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ABSTRACT

Algorithms for the Recognition of Handwriting in

Real-Time

Philip Timothy Wright

This thesis details the work undertaken by the author from September 
1984 to September 1988 into the field of dynamic script recognition. It 
reviews the various techniques developed since 1960 and it analyses the 
m ore popular approaches to processing the raw pen motion information. It 
also details the progress made in the nature of the user interface over the 
last 28 years.
The main emphasis of the work has been the development of algorithms 
capable of recognising, in a real-time user independent environm ent, lower 
case hand-printing. In particular, the design of the character shape databases 
provides for rapid searching and character matching and the techniques of 
feature reduction provide character matches to be found from previously 
original character encodings.
The most successful algorithm, based on the method of curve encoding by
H .Freem an, form s a foundation towards the development of natural user 
text and data entry system. Extension of the character base is also possible 
with no alteration to the basic algorithm methodology. A technique of 
robust word segmentation has been designed that has enabled the design of 
a prototype cursive script recognition system. This is presently writer 
independent, running on a 68020 micro-processor. Initial results show a 
word level recognition rate of 95+ %. Development of natural editing func
tions provides a self contained text entry environment.
In the future, the algorithms will be ported to an ’electronic paper’ environ
m ent and a user training phase will be designed as a front end to the 
recogniser.
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INTRODUCTION

This thesis details the work undertaken by the author at Plessey
Research over a period of four years from September 1984 to September
1988. The work is partly funded by Plessey research, and partly by the Euro
pean Commission under the ESPRIT initiative. The title of the project is 
’The Paper Interface -Project no. 295’. The area of research addressed by 
this work being the analysis and recognition of script in real time. The thesis 
describes the work undertaken in a roughly chronological order. The major
ity of the effort concentrated on the development of algorithms, initially for 
the recognition of real time hand-printing of the lower case alphabet (a-z), 
but with the ultimate intention of being able to adapt the techniques
developed to be used to recognise the more natural cursive handwriting. It
is also the aim to expand to a larger symbol set, including upper case charac
ters, numerals and special characters (punctuation marks, mathematical 
symbols and so on).
An initial study period of three m onths was taken in gaining an in-depth 
familiarisation with the problem and the approaches taken by previous 
researchers into the subject. This was performed by reviewing as many pre
viously published papers as possible. However, throughout the subsequent 
course of this work, any new papers published were periodically reviewed to 
m onitor new developments, in particular with respect to the user interface, 
which is becoming of increasing importance in terms of gaining any degree 
of user acceptance from any resulting script recognition related products.
The familiarisation gained with the subject indicated that every approach to 
the recognition problem perform ed some degree of pre-processing on the 
raw input data. This data being a time related positional trace of the pen tip 
recorded as a person writes a piece of text. Therefore, analysis of the 
different preprocessing methods was performed in order to gain some 
degree of insight into the effects on character parameters of the different 
techniques. One particularly striking question that arose from the bulk of 
the papers that were studied was whether any of the m ethods was particu
larly suitable for adaptation to a real time environment. Subsequently, par
ticular emphasis was placed on real-time implementation in the design of the 
two recognition algorithms described in Chapters 4 and 5.
One particularly important aspect of the recognition process is the extraction 
and subsequent comparison of the character features against some pre
defined set of rules. These rules are usually constructed by the detailed 
analysis of character shape and formation style as produced by a num ber of 
sampled writers. Both the algorithms developed have a database for feature 
comparison. The construction and accessing of these databases is of particu
lar importance to the overall speed of the whole system. Chapter 6 describes 
the database construction and operation.
Once the character strokes have been recognised, it is necessary to process 
this sequence of characters into some recognisable sentence of words as 
written by the user. Both word and sentence construction, together with



some preliminary text formatting has been undertaken, although the 
development environment was not particularly helpful in this respect, with 
the disjoint writing and reading devices.
A detailed breakdown of the performance of the complete lower case hand 
printed script recognition system is given in Chapter 8. Each separate stage 
of the process is broken down in order to assess any particular strengths or 
weaknesses in the system. The ultimate goal of the work lies beyond the 
scope of the work described in this thesis. Ultimately we want to develop a 
system which is able to recognise a writers natural handwriting. Chapter 9 
describes some of the advances we have made in investigating the feasibility 
of cursive script recognition. Initial results, for a system trained to the style 
of a specific user have shown a good deal of promise, but we are still far 
removed from a system which is able to recognise handwriting produced by 
a num ber of writers.
In the concluding chapter, future work is discussed, together with observa
tions on this initial research stage.
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1. STATE OF THE ART REVIEW

1.1. Introduction

A study of papers written on character recognition has led to the compi
lation of 95 articles and papers covering the period 1957 to the 1988. Early 
work tended to concentrate on a very simple subset, namely the numerals 
0-9. The techniques developed and character types analysed were very 
much dependent on the available technology. As a result o f the limitations 
in the acquisition of the written information, the user interface was very 
basic in many instances. For example, one of the m ore reliable techniques 
of character data input available during early investigation was a CRT with a 
light pen attached. The character shape was encoded by determination of the 
pen position on the surface of the CRT at set intervals in time. However, 
due to the scanning frequency and the accuracy in absolute determination of 
the pen position on the screen, each character had to be written quite slowly 
and the character was required to fill the screen. Within the constraints of 
input of the character data by the user and limitation of the data set, initial 
research showed promising results, Caskey [28], Teitelman [29].
The advent of the graphics tablet as a data capture device proved to be the 
platform into researching recognition of script as a feasible man-machine 
interface. The graphics tablet allows the user to construct sentences upon a 
piece o f paper as they would normally with a pad and pen or pencil. 
Research rapidly evolved into the analysis o f the complete range of written 
characters, letters a-z and A-Z, numerals 0-9, and the special characters 

and so on.
A num ber of products appeared on the m arket which perform script recog
nition but these have so far m et with limited end-user interest. The main 
area of interest has been found to be in form filling applications. This again 
is a basic limitation on flexibility of user input, in that a person m ust write 
each character within a predefined box, forming each character in one of a 
num ber of acceptable styles, the characters being limited to upper case, 
numerals and special characters. However, the recognition rate is usually 
very good (99% or more) once the user has adapted their writing style in 
order to eliminate any possible character ambiguities.
The natural progression is the recognition of cursive handwriting. If the 
recognition of script is to be the basis o f a natural user interface, it must 
address itself to the problem of cursive script recognition. Increasingly over 
the last 15 years, work has m oved towards cursive script recognition. How
ever, success has so far been limited and has introduced new areas of 
research into techniques beyond the geometric features requires the use of 
dictionary look-up and n-gram analysis in order to identify possible letter 
sequences, and so supplement the basic recognition algorithm by processing 
and improving the basic recognised text.



The paper by Tappert [87] gives a good indication of the latest state-of-the- 
art situation regarding.on-line handwriting recognition, referencing no less 
than 257 papers. In particular, it shows that renewed effort is being put into 
the problem of recognising cursive handwriting, and that much effort is now 
being directed towards the man-machine interface aspect of the problem. In 
particular this is concentrating on the development of ’electronic paper’, a 
combined tablet and display device. Two products are already available that 
feature electronic paper, from Linus in the USA, and from Panasonic
(Japan), the Panaword RL-450, both products limited to unconnected char
acter analysis.

1.2. Spatial Analysis Methods

This technique, in principle, is the simplest of all the those surveyed. 
Much of the early work into character recognition used some form of spatial 
analysis. The technique is inherently limited to the analysis of individually 
written characters. A character is written over a platen which is divided into 
a num ber of regions.

One o f the earliest m ethods o f dynamic character recognition was devised 
by D im ond of Bell Labs [27] in 1957. He devised a data capture device 
called a Stylator. The user m ust write the character around two reference 
points. A series of wires are connected to these reference points, projecting 
radially outwards. As the character is being formed the pen passes over the 
wires to produce a path sequence around the two reference points. This 
technique seems to suit some characters m ore than others in the ability (or 
not) o f the character to be sensibly formed around the reference points. The 
example below shows the character ’2’ being formed:-
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Figure 1.1 - Numeral ’2 ’ Drawn on the Stylator

Thus, the encoding for the character is:-

*2* = A B G E D

A nother very early example of the approach was researched by Richard 
Brown in 1964 [2]. This was one of the first methods that utilised time 
information during data capture. A metal platen, comprising seven separate 
plates was written onto, as shown below:-
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Figure 1.2 - Rectangular Pattern Matching Grid lj

As the pen passes over a metal plate, the produced signal is uniquely 
encoded in order that the host can identify which plates had been passed 
over and in which time sequence. Therefore, there is no character shape 
information. Pen-up status is also given, which is an important feature of 
the recognition algorithm. A user is required to train the system beforehand 
in order that it can store the appropriate codes for subsequent comparison.
An example of such a character encoding is:-

'*4

*  °

------------------------------^ 3

^  1... 'W  I

*0

I
Figure 1.3 - Character ’E ’ written over the platen ?

'If3!I



The character ’E ’ produces the following grid encoding,

’E ’ = 541230 5670 40 (0 = Pen-up)

An error rate of between 5 and 10% was obtained on a character set which 
included the upper and lower case alphabet, Arabic numerals, punctuation 
symbols, and some mathematical symbols. The sample base for the charac
ter set was very small (400 characters), suggesting some constraint on writ
ing style. However, this idea was picked up by future researchers, adopting 
the technique for use on data tablets, where the user is not so constrained 
by character style and size. The only major difference being the division of 
the grid into 9 equal rectangles, the reference grid being constructed around 
the character after it has been written.
Teitelman [29] extended the idea of the 9 rectangle grid by defining four 
overlapping regions within the character grid. This technique has the advan
tage that it is more flexible in the encoding of slightly different styles of 
writing a particular character ie. it will not require two encodings for two 
slightly different styles. The main problem it can overcome is character 
slant. It was also shown to be quite easy to extend the region areas in order 
to further distinguish between characters which display further ambiguities.

Figure 1.4 - Generation of a New Property Search

In this instance a new branch on the decision tree has been added in order 
to be able to distinguish the num eral *2’ from the character ’Z’
A nother type of spatial.grid was considered by Tou and Gonzalez [3]. In 
this case an octagonal grid is used.
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Figure 1.5 - The Octagonal Grid Representation

The character shape is input in terms of the pen position on a 60x60 matrix 
as it is being written. The centre of gravity of the character is determ ined 
and the origin of the grid positioned onto it. This had the advantage that the 
grid size did not need to be recalculated each time. Another benefit of this 
m ethod was that the user was not constrained to writing a character o f a cer
tain size. The technique of encoding, however is identical to the schema 
adopted by Brown. If we consider the character *e* mapped onto the octago
nal grid :-

I

Figure 1.6 - Character ’e ’ on the Octagonal Grid



Producing the encoding :-

Character V  = 8123218765

1.2.1. Observations

Spatial analysis is extremely easy to implement, giving the capability of 
producing a low cost on-line recogniser. Such method was im plem ented by 
Simmons [16] as a graphics tool for a microcomputer or PC. 90% recogni
tion is achieved on a character set consisting of the upper case alphabet. 
Executable code is only 2K bytes. It analyses the regions the character curve 
enters within the rectangular grid (0-8) and matches the region code pro
duced with a reference table of previously trained results.
Although this technique would be quite suitable for a very simple system as 
described above it does not lend itself easily to an unconstrained multiuser 
environm ent. Major shortcomings are:-
1. By its very nature it is constrained to unconnected letters or numerals.
2. The training of the look up tables limit themselves to a single users 

character construction. Different user styles in character shape and the 
m ethod of creation can produce an almost limitless num ber of varia
tions on the region path which would require a disproportionately large 
look up table.

3. Considering only a single user system, unless the user constrains their 
style, it is quite feasible that each time a certain character is written it 
will produce a slightly different region code due to slightly different 
character shapes. Hence, even a user dependent system needs the sup
port of consistency by the user.

1.3. Topological Feature Based Methods

Examination of the topological features of hand-written characters and 
num erals is a very popular approach to dynamic recognition. The methods 
adopted vary mainly in the complexity of features that they analyse. Very 
basic techniques include the analysis of the following features:-
• The detection of any straight line segments along the curve and their 

orientation, whether it be horizontal, diagonal or vertical.
• The detection of curvatures and the analysis of their direction o f form a

tion, either clockwise or anti-clockwise.
• The identification o f characters comprising more than one single stroke.
• The identification of cross strokes and dots and identification to the 

stroke to which they are related.
This basic feature set in itself will not differentiate between all the charac
ters in the allowable set (numerals, upper case characters or whatever).



These features do however allow the characters to be classified as belonging 
to a character subset. Within these subsets it is possible to investigate for 
additional features. These features are usually more complicated to investi
gate than the initial feature set as they are more specific characteristics. 
These tend to investigate for such features as:-
• Detection of a cusp ( a point where the curve suddenly changes direc

tion causing a tooth-like shape in the curve ).
• Detection of loops.
• Detection of crossings in a character curve.
• Detection of the curve m eeting itself tangentially further along.
• A m ore detailed analysis of any curves in the character leading to a 

wider classification of the curve type.
The technique has been applied to both separate characters and also to 
sequences of characters at word level.

1.3.1. Isolated Character Analysis

The technique described by Tou and Gonzalez [3] is a technique of spa
tial analysis which incorporates the beginnings of some form of feature 
extraction. An analysis of the regions entered by the character mapped onto 
the horizontal grid (Figure 1.6) enables it to be approximated by a series of 
horizontal and vertical strokes. W hether or not a particular stroke is curved 
is dependent on the m anner in which the curve enters and leaves a sector.
Berthod and Maroy [4] describe an on-line character recognition system 
consisting of a base set of four topological features:-
a) a straight line element (T)
b) curves in the clockwise and anticlockwise directions (P), (M)
c) pen-lifts (L)
d) cusps (R)

The data points from the tablet are initially pre-processed to produce a series 
of vectors. These vectors are encoded into the feature set.



Figure 1.7 - Feature Encoding of character ’a’

If any ambiguities arise due to different characters having similar features, 
then some additional geometric relationships need to be added in order to 
make a positive decision.
A very similar technique is detailed by Guberman and Rozentsveig [25]. 
Again, the description of the letters is broken down into a num ber of stan
dard elements. Two main types o f elements are defined, elem ents with no 
intersection (arcs and straight line elements) and elements having self inter
section (loops and cusps).
Tang, Tzeng and Hsu [47] describe a method which simply detects maximas 
and minimas in the x and y directions and use this information to recognise 
the num erals 0-9. This has been used as a basis for the X-Y algorithm 
detailed in chapter 4.

1.3.2. Cursive Word Analysis

This is potentially more difficult, whether attempting to recognise the 
word as a whole or attempting to segment into letters and processing the 
letters individually. One approach by Bozinovic and Srihari [48] segments 
the word by detection o f  the local minimas along its lower contour. Each 
segment is analysed in order to determ ine which zone(s) it resides within. 
Within each separate segment a num ber of features are searched for:-
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• loops, classified by the region in which they occur (upper, mid or 
lower).

• large connected strokes in the upper and lower zones.
• num ber of peaks in the mid-region (one, two or three).
• curves and their direction in the mid-region.
• dots and dashes in the upper and mid-regions.
From this information an initial ’guess’ is taken at the identity of each char
acter in the word. However, a lexical look-up algorithm is required in order 
to select the m ost probable word from  a dictionary base.
Ehrich and Koehler [40] perform a very similar analysis to the one previ
ously described, but they extract the features with respect to the whole 
word. Again, significant weighting is placed on features with respect to the 
zone it is found in. The mid-zone is found to contain the m ost complicated 
stroke sequences.
Both the above techniques are heavily writer dependent.
Berthod and Ahyan [7] extend their theory on unconnected letters [4] to 
word level analysis. Their research showed that the shape of a character can 
change quite significantly from an isolated form to a cursive form. The fac
tors effecting the character shape are primarily dependent on the characters 
immediately preceding and following. The set of primitives for the isolated 
character analysis is extended with the addition of both interection points 
and maximas and minimas in the vertical (or y) plane.
From these primitives a set of features is produced which is stated to cope 
with every type of curve path to be encountered in cursive script.

1.3.3. Observations

It is clear that in order for a topological feature based technique to work 
reliably and efficiently that:-
• all possible variants o f a given letter in the letter set can be described 

by the same set of elements or, at most, by a small subgroup of such 
sets.

• an algorithm exists that detects these elements consistently.
The technique of topological feature extraction is the most popular basis for 
character recognition of all the papers surveyed. Some points to note on this 
method:-
1. None of the papers surveyed have given any indication to their suitabil

ity or not to operate in a real-time environment. A technique might 
recognise any character written by any writer, but if the am ount of pro
cessing time and m em ory required are very high, the technology may 
not exist to realise the work in a viable product, or if it is possible, the 
cost may be so restrictive so as to make the product unmarketable.



2. In most instances, the basic algorithm will not uniquely define a specific 
character in the character set. A further level of processing is required 
to deal with ambiguities and in most instances this level of processing is 
more complex than the initial algorithm.

3. The m ethod can be applied to both separate characters and cursive 
words with little or no change to the basic feature set.

4. In many instances the technique of feature extraction can rely heavily 
on the character shape (for example, detecting loops, curves and cross
ing points). This is usually very much dependent on the writer (one 
persons straight line is another persons curve). The majority of tech
niques are therefore heavily user dependent.

5. The cursive word analysis techniques tend to analyse the whole word 
(no definite character segmentation) and, as such, are heavily depen
dent on dictionary look-up. This can constrain the word set to be recog
nised.

1.4. Elastic Matching and Template Methods

The technique of elastic matching has been applied successfully in the 
areas of speech recognition, shape matching and signature verification. It is a 
technique which allows for the accurate comparison of two strings in which 
not only the contents, but also the order of the elements may vary. It gives 
a fast and reliable quantitative estimation of the degree of similarity between 
the two strings.
One o f the earliest papers to consider elastic matching was written by Tap- 
pert [10]. The character ’features’ are obtained directly from the raw charac
ter point information:-



Figure 1.8 - Character Comparison

The points along the character curve are obtained at equal time intervals. 
The parameters selected being:-
1. a measure of the tangential angle to the curve along all the points mak

ing up that curve.
2. a m easure of the corresponding vertical distances of these points from 

the baseline of the curve.
These two parameters were chosen because of their relative invariance with 
respect to character size and translation. From these parameters it is possible 
to construct a vector string where:-

S = v0, v l t v2, v 9 K*

where V{ -  (0, , yt)

and N  = no. o f  points, Time ,T  = At * N

Initially, a potential user m ust create their own set of prototype parameter 
sets. The param eter set for an unknown character is compared against the 
set of prototypes, and a match is said to be found with the prototype which, 
on comparison, yields the smallest overall distance of differences. This, 
however, makes the technique heavily user dependent.
Lu and Brodersen [45] designed and built a dedicated Dynamic Time Warp
ing processor that was able to manage a template set of 500 reference sym
bols. They did not find it possible to handle the very high processing
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overhead to run the algorithm in real time with no performance degradation 
without the DTW processor. In order to reduce template matching, a pre
analysis was performed to eliminate those templates which were definitely 
not similar to the unknown. This left only around 10 possible templates to 
match with. Any significantly larger num ber of templates would have 
effected the real time performance.
Elastic matching can be performed on any basic feature set, be it shapes, 
lengths, directions, angles or any feasible set of parameters. Szanser [13] 
makes a few points about the application of elastic matching to character 
recognition. He considered ways of reducing the template matching by mak
ing various assumptions, mainly:-
1. Ignoring upstrokes in characters, since it is the down strokes which con

tain all the useful information.
2. Not to assume that all the features in a character breakdown are 

equiprobable.
3. Grouping sets of features to speed up the matching process.
Burr [35] describes a technique similar to Tapperts. He produced a stored 
set of 26 lower case reference vector arrays. An unknown vector array is 
compared to each of the reference arrays in turn, and a measure of similar
ity of shape is determ ined by a m ethod of limited time-warp constraint. Fig
ure 1.9 shows an example of matching between characters ’a* and ’d \
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Figure 1.9 - Non-linear Stretching between curves ’a ' a n d ’d ’

An initial compression technique is used to reduce the num ber of samples 
in the unknown character to a value similar to those in the reference set. 
This reduces the computing time considerably. A training phase is required 
for each user, as with the m ethod described by Tappert.

1.4.1. Observations

Elastic template matching is not a technique which has been originally 
designed with script recognition in mind. Its original application has been in 
the field of speech recognition. Therefore, its suitability for script recogni
tion seems, as yet, still to be proved. Two serious drawbacks of this tech
nique appear to be:-
1. Its limitation to being a trainable user dependent system.
2. Depending on the num ber of features in each feature set and the 

num ber o f feature sets and the size of the character set, elastic m atch
ing can very easily become too processor dependent so as not to be 
feasible in real-time.
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On the plus side, for a user dependent system, elastic matching provides a 
very reliable technique. It also requires no extra processing once having 
passed through the template matching process, ie. the matching process pro
duces a definite result.

1.5. Vectoral Chain Coding Techniques

Chain coding is a means of approximating a curve by a series of straight 
lines. The straight lines are interconnected and follow the path of the curve 
so as to be a continuous approximation. The essence of the technique is that 
the length and direction o f each line is restricted to one of a num ber of 
preset vectors, each vector being identified by a num ber, as in Figure 1.10 
(a). Therefore, a character curve quantised into a chain of vectors may be 
expressed simply by a string of num bers as in Figure 1.10 (b).



(a) - Typical vector numbering scheme

o
4 5 6 0 1 2 6 6 6 6 1

(b) - Character curve quantisation

Figure 1.10 - Chain coding

Chain coding was introduced as early as 1960 by Herbert Freeman [81] and 
as a result this type of coding is often referred to as Freeman chain coding.
A large num ber of variations on the eight vector m ethod have been used in 
the area of curve analysis and character recognition. Ikeda et al [22] used a 
vector set quantised into 24 alternatives for the recognition o f Japanese 
characters. Powers [34] used an eight vector model as a basis for character 
recognition, however the octants were mapped such that the vectors
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representing them are offset by a factor of 22.5° from the m ost common 
reference vector set shown in Figure 1.10(a). This, however, has the disad
vantage that pen strokes in the important colinear and orthogonal directions 
(representing upstrokes, downstrokes and cross-strokes) are not explicitly 
represented, but can arbitrarily fall into directions 0 or 7 for right cross
strokes, 3 or 4 for left cross-strokes, 1 or 2 for upstrokes, and 5 or 6 for the 
downstrokes.
Berthod and Maroy [4,5] realised the importance of these colinear and 
orthogonal strokes and decided to segment the circle into 8 octants of 
unequal size. Octants in which upstrokes, downstrokes and cross-strokes 
should occur are made narrow in order that these strokes may be more 
easily identified.

2 1

3

4

65

( i )  ( i i )

Figure 1.11 - Alternative Vector Direction Sequences

Once a curve has been encoded into the Freeman vector string, it is possible 
to perform a num ber of manipulations on it:-
• expansion
• contraction
• rotation
• path reversal (m irror imaging)
Powers [34] used Freeman encoding to vectorise character curves. However, 
he found that the chain code generated by a single user for a particular char
acter can vary quite markedly. In order to overcome this problem, the chain 
code is processed into a num ber of arc and straight line sequences which is 
used as input to the recognition process.



Farag [11] analyses the vector string as a Markov chain. A vector set 
comprising eight vectors represents a Markov chain with eight states. If we 
consider the character ’a ’ shown below, a vector has a conditional depen
dence upon the preceding vector. For instance, a vector 6 is m ore likely to 
be followed by another 6, a 7, or a 5 than it is by a 4, 3, 2, 1, or 0. This is 
because there are more straight regions and gradual curves in a character 
than there are sharp angles or points of inflection. Each of the eight states of 
the Markov chain has a conditional probability, />(y,7y,-i), which is the pro
bability of a particular chain code occurring, given the one before. The 
character ’a ’ will have probability equal to the product of its com ponent vec
tor probabilities, viz:-

Proba -  P 4 . P 54 . P &  . P 16 . P(yj . P S0 . P s5 . P 25 . P 62  • P 66 ■ ? 7 6

FRa = 4.5.6.7.0.5.5.2.6.6.7 

Figure 1.12 - Freeman Encoding of Character ’a’

Observations

In considering the use of chain coding as a means of representing 
natural handwritten input internally there are a num ber of argum ents that 
weigh heavily in its favour:-
1. the grid size can be small so that the detailed deformations in a hand- 

drawn stroke may be captured.



2. there is a well defined set of elem entary manipulations which are easy 
and fast to compute.

3. it can be very compact in terms of storage requirements, and its m ean
ing easy to interpret.

4. there are a variety of simple and powerful techniques for analysing 
chain coded curves.

There is no other scheme for representing the Cartesian grid data from a 
graphics tablet. For script recognition, chain coding has been shown to be 
suitable for representing handwriting, and can also provide a certain amount 
of preprocessing.



2. TRANSDUCER REQUIREMENTS

2.1. Introduction

The role and nature of the data input device is very im portant to the 
realisation of a reliable and robust real-time data capture system for the 
input of dynamic hand-written script. This chapter analyses the various 
requirem ents for a suitable data capture system and pays particular attention 
to:-
(i) the writing surface.
(ii) the pen stylus
These aspects are particularly im portant for the capture o f a users natural 
writing style. The idealised situation is where the user can treat the data 
input mechanism as they would do if they were writing with a pen or pencil 
onto a piece of paper or a pad of paper on some flat surface such as a table 
or desk. The pen stylus is particularly important, as it determ ines how 
easily the user can enter the script. The more familiar the user is with the 
pen stylus, the m ore representative of the users writing style will be the pro
duced output. The ideal case will be to allow the writer to use their own per
sonal writing implement. Also, with respect to a natural environm ent, it 
would be advantageous to allow the user to orient the tablet writing surface 
to suit their particular writing posture. Such a prerequisite would mean that 
the tablet be both light- weight and reasonably small, and that its orientation 
is not limited by such things as cables or peripheral hardware.
Apart from the m ore specific user operation parameters it should be made 
clear that the complete unit m ust conform to the normal operating 
specifications for such electronic devices. The major considerations are listed 
below:-
(i) extremes in temperatures (typical figures 40°C operating, 55°C stored).
(ii) humidity (90% non-condensing).
(iii) shock
(iv) vibration
(v) altitude
(vi) electrostatic discharge (such as the electrical discharges accumulated on 

people).
(vii) electromagnetic susceptibility (reductions in performance due to radia

tion from nearby equipm ent).

2.2. Study of Current Input Device Technology



Before producing a more detailed specification of the input device it was 
decided to undertake a study of devices currently available on the market. 
The following types of device were considered to warrant investigation
(i) tablet digitiser pads.
(ii) touch sensitive screens and overlays.
(iii) light pens.
(iv) analogue devices (eg. m ouse, joystick).

2.2.1. Tablet Digitisers

The following technologies have been used for tablet operation
1. electromagnetic/magnetorestrictive
2. electrostatic
3. pressure pad
4. quantised magnetic wave
5. sonic
6. electronic paper

2.2.1.1. Electromagnetic/ Magnetorestrictive

This is the m ost widely adopted technology on the market at present. 
The surface of the tablet is not dependent on the technique and so can be 
made from any hard wearing, durable non-metallic material.
Operation is by means of magnetic coupling between the pen stylus and the 
active surface area of the tablet. The pen contains a coil powered by an a.c. 
(120 KHz) source which can be regarded as the primary of an air cored 
transform er. The secondary being the conductors in the tablet surface. 
(These are usually wires or thin metal strips arranged in a grid underneath 
the tablet surface). The stylus induces a current in the conductors which 
produces a signal voltage across the surface output lines which is propor
tional to the distance between the conductors at the edge of the grid and the 
pen. The outputs at the conductors is scanned by the output control circuits 
giving the pen location. Refer to Figure 2.1.
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Figure 2.1 - Electromagnetic Tablet

A magnetorestrictive device reduces positional errors caused by conductive 
drawing materials, m oisture etc.
Tablet resolution ranges from 100 to 1000 points per inch. However, tablet 
resolution does not have much meaning if its effect is negated by a poor 
sampling rate, Tappert & Kim [44]. Similarly, the benefit o f such high reso
lutions m ust be tem pered against the degree of accuracy that can be 
achieved when using a pen with a tip thickness of 1mm or so.
The technology can only detect the interference between the pen coil and 
the m etal grid, and therefore not specifically the tablet surface. Therefore a 
micro-switch is usually built into the stylus tip in order to indicate that the 
pen is being pressed onto the tablet surface.

2.2.1.2. Electrostatic

The tablet surface is a conductive plate and the stylus picks up the vol
tage from the plate. The distance from a fixed reference can be determined 
from the voltage picked up knowing the voltage gradient. The plate must 
have a uniform voltage gradient and the stylus m ust be in contact with the 
tablet surface, which precludes the tracing operation. However, such devices 
are m ore expensive than an electromagnetic device of similar performance.



Tablet resolutions similar to electromagnetic devices are currently available.

2.2.1.3. Pressure Pad

Typically, the pad consists o f two electrodes fabricated by flexible print 
wiring on a base plastic film separated by a conductive rubber sheet. When 
the pad is pressed onto, the rubber sheet becomes conductive, allowing a 
current to flow from one set of conductors (constant source current) to the 
other, this being picked up by operational amplifiers which determ ine the 
x-y co-ordinates.
Tablet resolution is not as good as for the previous two types of tablet, m ax
imum figures up to 300 points per inch.
One advantage of this technology is that m ost types of writing implement 
may be used with this type of device. The major problem with this type of 
device is that the nature of the surface is not particularly durable and can 
easily break down with constant usage. These devices are mostly used for a 
pointing operation (eg. CAD design) and as such cannot differentiate 
between the hand pressure and pen pressure, both produced as a writer rests 
their hand on the tablet surface when writing.

2.2.1.4. Quantised Magnetic Wave

A relatively new principle. Four magnetic waves are set up in a coarse 
array o f orthogonal conductors. There m utual interference defines the pre
cise location of the stylus.
Resolution is not yet particularly good, up to 200 points per inch.

2.2.1.5. Sonic

No tablet as such is needed in this case. Two orthogonal m etal strips 
are placed around the writing area. Along each of these are m ounted micro
phones. These pick up the sound or ’sparks’ generated when the stylus 
comes into contact with the active surface enclosed by the two strips. The 
delay between emission and reception of the sound can be computed to a 
distance measure.
So far this technique cannot produce a reasonable resolution, up to 100 
points per inch. It is also particularly sensitive to changes in the ambient 
room tem perature.
A similar approach uses sonar, where high frequency pulses are reflected by 
the stylus. Again, low resolution devices only are available.



2.2.2. Touch screens and Overlays

There are two types of overlay device which can be m ounted on a 
screen such as a CRT or plasma panel. These are:-
(i) light em itter - receiver
(ii) switch matrix devices

2.2.2.1. Light Em itting Devices

These consist of a line of light emitters (infra-red LE D ’s), one on each 
o f the x-y planes, with photo detectors opposite them . W hen a stylus or 
finger cuts the light path at perpendicular points, the position can be deter
mined. Resolution is very low (up to 0.25 inch at best). The cost of LE D ’s 
and detectors also make this device relatively expensive.

2.2.2.2. Switch M atrix  Devices

These employ two main techniques:-
1. two crossed conductive grids each containing thin film parallel conduc

tors form the switching matrix. The x-axis is located on the convex sur
face of a CRT and the y-axis is located on the concave side of a flexible 
polyester membrane. The surfaces are separated by an air gap. Resolu
tions are up to 256x256 points for a 14" screen.

2. a thin clear conductive film on a glass shield is placed over the surface 
of the display. The shield is covered by a mylar layer with a resistive 
coating. When the upper layer is touched (with a pen or finger) the two 
layers make contact over a micro-inch separation and its position is 
determ ined by the voltage drop across the resistive coatings with the x- 
y co-ordinates appearing as analogue voltages which are interpreted by 
the systems decoder which converts them into digital signals. Refer to 
Figure 2.2.
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Figure 2.2 - Touch Sensitive Display

The pressure required in order to make contact between the two layers is 
dependent on the space between the separator points. The fewer the num ber 
o f points, the less the force required to make contact. Therefore, for use 
with a pen or pencil, adequate separator points would be required to ensure 
that hand pressure does not cause contact to be made, while still ensuring a 
clear screen.
Resolutions up to 400 points per inch can be achieved, dependent on the 
d /a  converter.

2.2.3. Light Pens

This m ethod of data capture was used in some early script recognition 
techniques. There are two basic types of light pen, using either a photodiode 
or photomultiplier. The photodiode has a poor response time and, as such 
is, suitable for slow raster scan displays only. The photomultiplier has a 
response time typically 0.5 microseconds. Point positioning is relatively sim
ple, but pen tracking is fairly complex and tracking of rapid pen m ovem ent 
is not possible.
Therefore a good resolution can be obtained from a high resolution screen, 
up to 500-1000 points per inch, but a low sampling rate makes them unsuit
able for tracking handwriting m ovement.

2.2.4. Analogue Devices



These devices include cursor buttons, joysticks and mouse tracker balls, 
employing switch, potentiom eter an optical systems.
They can be used as a faster and more manoeuvrable alternative keyboard 
cursor control, but are not suitable for handwritten input.

2.2.5. Electronic Paper

At this stage mention must be made of ’electronic paper’. This concept 
is the integration of digitiser and display technology. In effect, it is the per
fect medium for the script recognition application. It provides a portable I/O  
unit that eliminates the need for a disjoint display. Hence, the user can con
centrate his thoughts in the one area instead of spending effort switching 
between the writing and reading area.
Since the beginning of 1988 ’electronic paper’ products have begun . to 
appear on the market place, mainly from Japan. So far the size of the active 
area on such devices has been A5. Two of the most promising products in 
terms o f parameter requirem ents (described in more detail later on in the 
chapter) are:-
(i) The Photron FIOS-6440 [89]. It has an electromagnetic digitiser with an 

active area of 217mm x 140mm. A resolution of 0.1 mm (250 points 
per inch) and a digitising rate of up to 150 points per second. The 
display is LCD with a pixel size of 0.3mm x 0.3mm. Therefore the 
script displayed on the screen cannot faithfully reproduce the samples 
from the digitiser.

(ii) The WH-515 Sensor/LCD unit [90]. This has a cordless pen. The active 
area and resolution are the same as for the Photron device. Pixel size is 
similar at 0.33mm x 0.33mm. This product can also be purchased with 
application software, including a line-drawing mode which permits the 
drawing of lines, boxes and circles. Line thickness can be selected and 
lines and shapes can also be erased.

2.3. Survey Outcome

As a result of the initial survey two types o f device were considered for 
further evaluation (at this early stage no ’electronic paper’ product was 
available). A high resolution electromagnetic tablet, the Numonics 2205, 
costing $900 and a touchscreen device, the Elographics touchpad, costing 
around $1600. The tablet has a resolution of 1000 points per inch and the 
touchpad a resolution of 400 points per inch.



2.4. Specifications

The requirem ents for the tablet and stylus can be broken down into 
two main categories:-
(a) the quantifiable factors detailing the technical specifications of the tablet 

and stylus.
(b) the ergonomic requirem ent relating to the ease of usage.

2.4.1. Technical Specifications

The technical specifications are broken down as follows:-

2.4.1.1. Sampling Rate

The sampling rate is the rate at which the pen position can be deter
m ined by the tablet and that position transm itted to the host. The num ber 
of times this is done per second is known as the sampling rate. The vast 
majority of tablets available on the market today are not specifically oriented 
towards the accurate capture of dynamic handwritten input. CAD/CAM  
applications, the major user of graphics tablets, do not require large sam
pling rates, as they maily use the tablet as a pointing device. Therefore, 
many tablets have a simple serial RS232 ASCII link, maximum transfer rate 
9600 or 19200 baud. The limiting factor in the sampling rate is now the 
num ber of bytes transmitted per x-y co-ordinate pair. A typical co-ordinate 
pair form at might be:-

< STAT> < SP> < XXXXX> < SP> < YYYYY> < CR> < LF>

For our chosen tablet, the Numonics 2200, the precise serial data form at per 
point is fifteen bytes of data, eleven bits long (1 start bit, 8 data bits and 2 
stop bits) is 165 bits per x-y pair. Therefore, over a 19200 bps link, a m ax
imum o f 116 samples per second can only be obtained. A greater point 
status transmission rate can be obtained by sending the serial data in packed 
binary format, which compresses the num ber of bytes required to around 
one third of that required for simple ASCII. Another option is to transmit 
the data over an 8-bit parallel Centronics link.
In the final instance, the data format is not important as long as:-
(i) the link speed is not so great that the processor is required to spend too 

great a proportion of its time reading its input buffer and not having 
enough time left to process said input.

(ii) it is of such a format that it can easily be decoded to give the pen posi
tional information, again, without substantial processor loading.



The paper ’A Sketchphone System’ [82], has analysed the handwriting 
speeds of Japanese writers, deducing that they are dependent on character 
size, character types and also the type of stylus used. This could be likened 
to writing sentences in upper case English, since each character is usually 
made up of a num ber of separate strokes and each character is separated 
from its neighbours. The average writing speed determ ined was between 
100-200 m m /second with an instantaneous speed potential of greater than 
1000 m m / second.
In order to determine what was an adequate sampling rate, it was necessary 
to identify a ’worst case’ writer. This was found to be someone who, for a 
given sampling rate, produces the smallest num ber of x-y co-ordinate pairs 
for a specified test sentence. This is found to be someone who writes both 
very quickly and writes very small letters. A study of pen writing speeds 
analysed from a small set of 20 writers, writing two sentences in both con
nected and non-connected script indicated an average writing speed o f 50-75 
m m /second, and an instantaneous speed potential of up to 500 m m /second. 
The average time taken to write a character was 0.42 seconds, while for very 
slow writers this figure was observed in excess of one second. Of course, 
these figures are very much dependent on the type of character or stroke 
being written. Very simple strokes or characters (eg. l,i,j,c) will not take as 
long to form as the more complicated characters (eg. m ,g,k,w ). By recon
structing the character shapes of a num ber of such simple and complicated 
characters, sampled at differing line rates it was possible to determ ine a sam
pling rate below which important character information might be lost.
Figure 2.3 below shows how the shape of the character ’k ’ is affected by the 
sampling rate.
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Figure 2.3 - Effect of sampling rate on character shape

Subsequently, for our 20 writer sample, a data rate of 80 co-ordinate pairs 
per second was determined as a figure below which it might be possible to 
seriously affect the shape of some characters.

2.4.1.2. Resolution and Accuracy

Resolution is a measure of the minimum distance separation on the 
tablet which will register as two separate points. Accuracy takes into account 
repeatability, i.e. the difference in successive readings obtained when the 
pen is placed down on the same point on the tablet surface. This m easure is 
usually a lower value than the measure of resolution.
In this particular application the accuracy of the tablet is far less important 
than the resolution. The resolution of the tablet must be such that it can 
faithfully reproduce the character shapes for writers who form particularly 
small letters. We preclude all script so small that its identity cannot be deter
mined by the human eye. Therefore a lower limit for script size is that hav
ing a mid-zone width of no less than 1mm. Refer to Figure 2.4 :-
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Figure 2.4 - M inimum Character Sizes

A resolution of 20 divisions/m m  (500 divisions/inch) gives an adequate 
clarification o f the shape of m id-bound characters, m ost im portant being the 
arcs and loops in this region, however the Elographics tablet with a resolu
tion of 10 divisions/m m  does begin to show some shape deterioration.

2.4.2. Tablet Requirement Considerations

The are certain features of the data input mechanism which m ust be 
carefully considered in order to allow a writer to enter their handwriting data 
into the com puter as naturally as possible. The ultimate aim is ’electronic 
paper’ and technology is developing rapidly so that in the next few years an 
integrated screen and tablet can em ulate the process of the writer working 
on a sheet o f paper. A t present the set up of separate tablet and display is 
quite disconcerting for an untrained user and annoying for a familiar user. 
Recently, a great deal o f research has been directed towards the user inter
face and one aspect of this is the realisation of ’electronic paper*. Tappert et 
al [83] suggest how powerful a handwriting system could be when the writ
ing is directly above the display. They have developed a prototype ’elec
tronic paper’ system but have exposed problems due to parallax between the 
tablet surface and the display surface. Also, because they have an integral 
stylus, the stylus shape, its tip characteristics and the pen-down sensing 
mechanism have all caused problems similar to those experienced in 
evaluating electromagnetic tablets.



Until a suitable ’electronic paper’ system can be proven, a number of guide
lines are suggested in order to facilitate ease of use at the human interface. 
These have been noted from personal tablet usage and from feedback 
obtained from various people asked to write test sentences onto the tablet.

2.4.2.1. Tablet Surface Material

The m ost important features of the tablet is that it be hardwearing and 
durable. Most of the pressure type tablets on the market at present have a 
very limited lifetime and the components directly below the writing surface 
do tend to be very susceptible to breakdown, even after a small am ount of 
usage. However, they do have an advantage over the electromagnetic type 
of tablets in that the surface properties are very similar to those of a pad of 
paper, whereas the electromagnetic tablets have a hard, unreceptive surface 
(particularly for writing) and in some instances they have a coarse surface, 
making writing very difficult, since this tends to cause the writer to produce 
a very angular and unnatural style of writing and these angularities will 
cause the recognition algorithms great difficulties.

2.4.2.2. Stylus Considerations

A pressure type tablet has the benefit of allowing the user to write into 
the data capture system using whatever type of writing device they prefer to 
use. This ensures that the writing being captured is the users normal style. 
Tablets which have an integral stylus are not normally suitable for capturing 
handwriting because the pens are bulky and awkward to use. They are also 
limiting by their nature of attachment to the tablet. The reason for this is 
that, to date, tablet devices have predominantly been designed as pointing 
devices or simple graphical input devices and not as a text entry device, and 
as such, they are not ergonomically suited as a means of inputting handwrit
ing information into the computer.

2.4.2.3. Tablet Size and Active Area

Typically, office documents are produced on A4 size paper. The active 
area of the tablet should be such as to encompass an A4 size area (11.7" x 
8.3" or 300mm x 210mm). The majority of tablet m anufacturers today pro
duce tablets with active areas o f 12" x 12" as a standard part o f their range. 
This area is ideally suited to also allow a part of the tablet area to be 
configured for command mode operations, for example, switch to 
script/sketch mode, start docum ent creation, end document creation, clear 
display and so on. In addition, a region around the active area would also be 
very useful. This would allow anyone using the device a comfortable "dead



zone", at the bottom edge of the device and the left or right hand side of 
the active area, would allow someone to comfortably write on the tablet 
without having their hand drop off the tablet edge. This is particularly of 
increasing importance with the height of the tablet surface above the normal 
user working area. Assuming a tablet height such that a dead zone is 
required, a plan view of the tablet would be as shown below:-
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Figure 2.5 - Tablet Area Dimensions

2.4.2.4. Hard-copy Considerations

If the user is writing onto a piece of paper on the tablet surface, it 
would be particularly necessary to keep the paper static on its surface during 
the course o f the writing session, since any dislocation of the paper would 
result in the invalidation of further text input with respect to that already 
produced and located. Therefore, some kind of restraint (perhaps as for a 
clip-board) would be necessary as an integral part of the tablet.



3. PREPROCESSING OF THE RAW DATA INPUT

3.1. Introduction

As a result o f the state-of-the-art review undertaken it was noted that a 
large num ber of authors performed ’preprocessing’ of the raw data received 
from the data tablet. This could mean anything from filtering out unwanted 
points, to changing the character shape and/or altering the character size. In 
particular, it is a ’normalisation’ of the character shape. This was found to 
involve one or m ore of the following:-
(i) D ata thinning or angular variation analysis, whereby the num ber of 

data points received for any one character are filtered in order that a 
roughly similar num ber of co-ordinates received for a particular charac
ter are processed irrespective of the speed of the writer.

(ii) Angular variation analysis or curve smoothing, perform ed in most 
instances to filter out the ’jagged’ appearance of a character introduced 
by a poor resolution tablet.

(iii) Slant analysis. A m ethod for normalising character shapes by either 
shearing or rotating characters that exhibit left or right slant in order 
that they are similar in feature to the same character written without 
slant.

(iv) Size normalisation. All written characters are either enlarged or reduced 
to provide a ’standard’ data block as input to the feature extraction 
algorithms.

These techniques feature strongly in many papers in order to reduce the 
complexity of the succeeding feature extraction and recognition algorithms. 
For this reason it was felt helpful to investigate these techniques and gain 
some familiarisation in case they may prove necessary or useful at some 
later stage.
Some preprocessing techniques perform analysis necessary to rem ove certain 
adverse features which may confuse the following encoding algorithm. In 
general the preprocessing was performed for two reasons:-
1. To provide some degree of uniformity in the amount of data input to

the recognition algorithms irrespective of the type of tablet capturing
the data. Each tablet has slightly different attributes (see Chapter 2, 
Technical Specifications section). We surveyed a total o f  15 digitising 
tablets and purchased four, the Numonics and Elographics previously 
mentioned and also the Calcomp 2000 data tablet and the Penpad dev
ice supplied by Pencept Inc. in the USA.

2. As a character standardisation mechanism. Many characters exhibit
features related to the user writing style as well as character specific
features. In some instances the detection and neutralisation of these 
features after the character encoding can prove to be a major task. 
Removal of the user dependent features limits the range of alternatives



quite markedly, more so as the user base is expanded.

3.2. Background

The main reason for preprocessing is the need to normalise uncon
strained hand-writing. Unconstrained in terms of size, pen speed, character 
formation style. Unconstrained writing will inevitably produce a large varia
tion in the input data collected for different users. These features can be 
classed as being related to the the two preprocessing functions mentioned 
above. Case (1):-
• different amounts of input data will be captured during the construction 

of characters by different users
• different users produce characters with a wide range of sizes 
Case (2) is mainly as a result of:-
• variation in character shape. Usually people who write characters very 

quickly produce much more angular characters than people who write 
more slowly.

• character slant. The most common feature of user writing style.
Several techniques for data thinning of the tablet co-ordinate points have 
been described, generally by means of a simple input filter. However, Brown 
and Ganapathy [19] then performed interpolation on the data points in 
order to generate a stream of equidistant points. The other m ethod for data 
thinning is by angular variation analysis, as used by M. Berthod and S. 
Ahyan [7]. Points may be rem oved from the character curve if the angular 
variation o f the curve is small. Therefore generally far fewer points are 
required to describe a straight line section of the curve than to describe a 
loop or cusp.
Curve smoothing is found to be a necessary preprocessing step for a num ber 
of real time algorithms. Burr [43] performs curve smoothing by initially per
form ing a sine fitting algorithm to the quantised data. The reconstructed 
curve then is resampled at a higher data rate. A nother technique is per
form ed by some authors, Burr [43] and Brown and Ganapathy [56], which 
is to perform some form of normalisation on the character size. This usually 
takes the form of character size translation into a specific character box area, 
required by the encoding and recognition algorithms.
Consideration of character slant receives mixed attention. Some authors 
simply state that heavily slanted characters cannot be processed by the algo
rithm . D. Burr [43], Brown and Ganapathy [56] and Higgins and Whitrow 
[53] describe techniques for character slant detection and removal. It is 
interesting that the consideration o f character slant and its rem oval has only 
recently been addressed, basically with the move towards the more uncon
strained user input. In the very comprehensive state of the art survey into 
the recognition of handwritten characters by C.Suen, M. Berthod and S. 
Mori [42] there is no explicit reference to character slant, only the fact that



distortion and style variations are produced by the writer and the fact the all 
user independent techniques are highly sensitive to these variations.

3.3. Techniques Evaluated

3.3.1. Data Filtering

Raw co-ordinate data filtering is by far the most common preprocessing 
technique used. The main reason for this is the wide variation in the 
am ount of data during the quantisation of characters by the data tablet. The 
graphics tablet must be capable of faithfully encoding characters which have 
been written either very quickly and/or very small.(See Chapter 2). How
ever, in order to ensure sufficient data for the worst case (or fastest) writer, 
we obtain the adverse result of collecting much more data than we required 
from a very slow writer. In most recognition techniques the recognition time 
per character or word is roughly proportional to the am ount of data input to 
the encoding algorithm. In a data set of around 100 writers we noted the 
slowest writer produced 2.6 times as many co-ordinate points in the produc
tion of two test sentences than did the fastest writer.
It was not the intention to use the co-ordinate data filter in an attempt to 
standardise the num ber of points processed per character, since we required 
to retain the raw character shapes from every type of writer (fast and slow). 
We did not wish to remove shape information from characters which could 
be o f use further along the processing, in identifying the character.
It was found, however, that some writers would pause with the pen resting 
on the paper during the formation of a word or character. This lead to the 
capture of unwanted data, in the form of noise and not at all related to the 
character shape. The data filter was therefore implemented so as not to 
remove character shape information.
A num ber of techniques process the input co-ordinates in such a way so as 
to produce co-ordinate pairs at roughly equal distances along the character 
curve. However, it was decided at the early analysis stage that this process, 
would discard timing information, which might be of later use. Therefore 
we decided to adopt the very simplistic technique of a simple data filter. A 
lower threshold value was set . If we consider a series of encoded points 
along the character curve:-



Figure 3.1 - D ata Thinning

Setting our minimum distance threshold, dti

d(.p0-PO > d< 
accept P x

else
discard P  i

If point P x is accepted, we restart from P { to determ ine whether we should 
accept point P 2.

However, if point P { is discarded, we remain at point P 0 in order to deter
mine whether we should accept point P 2.

This process continues over the entire length of the character curve. The 
m inim um  threshold distance is a fixed value. Therefore a large character ’a* 
written at the same speed as a small character V  by the same writer should 
produce x times more points, where:-



where D â  =  total travel o f  large a

and D as =  total travel o f  small a

G reat care m ust be taken, therefore, when determining a lower threshold 
value, to ensure that no important point data is removed during data filter
ing. This means setting a smallest character size which may be written and 
subsequently recognised as being a character or part character and not a dot. 
This is usually limited by the resolution o f the tablet.
It was decided not to attempt to filter out too much of the data produced 
while the pen was in motion. The main source of unwanted data arose as a 
result of the user pausing after bringing the pen down onto the paper, 
before writing the character or pausing with the pen on the tablet surface on 
the completion of a character. Character pauses in a string of x-y co
ordinates were quite easy to detect. Tablet accuracy ensures that it will not 
result in the production of a sequential string o f identical spatial points. 
However, it will result in the production of a string of points which vary by 
a very small distance. The minimum diameter character size allowed was set 
at 2m m . Below 2mm  it is difficult to read individual characters comfortably. 
Analysis of pause periods showed that they could last up to 0.5 seconds, 
which, at a sampling rate of 80 points per second, is the capture of 40 redun
dant data points. For an average o f 19 data points per character, this is not 
an insignificant amount of redundant data.
Initially it was decided to retain the timing information supplied by the 
tablet by only removing the redundant data caused as a result o f user hesita
tion. This ensures that the character shape is not degraded further. All data 
produced as the pen is in m otion along the curve was retained by selecting a 
threshold of 0.25mm for the Numonics tablet. This value is proportional to 
the tablet resolution. This ensured that points would only be rem oved if the 
pen was stationary. At this stage it is of the utm ost importance that no pos
sibly useful information is discarded before it is analysed. It was felt that the 
concentration of points along a character curve may provide pen speed 
information which could be attributed to certain character features. For 
example, a sharp point of inflection is bounded by a large reduction in pen 
speed. Also, upstrokes and downstrokes also exhibit the greatest pen speeds 
along the character curve.



3.3.2. Angular Variation

Angular variation analysis may be used as an alternative to data thin
ning. By examining the angular variation between successive straight lines 
produced as a result of connecting points in sequence it is possible to 
rem ove ’redundant’ points. If the angular difference between two successive 
lines falls below a threshold angle (0r ) the mid point of the three can be 
rem oved, as it contributes little or no information to the overall character 
shape.

Starting at P i

02i < 0/- -  discard P 2

03i < 0r -  discard P 3

041 > Qt -  retain P 4

R estart at P 4

Figure 3.2 - Angular Variation Analysis

An example of the effect on character shape for varying degrees o f angular 
variation analysis can be seen in Figure 3.3. The original character ’a’ is 
composed of 19 co-ordinate points. Seven degrees of data thinning are 
shown for threshold angles of 10°, 20% 30% 4 0°, 50% 60° and 70°. In the final 
case, at QT = 7 0°, only 7  co-ordinate points remain, a reduction to only 36.8% 
of the original data size. A t 0r = 70° the character still resembles the letter 
’a’ and although it has become severely angular in shape, it cannot be con
fused by any other character in the lower case alphabet.



Figure 3.3 - Degrees of Thinning by Angular Variation Analysis



At Or = 40° the shape of the letter ’a’ begins to deteriorate, in particular the 
shape of the anti-clockwise arc is lost. However, at 9r = 30° the shape is still 
retained with only 10 data points, 52.6% of the original data.
One particularly useful feature highlighted by angular variation analysis is 
the identification of upstrokes/down strokes in a character, as long as the 
stroke is a reasonably straight line.

P P
1

P
2

6
Figure 3.4 - Upstroke/ down stroke Detection

This feature is highlighted along the character curve by a large individual 
distance measure compared to all other retained points along the curve.
Although the technique is good for this particular character example, it was 
found that it would not operate reliably for all characters. It cannot handle 
the noise introduced by some writers produced by pen rest, because the ran
dom nature of the cluster of points produced also leads to a random path 
connecting these points, with the result that the angular variation technique 
is ineffectual. Therefore, it is necessary to perform data thinning by lower 
distance threshold measure beforehand.

3.3.3. Curve Smoothing

Curve smoothing is particularly useful as a preprocessing stage to char
acter recognition. It can remove erroneous points in the character curve 
introduced as a result of:-
• quantisation error (poor tablet resolution)
• jitter points (transmission noise or inadequate pen position detection)



• user hand shaking (hesitation)
In general it is not necessary to reconstruct the characters original curve per
fectly. However, the m ethod presented by Burr (sine fitting) might be of 
use on sampled data from a particularly poor tablet. The sampled points 
could be fitted to a series o f sine curves. These curves are then sampled at a 
higher rate to produce a m ore accurate representation of the original charac
ter curve. It would not, however, be particularly useful for real time 
preprocessing due to its large processor overhead.
Of the range of tablets evaluated, all had an accuracy greater than or equal 
to Q.OOSin and a sampling rate of at least 60 points per second. This was 
found to encode a curve with sufficient accuracy. Quantisation and jitter 
noise are usually not severe enough to distort the character shape so as to 
be too far rem oved from the original character shape.
An example of particularly severe jitter could often be obtained from a Cal- 
comp 2000 tablet, especially when writing a character quite quickly. Some 
data tablets detect the next character point by searching an area around the 
previously detected character point. This is much faster than interrogating 
the entire tablet surface each time and as a result, a much higher sampling 
rate can be achieved. However, problems can arise if the pen speed takes 
the pen outside the bounds of the next search area, leading to the produc
tion of a completely random data point.

Figure 3.5 - Encoding Noise D ue to Jitter



The noise points have introduced extra cusps into the character curve. 
These extraneous features tend to mask the curves natural characteristics. 
However, this is a particularly rare case of noise now that the tablets have a 
much better degree o f resolution and accuracy. A more common problem is 
quantisation noise on a particularly small character, which can seriously dis
tort the character curve. Higgins and Whitrow [53] do not perform any 
curve smoothing because they feel it to be too time consuming and can lead 
to a loss of detail which might prove useful at a later stage.
The curve smoothing technique is simply a series of point averagings 
between the start and end points of the curve. Basically, a new mid-point is 
calculated as being positioned centrally between the two end points. The 
process can be repeated a num ber o f  times, each pass refining the curve 
shape further.

1st Iteration:

X i = X u

, * l + * 3
* 2  = 2 *

, X 2 + X 4
* 3 = ----- «------ ;y3='

yi=yi

yj+ys 
2  ’

yi+y*

2nd Iteration:

X l - X i l

X 1 + X 3
X2-

* 3  =  '

2

X2+X4

y 2=

y*=yn

y iW i

yi+yi

» yi+y*
?3 =  X----

y»=y*

If we take a section of a character curve that is observed to exhibit severe 
noise problems and pass it through only two iterations of the algorithm we 
can see (Figure 3.6) that the noise has been eliminated. The character curve
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smoothing can only be effectively performed once the curve has been 
finished (while the data thinning can be performed as the points are 
received from the data tablet). This is necessary in order that the algorithm 
does not smooth out legitimate character curve features, especially sharp 
turning points.
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Figure 3.6 - Curve Smoothing
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If the algorithm were allowed to smooth the whole curve unconditionally we 
would observe such detrimental results:-

KVU? V ^ V'A ./V:
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(a) 1st Iteration
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(b) 2nd Iteration

Figure 3.7 - Smoothing of Legitimate Curve Features

The curve above is part of the character *w\ Smoothing of this section of 
the curve rem oves the feature o f the character ’w’ which distinguishes it 
from the characters ’u ’ or *v\ In order to detect and retain such features it 
is necessary to analyse the curve two points ahead o f the point to be 
smoothed. This enables one to decide whether the point is indeed a spuri
ous noise point, in which case the two points before and after it will not
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suggest the presence of a local maxima or minima. Therefore the point 
should be smoothed. Otherwise, we have a genuine maxima or minima in 
the curve which we do not want to degrade by smoothing.
Figure 3.8 shows the algorithm applied to our character ’a’. Figure 3.8 (a) 
indicates how the character shape is distorted if any cusps are not identified. 
The character shape begins to seriously degrade after only three iterations. If 
we detect cusps we can eliminate these points from the smoothing algo
rithm , so preserving the upstroke and downstroke information. The charac
ter ’a’ in this example does not exhibit very serious jitter, and so is not 
requiring smoothing. One adverse affect of the smoothing is the reduction 
in the overall size of the character, notably loops as can be seen in Figure 
3.8 (b).



SMOOTHING PASSES=3SMOOTHING PASSES*2

(a) no cusp detection
SMOOTHING R SMOOTHING PASSES:

SMOOTHING PASSES*2 SMOOTHING PASSES*3

(b) with cusp detection

Figure 3.8 - First Smoothing Algorithm



In order to reduce the shape degradation due to the smoothing algorithm, a 
modification to the original algorithm will smooth the character curve while 
preserving the character shape more effectively. The modification was fairly 
minor, still performing the averaging process, but not incorporating the pre
viously averaged point in the next stage of the same iteration. The character 
smoothing is still as effective as before, while maintaining the loop size. 
However, it is found to degrade quite seriously after only three iterations of 
the smoothing algorithm. Figure 3.9 (a) shows the modified smoothing on 
the character ’a ’.
It is not particularly useful to observe the effectiveness of the smoothing 
algorithm on our character ’a’. Figure 3.9 (b) shows a seriously deformed 
character ’a’ which has been passed to the smoothing algorithm. After three 
passes the jitter points have been ironed out. These jitter points m ust be 
rem oved in order to successfully analyse the ’true* character features.

SMOOTHING R SMOOTHING PAS!

SMOOTHING PASSES*2 SMOOTHING PASSES=3

(a) Modified Smoothing



SMOOTHING PASSES; SMOOTHING PASSES-1

SMOOTHING PASSES=2 SMOOTHING PASSES=3

(b) Noisy Character 

Figure 3.9 - Smoothing Algorithm

3.3.4. Slant Analysis

Slant rem oval is performed by a num ber o f authors in order to m inim 
ise the complexity of the subsequent feature extraction and recognition algo
rithms. As it is a user dependent feature, slant is considered by most 
authors as a trait which should be rem oved before character/ word process
ing. Slant rem oval has the benefit that it standardises the basic shape of the 
character set (a-z for example). It has a more severe effect on certain types 
o f character, those which have large aspect ratios ,ie. characters occurring in 
the upper and mid zones and the mid and lower zones:-

b ,d ,f,g ,h ,k ,l,p ,q ,t,y ,z all can experience severe slant distortion

a,c,e ,m ,n ,o ,r,s ,u ,v ,x  do not suffer from the same am ount of distortion
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It is important that slant removal should be totally divorced from the recog
nition algorithms. The technique for slant identification and removal 
described below is not particularly involved with the retention of the charac
ter shape with deskewing as long as the only feature seriously altered is the 
elimination of the slant. Brown and Ganapathy [56] deskew cursive words 
by slope analysis on only the mid-zone letters.Usually the initial problem in 
m ost slant removal algorithms is the determination of the angle of slant 
(05). One technique by Burr [43] investigated initially set the centre of the 
character to (0,0). The centre was defined as:-

^  (*m ax +  -^min) (ym ax +  ^m in)

The angle of slant is calculated by computing the centres of gravity of the 
curve portions above and below the x-axis, T and B . The angle of the line 
joining these points to the horizontal is deemed to be the angle of slant, 9S. 
Figure 3.10 shows this perform ed on the unslanted character *r\

e,s

Figure 3.10 - Using Centres of Gravity to Determ ine Character Slant

Burr [35] adopts a different approach for a connected letter string. We 
define character slant as the angle to the vertical of any major downstroke 
detected in the character curve. Slant removal is broken down into the fol
lowing processes:-
(i) detection of all downward (negative y) travels along the character.
(ii) identification of which, if any, is the major downstroke.
(iii) determination o f the angle of the major downstroke to the vertical.

• (iv) slant rem oval by shear transformation
The first stage is quite easily performed. The second stage involves the 
investigation of the local angular variations along each negative y curve



elem ent. The angular variations along a straight line portion will be small 
compared to the angular variations of a negative y portion which is an arc. 
Thus negative arc portions can be eliminated by selecting a m inim um  thres
hold angle. Any local angular variation exceeding this threshold disqualifies 
the curve portion from being a valid downstroke.

/ / { ( 9 i <  e„)<M(e2< eM)<M(e3< eM»

Element £q - 4  = straight line

Figure 3.11 - Curve Downstroke Detection

It is possible to find a num ber of elem ental curves which could be classed as 
straight line elements (for example in the ch a rac te r’m ’). If m ore than one 
downstroke element is detected, each separate element, if found to be a 
valid downstroke is deskewed individually.
A fter calculating the angles of the these elem ents to the vertical we m ust 
decide w hether they are valid downstrokes or some other straight line ele
m ent.
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Figure 3.12 - Non downstroke Straight Line Elem ents

These straight line elements do not require alignment as they are not meant 
to be vertical. Therefore we must select a lower threshold angle (0*,) of 60°. 
Any straight line detected whose angle to the vertical is 0L or less is not pro
cessed further. In this way we do not attempt to deskew diagonal straight 
line elem ents as might be produced in the subset above.
It was decided to perform a shear transformation to rem ove the slant from 
the character. Although this may distort the shape of the character some
what, it will not alter the shape to the extent that it alters particular charac
ter features. Consider the slanted character ’a* transformed by rotation.
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(a) Before rotation (b) After rotation

Figure 3.13 - Rotational Transformation

Shear transformation has two advantages over the technique of rotation
(i) it is far simpler to perform than rotation of the entire character.
(ii) it is possible to retain the original size and position along the baseline 

m ore easily than rotation.
Consider a slanted character V :-
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( a )  D e t e c t i o n  ( b )  A l i g n m e n t  ( c )  S h e a r  A d j u s t m e n t
Pivot

V
skew

Figure 3.14 - Deskewing Procedure

By determ ining where along the character curve a particular downstroke is 
to be found it is possible to decide whether to use the top of the downstroke 
or the bottom  as the pivot point. If the downstroke is in the second half of 
the character, the pivot is the top o f the downstroke, otherwise the pivot is 
the bottom of the downstroke. This ensures that we only need adjust the 
minimum num ber of x positions after downstroke alignment.
If we detect a num ber of valid downstrokes, the operation m ust be 
repeated:-
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( a )  O r i g i n a l  ( b )  F i r s t  A l i g n  ( c )  S e c o n d  A l i g n

1

Figure 3.15 - Multiple Downstroke Alignment

This technique is very simple to implement and proved effective on most 
slanted characters. It did, however, occasionally fail in instances where:-
(i) the downstroke was particularly curved so as to fail the test for straight 

line detection.
(ii) the downstroke was so slanted that it exceeded the lower threshold QL, 

to the extent that it could not be distinguished from a diagonal.

3.4. Conclusions

It appears that in many papers reviewed a great deal o f emphasis is 
placed on pre-processing in one guise or another. Indeed in some cases the 
complexity of the pre-processing matches the complexity of the recognition 
algorithms. The familiarisation gained has shown that, while in many cases, 
this processing of the raw data is highly beneficial to the success rate of the 
recognition algorithms using them , a num ber of worrying points did arise:-
• it is not possible to be able to preprocess every single character per

fectly. For example, curve smoothing sometimes rem oves a vital 
feature, while slant removal might introduce an erroneous feature. In 
such instances the recognition algorithms will certainly fail to recognise 
the character correctly.

• the preprocessing algorithms ideally should be fast and simple to imple
ment. Techniques involving complicated iterations sometim es appear
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to have only limited benefit to the subsequent recogniser, their useful
ness being outweighed by their size and speed.

For these reasons the only technique which seemed both beneficial and easy 
to implement was the simple data filter that removed pen pauses. This is the 
only preprocessing performed at present on the raw data before being input 
to the recognition algorithms described.
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4. X - Y TREND ANALYSIS

4.1. Introduction

One of the major factors in developing an algorithm for the real time 
analysis and display of handwriting is that it be sufficiently efficient so as to 
give the recognition level desired without requiring so much computing time 
that eventual migration to a real time environm ent is precluded from the 
outset. Therefore , while not producing code which will run in real time 
from the outset, there m ust be the capability that the algorithms can be 
optimised for real time operation. This is the initial algorithm used for the 
encoding of the raw data points output from the tablet in a form suitable for 
subsequent recognition procedures. This section describes its development 
for the analysis of unconnected script and numerals. However, its applicabil
ity is not limited to unconnected character recognition , and by its nature of 
operation, the algorithm will migrate in some form to become a basis for 
the analysis of connected script

4.1.1. Background
The x-y trend algorithm was based on the work of Tang, Tzeng and 

Hsu [47]. The paper describes the application of the technique to the recog
nition of the num erals 0-9. The x and y turning points are extracted from a 
curve and from these are extracted a series of primitive shapes. Six primi
tives are extracted, four of which indicate the maximum and minimum x 
and y turning points, a fifth indicating a straight line and the last being the 
stroke start /  stop delimiter. This basic idea was applied to the lower case 
character alphabet. Tang claimed that with only 10 turning point sequences 
they could encode over 70% of all input patterns for numerals 0-9 for a 
sample set of 30 students writing the num erals 0 to 9 once only.

If we consider the lower case alphabet set a-z, many of the letters were 
found to be formed by writers with only a single pen to paper stroke. How
ever, in some instances it is necessary to form the character with more than 
one single pen down motion (m ost notably the diacritical marks in letters 
i,j,t,f). We can deduce that the simpler strokes will have far fewer turning 
points than the more complex strokes. The Cartesian (x-y) travel o f the pen 
is tracked as the pen traces the character outline. Therefore a point on the 
curve (Xi,yi) is a turning point in the x direction if (x,+ l-x,)< 0 and 0
and is a turning point in the y direction if (yi+i--yf)< 0 and (yt— y,_i)< 0.

If we consider two characters, ’c ’ a simple character and ’m ’ a complex 
character. The very simply constructed ’c’ has only one turning point (an x 
minima) between its end points whereas the ’m ’ has a total of 9 turning 
points between its end points.

59



X'

Character 'c' -  1 turning point
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Character fm -  9 turning points 

Figure 4.1 - Comparison of character turning points

The one major constraint about designing a character recognition algo
rithm is that it should be able to perform in a real time environm ent (i.e. 
the user should be able to see the result of writing a character appear 
instantaneously on the screen). Any am ount of delay between writing and 
displaying degrades the effectiveness and naturalness of the system. In the 
study undertaken o f algorithms for the recognition of script [84] the most 
promising papers in terms of achieved recognition rate were as a result of 
complex algorithms suitable for a large mainframe, but not so suitable for a 
real-time stand-alone recognition system if the recognised output does not 
appear instantaneously. M ethods based on matching an unknown character 
or word template against a database of pre-formed templates gave very good 
recognition results for a user dependent system on which the user had 
already performed an initial training session. However, for a user indepen
dent system to be undertaken using this technique a very much larger 
num ber of reference templates is required and the m anner o f the template
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matching would appear to degrade the system performance so as to exclude 
real-time operation. Topological feature extraction is another popular 
approach , some algorithms incorporating x & y turning points as just one of 
a num ber of different features to be extracted.

4.1.2. Initial X Y Algorithm
This m ethod is a very simple extension of the work described earlier by 

Tang. It was not envisaged at the outset that it would be able to sufficiently 
differentiate between all the letters in the alphabet, but rather to be able to 
classify letters into some subset of alternatives related to the similarity 
between certain letter shapes in the alphabet. Analysis of an initial set of 25 
writers led to an initial broad alphabet sub-classification

f t
y g
a d q 
P b 
n h u 
r v
0 c e 
m w 
k x z
1 s j 1

Therefore the main purpose of this initial algorithm was some form of 
verification that letter shape information could be extracted very easily, and 
m ore importantly, very quickly. It is hoped that this could be used as input 
to m ore advanced stages, reducing the computation required at these later 
stages by focusing the decision procedure.

4.1.2.1. Theory
The first approach to the analysis of the turning points was to analyse 

the x and the y travel separately as the co-ordinate points trace out the path 
of the character. The x-travel is effectively split into the relative x-travel 
from one x-turning point to another. The reason for analysing the relative 
movem ents rather than the absolute m ovem ents was to be able to classify 
letters by their shapes irrespective of their sizes, i.e. two letters of similar 
shape but different sizes would have identical travel moments.
In this respect we also classify the start and stop points of the character as 
turning points. The same process is performed independently for the y- 
travel over the path of the character. When the pen is lifted from the paper, 
the incremental travels in both the x and y direction are normalised. This 
involves simply expressing each increm ental travel as a fraction of the total 
travel in that particular plane. Therefore an encoded character will be of the 
form:-
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where Ix j 1+ lx 21+ be 3 1+........+ be* 1= 1

and \y 1 1+ \y 2 1+ ly 31+ ........ + lyw 1= 1

Alternate x values will be negative. Similarly for the y-trends. If we take our 
character ’m ’ shown previously and encode it we will produce the result 
shown below ( Figure 4.2):-

x - tr a v e l  = - 0 .1 0  0.90

y - tr a v e l  =  - 0 .2 3  0.22 - 0 .2 0  0.18 - 0 .1 7

where I- 0 .1 0 1+ 10.901= 1.00

and 1-0.231+ 10.221+ 1-0.201+ 10.181+ 1-0.171=1.00

Figure 4.2 - Character Encoding by the X-Y trend algorithm

Analysis of encoding the lower case alphabet for a num ber o f writers 
showed that a num ber of characters produced a quite unique x and y trend 
representation, for example, only the c h a rac te r’m* produces such a regular 
sequence of y-travel characteristics, five turning points commencing with a 
minimum. These characters were found to be the more complicated charac
ters to form (e.g. m ,w,g,k). However, for the majority of the alphabet set it 
was noted that different characters would produce similar encoded represen
tations (i.e. identical in terms of the num ber of the x and y trends and their



sign sequence). If we consider the sign sequence in Figure 4.3.

Figure 4.3 - Characters with similar X - Y  trend encodings

The x and y trends in these cases all have the same tendency. Encoding 
of the above characters produces

b x - t r e n d s  =  + 0 .50  - 0 .5 0
y - tr e n d s  =  - 0 .5 0  + 0 .2 5  -0 .2 5

p:~  x - tre n d s  =  + 0 .5 0  - 0 .5 0
y - tr e n d s  -  - 0 .4 0  + 0 .4 0  -0 .2 0

y :~  x - tre n d s  =  + 0 .50  - 0 .5 0
y -  trends =  - 0 .2 0  + 0 .2 0  - 0 .6 0

An analysis of the relative in the y-direction alone allows quite a simple 
means of differentiating between these three alternatives. Hence, an unk
nown character which exhibits the same x and y tendency would simply be 
interrogated in order to determ ine which of the above sequence of y trends 
it matched the closest. The technique for correlation is described in Chapter 
6. It fits both Freeman vectors and X-Y trends produced by encoding the 
unknown character and performs an elem ental fit to likely candidates 
extracted from the corresponding database. The measure of fit is expressed 
as a percentage. It was determ ined early on in the analysis of both algo
rithm s that it would not be enough simply to try and identify a character by 
identifying its basic features. Tang et al attempted to recognise the num eral 
by simply identifying the turning points but problems arose if two num erals 
have an identical turning point sequence as observed , with the num bers 0 
and 6. Hence by comparing the relative trends between the turning points 
we can obtain a percentage fit figure. 100% indicates a perfect fit and 0% a 
very poor fit.
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4.1.2.2. The X-Y Database
A database was originally constructed from a user set of over 100 writ

ers. Each writer was asked to write two sentences in lower case uncon
nected script. However, the only other constraint was that they should write 
from left to right across the paper. Letter size, speed of writing, character 
formation, and neatness of writing were left to the discretion o f the writer. 
By analysis of the recorded raw data from the graphics tablet on a graphics 
terminal it was possible to identify the actual character and stroke sequences 
produced. It is subsequently possible to encode the stroke/character from its 
raw data form into the x-y trend encoding. Hence each encoded string along 
with its intended identity is written to a file for subsequent analysis. There
fore this file will contain the encoded character strings for all the tested writ
ers, a total of 112 people. This gave a total of over 8000 encodings for the 
79 characters making up the two test sentences produced. These test sen
tences contain every letter of the alphabet.

"pack my bags with f iv e  dozen extra liquor ju g s"

"both wizened men quickly judged fo u r  sharp vixens"

The aim is to produce a representational database, which can be used 
for the recognition of any person who wants to use the system, in other 
words a user independent system. Therefore the aim was to produce a data
base which contained a representational cross-section of all the character 
styles produced by the writers. ( a detailed description o f all aspects of the 
database is described later on in Chapter 6). One immediate concern arose 
for the recognition of user independent script. In many instances one partic
ular writer will form a character in exactly the same way as another writer 
forms a different character. This was observed to occur especially between 
characters r and v, u and v, g and q, b and f, u and n. However, in most 
instances a writer would form characters in a unique m anner (i.e. in a way 
that would allow another person to view that character, in isolation and to 
be able to identify it. Some people have analysed exactly how good people 
are at recognising text out of context. Results vary between 90-94%, Suen et 
al [42]. Most characters were found to be constructed in the same m anner 
by the majority of writers, which would produce very similar, if not identical 
x-y trend encodings. A breakdown of the deviation of x-y trends produced 
for a character ’a* is shown in Table 4.1.



Number of trends Signs o f start trends
X plane Y plane — —h + - + +

2 2 0 0 0 0
2 3 229 13 0 0
2 4 27 246 0 0
2 5 0 30 0 0
3 2 0 1 0 0
3 3 24 0 3 2
3 4 0 15 1 78
3 5 0 0 6 27
4 2 0 0 0 0
4 3 150 0 5 0
4 4 50 118 0 17
4 5 0 27 2 0
5 2 0 0 0 0
5 3 0 0 1 0
5 4 0 0 1 55
5 5 0 1 2 27

Table 4.1 - X Y Trend distribution for character V

From  the test writers samples a total of 1158 a’s were form ed and the 
table shows a distribution of their encodings. There are a total of 27 
different ways the letter ’a* has been encoded. However its is observed that 
a great num ber of a ’s fall into one of four encodings. These represent a 
figure o f 64% of the total and are represented by the shapes given below in 
figure 4.4. Deviations occur due in the main to the pen being lowered onto 
the paper and moving to the start point of the ’a ’ and/or the pen remaining 
down after the ’a ’ has been completed.
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X 1

y
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X 1

a 3
x
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X‘3’

Figure 4.4 - The four most common encodings of the character ’a’

In order to produce a representative single encoding for each of the 27 
different encodings observed in the table a single averaged version is pro
duced by averaging the trends o f all the members. If we consider the most 
popular encoding, a 2 in the above figure, (X= -+ , Y = + -+ - ) ,  and show 
how four such examples of this specific shape are averaged:-

flj , X  =  -0 .4 2 + 0 .5 8 , Y =  + 0 .1 0 -0 .3 3 + 0 .2 5 -0 .3 2

a 2 , X  «  -0 .4 1 + 0 .5 9 , Y =  + 0 .0 2 -0 .3 0 + 0 .2 9 -0 .3 9

a 3 , X  =  -0 .3 8 + 0 .6 2 , Y =  + 0 .1 5 -0 .4 0 + 0 .1 9 -0 .2 6

a 4 , X  =  -0 .3 6 + 0 .6 4 , Y =  + 0 .0 9 -0 .3 9 + 0 .2 6 -0 .2 6

Averaged 'a'

v  _  (0 .42+  0.41+ 0.38+ 0.36) (0.58+ 0.59+ 0.62+ 0.64)----------------- j ------------- + ------------- j--------------
{ (0 .10+ 0 .02+ 0 .15+ 0 .09 ) (0 .33+ 0 .30+ 0 .40+ 0 .39) (0 .25+ 0 .29+ 0 .19+ 0 .26 ) (0 .32+ 0 .39+ 0 .26+ 0 .26)

4 4 4 4

Giving,

•1$

i
;v5
-IS
f :
1
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am , X  =  -0 .335+0.665 , Y =  +0 .09-0 .355+ 0 .247-0 .308

This m ethod of averaging was performed on the characters produced by 
the 112 writers in the test sentences. A total of around 16000 unique charac
ter encodings was produced. After averaging the num ber of averaged trend 
encodings was reduced to just 700. This was for the lower case character set 
a-z and part characters [,] ,\ and / .  This is an average of 25 unique encodings 
per character or part-character.

W hen the database had been constructed each characters variability of 
formation could be assessed by a direct comparison of its relative occurrence 
in the test sentences against the relative occurrence of the encodings for 
that character in the database. In theory, if all characters were of the same 
level of complexity to form, the ratio of relative occurrence in the database 
to relative occurrence in the test sentences should equal 1. For example, if 
we consider the letter *1* as being formed as a single down-stroke, only two 
possible encodings could result, depending on whether it was slanted to the 
left or right, + 1.00/-1.00 or -1.00/-1.00. Therefore, however many times it 
were written, it should only result in one of these two XY encodings. Now 
consider the character ’c \  this is slightly more complex in its means of crea
tion and as such might produce the following alternatives.

c i =  -0 .5 0 + 0 .5 0 /-1 .0 0  c2 = -0 .5 0 + 0 .5 0 /+ 0 .1 0 -0 .9 0  c3 =  -0 .5 0 + 0 .5 0 /-0 .9 0 + 0 .1 0

Figure 4.5 - Different Encodings of the Character *c*

It should follow that a very simple character will produce fewer unique 
encodings and therefore give a ratio below 1, while the m ore complex char
acters will give a ratio in excess o f 1. The results are shown below in table
4.2.
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Analysis of X Y trend database
Character %age in ref sentences 

10352 characters
%age in database 

732 trends
Ratio

a 4.16 3.73 0.897
b 1.78 5.67 3.185
c 3.93 2.49 0.634
d 3.79 3.60 0.950
e 8.23 3.18 0.386
f 0.55 4.15 7.545
g 3.06 5.39 1.761
h 3.07 3.18 1.036
j 3.80 3.73 0.982
k 0.85 3.04 3.576
1 13.89 4.98 0.356

m 2.11 2.90 1.374
n 4.21 3.60 0.855
0 4.66 4.56 0.978
P 1.39 3.60 2.590
q 2.00 3.73 1.865
r 4.39 4.29 0.977
s 4.23 4.01 0.948
t 0.14 1.66 11.857
u 5.27 4.84 0.918
V 2.29 3.73 1.629
w 2.12 4.15 1.957
X 0.07 0.43 6.143
y 1.95 4.56 2.338
z 2.21 4.98 2.253

Table 4.2 - Distribution of character occurrence to database representation

A visual breakdown of the results (Figure 4.6) does indicate a general 
trend from the simpler strokes (those with the lowest ratios) to the most 
complex strokes (those with the the largest ratios). Character T  has a very 
large ratio simply due to the fact that people tend to form it in a large 
variety of ways. However, the results are not totally consistent. They do 
indicate that the simplest character is the letter T , however, they show the 
character V  as a simpler letter than the character ’c’. It also shows the char
acter V  as a complex stroke, in fact above character ’m ’. This leads us to 
believe that the database is not truly representative. Also, the fact that the 
database contained so few unique encodings for the 10,000 or so separate 
characters written (only 732) did give some indication that the algorithm 
was too simplified and was rem oving too much useful information from the 
raw data character representation.
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4.1.2.3. Initial Results
Analysis of the recognition rate on the test users data did confirm the 

doubts about the recognition performance. The overall recognition rate was 
less than 65%. A character breakdown of the mis-recognised or non
recognised characters showed a reasonable performance for the m ore com
plex characters (i.e. f,g,m ,k,q,w ,z 80-90% recognition). However, it did not 
perform very well on the rest of the alphabet (i.e. a ,b ,d ,e,h ,n ,o ,p ,s,u ,y  60- 
75% recognition) and was particularly poor on the very simple characters or 
strokes (i.e. c ,l,[ ,] ,\ ,/,-  ~50% recognition). It was apparent that the algo
rithm was far too coarse in its encoding. As an example, if we consider the 
case of two very simple strokes T  and It is quite a simple m atter for a 
hum an to differentiate between these strokes. The form er exhibits a 
predominantly vertical motion and the latter a predominantly horizontal 
motion - Figure 4.7.

Character T Character

Figure 4.7 - X Y Trend Encoding deficiencies

When we come to encode these two strokes we observe that they both 
produce the same XY trends

x - tr e n d s  =  + 1 .0  
y - tr e n d s  = -0 .9 0  + 0 .1 0

Two totally unalike strokes have produced identical encodings. This is 
an extrem e example of the algorithms shortcomings, but it is also 
highlighted in a num ber of separate instances. Confusions between u /n , r/v , 
v /u , c/I are common. Thus a more reliable algorithm was required which 
would be able to cope with the confusions appearing in the algorithm in its 
present form.
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4.1.3. Modified X-Y Algorithm
The approach adopted is a simple extension of the original algorithm. 

Instead of simply recording a single incremental travel in the x or y direc
tion whenever an appropriate turning point is detected, the incremental 
travel in both directions was recorded each time either an x or y turning 
point was detected. This produces trend strings with equal num bers of x and 
y trends. Therefore the accumulated trend string is longer. We now also 
cannot assume that we will have an x or y trend string with alternate posi
tive and negative travels. If we consider our character’m ’ encoded using the 
old and new techniques:-

Old algorithm, x -  travel =  -0 .0 5 + 0 .9 5
y -  travel = -  0.22+ 0 .2 0 -  0.20+- 0 .1 8 -0 .2 0

N ew algorithm , x - tr a v e l  =  -0 .0 5 + 0 .1 0 + 0 .1 5 + 0 .2 0 + 0 .4 5
y - tr a v e l  =  -0 .2 2 + 0 .2 0 -0 .2 0 + 0 .1 8 -0 .2 0

Figure 4.8 - Modified X Y trend algorithm

Using the old algorithm, there is no immediate correlation between the 
x- and y- turning points. The relative travel trends are completely divorced. 
However, the new technique gives an indication as to how the x and y travel 
is altering in relation to one another. As a result we can actually reconstruct 
a quantised version of the character shape from the encoded trend strings. 
This is not possible with the old algorithm since the sequence information 
has been discarded.
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Figure 4.9 - Character shape regeneration |

This feature allowed the design of a tool which, given an XY trend 
string would reconstruct and display the quantised character. (An assump- Jl
tion has to be made on the aspect ratio when displaying on the graphics 
screen in order produce a sensible shape.) %

It is extremely difficult to visualise a character shape from its encoded j
trend string, and with the old algorithm, it is actually impossible to do so. It 
was found to be very important to verify that the representations in the 
database should be reasonable representations of the characters that they are 
m eant to portray. Hence the tool allows us to verify that the database 
representations are reasonable. Any particularly bad or misleading represen
tations can therefore be removed. This could not be performed on the old 
database. I

4.1.3.1. The X-Y D atabase J
A new X-Y database was constructed using the new algorithm. The size 

of the X-Y database increased substantially. Not only were the X-Y strings I?
themselves longer, a greater num ber of unique trends was produced. We 
have now around 2500 entries in the database. We performed a similar com 
parison of character occurrence in the test sentences against the relative |
occurrences of character unique encodings in the database. Table 4.3 gives a 
similar breakdown of the new database as did Table 4.2 for the old database. , |
We can now say that the m ore complex a character, the greater the num ber 
of unique strokes will be produced due to the larger deviation possible away | |
from the idealised shape. Again, the larger the ratio of database entries to 
character occurrence in the test sentences, the more complex the character. !
The results (Figure 4.10) now appear to be somewhat m ore consistent with

\ ' 4

■id

Original quantised shape XY trend quantised shape
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the theory. The m ost complex strokes all have larger ratios (>2.0). These 
being f,k,b,g,m ,q,w ,z,p,y. Also, the very simple characters have the lowest 
ratios (< 0.5). The simplest character now is the letter ’c \  which we would 
expect. Also, we now see the letter V  has a much smaller ratio. These 
results were quite encouraging in leading us to believe that we may have an 
algorithm which is m ore representative of character shape.

Analysis of the modified X Y trend database
Character %age in ref sentences 

10352 characters
%age in database 

2571 trends
Ratio

a 4.16 4.08 0.98
b 1.78 6.34 3.56
c 3.93 1.24 0.32
d 3.79 4.78 1.26
e 8.23 2.99 0.36
f 0.55 3.38 6.15
g 3.06 7.78 2.54
h 3.07 2.84 0.92
j 3.80 2.88 0.76
k 0.85 3.07 3.62
1 13.89 5.13 0.37

m 2.11 5.13 2.43
n 4.21 4.51 1.07
0 4.66 3.31 0.71
P 1.39 2.88 2.07
q 2.00 4.90 2.45
r 4.39 5.52 1.26
s 4.23 3.31 0.78
t 0.14 0.93 6.64
u 5.27 5.10 0.97
V 2.29 1.98 0.86
w 2.12 4.47 2.10
X 0.07 0.43 6.143
y 1.95 3.93 2.01
z 2.21 4.75 2.15

Table 4.3 - Distribution of character occurrence to new database representation
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4.1.3.2. X-Y Trend Processing

4 .I.3 .2 .I. Pen-down Problems
An investigation of the XY trend encodings for our test characters pro

duced some inordinately long strings of trends. These long trends were usu
ally found to be a result of some m inor perturbations at the beginning or 
end of a character (at either pen-up or pen-down). In the main they 
occurred at the time of the writer placing the pen down onto the paper prior 
to forming the stroke. Two causes of these perturbations were determined.

1. Dithering by the writer where the pen is rested on the paper for some 
time before they form the character.

2. More commonly it is due to pen-switch bounce or as a result of drift in 
the threshold detection circuitry causing the pen to be detected some
what sooner than it is brought down onto the paper.

This tended to lead to the detection and subsequent encoding of spuri
ous pen-down points totally unrelated to the character itself. An example of 
the problem will show how these trends can be eliminated.

t7
Figure 4.11 - Detection and elimination o f spurious pen-down perturbations

The first 4 X-Y trend elements are of no significant importance to the 
overall character shape. In fact, they should not be associated with the shape 
of a character ’y \  As such they should be detected and rem oved. Raw data

75



preprocessing is not able to remove such superfluous points, since they 
represent a degree of pen m ovem ent while the writer is resting the pen on 
the paper. This will therefore pass through the data filter which does not 
attem pt to remove any degree of pen m ovem ent. Therefore, in order to 
detect and rem ove these elements the moduli of pairs of x and y trends are 
added together in order to give an estimation of the contribution of the 
trend pair to the overall character travel. These perturbations represent very 
small relative travels compared to the significant x,y pairs of trends. Hence, 
any combination which is less than some pre-determ in ed threshold value is 
deemed to be a superfluous trend combination and both the x and y trends 
are removed. Therefore, in our example case we have:-

x - tr e n d  = + 0 .0 3 -  0.04+ 0.04+ 0.10+ 0.15+ 0 .1 0 -0 .2 5 -0 .0 8 +  0.20

y - tr e n d  = + 0 .0 2 + 0 .0 3 + 0 .0 1 -0 .1 5 + 0 .1 4 -0 .2 0 -0 .2 0 + 0 .0 5 + 0 .2 0

Combined = 0.05 0.07 0.05 0.25 0.29 0.30 0.45 0.13 0.40

The combined trends falling below the threshold are removed and the 
reconstituted encoding becomes:-

x - tre n d  = + 0 .10  + 0 .15  + 0 .10  -0 .2 5  - 0 .0 8  + 0 .20

y - tr e n d  =  - 0 .1 5  + 0 .14  - 0 .2 0  -0 .2 0  + 0 .0 5  + 0 .20

Because so many occurrences o f this pre-character pen travel is 
observed, it is important that they be removed before entry into the data
base. If all such superfluous trends were ignored and allowed to be entered 
into the database,

1. The database size would be disproportionately larger to accommodate 
all the extra ’unique’ trends which would be produced.

2. As a direct result o f L the searching time and correlating would be 
increased

4 .I.3 .2 .2 . X-Y Trend Reduction
The algorithm gave a very good reproduction of characters which have 

a large num ber of turning points, but is still observed to somewhat over 
simplify the less complex strokes as before, but not quite to the extent as 
did the first algorithm. The recognition rate achieved from our test set of 
112 writers did improve somewhat, but not significantly. Only a m atter of 
2-3 %. This was found to be due to the fact that now we have many more 
unique trends per character, so that a particular encoding for a character did 
not appear in the database and consequently that character was either not 
recognised or misrecognised. The reason for this is illustrated below. Figure
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4.12 is of an encoded character *y* which has five turning points along the 
curve. However, it was observed that some turning points are due to a 
minor perturbation in the x or y direction. In our example (Figure 4.12 (i) ) 
we have a turning point T3 produced by a small x-change over the down- 
stroke part of the y. Removal of this x-trend would produce a reduced (and 
m ore common) encoding (Figure 4.12 (ii) )

Therefore, in order to maximise the probability of finding a correct 
match a num ber of reductions are performed and the database searched to 
find any matches. It was observed that the likelihood of finding a match 
with the database increased as the size of the trend string decreased. How
ever, it was also found that the num ber of alternative character possibilities 
increased.

Therefore, a mechanism was required to detect the smallest combined 
trend pair (as in the initial trend filtering). However, in this case we do not 
want to simply discard the x,y pair since in this case the contribution of its 
relative travel is im portant to the overall character. Therefore we add the 
com ponent to the neighbour which exhibits the same travel direction. Fig
ure 4.13 shows an example of such a reduction.

( i)  Original (i i )  Reduced

Figure 4.12 - X Y Trend Reduction
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Original ' /  0 1 2 3 4 5
j: -  travel -  0.05 + 0.10 + 0.25 + 0.00 -  0.35 -  0.25
y - tr a v e l  - 0 .1 5  - 0 .0 5  + 0 .20  -0 .3 5  - 0 .1 5  + 0 .10
Combined 0.20 0.15 0.45 0.35 0.50 0.35

Reduced 'y' 
x - tr a v e l  
y - tr a v e l

0 1 2  3 4
- 0 .0 5  + 0 .35  + 0 .0 0  - 0 .3 5  - 0 .2 5  
- 0 .2 0  + 0 .20  - 0 .3 5  -0 .1 5  + 0 .10

Figure 4.13 - X Y Trend Reduction

Therefore, even though the actual trend is removed, its contribution to 
the total travel is retained. In our example the component o f the x-trend 
rem oved (x l)  is added to the x 2  direction to produce the combined x l  
trend. However, the y  l trend removed has its component added to the old 
y0 direction. Therefore, for a particular encoding a series of reduced encod
ings can be produced, each of which can be searched against the entries in 
the database to find a match. Using this technique, if an initial fit does not 
identify the correct character, then one or more of the reductions could find
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the correct match.
One obvious pitfall to be avoided when reducing is to rem ove a trend 

pair which changes a character shape so that the new encoding resembles a 
different character (Figure 4.14).

'9' ,q*

’w' 'h'

Figure 4.14 - X Y Trend Reductions to be Avoided

4.2. Conclusions

The XY algorithm work has evolved from the initial idea (the analysis 
of the x and y turning points) which proved to be far too simplistic when 
attempting to differentiate between letters from the subsequent extracted 
turning points. This was rectified by the simple modification whereby the
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increm ental travel in both the x and y direction was analysed whenever a 
turning point was detected, irrespective of whether it was an x or y turning 
point. This m ethod was intuitively superior, since the character shape could 
now be realised from the encoding. As expected, this technique improved 
the recognition rate, by around 15-20%. A full breakdown of results is given 
in Chapter 8.
However, a particularly worrying feature of the algorithm was its inability to 
reliably differentiate between the identity of very simple characters (those 
with few turning points) as highlighted earlier in this chapter. Over
reduction, described above in Figure 4.14 is easily eliminated by a user 
training session which will ensure a database match is found before the 
reduction begins to alter the character shape.
The simplicity of the technique, coupled with the promising results, 
encouraged us to investigate m ethods of similar ease which might be able to 
resolve the problem of more reliably recognising the simpler characters.
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5. FREEMAN VECTOR ANALYSIS

5.1. Introduction

This technique is based on an approach used in a num ber of papers by 
H erbert Freeman on curve analysis. It was selected because it is simple to 
implement and showed promise in m em ory usage and processing times 
when considering some future real time implementation. It was also felt that 
it could also overcome the shortcomings found in the X-Y algorithm (dis
cussed in the conclusion to the previous chapter). There are two alternative 
techniques [81] for the chain coding of arbitrary plane curves. The two 
encoding mechanisms are described below, one based on a hexagonal grid 
configuration, and the other on a square grid configuration.

3 0

(a) Hexagonal Grid 
1

4

5 76
(b) Square Grid 

Figure 5.1 - Chain Coding Processes
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The hexagonal grid has the advantage that the vectors are of equal 
length, making manipulation simpler. Rotating the curve through 60° does 
not distort the curve shape. However, the square grid has the advantage that 
it is compatible with the co-ordinate grid adopted for the majority of graph
ics input devices, including the data tablet used for the capture of user writ
ing. This makes the square grid encoding technique the obvious choice for 
encoding our characters.

5.1.1. Theory

Given a point on a continuous curve, the next point can assume one of 
eight possible adjacent positions. Assigning digits 0 to 7 to represent these 
eight positions, and starting with the one horizontally to the right as 0, the 
others are num bered sequentially in an anticlockwise direction. Vector direc
tions 0,2,4,6 are of a unit length, while vector directions 1,3,5,7 are of 
length V 2. If we take an example of a character V  encoded using the basic 
Freeman approach

'45501126671'

Figure 5.2 - Basic Freem an Coding Approach

5.2. Modified Freeman Algorithm

5.2.1. Theory
By only encoding the curve with set length vector elem ents another 

degree of quantisation is introduced. This is probably acceptable for curves 
and lines produced in, say, sketching. However, in order to retain the char
acter features for a writer who produces very small characters, we would 
have to either have very, small unit vectors or variable length unit vectors, 
related to the size of a particular writers script. The approach adopted was to 
use the eight vector directions to determ ine the character path, but to allow 
variable length travel in any one'direction. The eight vector directions, 0 to
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7 represent a 360/8=45° octant.

Octant 1

4 *►0
Octant 0

6

Figure 5.3 - Octant Boundaries

Therefore, a particular portion of the curve is said to be travelling in a 
particular quantised direction if its incremental direction keeps within the 
bounds of the associated octant boundary. For example, it will be deemed to 
be traveling in direction ’1* as long as its incremental directional angle is 
between 22.5° and 67.5° (45° ambient).
The character curve is initially quantised by the graphics tablet into a series 
of (x,y) co-ordinates. Starting from the first co-ordinate pair, the increm en
tal distance to the next point is calculated:-

(x0,yo),(xl,yl)J(x2,y2) , .............O w * ) -

di=[(x1- x 0)2+(y1-y 0)2]1/2 (5.1)

and the direction o f travel from the first to the second point is:-

0i= !arcfart[(yi-yo)/(*r-*o)]l (5.2)

However, in order to determ ine the exact octant, we m ust recalculate 0! as 
an angle over the complete range 0 to 360°, ie:-

83



if C(yi - yo) ^ 0] and [(Xl - *0) * 0] 01= 0! (5.3)

if [(yi - yo) ^ 0] and [(Xl - x 0) < 0] CD II i—* 00 0 1 CD (5.4)

if [(yi - yo) ^ 0] and [(Xl - x 0) < 0} 0i — 180 + 0i (5.5)

if [(yi - y0) * 0] and [(x x - x 0) > 0] 0! = 360 - 0i (5.6)

Having calculated the angle, we can thus determine the quantised direc-
tion of travel (digit 0 to 7). Therefore, between each point on the character 
curve we can calculate:-
• the linear distance
• the direction of travel

5.2.2. Encoding Mechanism
Therefore, if we take our character ’a’ of Figure 5.2, we can see how 

this modified algorithm encodes the curve.

22

20

Figure 5.4 - Character ’a’ as Output from Graphics Tablet

Table 5.1 gives a breakdown of exactly how the character curve is quantised 
into its Freeman vectors.
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Points Distance Angular
Direction Quadrant

0 - 1 5 187 4
1 - 2 10 204 5
2 - 3 8 225 5
3 - 4 7 237 5
4 - 5 6 246 5
5 - 6 3 265 6
6 - 7 4 297 7
7 - 8 4 355 0
8 - 9 5 20 0

9 - 10 7 41 1
10 - 11 7 46 1
11 - 12 6 52 1
12 - 13 6 75 2
13 - 14 5 84 2
14 - 15 6 268 6
15 - 16 6 270 6
16 - 17 6 | 272 6
17 - 18 5 275 6
18 - 19 5 287 6
19 - 20 4 325 7
20 - 21 4 10 0
21 - 22 3 43 1

Table 5.1 - Increm ental Travel of Character "a*

The travel of the character curve is now grouped into successive similar vec
tor directions, each having a cumulative distance traveled equal to the sum 
of all its elements, as shown in Table 5.2
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Points Quadrant Cumulative
Distance

Normalised
Distance

0 - 1 4 5 0.0397
1 - 5 5 31 0.2460
5 - 6 6 6 0.0476
6 - 7 7 4 0.0317
7 - 9 0 9 0.0714

9 - 12 1 20 0.1587
12 - 14 2 11 0.0873
14 - 19 6 28 0.2222
19 - 20 7 4 0.0317
20 - 21 0 4 0.0317
21 - 22 1 3 0.0238

Table 5.2 - Vector Groupings for the Character ’a ’

Each cumulative distance is divided into the overall curve travel in order to 
produced a normalised travel. By doing this, we are able to encode the vec
tor strings in such a form so as to be able to process characters indepen
dently of the size they were written. Thus we produce the final Freem an 
encoded vector string ’45670126701’. This contains 11 vectors, and associ
ated with each vector we have a relative travel in the range 0.0 to 1.0. This 
weighting allows one to quantise the character curve with a high degree of 
accuracy. The character is represented in an ASCII string as shown below:-

char V 0X q V 1.L l V 2.L 2   Vn.L n < CR > (5.7)

where L 0 +  L x +  L 2 . . . .  +  L n =■ 1 ( 5 .8 )

Therefore, our character ’a’ is represented by the string:-

a  4.04 5.25 6.05 7.03 0.07 1.16 2.09 6.22 7.03 0.03 1.02 < CR >

From the encoded string we can reconstruct the character shape.
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Figure 5.5 - Reconstruction of Character ’a’ from Freeman Encoding

5.2.3. Vector String Distribution
An initial analysis of character encodings produced by a small num ber 

of writers showed that the size of the vector string produced varied greatly 
in size from as few as 1 vector to as many as 20 or so vectors. In general, 
the fewer the points describing the character, the less the am ount o f curva
ture information that can be extracted. As a result, the fewer the num ber of 
vectors in the encoded string. Consider the cases of the two characters ’s ’ 
given below:-
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(a) ’s’ described by 6 tablet co-ordinates

5

(b) ’s’ described by 14 tablet co-ordinates

Figure 5.6 - Character Curvature Variability

The num ber of encoded vectors produced from a character curve has been 
found to depend on three main factors:-
•  character complexity
• character size
• num ber of points in the character (proportional to speed of formation)
The main factor is the character complexity. The more complex the charac
ter is to form, the greater the num ber of inter-octant transitions, and thus 
the greater the num ber o f vectors needed to describe the character path.
The other two points do have some co-relation. As can be seen from Figure 
5.6 a more slowly written character will retain the character shape better 
than a very quickly written character. Our example shows only 3 vectors
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describing the character ’s’ which has been written quickly, while it is
described by 8 vectors when written m ore slowly. Note that the pen traces
the same path in both examples. Therefore the detail of the character, as
described by its Freeman vector string is dependent on the data rate of (x,y) !
co-ordinates from the tablet and the tablet accuracy. However, the reduction I
procedures described later in the chapter attempt to filter out both user and 4
tablet dependencies.
Character size is, as has been m entioned, related to speed of writing. G en
erally small characters are formed m ore quickly than larger characters.
However, very small character shapes do tend to be influenced by the reso- .S
lution of the graphics tablet also. In extrem e cases the accuracy of the tablet 
(or rather lack of it) will distort the character shape and in so doing create 
an encoding with more vectors than would be expected.
If we consider the length of the vector strings produced for a particular -
character ’s ’ we can determ ine the mean vector length and compare it with v
the mean vector length for the complete character set.

Number o f  vectors Number o f  combinations
ly(

3 7
4 103
5 256
6 173
7 89
8 21
9 9
10 3

Producing a length distribution
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Combinations
250

125

Vectors in string

Figure 5.7 - Vector Length Distribution for the Character ’s ’

The mean vector length for the ’s’ is 4.80. For a more complex character it 
would be much higher.
The questions which must be resolved now are:-
• For the lower case alphabet (a to z) how many different vector strings 

will be produced for a single writer, and ultimately how many more 
different vector strings will be additionally produced as more users writ
ing is encoded and added to the database. Too many alternatives may 
ultimately be too much to handle for real time operation.

• Can a particular vector string for one character be sufficiently unique so 
as to be able to distinguish it from all the other vector strings in the 
database. Too much ambiguity between different character vector 
strings will negate the effectiveness of the algorithm.

• Related to both these points, will the algorithm extract sufficient unique 
character information.

The following sections describe the evolutionary steps leading to the algo
rithm in its present form.

5.3. Original Freeman Analysis
Initially it was decided to attem pt recognition of a character by the 

analysis of the path it describes alone. In other words to analyse the vector 
string in isolation. Possible character identities would arise when a match of 
identical vector paths was found between the unknown character and some 
previously analysed known character. The advantage here over the dynamic 
time warping m ethod favoured by some authors in Chapter 1 is the speed of 
search and detection. It was hypothesised that the character matches would 
be found to divide into neat subgroups which could be further processed in 
order to determine the character identity within the subgroup. If we show an 
example to illustrate the reasoning behind this assumption. Characters ’a’,
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’d ’ and ’q ’ are candidates for a subset as they trace very similar character 
curves as drawn by the majority of writers. Therefore we would expect to 
produce a num ber of identical vector strings.

2

2
5

7
5

*d 571261 'ct 571261 Y  571261

Figure 5.8 - Freeman Character Subgroups

Y  571261

One such vector string which describes all three characters was found to be 
downstroke. Therefore, by calculating its relationship to the start point of 
the character and its size to the size of the curved portion of the character a 
decision can be made as to its m ost probable identity, ’a’ ’d ’ or ’q ’. Other 
subgroups having similar shapes can also be identified, ’h ’ and ’n ’,
However, it was soon shown, by analysis of the vector strings produced for 
the character set, that the assumption was not at all valid. The vector string 
we show as an example ( ’571261’) was found also to describe other charac
ters whose basic shape is nothing like the shape of ’a’, ’d* or ’q ’. Figure 5.9 
shows three such examples of characters ’w \ ’h ’ and V  which could also be 
encoded to produce the vector string ’571261’.
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V  571261 'h' 571261 V  571261

Figure 5.9 - Dissimilar Characters Exhibiting the same Vector Strings

It was apparent that a particular character string, taken in isolation, could 
describe quite a num ber of characters in the alphabet set. This diverse 
representation was found to be mainly due to two factors:-
• Character slant - for example, a slanted ’u ’ often has the same vector 

string as an ’a’
• Tops and tails - often produced by writers. These have no bearing on 

describing the character shape. They are actually part ligatures, there 
shape and position relating to the characters produced immediately 
before and after the present one in the word.

Hence it was decided that to attem pt to properly disambiguate characters it 
would be necessary to take into consideration the relative sizes of the vec
tors in the encoded string. (As in the case of the XY algorithm, relative 
vector size analysis allows us to compare characters directly, regardless of 
their size).

5.3.1. Modified Freeman Analysis
The whole essence of this technique for character encoding is that the 

unknown character is compared against a database of alternatives and subse
quent entries from the database, with matching vector paths, used for 
further analysis. The chances o f finding two or more matching vectors 
strings from a database search would be highly unlikely unless the database 
contained a large num ber of writer examples. Hence, some rationalisation of 
vector string length was required. In our example encoding in Figure 5.5, 
the vector string is 11 vectors long. In fact, for many character encodings, 
10 or m ore vectors is quite normal. However, quite a few of the vectors



produced are as a result of a single data point quantisation. These vectors 
contribute very little to the overall character shape. By applying a lower 
threshold we can eliminate the very small vectors and so rationalise the 
string length. Initially, a threshold of 0.04 was chosen, U 25th  of the total 
travel. All vector contributions falling below this value being discarded. 
Therefore our example character would be reduced as follows

ORIGINAL STRING
a 4.04 5.25 6.05 7.03 0.07 1.16 2.09 6.22 7.03 0.03 1.02 < C R >

AFTER REDUCTION
a 4.04 5.25 6.05 -----  0.07 1.16 2.09 6.22 -------------------- < C R >

i.e. four vectors have been eliminated. However, now the total quantised 
travel no longer adds up to unity, but to 0.88. Therefore, it is necessary to 
re-normalise the component travels to return to a value of 1.0.

a 4.(04/0.88) 5.(25/0.88) 6.(05/0.88) 0.(07/0.88) 1.(16/0.88) 2.(09/0.88) 6.(22/0.88) < CR >

Giving

a  4.05 5.28 6.06 0.08 1.18 2.10 6.25 < CR >

This 7 vector string has not lost any significant information contained in the 
11 vector string. The overall character shape is not lost, in fact, the tail on 
the end of the character has been eliminated, and tops and tails are redun
dant information in the analysis of lower case unconnected script. In some 
instances they have been shown to be misleading. Therefore, in this 
instance, the removal of the very small vectors has enhanced the character 
shape by removal of the unwanted tail.

93



5

6

Figure 5.10 - Low Pass Filtering of The Freeman Vector String

A breakdown of the vector strings produced for the complete data set of 112 
users, having been passed through the filter show how the strings are distri
buted. (Table 5.3).

Vectors in String Number o f Strings Cumulative String No.
2 164 164
3 455 619
4 837 1456
5 965 2421
6 1002 3423
7 1027 4450
8 1084 5535
9 1095 6630

10 781 7411
11 539 7950
12 323 8273
13 23 8296

Table 5.3 - Freeman Vector String Distribution.

The highest string length incidence is for strings containing 9 vectors. The 
mean vector string length is calculated at 6.70. As with the X-Y Trend algo
rithm  (Chapter 4), a particular representative code for a character will be 
produced as a result of averaging out the relative trend distances for all 
similar characters with identical vector strings produced as a result of encod
ing the test data sets. The technique is the same as that described in section
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4.1.2.2. Therefore, the unknown character can be compared against the ele
m ents in the Freeman database in order to find all such elem ents which 
have the same vector string as the unknown character. Any such discoveries 
in the database will be fitted against the unknown character in order to cal
culate a measure of fit which is given as a percentage figure 0% - 100%. 0% 
indicates a very poor fit, and 100% a perfect fit. Database construction, 
searching and character fitting are described in chapter 6.
Results of the initial recognition performance using this technique were 
quite promising (~70%) on an initial user test set of 25 writers, as used 
before on the XY algorithm. However, the num ber of Freem an vector 
strings which could represent a single character did appear to be quite large 
(an average of over 100 representations per character). In fact 97 different 
representations of character ’a’ in the database were produced as a result of 
encoding only 150 character V s . Even a single writer, producing con
sistently shaped characters would produce quite different Freem an strings 
(varying in both vector size and vector string path) from one character to 
another. The maximum length of these filtered encodings was 13 vectors. 
The database constructed from the 25 user set had over 2700 vector string 
entries stored in over 100 Kbytes of ASCII codes.
Apart from the large size of the database, the main concern was the am ount 
o f computation required on the larger vector strings as encoded, and the 
am ount of time that would be required to search the database for any 
matches. With an average filtered vector length of around 7, it did appear 
that in the ultimate aim for a user independent system
• database size would soon exceed any manageable proportions
• vector string size would mean a heavy load on vector string manipula

tion in database searching and subsequent processing required to fit the 
alternatives.

If we were to assume that a database could conceivably contain every single 
possible vector combination in all strings from length 1 to 13 we would soon 
reach serious size problems. Total num ber of possibilities is:-
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13
No. o f possible vectors = 8*(7)<*” 1)

«= i

Giving,

Vectors Combinations Cumulative
1 8 8
2 56 64
3 392 456
4 2744 3200
5 19208 22408
6 134456 156864

13 1.1073* 1011

A fter five vector combinations the database size can be seen to be becoming 
quite large for representation of a mere 30 or so character shapes.

5.3.2. Reduced Freeman Vector Algorithm

Our problem is that, in allowing all the shape possibilities to be present 
in the database so as to be able to recognise characters independent of a par
ticular writer we would have to allow a very large num ber of possible vector 
combinations, adding new vector combinations every time a totally new 
writer would require to use the system. In order to approach writer indepen
dence the size of the database would approach the maximum value calcu
lated above for 13 vectors.

Therefore it was decided to approach the problem of vector string length 
from another direction. Instead of working around vector lengths up to 13 
vectors long, the question was posed - How few vectors could a particular 
character be constructed from which would still uniquely differentiate that 
particular character from the others in the alphabet set?
The reason for the question is the underlying and absolutely vital necessity 
for a system at the end of the day which will operate in real time. If we were 
to allow any num ber of vectors in a character string up to the maximum of 
13 the size of the database would tend to 1.1073* 1011. If we can limit the 
num ber of string options to search through, there is a far better chance of 
transposition into a real-time environment.
If we consider the lower case alphabet (a-z) we can construct the following 
vector profile for each character derived from the most common style of 
character formation as written by the 112 user test set.
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Figure 5.11 - Idealised Freeman Encoding For Lower Case Alphabet
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If every writer were to produce the vector strings describing this ideal
ised sub-set we would have no problem whatsoever. No one vector string is 
the same as another, so we would not even need to consider the relative 
sizes of the vectors in order to decide the character identity. This is not the 
case, even for a single writer. A large variety of writing styles has been 
observed. However, by limiting the maximum size of the vector string for 
any one character to a maximum of 5 vectors we could still safely describe 
all the characters (in our idealised set only one character, ’m ’, has 5 vec
tors). A t present the database contains only 2421 vector strings of 5 vectors 
or less out of a total of 8296 vector strings. This represents only 29% of the 
total num ber of vector strings.
By so doing we
1. limit the size of the database to a sensible num ber of vector strings
2. reduce database searching times and speed up the vector string manipu

lation and comparison procedures which account for a significant 
am ount of algorithm time.

The problem, however, is the reduction of a large vector string (up to 13 
vectors long) to a five vector string without the loss of any information vital 
to the unique identity of a particular character.

5.3.2.1. Initial Vector Reduction Technique

If we consider our character ’a’ of Figure 5.10. This has already had the 
very small vectors eliminated, producing a filtered result:-

a 4.05 5.28 6.06 0.08 1.18 2.10 6.25 < CR >

Hence we have a seven vector string to be reduced to a five vector string in 
order to attem pt a match against entries in the database, maximum size five 
vectors. Initially the vector string is searched in order to determ ine which 
vector is the smallest. Vector reduction by eliminating the smallest element 
in the string will ensure that distortion of the original character shape is 
minim ised:-

Vs = smallest vector 
Vi = Ith vector 
L s -  smallest vector length 
Li = length o f  Ith vector

for ( i - 0  upto i < no o f  vectors)

i f ( L t<z ,s ) y5= y (-
Ls=Li (5.9)
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Taking our example character ’a ’ we find that the smallest contributory vec
tor is the first vector, in direction ’4 ’. However, on occasions two vectors 
may be found to have equal smallest contributory travels. In such cases, the 
vector appearing first in the string is taken as the reducing vector. This is an 
arbitrary choice. Unless the initial vector string is only 6 vectors in length, 
the other smallest vector will be the next to be reduced anyway.
The elimination procedure is to remove the vector with the smallest travel 
from the string and to add its contributory travel to one o f the vectors 
either side of it. If the smallest vector is either the first or the last vector 
we have no problem in choosing which vector travel will have the smallest 
vectors travel added to it. It will be the second or penultimate vector respec
tively. Otherwise we have to choose between the two neighbours. In an 
attem pt to preserve the overall shape as long as possible it was decided that 
the smallest vector should be incorporated into whichever of its neighbours 
has has the least angular difference to it. In the event that it has an equal 
angular difference between both neighbours, its contribution is added to the 
neigbour which has the lower relative vector length. If both neighbours have 
the same angular difference and the same relative vector length it is arbi
trary as to which vector the smallest should be added. This again is an 
attem pt at preserving the character shape. Consider the case of identical 
angular differences and relative lengths below.

= 45

(smallest vector) I =  d

n+1

Figure 5.12 - Arbitrary Reduction Decision
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Therefore we produce a series of conditions for a single vector reduction:-

vector string = V0, V UV2, ........ Vn

vector lengths = L 0, L UL 2,  L n

if ( y s - V o )
R = 0
L i~L i + L 0 (5.10)

else if {Vs = V m)
R = n - 1
L n -\-L H-y\-L n (5.11)

else if ( W s - V s . ^ W s - V s ^ l )
R - S
if 0^-i<  Ls+i)

L s - i= L s _ i+ L s

else
L s+l- L s+{+ L s (5.12)

else if ( IV5-  Vs-i  k  Ws - V s+1\)
R ~S
L s - i —L s-i +Ls

else
Ls+i^Ls+i+Ls  (5.13)

Having added the smallest vectors weighting to the appropriate neighbour 
we m ust now remove, the vector from the string completely:-

vector for removal = VR

for ( i - R  upto i<  n)
V i = V i+l
Li=Li+1

n -n -1  (5.14)
In our example VR = V 0, therefore a first vector reduction (using equations 
5.10 and 5.14) produces:-

a 5.33 6.06 0.08 1.18 2.10 6.25 < CR >

This six vector string m ust be reduced once more. The new smallest vector 
is the new second vector in direction six. Therefore we m ust decide which 
of its neighbouring vectors will incorporate its contributory relative length. 
From  equation 5.12 we m ust determine the angular difference between vec
tors ’5 ’ & ’6’ and vectors *6’ 8c ’O’. The difference ’5’-> ’6’ is 45°, while the
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difference *6*-> ’0 ’ is 90°. Therefore we choose vector 5 to add the length 
to, having given the smallest angular difference. Therefore, a second reduc
tion produces:-

Therefore we have our reduced 5 vector string. If we reconstruct the shape 
from the string we produce the character ’a’ as shown below:-

The character ’a ’ has retained its unique features over the course of the 
reductions from the initial 11 vector encoding, although the shape has 
become somewhat more angular than the original quantisation (Figure 5.5). 
Performing this process of vector string reduction on the set of 25 writers 
results in only 1900 encodings held in 59000 ASCII bytes. This is a reduc
tion of 30% in the num ber of vector strings and a reduction of 45% on 
actual physical size. This produced very encouraging results on the 25 writer 
set (> 90% recognition). However, attem pting recognition on the script of a 
new writer, not represented in the database did tend to give variable results 
(ranging from 50-95% recognition). The reason for the poor recognition of 
some script was observed to be a result of not having the particular encod
ing for a certain character in the database. This would produce either a 
non-recognition or sometimes a mis-recognition if the particular vector 
string was present in the database, but representing another character. In 
such cases the character fitting produced a very poor fit.
We have already seen that around 22000 unique vector combinations can be 
produced for vector strings up to 5 in length. Also, a num ber of characters 
can produce identical vector strings. In order to be able to adequately recog
nise characters as written by a variety o f writers, one approach would be to

a" 5 .3 9  0 .0 8  1 .1 8  2 .1 0  6 .2 5  <  CR >

5

Figure 5.13 - Reduced 5 Vector Character ’a ’



keep adding to the database every time new vector string representations are 
identified for a particular character. This did not appeal particularly, since it 
appeared that a completely user-in dependent database may take a large 
am ount of users and time to achieve and would again tend to an unwieldy 
am ount of vector entries.
It was observed that vector reduction tended to stylise the character shapes 
towards the basic encodings shown in Figure 5.11. It was also noted that 
where a mis-recognition or non-recognition occurred due to the encoding 
not being in the database, that a further reduction (from 5 to 4, or from 4 
to 3) would produce a correct match. If we consider our character ’a’:-

a" 5 .3 9  0 .0 8  1 .1 8  2 .1 0  6 .2 5  <  CR >

No vector string ’50126’ may be present in the database for the character 
’a ’. However, a further reduction to four vectors would produce:-

a “ 5 .3 9  1 .2 6  2 .1 0  6 .2 5  <  CR >

There is more likelihood of finding this four vector representation of the 
character ’a’ ( ’5126’). This was seen to be a better alternative to keep 
updating the database. It would be necessary if a completely new style of 
character formation was found.

0

5

(a) Usual character ’a’ (b) Alternative character ’a’

Figure 5.14 - Inclusion of a new character formation style

However, continued vector reduction does mean that we are not required to 
find every unique vector encoding for every writer. We can control the size 
of the database, but will this produce the desired recognition rate for a 
writer who has not been incorporated into the database?
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Obviously, by continually reducing the vector string we will ultimately reach 
the stage where we will be removing vectors from the string which would be 
vital to the overall unique identity of the character. For our character ’a’ 
this would not be so until we have reduced to two vectors:-

a "  5.39 1.36 6.25 < CR > - shape still present

a y 5.39 1.61 < C R >  - shape is lost

However, with other characters the shape would be lost well before reduc
tion to only 2 vectors. Consider the character*m’:-

m 6.19 2.23 6.19 2.18 7.21 < CR >

m 6 .19 2.23 6.19 7.39 < CR >

2 2

6 6

(a) Original ’m ’ (b) R educed’m ’

Figure 5.15 - Invalid Vector Reduction

The vector reduction has produced a very distorted result. In many 
instances it was found that where vector reduction did destroy the integrity 
of the character shape, the resulting vector string, when matched against the 
entries in the database would either find no match, or would match with a 
very poor confidence of fit (due to its distorted shape).
Results of this continued reduction technique were promising. When applied 
to the whole 112 test writers, around 5000 vector entries were produced, 
held in 130Kbytes of ASCII strings. A recognition of around 85% was 
achieved. However, it was observed that a num ber of character mis-
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recognitions were due to a flaw in the reduction technique. Results showed 
that less than 0.5% of the characters were not recognised compared to 4-5% 
before continued reduction. This problem, however, was not difficult to rec
tify and is corrected in the next section.
A large num ber of mis-recognition errors were found to be due to a com 
mon sub-set of mis-recognition s. For example, a ’s recognised as u ’s, g’s 
recognised as q ’s, g’s recognised as y’s, e ’s recognised as c’s, k ’s recognised 
as b ’s. In all such cases it was found that the reduction technique had 
reduced the vector string down to such a level that it had changed the shape 
of the character so as to look like another character. Hence a further 
refinem ent needed to be investigated.

(a) Original ’a’ (b) Reduced ’a ’

Figure 5.16 - Vector Reduction Flaw

The character ’a’ in Figure 5.16(a) has the following vector string:-

a 4 .1 3  6 .1 9  1 .2 0  2 .1 8  6 .3 0  <  CR >

The first reduction produces:-

a 6 .3 2  1 .2 0  2 .1 8  6 .3 0  <  CR >

The shape of the vector string no longer looks like the shape of a character 
character ’u ’ on the strength o f the reduced vector string ’6126’. Similar 
situations are found to arise for the other mis-recognitions quoted above. 
In such instances it is found that even though it is the smallest vector which 
is rem oved, it is not the least significant because it is actually im portant in 
preserving the integrity of the character shape.
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5.3.2.2. Modified Vector Reduction Technique

It was decided to resolve this reduction problem by analysis of the 
angular variation of the vectors in the string as a means of choosing the vec
tor to remove. A large change of direction from one vector direction to 
another is an indication of an important area on the character curve. Small 
angular differences, say + or -45° are usually found to indicate a gradual 
change over the character shape as would be observed along a clockwise or 
anti-clockwise loop. The largest angular difference (+ or -180°) is usually an 
indication of an upstroke/down stroke reversal or vice-versa.

i i

Angular change Angular change
-45°,-45°,-90°,-45°,-45°,- 180* + 180%+45%+45%+90%+45°

(i) Character ’a’ (b) Character ’b ’

Figure 5.17 - Angular Variation considerations

Therefore, if we perform vector reduction between vectors .exhibiting the 
smallest am ount of angular variation, we should be able to hold the charac
ter shape longer. Hence the technique was modified so as to initially search 
for the two vectors which exhibited the least amount of angular variation. In 
many cases it will be found that more than one pair of vectors have equal 
lowest angular variation. In such cases the pair which also has the smallest 
vector among all the pairs is chosen. This smallest vector being the vector 
for removal. The reduction technique is the same as that described in equa
tions 5.10 through 5.14. Therefore our character ’a’ vector representation of 
Figure 5.16(a) will exhibit the following angular variations:-

a 4.13 6.19 1.20 2.18 6.30 < CR >
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+ 90° +135* +45* -180*

The smallest angular variation is between the 3rd and 4th vectors (l->  2 
transition) with the vector direction ’2 ’ exhibiting the smallest magnitude. 
Therefore we take it as the reducing vector to produce:-

a 4.13 6.19 1.38 6.30 < CR >

4

6

Figure 5.18 - Modified Reduction Technique

We have now retained the shape of the character ’a’ through this m ethod of 
angular variation analysis. The recognition rate for the 112 writer set was 
increased to 95% with the new technique now resolving many o f the the 
erroneous vector strings produced by the original reduction method. How
ever, this technique of angular difference analysis, when used in isolation 
can also cause problems. The problem is usually caused by the writer.
It is difficult for a writer to produce lower case unconnected script without 
producing a ’top’ or ’tail* on a num ber of characters. This usually manifests 
itself as a small upward tick produced as the pen is brought down onto the 
paper and then moved (upwards and slightly to the right) to a position from 
which they start forming the character. The encoding of such a character 
usually produces an initial vector which is not part o f the character shape.
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/ I

/ I
/

Figure 5.19 - Character tick problems

Usually the tick is only represented by a very small vector. But since the 
angular difference between the tick and the first contributory vector direc
tion is so large (usually 135° or 180°) the tick will be retained in preference 
to the rem oval of valid character vectors. This, too, has been found to cause 
serious shape loss. Hence an additional test needed to be introduced in 
order to rem ove these ticks.
The ticks were mainly shown to occur in characters which should start with 
a downstroke (ie. b ,h ,i,j,k ,l,m ,n ,p ,r,t,u ,v ,w ,y) encoded as vector ’6’. The 
ticks them selves were encoded as either vector *1* or ’2 \  Hence an initial 
test was made to determine if the first vector in the string was a vector *1* 
or ’2 ’ whose length was small and it was followed by a much larger vector in 
direction angular variation analysis is performed.

5.4. Conclusions
The results obtained for the Freeman recognition technique (given in 

Chapter 8) have proved the m ethod to be particularly robust. One particular 
advantage over the X-Y technique was found to be in instances where the 
character is not found as the best choice. In a num ber of cases where the 
X-Y algorithm mis-recognises a character, the alternative list does not give a 
clear indication of what the letter shape might be. For example, for an ’a’ 
written, the alternatives might be:-

w:61 h:60 a :55 g:45 d'AO

However, for the Freeman technique, the letter subset is usually quite 
apparent even though the correct letter is not the best alternative:-
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d :6 5 q :6 0 a:58

This will more likely assist future word constructions from these letter string 
alternatives. More detail of this is given in Chapter 8, where alternative sub
stitution is described.
This encoding mechanism also tends to retain the original character shape 
better through the reduction process. Hence giving better recognition where 
reduction is necessary.

108



6. CORRELATION AND DATABASE TECH N IQ U ES

6.1. Introduction

Once a character has been encoded into a set of basic parameters it 
m ust be checked against some reference model set in order to determine 
which model in the set it resembles the closest. Usually it is not possible to 
encode a particular character in such a m anner so as to uniquely distinguish 
it from all other character models in the data set, unless either:-
• a particular character is clearly distinguishable in its formation than any

of the others (eg. T ) , or
• the m odel set is small (eg. numerals 0-9)
The level of complexity of the correlation depends on the am ount and varia
tion in the feature parameters extracted from a character curve.
The actual process of correlation is not entirely dependent on the encoding 
technique used, although some m ethods are better at detecting, say, curved 
elem ents rather than straight line elements o f characters. One type of encod
ing where correlation is very evident is in the ’elastic matching’ type recog
nition techniques typified by Tappert [10]. He describes a technique of 
feature extraction by calculating the tangential angles of various points along 
the character curve, together with the vertical distance of these points from 
the baseline of the character. These features are matched against similar 
features extracted from a reference set previously produced by a writer in a 
learning phase. An overall ’smallest difference’ measure is calculated 
between the unknown character and each of the models in the test set by a 
series of recursive and dynamic programming equations. The m odel in the 
test set which produces the lowest ’smallest difference’ gives the m ost prob
able identity of the unknown character.
Burr [43] also describes a similar technique of correlation known as ’warp 
based shape matching’. In this instance the only character encoding per
form ed is that produced by the digitiser quantising the character curve into a 
series of (x,y) co-ordinates. The character is constructed by joining the co
ordinates with a series of line segments. The string of line segments pro
duced by the unknown character are processed to produce a ’smallest 
difference’ measure, calculated as:-
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S ( i J ) = D ( i J ) + m i n ( S ( i - l J ) , S ( i J - l ) tS ( i - l J - l ) ) (6.1)

where

smallest accumulated difference  

D ( i , j ) =  distance measure between i A element o f  curve 1 and j A element o f  curve 2

As with the previous example, recursion is applied. In both cases the charac
ter curve m ust be normalised before applying the ’smallest difference’ meas
ure, otherwise the subsequent processing would be invalid.
Lu and Brodersen [45] designed a Dynamic Time Warping Processor in 
order to allow the recognition to run in real-time, because the technique is 
so processor-intensive. The reference set contains 500 symbols for com
parison with an unknown character. Even so, pre-matching is perform ed in 
order that only 10 or so templates are picked out for matching.
In all the above instances the ’correlation’ or ’shape m atching’ is explicitly 
defined in the recognition process. However, some techniques do perform a 
kind of correlation but it is not explicitly defined. Badie and Shimura [18] 
encode a letter into a series of characteristic curves, namely arc, loop, and 
corner (ie. the topological features are extracted). Correlation is used to 
identify characteristic curves in a written word.
Other techniques perform no kind of correlation whatsoever, namely tree 
structure database analysis. Teitelman [29] extracts character spatial infor
mation and performs a tree search which produces a single recognition 
result. No alternatives are produced. In such cases where only a single result 
is possible, no correlation is necessary. However, such techniques have the 
disadvantage that they result in a black and white decision, rather than hav
ing a choice of possibilities. Correlation introduces the aspect of ’most 
likely’ result followed by a num ber of alternatives. Associated with the alter
native string is usually a numerical indication of the relative recognition cer
tainty.
Closely related to correlation, and a very important factor in the overall 
recognition process is the database against which the unknown character 
encodings m ust be compared in order to produce a match. It was quite 
noticeable in the state-of-the-art study that there was very little detail given 
as to the construction of the database and its inter-relation with the recogni
tion procedure. In most instances there is only a brief description of the 
nature of the elements in the database. Yoshida and Sakoe [23] have a 
reference memory pattern area containing patterns of character categories, 
but no indication is given to the methodology of database matching or its 
size. In many other instances, especially the topological feature extraction, 
an explicit database is not used. Recognition is performed as a series of deci
sions based upon the features- extracted, and knowing that only a certain 
subset of characters exhibit certain features. Hence the decision rules

110



gradually eliminate elements from each subset until a final single possibility 
is reached. Suen et al [41] perform ed a state-of-the-art report on hand 
printed characters (mainly upper case A-Z and numerals). In it they studied 
databases used to represent these characters. Database size will be depen
dent on the type of script being input:-
• numerals
• upper case (A-Z)
• lower case (a-z)
• connected script
• any combination of the above
Database sizes quoted for hand-printed characters ranged from 8Kytes 
(num erals 0-9) to 64Kbytes (letters A-Z). Only 35% of the papers studied 
by Suen actually m entioned the size of the database. It was also noted that 
many of the techniques would require a rethink on the database in order to 
implement the algorithms on a mini- or micro-computer (ie. database 
searching would be too slow as it was). In no paper was the database struc
ture m entioned.

6.2. Correlation
The techniques evaluated in deciding in the final correlation procedure 

are described in the following sections.

6.2.1. Theory

The m ethod of correlation needs to be designed so that it can be 
applied to the analysis of both the Freeman encodings and the XY encod
ings transparently. This is important because we need to be able to relate 
the recognition alternatives produced from one algorithm with those pro
duced by the other in order that the correlation results of each recognition 
algorithm can be used to produce a final alternative string. This is a result of 
combining the various outcomes of the separate algorithms for XY encod
ings (Chapter 4) and Freeman encoding (Chapter 5). The result o f search
ing the XY and Freeman databases is such that only strings with eithen-
• identical XY trend strings
• identical Freeman vector strings
are extracted from the appropriate database against which to perform corre
lation with the unknown character encoding. The database methodology is 
described later. However, assuming that we have picked out a num ber of 
alternatives against which to match the unknown character, the technique is 
to m easure the difference between individual features in each string. The 
total difference calculated for all the feature elements is taken as a measure 
of ’goodness of fit’ of one string to the other. A very small overall 
difference is an indication of a very good correspondence, while a very large 
m easured difference is an indication of a very poor correspondence. The
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algorithm has been amended and evolved over a number of stages.

6.2.1.1. Initial Correlation Measure - The Chi-Square Test

The initial ’goodness of fit’ m easure considered was the chi-square dis
tribution. The idea of ’goodness of fit’ is to compare a sample measure 
obtained with the type of sample one would expect from a hypothesised dis
tribution in order to see if the hypothesised distribution function "fits” the 
data in the sample. In our case the hypothesised distribution function is the 
encoding found from the database to which is "fitted" the unknown sample. 
Formally, the test is given as:-

 ‘ ( 6.2)
1=1 .

where m = no. o f  samples 
E -  expected result 
O -  observed result

In this case, the expected result will relate to the the encoding found in the 
database, while the observed result is the encoding of the unknown charac
ter.
The smaller the computed value of x2 the better the "fit" between the sets of 
results. We want to use the equation to compare an unknown character 
encoding with a num ber of possible alternatives obtained form the appropri
ate database. We wish to know which of the alternatives gives the best fit to 
the unknown character. If we consider an unknown character producing a 
Freeman vector string as below:-
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F ( ? )  = 4.12 5.18 1.27 6.39 0.04

Figure 6.1 - Freeman Encoding of Unknown Character

A search o f the Freeman database produces three possible characters that 
the unknown string might represent:-

F ( a ) =  4.14 5.24 1.35 6.16 0.12  

F ( d ) =  4.19 5.20 1.36 6.20 0.04  

F(<7)= 4.10 5.16 1.30 6.35 0.09 

Reconstruction of the character shape for these three cases produces:-
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5 0

5

(a) (d) (q)

Figure 6.2 - Database Alternatives 

Applying the %2 test gives:-

) 0.12 0.18 0.27 0.39
v.vrry

0.04

\ (0 .1 9 -0 .1 2 )2 . (0 .2 0 -0 .1 8 )2 . (0 .3 6 -  0 .27)2 . (0 .2 0 -0 .3 9 )2 . (0 .0 4 -  0 .0 4 )2
' 0 .12 0.18 0.27 0.39 0.04

, ( 0 .1 0 - 0 .12)2 
) —.......—H'

(0 .1 6 -  0 .18)2 . (0 .3 0 -  0.27) 2 ._ _ + (0 .3 5 -0 .3 9 )2 . (0 .0 9 -  0 .0 4 )2

The lowest value o f %2 indicates the best fit. In this case the actual percen
tage figures are not of as much relevance as the order. Hence the ’q ’ encod
ing extracted from the database gives the best match to our unknown char
acter as it has best fit. Fortunately, this also corresponds with a visual 
hum an analysis. The Freeman encoding of the character does indeed look 
m ost like the character ’q ’ from the database. However, a serious drawback 
was found with the x2 m ethod when analysing an unknown vector which 
had a very small vector contained in its vector string. Consider our character 
to have the slightly different vector string:-

F ( ? ) =  4.12 5.18 1.27 6.41 0.02

ie. the tick on the end of the downstroke is now only half the size as the 
vector string of Figure 6.1. However, the overall shape of the unknown
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character is hardly changed, and it still most closely resembles the character 
*q\ But if we perform the %2 test we get the results:-

0.12 0.18 0.27 ' 0.41 0.02

( 0 .1 9 - 0 .12)2 ( 0 .2 0 - 0 .18)2 . ( 0 .3 6 - 0 .27)2 . ( 0 .2 0 - 0 .41)2 (0 .0 4 -0 .0 2 )2
0.12 0.18 0.27 0.41 0.02

(0 .1 0 -0 .1 2 )2 .
^  i

(0 .1 6 -0 .1 8 )2
_ _ _ _ _ _ _ _  + (0 .3 0 -0 .2 7 )2 ( (0 .3 5 -0 .4 1 )2 .

r n - r  i T  1 - J -
(0 .0 9 -  0.02) 2

The %2 test now indicates that the unknown character now matches the char
acter ’d ’ the closest. However, visually character ’q’ should still be the best 
match. This is due solely the the large measure of deviation produced 
between the last vector in the two strings. The measure of deviation is 
magnified by the division o f the very small relative travel of the end vector. 
Hence the %2 test was discounted due to this oversensitivity when analysing 
very small vector deviations. The example and fit problem have been shown 
using the Freeman vector string, but the same problem occurs when per
forming the fit on XY trend strings (in fact it can produce even m ore alarm
ing results due to the fact that a particular x- or y-trend can actually be zero 
as long as its complimentary trend is sufficiently large that the trend pair are 
not rem oved before analysis).
An important point to make here is that the measures of fit m ust be such 
that they can be compared not only between a set of fits between alterna
tives for a particular Freeman encoding, but also between those alternatives 
and the alternatives produced from its reduced vector string, and, more 
importantly, between the Freeman alternatives and the alternatives pro
duced from "fitting1’ the XY results. Therefore, for a particular unknown 
character (<t>) we will produce:-

<t>(F)= M i ( a ) ,  A f2( P ) ,  M 3(Y ),  M 4( 5 ) ..............
<D'0F)= M [ ( a ) ,  p'), M  3(7 '), M  ^ 8 ) ...........

* ( X Y ) =  N , ( a ) ,  A/2(p ), W3(Y)> ^ 4 ( 6 ) , ..........
d>'(XF)= N i { a ) ,  N 2<p'), iV'CY'), 1^(5'), ......... (6 .3 )

where {a,{5,Y,5,....} = possible character ids 
[M],[W] = correlation measure

The measures of fit [Af ], [A/'], [N] ,  [TV'] m ust have a linear correspondence in 
order that an overall result can easily be determined. Relating to this, the 
m easures of fit are required as a percentage figure 0% to 100% for a perfect 
fit. The measures of fit are required to indicate the relative fit and not 
merely a sequential relationship to indicate the order of goodness of fit. 
Although the chi-square m ethod was found to be unsuitable, it did produce
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an indication of the am ount of deviation for a number of alternatives from 
an observed result. A goodness of fit was produced by subtracting the devia
tion measure from 100% (which is a perfect fit).

Fit{? I a ) -  100.0 -  34.27 = 65.73%

Fit{? I d ) -  100.0 -  19.38 = 80.62%

Fit ( ? /<?)= 100.0 -  15.55 = 84.45%

6.2.2. Kolmogorov-Smimov Test

This is another type of goodness of fit measure. It is preferred by some 
people over the chi-square test as it is found to be more sensitive and more 
reliable over a small sample set, where the standard deviation may not be 
truly representative of the the actual. Basically it determ ines the largest 
difference along the sample set between the expected and observed results 
and uses this as a measure of goodness of fit. Again, the smaller the 
difference, the better the goodness of fit. This has the advantage over the 
chi-square test that it is insensitive to the variations between very small vec
tors that makes the previous test unsuitable.

T = sup I F ( x ) ~ S ( x )  I (6.4)
x

Using this technique on our second chi-square example produces the result:- 

T ( ? l a ) =  (0 .4 1 -0 .1 6 ) =  0.25 - > F i t ( ? / a ) =  75%

T (? Id.)— (0 .4 1 -0 .2 0 ) =  0.21 - + F i t ( ? / d ) =  79%

T ( ? / q ) =  (0 .0 9 -0 .0 2 ) =  0.07 Fi t ( ? / q ) =  93%

The problem of the small vector weighting has been overcome using this 
technique, the fits are ordered in the correct sequence, but the range of fits 
will not span the range 0% to 100% because of the nature of the algorithm. 
An example o f the problem shows how insensitive the difference measure 
is. Take the unknown character:-

116



F ( ? )  = 1.07 6.16 0.18 2.23 4.29  

4

0

Figure 6.3 - Freeman Unknown character

The following two alternatives are found from the database:-

F ( b )  1.21 6.43 0.13 2.11 4 .10 F( o )  1.03 6.29 0.17 2 .26 4.25

0

4

2

0
Figure 6.4 - Freeman Database Alternatives 

Application of the goodness of fit measure gives the result:-
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Fi t (?  / b ) ~  ( 1 -  10.16-0.431 )x  100% = 73%

Fi t (? /o)=  (  1 -  1 0 .1 6 -0 .2 9 1  ) x  100%  = 8 7 %

Although the ’b ’ gives the worst fit, the relative fit of the two characters to 
the unknown does not properly indicate how bad the ’b ’ is compared to the 
’o ’. Visually the ’b ’ is a very poor match to the unknown character. There
fore we would like the goodness of fit measure to be indicative of this.

6.2.3. Correlation Technique

As the established techniques given above were tried and rejected, a 
goodness of fit measure was devised which is really an extension of the 
Kolmogorov-Smirnov test. The corresponding vectors in each vector string 
were compared to find a difference measure. All the separate difference 
m easures were totaled to produce an overall difference m easure. As before, 
the smaller the difference measure the better the goodness of fit. A relative 
difference measure is not produced by division of the expected result as in 
the chi-square test in order to avoid the sensitivity problem previously 
encountered. Form ally :-

D =  £  IOi-Ei  1 (6.5)
i= 1

where m -  no. o f  samples 
E= expected result 
0 =  observed result 
D -  total difference measure

And in order to produce a percentage fit measure we get:-

% f i t  = [ 1 -  £  IOi-Ei I ] x  100%  ( 6 . 6 )
;= i

The benefits of the technique can best be shown by correlating the two 
problem cases for the %2 test and the Kolmogorov-Smirnov test,
• x2 test case (ii)
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Fi t ( ? / a ) =(  1 -  [ 1 0 .1 4 -  0 .1 2 1 +  1 0 .2 4 -  0 .1 8 1 +  1 0 . 3 5 - 0 . 2 7 1+ 1 0 .1 6 -  0 .4 1 1 +  1 0 . 1 2 - 0 . 0 2 1])x  100%  =  49%  

Fi t ( ? / d ) =(  1 -  [ 1 0 .1 9 - 0 .1 2 1 +  ! 0 .2 0 - 0 .1 8 k -  1 0 .3 6 -0 .2 7 1 +  1 0 .2 0 -0 .4 1  k- 1 0 .0 4 - 0 . 0 2 1 ])x  100%  =  59%  

F i t ( ? / q ) = ( l  -  [ 1 0 .1 0 - 0 .1 2 1 +  1 0 .1 6 - 0 .1 8 k -  1 0 .3 0 -0 .2 7 1 +  1 0 .3 5 -0 .4 1  k- 1 0 .0 9 - 0 . 0 2 l ] ) x  100%  =  80%

• Kolmogorov-Smirnov test case (ii)

F * ( ? / 6 ) = ( l  -  [ 1 0 .0 7 - 0 .2 1 1 +  1 0 . 1 6 - 0 . 4 3 k- 1 0 .1 8 -0 .1 3 1 +  1 0 .2 3 -0 .1 1  k- 1 0 . 2 9 - 0 . 1 0 l ] ) x  100%  =  23% 

Fit( ? / 0 >— ( 1  -  [ 1 0 .0 7 - 0 .0 3 1 +  1 0 .1 6 - 0 .2 9 1 + 1 0 .1 8 - 0 .1 7 1 +  1 0 .2 3 - 0 .2 6 k -  1 0 .2 9 - 0 . 2 5 l])x 100%  =  75%

The percentage measures now also give an indication of how well or how 
badly an unknown character matches an entry in the database.
This goodness of fit was found to be identical to the Cramer-Von Mises test 
for goodness of fit dating from 1930.

6.2.4. Algorithm Result Cross-Correlation

Once we have determ ined the correlation results for the Freem an and 
XY algorithm and their respective reductions, we will be left with a series of 
correlation measures as shown in equation 6.3. In order to produce some 
means of analysing the outcome of both algorithms , the relative correla
tions for multiply represented characters are summ ed to produce an overall 
correlation result. This is best illustrated by means of an example. Consider 
the results of correlation of a character ’p ’:-

<D(F)= 86(p ) 8 1 (6 )
4>(F')= 88(/?) 7 5 (6 ) 45 (g ) 4 2 (y )

<E>(XF)= 81 (p )
<t>(X T ')= 8 0 ( p)  6 2 ( 6 )  2 6 ( z )  1 5 ( g )

< D (X r >  80(p ) 6 0 (6 ) 47( s )  36 (y ) 31(g )
<t>(XF")= 78 (p ) 6 6 (6 ) 61(m ) 56( r )  5 3 (n ) 4 5 (g )  4 0 (6 )

Summing the correlation measures produces:-

4 > ( F + * T ) =  4 9 3 ( p )  3 4 4 ( 6 )  1 3 6 ( g )  7 8 ( y )  6 1 ( m )  5 6 ( r )  5 3 ( n )  4 7 ( s )  4 0 ( 6 )  2 6 ( z )

The results are normalised to produce an averaged fit measure between 0% 
and 100%, by dividing each accumulated fit by the integer which allows the 
results to be as high as possible (up to 100%). In this case, this is achieved 
by division by 5 to give a final averaged correlation result:-
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<J>(F+X7)= 95(p) 6 9 ( b )  2 1 ( g )  16(y) 12( m )  l l ( r )  11(«) 9 (j) 8( h )  5( z )

Although this m ethod of cross-correlation is not directly comparable using 
the oversimplified approach detailed above, analysis of the outcome of this 
technique does find the alternative string simply and quickly.

6.3. Databases

Some aspects of the database size have already been m entioned in 
chapters 4 and 5. It is important to determ ine the size of the respective 
Freem an and XY databases which will allow script recognition for a single 
writer with a good degree of accuracy (95-100%). However, it is more 
im portant to be able to estimate the size of the databases which will be 
required in a user independent system. The recognition rate for a particular 
user will most likely be lower in a user independent system due to the fact 
that the need to cater for a much larger degree of character variability will 
lead to the introduction of a greater am ount of ambiguous character form a
tions in the database. Therefore, we need to show that for a user indepen
dent database:-
• (i) the size will not grow to become a limiting factor (in terms of both

memory requirem ents and speed of recognition).
• (ii) the recognition rate will not degrade to an undesirable level in

attempting to achieve user independence.

6.3.1. Analysis of Captured Data

Software tools have been designed which will allow for the automatic 
construction of the Freeman and XY databases from any am ount of data 
collected from the graphics tablet. Character strokes input from the graphics 
tablet are saved to file as they arrive in the form of raw (x,y) ASCII co
ordinates. Each stroke drawn on the graphics tablet is individually recon
structed on a graphics terminal (using the GKS software package) in order 
for the user to key in the identity of the character as written on the tablet. 
These keystrokes are inserted into a datablock constructed at the start of the 
file. Although the subjects write two set test sentences, it is not possible to 
simply insert a preformatted header at the beginning of each file containing 
the text strings for these two sentences. This is because the great majority of 
lower case characters, written in isolation can be formed from m ore than 
one single stroke. Therefore each elem ent of a particular multi-stroke char
acter m ust be saved separately in the header block, because they will be 
recognised separately to begin with.
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+

Figure 6.5 - Typical M ulti-stroke Character (k)

This process of header creation is the m ost important part of the database 
construction. It is the only part that m ust be performed manually. We must 
be careful to ensure that the header stroke sequence is a faithful representa
tion of the raw data strokes following it. Any mistakes in the header stroke 
sequence will cause invalid entries to be formed in the databases. The most 
im portant reason for the need for character verification is that, in some 
instances, the curve traced out by the pen on the paper does not correspond 
to the curve captured by the tablet. Two types of inconsistency may occur, 
both of which are usually caused by erroneous pen down detection in the 
graphics tablet circuitry.
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(i) incomplete character capture

(ii) additional pen m ovem ent capture

Figure 6.6 - Invalid Character Curve Capture

In such occurrences the data is invalidated and does not contribute to the 
database construction.

6.3.2. Database Construction

All valid stroke sequences collected from the users test sentence set are 
passed through the Freeman and XY algorithms to produce the encoded and 
reduced strings as detailed in Chapters 4 and 5. Each encoded string is 
assigned a stroke identity (a -z ,\,/,>  ,- for lower case script), the identity 
being the corresponding elem ent of the header stroke sequence. The Free
man strings, together with their intended identities are filtered to one output
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file and the XY strings, along with their intended identities are filtered to 
another output file. This may be for one particular writer or for any num ber 
of writers.
We now need to perform averaging on the Freeman and XY strings. Many 
of the XY and Freeman strings will not be unique for a particular character. 
Section 4.1.2.2 shows how similar XY strings are averaged to produce one 
single string which will be stored in the XY database. Experiments con
ducted showed that this averaging process reduces the num ber of Freeman 
strings by a factor of around 3 and the num ber of XY strings by a factor of 
around 6. These factors are seen to be larger for a particularly neat writer 
and smaller for an untidy writer, as would be predicted. The act of averaging 
should produce an averaged encoding which should produce a high measure 
of goodness of fit when correlated against its composite encodings.
If we have a num ber of composite Freeman encodings for a character ’a’ for 
the vector string ’45016’ we can produce an averaged Freeman string as 
shown in Figure 6.7 below:-

6 60 6

F ( a 2)=  4.15 5.20 0.14 5.24 6.27 
F ( a i ) =  4.17 5.21 0.16 1.24 6.20 F ( a 3)=  4 .20 5.19 0.15 1.24 6.22

F( a m ) =  (17+ 20+  15) 5 (2 1 + 1 9 + 2 0 ) Q (1 6 + 1 5 + 1 4 ) x (24+ 24+ 24) (2 0+ 22+ 27)
3 3 3 3 3

F ( a m )=  4.17 5.20 0.15 1.24 6.23 

Figure 6.7 - Vector Averaging

Producing the goodness of fit m easures (using the Cramer-Von Mises test):

123



F»7(a1/a av)= (  1 -  [0.00+0.01+ 0.01+ 0.00+ 0.03])x 100% = 95%

Fi t (a2/ a av) = (  1 -  [0 .02+ 0 .00+ 0 .01+ 0 .00+ 0 .04 ])x  100% = 93%

FU{a2l a m ) = {  1 -  [0.03+ 0.01+ 0.00+ 0.00+ 0 .01 ])x  100% = 95%

The two test sentences written are composed of between 80 to 100 separate 
strokes. After producing the original Freeman and XY encoding for each 
stroke, the reductions are also produced. This results in around 150 Free
man encodings and around 220 XY encodings per writer. However, averag
ing reduces this figure to an average of 123 unique Freeman encodings and 
108 unique XY encodings. The results of the script encoding and averaging 
procedures are given in Tables 6.1 and 6.2 for the Freeman and XY encod- 
ings respectively. __________

No. of Users Cumulative Encodings 
(Isolated)

Cumulative Encodings 
(Additive)

1 118 118
2 238 232
3 368 344
4 499 458
5 640 570
6 776 663
7 913 770
8 1041 858
9 1110 902

10 1228 970
20 2456* 1678
30 3684* 2310
40 4912* 2871
50 6140* 3401
60 7368* 3833
70 8596* 4246
80 9824* 4745
90 11052* 5137

100 12280* 5430
112 13754* 5483

* (extrapolated values)
Table 6.1 - Freeman Database Construction
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No. of Users Cumulative Encodings 
(Isolated)

Cumulative Encodings 
(Additive)

1 85 85
2 239 221
3 344 302
4 450 370
5 586 456
6 681 497
7 825 579
8 925 612
9 985 630

10 1076 656
20 2152* 970
30 3228* 1235
40 4304* 1444
50 5380* 1646
60 6456* 1853
70 7532* 1990
80 8608* 2233
90 9684* 2410

100 10760* 2526
112 12050* 2571

* (extrapolated values)

Table 6.2 - XY Database Construction

If we extrapolate these results for the first 10 writers up to the full 112 test 
set, then at most we would produce 13754 unique Freeman vectors and 
12050 XY trends. However, this is an analysis of the scripts in isolation. It 
would be a fair assumption to theorise that writers will produce many 
encodings for certain characters which would be identical to encodings pro
duced by other writers. Therefore, we would expect databases representing 
the full 112 users to be much smaller than the maximum figures we have 
calculated. Figure 6.8 and 6.9 show how the combining of peoples unique 
encodings begins to show a marked tailing off over an initial trial o f 10 writ
ers. A reduction of 21% for the Freeman database and 39% for the XY data
base. Already the combined total of unique encodings for the XY database 
is beginning to show a limiting tendency. Figures 6.10 and 6.11 show the 
results of combining writer data up to the 112 user set. The final total of 
Freem an unique vector encodings is now 5483 strings held in 132 Kbytes of 
ASCII text. This represents a total reduction on the maximum possible 
num ber of strings of 60%. The XY database contains only 2571 unique 
strings held in 157 Kbytes of ASCII text, a total reduction of 79%. The XY 
database shows a much m ore marked tailing of of unique vector entries to
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num ber of users. Extrapolation of the graphs shows that if we add another 
112 users the Freeman database will increase by another 20% (around 1000 
extra unique encodings) and the XY database will increase in size by a simi
lar figure (adding around 500 extra encodings).
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6.3.3. Database Searching

In order for the recognition algorithms to perform in a real time 
environm ent it is vital that the database search strategy is as efficient as pos
sible. We have shown that we can produce reasonably constrained databases 
for a user independent system. However searching of the databases should 
not take up an inordinate am ount of processor time. In many papers on 
script recognition the algorithms have not been developed with ultim ate real 
time operation in m ind and, as such, the database searching sometimes 
accounts for the bulk of the processing time. In many instances this is 
because a simple linear search of the database from start to finish is per
form ed in order to find a correspondence. We set out to devise a more 
economical search strategy. During the database development working on 
the VAX 11/750 the databases are stored in ASCII text files. This is neces
sary in order to visually check particular database entries to check their 
authenticity. Some bad entries tend to find their way into the databases dur
ing the automatic database generation phase.
Loading of the databases from their respective ASCII files 
(5483+ 2571= 8054 lines of ASCII text) into the database structures took a 
long time (around 10 m inutes). Therefore a program was devised which 
would load the databases into an area of memory and perform a binary 
dump of the database structures to a file. This allowed us to simply read in 
this file o f structures into memory instead of the two ASCII files on pro
gram initialisation. This took only a m atter of 5-10 seconds. Of course, once 
transferred to the real time hardware the databases will be stored in ROM 
and no loading will be necessary.

6.3.3.1. Freeman Database

The Freeman database was ordered so as to minimise search time. If 
we consider a Freeman encoding, we can interrogate the vector string to 
determ ine a num ber of distinct features. The obvious feature is that of 
num ber of vectors in the string. For our database this will be 1,2,3,4 or 5. 
Hence we can categorise the Freeman database into vector strings o f equal 
length. A nother feature which can be used to categorise a vector string is 
the direction of the first vector. This will be in one of the eight quantised 
directions (0,1,2,....7). The Freeman database is ordered in both vector 
length and initial vector direction as shown in Figure 6.12
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Order By First

Vector Groupings w
Vector Direction

Figure 6.12 - Freem an Database Ordering

On program initialisation, after the database has been loaded, a two dimen
sional matrix is constructed of dimension 0[5,8]. The row index relates to 
the num ber of vectors in the string (1—>5) and the column index relates to 
the initial vector direction (0-»7). Contained in this array are the addresses 
of the boundaries we have created in the ordering of the database as in Fig
ure 6.12. If we consider the vector string:-

F(a) = v0./0 vj./j  v*./„

We can find the start address of all vector strings of length n which have 
initial vector direction v0 by accessing elem ent 0[«,vo] of the array. This will 
give us the address of the first structure from which we should start our 
search of the database. We should stop searching the database when we get 
to the Freem an structure whose address is obtained by accessing the ele
m ent which indicates the next boundary. This address is obtained from ele
m ent O [n,v0+ 1] or elem ent 0[n+l,O] if vector direction v0 is 7. We have
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effectively restricted our search area by construction of this search array, 
reducing search time greatly. The largest search area in the present Freem an 
database is for vector strings 5 vectors long, beginning in direction 6. There 
are 542 such entries in the database. This represents 9.9% of the total data
base size. If we wanted to speed up search time further in the future we
could produce a three dimensional search array O [5,8,8] and order in terms 
of the direction of the first two vectors in the string.

6.3.3.2. XY Database

The XY database is ordered in a very similar m anner to the Freeman 
database. In this case, the two features extracted from the XY trend encod
ing are:-
• (i) x - y trend count (1,2,3,4,5,6), six maximum.
• initial x and y travel directions (either x -ve/y  -ve, x -ve/y + ve, x

+ ve/y  -ve, x + ve/y  + ve).
Therefor the XY database is ordered as shown in Figure 6.13.
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N o .  o f  x - y  t r e n d s
D i r e c t i o n  o f  
1 s t  x - y  p a i r

x  - v e  /  y  - v e

x  - v e  /  y  + v e

x  + v e /  y  - v e

x  + v e  /  y  + v e

Figure 6.13 - XY Database Ordering

A similar m ethod o f access of the search pointer array 0[6,4] allows us to 
define our limited search area as for the Freem an database. The largest 
search area for the XY database is for strings which have 5 x and 5 y trends 
and commence in direction x + ve/y  -ve. This area is represented by 184 
entries, 7.1% o f the total database size.



7. ANALYSIS AND DISPLAY OF TH E RECOGNISED OUTPUT

7.1. Introduction

Once each single pen stroke has been identified by the Freeman and
XY algorithm combination it is necessary to interpret the sequence of
recognised pen strokes into sensible sentences of text as meant by the 
writer. This takes us into the area of the hum an interface. How and when 
should we show the recognised output to the user and how will they react to 
the way that the interpretation to their written text is displayed back to 
them. This m ust be done in such a way that is sensible and clear to the 
writer. The ideas presented in this chapter are given as a basic initial 
approach more as an aid in analysing the algorithms developed in a real-time 
environm ent. Research into the complexities of the hum an interface is 
probably as big a task, if not bigger than the problem of dynamic script 
recognition. A num ber of stages of processing of the individual pen strokes 
are undertaken during the display phase,
• pen stroke combinations
• word boundary detection
• line detection

7.2. Pen Stroke Combination
M any of the lower case characters written by our initial user base of 

112 writers were found to be form ed by using more than one single pen 
stroke (the exact figure being 1537 out of 10352 characters, or 14.85%). The 
most common occurrence being the characters with diacritical marks - i,j,f,t. 
In such instances it is necessary to reconstitute a character by analysis of 
these part shapes as produced in the separate pen strokes.
At this point it would be helpful to describe the m anner in which the test 
writers were allowed to create their test sentences. As long as the sentences 
were written from left to right along the A4 sheet in a relatively straight line 
the user was allowed to write using their natural writing style (speed, size, 
style of formation) as long as the text was legible to someone reading the 
sentences. However, this does introduce extra pen stroke combination con
siderations. In most instances a character form ed from two separate pen 
strokes is usually completed sequentially in time. However, this was found 
not to be the complete story. In some instances, multi-pen stroke characters 
are only completed at the end of a word, namely the characters i,j,f,t. Hence 
we m ust keep a record of the absolute position of every previously written 
pen stroke in order to determ ine whether two pen strokes written apart in 
time are proximate. In many instances it is quite a simple task to determine 
whether two separate strokes are part shapes of the same character because 
one stroke actually intersects the other,
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Figure 7.1 - Character with intersecting part-strokes (t) 

However, for other characters this is not the case,

Figure 7.2 - Character with two non - intersecting pen strokes (k)

H ence, some threshold value needed to be determ ined in order to decide 
whether the space between the two separate letters *1* and V  was actually an 
inter-character space or an intra-character space. For example, consider the 
following sequence of pen strokes,
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p a c k
Figure 7.3 - W ord ’pack’

By simply determ ining the horizontal spaces between these letters it would 
be difficult to decide that the last two pen strokes should actually be com
bined into a composite character, form ing the letter ’k \  This problem will 
be discussed in more detail in the last chapter (Chapter 9).
By analysing the multi-stroke characters produced by our 112 user set it was 
possible to determ ine the criteria for the attempted matching of two separate 
pen strokes. These are as follows,
(i) If the next stroke crosses the path of any previously written stroke, 

attempt a match.
(ii) If the next stroke is a diacritical mark (i.e. a cross or a dot) and it is not 

a continuation of the present line (i.e. a dash or full stop respectively), 
search back along the sequence o f stroke positional information in 
order to determine the previously written stroke which is closest to the 
mark, but exists in whole or in part below the diacritical mark. (This 
will cater for dots and crosses which are placed within close vicinity of 
their partner stroke as produced by some writers, while ensuring that 
the diacritical mark is not attempted to be matched with a letter from a 
previously written line).

(iii) If the newly written stroke is within a certain threshold distance of the 
last pen stroke written on the current line, it is deem ed to be a part of 
that character. This threshold value was calculated by comparing the 
intra-character distances to the relative sizes of the composite pen 
strokes.

A t this point it was decided that the techniques being developed for stroke 
matching and space detection could not be displayed to the user in this basic 
form at, since not enough information is present while the first few pen 
strokes are being written to be able to display ’words’ and ’characters’ with 
any level of confidence. It was found, from analysis of pen stroke spacings, 
that the deviation between the first 12 spaces in some instances, was so 
great that it was not possible to decide correctly whether a particular space 
was,
(i) an intra-character space (Sp)
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(ii) an inter-character space (Sc)
(iii) an in ter-word space ( Sw)

After only writing two pen strokes on a line, if a space is detected between 
them it is impossible to determ ine whether this space is an Sp, Sc or Sw 
space. Therefore the pen stroke sequence "lc" could be displayed as

(i) k (ii) lc (iii) 1 c
The decision procedure is not feasible until there are enough characters 
written along the line to be able to predict the spacing type with m ore cer
tainty.
One way of reducing this uncertainty is to use some form of n-gram 
analysis. For example, in the case of our written word in Figure 7.3, possi
ble alternatives p a ck  and padc will be discarded in favour of pack by virtue of 
analysing valid letter paths. This is discussed further in this chapter and also 
in some m ore detail in Chapter 9.
A similar problem arose with the display of a part character, before the 
writer has completed the second stroke. In some cases it is possible to 
display the recognised first stroke without confusing the writer (eg. display 
an T  before the writer crosses the Y ), however do we display an T  before 
a writer has completed an T ?  A trial system was developed as shown below,

Download programs

G K S commands

SUN 2-50
RS -232 link 
(x,y) co-ordinates

Numonics Tablet

FORCE
G K S

Figure 7.4 - Initial Script Input System

In order to be able to capture the tablet co-ordinate data and perform the 
recognition and display in real-time, it was necessary to transfer the data 
capture programs and recognition algorithms onto a machine having a real
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time operating system. A FORCE development system, running the PDOS 
operating system was chosen to perform the bulk of the processing, but it 
was necessary to retain the SUN to display the recognition results using the 
Graphical Kernel System to display the A4 page and show the text m anipu
lation being performed. At this stage the display and manipulation of the 
recogniser output is the limiting factor in this demonstration system, since 
GKS running under the UNIX operating system on the SUN is very slow 
and memory intensive. Typically, incorporating the GKS into the run file 
increases the size from around 120Kbytes to around 1Mbyte.
In order to avoid user confusion, while a line of script is being written onto 
the tablet, the raw co-ordinates received from the data tablet are faithfully 
reproduced onto the SUN screen. Therefore the format on the screen of the 
SUN mimics the pen on paper actions of the writer while performing the 
stroke recognition, matching and space detection. Only when a new line is 
detected, will the final space detection processing be performed. Once this 
has been done the ’word’ strings will be displayed in place of the raw data.

7.2.1. The M atching Procedure

When it has been determ ined that two or more pen strokes could be 
elem ents of the same character, it is necessary to decide on the identity of 
the composite character. The matching procedure uses the following infor
mation,
(i) the identity of the first stroke.
(ii) the identity of the second stroke.
(iii) the orientation of the two strokes with respect to one another.
A detailed analysis was undertaken of the characters written by our 112 user
set which were made up of m ore than one single pen stroke. Of the total of 
10352 characters written, the breakdown of the user set is as shown in the 
table below;
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C h a r a c t e r
N u m b e r

M u l t i - s t r o k e
N u m b e r

W r i t t e n
%

M u l t i - s t r o k e

a 7 2 2 1 3 .2

b 3 0 2 0 6 14 .6

c j 2 0 9 0 .0

d 3 0 4 0 5 7 .4

e 1 4 8 1 5 1.7

f 1 4 5 2 0 2 7 1 . 8

g 1 1 3 1 0 3 .5

h 6 3 0 0 2 .0

i 3 4 6 6 1 9 5 5 .9

j 7 6 2 0 7 3 6 . 7

k 1 1 9 2 0 8 5 7 . 2  j

1 - 2 1 5 0 .0

m 2 2 0 5 1.0

n 2 4 0 9 0 .4 9

0 - 4 1 1 0 .0

P 6 4 2 0 7 3 0 .9

q 1 2 2 1 5 5 .6

r - 4 0 7 0 .0

s - 3 1 3 0 .0

t 2 9 7 3 0 6 97.1

u 7 5 1 4 1.4

V 2 2 1 3 1.0

w 1 2 0 6 0 .5

X 2 0 2 2 0 9 9 6 . 7

y 1 6 2 0 7 7 .7

z 1 6 2 0 8 7 .7

TABLE 7.1 - Multi-stroke Character Breakdown
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The results for the characters ’i* and ’j ’ were quite interesting in that 
they show that for our user base, around 45% of all i’s written are not dot
ted, while almost 63% of all j ’s written were not dotted. Therefore we can
not rely on the writer dotting these characters in order to identify the char
acter. Even in some instances where the V or ’j ’ is dotted, the dot is not 
centred over the T  or ’j ’, but over it’s preceding or succeeding neighbour.
We can also see that only 5 characters of the alphabet have not been formed 
from more than one stroke, these being the ’c’, T , ’o V r’ and ’s’. Overall, 
14.85% of all characters written were form ed from more than one stroke. 
The m ost common multi-stroke characters were the ’f’, ’t ’ and ’x ’.
Analysis of the multi-stroke characters has shown that they can be formed 
in a variety of different ways, and from a variety of composite shapes. The 
character ’k ’ is a particularly good example for indicating the different 
means of construction. It can be constructed from one, two or three single 
pen strokes. Figure 7.5 below shows the various styles of formation and the 
breakdown of the percentage occurrences for each particular style.
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( i )

(40.4%) (32.0%) (14.7%)

4.6%)

( i v ) (v)

Figure 7.5 - Various formation styles for character ’k ’

Hence the task o f matching pen stroke pairings is not an insignificant one. 
We m ust not only decide whether the part strokes are valid elem ents o f a 
letter, we m ust also examine the relative positioning, as in the following 
example where we have two opposite diagonals,
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Figure 7.6 - Diagonal Stroke Pairings

Two such strokes in close proximity may produce a num ber o f different 
shape results,

V

(i) (ii) (iii) (iv)

Figure 7.7 - Some Cross-diagonal Shape Permutations

(i) The two diagonals are of similar length and intersect roughly at their 
mid points. Character =* V .

(ii) Backward diagonal roughly twice the length of the other diagonal. First 
diagonal m eets the backward diagonal roughly at its mid point from 
above. Character = *y’

(iii) Diagonals roughly of similar length and come together at their lowest 
point. Character = V .

(iv) The diagonals meet at their highest point. Not an alphabetic character.
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7.2.1.1. The Matching Array

The technique used for pen stroke matching has been centred around 
the construction of a matching array. The design of such an array has been 
developed for the following reasons,
(i) optimisation of the matching algorithm.
(ii) ease of inclusion of new part stroke character constructions.
Each row of the matching array corresponds to a particular valid first stroke 
(first in tim e), and each column in the matching array corresponds to a par
ticular valid second stroke. From  the 112 user base, only a certain num ber 
of valid first and second strokes were found from all the m ulti-stroke char
acters written. Therefore, if we decide that a particular stroke St2 has been 
written within the minimum threshold of some previously written stroke 
STl, we can determine the result of an attempted match by finding the 
appropriate element of the matching array. The procedure is as follows;
(i) A one dimensional array is searched in order to see if any elem ent in 

the array matches the identity of our first temporal stroke, STl. The 
array has previously been constructed from the identity o f first stroke 
as written by our user base. This array is as shown below,

FIRST STROKE ARRAY = { [ , , ] , / ,  c, 1, r, s, v, e, t, o, z, }

If the stroke STl does not match with any element of this array, we can exit 
from the matching procedure, as we have no previous evidence that any 
other stroke could be written after this one in such a way so as to produce a 
valid composite character. However, if the stroke does exist in the array, we 
note its position in the array (i.e. the n* element) to be used as an entry to 
the two-dimensional matching array.
(ii) We now compare the identity of the second pen stroke against a second 

array which holds all the valid second strokes as written by the user 
base. This array is as shown below,

SECOND STROKE ARRAY = c, 1, z, o, e }

If the stroke St2 does not match with any element of this array, we can exit 
the matching procedure as in the first case. However, if the stroke does 
exist, we note it's  position in the array (i.e. the element) to be used as 
the second entry into the two-dimensional matching array.
(iii) Having determined that the two part stroke identities are valid, we use 

their positional information in their respective arrays as m eans of entry 
into the matching array M. In this instance we interrogate element 
M [m ,n]. The current matching array can be seen in the table below,

144



F i r s t

S t r o k e

S econd  S troke

[ \ ] - • / C 1 Z 0 e

[ X f < f ' k
\ X * < ! A ! *
] X X f j X X X

/ k j * t < A X *
c a g t < t A

1 A t * t < @ A A
*

A

r A t

| s f <
V A t
e t < t d
b k b
t k k
0 a
f f
z z
- X

i j

TABLE 7.2 - Character Matching Array

AMBIGUOUS MATHCHES:

* : y, b, p

A : k, NULL (no match if second stroke taller 
than first).

< : i, NULL (no match if second stroke below 
first).

! : y, v, x 

@ :y>t 

~ : a, q, d
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The outcome of an interrogation of the matching array M may take one of 
the following forms;
1. The element in the matching array may contain a letter of the alphabet 

(a-z). This is the identity of the composite character. For example,

2. A NULL character is found. In this instance we have valid first and 
second pen strokes but no previous knowledge that they may be com
bined to give a valid character. For example,

M [ 7 \ V ]  =  M [ l , l ]  - >  N U L L

3. A special character is found (eg. ’+ \ , A • In this case we have found 
two valid first and second strokes, but we must do further analysis to 
determ ine the relative orientation of the two strokes before we can 
determ ine the identity of the composite character (as in the ’xVvVy* 
example previously).

This technique is equally applicable to characters of m ore than two strokes 
by simply making sure that the intermediate pair shape identifier is a 
column num ber in the matching array, i.e. a valid first stroke. Therefore, 
for the case of the three stroke *k\

M [T V -’] = M[5,3] -> V

sT.
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(ii)

Figure 7.8 - Three stroke ’k ’

When the first two strokes are detected, they will be input as a first stroke 
in the matching array. In this example, matching the first two strokes will 
produce the letter ’t \  The letter Y  is now used as a valid first stroke, indi
cating another column in the matching array. Matching this with the second 
diagonal stroke will reveal the final character identity, ’k \

7.2.1.2. Modified Matching Criteria

By studying the result o f the recogniser output with the matching algo
rithm incorporated on the script from the user base, it was found that the 
matching algorithm was attempting to match pen strokes which should not 
be matched. In m ost instances this does not create a problem where either 
one or other of the strokes is invalid or the matching array indicates a 
NULL match. Typical characters which caused erroneous attem pted matches 
were *y9 or ’g’ as the second stroke. For example,
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my

Figure 7.9 - Erroneous Pen Stroke Matching

The horizontal gap between the ’m ’ and *y* is within the threshold for a 
possible match. This is due to the tail on the ’y’ drawing the two characters 
together, and so trying for a match. However, neither the ’m ’ nor the *y* 
are valid first or second strokes in our matching arrays, and so the matching 
algorithm will go no further than checking for t h e ’m ’ as a valid first stroke. 
However, if we do happen to have a stroke written before the *y* or ’g’ that 
is a valid first stroke, we can see from table 7.2 that neither the *y* nor the 
’g’ are valid second strokes.
However, another instance does not produce such a fortunate result. Con
sider the case of the T  and the ’c* below. Again, the horizontal spacing 
between the two strokes indicates that a match should be attempted.
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Figure 7.10 - Erroneous Pen Stroke Matching with Damaging Results

A match will be found, resulting in the character ’k* replacing the correct 
letter sequence Tc". In this instance, the reason for deciding to attem pt a 
match is that the T  is slanted, therefore skewing its x boundary within the 
match threshold distance.
In order to overcome above problems, it was decided that we should only 
analyse the the horizontal distance between two pen strokes only over their 
vertical region of overlap. This will eliminate such occurrences from the 
matching algorithm, i.e.,

my

y overlap y overlap

(i) TAILS (ii) SLANT

Figure 7.11 - Matching Distance Re-Calculation
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This new region m easurem ent was found to
• speed up the matching by not attempting to match due to ’g ’ or ’y*

• increase the overall recognition by not attempting to match separate

In a num ber of instances it was found that the matching algorithm did not 
result in a correct word simply due to the way that the strokes were placed. 
In the case below we will never decide that the m ost likely word is ’pack’.

The matching algorithm will always decide on the letter sequence ’padc’ as 
the m ost likely word. Such problems will be discussed in the concluding 
chapter.

7.2.2. Space Detection

Closely allied to the character matching algorithm is the algorithm for 
determ ining the spacing between words along a line. We assume that along a 
line of text, the size of the characters will not vary significantly. If they were 
to do so, the space detection would not be able to sort out the word spaces 
from the character spaces. However, it is not assumed that every line of text 
be written at a similar size. The space detection is done on a line by line 
basis.
As a line o f text is being written the absolute position of the pen strokes is 
m onitored until it is detected that a new line has been started. This is quite 
a simple task and will be described later. Once the new line is commenced it 
is possible to analyse the horizontal pen spacings that have previously been 
recorded.
Initially, it was planned to determ ine whether a horizontal space between 
two characters as some function of the relative dimensions of the characters. 
This idea soon proved to be impractical as it was found that there was a

tails.

slanted pen strokes.

Figure 7.12 - Indeterm inate Matching Problem
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large degree of variability of spacing, independent of the relative character 
dimensions. It was also found to be impractical to attempt to determ ine 
whether a space was between characters in a word or between words by 
working out an average spacing and using some thresholds above or below 
the average to differentiate between the two. This is because no two writers 
produce word and character spaces which produce a typical standard ratio. In 
fact, in many instances, there is a large variation in the sizes of the horizon
tal spacing between characters, and this was found to be severely detrim en
tal to any type the original ideas for space detection, which involved some 
form of averaging mechanism.
After studying the types of space formation by the user set, a m ethod was 
devised which was independent of both the character size and the space size. 
Of all the sentences in the user set, no space between characters in a word 
was found that was over 5mm, in fact this was roughly the size of a space 
between two words. Therefore, a one dimensional array of 20 elem ents was 
set up which will represent a count of the space sizes detected along a line. 
W hen a line is detected as being completed, the largest space between suc
cessive strokes along the line is used as a maximum bound for the array. 
Hence if the maximum space detected is 10mm, the array will be divided 
into twenty equal divisions, representing space divisions 0-0.5mm, 0.5- 
1.0mm and so on. Similarly, a maximum space detected of 8.0mm will cause 
the array to be divided into increments of 0.4mm, going 0-0.4mm, 0.4- 
0.8mm and so on. Therefore, a space m easuring 2.3mm will increm ent the 
6th elem ent in the array divided for a maximum space of 8.0mm.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ci C2 C3 C20

Figure 7.13 - Space count array

Therefore, the first elem ent of the array will contain a count of the num ber 
of spaces in the line whose length was between 0 and 0.4mm, and so on. 
Consider a typical written sentence,
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s'l s 2s3s4 s5: s 6 s 7 s8 s9 s 10

Figure 7.14 - Spacing Analysis

With space distances:-

0.41mm *6 = 0.61mm

0.56mm s 7 = 5.65mm

0.32mm S8 = 0.13mm

0.14mm s 9 = 0.18mm

3.92mm Sio ~ 0.29mm

M aximum space detected is 5.65mm, giving a span of 5 .65/20mm per ele
m ent in the spacing array (0.28m m ), producing a distribution,

3 4 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

Now, a simple examination of the array enables us to determ ine the inter
word space from the inter-letter spaces. A sequence o f three consecutive 
empty elem ents after the initial group of space sizes detected is used as a 
delimiter between inter-letter and inter-word spacings. Therefore, in this 
example, the inter-letter spaces occupy the first three bands of the array, 
and we have a gap o f 10 empty bands until the next space size is noted. 
Therefore, all spaces greater than or equal that particular lower band limit 
are identified as inter-word spaces. The decision for opting for three empty 
bands was chosen as a result of studying the space arrays as produced by the 
user sentence sets. This was found to be a very robust m ethod for word 
boundary detection, only failing to detect a word boundary when the user 
writes the sentence in such a way that it is impossible to find the boundary
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simply from the space information.

( ! r o m u\espace, inf
no sp a ce  detected

Figure 7.15 - Undetected Word Boundary

Again, application of n-grams to this problem is one possible m ethod of 
resolution. Since thespace is not a valid word, a technique of word-splitting 
followed by n-gram analysis could be used to identify possible word boun
daries.

th espace -no valid words 
the space -both words valid 
thes pace -only one word valid

This problem will be discussed in the Chapter 9.

7.2.3. Line Detection

Before the spaces can be determ ined as word or character spaces, we 
m ust be able to detect that a new line has been started before processing the 
spaces on the previous line prior to displaying the recognised output. In a 
very simplified decision process we could say that a writer producing a sheet 
of text would write sentences from left to right across the page, gradually 
working their way down from top to bottom. In such an instance, it is fairly 
straightforward to detect a new line by simply comparing the absolute pen 
position of the new pen stroke to the absolute pen position of the last pen 
stroke.
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Figure 7.16 - New line Detection

The test for new line is

min<- ( s „ )  -*max3
NEWLINE

This takes into consideration that a writer may go back along a line perform 
ing diacritical mark operations, crossing and dotting incomplete characters. 
From the sentences written by the user base, it was found that some people 
dot and cross characters immediately while others will only complete them 
after writing the other characters in the word.
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1 , 2 , 3 , 4  =  T i m e  S e q u e n c e

(i) (S)

Figure 7.17 - Diacritical Mark Time Sequencing

From the user base it was found that some 88% of people would cross f ’s 
and t ’s immediately while the other 12% would wait until completion of the 
word. However, only 43% of people who dotted i’s or j ’s would do so 
immediately while 57% would wait until the completion o f the word. In 
some instances it was also observed that some writers would read the line 
and then cross and dot incomplete characters, or correct mis-spellings. 
Hence it would follow, that on a page of text, that the writer would want to 
go back to any previously written line and make some changes to that line. 
Therefore, not only m ust we detect that a writer has commenced a new line, 
we m ust also detect any new actions on any previously written lines. This 
facility is discussed here as part o f the functionality of the script input sys
tem , but the human interaction allowable as a result o f this is only discussed 
in the concluding remarks. Detection of the line identifier is quite simple as 
long as the lines written are constrained so as not to overlap in the y plane. 
A measure is kept o f the maximum and minimum y extrem ities of each 
line. Therefore, when a new pen stroke is read in and does not represent a 
new line starting, we can determine whether it is written on the present line 
or some previous line.
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line 0

line 1

line n

(£  o) Jm «

(L q) .y min 

(L i).ymtx

(L l)  min

(L*).ymxx

n)-y min

Figure 7.18 - Line Detection

If the mid-point of the present stroke lies within the bounds of a particular 
it is said to exist on that line, unless the stroke is a diacritical mark. This is 
because a dot or a cross could be placed above the maximum y bounds of 
the line they are on. Therefore, for line n,

i f (pen_stroke =  diacritical )

i f ( mid_pointptnjstrokt>  (Ln) .y mia)&&(midjxjintpen strok€< (L n_{).ymin) 

linejnumber =  n

else

i f (  fnidjxfintpcastrotc >  ( £ *  )  O'min) &&(mid_pointptH_stroke <  ( L * _ i ) . y max)

linejnumber =  n

If the pen stroke is not a diacritical mark and falls outside the bounds of the 
lines previously written, we assume no particular significance, and simply 
ignore the pen stroke.

156



8. RESULTS

8.1. Introduction
The recognition results for the algorithms have been broken down in 

order to assess the performance at the various stages of the recognition pro
cedure. The results specifically highlight the following areas:-
(i) The performance of the Freeman algorithm on the strokes in isolation.
(ii) The performance of the XY trend algorithm on the strokes in isolation.
(iii) The combined or correlated results of the above algorithms.
(iv) The result of the matching algorithm, combining part characters to pro

duce a recognised character string.
(v) The space detection algorithm, detecting line and word boundaries in 

the recognised text string to produce the recognised sentences.
The initial results that are given were performed on the data collected from 
the 112 user test writer set, in order to assess the effectiveness of the algo
rithm s on the user dependent set of writers. However, further results are 
also given for 10 completely untrained writers, whose character styles are 
not incorporated in the XY and Freem an databases. This will help assimilate 
how well the algorithms cope in a user independent environm ent. The level 
o f degradation of these results from those of the user dependent set will 
give an indication as to how well the present user styles represent a wider 
user range, and give some indications as to how much work is still required 
to complement the databases and matching array, possibly with the inclusion 
o f the data sets collected by the students of Trent Polytechnic (another 300 
or so authors).
Various papers written on the subject o f script recognition have considered 
the case of a person, given isolated hand-printed characters to identify. On 
average, it was found that only 96% of all characters shown to people could 
be recognised correctly without the aid of context. A large am ount of infor
mation is elicited by a reader from their understanding of the context and 
semantics of the sentence and/or paragraph. Both Suen et al[42] and H ar
mon [54] quote 96% as the absolute maximum recognition by a human 
without context, therefore this m ust be taken into consideration when ana
lysing the results of the recognition algorithm. Suen et al[42] also consider 
the sizes of databases required for the production of systems that could han
dle ‘user independence’. More importantly, they consider the circumstances 
under which they have been produced. Early databases were very limited, 
both in num ber of samples and style and size of the letter set. Three data
bases were quoted which consist of more than 100,000 alphanumeric charac
ters printed by multi-authors, however much research work requires that 
the writer print characters according to specified rules and models. For 
example, 0 with a slash, I with top and bottom horizontal bars.
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At present, our lower case database contains the writing style of 112 
authors, having produced over 13,000 lower case letters. Since the construc
tion of the initial database, another 326 authors have been sampled, collect
ing another 40,000 lower case characters, 50,000 upper case letters, and over 
10,000 num eric and special characters. This new data is presently being pro
cessed in order to produce a more representative user independent database.
Before realising the results of the recognition algorithms, it m ust be stressed 
that any figures given for recognition rate of a particular system have no 
meaning unless some clear indication of environment, allowed user writing 
style and alphabet set are given. In some papers surveyed, no indication of 
conditions or circumstances were given. In other papers, for example Cas- 
key[28], the character set is limited to allowable FORTRAN characters only. 
However, they m ust be written so as to conform to the national ANSI stan
dard for hand-printed character style.
The two test sentences performed by the authors for the collection of the 
lower case alphabetic data can be seen in Appendix B. The only constraint 
on the writer is that they form the characters from left to right along the 
page, in a reasonably straight line, performing their natural writing style. 
There is no constraint on style, speed or size of writing whatsoever. It was 
decided at a very early stage that only by attempting to aim for as user- 
friendly a system from the outset would it be possible to progress the early 
results to the end goal of a completely natural real-time document creation 
system.

8.2. The Recognition Procedure
D ue to the large am ount of data to be analysed, a num ber of programs 

and utilities have been developed to enable the rapid evaluation of the 
recognition algorithms for the aspects specified in points (i) to (v) in the 
introduction. In order to reliably test the results of recognising the test sen
tences (and to produce valid error free databases as described in Chapter 6) 
it was necessary to confirm the validity of each character or part-character 
written by an author with respect to the data sent by the tablet. This is not 
always completely reliable, mainly due to the problems of data capture out
lined in Chapter 3. All the raw (x,y) co-ordinate data is held in ASCII files. 
The form at of these files is as follows,

{* START OF HEADER
-  packmybagswithfivedozenextra.......................
$ packmybagswl.l-h[-l.vedozene/M-ra..................
! name_id 
% tablet_type 
& date__of_creation 
@ user_specific_features 
*} END OF HEADER
D xxxxx yyyyy
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D xxxxx yyyyy
D xxxxx yyyyy FIRST STROKE

D xxxxx yyyyy 
U 0 0 ”
D xxxxx yyyyy
D xxxxx yyyyy SECOND STROKE

D xxxxx yyyyy 
U 0 0 “
etc

8.2.1. Header Description
The header is delimited by the sequence {*.............. *}. Elements inside

the header are as follows,

8.2.1.1. Text String Sequence
This string is a textual representation of the written letters as produced 

by the author, and is inserted manually into the header after studying the 
written words. This m ust be done manually, as a significant num ber of writ
ing mistakes were found to have been made. Namely, mis-spelling or tran
sposing letters in words, and in some instances, omitting a word altogether.

8.2.1.2. Stroke String Sequence
This string is a textual representation of the actual breakdown of each 

separately produced pen-down action perform ed by the writer during the 
process of creating the two test sentences. By identifying the sequence of 
stroke creation and classifying each shape, it is possible to perform a meas
ure of isolated shape analysis as a first level of the recognition algorithms.

8.2 .I.3 . Name Identifier
The authors name.
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8.2.1.4. Date of creation
The date of creation of the file, format DDMMYY (day-month-year).

8.2.1.5. Tablet Type and Parameters
This gives some detail o f the tablet and how it was set up during crea

tion of the test sentences. The Numonics 2200 tablet was selected as the 
m ost suitable from an evaluation of current technology (Chapter 2). How
ever, two other input devices were purchased,
(i) a Penpad upper case script recognition system. The tablet which is part 

of this product has a stylus with a pen-down switch especially designed 
so as to detect the presence of the pen on the paper even for the light
est writer. However, it was not possible to divorce the data capture part 
of the product from the recognition software in order to be able to 
evaluate its performance.

(ii) the Elographics Touch screen. This provided the best user interface, 
where the author can use their own personal writing device, but is does 
not offer the same resolution and data transfer rate parameters as avail
able from the Numonics tablet. Nevertheless, the Elographics device is 
seen as one possible progression to an early ’electronic paper’ proto
type, especially as there is a transparent version of the tablet already 
available.

8.2.1.6. User Parameters
These are not used at the present time, but they have been recorded in 

the event that some useful information may be extracted at some future 
date. Parameters consist of
(i) Left of right handedness
(ii) Age
(iii) G ender
(iv) Occupation
It is considered that other factors such as state of health, haste and mood 
can also affect the style and shape of the characters formation, Kutlin- 
ski[80].

8.2.2. Stroke Representation
The rest of the ASCII file contains sequences of pen co-ordinate infor

m ation, the ’D ’ status before the (x,y) co-ordinate denotes the pen on the 
paper. Sequences of pen down co-ordinates are delimited by an up-stroke 
m arker, namely (U 0 0).
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8.2.3. Stroke Analysis
A batch process has been written which produces a stroke recognition 

breakdown for each of the 112 reference files containing the raw co-ordinate 
data. The data in each file in turn is encoded into both the Freem an and XY 
representations. These encodings are compared against the appropriate data
base in order to determine the recognised identity of the stroke. Therefore, 
a sequence of such recognition results is produced for each data file for
(i) the Freeman algorithm alone.
(ii) the XY trend algorithm alone.
(iii) a correlation of the Freeman & XY results.
Each sequence is then compared independently to the stroke sequence in 
the header of each file. The header is produced by analysing the contents of 
each file graphically on the SUN workstation. A program reads each stroke 
sequentially from the file, and, using a GKS (Graphical Kernel System) util
ity, plots out the graphical representation from the points onto the screen. If 
the stroke is a complete characters pen-stroke, there is no problem in 
assigning an identity to the pen-stroke, having also the hard-copy of the 
written text for comparison and validation. However, if some characters are 
written by producing more than one single down-stroke, it is the decision of 
the editor to enter the identity of the composite strokes. For m ost compo
site characters there is no problem in this respect. For example,

However, in other cases it is not so simple to classify the composite strokes.

X » l » i i .

ill i f . i l l  i i .
J > ‘ >

Figure 8.1 - Composite Stroke Classification
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' c ' OR 'o '

Figure 8.2 - Uncertainty in Composite Stroke Classification

In a num ber of instances there is m ore than one likely identity of such a 
part stroke. Therefore, whereas the complete character may be recognised 
with no ambiguity by the editor, there is sometimes a degree o f uncertainty 
in assigning identities to some part strokes. The results o f the stroke 
analysis are broken down in the following sections.
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RECO G NISED AS

CHARACTER - • / \ I %age
CORRECT

- 366 23 7 92.42
• 2 507 1 1 99.22

/ 2 2 161 8 93.06

[ 2 9

\ 3 10 1 171 6 89.53

] 5

C 1 1

d 1

e 1
i 1
1 . 29 28 20 755 90.75

0 1 1

r 1 2 1

V 1

w 1

y 1 *

TABLE 8.1 - Simple Stroke Breakdown
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Table 8.1 gives the result of the pre-processor to the recognition algorithms, 
which filters out straight line strokes before these are passed to the Freeman 
and XY algorithms for processing. It was found that 20.60% of all pen down 
strokes written by the author set could be picked out very easily and quickly 
as being simple straight line strokes or dots, these being 1,\,/,- or the dot 
m ark (.). The detection of such strokes was performed by analysing the 
angular variation between successive incremental line elem ents over the 
entire travel of the stroke. If these increments do not exceed some thres
hold value, the stroke is a straight line. Its orientation is easily deduced 
from its end points, and this enables its classification. The dot mark is sim
ply identified by interrogating the size of the stroke in both the x and y 
directions. If both dimensions are below some threshold for a dot, the dot is 
identified. Only in instances where a pen slip has occurred during the crea
tion of the dot will the dot not be detected. However, in such cases the 
stroke will not resemble a dot to a human reader.
The processing of these strokes was performed much more quickly than 
encoding the stroke by the Freeman and XY algorithms and searching the 
databases.

8.2.3.1. Freem an Stroke Results
Our test database was constructed from a total of 112 writers. Each per

son wrote two test sentences, comprising 9 and 8 words respectively, a total 
of 80 letters. (See Appendix B). The overall recognition rate for the Free
man algorithm was calculated at 90.53%. Characters T  and ’x ’ gave 100% 
recognition. This was due in the main to the fact that there were very few 
single stroke ’f ’s or ’x ’s written and these gave very distinct Freem an 
encodings, which were not easily confused with any other character encod
ings.
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T = 12621 'x' = 35150

Figure 8.3 - 100% Freeman Recognition

Analysing Table 8.2 shows a recognition range as low as 79.66% for the 
character V ,  and up to 98.45% for the stroke ’] ’ (i.e. the undotted ’j ’). If 
we look more closely at the character V  we can see that the main reason 
for its poor performance is that, out of all the V s  misrecognised, (48 in 
all), 32 or 67% o f the mis-recognition is as the character ’u \  and 9 or 19% 
of the mis-recognition is as a character T \
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Further investigation into the formation style for the character ’u ’ showed 
that the reason for the large num ber of mis-recognised ’v ’s was due to the 
fact that a num ber of writers produced ’u ’s with no downstroke at the end 
of the character, and that this particular shape was identical to the second 
most popular formation style for the creation of a V .

V  V  /  ' u '

Figure 8.4 - V  and ’u ’ Confusion

Therefore it is impossible to distinguish the second V  type, which has a 
gradual reversal in the y travel, from the less common *u’ which has no 
down stroke.
Similarly, investigation on the shapes of the letters ’r ’ and V  show an area 
where the slope of the down stroke is at such an angle, slightly off the verti
cal, where it is impossible to say whether a V  or an V  was m eant to be 
written.
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Y ’ I  y V

Figure 8.5 - V  and *r’ Confusion

Analysis of the letter confusion matrix for the Freem an algorithm (Table 
8.2) reveals that the vast majority of incorrect recognition decisions is due 
to the shapes of some characters or strokes resembling another character or 
stroke in its shape. Table 8.3 shows, for the cases where a particular stroke 
has been mis-recognised, which strokes make up the incorrectly deduced 
identities. In almost every case, the ’best’ misrecognition is of a stroke 
which is of a very similar shape to the misrecognised stroke or character. 
Some are m ore obvious than others, e.g r - » v,  u v,  « - >  u ,  a ,  w,  

y-*8-
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N u m b e r  o f  in c o rre c t  
o c c u re n c e s

* M is re c o g  
C h a r a c te r  C o u n t

A lg o r i th m  C h a ra c te r  Id e n t i f ie r  
in o rd e r  d e s c e n d in g  o rde r

1 S t %age 2 n d %age 3 r d %age

- 1 4 / |8 5 .7 h } 8 .3 0 18 .3

/ 1 0 I [3 0 .0 - I3 0 .0

[ 1 0 / 140.0 1 140.0

\ 1 8 I (4 4 .4 - [3 3 .3 c I2 2 .2

] 9 0 [5 0 .0 y 125.0 g S25.0
a 4 9  i u 124.5 c = 1 8 .4 d 116.3
b 1 8 P 127.8 0 111.1 u |11 .1
c 3 5 I |2 8 .6 0 I2 8 .6 e 114.3
d 3 5 a 140.6 u (1 5 .6 q 112.5
e 4 6 c 148.9 1 |1 5 .6 n | 6 .7
f 01

g 5 3 P |3 5 .3 y [1 9 .6 s 111.8
h 2 3 n |2 8 .0 b |1 6 .0 k |1 2 .0
k 1 0 h 130.0 u 130.0 n j2 0 .0
1 9 8 c [4 5 .9 \ I2 7 .6 u I 6.1
m 2 9 w 127.6 n [2 0 .7 u i 6 .8
n 2 3 u 126.1 P |1 3 .0 q ! 8 .7
0 3 7 u |2 4 .3 c I 8.1 \ I 8.1

P 5 b I2 5 .0 y I2 5 .0 e J25.0

q 31 g |58 .1 a |1 2 .9 u j 3 .2

r 4 7 V =42.6 P I 8 .5 t | 6 .4

s 1 2 ] i 8 .3 0 I 8 .3 d | 8 .3

t 1 f jlOO.O

u 6 6 V 137.9 n |1 9 .7 0 I 7 .6
V 4 8 u 166.7 r |1 8 .8 I I 4 .2
w 3 5 0 134.3 u 12 0 .0 m I 5 .7
Y nA

y 1 5 g j4 6 .7 q ! 6 .6 ] ! 6 .6
z 7 e 142.8 f 114.3

Table 8.3 Breakdown of incorrect character
Identifiers for the Freeman algorithm 
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In the case of the very simple strokes, misrecognitions occur where strokes 
fall outside the threshold region.

For example, a cross-stroke, the orientation of which is greater than 22.5° to 
the horizontal, will be decoded as a diagonal. In some instances misrecogni
tions do occur in the cases where the Freem an algorithm might produce 
similar vector strings for two strokes/characters whose shapes look quite 
different.

(j) = 22.5°

Figure 8.6 - Simple Stroke Mis-Recognition

v  p = 6265

pO * 62165 y ° = 61265 

y 1 = 6265

z -  0150

ML *

e « 0150

Figure 8.7 - Freeman Encoding Confusions
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The Freeman algorithm passes on the five best alternatives (if indeed there 
are five alternatives) in descending order. Therefore, in the cases where a 
wrong decision was made as the best choice, it was found to be common to 
find the real character identity in one of the four other choices as shown in 
Table 8.4,
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In the cases where the stroke or character has been misrecognised, if the 
second choice is analysed, in 426 out of 615 cases (or 69%), the actual iden
tity is found in the second m ost popular alternative. Hence, by assuming 
that the identity of the stroke or character resides in one of the first two 
alternatives the recognition rate rises from 90.53% to 96.70%. However, 
only a further 0.95% increase is obtained by assuming the top 5 alternatives. 
Therefore, the majority of the confusion for the Freem an algorithm is 
mainly between one of two possible stroke or character shapes.

8.2.3.2. XY Trend Stroke Analysis
The XY trend algorithm gave an overall recognition rate of 78.10%. 

Individual results are broken down as shown in Table 8.5. Results are not as 
good as the Freeman algorithm. In particular, it can be seen that recognition 
of the simple straight line strokes that are not filtered out by the pre
processor (mainly due to having leading or trailing ticks) is particularly poor. 
The cross-stroke is only recognised 14.43% of the time. M ore significantly, 
the majority of cross-strokes (53 out o f 97) are not recognised at all. Simi
larly, poor results can be seen for V , 7  and T . For a m ore complex char
acter, the leading or trailing tick will not be such a large percentage o f the 
total character travel and so will be eliminated at an early stage in the 
encoding reduction. However, as the straight line stroke consists o f two or, 
at the most, three distinct trends in each direction (x & y), the tick will not 
be rem oved.
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The reason for the poor performance of the XY algorithm on the simpler 
strokes is highlighted in the figure below,

XY = -1 .00 / -1.00

Figure 8.8 - Simple XY Stroke Confusions

In other words, the T  cannot be differentiated from the 7 \  *[\ or ’] ’ 
strokes. In order to avoid such confusions, the XY algorithm does not 
attempt to process encodings with a trend count of one in each direction.
Investigation of confusions arising for the more complex XY encodings can 
be highlighted in the following example. Consider the XY encoding for the 
character 7 ’,

I = 0.15 -0.23 0.27 0.34/ 0.18 -0.51 -0.19 0.09
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Figure 8.9 - XY Encoded Character T

However, there are also a num ber of other characters and strokes in the XY 
database which have a similar trend encoding,

X Y -  + -  + + / + -------+ = { l , v t u t o t f , a , z t c , q y e y d , b t n , h  }

Recreating these encodings produces the following shapes,
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...

> '■*>

Figure 8.10 - Similar Trend encodings 
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A num ber of encodings are reasonably good representations of the character 
shape that they are portraying, namely {e, z, b, f}. However, a num ber of 
the encodings represent the character shape with a leading tick, as produced 
by some authors, namely {1, c, u, v, o}. However, the rem ainder of the 
encodings from the database appear to be caused by reducing the XY trend 
until the character shape is lost, namely {h, q, d, n, a}.
Therefore, it appears that the XY algorithm is not as robust as the Freeman 
algorithm for reduction of the encoding, especially for characters which have 
been initially poorly written. For no characters did it appear to be better in 
term s of recognition than the Freeman algorithm. For the more complex 
character shapes, ’w’, ’g’ a n d ’m ’ it performed as well as the Freeman algo
rithm . Reduction tends to produce a very large subset of character id’s with 
similar trend patterns which might cause a processing problem in real-time. 
The above example has 14 different possibilities, and this is not uncommon. 
A breakdown of character identifiers in such cases where the algorithm 
chooses the incorrect character or stroke identity is given in Table 8.6. From 
it we can see that, as for the Freem an algorithm, most instances are due to 
shape similarity.
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N u m b e r  o f in c o rre c t  
o c c u re n c e s

, M is re c o g  
C h a r a c te r  C oun (

A lg o r i th m  C h a ra c te r  Id e n t i f ie r  
in o rd e r  d e s c e n d in g  o rde r

1 St %age 2 n d %age 3 r d %age

- 8 4 r j 8 .3 1 j 4 .8 / | 4 .8
/ | 3 8 I j 1 0 .5 r | 5 .3 [ I 5 .3

[ - 3 2 0 |3 4 .4 c 121.9 / 115.6

\  j 4 5 I |1 1 .1 n | 4 .4 [ I 4 .4

] I 1 1 8 S [3 1 .3 0 I2 3 .7 z 113.6
a 4 0 d [4 5 .0 u 110.0 r j 10.0
b 3 h |6 6 .7 t [3 3 .3

c  ! 1 4 9 I |4 3 .6 0 115.2 b 113.6

d 21 a I3 3 .3 0 |2 3 .8 [ 119.0
e 1 6 8 I I2 8 .6 b ! 1 9 .6 d 116.1
f 5 I j2 0 .0 [ [2 0 .0 t 12 0 .0

g 2 2 y 140.9 q [3 6 .4 s I 9.1
h 61 ] 118.0 n 113.1 b |1 1 .5
k 6 h [6 6 .7 u [1 6 .7 t 11 6 .7
1 ! 3 7 7 \ |2 1 .5 c [1 4 .6 b I 7.1
m 1 1 n J36 .4 w I2 7 .3 u j 9.1
n 51 u (47 .1 S j 9 .8 g I 9 .8
0 7 3 d !2 7 .4 r 116 .4 b 116 .4

P 4 b 12 5 .0 n |2 5 .0 u |2 5 .0

q 2 9 g |4 1 .4 y [ 3 4 .5 ] 113.8
r 1 1 9 V 121.0 [ [1 4 .3 P 114.3
s 9 0 d |2 5 .6 g |2 3 .3 h J12 .2

t 4 r f! 0 0 .0

u 1 2 7 V 141.7 n 119.7 0 .110.2
V 8 8 u (3 7 .5 r j 3 1 .8 I | 1 2 .5
w 6 u |3 3 .3 V 116.7 n 116.7
Y I nA U

y 19 g |5 2 .6 u 110.5 3 [ 1 0 .5
z 7 k [4 2 .8 P I2 8 .6 e I2 8 .6

Table 8.6 Breakdown of incorrect character 
Identifiers for the XY Trend 

algorithm 
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It is interesting to note that if we consider the first five alternatives for char
acter identity, in the case of the XY algorithm (Table 8.7), a recognition 
rate of 98.14% is observed, higher than that found for the Freem an algo
rithm . This is due in main to the imprecision of the XY algorithm.
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8.2.3.3. Combined Algorithm Stroke Analysis
The results of the correlated stroke output are given in Tables 8.8 and 

8.9. The correlated recognition rate is 94.04%, a 3.5% increase over the 
better technique, the Freeman algorithm. Although a m ore mathematically 
precise m ethod of combining the results from the Freem an and XY algo
rithm s might have been found, this m ethod does prove to be particularly 
effective and has the advantage that the correlation processing is very slight 
compared to the other processes, e.g. encoding, reducing, searching, m atch
ing.
We can see from Table 8.8 that the correlated output has no non-recognised 
characters (column ’? ’ in the table). The Freeman algorithm had 86 non
recognised characters (1.05%) and the XY algorithm had 208 non
recognised characters (2.53%). Again, most mis-recognitions are due to 
strokes of similar shapes. The correlated results give the best individual 
recognition rate for each character except the V  and *[\ where a higher 
recognition by the Freeman algorithm alone. The correlated results are seri
ously degraded by the output of the XY trend algorithm.
Due to the variability in the performance of the XY algorithm between the 
simple strokes and the more complicated characters, the possibility of apply
ing some weighting mechanism to the output of the XY algorithm might 
well improve its performance. Hence, a low weighting would be applied to 
the simpler strokes, e.g. T , V , *[', ’/  ’ and so on, and a higher weighting to 
the m ore complex characters, e.g. *m\ ’w \  ’g’ and so on.
The correlated results show little im provem ent over the separate recognition 
algorithms over the first five recognition choices. Indeed, it is not as 
effective as the XY algorithm alone, (97.94% to 98.14% respectively).

182



T
A

B
L

E
-#.8 

- 
Com

bined 
Algorithm

 
Error 

M
atrix

N v<

• f

X < c »" » -G XJ o 13 3 — X* 3 " <Q CD CL o c r — - — - • 1

O

So

_ to S3 03 o \ to -u -u
on ■

2
9 >—* H-k

o to
S3
03

} H-* •c*.
I—* >-* H-k H-k

~TOr
O S3

<-7
\

t—* 1 03 H^ H-k
rtn H-*

>—

5
6 03

rv
H-k

t—» H-k H-k
Us#
OO H-k — j.

S3 H-k S3 H-k p

S3
f-T
OO h-> cr

S3 H-* to K-k

2
7 H-k

-o ■J
n 03 H-k H-k t—. 0

S3 H-k V—. H-k •oos CL

H-k H-k to
nki
to H-k Cn ®

5
7 H-k -

S3 SJ
VOrr\

H-k H-k CO

M H- H-k H-k O >—* O ’

8
6 ►—» p r

S3 H 03 N— H-* H-k to
ov t—» 04 H-k i—»Oo Ux VO H-k

O
H-k
H-k S3 —

t—. H-k H-k 3
►—* u> 04 o to 3

H-k 03
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8.2.4. Character Analysis
These results incorporate the matching algorithm, which is fed the 

stroke information output from the correlator. If the matching algorithm 
were 100% efficient we would expect the stroke recognition rate of 94.04% 
to be converted into a character recognition rate of 94.04%. The results were 
calculated by comparing the character string as written by the author with 
the character string as output from the matching algorithm. However, in this 
instance, there is not necessarily a one to one correspondence between char
acters the same distance along each string. For example,

"packmybags..................." =  REFERENCE STRING

"paclcmybags " = RECOGNISED STRING

A utility was written which does an automatic comparison o f the two strings 
in order to determine the recognition rate. However, in our example above, 
a match for a ’k* has not been made. This leads to two characters appearing 
in the recognised string compared to only a single one in the reference 
string. Therefore, the utility needs to perform some forward searching in 
order to get back into step for the next comparison. In order to be able to 
do this, we m ust assume that over the next five characters in each string, 
there should be sufficient correspondence to be able to to determ ine the 
next comparison points in each string.
If we consider a particular author from our 112 writer set, the analysis of 
their two test sentences is laid out below as a typical example;

Filename : 05081005

Strokes : I]ackm ybagsw U -h]-lvee]cl-rallquor]ugsl]ol-hw lzenedm enqulclzly]uged]-oursharpvl]cens 

R eference  : packmybagswithfiveextraliquorjugsbothwizenedmenquicklyjugedfoursharpvixens 

R ecognised : puckmqbagswithfireextraciquorjvgsbothwizenedmenquicklyjugedgoursharpuixens

R e f  Recognised as

a u :91 a :82 q :58 d :56 n :53

y  q :88 y:87 w:46 g:46 «:33

v r:89 v:73 - : 2 4  i:16 i : l l

I c i t e  1:78 0:54 u:42 b :26
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u o : l \  u :69 c:41 1:34 v:34

u v:68 u :68 /:34 r:22 fc:20

/ <g:50 y:39 1:37 /  :21

v u :73 v:71 r:39 /:36 b:21

Correct N o n -re c  R e c -e r r  Seg—err

Counts 65 0 8 0

%age 89.04 0 10.96 0

Figure 8.11 - Character Analysis by Author File

In this particular example, all the matches have been identified. Therefore 
there is no problem in determining the correspondence between elem ents of 
the recognised and reference strings.
The matches found were,

In this instance, therefore, the recognition performance is not degraded by 
the matching procedure, and all the errors detected are due to mis- 
recognitions at the stroke level. Of the 8 recognition errors found, in seven 
cases the actual identity can be found in the second alternative, and in the 
o ther instance, the identity is found in the fourth and last alternative. The 
types of errors are also indicated above. These are broken down as,
(i) recognition errors, occurring at the stroke level
(ii) non-recognition errors, again at the stroke level where no entry in 

either database can be found
(iii) segmentation errors, occurring where the matching algorithm finds an 

incorrect match for two separate characters.
The confusion matrix for the character recognition level is given in Table

r
Y
T
’x
’b ’
’k ’

8 . 10 ,
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The 112 data files were processed in batch order, the histogram below show
ing a breakdown of the recognition rate on an author level.

Number 
of users

40 —j

20 H

50 10030 6040 9020

% recognition achieved

Figure 8.12 - Recognition Rate by A uthor Script

Sorting through the results, it was possible to determ ine the effectiveness of 
the matching algorithm. Errors in matching are broken down in the follow
ing table,
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Composite
Character

Number
Found

Number
Recognised

%age
correct

a 7 2 28.6

b 30 30 100.0

c 0 0 -

d 30 30 100.0

e 14 5 35.7

f 145 123 ! 84.8

11 8 72.7

h 6 3 50.0

i 34 6 34 3 99.1

! j 143 143 100.0

k 119 9 7 81.5

1 0 0 -

m 2 0 0.0

n 2 0 0.0

0 0 0 -

P 64 62 96.9

q 12 6 50.0

r 0 0 -

s 0 0 -

t 2 9 7 283 95.3

u 7 7 100.0

V 2 1 50.0

w 0 0 -

X 202 189 93.6

1 y 16 8 50.0

z 16 16 100.0

TOTAL 1471 1356 92 .18

TABLE 8.11 - MATCHING PERFORMANCE
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The errors encountered in the matching procedure can be broken down as 
follows
(i) The two part strokes are not sufficiently close for a match to be 

attempted,

u  Ic u match

Figure 8.13 - Character Part Strokes Exceed Threshold

(ii) The two part characters are within the threshold, but are not in the 
matching array,

'q' =

’ m '  =

Figure 8.14 - New Combination of Character Part Strokes

(iii) A match is not found because the first stroke of the composite charac
ter has already been m atched to a previous character,

’a '  &  Y

'n '  & V
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dLiACAclU

Figure 8.15 - Incorrect Part Stroke Combining

Of the most common composite stroke characters, V , ’t \  T ,  ’k \  ’j ’ and 
’x \  the ’k ’ shows the worst matching performance with an 81.5% success 
rate. This problem was found to arise because an T  is not matched to a ’< ’ 
if they are of a similar y dimension. This is needed in order that we do not 
erroneously match undotted Vs to ’c’s.

N U LL match

Figure 8.16 - Differentiating between ’k* and ’ic’

Although most writers do produce ’k ’s as in case (i) above, a num ber of 
such k ’s (around 15-20%) were like case (ii) above and so did not get recog
nised. This problem could be resolved by analysing the stroke dimensions 
with respect to the other strokes in the word in order to decide on a valid 
match, as below in Figure 8.17,
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M atch ,  
->  k

No m atch

Figure 8.17 - Matching by means of relative word dimension analysis 

This possibility is discussed in the concluding chapter.

8.2.5. Space Algorithm  Perform ance Results

The space detection algorithm results are given below for the data 
presented to it from the 112 writer files. A human reader can quite easily 
define the correct word separation by recognising the characters. However, 
this algorithm has no prior knowledge of the character identities, only their 
distance apart. Hence, a human reader can delimit words that would not 
otherwise be separated, having only the spacing information. Errors in the 
algorithm only arise due to sloppy writing by the user. The results are,

Number o f  word spaces 1615

Number o f  spaces not detected 107

Number o f  extra spaces detected 14

This allows some measure of the performance of the space detection algo
rithm ,

( 1615 -  107 -  14 ) 
1615

* 100% = 92.5%
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The problem of space detection would be greatly simplified in the analysis of 
more natural hand-writing where the relative sizes of the spaces between 
words are usually significantly greater than the spaces encountered between 
characters within a word. The main reason for the poor delimitation 
between words for those writers that the space detection algorithm did make 
errors on could be due to the fact that producing such unconnected script is 
not natural for m ost writers, and concentrating on not connecting characters 
tends to make the writer leave a larger gap between characters than they 
would otherwise tend to do.

8.3. Untrained Writer Results

In order to assess the robustness of the recognition algorithms and gain 
some idea as to how representative the databases are to the styles of any 
user, we decided to test 10 completely untrained writers. They were given 
two new test sentences to write and the data files were passed through the 
recogniser. The hard-copy of their attempts can be seen in Appendix C, 
along with a m ore detailed breakdown as output from the assessing pro
gram. The overall recognition rate determ ined was 88.14%, some 5% lower 
than that for those data samples in the 112 user set. A breakdown of results 
is given in Table 8.12,

193



JZ

LO

3
4 C\J

5
.8

8

9
5

.2
5

3
6 CM in

in CM
O

x : m m
CD

3
rd

T— in

1
2

.1
9

9
4

.7
8

2
n

d 9
2 i—

m

9
3

.5
1

9
4

.1
9

-«—• 
w

CO
Tf*
00 7

4
3

8
8

.1
4

8
8

.1
4

C
o

m
p

a
ri

so
n

s

C
o

rr
e

c
t

P
e

rc
e

n
ta

g
e

C
u

m
u

la
ti

ve

CO• y
S3co<D

Vi

£

<N
OO

*S
H

194



Over the first and second alternatives, a recognition rate o f 94.19% is 
achieved. The non-recognition was found to be evenly broken down 
between,
(i) bad stroke matching
(ii) bad tablet data (only partly captured co-ordinates)
(iii) no Freeman or XY encoding for a particular stroke shape.
It was particularly encouraging that the non-recognition due to not finding 
encodings in the databases was particularly low (around 1-2% of strokes). 
This bodes well for the construction of new Freeman and XY databases 
from 500 sample sets, and it is envisaged that the size of such databases will 
not be more than double the size of the present databases.
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9. CURSIVE SCR IPT

9.1. Introduction
Although research into the field of script recognition has been con

ducted since 1960, as yet, little of this effort has resulted in a successfully 
m arketed product. In order to achieve a greater degree of acceptability by 
potential users, certain requirem ents m ust be given particular emphasis.
It is important that the system be capable of recognising a writers natural 
writing style, although, obviously a writer is expected to observe some 
degree of neatness and consistency in their writing. Even so, the user 
should not be made to feel severely bound when using the system. Hence, 
the system should be able to recognise the full range of character sets that a 
writer might use when writing on a piece of paper. The obvious character 
sets would be:-

[V .V .V ........................ V]
[ 'A ' /B ' /C ..............................'Z ']
[^ T \/273747576777879']
[T ,T /% 7 + ',......................1

To date, script recognition products have limited the user to one or two of 
these character sets (e.g., upper case letters and numerals). Naturally, this 
limits potential applications. However, a far greater limitation is the style 
and placement of the writing. Systems hitherto have been confined to the 
recognition of unconnected letters only. The most successful product to 
date, the Penpad [90], requires the user to write either upper case, numerals 
and some punctuation characters within separate boxes on a piece of special 
graph paper. No training is required explicitly, although examples of the 
shape and styles of characters that can be recognised is given. Under such 
constraints, the system will produce very good recognition results (95+ %). 
Such a product is ideal for form filling applications, where a writer is 
required to construct his letters neatly and precisely. Recently, another US 
company has brought out a script recognition product, the Linus Write-Top 
[92]. This product includes an extremely extensive training and tutorial 
package. Once the system has learned a users writing style, it can subse
quently recognise around 96% of written characters. Although not as tightly 
constrained as the Penpad product, the user must write on preset lines and 
ensure that small and large letters are written below and above a dotted 
guideline respectively. The constraint on size and placement of characters is 
a particular problem caused by the limitations of the recognition algorithms.
A more severe constraint on the user, however is the necessity that the user 
form their words using unconnected characters. When we were sampling our 
test data set of writers, it was observed that a num ber of people could not 
write a complete sentence of text using totally unconnected letters unless 
they had several attempts and gave the task their complete concentration.
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An observation of peoples natural writing styles from memos or written 
notes shows that, in general, when a person writes a word, the letters within 
the word may be:-
• entirely unconnected
• some mixture of connected and unconnected letters
• entirely connected
The degree of connectivity between letters within a word depends on a 
num ber of factors, including:-
(i) word length.
(ii) the letters themselves (for example T s  and ’t ’s often cause pen breaks 

in a w ord).
(iii) the writers confidence in being able to spell the word.
This chapter discusses the preliminary work into the recognition of natural 
handwriting. Developm ent of the work has placed particular emphasis on 
ease of usage. The requirem ent o f a natural environment is of particular 
importance. Increasingly, a good deal more effort has been directed towards 
the requirem ents of the user interface by researchers over the last few years. 
The Linus product incorporates the ’electronic paper’ concept which many 
people see as the corner stone of future developments. This hardware 
configuration can emulate the situation of a person writing on a pad or piece 
of paper with a pen or pencil.

9.2. Cursive Script Recognition - A Resume
From the state of the art review, a small number of researchers were 

found to have considered the problem of recognising connected handwriting 
dynamically. The obvious approach being to build on the techniques already 
developed for the analysis of isolated characters by identifying the bounds of 
letters within words. Alternatively, some researchers adopted a completely 
new approach. This being to consider each written word as a single unit to 
be recognised. One reason that this m ethod found favour was the fact that 
hum ans, when reading a piece o f text, are considered to identify words by 
considering the shape as a whole, rather than breaking the word down into 
its constituent letters. Hence, broadly speaking, two distinct approaches have 
evolved:-
• character level analysis
• word level analysis

9.2.1. Character Level Analysis
In this instance the word is broken down into its character components 

followed by separate letter identification. Characteristics within the word are 
identified and used as the basis for splitting the word into possible letter seg
m ents. Providing each letter position is successfully found, the problem of 
subsequent recognition is reduced to one similar to unconnected letter
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recognition. It is of particular importance that the character recognition tech
nique gives a very good recognition rate. For example, the incorrect 
identification of only one letter per word results in a word recognition rate 
of 0%.
A num ber of techniques have been used for word segmentation, including 
the detection of all y minima with a word by Mermelstein and Eden [93]. 
Harmon [94] performs segmentation by estimation of letter widths, and 
extracts the features from the resulting segments. However, the correct 
identification of the letter bounds within a word is particularly difficult, espe
cially when attempting to apply it as a general method for any writer. The 
detection o f one letter bound too many or one letter bound too few will 
make the subsequent task of identifying the word impossible, since the algo
rithm will now be operating under the wrong assumption in trying to process 
the wrong num ber of letters. To give an instance of the problems facing the 
technique of segmentation, let us consider the cursive word 'mummy'. This 
word actually contains 5 letters. However, a technique of minima detection 
would find up to 13 segments, suggesting that the word might contain as 
many as 13 letters.

9.2.2. W ord Level Analysis
As a result of the difficulties encountered in word segmentation, it 

became increasingly popular to perform recognition on the word as a whole. 
Features such as down-strokes, arcs, loops, and cusps are identified. This 
feature sequence is compared against a database of pre-written word 
features. To date, this method has proven to give better recognition results 
than the former. However, it does have some serious limitations:-
(i) the vocabulary size is very restrictive. One technique by Farag [11] 

used a dictionary of only 10 words. Wong and Fallside [66] apply a 
dynamic programming technique based on a technique for the recogni
tion o f continuous speech. However the results are only given for a 
small word sample (less than 10). In order for such a system to recog
nise a particular word, such systems need to be trained with at least one 
prior example of that word provided by the potential user. Hence a 
training phase would be necessary to allow the system to build up a 
database of vocabulary features, in which the potential user m ust write 
at least one example of every word that they might subsequently want 
the system to recognise. Even for a limited vocabulary set of 10-15000 
words, such a task would prove too daunting for most people.

(ii) closely related to vocabulary size is the processing time necessary per 
written word. In general, processing time will be directly proportional to 
vocabulary size. This is not the case for the segmentation m ethod 
where processing time is proportional to the length of the word. Hence 
the feasibility of such a system performing in real time on a large voca
bulary is doubtful as a marketable product.
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9.3. Word Segmentation
We decided that the technique of word segmentation would be 

attempted. If a reliable segmentation m ethod could be found, it would then 
be a case of operating on the letter segments as in the case of unconnected 
script. Six writers were asked to write the two test sentences as before in 
Appendix B. The Freeman coding technique was used to encode the raw 
data. Analysis of the vector string showed that writers who wrote with little 
or no slant formed a ligature, which, when vectorised, produced a con
sistent, repeatable vector sub-string within the word. Depending on the 
complexity of the ligature, this would comprise some sequence of the vec
tors ’O’, *1* and/or ’2 \  This is best illustrated by an example. Figure 9.1 
shows how the cursive word and is encoded:-

The Freeman string produced by this encoding is: 

and = '3456701267016107671056701267'

This encoding highlights 5 ligature elements separating 6 segments (indicat
ing that the word could contain a maximum of 6 letters).

seg l = V = 34567,

Figure 9.1 - Freem an Encoding of the word ’and’

lig i = 012,
seg2 = T = 67,

lig 2 -  01,
seg 3 = T = 6,
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lig2 = 10,
seg4 = T  = 767,

tig4 = 10,
.rcrgs = V  = 567,

/ig5 = 012,
*eg6 -  7  ~ 67.

At this stage, if we did not know that the word and had been written, it is 
not possible to determine which of these ligatures are valid connections 
between letters (inter-letter shapes) and which are actually a part of a letter 
(intra-letter shapes). For our word and we can see that ligatures 1,3 and 5 
are intra-letter shapes and ligatures 2 and 4 are valid inter-letter elements 
and not part of a letter. In order to reconstruct the letter shapes for this 
word, we simply recombine the appropriate neighbouring segments via their 
joining ligature shape, ie,

segl2 = V  s  3456701267,

seg34 = V  = 610767,

seg56 = '(f = 56701267.

In this case we know which segments to join together to obtain the correct 
letter shapes. However, had we not had this prior knowledge, we could 
equally have joined the segments either side o f the valid ligature shapes. 
Quite often this will also lead to the formation of a valid Freem an letter 
vector string. In this instance we get,

^#23 = V  52 67016,

segAS = =  76710567.

The first combination gives another valid ligature shape, but the second 
does not. Therefore, it is necessary to investigate each possible route 
through the word in order to determine which route or routes results in a 
valid word. Figure 9.2 shows a letter net constructed for the word and. Each 
node in the net being a letter possibility resulting by decoding and identify
ing the Freem an string as per the unconnected character analysis.
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START END

u

Figure 9.2 - Letter Net Constructed for the word ’and*

The num ber of routes through the letter net follows the Fibonacci num ber 
series;

F (0) = 0, F (  1) = 1 , .......................F ( n + 1) = F ( n )  + F ( n - l ) ,  n > 0

i.e. 0, 1, 2 , 3, 5, 8, 13, 21, 34, 4 5 ................  (9.1)

Therefore, the six segments detected in the word and indicate that a total of 
13 routes exist through the letter net. These produce the following string 
alternatives,

ciiicl - no 2 segment combinations

aiicl - one 2 segment combination
cuicl
cincl
cii?l
du d

201



ancl - two 2 segment combinations
ai?l
aiid
cu?l
cuid
cind

and - three 2 segment combinations

At this stage we discovered a flaw in the method. The technique did not 
allow for an *m’ within a word to be recognised. This is because the letter 
’m ’ comprises not two but three successive segments. Therefore, once all 
possible one and two segment letters had been processed it was necessary to 
identify any possible ’m ’ occurrences within the word. This is perform ed by 
the identification of three successive small, straight single segments. These 
can be identified after Freeman analysis as having the identity T . Our word 
and in fact has three such elements. Therefore we should also consider the 
possibility of an ’m* existing within this word.

seg234 = V  = 6701610767 

This adds a further level of complexity to the letter net, as in Figure 9.3.
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m

START END

u

Figure 9.3 - Inclusion of ’m ’ in the letter net

This produces two further letter sequences,

cmd - one three segment combination
cm cl

In the case o f a small num ber of letters it is necessary to analyse the shape 
of the ligature between the segments, since in some instances it is actually 
part of the letter itself. This is best illustrated diagrammatically in Figure
9.4.
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I
V

u

'c'

'u'

I A J ]

w

Figure 9.4 - Letter identification by ligature shape analysis

In these instances the ligature shapes are used to order the possible charac
ter identities rather than eliminate some possibilities. For example, although 
a ligature shape might indicate a character *r* had been written, characters V 
and V* are not excluded at that particular node, they are simply to be found 
further down the list with lower confidences.
Assuming that the Freeman algorithm has identified the character shape 
successfully at each node, it is necessary to determ ine which o f these letter 
sequences, if any, gives a valid letter sequence, and thus is a valid word pos
sibility. However, we have shown in the results in Chapter 8, that the 
recogniser sometimes identifies the character as only its 2nd, 3rd, 4th or 5th 
choice. A fter word segmentation, the techniques for identifying the possible 
letter regions, based on the unconnected letter identification algorithms, 
produced very good recognition rates at the character level. The two main 
reasons for this are:-
(i) there is less confusion at the individual character level due to the ticks 

produced by the pen-up and pen-down action. This is because there is 
now less letters delimited by the m ovem ent of the pen onto or off of
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the paper.
(ii) because the initial work is being performed on a writer dependent basis, 

the Freeman database is m ore specific to a single users style, greatly 
reducing character confusions.

Therefore, the individual character recognition rate can be 95+ %. U nfor
tunately this figure quoted is not particularly meaningful when considering 
cursive script. Consider 10 ten letter words written cursively. In each case 9 
out of the 10 letters in each word has been recognised correctly as first 
choice. This would correspond to a recognition rate of 90%. However, it 
also corresponds to a word recognition rate of 0%. The problem that we 
have is that it is not possible to tell (with a high degree of certainty) exactly 
how many letters there are in a cursive word. In our example and this 
num ber was anywhere between 3 and 6. For a particular individual, if it 
were possible to achieve 100% recognition at the character level over say the 
first 5 or 6 alternatives, this could be the basis for some means of higher 
level analysis that would identify routes through the letter net by some 
means of comparison with a dictionary of allowable words. Some initial 
analysis using N-gram techniques has been undertaken in section 9.6 to 
determ ine the initial performance of the cursive script recognition program. 
However, more formal and advanced techniques already exist. L. Evett et al 
[95] describe the work being undertaken at Trent Polytechnic into the 
analysis of letter sequences and methods for dictionary look-up procedures.

9.4. Segment - Ligature Correlation
Having segmented a word into a num ber of segment and ligature sub

strings, it became apparent that m ost writers would form certain characters 
within a cursive word by some combination of successive segments and liga
tures. As a rule, we can classify the lower case alphabet in terms of such 
combinations:-

Single segment

e t 11 j , I * s , z 

Segment ligature combination 

Oy  r ,  v

Segment ligature segment combination

a , b , d , g , h t ky n % o , p ,  q t u , x ,  y 

Segment ligature segment ligature combination 

w
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Segm ent ligature segm ent ligature segm ent combination

m

Segment and cross stroke

f . t

This is not m eant as an exhaustive list. Even from our small sample set, it 
was observed that the same writer would form a specific character in a 
different way depending on its position within a word (especially for charac
ters commencing a word). Characters most often formed in different ways 
were,

b , f ,  k ,  p ,  s , t ,  u , x ,  z

It was apparent, from studying our very small initial sample set, that it was 
not possible to rely on dotting information in order to identify the position 
of the letters T  or *j* within a word. In many instances a writer would omit 
the dot altogether, and in many instances when the writer would dot the 
word, it would not be over the top of the T  or *j* that it was m eant for, but 
over some other letter. Therefore it was decided that the letters T  and ’j ’ 
would have to be identified without the help of the dotting information.
In some instances, it was also necessary to interrogate the shape of the liga
ture leading up to the character shape. Figure 9.5 shows how the characters 
*c\ ’e ’ and ’z* are put into order of confidence by analysing the leading liga
ture. '
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........

I -  I f te z

Figure 9.5 - Analysis of Ligature Shape

9.5. Natural Handwriting
As was pointed out in the introduction, people tend to use some combi

nation of connected and unconnected letters within words when writing a 
piece of text. In some cases, it may be a users natural style to connect every 
letter within every word that they write. On the other hand, some writers 
are m ost comfortable forming every letter disconnected from the last. In 
general however, people use some m ixture of unconnected and cursive text. 
We want a system that can cope with any m ixture of writing style. Initially it 
was thought that it would be of great help to the recogniser if people did 
generally make pen breaks during the process of writing a word. Such pen 
breaks would mean the elimination of an inter-letter ligature. This would 
mean an easier task for the recogniser. For example, take the case where a 
user writes our word and but lifts the pen after forming the a .  Instead of a 
six segment Fibonacci search we would have a two plus four segment 
Fibonacci search. From 9.1 this would produce:-

and 6 segments 13 letter strings

a nd 2 + 4  segments 2 x  5 =  10 letter strings

It was soon realised that this would not be a viable assumption. From table 
8.11 in the results (Chapter 8) it can be seen that, for our sample set of 
unconnected text a total of 1471 character were form ed from m ore than one 
single pen stroke. Subtracting the dottings of ’i’s and ’j ’s this left a total of
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982 characters. From a total of 8960 written letters, this represents around 
11% of all written letters. A person is equally likely to form some characters 
with two pen strokes when writing in their natural style. The obvious candi
date is the letter *k\ If this is the case then our previous thinking would be 
invalid. In the case of the two-stroke 7k 7 we would assume a letter sequence 
Tc’ and never consider the possibility of a 7k 7 being written. Figure 9.6 
shows the extrem es that could possibly occur in different users writing 
styles.

Figure 9.6 - Extrem es in W riters’ Styles

Therefore, no prior assumptions were made as to the construction of a word 
until a num ber of pen strokes were identified as being a complete word. 
Since we are still working with a disjoint tablet and screen, we have a similar 
problem as to when to display the recognised text. It was appropriate at this 
stage to display each word after it was recognised, since, presently, no post
processing is performed after the word analysis. This will lead to initial con
fusion for a writer, since the system will not display a recognised word until 
the next word has been started. If a writer is not fully conversant with a 
particular word, he may stop for a num ber of seconds after writing part of 
the word in order to decide how the rest of the word is spelt. Therefore, he 
would become very confused if, at that point, the system decided the writer 
had finished the word and processed and displayed a half complete word. 
Therefore, the only way o f being certain that a writer has finished a word is 
to detect that he has started a new word. Figure 9.7 shows a breakdown of 
the natural handwriting recogniser. The general construction is very similar 
to the unconnected script recogniser shown in Figure 10.2.
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In order to cater for any multiple pen stroke characters, pen breaks detected 
within a word (apart from cross-strokes for Y s and T s  which are treated 
separately) are removed by the insertion of a ligature from the end of the 
last pen stroke to the beginning of the new pen stroke. This effectively con
verts every unconnected letter string into a cursive word. Obviously, in the 
cases where the letters are a single pen stroke we seem to be complicating 
the problem. However, we have now developed a method of treating every 
written word in the same way. Figure 9.8 shows the technique of ligature 
joining,

Figure 9.8 - Ligature Joining

9.6. In itia l Results

Initial results of the natural handwriting recogniser have proved to be 
very promising. A user, having trained the system, can achieve 95+ % at the 
word level corresponding to a character level recognition rate of 99+ % (tak
ing the first six alternatives). Depending on the num ber of words in the dic
tionary search tree, some of the recognised words may not come out as first 
choice. A user is able to look through the option list by simply dotting the
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stylus onto the appropriate word. This will reveal the 2nd choice, 3rd 
choice and so on to a maximum of 10 alternatives. Figure 9.9 shows the raw 
pen motion produced from the Numonics 2200 tablet when a user writes 
some text on the tablet.

i o  UtfcU O ^ c J ^ O

L/'N. lAsZLojZ wXhjU/ ~ i l x a ^  \^ ck

ciuKaCiXj&tZS) O
CA. iU-xt ^AaXasv "tIrud [Mx/> sf

C s z W  ■&*fccov\ <LvdAyvJV> dVl

o {  C\ pvril 6^ -ftfid.

\Ĵ Xâ ZK otî r-C

Figure 9.9 - An example of natural handwriting

Letter nets were produced resulting from the recognition o f the raw text 
(shown above in Figure 9.9). By identifying each possible letter sequence 
from the start to the end of each letter net, it was possible to compare the 
sequence against some lexicon in order to gain some insight into the perfor
mance of the script recogniser. The lexicon used was the UNIX dictionary. 
At this stage one point became apparent. The lexicon m ust contain all the 
words required to be identified. Hence the UNIX dictionary was supple
m ented with those words in the test script that it did not already contain. 
The result of comparing each possible letter sequence for a word match in 
the lexicon produces the word alternatives shown over the page. As can be 
seen, some words have a num ber of alternatives. These alternatives have
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been ordered using the individual letter confidences. However, this is not 
seen as a definitive, method of finding the most likely word. For example, 
consider the word many producing the word alternatives m an y , maim and norm

1. m :75 a:89 n:69 y:l9 Confidence = (75+89+69+79)/4 = 78

2 . m :75 a:89 i:75 m :4 5 Confidence = (7 5 + 8 9 + 7 5 + 4 5 )/4  = 71

3. n:79 <?:49 r:67 m :45 confidence = (7 9 + 4 9 + 6 7 + 4 5 )/4  = 60
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Many
Maim
Norm

new computer dais want to communicate with
mu
rim
now
inn

users m int it

their applications m
then on
fum in
friar

natural ways hither 
loam rather

them interact 
than 
thorn 
thou

with a computer.
couturier.

this article discusses and evaluates a text editor 
flip follicle ana auto
tub dud
trip curd

that uses standard pilot correction marks drawl directly
float pivot coalition marry drawn quietus
flout proof mealy drank
trot

on the display of a prototype flat panel 
en floe d foot band
oil floe tart bard

interactive system.

This resulting word alternative sequence shows that 39 out of the 45 words 
written are found as the m ost likely word alternative, a recognition rate of 
86.7%. However, if we encompass the first three alternatives for each 
recognised word we achieve a recognition rate of 100%.
The UNIX dictionary, consisting of only 24473 words, cannot be considered 
as an adequate lexicon for general usage, but it does give some indication as 
to the word alternatives that might arise. For example, new and now would 
seem to be reasonable options. However, it is not so easy to explain ways 
and loam . Below is given a breakdown of the word distribution by character 
size for the UNIX dictionary:-
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L etter  count N um ber Percentage
1
2
3
4
5
6
7
8
9
10 
11

> 11

26
91

759
2142
3097
3795
4045
3578
2970
1890
1072
1008

0.01
0.37
3.10
8.75

12.65
15.50
16.53
14.62
12.14
7.72
4.38
4.12

It is reasonable to assume that a larger dictionary would have a similar 
spread of word sizes. Therefore, one would expect that letter sequences 7 
characters long would produce the largest num ber of word alternatives.

9.7. Future Work
Areas for future work which have arisen as a result of developing the 

cursive script recognition system include:-
• W ord splitting and word joining. In some instances it is not possible for 

the cursive script recogniser to detect a word boundary when a writer 
places two words very close together. Likewise, when a writer breaks a 
word up, he often makes such a large gap that the recogniser interprets 
it as meaning two separate words. In such cases, analysis of the letter 
nets by the post-processor usually results in no valid word being found. 
In such cases splitting or joining of letter nets can often result in the 
correct word boundaries being detected.

• The investigation of a dictionary look-up technique that can be applied 
to the output of the cursive script recogniser. The code for the 
recogniser has been downloaded onto a FORCE micro-system. This has 
a 68020 processor and runs at 12.5 MHz, operating under the real-time 
operating system, PDOS (Programmable Disk Operating System). 
Reading of the tablet information, vector encoding, segmentation and 
generation o f the letter nets has proved to run in a real-time environ
m ent with no observable delay for a user writing on the tablet. The 
im portant two factors for the dictionary look-up will be the size of the 
dictionary. What can be considered a reasonable lexicon? 15,000 words, 
30,000 words, 60,000 words? The size of the lexicon will affect the 
am ount o f comparison that m ust be performed for each letter net. 
Hence the mechanism for searching the letter nets and comparing 
against the database m ust be very efficient, both in terms of memory 
and time if real time operation is to be achieved.
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• One area that will be of particular importance is the investigation of 
syntactic analysis as an aid to the word recognition. A syntax analyser 
can check whether a sentence of words are grammatically correct. For 
example, if a word within a sentence is recognised with equal weighting 
as dog or clog, sentence level analysis could resolve the choice by com
paring the two words within the context of the sentence as a whole.

There is also still a good deal of work to be done on the recognition algo
rithms. A further investigation into natural writing styles has shown that 
generally, the segmentation techniques holds good for a large num ber of 
writing styles. However, for people who write with particularly severe slant 
to the left, analysis of the ligature sections for these writers indicated that 
apart from the ’0 ’, ’1’ and ’2 ’ vectors, the ligature was often found to con
tain the ’3 ’ vector. The possibility of including the *3’ vector into the seg
mentation algorithm is being investigated.
A nother area which is under investigation is the design of a training pro
gram, whereby a user writes some test sentences and the program extracts 
the characters from the text and constructs a user specific database from the 
input for subsequent use when the writer wants to use the system. At 
present, a program has been written which allows the user to enter examples 
of lower case, upper case, numerals and special characters and constructs the 
appropriate databases. However, we could not use the program as it is to 
build a database for use when a person uses the cursive script recogniser. 
Most people form a good proportion of connected characters completely 
differently from the way they write unconnected characters (m ost obviously 
*f’, ’s’, ’x ’, V ) .  Hence a system needs to be devised that can accept cursive 
words and extract the character shapes from them, using the prior 
knowledge of the word identity.
Apart from allowing a user to dot previously written words in order to check 
alternatives where the word is not recognised as the best choice, a num ber 
of other simple editing functions have been implemented on the dem onstra
tion system on the FORCE computer. These are,
(i) Word over-write. In some instances the recogniser will not recognise a

word at all. This will be the case where a character shape in the word is 
not known to the recogniser. The user can enter the ’EDIT MODE* 
and try again by writing over the top of the word and the recogniser 
will process the new attempt and display the result in place o f the old 
word. Other instances where the word is not recognised correctly can be 
due to the writer mis-spelling the word or the word being written not 
existing in the post-processors dictionary.

(ii) Word delete. Again, by entering the ’EDIT M ODE’, the user can
delete any num ber of previously written words by simply striking a hor
izontal stroke through the words he wishes to delete.

(iii) Word insert. The user enters the ’EDIT MODE* and identifies the two 
words between which he wants the text inserting by marking the gap 
between them with an inverted ’v ’ symbol. He then proceeds to write
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the text to be inserted. The reform atted line, incorporating the inserted 
text will be displayed after the user has exited ’EDIT M ODE’.

These editing functions have really shown the requirem ent for electronic 
paper. The complexity in manipulation of recognised text display increases 
dramatically with successive editing permutations.
Thought m ust also be given to the construction of an upper case, numeral, 
and special character recogniser before the consideration of a recogniser 
with the capability to cope with the full range of characters and styles a 
writer might want to use. The ability of the cursive script recogniser to cater 
for unconnected script has resulted in a rethink in the design of the upper 
case, numeral and special character recogniser. This is discussed in the con
cluding chapter.
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10. CONCLUSIONS AND FU RTH ER W ORK

The results of the work to date have shown promise in term s of both 
recognition rate achieved and capability of the algorithms to run in a real
time environment. While the overall recognition rate for the trained sample 
set (Table 8.9) gives a performance of 98% for the first five alternatives, it 
is particularly encouraging to achieve a 95% recognition rate (Table 8.12) for 
a completely untrained writer set. This gives credence to the assumption 
that the size of the database required for a more representative user 
independent database should follow the extrapolation indicated in Figures 
6.10 and 6.11.

10.1. A Real-Tim e Environm ent

The development environm ent did allow for a degree of real-time 
operation. Figure 10.1 shows the development environment.

FORCE
68020
MICRO

XON/XOFF PROTOCOL

RS -232 link 
(x,y) co-ordinates

Numonics Tablet

Figure 10.1 - Initial Development Environm ent
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The FORCE micro-computer acted simply as a buffer to ensure that no pen 
motion data was lost as the user wrote on the tablet. This is necessary since 
the UNIX on the SUN, not being a real-time operating system, could not 
schedule the reading of data from a serial port in order that no data was 
lost. However, it was still found to be necessary for the writer to periodically 
pause when using the system to allow for the SUN to ’catch u p ’ by clearing 
the script buffer on the FORCE system. The serial link to the SUN operated 
on a simple XON-XOFF protocol. The processed textual information was 
displayed on the SUN using the Graphical Kernel System (GKS) graphics 
utility. GKS provided the flexibility necessary to rapidly manipulate areas of 
text on the screen, so replicating the actions of the writer creating the text 
being written over the Numonics tablet. GKS has also proved to be an 
invaluable tool in other aspects of the research work. It has been incor
porated in the design of a num ber of development tools. Validating input 
data was of particular importance. Tablet data often became useless during 
prolonged operation. This was due to the electromagnetic field being 
adjusted to the surface of the tablet in order to detect pen up states without 
needing to use the pen-switch which proved useless for analysing handwrit
ing. As the tablet was switched on for long periods, the field would waver 
around the surface of the tablet, so that either pen motion was detected 
before the pen tip reached the tablet surface, or (the other extrem e) pen 
motion was missed even though the tip was on the tablet surface.
The other major task was checking the shapes in the Freeman and XY data
bases. It was often possible to enter a character shape into the database with 
the wrong character identity. In order to avoid mis-recognitions due to this 
error it was necessary to periodically check the integrity of the databases 
after a major addition to the num ber of codings contained therein. GKS 
allowed easy development of a shape regenerator. Hence erroneous entries 
could be easily detected and rem oved.
However, the use of GKS in this form beyond the developm ent stage was 
not seen as particularly viable. The executable run file size on the SUN 
without GKS was 0.25Mbyte, but this increased to around 1Mbyte by link
ing in the GKS run-tim e code. Since we are using only a small fraction of 
the full GKS capability, a graphics interface with more specific functionality 
would be better suited for a standalone demonstration of the recognition 
algorithms.
It has been possible to achieve a better degree of real-time capability of the 
algorithms by dowloading the C code onto the FORCE and re-linking to run 
on the FORCE. This has been achieved both for the unconnected recogni
tion program and the cursive recognition algorithms described in Chapter 9. 
In fact, the cursive recognition program, building up the letter nets and 
incorporating the simple editing functions described in chapter 9 resides in 
less than 60Kbytes of code on the FORCE. Presently, we are still using the 
serial link to the SUN. In this instance it is used to send the GKS calls to 
the SUN in order that the GKS can still be used for display purposes.



10.1.1. Possible Speed/Memory Improvements

It was decided to investigate speed improvements that might be made 
in the unconnected script recognition code once they had reached a rela
tively bug free, stable state. Figure 10.2 shows a breakdown of the separate 
tasks within the program, indicating the relative time spent by the processor 
in each function during the course of a text creation session.

219



Q.to
ID Q.to

cn
c\i Q .

o>
JCo

CO

C3>

<  <» ^  to jS {a CO
o>
cvi

to
00coCC CO CD 

U _ Q  CO

O
cm oo•o

O)cn
T 3TO

CD
COUL

cq
o CO co lE

CM
ID

CO g

220

«
c
£
•3
1
8

CQ

<o

1
I

cn
o

2 
3  W)•F*«cu



This analysis was obtained by running the recogniser on the SUN using the 
UNIX utility, g p ro f. D um m y C routines were linked in, in place o f the GKS 
code for reasons of clarity in analysing the gprof output. The code was then 
recompiled and run to produce an execution profile. The UNIX command is 
simply:-

gprof executable_file

Most of the time is spent doing the actual character recognition tasks. This 
is a total of 60% of the processing for the XY and Freeman tasks combined. 
One development route might be the design of a dual-processor architec
ture, paralleling the XY and Freeman tasks. This alone would result in a 
reduction o f around 20% in overall processing time.
Within the algorithms themselves, it was noted that the largest sub-tasks 
were database searching and string manipulation. The XY database in partic
ular, with its m ore complicated encoding format, would benefit significantly 
in term s of processing requirem ent by simplifying the search. This could be 
achieved by reform atting the XY encoding so that storage requirem ents and 
processing time are both reduced. At present we have a typical encoding 
form at :-

V  -0.10-0.25 0.20 0.25 0.20/ 0.10-0.20-0.10 0.30-0.30

Each trend is assigned a signed floating point number for storage. This 
encoding form at could have been represented thus:-

V  -1 0 -2 5  20 25 20/ 10-20-10  30-30

These XY param eter distance could have been stored in a char variable in C, 
making the string manipulation considerably faster. Storage size would also 
be greatly reduced. The floating point num ber requires 32 bits for storage, 
while the character byte only requires 8 bits. Hence a space saving of around 
three quaters for the XY database.
It has become increasingly apparent, from the results obtained for the 
unconnected script recogniser, and from the development of the cursive 
script recognition system, that the Freeman algorithm has proved 
significantly m ore robust and versatile than has the XY algorithm. However, 
investigation is necessary to determine what role, if any, the XY algorithm 
has to play in the further development of the cursive script algorithms. 
Although the XY algorithm has shown that it is not particularly good at 
recognising characters as best choice, it is marginally better than the Free
man algorithm when incorporating the best five alternatives. (Compare 
Tables 8.4 & 8.7), and so may yet play some part in the cursive recognition 
algorithms. As an initial idea, the raw data could be re-processed with the 
XY algorithm if no valid word match is found after processing by the Free
man algorithm.
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10.2. Extension of the Character Base

Some initial work has been done with regards to the recognition of 
upper case characters, numerals and some of the more commonly encoun
tered special characters. (See Appendix B). Around two-thirds of the 112 
writers used to create the lower case databases also gave examples of the 
above m entioned character sets. It would be interesting to see how the 
unconnected script algorithms would cope with a different character base.
The major difference in the design of the recogniser was the construction of 
the matching array required to identify the various part character shapes that 
may be produced. The task of database construction was particularly easy in 
comparison. Although these new character sets contain m ore complex char
acter shapes, it was found that such characters were created by forming a 
num ber of strokes, often just a num ber of straight line elements. For exam
ple, ’A \ ’E ’, considerably fewer shapes to encode (supported by the fact that 
the Freeman and XY databases were smaller), even though the num ber of 
characters supported in the databases was about twice the num ber for the 
lower case alphabet.
Consider the four-stroke ’E ’:-

Figure 10.3 - Four-Stroke ’E*

The num ber of alternative formation routes is determ ined as «!, n being the 
num ber of strokes in the character. Therefore, the four-stroke ’E* can be 
form ed by 24 different stroke sequences.
The variety of partly formed character shapes that needs to be identified for 
this example alone was found to be:-
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(i) (ii) (iii) (iv) (v) (vi)
Interm ediate two-stroke shapes

(i) (ii) (iii) (iv))
Intermediate three-stroke shapes

Figure 10.4 - Character ’E ’ Intermediate Shapes

At this stage it became apparent that the basic approach to the matching 
would not be suitable for the upper case aphabet. Instead, the concept of 
character stroke combination, adopted in the cursive recogniser to cater for 
m ulti-stroke characters, was seen as a far simpler and more effective 
approach. Figure 10.5 shows how this combination technique would operate 
on two differently formed character ’E ’s:-

223



3

2
4

-►

Ei = '462050’ Eo = ’0505036’

Figure 10.5 - Character Joining

This approach means that the upper case, numerals and special character 
sets can be added into the recogniser by incorporating the new character 
shapes, m ost probably by the construction o f a complementary character 
shape database to that for the lower case alphabet.
Obviously, such a combination of letter sets would require an extra level or 
post-processing beyond that currently implemented. The increased am ount 
o f character confusions that might ensue might involve characters from all 
four letter sets. For example:-

T ,  ’1 \  T ,  V ,  T ,  * (’, T

One technique which could provide valuable information would be to 
analyse the size and vertical position of characters along a particular written 
line. However, it is particularly im portant that the zonal boundaries of each 
word or character grouping can be accurately distinguished. Zonal position 
of characters would be of great benefit in ambiguity reduction.
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upper zon e

baseline

lower zon e mid zone

Figure 10.6 - Zonal Boundary Detection

A technique for zone detection m ust be able to cater for problems such as:-
• slanted lines
• inconsistent character sizes along a line
• wavy baslines ( ’hill and dale’ writing)

10.3. M arket Opportunities

Although the cursive script recogniser shows promise as a tool that 
might be incorporated into some future market product, it must be said 
that, to date, script recognition related products have not found widespread 
acceptance. In the UK, Ferranti and Quest Microsystems have marketed 
products, but with little success. In the USA, Pencept [91] have achieved 
some degree of market success. Linus Technologies [92] are pointing the 
way towards the vehicle for script recognition acceptance. We are finally 
moving towards products which have advantages over using a keyboard. 
One area which would be of particular importance would be the integration 
o f a natural editing function with the recognition software. Many computer 
and word-processor users find it particularly annoying to have to learn a new 
editor each time they use a new machine. This is regarded as a particularly 
im portant feature that the electronic paper envirom ent could provide.
Optical character recognition (OCR) devices have had much greater m arket 
penetration due to the amount of unconnected script documents in the 
office produced in the form of typed pages. In many instances these exist 
only in hard-copy form. Scanning and recognition allows the m ost economi
cal form of entry to a computer, for updating and correcting, or simply for 
easier archival. OCR has begun to diversify to the recognition of hand
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printed documents also. This might have some uses, however, documents 
produced by hand are not .usually written entirely in block printing. It is usu
ally some combination of upper and lower case script, and, what is more, 
connected letters.
The ideal environm ent for dynamic script recognition (DCR) would be a 
situation as close as possible to the natural environm ent of working with a 
pen and paper as being used by Linus Technologies in their new product. 
Technology has now advanced to the stage where this scenario can be re
created electronically by putting a transparent tablet over the top of a flat 
screen. The cost and resolution of flat screen technology has made sufficient 
advances in recent years so as to make such a device economically viable. A 
flat screen, either LCD or gas plasma, having a resolution of 640 x 400 pix
els and measuring 12" along its* diagonal length currently costs around 700 
US dollars (not including display driver software). A transparent tablet 
which could be placed over the top of the display would cost a further 
1300-1900 US dollars with its power supply and controller. Therefore, a 
prototype ’electronic paper’ system could be purchased for 2000-2600 US 
dollars. Tappert et al [86] have already built such a device and investigated 
its’ suitability as a medium for a handwriting recognition system. Figure 
10.7 shows an example of script recognition being operated in an electronic 
paper environment.
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Figure 10.7 - An Electronic Paper Hardware Environm ent

Problem s that m ust be overcome are largely,
(i) the real-time display of the pen m ovem ents ( ’electronic ink’).
(ii) ease of use by the writer. They found that this was in direct relation to 

the problem of parallax.
The initial electronic paper set-up had a distance measure of 0.45” from the 
surface of the tablet to the display plane. A thinner transparent tablet having 
a gap of only 0.17” separation was also tried, and it was found that people 
could write much faster, due to the reduced parallax problem. M ost flat- 
screen vendors also sell associated graphics drivers, these are a pre-requisite 
for displaying the raw textual information, or ’electronic ink’.
The advent of the ’electronic paper’ system will herald the developm ent of a 
m ore natural means of file/docum ent manipulation. This can be performed 
by the user as they would if they were editing a document with a pen on 
paper. By defining a set of natural editing symbols, it is possible to make the 
electronic paper file editing a particularly simple task, even for the untrained 
user.
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The combination of the realisation of electronic paper with a natural 
handwriting and editing environm ent has enorm ous scope for m arket 
development. It gives the machine the means of adapting to the most fluent 
m ethod of communication for the human user.
The design and integration of a natural sketch recognition and editing task
“  Y i Ch a r dUCj  WOUld result in a totaI>y self-contained mixed mode 
h!?™ • T 3 f “  docum ent creation system, having a natural means of
hum an interface Such a concept could form an integral role in the func
tionality o f the office workstation of the future. However, a variety of lesser
but m ore immediate market opportunities can be defined which are m ore 
immediately attainable,

(0  Portable memo-pad, an electronic paper device that can be used in the 
held to record dynamic manuscript and sketch graphics, that can be 
transcribed by recognition software back at a base unit.

(ii) Signature recognition/verification devices. There is enorm ous potential 
for such products. Banking and point-of-sale terminals are prime areas 
for such an application.

(m) Handwriting recognition as an identification mechanism in a secure 
environment.

(iv) Rem ote recognition via a telephone link. An example might be rem ote 
form-filhng where the form is sent down the telephone line to be 
displayed on the users screen, say, from an insurance company. The 
client can the fill m the form on an electronic paper device. Their raw 
data is transmitted back to the insurance company offices where it is 
recognised and the recognised information transmitted back to the 
client for viewing and/or alteration.
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Appendix B: SCRIPT TEST SHEETS

Each writer giving a sample of writing style was asked to produce the follow
ing as examples of their
(i) lower case unconnected
(ii) upper case, num eral & special character
(iii) cursive (or natural) 

handwriting style.



ESPRIT PROJECT 295 - TEST SHEET 1

Please write the following sentences in lower case unconnected lettering:-

p a c k  m y  b a g s  w i t h  f i v e  d o z e n  e x t r a  l i q u o r  j u g s

b o t h  w i z e n e d  m e n  q u i c k l y  j u d g e d  f o u r  s h a r p  v i x e n s

B2



ESPRIT PROJECT 295 - TEST SHEET 2

Please copy the following:-

P A C K  M Y  B A G S  W I T H  F I V E  D O Z E N  E X T F 1 A  L I Q U O R  J U G S

0 1 2 3 4 5 6 7 8 9  & %$ * ( ) { } [ ] < § > ! ?  + =



ESPRIT PROJECT 295 - TEST SHEET 3

Please write the following sentences in your natural handwriting style:-

pack my bags with five dozen extra liquor jugs

both wizened men quickly judged four sharp vixens
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Appendix C: New Writer Hard-Copies & Results Breakdown

The following results are those obtained from the 10 data sets collected from new, 
untrained writers whose script styles have not been incorporated in the database. 
There are also hard-copies of the scripts that these writers produced.

1. Filename: am k.ref Dated: 18-3-88
Tablet: Numonies

Reference: the quick brown fox jumps over the lazy dog
able grown men have quickly found their sexy jokes zapped

Recognition: the quick brown fox jumps over the lazy dog
able grown men hqve quickly fousd their sexy johis zapped

ERRORS:

Ref Recognised as

q:77 a:73 d:69 u:67 g:47 
s:44 p:38 z:33 o:31 j:27 
h:86 n:57 r:49 p:47 s:26 
i:99

Correct Non-rec Rec-err Seg-Err

Counts 81
Percentage 95.29

0
0.00

4
4.71

0
0.00

2. Filename: dc.ref 
Tablet: Numonics

Dated: 18-3-88

Reference: the quick brown fox jumps over the lazy dog
able grown men have quickly found their sexy jokes zapped

Recognition: the quoek brown fox jumps ouer tne lazy aog
able grown men naue quuckly found tlieir sexy jokes zupped

ERRORS:

R ef Recognised as



V u:87 v:79 r:42 t:37 b:34
h n:80 h:74 r:38 a:25 k:24 1
d a:95 d:85 q:59 n:48 u:46
h n:80 h:80 u:57 k:54 y:28
v u:71 v:66 b:16 f:13 o: 9
i u:99 v:84 i:78 r:51 b:33
h 1:99

i:80 j:63 i:50 n:40 -:19 f
a u:92 a:76 d:74 o:63 q:62

Correct Non-rec Rec-err Seg-Err

Counts 75 0 9 1
Percentage 88.24 0.00 10.59 1.18

3. Filename: esp.ref Dated: 18-3-88
Tablet: Numonics

Reference: the quick brown fox jumps over the lazy dog
able grown m en have quickly found their sexy jokes zapped

Recognition: the quick brown foe jumps over the lazy dog
gble grown men have quickly found tueir sexy jekes zapped

ERRORS:

R ef Recognised as

X c:62 r:30 j : l l
a g:91 q:85 a:70 d:68 n:51
h u:90 a:67 h:66 n:63 w:43
o e:78 o:72 z:50 c:47 f:40

Correct Non-rec Rec-err Seg-Err

Counts 81 0 4 0
Percentage 95.29 0.00 4.71 0.00

i

1
I

4. Filename: ghm.ref Dated: 22-3-88
Tablet: Numonics

Reference: the quick brown fox jum ps over the lazy dog
able men have quickly found their sexy jokes zapped

Recognition: the qvick brown tox jum bs orer the zazy dog 
able men have qviculy found rheir sexy jores zpjed
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ERRORS:

R ef Recognised as

u v:77 u:71 r:41 i:31 b:17
f t:98
p b:61 h:60 n:49 g:37 p:37
v r:63 v:57 i:17
1 z:55 c:43 1:37 a:30 o:30
y g:92 y:71 b:23 z:18 s:12
e c:85 e:64 o:48 i:24 1:12
u v:84 u:46 c:46 r:46 i:30
k u:69 v:64 1:43 r:32 b:31
t r:64 t:35 d:15 e: 7 a: 7
k r:91 v:84 1:27 i:21 c:19
a p:77
e j:93 z:48 g:25 o:23 y:23
d e:97 c:37 o:33 i:27 f:26

Correct Non-rec Rec-err Seg-Err

Counts 65 0 14 0
Percentage 82.28 0.00 17.72 0.00

5. Filename: hwt.ref 
Tablet: Numonics

Dated: 18-3-88

Reference: the quick brown fox jumps over the lazy dog
able grown men have quickly found their sexy jokes zapped

Recognition: tbe quick brown fox jum ps ooer the lazg dog
aple growa meh haue guicley found tha sexy jokes zabped

ERRORS:

R ef Recognised as

h b:81 h:75 n:52 p:30 s:24
v o:83 v:43 r:33 u:31 p:25
y g:81 y:71 s:36 p:25 b:19
b p:99 b:96 n:47 s:46 g:37
n a:66 m:65 h:63 q:50 u:43
n h:84 m:73 u:73 a:67 q:63
v u:74 v:59 r:41 b:26 t:25
q g:82 q:81 d:52 w:42 a:41
k 1:70 f:39 e:37 b:36 z:33

e:94 c:74 z:65 q:21 k:15
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e a:90 q:85 u:83 w:74 h:68
i s:72 z:41 a:25 h:22 f:18
r e:88 d:36 i:27 q:24 c:23
p b:82p:51 n:38 h:37 g:33

Correct Non-rec Rec-err Seg-Err

Counts 71 0 13 1
Percentage 83.53 0.00 15.29 1.18

6. Filename: mjs.ref Date: 18-3-88
Tablet: Numonics

Reference: the quick brown fox jumps over the lazy dog
able grown men have quickly found their sexy jokes zapped

Recognition: the duick brown fox jumps over the ldzg dog
dble yrown meh hdve guilkly found lhilr sexy jokes zapped

ERRORS:

Ref Recognised as

q d:92 a:87 g:46 q:44 u:42
a d:86 a:77 u:55 b:41 g:35
y g:90 y:74 b:61 p:31 q:24
a d:88 a:82 q:56 u:55 g:43
g y:87 g:73 b:39 s:37 p:36
n h:61 n:33 p:28 b:27 r:23
a d:86 a:79 u:65 v:27 o:27
q g:86 q:85 d:61 a:59 n:59
c 1:74 ic:68 \a:57 ’v:25 i:23
t 1:99
e i:71

Correct Non-rec Rec-err Seg-Err

Counts 73 0 11 1
Percentage 85.88 0.00 12.94 1.18

7. Filename: m pc.ref Date: 22-3-88
Tablet: Numonics

Reference: the quick brown fox jumps over the lazy dog
able grown men have quickly found their sexy jokes zapped

Recognition: the quick brown rox jumps over the iazy dog
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able growr mep have quiekly fouud thir sexg jokes zapped

ERRORS:

R ef Recognised as

f  r:97 n:77 p:68 h:37 t:19
1 i:99
n r:83 k:73 n:28 i:28 m:26
n p:78 n:43 b:28 g:27 y:24
c e:86 c:73 a:50 i:40 o:29
n u:85 q:38 n:34 h:33 a:31
e i:99
y g:94 y:63 b:35 u:23 n:22
e c:91 e:79 f:39 d:36 i:29

Correct Non-rec Rec-err Seg-Err

8.

Counts 76 
Percentage 89.41

Filename: rje.ref 
Tablet: Numonics

0
0.00

9
10.59

Date: 22-3-88

0
0.00

Reference: the quick brown fox jumps over the lazy dog
able grown men have quickly found their sexy jokes zapped

Recognition: the quick brown tox jumps orer thi iazg dog
able groon men have guictly foqnd their sexy jokes zapbed

ERRORS:

Ref

f
v
e
1
y
w
q
k
u
P

Recognied as 

t:82
r:78 v:43 i:23 q:22 u:20 
i:83
i:72 i:71 c:15 -:12 i: 0 
g:94 y:70 s:45 z:19 b:17 
o:79 u:35 v:32 b:29 i:25 
g:83 q:76 a:69 w:31 y:29 
t:79
q:68 u:48 d:43 g:38 a:38 
b:83 p:72 s:30 h:18 g:17

Correct Non-rec Rec-err Seg-Err



Counts 75 0 10 0
Percentage 88.24 0.00 11.76 0.00

9. Filename: sds.ref Date: 18-3-88
Tablet: Numonics

Reference: the quick brown fox jumps over the lazy dog
able grown men have quickly found their sexy jokes zapped

Recognition: the quuek brown fox idnts ovar the lazg dog
dble grown men hqve qvicnly found tbeir sexy jokes sapped

ERRORS:

Ref Recognised as

i u:89 i:88 c:67 v:62 f:26
c e:79 o:66 c:55 a:40 1:39
j i:97
u d:97 u:94 a:58 v:57 n:41
m n:74 m:71 h:41 k:35 d:28
P t:79 p:72 r:67 n:53 h:35
e a:73 e:71 o:69 f:67 d:66
y g:52 b:32 y:30 f:27 j:24
a d:88 a:80 u:64 q:61 g:60
a q:70 a:69 n:64 d:55 u:52
u v:76 u:71 r:31 -:25 b:22
k n:74 k:60 h:49 b:38 p:31
h b:65 w:55 q:46 h:34 d:25
z s:82 z:63 y:34 -:30 q:22

Correct Non-rec Rec Seg-Err

Counts 71 0 14 0
Percentage 83.53 0.00 16.47 0.00

10. Filename: sed.ref Date: 22-3-88
Tablet: Numonics

Reference: the quick brown fox jumps over the lazy dog
able grown m en have quickly found their sexy jokes zapped

Recognition: the quialh brown fox jumps ooer the ldzy dog
abie grown m en huue duickiy found their sexy jokes zapped

ERRORS:



Ref Recognised as

e c:86 e:85 o:47 f:30 a:29
c a:96 c:92 e:52 i:51 f:47
k 1:99

h:85 c:74 t:53 b:36 a:30 
v o:54 u:33 v:30 d:27 f:27
a d:95 a:70 q:62 g:59 u:58
1 i:99
a u:82 a:76 q:72 d:72 b:51
v u:69 v:46 o:44 d:25 f:20
q d:85 a:67 g:39 u:38 o:23
1 i:99

Correct Non-rec Rec-err Seg-Err

Counts 75 0 9 1
Percentage 88.24 0.00 10.59 1.18

OVERALLRESULTS:

Correct Non-rec Rec-err Seg-Err

Counts 743 0 97 3
Percentage 88.14 0.00 11.51 0.36
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P l e a s e  w r i t e  t h e  f o l l o w i n g  t w o  t e s t  s e n t e n c e s  i n  l o w e r  c a s e  

u n c o n n e c t e d  l e t t e r s .

D A T E W R I T E R :  A . m / F :  A A

L / R  h a n d e d :  £  T A B L E T :  N  t / M o N ( C 7  A G E :  2 3

C O M M E N T S :

the quick brown fox jumps over

 t h e  Q C \ c k  b i ' c c J n ^ G X  o v e r  f t - g ,  l a y

 c \cc \ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

able grown men have quickly fo

n bl e ,  p r o t o n  mer> h a w  g o ' c k l ^  f c n d
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3 l e a s e  w r i t e  t h e  f o l l o w i n g  t w o  t e s t  s e n t e n c e s  i n  l o w e r  c a s e  

( u n c o n n e c t e d  l e t t e r s .

D A T E :  ]  i  I 1  I I8 W R I T E R :  P .  m / F :  f

L / R  h a n d e d :  » £  T A B L E T : N t M O N i C f  A G E :

C O M M E N T S :

/ h e  quick brown fox jumps over

 Tv e- ( ^u l / c K  b f o u  a  f o x  j  m  p  S_________

Lij GUuJj-

K
[ " l a t f / e  g r o w / ?  men have quickly

c l l h l - g  j r o . ^ n  U c m e .  ^ l L l c Ic U j  - V n u . n  c l
i

\ -V *

± fU i r  .&£-* H uajcg._^ t a p p e d
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P l e a s e  w r i t e  t h e  f o l l o w i n g  t w o  t e s t  s e n t e n c e s  i n  l o w e r  c a s e  

u n c o n n e c t e d  l e t t e r s .

D A T E :  '%\ 3 | w  W R I T E R :  £■\  P o w e l l  M / F :  F

L / R  h a n d e d :  | C  T A B L E T :  N k m c h J i c *  A G E :  - 2 - 1

C O M M E N T S :

the quick brown fox jumps over the lazy dog

 , t r . b ,  & — \ c -  K  j p £ . Q .  j p & J * ;  j  a m p ? ,  Q v / e .

■±Jq  ̂ ___1.^ , -z. ^ ___gA .p ,^_____________________________________

Bible grown men have quickly found their sexy jokes zapped

■A.b.Ie.— y . U - i u  o  ,<?> W\Qv. V.’ c k l L j

— i l b c . v . r  ^ :? c \  p p e . o l
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3 l e a s e  w r i t e  t h e  f o l l o w i n g  t w o  t e s t  s e n t e n c e s  i n  l o w e r  c a s e  

u n c o n n e c t e d  l e t t e r s .

D A T E :  22  ( 3 (^  S ’ W R I T E R :  ° r . h . M < * s ( , V » M / F :  M

L / R  h a n d e d :  l £  T A B L E T :  N O m  z> M Q A G E :  U -a

C O M M E N T S :  _ _ _

the quick brown fox jumps ov

b k e .  Q . u i o k b  hoooh. j o x  i'utY\ -PS_ _ _ _ _ _ _ _ _ _ _ _ _ _

p v e ^ b k e .  Lo. ^  & ole

h
h  u
1 «  able grown men have quickly found their sexy jokes zapped

M & fl kdL\/€L Q/UicUiof  ^ounoj, -bke,t
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P l e a s e  w r i t e  t h e  f o l l o w i n g  t w o  t e s t  s e n t e n c e s  i n  l o w e r  c a s e  

u n c o n n e c t e d  l e t t e r s .

D A T E :  W R I T E R :  W - U T U v^ w f ; M
I *

L 7 R  h a n d e d :  N  T A B L E T :  M U m o N i c ^  A G E :  1 2 -  

C O M M E N T S :

the quick brown fox jumps over

g io 'g r  l / i e

a d / e  g r o w n  m e n  h a / e  quickly

— j y o u J f l  r w e . A  h & v - e .  g t A , i c . L l u  f o u n d  b k e . t r -

S l X u  j o k e s  z a p p e d  . ___________ _______________________ __
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l e a s e  w r i t e  t h e  f o l l o w i n g  t w o  t e s t  s e n t e n c e s  i n  l o w e r  c a s e  

j n c o n n e c t e d  l e t t e r s .

D A T E :  I S l / t t  W R I T E R :  A 4 . S f e p k ~ r  m / F :  M

L / R  h a n d e d :  L  T A B L E T :  N « / / w o * H C V  A G E :  2  %  

C O M M E N T S :  — -

the quick brown fox jumps over

Wg. cpcX brown fox. over VW2___________

ble grown men have quickly found their sexy jokes zapped

ab\<L occm  W9y\V\oMP. amcX-.u found W \r
j
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P l e a s e  w r i t e  t h e  f o l l o w i n g  t w o  t e s t  s e n t e n c e s  i n  l o w e r  c a s e  

u n c o n n e c t e d  l e t t e r s .

D A T E :  20~l Z I %% W R I T E R :  1^1 C o l l a r  M / F :  M

L / R  h a n d e d :  t  T A B L E T :  W U M - o r J i c S  A G E :  2 S

C O M M E N T S : - - - - - - -

the quick brown fox jumps over the lazy dog

t i r e .  Q u i c k  b r o w n  P o x -  J u t w p s  ovfcr t h e .  cLoy______________

qble grown men have quickly found their sexy jokes zapped

a b l e  ^ r o u A  w e  a K a u e  ^  m c f e l i j  P o u a JL - i k ^ r  j f t t e g . 5;

Z a p p e d .___________________________________________________________________
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E S P R I T  P R O J E C T  2 9 5

P l e a s e  w r i t e  t h e  f o l l o w i n g  t w o  t e s t  s e n t e n c e s  i n  l o w e r  c a s e  

u n c o n n e c t e d  l e t t e r s .

D A T E :  2 ^ \  3  I W R I T E R :  / 2 ^ 6 / a n f  m / F :  A a

L / R  h a n d e d :  £  T A B L E T :  N i U M o N t c f  A G E :  3 L

C O M M E N T S :

the quick brown fox jumps over the lazy dog
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