH signal 

drop, above the pKa value for both compounds. The pit* values for 4-FCA and
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4-FBA were searched in the literature, but only the value for 4-FBA was reported 

by Strong et al. to be 4.1 (Table 2.9) [12]. Therefore, it was necessaiy to 

calculate the value of the pKa for 4-FCA and compare it to the one of 4-FBA.

2.6.3.3. Calculation of the pKa value for 4-FCA

In order to calculate the value of the pKa of 4-FCA, the Henderson-Hasselbalch 

equation expression (eq. 2.1) was used:

pH = pKa + l°g “ T~ (eq. 2.1)
[HA.]

If in this expression, the concentration of acidic species is equal to the 

concentration of the acid radical, then we obtain the following equality (eq. 2.2):

pH -  pKa (2.2)

There was no chemical having the fluorocinnamate ion available commercially, 

so a known amount of 4-FCA (20 mg L '1 or 0.12 mmolar) and half the number of 

moles of NaOH were mixed and the pH was measured to determine the pKa. In 

order to compare the efficiency of the method, this experiment was repeated also 

with 4-FBA, to allow the pKa value obtained to be compared with the literature 

value.

There is a 0.3 unit difference between the pKa value from the literature and the 

one calculated experimentally. The pKa value for 4-FCA was calculated to be 3.9,



which is very similar to that calculated for 4-FBA (around 3.8). These results are 

in agreement with the pH graphs shown in Figures 2.13 and 2.14.

Table 2.9: Experimental pKa values for 4-FBA and 4-FCA

Compound pKa

4-FBA 00 p

4. l b

4-FCA 3.9

2.6.3.4. Effect of MSM solution on the MIMS technique for 4-FBA and 4-

FCA

Two sets of samples were prepared for each compound in the range between 20 

and 50 mg L '1. One set o f samples contained water as the solvent, while the other 

set of samples had a 50% v/v water/MSM solution. The IMP-MIMS responses 

for 4-FBA and 4-FCA in the water and aqueous MSM solutions are shown in 

Figures 2.15 and 2.16.

Figures 2.15 and 2.16 show that the responses for the acids are significantly lower 

in MSM solution than in water. However, the observed responses may be 

attributed to the effect of pH, as MSM solutions have a pH value close to 6.5, 

while the samples in water have a pH value close to 3.0. In order to investigate 

the mineral salt effect, samples in water were prepared by adjusting the pH to the 

value for the MSM solutions prior to MIMS analysis.
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2.6.3.S. Investigation of the mineral salt effect independent of pH

The aim of this investigation was to evaluate the effect of the salts on the MIMS 

analysis independently of the pH value. Two different points were chosen, one pH 

close to that for 4-FBA and 4-FCA in water, and the other with a pH similar to 

that of the analytes in MSM solution. The results are shown in Tables 2.10 and 

2 . 11 .

Table 2.10: IMP-MIMS responses for 4-FBA at pH 2.9 and 6.4 in water and 

aqueous MSM solutions.

pH of the 50 mglT1 

solution

Solvent Area peak 141

2.9 h 2o 1546325

2.9 MSM 2386624

6.4 H20 1169945

6.4 MSM 1550488

Table 2.11: IMP-MIMS responses for 4-FCA at pH 3.3 and 6.6 in water and 

aqueous MSM solutions.

pH of the 50 mg L"1 

solution

Solvent Area peak 166-167

3.3 h 2o 485574

3.3 MSM 509351

6.6 h 2o 4406

6.6 MSM 38598
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From the response data in Tables 2.10 and 2.11, it can be seen that for both 

compounds the addition of salts enhances the MIMS response considerably. A 

possible explanation for this effect may be that in solutions of high ionic strength 

these organic acids preferentially partition into the non-polar silicone membrane.

Although the addition of MSM solution tends to show an increase in the response 

for both 4-FBA and 4-FCA, the main parameter to affect the results is the pH. So 

in any land of biodegradation studies for acidic compounds, pH should be 

closely monitored, or controlled by introducing an on-line addition of acid before 

analysing the sample, as this would give an improvement in the response for 

these compounds.

2.7. Conclusions

An IMP-MIMS technique incorporating a novel membrane drying stage has been 

developed for the determination of SVOCs. The effect of drying time, drying 

temperature and drying agent has been evaluated, proving that the presence of a 

drying stage was critical for enhancing mass spectrometric performance, thus the 

absence of water in the MIMS device avoids signal suppression of the analyte 

and excessive source pressure in the MS ion source. The presence of an inert gas 

(drying agent) in the membrane surface during the thermal desorption stage also 

reduced thermal degradation of the membrane and extended the lifetime of the 

membrane. Although optimum drying times and hence analytical cycle times 

were long for some applications, a compromise between length of analysis and 

sensitivity can be made. The IMP-MIMS technique showed good linearity and
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reproducibility for SVOCs, making it a suitable technique for quantitation 

analysis.

The effect of pH and matrix on the MIMS responses for 4-FBA and 4-FCA in 

aqueous samples has been evaluated. The main parameter to effect the results 

was the pH, which is shown to be a critical parameter in MIMS, because the use 

of semi-permeable membranes discriminates ionic species, showing preferential 

selectivity for non-polar analytes. As 4-FBA and 4-FCA are acid species, non­

ionic species will be predominant under acidic conditions, while in alkali 

conditions both compound will be mainly under the ionised form. Conversely, 

alkali conditions would enhance the response of basic species (such as amines) 

by MIMS. Therefore when quantification must take place by MIMS, the pH 

should be closely monitored and kept at a constant value during the whole study.
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CHAPTER 3

Biodegradation monitoring by membrane inlet mass

spectrometry
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3.1. Introduction

Biodegradation can be defined as the biologically catalysed reduction in 

complexity of chemicals. In the case of organic compounds, biodegradation 

frequently, although not necessarily, leads to the conversion of much of the C, N, 

P, S and other elements in the original compound to inorganic products. The 

complete conversion of an organic substrate to inorganic products is known as 

mineralisation. The biodegradation of synthetic chemicals by biological 

processes apply mainly to the result of microbial activity.

Microorganisms cany out biodegradation in many different types of 

environments such as soil, watercourses or sediments. The ability to carry out 

biodegradation of toxic and hazardous chemical compoimds is exploited by 

designing systems such as wastewater treatment plants (WWTP), reedbeds or 

bioaugmenting soils. A varied range of micro-organisms is essential for the 

effective treatment of wastewaters, since they are responsible for the destruction 

of a large number of organic pollutants and hazardous chemicals. Natural 

communities of microorganisms in these treatment processes have a rich 

physiological versatility. They are able to metabolise and often mineralise a wide 

range of organic molecules.

Several conditions are required for biodegradation to take place in a particular 

environment:
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1. The microorganisms require the necessary enzyme to bring about the 

biodegradation of a certain compound.

2. The chemical must be accessible to the microorganism having the required 

enzyme. Inaccessibility may occur if the substrate is in a different 

microenvironment from that of the microorganism, e.g. in a solvent not 

miscible with water or sorbed in solid surfaces or particles. A parameter that 

gives an idea of the behaviour of chemicals under these circumstances is 

given by the octanol/water partition coefficient (logoct), which indicates the 

possibility of a certain chemical to be absorbed by solid particles or in 

another solvent different than water.

3. Conditions in the environment must be adequate for the proliferation of the 

most active microorganisms, i.e. enough trace elements, adequate 

temperature and pH.

4. Intermediate metabolites formed due to the biodegradation must not be toxic 

to the microbial community.

Prior to the degradation of many complex organic compounds, an acclimation 

period is usually required. This is defined as the length of time between the 

addition or entiy of the chemical into an environment and evidence of its 

detectable loss. The length of the acclimation period can vary significantly. It 

may be between hours and several months. The duration depends on the 

chemical complexity, their concentration and a number of environmental factors. 

Biodegradation is only detectable until enough microorganisms develop the 

ability to degrade a particular compound. A critical amount of biomass is 

required to cause appreciable chemical loss. In some environmental systems
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complex mixtures of organic compounds are present, and one or more may be 

inhibitory to the microbial growth, increasing the length of the acclimation 

period or making biodegradation not possible.

In WWTP a mixture of diverse organisms is used for the biodegradation. This 

mixture is known as activated sludge. Activated sludge is a heterogeneous 

microbial culture composed mostly of bacteria, protozoa, rotifers and fungi. 

However, it is the bacteria which are responsible for biodegrading most of the 

organic compounds, while protozoa and rotifers are mainly responsible for the 

removal of excess and/or inactive bacteria. Due to the variety of enzymes present 

in the activated sludge and the fact that WWTP are operated in a continuous 

manner, the acclimation time is minimised, although still required for new 

chemical compounds introduced in the feed.

To produce a high-quality final effluent from a WWTP, the activated sludge 

(after removing the organic materials from the wastewater) must be separated 

from the liquid stream. A typical WWTP flow diagram is shown in Figure 3.1 

[1].
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Figure 3.1% Typical flow diagram of a WWTP.

One of the fundamental requirements in the design of a WWTP is to know what 

type of tank of reactor (aeration tank) is best for a given wastewater. The 

geometry of the reactor is important as well as having a good aeration system 

which is necessary to achieve aerobic conditions throughout the reactor medium 

and to improve mixing.

In the biodegradation studies carried out as part of this thesis, mineral salt 

medium (MSM) and synthetic sewage were added to mimic a typical feedstock. 

The activated sludge used in the laboratory studies was collected from a 

municipal WWTP. MSM was added to the system to provide buffering and trace 

elements, while synthetic sewage was added to provide a metabolisable source of 

carbon to the activated sludge while acclimatising to the new organic compounds 

introduced into the biological medium.

MIMS processes have been reported by several groups for monitoring the 

biodegradation or fermentation of volatile products and by-products [2,8]. The
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on-line monitoring of the major products (acetic acid, acetoin, 2,3-butanediol and 

ethanol) of fermentation by the Bacillus polymyxa and Klebsiella oxytoca by 

MIMS has been reported by Hayden et al. [2], Hansen et al. carried out an on­

line monitoring of phenoxyacetic acid, a precursor of penicillin V, during 

Penicillum Chrysogenum fermentation [3,4] and Johnson et a l monitored on-line 

fermentation broths in a pilot plant by MIMS, using a 9000-litre fermentation 

reactor in which samples were continuously taken by splitting flow from the 

fermentation broth and analysed for ethanol content by flow injection. Minor 

components such as acetic acid and lactic acid were also identified [5]. The 

fungus Bjerlmndem adnsta has been used for monitoring volatile halogenated 

compounds [6,7]. Arcangeli et a l monitored the kinetics of cis-l ,2-dichloro- 

ethylene biodegradation at Lig dm'3 levels in a biofilm reactor under the presence 

of methane-oxidising bacteria [8]. In contrast to the determination of VOCs, the 

monitoring of SVOCs has received little attention.

3.2. Biodegradation studies of 4-FBA and 4-FCA: an evaluation of MIMS as 

an alternative to HPLC and IC

3.2.1. Introduction

Aerobic biodegradation of halogenated aromatic compounds has been studied 

extensively, particularly for the fluorobenzoates [9,10] and chlorobenzoates [11- 

13]. As a general rule, the strength of resistance to enzymatic cleavage of carbon- 

halogen bonds is observed to increase with the electronegativity of the 

substituents, in the order F-C>Cl-C>Br~C>I-C [14], The exceptional biological
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activity of fluorinated aromatic compounds can therefore be explained by the 

dichotomic chemical behaviour of the fluorine with its mesomeric effects and also 

with its hydrogen-resembling size [15].

Fluorobenzoic acids have been reported to degrade under both aerobic [10,15,16] 

and anaerobic [17] conditions. Several pathways have been identified under 

aerobic conditions, as a function of the different enzymes, but two are most 

widely reported. One pathway involves the degradation of fluorobenzoic acids 

into the corresponding fluorocatechol [10,15], whilst in the other pathway 

fluorobenzoic acid is transformed into hydroxybenzoic acid [10]. It has also been 

shown that 4-FCA is biotransformed to 4-FBA under aerobic conditions [18,19],

Biodegradation processes have been monitored by several techniques, including 

gas chromatography/mass spectrometry (GC/MS) and high performance liquid 

chromatography (HPLC). The measurement of semi-volatile halogenated organic 

compounds in aqueous solutions using MIMS has been less widely studied than 

VOCs because of their poor permeation through the membrane, although Leth et 

a l reported the analysis of chlorophenols and Hansen et. a l  employed an on-line 

MIMS system to monitor phenoxyacetic acids in a penicillin fermentation [3,20], 

No previous studies describing the use of MIMS for the analysis of the 

biodegradation of semi-volatile organic compounds have been found in the 

literature.

This section (section 3.2) reports the development of a MIMS method for 

monitoring SVOCs in a biodegradation medium, using novel IMP-MIMS
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procedures described in chapter 2. The method is applied to the determination of 

fluorobenzoic and fluorocinnamic acids. The MIMS approach is compared with 

the use of HPLC, ion chromatography (IC) and liquid chromatography/mass 

spectrometry (LC/MS), which have been previously reported as suitable 

techniques for monitoring the biodegradation of these acids [19]. MIMS has been 

shown to be a robust method for batch and on-line analysis and the objective of 

this work was to evaluate the potential of the IMP-MIMS technique [21] as an 

alternative to a suite of chromatographic techniques for biodegradation 

monitoring.

3.2.2. Experimental

3.2.2 J .  Bio degradation

All chemicals were obtained from Sigma-Aldrich Chemicals (Gillingham, United 

Kingdom) and used without further purification. Standard solutions (200 mg L"1) 

of 4-fluorobenzoic acid (4-FBA) and 4-fluorocinnamic acid (4-FCA) were 

prepared in an MSM [19] (see Table 2.8). Activated sludge was obtained from a 

WWTP at a GlaxoSmithKline site in the UK and washed to remove residual 

carbonaceous material present in the WWTP liquor. The total suspended solids in 

the activated sludge was determined to be 3 g L"1 by drying 10 ml of activated 

sludge at 104-106°C for one hour. A volume of bacteria inoculum (100 mL) and 

of a standard solution of 4-FBA or 4-FCA (100 mL; 200 mg L '1) were mixed in a 

250 mL flask, giving an initial concentration of 100 mg L-1. Foam stoppers were 

used to allow passage o f air into and out of the flasks. Separate control flasks

103



were set up containing 4-FBA and 4-FCA (100 ml; 200 mg L"1) and MSM (100 

mL), but no activated sludge. All tests were carried out in triplicate.

The flasks were placed in an orbital shaker (New Brunswick Scientific Company, 

New Brunswick, USA) at a temperature of 30°C and an agitation speed of 150 

rpm. The pH was monitored using a bench top pH meter (Jenway 3310, UK). 

Aliquots (20 mL) were removed from the flasks and filtered with a 0.2 pm filter 

before being analysed by MIMS, HPLC and IC. A number of samples were also 

analysed by LC/MS in order to identify metabolites. The data acquired by MIMS 

and HPLC were quantified relative to the control flask response.

3.2.2.2. Analytical methods

a) Membrane Inlet Mass Spectrometry

MIMS analysis was carried out using a Hewlett Packard HP5970/HP5890 or a 

HP6890/HP5973 GC/MS configuration (Agilent, Palo Alto, California, USA). 

The interface (Figure 2.2) containing a silicone hollow-fibre membrane (0.635 

mm o.d. x 0.305 mm i.d., Dow Corning Silastic, Sanitech, USA) was constructed 

in-house and located inside the GC oven in place of the capillary GC column 

[22], Aqueous samples were pumped through the interface using a peristaltic 

pump (Watson-Marlow Bredel Pumps Limited, United Kingdom) for 5 minutes 

at a rate of 3 mL min"1 with the oven temperature set to 40°C. The membrane 

was dried for 15 minutes by drawing air through the interface and the oven 

temperature was then heated to 200°C at 45 °C min"1, to desorb the
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preconcentrated analytes, before being cooled to 40°C. The heating cycle was 

carried out twice. The first cycle desorbed the analyte from the membrane and 

the second cleaned the system in order to ehminate the possibility of carryover. 

The mass spectrometer was set to acquire electron ionisation (El) full scan data 

between m/z 40 and 180.

b) High Performance Liquid Chromatography

HPLC was carried out using a Hewlett Packard HP 1100 chromatograph (Agilent 

Technologies, Palo Alto Ca, USA) equipped with a Waters Symmetry RP8 

column (3.9 x 150 mm; 5 pm particle size; Waters, Watford, UK). The injection 

volume was set to 10 pL. The flow rate was set to 1 mL min"1, the UV detector 

wavelength to 230 nm and the column oven temperature to 40°C. The eluent 

consisted of 70/30 (v/v) 0.1% formic acid in water/acetonitrile. Each analysis 

was performed isocratically over a 15 minute period.

c) Ion Chromatography

Ion chromatography analysis was carried out using a Dionex DX500 ion 

chromatograph (Dionex, Sunnyvale, Ca, USA). A Dionex Ionpac Guard AG11 

column ( 5 0 x 4  mm) was coupled to a Dionex AS11 analytical column (250 x 4 

mm). The injection volume was 10 pL, the column temperature was set to 30°C 

and the flow rate was lmL min"1. Detection was by suppressed conductivity. A 

hydroxide gradient was produced using a Dionex EG40 eluent generator 

equipped with a cartridge containing potassium hydroxide. The gradient was set
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as follows: T= 0 min 5 mM hydroxide, T= 4.00 min 5 mM hydroxide, T= 4.01 

min 50 mM hydroxide, T= 7.00 min 50 mM hydroxide, T= 7.01 min 5 mM 

hydroxide and T= 10.00 min 5 mM hydroxide.

d) Liquid Chromatography/Mass Spectrometry

LC/MS was carried out using a Agilent 1100 chromatograph (Agilent 

Technologies, Palo Alto, Ca, USA) interfaced to a Micromass quadrupole 

orthogonal acceleration time-of-flight mass spectrometer (Q-TOF, Micromass, 

Manchester, UK) mass spectrometer fitted with a Z-Spray electrospray ion 

source. HPLC conditions were as described in a previous paragraph. The mass 

spectrometer was operated in negative electrospray ionisation, using a spray 

voltage of 3 kV. The source and desolvation temperatures were set to 100°C and 

300°C respectively. The nitrogen desolvation and nebuliser gas flow rates were 

set to 400 L-h'1 and 90 L-h'1 respectively. The cone voltage was set to 25 V. 

Experimental data were acquired over a 40-1000 Da mass range at an acquisition 

rate of 1 spectrum per second. For MS/MS structural elucidation work the 

collision energy was at 25 eV.

3.2.3. Results and discussion

MIMS analysis was carried out using a silicone hollow-fibre membrane interface 

similar to that reported in Chapter 2 (Figure 2.2) [22]. An IMP-MIMS procedure 

[21] was employed to monitor the biodegradation 4-fluorobenzoic acid (4-FBA) 

and 4-fluorocinnamic acid (4-FCA), using the GC oven temperature profile
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shown in Fig. 3.2. IMP-MIMS was necessary because of the poor MIMS response 

for these semi-volatile compounds at temperatures <100°C. The aqueous sample 

was removed from the interface and the membrane was dried between the 

preconcentration and desorption stages by drawing air over the membrane using a 

peristaltic pump. A membrane drying step was introduced to reduce the amount of 

water released with the analytes during the desorption step, since significant 

suppression of the analyte response was observed if the membrane was heated 

immediately after removal of the water from the interface. A similar approach has 

been reported for diy purging solid sorbents used to sample volatile organic 

compounds in ambient air [23J.

The single ion response for m/z 140 (M+ ) extracted from the full scan electron 

ionisation data for the IMP-MIMS analysis of a bacterial broth is shown in 

Figures 3.3a and 3.3c. Sample giving single ion response shown in Figure 3.3a 

was taken at time 0 hours, while sample from single ion response shown in 

Figure 3.3c was taken 72 hours after the medium was spiked with 4-FBA. The 4- 

FBA is released as a peak, with a width at half height of approximately 1 minute, 

as a result of the rapid heating of the membrane during the desorption step. Mass 

spectra shown in Figures 3.3b and 3.3d match the spectrum of the pure 4-FBA 

closely showing the discrimination of the membrane inlet against activated 

sludge, mineral salts and other matrix components. As it can be seen, the 

response of 4-FBA at time 0 hours is greater than at time 72 hours, due to the 

biodegradation of 4-FBA by the action of microorganisms.
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Figure 3.2: The oven temperature programme for IMP-MIMS analysis.

The IMP-MIMS response was calibrated using solutions of 4-FBA and 4-FCA in 

the range 5 to 100 mg L '1 in MSM solution. The limit of detection for 4-FBA 

was 2 mg L’1 (S:N 3:1) and the response for the m/z 140 ion (M+ ) was linear 

with an r2 of 0.983. The molecular ion at m/z 166 was used to quantify 4-FCA, 

which gave a limit of detection of 5 mg L '1 and a linear response (r2 = 0.978). 

The membrane gradually aged during the analysis due to the repeated thermal 

desorption cycles leading to some variation in analyte response, so for the 

quantification of 4-FBA and 4-FCA the response obtained during the 

biodegradation studies was referenced to the control standard. The precision of 

the IMP-MIMS procedure was 3.3% and 3.5% (n = 6) respectively for 4-FBA 

and 4-FCA at 100 mg L '1. Samples taken during the biodegradation studies were 

also subjected to HPLC analysis. The response to standard solutions in the range 

5 and 100 mg L"1 in MSM solution showed good linearity for 4-FBA and 4-FCA 

(r2 of 0.997 and 0.999 respectively), with limits of detection < 1 mg L '1 for
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4-EBA biodegradation at time 0 hours
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Figure 3.3: Biodegradation of 4-FBA monitored by MIMS at 0 hours (a) 

extracted single ion response for m/z 140 and (b) mass spectrum and at 72 hours 

(c) extracted single ion response for m/z 140 and (d) mass spectrum.
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4-FBA and 4-FCA. Sample turnover for HPLC was 25 min, compared to 34 for 

MIMS analysis.

The pH effect of acids by the MIMS technique has been discussed in section 2.6. 

The pH of the activated sludge/mineral salt medium remained in the range 6.9 ± 

0.2 during the biodegradation studies, which is high compared to the pKa of the 

two acids (4.1 for 4-FBA and 3.9 for 4-FCA [24]). This resulted in a significant 

reduction of the analyte response in the MIMS experiments, because acid 

dissociation does not favour transport across the non-polar polydimethylsiloxane 

membrane. However, this was partly offset by an enhancement in sensitivity 

observed in the higher ionic strength mineral salt medium, presumably because 

of preferential partitioning of the undissociated acids into the membrane.

A comparison of the degradation profiles for 4-FBA using MIMS and HPLC 

analysis is shown in Fig. 3.4. These data show good agreement between the two 

methods with approximately 65% of the initial amount of 4-FBA degraded after 

72 hours. The MIMS analysis was not continued beyond this point, while HPLC 

analysis showed that after 96 hours, 90% of the 4-FBA was degraded and after 

144 hours no 4-FBA was detected, consistent with previously reported data for 

this compound. The concentration of 4-FBA in the control flask remained 

constant throughout the experiment. No intermediates were observed by MIMS 

during the biodegradation study. A possible explanation for the absence of 

intermediates is that these were more polar than the precursor acids and were 

therefore not transported across the silicone membrane. This membrane
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selectivity is supported by the HPLC data, which shows the presence of a number 

of unidentified polar compounds eluting after the solvent front.
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Figure 3.4: MIMS, HPLC and IC data for 4-FBA biodegradation. MIMS and 

HPLC results are the concentration values for 4-FBA, IC data show fluoride ion 

concentration expressed as 4-FBA concentration remaining.

The fluoride ion concentration was determined using ion chromatography (IC) 

during the biodegradation as a way of completing the mass balance and 

providing evidence of biodegradation rather than chemical degradation or 

adsorption. Fluoride measurements were carried out in triplicate for the 

biodegradation of samples containing 4-FBA. Two ion chromatography 

chromatograms of samples extracted from a shakeflask for the 4-FBA 

biodegradation at times 0 and 96 hours are shown in Figure 3.5. As it can be seen 

from the differences between Figures 3.5a and 3.5b, there was an increase in the 

fluoride concentration (peak at time 1.865 minutes) in the active flask samples as 

a function of the time, but no increase was observed in the controls. Figure 3 .4
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shows the temporal variation of fluoride ion expressed in terms o f the 

concentration 4-FBA remaining in the flask. These data agree well with that 

obtained for the 4-FBA concentrations measured by MIMS and HPLC. This 

suggests that the initial biodegradation of 4-FBA is the rate-limiting step in the 

process leading to complete mineralisation resulting in the liberation of fluoride 

ion.
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Figure 3.5: Ion chromatograms for samples coming from a shakeflask from 4- 

FBA biodegradation monitoring at (a) time 0 hours and (b) time 96 hours.
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Figure 3.7: Biodegradation of 4-FCA monitored by HPLC (a) chromatogram at 

time 0 hours, (b) chromatogram after 33 hours, (c) chromatogram after 96 hours.
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In order to follow the 4-FCA biodegradation by MIMS, aliquots were removed 

from the sample and control flasks at times between 0 and 96 hours and analysed 

by MIMS, HPLC and IC. The MIMS extracted single ion responses (m/z 166) and 

mass spectra observed immediately following addition of the activated sludge and 

at 48 hours after mixing are shown in Figure 3.6. HPLC chromatograms obtained 

for the same sample are shown in Figure 3.7. The results of the MIMS, HPLC and 

IC monitoring experiments are summarised in Figure 3.8.

The mass spectrum from the MIMS analysis at time zero shows ions 

characteristic of 4-FCA at m/z 166 (M+‘), 149 (M-OH]+), 138 ([M-CO]+), 121 

([M~COOHf), 109 ([C7H6F]+), 101 ([C8H5]+), 95 ([C6H4F f)  and 75 ([C6H3f ) 5 as 

well as some lower mass ions originating from the activated sludge. After 48 

hours, the intensity of these ions has decreased to approximately 10% of its 

original intensity as a result of biodegradation of 4-FCA and after 72 hours no 4- 

FCA could be detected. The concentration of 4-FCA in the control flask remained 

constant throughout the experiment. The spectrum obtained after 48 hours shows 

the presence of new ions at m/z 140 and 123, tentatively assigned to 4-FBA, that 

has been identified previously as an intermediate [19]. These ions were no longer 

detected after 96 hours indicating that 4-FBA and 4-FCA had been frilly degraded 

by that stage. 4-fluoroacetophenone (4-FAP), has also been reported to be a 

metabolite of 4-FCA [18] and has a molecular ion at m/z 138. This ion was 

present in the mass spectrum obtained after 48 hours, but is also an El fragment of 

4-FCA (Figure 3.6). In order to determine whether 4-FAP was being formed, the 

intensity of m/z 138 ion was ratioed to the intensity of m/z 166 ion that is present 

in 4-FCA, but not in 4-FAP. The m/z 138:166 ratio increased with time, as the
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4-FCA concentration decreased, supporting the assignment that 4-FAP was 

present in the biodegradation medium and was detected by MIMS. This 

observation was confirmed using HPLC (Figure 3.7) by comparing the retention 

time of the peak at 6.6 min with a standard.

The concentration of 4-FBA formed as a result of the biodegradation of 4-FCA 

was quantified by both MIMS and HPLC (Figure 3.8 b). The 4-FBA 

concentration increased to a maximum of 28.5 mg L '1 after 48 hours, after which 

the concentration decreased and by 96 hours no 4-FBA was detected. There is 

good agreement between the MIMS and HPLC profiles for 4-FBA. No 

intermediates could be identified from the breakdown of 4-FBA, but a peak due to 

an unidentified product with a higher polarity than 4-FBA (retention time 3.9 

minutes) was observed by HPLC (Figures 3.7 b and 3.7 c), which increased in 

intensity during the biodegradation process. This peak also appeared in the HPLC 

chromatograms for the 4-FBA biodegradation studies.

Liquid chromatography/mass spectrometry was used to identify the peaks 

observed in the HPLC chromatograms, including those that were not clearly 

characterised from the MIMS analysis. The presence of 4-FBA and 4-FAP was 

confirmed by LC/MS as intermediates in the biodegradation of 4-FCA. Other 

intermediates were also observed by LC/MS including an epoxide derived from 

the 4-FCA with a retention time of 4.19 min. This kind of intermediate can be 

produced directly by bacteria containing a monoxidase enzyme. A mass isomer of 

4-FBA with retention time of 5.23 min was also observed, but this product had a 

different retention time to those for authentic samples of the 2-FBA and 3-FBA
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isomers analysed by HPLC. The proposed pathway for the biodegradation from 4- 

FCA to 4-FBA based on the MIMS, HPLC and LC/MS data is shown in Scheme

3.1.

bacteria

COOH

■OOH r >
o

COOH

4-FCA epoxide 4-FAP 4-FBA

Scheme 3.1: Proposed pathway for 4-FCA bio degradation.

Ion chromatographic analysis was also carried out during the biodegradation 

experiments on 4-FCA, which showed that fluoride ion concentration in the active 

flask increased as a function of the time, but no increase was observed in the 

controls. Plotting the concentrations of fluoride ion (as 4-FCA) on the same graph 

as the MIMS and HPLC data for 4-FCA (Fig. 3.8 a), shows that between 40 and 

80 hours after addition o f the activated sludge there is less 4-FCA than would be 

expected from the fluoride ion concentration. This is due to the initial 

transformation of 4-FCA into 4-FBA, to produce fluoride ion and other 

metabolites (Figure 3.4).
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3.2.4. Conclusions

A IMP-MIMS technique incorporating a novel membrane drying stage that 

enhances mass spectrometric performance has been used to monitor the 

biodegradation of 4-FBA and 4-FCA. Intermediates have been identified in the 

biodegradation o f 4-FCA and confirmed by HPLC and LC/MS.

MIMS shows good sensitivity as well as discrimination against the sample 

medium and the concentrations determined by MIMS compare well with data 

obtained using HPLC and IC. The selectivity of the membrane discriminates 

against the more polar degradation products identified by HPLC. These 

preliminary data suggest that MIMS is a good alternative to chromatographic 

methods for monitoring semi-volatile compounds during biodegradation studies.

For the HPLC and IC experiments, it was necessary to remove aliquots of 

solution from the batch fermentation flask prior to analysis. However, in the case 

of MIMS, it is possible to introduce the sample directly into the interface without 

pre-treatment, other than in-line filtration to exclude the bacterial sludge from the 

membrane interface. Returning the sample to the fermentation vessel after 

passage through the interface would reduce sample consumption, as only a small 

percentage of the analyte is absorbed in the membrane. This is an initial step 

towards being able to apply this type of IMP-MIMS experiment to the 

monitoring of biodegradation reactions on-line.
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3.3. On-line biodegradation monitoring of nitrogen containing compounds 

in a simulated wastewater treatment plant by MIMS

3.3.1. Introduction

The at-line monitoring of 4-FBA and 4-FCA by IMP-MIMS, demonstrated the 

application of MIMS to biodegradation studies. However, an on-line monitoring 

system had to be developed. In this section the development of an on-line IMP- 

MIMS method for monitoring volatile and semi-volatile compounds 

simultaneously in a continuous stirred tank bioreactor (CSTB) containing 

activated sludge collected from a municipal wastewater treatment plant (WWTP) 

is described. A mixture of four industrially relevant nitrogen containing 

compounds was selected for on-line monitoring: 2-chloro-5-

trifluoromethylaniline (CFA), an aniline derivative was chosen, as anilines are 

commonly used in the manufacture of pharmaceuticals, pesticides and dyes 

[25,26], N-methylpyrrolidinone (MMP) is an increasingly common solvent often 

used to replace chlorinated solvents [27], Pyridine derivatives, such as 3- 

bromopyridine (3 BP) are also used as solvents or starting materials for 

pharmaceutical and fine chemicals synthesis [28]. The mixture was completed 

with the selection of tetramethylethylenediamine (TMEDA), a semi-volatile 

lineai' amine. The individual compounds fed to the CSTB were measured on-line 

by MIMS while the metabolites were identified with a combination of MIMS, 

gas chromatography/mass spectrometry (GC/MS) and liquid 

chromatography/mass spectrometry (LC/MS).

120



The biodegradability of pyridine derivatives has been studied extensively and 

been found to follow the order: pyridinecarboxylic acids > pyridine — 

monohydroxypyridines > methylpyridines > aminopyridines =chloropyridines 

[29-35], The bio degradation of 3BP has not been reported to date, but in general 

the strength of resistance to enzymatic cleavage of carbon-halogen bond is 

observed to increase with the electronegativity of the substituents [14], therefore 

it should be easier to biodegrade a brominated pyridine than a chlorinated 

pyridine. Biodegradation studies on selected anilines not including CFA have 

been reported previously [36,37], Bachofer et al. demonstrated that aniline is 

converted to catechol by a dioxygenase reaction in Nocardia sp. [36], while 

Pseudomonas AK20 biodegrade aniline and methylaninlines [37], Halogenated 

aromatic compounds have been previously reported as biodegradable, although 

the presence of a trifluoromethyl and a chloride group can increase the 

biodegradation resistance of the molecule [14,38], NMP has been reported to 

biodegrade to 4-(methylamino)butanoic acid [27], Linear amines with similar 

chemical properties as TMEDA (trimethylamine, dimethylamine and 

methylamine) have been reported to show high resistance to bio degradation [39],

3.3.2. Experimental

3.3.2.X. Preparation of feedstock

All chemicals were obtained from Sigma Aldrich (Gillingham, UK) and used 

without further purification. Standard solutions (100 mg L"1 of each analyte) 

were prepared in a MSM (Table 2.8) [19] and synthetic sewage (1024 mg L'1
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nutrient broth, 105 mg L '1 urea, 75 mg L"1 yeast extract, 24 mg L"1 NaCl, 13.5 

mg L '1 CaCl2.2H20 , 7.5 mg I / 1 M gS04.7H20, 206 mg L '1 NaH2P 0 4.2H20  and 

65 mg L '1 KH2P 0 4) was added to the solution. Activated sludge was obtained 

from a municipal WWTP (Thames Park, Roydon, UK) and washed to remove 

residual carbonaceous material present in the liquor. Hie amount of total 

suspended solids (TSS) in the activated sludge was determined to be 4 g L'1 by 

drying 10 m L  of washed activated sludge at 104-106°C for 1 hour.

3.3.2.2. Continuous stirred tank  bioreactor (CSTB)

The CSTB (Brighton Systems Ltd, Newhaven, UK) shown in Figures 3.9 and

3.10 was filled with 3 litres of activated sludge medium. A peristaltic pump 

(Watson-Marlow Bredel Pumps Ltd., UK) was used to supply the wastewater 

feedstock continuously to the CSTB at a flow of 125 mL h '1 corresponding to a 

hydraulic retention time (HTR) of 24 hours. The volume of wastewater in the 

CSTB was kept constant throughout the experiment.

The CSTB was held at 30°C for optimal activity of the activated sludge and was 

stirred constantly at 130 rpm. Air was supplied to the CSTB, and dissolved 

oxygen was monitored continuously in order to ensure aerobic conditions in the 

CTSB. The average value of oxygen was 6.1 mg L”1. Activated sludge leaving 

the system was filtered, washed and fed back into the bioreactor. The pH in the 

CSTB was kept constant at 7.00 for the duration of the experiment. The pH was 

regulated automatically by adding NaOH or H3P 0 4.
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Figure 3.9: Schematic diagram of the CSTB set-up.

Figure 3.10: Picture of the CSTB set-up
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Samples of the aqueous medium were withdrawn from the CSTB and transferred 

to the MIMS interface via a 1/16” stainless steel line. An in-line HPLC solvent 

reservoir filter was used for on-line sample filtration. This was required in order 

to remove solid particles, which could cause blockage of the MIMS interface.

3.3,2.3. Analytical methods

a) MIMS

MIMS analysis was carried out using a Hewlett Packard HP6890/HP5973 

GC/MS configuration (Agilent Technologies, Palo Alto, CA, USA). The 

interface containing a silicone hollow-fibre membrane (0.635 mm o.d. x 0.305 

mm i.d., Dow Coming Silastic, Sanitech, USA) was constructed in-house and 

based on the interface described in Chapter 2. The interface was located inside 

the GC oven in place of the GC capillary column (see Figure 2.2) [22], Aqueous 

samples were pumped through the interface using a peristaltic pump (Cole- 

Parmer Instrument Co. Vernon Hills, IL, USA) for 5 min at a rate of 3 mL min*1, 

with the oven temperature set to 40°C. The membrane was dried for 5 minutes by 

flushing nitrogen through the interface at a flow of 50 mL min*1. The oven 

temperature was then raised to 200°C at 45°C min'1 and immediately cooled to 

40°C again (Figure 3.11). A second heating cycle was performed between 

samples to eliminate possible memory effects in the membrane. The mass 

spectrometer was set to acquire electron ionisation (El) full scan data between 

m/z 40 and 200. The MIMS device was connected on-line with the CSTB, so that 

sampling for analysis could be carried out as and when required by pumping
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sample into the MIMS interface. The nitrogen containing analytes were 

quantified using the peak area for the SVOCs (NMP and TMEDA) and the area 

of the infusion response for the VOCs (3BP and CFA) compared to the responses 

for an external standard containing 100 mg L'1 of each analyte in MSM solution 

with synthetic sewage.

A

|  Sample intro- He 
2 duction and 

in-membrane 
E preconcentration
® /jr- ■ v** (5 min)__________

Drying temperature: 40°C

Figure 3.11: Oven temperature program for IMP-MIMS analysis,

b) LC/MS

LC/MS was carried out using a Waters Alliance 2790 chromatograph (Waters, 

Watford, UK), fitted with a Hypersil BDS Cg packing column (4.6 mm x 150 

mm; 5 pm particle size; Astmoor Rimcom, UK), linked to a Micromass Platform 

LC single quadrupole (Micromass, Manchester, UK). The injection volume was 

set to 25 pL, the eluent flow rate to 1 mL min'1 and the column oven temperature 

to 40°C. Analysis was carried out using positive or negative atmospheric pressure 

chemical ionisation (APCI) under the conditions described below. The mass
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spectrometer was set to acquire full scan data between m/z 50 and 250 at 1 

scan/second.

Positive ionisation:

The eluent was 0.05% trifluoroacetic acid (TFA) in water (mobile phase A) and 

0.05% TFA in acetonitrile (mobile phase B). The gradient was set as follows: at 

time t = 0.00 min, A = 100%; t = 8.00 min, A = 5%; t = 10.00 min, A = 5%; t -

10.10 min, A = 100%; t = 12.00 min; A = 100%. The mass spectrometer was 

operated using a corona discharge voltage of 3.20 kV. The cone voltage was set 

to 10 V. The source and probe temperatures were set to 150 and 400°C 

respectively. The nitrogen gas flow was 259.8 L h"1.

Negative ionisation:

The eluent was water (mobile phase A) and acetonitrile (mobile phase B). The 

gradient was set as follows: at time t = 0.00 min, A = 100%; t = 8.00 min, A= 

5%; t = 10.00 min, A= 5%; t = 10.10 min, A -  100%; t -  12.00 min; A = 100%. 

The mass spectrometer was operated using a corona discharge voltage of 3.00 

kV. The cone voltage was set to 10 V. The source and probe temperatures were 

set to 150 and 400°C respectively. The nitrogen gas flow was 256.2 L h '1.
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c) Chemical oxygen demand (COD)

COD analysis was carried out using a Merck Vega 400 spectrophotometer 

(Merck, UK), and commercial COD vials (containing potassium dichromate, 

mercure sulphate and sulphuric acid) (Merck, UK). COD was measured in 

samples taken from the CSTB and the feed tank.

3.3.3. Results and discussion

3.3.3.I. On-line monitoring by MIMS

MIMS analysis was carried out using a silicone hollow-fibre membrane interface 

similar to that reported in Chapter 2 (Figure 2.2) [22]. Samples were analysed on­

line from the CSTB by pumping the reactor medium through the MIMS interface. 

The only pre-treatment required for the sample was on-line filtration. MSM was 

added to the system to provide buffering and trace elements, while synthetic 

sewage was added in order to provide a source of carbon to the activated sludge 

during the acclimatising period to the nitrogen containing compounds. Previous 

studies have shown that the pH is a critical parameter when monitoring acid or 

basic compounds by MIMS, as ion dissociation does not favour transport across 

the non-polar silicone membrane (see section 2.6).

Volatile nitrogen containing compounds (CFA and 3BP) were quantified by 

continuous infusion, as they pervaporate across the membrane at 40°C. Semi- 

volatile nitrogen containing compounds (NMP and TMEDA) were quantified
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using an IMP-MIMS procedure employing the temperature profile shown in 

Figure 3.11. This approach is required because of the poor MIMS response for 

these semi-volatile compounds at temperatures lower than 100°C (the boiling 

point of water). In IMP-MIMS. analytes were accumulated in the membrane at 

40°C as the aqueous sample was pumped through the interface. The membrane 

was dried following the pre-concentration stage by passing nitrogen over the 

membrane, as suppression of the analyte response can be observed when the 

membrane is heated immediately after removal of the water from the interface. 

The use of an inert gas also helped to avoid membrane oxidation at high 

temperatures, extending the lifetime of the membrane. The analytes were 

released from the membrane by rapid heating to 200°C (45°C min'1) and 

transferred to the MS ion source.

Single ion responses extracted from the full scan El data (m/z 58 for TMEDA, 

m/z 98 for NMP, m/z 157 for 3BP and m/z 195 for CFA) are shown in Figure 

3.12. CFA and 3BP infuse through the membrane throughout the time that the 

sample is introduced into the interface (Figure 3.12b). The peak appearing after 

10 minutes is due to the heating of the membrane during the thermal desorption 

step (Figure 3.11), which results in the release of residual CFA and 3BP from the 

membrane. In contrast, the responses for NMP and TMEDA were only 

significant during the thermal desorption step. At this time the peak observed for 

each component showed a width at half height of approximately one minute.

The MIMS responses for all four compounds were calibrated using standard 

solutions in the range 5-100 mg L'1 in the presence of MSM solution and
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synthetic sewage. The response for CFA (m/z 195) and 3BP (m/z 157) was 

observed throughout the sample infusion and drying stages and both compounds 

were quantified using the integrated area of the infusion response (window time: 

0-12 minutes) (Figure 3.12b). NMP (m/z 98) and TMEDA (m/z 58) were 

quantified using the integrated area of the IMP-MIMS desorption peak (Figure 

3.12a). The analytes responses showed good linearity between 5 and 100 mg L '1, 

with r2 values of 0.9998 (3BP), 0.9954 (CFA), 0.9871 (TMEDA) and 0.9973 

(NMP). The response reproducibility was determined for solutions containing 

100 mg dm"’ of each analyte. The %RSDs (n = 6) were 6.0% (3BP), 6.8% 

(CFA), 7.6% (TMEDA) and 5.2% (NMP). Limits of detection were 1.9 mg L’1 

for NMP, 1.3 mg L'1 TMEDA, 120 pg L-1 for CFA and 150 pg L*1 3BP. It has 

been reported previously 27 that longer drying times increase the limits of 

detection of SYOCs, although in these studies the limits of detection obtained for 

TMEDA and NMP were within the acceptable range and the analysis time was 

shortened to 5 minutes, giving a total time of 16 minutes for the analysis.

The concentrations of the four analytes (CFA, 3 BP, NMP and TMEDA) were 

monitored in the feed tank by MIMS during the experiment and the variation in 

concentration with time is shown in Figure 3.13. The concentration of CFA, 

TMEDA and 3BP in the feed tank remained constant throughout the study. 

However, cross-contamination in the feed tank was observed, causing a gradual 

decrease in NMP (from an initial concentration of 100 mg dm'3) until no NMP 

could be detected in the feed. After 73 hours, the feed tank was replaced, but 

cross-contamination occurred again, as the feed tank is directly linked to the
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CSTB and no sterilisation measures could be put in place in the laboratory set­

up.

The concentrations of CFA, 3BP, NMP and TMEDA in the CSTB obtained by 

MIMS at different times during the on-line monitoring experiment are shown in 

Figure 3.14. At time 0 hours the CSTB did not contain any of the nitrogen 

containing compounds. The wastewater was fed from the feed tank (containing 

100 mg dm"3 of each analyte) into the CSTB at a flow of 125 mL h '1 (HRT = 24 

hours), so that steady state was achieved after 96 hours (i.e. 4 reactor volumes). 

The concentration of all analytes initially increased as expected. NMP 

concentration rose to 22 mg L '1 and then started to decrease until it was below 

limit of detection (1.9 mg L '1) indicating total removal of NMP at steady state 

although NMP was also being degraded in the feed tank due to cross- 

contamination. The concentration of CFA increased to 12 mg L"1 and then 

remained steady at around this concentration for the rest of the experiment 

corresponding to a CFA removal close to 90%. A similar trend was observed for 

3 BP, which showed a steady state removal of approximately 70%. TMEDA 

showed no significant removal after reaching steady state. The loss of 

compounds due to volatilisation was not quantified, although it may contribute to 

some of the loss of the nitrogen containing compounds from the CSTB tank. 

However the concentration of CFA, 3BP and TMEDA remained constant 

throughout the experiments in the feed tank (see Figure 3.14), indicating that 

volatilisation of these compounds was not a significant cause of removal for 

these compounds.
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Figure 3.12: Single ion responses for 100 mg I'1 of (a) NMP (m/z 98) and 
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Figure 3.13: Variation of the concentration of NMP, TMEDA, 3BP and CFA 

with time in the feed tank, monitored on-line by MIMS.
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Figure 3.14: On-line monitoring of NMP, TMEDA, 3BP and CFA in the CSTB 

by MIMS.

3.3.3.2. COD

COD data support the results obtained by MIMS (Figure 3.15). COD shows the 

amount of chemical oxygen needed to biodegrade the compounds found in 

solution. If the feed tank composition remains constant, the COD value should 

not change throughout the experiment. However, there was a gradual decrease in 

the COD value in the feed tank, corresponding to the removal of NMP. At time 

73 hours, when the feed was replaced by a fresh solution, the value of COD 

increased to its original value before decreasing as cross-contamination started to 

reduce the NMP concentration once again. In the CSTB, the COD value 

increased in the first few hours, before reaching steady state. At time 0 hours in 

the CSTB there was only MSM and synthetic sewage, responsible for the initial 

COD value of 106 mg dm'3. As the concentration of analytes increased the value

CFA — 3BP — A — NMP —H—TMEDA

150100Ime (hours)
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of COD increases too, until it reached a steady state. MIMS and COD results 

agree well, although the COD data do not provide information on the removal 

rate of the individual nitrogen compounds that is obtained using the on-line 

MIMS approach.

1400 
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E 1000 
S  800 
g 600
°  400

200 
0 

0

Figure 3.15: Chemical oxygen demand (COD) analysis of the feed tank and the 

CSTB.

3.3.3.3. Metabolite identification

MIMS, GC/MS, and LC/MS were used for the identification of biodegradation 

metabolites. No compounds relating to NMP or TMEDA were observed. 

However, the presence of 3-bromo-hydroxy-pyridine (3BHP), thought to be due 

to the biodegradation of 3BP, was identified by MIMS and confirmed by GC/MS 

and LC/MS (positive ionisation). Figure 3 .16a shows the El mass spectrum of the

feed tankCSTB

15010050
Time (hours)
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Figure 3.16: MIMS mass spectra at time 25 hours of (a) a bioreactor sample, 

containing the nitrogen containing feedstock and 3BHP and (b) the feed tank, 

containing only the nitrogen containing feedstock.

CSTB medium obtained by MIMS at time 25 hours obtained during thermal 

desorption of the metabolite pre-eoncentrated in the membrane during sampling. 

Due to the increasing polarity of 3BHP compared to 3BP, it has a typical SVOCs 

MIMS behaviour. Figure 3.16b shows a mass spectrum o f the feed tank solution 

at time 25 hours during thermal desorption. Figure 3.16a contains two peaks at 

m/z 173 and m/z 175 that do not appear in Figure 3.16b and are assigned to the 

bromine isotopes of the molecular ion of 3BHP. The metabolite identity was 

confirmed by mass spectral data obtained by GC/MS (retention time 6.9 min) and 

by LC/MS (retention time 3.9 min). The El spectrum of this metabolite showed
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ions at m/z 173/175 (M+), 157/159 ([M-OH]4) and 78 ([M-OH-Br]4), all o f which 

are observed in Figure 3.16a, as well as some lower mass ions common to 

bromopyridine.
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NH? OH
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Scheme 3.2: Proposed pathways for (a) CFA and (b) 3BP initial steps of 

biodegradation.

Two metabolites were observed from CFA biodegradation, tentatively identified 

as 3-trifluoromethylaniline and 3 -trifluoromethyl-hydroxy- aniline, Both 

metabolites were identified by LC/MS using negative ionisation and were 

detected by MIMS. 2-trifluormethylaniline (FMA) showed a retention time of 1.8 

min by negative ion APCI and its mass spectra showed its main ion at m/z 160 

([M-H]'). 3-trifluoromethyl-hydroxy-aniline (FHA) showed an HPLC retention
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time of 2.3 min and the negative ion APCI mass spectra showed ions at m/z 176 

([M-H]"), and 160 ([M-OH]'). Scheme 3.2 shows suggested initial steps for the 

biodegradation pathways for 3BP and CFA.

3.3.4. Conclusions

An on-line MIMS system has been developed and used to monitor the 

biodegradation of a mixture of nitrogen containing compounds in a CSTB used to 

simulate a biological WWTP. On-line filtration was the only sample pre-treatment 

required. A mixture of volatile (3BP and CFA) and semi-volatile (NMP and 

TMEDA) nitrogen containing compoimds was successfully monitored and 

quantified simultaneously on-line. Volatile compounds were determined by 

continuous infusion, while IMP-MIMS was employed for the semi-volatile 

compounds.

MIMS showed a high degree of discrimination against the sample medium, 

making it an ideal technique for on-line monitoring of aqueous bioreactor 

medium. The technique was validated for biodegradation monitoring, with results 

comparable to COD data. The response of the four analytes by MIMS was linear 

and showed good sensitivity and reproducibility.

Total removal of NMP was observed once steady state conditions were reached, 

whereas removal for 3BP was ~ 70% and for CFA was ~ 90%. There was no 

evidence of significant TMEDA removal. A metabolite of 3 BP was detected by 

MIMS, GC/MS and LC/MS, while two metabolites of CFA were detected by
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LC/MS. The identification of metabolites from CFA and 3BP demonstrates 

biodegradation of both compounds is taking place, although loss due to 

volatilisation may also contribute to the removal of the nitrogen containing 

compounds.

This work reports the use of a novel IMP-MIMS system for the biodegradation 

monitoring of 4-FBA and 4-FCA. The system was monitored at-line, and was 

validated comparing the results with HPLC and IC. The MIMS analysis showed 

good lineality, good reproducibility and compared well with HPLC and IC, an 

on-line system was also developed for the biodegradation monitoring of nitrogen 

containing compounds. A mixture of 2 SVOCs (NMP and TMEDA) and 2 VOCs 

(3BP and CFA) were analysed simultaneously. The mixture was monitored in a 

bioreactor that was linked on-line to the MIMS interface. The only pre-treatment 

step required was to introduce an on-line filtration system.
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CHAPTER 4

Membrane inlet mass spectrometry applied to the real- 

time monitoring of low molecular weight alcohols in

chloroform.
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4.1. Introduction

The use of non-polar membranes in hollow fibre or sheet form to exclude polar 

solvents and allow the pervaporation of organic analytes is termed normal phase 

MIMS [1], Previous work has employed polydimethylsilicone membranes to 

extract volatile organic compounds (VOCs) from aqueous systems [1-4] and has 

been discussed in chapters 2 and 3. This separation relies on the higher 

pervaporation of the VOCs and the hydrophobicity of the silicone membrane to 

exclude polar analytes. Conversely, the use of a membrane introduction 

technique that allows the passage of more polar materials, termed reversed-phase 

MIMS (RP-MIMS), has been less well studied [5-8].

Microporous polypropylene [5] was used by Lauritsen et a l for the analysis of 

organic compounds such as methanol, ethanol, dimethylsulfoxide and benzene in 

hexane. Kasthurikrishnan et a l  [6] used zeolite filled polydimethylsiloxane 

microporous membranes for the analysis of benzene, carbon tetrachloride, 

chlorobenzene, toluene and tram -1,2-dichloroethane in methanol and hexane. 

However, microporous membranes lack the selectivity of semi-permeable 

membranes, because transport is determined by laminar flow through the pores 

rather than diffusion across the membrane. The high sample flow through 

microporous membranes also usually requires that analyses be carried out using 

solvent chemical ionisation-mass spectrometry (CI-MS).

A polyethylene terephthalate membrane was used by Bohatka et a l [7] to 

determine selectively traces of water in butanol, hexanol and octanol, and Bauer 

et a l [8] employed a polyvinyl alcohol (PVA) membrane in the RP-MIMS 

analysis of VOCs including acetone, methylethylketone, methanol and
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tetrahydrofuran in hexane. Although the PVA membrane discriminated against 

the solvent, hexane was used as the reagent gas for Cl analysis. Maden et al. [9] 

investigated the use of a polyimide membrane for the RP-MIMS analysis of 

water, ethanol, chloroform, acetone, acetic acid and ethyl acetate in hexane. The 

polyimide was permeable to polar compounds, including water or ethanol, but 

showed limited discrimination against the permeation of non-polar compounds 

such as chloroform and ethyl acetate. The flux of hexane permeating the 

membrane was sufficiently high that El spectra were observed to have Cl 

characteristics.

Nafion® is an ionic polymer with a tetrafluoroethylene backbone and 

perfluorinated ether side chains terminating in sulfonic acid sites (see Figure 4.1) 

[10]. The hydrophilic character of the sulfonic acid groups gives a very high 

affinity for water and other polar compounds such as low molecular weight 

alcohols, [11-13] which can absorb into a Nafion® membrane, whilst non-polar 

compounds have a much lower affinity. Properties and selectivity found in 

Nafion® are based on its microphase separated morphology. Figure 4.2 shows a 

phase separated morphology of discrete hydrophobic and hydrophilic regions, the 

hydrophobic region being composed of the polymer fluorocarbon and the 

hydrophilic region of the sulfonic groups and their counter ions. Once absorbed 

into the wall of the Nafion® membrane, polar analytes diffuse across the 

membrane via association with neighbouring sulphonic acid groups. Nafion® has 

been widely used for drying vapor streams as a consequence of this 

hydrophilicity [14-17],

In this chapter, the use of a RP-MIMS configuration incorporating a semi- 

permeable Nafion® membrane for the selective permeation of the low molecular
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weight alcohols methanol and ethanol in a chloroform matrix is reported, and 

results are compared to the ones obtained by normal-phase MIMS using a 

silicone membrane.

[-(cf2- cf2\ - cf2- c f^

(O -CF2 - C F i  -0 -C F 2 -CF2 -S 0 3 H+

c f 3

Figure 4.2: View of polar/nonpolar microphase separation in Nafion®

Membrane performance was characterised with respect to response time and the 

selectivity of the membrane. The RP-MIMS approach, using a portable residual 

gas analyser (RGA), has been evaluated for a process monitoring application 

involving distillation of an alcohol/chloroform mixture and referenced against 

GC based quantification. This particular solvent system was investigated due to 

an interest in evaluating an on-line analytical system capable of real time

Figure 4.1: Nafion® structure
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deterniinalion of alcohols in chloroform. The concentrations of the alcohols 

represent quality criteria in a solvent recovery process (via distillation) of the 

halogenated solvent, making their temporal behaviour an important parameter for 

process monitoring.

4.2. Experimental

4,2.1. Normal-phase MIMS for analysis of chloroform/alcohol mixtures.

The normal phase MIMS interface used for the analysis of methanol and ethanol 

in chloroform has been described in section 2.3 and is shown in Figure 2.2 (see 

chapter 2). The interface was mounted inside the oven of a Hewlett Packard HP 

5890 GC, which was coupled to a HP 5970 quadrupole analyser. The interface 

containing a silicone hollow-fibre membrane (0.635 mm o.d. x 0.305 mm i.d., 

Dow Corning Silastic, Sanitech, USA) was constructed in-house and located 

inside the GC oven in place of the capillary GC column [1].

For this analysis, sample pre-treatment was required. A standard solution 

containing ethanol (1% v/v) and methanol (5% v/v) was prepared in chloroform. 

10 mL of the organic sample were mixed with 10 mL of water and the alcohols 

were extracted into the aqueous phase by liquid-liquid partitioning (manually 

shaking the mixture for 2 minutes), followed by partial degasification prior to 

analysis of the aqueous phase by MIMS (flowing nitrogen at 50 ml min"1 for 2 

minutes). Aqueous samples were pumped through the interface using a peristaltic
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pump (5 mL min"1) with the oven temperature set to 40°C. An aliquot (40 pL) of 

the aqueous solution was introduced into the interface using a syringe.

4.2.2. Characterisation of Nafion® membrane performance for RP-MIMS

The RP-MIMS interface used for the characterisation of the Nafion® membrane 

(Figure 4.3 a) was based on the design of a normal-phase MIMS configuration 

previously reported [I], The interface was mounted inside the oven of a Hewlett 

Packard HP 5890 GC. which was coupled to a HP 5970 quadrupole analyser. 

The interface consisted of a Nafion® membrane (0.014” i d., Omnifit Ltd. UK) 

located inside a short section (50 mm) of 1/8” stainless steel tubing. The ends of 

the Nafion® membrane were fitted tightly onto two lengths of 0.25 mm i.d. fused 

silica tubing, one of which was connected to the GC injector and the other to the 

MS ion source. The whole assembly was made vacuum and water tight using 

stainless steel compression fittings (1/16” x 1/16” x 1/8”). The sample was 

introduced into the interface using a peristaltic pump such that it flowed over the 

outer surface of the Nafion® membrane. Pervaporating analytes were transferred 

to the mass spectrometer in a stream of helium and analysed using lull scan mode 

in the mass range m/z 10-120 at a scan rate of 2.4 scan s '1. A standard solution 

containing ethanol (1% v/v) and methanol (5% v/v) was prepared in chloroform. 

An aliquot (50 pL) o f the standard solution was introduced into the interface 

using a syringe with the membrane maintained at temperature in the range 40 - 

100°C.
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Figure 4.3: Schematic diagram of the RP-MIMS interfaces incorporating a 

Nafion® hollow fibre membrane employed for (a) system characterisation and 

(b) real-time process monitoring.

Once the system had been shown to be efficient towards the selective membrane 

transfer of methanol and ethanol compared to chloroform, a simplified 

membrane interface was used for on-line applications. (Figure 4.3 b). This 

interface consisted of the same Nafion® membrane (0.014'5 i.d.) fitted tightly 

onto two lengths of 0.25 mm i.d. fused silica tubing, using wire to secure the 

membrane to the tubing, which were connected to the GC injector and MS ion 

source. The membrane was immersed in the sample for analysis. Mass spectra
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were recorded in full scan mode over the mass range m/z 10-120 at a scan rate of 

2.4 scan s '1. Response time and linearity were investigated via a standard 

additions approach as follows: the membrane was introduced in 100 mL of a 

stirred solution of 4% methanol in chloroform and stirred. Every five minutes 0.5 

mL of ethanol was added to the mixture and the m/z 29 and 45 responses were 

monitored with time.

4.2.3. Distillation of chloroform/alcohol mixtures.

The simplified MIMS interface configuration (Figure 4.3 b) was used for the on­

line investigation of chloroform/alcohol mixtures during a distillation process 

using a QMS 300 quadrupole based RGA system (Stanford Research Systems 

(SRS), Stanford CA, USA). The RGA was operated under the following 

conditions: data were typically acquired in SIM mode using m/z settings 

appropriate for the analytes of interest (m/z -  45 for ethanol, m/z — 29 for 

methanol, m/z = 35 for chloroform). The differentially pumped sampling/transfer 

line was actively heated to 60-70°C to insure no condensation of solvent vapour. 

Distillations were run on a 0.5 L scale using a LabMax automated lab reactor 

system (Mettler Toledo Inc. Hightstown, NJ USA) under typical process 

conditions. Condensed distillate collected in a receiving flask was monitored in 

real time by MIMS. Samples for comparative GC analysis were collected from 

the same flask periodically.
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4.2.4. Gas chromatographic analysis

Complimentary quantitative data for reference and comparison was obtained via 

analysis by GC/MS. A Hewlett Packard HP 6890 GC and HP 5973 quadrupole 

analyser were employed. The method used a Restek (Bellefonte, PA, USA) DB 

Stabilwax column (30 m x 0.25 mm i.d.). The oven temperature was 

programmed as follows: 40°C for 5 minutes followed by a ramp at 20°C miri1 to 

200°C.

4.3. Results and discussion

The studies described here were pursued with four objectives. The first two were 

to perform a detailed laboratory based characterisation of the behaviour of the 

silicone and Nafion® membrane for the analysis of mixtures of low molecular 

weight alcohols in chloroform. The third objective was to compare the 

performance of Nafion® and silicone membranes for the analysis of methanol 

and ethanol in chloroform, while the fourth objective was to design and perform 

experiments to test the feasibility of a process application of the Nafion® 

membrane in a RP-MIMS application, involving a recoveiy process for 

chloroform by distillation in which methanol and ethanol concentrations 

represent important parameters.
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4.3.1. Characterisation of a silicone membrane for the analysis of methanol 

and ethanol in chloroform using normal phase MIMS

Normal-phase MIMS was carried out using the interface described in Chapter 2.3 

(Figure 2.2). Normal-phase MIMS allowed methanol and ethanol concentrations 

to be determined after liquid-liquid extraction, although the trace levels of 

chloroform present in the aqueous phase were preferentially transported across 

the silicone membrane. However, this normal phase procedure required a two- 

stage sample pre-treatment procedure prior to MIMS. This had to be carried out 

off-line and was therefore not readily amenable to on-line real time process 

monitoring applications.

An aqueous sample containing methanol and ethanol extracted from the organic 

sample was introduced to the mass spectrometer. The amount of chloroform 

dissolved in water was enough to create a too great source pressure. Therefore a 

purge extract using nitrogen was needed in order to analyse the aqueous samples 

by normal phase MIMS. By flushing the sample with nitrogen for two minutes, 

enough chloroform was removed from the sample so that there would not be 

excessive pressure in the source for the mass spectrometer to stop acquiring data.

Mass chromatograms using normal phase MIMS for methanol and ethanol in 

chloroform are shown in Figure 4.4. As it can be seen in Figure 4.4, at time 3.2 

minutes, the maximum response for m/z 83 (chloroform) is obtained. There is 

some signal suppression for m/z 29 (methanol) and m/z 45 (ethanol) during this 

period of time, because the silicone membrane gets saturated with chloroform,
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which diffuses across the membrane preferably to methanol and ethanol. It can 

also be seen from the single ion responses shown in Figure 4.4 that chloroform 

signal rises sharply, while it takes longer for methanol and ethanol to permeate 

the membrane, due to the higher affinity of silicone for non-polar compounds.
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Figure 4.4: Single ion responses for the analysis of 5% v/v methanol (m/z 29) 

and 1% v/v ethanol (m/z 45) extracted with water from an organic sample using 

chloroform (m/z 83) as the solvent by normal-phase MIMS using a silicone 

membrane.

Limits of detection (S:N 3:1) were estimated to be 0.28 % (v/v) for methanol and 

0.12% (v/v) for ethanol under the experimental conditions described in section

4.2.1. No quantification measurements were carried out by this technique, as the
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method was not useful for on-line monitoring due to the liquid-liquid extraction 

and chloroform purge extract steps.

4.3.2. Characterisation of Nafion® membrane under RP-MIMS conditions.

The performance of the Nafion® hollow fibre membrane for RP-MIMS was 

investigated initially using the interface configuration shown in Figure 4.3 a. The 

interface is based on the design for normal phase MIMS described in chapter 2.3. 

[1] The mass chromatogram obtained following exposure of the Nafion® 

membrane to a pulsed sample injection of a mixture of chloroform, methanol (5 

%) and ethanol (1 %) is shown in Figure 4.5. The responses for methanol and 

ethanol {m/z 29 and 45) rise rapidly following the introduction of the sample and 

begin to level off before a significant chloroform response {m/z 83) is detected, 

reflecting the selective permeation of the polar alcohols through the hydrophilic 

membrane. The higher diffusion coefficient for methanol leads to a faster initial 

rate of rise in the response curve [18-19]. The ability of the Nafion® membrane 

to discriminate against the non-polar chloroform solvent is apparent from the 

relative intensities of the chloroform and alcohol traces, which allows the 

membrane to be exposed directly to the mixture without the much higher 

concentration of the chloroform saturating the mass spectrometer.
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Figure 4.5: Mass chromatograms for the analysis of 5% v/v methanol (m/z 29) 

and 1% v/v ethanol (m/z 45) in chloroform (m/z 83) by RP-MIMS using a 

Nafion® membrane.

Ion intensities for m/z 29, 45 and 83 indicate that the Nafion® membrane 

discriminates in favour of methanol and ethanol by a factor of 67 and 55 

respectively relative to chloroform, assuming equal analyte responses. This 

discrimination allowed El spectra to be recorded, although weak ions 

corresponding to protonated molecules characteristic of RP-MIMS applications 

were observed in some cases. The performance of the Nafion® membrane was 

investigated over the temperature range 40-100°C and the optimum performance 

for the membrane was observed at 40°C. At higher temperatures, the alcohol and 

chloroform responses were both reduced and the highest temperature (100°C) led 

to membrane failure.

The linearity of the response for ethanol using the RP-MIMS method was 

determined over a working range of concentrations from 0.5-2.5% v/v. Figure 

4.6 displays the data obtained during an RP-MIMS analysis where additions of

0.5 mL of ethanol were made to 100 mL of ethanol stabilised chloroform. The
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starting concentration of ethanol in chloroform was determined to be 5.7 g L"1. 

The ethanol response (m/z 45, C2H5CO increases with each addition, whilst the 

m/z 29 response associated with methanol falls as a result of the dilution of the 

sample. A good linear response (r2 = 0.9959) was observed for ethanol over the 

range by normalising the mass spectrometry response for ethanol to the total ion 

current and correcting for volume changes.

The limits of detection by RP-MIMS were 0.34% (v/v) for methanol and 0.15% 

(v/v) for ethanol under the experimental conditions described in section 4.2.2.
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Figure 4.6: Mass chromatograms for the analysis of 5% v/v methanol (m/z 29) in 

chloroform on addition of 0.5 mL aliquots of ethanol (m/z 45).

154



4.3.3. Comparison between normal-phase and RP-MIMS

In normal phase MIMS (Figure 4.4), polar compounds are discriminated against 

and the chloroform signal rises sharply, while it takes longer for methanol and 

ethanol to permeate the membrane. This is in contrast to RP-MIMS (Figure 4.5), 

where non-polar compounds are discriminated against and the alcohols diffuse 

more rapidly through the membrane. Therefore for this application, RP-MIMS is 

a more suitable technique, as chloroform (the solvent) is discriminated favouring 

the transport across the membrane for methanol and ethanol (the polar 

compounds), which are the analytes that need to be monitored.

Normal-phase MIMS allowed methanol and ethanol concentrations to be 

determined after liquid-liquid extraction. However, this normal phase procedure 

required a two-stage sample pre-treatment procedure prior to MIMS. This had to 

be carried out off-line and was therefore not readily amenable to on-line real time 

process monitoring applications. When using a Nafion® membrane for RP- 

MIMS, the sample could be injected for analysis without any pre-treatment. 

Therefore the simplicity of the analysis makes the RP-MIMS suitable for on-line 

monitoring, as it can be seen in Figure 4.7.
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Figure 4.7: Method comparison between normal (silicone membrane) and 

reverse-phase (Nafion® membrane) MIMS.

4.3.4. Real-time monitoring of chloroform/alcohols distillation

The application of the RP-MIMS interface has been investigated for the real-time 

monitoring of methanol and ethanol concentrations in chloroform during a 

process distillation. This ternary system contains azeotropes that hamper the 

recovery of the halogenated solvent. As such, the alcohol concentrations (in 

particular ethanol) represent a critical quality parameter in this recovery process. 

[20] The RGA system was chosen as the instrument since it has realistic process 

use possibilities.

A distillation of a solution of 4% (v/v) methanol as a co-solvent in chloroform 

containing 0.75% (v/v) ethanol as a stabiliser was carried out and the condensed 

distillate was monitored by RP-MIMS using the RGA. Normalised ion ratios

156



29/35 (COH+/Cl+) and 45/35 (C2H5 0 +/C1+), relative to chloroform, were 

monitored for methanol and ethanol respectively. These experiments were 

carried out in the laboratory at the 0.5 L scale. Sampling via RP-MIMS was 

carried out as described above. Data for monitoring the change in methanol and 

ethanol concentration are summarised in Figures 4.8 and 4.9.
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Figure 4.8: On-line monitoring of methanol in a distillation condensate by RP- 

MIMS and GC.
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Figure 4,9: On-line monitoring o f ethanol in a distillation condensate by RP- 

MIMS and GC.

The results obtained via mass spectrometry were referenced to data quantified by 

GC/MS. For referencing purposes the MIMS results were scaled by a single 

GC/MS quantification. In the data shown in Figure 4.8 the reference point for 

quantification is the point at 0.03 L o f distillate where the data points for the two 

different techniques overlap. The results for the RP-MIMS and GC analysis show 

that the methanol concentration decreases during the evolution of the distillation 

process (Figure 4.8). Early fractions o f the distillation are enriched with the more 

volatile alcohols that subsequently decrease in concentration in the collected 

distillate as less alcohol enriched fractions are collected. In practice this 

concentration could be monitored to a predetermined point after which collection 

for solvent recovery o f chloroform would begin. The portion of distillate that was 

being monitored would be reserved for an alternative recovery treatment being
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overly enriched in alcohols. The graph shows that the time evolution of the 

methanol concentration in chloroform distillate data obtained on-line by RP- 

MIMS using a Nafion® membrane compares favourably with GC data for the 

condensate. The main difference is that the slope of the function obtained by 

using RP-MIMS is slightly less negative. The source of this difference is not yet 

clear; however, it may be related to a delay in the transfer of the alcohol across 

the membrane. The variation in the concentration of ethanol during the 

distillation, monitored by RP-MIMS and GC is shown in Figure 4.9, where the 

quantitative reference was performed at 0.1 L distillate collected. The data sets 

for both methods show an initial increase in ethanol concentration, which reaches 

a maximum when the volume of distillate is ca. 0.2 L, before falling slightly. 

These results indicate that RP-MIMS method also has potential for monitoring of 

ethanol. The advantages of the MIMS approach, especially in comparison to an 

optically based method, is that real time monitoring of methanol and ethanol 

during the distillation process is possible because of the ability of the MS to 

distinguish between the alcohols.

4.4. Conclusions

The use of a hydrophilic Nafion® membrane in the RP-MIMS analysis of 

mixtures of methanol, ethanol and chloroform has been demonstrated. The 

membrane discriminates against the non-polar chloroform allowing the alcohols 

to be determined at concentrations below 0.5% v/v. The direct on-line 

introduction of sample mixtures into the reverse phase membrane interface is a 

convenient alternative to the lengthy off-line procedure required for normal
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phase MIMS. The potential of RP-MIMS with aRGA for process monitoring has 

been investigated for evolving methanol and ethanol concentrations during a 

chloroform distillation process. The analyser has been shown to be able to track 

vapour phase compositions in real time, with reasonable accuracy and sensitivity. 

A semi-quantitative capability with a minimal approach towards calibration has 

been demonstrated. A primary focus for further work will be to determine more 

precise methods towards calibration. Whereas these will not be required in all 

applications a thorough understanding of this area is important.
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CHAPTER 5

Development of a universal temperature controlled 

membrane interface for the analysis of volatile and semi- 

volatile organic compounds
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5.1. Introduction

A membrane inlet (MI) has been shown to be a rapid and sensitive technique for 

the determination o f volatile organic compounds (VOCs) in aqueous streams, air 

samples and process monitoring applications by transport of analytes across a 

permeable or semi-permeable membrane. The principles and recent 

developments of membrane inlet mass spectrometiy (MIMS) have been 

discussed in a number of reviews [1-3] and have been shown to be superior in 

many respects to other techniques, including purge and trap-GC/MS, for the 

determination of VOCs [4-6]. The sensitivity of MIMS for VOCs is generally 

high and detection limits in the parts per billion (ppb) range are possible for 

many compounds, with less polar, low molecular weight analytes showing the 

lowest detection limits. MIMS has been combined with tandem mass 

spectrometry (MS/MS), on-line cryotrapping and rapid GC separation to improve 

selectivity and reduce detection limits to the low parts per trillion (ppt) range for 

selected VOCs [6,7].

The observation that MI interfaces perform better for non-polar, low molecular 

weight VOCs than for more polar, less volatile, compounds, particularly with the 

use of silicone membranes, demonstrates the limit of applicability of the MI 

technique. A number of procedures have been published on techniques that 

extend the range of compounds compatible with MI. For example, Lauritsen et 

al. described an in-source membrane inlet system for the detection of semi- 

volatile organic compounds (SVOCs) in aqueous solution, in which the sample 

was passed through a hollow-fibre membrane positioned in a modified El mass
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spectrometer source. Interruption of the sample flow led to rapid heating of the 

membrane by the El filament situated close to the membrane surface [8]. A 

second-generation system employing the same principles was also devised, but 

instead of the sample flow being interrupted, an air plug was passed through the 

membrane while heating took place [9]. This resulted in a more rapid heating 

rate, giving a narrower desorption profile. In the configuration adopted by Matz 

et al. in the analysis of fermentation suspensions, analytes were pre-concentrated 

on a pneumatically driven membrane probe before desorption at 180°C [10].

The use of laser desorption in the determination of SVOCs by MIMS was 

reported by Soni et al. [11,12], who used a low-power carbon dioxide laser to 

irradiate the vacuum side of a sheet membrane held in a direct-insertion (in­

source) membrane probe, resulting in desorption of the permeate molecules with 

little fragmentation. All these methods are effective in the determination of 

SVOCs in aqueous samples, but in most cases require elaborate and often 

lengthy modifications to either the membrane interface or the spectrometer ion 

source, or both.

The MI technique has been applied successfully to SVOCs in an interface remote 

from the mass spectrometer ion source using in-membrane pre-concentration 

(IMP-MI) [13]. IMP-MI analytes are retained in the membrane while the sample 

is pumped across the surface of the membrane. The membrane is then dried by a 

flow of air or an inert gas across the surface, to remove water from the membrane 

and then heated, to release the analytes from the membrane and into a stream of 

helium, which is directed into the mass spectrometiy source or other detector.
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A disadvantage of IMP-MI is that existing technology uses a GC oven or the ion 

source of a mass spectrometer to heat the membrane to the desired temperature 

and that sub-ambient operation of the MI interface is not possible. If a GC oven 

is used, the time required to heat (and cool) the mass of the oven significantly 

increases the analysis time. The release of materials from the membrane heated 

in this way is slow, resulting in a broad analyte desorption peak which arises a 

problem when the MI is linked, for example, to a GC.

When VOCs are analysed by MI they may not be retained in the membrane 

significantly, and continuously infuse through the membrane. However, MI 

combined with cryotrapping [13-15], would allow VOCs to be concentrated in 

the membrane. Rapid heating of the membrane releases the condensated VOCs 

which are transferred to the detector.

This paper describes the development of a novel temperature controlled 

membrane inlet (TCMI) interface, which may be operated at temperatures in the 

range of-70°C to 250°C. This interface is heated with the use of a heater element 

at rates of up to 10°C s'1. The TCMI device may be connected directly to a mass 

spectrometer or to a GC column linked to a MS. This work also reports the first 

operation of a MI interface at sub-ambient temperatures for the pre-concentrating 

of SVOCs and VOCs.
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5.2. Experimental

5.2.1. TCMI interface

The TCMI device shown in Figures 5.1 and 5.2 is constructed from three 

concentric stainless steel tubes. The inner tube, or cartridge (0.1090” o.d. by

0.091” i.d.), contains stainless steel sample inlet and outlet tubes (0.03125” o.d. 

by 0.020” i.d) at one end. The sample inlet is connected to a liquid or gaseous 

sample or an inert gas stream (such as helium or nitrogen when a drying stage is 

required). A polydimethyl(siloxane) membrane (0.635 mm o.d. x 0.305 mm i.d., 

Dow Corning Silastic, Sanitech, USA) or often silicone hollow fibre membrane, 

is placed inside the cartridge, and connected to a length deactivated fused silica 

tubing (0.25 mm i.d., SGE, Milton Keynes, UK) at each end. The fused silica is 

inserted approximately 5 mm into the membrane. One length of fused silica is 

connected to a helium supply (for example the injector of a GC can be used for 

this purpose). The other length of fused silica is connected to a mass spectrometer 

or GC column linked to a mass spectrometer. PEEK caps are glued to each end to 

seal the cartridge.

The cartridge is placed inside a T-shaped tube (0.375” o.d. and 0.319” i.d.) 

containing heating wire and a thermocouple (K type, RS Components Ltd., UK) 

brazed to the inner wall of the tube. The heater wire (Thermocoax, Suresnes, 

France) is a thin nichrome alloy heater wire (0.5 mm diameter and around 300 

mm long) encased in and isolated from a stainless steel outer sheath that is 

brazed to the inside of the T-shaped tube. Heating rates up to 20°C s"1 may be
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achieved, but rates in the range between 5 and 10°C s'1 were used in the 

experiments carried out in this work. The heater wires were terminated to 7 

strand 0.3 mm diameter nickel wire insulated with vidaflex sleveing via a 

stainless steel crimp connection potted with a high temperature ceramic fibre 

adhesive (Cambridge Scientific Instruments, Ely, UK). The heating wires and the 

thermocouple were connected to a control box, which was used to regulate the 

temperature or temperature gradient of the interface to the desired value by 

controlling the power applied to the heater. Cooled gas (helium or nitrogen) can 

be introduced into the space between the cartridge and the outer tube to cool the 

cartridge. The cooling gas is passed through an 1/8” tube immersed in a Dewar 

containing liquid nitrogen or other coolant prior to introduction into the MI 

interface. The outer stainless steel tube (0.700” o.d., 0.621” i.d.) is used to 

insulate the cartridge and the carrier gas tube, and the space between is filled 

with insulating material (Figure 5.2b).

Figure 5.1: Picture of the TCMI device.
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The whole assembly is located in a stainless steel holder, which may be attached 

to the detector or GC wall (Figure 5.2b).

Samples were pumped through the interface using a peristaltic pump (Watson- 

Marlow Bredel Pumps Limited, United Kingdom) at a rate of 3 mL min'1. When 

no sample was being introduced into the interface, the outer walls of the 

membrane were flushed with inert gas (nitrogen at a flow of 50 mL min'1), in 

order to dry the membrane.

5.2.2. TCMI-MS

5.2.2.1. Analysis of aqueous samples

For the analysis of aqueous samples, the TCMI device was linked to a Hewlett 

Packard HP6890/HP5973 GC/MS configuration (Agilent Technologies, Palo 

Alto, California, USA). The device was located inside the GC oven in place of 

the capillary' GC column. The oven temperature was mantained at 40°C and the 

membrane was heated directly using the heating wire located inside the device. 

The TCMI-MS interface was then heated to 220°C at a gradient of 10°C s"1. The 

membrane was held at 220°C for 30 seconds and then the electrical supply was 

switched off and the device was rapidly cooled to 40°C. Analytes were 

introduced to the membrane at a flow rate of 3 mL min'1 for 5 min, followed by a 

14 min drying step using helium at 50 mL min'1 through the outer wall of the 

membrane. During this time the membrane was held at 40°C.
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Figure 5.2: Schematic of the TCMI device.
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IMP-MIMS experiments were carried out heating the membrane with the GC 

oven. Analytes were introduced to the membrane at a flow rate of 3 mL miri1 for 

5 min, followed by a 14 min drying step using helium at 50 mL min'1 through the 

outer wall of the membrane at 40°C. For thermal desorption of the analyte the 

membrane was heated to 200°C at a rate of 45°C min'1 and then cooled back 

down to 40°C.

5.2.2.2. Analysis of VOCs in air

The TCMI device was operated at sub-ambient temperatures in combination to a 

Varian Saturn 4D (Varian Associates, Walnut Creek, CA, USA) quadrupole ion 

trap mass spectrometer. A schematic diagram of the TCMI device for sub­

ambient analysis is shown in Figure 5.2c. Air samples were introduced into the 

interface at 3 mL miri1 for 3 min, whilst the membrane was held at -20°C with 

the aid of the cooling gas (nitrogen at 200 mL min'1 passed through a tube 

immersed in a Dewar containing liquid nitrogen). The membrane was flushed 

with nitrogen (50 mL min'1) for two minutes and the interface was then 

electrically heated to 100°C and then cooled to ~20°C. The heating cycle was 

repeated twice to clean the membrane between samples.

5.2.3. TCMI-GC/MS

The TCMI device was located outside the GC oven and connected to a helium 

supply on the outlet side. The inlet side of the membrane was linked to a GC 

column. A schematic diagram of the set-up is shown in Figure 5.3.

171



5.2.3.I. Analysis of aqueous samples at room temperature

The TCMI device was linked to a GC column located inside a GC oven, which 

was interfaced to a Hewlett Packard HP6890/HP5973 GC/MS (Agilent 

Technologies, Palo Alto, California, USA). The GC column was a 25 m x 0.22 

mm i.d. BP1 column with film thickness of 0.25 gm (SGE, Milton Keynes, UK).

TCMI device

I sample 
44  inlets/outlets

cooling
gas heating

wires

ector

detector

to MS

GC column

GC oven

Figure 5.3: Schematic diagram of the TCMI-GC/MS configuration.
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Aqueous samples of 5-chloro-2-trifluoromethylaniline (CFA), 3-bromopyridine 

(3BP), n-methylpyrrolidinone (NMP) and tetramethylethylenediamine (TMEDA) 

(100 mg L '1) were introduced into the TCMI at room temperature for 5 min, and 

the membrane was flushed with nitrogen (50 mL min"1) for 5 min. The 

membrane was then heated to 200°C at a rate of 4°C s'1. The GC program was as 

follows: 3 minutes at 35°C, heat to 200°C at 25°C min"1, and hold at 200°C for 10 

minutes. The GC program was started once the membrane had reached 200°C.

On-line monitoring of a bioreactor was carried out in a 5 L bioreactor containing 

activated sludge (Chapter 3 Section 3.3). The pH was held at 7.00, the 

temperature was set to 35°C, and the reactor was stirred to 150 rpm. The 

bioreactor was spiked with CFA (25 mg L"1), TMEDA (100 mg L"1) and 3BP 

(100 mg L"1), and a sample of the bioreactor medium was extracted and 

measured on-line.

S.2.3.2. Analysis of aqueous samples containing VOCs by MI pre- 

concentration at sub-ambient temperatures

The TCMI device was linked to a GC column located inside a GC oven, which 

was interfaced to a Hewlett Packard HP5890/HP5971 GC/MS (Agilent 

Technologies, Palo Alto, CA, USA). The GC column was a 12 m x 0.22 mm i.d. 

HP1 column with a film thickness of 0.33 pm (Agilent, Palo Alto, CA, USA). 

The GC program was as follows: 3 minutes at 35°C, heat to 200°C at 25°C min"1, 

and hold at 200°C for 3 minutes. The GC program was started once the membrane 

had reached 160°C.
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The sample was introduced into the interface for 5 minutes at 3 mL min'1 whilst 

the interface was held at -15°C with the aid of the cooling gas (nitrogen at 200 

mL min'1 passed through a tube immersed in a Dewar containing liquid nitrogen). 

The membrane was then dried with nitrogen (50 mL min'1) for 2.5 minutes and 

the interface was then electrically heated to 160°C and then cooled to -15°C 

again.

S.2.3.3. Analysis of VOCs from a car exhaust with MI pre-concentration at 

sub-ambient temperatures

The TCMI device was operated at sub-ambient temperatures in combination with 

a Varian Saturn 4D (Varian Associates, Walnut Creek, CA, USA) quadrupole ion 

trap mass spectrometer. The GC column was a 12 m x 0.22 mm i.d. HP1 column 

with a film thickness of 0.33 pm (Agilent, Palo Alto, CA, USA). Air samples 

were collected from car exhausts in evacuated glass containers and were 

introduced into the interface at 3 mL min"1 for 10 min, whilst the membrane was 

held at -20°C with the aid of the cooling gas (nitrogen at 200 mL min'1 passed 

through a tube immersed in a Dewar containing liquid nitrogen). The membrane 

was flushed with nitrogen (50 mL min"1) for 2 minutes and the interface was 

heated to 160°C and then cooled to -20°C. The GC program was as follows: 3 

minutes at 35°C, heat to 200°C at 25°C min'1, and hold at 200°C for 3 minutes. 

The GC program was started once the membrane had reached 160°C.
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5.3. Results and discussions

5.3.1. TCMI-MS

5.3.1.1. Aqueous samples at room temperature

Experimental work demonstrating the performance of the TCMI device and 

comparing the response given by IMP-MIMS [13] (Chapter 2) and by TCMI-MS 

was carried out using DMSO (100 mg L '1). Figure 5.4 shows two overlapped ion 

chromatograms of mass m/z 63 (characteristic ion for DMSO) (a) using MIMS 

and (b) using TCMI-MS. The peak width at half height obtained by TCMI-MS is 

over 5 times narrower than the peak obtained by MIMS, resulting in a much more 

intense peak. This is a result o f the faster heating rate for the TCMI interface 

compared to the GC oven used to heat the membrane in the IMP-MIMS 

experiment. These data show that TCMI-MS is capable of producing sharper 

peaks and higher responses. The cycle time for the analysis is also reduced using 

TCMI because of a reduction in the time required for the desorption step.
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Figure 5.4: Single ion chromatograms for DMSO (100 mg L '1) (m/z 63) with a 

drying time of 5 minutes, a drying time of 14 minutes and N2 at 50 mL min'1 as 

drying agent by (a) IMP-MIMS (maximum height 130 000 and width at half 

height 0.990) and (b) IMP-TCMI-MS (maximum height 1 200 000 and width at 

half height 0.182).

5.3.1.2. Air samples at sub-ambient temperatures

In MIMS analysis VOCs such as benzene and toluene diffuse through the 

membrane readily at room temperature, giving continuous response at the detector 

for the analytes, unless cryotrapping is used. However, in the TCMI configuration 

the membrane may be cooled to sub-ambient temperatures, allowing VOCs to be 

retained and pre-concentrated in the membrane and then released as a sharp peak 

by rapid heating of the membrane. Air samples containing benzene and toluene
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were analysed by TCMI-MS at sub-ambient temperatures to retain benzene and 

toluene in the membrane during separation. Both compounds were analysed in the 

low ppbv region (33 ppbv of benzene and 28 ppbv of toluene) for evaluation of the 

technique. The single ion responses for toluene (jn/z 91) and benzene (m/z 78) are 

shown in Figure 5.5. The estimated l.o.d by TCMI-MS at sub-ambient 

temperatures were 0.15 ppbv for benzene and 0.10 ppbv for toluene, while by 

MIMS they were 3.0 ppbv for benzene and 2.0 ppbv for toluene. This shows an 

increase in sensitivity of ca. 20 times for benzene and toluene by using sub­

ambient analysis by TCMI-MS. The main reason for the increase in sensitivity is 

because at sub-ambient temperatures the VOCs are pre-concentrated in the 

membrane, whereas the MIMS response at ambient temperature is determined by 

the steady state flow of the analytes across the membrane by direct infusion.

The analysis time was 6 minutes including a 3 minute sample pre-concentration 

step. It can be seen in Figure 5.5, that a second heating cycle shows only a small 

carryover response for the analyte (3.5 % for toluene and 1.5% for benzene), 

while when using the direct infusion MIMS technique, it can take over 10 

minutes to clear the membrane from analytes.

Similar data has been reported using a cryotrap between the MS and the MI 

interface, but a step is saved by using the TCMI configuration by combining the 

trapping and pervaporation stages in the interface.

177



(a)
9.44%

(b)
16%

m/z
91

1 st heating 
—  cycle

L
2nd heating 

—  cycle

3 5 0 0
5 8 .2 0

390 0
6 5 .0 0

temperature profile 
100°C

1st heating

sample cycle

intro­ drying j
duction step
3 min 2 min j

-50°C

2nd heating
cycle m/Z

78

analyte- 50°C
thermal
desorption

1st heating 
—  cycle

2nd heating 
—  cycle

2 4 0 0  3 0 0 0
4 0 .0 0  50:00

Figure 5.5: Single ion responses obtained by TCMI-MS using sub-ambient 

analysis for (a) toluene (28 ppbv) (m/z 91) and (b). benzene (33 ppbv) (m/z 78).

5.3.2. TCMI-GC/MS

5.3.2.I. Aqueous samples a t room tem perature

The sharp analyte desorption peak associated with the TCMI allows the interface 

to be combined directly with a GC column without a cryotrapping stage between 

the MI and the detector [6]. The TCMI-GC/MS configuration is demonstrated for 

the analysis of four nitrogen containing compounds (3BP, CFA, NMP and 

TMEDA) Although 3 BP and CFA diffused through the membrane continuously 

during the sample injection and the diying time, both analytes were also retained 

in the GC column, and released as a peak with the less volatile analytes NMP and 

TMEDA when the membrane was heated. The single ion responses following GC 

separation (m/z 58 for TMEDA, m/z 98 for NMP, m/z 158 for 3BP and m/z 195 

for CFA) are shown in Figure 5.6.
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The analytes responses showed linearity between 5 and 100 mg L '1, with r2 

values of 0.9985 (3BP), 0.9949 (CFA), 0.9763 (TMEDA) and 0.9599 (NMP). 

The response reproducibility was determined for solutions containing 100 mg 

dm'3 of each analyte. The %RSDs (n -  6) were 5.5% (3BP), 4.9% (CFA), 10.4% 

(TMEDA) and 8.9% (NMP).
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Figure 5.6: Single ion chromatograms for aqueous bioreactor samples (100 mg L' 

l) of (a) TMEDA (m/z 58), (b) NMP (m/z 98), (c) 3BP (m/z 158) and (d) CFA 

(m/z 198) obtained by TCMI-GC/MS analysis simultaneously.

The TCMI-GC/MS device was linked on-line to a bioreactor containing activated 

sludge and a minimal salt medium in order to evaluate the response to the 

nitrogen containing analytes in a complex medium. The bioreactor was spiked
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with 25 mg L"1 of CFA, 100 mg L '1 of3BP and 100 mg L'1 of TMEDA. The 

concentrations obtained by on-line TCMI-GC/MS analysis were 28 mg L*1 for 

CFA (88% accuracy), 96 mg L 1 for 3BP (96% accuracy) and 91 mg L’1 for 

TMEDA (91% accuracy).

The TCMI-GC/MS interface was also used to identify metabolites obtained 

during the biodegradation studies on TMEDA, NMP, 3 BP and CFA. The 

metabolites identified by GC/MS were also identified by TCMI-GC/MS. 

However it is notable that one of CFA metabolites tentatively identified as 2- 

trifluoromethylaniline by TCMI-GC/MS was not detected by GC/MS using direct 

injection of the aqueous sample (Chapter 3 Section 3.3.3.3). The TCMI-GC/MS 

analysis shows the metabolite with a retention time of 6.8 min, and its mass 

spectrum contains peaks at m/z 161 (M+), m/z 142 (M-F]+) and m/z 111 ([M- 

CF2]+ ). A possible explanation for the detection of this metabolite by TCMI- 

GC/MS (and not by GC/MS) is that die sample is introduced via an injector held 

at higher temperature in the GC/MS than that used in the thermal desorption step 

in TCMI-GC/MS analysis, which can cause product decomposition, especially for 

the more polar, thermally labile compounds. Larger amounts of water will also be 

introduced into the system by GC/MS than by TCMI-GC/MS analysis. In 

contrast, by TCMI-GC/MS, the compound is trapped in the membrane, rather 

than passing through the injector, avoiding the high temperatures and water 

vapour that could produce thermal decomposition of some compounds.
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5.3.2.2. Aqueous samples at sub-ambient temperatures

A mixture of benzene, toluene and xylenes in water was analysed by TCMI- 

GC/MS. These BTEX compounds diffuse through the membrane at room 

temperature and do not retain in the GC column at 35°C, so a separate 

cryotrapping step is normally required in MI-GC/MS methods [6], The 

membrane was therefore cooled to sub-ambient temperatures to pre-concentrate 

the analytes in the membrane prior to thermal desorption. In order to prevent 

aqueous sample from freezing in the membrane inlet, the interface was held at -  

15°C. Cooler temperatures froze the aqueous sample inside the interface, 

interrupting the sample introduction.

A good GC separation was obtained for the desorbed BTEX compounds (see 

Figure 5.7) and the analyte responses showed good linearity between 1 and 25 

mg L '1, with r2 values of 0.9923 (benzene), 0.9941 (toluene), 0.9996 (m-xylene 

and p-xylene) and 0.9992 (o-xylene). The response reproducibility was 

determined for solutions containing 25 mg L'1 of each analyte. The %RSDs (n = 

3) were 8.4% (benzene), 4.9% (toluene), 6.2% (m-xylene and p-xylene) and 

8.2% (o-xylene). Limits of detection (S:N 3:1) were estimated for the 

compounds, resulting in 20 pg L"1 for benzene, 23 pg L '1 for toluene, 29 pg L'1 

for m-xylene and p-xylene and 21 pg L '1 for o-xylene for a 5 minutes membrane 

pre-concentration time.
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Table 5.1: Concentrations of benzene, toluene, (m+p)-xylene and o-xylene in 

aqueous samples collected from the site o f a former petrol station site obtained by

TCMI-GC/MS.

sample benzene 

(mg L'1)

toluene 

(mg L 1)

(m+p)-xylene 

(mg L*1)

o-xylene 

(mg L 1)

1 20.7 17.3 5.4 6.4

2 12.4 11.8 3.4 4.3

3 17.9 13.8 3.3 3.9

4 3.8 5.4 1.9 2.7

Aqueous samples obtained from a former petrol station site were analysed by 

TCMI-GC/MS. The concentrations of the BTEX analytes in four different 

samples collected at the site of a former petrol station are given in Table 1. Peaks 

A to D (Figure 5.7) have been confirmed by retention time and mass spectral 

data, therefore corresponding to benzene (m/z 78), toluene (m/z 92), (m+p)- 

xylenes (m/z 106) and o-xylene (m/z 106) respectively. Peaks E to I arise from 

the presence o f alkylbenzene with a molecular weight of m.r. 120 (C9H12). Peaks 

J and K show a molecular ion at m/z 116 and m/z 130 respectively, corresponding 

to C9H8 and C10H10. Peak L shows a molecular ion at m/z 128 (CioHg) and 

assigned to naphthalene. Peaks M and N have molecular ions at m/z 142 

(CnHio), assigned to 1-methylnaphthalene and 2-methylnaphthalene.
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Figure 5.7: TCMI-GC/MS chromatogram of an aqueous sample from a former 

petrol station site containing benzene (A), toluene (B), (m-p)-xylenes (C) and o~ 

xylene (D).

5.3.2.3. Car exhaust analysis at sub-ambient temperatures

Air samples collected from car exhausts were analysed by TCMI-GC/MS at sub­

ambient temperatures in order to retain and pre-concentrate volatile organic 

compounds in the membrane. During the thermal desorption step the analytes 

were released from the membrane and chromatographically separated before 

entering the mass spectrometer.
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A car exhaust sample obtained from a Metro car (1989 registration) was analysed 

by sub-ambient TCMI-GC/MS and the single ion chromatograms are shown in 

Figure 5.8a. Peaks A to D (Figure 5.8a) have been confirmed by retention time

12% (a) A

m /z:  
78 -

26%

m /z: 
91 -

4.5%

Time
(min)

8:20 10:006:405:003:201:40
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m /z ;

3:20 5:00 6:40 8:20Time
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Figure 5,8: TCMI-GC/MS single ion responses for (a) benzene (m/z 78 peak A), 

toluene (m/z 92 peak B), (m-p)-xylenes (m/z 106 peak C) and o-xylene (m/z 106 

peak D) from a 1989 car exhaust and (b) benzene (m/z 78 peak E) and toluene 

(m/z 92 peak F) from a 2001 car exhaust.
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and mass spectral data, and correspond to benzene (m/z 78), toluene (m/z 92), 

(m+p)-xylenes (m/z 106) and o-xylene (m/z 106) respectively.

A car exhaust sample collected from a Ford Focus Van (2001 registration) was 

also analysed by TCMI-GC/MS (Figure 5.8b). Benzene (m/z 78) and toluene 

(m/z 92) could be detected (peaks E and F) but the xylenes were not detected in 

this sample. The probable reason for xylenes being detected in the old car and 

not in the new car may be due to the use of a catalytic converter in the newer 

vehicle.

These data show that real sample monitoring from air samples can be carried out 

using TCMI-GC/MS, and this has been proved with samples collected from car 

exhausts.

5.4. Conclusions

A novel temperature controlled membrane inlet (TCMI) has been constructed 

that allows fast heating and cooling of the membrane. As the rate of heating and 

cooling is greater by TCMI than IMP-MIMS, peaks obtained are significantly 

narrower, resulting in more intense peaks.

The interface does not require a GC oven to heat the membrane for thermal 

desorption of the analytes, allowing the interface to be combined directly with 

GC/MS without a cryotrap being required. The TCMI-GC/MS configuration has 

been demonstrated for the on-line monitoring of a bioreactor. As the sample is
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not introduced through the GC injector, thermal decomposition of some 

compounds may be reduced. Pre-concentration of volatile compounds in the 

membrane prior to their release has been demonstrated for aqueous and air 

samples.

A universal interface, designed for use with hollo w-fibre membranes, has been 

constructed and evaluated for MIMS. The interface is capable of handling 

gaseous and liquid samples and is applicable to the determination of VOCs and 

SVOCs, with or without subsequent GC separation. The interface is also 

compatible with other gas-phase detection systems.
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