
FOR REFERENCE ONLY

ONLY

40 0 6 2 5 9 3 4 4

ProQ uest N um ber: 10182985

All rights re serv e d

INFORMATION TO ALL USERS
The q u a lity of this re p r o d u ctio n is d e p e n d e n t u p o n the q u a lity of the c o p y su b m itted .

In the unlikely e v e n t that the a u th o r did not sen d a c o m p le t e m a n u scrip t
and there are m issing p a g e s , th e se will be n o te d . A lso, if m ater ia l had to be r e m o v e d ,

a n o t e will in d ic a te the d e le t io n .

uest
P ro Q u est 10182985

Published by ProQ uest LLC(2017). C o p y r ig h t of the Dissertation is held by the A uthor.

All rights reserv ed .
This work is p ro te c te d a g a in s t u n a u th o r ized c o p y in g under Title 17, United S ta tes C o d e

M icroform Edition © ProQ uest LLC.

ProQ uest LLC.
7 89 E ast E isenhow er Parkw ay

P.O. Box 1346
Ann Arbor, Ml 4 8 1 0 6 - 1346

ALGORITHMS FOR THE RECOGNITION

OF HANDWRITING IN REAL-TIME

Philip Timothy Wright

This thesis has been submitted in partial fulfilment of the
requirements of the Council for National Academic
Awards for the degree of Doctor of Philosophy

January 1989

Trent Polytechnic in collaboration with
Plessey Research, Romsey

This copy of the thesis has been supplied on condition that anyone
who consults it is understood to recognise that its copyright rests
with its author and that no quotation from the thesis and no
information derived from it may be published without the authors
prior written consent.

S L C

k i £ i ^ ■

. .
~·

PY\.D SLC

g"~! ~KJ ~ .

ABSTRACT

Algorithms for the Recognition of Handwriting in

Real-Time

Philip Timothy Wright

This thesis details the work undertaken by the author from September
1984 to September 1988 into the field of dynamic script recognition. It
reviews the various techniques developed since 1960 and it analyses the
m ore popular approaches to processing the raw pen motion information. It
also details the progress made in the nature of the user interface over the
last 28 years.
The main emphasis of the work has been the development of algorithms
capable of recognising, in a real-time user independent environm ent, lower
case hand-printing. In particular, the design of the character shape databases
provides for rapid searching and character matching and the techniques of
feature reduction provide character matches to be found from previously
original character encodings.
The most successful algorithm, based on the method of curve encoding by
H .Freem an, form s a foundation towards the development of natural user
text and data entry system. Extension of the character base is also possible
with no alteration to the basic algorithm methodology. A technique of
robust word segmentation has been designed that has enabled the design of
a prototype cursive script recognition system. This is presently writer
independent, running on a 68020 micro-processor. Initial results show a
word level recognition rate of 95+ %. Development of natural editing func
tions provides a self contained text entry environment.
In the future, the algorithms will be ported to an ’electronic paper’ environ
m ent and a user training phase will be designed as a front end to the
recogniser.

CONTENTS

Table of Contents

INTRODUCTION .. 1
1. STATE OF THE ART REVIEW ... 3

1.1. Introduction .. 3
1.2. Spatial Analysis M ethods ... 4

1.2.1. Observations .. 9
1.3. Topological Feature Based M ethods ... 9

1.3.1. Isolated Character Analysis .. 10
1.3.2. Cursive Word A nalysis .. 11
1.3.3. Observations .. 12

1.4. Elastic Matching and Template M ethods ... 13
1.4.1. Observations 16

1.5. Vectoral Chain Coding T echn iques... 17
1.5.1. Observations .. 20

2. TRANSDUCER REQUIREMENTS ... 22
2.1. Introduction ... 22
2.2. Study of Current Input Device Technology...................................... 22

2.2.1. Tablet D ig itisers... 23
2.2.1.1. Electromagnetic/Magnetostrictive 23
2.2.1.2. E lectrostatic ... 24
2.2.1.3. Pressure Pad .. 25
2.2.1.4. Quantised Magnetic Wave 25
2.2.1.5. Sonic .. 25

2.2.2. Touch Screens and Overlays 26
2.2.2.1. Light Emitting D ev ices ... 26
2.2.2.2. Switch Matrix D e v ice s ... 26

2.2.3. Light P e n s ... 27
2.2.4. Analogue D e v ice s 27
2.2.5. Electronic P a p e r ... 28

2.3. Survey Outcome ... 28
2.4. Specifications ... 29

2.4.1. Technical Specifications ... 29

II

2.4.1.1. Sampling Rate
2.4.1.2. Resolution 8c Accuracy

2.4.2. Tablet Requirement Considerations .
2.4.2.1. Tablet Surface Material
2.4.2.2. Stlyus Considerations
2.4.2.3. Tablet Size 8c Active Area
2.4.2.4. Hard-Copy Considerations ...

3. PREPROCESSING OF THE RAW INPUT DATA
3.1. Introduction ...
3.2. Background
3.3. Techniques E valua ted ..

3.3.1. Data F ilte rin g ..
3.3.2. Angular Variation
3.3.3. Curve Sm ooth ing
3.3.4. Slant Analysis ...

3.4. Conclusions ...
4. X-Y TREND ANALYSIS ..

4.1. Introduction ..
4.1.1. Background ...
4.1.2. Initial X-Y Alogrithm

4.1.2.1. T h e o ry
4.1.2.2. The X-Y Database
4.1.2.3. Initial R e su lts

4.1.3. Modified X-Y Algorithm
4.1.3.1. The X-Y Database
4.1.3.2. X-Y Trend Processing

4.1.3.2.1. Pen Down Problems ...
4.1.3.2.2. X-Y Trend Reduuction

4.2. Conclusions ..
5. FREEM AN VECTOR ANALYSIS

5.1. Introduction
5.1.1. T h eo ry ..

5.2. Modified Freeman Algorithm
5.2.1. T h e o ry ..
5.2.2. Encoding Mechanism
5.2.3. Vector String Distribution

5.3. Original Freeman Analysis
5.3.1. Modified Freeman Analysis

5.3.2. Reduced Freeman Vector Algorithm 96
5.3.2.1. Initial Vector Reduction Technique 98
5.3.2.2. Modified Vector Reduction Technique 105

5.4. Conclusions .. 107
6. CORRELATION AND DATABASE TECHNIQUES 109

6.1. Introduction ... 109
6.2. Correlation .. I l l

6.2.1. T h e o ry .. I l l
6.2.1.1. Initial Correlation M easure - The Chi Square

Test ... 112
6.2.2. Kolmogorov-Smirnov T e s t ... 116
6.2.3. Correlation Technique ... 118
6.2.4. Algorithm Result Cross-Correlation 119

6.3. Databases ... 120
6.3.1. Analysis of Captured D ata ... 120
6.3.2. Database Construction .. 122
6.3.3. Database Searching ... 131

6.3.3.1. Freeman Database .. 131
6.3.3.2. X-Y D atab ase ... 131

7. ANALYSIS AND DISPLAY OF THE RECOGNISED DATA 135
7.1. Introduction ... 135
7.2. Pen Stroke Combination ... 135

7.2.1. The Matching Procedure .. 139
7.2.1.1. The Matching Array ... 144
7.2.1.2. Modified Matching Criteria .. 147

7.2.2. Space Detection .. 150
7.2.3. Line Detection ... 153

8. RESULTS ... 157
8.1. Introduction ... 157
8.2. The Recognition P ro ced u re ... 158

8.2.1. Header Description ... 159
8.2.1.1. Text String Sequence ... 159
8.2.1.2. Stroke String Sequence .. 159
8.2.1.3. Name Id en tifie r.. 159
8.2.1.4. Date o f Creation 160
8.2.1.5. Tablet Type and Parameters 160
8.2.1.6. User Parameters ... 160

8.2.2. Stroke Representation ... 160

13

8.2.3. Stroke Analysis ... 161
8.2.3.1. Freeman Stroke A nalysis.. 164
8.2.3.2. X-Y Trend Stroke Analysis .. 173
8.2.3.3. Combined Algorithm Stroke Analysis 182

8.2.4. Character Analysis .. 185
8.2.5. Sapce Algorithm Performance R esu lts 192

8.3. Untrained Writer Results ... 193
9. CURSIVE SCRIPT .. 196

9.1. Introduction .. 196
9.2. Cursive Script Recognition - A Resume 197

9.2.1. Character Level A nalysis .. 197
9.2.2. Word Level Analysis ... 198

9.3. Word Segmentation ... 199
9.4. Segment-Ligature Correlation .. 205
9.5. Natural Handwriting .. 207
9.6. Initial R e su lts ... 210
9.7. Future W ork .. 214

10. CONCLUSIONS AND FURTHER WORK ... 217
10.1. A Real-Time E n v ironm en t.. 217

10.1.1. Possible Speed/M emory Improvements 219
10.2. Extension of the Character Base .. 222
10.3. Market Opportunities .. 225

Appendix A: Bibliography .. A1
Appendix B: Script Test Sheets ... B1
Appendix C: New W riter Hard-Copys & Results Breakdown C l

14

INTRODUCTION

This thesis details the work undertaken by the author at Plessey
Research over a period of four years from September 1984 to September
1988. The work is partly funded by Plessey research, and partly by the Euro
pean Commission under the ESPRIT initiative. The title of the project is
’The Paper Interface -Project no. 295’. The area of research addressed by
this work being the analysis and recognition of script in real time. The thesis
describes the work undertaken in a roughly chronological order. The major
ity of the effort concentrated on the development of algorithms, initially for
the recognition of real time hand-printing of the lower case alphabet (a-z),
but with the ultimate intention of being able to adapt the techniques
developed to be used to recognise the more natural cursive handwriting. It
is also the aim to expand to a larger symbol set, including upper case charac
ters, numerals and special characters (punctuation marks, mathematical
symbols and so on).
An initial study period of three m onths was taken in gaining an in-depth
familiarisation with the problem and the approaches taken by previous
researchers into the subject. This was performed by reviewing as many pre
viously published papers as possible. However, throughout the subsequent
course of this work, any new papers published were periodically reviewed to
m onitor new developments, in particular with respect to the user interface,
which is becoming of increasing importance in terms of gaining any degree
of user acceptance from any resulting script recognition related products.
The familiarisation gained with the subject indicated that every approach to
the recognition problem perform ed some degree of pre-processing on the
raw input data. This data being a time related positional trace of the pen tip
recorded as a person writes a piece of text. Therefore, analysis of the
different preprocessing methods was performed in order to gain some
degree of insight into the effects on character parameters of the different
techniques. One particularly striking question that arose from the bulk of
the papers that were studied was whether any of the m ethods was particu
larly suitable for adaptation to a real time environment. Subsequently, par
ticular emphasis was placed on real-time implementation in the design of the
two recognition algorithms described in Chapters 4 and 5.
One particularly important aspect of the recognition process is the extraction
and subsequent comparison of the character features against some pre
defined set of rules. These rules are usually constructed by the detailed
analysis of character shape and formation style as produced by a num ber of
sampled writers. Both the algorithms developed have a database for feature
comparison. The construction and accessing of these databases is of particu
lar importance to the overall speed of the whole system. Chapter 6 describes
the database construction and operation.
Once the character strokes have been recognised, it is necessary to process
this sequence of characters into some recognisable sentence of words as
written by the user. Both word and sentence construction, together with

some preliminary text formatting has been undertaken, although the
development environment was not particularly helpful in this respect, with
the disjoint writing and reading devices.
A detailed breakdown of the performance of the complete lower case hand
printed script recognition system is given in Chapter 8. Each separate stage
of the process is broken down in order to assess any particular strengths or
weaknesses in the system. The ultimate goal of the work lies beyond the
scope of the work described in this thesis. Ultimately we want to develop a
system which is able to recognise a writers natural handwriting. Chapter 9
describes some of the advances we have made in investigating the feasibility
of cursive script recognition. Initial results, for a system trained to the style
of a specific user have shown a good deal of promise, but we are still far
removed from a system which is able to recognise handwriting produced by
a num ber of writers.
In the concluding chapter, future work is discussed, together with observa
tions on this initial research stage.

2

1. STATE OF THE ART REVIEW

1.1. Introduction

A study of papers written on character recognition has led to the compi
lation of 95 articles and papers covering the period 1957 to the 1988. Early
work tended to concentrate on a very simple subset, namely the numerals
0-9. The techniques developed and character types analysed were very
much dependent on the available technology. As a result o f the limitations
in the acquisition of the written information, the user interface was very
basic in many instances. For example, one of the m ore reliable techniques
of character data input available during early investigation was a CRT with a
light pen attached. The character shape was encoded by determination of the
pen position on the surface of the CRT at set intervals in time. However,
due to the scanning frequency and the accuracy in absolute determination of
the pen position on the screen, each character had to be written quite slowly
and the character was required to fill the screen. Within the constraints of
input of the character data by the user and limitation of the data set, initial
research showed promising results, Caskey [28], Teitelman [29].
The advent of the graphics tablet as a data capture device proved to be the
platform into researching recognition of script as a feasible man-machine
interface. The graphics tablet allows the user to construct sentences upon a
piece o f paper as they would normally with a pad and pen or pencil.
Research rapidly evolved into the analysis o f the complete range of written
characters, letters a-z and A-Z, numerals 0-9, and the special characters

and so on.
A num ber of products appeared on the m arket which perform script recog
nition but these have so far m et with limited end-user interest. The main
area of interest has been found to be in form filling applications. This again
is a basic limitation on flexibility of user input, in that a person m ust write
each character within a predefined box, forming each character in one of a
num ber of acceptable styles, the characters being limited to upper case,
numerals and special characters. However, the recognition rate is usually
very good (99% or more) once the user has adapted their writing style in
order to eliminate any possible character ambiguities.
The natural progression is the recognition of cursive handwriting. If the
recognition of script is to be the basis o f a natural user interface, it must
address itself to the problem of cursive script recognition. Increasingly over
the last 15 years, work has m oved towards cursive script recognition. How
ever, success has so far been limited and has introduced new areas of
research into techniques beyond the geometric features requires the use of
dictionary look-up and n-gram analysis in order to identify possible letter
sequences, and so supplement the basic recognition algorithm by processing
and improving the basic recognised text.

The paper by Tappert [87] gives a good indication of the latest state-of-the-
art situation regarding.on-line handwriting recognition, referencing no less
than 257 papers. In particular, it shows that renewed effort is being put into
the problem of recognising cursive handwriting, and that much effort is now
being directed towards the man-machine interface aspect of the problem. In
particular this is concentrating on the development of ’electronic paper’, a
combined tablet and display device. Two products are already available that
feature electronic paper, from Linus in the USA, and from Panasonic
(Japan), the Panaword RL-450, both products limited to unconnected char
acter analysis.

1.2. Spatial Analysis Methods

This technique, in principle, is the simplest of all the those surveyed.
Much of the early work into character recognition used some form of spatial
analysis. The technique is inherently limited to the analysis of individually
written characters. A character is written over a platen which is divided into
a num ber of regions.

One o f the earliest m ethods o f dynamic character recognition was devised
by D im ond of Bell Labs [27] in 1957. He devised a data capture device
called a Stylator. The user m ust write the character around two reference
points. A series of wires are connected to these reference points, projecting
radially outwards. As the character is being formed the pen passes over the
wires to produce a path sequence around the two reference points. This
technique seems to suit some characters m ore than others in the ability (or
not) o f the character to be sensibly formed around the reference points. The
example below shows the character ’2’ being formed:-

B

Figure 1.1 - Numeral ’2 ’ Drawn on the Stylator

Thus, the encoding for the character is:-

2 = A B G E D

A nother very early example of the approach was researched by Richard
Brown in 1964 [2]. This was one of the first methods that utilised time
information during data capture. A metal platen, comprising seven separate
plates was written onto, as shown below:-

1
1i
,f
1
!
4
>}r

5 6 7
4

1 2 3

Figure 1.2 - Rectangular Pattern Matching Grid lj

As the pen passes over a metal plate, the produced signal is uniquely
encoded in order that the host can identify which plates had been passed
over and in which time sequence. Therefore, there is no character shape
information. Pen-up status is also given, which is an important feature of
the recognition algorithm. A user is required to train the system beforehand
in order that it can store the appropriate codes for subsequent comparison.
An example of such a character encoding is:-

'*4

* °

------------------------------^ 3

^ 1... 'W I

*0

I
Figure 1.3 - Character ’E ’ written over the platen ?

'If3!I

The character ’E ’ produces the following grid encoding,

’E ’ = 541230 5670 40 (0 = Pen-up)

An error rate of between 5 and 10% was obtained on a character set which
included the upper and lower case alphabet, Arabic numerals, punctuation
symbols, and some mathematical symbols. The sample base for the charac
ter set was very small (400 characters), suggesting some constraint on writ
ing style. However, this idea was picked up by future researchers, adopting
the technique for use on data tablets, where the user is not so constrained
by character style and size. The only major difference being the division of
the grid into 9 equal rectangles, the reference grid being constructed around
the character after it has been written.
Teitelman [29] extended the idea of the 9 rectangle grid by defining four
overlapping regions within the character grid. This technique has the advan
tage that it is more flexible in the encoding of slightly different styles of
writing a particular character ie. it will not require two encodings for two
slightly different styles. The main problem it can overcome is character
slant. It was also shown to be quite easy to extend the region areas in order
to further distinguish between characters which display further ambiguities.

Figure 1.4 - Generation of a New Property Search

In this instance a new branch on the decision tree has been added in order
to be able to distinguish the num eral *2’ from the character ’Z’
A nother type of spatial.grid was considered by Tou and Gonzalez [3]. In
this case an octagonal grid is used.

'•■r.

Figure 1.5 - The Octagonal Grid Representation

The character shape is input in terms of the pen position on a 60x60 matrix
as it is being written. The centre of gravity of the character is determ ined
and the origin of the grid positioned onto it. This had the advantage that the
grid size did not need to be recalculated each time. Another benefit of this
m ethod was that the user was not constrained to writing a character o f a cer
tain size. The technique of encoding, however is identical to the schema
adopted by Brown. If we consider the character *e* mapped onto the octago
nal grid :-

I

Figure 1.6 - Character ’e ’ on the Octagonal Grid

Producing the encoding :-

Character V = 8123218765

1.2.1. Observations

Spatial analysis is extremely easy to implement, giving the capability of
producing a low cost on-line recogniser. Such method was im plem ented by
Simmons [16] as a graphics tool for a microcomputer or PC. 90% recogni
tion is achieved on a character set consisting of the upper case alphabet.
Executable code is only 2K bytes. It analyses the regions the character curve
enters within the rectangular grid (0-8) and matches the region code pro
duced with a reference table of previously trained results.
Although this technique would be quite suitable for a very simple system as
described above it does not lend itself easily to an unconstrained multiuser
environm ent. Major shortcomings are:-
1. By its very nature it is constrained to unconnected letters or numerals.
2. The training of the look up tables limit themselves to a single users

character construction. Different user styles in character shape and the
m ethod of creation can produce an almost limitless num ber of varia
tions on the region path which would require a disproportionately large
look up table.

3. Considering only a single user system, unless the user constrains their
style, it is quite feasible that each time a certain character is written it
will produce a slightly different region code due to slightly different
character shapes. Hence, even a user dependent system needs the sup
port of consistency by the user.

1.3. Topological Feature Based Methods

Examination of the topological features of hand-written characters and
num erals is a very popular approach to dynamic recognition. The methods
adopted vary mainly in the complexity of features that they analyse. Very
basic techniques include the analysis of the following features:-
• The detection of any straight line segments along the curve and their

orientation, whether it be horizontal, diagonal or vertical.
• The detection of curvatures and the analysis of their direction o f form a

tion, either clockwise or anti-clockwise.
• The identification o f characters comprising more than one single stroke.
• The identification of cross strokes and dots and identification to the

stroke to which they are related.
This basic feature set in itself will not differentiate between all the charac
ters in the allowable set (numerals, upper case characters or whatever).

These features do however allow the characters to be classified as belonging
to a character subset. Within these subsets it is possible to investigate for
additional features. These features are usually more complicated to investi
gate than the initial feature set as they are more specific characteristics.
These tend to investigate for such features as:-
• Detection of a cusp (a point where the curve suddenly changes direc

tion causing a tooth-like shape in the curve).
• Detection of loops.
• Detection of crossings in a character curve.
• Detection of the curve m eeting itself tangentially further along.
• A m ore detailed analysis of any curves in the character leading to a

wider classification of the curve type.
The technique has been applied to both separate characters and also to
sequences of characters at word level.

1.3.1. Isolated Character Analysis

The technique described by Tou and Gonzalez [3] is a technique of spa
tial analysis which incorporates the beginnings of some form of feature
extraction. An analysis of the regions entered by the character mapped onto
the horizontal grid (Figure 1.6) enables it to be approximated by a series of
horizontal and vertical strokes. W hether or not a particular stroke is curved
is dependent on the m anner in which the curve enters and leaves a sector.
Berthod and Maroy [4] describe an on-line character recognition system
consisting of a base set of four topological features:-
a) a straight line element (T)
b) curves in the clockwise and anticlockwise directions (P), (M)
c) pen-lifts (L)
d) cusps (R)

The data points from the tablet are initially pre-processed to produce a series
of vectors. These vectors are encoded into the feature set.

Figure 1.7 - Feature Encoding of character ’a’

If any ambiguities arise due to different characters having similar features,
then some additional geometric relationships need to be added in order to
make a positive decision.
A very similar technique is detailed by Guberman and Rozentsveig [25].
Again, the description of the letters is broken down into a num ber of stan
dard elements. Two main types o f elements are defined, elem ents with no
intersection (arcs and straight line elements) and elements having self inter
section (loops and cusps).
Tang, Tzeng and Hsu [47] describe a method which simply detects maximas
and minimas in the x and y directions and use this information to recognise
the num erals 0-9. This has been used as a basis for the X-Y algorithm
detailed in chapter 4.

1.3.2. Cursive Word Analysis

This is potentially more difficult, whether attempting to recognise the
word as a whole or attempting to segment into letters and processing the
letters individually. One approach by Bozinovic and Srihari [48] segments
the word by detection o f the local minimas along its lower contour. Each
segment is analysed in order to determ ine which zone(s) it resides within.
Within each separate segment a num ber of features are searched for:-

11

• loops, classified by the region in which they occur (upper, mid or
lower).

• large connected strokes in the upper and lower zones.
• num ber of peaks in the mid-region (one, two or three).
• curves and their direction in the mid-region.
• dots and dashes in the upper and mid-regions.
From this information an initial ’guess’ is taken at the identity of each char
acter in the word. However, a lexical look-up algorithm is required in order
to select the m ost probable word from a dictionary base.
Ehrich and Koehler [40] perform a very similar analysis to the one previ
ously described, but they extract the features with respect to the whole
word. Again, significant weighting is placed on features with respect to the
zone it is found in. The mid-zone is found to contain the m ost complicated
stroke sequences.
Both the above techniques are heavily writer dependent.
Berthod and Ahyan [7] extend their theory on unconnected letters [4] to
word level analysis. Their research showed that the shape of a character can
change quite significantly from an isolated form to a cursive form. The fac
tors effecting the character shape are primarily dependent on the characters
immediately preceding and following. The set of primitives for the isolated
character analysis is extended with the addition of both interection points
and maximas and minimas in the vertical (or y) plane.
From these primitives a set of features is produced which is stated to cope
with every type of curve path to be encountered in cursive script.

1.3.3. Observations

It is clear that in order for a topological feature based technique to work
reliably and efficiently that:-
• all possible variants o f a given letter in the letter set can be described

by the same set of elements or, at most, by a small subgroup of such
sets.

• an algorithm exists that detects these elements consistently.
The technique of topological feature extraction is the most popular basis for
character recognition of all the papers surveyed. Some points to note on this
method:-
1. None of the papers surveyed have given any indication to their suitabil

ity or not to operate in a real-time environment. A technique might
recognise any character written by any writer, but if the am ount of pro
cessing time and m em ory required are very high, the technology may
not exist to realise the work in a viable product, or if it is possible, the
cost may be so restrictive so as to make the product unmarketable.

2. In most instances, the basic algorithm will not uniquely define a specific
character in the character set. A further level of processing is required
to deal with ambiguities and in most instances this level of processing is
more complex than the initial algorithm.

3. The m ethod can be applied to both separate characters and cursive
words with little or no change to the basic feature set.

4. In many instances the technique of feature extraction can rely heavily
on the character shape (for example, detecting loops, curves and cross
ing points). This is usually very much dependent on the writer (one
persons straight line is another persons curve). The majority of tech
niques are therefore heavily user dependent.

5. The cursive word analysis techniques tend to analyse the whole word
(no definite character segmentation) and, as such, are heavily depen
dent on dictionary look-up. This can constrain the word set to be recog
nised.

1.4. Elastic Matching and Template Methods

The technique of elastic matching has been applied successfully in the
areas of speech recognition, shape matching and signature verification. It is a
technique which allows for the accurate comparison of two strings in which
not only the contents, but also the order of the elements may vary. It gives
a fast and reliable quantitative estimation of the degree of similarity between
the two strings.
One o f the earliest papers to consider elastic matching was written by Tap-
pert [10]. The character ’features’ are obtained directly from the raw charac
ter point information:-

Figure 1.8 - Character Comparison

The points along the character curve are obtained at equal time intervals.
The parameters selected being:-
1. a measure of the tangential angle to the curve along all the points mak

ing up that curve.
2. a m easure of the corresponding vertical distances of these points from

the baseline of the curve.
These two parameters were chosen because of their relative invariance with
respect to character size and translation. From these parameters it is possible
to construct a vector string where:-

S = v0, v l t v2, v 9 K*

where V{ - (0, , yt)

and N = no. o f points, Time ,T = At * N

Initially, a potential user m ust create their own set of prototype parameter
sets. The param eter set for an unknown character is compared against the
set of prototypes, and a match is said to be found with the prototype which,
on comparison, yields the smallest overall distance of differences. This,
however, makes the technique heavily user dependent.
Lu and Brodersen [45] designed and built a dedicated Dynamic Time Warp
ing processor that was able to manage a template set of 500 reference sym
bols. They did not find it possible to handle the very high processing

14

overhead to run the algorithm in real time with no performance degradation
without the DTW processor. In order to reduce template matching, a pre
analysis was performed to eliminate those templates which were definitely
not similar to the unknown. This left only around 10 possible templates to
match with. Any significantly larger num ber of templates would have
effected the real time performance.
Elastic matching can be performed on any basic feature set, be it shapes,
lengths, directions, angles or any feasible set of parameters. Szanser [13]
makes a few points about the application of elastic matching to character
recognition. He considered ways of reducing the template matching by mak
ing various assumptions, mainly:-
1. Ignoring upstrokes in characters, since it is the down strokes which con

tain all the useful information.
2. Not to assume that all the features in a character breakdown are

equiprobable.
3. Grouping sets of features to speed up the matching process.
Burr [35] describes a technique similar to Tapperts. He produced a stored
set of 26 lower case reference vector arrays. An unknown vector array is
compared to each of the reference arrays in turn, and a measure of similar
ity of shape is determ ined by a m ethod of limited time-warp constraint. Fig
ure 1.9 shows an example of matching between characters ’a* and ’d \

' t j . ■ • v . * ' • i I 'p .V '- -t!/

i4s

2

43

•d’

3
2 (i)

1 <= i <= 9

3

1
Vii

3

Figure 1.9 - Non-linear Stretching between curves ’a ' a n d ’d ’

An initial compression technique is used to reduce the num ber of samples
in the unknown character to a value similar to those in the reference set.
This reduces the computing time considerably. A training phase is required
for each user, as with the m ethod described by Tappert.

1.4.1. Observations

Elastic template matching is not a technique which has been originally
designed with script recognition in mind. Its original application has been in
the field of speech recognition. Therefore, its suitability for script recogni
tion seems, as yet, still to be proved. Two serious drawbacks of this tech
nique appear to be:-
1. Its limitation to being a trainable user dependent system.
2. Depending on the num ber of features in each feature set and the

num ber o f feature sets and the size of the character set, elastic m atch
ing can very easily become too processor dependent so as not to be
feasible in real-time.

16

On the plus side, for a user dependent system, elastic matching provides a
very reliable technique. It also requires no extra processing once having
passed through the template matching process, ie. the matching process pro
duces a definite result.

1.5. Vectoral Chain Coding Techniques

Chain coding is a means of approximating a curve by a series of straight
lines. The straight lines are interconnected and follow the path of the curve
so as to be a continuous approximation. The essence of the technique is that
the length and direction o f each line is restricted to one of a num ber of
preset vectors, each vector being identified by a num ber, as in Figure 1.10
(a). Therefore, a character curve quantised into a chain of vectors may be
expressed simply by a string of num bers as in Figure 1.10 (b).

(a) - Typical vector numbering scheme

o
4 5 6 0 1 2 6 6 6 6 1

(b) - Character curve quantisation

Figure 1.10 - Chain coding

Chain coding was introduced as early as 1960 by Herbert Freeman [81] and
as a result this type of coding is often referred to as Freeman chain coding.
A large num ber of variations on the eight vector m ethod have been used in
the area of curve analysis and character recognition. Ikeda et al [22] used a
vector set quantised into 24 alternatives for the recognition o f Japanese
characters. Powers [34] used an eight vector model as a basis for character
recognition, however the octants were mapped such that the vectors

18

representing them are offset by a factor of 22.5° from the m ost common
reference vector set shown in Figure 1.10(a). This, however, has the disad
vantage that pen strokes in the important colinear and orthogonal directions
(representing upstrokes, downstrokes and cross-strokes) are not explicitly
represented, but can arbitrarily fall into directions 0 or 7 for right cross
strokes, 3 or 4 for left cross-strokes, 1 or 2 for upstrokes, and 5 or 6 for the
downstrokes.
Berthod and Maroy [4,5] realised the importance of these colinear and
orthogonal strokes and decided to segment the circle into 8 octants of
unequal size. Octants in which upstrokes, downstrokes and cross-strokes
should occur are made narrow in order that these strokes may be more
easily identified.

2 1

3

4

65

(i) (i i)

Figure 1.11 - Alternative Vector Direction Sequences

Once a curve has been encoded into the Freeman vector string, it is possible
to perform a num ber of manipulations on it:-
• expansion
• contraction
• rotation
• path reversal (m irror imaging)
Powers [34] used Freeman encoding to vectorise character curves. However,
he found that the chain code generated by a single user for a particular char
acter can vary quite markedly. In order to overcome this problem, the chain
code is processed into a num ber of arc and straight line sequences which is
used as input to the recognition process.

Farag [11] analyses the vector string as a Markov chain. A vector set
comprising eight vectors represents a Markov chain with eight states. If we
consider the character ’a ’ shown below, a vector has a conditional depen
dence upon the preceding vector. For instance, a vector 6 is m ore likely to
be followed by another 6, a 7, or a 5 than it is by a 4, 3, 2, 1, or 0. This is
because there are more straight regions and gradual curves in a character
than there are sharp angles or points of inflection. Each of the eight states of
the Markov chain has a conditional probability, />(y,7y,-i), which is the pro
bability of a particular chain code occurring, given the one before. The
character ’a ’ will have probability equal to the product of its com ponent vec
tor probabilities, viz:-

Proba - P 4 . P 54 . P & . P 16 . P(yj . P S0 . P s5 . P 25 . P 62 • P 66 ■ ? 7 6

FRa = 4.5.6.7.0.5.5.2.6.6.7

Figure 1.12 - Freeman Encoding of Character ’a’

Observations

In considering the use of chain coding as a means of representing
natural handwritten input internally there are a num ber of argum ents that
weigh heavily in its favour:-
1. the grid size can be small so that the detailed deformations in a hand-

drawn stroke may be captured.

2. there is a well defined set of elem entary manipulations which are easy
and fast to compute.

3. it can be very compact in terms of storage requirements, and its m ean
ing easy to interpret.

4. there are a variety of simple and powerful techniques for analysing
chain coded curves.

There is no other scheme for representing the Cartesian grid data from a
graphics tablet. For script recognition, chain coding has been shown to be
suitable for representing handwriting, and can also provide a certain amount
of preprocessing.

2. TRANSDUCER REQUIREMENTS

2.1. Introduction

The role and nature of the data input device is very im portant to the
realisation of a reliable and robust real-time data capture system for the
input of dynamic hand-written script. This chapter analyses the various
requirem ents for a suitable data capture system and pays particular attention
to:-
(i) the writing surface.
(ii) the pen stylus
These aspects are particularly im portant for the capture o f a users natural
writing style. The idealised situation is where the user can treat the data
input mechanism as they would do if they were writing with a pen or pencil
onto a piece of paper or a pad of paper on some flat surface such as a table
or desk. The pen stylus is particularly important, as it determ ines how
easily the user can enter the script. The more familiar the user is with the
pen stylus, the m ore representative of the users writing style will be the pro
duced output. The ideal case will be to allow the writer to use their own per
sonal writing implement. Also, with respect to a natural environm ent, it
would be advantageous to allow the user to orient the tablet writing surface
to suit their particular writing posture. Such a prerequisite would mean that
the tablet be both light- weight and reasonably small, and that its orientation
is not limited by such things as cables or peripheral hardware.
Apart from the m ore specific user operation parameters it should be made
clear that the complete unit m ust conform to the normal operating
specifications for such electronic devices. The major considerations are listed
below:-
(i) extremes in temperatures (typical figures 40°C operating, 55°C stored).
(ii) humidity (90% non-condensing).
(iii) shock
(iv) vibration
(v) altitude
(vi) electrostatic discharge (such as the electrical discharges accumulated on

people).
(vii) electromagnetic susceptibility (reductions in performance due to radia

tion from nearby equipm ent).

2.2. Study of Current Input Device Technology

Before producing a more detailed specification of the input device it was
decided to undertake a study of devices currently available on the market.
The following types of device were considered to warrant investigation
(i) tablet digitiser pads.
(ii) touch sensitive screens and overlays.
(iii) light pens.
(iv) analogue devices (eg. m ouse, joystick).

2.2.1. Tablet Digitisers

The following technologies have been used for tablet operation
1. electromagnetic/magnetorestrictive
2. electrostatic
3. pressure pad
4. quantised magnetic wave
5. sonic
6. electronic paper

2.2.1.1. Electromagnetic/ Magnetorestrictive

This is the m ost widely adopted technology on the market at present.
The surface of the tablet is not dependent on the technique and so can be
made from any hard wearing, durable non-metallic material.
Operation is by means of magnetic coupling between the pen stylus and the
active surface area of the tablet. The pen contains a coil powered by an a.c.
(120 KHz) source which can be regarded as the primary of an air cored
transform er. The secondary being the conductors in the tablet surface.
(These are usually wires or thin metal strips arranged in a grid underneath
the tablet surface). The stylus induces a current in the conductors which
produces a signal voltage across the surface output lines which is propor
tional to the distance between the conductors at the edge of the grid and the
pen. The outputs at the conductors is scanned by the output control circuits
giving the pen location. Refer to Figure 2.1.

pen
0 /P

C ontro l
Y Drive

circu it

D igitised elk

& Tinning

X Drive

RCV
Host
C om pute r

D ig itis ing

circu its

Surface O/P linescircu its

Figure 2.1 - Electromagnetic Tablet

A magnetorestrictive device reduces positional errors caused by conductive
drawing materials, m oisture etc.
Tablet resolution ranges from 100 to 1000 points per inch. However, tablet
resolution does not have much meaning if its effect is negated by a poor
sampling rate, Tappert & Kim [44]. Similarly, the benefit o f such high reso
lutions m ust be tem pered against the degree of accuracy that can be
achieved when using a pen with a tip thickness of 1mm or so.
The technology can only detect the interference between the pen coil and
the m etal grid, and therefore not specifically the tablet surface. Therefore a
micro-switch is usually built into the stylus tip in order to indicate that the
pen is being pressed onto the tablet surface.

2.2.1.2. Electrostatic

The tablet surface is a conductive plate and the stylus picks up the vol
tage from the plate. The distance from a fixed reference can be determined
from the voltage picked up knowing the voltage gradient. The plate must
have a uniform voltage gradient and the stylus m ust be in contact with the
tablet surface, which precludes the tracing operation. However, such devices
are m ore expensive than an electromagnetic device of similar performance.

Tablet resolutions similar to electromagnetic devices are currently available.

2.2.1.3. Pressure Pad

Typically, the pad consists o f two electrodes fabricated by flexible print
wiring on a base plastic film separated by a conductive rubber sheet. When
the pad is pressed onto, the rubber sheet becomes conductive, allowing a
current to flow from one set of conductors (constant source current) to the
other, this being picked up by operational amplifiers which determ ine the
x-y co-ordinates.
Tablet resolution is not as good as for the previous two types of tablet, m ax
imum figures up to 300 points per inch.
One advantage of this technology is that m ost types of writing implement
may be used with this type of device. The major problem with this type of
device is that the nature of the surface is not particularly durable and can
easily break down with constant usage. These devices are mostly used for a
pointing operation (eg. CAD design) and as such cannot differentiate
between the hand pressure and pen pressure, both produced as a writer rests
their hand on the tablet surface when writing.

2.2.1.4. Quantised Magnetic Wave

A relatively new principle. Four magnetic waves are set up in a coarse
array o f orthogonal conductors. There m utual interference defines the pre
cise location of the stylus.
Resolution is not yet particularly good, up to 200 points per inch.

2.2.1.5. Sonic

No tablet as such is needed in this case. Two orthogonal m etal strips
are placed around the writing area. Along each of these are m ounted micro
phones. These pick up the sound or ’sparks’ generated when the stylus
comes into contact with the active surface enclosed by the two strips. The
delay between emission and reception of the sound can be computed to a
distance measure.
So far this technique cannot produce a reasonable resolution, up to 100
points per inch. It is also particularly sensitive to changes in the ambient
room tem perature.
A similar approach uses sonar, where high frequency pulses are reflected by
the stylus. Again, low resolution devices only are available.

2.2.2. Touch screens and Overlays

There are two types of overlay device which can be m ounted on a
screen such as a CRT or plasma panel. These are:-
(i) light em itter - receiver
(ii) switch matrix devices

2.2.2.1. Light Em itting Devices

These consist of a line of light emitters (infra-red LE D ’s), one on each
o f the x-y planes, with photo detectors opposite them . W hen a stylus or
finger cuts the light path at perpendicular points, the position can be deter
mined. Resolution is very low (up to 0.25 inch at best). The cost of LE D ’s
and detectors also make this device relatively expensive.

2.2.2.2. Switch M atrix Devices

These employ two main techniques:-
1. two crossed conductive grids each containing thin film parallel conduc

tors form the switching matrix. The x-axis is located on the convex sur
face of a CRT and the y-axis is located on the concave side of a flexible
polyester membrane. The surfaces are separated by an air gap. Resolu
tions are up to 256x256 points for a 14" screen.

2. a thin clear conductive film on a glass shield is placed over the surface
of the display. The shield is covered by a mylar layer with a resistive
coating. When the upper layer is touched (with a pen or finger) the two
layers make contact over a micro-inch separation and its position is
determ ined by the voltage drop across the resistive coatings with the x-
y co-ordinates appearing as analogue voltages which are interpreted by
the systems decoder which converts them into digital signals. Refer to
Figure 2.2.

Transparent sheet
w ith conductive

M ylar coatims

Transparent resistive coating

G lass

Separator Points

Figure 2.2 - Touch Sensitive Display

The pressure required in order to make contact between the two layers is
dependent on the space between the separator points. The fewer the num ber
o f points, the less the force required to make contact. Therefore, for use
with a pen or pencil, adequate separator points would be required to ensure
that hand pressure does not cause contact to be made, while still ensuring a
clear screen.
Resolutions up to 400 points per inch can be achieved, dependent on the
d /a converter.

2.2.3. Light Pens

This m ethod of data capture was used in some early script recognition
techniques. There are two basic types of light pen, using either a photodiode
or photomultiplier. The photodiode has a poor response time and, as such
is, suitable for slow raster scan displays only. The photomultiplier has a
response time typically 0.5 microseconds. Point positioning is relatively sim
ple, but pen tracking is fairly complex and tracking of rapid pen m ovem ent
is not possible.
Therefore a good resolution can be obtained from a high resolution screen,
up to 500-1000 points per inch, but a low sampling rate makes them unsuit
able for tracking handwriting m ovement.

2.2.4. Analogue Devices

These devices include cursor buttons, joysticks and mouse tracker balls,
employing switch, potentiom eter an optical systems.
They can be used as a faster and more manoeuvrable alternative keyboard
cursor control, but are not suitable for handwritten input.

2.2.5. Electronic Paper

At this stage mention must be made of ’electronic paper’. This concept
is the integration of digitiser and display technology. In effect, it is the per
fect medium for the script recognition application. It provides a portable I/O
unit that eliminates the need for a disjoint display. Hence, the user can con
centrate his thoughts in the one area instead of spending effort switching
between the writing and reading area.
Since the beginning of 1988 ’electronic paper’ products have begun . to
appear on the market place, mainly from Japan. So far the size of the active
area on such devices has been A5. Two of the most promising products in
terms o f parameter requirem ents (described in more detail later on in the
chapter) are:-
(i) The Photron FIOS-6440 [89]. It has an electromagnetic digitiser with an

active area of 217mm x 140mm. A resolution of 0.1 mm (250 points
per inch) and a digitising rate of up to 150 points per second. The
display is LCD with a pixel size of 0.3mm x 0.3mm. Therefore the
script displayed on the screen cannot faithfully reproduce the samples
from the digitiser.

(ii) The WH-515 Sensor/LCD unit [90]. This has a cordless pen. The active
area and resolution are the same as for the Photron device. Pixel size is
similar at 0.33mm x 0.33mm. This product can also be purchased with
application software, including a line-drawing mode which permits the
drawing of lines, boxes and circles. Line thickness can be selected and
lines and shapes can also be erased.

2.3. Survey Outcome

As a result of the initial survey two types o f device were considered for
further evaluation (at this early stage no ’electronic paper’ product was
available). A high resolution electromagnetic tablet, the Numonics 2205,
costing $900 and a touchscreen device, the Elographics touchpad, costing
around $1600. The tablet has a resolution of 1000 points per inch and the
touchpad a resolution of 400 points per inch.

2.4. Specifications

The requirem ents for the tablet and stylus can be broken down into
two main categories:-
(a) the quantifiable factors detailing the technical specifications of the tablet

and stylus.
(b) the ergonomic requirem ent relating to the ease of usage.

2.4.1. Technical Specifications

The technical specifications are broken down as follows:-

2.4.1.1. Sampling Rate

The sampling rate is the rate at which the pen position can be deter
m ined by the tablet and that position transm itted to the host. The num ber
of times this is done per second is known as the sampling rate. The vast
majority of tablets available on the market today are not specifically oriented
towards the accurate capture of dynamic handwritten input. CAD/CAM
applications, the major user of graphics tablets, do not require large sam
pling rates, as they maily use the tablet as a pointing device. Therefore,
many tablets have a simple serial RS232 ASCII link, maximum transfer rate
9600 or 19200 baud. The limiting factor in the sampling rate is now the
num ber of bytes transmitted per x-y co-ordinate pair. A typical co-ordinate
pair form at might be:-

< STAT> < SP> < XXXXX> < SP> < YYYYY> < CR> < LF>

For our chosen tablet, the Numonics 2200, the precise serial data form at per
point is fifteen bytes of data, eleven bits long (1 start bit, 8 data bits and 2
stop bits) is 165 bits per x-y pair. Therefore, over a 19200 bps link, a m ax
imum o f 116 samples per second can only be obtained. A greater point
status transmission rate can be obtained by sending the serial data in packed
binary format, which compresses the num ber of bytes required to around
one third of that required for simple ASCII. Another option is to transmit
the data over an 8-bit parallel Centronics link.
In the final instance, the data format is not important as long as:-
(i) the link speed is not so great that the processor is required to spend too

great a proportion of its time reading its input buffer and not having
enough time left to process said input.

(ii) it is of such a format that it can easily be decoded to give the pen posi
tional information, again, without substantial processor loading.

The paper ’A Sketchphone System’ [82], has analysed the handwriting
speeds of Japanese writers, deducing that they are dependent on character
size, character types and also the type of stylus used. This could be likened
to writing sentences in upper case English, since each character is usually
made up of a num ber of separate strokes and each character is separated
from its neighbours. The average writing speed determ ined was between
100-200 m m /second with an instantaneous speed potential of greater than
1000 m m / second.
In order to determine what was an adequate sampling rate, it was necessary
to identify a ’worst case’ writer. This was found to be someone who, for a
given sampling rate, produces the smallest num ber of x-y co-ordinate pairs
for a specified test sentence. This is found to be someone who writes both
very quickly and writes very small letters. A study of pen writing speeds
analysed from a small set of 20 writers, writing two sentences in both con
nected and non-connected script indicated an average writing speed o f 50-75
m m /second, and an instantaneous speed potential of up to 500 m m /second.
The average time taken to write a character was 0.42 seconds, while for very
slow writers this figure was observed in excess of one second. Of course,
these figures are very much dependent on the type of character or stroke
being written. Very simple strokes or characters (eg. l,i,j,c) will not take as
long to form as the more complicated characters (eg. m ,g,k,w). By recon
structing the character shapes of a num ber of such simple and complicated
characters, sampled at differing line rates it was possible to determ ine a sam
pling rate below which important character information might be lost.
Figure 2.3 below shows how the shape of the character ’k ’ is affected by the
sampling rate.

60x,y pairs per second 30x,y pairs per second

Figure 2.3 - Effect of sampling rate on character shape

Subsequently, for our 20 writer sample, a data rate of 80 co-ordinate pairs
per second was determined as a figure below which it might be possible to
seriously affect the shape of some characters.

2.4.1.2. Resolution and Accuracy

Resolution is a measure of the minimum distance separation on the
tablet which will register as two separate points. Accuracy takes into account
repeatability, i.e. the difference in successive readings obtained when the
pen is placed down on the same point on the tablet surface. This m easure is
usually a lower value than the measure of resolution.
In this particular application the accuracy of the tablet is far less important
than the resolution. The resolution of the tablet must be such that it can
faithfully reproduce the character shapes for writers who form particularly
small letters. We preclude all script so small that its identity cannot be deter
mined by the human eye. Therefore a lower limit for script size is that hav
ing a mid-zone width of no less than 1mm. Refer to Figure 2.4 :-

upper zone

lower zone

mid zone > 1mm

Figure 2.4 - M inimum Character Sizes

A resolution of 20 divisions/m m (500 divisions/inch) gives an adequate
clarification o f the shape of m id-bound characters, m ost im portant being the
arcs and loops in this region, however the Elographics tablet with a resolu
tion of 10 divisions/m m does begin to show some shape deterioration.

2.4.2. Tablet Requirement Considerations

The are certain features of the data input mechanism which m ust be
carefully considered in order to allow a writer to enter their handwriting data
into the com puter as naturally as possible. The ultimate aim is ’electronic
paper’ and technology is developing rapidly so that in the next few years an
integrated screen and tablet can em ulate the process of the writer working
on a sheet o f paper. A t present the set up of separate tablet and display is
quite disconcerting for an untrained user and annoying for a familiar user.
Recently, a great deal o f research has been directed towards the user inter
face and one aspect of this is the realisation of ’electronic paper*. Tappert et
al [83] suggest how powerful a handwriting system could be when the writ
ing is directly above the display. They have developed a prototype ’elec
tronic paper’ system but have exposed problems due to parallax between the
tablet surface and the display surface. Also, because they have an integral
stylus, the stylus shape, its tip characteristics and the pen-down sensing
mechanism have all caused problems similar to those experienced in
evaluating electromagnetic tablets.

Until a suitable ’electronic paper’ system can be proven, a number of guide
lines are suggested in order to facilitate ease of use at the human interface.
These have been noted from personal tablet usage and from feedback
obtained from various people asked to write test sentences onto the tablet.

2.4.2.1. Tablet Surface Material

The m ost important features of the tablet is that it be hardwearing and
durable. Most of the pressure type tablets on the market at present have a
very limited lifetime and the components directly below the writing surface
do tend to be very susceptible to breakdown, even after a small am ount of
usage. However, they do have an advantage over the electromagnetic type
of tablets in that the surface properties are very similar to those of a pad of
paper, whereas the electromagnetic tablets have a hard, unreceptive surface
(particularly for writing) and in some instances they have a coarse surface,
making writing very difficult, since this tends to cause the writer to produce
a very angular and unnatural style of writing and these angularities will
cause the recognition algorithms great difficulties.

2.4.2.2. Stylus Considerations

A pressure type tablet has the benefit of allowing the user to write into
the data capture system using whatever type of writing device they prefer to
use. This ensures that the writing being captured is the users normal style.
Tablets which have an integral stylus are not normally suitable for capturing
handwriting because the pens are bulky and awkward to use. They are also
limiting by their nature of attachment to the tablet. The reason for this is
that, to date, tablet devices have predominantly been designed as pointing
devices or simple graphical input devices and not as a text entry device, and
as such, they are not ergonomically suited as a means of inputting handwrit
ing information into the computer.

2.4.2.3. Tablet Size and Active Area

Typically, office documents are produced on A4 size paper. The active
area of the tablet should be such as to encompass an A4 size area (11.7" x
8.3" or 300mm x 210mm). The majority of tablet m anufacturers today pro
duce tablets with active areas o f 12" x 12" as a standard part o f their range.
This area is ideally suited to also allow a part of the tablet area to be
configured for command mode operations, for example, switch to
script/sketch mode, start docum ent creation, end document creation, clear
display and so on. In addition, a region around the active area would also be
very useful. This would allow anyone using the device a comfortable "dead

zone", at the bottom edge of the device and the left or right hand side of
the active area, would allow someone to comfortably write on the tablet
without having their hand drop off the tablet edge. This is particularly of
increasing importance with the height of the tablet surface above the normal
user working area. Assuming a tablet height such that a dead zone is
required, a plan view of the tablet would be as shown below:-

25

300

i

A4 S e lect

W riting A rea

r

A rea (Menu)

25 210

300

425

375

All D imensions in mm

Figure 2.5 - Tablet Area Dimensions

2.4.2.4. Hard-copy Considerations

If the user is writing onto a piece of paper on the tablet surface, it
would be particularly necessary to keep the paper static on its surface during
the course o f the writing session, since any dislocation of the paper would
result in the invalidation of further text input with respect to that already
produced and located. Therefore, some kind of restraint (perhaps as for a
clip-board) would be necessary as an integral part of the tablet.

3. PREPROCESSING OF THE RAW DATA INPUT

3.1. Introduction

As a result o f the state-of-the-art review undertaken it was noted that a
large num ber of authors performed ’preprocessing’ of the raw data received
from the data tablet. This could mean anything from filtering out unwanted
points, to changing the character shape and/or altering the character size. In
particular, it is a ’normalisation’ of the character shape. This was found to
involve one or m ore of the following:-
(i) D ata thinning or angular variation analysis, whereby the num ber of

data points received for any one character are filtered in order that a
roughly similar num ber of co-ordinates received for a particular charac
ter are processed irrespective of the speed of the writer.

(ii) Angular variation analysis or curve smoothing, perform ed in most
instances to filter out the ’jagged’ appearance of a character introduced
by a poor resolution tablet.

(iii) Slant analysis. A m ethod for normalising character shapes by either
shearing or rotating characters that exhibit left or right slant in order
that they are similar in feature to the same character written without
slant.

(iv) Size normalisation. All written characters are either enlarged or reduced
to provide a ’standard’ data block as input to the feature extraction
algorithms.

These techniques feature strongly in many papers in order to reduce the
complexity of the succeeding feature extraction and recognition algorithms.
For this reason it was felt helpful to investigate these techniques and gain
some familiarisation in case they may prove necessary or useful at some
later stage.
Some preprocessing techniques perform analysis necessary to rem ove certain
adverse features which may confuse the following encoding algorithm. In
general the preprocessing was performed for two reasons:-
1. To provide some degree of uniformity in the amount of data input to

the recognition algorithms irrespective of the type of tablet capturing
the data. Each tablet has slightly different attributes (see Chapter 2,
Technical Specifications section). We surveyed a total o f 15 digitising
tablets and purchased four, the Numonics and Elographics previously
mentioned and also the Calcomp 2000 data tablet and the Penpad dev
ice supplied by Pencept Inc. in the USA.

2. As a character standardisation mechanism. Many characters exhibit
features related to the user writing style as well as character specific
features. In some instances the detection and neutralisation of these
features after the character encoding can prove to be a major task.
Removal of the user dependent features limits the range of alternatives

quite markedly, more so as the user base is expanded.

3.2. Background

The main reason for preprocessing is the need to normalise uncon
strained hand-writing. Unconstrained in terms of size, pen speed, character
formation style. Unconstrained writing will inevitably produce a large varia
tion in the input data collected for different users. These features can be
classed as being related to the the two preprocessing functions mentioned
above. Case (1):-
• different amounts of input data will be captured during the construction

of characters by different users
• different users produce characters with a wide range of sizes
Case (2) is mainly as a result of:-
• variation in character shape. Usually people who write characters very

quickly produce much more angular characters than people who write
more slowly.

• character slant. The most common feature of user writing style.
Several techniques for data thinning of the tablet co-ordinate points have
been described, generally by means of a simple input filter. However, Brown
and Ganapathy [19] then performed interpolation on the data points in
order to generate a stream of equidistant points. The other m ethod for data
thinning is by angular variation analysis, as used by M. Berthod and S.
Ahyan [7]. Points may be rem oved from the character curve if the angular
variation o f the curve is small. Therefore generally far fewer points are
required to describe a straight line section of the curve than to describe a
loop or cusp.
Curve smoothing is found to be a necessary preprocessing step for a num ber
of real time algorithms. Burr [43] performs curve smoothing by initially per
form ing a sine fitting algorithm to the quantised data. The reconstructed
curve then is resampled at a higher data rate. A nother technique is per
form ed by some authors, Burr [43] and Brown and Ganapathy [56], which
is to perform some form of normalisation on the character size. This usually
takes the form of character size translation into a specific character box area,
required by the encoding and recognition algorithms.
Consideration of character slant receives mixed attention. Some authors
simply state that heavily slanted characters cannot be processed by the algo
rithm . D. Burr [43], Brown and Ganapathy [56] and Higgins and Whitrow
[53] describe techniques for character slant detection and removal. It is
interesting that the consideration o f character slant and its rem oval has only
recently been addressed, basically with the move towards the more uncon
strained user input. In the very comprehensive state of the art survey into
the recognition of handwritten characters by C.Suen, M. Berthod and S.
Mori [42] there is no explicit reference to character slant, only the fact that

distortion and style variations are produced by the writer and the fact the all
user independent techniques are highly sensitive to these variations.

3.3. Techniques Evaluated

3.3.1. Data Filtering

Raw co-ordinate data filtering is by far the most common preprocessing
technique used. The main reason for this is the wide variation in the
am ount of data during the quantisation of characters by the data tablet. The
graphics tablet must be capable of faithfully encoding characters which have
been written either very quickly and/or very small.(See Chapter 2). How
ever, in order to ensure sufficient data for the worst case (or fastest) writer,
we obtain the adverse result of collecting much more data than we required
from a very slow writer. In most recognition techniques the recognition time
per character or word is roughly proportional to the am ount of data input to
the encoding algorithm. In a data set of around 100 writers we noted the
slowest writer produced 2.6 times as many co-ordinate points in the produc
tion of two test sentences than did the fastest writer.
It was not the intention to use the co-ordinate data filter in an attempt to
standardise the num ber of points processed per character, since we required
to retain the raw character shapes from every type of writer (fast and slow).
We did not wish to remove shape information from characters which could
be o f use further along the processing, in identifying the character.
It was found, however, that some writers would pause with the pen resting
on the paper during the formation of a word or character. This lead to the
capture of unwanted data, in the form of noise and not at all related to the
character shape. The data filter was therefore implemented so as not to
remove character shape information.
A num ber of techniques process the input co-ordinates in such a way so as
to produce co-ordinate pairs at roughly equal distances along the character
curve. However, it was decided at the early analysis stage that this process,
would discard timing information, which might be of later use. Therefore
we decided to adopt the very simplistic technique of a simple data filter. A
lower threshold value was set . If we consider a series of encoded points
along the character curve:-

Figure 3.1 - D ata Thinning

Setting our minimum distance threshold, dti

d(.p0-PO > d<
accept P x

else
discard P i

If point P x is accepted, we restart from P { to determ ine whether we should
accept point P 2.

However, if point P { is discarded, we remain at point P 0 in order to deter
mine whether we should accept point P 2.

This process continues over the entire length of the character curve. The
m inim um threshold distance is a fixed value. Therefore a large character ’a*
written at the same speed as a small character V by the same writer should
produce x times more points, where:-

where D â = total travel o f large a

and D as = total travel o f small a

G reat care m ust be taken, therefore, when determining a lower threshold
value, to ensure that no important point data is removed during data filter
ing. This means setting a smallest character size which may be written and
subsequently recognised as being a character or part character and not a dot.
This is usually limited by the resolution o f the tablet.
It was decided not to attempt to filter out too much of the data produced
while the pen was in motion. The main source of unwanted data arose as a
result of the user pausing after bringing the pen down onto the paper,
before writing the character or pausing with the pen on the tablet surface on
the completion of a character. Character pauses in a string of x-y co
ordinates were quite easy to detect. Tablet accuracy ensures that it will not
result in the production of a sequential string o f identical spatial points.
However, it will result in the production of a string of points which vary by
a very small distance. The minimum diameter character size allowed was set
at 2m m . Below 2mm it is difficult to read individual characters comfortably.
Analysis of pause periods showed that they could last up to 0.5 seconds,
which, at a sampling rate of 80 points per second, is the capture of 40 redun
dant data points. For an average o f 19 data points per character, this is not
an insignificant amount of redundant data.
Initially it was decided to retain the timing information supplied by the
tablet by only removing the redundant data caused as a result o f user hesita
tion. This ensures that the character shape is not degraded further. All data
produced as the pen is in m otion along the curve was retained by selecting a
threshold of 0.25mm for the Numonics tablet. This value is proportional to
the tablet resolution. This ensured that points would only be rem oved if the
pen was stationary. At this stage it is of the utm ost importance that no pos
sibly useful information is discarded before it is analysed. It was felt that the
concentration of points along a character curve may provide pen speed
information which could be attributed to certain character features. For
example, a sharp point of inflection is bounded by a large reduction in pen
speed. Also, upstrokes and downstrokes also exhibit the greatest pen speeds
along the character curve.

3.3.2. Angular Variation

Angular variation analysis may be used as an alternative to data thin
ning. By examining the angular variation between successive straight lines
produced as a result of connecting points in sequence it is possible to
rem ove ’redundant’ points. If the angular difference between two successive
lines falls below a threshold angle (0r) the mid point of the three can be
rem oved, as it contributes little or no information to the overall character
shape.

Starting at P i

02i < 0/- - discard P 2

03i < 0r - discard P 3

041 > Qt - retain P 4

R estart at P 4

Figure 3.2 - Angular Variation Analysis

An example of the effect on character shape for varying degrees o f angular
variation analysis can be seen in Figure 3.3. The original character ’a’ is
composed of 19 co-ordinate points. Seven degrees of data thinning are
shown for threshold angles of 10°, 20% 30% 4 0°, 50% 60° and 70°. In the final
case, at QT = 7 0°, only 7 co-ordinate points remain, a reduction to only 36.8%
of the original data size. A t 0r = 70° the character still resembles the letter
’a’ and although it has become severely angular in shape, it cannot be con
fused by any other character in the lower case alphabet.

Figure 3.3 - Degrees of Thinning by Angular Variation Analysis

At Or = 40° the shape of the letter ’a’ begins to deteriorate, in particular the
shape of the anti-clockwise arc is lost. However, at 9r = 30° the shape is still
retained with only 10 data points, 52.6% of the original data.
One particularly useful feature highlighted by angular variation analysis is
the identification of upstrokes/down strokes in a character, as long as the
stroke is a reasonably straight line.

P P
1

P
2

6
Figure 3.4 - Upstroke/ down stroke Detection

This feature is highlighted along the character curve by a large individual
distance measure compared to all other retained points along the curve.
Although the technique is good for this particular character example, it was
found that it would not operate reliably for all characters. It cannot handle
the noise introduced by some writers produced by pen rest, because the ran
dom nature of the cluster of points produced also leads to a random path
connecting these points, with the result that the angular variation technique
is ineffectual. Therefore, it is necessary to perform data thinning by lower
distance threshold measure beforehand.

3.3.3. Curve Smoothing

Curve smoothing is particularly useful as a preprocessing stage to char
acter recognition. It can remove erroneous points in the character curve
introduced as a result of:-
• quantisation error (poor tablet resolution)
• jitter points (transmission noise or inadequate pen position detection)

• user hand shaking (hesitation)
In general it is not necessary to reconstruct the characters original curve per
fectly. However, the m ethod presented by Burr (sine fitting) might be of
use on sampled data from a particularly poor tablet. The sampled points
could be fitted to a series o f sine curves. These curves are then sampled at a
higher rate to produce a m ore accurate representation of the original charac
ter curve. It would not, however, be particularly useful for real time
preprocessing due to its large processor overhead.
Of the range of tablets evaluated, all had an accuracy greater than or equal
to Q.OOSin and a sampling rate of at least 60 points per second. This was
found to encode a curve with sufficient accuracy. Quantisation and jitter
noise are usually not severe enough to distort the character shape so as to
be too far rem oved from the original character shape.
An example of particularly severe jitter could often be obtained from a Cal-
comp 2000 tablet, especially when writing a character quite quickly. Some
data tablets detect the next character point by searching an area around the
previously detected character point. This is much faster than interrogating
the entire tablet surface each time and as a result, a much higher sampling
rate can be achieved. However, problems can arise if the pen speed takes
the pen outside the bounds of the next search area, leading to the produc
tion of a completely random data point.

Figure 3.5 - Encoding Noise D ue to Jitter

The noise points have introduced extra cusps into the character curve.
These extraneous features tend to mask the curves natural characteristics.
However, this is a particularly rare case of noise now that the tablets have a
much better degree o f resolution and accuracy. A more common problem is
quantisation noise on a particularly small character, which can seriously dis
tort the character curve. Higgins and Whitrow [53] do not perform any
curve smoothing because they feel it to be too time consuming and can lead
to a loss of detail which might prove useful at a later stage.
The curve smoothing technique is simply a series of point averagings
between the start and end points of the curve. Basically, a new mid-point is
calculated as being positioned centrally between the two end points. The
process can be repeated a num ber o f times, each pass refining the curve
shape further.

1st Iteration:

X i = X u

, * l + * 3
* 2 = 2 *

, X 2 + X 4
* 3 = ----- «------ ;y3='

yi=yi

yj+ys
2 ’

yi+y*

2nd Iteration:

X l - X i l

X 1 + X 3
X2-

* 3 = '

2

X2+X4

y 2=

y*=yn

y iW i

yi+yi

» yi+y*
?3 = X----

y»=y*

If we take a section of a character curve that is observed to exhibit severe
noise problems and pass it through only two iterations of the algorithm we
can see (Figure 3.6) that the noise has been eliminated. The character curve

44

smoothing can only be effectively performed once the curve has been
finished (while the data thinning can be performed as the points are
received from the data tablet). This is necessary in order that the algorithm
does not smooth out legitimate character curve features, especially sharp
turning points.

45

‘ .
•< y ■ r . ‘ 5'.- •

3

(a)

7'

1st Iteration

7'
(b) 2nd Iteration

Figure 3.6 - Curve Smoothing

3

If the algorithm were allowed to smooth the whole curve unconditionally we
would observe such detrimental results:-

KVU? V ^ V'A ./V:

46

■4̂ .-

M

:!

f

{ ■ J ; v.

2
'v *1'

(a) 1st Iteration

s

4*« '

v i1*

7

(b) 2nd Iteration

Figure 3.7 - Smoothing of Legitimate Curve Features

The curve above is part of the character *w\ Smoothing of this section of
the curve rem oves the feature o f the character ’w’ which distinguishes it
from the characters ’u ’ or *v\ In order to detect and retain such features it
is necessary to analyse the curve two points ahead o f the point to be
smoothed. This enables one to decide whether the point is indeed a spuri
ous noise point, in which case the two points before and after it will not

47

suggest the presence of a local maxima or minima. Therefore the point
should be smoothed. Otherwise, we have a genuine maxima or minima in
the curve which we do not want to degrade by smoothing.
Figure 3.8 shows the algorithm applied to our character ’a’. Figure 3.8 (a)
indicates how the character shape is distorted if any cusps are not identified.
The character shape begins to seriously degrade after only three iterations. If
we detect cusps we can eliminate these points from the smoothing algo
rithm , so preserving the upstroke and downstroke information. The charac
ter ’a’ in this example does not exhibit very serious jitter, and so is not
requiring smoothing. One adverse affect of the smoothing is the reduction
in the overall size of the character, notably loops as can be seen in Figure
3.8 (b).

SMOOTHING PASSES=3SMOOTHING PASSES*2

(a) no cusp detection
SMOOTHING R SMOOTHING PASSES:

SMOOTHING PASSES*2 SMOOTHING PASSES*3

(b) with cusp detection

Figure 3.8 - First Smoothing Algorithm

In order to reduce the shape degradation due to the smoothing algorithm, a
modification to the original algorithm will smooth the character curve while
preserving the character shape more effectively. The modification was fairly
minor, still performing the averaging process, but not incorporating the pre
viously averaged point in the next stage of the same iteration. The character
smoothing is still as effective as before, while maintaining the loop size.
However, it is found to degrade quite seriously after only three iterations of
the smoothing algorithm. Figure 3.9 (a) shows the modified smoothing on
the character ’a ’.
It is not particularly useful to observe the effectiveness of the smoothing
algorithm on our character ’a’. Figure 3.9 (b) shows a seriously deformed
character ’a’ which has been passed to the smoothing algorithm. After three
passes the jitter points have been ironed out. These jitter points m ust be
rem oved in order to successfully analyse the ’true* character features.

SMOOTHING R SMOOTHING PAS!

SMOOTHING PASSES*2 SMOOTHING PASSES=3

(a) Modified Smoothing

SMOOTHING PASSES; SMOOTHING PASSES-1

SMOOTHING PASSES=2 SMOOTHING PASSES=3

(b) Noisy Character

Figure 3.9 - Smoothing Algorithm

3.3.4. Slant Analysis

Slant rem oval is performed by a num ber o f authors in order to m inim
ise the complexity of the subsequent feature extraction and recognition algo
rithms. As it is a user dependent feature, slant is considered by most
authors as a trait which should be rem oved before character/ word process
ing. Slant rem oval has the benefit that it standardises the basic shape of the
character set (a-z for example). It has a more severe effect on certain types
o f character, those which have large aspect ratios ,ie. characters occurring in
the upper and mid zones and the mid and lower zones:-

b ,d ,f,g ,h ,k ,l,p ,q ,t,y ,z all can experience severe slant distortion

a,c,e ,m ,n ,o ,r,s ,u ,v ,x do not suffer from the same am ount of distortion

51

It is important that slant removal should be totally divorced from the recog
nition algorithms. The technique for slant identification and removal
described below is not particularly involved with the retention of the charac
ter shape with deskewing as long as the only feature seriously altered is the
elimination of the slant. Brown and Ganapathy [56] deskew cursive words
by slope analysis on only the mid-zone letters.Usually the initial problem in
m ost slant removal algorithms is the determination of the angle of slant
(05). One technique by Burr [43] investigated initially set the centre of the
character to (0,0). The centre was defined as:-

^ (*m ax + -^min) (ym ax + ^m in)

The angle of slant is calculated by computing the centres of gravity of the
curve portions above and below the x-axis, T and B . The angle of the line
joining these points to the horizontal is deemed to be the angle of slant, 9S.
Figure 3.10 shows this perform ed on the unslanted character *r\

e,s

Figure 3.10 - Using Centres of Gravity to Determ ine Character Slant

Burr [35] adopts a different approach for a connected letter string. We
define character slant as the angle to the vertical of any major downstroke
detected in the character curve. Slant removal is broken down into the fol
lowing processes:-
(i) detection of all downward (negative y) travels along the character.
(ii) identification of which, if any, is the major downstroke.
(iii) determination o f the angle of the major downstroke to the vertical.

• (iv) slant rem oval by shear transformation
The first stage is quite easily performed. The second stage involves the
investigation of the local angular variations along each negative y curve

elem ent. The angular variations along a straight line portion will be small
compared to the angular variations of a negative y portion which is an arc.
Thus negative arc portions can be eliminated by selecting a m inim um thres
hold angle. Any local angular variation exceeding this threshold disqualifies
the curve portion from being a valid downstroke.

/ / { (9 i < e„)<M(e2< eM)<M(e3< eM»

Element £q - 4 = straight line

Figure 3.11 - Curve Downstroke Detection

It is possible to find a num ber of elem ental curves which could be classed as
straight line elements (for example in the ch a rac te r’m ’). If m ore than one
downstroke element is detected, each separate element, if found to be a
valid downstroke is deskewed individually.
A fter calculating the angles of the these elem ents to the vertical we m ust
decide w hether they are valid downstrokes or some other straight line ele
m ent.

53

r

Figure 3.12 - Non downstroke Straight Line Elem ents

These straight line elements do not require alignment as they are not meant
to be vertical. Therefore we must select a lower threshold angle (0*,) of 60°.
Any straight line detected whose angle to the vertical is 0L or less is not pro
cessed further. In this way we do not attempt to deskew diagonal straight
line elem ents as might be produced in the subset above.
It was decided to perform a shear transformation to rem ove the slant from
the character. Although this may distort the shape of the character some
what, it will not alter the shape to the extent that it alters particular charac
ter features. Consider the slanted character ’a* transformed by rotation.

54

(a) Before rotation (b) After rotation

Figure 3.13 - Rotational Transformation

Shear transformation has two advantages over the technique of rotation
(i) it is far simpler to perform than rotation of the entire character.
(ii) it is possible to retain the original size and position along the baseline

m ore easily than rotation.
Consider a slanted character V :-

55

(a) D e t e c t i o n (b) A l i g n m e n t (c) S h e a r A d j u s t m e n t
Pivot

V
skew

Figure 3.14 - Deskewing Procedure

By determ ining where along the character curve a particular downstroke is
to be found it is possible to decide whether to use the top of the downstroke
or the bottom as the pivot point. If the downstroke is in the second half of
the character, the pivot is the top o f the downstroke, otherwise the pivot is
the bottom of the downstroke. This ensures that we only need adjust the
minimum num ber of x positions after downstroke alignment.
If we detect a num ber of valid downstrokes, the operation m ust be
repeated:-

56

(a) O r i g i n a l (b) F i r s t A l i g n (c) S e c o n d A l i g n

1

Figure 3.15 - Multiple Downstroke Alignment

This technique is very simple to implement and proved effective on most
slanted characters. It did, however, occasionally fail in instances where:-
(i) the downstroke was particularly curved so as to fail the test for straight

line detection.
(ii) the downstroke was so slanted that it exceeded the lower threshold QL,

to the extent that it could not be distinguished from a diagonal.

3.4. Conclusions

It appears that in many papers reviewed a great deal o f emphasis is
placed on pre-processing in one guise or another. Indeed in some cases the
complexity of the pre-processing matches the complexity of the recognition
algorithms. The familiarisation gained has shown that, while in many cases,
this processing of the raw data is highly beneficial to the success rate of the
recognition algorithms using them , a num ber of worrying points did arise:-
• it is not possible to be able to preprocess every single character per

fectly. For example, curve smoothing sometimes rem oves a vital
feature, while slant removal might introduce an erroneous feature. In
such instances the recognition algorithms will certainly fail to recognise
the character correctly.

• the preprocessing algorithms ideally should be fast and simple to imple
ment. Techniques involving complicated iterations sometim es appear

57

to have only limited benefit to the subsequent recogniser, their useful
ness being outweighed by their size and speed.

For these reasons the only technique which seemed both beneficial and easy
to implement was the simple data filter that removed pen pauses. This is the
only preprocessing performed at present on the raw data before being input
to the recognition algorithms described.

58

4. X - Y TREND ANALYSIS

4.1. Introduction

One of the major factors in developing an algorithm for the real time
analysis and display of handwriting is that it be sufficiently efficient so as to
give the recognition level desired without requiring so much computing time
that eventual migration to a real time environm ent is precluded from the
outset. Therefore , while not producing code which will run in real time
from the outset, there m ust be the capability that the algorithms can be
optimised for real time operation. This is the initial algorithm used for the
encoding of the raw data points output from the tablet in a form suitable for
subsequent recognition procedures. This section describes its development
for the analysis of unconnected script and numerals. However, its applicabil
ity is not limited to unconnected character recognition , and by its nature of
operation, the algorithm will migrate in some form to become a basis for
the analysis of connected script

4.1.1. Background
The x-y trend algorithm was based on the work of Tang, Tzeng and

Hsu [47]. The paper describes the application of the technique to the recog
nition of the num erals 0-9. The x and y turning points are extracted from a
curve and from these are extracted a series of primitive shapes. Six primi
tives are extracted, four of which indicate the maximum and minimum x
and y turning points, a fifth indicating a straight line and the last being the
stroke start / stop delimiter. This basic idea was applied to the lower case
character alphabet. Tang claimed that with only 10 turning point sequences
they could encode over 70% of all input patterns for numerals 0-9 for a
sample set of 30 students writing the num erals 0 to 9 once only.

If we consider the lower case alphabet set a-z, many of the letters were
found to be formed by writers with only a single pen to paper stroke. How
ever, in some instances it is necessary to form the character with more than
one single pen down motion (m ost notably the diacritical marks in letters
i,j,t,f). We can deduce that the simpler strokes will have far fewer turning
points than the more complex strokes. The Cartesian (x-y) travel o f the pen
is tracked as the pen traces the character outline. Therefore a point on the
curve (Xi,yi) is a turning point in the x direction if (x,+ l-x,)< 0 and 0
and is a turning point in the y direction if (yi+i--yf)< 0 and (yt— y,_i)< 0.

If we consider two characters, ’c ’ a simple character and ’m ’ a complex
character. The very simply constructed ’c’ has only one turning point (an x
minima) between its end points whereas the ’m ’ has a total of 9 turning
points between its end points.

59

X'

Character 'c' - 1 turning point

S

i*x

i
y

Character fm - 9 turning points

Figure 4.1 - Comparison of character turning points

The one major constraint about designing a character recognition algo
rithm is that it should be able to perform in a real time environm ent (i.e.
the user should be able to see the result of writing a character appear
instantaneously on the screen). Any am ount of delay between writing and
displaying degrades the effectiveness and naturalness of the system. In the
study undertaken o f algorithms for the recognition of script [84] the most
promising papers in terms of achieved recognition rate were as a result of
complex algorithms suitable for a large mainframe, but not so suitable for a
real-time stand-alone recognition system if the recognised output does not
appear instantaneously. M ethods based on matching an unknown character
or word template against a database of pre-formed templates gave very good
recognition results for a user dependent system on which the user had
already performed an initial training session. However, for a user indepen
dent system to be undertaken using this technique a very much larger
num ber of reference templates is required and the m anner o f the template

60

matching would appear to degrade the system performance so as to exclude
real-time operation. Topological feature extraction is another popular
approach , some algorithms incorporating x & y turning points as just one of
a num ber of different features to be extracted.

4.1.2. Initial X Y Algorithm
This m ethod is a very simple extension of the work described earlier by

Tang. It was not envisaged at the outset that it would be able to sufficiently
differentiate between all the letters in the alphabet, but rather to be able to
classify letters into some subset of alternatives related to the similarity
between certain letter shapes in the alphabet. Analysis of an initial set of 25
writers led to an initial broad alphabet sub-classification

f t
y g
a d q
P b
n h u
r v
0 c e
m w
k x z
1 s j 1

Therefore the main purpose of this initial algorithm was some form of
verification that letter shape information could be extracted very easily, and
m ore importantly, very quickly. It is hoped that this could be used as input
to m ore advanced stages, reducing the computation required at these later
stages by focusing the decision procedure.

4.1.2.1. Theory
The first approach to the analysis of the turning points was to analyse

the x and the y travel separately as the co-ordinate points trace out the path
of the character. The x-travel is effectively split into the relative x-travel
from one x-turning point to another. The reason for analysing the relative
movem ents rather than the absolute m ovem ents was to be able to classify
letters by their shapes irrespective of their sizes, i.e. two letters of similar
shape but different sizes would have identical travel moments.
In this respect we also classify the start and stop points of the character as
turning points. The same process is performed independently for the y-
travel over the path of the character. When the pen is lifted from the paper,
the incremental travels in both the x and y direction are normalised. This
involves simply expressing each increm ental travel as a fraction of the total
travel in that particular plane. Therefore an encoded character will be of the
form:-

61

where Ix j 1+ lx 21+ be 3 1+........+ be* 1= 1

and \y 1 1+ \y 2 1+ ly 31+ + lyw 1= 1

Alternate x values will be negative. Similarly for the y-trends. If we take our
character ’m ’ shown previously and encode it we will produce the result
shown below (Figure 4.2):-

x - tr a v e l = - 0 .1 0 0.90

y - tr a v e l = - 0 .2 3 0.22 - 0 .2 0 0.18 - 0 .1 7

where I- 0 .1 0 1+ 10.901= 1.00

and 1-0.231+ 10.221+ 1-0.201+ 10.181+ 1-0.171=1.00

Figure 4.2 - Character Encoding by the X-Y trend algorithm

Analysis of encoding the lower case alphabet for a num ber o f writers
showed that a num ber of characters produced a quite unique x and y trend
representation, for example, only the c h a rac te r’m* produces such a regular
sequence of y-travel characteristics, five turning points commencing with a
minimum. These characters were found to be the more complicated charac
ters to form (e.g. m ,w,g,k). However, for the majority of the alphabet set it
was noted that different characters would produce similar encoded represen
tations (i.e. identical in terms of the num ber of the x and y trends and their

sign sequence). If we consider the sign sequence in Figure 4.3.

Figure 4.3 - Characters with similar X - Y trend encodings

The x and y trends in these cases all have the same tendency. Encoding
of the above characters produces

b x - t r e n d s = + 0 .50 - 0 .5 0
y - tr e n d s = - 0 .5 0 + 0 .2 5 -0 .2 5

p:~ x - tre n d s = + 0 .5 0 - 0 .5 0
y - tr e n d s - - 0 .4 0 + 0 .4 0 -0 .2 0

y :~ x - tre n d s = + 0 .50 - 0 .5 0
y - trends = - 0 .2 0 + 0 .2 0 - 0 .6 0

An analysis of the relative in the y-direction alone allows quite a simple
means of differentiating between these three alternatives. Hence, an unk
nown character which exhibits the same x and y tendency would simply be
interrogated in order to determ ine which of the above sequence of y trends
it matched the closest. The technique for correlation is described in Chapter
6. It fits both Freeman vectors and X-Y trends produced by encoding the
unknown character and performs an elem ental fit to likely candidates
extracted from the corresponding database. The measure of fit is expressed
as a percentage. It was determ ined early on in the analysis of both algo
rithm s that it would not be enough simply to try and identify a character by
identifying its basic features. Tang et al attempted to recognise the num eral
by simply identifying the turning points but problems arose if two num erals
have an identical turning point sequence as observed , with the num bers 0
and 6. Hence by comparing the relative trends between the turning points
we can obtain a percentage fit figure. 100% indicates a perfect fit and 0% a
very poor fit.

63

4.1.2.2. The X-Y Database
A database was originally constructed from a user set of over 100 writ

ers. Each writer was asked to write two sentences in lower case uncon
nected script. However, the only other constraint was that they should write
from left to right across the paper. Letter size, speed of writing, character
formation, and neatness of writing were left to the discretion o f the writer.
By analysis of the recorded raw data from the graphics tablet on a graphics
terminal it was possible to identify the actual character and stroke sequences
produced. It is subsequently possible to encode the stroke/character from its
raw data form into the x-y trend encoding. Hence each encoded string along
with its intended identity is written to a file for subsequent analysis. There
fore this file will contain the encoded character strings for all the tested writ
ers, a total of 112 people. This gave a total of over 8000 encodings for the
79 characters making up the two test sentences produced. These test sen
tences contain every letter of the alphabet.

"pack my bags with f iv e dozen extra liquor ju g s"

"both wizened men quickly judged fo u r sharp vixens"

The aim is to produce a representational database, which can be used
for the recognition of any person who wants to use the system, in other
words a user independent system. Therefore the aim was to produce a data
base which contained a representational cross-section of all the character
styles produced by the writers. (a detailed description o f all aspects of the
database is described later on in Chapter 6). One immediate concern arose
for the recognition of user independent script. In many instances one partic
ular writer will form a character in exactly the same way as another writer
forms a different character. This was observed to occur especially between
characters r and v, u and v, g and q, b and f, u and n. However, in most
instances a writer would form characters in a unique m anner (i.e. in a way
that would allow another person to view that character, in isolation and to
be able to identify it. Some people have analysed exactly how good people
are at recognising text out of context. Results vary between 90-94%, Suen et
al [42]. Most characters were found to be constructed in the same m anner
by the majority of writers, which would produce very similar, if not identical
x-y trend encodings. A breakdown of the deviation of x-y trends produced
for a character ’a* is shown in Table 4.1.

Number of trends Signs o f start trends
X plane Y plane — —h + - + +

2 2 0 0 0 0
2 3 229 13 0 0
2 4 27 246 0 0
2 5 0 30 0 0
3 2 0 1 0 0
3 3 24 0 3 2
3 4 0 15 1 78
3 5 0 0 6 27
4 2 0 0 0 0
4 3 150 0 5 0
4 4 50 118 0 17
4 5 0 27 2 0
5 2 0 0 0 0
5 3 0 0 1 0
5 4 0 0 1 55
5 5 0 1 2 27

Table 4.1 - X Y Trend distribution for character V

From the test writers samples a total of 1158 a’s were form ed and the
table shows a distribution of their encodings. There are a total of 27
different ways the letter ’a* has been encoded. However its is observed that
a great num ber of a ’s fall into one of four encodings. These represent a
figure o f 64% of the total and are represented by the shapes given below in
figure 4.4. Deviations occur due in the main to the pen being lowered onto
the paper and moving to the start point of the ’a ’ and/or the pen remaining
down after the ’a ’ has been completed.

65

X 1

y

*1

X 1

a 3
x

1

X‘3’

Figure 4.4 - The four most common encodings of the character ’a’

In order to produce a representative single encoding for each of the 27
different encodings observed in the table a single averaged version is pro
duced by averaging the trends o f all the members. If we consider the most
popular encoding, a 2 in the above figure, (X= -+ , Y = + -+ -) , and show
how four such examples of this specific shape are averaged:-

flj , X = -0 .4 2 + 0 .5 8 , Y = + 0 .1 0 -0 .3 3 + 0 .2 5 -0 .3 2

a 2 , X « -0 .4 1 + 0 .5 9 , Y = + 0 .0 2 -0 .3 0 + 0 .2 9 -0 .3 9

a 3 , X = -0 .3 8 + 0 .6 2 , Y = + 0 .1 5 -0 .4 0 + 0 .1 9 -0 .2 6

a 4 , X = -0 .3 6 + 0 .6 4 , Y = + 0 .0 9 -0 .3 9 + 0 .2 6 -0 .2 6

Averaged 'a'

v _ (0 .42+ 0.41+ 0.38+ 0.36) (0.58+ 0.59+ 0.62+ 0.64)----------------- j ------------- + ------------- j--------------
{ (0 .10+ 0 .02+ 0 .15+ 0 .09) (0 .33+ 0 .30+ 0 .40+ 0 .39) (0 .25+ 0 .29+ 0 .19+ 0 .26) (0 .32+ 0 .39+ 0 .26+ 0 .26)

4 4 4 4

Giving,

•1$

i
;v5
-IS
f :
1

66

v ia ? ’ " ■aCT.’-iaj

am , X = -0 .335+0.665 , Y = +0 .09-0 .355+ 0 .247-0 .308

This m ethod of averaging was performed on the characters produced by
the 112 writers in the test sentences. A total of around 16000 unique charac
ter encodings was produced. After averaging the num ber of averaged trend
encodings was reduced to just 700. This was for the lower case character set
a-z and part characters [,] ,\ and / . This is an average of 25 unique encodings
per character or part-character.

W hen the database had been constructed each characters variability of
formation could be assessed by a direct comparison of its relative occurrence
in the test sentences against the relative occurrence of the encodings for
that character in the database. In theory, if all characters were of the same
level of complexity to form, the ratio of relative occurrence in the database
to relative occurrence in the test sentences should equal 1. For example, if
we consider the letter *1* as being formed as a single down-stroke, only two
possible encodings could result, depending on whether it was slanted to the
left or right, + 1.00/-1.00 or -1.00/-1.00. Therefore, however many times it
were written, it should only result in one of these two XY encodings. Now
consider the character ’c \ this is slightly more complex in its means of crea
tion and as such might produce the following alternatives.

c i = -0 .5 0 + 0 .5 0 /-1 .0 0 c2 = -0 .5 0 + 0 .5 0 /+ 0 .1 0 -0 .9 0 c3 = -0 .5 0 + 0 .5 0 /-0 .9 0 + 0 .1 0

Figure 4.5 - Different Encodings of the Character *c*

It should follow that a very simple character will produce fewer unique
encodings and therefore give a ratio below 1, while the m ore complex char
acters will give a ratio in excess o f 1. The results are shown below in table
4.2.

67

Analysis of X Y trend database
Character %age in ref sentences

10352 characters
%age in database

732 trends
Ratio

a 4.16 3.73 0.897
b 1.78 5.67 3.185
c 3.93 2.49 0.634
d 3.79 3.60 0.950
e 8.23 3.18 0.386
f 0.55 4.15 7.545
g 3.06 5.39 1.761
h 3.07 3.18 1.036
j 3.80 3.73 0.982
k 0.85 3.04 3.576
1 13.89 4.98 0.356

m 2.11 2.90 1.374
n 4.21 3.60 0.855
0 4.66 4.56 0.978
P 1.39 3.60 2.590
q 2.00 3.73 1.865
r 4.39 4.29 0.977
s 4.23 4.01 0.948
t 0.14 1.66 11.857
u 5.27 4.84 0.918
V 2.29 3.73 1.629
w 2.12 4.15 1.957
X 0.07 0.43 6.143
y 1.95 4.56 2.338
z 2.21 4.98 2.253

Table 4.2 - Distribution of character occurrence to database representation

A visual breakdown of the results (Figure 4.6) does indicate a general
trend from the simpler strokes (those with the lowest ratios) to the most
complex strokes (those with the the largest ratios). Character T has a very
large ratio simply due to the fact that people tend to form it in a large
variety of ways. However, the results are not totally consistent. They do
indicate that the simplest character is the letter T , however, they show the
character V as a simpler letter than the character ’c’. It also shows the char
acter V as a complex stroke, in fact above character ’m ’. This leads us to
believe that the database is not truly representative. Also, the fact that the
database contained so few unique encodings for the 10,000 or so separate
characters written (only 732) did give some indication that the algorithm
was too simplified and was rem oving too much useful information from the
raw data character representation.

68

c

i,e

Figure 4.6 - % database occurence / % character occurence

69

4.1.2.3. Initial Results
Analysis of the recognition rate on the test users data did confirm the

doubts about the recognition performance. The overall recognition rate was
less than 65%. A character breakdown of the mis-recognised or non
recognised characters showed a reasonable performance for the m ore com
plex characters (i.e. f,g,m ,k,q,w ,z 80-90% recognition). However, it did not
perform very well on the rest of the alphabet (i.e. a ,b ,d ,e,h ,n ,o ,p ,s,u ,y 60-
75% recognition) and was particularly poor on the very simple characters or
strokes (i.e. c ,l,[,] ,\ ,/,- ~50% recognition). It was apparent that the algo
rithm was far too coarse in its encoding. As an example, if we consider the
case of two very simple strokes T and It is quite a simple m atter for a
hum an to differentiate between these strokes. The form er exhibits a
predominantly vertical motion and the latter a predominantly horizontal
motion - Figure 4.7.

Character T Character

Figure 4.7 - X Y Trend Encoding deficiencies

When we come to encode these two strokes we observe that they both
produce the same XY trends

x - tr e n d s = + 1 .0
y - tr e n d s = -0 .9 0 + 0 .1 0

Two totally unalike strokes have produced identical encodings. This is
an extrem e example of the algorithms shortcomings, but it is also
highlighted in a num ber of separate instances. Confusions between u /n , r/v ,
v /u , c/I are common. Thus a more reliable algorithm was required which
would be able to cope with the confusions appearing in the algorithm in its
present form.

70

4.1.3. Modified X-Y Algorithm
The approach adopted is a simple extension of the original algorithm.

Instead of simply recording a single incremental travel in the x or y direc
tion whenever an appropriate turning point is detected, the incremental
travel in both directions was recorded each time either an x or y turning
point was detected. This produces trend strings with equal num bers of x and
y trends. Therefore the accumulated trend string is longer. We now also
cannot assume that we will have an x or y trend string with alternate posi
tive and negative travels. If we consider our character’m ’ encoded using the
old and new techniques:-

Old algorithm, x - travel = -0 .0 5 + 0 .9 5
y - travel = - 0.22+ 0 .2 0 - 0.20+- 0 .1 8 -0 .2 0

N ew algorithm , x - tr a v e l = -0 .0 5 + 0 .1 0 + 0 .1 5 + 0 .2 0 + 0 .4 5
y - tr a v e l = -0 .2 2 + 0 .2 0 -0 .2 0 + 0 .1 8 -0 .2 0

Figure 4.8 - Modified X Y trend algorithm

Using the old algorithm, there is no immediate correlation between the
x- and y- turning points. The relative travel trends are completely divorced.
However, the new technique gives an indication as to how the x and y travel
is altering in relation to one another. As a result we can actually reconstruct
a quantised version of the character shape from the encoded trend strings.
This is not possible with the old algorithm since the sequence information
has been discarded.

71

$
3 * •>

t
- : 's

H,
- .A'

I
,',V

J
,1
"i
J

Figure 4.9 - Character shape regeneration |

This feature allowed the design of a tool which, given an XY trend
string would reconstruct and display the quantised character. (An assump- Jl
tion has to be made on the aspect ratio when displaying on the graphics
screen in order produce a sensible shape.) %

It is extremely difficult to visualise a character shape from its encoded j
trend string, and with the old algorithm, it is actually impossible to do so. It
was found to be very important to verify that the representations in the
database should be reasonable representations of the characters that they are
m eant to portray. Hence the tool allows us to verify that the database
representations are reasonable. Any particularly bad or misleading represen
tations can therefore be removed. This could not be performed on the old
database. I

4.1.3.1. The X-Y D atabase J
A new X-Y database was constructed using the new algorithm. The size

of the X-Y database increased substantially. Not only were the X-Y strings I?
themselves longer, a greater num ber of unique trends was produced. We
have now around 2500 entries in the database. We performed a similar com
parison of character occurrence in the test sentences against the relative |
occurrences of character unique encodings in the database. Table 4.3 gives a
similar breakdown of the new database as did Table 4.2 for the old database. , |
We can now say that the m ore complex a character, the greater the num ber
of unique strokes will be produced due to the larger deviation possible away | |
from the idealised shape. Again, the larger the ratio of database entries to
character occurrence in the test sentences, the more complex the character. !
The results (Figure 4.10) now appear to be somewhat m ore consistent with

\ ' 4

■id

Original quantised shape XY trend quantised shape

72

the theory. The m ost complex strokes all have larger ratios (>2.0). These
being f,k,b,g,m ,q,w ,z,p,y. Also, the very simple characters have the lowest
ratios (< 0.5). The simplest character now is the letter ’c \ which we would
expect. Also, we now see the letter V has a much smaller ratio. These
results were quite encouraging in leading us to believe that we may have an
algorithm which is m ore representative of character shape.

Analysis of the modified X Y trend database
Character %age in ref sentences

10352 characters
%age in database

2571 trends
Ratio

a 4.16 4.08 0.98
b 1.78 6.34 3.56
c 3.93 1.24 0.32
d 3.79 4.78 1.26
e 8.23 2.99 0.36
f 0.55 3.38 6.15
g 3.06 7.78 2.54
h 3.07 2.84 0.92
j 3.80 2.88 0.76
k 0.85 3.07 3.62
1 13.89 5.13 0.37

m 2.11 5.13 2.43
n 4.21 4.51 1.07
0 4.66 3.31 0.71
P 1.39 2.88 2.07
q 2.00 4.90 2.45
r 4.39 5.52 1.26
s 4.23 3.31 0.78
t 0.14 0.93 6.64
u 5.27 5.10 0.97
V 2.29 1.98 0.86
w 2.12 4.47 2.10
X 0.07 0.43 6.143
y 1.95 3.93 2.01
z 2.21 4.75 2.15

Table 4.3 - Distribution of character occurrence to new database representation

73

8

7

;9
m,q

-z
"w,p
y

■r,d

-a,uvh

jl.e
c

Figure 4.10 - % database occurrence / % character occurence

(Modified x-y algortihm)

1
'4

'm

74

4.1.3.2. X-Y Trend Processing

4 .I.3 .2 .I. Pen-down Problems
An investigation of the XY trend encodings for our test characters pro

duced some inordinately long strings of trends. These long trends were usu
ally found to be a result of some m inor perturbations at the beginning or
end of a character (at either pen-up or pen-down). In the main they
occurred at the time of the writer placing the pen down onto the paper prior
to forming the stroke. Two causes of these perturbations were determined.

1. Dithering by the writer where the pen is rested on the paper for some
time before they form the character.

2. More commonly it is due to pen-switch bounce or as a result of drift in
the threshold detection circuitry causing the pen to be detected some
what sooner than it is brought down onto the paper.

This tended to lead to the detection and subsequent encoding of spuri
ous pen-down points totally unrelated to the character itself. An example of
the problem will show how these trends can be eliminated.

t7
Figure 4.11 - Detection and elimination o f spurious pen-down perturbations

The first 4 X-Y trend elements are of no significant importance to the
overall character shape. In fact, they should not be associated with the shape
of a character ’y \ As such they should be detected and rem oved. Raw data

75

preprocessing is not able to remove such superfluous points, since they
represent a degree of pen m ovem ent while the writer is resting the pen on
the paper. This will therefore pass through the data filter which does not
attem pt to remove any degree of pen m ovem ent. Therefore, in order to
detect and rem ove these elements the moduli of pairs of x and y trends are
added together in order to give an estimation of the contribution of the
trend pair to the overall character travel. These perturbations represent very
small relative travels compared to the significant x,y pairs of trends. Hence,
any combination which is less than some pre-determ in ed threshold value is
deemed to be a superfluous trend combination and both the x and y trends
are removed. Therefore, in our example case we have:-

x - tr e n d = + 0 .0 3 - 0.04+ 0.04+ 0.10+ 0.15+ 0 .1 0 -0 .2 5 -0 .0 8 + 0.20

y - tr e n d = + 0 .0 2 + 0 .0 3 + 0 .0 1 -0 .1 5 + 0 .1 4 -0 .2 0 -0 .2 0 + 0 .0 5 + 0 .2 0

Combined = 0.05 0.07 0.05 0.25 0.29 0.30 0.45 0.13 0.40

The combined trends falling below the threshold are removed and the
reconstituted encoding becomes:-

x - tre n d = + 0 .10 + 0 .15 + 0 .10 -0 .2 5 - 0 .0 8 + 0 .20

y - tr e n d = - 0 .1 5 + 0 .14 - 0 .2 0 -0 .2 0 + 0 .0 5 + 0 .20

Because so many occurrences o f this pre-character pen travel is
observed, it is important that they be removed before entry into the data
base. If all such superfluous trends were ignored and allowed to be entered
into the database,

1. The database size would be disproportionately larger to accommodate
all the extra ’unique’ trends which would be produced.

2. As a direct result o f L the searching time and correlating would be
increased

4 .I.3 .2 .2 . X-Y Trend Reduction
The algorithm gave a very good reproduction of characters which have

a large num ber of turning points, but is still observed to somewhat over
simplify the less complex strokes as before, but not quite to the extent as
did the first algorithm. The recognition rate achieved from our test set of
112 writers did improve somewhat, but not significantly. Only a m atter of
2-3 %. This was found to be due to the fact that now we have many more
unique trends per character, so that a particular encoding for a character did
not appear in the database and consequently that character was either not
recognised or misrecognised. The reason for this is illustrated below. Figure

76

4.12 is of an encoded character *y* which has five turning points along the
curve. However, it was observed that some turning points are due to a
minor perturbation in the x or y direction. In our example (Figure 4.12 (i))
we have a turning point T3 produced by a small x-change over the down-
stroke part of the y. Removal of this x-trend would produce a reduced (and
m ore common) encoding (Figure 4.12 (ii))

Therefore, in order to maximise the probability of finding a correct
match a num ber of reductions are performed and the database searched to
find any matches. It was observed that the likelihood of finding a match
with the database increased as the size of the trend string decreased. How
ever, it was also found that the num ber of alternative character possibilities
increased.

Therefore, a mechanism was required to detect the smallest combined
trend pair (as in the initial trend filtering). However, in this case we do not
want to simply discard the x,y pair since in this case the contribution of its
relative travel is im portant to the overall character. Therefore we add the
com ponent to the neighbour which exhibits the same travel direction. Fig
ure 4.13 shows an example of such a reduction.

(i) Original (i i) Reduced

Figure 4.12 - X Y Trend Reduction

77

Original ' / 0 1 2 3 4 5
j: - travel - 0.05 + 0.10 + 0.25 + 0.00 - 0.35 - 0.25
y - tr a v e l - 0 .1 5 - 0 .0 5 + 0 .20 -0 .3 5 - 0 .1 5 + 0 .10
Combined 0.20 0.15 0.45 0.35 0.50 0.35

Reduced 'y'
x - tr a v e l
y - tr a v e l

0 1 2 3 4
- 0 .0 5 + 0 .35 + 0 .0 0 - 0 .3 5 - 0 .2 5
- 0 .2 0 + 0 .20 - 0 .3 5 -0 .1 5 + 0 .10

Figure 4.13 - X Y Trend Reduction

Therefore, even though the actual trend is removed, its contribution to
the total travel is retained. In our example the component o f the x-trend
rem oved (x l) is added to the x 2 direction to produce the combined x l
trend. However, the y l trend removed has its component added to the old
y0 direction. Therefore, for a particular encoding a series of reduced encod
ings can be produced, each of which can be searched against the entries in
the database to find a match. Using this technique, if an initial fit does not
identify the correct character, then one or more of the reductions could find

78

the correct match.
One obvious pitfall to be avoided when reducing is to rem ove a trend

pair which changes a character shape so that the new encoding resembles a
different character (Figure 4.14).

'9' ,q*

’w' 'h'

Figure 4.14 - X Y Trend Reductions to be Avoided

4.2. Conclusions

The XY algorithm work has evolved from the initial idea (the analysis
of the x and y turning points) which proved to be far too simplistic when
attempting to differentiate between letters from the subsequent extracted
turning points. This was rectified by the simple modification whereby the

79

increm ental travel in both the x and y direction was analysed whenever a
turning point was detected, irrespective of whether it was an x or y turning
point. This m ethod was intuitively superior, since the character shape could
now be realised from the encoding. As expected, this technique improved
the recognition rate, by around 15-20%. A full breakdown of results is given
in Chapter 8.
However, a particularly worrying feature of the algorithm was its inability to
reliably differentiate between the identity of very simple characters (those
with few turning points) as highlighted earlier in this chapter. Over
reduction, described above in Figure 4.14 is easily eliminated by a user
training session which will ensure a database match is found before the
reduction begins to alter the character shape.
The simplicity of the technique, coupled with the promising results,
encouraged us to investigate m ethods of similar ease which might be able to
resolve the problem of more reliably recognising the simpler characters.

80

5. FREEMAN VECTOR ANALYSIS

5.1. Introduction

This technique is based on an approach used in a num ber of papers by
H erbert Freeman on curve analysis. It was selected because it is simple to
implement and showed promise in m em ory usage and processing times
when considering some future real time implementation. It was also felt that
it could also overcome the shortcomings found in the X-Y algorithm (dis
cussed in the conclusion to the previous chapter). There are two alternative
techniques [81] for the chain coding of arbitrary plane curves. The two
encoding mechanisms are described below, one based on a hexagonal grid
configuration, and the other on a square grid configuration.

3 0

(a) Hexagonal Grid
1

4

5 76
(b) Square Grid

Figure 5.1 - Chain Coding Processes

81

The hexagonal grid has the advantage that the vectors are of equal
length, making manipulation simpler. Rotating the curve through 60° does
not distort the curve shape. However, the square grid has the advantage that
it is compatible with the co-ordinate grid adopted for the majority of graph
ics input devices, including the data tablet used for the capture of user writ
ing. This makes the square grid encoding technique the obvious choice for
encoding our characters.

5.1.1. Theory

Given a point on a continuous curve, the next point can assume one of
eight possible adjacent positions. Assigning digits 0 to 7 to represent these
eight positions, and starting with the one horizontally to the right as 0, the
others are num bered sequentially in an anticlockwise direction. Vector direc
tions 0,2,4,6 are of a unit length, while vector directions 1,3,5,7 are of
length V 2. If we take an example of a character V encoded using the basic
Freeman approach

'45501126671'

Figure 5.2 - Basic Freem an Coding Approach

5.2. Modified Freeman Algorithm

5.2.1. Theory
By only encoding the curve with set length vector elem ents another

degree of quantisation is introduced. This is probably acceptable for curves
and lines produced in, say, sketching. However, in order to retain the char
acter features for a writer who produces very small characters, we would
have to either have very, small unit vectors or variable length unit vectors,
related to the size of a particular writers script. The approach adopted was to
use the eight vector directions to determ ine the character path, but to allow
variable length travel in any one'direction. The eight vector directions, 0 to

82

7 represent a 360/8=45° octant.

Octant 1

4 *►0
Octant 0

6

Figure 5.3 - Octant Boundaries

Therefore, a particular portion of the curve is said to be travelling in a
particular quantised direction if its incremental direction keeps within the
bounds of the associated octant boundary. For example, it will be deemed to
be traveling in direction ’1* as long as its incremental directional angle is
between 22.5° and 67.5° (45° ambient).
The character curve is initially quantised by the graphics tablet into a series
of (x,y) co-ordinates. Starting from the first co-ordinate pair, the increm en
tal distance to the next point is calculated:-

(x0,yo),(xl,yl)J(x2,y2) ,O w *) -

di=[(x1- x 0)2+(y1-y 0)2]1/2 (5.1)

and the direction o f travel from the first to the second point is:-

0i= !arcfart[(yi-yo)/(*r-*o)]l (5.2)

However, in order to determ ine the exact octant, we m ust recalculate 0! as
an angle over the complete range 0 to 360°, ie:-

83

if C(yi - yo) ^ 0] and [(Xl - *0) * 0] 01= 0! (5.3)

if [(yi - yo) ^ 0] and [(Xl - x 0) < 0] CD II i—* 00 0 1 CD (5.4)

if [(yi - yo) ^ 0] and [(Xl - x 0) < 0} 0i — 180 + 0i (5.5)

if [(yi - y0) * 0] and [(x x - x 0) > 0] 0! = 360 - 0i (5.6)

Having calculated the angle, we can thus determine the quantised direc-
tion of travel (digit 0 to 7). Therefore, between each point on the character
curve we can calculate:-
• the linear distance
• the direction of travel

5.2.2. Encoding Mechanism
Therefore, if we take our character ’a’ of Figure 5.2, we can see how

this modified algorithm encodes the curve.

22

20

Figure 5.4 - Character ’a’ as Output from Graphics Tablet

Table 5.1 gives a breakdown of exactly how the character curve is quantised
into its Freeman vectors.

84

Points Distance Angular
Direction Quadrant

0 - 1 5 187 4
1 - 2 10 204 5
2 - 3 8 225 5
3 - 4 7 237 5
4 - 5 6 246 5
5 - 6 3 265 6
6 - 7 4 297 7
7 - 8 4 355 0
8 - 9 5 20 0

9 - 10 7 41 1
10 - 11 7 46 1
11 - 12 6 52 1
12 - 13 6 75 2
13 - 14 5 84 2
14 - 15 6 268 6
15 - 16 6 270 6
16 - 17 6 | 272 6
17 - 18 5 275 6
18 - 19 5 287 6
19 - 20 4 325 7
20 - 21 4 10 0
21 - 22 3 43 1

Table 5.1 - Increm ental Travel of Character "a*

The travel of the character curve is now grouped into successive similar vec
tor directions, each having a cumulative distance traveled equal to the sum
of all its elements, as shown in Table 5.2

85

Points Quadrant Cumulative
Distance

Normalised
Distance

0 - 1 4 5 0.0397
1 - 5 5 31 0.2460
5 - 6 6 6 0.0476
6 - 7 7 4 0.0317
7 - 9 0 9 0.0714

9 - 12 1 20 0.1587
12 - 14 2 11 0.0873
14 - 19 6 28 0.2222
19 - 20 7 4 0.0317
20 - 21 0 4 0.0317
21 - 22 1 3 0.0238

Table 5.2 - Vector Groupings for the Character ’a ’

Each cumulative distance is divided into the overall curve travel in order to
produced a normalised travel. By doing this, we are able to encode the vec
tor strings in such a form so as to be able to process characters indepen
dently of the size they were written. Thus we produce the final Freem an
encoded vector string ’45670126701’. This contains 11 vectors, and associ
ated with each vector we have a relative travel in the range 0.0 to 1.0. This
weighting allows one to quantise the character curve with a high degree of
accuracy. The character is represented in an ASCII string as shown below:-

char V 0X q V 1.L l V 2.L 2 Vn.L n < CR > (5.7)

where L 0 + L x + L 2 + L n =■ 1 (5 .8)

Therefore, our character ’a’ is represented by the string:-

a 4.04 5.25 6.05 7.03 0.07 1.16 2.09 6.22 7.03 0.03 1.02 < CR >

From the encoded string we can reconstruct the character shape.

86

5

6

Figure 5.5 - Reconstruction of Character ’a’ from Freeman Encoding

5.2.3. Vector String Distribution
An initial analysis of character encodings produced by a small num ber

of writers showed that the size of the vector string produced varied greatly
in size from as few as 1 vector to as many as 20 or so vectors. In general,
the fewer the points describing the character, the less the am ount o f curva
ture information that can be extracted. As a result, the fewer the num ber of
vectors in the encoded string. Consider the cases of the two characters ’s ’
given below:-

87

i >

(a) ’s’ described by 6 tablet co-ordinates

5

(b) ’s’ described by 14 tablet co-ordinates

Figure 5.6 - Character Curvature Variability

The num ber of encoded vectors produced from a character curve has been
found to depend on three main factors:-
• character complexity
• character size
• num ber of points in the character (proportional to speed of formation)
The main factor is the character complexity. The more complex the charac
ter is to form, the greater the num ber of inter-octant transitions, and thus
the greater the num ber o f vectors needed to describe the character path.
The other two points do have some co-relation. As can be seen from Figure
5.6 a more slowly written character will retain the character shape better
than a very quickly written character. Our example shows only 3 vectors

88

describing the character ’s’ which has been written quickly, while it is
described by 8 vectors when written m ore slowly. Note that the pen traces
the same path in both examples. Therefore the detail of the character, as
described by its Freeman vector string is dependent on the data rate of (x,y) !
co-ordinates from the tablet and the tablet accuracy. However, the reduction I
procedures described later in the chapter attempt to filter out both user and 4
tablet dependencies.
Character size is, as has been m entioned, related to speed of writing. G en
erally small characters are formed m ore quickly than larger characters.
However, very small character shapes do tend to be influenced by the reso- .S
lution of the graphics tablet also. In extrem e cases the accuracy of the tablet
(or rather lack of it) will distort the character shape and in so doing create
an encoding with more vectors than would be expected.
If we consider the length of the vector strings produced for a particular -
character ’s ’ we can determ ine the mean vector length and compare it with v
the mean vector length for the complete character set.

Number o f vectors Number o f combinations
ly(

3 7
4 103
5 256
6 173
7 89
8 21
9 9
10 3

Producing a length distribution

89

Combinations
250

125

Vectors in string

Figure 5.7 - Vector Length Distribution for the Character ’s ’

The mean vector length for the ’s’ is 4.80. For a more complex character it
would be much higher.
The questions which must be resolved now are:-
• For the lower case alphabet (a to z) how many different vector strings

will be produced for a single writer, and ultimately how many more
different vector strings will be additionally produced as more users writ
ing is encoded and added to the database. Too many alternatives may
ultimately be too much to handle for real time operation.

• Can a particular vector string for one character be sufficiently unique so
as to be able to distinguish it from all the other vector strings in the
database. Too much ambiguity between different character vector
strings will negate the effectiveness of the algorithm.

• Related to both these points, will the algorithm extract sufficient unique
character information.

The following sections describe the evolutionary steps leading to the algo
rithm in its present form.

5.3. Original Freeman Analysis
Initially it was decided to attem pt recognition of a character by the

analysis of the path it describes alone. In other words to analyse the vector
string in isolation. Possible character identities would arise when a match of
identical vector paths was found between the unknown character and some
previously analysed known character. The advantage here over the dynamic
time warping m ethod favoured by some authors in Chapter 1 is the speed of
search and detection. It was hypothesised that the character matches would
be found to divide into neat subgroups which could be further processed in
order to determine the character identity within the subgroup. If we show an
example to illustrate the reasoning behind this assumption. Characters ’a’,

90

’d ’ and ’q ’ are candidates for a subset as they trace very similar character
curves as drawn by the majority of writers. Therefore we would expect to
produce a num ber of identical vector strings.

2

2
5

7
5

*d 571261 'ct 571261 Y 571261

Figure 5.8 - Freeman Character Subgroups

Y 571261

One such vector string which describes all three characters was found to be
downstroke. Therefore, by calculating its relationship to the start point of
the character and its size to the size of the curved portion of the character a
decision can be made as to its m ost probable identity, ’a’ ’d ’ or ’q ’. Other
subgroups having similar shapes can also be identified, ’h ’ and ’n ’,
However, it was soon shown, by analysis of the vector strings produced for
the character set, that the assumption was not at all valid. The vector string
we show as an example (’571261’) was found also to describe other charac
ters whose basic shape is nothing like the shape of ’a’, ’d* or ’q ’. Figure 5.9
shows three such examples of characters ’w \ ’h ’ and V which could also be
encoded to produce the vector string ’571261’.

91

V 571261 'h' 571261 V 571261

Figure 5.9 - Dissimilar Characters Exhibiting the same Vector Strings

It was apparent that a particular character string, taken in isolation, could
describe quite a num ber of characters in the alphabet set. This diverse
representation was found to be mainly due to two factors:-
• Character slant - for example, a slanted ’u ’ often has the same vector

string as an ’a’
• Tops and tails - often produced by writers. These have no bearing on

describing the character shape. They are actually part ligatures, there
shape and position relating to the characters produced immediately
before and after the present one in the word.

Hence it was decided that to attem pt to properly disambiguate characters it
would be necessary to take into consideration the relative sizes of the vec
tors in the encoded string. (As in the case of the XY algorithm, relative
vector size analysis allows us to compare characters directly, regardless of
their size).

5.3.1. Modified Freeman Analysis
The whole essence of this technique for character encoding is that the

unknown character is compared against a database of alternatives and subse
quent entries from the database, with matching vector paths, used for
further analysis. The chances o f finding two or more matching vectors
strings from a database search would be highly unlikely unless the database
contained a large num ber of writer examples. Hence, some rationalisation of
vector string length was required. In our example encoding in Figure 5.5,
the vector string is 11 vectors long. In fact, for many character encodings,
10 or m ore vectors is quite normal. However, quite a few of the vectors

produced are as a result of a single data point quantisation. These vectors
contribute very little to the overall character shape. By applying a lower
threshold we can eliminate the very small vectors and so rationalise the
string length. Initially, a threshold of 0.04 was chosen, U 25th of the total
travel. All vector contributions falling below this value being discarded.
Therefore our example character would be reduced as follows

ORIGINAL STRING
a 4.04 5.25 6.05 7.03 0.07 1.16 2.09 6.22 7.03 0.03 1.02 < C R >

AFTER REDUCTION
a 4.04 5.25 6.05 ----- 0.07 1.16 2.09 6.22 -------------------- < C R >

i.e. four vectors have been eliminated. However, now the total quantised
travel no longer adds up to unity, but to 0.88. Therefore, it is necessary to
re-normalise the component travels to return to a value of 1.0.

a 4.(04/0.88) 5.(25/0.88) 6.(05/0.88) 0.(07/0.88) 1.(16/0.88) 2.(09/0.88) 6.(22/0.88) < CR >

Giving

a 4.05 5.28 6.06 0.08 1.18 2.10 6.25 < CR >

This 7 vector string has not lost any significant information contained in the
11 vector string. The overall character shape is not lost, in fact, the tail on
the end of the character has been eliminated, and tops and tails are redun
dant information in the analysis of lower case unconnected script. In some
instances they have been shown to be misleading. Therefore, in this
instance, the removal of the very small vectors has enhanced the character
shape by removal of the unwanted tail.

93

5

6

Figure 5.10 - Low Pass Filtering of The Freeman Vector String

A breakdown of the vector strings produced for the complete data set of 112
users, having been passed through the filter show how the strings are distri
buted. (Table 5.3).

Vectors in String Number o f Strings Cumulative String No.
2 164 164
3 455 619
4 837 1456
5 965 2421
6 1002 3423
7 1027 4450
8 1084 5535
9 1095 6630

10 781 7411
11 539 7950
12 323 8273
13 23 8296

Table 5.3 - Freeman Vector String Distribution.

The highest string length incidence is for strings containing 9 vectors. The
mean vector string length is calculated at 6.70. As with the X-Y Trend algo
rithm (Chapter 4), a particular representative code for a character will be
produced as a result of averaging out the relative trend distances for all
similar characters with identical vector strings produced as a result of encod
ing the test data sets. The technique is the same as that described in section

94

4.1.2.2. Therefore, the unknown character can be compared against the ele
m ents in the Freeman database in order to find all such elem ents which
have the same vector string as the unknown character. Any such discoveries
in the database will be fitted against the unknown character in order to cal
culate a measure of fit which is given as a percentage figure 0% - 100%. 0%
indicates a very poor fit, and 100% a perfect fit. Database construction,
searching and character fitting are described in chapter 6.
Results of the initial recognition performance using this technique were
quite promising (~70%) on an initial user test set of 25 writers, as used
before on the XY algorithm. However, the num ber of Freem an vector
strings which could represent a single character did appear to be quite large
(an average of over 100 representations per character). In fact 97 different
representations of character ’a’ in the database were produced as a result of
encoding only 150 character V s . Even a single writer, producing con
sistently shaped characters would produce quite different Freem an strings
(varying in both vector size and vector string path) from one character to
another. The maximum length of these filtered encodings was 13 vectors.
The database constructed from the 25 user set had over 2700 vector string
entries stored in over 100 Kbytes of ASCII codes.
Apart from the large size of the database, the main concern was the am ount
o f computation required on the larger vector strings as encoded, and the
am ount of time that would be required to search the database for any
matches. With an average filtered vector length of around 7, it did appear
that in the ultimate aim for a user independent system
• database size would soon exceed any manageable proportions
• vector string size would mean a heavy load on vector string manipula

tion in database searching and subsequent processing required to fit the
alternatives.

If we were to assume that a database could conceivably contain every single
possible vector combination in all strings from length 1 to 13 we would soon
reach serious size problems. Total num ber of possibilities is:-

95

13
No. o f possible vectors = 8*(7)<*” 1)

«= i

Giving,

Vectors Combinations Cumulative
1 8 8
2 56 64
3 392 456
4 2744 3200
5 19208 22408
6 134456 156864

13 1.1073* 1011

A fter five vector combinations the database size can be seen to be becoming
quite large for representation of a mere 30 or so character shapes.

5.3.2. Reduced Freeman Vector Algorithm

Our problem is that, in allowing all the shape possibilities to be present
in the database so as to be able to recognise characters independent of a par
ticular writer we would have to allow a very large num ber of possible vector
combinations, adding new vector combinations every time a totally new
writer would require to use the system. In order to approach writer indepen
dence the size of the database would approach the maximum value calcu
lated above for 13 vectors.

Therefore it was decided to approach the problem of vector string length
from another direction. Instead of working around vector lengths up to 13
vectors long, the question was posed - How few vectors could a particular
character be constructed from which would still uniquely differentiate that
particular character from the others in the alphabet set?
The reason for the question is the underlying and absolutely vital necessity
for a system at the end of the day which will operate in real time. If we were
to allow any num ber of vectors in a character string up to the maximum of
13 the size of the database would tend to 1.1073* 1011. If we can limit the
num ber of string options to search through, there is a far better chance of
transposition into a real-time environment.
If we consider the lower case alphabet (a-z) we can construct the following
vector profile for each character derived from the most common style of
character formation as written by the 112 user test set.

96

e

^ 5 , 6 b U 6 1 5

< "

d 45 , 2 6

^ 1 5 7
f

3 5 6 -2

^ 5165 >
h

j 615

16

m

J A A

I / * ^ 6106 0
5 7 1 3

6215 q 5161

j / r _ * 6 1 0 s ^ > 4

67-2 u L460,e
\/ 71

w W
6165 z f 050

61717

7171

Figure 5.11 - Idealised Freeman Encoding For Lower Case Alphabet

97

If every writer were to produce the vector strings describing this ideal
ised sub-set we would have no problem whatsoever. No one vector string is
the same as another, so we would not even need to consider the relative
sizes of the vectors in order to decide the character identity. This is not the
case, even for a single writer. A large variety of writing styles has been
observed. However, by limiting the maximum size of the vector string for
any one character to a maximum of 5 vectors we could still safely describe
all the characters (in our idealised set only one character, ’m ’, has 5 vec
tors). A t present the database contains only 2421 vector strings of 5 vectors
or less out of a total of 8296 vector strings. This represents only 29% of the
total num ber of vector strings.
By so doing we
1. limit the size of the database to a sensible num ber of vector strings
2. reduce database searching times and speed up the vector string manipu

lation and comparison procedures which account for a significant
am ount of algorithm time.

The problem, however, is the reduction of a large vector string (up to 13
vectors long) to a five vector string without the loss of any information vital
to the unique identity of a particular character.

5.3.2.1. Initial Vector Reduction Technique

If we consider our character ’a’ of Figure 5.10. This has already had the
very small vectors eliminated, producing a filtered result:-

a 4.05 5.28 6.06 0.08 1.18 2.10 6.25 < CR >

Hence we have a seven vector string to be reduced to a five vector string in
order to attem pt a match against entries in the database, maximum size five
vectors. Initially the vector string is searched in order to determ ine which
vector is the smallest. Vector reduction by eliminating the smallest element
in the string will ensure that distortion of the original character shape is
minim ised:-

Vs = smallest vector
Vi = Ith vector
L s - smallest vector length
Li = length o f Ith vector

for (i - 0 upto i < no o f vectors)

i f (L t<z ,s) y5= y (-
Ls=Li (5.9)

98

Taking our example character ’a ’ we find that the smallest contributory vec
tor is the first vector, in direction ’4 ’. However, on occasions two vectors
may be found to have equal smallest contributory travels. In such cases, the
vector appearing first in the string is taken as the reducing vector. This is an
arbitrary choice. Unless the initial vector string is only 6 vectors in length,
the other smallest vector will be the next to be reduced anyway.
The elimination procedure is to remove the vector with the smallest travel
from the string and to add its contributory travel to one o f the vectors
either side of it. If the smallest vector is either the first or the last vector
we have no problem in choosing which vector travel will have the smallest
vectors travel added to it. It will be the second or penultimate vector respec
tively. Otherwise we have to choose between the two neighbours. In an
attem pt to preserve the overall shape as long as possible it was decided that
the smallest vector should be incorporated into whichever of its neighbours
has has the least angular difference to it. In the event that it has an equal
angular difference between both neighbours, its contribution is added to the
neigbour which has the lower relative vector length. If both neighbours have
the same angular difference and the same relative vector length it is arbi
trary as to which vector the smallest should be added. This again is an
attem pt at preserving the character shape. Consider the case of identical
angular differences and relative lengths below.

= 45

(smallest vector) I = d

n+1

Figure 5.12 - Arbitrary Reduction Decision

99

Therefore we produce a series of conditions for a single vector reduction:-

vector string = V0, V UV2, Vn

vector lengths = L 0, L UL 2, L n

if (y s - V o)
R = 0
L i~L i + L 0 (5.10)

else if {Vs = V m)
R = n - 1
L n -\-L H-y\-L n (5.11)

else if (W s - V s . ^ W s - V s ^ l)
R - S
if 0^-i< Ls+i)

L s - i= L s _ i+ L s

else
L s+l- L s+{+ L s (5.12)

else if (IV5- Vs-i k Ws - V s+1\)
R ~S
L s - i —L s-i +Ls

else
Ls+i^Ls+i+Ls (5.13)

Having added the smallest vectors weighting to the appropriate neighbour
we m ust now remove, the vector from the string completely:-

vector for removal = VR

for (i - R upto i< n)
V i = V i+l
Li=Li+1

n -n -1 (5.14)
In our example VR = V 0, therefore a first vector reduction (using equations
5.10 and 5.14) produces:-

a 5.33 6.06 0.08 1.18 2.10 6.25 < CR >

This six vector string m ust be reduced once more. The new smallest vector
is the new second vector in direction six. Therefore we m ust decide which
of its neighbouring vectors will incorporate its contributory relative length.
From equation 5.12 we m ust determine the angular difference between vec
tors ’5 ’ & ’6’ and vectors *6’ 8c ’O’. The difference ’5’-> ’6’ is 45°, while the

100

difference *6*-> ’0 ’ is 90°. Therefore we choose vector 5 to add the length
to, having given the smallest angular difference. Therefore, a second reduc
tion produces:-

Therefore we have our reduced 5 vector string. If we reconstruct the shape
from the string we produce the character ’a’ as shown below:-

The character ’a ’ has retained its unique features over the course of the
reductions from the initial 11 vector encoding, although the shape has
become somewhat more angular than the original quantisation (Figure 5.5).
Performing this process of vector string reduction on the set of 25 writers
results in only 1900 encodings held in 59000 ASCII bytes. This is a reduc
tion of 30% in the num ber of vector strings and a reduction of 45% on
actual physical size. This produced very encouraging results on the 25 writer
set (> 90% recognition). However, attem pting recognition on the script of a
new writer, not represented in the database did tend to give variable results
(ranging from 50-95% recognition). The reason for the poor recognition of
some script was observed to be a result of not having the particular encod
ing for a certain character in the database. This would produce either a
non-recognition or sometimes a mis-recognition if the particular vector
string was present in the database, but representing another character. In
such cases the character fitting produced a very poor fit.
We have already seen that around 22000 unique vector combinations can be
produced for vector strings up to 5 in length. Also, a num ber of characters
can produce identical vector strings. In order to be able to adequately recog
nise characters as written by a variety o f writers, one approach would be to

a" 5 .3 9 0 .0 8 1 .1 8 2 .1 0 6 .2 5 < CR >

5

Figure 5.13 - Reduced 5 Vector Character ’a ’

keep adding to the database every time new vector string representations are
identified for a particular character. This did not appeal particularly, since it
appeared that a completely user-in dependent database may take a large
am ount of users and time to achieve and would again tend to an unwieldy
am ount of vector entries.
It was observed that vector reduction tended to stylise the character shapes
towards the basic encodings shown in Figure 5.11. It was also noted that
where a mis-recognition or non-recognition occurred due to the encoding
not being in the database, that a further reduction (from 5 to 4, or from 4
to 3) would produce a correct match. If we consider our character ’a’:-

a" 5 .3 9 0 .0 8 1 .1 8 2 .1 0 6 .2 5 < CR >

No vector string ’50126’ may be present in the database for the character
’a ’. However, a further reduction to four vectors would produce:-

a “ 5 .3 9 1 .2 6 2 .1 0 6 .2 5 < CR >

There is more likelihood of finding this four vector representation of the
character ’a’ (’5126’). This was seen to be a better alternative to keep
updating the database. It would be necessary if a completely new style of
character formation was found.

0

5

(a) Usual character ’a’ (b) Alternative character ’a’

Figure 5.14 - Inclusion of a new character formation style

However, continued vector reduction does mean that we are not required to
find every unique vector encoding for every writer. We can control the size
of the database, but will this produce the desired recognition rate for a
writer who has not been incorporated into the database?

102

Obviously, by continually reducing the vector string we will ultimately reach
the stage where we will be removing vectors from the string which would be
vital to the overall unique identity of the character. For our character ’a’
this would not be so until we have reduced to two vectors:-

a " 5.39 1.36 6.25 < CR > - shape still present

a y 5.39 1.61 < C R > - shape is lost

However, with other characters the shape would be lost well before reduc
tion to only 2 vectors. Consider the character*m’:-

m 6.19 2.23 6.19 2.18 7.21 < CR >

m 6 .19 2.23 6.19 7.39 < CR >

2 2

6 6

(a) Original ’m ’ (b) R educed’m ’

Figure 5.15 - Invalid Vector Reduction

The vector reduction has produced a very distorted result. In many
instances it was found that where vector reduction did destroy the integrity
of the character shape, the resulting vector string, when matched against the
entries in the database would either find no match, or would match with a
very poor confidence of fit (due to its distorted shape).
Results of this continued reduction technique were promising. When applied
to the whole 112 test writers, around 5000 vector entries were produced,
held in 130Kbytes of ASCII strings. A recognition of around 85% was
achieved. However, it was observed that a num ber of character mis-

103

recognitions were due to a flaw in the reduction technique. Results showed
that less than 0.5% of the characters were not recognised compared to 4-5%
before continued reduction. This problem, however, was not difficult to rec
tify and is corrected in the next section.
A large num ber of mis-recognition errors were found to be due to a com
mon sub-set of mis-recognition s. For example, a ’s recognised as u ’s, g’s
recognised as q ’s, g’s recognised as y’s, e ’s recognised as c’s, k ’s recognised
as b ’s. In all such cases it was found that the reduction technique had
reduced the vector string down to such a level that it had changed the shape
of the character so as to look like another character. Hence a further
refinem ent needed to be investigated.

(a) Original ’a’ (b) Reduced ’a ’

Figure 5.16 - Vector Reduction Flaw

The character ’a’ in Figure 5.16(a) has the following vector string:-

a 4 .1 3 6 .1 9 1 .2 0 2 .1 8 6 .3 0 < CR >

The first reduction produces:-

a 6 .3 2 1 .2 0 2 .1 8 6 .3 0 < CR >

The shape of the vector string no longer looks like the shape of a character
character ’u ’ on the strength o f the reduced vector string ’6126’. Similar
situations are found to arise for the other mis-recognitions quoted above.
In such instances it is found that even though it is the smallest vector which
is rem oved, it is not the least significant because it is actually im portant in
preserving the integrity of the character shape.

104

5.3.2.2. Modified Vector Reduction Technique

It was decided to resolve this reduction problem by analysis of the
angular variation of the vectors in the string as a means of choosing the vec
tor to remove. A large change of direction from one vector direction to
another is an indication of an important area on the character curve. Small
angular differences, say + or -45° are usually found to indicate a gradual
change over the character shape as would be observed along a clockwise or
anti-clockwise loop. The largest angular difference (+ or -180°) is usually an
indication of an upstroke/down stroke reversal or vice-versa.

i i

Angular change Angular change
-45°,-45°,-90°,-45°,-45°,- 180* + 180%+45%+45%+90%+45°

(i) Character ’a’ (b) Character ’b ’

Figure 5.17 - Angular Variation considerations

Therefore, if we perform vector reduction between vectors .exhibiting the
smallest am ount of angular variation, we should be able to hold the charac
ter shape longer. Hence the technique was modified so as to initially search
for the two vectors which exhibited the least amount of angular variation. In
many cases it will be found that more than one pair of vectors have equal
lowest angular variation. In such cases the pair which also has the smallest
vector among all the pairs is chosen. This smallest vector being the vector
for removal. The reduction technique is the same as that described in equa
tions 5.10 through 5.14. Therefore our character ’a’ vector representation of
Figure 5.16(a) will exhibit the following angular variations:-

a 4.13 6.19 1.20 2.18 6.30 < CR >

105

+ 90° +135* +45* -180*

The smallest angular variation is between the 3rd and 4th vectors (l-> 2
transition) with the vector direction ’2 ’ exhibiting the smallest magnitude.
Therefore we take it as the reducing vector to produce:-

a 4.13 6.19 1.38 6.30 < CR >

4

6

Figure 5.18 - Modified Reduction Technique

We have now retained the shape of the character ’a’ through this m ethod of
angular variation analysis. The recognition rate for the 112 writer set was
increased to 95% with the new technique now resolving many o f the the
erroneous vector strings produced by the original reduction method. How
ever, this technique of angular difference analysis, when used in isolation
can also cause problems. The problem is usually caused by the writer.
It is difficult for a writer to produce lower case unconnected script without
producing a ’top’ or ’tail* on a num ber of characters. This usually manifests
itself as a small upward tick produced as the pen is brought down onto the
paper and then moved (upwards and slightly to the right) to a position from
which they start forming the character. The encoding of such a character
usually produces an initial vector which is not part o f the character shape.

106

/ I

/ I
/

Figure 5.19 - Character tick problems

Usually the tick is only represented by a very small vector. But since the
angular difference between the tick and the first contributory vector direc
tion is so large (usually 135° or 180°) the tick will be retained in preference
to the rem oval of valid character vectors. This, too, has been found to cause
serious shape loss. Hence an additional test needed to be introduced in
order to rem ove these ticks.
The ticks were mainly shown to occur in characters which should start with
a downstroke (ie. b ,h ,i,j,k ,l,m ,n ,p ,r,t,u ,v ,w ,y) encoded as vector ’6’. The
ticks them selves were encoded as either vector *1* or ’2 \ Hence an initial
test was made to determine if the first vector in the string was a vector *1*
or ’2 ’ whose length was small and it was followed by a much larger vector in
direction angular variation analysis is performed.

5.4. Conclusions
The results obtained for the Freeman recognition technique (given in

Chapter 8) have proved the m ethod to be particularly robust. One particular
advantage over the X-Y technique was found to be in instances where the
character is not found as the best choice. In a num ber of cases where the
X-Y algorithm mis-recognises a character, the alternative list does not give a
clear indication of what the letter shape might be. For example, for an ’a’
written, the alternatives might be:-

w:61 h:60 a :55 g:45 d'AO

However, for the Freeman technique, the letter subset is usually quite
apparent even though the correct letter is not the best alternative:-

107

d :6 5 q :6 0 a:58

This will more likely assist future word constructions from these letter string
alternatives. More detail of this is given in Chapter 8, where alternative sub
stitution is described.
This encoding mechanism also tends to retain the original character shape
better through the reduction process. Hence giving better recognition where
reduction is necessary.

108

6. CORRELATION AND DATABASE TECH N IQ U ES

6.1. Introduction

Once a character has been encoded into a set of basic parameters it
m ust be checked against some reference model set in order to determine
which model in the set it resembles the closest. Usually it is not possible to
encode a particular character in such a m anner so as to uniquely distinguish
it from all other character models in the data set, unless either:-
• a particular character is clearly distinguishable in its formation than any

of the others (eg. T) , or
• the m odel set is small (eg. numerals 0-9)
The level of complexity of the correlation depends on the am ount and varia
tion in the feature parameters extracted from a character curve.
The actual process of correlation is not entirely dependent on the encoding
technique used, although some m ethods are better at detecting, say, curved
elem ents rather than straight line elements o f characters. One type of encod
ing where correlation is very evident is in the ’elastic matching’ type recog
nition techniques typified by Tappert [10]. He describes a technique of
feature extraction by calculating the tangential angles of various points along
the character curve, together with the vertical distance of these points from
the baseline of the character. These features are matched against similar
features extracted from a reference set previously produced by a writer in a
learning phase. An overall ’smallest difference’ measure is calculated
between the unknown character and each of the models in the test set by a
series of recursive and dynamic programming equations. The m odel in the
test set which produces the lowest ’smallest difference’ gives the m ost prob
able identity of the unknown character.
Burr [43] also describes a similar technique of correlation known as ’warp
based shape matching’. In this instance the only character encoding per
form ed is that produced by the digitiser quantising the character curve into a
series of (x,y) co-ordinates. The character is constructed by joining the co
ordinates with a series of line segments. The string of line segments pro
duced by the unknown character are processed to produce a ’smallest
difference’ measure, calculated as:-

109

S (i J) = D (i J) + m i n (S (i - l J) , S (i J - l) tS (i - l J - l)) (6.1)

where

smallest accumulated difference

D (i , j) = distance measure between i A element o f curve 1 and j A element o f curve 2

As with the previous example, recursion is applied. In both cases the charac
ter curve m ust be normalised before applying the ’smallest difference’ meas
ure, otherwise the subsequent processing would be invalid.
Lu and Brodersen [45] designed a Dynamic Time Warping Processor in
order to allow the recognition to run in real-time, because the technique is
so processor-intensive. The reference set contains 500 symbols for com
parison with an unknown character. Even so, pre-matching is perform ed in
order that only 10 or so templates are picked out for matching.
In all the above instances the ’correlation’ or ’shape m atching’ is explicitly
defined in the recognition process. However, some techniques do perform a
kind of correlation but it is not explicitly defined. Badie and Shimura [18]
encode a letter into a series of characteristic curves, namely arc, loop, and
corner (ie. the topological features are extracted). Correlation is used to
identify characteristic curves in a written word.
Other techniques perform no kind of correlation whatsoever, namely tree
structure database analysis. Teitelman [29] extracts character spatial infor
mation and performs a tree search which produces a single recognition
result. No alternatives are produced. In such cases where only a single result
is possible, no correlation is necessary. However, such techniques have the
disadvantage that they result in a black and white decision, rather than hav
ing a choice of possibilities. Correlation introduces the aspect of ’most
likely’ result followed by a num ber of alternatives. Associated with the alter
native string is usually a numerical indication of the relative recognition cer
tainty.
Closely related to correlation, and a very important factor in the overall
recognition process is the database against which the unknown character
encodings m ust be compared in order to produce a match. It was quite
noticeable in the state-of-the-art study that there was very little detail given
as to the construction of the database and its inter-relation with the recogni
tion procedure. In most instances there is only a brief description of the
nature of the elements in the database. Yoshida and Sakoe [23] have a
reference memory pattern area containing patterns of character categories,
but no indication is given to the methodology of database matching or its
size. In many other instances, especially the topological feature extraction,
an explicit database is not used. Recognition is performed as a series of deci
sions based upon the features- extracted, and knowing that only a certain
subset of characters exhibit certain features. Hence the decision rules

110

gradually eliminate elements from each subset until a final single possibility
is reached. Suen et al [41] perform ed a state-of-the-art report on hand
printed characters (mainly upper case A-Z and numerals). In it they studied
databases used to represent these characters. Database size will be depen
dent on the type of script being input:-
• numerals
• upper case (A-Z)
• lower case (a-z)
• connected script
• any combination of the above
Database sizes quoted for hand-printed characters ranged from 8Kytes
(num erals 0-9) to 64Kbytes (letters A-Z). Only 35% of the papers studied
by Suen actually m entioned the size of the database. It was also noted that
many of the techniques would require a rethink on the database in order to
implement the algorithms on a mini- or micro-computer (ie. database
searching would be too slow as it was). In no paper was the database struc
ture m entioned.

6.2. Correlation
The techniques evaluated in deciding in the final correlation procedure

are described in the following sections.

6.2.1. Theory

The m ethod of correlation needs to be designed so that it can be
applied to the analysis of both the Freeman encodings and the XY encod
ings transparently. This is important because we need to be able to relate
the recognition alternatives produced from one algorithm with those pro
duced by the other in order that the correlation results of each recognition
algorithm can be used to produce a final alternative string. This is a result of
combining the various outcomes of the separate algorithms for XY encod
ings (Chapter 4) and Freeman encoding (Chapter 5). The result o f search
ing the XY and Freeman databases is such that only strings with eithen-
• identical XY trend strings
• identical Freeman vector strings
are extracted from the appropriate database against which to perform corre
lation with the unknown character encoding. The database methodology is
described later. However, assuming that we have picked out a num ber of
alternatives against which to match the unknown character, the technique is
to m easure the difference between individual features in each string. The
total difference calculated for all the feature elements is taken as a measure
of ’goodness of fit’ of one string to the other. A very small overall
difference is an indication of a very good correspondence, while a very large
m easured difference is an indication of a very poor correspondence. The

111

algorithm has been amended and evolved over a number of stages.

6.2.1.1. Initial Correlation Measure - The Chi-Square Test

The initial ’goodness of fit’ m easure considered was the chi-square dis
tribution. The idea of ’goodness of fit’ is to compare a sample measure
obtained with the type of sample one would expect from a hypothesised dis
tribution in order to see if the hypothesised distribution function "fits” the
data in the sample. In our case the hypothesised distribution function is the
encoding found from the database to which is "fitted" the unknown sample.
Formally, the test is given as:-

 ‘ (6.2)
1=1 .

where m = no. o f samples
E - expected result
O - observed result

In this case, the expected result will relate to the the encoding found in the
database, while the observed result is the encoding of the unknown charac
ter.
The smaller the computed value of x2 the better the "fit" between the sets of
results. We want to use the equation to compare an unknown character
encoding with a num ber of possible alternatives obtained form the appropri
ate database. We wish to know which of the alternatives gives the best fit to
the unknown character. If we consider an unknown character producing a
Freeman vector string as below:-

112

F (?) = 4.12 5.18 1.27 6.39 0.04

Figure 6.1 - Freeman Encoding of Unknown Character

A search o f the Freeman database produces three possible characters that
the unknown string might represent:-

F (a) = 4.14 5.24 1.35 6.16 0.12

F (d) = 4.19 5.20 1.36 6.20 0.04

F(<7)= 4.10 5.16 1.30 6.35 0.09

Reconstruction of the character shape for these three cases produces:-

113

5 0

5

(a) (d) (q)

Figure 6.2 - Database Alternatives

Applying the %2 test gives:-

) 0.12 0.18 0.27 0.39
v.vrry

0.04

\ (0 .1 9 -0 .1 2)2 . (0 .2 0 -0 .1 8)2 . (0 .3 6 - 0 .27)2 . (0 .2 0 -0 .3 9)2 . (0 .0 4 - 0 .0 4)2
' 0 .12 0.18 0.27 0.39 0.04

, (0 .1 0 - 0 .12)2
) —.......—H'

(0 .1 6 - 0 .18)2 . (0 .3 0 - 0.27) 2 ._ _ + (0 .3 5 -0 .3 9)2 . (0 .0 9 - 0 .0 4)2

The lowest value o f %2 indicates the best fit. In this case the actual percen
tage figures are not of as much relevance as the order. Hence the ’q ’ encod
ing extracted from the database gives the best match to our unknown char
acter as it has best fit. Fortunately, this also corresponds with a visual
hum an analysis. The Freeman encoding of the character does indeed look
m ost like the character ’q ’ from the database. However, a serious drawback
was found with the x2 m ethod when analysing an unknown vector which
had a very small vector contained in its vector string. Consider our character
to have the slightly different vector string:-

F (?) = 4.12 5.18 1.27 6.41 0.02

ie. the tick on the end of the downstroke is now only half the size as the
vector string of Figure 6.1. However, the overall shape of the unknown

114

character is hardly changed, and it still most closely resembles the character
*q\ But if we perform the %2 test we get the results:-

0.12 0.18 0.27 ' 0.41 0.02

(0 .1 9 - 0 .12)2 (0 .2 0 - 0 .18)2 . (0 .3 6 - 0 .27)2 . (0 .2 0 - 0 .41)2 (0 .0 4 -0 .0 2)2
0.12 0.18 0.27 0.41 0.02

(0 .1 0 -0 .1 2)2 .
^ i

(0 .1 6 -0 .1 8)2
_ _ _ _ _ _ _ _ + (0 .3 0 -0 .2 7)2 ((0 .3 5 -0 .4 1)2 .

r n - r i T 1 - J -
(0 .0 9 - 0.02) 2

The %2 test now indicates that the unknown character now matches the char
acter ’d ’ the closest. However, visually character ’q’ should still be the best
match. This is due solely the the large measure of deviation produced
between the last vector in the two strings. The measure of deviation is
magnified by the division o f the very small relative travel of the end vector.
Hence the %2 test was discounted due to this oversensitivity when analysing
very small vector deviations. The example and fit problem have been shown
using the Freeman vector string, but the same problem occurs when per
forming the fit on XY trend strings (in fact it can produce even m ore alarm
ing results due to the fact that a particular x- or y-trend can actually be zero
as long as its complimentary trend is sufficiently large that the trend pair are
not rem oved before analysis).
An important point to make here is that the measures of fit m ust be such
that they can be compared not only between a set of fits between alterna
tives for a particular Freeman encoding, but also between those alternatives
and the alternatives produced from its reduced vector string, and, more
importantly, between the Freeman alternatives and the alternatives pro
duced from "fitting1’ the XY results. Therefore, for a particular unknown
character (<t>) we will produce:-

<t>(F)= M i (a) , A f2(P) , M 3(Y), M 4(5)
<D'0F)= M [(a) , p'), M 3(7 '), M ^ 8)

* (X Y) = N , (a) , A/2(p), W3(Y)> ^ 4 (6) ,
d>'(XF)= N i { a) , N 2<p'), iV'CY'), 1^(5'), (6 .3)

where {a,{5,Y,5,....} = possible character ids
[M],[W] = correlation measure

The measures of fit [Af], [A/'], [N] , [TV'] m ust have a linear correspondence in
order that an overall result can easily be determined. Relating to this, the
m easures of fit are required as a percentage figure 0% to 100% for a perfect
fit. The measures of fit are required to indicate the relative fit and not
merely a sequential relationship to indicate the order of goodness of fit.
Although the chi-square m ethod was found to be unsuitable, it did produce

115

an indication of the am ount of deviation for a number of alternatives from
an observed result. A goodness of fit was produced by subtracting the devia
tion measure from 100% (which is a perfect fit).

Fit{? I a) - 100.0 - 34.27 = 65.73%

Fit{? I d) - 100.0 - 19.38 = 80.62%

Fit (? /<?)= 100.0 - 15.55 = 84.45%

6.2.2. Kolmogorov-Smimov Test

This is another type of goodness of fit measure. It is preferred by some
people over the chi-square test as it is found to be more sensitive and more
reliable over a small sample set, where the standard deviation may not be
truly representative of the the actual. Basically it determ ines the largest
difference along the sample set between the expected and observed results
and uses this as a measure of goodness of fit. Again, the smaller the
difference, the better the goodness of fit. This has the advantage over the
chi-square test that it is insensitive to the variations between very small vec
tors that makes the previous test unsuitable.

T = sup I F (x) ~ S (x) I (6.4)
x

Using this technique on our second chi-square example produces the result:-

T (? l a) = (0 .4 1 -0 .1 6) = 0.25 - > F i t (? / a) = 75%

T (? Id.)— (0 .4 1 -0 .2 0) = 0.21 - + F i t (? / d) = 79%

T (? / q) = (0 .0 9 -0 .0 2) = 0.07 Fi t (? / q) = 93%

The problem of the small vector weighting has been overcome using this
technique, the fits are ordered in the correct sequence, but the range of fits
will not span the range 0% to 100% because of the nature of the algorithm.
An example o f the problem shows how insensitive the difference measure
is. Take the unknown character:-

116

F (?) = 1.07 6.16 0.18 2.23 4.29

4

0

Figure 6.3 - Freeman Unknown character

The following two alternatives are found from the database:-

F (b) 1.21 6.43 0.13 2.11 4 .10 F(o) 1.03 6.29 0.17 2 .26 4.25

0

4

2

0
Figure 6.4 - Freeman Database Alternatives

Application of the goodness of fit measure gives the result:-

117

Fi t (? / b) ~ (1 - 10.16-0.431)x 100% = 73%

Fi t (? /o)= (1 - 1 0 .1 6 -0 .2 9 1) x 100% = 8 7 %

Although the ’b ’ gives the worst fit, the relative fit of the two characters to
the unknown does not properly indicate how bad the ’b ’ is compared to the
’o ’. Visually the ’b ’ is a very poor match to the unknown character. There
fore we would like the goodness of fit measure to be indicative of this.

6.2.3. Correlation Technique

As the established techniques given above were tried and rejected, a
goodness of fit measure was devised which is really an extension of the
Kolmogorov-Smirnov test. The corresponding vectors in each vector string
were compared to find a difference measure. All the separate difference
m easures were totaled to produce an overall difference m easure. As before,
the smaller the difference measure the better the goodness of fit. A relative
difference measure is not produced by division of the expected result as in
the chi-square test in order to avoid the sensitivity problem previously
encountered. Form ally :-

D = £ IOi-Ei 1 (6.5)
i= 1

where m - no. o f samples
E= expected result
0 = observed result
D - total difference measure

And in order to produce a percentage fit measure we get:-

% f i t = [1 - £ IOi-Ei I] x 100% (6 . 6)
;= i

The benefits of the technique can best be shown by correlating the two
problem cases for the %2 test and the Kolmogorov-Smirnov test,
• x2 test case (ii)

118

Fi t (? / a) =(1 - [1 0 .1 4 - 0 .1 2 1 + 1 0 .2 4 - 0 .1 8 1 + 1 0 . 3 5 - 0 . 2 7 1+ 1 0 .1 6 - 0 .4 1 1 + 1 0 . 1 2 - 0 . 0 2 1])x 100% = 49%

Fi t (? / d) =(1 - [1 0 .1 9 - 0 .1 2 1 + ! 0 .2 0 - 0 .1 8 k - 1 0 .3 6 -0 .2 7 1 + 1 0 .2 0 -0 .4 1 k- 1 0 .0 4 - 0 . 0 2 1])x 100% = 59%

F i t (? / q) = (l - [1 0 .1 0 - 0 .1 2 1 + 1 0 .1 6 - 0 .1 8 k - 1 0 .3 0 -0 .2 7 1 + 1 0 .3 5 -0 .4 1 k- 1 0 .0 9 - 0 . 0 2 l]) x 100% = 80%

• Kolmogorov-Smirnov test case (ii)

F * (? / 6) = (l - [1 0 .0 7 - 0 .2 1 1 + 1 0 . 1 6 - 0 . 4 3 k- 1 0 .1 8 -0 .1 3 1 + 1 0 .2 3 -0 .1 1 k- 1 0 . 2 9 - 0 . 1 0 l]) x 100% = 23%

Fit(? / 0 >— (1 - [1 0 .0 7 - 0 .0 3 1 + 1 0 .1 6 - 0 .2 9 1 + 1 0 .1 8 - 0 .1 7 1 + 1 0 .2 3 - 0 .2 6 k - 1 0 .2 9 - 0 . 2 5 l])x 100% = 75%

The percentage measures now also give an indication of how well or how
badly an unknown character matches an entry in the database.
This goodness of fit was found to be identical to the Cramer-Von Mises test
for goodness of fit dating from 1930.

6.2.4. Algorithm Result Cross-Correlation

Once we have determ ined the correlation results for the Freem an and
XY algorithm and their respective reductions, we will be left with a series of
correlation measures as shown in equation 6.3. In order to produce some
means of analysing the outcome of both algorithms , the relative correla
tions for multiply represented characters are summ ed to produce an overall
correlation result. This is best illustrated by means of an example. Consider
the results of correlation of a character ’p ’:-

<D(F)= 86(p) 8 1 (6)
4>(F')= 88(/?) 7 5 (6) 45 (g) 4 2 (y)

<E>(XF)= 81 (p)
<t>(X T ')= 8 0 (p) 6 2 (6) 2 6 (z) 1 5 (g)

< D (X r > 80(p) 6 0 (6) 47(s) 36 (y) 31(g)
<t>(XF")= 78 (p) 6 6 (6) 61(m) 56(r) 5 3 (n) 4 5 (g) 4 0 (6)

Summing the correlation measures produces:-

4 > (F + * T) = 4 9 3 (p) 3 4 4 (6) 1 3 6 (g) 7 8 (y) 6 1 (m) 5 6 (r) 5 3 (n) 4 7 (s) 4 0 (6) 2 6 (z)

The results are normalised to produce an averaged fit measure between 0%
and 100%, by dividing each accumulated fit by the integer which allows the
results to be as high as possible (up to 100%). In this case, this is achieved
by division by 5 to give a final averaged correlation result:-

119

<J>(F+X7)= 95(p) 6 9 (b) 2 1 (g) 16(y) 12(m) l l (r) 11(«) 9 (j) 8(h) 5(z)

Although this m ethod of cross-correlation is not directly comparable using
the oversimplified approach detailed above, analysis of the outcome of this
technique does find the alternative string simply and quickly.

6.3. Databases

Some aspects of the database size have already been m entioned in
chapters 4 and 5. It is important to determ ine the size of the respective
Freem an and XY databases which will allow script recognition for a single
writer with a good degree of accuracy (95-100%). However, it is more
im portant to be able to estimate the size of the databases which will be
required in a user independent system. The recognition rate for a particular
user will most likely be lower in a user independent system due to the fact
that the need to cater for a much larger degree of character variability will
lead to the introduction of a greater am ount of ambiguous character form a
tions in the database. Therefore, we need to show that for a user indepen
dent database:-
• (i) the size will not grow to become a limiting factor (in terms of both

memory requirem ents and speed of recognition).
• (ii) the recognition rate will not degrade to an undesirable level in

attempting to achieve user independence.

6.3.1. Analysis of Captured Data

Software tools have been designed which will allow for the automatic
construction of the Freeman and XY databases from any am ount of data
collected from the graphics tablet. Character strokes input from the graphics
tablet are saved to file as they arrive in the form of raw (x,y) ASCII co
ordinates. Each stroke drawn on the graphics tablet is individually recon
structed on a graphics terminal (using the GKS software package) in order
for the user to key in the identity of the character as written on the tablet.
These keystrokes are inserted into a datablock constructed at the start of the
file. Although the subjects write two set test sentences, it is not possible to
simply insert a preformatted header at the beginning of each file containing
the text strings for these two sentences. This is because the great majority of
lower case characters, written in isolation can be formed from m ore than
one single stroke. Therefore each elem ent of a particular multi-stroke char
acter m ust be saved separately in the header block, because they will be
recognised separately to begin with.

120

+

Figure 6.5 - Typical M ulti-stroke Character (k)

This process of header creation is the m ost important part of the database
construction. It is the only part that m ust be performed manually. We must
be careful to ensure that the header stroke sequence is a faithful representa
tion of the raw data strokes following it. Any mistakes in the header stroke
sequence will cause invalid entries to be formed in the databases. The most
im portant reason for the need for character verification is that, in some
instances, the curve traced out by the pen on the paper does not correspond
to the curve captured by the tablet. Two types of inconsistency may occur,
both of which are usually caused by erroneous pen down detection in the
graphics tablet circuitry.

121

(i) incomplete character capture

(ii) additional pen m ovem ent capture

Figure 6.6 - Invalid Character Curve Capture

In such occurrences the data is invalidated and does not contribute to the
database construction.

6.3.2. Database Construction

All valid stroke sequences collected from the users test sentence set are
passed through the Freeman and XY algorithms to produce the encoded and
reduced strings as detailed in Chapters 4 and 5. Each encoded string is
assigned a stroke identity (a -z ,\,/,> ,- for lower case script), the identity
being the corresponding elem ent of the header stroke sequence. The Free
man strings, together with their intended identities are filtered to one output

122

file and the XY strings, along with their intended identities are filtered to
another output file. This may be for one particular writer or for any num ber
of writers.
We now need to perform averaging on the Freeman and XY strings. Many
of the XY and Freeman strings will not be unique for a particular character.
Section 4.1.2.2 shows how similar XY strings are averaged to produce one
single string which will be stored in the XY database. Experiments con
ducted showed that this averaging process reduces the num ber of Freeman
strings by a factor of around 3 and the num ber of XY strings by a factor of
around 6. These factors are seen to be larger for a particularly neat writer
and smaller for an untidy writer, as would be predicted. The act of averaging
should produce an averaged encoding which should produce a high measure
of goodness of fit when correlated against its composite encodings.
If we have a num ber of composite Freeman encodings for a character ’a’ for
the vector string ’45016’ we can produce an averaged Freeman string as
shown in Figure 6.7 below:-

6 60 6

F (a 2)= 4.15 5.20 0.14 5.24 6.27
F (a i) = 4.17 5.21 0.16 1.24 6.20 F (a 3)= 4 .20 5.19 0.15 1.24 6.22

F(a m) = (17+ 20+ 15) 5 (2 1 + 1 9 + 2 0) Q (1 6 + 1 5 + 1 4) x (24+ 24+ 24) (2 0+ 22+ 27)
3 3 3 3 3

F (a m)= 4.17 5.20 0.15 1.24 6.23

Figure 6.7 - Vector Averaging

Producing the goodness of fit m easures (using the Cramer-Von Mises test):

123

F»7(a1/a av)= (1 - [0.00+0.01+ 0.01+ 0.00+ 0.03])x 100% = 95%

Fi t (a2/ a av) = (1 - [0 .02+ 0 .00+ 0 .01+ 0 .00+ 0 .04])x 100% = 93%

FU{a2l a m) = { 1 - [0.03+ 0.01+ 0.00+ 0.00+ 0 .01])x 100% = 95%

The two test sentences written are composed of between 80 to 100 separate
strokes. After producing the original Freeman and XY encoding for each
stroke, the reductions are also produced. This results in around 150 Free
man encodings and around 220 XY encodings per writer. However, averag
ing reduces this figure to an average of 123 unique Freeman encodings and
108 unique XY encodings. The results of the script encoding and averaging
procedures are given in Tables 6.1 and 6.2 for the Freeman and XY encod-
ings respectively. __________

No. of Users Cumulative Encodings
(Isolated)

Cumulative Encodings
(Additive)

1 118 118
2 238 232
3 368 344
4 499 458
5 640 570
6 776 663
7 913 770
8 1041 858
9 1110 902

10 1228 970
20 2456* 1678
30 3684* 2310
40 4912* 2871
50 6140* 3401
60 7368* 3833
70 8596* 4246
80 9824* 4745
90 11052* 5137

100 12280* 5430
112 13754* 5483

* (extrapolated values)
Table 6.1 - Freeman Database Construction

124

No. of Users Cumulative Encodings
(Isolated)

Cumulative Encodings
(Additive)

1 85 85
2 239 221
3 344 302
4 450 370
5 586 456
6 681 497
7 825 579
8 925 612
9 985 630

10 1076 656
20 2152* 970
30 3228* 1235
40 4304* 1444
50 5380* 1646
60 6456* 1853
70 7532* 1990
80 8608* 2233
90 9684* 2410

100 10760* 2526
112 12050* 2571

* (extrapolated values)

Table 6.2 - XY Database Construction

If we extrapolate these results for the first 10 writers up to the full 112 test
set, then at most we would produce 13754 unique Freeman vectors and
12050 XY trends. However, this is an analysis of the scripts in isolation. It
would be a fair assumption to theorise that writers will produce many
encodings for certain characters which would be identical to encodings pro
duced by other writers. Therefore, we would expect databases representing
the full 112 users to be much smaller than the maximum figures we have
calculated. Figure 6.8 and 6.9 show how the combining of peoples unique
encodings begins to show a marked tailing off over an initial trial o f 10 writ
ers. A reduction of 21% for the Freeman database and 39% for the XY data
base. Already the combined total of unique encodings for the XY database
is beginning to show a limiting tendency. Figures 6.10 and 6.11 show the
results of combining writer data up to the 112 user set. The final total of
Freem an unique vector encodings is now 5483 strings held in 132 Kbytes of
ASCII text. This represents a total reduction on the maximum possible
num ber of strings of 60%. The XY database contains only 2571 unique
strings held in 157 Kbytes of ASCII text, a total reduction of 79%. The XY
database shows a much m ore marked tailing of of unique vector entries to

125

num ber of users. Extrapolation of the graphs shows that if we add another
112 users the Freeman database will increase by another 20% (around 1000
extra unique encodings) and the XY database will increase in size by a simi
lar figure (adding around 500 extra encodings).

126

o

CO

0

.2)
o CO

h . ?■K 3
m

k, •
0

00
COLO

g>
Ll

CO

C\J

o o
oo

o
LO

o
t o
cm

oI CMa

127

-V
T

re
nd

D
at

ab
as

e
B

ui
ld

(10

Us
er

D
ist

rib
ut

ion
)

O

o>

CO

CO

LO

CO

C\J

w©c ooo
oo
CO

oo
CO

oo oo
CM

c
©

128

CO1—
CD
CO

3

(J>
CO

CD
i—
3
O)

i i -

"O

o
CM

o
05

o
CO

o
CO

LO

ooo
LO

ooo
CM

OOo
CO

ooo
CO

ooo
05

129

$2
CD

o

CD

CDIL.
=3
g >

L l

— y
o
CM

ino

Ps

oa>

o
CD

L-.v >4

LO

O
CO

LO

ooo
CM

O
O
O
CD

OO
O
CD

O
O
O
CO130

*2<D

CD

CDx-
3
D>

L l

6.3.3. Database Searching

In order for the recognition algorithms to perform in a real time
environm ent it is vital that the database search strategy is as efficient as pos
sible. We have shown that we can produce reasonably constrained databases
for a user independent system. However searching of the databases should
not take up an inordinate am ount of processor time. In many papers on
script recognition the algorithms have not been developed with ultim ate real
time operation in m ind and, as such, the database searching sometimes
accounts for the bulk of the processing time. In many instances this is
because a simple linear search of the database from start to finish is per
form ed in order to find a correspondence. We set out to devise a more
economical search strategy. During the database development working on
the VAX 11/750 the databases are stored in ASCII text files. This is neces
sary in order to visually check particular database entries to check their
authenticity. Some bad entries tend to find their way into the databases dur
ing the automatic database generation phase.
Loading of the databases from their respective ASCII files
(5483+ 2571= 8054 lines of ASCII text) into the database structures took a
long time (around 10 m inutes). Therefore a program was devised which
would load the databases into an area of memory and perform a binary
dump of the database structures to a file. This allowed us to simply read in
this file o f structures into memory instead of the two ASCII files on pro
gram initialisation. This took only a m atter of 5-10 seconds. Of course, once
transferred to the real time hardware the databases will be stored in ROM
and no loading will be necessary.

6.3.3.1. Freeman Database

The Freeman database was ordered so as to minimise search time. If
we consider a Freeman encoding, we can interrogate the vector string to
determ ine a num ber of distinct features. The obvious feature is that of
num ber of vectors in the string. For our database this will be 1,2,3,4 or 5.
Hence we can categorise the Freeman database into vector strings o f equal
length. A nother feature which can be used to categorise a vector string is
the direction of the first vector. This will be in one of the eight quantised
directions (0,1,2,....7). The Freeman database is ordered in both vector
length and initial vector direction as shown in Figure 6.12

131

Order By First

Vector Groupings w
Vector Direction

Figure 6.12 - Freem an Database Ordering

On program initialisation, after the database has been loaded, a two dimen
sional matrix is constructed of dimension 0[5,8]. The row index relates to
the num ber of vectors in the string (1—>5) and the column index relates to
the initial vector direction (0-»7). Contained in this array are the addresses
of the boundaries we have created in the ordering of the database as in Fig
ure 6.12. If we consider the vector string:-

F(a) = v0./0 vj./j v*./„

We can find the start address of all vector strings of length n which have
initial vector direction v0 by accessing elem ent 0[«,vo] of the array. This will
give us the address of the first structure from which we should start our
search of the database. We should stop searching the database when we get
to the Freem an structure whose address is obtained by accessing the ele
m ent which indicates the next boundary. This address is obtained from ele
m ent O [n,v0+ 1] or elem ent 0[n+l,O] if vector direction v0 is 7. We have

132

effectively restricted our search area by construction of this search array,
reducing search time greatly. The largest search area in the present Freem an
database is for vector strings 5 vectors long, beginning in direction 6. There
are 542 such entries in the database. This represents 9.9% of the total data
base size. If we wanted to speed up search time further in the future we
could produce a three dimensional search array O [5,8,8] and order in terms
of the direction of the first two vectors in the string.

6.3.3.2. XY Database

The XY database is ordered in a very similar m anner to the Freeman
database. In this case, the two features extracted from the XY trend encod
ing are:-
• (i) x - y trend count (1,2,3,4,5,6), six maximum.
• initial x and y travel directions (either x -ve/y -ve, x -ve/y + ve, x

+ ve/y -ve, x + ve/y + ve).
Therefor the XY database is ordered as shown in Figure 6.13.

133

N o . o f x - y t r e n d s
D i r e c t i o n o f
1 s t x - y p a i r

x - v e / y - v e

x - v e / y + v e

x + v e / y - v e

x + v e / y + v e

Figure 6.13 - XY Database Ordering

A similar m ethod o f access of the search pointer array 0[6,4] allows us to
define our limited search area as for the Freem an database. The largest
search area for the XY database is for strings which have 5 x and 5 y trends
and commence in direction x + ve/y -ve. This area is represented by 184
entries, 7.1% o f the total database size.

7. ANALYSIS AND DISPLAY OF TH E RECOGNISED OUTPUT

7.1. Introduction

Once each single pen stroke has been identified by the Freeman and
XY algorithm combination it is necessary to interpret the sequence of
recognised pen strokes into sensible sentences of text as meant by the
writer. This takes us into the area of the hum an interface. How and when
should we show the recognised output to the user and how will they react to
the way that the interpretation to their written text is displayed back to
them. This m ust be done in such a way that is sensible and clear to the
writer. The ideas presented in this chapter are given as a basic initial
approach more as an aid in analysing the algorithms developed in a real-time
environm ent. Research into the complexities of the hum an interface is
probably as big a task, if not bigger than the problem of dynamic script
recognition. A num ber of stages of processing of the individual pen strokes
are undertaken during the display phase,
• pen stroke combinations
• word boundary detection
• line detection

7.2. Pen Stroke Combination
M any of the lower case characters written by our initial user base of

112 writers were found to be form ed by using more than one single pen
stroke (the exact figure being 1537 out of 10352 characters, or 14.85%). The
most common occurrence being the characters with diacritical marks - i,j,f,t.
In such instances it is necessary to reconstitute a character by analysis of
these part shapes as produced in the separate pen strokes.
At this point it would be helpful to describe the m anner in which the test
writers were allowed to create their test sentences. As long as the sentences
were written from left to right along the A4 sheet in a relatively straight line
the user was allowed to write using their natural writing style (speed, size,
style of formation) as long as the text was legible to someone reading the
sentences. However, this does introduce extra pen stroke combination con
siderations. In most instances a character form ed from two separate pen
strokes is usually completed sequentially in time. However, this was found
not to be the complete story. In some instances, multi-pen stroke characters
are only completed at the end of a word, namely the characters i,j,f,t. Hence
we m ust keep a record of the absolute position of every previously written
pen stroke in order to determ ine whether two pen strokes written apart in
time are proximate. In many instances it is quite a simple task to determine
whether two separate strokes are part shapes of the same character because
one stroke actually intersects the other,

135

Figure 7.1 - Character with intersecting part-strokes (t)

However, for other characters this is not the case,

Figure 7.2 - Character with two non - intersecting pen strokes (k)

H ence, some threshold value needed to be determ ined in order to decide
whether the space between the two separate letters *1* and V was actually an
inter-character space or an intra-character space. For example, consider the
following sequence of pen strokes,

136

p a c k
Figure 7.3 - W ord ’pack’

By simply determ ining the horizontal spaces between these letters it would
be difficult to decide that the last two pen strokes should actually be com
bined into a composite character, form ing the letter ’k \ This problem will
be discussed in more detail in the last chapter (Chapter 9).
By analysing the multi-stroke characters produced by our 112 user set it was
possible to determ ine the criteria for the attempted matching of two separate
pen strokes. These are as follows,
(i) If the next stroke crosses the path of any previously written stroke,

attempt a match.
(ii) If the next stroke is a diacritical mark (i.e. a cross or a dot) and it is not

a continuation of the present line (i.e. a dash or full stop respectively),
search back along the sequence o f stroke positional information in
order to determine the previously written stroke which is closest to the
mark, but exists in whole or in part below the diacritical mark. (This
will cater for dots and crosses which are placed within close vicinity of
their partner stroke as produced by some writers, while ensuring that
the diacritical mark is not attempted to be matched with a letter from a
previously written line).

(iii) If the newly written stroke is within a certain threshold distance of the
last pen stroke written on the current line, it is deem ed to be a part of
that character. This threshold value was calculated by comparing the
intra-character distances to the relative sizes of the composite pen
strokes.

A t this point it was decided that the techniques being developed for stroke
matching and space detection could not be displayed to the user in this basic
form at, since not enough information is present while the first few pen
strokes are being written to be able to display ’words’ and ’characters’ with
any level of confidence. It was found, from analysis of pen stroke spacings,
that the deviation between the first 12 spaces in some instances, was so
great that it was not possible to decide correctly whether a particular space
was,
(i) an intra-character space (Sp)

137

(ii) an inter-character space (Sc)
(iii) an in ter-word space (Sw)

After only writing two pen strokes on a line, if a space is detected between
them it is impossible to determ ine whether this space is an Sp, Sc or Sw
space. Therefore the pen stroke sequence "lc" could be displayed as

(i) k (ii) lc (iii) 1 c
The decision procedure is not feasible until there are enough characters
written along the line to be able to predict the spacing type with m ore cer
tainty.
One way of reducing this uncertainty is to use some form of n-gram
analysis. For example, in the case of our written word in Figure 7.3, possi
ble alternatives p a ck and padc will be discarded in favour of pack by virtue of
analysing valid letter paths. This is discussed further in this chapter and also
in some m ore detail in Chapter 9.
A similar problem arose with the display of a part character, before the
writer has completed the second stroke. In some cases it is possible to
display the recognised first stroke without confusing the writer (eg. display
an T before the writer crosses the Y), however do we display an T before
a writer has completed an T ? A trial system was developed as shown below,

Download programs

G K S commands

SUN 2-50
RS -232 link
(x,y) co-ordinates

Numonics Tablet

FORCE
G K S

Figure 7.4 - Initial Script Input System

In order to be able to capture the tablet co-ordinate data and perform the
recognition and display in real-time, it was necessary to transfer the data
capture programs and recognition algorithms onto a machine having a real

138

time operating system. A FORCE development system, running the PDOS
operating system was chosen to perform the bulk of the processing, but it
was necessary to retain the SUN to display the recognition results using the
Graphical Kernel System to display the A4 page and show the text m anipu
lation being performed. At this stage the display and manipulation of the
recogniser output is the limiting factor in this demonstration system, since
GKS running under the UNIX operating system on the SUN is very slow
and memory intensive. Typically, incorporating the GKS into the run file
increases the size from around 120Kbytes to around 1Mbyte.
In order to avoid user confusion, while a line of script is being written onto
the tablet, the raw co-ordinates received from the data tablet are faithfully
reproduced onto the SUN screen. Therefore the format on the screen of the
SUN mimics the pen on paper actions of the writer while performing the
stroke recognition, matching and space detection. Only when a new line is
detected, will the final space detection processing be performed. Once this
has been done the ’word’ strings will be displayed in place of the raw data.

7.2.1. The M atching Procedure

When it has been determ ined that two or more pen strokes could be
elem ents of the same character, it is necessary to decide on the identity of
the composite character. The matching procedure uses the following infor
mation,
(i) the identity of the first stroke.
(ii) the identity of the second stroke.
(iii) the orientation of the two strokes with respect to one another.
A detailed analysis was undertaken of the characters written by our 112 user
set which were made up of m ore than one single pen stroke. Of the total of
10352 characters written, the breakdown of the user set is as shown in the
table below;

139

C h a r a c t e r
N u m b e r

M u l t i - s t r o k e
N u m b e r

W r i t t e n
%

M u l t i - s t r o k e

a 7 2 2 1 3 .2

b 3 0 2 0 6 14 .6

c j 2 0 9 0 .0

d 3 0 4 0 5 7 .4

e 1 4 8 1 5 1.7

f 1 4 5 2 0 2 7 1 . 8

g 1 1 3 1 0 3 .5

h 6 3 0 0 2 .0

i 3 4 6 6 1 9 5 5 .9

j 7 6 2 0 7 3 6 . 7

k 1 1 9 2 0 8 5 7 . 2 j

1 - 2 1 5 0 .0

m 2 2 0 5 1.0

n 2 4 0 9 0 .4 9

0 - 4 1 1 0 .0

P 6 4 2 0 7 3 0 .9

q 1 2 2 1 5 5 .6

r - 4 0 7 0 .0

s - 3 1 3 0 .0

t 2 9 7 3 0 6 97.1

u 7 5 1 4 1.4

V 2 2 1 3 1.0

w 1 2 0 6 0 .5

X 2 0 2 2 0 9 9 6 . 7

y 1 6 2 0 7 7 .7

z 1 6 2 0 8 7 .7

TABLE 7.1 - Multi-stroke Character Breakdown

140

The results for the characters ’i* and ’j ’ were quite interesting in that
they show that for our user base, around 45% of all i’s written are not dot
ted, while almost 63% of all j ’s written were not dotted. Therefore we can
not rely on the writer dotting these characters in order to identify the char
acter. Even in some instances where the V or ’j ’ is dotted, the dot is not
centred over the T or ’j ’, but over it’s preceding or succeeding neighbour.
We can also see that only 5 characters of the alphabet have not been formed
from more than one stroke, these being the ’c’, T , ’o V r’ and ’s’. Overall,
14.85% of all characters written were form ed from more than one stroke.
The m ost common multi-stroke characters were the ’f’, ’t ’ and ’x ’.
Analysis of the multi-stroke characters has shown that they can be formed
in a variety of different ways, and from a variety of composite shapes. The
character ’k ’ is a particularly good example for indicating the different
means of construction. It can be constructed from one, two or three single
pen strokes. Figure 7.5 below shows the various styles of formation and the
breakdown of the percentage occurrences for each particular style.

141

(i)

(40.4%) (32.0%) (14.7%)

4.6%)

(i v) (v)

Figure 7.5 - Various formation styles for character ’k ’

Hence the task o f matching pen stroke pairings is not an insignificant one.
We m ust not only decide whether the part strokes are valid elem ents o f a
letter, we m ust also examine the relative positioning, as in the following
example where we have two opposite diagonals,

142

Figure 7.6 - Diagonal Stroke Pairings

Two such strokes in close proximity may produce a num ber o f different
shape results,

V

(i) (ii) (iii) (iv)

Figure 7.7 - Some Cross-diagonal Shape Permutations

(i) The two diagonals are of similar length and intersect roughly at their
mid points. Character =* V .

(ii) Backward diagonal roughly twice the length of the other diagonal. First
diagonal m eets the backward diagonal roughly at its mid point from
above. Character = *y’

(iii) Diagonals roughly of similar length and come together at their lowest
point. Character = V .

(iv) The diagonals meet at their highest point. Not an alphabetic character.

143

7.2.1.1. The Matching Array

The technique used for pen stroke matching has been centred around
the construction of a matching array. The design of such an array has been
developed for the following reasons,
(i) optimisation of the matching algorithm.
(ii) ease of inclusion of new part stroke character constructions.
Each row of the matching array corresponds to a particular valid first stroke
(first in tim e), and each column in the matching array corresponds to a par
ticular valid second stroke. From the 112 user base, only a certain num ber
of valid first and second strokes were found from all the m ulti-stroke char
acters written. Therefore, if we decide that a particular stroke St2 has been
written within the minimum threshold of some previously written stroke
STl, we can determine the result of an attempted match by finding the
appropriate element of the matching array. The procedure is as follows;
(i) A one dimensional array is searched in order to see if any elem ent in

the array matches the identity of our first temporal stroke, STl. The
array has previously been constructed from the identity o f first stroke
as written by our user base. This array is as shown below,

FIRST STROKE ARRAY = { [, ,] , / , c, 1, r, s, v, e, t, o, z, }

If the stroke STl does not match with any element of this array, we can exit
from the matching procedure, as we have no previous evidence that any
other stroke could be written after this one in such a way so as to produce a
valid composite character. However, if the stroke does exist in the array, we
note its position in the array (i.e. the n* element) to be used as an entry to
the two-dimensional matching array.
(ii) We now compare the identity of the second pen stroke against a second

array which holds all the valid second strokes as written by the user
base. This array is as shown below,

SECOND STROKE ARRAY = c, 1, z, o, e }

If the stroke St2 does not match with any element of this array, we can exit
the matching procedure as in the first case. However, if the stroke does
exist, we note it's position in the array (i.e. the element) to be used as
the second entry into the two-dimensional matching array.
(iii) Having determined that the two part stroke identities are valid, we use

their positional information in their respective arrays as m eans of entry
into the matching array M. In this instance we interrogate element
M [m ,n]. The current matching array can be seen in the table below,

144

F i r s t

S t r o k e

S econd S troke

[\] - • / C 1 Z 0 e

[X f < f ' k
\ X * < ! A ! *
] X X f j X X X

/ k j * t < A X *
c a g t < t A

1 A t * t < @ A A
*

A

r A t

| s f <
V A t
e t < t d
b k b
t k k
0 a
f f
z z
- X

i j

TABLE 7.2 - Character Matching Array

AMBIGUOUS MATHCHES:

* : y, b, p

A : k, NULL (no match if second stroke taller
than first).

< : i, NULL (no match if second stroke below
first).

! : y, v, x

@ :y>t

~ : a, q, d
145

The outcome of an interrogation of the matching array M may take one of
the following forms;
1. The element in the matching array may contain a letter of the alphabet

(a-z). This is the identity of the composite character. For example,

2. A NULL character is found. In this instance we have valid first and
second pen strokes but no previous knowledge that they may be com
bined to give a valid character. For example,

M [7 \ V] = M [l , l] - > N U L L

3. A special character is found (eg. ’+ \ , A • In this case we have found
two valid first and second strokes, but we must do further analysis to
determ ine the relative orientation of the two strokes before we can
determ ine the identity of the composite character (as in the ’xVvVy*
example previously).

This technique is equally applicable to characters of m ore than two strokes
by simply making sure that the intermediate pair shape identifier is a
column num ber in the matching array, i.e. a valid first stroke. Therefore,
for the case of the three stroke *k\

M [T V -’] = M[5,3] -> V

sT.

146

(ii)

Figure 7.8 - Three stroke ’k ’

When the first two strokes are detected, they will be input as a first stroke
in the matching array. In this example, matching the first two strokes will
produce the letter ’t \ The letter Y is now used as a valid first stroke, indi
cating another column in the matching array. Matching this with the second
diagonal stroke will reveal the final character identity, ’k \

7.2.1.2. Modified Matching Criteria

By studying the result o f the recogniser output with the matching algo
rithm incorporated on the script from the user base, it was found that the
matching algorithm was attempting to match pen strokes which should not
be matched. In m ost instances this does not create a problem where either
one or other of the strokes is invalid or the matching array indicates a
NULL match. Typical characters which caused erroneous attem pted matches
were *y9 or ’g’ as the second stroke. For example,

147

my

Figure 7.9 - Erroneous Pen Stroke Matching

The horizontal gap between the ’m ’ and *y* is within the threshold for a
possible match. This is due to the tail on the ’y’ drawing the two characters
together, and so trying for a match. However, neither the ’m ’ nor the *y*
are valid first or second strokes in our matching arrays, and so the matching
algorithm will go no further than checking for t h e ’m ’ as a valid first stroke.
However, if we do happen to have a stroke written before the *y* or ’g’ that
is a valid first stroke, we can see from table 7.2 that neither the *y* nor the
’g’ are valid second strokes.
However, another instance does not produce such a fortunate result. Con
sider the case of the T and the ’c* below. Again, the horizontal spacing
between the two strokes indicates that a match should be attempted.

148

Figure 7.10 - Erroneous Pen Stroke Matching with Damaging Results

A match will be found, resulting in the character ’k* replacing the correct
letter sequence Tc". In this instance, the reason for deciding to attem pt a
match is that the T is slanted, therefore skewing its x boundary within the
match threshold distance.
In order to overcome above problems, it was decided that we should only
analyse the the horizontal distance between two pen strokes only over their
vertical region of overlap. This will eliminate such occurrences from the
matching algorithm, i.e.,

my

y overlap y overlap

(i) TAILS (ii) SLANT

Figure 7.11 - Matching Distance Re-Calculation

149

This new region m easurem ent was found to
• speed up the matching by not attempting to match due to ’g ’ or ’y*

• increase the overall recognition by not attempting to match separate

In a num ber of instances it was found that the matching algorithm did not
result in a correct word simply due to the way that the strokes were placed.
In the case below we will never decide that the m ost likely word is ’pack’.

The matching algorithm will always decide on the letter sequence ’padc’ as
the m ost likely word. Such problems will be discussed in the concluding
chapter.

7.2.2. Space Detection

Closely allied to the character matching algorithm is the algorithm for
determ ining the spacing between words along a line. We assume that along a
line of text, the size of the characters will not vary significantly. If they were
to do so, the space detection would not be able to sort out the word spaces
from the character spaces. However, it is not assumed that every line of text
be written at a similar size. The space detection is done on a line by line
basis.
As a line o f text is being written the absolute position of the pen strokes is
m onitored until it is detected that a new line has been started. This is quite
a simple task and will be described later. Once the new line is commenced it
is possible to analyse the horizontal pen spacings that have previously been
recorded.
Initially, it was planned to determ ine whether a horizontal space between
two characters as some function of the relative dimensions of the characters.
This idea soon proved to be impractical as it was found that there was a

tails.

slanted pen strokes.

Figure 7.12 - Indeterm inate Matching Problem

150

large degree of variability of spacing, independent of the relative character
dimensions. It was also found to be impractical to attempt to determ ine
whether a space was between characters in a word or between words by
working out an average spacing and using some thresholds above or below
the average to differentiate between the two. This is because no two writers
produce word and character spaces which produce a typical standard ratio. In
fact, in many instances, there is a large variation in the sizes of the horizon
tal spacing between characters, and this was found to be severely detrim en
tal to any type the original ideas for space detection, which involved some
form of averaging mechanism.
After studying the types of space formation by the user set, a m ethod was
devised which was independent of both the character size and the space size.
Of all the sentences in the user set, no space between characters in a word
was found that was over 5mm, in fact this was roughly the size of a space
between two words. Therefore, a one dimensional array of 20 elem ents was
set up which will represent a count of the space sizes detected along a line.
W hen a line is detected as being completed, the largest space between suc
cessive strokes along the line is used as a maximum bound for the array.
Hence if the maximum space detected is 10mm, the array will be divided
into twenty equal divisions, representing space divisions 0-0.5mm, 0.5-
1.0mm and so on. Similarly, a maximum space detected of 8.0mm will cause
the array to be divided into increments of 0.4mm, going 0-0.4mm, 0.4-
0.8mm and so on. Therefore, a space m easuring 2.3mm will increm ent the
6th elem ent in the array divided for a maximum space of 8.0mm.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ci C2 C3 C20

Figure 7.13 - Space count array

Therefore, the first elem ent of the array will contain a count of the num ber
of spaces in the line whose length was between 0 and 0.4mm, and so on.
Consider a typical written sentence,

151

s'l s 2s3s4 s5: s 6 s 7 s8 s9 s 10

Figure 7.14 - Spacing Analysis

With space distances:-

0.41mm *6 = 0.61mm

0.56mm s 7 = 5.65mm

0.32mm S8 = 0.13mm

0.14mm s 9 = 0.18mm

3.92mm Sio ~ 0.29mm

M aximum space detected is 5.65mm, giving a span of 5 .65/20mm per ele
m ent in the spacing array (0.28m m), producing a distribution,

3 4 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

Now, a simple examination of the array enables us to determ ine the inter
word space from the inter-letter spaces. A sequence o f three consecutive
empty elem ents after the initial group of space sizes detected is used as a
delimiter between inter-letter and inter-word spacings. Therefore, in this
example, the inter-letter spaces occupy the first three bands of the array,
and we have a gap o f 10 empty bands until the next space size is noted.
Therefore, all spaces greater than or equal that particular lower band limit
are identified as inter-word spaces. The decision for opting for three empty
bands was chosen as a result of studying the space arrays as produced by the
user sentence sets. This was found to be a very robust m ethod for word
boundary detection, only failing to detect a word boundary when the user
writes the sentence in such a way that it is impossible to find the boundary

152

simply from the space information.

(! r o m u\espace, inf
no sp a ce detected

Figure 7.15 - Undetected Word Boundary

Again, application of n-grams to this problem is one possible m ethod of
resolution. Since thespace is not a valid word, a technique of word-splitting
followed by n-gram analysis could be used to identify possible word boun
daries.

th espace -no valid words
the space -both words valid
thes pace -only one word valid

This problem will be discussed in the Chapter 9.

7.2.3. Line Detection

Before the spaces can be determ ined as word or character spaces, we
m ust be able to detect that a new line has been started before processing the
spaces on the previous line prior to displaying the recognised output. In a
very simplified decision process we could say that a writer producing a sheet
of text would write sentences from left to right across the page, gradually
working their way down from top to bottom. In such an instance, it is fairly
straightforward to detect a new line by simply comparing the absolute pen
position of the new pen stroke to the absolute pen position of the last pen
stroke.

153

Figure 7.16 - New line Detection

The test for new line is

min<- (s „) -*max3
NEWLINE

This takes into consideration that a writer may go back along a line perform
ing diacritical mark operations, crossing and dotting incomplete characters.
From the sentences written by the user base, it was found that some people
dot and cross characters immediately while others will only complete them
after writing the other characters in the word.

154

1 , 2 , 3 , 4 = T i m e S e q u e n c e

(i) (S)

Figure 7.17 - Diacritical Mark Time Sequencing

From the user base it was found that some 88% of people would cross f ’s
and t ’s immediately while the other 12% would wait until completion of the
word. However, only 43% of people who dotted i’s or j ’s would do so
immediately while 57% would wait until the completion o f the word. In
some instances it was also observed that some writers would read the line
and then cross and dot incomplete characters, or correct mis-spellings.
Hence it would follow, that on a page of text, that the writer would want to
go back to any previously written line and make some changes to that line.
Therefore, not only m ust we detect that a writer has commenced a new line,
we m ust also detect any new actions on any previously written lines. This
facility is discussed here as part o f the functionality of the script input sys
tem , but the human interaction allowable as a result o f this is only discussed
in the concluding remarks. Detection of the line identifier is quite simple as
long as the lines written are constrained so as not to overlap in the y plane.
A measure is kept o f the maximum and minimum y extrem ities of each
line. Therefore, when a new pen stroke is read in and does not represent a
new line starting, we can determine whether it is written on the present line
or some previous line.

155

line 0

line 1

line n

(£ o) Jm «

(L q) .y min

(L i).ymtx

(L l) min

(L*).ymxx

n)-y min

Figure 7.18 - Line Detection

If the mid-point of the present stroke lies within the bounds of a particular
it is said to exist on that line, unless the stroke is a diacritical mark. This is
because a dot or a cross could be placed above the maximum y bounds of
the line they are on. Therefore, for line n,

i f (pen_stroke = diacritical)

i f (mid_pointptnjstrokt> (Ln) .y mia)&&(midjxjintpen strok€< (L n_{).ymin)

linejnumber = n

else

i f (fnidjxfintpcastrotc > (£ *) O'min) &&(mid_pointptH_stroke < (L * _ i) . y max)

linejnumber = n

If the pen stroke is not a diacritical mark and falls outside the bounds of the
lines previously written, we assume no particular significance, and simply
ignore the pen stroke.

156

8. RESULTS

8.1. Introduction
The recognition results for the algorithms have been broken down in

order to assess the performance at the various stages of the recognition pro
cedure. The results specifically highlight the following areas:-
(i) The performance of the Freeman algorithm on the strokes in isolation.
(ii) The performance of the XY trend algorithm on the strokes in isolation.
(iii) The combined or correlated results of the above algorithms.
(iv) The result of the matching algorithm, combining part characters to pro

duce a recognised character string.
(v) The space detection algorithm, detecting line and word boundaries in

the recognised text string to produce the recognised sentences.
The initial results that are given were performed on the data collected from
the 112 user test writer set, in order to assess the effectiveness of the algo
rithm s on the user dependent set of writers. However, further results are
also given for 10 completely untrained writers, whose character styles are
not incorporated in the XY and Freem an databases. This will help assimilate
how well the algorithms cope in a user independent environm ent. The level
o f degradation of these results from those of the user dependent set will
give an indication as to how well the present user styles represent a wider
user range, and give some indications as to how much work is still required
to complement the databases and matching array, possibly with the inclusion
o f the data sets collected by the students of Trent Polytechnic (another 300
or so authors).
Various papers written on the subject o f script recognition have considered
the case of a person, given isolated hand-printed characters to identify. On
average, it was found that only 96% of all characters shown to people could
be recognised correctly without the aid of context. A large am ount of infor
mation is elicited by a reader from their understanding of the context and
semantics of the sentence and/or paragraph. Both Suen et al[42] and H ar
mon [54] quote 96% as the absolute maximum recognition by a human
without context, therefore this m ust be taken into consideration when ana
lysing the results of the recognition algorithm. Suen et al[42] also consider
the sizes of databases required for the production of systems that could han
dle ‘user independence’. More importantly, they consider the circumstances
under which they have been produced. Early databases were very limited,
both in num ber of samples and style and size of the letter set. Three data
bases were quoted which consist of more than 100,000 alphanumeric charac
ters printed by multi-authors, however much research work requires that
the writer print characters according to specified rules and models. For
example, 0 with a slash, I with top and bottom horizontal bars.

157

At present, our lower case database contains the writing style of 112
authors, having produced over 13,000 lower case letters. Since the construc
tion of the initial database, another 326 authors have been sampled, collect
ing another 40,000 lower case characters, 50,000 upper case letters, and over
10,000 num eric and special characters. This new data is presently being pro
cessed in order to produce a more representative user independent database.
Before realising the results of the recognition algorithms, it m ust be stressed
that any figures given for recognition rate of a particular system have no
meaning unless some clear indication of environment, allowed user writing
style and alphabet set are given. In some papers surveyed, no indication of
conditions or circumstances were given. In other papers, for example Cas-
key[28], the character set is limited to allowable FORTRAN characters only.
However, they m ust be written so as to conform to the national ANSI stan
dard for hand-printed character style.
The two test sentences performed by the authors for the collection of the
lower case alphabetic data can be seen in Appendix B. The only constraint
on the writer is that they form the characters from left to right along the
page, in a reasonably straight line, performing their natural writing style.
There is no constraint on style, speed or size of writing whatsoever. It was
decided at a very early stage that only by attempting to aim for as user-
friendly a system from the outset would it be possible to progress the early
results to the end goal of a completely natural real-time document creation
system.

8.2. The Recognition Procedure
D ue to the large am ount of data to be analysed, a num ber of programs

and utilities have been developed to enable the rapid evaluation of the
recognition algorithms for the aspects specified in points (i) to (v) in the
introduction. In order to reliably test the results of recognising the test sen
tences (and to produce valid error free databases as described in Chapter 6)
it was necessary to confirm the validity of each character or part-character
written by an author with respect to the data sent by the tablet. This is not
always completely reliable, mainly due to the problems of data capture out
lined in Chapter 3. All the raw (x,y) co-ordinate data is held in ASCII files.
The form at of these files is as follows,

{* START OF HEADER
- packmybagswithfivedozenextra.......................
$ packmybagswl.l-h[-l.vedozene/M-ra..................
! name_id
% tablet_type
& date__of_creation
@ user_specific_features
*} END OF HEADER
D xxxxx yyyyy

158

D xxxxx yyyyy
D xxxxx yyyyy FIRST STROKE

D xxxxx yyyyy
U 0 0 ”
D xxxxx yyyyy
D xxxxx yyyyy SECOND STROKE

D xxxxx yyyyy
U 0 0 “
etc

8.2.1. Header Description
The header is delimited by the sequence {*.............. *}. Elements inside

the header are as follows,

8.2.1.1. Text String Sequence
This string is a textual representation of the written letters as produced

by the author, and is inserted manually into the header after studying the
written words. This m ust be done manually, as a significant num ber of writ
ing mistakes were found to have been made. Namely, mis-spelling or tran
sposing letters in words, and in some instances, omitting a word altogether.

8.2.1.2. Stroke String Sequence
This string is a textual representation of the actual breakdown of each

separately produced pen-down action perform ed by the writer during the
process of creating the two test sentences. By identifying the sequence of
stroke creation and classifying each shape, it is possible to perform a meas
ure of isolated shape analysis as a first level of the recognition algorithms.

8.2 .I.3 . Name Identifier
The authors name.

159

8.2.1.4. Date of creation
The date of creation of the file, format DDMMYY (day-month-year).

8.2.1.5. Tablet Type and Parameters
This gives some detail o f the tablet and how it was set up during crea

tion of the test sentences. The Numonics 2200 tablet was selected as the
m ost suitable from an evaluation of current technology (Chapter 2). How
ever, two other input devices were purchased,
(i) a Penpad upper case script recognition system. The tablet which is part

of this product has a stylus with a pen-down switch especially designed
so as to detect the presence of the pen on the paper even for the light
est writer. However, it was not possible to divorce the data capture part
of the product from the recognition software in order to be able to
evaluate its performance.

(ii) the Elographics Touch screen. This provided the best user interface,
where the author can use their own personal writing device, but is does
not offer the same resolution and data transfer rate parameters as avail
able from the Numonics tablet. Nevertheless, the Elographics device is
seen as one possible progression to an early ’electronic paper’ proto
type, especially as there is a transparent version of the tablet already
available.

8.2.1.6. User Parameters
These are not used at the present time, but they have been recorded in

the event that some useful information may be extracted at some future
date. Parameters consist of
(i) Left of right handedness
(ii) Age
(iii) G ender
(iv) Occupation
It is considered that other factors such as state of health, haste and mood
can also affect the style and shape of the characters formation, Kutlin-
ski[80].

8.2.2. Stroke Representation
The rest of the ASCII file contains sequences of pen co-ordinate infor

m ation, the ’D ’ status before the (x,y) co-ordinate denotes the pen on the
paper. Sequences of pen down co-ordinates are delimited by an up-stroke
m arker, namely (U 0 0).

160

8.2.3. Stroke Analysis
A batch process has been written which produces a stroke recognition

breakdown for each of the 112 reference files containing the raw co-ordinate
data. The data in each file in turn is encoded into both the Freem an and XY
representations. These encodings are compared against the appropriate data
base in order to determine the recognised identity of the stroke. Therefore,
a sequence of such recognition results is produced for each data file for
(i) the Freeman algorithm alone.
(ii) the XY trend algorithm alone.
(iii) a correlation of the Freeman & XY results.
Each sequence is then compared independently to the stroke sequence in
the header of each file. The header is produced by analysing the contents of
each file graphically on the SUN workstation. A program reads each stroke
sequentially from the file, and, using a GKS (Graphical Kernel System) util
ity, plots out the graphical representation from the points onto the screen. If
the stroke is a complete characters pen-stroke, there is no problem in
assigning an identity to the pen-stroke, having also the hard-copy of the
written text for comparison and validation. However, if some characters are
written by producing more than one single down-stroke, it is the decision of
the editor to enter the identity of the composite strokes. For m ost compo
site characters there is no problem in this respect. For example,

However, in other cases it is not so simple to classify the composite strokes.

X » l » i i .

ill i f . i l l i i .
J > ‘ >

Figure 8.1 - Composite Stroke Classification

161

' c ' OR 'o '

Figure 8.2 - Uncertainty in Composite Stroke Classification

In a num ber of instances there is m ore than one likely identity of such a
part stroke. Therefore, whereas the complete character may be recognised
with no ambiguity by the editor, there is sometimes a degree o f uncertainty
in assigning identities to some part strokes. The results o f the stroke
analysis are broken down in the following sections.

162

RECO G NISED AS

CHARACTER - • / \ I %age
CORRECT

- 366 23 7 92.42
• 2 507 1 1 99.22

/ 2 2 161 8 93.06

[2 9

\ 3 10 1 171 6 89.53

] 5

C 1 1

d 1

e 1
i 1
1 . 29 28 20 755 90.75

0 1 1

r 1 2 1

V 1

w 1

y 1 *

TABLE 8.1 - Simple Stroke Breakdown

163

Table 8.1 gives the result of the pre-processor to the recognition algorithms,
which filters out straight line strokes before these are passed to the Freeman
and XY algorithms for processing. It was found that 20.60% of all pen down
strokes written by the author set could be picked out very easily and quickly
as being simple straight line strokes or dots, these being 1,\,/,- or the dot
m ark (.). The detection of such strokes was performed by analysing the
angular variation between successive incremental line elem ents over the
entire travel of the stroke. If these increments do not exceed some thres
hold value, the stroke is a straight line. Its orientation is easily deduced
from its end points, and this enables its classification. The dot mark is sim
ply identified by interrogating the size of the stroke in both the x and y
directions. If both dimensions are below some threshold for a dot, the dot is
identified. Only in instances where a pen slip has occurred during the crea
tion of the dot will the dot not be detected. However, in such cases the
stroke will not resemble a dot to a human reader.
The processing of these strokes was performed much more quickly than
encoding the stroke by the Freeman and XY algorithms and searching the
databases.

8.2.3.1. Freem an Stroke Results
Our test database was constructed from a total of 112 writers. Each per

son wrote two test sentences, comprising 9 and 8 words respectively, a total
of 80 letters. (See Appendix B). The overall recognition rate for the Free
man algorithm was calculated at 90.53%. Characters T and ’x ’ gave 100%
recognition. This was due in the main to the fact that there were very few
single stroke ’f ’s or ’x ’s written and these gave very distinct Freem an
encodings, which were not easily confused with any other character encod
ings.

164

T = 12621 'x' = 35150

Figure 8.3 - 100% Freeman Recognition

Analysing Table 8.2 shows a recognition range as low as 79.66% for the
character V , and up to 98.45% for the stroke ’] ’ (i.e. the undotted ’j ’). If
we look more closely at the character V we can see that the main reason
for its poor performance is that, out of all the V s misrecognised, (48 in
all), 32 or 67% o f the mis-recognition is as the character ’u \ and 9 or 19%
of the mis-recognition is as a character T \

165

L
S - - j-

W . >'*

1—. V

h ^—+*
L >
-V^>r

^yiĉ A. I**'

1

1

I
i

i 1
%

ag
e

C
O

R
R

E
C

T

|

i
85

.5
7

|

!
80

.7
7

f

91
.8

7
i

88
.8

9
!

98
.4

5
j

88
.6

3
|

90
.2

2
|

VO
co
*—4

91
.0

5
j

94
.5

9
1

O
o
©
o 83

.2
8

1

92
.7

7
1

"Cf
vq
oo"
oo 8

3
.8

3

86
.7

0
!

94
.7

2
I

92
.2

9
j

96
.5

3
|

85
.0

2
[

89
.5

6
1

97
.2

5
j

CO
CO
CO
ON 87

.9
1

j

VO
vq.
Ov
r - 83

.9
4

1

1
0

0
.0

0

,

92
.5

4
j

96
.9

4
j

i 0 \ CN CN in CN r - 1
0 *—i fH CN in i—H vo i—4 vo m CO 1—1 £ CN CO

i
N fH P iH cs

i > . -
o - 1 VO

OO
X - 1—1 •—4 p i

! $ CN OO CO OO
1
1 > 1—4 CN - CN 1—4 - v r

CN 00 i—4
i 3 IN

r—I CN m i“H CO CO no CN vo Ov 1—4 CN oo CO r - 1—1

♦— - CO i—4

W 1—1 1 1—4 VO - *̂•4 t-H
vrr
cs '1—1

V. r * CN o ; P—♦ Ov

c r co - T
oA
i—4 i i—i r - -

, i. Q . V) CO CO

0
<

) o
i"H CN CO CN 1

0 N- - 1—4 ■N-
T

c—4 1—4 VO
c4
t—4

cu
(J

i

!

c CN i—i CO t" M VO
"T

<N
cA
i-4

E - c—4 O P
oo 1—4 04

_ f—I CO o p* CO o - i—4 CS vo CN i—4

&

h

! j x T ' '■/ fM4 - oo
r - —H

J s z CN Ovn CO 1̂ -4 CN 1—4 1—4

a |
05 1—4 vori i—4 oo i—4 - 1—4

h— 5
7 •—4 CO i—4 - CO

<0 .1-"* — CO v> o°9 T—1 i—4 ■̂4 i—4 1—4

XI OO i- 4 m
CO CN i-4 CN »—4 1*4 vo

o 1-H CN ov r - CN 45 i— CO —H i—i i—i

-Q —i VO CN i—4 i—4 r—H 1—4 - i—H

rt oo CO 1*"N i—i ,-* i-H *-l CN

1---- 1—4 . oo CN 1—4 f-4 CN CO cV t-4 1—4

I*" CN
r - * • 2

7

c -_ 1—4 CN CN 1—4 «—4

\ CN
1—t

?"4
'*T 1—1 r~- CO

1 CO
oo CM CO CO CN co «—« i—i

1
CH

AR
AC

TE
R

1 • - — - — CO XI O ■o <9 O) X — E C o CL O" <0 *♦— 3 > $ X >. N

Y r*

h
1̂ ^

Ir

r >
■ •T5- t .1

b
b

166

TA
BL

E
8.2

-

Fr
ee

m
an

Er

ro
r

M
at

rix

Further investigation into the formation style for the character ’u ’ showed
that the reason for the large num ber of mis-recognised ’v ’s was due to the
fact that a num ber of writers produced ’u ’s with no downstroke at the end
of the character, and that this particular shape was identical to the second
most popular formation style for the creation of a V .

V V / ' u '

Figure 8.4 - V and ’u ’ Confusion

Therefore it is impossible to distinguish the second V type, which has a
gradual reversal in the y travel, from the less common *u’ which has no
down stroke.
Similarly, investigation on the shapes of the letters ’r ’ and V show an area
where the slope of the down stroke is at such an angle, slightly off the verti
cal, where it is impossible to say whether a V or an V was m eant to be
written.

167

Y ’ I y V

Figure 8.5 - V and *r’ Confusion

Analysis of the letter confusion matrix for the Freem an algorithm (Table
8.2) reveals that the vast majority of incorrect recognition decisions is due
to the shapes of some characters or strokes resembling another character or
stroke in its shape. Table 8.3 shows, for the cases where a particular stroke
has been mis-recognised, which strokes make up the incorrectly deduced
identities. In almost every case, the ’best’ misrecognition is of a stroke
which is of a very similar shape to the misrecognised stroke or character.
Some are m ore obvious than others, e.g r - » v, u v, « - > u , a , w,

y-*8-

168

N u m b e r o f in c o rre c t
o c c u re n c e s

* M is re c o g
C h a r a c te r C o u n t

A lg o r i th m C h a ra c te r Id e n t i f ie r
in o rd e r d e s c e n d in g o rde r

1 S t %age 2 n d %age 3 r d %age

- 1 4 / |8 5 .7 h } 8 .3 0 18 .3

/ 1 0 I [3 0 .0 - I3 0 .0

[1 0 / 140.0 1 140.0

\ 1 8 I (4 4 .4 - [3 3 .3 c I2 2 .2

] 9 0 [5 0 .0 y 125.0 g S25.0
a 4 9 i u 124.5 c = 1 8 .4 d 116.3
b 1 8 P 127.8 0 111.1 u |11 .1
c 3 5 I |2 8 .6 0 I2 8 .6 e 114.3
d 3 5 a 140.6 u (1 5 .6 q 112.5
e 4 6 c 148.9 1 |1 5 .6 n | 6 .7
f 01

g 5 3 P |3 5 .3 y [1 9 .6 s 111.8
h 2 3 n |2 8 .0 b |1 6 .0 k |1 2 .0
k 1 0 h 130.0 u 130.0 n j2 0 .0
1 9 8 c [4 5 .9 \ I2 7 .6 u I 6.1
m 2 9 w 127.6 n [2 0 .7 u i 6 .8
n 2 3 u 126.1 P |1 3 .0 q ! 8 .7
0 3 7 u |2 4 .3 c I 8.1 \ I 8.1

P 5 b I2 5 .0 y I2 5 .0 e J25.0

q 31 g |58 .1 a |1 2 .9 u j 3 .2

r 4 7 V =42.6 P I 8 .5 t | 6 .4

s 1 2] i 8 .3 0 I 8 .3 d | 8 .3

t 1 f jlOO.O

u 6 6 V 137.9 n |1 9 .7 0 I 7 .6
V 4 8 u 166.7 r |1 8 .8 I I 4 .2
w 3 5 0 134.3 u 12 0 .0 m I 5 .7
Y nA

y 1 5 g j4 6 .7 q ! 6 .6] ! 6 .6
z 7 e 142.8 f 114.3

Table 8.3 Breakdown of incorrect character
Identifiers for the Freeman algorithm

169

In the case of the very simple strokes, misrecognitions occur where strokes
fall outside the threshold region.

For example, a cross-stroke, the orientation of which is greater than 22.5° to
the horizontal, will be decoded as a diagonal. In some instances misrecogni
tions do occur in the cases where the Freem an algorithm might produce
similar vector strings for two strokes/characters whose shapes look quite
different.

(j) = 22.5°

Figure 8.6 - Simple Stroke Mis-Recognition

v p = 6265

pO * 62165 y ° = 61265

y 1 = 6265

z - 0150

ML *

e « 0150

Figure 8.7 - Freeman Encoding Confusions

170

The Freeman algorithm passes on the five best alternatives (if indeed there
are five alternatives) in descending order. Therefore, in the cases where a
wrong decision was made as the best choice, it was found to be common to
find the real character identity in one of the four other choices as shown in
Table 8.4,

171

TABLE
8.4

-
Freem

an
Recognition

R
esults

C
u

m
u

la
tive

P
e

rce
n

ta
g

e

C
o

rre
c

t

C
o

m
p

a
riso

n
s

9
0

.5
3

9
0

.5
3

7
4

3
9

8
2

1
9

1
S

t

9
6

.7
0

6
9

.2
7

4
2

6

6
1

5

2
n

d

9
7

.4
9

4
6

.7
2

6
4

1
3

7

3
rd

9
7

.6
3

2
0

.0
0

5
5

4
th

9
7

.6
5

00
o
o rv>

2
5

5
th

172

In the cases where the stroke or character has been misrecognised, if the
second choice is analysed, in 426 out of 615 cases (or 69%), the actual iden
tity is found in the second m ost popular alternative. Hence, by assuming
that the identity of the stroke or character resides in one of the first two
alternatives the recognition rate rises from 90.53% to 96.70%. However,
only a further 0.95% increase is obtained by assuming the top 5 alternatives.
Therefore, the majority of the confusion for the Freem an algorithm is
mainly between one of two possible stroke or character shapes.

8.2.3.2. XY Trend Stroke Analysis
The XY trend algorithm gave an overall recognition rate of 78.10%.

Individual results are broken down as shown in Table 8.5. Results are not as
good as the Freeman algorithm. In particular, it can be seen that recognition
of the simple straight line strokes that are not filtered out by the pre
processor (mainly due to having leading or trailing ticks) is particularly poor.
The cross-stroke is only recognised 14.43% of the time. M ore significantly,
the majority of cross-strokes (53 out o f 97) are not recognised at all. Simi
larly, poor results can be seen for V , 7 and T . For a m ore complex char
acter, the leading or trailing tick will not be such a large percentage o f the
total character travel and so will be eliminated at an early stage in the
encoding reduction. However, as the straight line stroke consists o f two or,
at the most, three distinct trends in each direction (x & y), the tick will not
be rem oved.

173

•T ->7 •’ ~ !y r .^ r y ;i «. "•;•■ lV4 f ' .5' s -7 - ;'W H>v; *r',VC • •; ̂ *f *.*< * •• •. ;• -y.' • ' i

N v< X < c - <0 -Q “O o 3 3 — X* rr CO - Q. o cr su — - — - • i

|
C

H
A

R
A

C
T

E
R

* oo to ua
s? to - h- ■

1—» C\ i—» H-k 4k to Ul 4̂ N
- •o H-‘ ►—k

CO ►—k ■U ■U UA to to VOk-k to - —,

- to OO ►— <* ►—* UA
OV - to

to to ov k—k to *o to u» M k- l- .k— —•
u» k—k k-» to UA H-* i—»

I-. UA «o Ua VO (U
k-k On u> UA H—

O

26

J 00 UAUA Os oo to k— UA cr
to U)

55 (—» oo
S •o H-* o

ua ►—» too UA V1 k—• to•o -o 1—•
9° Q.

k—k i— p—■o u* U» U'vOO u» i—»
to ®

) ■ k—k >—k to UAto Ul to -
h-*
O v i—» to to >—* to \o

Vi - o CQ 33
Ua ■o Ul ua IX - u» to to =T m

r* — oo
to -o k—* PC

1 u> hj; 1 k—k k-k UA ua to to \ u* -UOO
Ovu<

; ■o Ul 4k 4k 4k — z

3 UA
?y

h-k 3 m
k— v!

to v© H-* 00 •u ,OS oo OO to k—» 1—k to to 3 o

u»
ua v—* UA

® to Ua oo UA to
oo i—k k—k k—k O t o

1 to " H-k k-k
..>L

to H-4 '■ u h— XI i

s> .
H* -o 1—k k— - >—k \ oo k—* 4k to x T

k—k ■4- to 4k to
WUA I—*. to UA H-k H-* 4k ■ k—k to -o

-u A 4k Ua o \ to UA 1—k UA M <n

4k k-k ►—* I—*
O h-k h-fc "O I—* k—k

to u>
Jtf, -o V.. torv k—k Q ;h-k UA ■(A. t—» 4k Ua to c

r t—4k Ua
V* s >—* k~k k—k 'O u* u* to <

- ~ k—. U> u* 5
'O X

oo►̂1 o u* >—k VO ov v<
to ►—>-*

26 * to 4̂ k-kOv N
UA oo

oo UA
to k—k tooo NJ UlUA •O

96.94
‘

90.55
1

OO
’O

OI s
~0
>*-

ov
1°■ok—k

76.74
I

86.67
|

79.41

73.56
|

85.99
j

3
toto

84.79
[

88.30
|

94.95
j

37.79
j

«u*oo

80.82
?

93.06
1

VOu»
toUA

80.26
;

94.63
j

63.21
I

98.37
|

90.72
|

69.59
]

44.44
I

|
73.98

|
i

26.92

;
14.43

!
%

age
CORRECT

i

t

174

-•i. ~V>'- j r'v?’- .»r 's. . •.-> j£ j&/ -il'-i.-s ' - i - * v; ’•ii'taj.'jf'M .’'- c T j v

I

The reason for the poor performance of the XY algorithm on the simpler
strokes is highlighted in the figure below,

XY = -1 .00 / -1.00

Figure 8.8 - Simple XY Stroke Confusions

In other words, the T cannot be differentiated from the 7 \ *[\ or ’] ’
strokes. In order to avoid such confusions, the XY algorithm does not
attempt to process encodings with a trend count of one in each direction.
Investigation of confusions arising for the more complex XY encodings can
be highlighted in the following example. Consider the XY encoding for the
character 7 ’,

I = 0.15 -0.23 0.27 0.34/ 0.18 -0.51 -0.19 0.09

175

Figure 8.9 - XY Encoded Character T

However, there are also a num ber of other characters and strokes in the XY
database which have a similar trend encoding,

X Y - + - + + / + -------+ = { l , v t u t o t f , a , z t c , q y e y d , b t n , h }

Recreating these encodings produces the following shapes,

176

...

> '■*>

Figure 8.10 - Similar Trend encodings

177

A num ber of encodings are reasonably good representations of the character
shape that they are portraying, namely {e, z, b, f}. However, a num ber of
the encodings represent the character shape with a leading tick, as produced
by some authors, namely {1, c, u, v, o}. However, the rem ainder of the
encodings from the database appear to be caused by reducing the XY trend
until the character shape is lost, namely {h, q, d, n, a}.
Therefore, it appears that the XY algorithm is not as robust as the Freeman
algorithm for reduction of the encoding, especially for characters which have
been initially poorly written. For no characters did it appear to be better in
term s of recognition than the Freeman algorithm. For the more complex
character shapes, ’w’, ’g’ a n d ’m ’ it performed as well as the Freeman algo
rithm . Reduction tends to produce a very large subset of character id’s with
similar trend patterns which might cause a processing problem in real-time.
The above example has 14 different possibilities, and this is not uncommon.
A breakdown of character identifiers in such cases where the algorithm
chooses the incorrect character or stroke identity is given in Table 8.6. From
it we can see that, as for the Freem an algorithm, most instances are due to
shape similarity.

178

N u m b e r o f in c o rre c t
o c c u re n c e s

, M is re c o g
C h a r a c te r C oun (

A lg o r i th m C h a ra c te r Id e n t i f ie r
in o rd e r d e s c e n d in g o rde r

1 St %age 2 n d %age 3 r d %age

- 8 4 r j 8 .3 1 j 4 .8 / | 4 .8
/ | 3 8 I j 1 0 .5 r | 5 .3 [I 5 .3

[- 3 2 0 |3 4 .4 c 121.9 / 115.6

\ j 4 5 I |1 1 .1 n | 4 .4 [I 4 .4

] I 1 1 8 S [3 1 .3 0 I2 3 .7 z 113.6
a 4 0 d [4 5 .0 u 110.0 r j 10.0
b 3 h |6 6 .7 t [3 3 .3

c ! 1 4 9 I |4 3 .6 0 115.2 b 113.6

d 21 a I3 3 .3 0 |2 3 .8 [119.0
e 1 6 8 I I2 8 .6 b ! 1 9 .6 d 116.1
f 5 I j2 0 .0 [[2 0 .0 t 12 0 .0

g 2 2 y 140.9 q [3 6 .4 s I 9.1
h 61] 118.0 n 113.1 b |1 1 .5
k 6 h [6 6 .7 u [1 6 .7 t 11 6 .7
1 ! 3 7 7 \ |2 1 .5 c [1 4 .6 b I 7.1
m 1 1 n J36 .4 w I2 7 .3 u j 9.1
n 51 u (47 .1 S j 9 .8 g I 9 .8
0 7 3 d !2 7 .4 r 116 .4 b 116 .4

P 4 b 12 5 .0 n |2 5 .0 u |2 5 .0

q 2 9 g |4 1 .4 y [3 4 .5] 113.8
r 1 1 9 V 121.0 [[1 4 .3 P 114.3
s 9 0 d |2 5 .6 g |2 3 .3 h J12 .2

t 4 r f! 0 0 .0

u 1 2 7 V 141.7 n 119.7 0 .110.2
V 8 8 u (3 7 .5 r j 3 1 .8 I | 1 2 .5
w 6 u |3 3 .3 V 116.7 n 116.7
Y I nA U

y 19 g |5 2 .6 u 110.5 3 [1 0 .5
z 7 k [4 2 .8 P I2 8 .6 e I2 8 .6

Table 8.6 Breakdown of incorrect character
Identifiers for the XY Trend

algorithm
179

It is interesting to note that if we consider the first five alternatives for char
acter identity, in the case of the XY algorithm (Table 8.7), a recognition
rate of 98.14% is observed, higher than that found for the Freem an algo
rithm . This is due in main to the imprecision of the XY algorithm.

180

TABLE
8.7

-
XY

Trend
Recognition

R
esults

C
u

m
u

la
tive

”0
CD—iO
CD13

o
o
—t
“tCDo

oo
3TD03—r

0)<Q
CD

C/5O13C/5

78.06

78.06
|

6416

8219

1
s

t

...

92.01

60.46

954 Oi
-si00

2
n

d

95.64

47.16

291

617

3
rd

97.48

45.23

147

325 I—t-=3*

98.14

31.55 53

168
>

cn •—* 3*

181

8.2.3.3. Combined Algorithm Stroke Analysis
The results of the correlated stroke output are given in Tables 8.8 and

8.9. The correlated recognition rate is 94.04%, a 3.5% increase over the
better technique, the Freeman algorithm. Although a m ore mathematically
precise m ethod of combining the results from the Freem an and XY algo
rithm s might have been found, this m ethod does prove to be particularly
effective and has the advantage that the correlation processing is very slight
compared to the other processes, e.g. encoding, reducing, searching, m atch
ing.
We can see from Table 8.8 that the correlated output has no non-recognised
characters (column ’? ’ in the table). The Freeman algorithm had 86 non
recognised characters (1.05%) and the XY algorithm had 208 non
recognised characters (2.53%). Again, most mis-recognitions are due to
strokes of similar shapes. The correlated results give the best individual
recognition rate for each character except the V and *[\ where a higher
recognition by the Freeman algorithm alone. The correlated results are seri
ously degraded by the output of the XY trend algorithm.
Due to the variability in the performance of the XY algorithm between the
simple strokes and the more complicated characters, the possibility of apply
ing some weighting mechanism to the output of the XY algorithm might
well improve its performance. Hence, a low weighting would be applied to
the simpler strokes, e.g. T , V , *[', ’/ ’ and so on, and a higher weighting to
the m ore complex characters, e.g. *m\ ’w \ ’g’ and so on.
The correlated results show little im provem ent over the separate recognition
algorithms over the first five recognition choices. Indeed, it is not as
effective as the XY algorithm alone, (97.94% to 98.14% respectively).

182

T
A

B
L

E
-#.8

-
Com

bined
Algorithm

Error

M
atrix

N v<

• f

X < c »" » -G XJ o 13 3 — X* 3 " <Q CD CL o c r — - — - • 1

O

So

_ to S3 03 o \ to -u -u
on ■

2
9 >—* H-k

o to
S3
03

} H-* •c*.
I—* >-* H-k H-k

~TOr
O S3

<-7
\

t—* 1 03 H^ H-k
rtn H-*

>—

5
6 03

rv
H-k

t—» H-k H-k
Us#
OO H-k — j.

S3 H-k S3 H-k p

S3
f-T
OO h-> cr

S3 H-* to K-k

2
7 H-k

-o ■J
n 03 H-k H-k t—. 0

S3 H-k V—. H-k •oos CL

H-k H-k to
nki
to H-k Cn ®

5
7 H-k -

S3 SJ
VOrr\

H-k H-k CO

M H- H-k H-k O >—* O ’

8
6 ►—» p r

S3 H 03 N— H-* H-k to
ov t—» 04 H-k i—»Oo Ux VO H-k

O
H-k
H-k S3 —

t—. H-k H-k 3
►—* u> 04 o to 3

H-k 03
Ĵ k
CT\ to Ov H-« to >—» 0

H-k H-k to T J

>—* O
j u U

H-k CT\ H- S3 - Q

I—‘

V i
S3 to)—» H-k K->

—v

H * H-k H-k H-k H -> (0

- 0 -

S3 u> S3
-a*!

o ►—k H-k VC H-k oo H-k 03 H-k H-k Ov c
H-* VO S3

V *
►—*

H-k H-k to H-k <
H-* 1—* K-k *

•o X

VO
J H H-k H-k OO H-k v<

S3 I—*k to N

•■ 0

v©v©
OlOv

96.04
[

1
0

0
.0

0
1

97.26
|

0 0
©
i—*
—1

92.31
1

9
3

.3
3

99.08
1

93.61
j

99.03
J

97.92
|

96.27
|

98.85
|

97.71
|

87.97
j

97.73
|

VO
■U
03
-U

93.38
|

1
0

0
.0

0
1

96.83
|

96.43
j

90.91
j

98.37
j

95.59
|

97.46
|

89.71
|

00OQ
bOs

!
91.56

j

1
90.26

|

%
ag

e
C

O
R

R
E

C
T

!

$
8z
U)mo

5

183

TABLE
8.9

-
Correlated

Recognition
R

esults

C
u

m
u

la
tive

.
P

e
rce

n
ta

g
e

C
o

rre
c

t

C
o

m
p

a
riso

n
s

9
4

.0
4

94.04
I

9
7

3
5

1
0

3
5

2

CO
r**“ \

9
7

.2
9

7
5

.8
5

3
3

6

4
4

3

2
n

d

CO __L
CJl 4* o CO

-Nj —k O) ro —1 Q_
CO ° 1

CO
-Nl

r o cn 4*i—♦-
00 4* IV) Z T
c n CO

CO IV)-Nj 4* 4» cn
* •A
CO 00 o i r

CO I

184

. - . . • . , • . . .

8.2.4. Character Analysis
These results incorporate the matching algorithm, which is fed the

stroke information output from the correlator. If the matching algorithm
were 100% efficient we would expect the stroke recognition rate of 94.04%
to be converted into a character recognition rate of 94.04%. The results were
calculated by comparing the character string as written by the author with
the character string as output from the matching algorithm. However, in this
instance, there is not necessarily a one to one correspondence between char
acters the same distance along each string. For example,

"packmybags..................." = REFERENCE STRING

"paclcmybags " = RECOGNISED STRING

A utility was written which does an automatic comparison o f the two strings
in order to determine the recognition rate. However, in our example above,
a match for a ’k* has not been made. This leads to two characters appearing
in the recognised string compared to only a single one in the reference
string. Therefore, the utility needs to perform some forward searching in
order to get back into step for the next comparison. In order to be able to
do this, we m ust assume that over the next five characters in each string,
there should be sufficient correspondence to be able to to determ ine the
next comparison points in each string.
If we consider a particular author from our 112 writer set, the analysis of
their two test sentences is laid out below as a typical example;

Filename : 05081005

Strokes : I]ackm ybagsw U -h]-lvee]cl-rallquor]ugsl]ol-hw lzenedm enqulclzly]uged]-oursharpvl]cens

R eference : packmybagswithfiveextraliquorjugsbothwizenedmenquicklyjugedfoursharpvixens

R ecognised : puckmqbagswithfireextraciquorjvgsbothwizenedmenquicklyjugedgoursharpuixens

R e f Recognised as

a u :91 a :82 q :58 d :56 n :53

y q :88 y:87 w:46 g:46 «:33

v r:89 v:73 - : 2 4 i:16 i : l l

I c i t e 1:78 0:54 u:42 b :26

185

u o : l \ u :69 c:41 1:34 v:34

u v:68 u :68 /:34 r:22 fc:20

/ <g:50 y:39 1:37 / :21

v u :73 v:71 r:39 /:36 b:21

Correct N o n -re c R e c -e r r Seg—err

Counts 65 0 8 0

%age 89.04 0 10.96 0

Figure 8.11 - Character Analysis by Author File

In this particular example, all the matches have been identified. Therefore
there is no problem in determining the correspondence between elem ents of
the recognised and reference strings.
The matches found were,

In this instance, therefore, the recognition performance is not degraded by
the matching procedure, and all the errors detected are due to mis-
recognitions at the stroke level. Of the 8 recognition errors found, in seven
cases the actual identity can be found in the second alternative, and in the
o ther instance, the identity is found in the fourth and last alternative. The
types of errors are also indicated above. These are broken down as,
(i) recognition errors, occurring at the stroke level
(ii) non-recognition errors, again at the stroke level where no entry in

either database can be found
(iii) segmentation errors, occurring where the matching algorithm finds an

incorrect match for two separate characters.
The confusion matrix for the character recognition level is given in Table

r
Y
T
’x
’b ’
’k ’

8 . 10 ,

186

N *< X

1

< c 0) -Q ~o o 3 3 — X — — 3“ <o <x> CL o cr M

CH
ARACTER

to H-k H-k ON p doo $u

H-k H-k to

201 c r

to t—* CO to o\ 22 H-k VOo
CO o

i i—» t—» H-k H-k
u>VO
H-k

to ON Q.

r. H-k CO H-*

77^ to CD

H—* H-k on H-k H-k
—<♦»

tO 1—*

287 ►—» H-k <Q

>-* >-*

280 H-k 3*

H-k -j 04 to -o H-k 04 Ctf to OnOnKi H-k on —
H-* H-k H-k H-k H-k

198 to —

H-k

165 to H-* ►—* X
H-»

H-kUl
H-k-0
H-*

•p*. CO

22

H-k to H-k >—• —
too
H-k 3

■p* H-k

402 to **0 H-k H-k 3
h-* 04 »—*

395 H-k to on H-k O
H-k H ^

202 t-* to -O
H-*

too H-k «o VO H-k to XI
VO I—*

386 H-k “T
1—•*

30 t-* H-k 04 H-k 0J
.•h 1—» u>

277 ■H H-k H-k •H H-k Ok

22 V© Hk

to C O

28 ■p*.o
- j f c -

H-k to to 0 0 H-k to ~ o CO Ul c

H-k (—* H-k

169

24 o \ to Ov <

too
H * H-k H-k H-k S

to !--- k
O O ■H H - H-k X

H-kCXIoo H-k *—» 00 •<

207 H-k H ^ ■H N

99.52

90.82
|

90.43
|

97.57

79.34

90.27

90.52

98.08

«
OO
■pk

92.28

97.58

96.11

98.29

98.05

79.53

79.33

95.65

89.18
j

93.33

VOto
on
0 0

86.63

95.09

96.54 16
06

97.57

94.42

%
age

C
O

R
R

E
C

T

JJ
s
8Z
C/5
ma

&

187

The 112 data files were processed in batch order, the histogram below show
ing a breakdown of the recognition rate on an author level.

Number
of users

40 —j

20 H

50 10030 6040 9020

% recognition achieved

Figure 8.12 - Recognition Rate by A uthor Script

Sorting through the results, it was possible to determ ine the effectiveness of
the matching algorithm. Errors in matching are broken down in the follow
ing table,

188

Composite
Character

Number
Found

Number
Recognised

%age
correct

a 7 2 28.6

b 30 30 100.0

c 0 0 -

d 30 30 100.0

e 14 5 35.7

f 145 123 ! 84.8

11 8 72.7

h 6 3 50.0

i 34 6 34 3 99.1

! j 143 143 100.0

k 119 9 7 81.5

1 0 0 -

m 2 0 0.0

n 2 0 0.0

0 0 0 -

P 64 62 96.9

q 12 6 50.0

r 0 0 -

s 0 0 -

t 2 9 7 283 95.3

u 7 7 100.0

V 2 1 50.0

w 0 0 -

X 202 189 93.6

1 y 16 8 50.0

z 16 16 100.0

TOTAL 1471 1356 92 .18

TABLE 8.11 - MATCHING PERFORMANCE

189

The errors encountered in the matching procedure can be broken down as
follows
(i) The two part strokes are not sufficiently close for a match to be

attempted,

u Ic u match

Figure 8.13 - Character Part Strokes Exceed Threshold

(ii) The two part characters are within the threshold, but are not in the
matching array,

'q' =

’ m ' =

Figure 8.14 - New Combination of Character Part Strokes

(iii) A match is not found because the first stroke of the composite charac
ter has already been m atched to a previous character,

’a ' & Y

'n ' & V

190

dLiACAclU

Figure 8.15 - Incorrect Part Stroke Combining

Of the most common composite stroke characters, V , ’t \ T , ’k \ ’j ’ and
’x \ the ’k ’ shows the worst matching performance with an 81.5% success
rate. This problem was found to arise because an T is not matched to a ’< ’
if they are of a similar y dimension. This is needed in order that we do not
erroneously match undotted Vs to ’c’s.

N U LL match

Figure 8.16 - Differentiating between ’k* and ’ic’

Although most writers do produce ’k ’s as in case (i) above, a num ber of
such k ’s (around 15-20%) were like case (ii) above and so did not get recog
nised. This problem could be resolved by analysing the stroke dimensions
with respect to the other strokes in the word in order to decide on a valid
match, as below in Figure 8.17,

191

M atch ,
-> k

No m atch

Figure 8.17 - Matching by means of relative word dimension analysis

This possibility is discussed in the concluding chapter.

8.2.5. Space Algorithm Perform ance Results

The space detection algorithm results are given below for the data
presented to it from the 112 writer files. A human reader can quite easily
define the correct word separation by recognising the characters. However,
this algorithm has no prior knowledge of the character identities, only their
distance apart. Hence, a human reader can delimit words that would not
otherwise be separated, having only the spacing information. Errors in the
algorithm only arise due to sloppy writing by the user. The results are,

Number o f word spaces 1615

Number o f spaces not detected 107

Number o f extra spaces detected 14

This allows some measure of the performance of the space detection algo
rithm ,

(1615 - 107 - 14)
1615

* 100% = 92.5%

192

The problem of space detection would be greatly simplified in the analysis of
more natural hand-writing where the relative sizes of the spaces between
words are usually significantly greater than the spaces encountered between
characters within a word. The main reason for the poor delimitation
between words for those writers that the space detection algorithm did make
errors on could be due to the fact that producing such unconnected script is
not natural for m ost writers, and concentrating on not connecting characters
tends to make the writer leave a larger gap between characters than they
would otherwise tend to do.

8.3. Untrained Writer Results

In order to assess the robustness of the recognition algorithms and gain
some idea as to how representative the databases are to the styles of any
user, we decided to test 10 completely untrained writers. They were given
two new test sentences to write and the data files were passed through the
recogniser. The hard-copy of their attempts can be seen in Appendix C,
along with a m ore detailed breakdown as output from the assessing pro
gram. The overall recognition rate determ ined was 88.14%, some 5% lower
than that for those data samples in the 112 user set. A breakdown of results
is given in Table 8.12,

193

JZ

LO

3
4 C\J

5
.8

8

9
5

.2
5

3
6 CM in

in CM
O

x : m m
CD

3
rd

T— in

1
2

.1
9

9
4

.7
8

2
n

d 9
2 i—

m

9
3

.5
1

9
4

.1
9

-«—•
w

CO
Tf*
00 7

4
3

8
8

.1
4

8
8

.1
4

C
o

m
p

a
ri

so
n

s

C
o

rr
e

c
t

P
e

rc
e

n
ta

g
e

C
u

m
u

la
ti

ve

CO• y
S3co<D

Vi

£

<N
OO

*S
H

194

Over the first and second alternatives, a recognition rate o f 94.19% is
achieved. The non-recognition was found to be evenly broken down
between,
(i) bad stroke matching
(ii) bad tablet data (only partly captured co-ordinates)
(iii) no Freeman or XY encoding for a particular stroke shape.
It was particularly encouraging that the non-recognition due to not finding
encodings in the databases was particularly low (around 1-2% of strokes).
This bodes well for the construction of new Freeman and XY databases
from 500 sample sets, and it is envisaged that the size of such databases will
not be more than double the size of the present databases.

195

9. CURSIVE SCR IPT

9.1. Introduction
Although research into the field of script recognition has been con

ducted since 1960, as yet, little of this effort has resulted in a successfully
m arketed product. In order to achieve a greater degree of acceptability by
potential users, certain requirem ents m ust be given particular emphasis.
It is important that the system be capable of recognising a writers natural
writing style, although, obviously a writer is expected to observe some
degree of neatness and consistency in their writing. Even so, the user
should not be made to feel severely bound when using the system. Hence,
the system should be able to recognise the full range of character sets that a
writer might use when writing on a piece of paper. The obvious character
sets would be:-

[V .V .V V]
['A ' /B ' /C'Z ']
[^ T \/273747576777879']
[T ,T /% 7 + ',......................1

To date, script recognition products have limited the user to one or two of
these character sets (e.g., upper case letters and numerals). Naturally, this
limits potential applications. However, a far greater limitation is the style
and placement of the writing. Systems hitherto have been confined to the
recognition of unconnected letters only. The most successful product to
date, the Penpad [90], requires the user to write either upper case, numerals
and some punctuation characters within separate boxes on a piece of special
graph paper. No training is required explicitly, although examples of the
shape and styles of characters that can be recognised is given. Under such
constraints, the system will produce very good recognition results (95+ %).
Such a product is ideal for form filling applications, where a writer is
required to construct his letters neatly and precisely. Recently, another US
company has brought out a script recognition product, the Linus Write-Top
[92]. This product includes an extremely extensive training and tutorial
package. Once the system has learned a users writing style, it can subse
quently recognise around 96% of written characters. Although not as tightly
constrained as the Penpad product, the user must write on preset lines and
ensure that small and large letters are written below and above a dotted
guideline respectively. The constraint on size and placement of characters is
a particular problem caused by the limitations of the recognition algorithms.
A more severe constraint on the user, however is the necessity that the user
form their words using unconnected characters. When we were sampling our
test data set of writers, it was observed that a num ber of people could not
write a complete sentence of text using totally unconnected letters unless
they had several attempts and gave the task their complete concentration.

196

An observation of peoples natural writing styles from memos or written
notes shows that, in general, when a person writes a word, the letters within
the word may be:-
• entirely unconnected
• some mixture of connected and unconnected letters
• entirely connected
The degree of connectivity between letters within a word depends on a
num ber of factors, including:-
(i) word length.
(ii) the letters themselves (for example T s and ’t ’s often cause pen breaks

in a w ord).
(iii) the writers confidence in being able to spell the word.
This chapter discusses the preliminary work into the recognition of natural
handwriting. Developm ent of the work has placed particular emphasis on
ease of usage. The requirem ent o f a natural environment is of particular
importance. Increasingly, a good deal more effort has been directed towards
the requirem ents of the user interface by researchers over the last few years.
The Linus product incorporates the ’electronic paper’ concept which many
people see as the corner stone of future developments. This hardware
configuration can emulate the situation of a person writing on a pad or piece
of paper with a pen or pencil.

9.2. Cursive Script Recognition - A Resume
From the state of the art review, a small number of researchers were

found to have considered the problem of recognising connected handwriting
dynamically. The obvious approach being to build on the techniques already
developed for the analysis of isolated characters by identifying the bounds of
letters within words. Alternatively, some researchers adopted a completely
new approach. This being to consider each written word as a single unit to
be recognised. One reason that this m ethod found favour was the fact that
hum ans, when reading a piece o f text, are considered to identify words by
considering the shape as a whole, rather than breaking the word down into
its constituent letters. Hence, broadly speaking, two distinct approaches have
evolved:-
• character level analysis
• word level analysis

9.2.1. Character Level Analysis
In this instance the word is broken down into its character components

followed by separate letter identification. Characteristics within the word are
identified and used as the basis for splitting the word into possible letter seg
m ents. Providing each letter position is successfully found, the problem of
subsequent recognition is reduced to one similar to unconnected letter

197

recognition. It is of particular importance that the character recognition tech
nique gives a very good recognition rate. For example, the incorrect
identification of only one letter per word results in a word recognition rate
of 0%.
A num ber of techniques have been used for word segmentation, including
the detection of all y minima with a word by Mermelstein and Eden [93].
Harmon [94] performs segmentation by estimation of letter widths, and
extracts the features from the resulting segments. However, the correct
identification of the letter bounds within a word is particularly difficult, espe
cially when attempting to apply it as a general method for any writer. The
detection o f one letter bound too many or one letter bound too few will
make the subsequent task of identifying the word impossible, since the algo
rithm will now be operating under the wrong assumption in trying to process
the wrong num ber of letters. To give an instance of the problems facing the
technique of segmentation, let us consider the cursive word 'mummy'. This
word actually contains 5 letters. However, a technique of minima detection
would find up to 13 segments, suggesting that the word might contain as
many as 13 letters.

9.2.2. W ord Level Analysis
As a result of the difficulties encountered in word segmentation, it

became increasingly popular to perform recognition on the word as a whole.
Features such as down-strokes, arcs, loops, and cusps are identified. This
feature sequence is compared against a database of pre-written word
features. To date, this method has proven to give better recognition results
than the former. However, it does have some serious limitations:-
(i) the vocabulary size is very restrictive. One technique by Farag [11]

used a dictionary of only 10 words. Wong and Fallside [66] apply a
dynamic programming technique based on a technique for the recogni
tion o f continuous speech. However the results are only given for a
small word sample (less than 10). In order for such a system to recog
nise a particular word, such systems need to be trained with at least one
prior example of that word provided by the potential user. Hence a
training phase would be necessary to allow the system to build up a
database of vocabulary features, in which the potential user m ust write
at least one example of every word that they might subsequently want
the system to recognise. Even for a limited vocabulary set of 10-15000
words, such a task would prove too daunting for most people.

(ii) closely related to vocabulary size is the processing time necessary per
written word. In general, processing time will be directly proportional to
vocabulary size. This is not the case for the segmentation m ethod
where processing time is proportional to the length of the word. Hence
the feasibility of such a system performing in real time on a large voca
bulary is doubtful as a marketable product.

198

9.3. Word Segmentation
We decided that the technique of word segmentation would be

attempted. If a reliable segmentation m ethod could be found, it would then
be a case of operating on the letter segments as in the case of unconnected
script. Six writers were asked to write the two test sentences as before in
Appendix B. The Freeman coding technique was used to encode the raw
data. Analysis of the vector string showed that writers who wrote with little
or no slant formed a ligature, which, when vectorised, produced a con
sistent, repeatable vector sub-string within the word. Depending on the
complexity of the ligature, this would comprise some sequence of the vec
tors ’O’, *1* and/or ’2 \ This is best illustrated by an example. Figure 9.1
shows how the cursive word and is encoded:-

The Freeman string produced by this encoding is:

and = '3456701267016107671056701267'

This encoding highlights 5 ligature elements separating 6 segments (indicat
ing that the word could contain a maximum of 6 letters).

seg l = V = 34567,

Figure 9.1 - Freem an Encoding of the word ’and’

lig i = 012,
seg2 = T = 67,

lig 2 - 01,
seg 3 = T = 6,

199

lig2 = 10,
seg4 = T = 767,

tig4 = 10,
.rcrgs = V = 567,

/ig5 = 012,
*eg6 - 7 ~ 67.

At this stage, if we did not know that the word and had been written, it is
not possible to determine which of these ligatures are valid connections
between letters (inter-letter shapes) and which are actually a part of a letter
(intra-letter shapes). For our word and we can see that ligatures 1,3 and 5
are intra-letter shapes and ligatures 2 and 4 are valid inter-letter elements
and not part of a letter. In order to reconstruct the letter shapes for this
word, we simply recombine the appropriate neighbouring segments via their
joining ligature shape, ie,

segl2 = V s 3456701267,

seg34 = V = 610767,

seg56 = '(f = 56701267.

In this case we know which segments to join together to obtain the correct
letter shapes. However, had we not had this prior knowledge, we could
equally have joined the segments either side o f the valid ligature shapes.
Quite often this will also lead to the formation of a valid Freem an letter
vector string. In this instance we get,

^#23 = V 52 67016,

segAS = = 76710567.

The first combination gives another valid ligature shape, but the second
does not. Therefore, it is necessary to investigate each possible route
through the word in order to determine which route or routes results in a
valid word. Figure 9.2 shows a letter net constructed for the word and. Each
node in the net being a letter possibility resulting by decoding and identify
ing the Freem an string as per the unconnected character analysis.

200

START END

u

Figure 9.2 - Letter Net Constructed for the word ’and*

The num ber of routes through the letter net follows the Fibonacci num ber
series;

F (0) = 0, F (1) = 1 ,F (n + 1) = F (n) + F (n - l) , n > 0

i.e. 0, 1, 2 , 3, 5, 8, 13, 21, 34, 4 5 (9.1)

Therefore, the six segments detected in the word and indicate that a total of
13 routes exist through the letter net. These produce the following string
alternatives,

ciiicl - no 2 segment combinations

aiicl - one 2 segment combination
cuicl
cincl
cii?l
du d

201

ancl - two 2 segment combinations
ai?l
aiid
cu?l
cuid
cind

and - three 2 segment combinations

At this stage we discovered a flaw in the method. The technique did not
allow for an *m’ within a word to be recognised. This is because the letter
’m ’ comprises not two but three successive segments. Therefore, once all
possible one and two segment letters had been processed it was necessary to
identify any possible ’m ’ occurrences within the word. This is perform ed by
the identification of three successive small, straight single segments. These
can be identified after Freeman analysis as having the identity T . Our word
and in fact has three such elements. Therefore we should also consider the
possibility of an ’m* existing within this word.

seg234 = V = 6701610767

This adds a further level of complexity to the letter net, as in Figure 9.3.

202

m

START END

u

Figure 9.3 - Inclusion of ’m ’ in the letter net

This produces two further letter sequences,

cmd - one three segment combination
cm cl

In the case o f a small num ber of letters it is necessary to analyse the shape
of the ligature between the segments, since in some instances it is actually
part of the letter itself. This is best illustrated diagrammatically in Figure
9.4.

203

I
V

u

'c'

'u'

I A J]

w

Figure 9.4 - Letter identification by ligature shape analysis

In these instances the ligature shapes are used to order the possible charac
ter identities rather than eliminate some possibilities. For example, although
a ligature shape might indicate a character *r* had been written, characters V
and V* are not excluded at that particular node, they are simply to be found
further down the list with lower confidences.
Assuming that the Freeman algorithm has identified the character shape
successfully at each node, it is necessary to determ ine which o f these letter
sequences, if any, gives a valid letter sequence, and thus is a valid word pos
sibility. However, we have shown in the results in Chapter 8, that the
recogniser sometimes identifies the character as only its 2nd, 3rd, 4th or 5th
choice. A fter word segmentation, the techniques for identifying the possible
letter regions, based on the unconnected letter identification algorithms,
produced very good recognition rates at the character level. The two main
reasons for this are:-
(i) there is less confusion at the individual character level due to the ticks

produced by the pen-up and pen-down action. This is because there is
now less letters delimited by the m ovem ent of the pen onto or off of

204

the paper.
(ii) because the initial work is being performed on a writer dependent basis,

the Freeman database is m ore specific to a single users style, greatly
reducing character confusions.

Therefore, the individual character recognition rate can be 95+ %. U nfor
tunately this figure quoted is not particularly meaningful when considering
cursive script. Consider 10 ten letter words written cursively. In each case 9
out of the 10 letters in each word has been recognised correctly as first
choice. This would correspond to a recognition rate of 90%. However, it
also corresponds to a word recognition rate of 0%. The problem that we
have is that it is not possible to tell (with a high degree of certainty) exactly
how many letters there are in a cursive word. In our example and this
num ber was anywhere between 3 and 6. For a particular individual, if it
were possible to achieve 100% recognition at the character level over say the
first 5 or 6 alternatives, this could be the basis for some means of higher
level analysis that would identify routes through the letter net by some
means of comparison with a dictionary of allowable words. Some initial
analysis using N-gram techniques has been undertaken in section 9.6 to
determ ine the initial performance of the cursive script recognition program.
However, more formal and advanced techniques already exist. L. Evett et al
[95] describe the work being undertaken at Trent Polytechnic into the
analysis of letter sequences and methods for dictionary look-up procedures.

9.4. Segment - Ligature Correlation
Having segmented a word into a num ber of segment and ligature sub

strings, it became apparent that m ost writers would form certain characters
within a cursive word by some combination of successive segments and liga
tures. As a rule, we can classify the lower case alphabet in terms of such
combinations:-

Single segment

e t 11 j , I * s , z

Segment ligature combination

Oy r , v

Segment ligature segment combination

a , b , d , g , h t ky n % o , p , q t u , x , y

Segment ligature segment ligature combination

w

205

Segm ent ligature segm ent ligature segm ent combination

m

Segment and cross stroke

f . t

This is not m eant as an exhaustive list. Even from our small sample set, it
was observed that the same writer would form a specific character in a
different way depending on its position within a word (especially for charac
ters commencing a word). Characters most often formed in different ways
were,

b , f , k , p , s , t , u , x , z

It was apparent, from studying our very small initial sample set, that it was
not possible to rely on dotting information in order to identify the position
of the letters T or *j* within a word. In many instances a writer would omit
the dot altogether, and in many instances when the writer would dot the
word, it would not be over the top of the T or *j* that it was m eant for, but
over some other letter. Therefore it was decided that the letters T and ’j ’
would have to be identified without the help of the dotting information.
In some instances, it was also necessary to interrogate the shape of the liga
ture leading up to the character shape. Figure 9.5 shows how the characters
c\ ’e ’ and ’z are put into order of confidence by analysing the leading liga
ture. '

206

........

I - I f te z

Figure 9.5 - Analysis of Ligature Shape

9.5. Natural Handwriting
As was pointed out in the introduction, people tend to use some combi

nation of connected and unconnected letters within words when writing a
piece of text. In some cases, it may be a users natural style to connect every
letter within every word that they write. On the other hand, some writers
are m ost comfortable forming every letter disconnected from the last. In
general however, people use some m ixture of unconnected and cursive text.
We want a system that can cope with any m ixture of writing style. Initially it
was thought that it would be of great help to the recogniser if people did
generally make pen breaks during the process of writing a word. Such pen
breaks would mean the elimination of an inter-letter ligature. This would
mean an easier task for the recogniser. For example, take the case where a
user writes our word and but lifts the pen after forming the a . Instead of a
six segment Fibonacci search we would have a two plus four segment
Fibonacci search. From 9.1 this would produce:-

and 6 segments 13 letter strings

a nd 2 + 4 segments 2 x 5 = 10 letter strings

It was soon realised that this would not be a viable assumption. From table
8.11 in the results (Chapter 8) it can be seen that, for our sample set of
unconnected text a total of 1471 character were form ed from m ore than one
single pen stroke. Subtracting the dottings of ’i’s and ’j ’s this left a total of

207

982 characters. From a total of 8960 written letters, this represents around
11% of all written letters. A person is equally likely to form some characters
with two pen strokes when writing in their natural style. The obvious candi
date is the letter *k\ If this is the case then our previous thinking would be
invalid. In the case of the two-stroke 7k 7 we would assume a letter sequence
Tc’ and never consider the possibility of a 7k 7 being written. Figure 9.6
shows the extrem es that could possibly occur in different users writing
styles.

Figure 9.6 - Extrem es in W riters’ Styles

Therefore, no prior assumptions were made as to the construction of a word
until a num ber of pen strokes were identified as being a complete word.
Since we are still working with a disjoint tablet and screen, we have a similar
problem as to when to display the recognised text. It was appropriate at this
stage to display each word after it was recognised, since, presently, no post
processing is performed after the word analysis. This will lead to initial con
fusion for a writer, since the system will not display a recognised word until
the next word has been started. If a writer is not fully conversant with a
particular word, he may stop for a num ber of seconds after writing part of
the word in order to decide how the rest of the word is spelt. Therefore, he
would become very confused if, at that point, the system decided the writer
had finished the word and processed and displayed a half complete word.
Therefore, the only way o f being certain that a writer has finished a word is
to detect that he has started a new word. Figure 9.7 shows a breakdown of
the natural handwriting recogniser. The general construction is very similar
to the unconnected script recogniser shown in Figure 10.2.

208

CO
CD CD CC
CO

S “ - 8

. 2•»—
o * 3 8
3 § |

C t o oej • §

> CD
? Z

CD CO <D
J Q CO

S o ?
p o 'C 10
,92 ® ~ ii
CC > CO v

CL CO

CD =3

•g

CO
LU
>
I—
<
z
QC
LUh-

5-h<Dco•fHC
twoOo<L>
+-*CL
'SCO
0>>* T—<
a

u

ON

8
two

• >—iPh

209

In order to cater for any multiple pen stroke characters, pen breaks detected
within a word (apart from cross-strokes for Y s and T s which are treated
separately) are removed by the insertion of a ligature from the end of the
last pen stroke to the beginning of the new pen stroke. This effectively con
verts every unconnected letter string into a cursive word. Obviously, in the
cases where the letters are a single pen stroke we seem to be complicating
the problem. However, we have now developed a method of treating every
written word in the same way. Figure 9.8 shows the technique of ligature
joining,

Figure 9.8 - Ligature Joining

9.6. In itia l Results

Initial results of the natural handwriting recogniser have proved to be
very promising. A user, having trained the system, can achieve 95+ % at the
word level corresponding to a character level recognition rate of 99+ % (tak
ing the first six alternatives). Depending on the num ber of words in the dic
tionary search tree, some of the recognised words may not come out as first
choice. A user is able to look through the option list by simply dotting the

210

stylus onto the appropriate word. This will reveal the 2nd choice, 3rd
choice and so on to a maximum of 10 alternatives. Figure 9.9 shows the raw
pen motion produced from the Numonics 2200 tablet when a user writes
some text on the tablet.

i o UtfcU O ^ c J ^ O

L/'N. lAsZLojZ wXhjU/ ~ i l x a ^ \^ ck

ciuKaCiXj&tZS) O
CA. iU-xt ^AaXasv "tIrud [Mx/> sf

C s z W ■&*fccov\ <LvdAyvJV> dVl

o { C\ pvril 6^ -ftfid.

\Ĵ Xâ ZK otî r-C

Figure 9.9 - An example of natural handwriting

Letter nets were produced resulting from the recognition o f the raw text
(shown above in Figure 9.9). By identifying each possible letter sequence
from the start to the end of each letter net, it was possible to compare the
sequence against some lexicon in order to gain some insight into the perfor
mance of the script recogniser. The lexicon used was the UNIX dictionary.
At this stage one point became apparent. The lexicon m ust contain all the
words required to be identified. Hence the UNIX dictionary was supple
m ented with those words in the test script that it did not already contain.
The result of comparing each possible letter sequence for a word match in
the lexicon produces the word alternatives shown over the page. As can be
seen, some words have a num ber of alternatives. These alternatives have

211

been ordered using the individual letter confidences. However, this is not
seen as a definitive, method of finding the most likely word. For example,
consider the word many producing the word alternatives m an y , maim and norm

1. m :75 a:89 n:69 y:l9 Confidence = (75+89+69+79)/4 = 78

2 . m :75 a:89 i:75 m :4 5 Confidence = (7 5 + 8 9 + 7 5 + 4 5)/4 = 71

3. n:79 <?:49 r:67 m :45 confidence = (7 9 + 4 9 + 6 7 + 4 5)/4 = 60

212

Many
Maim
Norm

new computer dais want to communicate with
mu
rim
now
inn

users m int it

their applications m
then on
fum in
friar

natural ways hither
loam rather

them interact
than
thorn
thou

with a computer.
couturier.

this article discusses and evaluates a text editor
flip follicle ana auto
tub dud
trip curd

that uses standard pilot correction marks drawl directly
float pivot coalition marry drawn quietus
flout proof mealy drank
trot

on the display of a prototype flat panel
en floe d foot band
oil floe tart bard

interactive system.

This resulting word alternative sequence shows that 39 out of the 45 words
written are found as the m ost likely word alternative, a recognition rate of
86.7%. However, if we encompass the first three alternatives for each
recognised word we achieve a recognition rate of 100%.
The UNIX dictionary, consisting of only 24473 words, cannot be considered
as an adequate lexicon for general usage, but it does give some indication as
to the word alternatives that might arise. For example, new and now would
seem to be reasonable options. However, it is not so easy to explain ways
and loam . Below is given a breakdown of the word distribution by character
size for the UNIX dictionary:-

213

L etter count N um ber Percentage
1
2
3
4
5
6
7
8
9
10
11

> 11

26
91

759
2142
3097
3795
4045
3578
2970
1890
1072
1008

0.01
0.37
3.10
8.75

12.65
15.50
16.53
14.62
12.14
7.72
4.38
4.12

It is reasonable to assume that a larger dictionary would have a similar
spread of word sizes. Therefore, one would expect that letter sequences 7
characters long would produce the largest num ber of word alternatives.

9.7. Future Work
Areas for future work which have arisen as a result of developing the

cursive script recognition system include:-
• W ord splitting and word joining. In some instances it is not possible for

the cursive script recogniser to detect a word boundary when a writer
places two words very close together. Likewise, when a writer breaks a
word up, he often makes such a large gap that the recogniser interprets
it as meaning two separate words. In such cases, analysis of the letter
nets by the post-processor usually results in no valid word being found.
In such cases splitting or joining of letter nets can often result in the
correct word boundaries being detected.

• The investigation of a dictionary look-up technique that can be applied
to the output of the cursive script recogniser. The code for the
recogniser has been downloaded onto a FORCE micro-system. This has
a 68020 processor and runs at 12.5 MHz, operating under the real-time
operating system, PDOS (Programmable Disk Operating System).
Reading of the tablet information, vector encoding, segmentation and
generation o f the letter nets has proved to run in a real-time environ
m ent with no observable delay for a user writing on the tablet. The
im portant two factors for the dictionary look-up will be the size of the
dictionary. What can be considered a reasonable lexicon? 15,000 words,
30,000 words, 60,000 words? The size of the lexicon will affect the
am ount o f comparison that m ust be performed for each letter net.
Hence the mechanism for searching the letter nets and comparing
against the database m ust be very efficient, both in terms of memory
and time if real time operation is to be achieved.

214

• One area that will be of particular importance is the investigation of
syntactic analysis as an aid to the word recognition. A syntax analyser
can check whether a sentence of words are grammatically correct. For
example, if a word within a sentence is recognised with equal weighting
as dog or clog, sentence level analysis could resolve the choice by com
paring the two words within the context of the sentence as a whole.

There is also still a good deal of work to be done on the recognition algo
rithms. A further investigation into natural writing styles has shown that
generally, the segmentation techniques holds good for a large num ber of
writing styles. However, for people who write with particularly severe slant
to the left, analysis of the ligature sections for these writers indicated that
apart from the ’0 ’, ’1’ and ’2 ’ vectors, the ligature was often found to con
tain the ’3 ’ vector. The possibility of including the *3’ vector into the seg
mentation algorithm is being investigated.
A nother area which is under investigation is the design of a training pro
gram, whereby a user writes some test sentences and the program extracts
the characters from the text and constructs a user specific database from the
input for subsequent use when the writer wants to use the system. At
present, a program has been written which allows the user to enter examples
of lower case, upper case, numerals and special characters and constructs the
appropriate databases. However, we could not use the program as it is to
build a database for use when a person uses the cursive script recogniser.
Most people form a good proportion of connected characters completely
differently from the way they write unconnected characters (m ost obviously
*f’, ’s’, ’x ’, V) . Hence a system needs to be devised that can accept cursive
words and extract the character shapes from them, using the prior
knowledge of the word identity.
Apart from allowing a user to dot previously written words in order to check
alternatives where the word is not recognised as the best choice, a num ber
of other simple editing functions have been implemented on the dem onstra
tion system on the FORCE computer. These are,
(i) Word over-write. In some instances the recogniser will not recognise a

word at all. This will be the case where a character shape in the word is
not known to the recogniser. The user can enter the ’EDIT MODE*
and try again by writing over the top of the word and the recogniser
will process the new attempt and display the result in place o f the old
word. Other instances where the word is not recognised correctly can be
due to the writer mis-spelling the word or the word being written not
existing in the post-processors dictionary.

(ii) Word delete. Again, by entering the ’EDIT M ODE’, the user can
delete any num ber of previously written words by simply striking a hor
izontal stroke through the words he wishes to delete.

(iii) Word insert. The user enters the ’EDIT MODE* and identifies the two
words between which he wants the text inserting by marking the gap
between them with an inverted ’v ’ symbol. He then proceeds to write

215

the text to be inserted. The reform atted line, incorporating the inserted
text will be displayed after the user has exited ’EDIT M ODE’.

These editing functions have really shown the requirem ent for electronic
paper. The complexity in manipulation of recognised text display increases
dramatically with successive editing permutations.
Thought m ust also be given to the construction of an upper case, numeral,
and special character recogniser before the consideration of a recogniser
with the capability to cope with the full range of characters and styles a
writer might want to use. The ability of the cursive script recogniser to cater
for unconnected script has resulted in a rethink in the design of the upper
case, numeral and special character recogniser. This is discussed in the con
cluding chapter.

216

10. CONCLUSIONS AND FU RTH ER W ORK

The results of the work to date have shown promise in term s of both
recognition rate achieved and capability of the algorithms to run in a real
time environment. While the overall recognition rate for the trained sample
set (Table 8.9) gives a performance of 98% for the first five alternatives, it
is particularly encouraging to achieve a 95% recognition rate (Table 8.12) for
a completely untrained writer set. This gives credence to the assumption
that the size of the database required for a more representative user
independent database should follow the extrapolation indicated in Figures
6.10 and 6.11.

10.1. A Real-Tim e Environm ent

The development environm ent did allow for a degree of real-time
operation. Figure 10.1 shows the development environment.

FORCE
68020
MICRO

XON/XOFF PROTOCOL

RS -232 link
(x,y) co-ordinates

Numonics Tablet

Figure 10.1 - Initial Development Environm ent

217

The FORCE micro-computer acted simply as a buffer to ensure that no pen
motion data was lost as the user wrote on the tablet. This is necessary since
the UNIX on the SUN, not being a real-time operating system, could not
schedule the reading of data from a serial port in order that no data was
lost. However, it was still found to be necessary for the writer to periodically
pause when using the system to allow for the SUN to ’catch u p ’ by clearing
the script buffer on the FORCE system. The serial link to the SUN operated
on a simple XON-XOFF protocol. The processed textual information was
displayed on the SUN using the Graphical Kernel System (GKS) graphics
utility. GKS provided the flexibility necessary to rapidly manipulate areas of
text on the screen, so replicating the actions of the writer creating the text
being written over the Numonics tablet. GKS has also proved to be an
invaluable tool in other aspects of the research work. It has been incor
porated in the design of a num ber of development tools. Validating input
data was of particular importance. Tablet data often became useless during
prolonged operation. This was due to the electromagnetic field being
adjusted to the surface of the tablet in order to detect pen up states without
needing to use the pen-switch which proved useless for analysing handwrit
ing. As the tablet was switched on for long periods, the field would waver
around the surface of the tablet, so that either pen motion was detected
before the pen tip reached the tablet surface, or (the other extrem e) pen
motion was missed even though the tip was on the tablet surface.
The other major task was checking the shapes in the Freeman and XY data
bases. It was often possible to enter a character shape into the database with
the wrong character identity. In order to avoid mis-recognitions due to this
error it was necessary to periodically check the integrity of the databases
after a major addition to the num ber of codings contained therein. GKS
allowed easy development of a shape regenerator. Hence erroneous entries
could be easily detected and rem oved.
However, the use of GKS in this form beyond the developm ent stage was
not seen as particularly viable. The executable run file size on the SUN
without GKS was 0.25Mbyte, but this increased to around 1Mbyte by link
ing in the GKS run-tim e code. Since we are using only a small fraction of
the full GKS capability, a graphics interface with more specific functionality
would be better suited for a standalone demonstration of the recognition
algorithms.
It has been possible to achieve a better degree of real-time capability of the
algorithms by dowloading the C code onto the FORCE and re-linking to run
on the FORCE. This has been achieved both for the unconnected recogni
tion program and the cursive recognition algorithms described in Chapter 9.
In fact, the cursive recognition program, building up the letter nets and
incorporating the simple editing functions described in chapter 9 resides in
less than 60Kbytes of code on the FORCE. Presently, we are still using the
serial link to the SUN. In this instance it is used to send the GKS calls to
the SUN in order that the GKS can still be used for display purposes.

10.1.1. Possible Speed/Memory Improvements

It was decided to investigate speed improvements that might be made
in the unconnected script recognition code once they had reached a rela
tively bug free, stable state. Figure 10.2 shows a breakdown of the separate
tasks within the program, indicating the relative time spent by the processor
in each function during the course of a text creation session.

219

Q.to
ID Q.to

cn
c\i Q .

o>
JCo

CO

C3>

< <» ^ to jS {a CO
o>
cvi

to
00coCC CO CD

U _ Q CO

O
cm oo•o

O)cn
T 3TO

CD
COUL

cq
o CO co lE

CM
ID

CO g

220

«
c
£
•3
1
8

CQ

<o

1
I

cn
o

2
3 W)•F*«cu

This analysis was obtained by running the recogniser on the SUN using the
UNIX utility, g p ro f. D um m y C routines were linked in, in place o f the GKS
code for reasons of clarity in analysing the gprof output. The code was then
recompiled and run to produce an execution profile. The UNIX command is
simply:-

gprof executable_file

Most of the time is spent doing the actual character recognition tasks. This
is a total of 60% of the processing for the XY and Freeman tasks combined.
One development route might be the design of a dual-processor architec
ture, paralleling the XY and Freeman tasks. This alone would result in a
reduction o f around 20% in overall processing time.
Within the algorithms themselves, it was noted that the largest sub-tasks
were database searching and string manipulation. The XY database in partic
ular, with its m ore complicated encoding format, would benefit significantly
in term s of processing requirem ent by simplifying the search. This could be
achieved by reform atting the XY encoding so that storage requirem ents and
processing time are both reduced. At present we have a typical encoding
form at :-

V -0.10-0.25 0.20 0.25 0.20/ 0.10-0.20-0.10 0.30-0.30

Each trend is assigned a signed floating point number for storage. This
encoding form at could have been represented thus:-

V -1 0 -2 5 20 25 20/ 10-20-10 30-30

These XY param eter distance could have been stored in a char variable in C,
making the string manipulation considerably faster. Storage size would also
be greatly reduced. The floating point num ber requires 32 bits for storage,
while the character byte only requires 8 bits. Hence a space saving of around
three quaters for the XY database.
It has become increasingly apparent, from the results obtained for the
unconnected script recogniser, and from the development of the cursive
script recognition system, that the Freeman algorithm has proved
significantly m ore robust and versatile than has the XY algorithm. However,
investigation is necessary to determine what role, if any, the XY algorithm
has to play in the further development of the cursive script algorithms.
Although the XY algorithm has shown that it is not particularly good at
recognising characters as best choice, it is marginally better than the Free
man algorithm when incorporating the best five alternatives. (Compare
Tables 8.4 & 8.7), and so may yet play some part in the cursive recognition
algorithms. As an initial idea, the raw data could be re-processed with the
XY algorithm if no valid word match is found after processing by the Free
man algorithm.

221

10.2. Extension of the Character Base

Some initial work has been done with regards to the recognition of
upper case characters, numerals and some of the more commonly encoun
tered special characters. (See Appendix B). Around two-thirds of the 112
writers used to create the lower case databases also gave examples of the
above m entioned character sets. It would be interesting to see how the
unconnected script algorithms would cope with a different character base.
The major difference in the design of the recogniser was the construction of
the matching array required to identify the various part character shapes that
may be produced. The task of database construction was particularly easy in
comparison. Although these new character sets contain m ore complex char
acter shapes, it was found that such characters were created by forming a
num ber of strokes, often just a num ber of straight line elements. For exam
ple, ’A \ ’E ’, considerably fewer shapes to encode (supported by the fact that
the Freeman and XY databases were smaller), even though the num ber of
characters supported in the databases was about twice the num ber for the
lower case alphabet.
Consider the four-stroke ’E ’:-

Figure 10.3 - Four-Stroke ’E*

The num ber of alternative formation routes is determ ined as «!, n being the
num ber of strokes in the character. Therefore, the four-stroke ’E* can be
form ed by 24 different stroke sequences.
The variety of partly formed character shapes that needs to be identified for
this example alone was found to be:-

222

(i) (ii) (iii) (iv) (v) (vi)
Interm ediate two-stroke shapes

(i) (ii) (iii) (iv))
Intermediate three-stroke shapes

Figure 10.4 - Character ’E ’ Intermediate Shapes

At this stage it became apparent that the basic approach to the matching
would not be suitable for the upper case aphabet. Instead, the concept of
character stroke combination, adopted in the cursive recogniser to cater for
m ulti-stroke characters, was seen as a far simpler and more effective
approach. Figure 10.5 shows how this combination technique would operate
on two differently formed character ’E ’s:-

223

3

2
4

-►

Ei = '462050’ Eo = ’0505036’

Figure 10.5 - Character Joining

This approach means that the upper case, numerals and special character
sets can be added into the recogniser by incorporating the new character
shapes, m ost probably by the construction o f a complementary character
shape database to that for the lower case alphabet.
Obviously, such a combination of letter sets would require an extra level or
post-processing beyond that currently implemented. The increased am ount
o f character confusions that might ensue might involve characters from all
four letter sets. For example:-

T , ’1 \ T , V , T , * (’, T

One technique which could provide valuable information would be to
analyse the size and vertical position of characters along a particular written
line. However, it is particularly im portant that the zonal boundaries of each
word or character grouping can be accurately distinguished. Zonal position
of characters would be of great benefit in ambiguity reduction.

224

upper zon e

baseline

lower zon e mid zone

Figure 10.6 - Zonal Boundary Detection

A technique for zone detection m ust be able to cater for problems such as:-
• slanted lines
• inconsistent character sizes along a line
• wavy baslines (’hill and dale’ writing)

10.3. M arket Opportunities

Although the cursive script recogniser shows promise as a tool that
might be incorporated into some future market product, it must be said
that, to date, script recognition related products have not found widespread
acceptance. In the UK, Ferranti and Quest Microsystems have marketed
products, but with little success. In the USA, Pencept [91] have achieved
some degree of market success. Linus Technologies [92] are pointing the
way towards the vehicle for script recognition acceptance. We are finally
moving towards products which have advantages over using a keyboard.
One area which would be of particular importance would be the integration
o f a natural editing function with the recognition software. Many computer
and word-processor users find it particularly annoying to have to learn a new
editor each time they use a new machine. This is regarded as a particularly
im portant feature that the electronic paper envirom ent could provide.
Optical character recognition (OCR) devices have had much greater m arket
penetration due to the amount of unconnected script documents in the
office produced in the form of typed pages. In many instances these exist
only in hard-copy form. Scanning and recognition allows the m ost economi
cal form of entry to a computer, for updating and correcting, or simply for
easier archival. OCR has begun to diversify to the recognition of hand

225

printed documents also. This might have some uses, however, documents
produced by hand are not .usually written entirely in block printing. It is usu
ally some combination of upper and lower case script, and, what is more,
connected letters.
The ideal environm ent for dynamic script recognition (DCR) would be a
situation as close as possible to the natural environm ent of working with a
pen and paper as being used by Linus Technologies in their new product.
Technology has now advanced to the stage where this scenario can be re
created electronically by putting a transparent tablet over the top of a flat
screen. The cost and resolution of flat screen technology has made sufficient
advances in recent years so as to make such a device economically viable. A
flat screen, either LCD or gas plasma, having a resolution of 640 x 400 pix
els and measuring 12" along its* diagonal length currently costs around 700
US dollars (not including display driver software). A transparent tablet
which could be placed over the top of the display would cost a further
1300-1900 US dollars with its power supply and controller. Therefore, a
prototype ’electronic paper’ system could be purchased for 2000-2600 US
dollars. Tappert et al [86] have already built such a device and investigated
its’ suitability as a medium for a handwriting recognition system. Figure
10.7 shows an example of script recognition being operated in an electronic
paper environment.

226

RGB

Many new computer
users want to talk to

Load Save Edit Recog

A4 E lectronic1
Paper V.24

G rap -
ic s

C o n t
r o l l e r

S e r ia l

Comm

RCM

RAM

6 8 0 2 0

Figure 10.7 - An Electronic Paper Hardware Environm ent

Problem s that m ust be overcome are largely,
(i) the real-time display of the pen m ovem ents (’electronic ink’).
(ii) ease of use by the writer. They found that this was in direct relation to

the problem of parallax.
The initial electronic paper set-up had a distance measure of 0.45” from the
surface of the tablet to the display plane. A thinner transparent tablet having
a gap of only 0.17” separation was also tried, and it was found that people
could write much faster, due to the reduced parallax problem. M ost flat-
screen vendors also sell associated graphics drivers, these are a pre-requisite
for displaying the raw textual information, or ’electronic ink’.
The advent of the ’electronic paper’ system will herald the developm ent of a
m ore natural means of file/docum ent manipulation. This can be performed
by the user as they would if they were editing a document with a pen on
paper. By defining a set of natural editing symbols, it is possible to make the
electronic paper file editing a particularly simple task, even for the untrained
user.

227

The combination of the realisation of electronic paper with a natural
handwriting and editing environm ent has enorm ous scope for m arket
development. It gives the machine the means of adapting to the most fluent
m ethod of communication for the human user.
The design and integration of a natural sketch recognition and editing task
“ Y i Ch a r dUCj WOUld result in a totaI>y self-contained mixed mode
h!?™ • T 3 f “ docum ent creation system, having a natural means of
hum an interface Such a concept could form an integral role in the func
tionality o f the office workstation of the future. However, a variety of lesser
but m ore immediate market opportunities can be defined which are m ore
immediately attainable,

(0 Portable memo-pad, an electronic paper device that can be used in the
held to record dynamic manuscript and sketch graphics, that can be
transcribed by recognition software back at a base unit.

(ii) Signature recognition/verification devices. There is enorm ous potential
for such products. Banking and point-of-sale terminals are prime areas
for such an application.

(m) Handwriting recognition as an identification mechanism in a secure
environment.

(iv) Rem ote recognition via a telephone link. An example might be rem ote
form-filhng where the form is sent down the telephone line to be
displayed on the users screen, say, from an insurance company. The
client can the fill m the form on an electronic paper device. Their raw
data is transmitted back to the insurance company offices where it is
recognised and the recognised information transmitted back to the
client for viewing and/or alteration.

228

Appendix A: BIBLIOGRAPHY

A l

[1]
Acoustic Radar Graphic Input Device.
P. de Bruyne, FIT, Zurich.
AC MO-89791-021-4/ 80/ 0700-0025 1980.

[2]
On-line Com puter Recognition of Handprinted Characters.
R.M,. Brown.
IEEE Trans. Electronic Computers vol. E C -13 pp750-752 Dec. 1964.

[3]
Recognition of Handwritten Characters By Topological Feature Extraction.
J.T. Tou, R.C. Gonzalez.
: EEE Transactions on Computers, July 1972 pp.776-784.

[4]
Learning In Syntactic Recognition of Symbols Drawn on a Graphic Tablet.
M .Berthod, J.P. Maroy
C om puter Graphics and Image Processing, 1979, Academic Press.

15]
Morphological Features and Sequential Information in Real-time Hand-printing
Recognition.
M .Berthod, J.P. Maroy
Froc. Second Int. Joint Conf. on Pattern Recognition, Aug 1974.

[<5]
A Description of Handwriting Dynamics
E.H. Dooijes
Simulation of Systems 1979, North-Holland Pub. Co. 1980.

n
On Line Cursive Script Recognition: A Structural Approach With Learning
ML Berthod, S. Ahyan
P roc. 5th Int. Conf. On Pattern Recognition 1980,Vol. 2 pp.723-5,IEEE

On-line Handwritten Character Recognizer
K. Odaka, T. Wakahara, S. Hashimoto
Trans. Inst. Electronic and Communication Eng. Japan,
section E vol. E65 no .8, Aug 1982

[9]
Oh The Autom atic Reading of Cursive Script
Y.S. Eisa

Colloquium on ’Coding of Docum entary Inform ation’ 1-3,
March 1982 London, EEE.

[10]
Cursive Script Recognition System By Elastic Matching
C.C. Tappert
IBM Journal of Researchand Developm ent (USA), vol. 26 no.6 Nov 1982.

[11]
W ord-level Recognition of Cursive Script
R.F.H. Farag
IEEE Transactions on Computers, vol. C-28 no.2 Feb 1979

| [12]
A Numeric Script Recognition Processor For Postal ZIP Code Application
L.R. Focht, A. Burger
Proc. IEEE Int. Conf. on Cybernetics and Society 1976

[13]
Elastic Matching In Automatic Pattern Recognition
A.J. Szanser
Proc. Conf. on Machine Perception of Patterns and Pictures,
Teddington Middlesex Apr 1972.

[14]
The Use of Context In Pattern Recognition
G. T. Toussaint
Pattern Recognition(GB) vol. 10 no.3 1978, IEEE Conf. Pattern Rec. and Image
Processing, 1977.

[15]
On-line Recognition of Hand-Printed Korean Characters
Y.H. H uh, H.L. Beus
Pattern Recognition Vol 15 No6 (pp445-453) 1982.

[16]
An On-line Character Recogniser
|R..M. Simmons
Interface Age,pp 110-114, 1971.

[17]
Experim ents in Text Recognition with the Modified Viterbi Algorithm.
G.T. Toussaint
IEEE Trans. Pattern Analysis Machine Intelligence (USA) Vol. PAM I-2 pp 184-93
April 1979.

[18]
Machine Recognition o f Roman Cursive Scripts
K. Badie, M. Shimura
Proc. 6th Int. Conf. Pattern Recognition pp 28-30 vol.l 1982 IEEE

[19]
Cursive Script Recognition
M. K. Brown, S. Gan apathy
Proc. Int. Conf.on Cybernetics and Society pp47-51 1980 IEEE

[20]
Hand-W ritten Num eral Recognition - ’The Organisation Degree M easurm ent’
S. Impedovo, N. Abbattista
Proc. 6th Int. Conf. Pattern Recognition pp40-3 vol.l 1982 IEEE

[21]
Expansion of Pen M ovement Stroke Extraction Method to Hiragana Character
Recognition
T. Yamamoto, W.S. Hsu, S. Ozawa
Trans. Inst. Electronic and Comms. Eng.of Japan, Sect E. Vol E65 No. 11
Nov 1982.

[22]
On-line Recognition o f Hand-written Characters Utilising Stroke Vector Sequences
K. Ikeda, T. Yamamura, Y. Mitamura, S. Fujiwara, Y. Tominaga, T. Kiyono
Pattern Recognition (GB) vol. 13 no.3 pp 191-2, 1981.

[23]
Online Handwritten Character Recognition Fora Personal Computer System
K. Yoshidaand H. Sakoe
IEEE Trans. Consum er Electronics (USA) vol. CE-28 no.3 1982

[24]
An On-line D ata Entry System For Hand-printed Characters
H.D. Crane, R.E. Savoie
Com puter (USA) vol. 10 no.3 pp43-50 1977.

[25]
Algorithm For the Recognition of Handwritten Text
S.A. G uberm an, V.V. Rozentsveig
Autom ation and Rem ote Control (USA) vol.37 no.5 pt.2 1976.

Sequence Detection Using All-magnetic Circuits
H. D. Crane
IEEE Trans. Electronic Computers pp 155-160 vol. EC-9 no. 2, 1960.

[27]
Devices for Reading Handwritten Characters
T.L. Dim ond
Proceedings of the Eastern Com puter Conference, pp 232-237, 1961.

[28]
Machine Recognition of Handprinted Characters
D.L. Caskey
Sandia Labs, Albuquerque, New Mexico

[29]
Real Time Recognition of Hand-drawn Characters
W. Teitelman
Proceedings- Fall Joint Computer Conference, 1964, pp559-575

[30]
An On-line Character Recogniser with Learning Capabilities
G . Gaillat
Central Research Labs, Thomson-CSF

[31]
A Feature Extraction Method for the Recognition of Handprinted Characters
D.J. H unt
Research and Advanced Developem ent Centre, ICL

[32]
Algorithm; for a Low Cost Hand Print Reader
A.W. Holt
Com puter Design, Feb 1974, pp85-89

[33]
Use o f Handwriting in Construction of Models
M. Hosaka, F. Kimura
Scientific Information Systems in Japan, 1981, pp83-90

[34]
Pen Direction Sequences in Character Recognition
V.M. Powers
Pattern Recognition, 1973, Vol 5, pp 291-302

£35]
Designing a Handwriting Reader
D.J. Burr
IEEE Trans PAMI, Vol PAM-5, No.5, Sept 1983, pp554-559

\i
[|36]
Some Simple Contextual Decoding Algorithms Applied to Recognition of

•3i&
■ : #Hand-printed Text

G.T. Toussaint, R.W. Donaldson
Proc. Annu. Canadian Computing Conf. 1972, pp422 101-116 ,4

[37]
Analysis and Synthesis of Handwriting %
J. Vredenbregt, W.G. Koster
Philips Technical Review, Rev32, No3/4, 1971, pp73-78

a

[38]
A Tree Classification Algorithm For Handwritten Character Recognition
M. Shridhar, A. Badreldin
Proc.7th Int Conf. on Pattern Recognition, pp.615-8 1984 IEEE "%

[39]
Segmentation and Recognition of Symbols For Handwritten Piping and Instrum ent
Diagram
M. Futura, N. Kase, S. Emori
Proc.7th Int Conf. on Pattern Recognition, pp.626-9 1984 IEEE

[40]
xperiments in Contextual Recognition of Cursive Script
.W. Ehrich, K.J. Koehler

EEE Transactions on Computers, Vol C-24, No 2, Feb 1975, pp 182-194

41]
Autom atic Recognition of Handprinted Characters- The State of The A rt
G.Y. Suen, M. Berthod, S. Mori
Proc. EEEE vol.68 no.4 April 1980

I I 1421Advances in Recognition of Handprinted Characters
7̂ * C.Y. Suen, M. Berthod, S. Mori

Proc. 4th Int. Joint Conf. Pattern Recognition, pp30-44 Nov 1978, Kyoto Univ.
T,-*'

[43]
A Normalising Transformfor Cursive Script Recognition
D .J . Burr
I-ell Laboratories, 1982 IEEE Transactions pp 1027-1030

^ [44]
E[andwriting Recognition Accuracy Versus Tablet Resolution and Sampling Rate

. . . J Kim, C.C. Tappert
 ̂ 7 th International Conference on Pattern Recognition, 1984, Vol II pp917-918

[45]
R|eal-Time On-Line Symbol Recognition Using a DTW Processor

A6

P. Lu, R. Brodersen
7th International Conference on Pattern Recognition, 1984 Vol II pp 1281-1283

[46]
On-line Recognition of Shortforms in Pitmans Handwritten Short-hand
C.G. Leedham , A.C. Downton
7th International Conference on Pattern Recognition, 1984 Vol II, pp 1058-1060

[47]
A M icrocomputer System to Recognise Handwritten Numerals Using
Syntactics-Statistics
G.Y.Tang, P.S Tzeng, C.C. Hsu
7th International Conference on Pattern Recognition, 1984 Voll Ipp 1061-1064

[48]
Knowledge-based Cursive Script Interpretation
R. Bozinovic, S. Srihari
7th International Conference on Pattern Recognition, 1984 Vol I Ipp774-776

[49]
Signature Verification Based on Nonlinear Time Alignment: A Feasibility Study
M. Yasuhara, M. Oka
IEEE Transactions on Systems, M an,and Cybernetics, March 1977 pp 212-216

[50]
Reading Handwritten Words Using Hierarchical Relaxation
K. Hayes
Com puter Graphicsand Image Processing No. 14, pp344-364 1980

[51]
Recognition of Handprinted Characters for Autom ated Cartography:
A progress report
M. Lybanon, R. Brown, L. G ronm eyer
Image Understanding Systems II, 1979, pp 165-173

[52]
M achine Recognition of Handprinted Words: A Progress Report
K. Sayre
Pattern Recognition, 1973 Vol5, pp 213-228

[53]
On-line Cursive Script Recognition
C. Higgins, R. Whitrow
Interactive Conf. 1984, Elsevier Science Publishers

[54]
A utom atic Recognition of Print and Script

A7

L. Harmon
Proceedings of the IEEE, Vol 60, No. 10, Oct 1972, pp 1165-1176

[55]
A New Character Recognition Scheme with Lower Ambiguity and Higher
Recognisability *
P.S. Wang
Proceedings of the IEEE, 1982, pp37-39

[56]
Preprocessing techniques for Cursive Script Recognition
M.K. Brown, S. Gan apathy
Com puter Graphicsand Image Processing, 1983, pp447-458

[57]
Ambiguity Reduction in Writing with Ambiguous Segmenting and Uncertain
Interpretation
S. Peleg
Com puter Graphics and Image Processing 10, pp 235-245, 1979.

[58]
Experim ents in On-line Script Recognition
E. M andler, R. Oed, W. Doster
AEG-Telefunken Research Institute

[59].
Digitiser Technology: Performance Characteristics and the Effects on the User
Interface
M. Phillips, J. Ward
IEEE Com puter Graphics & Applications Feb 1987.

[60]
A Case for Digitiser Tablets
T.T. Kutlinski
Com puter Graphics World, May 1985.

[61]
Com ponents of Hand-Print Style Variability.
T.T. Kutlinski
IEEE 7th International Conf. on Pattern Recognition.

[62]
A Comparative Study o f Some Recognition algorithms in Character Recognition
C.C. Kwan, L.Pang, C.Y. Suen
Proc International Conferenceon Cybernetics.

[63]

A8

Approach to Smart Docum ent Reader System
I. Masuda et al.
1985 IEEE CH2145-1/85/0000/0550.

[64]
Word Shape Analysis in a Knowledge-Based System for Reading Text
J J . Hull
2nd International Conf On Artificial Intelligence Applications, Miami, Florida 1985.

[65]
Postional Representation of English Words
S. M ukherjee, M. Sloan
2nd International Conf On Artificial Intelligence Applications, Miami, Florida 1985.

[66]
Dynamic Programming in the Recognition of Connected Handwritten Script
K.H. Wong, F. Fallside
2nd International Conf On Artificial Intelligence Applications Miami, Florida 1985.

[67]
The Write Stuff
T. K. W orthington (U. S.patent 4513437)
IEEE Spectrum Oct. 1985

[68]
M ethod for Selecting Constrained H and-Printed Character Shapes for Machine
Recognition
R. Shinghal, C.Y. Suen
IEEE Trans. PAMI, Vol. PAM I-4 N o .l. Jan. 1982.

[69]
Handwriter Identification From One-bit Quantized Pressure Patterns
K.P. Zimmermann, M.J. Varady
Pattern Recognition vol. 18 no 1. pp63-72

j70]
A High Accuracy Syntactic Recognition Algorithm for Handwritten Numerals
M. Shridhar, A. Badrelin
IEEE Transactions on Systems, M an, and Cybernetics, Feb 1985.

[71]
Character Recognition
Alan Howard
Siystems International, Nov 1986.

[72]
Recognition of Handprinted Hebrew Characters Using Features in the Hough

Transform Space
M. Kushnir, K. Abe, K. M atsumoto
Pattern Recognition Vol 18, No. 2 1985

[73]
Computer Recognition of Handwritten Numerals by Polygon Approximation
T. Pavlidis, F. Ali
IEEE Transactions on Systems, Man and Cybernetics, Nov 1975.

[74]
Compact Large-area Graphic Digitizer for Personal Computers
P.de Bruyne, FIT Zurich.
IEEE Comp. Graph.and Appl. Dec 1986 pp49-53.

[75]
Recognition of Handprinted Characters by an Outermost Point M ethod
K. Yamamoto, S. Mori
Pattern Recognition Vol. 1 2pp 229-236 1980.

[76]
A Note on Human Recognition of Hand-Printed Characters
U. Neisser, P. Weene
Information and Control3, pp 191-196 1960.

[77]
On the Recognition of Printed Characters of Any Font and Size
S. Kahan, T. Pavlidis, H. Baird
IEEE Transactions, PAMI, Vol9 No.2, pp 274-287, March 1987

[78]
Handwritingand Pattern Recognition
M. Eden
IRE Transactions on Information Theory pp 160-166 Feb 1972.

[79]
Recognition of Isolated and Simply Connected Handwritten Numerals
M. Shridhar, A. Badreldin
Pattern Recognition Vol 19, N o.l pp 1-12 1986.

[80]
Psychophysical Techniques for Investigating the Distinctive Features of letters
R. Shillman, T. Kutlinski, B. Besser
Int J. Man-Machine Studies, 8, pp 195-205 1976.

[81]
On The Encoding of Arbitrary Geom etric Configurations
H. Freem an

A10

IRE Transcations on Electronic Computers, pp 260-268, June 1961.

[82]
A Sketchphone System
IEEE Transactions in Communications, Com 29, No. 12, 1981.

[83]
Handwriting Recognition on a Transparent Tablet over a Flat Display
C.C. Tappert et al
SID International Symposium, 6-8 May 1986, pp308-312

[84]
Script and Graphics Recognition- A State of The A rt Study
P.T. Wright, N.G. Baker, P.D. Moulds
ESPRIT PROJECT 295, 18 Dec 1984

[85]
Elographics Touch Screen
Elographics Inc,
105 Randolph Rd,
Oak Ridge, Tennessee 37850, USA.

[86]
Handwriting Recognition on a Transparent Tablet Over Flat Display
C.C. Tappert, A.S. Fox, J. Kim, S.E. Levy, L.L. Zimmerman
SID86 Digest, pp308-312

[87]
On-line Handwriting Recognition- A Survey

C.C. Tappert, C. Y. Suen, T. Wakahara
1988

| 88]
Opto-electronic Paper at the CCTA
I5. Christmas
Inform ation Media& Technology, Vol 20 No.3, 1988

[89]
Photron FIOS-6440
Photron Limited,
Jingumae6-12-15, Shibuya-Ku,
Tokyo 150, Japan

m
WH-515 LCD Integrated Tablet,
Wacom Co. Ltd, Tokyo, Japan

[91]
Penpad,
Pencept Inc.,
39 Green Street,
Waltham, Mass., USA.

[92]
Linus Write-Top
Linus Technologies,
1889 Preston White Drive,
Reston, VA 22091, USA.

[93]
Experiments on Computer Recognition of Handprinted Words
P. M ermelstein, M. Eden
Information Control, pp255-270, 1964.

[94]
M ethods and Apparatus for Reading Cursive Script
L.D. Harmon
US Patent 3111646, Nov 1963.

[95]
Post-Processing Techniques for Script Recognition
L.J. Evett, C.J. Wells, L.J. Dixon, F.G. Keenan, R.J. Whitrow
ESPRIT PROJECT 295 Research Report, August 1988.

A12

Appendix B: SCRIPT TEST SHEETS

Each writer giving a sample of writing style was asked to produce the follow
ing as examples of their
(i) lower case unconnected
(ii) upper case, num eral & special character
(iii) cursive (or natural)

handwriting style.

ESPRIT PROJECT 295 - TEST SHEET 1

Please write the following sentences in lower case unconnected lettering:-

p a c k m y b a g s w i t h f i v e d o z e n e x t r a l i q u o r j u g s

b o t h w i z e n e d m e n q u i c k l y j u d g e d f o u r s h a r p v i x e n s

B2

ESPRIT PROJECT 295 - TEST SHEET 2

Please copy the following:-

P A C K M Y B A G S W I T H F I V E D O Z E N E X T F 1 A L I Q U O R J U G S

0 1 2 3 4 5 6 7 8 9 & %$ * () { } [] < § > ! ? + =

ESPRIT PROJECT 295 - TEST SHEET 3

Please write the following sentences in your natural handwriting style:-

pack my bags with five dozen extra liquor jugs

both wizened men quickly judged four sharp vixens

B4

Appendix C: New Writer Hard-Copies & Results Breakdown

The following results are those obtained from the 10 data sets collected from new,
untrained writers whose script styles have not been incorporated in the database.
There are also hard-copies of the scripts that these writers produced.

1. Filename: am k.ref Dated: 18-3-88
Tablet: Numonies

Reference: the quick brown fox jumps over the lazy dog
able grown men have quickly found their sexy jokes zapped

Recognition: the quick brown fox jumps over the lazy dog
able grown men hqve quickly fousd their sexy johis zapped

ERRORS:

Ref Recognised as

q:77 a:73 d:69 u:67 g:47
s:44 p:38 z:33 o:31 j:27
h:86 n:57 r:49 p:47 s:26
i:99

Correct Non-rec Rec-err Seg-Err

Counts 81
Percentage 95.29

0
0.00

4
4.71

0
0.00

2. Filename: dc.ref
Tablet: Numonics

Dated: 18-3-88

Reference: the quick brown fox jumps over the lazy dog
able grown men have quickly found their sexy jokes zapped

Recognition: the quoek brown fox jumps ouer tne lazy aog
able grown men naue quuckly found tlieir sexy jokes zupped

ERRORS:

R ef Recognised as

V u:87 v:79 r:42 t:37 b:34
h n:80 h:74 r:38 a:25 k:24 1
d a:95 d:85 q:59 n:48 u:46
h n:80 h:80 u:57 k:54 y:28
v u:71 v:66 b:16 f:13 o: 9
i u:99 v:84 i:78 r:51 b:33
h 1:99

i:80 j:63 i:50 n:40 -:19 f
a u:92 a:76 d:74 o:63 q:62

Correct Non-rec Rec-err Seg-Err

Counts 75 0 9 1
Percentage 88.24 0.00 10.59 1.18

3. Filename: esp.ref Dated: 18-3-88
Tablet: Numonics

Reference: the quick brown fox jumps over the lazy dog
able grown m en have quickly found their sexy jokes zapped

Recognition: the quick brown foe jumps over the lazy dog
gble grown men have quickly found tueir sexy jekes zapped

ERRORS:

R ef Recognised as

X c:62 r:30 j : l l
a g:91 q:85 a:70 d:68 n:51
h u:90 a:67 h:66 n:63 w:43
o e:78 o:72 z:50 c:47 f:40

Correct Non-rec Rec-err Seg-Err

Counts 81 0 4 0
Percentage 95.29 0.00 4.71 0.00

i

1
I

4. Filename: ghm.ref Dated: 22-3-88
Tablet: Numonics

Reference: the quick brown fox jum ps over the lazy dog
able men have quickly found their sexy jokes zapped

Recognition: the qvick brown tox jum bs orer the zazy dog
able men have qviculy found rheir sexy jores zpjed

C2

ERRORS:

R ef Recognised as

u v:77 u:71 r:41 i:31 b:17
f t:98
p b:61 h:60 n:49 g:37 p:37
v r:63 v:57 i:17
1 z:55 c:43 1:37 a:30 o:30
y g:92 y:71 b:23 z:18 s:12
e c:85 e:64 o:48 i:24 1:12
u v:84 u:46 c:46 r:46 i:30
k u:69 v:64 1:43 r:32 b:31
t r:64 t:35 d:15 e: 7 a: 7
k r:91 v:84 1:27 i:21 c:19
a p:77
e j:93 z:48 g:25 o:23 y:23
d e:97 c:37 o:33 i:27 f:26

Correct Non-rec Rec-err Seg-Err

Counts 65 0 14 0
Percentage 82.28 0.00 17.72 0.00

5. Filename: hwt.ref
Tablet: Numonics

Dated: 18-3-88

Reference: the quick brown fox jumps over the lazy dog
able grown men have quickly found their sexy jokes zapped

Recognition: tbe quick brown fox jum ps ooer the lazg dog
aple growa meh haue guicley found tha sexy jokes zabped

ERRORS:

R ef Recognised as

h b:81 h:75 n:52 p:30 s:24
v o:83 v:43 r:33 u:31 p:25
y g:81 y:71 s:36 p:25 b:19
b p:99 b:96 n:47 s:46 g:37
n a:66 m:65 h:63 q:50 u:43
n h:84 m:73 u:73 a:67 q:63
v u:74 v:59 r:41 b:26 t:25
q g:82 q:81 d:52 w:42 a:41
k 1:70 f:39 e:37 b:36 z:33

e:94 c:74 z:65 q:21 k:15

C3

e a:90 q:85 u:83 w:74 h:68
i s:72 z:41 a:25 h:22 f:18
r e:88 d:36 i:27 q:24 c:23
p b:82p:51 n:38 h:37 g:33

Correct Non-rec Rec-err Seg-Err

Counts 71 0 13 1
Percentage 83.53 0.00 15.29 1.18

6. Filename: mjs.ref Date: 18-3-88
Tablet: Numonics

Reference: the quick brown fox jumps over the lazy dog
able grown men have quickly found their sexy jokes zapped

Recognition: the duick brown fox jumps over the ldzg dog
dble yrown meh hdve guilkly found lhilr sexy jokes zapped

ERRORS:

Ref Recognised as

q d:92 a:87 g:46 q:44 u:42
a d:86 a:77 u:55 b:41 g:35
y g:90 y:74 b:61 p:31 q:24
a d:88 a:82 q:56 u:55 g:43
g y:87 g:73 b:39 s:37 p:36
n h:61 n:33 p:28 b:27 r:23
a d:86 a:79 u:65 v:27 o:27
q g:86 q:85 d:61 a:59 n:59
c 1:74 ic:68 \a:57 ’v:25 i:23
t 1:99
e i:71

Correct Non-rec Rec-err Seg-Err

Counts 73 0 11 1
Percentage 85.88 0.00 12.94 1.18

7. Filename: m pc.ref Date: 22-3-88
Tablet: Numonics

Reference: the quick brown fox jumps over the lazy dog
able grown men have quickly found their sexy jokes zapped

Recognition: the quick brown rox jumps over the iazy dog

C4

able growr mep have quiekly fouud thir sexg jokes zapped

ERRORS:

R ef Recognised as

f r:97 n:77 p:68 h:37 t:19
1 i:99
n r:83 k:73 n:28 i:28 m:26
n p:78 n:43 b:28 g:27 y:24
c e:86 c:73 a:50 i:40 o:29
n u:85 q:38 n:34 h:33 a:31
e i:99
y g:94 y:63 b:35 u:23 n:22
e c:91 e:79 f:39 d:36 i:29

Correct Non-rec Rec-err Seg-Err

8.

Counts 76
Percentage 89.41

Filename: rje.ref
Tablet: Numonics

0
0.00

9
10.59

Date: 22-3-88

0
0.00

Reference: the quick brown fox jumps over the lazy dog
able grown men have quickly found their sexy jokes zapped

Recognition: the quick brown tox jumps orer thi iazg dog
able groon men have guictly foqnd their sexy jokes zapbed

ERRORS:

Ref

f
v
e
1
y
w
q
k
u
P

Recognied as

t:82
r:78 v:43 i:23 q:22 u:20
i:83
i:72 i:71 c:15 -:12 i: 0
g:94 y:70 s:45 z:19 b:17
o:79 u:35 v:32 b:29 i:25
g:83 q:76 a:69 w:31 y:29
t:79
q:68 u:48 d:43 g:38 a:38
b:83 p:72 s:30 h:18 g:17

Correct Non-rec Rec-err Seg-Err

Counts 75 0 10 0
Percentage 88.24 0.00 11.76 0.00

9. Filename: sds.ref Date: 18-3-88
Tablet: Numonics

Reference: the quick brown fox jumps over the lazy dog
able grown men have quickly found their sexy jokes zapped

Recognition: the quuek brown fox idnts ovar the lazg dog
dble grown men hqve qvicnly found tbeir sexy jokes sapped

ERRORS:

Ref Recognised as

i u:89 i:88 c:67 v:62 f:26
c e:79 o:66 c:55 a:40 1:39
j i:97
u d:97 u:94 a:58 v:57 n:41
m n:74 m:71 h:41 k:35 d:28
P t:79 p:72 r:67 n:53 h:35
e a:73 e:71 o:69 f:67 d:66
y g:52 b:32 y:30 f:27 j:24
a d:88 a:80 u:64 q:61 g:60
a q:70 a:69 n:64 d:55 u:52
u v:76 u:71 r:31 -:25 b:22
k n:74 k:60 h:49 b:38 p:31
h b:65 w:55 q:46 h:34 d:25
z s:82 z:63 y:34 -:30 q:22

Correct Non-rec Rec Seg-Err

Counts 71 0 14 0
Percentage 83.53 0.00 16.47 0.00

10. Filename: sed.ref Date: 22-3-88
Tablet: Numonics

Reference: the quick brown fox jumps over the lazy dog
able grown m en have quickly found their sexy jokes zapped

Recognition: the quialh brown fox jumps ooer the ldzy dog
abie grown m en huue duickiy found their sexy jokes zapped

ERRORS:

Ref Recognised as

e c:86 e:85 o:47 f:30 a:29
c a:96 c:92 e:52 i:51 f:47
k 1:99

h:85 c:74 t:53 b:36 a:30
v o:54 u:33 v:30 d:27 f:27
a d:95 a:70 q:62 g:59 u:58
1 i:99
a u:82 a:76 q:72 d:72 b:51
v u:69 v:46 o:44 d:25 f:20
q d:85 a:67 g:39 u:38 o:23
1 i:99

Correct Non-rec Rec-err Seg-Err

Counts 75 0 9 1
Percentage 88.24 0.00 10.59 1.18

OVERALLRESULTS:

Correct Non-rec Rec-err Seg-Err

Counts 743 0 97 3
Percentage 88.14 0.00 11.51 0.36

5
1
it

:x
' i f

4

C l

./'■ ■vSx'ry’ • ._v*: v-. 4,5%,. * Si:/. '■ i

ESPRIT PROJECT 295

P l e a s e w r i t e t h e f o l l o w i n g t w o t e s t s e n t e n c e s i n l o w e r c a s e

u n c o n n e c t e d l e t t e r s .

D A T E W R I T E R : A . m / F : A A

L / R h a n d e d : £ T A B L E T : N t / M o N (C 7 A G E : 2 3

C O M M E N T S :

the quick brown fox jumps over

 t h e Q C \ c k b i ' c c J n ^ G X o v e r f t - g , l a y

 c \cc \ _

able grown men have quickly fo

n bl e , p r o t o n mer> h a w g o ' c k l ^ f c n d

k
r ,

*

. . . J

I

Lj

r

ESPRIT PROJECT 295

3 l e a s e w r i t e t h e f o l l o w i n g t w o t e s t s e n t e n c e s i n l o w e r c a s e

(u n c o n n e c t e d l e t t e r s .

D A T E :] i I 1 I I8 W R I T E R : P . m / F : f

L / R h a n d e d : » £ T A B L E T : N t M O N i C f A G E :

C O M M E N T S :

/ h e quick brown fox jumps over

 Tv e- (^u l / c K b f o u a f o x j m p S_________

Lij GUuJj-

K
[" l a t f / e g r o w / ? men have quickly

c l l h l - g j r o . ^ n U c m e . ^ l L l c Ic U j - V n u . n c l
i

\ -V *

± fU i r .&£-* H uajcg._^ t a p p e d

ESPRIT PROJECT 295

P l e a s e w r i t e t h e f o l l o w i n g t w o t e s t s e n t e n c e s i n l o w e r c a s e

u n c o n n e c t e d l e t t e r s .

D A T E : '%\ 3 | w W R I T E R : £■\ P o w e l l M / F : F

L / R h a n d e d : | C T A B L E T : N k m c h J i c * A G E : - 2 - 1

C O M M E N T S :

the quick brown fox jumps over the lazy dog

 , t r . b , & — \ c - K j p £ . Q . j p & J * ; j a m p ? , Q v / e .

■±Jq ̂ ___1.^ , -z. ^ ___gA .p ,^_____________________________________

Bible grown men have quickly found their sexy jokes zapped

■A.b.Ie.— y . U - i u o ,<?> W\Qv. V.’ c k l L j

— i l b c . v . r ^ :? c \ p p e . o l

' ► *\t

I

I

ur

ESPRIT PROJECT 295

3 l e a s e w r i t e t h e f o l l o w i n g t w o t e s t s e n t e n c e s i n l o w e r c a s e

u n c o n n e c t e d l e t t e r s .

D A T E : 22 (3 (^ S ’ W R I T E R : ° r . h . M < * s (, V » M / F : M

L / R h a n d e d : l £ T A B L E T : N O m z> M Q A G E : U -a

C O M M E N T S : _ _ _

the quick brown fox jumps ov

b k e . Q . u i o k b hoooh. j o x i'utY\ -PS_ _ _ _ _ _ _ _ _ _ _ _ _ _

p v e ^ b k e . Lo. ^ & ole

h
h u
1 « able grown men have quickly found their sexy jokes zapped

M & fl kdL\/€L Q/UicUiof ^ounoj, -bke,t

ESPRIT PROJECT 295

P l e a s e w r i t e t h e f o l l o w i n g t w o t e s t s e n t e n c e s i n l o w e r c a s e

u n c o n n e c t e d l e t t e r s .

D A T E : W R I T E R : W - U T U v^ w f ; M
I *

L 7 R h a n d e d : N T A B L E T : M U m o N i c ^ A G E : 1 2 -

C O M M E N T S :

the quick brown fox jumps over

g io 'g r l / i e

a d / e g r o w n m e n h a / e quickly

— j y o u J f l r w e . A h & v - e . g t A , i c . L l u f o u n d b k e . t r -

S l X u j o k e s z a p p e d . ___________ _______________________ __

ESPRIT PROJECT 295

l e a s e w r i t e t h e f o l l o w i n g t w o t e s t s e n t e n c e s i n l o w e r c a s e

j n c o n n e c t e d l e t t e r s .

D A T E : I S l / t t W R I T E R : A 4 . S f e p k ~ r m / F : M

L / R h a n d e d : L T A B L E T : N « / / w o * H C V A G E : 2 %

C O M M E N T S : — -

the quick brown fox jumps over

Wg. cpcX brown fox. over VW2___________

ble grown men have quickly found their sexy jokes zapped

ab\<L occm W9y\V\oMP. amcX-.u found W \r
j

ESPRIT PROJECT 295

P l e a s e w r i t e t h e f o l l o w i n g t w o t e s t s e n t e n c e s i n l o w e r c a s e

u n c o n n e c t e d l e t t e r s .

D A T E : 20~l Z I %% W R I T E R : 1^1 C o l l a r M / F : M

L / R h a n d e d : t T A B L E T : W U M - o r J i c S A G E : 2 S

C O M M E N T S : - - - - - - -

the quick brown fox jumps over the lazy dog

t i r e . Q u i c k b r o w n P o x - J u t w p s ovfcr t h e . cLoy______________

qble grown men have quickly found their sexy jokes zapped

a b l e ^ r o u A w e a K a u e ^ m c f e l i j P o u a JL - i k ^ r j f t t e g . 5;

Z a p p e d .___

4
/ * ’

*

J.

p .

*
%
i

E S P R I T P R O J E C T 2 9 5

P l e a s e w r i t e t h e f o l l o w i n g t w o t e s t s e n t e n c e s i n l o w e r c a s e

u n c o n n e c t e d l e t t e r s .

D A T E : 2 ^ \ 3 I W R I T E R : / 2 ^ 6 / a n f m / F : A a

L / R h a n d e d : £ T A B L E T : N i U M o N t c f A G E : 3 L

C O M M E N T S :

the quick brown fox jumps over the lazy dog

1p c l\ z. 4 / H i c !<■ b r occ, f -o y j u s* p ± & se f _______

~t A e I C{ y_ y d &j

V'>->

► able grown men have quickly found their sexy jokes zapped

a t ■> id —

< \ c o l o o a e s \ m i / e c Q > C (i a . e f \ A £ t r~

x £ x ^ j o k e s Of? f? e o{

ESPRIT PROJECT 295

P l e a s e w r i t e t h e f o l l o w i n g t w o t e s t s e n t e n c e s i n l o w e r c a s e

u n c o n n e c t e d l e t t e r s .

D A T E : rc j z j t i W R I T E R : I D m / F : M

L / R h a n d e d : L - T A B L E T : A G E : — 1

C O M M E N T S : — '

the quick brown fox jump

rhe, q. \ i i c k b t o u) a : o oc \ U (ft nl Sf u & 1

O ' j c ^ t K e Q g q
T

JL o
c r

)te grown men have quickly fou

a b l e a r o u m WQ/p> heme, < ^ u \ r , ^ [u

■£ n c f \ A V h 6 i r
f - j 1

ESPRIT PROJECT 295

i P l e a s e w r i t e t h e f o l l o w i n g t w o t e s t s e n t e n c e s i n l o w e r c a s e

u n c o n n e c t e d l e t t e r s .

D A T E : 2.2.111 S’ ? W R I T E R : S D<ct, e M / F : p

L / R h a n d e d : I T A B L E T : kJUMard io A G E :

C O M M E N T S : — —

the quick brown fox jumps ove

'■ h e - c jo u c _ l< b r o L o r \ P c i* -- .o ej' -IrKiL. i o z . ^

able grown men have quickly found their sexy jokes zapped

aisle- ^ r o u n me_n naoc . c ^ u i c k l j p.-,.. r>H -Phe. i r j o kes

- g - P p e . d __

