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Abstract

Robots today can perform assembly and material handling jobs with speed and 

precision, yet compared to human workers, robots are hampered by their deficiency 

of sensory perception. In most instances in the industry, the robots have to be re­

programmed if the positions of the assembly components change. This is a tedious 

task. The current work has been motivated by the concept of using machine vision 

in the initial stages to recognise and locate components in order to aid a robot in 

performing assembly autonomously.

Machine vision is a useful robotic sensor since it mimics the human sense of vision 

and allows for non-contact measurement of the environment. A 3-D object gives 

rise to an infinite variety of 2D images or views, because of the infinite number of 

possible poses relative to the viewer. In order for a vision system to be effective in 

assisting a robot to approach an object autonomously, two things must be known 

- “what” object is seen and “where” it is located ie. the object has to be recognised 

and its co-ordinates must be known.

The objects used in this investigation are of the polyhedral type, which resemble 

mechanical objects. In many instances, where machine vision has been used, only 

2-D silhouettes of the objects have been made use of for recognition. This work 

considers recognition of 3-D objects from any orientation, considering both in­

plane rotation and rotation in depth. Only 2-D information is used to infer 3-D 

information. The use of artificial neural networks (ANNs) has been made for 

learning and recall. In several approaches utilising ANNs, some transforms are 

used for extracting invariant features. Opposed to this, this investigation explores 

the area of extracting salient features and relating them to recognise objects.



The system developed utilises two CCD cameras in a stereoscopic set-up for obtain­

ing 3-D information about the object. A hierarchical system has been developed 

in software for object recognition. Training of each object is done by presenting 

characteristic views of each polyhedral object. Ideally, the vision system on the 

robot arm should be moved around the object to obtain the characteristic views. 

In the simulations however, the objects are rotated and displaced to mimic robot 

movement. Each image of an object is processed and features such as corners 

and edges are extracted. The relationships between the features are determined to 

identify the types of surfaces. The relationships between the surfaces is then en­

coded and input into the artificial neural network. Incremental learning of several 

views of the object is done using Fuzzy ARTMAP for all objects. The system has 

been improved later by adding a pattern rotation layer and modifying the ANN to 

minimise training of the system to a few characteristic views. When a single novel 

image of an object is presented, the correct object can be recognised. Since stereo 

vision is used, the location of the object with respect to the cameras is also deter­

mined. The system was tested for recognising four objects viz. a cube, pyramid, 

triangular prism and pentagonal prism having five facet types. Typical recognition 

times were 18 seconds on a computer with a 166 Mhz processor.

The vision system has the potential to be implemented on a robot arm in the future 

in the ‘eye-in-hand’ configuration. The robot arm can be moved precisely to obtain 

the two images or a miniature stereo setup can be mounted close to the gripper. 

This system could thus be used to identify, locate and approach mechanical objects 

autonomously.
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Chapter 1

INTRODUCTION

Vision-guided robotics has been a topic of continued interest for the past three 

decades. Robots today can perform assembly and material handling jobs with 

speed and precision, yet compared to human workers, robots are hampered by 

their deficiency of sensory perception. Machine vision is a useful robotic sensor 

since it mimics the human sense of vision and allows for non-contact measurement 

of the environment. A robot must perceive the three-dimensional world to be 

effective. Yet recovering 3-D information and describing it still remains the subject 

of basic research. A 3-D object gives rise to an infinite variety of 2D images or 

views, because of the infinite number of possible poses relative to the viewer, and 

because of arbitrarily different illumination conditions.

The human visual system exhibits a remarkable performance in recognition and 

categorisation of objects across changes in viewing conditions. Recognition rates 

in excess of 95 percent are common for tasks involving highly distinct objects or 

highly familiar object classes [1]. Although a child is able to recognise and grasp an 

object easily, this task is dauntingly challenging to be achieved with a robot. The 

human visual system provides the strongest clue as to the formation of a general 

visual system. Recent developments in artificial intelligence research, particularly 

connectionist theory (ie. artificial neural networks) have brought together a wide 

variety of disciplines including neurobiology, psychology, mathematics, statistics 

and engineering. The current work was motivated by the concept of using machine

1
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vision to recognise and locate components in order to aid a robot in performing 

assembly autonomously. This work is complementary to that being done on contact 

force sensing [2] within the Manufacturing Automation Research Group (MARG). 

In that work, a force/torque sensor is used for feedback to control the robot arm 

using ANNs to perform peg-in-hole assembly in a blind-fold manner. The idea is 

to use vision initially in order to identify and locate components to guide the robot 

arm to approach objects.

1.1 W hat is recognition?

In most of the present research done in computer vision, it is assumed that two ob­

jects are the same if a sufficient number of significant visual attributes are matched. 

Further, the definition of object classes is based on visual similarity and the main 

purpose of classes is to enable effective recognition. The definition of what is sig­

nificant and effective depends on the application. The process of recognition is 

composed of two parts: perception and classification [3]. Perception is the process 

of assembling the features of an object in the image. Classification is the assign­

ment of the set of assembled object features to an individual instance or perhaps 

to a larger class of objects. At present, there is no general solution that can be 

applied to all vision problems, but constraints are applied to produce a working 

solution for each specific task.

In developing this work, the following questions were kept in mind to be answered:

• What form of data collection must be used?

• Can the human visual system be used as a model to develop the work?

• What learning method should be applied to store information?

•  How can positional information about the object be obtained?

• Can the object be recognised invariantly?

• Can the system be built to be adaptive to learn more objects?
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• Is the work suitable to be used with a robot?

1.2 T he hum an visual system

The intention of this work is not to directly model the human visual system, but to 

seek inspiration from it. The eye performs the function of turning light signals from 

the outside world to electrical signals that the brain can interpret. As such it has 

been compared to the functioning of a camera in a machine vision system, but such 

a comparison has no validity. Machine vision systems generally, function in steady 

state situations, and any change from that steady state can have severe effects on 

results. The eye is able to function in the darkness of night and in the brightness of a 

summer day. The eyeball with its muscles move to shift the position of the image on 

the retina [4]. The iris determines the amount of light entering the eye and the lens 

focuses the image. The retina itself is made of three layers: receptors (consisting of 

rods and cones), bipolar cells and ganglion cells. The fact that the eye carries out 

early pre-processing becomes self-evident when examining the connectivity between 

the three layers of the retina. The retina takes 125 million signals from its receptors 

and gives 1 million outputs, via the ganglion cells, through the optic nerve. Several 

researchers have attempted to model the retina in software and hardware. In the 

primate visual system, the image processing follows two streams flowing through 

a pathway starting from the retina and culminating in the parietal and temporal 

lobes of the cerebral cortex [5]. The three early visual processes that occur in this 

are:

•  removal of invariance due to the processing environment, such as lighting 

levels and direction,

•  extraction of localised features such as edges, high-curvatures and high con­

trast that describe 2-D shapes,

• Formation of representations invariant to position, scale and orientation of 

input while still maintaining knowledge of the spatial characteristics.
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1.3 O btaining visual inform ation

For machine vision, typically visual information can be obtained in one of two 

ways, through a CCD camera providing intensity data or by laser line scanning 

which gives range data (coordinate information). Light stripe projection is prob­

ably the most widely used optical method in range imaging. The laser beam is 

passed through a cylindrical lens to produce a stripe that shines onto the surface. 

The stripe is viewed by the 2-D camera camera at an angle, and the deviation of 

the projected line from a known base is used to derive range data. Range data can 

be obtained by either controlling the laser line [6] by incrementally moving it over 

the object, moving the object incrementally under the laser line, or rotating the 

object of interest [7]. In all cases, the subsequent image processing from the sensor 

input is done by a PC through an interface card which has analogue/digital con­

version capability and some frame buffers to store the intermediate processed data. 

The image processing typically involves processes such as thresholding, finding his­

tograms, passing different filters for convolution, edge detection, corner detection, 

etc. in order to extract relevant features [8] [9] [10]. This is called low level vision. 

This data is then analysed and used in various schemes for object recognition. 

Lighting is a major problem for machine vision, and there are few automated sys­

tems that are able to work in varying conditions. In general, the ambient lighting 

has to be kept constant. There are now companies which focus solely on the light­

ing problem. Some early image processing involves setting threshold levels and if 

lighting varies then these have to be changed.

1.4 U se of artificial neural networks

There are several classical methods of object recognition, some of which have been 

covered in the next chapter. Artificial neural networks (ANNs) are increasingly be­

ing used in classification for recognition of objects and some of them are adaptive. 

These approaches are also called connectionist approaches. ANNs have been devel­

oped from the study of the functioning of the brain and some of them have massively
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parallel architectures. It should be noted that the terminology connectionism owes 

its origin to brain modelling. These learning algorithms are only approximations 

to the model itself due to the complex parallel processing involved in a complete 

model. Some of the authors refer to these algorithms as neural networks, however, 

to avoid ambiguity with biological principles in this thesis, they will be referred to 

as Artificial Neural Networks (ANNs), unless stated otherwise. The fundamental 

unit of most ANNs is a neuron which takes several inputs and gives an output de­

pending on a user-defined function. This research work uses ANNs in performing 

object recognition. Different types of ANNs have been described later in the thesis.

1.5 R esearch aim

In order for a vision system to be effective in assisting a robot to approach an object 

autonomously, two things must be known- “whaf object is seen and “where” it is 

located, with a fair degree of certainty. The main aim of this research is to develop 

a vision system which can

1) Recognise 3-D objects (using ANNs) in any orientation from a single scene once 

the network has been trained

2) Locate the objects

The location estimation of the object will be done by taking two views using stereo 

vision techniques. Some earlier work in the research group on invariant object 

recognition which used range data and ANNs resulted in the development of IVOR 

[11]. The present work will use intensity data obtained from a CCD camera, since it 

provides for fast acquisition of data which is useful for implementation on a robot.

1.6 C onstraints applied

As mentioned before, there is no general solution for all machine vision problems. 

The work for this project is being carried out by applying the following constraints:

1) The objects/components to be recognised in the workspace are static.
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2) The background where objects are lying is relatively clean and objects are un­

cluttered.

3) The objects are of regular, symmetrical or of polygonal shape.

4) The objects are to be recognised and located by using only image intensity data.

1.7 T he robot

This work was developed with the aim of using the vision system with a robot. The 

robot which will be used in future to test the work developed is a Unimate PUMA 

Mark III robot provided by the project collaborator Rolls-Royce and Associates. 

The Programmable Universal Machine for Assembly (PUMA) is a member of the 

Unimation 700, 500 and 200 robot series designed by Vic Schienman at MIT in 

the mid-70s. These 6 degrees of freedom (DOF) robot arms are still widely used 

in industry, and for research and teaching purposes in academia. Its two basic 

units are: the controller and the robot arm. The robot arm or manipulator is the 

main mechanical part of the system. The controller houses the components that 

control and power the robot arm. It also houses the operating controls for the 

robot system such as emergency stop, on/off power, teach mode, etc. The system 

software language that controls the robot is called VALII or VAL for short. A teach 

pendant can also be used to manipulate the arm to desired locations.

1.8 V ision system  configuration for robot control

The vision system was developed separately and needs to be integrated with a 

robot. Some ideas have been discussed in the last chapter. A brief description of 

how this can be done is given here.

Basically there are two ways in which the vision system can be employed, in an 

open loop or in a closed loop. The closed-loop position control of a robot end- 

effector based on feedback of visual measurements employed in several systems [12] 

is commonly referred to as visual servoing. Visual servo systems typically use one
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of two camera configurations: end-effector mounted, or fixed in the workspace [13]. 

The first, often called an eye-in-hand configuration, has the camera mounted on the 

robot’s end-effector. The second configuration has the camera(s) fixed separately 

in the workspace. Two major categories of visual servo systems can be distin­

guished. In position-based control, features are extracted from the image and used 

in conjunction with a geometric model of the target to estimate the pose of the 

target with respect to the camera [14]. Feedback is computed by reducing errors 

in estimated pose space. In image based servoing, control values are computed on 

the basis of image features directly [15]. The specification of an image-based visual 

servo task involves determining an appropriate error function e, such that when 

the task is achieved, e =  0.

The above configurations of closed loop control are most useful when the object of 

interest is moving or the end-effector itself is to be tracked [16]. As against this, in 

the current work, the objects to be recognised are static and open-loop control can 

be used (“looking” then “moving”). The system can be more accurate if continuous 

closed-loop control is used.

1.9 Overall project plan

Selection of the proper set of features of the object is of paramount importance for 

effective recognition and these have to be encoded into the network. The train­

ing of the ANN is done off-line by incrementally showing characteristic views of 

the object to the camera. Incremental learning is done by deriving relationships 

between features and feeding them to the Fuzzy ARTMAP network [17]. This 

learning procedure is repeated for several objects. From a single view, the objects 

are then able to be recognised by the system by recalling the set of relationships 

for a particular object. Initial experiments were carried out by using ART-1 to 

distinguish between simple objects.

The depth of the object with respect to the camera is estimated using stereo vision 

by taking a second close but slightly different view of the scene. A few points on
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the recognised object are sufficient for its depth estimation since explicit model 

reconstruction is not being made. Some good results on depth estimation were 

obtained by using two CCD cameras in a calibrated set-up on a stand.

In the future, once the co-ordinates of the object are known with respect to the 

camera, using the control law existing in the robot controller, the arm can then 

be moved to the desired location. The system will thus, in the terminology of 

Hutchinson and Corke [12], be an end-point open-loop (EOL) system using the eye- 

in-hand configuration. When the robot is on the way to pick the object, it can be 

further stopped and the above steps repeated to improve accuracy. This approach 

compares well with the work done recently at Purdue University [18]. The scheme 

will not use continuous feedback.

Although several issues are involved in visual robot guidance, the main thrust of 

this work has been in developing a novel scheme for 3-D object recognition by using 

the relationships of features to train the ANNs viz. networks based on ARTMAP 

theory. Gaussian ARTMAP is a synthesis of the Gaussian classifier and ARTMAP, 

and Fuzzy ARTMAP involves use of the fuzzy theory. A recent trend emerging in 

computer vision is combining classifiers to create better recognition systems.

1.10 O rganisation o f th e  thesis

The current Chapter 1 gives the overall view of the project and research aims.

The overview of typical classical and neural network approaches to object recog­

nition has been made in Chapter 2. The chapter also describes the theory behind 

stereoscopic vision used for obtaining depth information about objects. This is 

followed by a review of different neural network algorithms which can be used for 

object recognition.

Chapter 3 gives the comparisons between the classical and ANN approaches. It 

also discusses how invariance is achieved in connectionist approaches and gives a 

description of the mathematical quantities and approaches often used to achieve
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invariance. The chapter also specifies the area of contribution.

Chapter 4 describes the practical work done. It first describes some initial results 

obtained on object recognition using ANNs employing the ART-1 algorithm of 

the adaptive resonance theory for 2-D objects. After this the procedure followed in 

stereo vision for recovering 3-D information has been described. This is followed by 

the detailed description of the architecture of the vision system developed. Lastly 

the image processing to obtain information from the images has been described.

Chapter 5 presents the recognition and stereo vision results. It is followed by a 

description of the modifications made to the vision system for improvement. It 

also discusses the achievements of the project in light of the theory and aims.

Conclusions drawn from the literature review and work done and details of future 

implementation of the vision system with the robot have been described in Chapter 

6.



Chapter 2

OBJECT RECOGNITION 

TECHNIQUES AND METHODS

The history of object recognition by computer vision extends back into the 1950s. 

The development has involved ideas or concepts which define various frameworks 

for carrying out object recognition. The key ideas are a mixture of representations, 

architectures and algorithms which have motivated extensive research [3]. At many 

stages of this evolution, one approach or another was optimistically proposed to 

be a full solution to the problem of recognition. It now seems likely that no gen­

eral solution exists. This chapter first presents the complex processes involved in 

human visual recognition. Next, some of the classical (geometric) machine object 

recognition techniques have been described followed by the more recent ANN ap­

proaches. Some of the neural network approaches described draw ideas from the 

classical methods and use the ANNs for classification of different object types. For 

obtaining visual information certain techniques use stereoscopic vision for recover­

ing 3-D information about the object. A review of stereo vision, including feature 

detection has been done next. In the last section, a review of the artificial neural 

networks which have potential to be used for solving the object recognition problem 

has been done.

10
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2.1 P rocesses involved in hum an recognition

Although we easily accomplish the process of recognition everyday, there are several 

processes which we do involuntarily. The retinal image projected by an object e.g. 

a notebook is displaced, dilated or contracted, or rotated on the retina when we 

move our eyes, ourselves, or the book. If we are not focussing on the book or 

looking directly at it, the edges of the retinal image become blurred and many of 

its finer details are lost. If the book is in a complex visual context, parts may be 

occluded. Yet, the human visual system can remarkably recognise objects in these 

circumstances.

Most theories of shape recognition [19] deal with the indirect and ambiguous map­

ping between the object and retinal image in the following way. In long-term 

memory there is a set of representations of objects that have associated with them 

information about their shapes. The information does not consist of a replica of 

a pattern of retinal stimulation, but a characteristic representation of the object’s 

shape that captures some invariant properties of the object in all its guises. Dur­

ing recognition, the retinal image is converted into the same format as is used in 

long-term memory, and the memory representation that matches the input clos­

est is selected. Hence there is a measure of goodness of fit that determines which 

memory representation fits the input best when none of them fits exactly. It is 

also difficult to specify where perception ends and cognition begins. For example, 

a square can be recognised as being a square regardless of how the boundaries are 

found. The ultimate recognition of the shape is not necessary for any of these 

processes to find the boundaries.

2.1.1 Learning

Ullman [20] suggests that our visual systems may execute a universal set of ‘rou­

tines’ composed of simple processes operating on the 2.5 D sketch [21]. This involves 

tracing along the boundary, filling in a region, marking a part, and sequentially 

processing different locations. Once universal routines are executed, their outputs
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could characterise some basic properties of the prominent entities in the scene such 

as their rough shape and spatial relationships. This characterisation could then 

trigger the execution of routines specific to the recognition of particular objects or 

classes of objects.

An articulation of shapes into parts is useful because one never sees an entire 

object in one glance. Frequently, the back side is never visible (barring transparent 

objects), and the front side is often partially occluded by objects interposed between 

the shape and the observer. A part theory assumes that the parts delivered by early 

vision correspond to the parts stored in the shape memory and that the contents 

of the shape memory were once just the products of early visual processing. The 

shape memory is organised such that a shape can be addressed by an inexhaustive 

list of its parts. Then recognition can proceed using the visible parts.

2.1.2 Memory and recall

There could be at least two distinct processes in long-term memory, which store 

different information [22]. One stores lists of facts about objects, including descrip­

tions about how parts are put together, their size, the names of categories, and so 

on. The other stores encodings of the literal appearance of the object.

It has been shown [23] that when people have to decide whether two 3-D objects 

have the same shape, the time they take is a linear function of the difference in 

their depicted orientations. One interpretation of these findings is that subjects 

engage in a smooth, continuous process of mental rotation. This transforms the 

orientation of an imagined shape until it coincides in a template-like manner with 

a second, perceived shape or with a shape stored in a canonical upright orientation 

in memory. It is quite possible that the rotation process computes intermediate 

representations in the angular trajectory. It was observed during experiments that 

subjects could not visualise in a single step the appearance of a three-dimensional 

object from an arbitrary viewing angle. Instead they first visualised it in some 

canonical orientation, and then mentally rotated it into the target orientation. 

This suggests that long-term image representations are primarily viewer-centred.
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The next section describes the different approaches used in machine vision to solve 

the object recognition problem. The classical methods have been described first 

followed by the more recent ANN approaches.

2.2 O bject R ecognition  Techniques

2.2.1 Classical approaches

1. Object attributes as a geom etric space

If an object has properties which are similar to another object, then they are in 

the same class. In this case, similarity is equivalent to distance in the geometric at­

tribute space. The construction of this attribute space is dependent on the existence 

of a mapping of the attributes of an object, such as colour, intensity or texture, 

onto a set of numerical co-ordinates [24]. If such a mapping can be defined, then a 

particular instance of an object can be represented as a point in a multi-dimensional 

space of attributes. Object instances which belong to the same class are then near 

one another and form clusters. The classification process then becomes a problem 

of determining the distance from a point representing an unknown sample to the 

nearest cluster.

2. Structural decom position

a. Volumetric approach: A three-dimensional structure can be decomposed into 

primitives such as cylinders. Parametric geons (volumetric primitives) have been 

used by Wu and Levine [25] as a coarse description of object components for qualita­

tive object recognition. Parametric geons are seven qualitative shape types defined 

by parameterised equations which control the size and degree of tapering and bend­

ing. Model recovery is performed by a procedure of model fitting and selection by 

minimising an objective function measuring the similarities in both size and degree 

of tapering and bending.
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b. Pattern Syntax: A branch of research developed a full theory of pattern syntax 

[26] where structures are decomposed hierarchically into intermediate symbols and 

finally into so-called terminal symbols which are the actual primitives. These com­

ponents are then aggregated to form the overall object by a network of relationships 

among the components. This approach waned because many geometric relation­

ships are difficult to express with simple formal grammars and full expressiveness 

is gained at the cost of parsing complexity.

3. Tree structure interpretation (View centred representation)

In a view-centred approach by Underwood and Coates [27], the computer is visu­

ally shown a sequence of overlapping views of a planar object as it is rotated in 

space. The description consists of a deterministic description of the object’s sur­

faces and how they are interconnected to form the object, along with a measure of 

each surface’s shape (called shape number), which is invariant to three-dimensional 

rotation. The different descriptions produced form a learning tree with branches. 

The projected features in a new view shown later are then matched to a subgraph 

of the view structure to achieve recognition.

4. V iewpoint consistency

The principle of viewpoint consistency holds that all points on an object will project 

to their corresponding image positions for the same projection parameters.

a. Model-based approach

Work done by Wunsch and Hirzinger [28] uses a form of iterative closest point 

algorithm. The key idea is to relate image feature points to model data in 3- 

D space rather than in the image plane using the inverse perspective approach. 

The model is fitted onto the wireframe of the image derived by extracting edge 

segments after several iterations. This is done by using a generalised form of the 

iterative closest point algorithm (ICP) proposed by Besl and McKay [29]. The 

work presented took 5.5 sec on a Silicon graphics indigo workstation using this
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method for registering a 3-dimensional CAD model to the 2-dimensional camera 

image.

b. Hypothesise-verify (Hash table)

W ith 3-D POLY, Chen and Kak [30] developed a system in which they presented 

a novel approach of organising the feature data for 3-D objects. They presented a 

data structure that they called the feature sphere. The geometrical features used 

fall into 3 different classes: primitive surfaces (planar surfaces, cylindrical sur­

faces and conic surfaces), primitive edges (straight-line features or ellipsoidal-curve 

features) and point features (mainly object vertices). The matching and verifica­

tion step is based on comparing spatial relationships of special feature sets. They 

showed very fast recognition results for cluttered scenes with several industrial ob­

jects. This system was further improved by using a multiple-attribute hash table 

in MULTI-HASH [31]. The key improvement of MULTI-HASH over 3-D POLY lies 

in the improved hypothesis generation by efficiently retrieving a small number of 

the most promising scene-to-model match hypothesis for subsequent verification. 

The concept of local-features sets used in both 3-D POLY and MULTI-HASH was 

first introduced by Bolles in the 3DPO system [32]. A relatively similar approach 

to efficient 3-D object recognition [33] uses a feature called as a splash based on 

small surface patches to reliably compute differential properties of smooth sur­

faces. A method called as structural indexing is used to retrieve hypotheses from 

the database.

5. Class-based recognition(Hierarchical approach)

Mundy et al at G.E. Corporate R and D [34] have developed MORSE, a 3-D object 

recognition system based on geometric invariants. Successful feature grouping is 

guided by general constraints associated with object classes. Thus the recognition 

process becomes an interleaved top-down bottom-up process. The system exploits 

the geometric constraints inherent in object classes such as polyhedra, rotational 

symmetry, bilateral symmetry and extruded surfaces. There are four levels of image 

feature representation and grouping. Level I: Pixel level features (like vertices),
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Level II: Geometric features (like algebraic curves), Level III: Generic Grouped 

features (like incidence, collinearity), Level IV: Class based grouping. Class based 

features are extracted from the grouped features and directly index the relevant 

class library. Indexing is handled by a series of hash tables, one per class that take 

the invariants of a system of generalised features and associate them with models 

in the database.

6. Appearance models

Each object is represented by a large number of views taken with respect to vari­

ations that are expected to occur during recognition, such as rotation about the 

vertical axis of the object and illumination direction. This representation is called 

an appearance model [35]. An object is classified by comparing the current image 

with the set of stored views for each object. This comparison is carried out effi­

ciently by interpolating between compressed, stored views. The image compression 

is carried out using principal components [36] which capture the main variations 

between images. A dense set of images, collected according to a systematic explo­

ration of each camera viewpoint and illumination direction, forms a manifold in 

this space for each object. A new image is then classified by its distance to the 

nearest point of a compressed manifold. This approach is similar to the classical 

nearest-neighbour classification [37],

2.2.2 Neural Network approaches

A brief description of 2-D ANN object recognition techniques is given below fol­

lowed by a more elaborate description of 3-D object recognition. Some of the 

networks used in these approaches are based on the multi-layer perceptron(MLP), 

Hopfield and adaptive resonance theory (ART). A qualitative description of the 

neural networks reviewed has been given in the last section of this chapter. With 

the explosive growth in neural network development in the last 15 years, extensive 

research is being carried out in applying their useful property of good classification
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to the field of object recognition.

1. 2-D shape recognition

Artificial neural networks (ANNs) have been used widely for 2-D object recogni­

tion. Those who have applied connectionist methods have followed 3 different 

approaches. The first method uses a non-connectionist pre-processing stage to ex­

tract features from the input data that are invariant of the position, scale and 

orientation. These features then form the input to the neural network. This ap­

proach has been taken in [38] [39] [40] [41]. The second approach is to take into 

account the variance in the input data within the architecture of the network. 

This has been followed in [42] [43] [44] [45]. The third approach is a hybrid of 

the first two methods. Typically using higher-order neural networks (HONNs), the 

invariance is “built into” the architecture of the network. This approach has been 

taken in [46] [47] [48] [49]. The major drawback of HONNs are the large number 

of interconnections required within the summing layers.

2. Recognition of 3D objects from 3-D data -  Object centred approaches

Lynch and Dagli [50] used stereoscopic data to obtain 3-D information. To define 

an object for classification a three-dimensional feature vector was determined to 

represent the range data. Moment invariants derived from Riemann integrals were 

used to form the feature vector. A vector of seven elements was derived by first 

calculating the centroid, and using second order moments along with the volume 

and average height. The vector formed the input to an ART2 network to perform 

the learning and categorisation. Results were presented for the derivation of range 

data and the recognition of four objects; a wax block, a stair step figure, and a large 

and small gear. The ART2 network was able to distinguish between the objects 

based on the input vectors for a small data set, but for a large data set results were 

described as poor possibly due to the small feature vector. Processing time was 

the order of 20 minutes per object.
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Keat et al [11] used range data for object recognition. Before the object could be put 

to a recognition system, the data was converted to a format that was independent 

of origin and viewpoint. This was done using the HK map comprising Gaussian 

(H) and mean (K) curvatures [51] [52]. Depending on the combinations of the 

signs of the curvatures, the local areas were classified as one of eight fundamental 

surface primitives. To remove the positional and scale variance, the centre of 

gravity approach was used in the retinal pre-processing stage. For classification a 

modified version of ART2a was used. A pattern rotation unit and medium term 

layer memory was added. The rotational variance was removed within the ANN 

architecture. The input range map was mapped onto the master range image and 

thus rogue features (relative volumetric differences) could be determined.

Ray and Mujumdar [53] have produced a model that falls between this class of 

recognition methods and that discussed in the next section. They have done work 

based on H-K maps obtained from canonical views. Similar local surface types were 

grouped together to form regions each having an associated surface point. They 

used a rectangular Hopfield network, with rows representing the scene features and 

columns the reference features. The matching process is in the form of minimisation 

of the network energy function, first for object edge points against the master 

object, then for the defined points from the surface regions. The input object is 

translated until the energy function is minimised. They presented two experiments 

recognising three objects in a scene with partial occlusion of two objects in each 

scene with successful recognition and location in each case.

Pacquet et al [54] proposed an approach for the invariant recognition of range im­

ages using a phase Fourier transform and a feed-forward network (MLP) trained 

by back-propagation. Surface planes in the original image are represented by peaks 

in the Fourier spectrum. The boundary of the plane is determined by an inverse 

Fourier transform of the peak. In this manner the surface is segmented. Scale 

invariance is determined by multiplying the range of the image by the ratio of the 

sampling distance of the camera to the sampling distance for the reference object. 

In this manner scale invariance is combined with the shift invariance. By deter­

mining a set of angles from the scalar product between each pair of characteristic
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normals, rotation invariance can be gained. A histogram is created from the set of 

angles with the horizontal axis representing the angles between the pairs of normals 

and the vertical axis representing the frequency of the angle within the set. The 

histogram formed the network input. Although the model was unable to discrimi­

nate between objects of similar overall shape it was able to broadly classify a range 

of objects.

3. Recognition of 3D objects from 2D views -  Viewer centred approaches

Cannon and Park [55] have used a profile-network based object recognition method. 

In the off-line training stage, the multiview model of the 3D CAD object is gener­

ated using a tessellated sphere whose surface is divided into approximately identical 

triangles. Every viewpoint is taken from the centre of each of these surface trian­

gles, where these viewpoints are taken to represent all the viewpoints within each 

triangle to within reasonable accuracy. After the boundaries of the object are ex­

tracted from 2D views of a 3D CAD model, the boundaries are represented using 

a centroidal profile (CP) feature. The CP is an ordered sequence of the length 

between the centroid and points on the boundary. The CP is independent of trans­

lation and the rotation once the starting point is specified. Then, a 3D recognition 

problem becomes a 2D pattern matching problem for that particular viewpoint. 

Those CP patterns from all viewpoints are trained in a 3-layer feedforward neural 

network. In execution, an input CP pattern is extracted from an input image after 

segmenting the object from the background. The input CP pattern is sequentially 

applied to the neural networks in the library. For a given image of the object, 

the viewpoint of the image nearly matches one of the finite viewpoints from the 

tessellated sphere. That means a CP pattern from an arbitrary viewpoint can be 

classified into the most similar pattern in the pattern library and the corresponding 

pose ascertained from the matching model view. Thus, by taking the output nodes 

with high value as candidates for final matching and finding the correct matching, 

the identity of the object, an approximate pose of the object, and correspondence 

information are known. Then, an iterative model posing method is applied to find 

an accurate pose. Once the CP feature of the object in the image is matched to
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one of the CP features extracted from the CAD model, the classification of the 

object and its approximate orientation are known. These are verified by projecting 

the model on the image.

Grossberg and Bradski proposed VIEWNET [56], a neural architecture for learning 

to recognise 3-D objects from multiple 2-D views. They opposed the approach of 

Seibert and Waxman [57]who used view transitions for recognition based on the 

use of aspect graphs defined by Koenderink to define characteristic views. Pre­

processing is done by a CORT-X2 filter to suppress noise. A log-polar transform 

is taken with respect to the centroid of the resulting figure and then recentred to 

achieve scale and rotation invariance. The invariant images are coarse coded (to 

reduce the 128x128 images) and the compressed codes are input into a supervised 

learning system based on the Fuzzy ARTMAP algorithm which learns 2-D view 

categories. Voting based on the unordered set of stored categories determines 

object recognition. Testing was done using an image database of three aircraft 

(F-16, F-18 and HK-1) with 1200-1400 images of each plane taken incrementally 

through viewing angles from horizontal to 72 degrees above horizontal, through 

one full revolution per plane. Recognition rates were best with the higher coarse 

coding (16x16) with a rate of 90 percent from just one view. This method has 

the disadvantage of having to gather hundreds of images of an object from various 

angles and storing them.

Kurt Reiser [58] has used a graph matching approach which can be thought of as 

a variant of the Dynamic Link Architecture. Each object to be learnt is placed 

on a rotating table and turned through increments of 5 degrees about a vertical 

axis passing through the object. The individual frames are represented by the 

system as labelled graphs. Features are represented as nodes and each new node 

is merged in a process (Hebbian learning) which detects and preserves stable ele­

ments of structure. The resultant multiview fusion graph is then stored in model 

memory for later recall. When an object is to be recognised, graphs from one or 

more images are compared competitively against model memory via graph match­

ing, implemented by dynamic links. Results on recognition of 3 objects, a mug, 

computer mouse and spoon were presented by using a model score after matching.
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In a later implementation [59] graphs from instances of all objects are merged into 

a single fusion graph.

In [60] the Hopfield net was used for image matching which was in the form of a 

two-dimensional array. The rows of the array represent the features of an input 

image, and the columns represent the features of an object model. The areas of 

surfaces and distances between centroids of the characteristic views of a polyhedral 

object (CAD-models) are taken into account. Two nets were utilised in a coarse to 

fine matching process. They presented experimental results based on a database 

of three objects with planar surfaces. Time to match for the system was quoted as 

one to several CPU minutes, depending on object complexity. A similar approach 

was used by Kawaguchi and Setoguchi [61] but their network was not hierarchical. 

Each object was rotated about the x and y axes in 30 degree intervals. They 

concluded that their method required fewer characteristic views than that of Lin 

et al but took twice the time to determine match.

The next section describes the process of obtaining 3-dimensional information using 

stereoscopic vision. It also describes various techniques used to extract and match 

features.

2.3 Stereo V ision

Viewing a scene from two (or more) different positions simultaneously makes it 

possible to make inferences about 3-D structure, provided that the corresponding 

points in the images can be matched. This technique is called stereoscopic vision, 

or stereo vision for short. It is thought that the visual systems of humans and some 

other animals makes use of this, and it is very important in attempts to develop 

practical computer vision systems. Stereo vision which utilises two cameras to view 

an object from slightly shifted positions (figure 2.1) allows one to gauge the depth 

of the object with respect to the camera in a non-contact manner by making use 

of the disparity between the two images. This is a passive method as compared to 

range sensing.
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Figure 2.1: Views from two different cameras in a stereoscopic set-up 

2.3.1 Perspective Projection

The projection of a point P(X, Y,Z) in world co-ordinates onto an image plane [10] 

is given by

X f  Y f
x  =  - z " '  ( 2 - 1 }

where /  is the distance from the lens to the image plane, and x and y specify the 

position of the point in the image plane (figure 2.2(a)).

Finding the value of /  in pixel units is the basic camera calibration and is done by 

making measurements of the image of an object of known size and distance. X, Y  

and Z are measured in the same units (ie. inches/cms) while x and y are measured 

in pixels.

2.3.2 Stereo Geometry for Parallel Cameras

If two cameras are parallel and placed side by side (figure 2.2(b)), the image of 

a point will have the same y co-ordinate but two different x co-ordinates xL and 

xR. It is convenient to describe positions relative to an imaginary central camera 

(cyclopean co-ordinate system). D is the separation between the camera centres 

and is also called the baseline.
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Figure 2.2: (a) Perspective projection (b): Stereo geometry for parallel cameras

Now if a point at (X,Y,Z) in cyclopean co-ordinates produces images at (xL,y) 

and (xR,y) in the two cameras, its position in space can be found from the image 

positions using the formulae:

D (xL + xR)_  _  .
2 (xL -  xR) ' x L -

The quantity xL  — xR  which appears in all three formulae is called the stereo 

disparity (or just the disparity) of the point. The equations are derived using the 

fact that the perspective projection equations in x for the left and right cameras 

are xL  =  -— and xR  = z2 (Details of this are given in Appendix E). A 

small disparity yields a large depth, and vice versa.

2.3.3 Stereo Geometry for Converging Cameras

It is not usually convenient to set up cameras with their axes parallel, because this 

limits the region of space in which objects are visible in both images. It is more 

normal to aim the cameras so that their axes are angled inwards, and converge on 

the objects of interest. The angle by which the cameras converge is termed as the 

vergence angle. The point in space where the optical axes intersect is called the 

fixation point for the cameras and it has zero disparity. Z0 is called the fixation 

distance, which is measured perpendicular to the baseline at the cyclopean origin.
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This makes the geometry more complicated. Provided the amount of convergence 

is small, there is a reasonable approximation which can be used to calculate the 

depth [62]. The disparities can be adjusted by adding the quantity which is 

the disparity an object at the fixation point would have if the axes were parallel. 

The new equations become:

x = D(xL + XR) y = Dv,z = D f  
2p V V

where p =  xl  — x R  +  ^

Zq is found during calibration. Thus by knowing the focal length of the camera, 

the distance between the two cameras and the disparity between the features in the 

two images, it is possible to obtain 3-D information based on the above equations.

2.3.4 Feature Extraction

To recover the depth, features from two images must be matched. These features 

can be corners, edges or other interest operators, which are discussed below. The 

first stage of stereo vision involves pre-processing to extract these features. The 

second stage involves actual correspondence and in the third stage, the use of 

equations described above is made in order to estimate the depth. Matching can 

be also be done using area-based techniques but they have the disadvantage in 

that they use intensity values at each pixel directly, and are hence sensitive to 

contrast and illumination. Feature based techniques are more robust and faster to 

implement. Various corner detection techniques and region detection techniques 

have been described next.

Grey level corner detection

One of the first approaches to finding corners was to segment the image into re­

gions, extract the boundaries as a chain code, then identify corners as points where 

directions changed rapidly. This approach has largely been abandoned as it relied
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on the previous segmentation step (which is a complete task in itself) and is also 

computationally expensive. Several methods for corner detection have been devel­

oped which can be applied directly to a grey-level image, without the need for prior 

segmentation. Some of them have been described in more detail below.

1) Kitchen and Rosenfeld operators : Kitchen and Rosenfeld [63] have implemented 

four types of operators

•  Gradient magnitude of gradient direction: The absolute values of the gradient 

directions displayed as a grey-level picture show changes of brightness pre­

cisely where the original picture had changes of edge direction. The brightness 

changes can be found by measuring the gradient magnitude of the direction 

picture.

• Change of direction along edge: This method measures only direction changes 

along the edge. The gradient direction in the original picture is found and 

then a 3x3 operator is applied to the resulting picture. The result of the 

operator is the difference between the gradient directions at two opposing 

non-central pixels within a neighbourhood. If the signed difference is taken, 

it is possible to extract information about the direction of curvature, as well 

as its magnitude.

• Angle between most similar neighbours : In a 3x3 neighbourhood, the two 

non-central pixels nearest in grey level to the centre pixel (named A and 

B, and the centre pixel C) are taken. The difference in direction between 

the vectors AC and CB is taken, and this difference is used as a measure of 

curvature.

• Turning of fitted surface : The property of a grey-level image can be computed 

by fitting a function which is a polynomial of a fairly low degree, which fits 

the grey-level data in a small local neighbourhood and then determining 

the corresponding property of the fitted function by analytical means. This 

quantity, evaluated at the centre of the neighbourhood, measures the rate 

of change of gradient direction along an edge, multiplied by the gradient 

magnitude.
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2) Beaudet’s D E T : Beaudet [64] has defined an operator called DET, gxx9yy ~  9% 

which responds at corners and saddle points of a surface (where g is the gradient). 

Near a corner of a shape DET responds(with opposite signs) on both sides of the 

edge. DET fares badly with very sharp edges such as are found on the maple leaf.

3) Harris Corner detector : In this method [65], the measure of autocorrelation is 

estimated from the first-order derivatives. At each pixel location a 2x2 autocorre­

lation matrix A = w*  [ ( v / ) ( v / ) T] ls computed, where w is a Gaussian smoothing 

mask and y  is the gradient. If both eigenvalues are large the pixel is flagged as 

a corner. To avoid eigenvalue decomposition of A, the corner response function 

is defined as det(A) — k(trace(A))2 where k is a given constant. A corner region 

pixel (ie. one with a positive response) is selected as a nominated corner pixel if 

its response is an 8-way local maximum.

4) Moravec detector : Moravec [66] proposed one interest operator that computes 

the local maxima of a directional variance measure over a 4x4 (or 8x8) window 

around a point. The sums of squares of differences of adjacent pixels are computed 

along all four directions (horizontal,vertical, and two diagonal), and the minimum 

sum is chosen as the value returned by the operator. The site of the local maximum 

of the values returned by the interest operator is chosen as a feature point.

5) Median filter : If a corner point is observed in a window, it is found that there 

is difference between the value of the central pixel and the median value of the 

neighbourhood [10]. Hence if a median filter is passed over an image and the 

difference in magnitude of the median and centre pixels is calculated and if this 

difference exceeds some threshold, the pixel can be regarded as a likely corner [67]. 

This algorithm can also be used in conjunction with information from the Hough 

transform to extract line ends.

6) MIC (Minimum Intensity Change) algorithm : This algorithm [68] is based on 

the variation of image intensity along arbitrary lines passing through the point of 

investigation within the neighbourhood of the point. A corner is detected if the 

variation of the image intensity along such lines is high for all line orientations. 

This algorithm employs linear interpolation to compute the directional first-order
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derivatives. The points whose minimal intensity change over all directions is high 

are declared corners.

Apart from those described above, there are several other corner detection schemes 

such as SUSAN [69], fast median filtering [70] and early jump-out corner detectors 

[71].

Comparison of corner detectors

Of the techniques investigated by Kitchen and Rosenfeld, the most successful is 

the method of turning of a surface. The results of Beaudet’s DET method are 

about equally good, except for its failure at very sharp corners. The Harris corner 

detector gives subpixel accuracy but is computationally expensive. The median 

filter algorithm is not very accurate. The MIC algorithm is very fast and as accurate 

as the Harris corner detector. Several attributes such as corner angle, arm length, 

noise level, and invariance have been considered when evaluating different corner 

detection algorithms in [72] and [73].

Region D etection

For the current work, region detection was also used. A description of some of the 

approaches to region detection has been included next.

1) Region growing via thresholding: The histogram of the grey-levels in the image is 

first obtained. Any pixel whose intensity is less than the threshold at the histogram 

trough is deemed to lie in one region, and those above are deemed to lie in the other 

region [8]. Such a scheme does not produce clearly defined, straight boundaries, 

but gives us a good first approximation.

2) Relaxation techniques: This usually depends on an iterative scheme to guide a 

first approximation of some kind to a stable solution [10]. For example, the output 

of a primitive edge detector is taken and iterated in some way to “fill in the gaps” 

and remove the effects of noise. This is done on the basis of edge information in the
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neighbourhood of a particular pixel; if there is strong evidence for edges in pixels 

on either side of another pixel, it can be deduced that an edge should be inserted to 

produce a continuous boundary. Likewise, edges which appear “isolated” in their 

particular neighbourhood should have their probabilities reduced. The ideas can 

be applied to an image in several passes, hoping to reach a stable state where true 

edges have probability 1, and all others have had their probabilities reduced to 

0. This leaves us with continuous boundaries reflecting the regions in the original 

image.

3) Splitting and merging: If a region is inhomogeneous, it is split into subregions. 

A way of working toward the satisfaction of these homogeneity criteria is the split- 

and-merge algorithm [26]. To use the algorithm it is necessary to organise the image 

pixels into a pyramidal grid structure of regions. In this grid structure, regions are 

organised into groups of four. Any region can be split into four subregions (except 

a region consisting of only one pixel) and the appropriate groups of four can be 

merged into a single larger region.

4) State-Space Approach to Region Growing: This approach regards the initial two- 

dimensional image as a discrete state, where every sample point is a separate region 

[74]. Changes of state occur when a boundary between regions is either removed or 

inserted. The problem then becomes one of searching allowable changes in state to 

find the best partition. An important part of the state-space approach is the use of 

data structures to allow regions and boundaries to be manipulated as units. This 

moves away from earlier techniques, which labelled each individual pixel according 

to its region.

Apart from the above methods, one other method for finding regions is to find the 

Laplacian of the Gaussian(LoG) of the gradient magnitude image. This technique 

has been used and described in more detail in Chapter 4.
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2.3.5 The correspondence problem

Once features such as corners have been detected in the two images, they have to be 

matched. The problem of pairing up the features is known as the correspondence 

problem. If no constraints are applied, any feature in the left image can match 

any feature in the right image. One of the most basic constraint, when looking for 

matching features in a single pixel row of the image which is used is that a feature 

with a particular y value can only match a feature in the other image with the 

same y value (for cameras mounted on the same horizontal base). This is known as 

the epipolar constraint. The epipolar plane is the plane defined by an image point 

and the optical centres as shown in figure 2.3.

Point in space

Epipolar
plane

Epipolar lineLeft image plane Right image plane

Figure 2.3: Epipolar geometry

The epipolar line is the straight line of intersection of the epipolar plane with the 

image plane. For a given point in one image plane, it is guaranteed that its match 

lies somewhere along the epipolar line of the other image plane.

There are three main constraints that can help:-

• A given feature can match at most one feature from the other image

• Similar features match each other

•  Features close together in the image should have similar disparities.

There are many ways of measuring feature similarity. Some of them are described 

below.
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1) Sum of squared differences (SSD): The SSD over a small window is one of the 

simplest and effective measures of image matching. For a particular point in the 

base image, a small image window is cropped around it, and it is slid along the 

epipolar line of the other image and SSD values are computed for each feature. A 

match is accepted wherever the SSD value is the lowest. This technique has been 

used to develop a video-rate stereo machine at Carnegie Mellon University [75].

2) Hierarchical methods: Marr and Poggio [76] proposed a theory which was later 

implemented in a better way by Grimson [77]. In this approach the image is 

first pre-processed using several Laplacian of Gaussian (LoG) filters and the zero 

crossings are found. The overall matching strategy uses a coarse-to-fine iterative 

approach with disparities found at coarser resolutions used to guide match-point 

search at finer resolutions.

3) Relaxation methods: In one approach to point pattern matching [78] [79] a 

merit score is assigned to each pair (Pi,Q j), according to how closely other pairs 

{Ph,Qk) match when Pi is mapped into Qj .  The scores can then be recomputed, 

giving weights to the other point pairs (P^, Qk) based on their own scores; and this 

process can be iterated. When this is done, the scores of pairs that correspond 

remain relatively high, while those of other pairs become low.

4) Neural networks: Neural networks are also being used for matching. In [80], the 

use of a network based on the Hopfield model has been made.

2.3.6 Uncalibrated stereo set-ups

In recent years, there has been a burst of research in using uncalibrated stereo 

set-ups [81] which have applications in mobile robots, especially where vergence 

angles change. The epilopar constraint can still be applied. This is done by first 

extracting a few high curvature points, typically 6 to 8 in number. Correlation 

techniques are then applied to establish initial correspondences and from this the 

epipolar geometry is estimated [82]. This involves computing the fundamental 

matrix [83] which defines the transformation between one view and another. Using
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the estimated epipolar geometry, further correspondences are then found as in 

calibrated set-ups.

2.3.7 Comments

Stereo vision is quite a mature area in computer vision. A lot of research has been 

done using calibrated set-ups and good depth recovery can be achieved although 

the accuracy depends on the accuracy of calibration. Research on uncalibrated 

setups is on the uptrend, though it increases computational overheads. For this 

project, a calibrated setup with converging cameras has been used though it is 

possible for it to be later extended to an uncalibrated one. Results obtained have 

been presented in Chapter 5.

2.4 R eview  of Artificial N eural N etw orks

Neural network applications are under rapid growth and there are several well 

established architectures. Only the networks with good prospects of application 

to the object recognition problem were reviewed in detail. These include networks 

which are associative, probabilistic and those which can perform incremental learn­

ing. A qualitative description of these neural networks has been given below.

2.4.1 The Hopfield Network

The Hopfield neural network [84] is an artificial network which is able to store 

certain memories or patterns in a manner rather similar to the brain - the full 

pattern can be recovered if the network is presented with only partial information. 

Furthermore there is a degree of stability in the system - if just a few of the 

connections between nodes (neurons) are severed, the recalled memory is not too 

badly corrupted - the network can respond with a “best guess” .

The nodes in the network are vast simplifications of real neurons - they can only
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exist in one of two possible “states” - firing or not firing. The output of the neuron 

is Vi =  0 if it is not firing and Vi — 1 if it is firing. Every node is connected to 

every other node with some strength. Neuron i receives an input from neuron j  

with a strength defined by Ty. If Ty =  0 it means that i is disconnected from j. At 

any instant of time a node will change its state (ie. start or stop firing) depending 

on the inputs it receives from the other nodes. The most important assumption 

made in the analysis is that there is bidirectionality in these connections, that 

is, Tij =  Tji. The firing rule assumes that each neuron has a threshold Ui. The 

activation is defined by (ETyV) — Z7<).

If the system is started off with any general pattern of firing and non-firing nodes 

then this pattern will in general change with time. Supposing the network is 

started off with just one firing node, it will send a signal to all the other nodes 

via its connections so that a short time later some of these other nodes will fire. 

These new firing nodes will then excite others after a further short time interval 

and a whole cascade of different firing patterns will occur. The crucial property of 

the Hopfield network which renders it useful for simulating memory recall is the 

following: it is guaranteed that the pattern will settle down after a long enough 

time to some fixed pattern. Certain nodes will be always “on” and others “off’. 

Furthermore, it is possible to arrange that these stable firing patterns of the network 

correspond to the desired memories to be stored.

The technical reason [85] for this can be demonstrated by analogy. If a ball is 

imagined to be rolling down a bumpy surface where the height represents the 

energy of the ball and the wells the node activities (memories) then the ball will 

eventually seek to minimise its energy by seeking the lowest spots (wells) on the 

surface. Furthermore, the well it ends up in will usually be the one it started off 

closest to.

Hopfield’s analysis associated each state with a quantity he called E (for energy) 

which diminishes every time a neuron changes its state. The total energy of the 

system as defined by Hopfield is
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E = -1 /2 E E  TijVjVi +  E ViUi (2.4)

If the network is started off with a pattern of firing which approximates one of 

the “stable firing patterns” (memories) it will on its own accord end up in the 

nearby well in the energy surface thereby recalling the original perfect memory. 

The connection strengths have to be initially set up in the right way in order 

to store a predetermined set of patterns ie. the network has to be trained what 

to remember. Once that is done, the network can be left to itself to handle the 

pattern-recall process.

2.4.2 Dynamic Link Architecture

C. von der Malsburg et al [86] have proposed that to achieve invariant pattern 

recognition, a network must explicitly encode neighbourhood or topological rela­

tions between a pattern’s features. The dynamic link architecture uses the topog­

raphy constraint that a local feature /  and its neighbours are very likely to have 

almost the same transformation to match the stored pattern onto its counterpart 

in the perceived pattern.

Model Layer

Image Layer (I)

Figure 2.4: Dynamic Link Architecture

There are two layers, the model layer and image layer (figure 2.4). An object to be 

memorised is extracted from an image as a model graph by placing a rectangular
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grid of points over the object and recording the features [87]. The image and models 

are represented as neural layers of local features ie. two patterns each consisting of 

N X N  local features arranged in two 2-D layers I  and M  as shown in the figure. 

The feature vectors are called jets located at each point of a grid of vertices. The 

features can be extracted from the image by applying filters like the Laplacian DoG 

(ON-center-OFF-surround cells) [21] or Gabor-type wavelets [88]. Neighbouring 

vertices are connected by links (correlations), which encode information about the 

local topology. Hence, vertices refer to locations, carry jets as attributes, and thus 

form local descriptors of object structure. Generally speaking, the jets are robust 

to small variations in the appearance of objects [89]. To recognise an object, 

the system attempts to competitively match all stored object models against the 

jet array in the image domain, a process called “Dynamic Link Matching” . The 

winning model is identified as the object recognised.

In one version of fast dynamic link matching [43], a blob or attention window is 

moved in the image and model layer to reinforce or weaken the connectivity matrix 

between the two layers when matching. If a model is similar in feature distribution 

to the image, its initial connectivity matrix contains a strong regular component, 

connecting corresponding points (which by definition have high feature similarity). 

Hence correlations are generated between corresponding regions. These correla­

tions are used to restructure the connectivity matrix and correlation-controlled 

plasticity thus improves the connectivity matrix. Iteration of this process rapidly 

leads to a neighbourhood preserving one-to-one mapping connecting neurons with 

similar features, thus providing translation invariance as well as robustness against 

distortions. The blob is moved over the whole image and self-inhibition serves as 

a memory and repels the blob from regions recently visited.

Another version of this model [90] has been implemented using elastic graph match­

ing. To compare stored model graphs with current image data, the image graph 

is shifted or varied to minimise a cost function Ctotai of its match to the model. 

The cost function is made up of two parts, the similarity function which is the 

normalised dot products of the jets and the square of the difference between the 

Euclidean distance vectors.
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2.4.3 General Regression Neural Networks

General Regression Neural Networks (GRNN) are memory-based feed forward net­

works based on the estimation of probability density functions. GRNNs feature 

fast training times, can model non-linear functions, and have been shown to per­

form well in noisy environments given enough data. Originally developed in the 

statistics literature and known as Nadaraya-Watson kernel regression , GRNN was 

‘re-discovered’ by Donald Specht in 1990 [91] [92]. The GRNN topology consists of 

4 layers: the input layer, the hidden layer, the summation layer, and the outputs. 

The primary advantage to the GRNN is the speed at which the network can be 

trained. Training a GRNN is performed in one pass. The training data are sim­

ply copied into the hidden layers of the neural net. For example, in an infrared 

spectroscopic calibration, each node in the hidden layer contain one spectrum from 

the training set. When presented with a spectrum of unknown concentration, the 

distance between the unknown spectrum and each node in the hidden layer (i.e., 

training set) is computed and passed through a kernel function. The summation 

layer has two nodes, termed A and B. The A node computes the summation of 

each kernel function weighted by the known concentration while the B node simply 

computes the summation of the distances. The output node simply divides B into 

A to provide the predicted concentration. At the heart of the GRNN is the ker­

nel function. The output of the kernel function is an estimation of how likely the 

unknown pattern or spectrum belongs to that distribution. The larger the output 

from the kernel function the more likely the concentration of the unknown (input) 

spectrum is close to that of the spectrum in the hidden layer. Thus, the output 

layer is simply a weighted average of the concentrations (target values) close to 

the input spectrum. The only adjustable parameter in a GRNN is the smoothing 

factor for the kernel function. The smoothing factor allows the GRNN to interpo­

late between the patterns or spectra in the training set. The optimisation of the 

smoothing factor is critical to the performance of the GRNN and is usually found 

through iterative adjustments and the cross-validation procedure.
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2.4.4 Adaptive Resonance Theory (ART)

The ART-1 [93] architecture consists of 2-parts, the attentional subsystem and the 

orienting subsystem.

STM F2 Orienting
Subsystem

t

|  |  1
1 LTM X  1 LTM

STM FI ■

Attentional in p u t  PATTERN 
Subsystem

Figure 2.5: ART-1 architecture

The attentional subsystem is made up of 2 layers of nodes Fi and F2 (figure 2.5). In 

an ART network, information in the form of processing-element output reverberates 

back and forth between layers. If a stable oscillation or resonance takes place, 

learning or adaptation can occur.

Plasticity-Stability: A resonant state can be attained in one of two ways. If the 

network has learned previously to recognise an input vector, then a resonant state 

will be achieved quickly when that input vector is presented. During resonance, 

the adaptation process will reinforce the memory of the stored pattern. If the 

input vector is not immediately recognised, the network will rapidly search through 

its stored patterns looking for a match. If no match is found, the network will 

enter a resonant state whereupon the new pattern will be stored for the first time. 

Thus, the network responds quickly to previously learned data, yet remains able 

to learn when novel data are presented. The activity of a node in the Fi or F2 

layer is called short-term memory (STM). The adaptive weights are called long-term 

memory (LTM).

Mechanics [94]: The same input vector I  registers itself as a pattern of activity 

across Fi, the orienting subsystem and the gain control. The output of F\ is 

multiplied by a matrix of adaptive weights (called the adaptive filter) and it also 

sends an inhibitory signal to the orienting subsystem to make it inactive. In the
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F2 layer, the node which receives the maximum — >F2 input is chosen as the

winning node. The pattern of activity across F2 is multiplied by the adaptive weight 

matrix of the top-down filter and is sent to the Fi layer where it acts as learned 

top-down expectation. The ART-1 network matches the “expected prototype” of 

the category against the active input pattern I  and features that are not “expected” 

are suppressed. Since the new output pattern is different from the original pattern, 

if the mismatch is severe, the orienting subsystem releases a non-specific arousal 

wave to F2 which resets the active node at F2.

The vigilance parameter determines how much mismatch will be tolerated. After 

the F2 node is inhibited, its top-down expectation is eliminated and a new pattern 

can be reinstated at F\. The cycle then begins again but this time a different 

node is activated. The previously chosen F2 node remains inhibited until F2 s gain 

control is disengaged by removal of the input pattern. The attentive matching 

process combines 3 different types of inputs at level F\. Bottom-up inputs, top- 

down expectations and attentional gain control signals. Attentive matching obeys 

a 2/3 rule that permits an F\ node to reach its output threshold only if 2 of 3 input 

sources that converge on it are high.

Fuzzy ART

Fuzzy ART [95] incorporates the basic features of the ART-1 system and is also 

capable of rapid stable learning of arbitrary sequences of analogue or binary input 

patterns. This generalisation is achieved by replacing the intersection operator (n) 

in ART1 by the MIN operator(A) of fuzzy set theory. In the binary case, the MIN 

operator reduces to the intersection operator. Category proliferation is prevented 

by normalising input vectors at a pre-processing stage. A normalisation procedure 

called complement coding leads to a symmetric theory in which the MIN operator 

(A) and the MAX operator (V) of the fuzzy set theory play complementary roles. 

Complement coding uses on-cells and off-cells to represent the input pattern, and 

preserves individual feature amplitudes while normalising the total on-cell/off-cell 

vector. Learning is stable because all adaptive weights can only decrease in time.
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With fast learning and a finite input set of arbitrary size and composition, learning 

stabilises after just one presentation of each input pattern. A fast-commit slow- 

recode option combines fast learning with a forgetting rule that buffers system 

memory against noise. Using this option, rare events can be rapidly learned, yet 

previously learned memories are not rapidly erased.

ARTM AP

-nab
MAP field 1
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ART w k‘

resetreset
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Figure 2.6: ARTMAP architecture

ARTMAP [96] is a supervised form of neural network architecture that autonomously 

learns to classify vectors into recognition categories based on predictive success. It 

is built up from a pair of ART modules (ARTa and ARTb) (figure 2.6) that are 

capable of self-organising stable recognition categories in response to arbitrary se­

quences of input patterns. During training, the ARTa module receives a stream of 

input patterns a, and ARTb receives a stream of input patterns 6, where b is the 

correct prediction given a. These ART modules are linked by an associative learn­

ing network and an internal controller that ensures autonomous system operation 

in real time. This inter-ART module includes a map field that controls the learn­

ing of an associative map from ARTa recognition categories to ARTb recognition 

categories. This map does not directly associate exemplars a and 6, but rather
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associates the compressed and symbolic representations of families of exemplars a 

and b. The map field also controls match tracking of the ARTa vigilance parameter. 

A mismatch at the map field between the ARTa category activated by an input a 

and the ARTb category activated by the input b increases ARTa vigilance by the 

minimum amount needed for the system to search for and if necessary, learn a new 

ARTa category whose prediction matches the ARTb category. Between input trials 

ARTa vigilance pa relaxes to a baseline vigilance pa. During testing, the remaining 

patterns a are presented without b and their predictions at ARTb are compared 

with b. The ARTMAP system can quickly, efficiently, and accurately achieve 100% 

accuracy after training on less than half the input patterns in the database. Rare 

but important events can be quickly and sharply distinguished even if they hre 

similar to frequent events with different consequences. When pa is large, the sys­

tem runs in a conservative mode, wherein predictions are made only if the system 

is confident of the outcome. Because ARTMAP learning is self-stabilising, it can 

continue learning one or more databases, without degrading its corpus of memories, 

until its full memory capacity is utilised.

Gaussian ARTM AP

Gaussian ART and Gaussian ARTMAP [97] have been created from the synthesis 

of a Gaussian classifier and adaptive resonance theory to deal more efficiently with 

problems of category proliferation in noise and category shape. The novelty of 

Gaussian ART is that each category is defined as a Gaussian distribution, with 

a mean and variance in each dimension, and an a priori probability. The choice 

function picks the most likely category for a given input. A category’s likelihood is 

determined by the likelihood that the input belongs to its distribution, as well as 

by the category’s a priori probability. The match function, on the other hand, is 

based solely on the likelihood that the input belongs to a category’s distribution, 

discounting its a priori probability.

Gaussian ARTMAP is essentially an incremental learning Gaussian classifier in 

which each output class is determined during training to correspond to any number
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of sources of Gaussianly distributed data. A GA category can naturally fit the 

variance along a dimension, but not covariance between dimensions. The prediction 

of an output class during testing is interpreted as picking the class with the highest 

net probability. Therefore, all category predictions are summed to yield the most 

likely net prediction of a class, rather than basing the prediction on the maximum 

ART category, as in Fuzzy ART(FA).

There are other variants based on the adaptive resonance theory such as ART-2 

[98], ART-3, Fuzzy ARTMAP[17], FUZAMP [99], ART E-MAP [100] and ARAM 

[101].

2.5 Sum m ary

This chapter has reviewed different object recognition techniques. The 3-D object 

recognition techniques can broadly be classified as object-centred or viewer-centred. 

Methods for extracting features from the image were also reviewed. Different corner 

detectors and region detectors have been described. Steps involved in stereo vision 

for recovering depth information have been described in detail. Some qualitative 

description of the neural networks reviewed has also been given. The next chapter 

specifies the area of contribution for this work.



Chapter 3

MOVING TOWARDS

CONNECTIONIST

APPROACHES

After a review of object recognition techniques, stereo vision and neural networks 

in Chapter 2, this chapter briefly analyses the different techniques. It also describes 

methods frequently used to achieve invariance and specifies the area of contribution 

of this work.

3.1 A nalysis o f traditional and A N N  approaches

The field of ANNs is still relatively new, though object recognition by the use of 

computer vision has been done for over a longer period of time. ANNs have been 

developed on biological principles of the functioning of the brain. Some of the 

well established architectures include the Hopfield, Kohonen and ART networks. 

Engineers and vision researchers are now trying to apply the ANNs to the object 

recognition problem and some of them oppose model-based methods. While efforts 

have been made by some researchers to present data to “standard” ANNs in an 

invariant manner, others have modified the basic architecture to adapt them to per­

41
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form object recognition. Prom the literature survey, it can be seen that VIEWNET 

[102] proposed by Grossberg and Bradski in section 2.2.2 is quite similar to that 

of appearance models in the classical approach. Also the idea of n-dimensional 

attribute space (section 2.2.1) has direct parallels to hyperspace and clustering in 

ANN theory. While model based approaches [28] do perform good recognition, 

the models themselves have to be first created by CAD techniques. As opposed 

to this, ANNs do not need explicit models and some networks can perform in­

cremental learning. The use of structural decomposition is not widespread, since 

the primitives may not be sufficient to represent the object completely. The view 

centred approach seems more practical for object recognition by a robot.

The next section briefly analyses the differences between ANNs used in some object 

recognition techniques described in the Chapter 2.

3.2 A nalysis o f N eural N etw orks

The Hopfield network is an associative network and has been modified and used 

extensively by several researchers to include invariance in performing 2-D object 

recognition. The basic Hopfield network (section 2.4) suffers from one major draw­

back - it can get trapped in the local minima. The dynamic link architecture has 

been used particularly for face recognition and its feature extraction and matching 

scheme includes invariance. But its implementation has not been done in a fully 

neuronal way. It has been simulated using elastic graph matching by minimising a 

cost function. General regression networks feature fast training times, but has no 

intuitive method for selecting the optimal smoothing parameter and requires that 

all the training samples be stored for future use. Networks based on the adaptive 

resonance theory can perform incremental learning without “forgetting” previously 

learned data compared to back propagation. While ART-1 is an unsupervised net­

work and can only handle binary data, ART2, and Fuzzy ART can handle analogue 

values. Adaptive resonance associative map (ARAM) is associative having a com­

mon F-2 layer and resembles the Hopfield network in its functioning. ARTMAP is a 

supervised network and while one module can incrementally learn the input vector,
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another vector can be learnt by the other module and can be associated with the 

first one. Both many-to-one learning and one-to-many learning of patterns is pos­

sible. The basic ARTMAP has been designed only to accept binary values. It has 

been combined with fuzzy theory to create Fuzzy ARTMAP which can be accept 

fractional values. When combined with the Gaussian classifier, Gaussian ARTMAP 

includes the probabilistic features of the GRNN. This is particularly useful when 

there is large amount of input data. Although it cannot handle covariance of data 

similar to the GRNN, Gaussian ARTMAP has been shown to outperform the com­

monly known expectation-maximisation (EM) algorithm [103] on benchmark tests. 

ANNs based on ARTMAP theory thus can be seen as networks with associative 

properties which can perform incremental learning (adaptive) and are well suited 

for application to solve the 3-D object recognition problem.

3.3 A chieving invariance

The challenge in object recognition lies in recognising an object invariantly since an 

object has an infinite number of possible poses relative to the viewer. In some of the 

object recognition techniques, both for free-form and geometric objects described 

in the last chapter, the properties described below have been used to achieve in­

variance to translation, rotation and scale. These methods have been commonly 

used before feeding data to the neural network.

1) Moment invariants

A common method for invariant feature extraction is using moment invariants. Hu 

[104] has defined a set of seven moment invariant functions that are invariant to 

translational, scale and rotational differences in input patterns. For most practical 

applications the set of the seven moment invariants is adequate although these do 

not make up the complete set of descriptors. The (p +  q)th geometric moment of 

the image g(x,y) is given by

mpq =  ££=_nE q=_nxpyqg(x, y) fo r  p,q = 0,1,2,3.... (3.1)

To make these moments invariant to translation, the central moments are defined
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and then normalised for scale invariance. 3-D moment invariants also exist.

2) Log-polar transforms

The complex-log mapping transforms the Cartesian form of the grey-scale image to 

a polar exponential representation, and in doing so the rotation and scale variance 

are transformed to translation variance. When the object with pixels (x , y)  is 

mapped into a complex plane the points are represented mathematically by z = 

x  +  jy . The complex-log mapped points are given by:

I y
w =  ln(z) = ln(\z\) where \z\ = (x2 +  y2) 2 and angle 9Z =  tan~l -  (3.2)

The log-polar images exhibit higher resolution at the centre whereas the peripheral 

visual field is covered with a coarser resolution similar to that exhibited in the 

human vision system.

3) Gabor wavelets

The general form of the 2-D Gabor function is given in [88]. The family of kernels 

called “Gabor-based wavelets” takes the form of a plane wave restricted by a 

Gaussian envelope function (where a is the standard deviation and k is a constant)

1.2 (  £2^2\ ^
M S) =  — 1 exP( ) )] (3.3)

The form a family that is self-similar under the application of the group of 

translations, rotations, and scalings. Pre-processing the image with Gabor wavelets 

at different scales and orientations give rise to features which possess some degree 

of invariance.

4) Gaussian and mean curvatures

The importance of curvature for the purpose of recognition lies in the fact that 

surface curvature is independent of the view point for the object. Typically, the 

Gaussian (H) and mean (K) curvatures are estimated and by inspection of their 

respective signs it is possible to define the local surface area as being one of eight 

surface primitive types. The surface can then be characterised by an H  — K  map.



Chapter 3-Moving towards connectionist approaches 45

These surface type primitives are peak, ridge, saddle ridge, minimal, pit, valley, 

saddle valley and flat. To estimate the local curvatures there are a number of 

methods including those used in [52] and [105].

5) Other invariants

Certain ratios are also used to obtain invariance. The cross ratio of 4 points on a 

line for example is a projective invariant. A ratio to obtain an invariant quantity 

called the shape number has been defined in [27]. Qualitative three-space attributes 

such as “long and thin” and “oval and compact” preserved under projection from 

many viewpoints can be measured by the ratio of area and perimeter squared. 

Pairwise geometric histograms [106] are used to obtain rotational invariance.

3.4 A rea o f contribution

This work is aimed at developing a novel scheme to invariantly recognise 3-D poly­

hedral objects (using ANNs). Many mechanical objects usually fall in this category. 

The main aim is to extract salient features and relate them. It is more likely that 

we recognise objects by remembering the relationships of features. Also, we can 

recognise an object quickly if we have some prior knowledge of the object or parts of 

it. This work has used a hierarchical system. In the first stage, parts (facets) of the 

objects are recognised. In the second stage, the relationships of features are then 

encoded and input to the neural network for incremental learning of characteristic 

views. Thus in this work, the object is broken down into its simplest elements and 

relationships between these are used for identifying objects. When a novel view 

of the object is shown, the system is able to make a prediction about the type of 

object.

The next chapter describes the practical work done in detail.



Chapter 4

RECOGNISING AND  

LOCATING OBJECTS

This chapter describes the practical work done for this project. Some initial exper­

iments were done for 2-D shape recognition and obtaining 3-D information. These 

include ART-1 experiments and stereo vision experiments. Some approaches tried 

before the final system was developed have then been described. This is followed 

by the description of overall architecture and algorithms used.

4.1 ART-1 experim ents

After the review of neural networks (section 2.4), it was decided to use algorithms 

based on the adaptive resonance theory (ART) for object recognition. Networks 

based on the ART theory are adaptive and have incremental learning capability. 

They feature faster training times compared to the backpropagation algorithm [107] 

in a multilayer perceptron scheme where all patterns have to be used again for 

training the network as new patterns become available. The basic Hopfield model 

is good for applications such as 2-D character recognition where neurons can be 

arranged in a grid-like manner. The basic Hopfield network has the disadvantage of 

sometimes having its energy trapped in the local minima. Besides, the number of

46



Chapter 4-Recognising and locating objects 47

patterns which can be trained by using a Hopfield network is limited. As opposed 

to this, the number of patterns which can be trained by using an ART network is 

only limited by the memory of the computer. While ARTMAP and its variants 

are supervised networks, the basic ART-1 algorithm is unsupervised. Fuzzy and 

Gaussian ARTMAP were considered to be used for 3-D object recognition. The 

details of these algorithms and their advantages have been described in Chapter 2.

The ART-1 algorithm was first used for recognising 2-D objects. An Imager-AT 

frame grabber card having frame buffers was used as an interface with the PC 

for digitising images obtained from a Pulnix TM-460 CCD camera. The anologue 

signal from the camera could be seen on another monitor. The image size obtained 

was of 512x480 pixels. The Imager-AT card has some associated software routines 

which were used for image processing using the Microsoft C compiler. The number 

of F 2  neurons in the second layer of the ART network (section 2.4.4) was set to 

4. This was dependent on the maximum number of test objects selected. Simple 

objects such as a floppy disk, pen, screwdriver and a round piece of cork, were used 

as test objects (see figure 4.1).

Figure 4.1: Objects used

They were placed on a white background for ease of segmentation. Proper segmen-
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tation is crucial for object recognition as the objects must be separated properly 

from the background. The object silhouettes were used for object recognition. First 

a video input of the object was taken and the lighting and focus of the CCD camera 

on the stand was adjusted. A snapshot of the object was then taken. Once a frame 

was captured, it was thresholded and edges were detected by convolution using the 

Prewitt algorithm (figure 4.2). Other algorithms available for edge detection are 

the Sobel and Laplacian operators. The optimum threshold level had to be set 

by experimentation. The level of thresholding affects segmentation. Also if the 

threshold level is kept same and the lighting varies, the segmentation is affected. 

The co-ordinates for each existing edge point were stored in an array using dynamic 

allocation. For locating the object, a search for the maximum and minimum x and 

y values in the array was made and a square surrounding the object was found. 

This square was subdivided into a grid of 20x20 and each location was assigned a 

value of either 1 or 0 depending upon a threshold of the sum of the existing edge 

points. This also produces some degree of rotational invariance.

Figure 4.2: Thresholding and locating the object

Thus, the object could be represented by a matrix of 20x20, with all l ’s representing 

the edges of the object (see figure 4.3). This procedure was repeated for each of the 

three objects and the images were displayed on the PC screen. The binary data as 

an array of 20X20 was then used for training the neural network (ART-1). In case 

I (figure 4.4) when all the four different objects were presented (shown in the first 

column), they were classified under four different categories (highlighted in each 

column). In case II (figure 4.4) the floppy, cork and screwdriver were classified as 

three different categories, but when the floppy was presented again, it was correctly 

classified under the first category(node 1) and not category 4.
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Figure 4.3: Binarized object

Figure 4.4: ART-1 classification

The results conform with the ART theory. ART-1 is basically an unsupervised 

network (section 2.4.4). If the network has learned previously to recognise an in­

put vector, then a resonant state is achieved quickly when that input vector is 

presented. During resonance, the adaptation process reinforces the memory of the 

stored pattern. If the input vector is not immediately recognised, the network 

rapidly searches through its stored patterns looking for a match. If no match is 

found, the network enters a resonant state whereupon the new pattern is stored 

for the first time. Thus the network responds quickly to previously learned data, 

yet remains able to learn when novel data are presented (Refer Appendix A for the 

ART-1 algorithm). A vigilance parameter of 0.4 was sufficient for proper classifi­

cation of the 4 objects. If the vigilance was lower than 0.4, the algorithm classified
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the objects into fewer categories, with the first two objects, the floppy and round 

piece of cork accessing the same node. According to ART theory, the higher the 

vigilance parameter, the more distinct is the classification. The vigilance parame­

ter lies between 0 and 1. If the patterns are sufficiently different, a lower vigilance 

is sufficient for distinguishing them. In this case, a vigilance parameter of 0.4 and 

above could properly classify the objects. The recognition was also invariant to 

translation since a search for the object boundaries within the field of view was 

made as described above.

Observations made

1) The success of the recognition depends mainly on the proper segmentation of the 

objects. If the threshold level is not set properly, some points on the background 

are perceived by the system to be part of the object and the proper boundary 

cannot be obtained.

2) There is limitation on the array size for dynamic allocation since programming 

was done under DOS. Hence larger objects could not be used unless the camera was 

moved further away, otherwise part of the object boundary cannot be stored. This 

problem can be alleviated by programming under Windows or DOS extenders.

3) The recognition was not rotationally invariant although slight tolerance to rota­

tion and scale could be achieved, depending on the value of the vigilance parameter 

and due to the nature of input (20x20 array) to the system. The need for extract­

ing multiple features and their relationships was felt in order to achieve invariance. 

One approach would be to break the object into its smallest elements and try to 

relate each with the other. These relationships would be preserved when the ob­

ject is rotated. When a 3-D object is rotated in depth however, the angles and 

lengths perceived change. In such a case, three dimensional information is useful 

for recognition since it preserves this information. Experiments for extracting 3- 

D information from two images were then carried out using stereo vision theory 

(section 2.3).
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4.2 Stereo V ision  experim ents for determ ining  

object location

For finding the coordinates of the object, a calibrated set-up was used for obtaining 

two views for stereo vision. The theory and details on stereoscopic vision were 

discussed in Chapter 2. For experimental work, two CCD cameras were mounted 

on a metallic base which was placed on a stand (figure 4.5). All the adjusters on 

the camera stand were then tightened.

4.2.1 Calibration

The calibration procedure consists of the following steps (refer section 2.3):

1) Calculating the distance of the fixation point (Z0).

2) Finding the baseline distance ie. the distance between the two camera optic 

centres.

3) Finding the focal length ( /)  of the two cameras.

A point object (such as pin) was placed orthogonal to the camera cyclopean centre 

which is in the centre between the two cameras. To get equal vergence angles, 

the cameras were adjusted so that the object appeared in the centre of the image 

buffer for both the camera views. Care was taken to ensure that the camera 

vergence angles were less than 30 degrees so that the approximation equations (eq. 

2.3) were valid. The screws at the base of the cameras were then tightened. At 

this point, the lighting and focus were checked to ensure that the object appeared 

distinctly on the screen. The distance of the fixation point from the cyclopean 

origin to the point object (Z0) was also physically measured.

The baseline distance (D) between the two camera optic centres was also measured 

in a similar manner. For finding the focal length, use of the perspective projection 

equations was made. The focal length is given by
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Figure 4.5: Stereo setup 

where X  is the real object width (in cm);

Z  is the distance of the object from the cyclopean origin (in cm) and 

x is the pixel distance in the image.

Thus the focal length could be worked out in pixel units. A cube of dimensions 5cm 

x5cm x7cm was used for calibration. This was done 4-5 times for different distances 

and objects and the average focal length was taken as / .  This reading was then 

kept constant for further calculations. This was same for both the cameras.

Thus the three constants, baseline distance (D), fixation distance (Zq) and /  were 

found during the calibration procedure (figure 4.6). Once this was done, the base 

could then be rotated about the horizontal axis (X-axis, which is parallel to the 

ground). If the calculated and measured readings obtained from stereo results 

(described in Chapter 5) were large, the calibration procedure was repeated to get 

greater accuracy.

4.2.2 Feature extraction

Two views of the cube were obtained from the two cameras. In the current work, 

a few points on the object are sufficient for the robot to locate the object. Hence
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Figure 4.6: Schematic topview and side view of the camera set-up

corner points were extracted as features. In certain other applications involving 

stereo vision, explicit reconstruction is made using dense data for creating models 

[75]. Several types of corner detectors were reviewed in section 2.3.4. The median 

filter algorithm was first used to detect corners (figure 4.9).

In this, the difference in magnitude of the median and centre pixels is calculated to 

estimate the corner response function. Consider the sub-image in figure 4.7. This 

shows the corner of a dark object against a light background. The number 0 stands 

for black and 255 stands for white when 8 bit resolution is used. If we now pass 

a 3 by 3 window over this, and calculate the median med at each position, we see 

that med is equal to the centre pixel intensity at each position except when centred 

at the corner pixel. If the difference between the magnitudes of the median and 

centre pixels exceeds some threshold, the pixel can be regarded as a likely corner.

The threshold to declare the filter response as a corner had to be found by experi-
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255 255 255 255

255 255 255 255

0 0 0 255

0 0 0 255

0 0 0 255 255

Figure 4.7: A black corner on a light background

? ? 9 ? ?

? 255 255 255 ?

? 0 255 255 ?

? 0 0 255 ?

9 9 9 9 9

Figure 4.8: Output of a median filter pass over the image

mentation depending on the lighting. It was found that rather than a single corner 

point, a group of close corner points were located by the algorithm. These were 

then averaged to give a single point. An alternative to averaging which can be 

implemented is to use non-maximum suppression - by taking only the most dom­

inant response and suppressing the other responses in a neighbourhood. In initial 

experiments, the MVP-AT board was used and programming was done under DOS. 

Both the left and right views were displayed on the computer screen.

The MIC algorithm (section 2.3.4) was also implemented later (section 4.5) when 

programming was done using the Meteor frame grabber under the Windows op­

erating system. It was found that the response obtained from the median filter 

corner detector was also giving spurious corners and so, small rectangular areas 

were defined around probable corner points and then the median filter algorithm
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Figure 4.9: Corner detection

Figure 4.10: Overall set-up

was applied to all such regions within the entire image. The coordinates of the 

pixel points were then stored an array. Prior to that, appropriate scaling had to 

be done to convert the mouse co-ordinates to the 512x480 frame buffer coordinate 

system. This procedure was applied to both views. The main aim of this work is 

the development of a vision system to recognise objects invariantly. Since stereo 

vision is already a vast and mature area [108], this work has used simplifications 

to obtain 3-D data and use this to aid in the development of the system.
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4.2.3 Feature correspondence

The co-ordinates of the corner points obtained from both views were matched. 

Since both the cameras are resting on the same plane, the epipolar lines are quite 

horizontal. In the first stage of automation, the corner points in the left image were 

obtained by following the sequence of every closed region visible to the camera. 

Hence, in an array the (#, y) co-ordinates of each corner point were stored for each 

region.

Same?

Region
detected

Each subsequent point stored after the first one was then checked with the first 

stored point to see if had the same co-ordinates. If the coordinates were the same, it 

meant that the chain had been closed. In other words, a region had been detected.

Left image Right image
storage arrays storage arrays

XL1> Y u x Rl>yRl

XL2> y  L2 XR2> yR2

XL3» yL3 XR3> yR3

— * * - -  '

m Ll> n Ll m Rl> Ari

m L2> n L2 m R 2, n R2

m L3> «L3 m i u ,  n R3

.

As soon as this matching condition was found, all the co-ordinates from that array 

were transferred to another array for storage and the original array shown above
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was flushed (ie. all elements set to zero). The procedure was then repeated for 

other regions, thus storing points of different regions in different arrays as shown 

below.

A similar procedure was followed in the right image. Regions were followed in 

exactly the same manner as done in the left image and the points were stored. The 

corresponding points in the two sets of arrays (with the same index number) were 

then matched and the disparity was calculated. The depth calculation has been 

explained in the next section.

Left image Right image
Storage arrays Storage array

x l i , y u &r i , b R i

XL2, y  L2 a R2, t>R2

XL3, yL3 &R3, b R3

m Ll> nLl
m L2> n L2

m L3» n L3

.
J

In the next stage of automation, in the right image, the (x, y) co-ordinates of all the 

corner points obtained in random order were stored in one single array as shown. 

In the left image, the previous procedure of detecting regions was followed.

Epipolar band

Figure 4.11: Matching along epipolar lines
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In the array of stored left image co-ordinates, a check was made to see if for every 

point there was another point along the epipolar line. In practice, an epipolar band 

is necessary since points usually do not lie exactly on a single pixel line, one reason 

being that the two cameras may not exactly be aligned on the horizontal base. 

A y-tolerance band of 14 pixels was kept (the epipolar band) as shown in figure 

4.11. In the right image, the corresponding matching point was found by searching 

through the points stored in random order derived from the right image.

If two points were found lying on the same epipolar line in the left image, they 

were stored in a temporary array.

Temporary 
left array

5 0 , 200  
100 , 200

Temporary 
right array

125, 204  
75, 204

A search was done for the corresponding two points in the right image. Since 

the point pairs are in random order, the two pairs in the temporary arrays were 

then matched properly as shown. This was done by checking which point had a 

lower x-co-ordinate and thus the corresponding point was found. In effect, points 

were matched in sequential order. In some cases, where the object side lengths are 

smaller, at certain angles, more corner points of different edges appear within the 

same epipolar band, resulting in mismatches. In these cases, the first matching 

scheme of finding exact correspondences was found to be more reliable. The next 

section explains depth recovery.

4.2.4 Depth estimation

The differences in the matching coordinates were calculated to find the disparity 

values xL  and xR. The value of Z  could then be computed using the stereo 

equations (section 2.3.3) where the depth Z is given by

~ D f  Z =  —  
V

(4 .2)
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These readings were then physically verified. The results are shown in the next 

chapter.

The vergence angles were kept fixed once calibration was done. The angles can be 

calculated by knowing the fixation distance and baseline distance. In an attempt 

to improve the accuracy, for a particular vergence angle (approx. 20 degrees) a few 

readings of Z  of a point at different distances were taken and their error computed. 

The errors at other distances were interpolated using the piecewise linearization 

method for error compensation. The idea was to interpolate errors and use them 

for compensation to reduce errors in depth. The percentage error was about 2 

percent before compensation and dropped significantly after error compensation. 

But when all 3 dimensions ie. X-Y-Z data were considered, the errors in X and Y 

add up to the overall error. Detailed results have been shown in the next chapter.

Observations made

1) The accuracy of the depth recovery depends on the accuracy of the calibration. 

When measuring Zq especially it must be ensured that the point object is exactly 

perpendicular to the baseline at the cyclopean origin.

2) Some false corner points are detected when the background is not clean. Not 

all corner points could be detected in the regions of shadow. Proper lighting ad­

justment is crucial and the procedure for feature detection sometimes needs to be 

repeated. The angle where a corner points exists, also affects its detection eg. cor­

ners formed at very obtuse angles by parts of the object are difficult to detect with 

the median filter algorithm. To try to increase the accuracy, the MIC algorithm 

was hence later implemented.

The source code for stereo vision was originally written for the Imager AT image 

processing board. This was then transferred for use with the new Matrox METEOR 

board which could be programmed to run under Windows.

After doing the initial experiments as described in the above two sections, work 

was carried out to develop an architecture to recognise 3-dimensional objects. The 

next section describes some initial approaches taken in order to develop the system.
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4.3 Som e initial approaches taken

To know how CAD internally represents objects and to draw some clues to help 

in the development of the vision system, a study of the CAD package ACIS was 

made.

ACIS is an object-oriented geometric engine with 3-D modelling applications. ACIS 

provides an open architecture framework for wireframe, surface, and solid modelling 

from a common, unified data structure. ACIS stores geometry information to 

“save” files. These files have an open format so that external applications, such as 

those not based on ACIS, can have access to the ACIS geometric model. These 

applications are then able to read the pure geometric data from or write information 

to a saved model.

The ACIS kernel has a fundamental class called ENTITY. It represents common 

data and functionality that is mandatory in all classes that are permanent objects 

in the model. The classes derived from ENTITY that represent the topology of 

the model are: BODY, LUMP, SHELL, SUBSHELL, FACE, LOOP, COEDGE, 

EDGE, VERTEX and WIRE.

The figure 4.12 shows the implementation of model objects by ACIS. BODY rep­

resents a wire, sheet or solid body. An EDGE represents a physical edge as recog­

nized by the user. It has pointers to VERTEXes in both directions. A COEDGE 

stores the relationships of the EDGE with adjacent EDGES and superior owning 

ENTITYs. A FACE is a bounded portion of a single geometric surface in space. 

The FACE has a pointer to LOOP (first loop bounding face), pointer to SHELL 

(shell containing face) and pointer to SURFACE (surface on which face lies). A 

LOOP represents a connected portion of the boundary of a FACE. A lump rep­

resents a bounded, connected portion of space. It has pointers to the LUMP and 

SHELL. The SHELL is one portion of the LUMP’S boundary and contains subdi­

visions called SUBSHELLS. The VERTEX embodies the user’s view of a corner of 

a FACE. A WIRE represents a connected collection of EDGES, and is owned by a 

BODY.
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Figure 4.12: Implementation of model objects

As it can be seen, the representation is highly rule based and many pointers are 

used. This would be very difficult to be implemented in a neuronal way. But some 

clues about object representation could be drawn by studying this material.

From the study of the CAD package, it was found that the system would need to be 

of a hierarchical type if it were to be implemented in a neuronal way. This would 

typically have the first layer to identify surfaces and then another layer finding 

the relationships between these, and another layer holding the object type or class 

implementation. The feature of classes in C + +  would facilitate in designing such 

a system. Such a system would typically look like that shown in figure 4.13.

Although a single object could be represented this way, it would be difficult to have 

several objects to be represented this way using a common size of input vector ie.
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Highest Class

Intermediate Class

Smallest elements

Figure 4.13: Hierarchical system

the number of input elements for each object would vary. Secondly even though 

each node, as a class, would represent a neuron with some elements, it wouldn’t 

always confirm with the commonly held description of a neuron having several 

inputs and a single output triggering only when a function or functional threshold 

is activated.

The approach below was then devised. This first assumes that a rectangular type 

is represented by the number 0.5 and the triangle by 0.3. A matrix is then created 

for each view of the object seen. As seen in figures 4.14- 4.19, it encodes the 

relationship of each facet with every other facet as seen from that view.

1 2 3 4 5 6

0.5 0.5

0.5 0.5

0.3 0.3

Figure 4.14: View 1
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1 2 3 4 5 6

0.5 0.5

0.5 0.5

0.3 0.3

Figure 4.15: View 2

Figure 4.16: View 3

Figure 4.17: View 4

For example, column 1, which represents facet 1 has elements in row 2 and 4 having 

the values 0.5 and 0.3 . It implies that facet 1 is connected by a rectangle and a 

triangle. This convention is followed throughout for each characteristic view. These 

patterns could then be used for incremental learning by the neural network. Thus 

each node could represent a certain pose and several of these could be used for 

associations with a particular object type. From figure 4.14 and figure 4.15, it 

can be seen that the pattern formed by the numbers in both images are same but 

shifted. In figure 4.15, if a blank column 3 and blank row 3 were inserted, then it 

would give us the same matrix as figure 4.14. This corresponds to a left rotation
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Figure 4.19: View 6

of the object. The drawback of this approach is that it assumes that the complete 

numbering of the surfaces is already known ie. each surface has a unique number. 

This implies that a complete description of the sides of the object is known a priori.

For recognising the facet types themselves each element could be broken down 

into it smallest constituent element with some properties assigned to each of them. 

In ART, the weights approach the input vector and the node is either a winner 

or not. This property information about each smallest elements is difficult to be 

propagated to the upper level. Hence it was decided to use a rule based system for 

the first part of the hierarchical network.

The complete description of the overall system developed follows in the next section.
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4.4 D escription  o f the system  developed

4.4.1 Overall Architecture

The overall architecture has been shown below in Fig. 4.20.

ARTMAP

ART-B

Data acquisition

ART-A

Image Processing

Facet Detection

Connectivity generation

Figure 4.20: Main system architecture

In the system, there are two levels of training-training of the facet types and 

training of the neural network. The system is first trained on 2-D information. 

This was done using data from a file. Facets such as a square, rectangle and 

pentagon were shown to the system (see fig below 4.21)

0.3

0.75

Figure 4.21: Types of facets

Each of these facet types is broken down into its smallest element, such as an edge. 

Each edge is then assigned 3 properties (or quantities)- a sequence number, its
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length, and an angle. The angle determines how it is related to the next edge 

connected to it. This information about each edge making up the facet is held in a 

linked list (shown in figure 4.24). Each facet is held as a software object in another 

linked list. In figure 4.24, the first object represents a triangle with 3 elements, the 

second a square with 4 elements, and the third a pentagon with 5 elements.

Figure 4.22: (a) Trained 2-D data (b) Sensed 3-D data

The trained facets are then matched to the 3-D information obtained from the 

stereo system (fig.4.22). From the stereo data, the edge lengths and angles between 

the sides can be calculated by using vector algebra.

Angle Calculation

If there are two vectors a and b meeting in space as shown in fig 4.23, then the 

angle between them can be calculated by knowing two points lying on them. The 

distances between the points can also be calculated. The formulae are given below:

a.b = ABCosO 

a =  (xi -  x 2)i + (2 / 1  -  V2 )j +  (zi -  z2)k

b = (x3 -  x2)z + (y3 -  y2)j + (z3 -  z2)k

X a i  —  X \  X 2 X b i  —  X 3 X 2

Yaj =  2/1 -  2/2 Ybj =  2/3 -  2/2

Z a k .  —  Z \  Z 2 Z b k  —  Z 3 Z 2
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x l,y l,z l

x3,y3,z3

Figure 4.23: Angle Calculation

A2 =  (A0i)2 +  (Yaj)2 +  (Zak)2 

B 2 =  (X bi)2 +  (Ybjf  + (Zbj)2

q    ( J q q —1 f  *  ^ -b i 4”  Y aj  *  Yf)j -{- Z a k

~  \  A *  B
* Z>bk

where i,j and k are unit vectors.

Each software object (which is a facet) is given a type number which lies between 0 

and 1. These are arbitrarily given such as 0.15, 0.3, 0.5, 0.75. This limit between 0 

and 1 is a requirement for the working of the ANN. At the end of matching, when 

each facet is detected, it picks up its type number. This happens for each facet 

detected. This procedure can be extended for different facet types with different 

numbers.

4.4.2 Facet Detection

For matching the trained facets with the sensed data, three levels of matching 

criteria have been established, starting from coarse to fine matching.

Level 1

At this level, it is checked if the number of sides are the same. Each held software
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hi

Figure 4.24: Facet detection module 

object is searched turn by turn for the number of elements contained.

Level 2

Once possible facet matches are found from level 1, the angle checks are made. A 

check is made to see if all the angles between the trained and tested facets are the 

same. This is equivalent of rotating and matching each facet to a trained facet.

Level 3

At this finer level, a further check is made to see if adjacent sides are similar in 

order to distinguish between squares and rectangles.

4.4.3 Interfacet relationships

After the proper facet matches are found, the relationships between each facet with 

others are then determined. Two surfaces touching in 3-dimensions will also appear 

to be touching in 2-D data. To judge if two facets are touching or not, the criterion 

used is to see if at least two points between them are common.

A matrix is then created for each view of the object seen. This is done in a manner 

similar to that explained in section 4.3 but does not assume unique numbering of 

facets. As seen in Fig 4.25, it encodes the relationship of each facet with every 

other facet as seen from that view. To elaborate again, column 1, which represents 

facet 1 has elements in row 2, 3, 4 having the values 0.6 each. It implies that facet
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Pentagon — - 0.75 
Rectangle — - 0.6

1 2 3 4 5

0.75 0.75 0.75

0.6 0.6

0.6 0.6 0.6

0.6 0.6

Figure 4.25: (a) Object (b) Generated pattern 

1 2 3 4 5 6

0.6 0.6

0.75 0.75

0.6 0.6

Figure 4.26: (a) Rotated object (b) Generated pattern

1 is connected by 3 rectangular surfaces. The value 0.6 stands for a rectangular 

type of facet. The rest of the elements in the matrix are set to 0. The rotated 

object in figure 4.26 gives rise to another pattern.

In this manner, the matrix is automatically filled up. The size of the matrix, here 

kept to 6x6, is set at the beginning, depending on the complexity of the objects. 

It is determined by the maximum number of facets that can be seen in one view of 

the most complex object ie. the object having many number and types of facets. 

The numbers of the facet types which lie between 0 and 1 are chosen arbitrarily. 

The object is rotated slowly and these maps (matrices) are generated for each 

view. These patterns are fed into the artificial neural network as shown in fig 4.27. 

The numbering of facets follows a certain order. Here, it is in the anticlockwise 

direction.

Each matrix is then fed as a single 36-input vector to ART-A module, while the
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Fuzzy/ Gaussian ARTMAP

MAP FIELD

ART-BART-A

Features
0 0 1  Prism
0 1 0  Cube
0 1 1 ------- Pyramid

Figure 4.27: Feeding information to the neural network

corresponding object type is presented at the other ART module viz. ART-B. 

Each object at ART-B is represented by a 3 element binary value. For example, 

the prism may be represented as 0 0 1, the cube as 0 1 0 etc. In this case, the 

binary coding allows for a maximum of 8 objects, but it can extended to more 

digits if there are more objects.

Each pattern associated with each view is learnt and associated with the corre­

sponding vector at the other ART- module. Keeping with ART-theory, if the 

object rotates slightly and the pattern remains the same, it gets reinforced.

The following section gives a more detailed description of the working of how asso­

ciations are formed and the role of the MAP field. Details of the Fuzzy ARTMAP 

algorithm have been given in Appendix B. (Details of the Gaussian ARTMAP have 

been included in Appendix C for the sake of completeness)

The main elements of an ARTMAP system are shown in figure 4.28. The two 

modules ARTa and ARTi read vector inputs a and b respectively. If ARTa and 

ARTb were disconnected, each module would self-organise category groupings for 

the separate input sets. The ARTa and ARTb are here connected by an inter-ART 

module that in many ways resembles ART-1. This inter-ART module includes
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b (Training)

ART i

Map field 
Gain 

Control

MAP FIELD
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) subsystem6
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tracking
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Figure 4.28: Block diagram of the ARTMAP system

a Map Field {Fab) that controls the learning of an associative map from ARTa 

recognition categories to ARTb recognition recognition categories. This map does 

not directly associate exemplars a and b, but rather associates the compressed and 

symbolic representations of families of exemplars a and b. The Map Field also 

controls match tracking of the ARTa vigilance parameter. A mismatch at the Map 

Field between the ARTa category activated by an input a and the ARTb category 

activated by the input b increases ARTa vigilance by the minimum amount needed 

for the system to search for and, if necessary, learn a new ARTa category whose 

prediction matches the ARTb category. If both ARTa and ARTb are active, then 

learning of ARTa — > ARTb associations can take place at Map field F ab. If ARTa 

is active but ARTb is not, then any previously learned ARTa — > ARTb prediction 

is read out at F ab. If ARTb is active but ARTa is not, then the selected ARTb 

category is represented at F ab. If neither ARTa nor ARTb is active, then F ab is 

not active. Match tracking increases the ARTa vigilance by the minimum amount 

needed to abort an incorrect ARTa — > ARTb prediction and to drive a search for 

a new ARTa category that can establish a correct prediction. Details of the results 

obtained along with the description of improvement of the system have been given 

in Chapter 5.
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4.5 Im age Processing

For experimental work, to obtain data from the images, regions were defined sur­

rounding a probable corner to follow a sequence for detecting regions. Regions of 

20 x 20 pixels were defined in which the MIC algorithm (referred in Chapter 2) 

for corner detection was implemented. After all probable corner detections were 

made, non-maximal suppression (NMS) [68] was applied. This was done by scan­

ning an area for finding the maximum response from the corner response function 

and suppressing all the remaining. After doing this, if there were still 2 or 3 points 

in the 20X20 matrix, then their average location was found. Figure 4.29 shows the 

corners detected at different angles by the MIC algorithm. The small white rectan­

gles represent the corner points. Figures 4.30 and 4.31 show the corners detected 

for a prism and pentagon. It shows more than one response lying close to a corner 

before averaging and some spurious corners. A description of the working of the 

MIC algorithm is given next.

11®1

Figure 4.29: Corners detected using the MIC algorithm



Chapter 4-Recognising and locating objects 73

Figure 4.30: Corners of a pentagon

Figure 4.31: Corners of a prism 

4.5.1 MIC algorithm

In the minimum intensity algorithm (MIC), to compute the CRF (corner response 

function) a discrete approximation of the circular window (neighbourhood) was 

used as shown in figure 4.32.

The general equation for the corner response function [68] is given by R N

R n  = m in((fp  — /at)2 +  (/p  — I n )2) (4-3)

where N  is the nucleus (ie. the central pixel), f is the intensity and P and P ’ are 

opposite pixels under consideration with respect to N. In figure 4.33 the nucleus is 

denoted by C.
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Figure 4.32: Digital circles of diameter 3 and 5

The problem with the above equation is that a strong edge with a direction different 

to those examined can cause a false corner response. This can be resolved using 

a bigger window but interpixel approximation has to be used. To do this we 

can consider in the simplest case, a window of diameter three, containing four 

neighbours only as shown in figure 4.33. This can be extended to bigger circles.

Figure 4.33: Neighbourhood of nucleus C 

First the horizontal (ta) and vertical (r#) intensity variation is defined as

ta =  (/a  -  fc ) 2 +  {fa ~  f c )2, 

tb =  (/b  — fc )2 +  U'b ~ fc ) 2

(4.4)

(4.5)

where C is the nucleus in this case and / a and /jg are the intensities at pixels A 

and B



Chapter 4-Recognising and locating objects 75

Then, the CRF is computed as

R — min{rA, tq) (4.6)

ie the minimum of the two intensity variations is considered.

If R  is less than a given threshold, the nucleus is not a corner point and no further

computation is necessary. However, if R is greater than a given threshold, the

interpixel approximation is applied to check for diagonal edges.

The CRF is computed along the square ABA’B’ as

R  =  m in(r i (x ) ,  r2(x)) (4.7)

where z is a parameter which determines position of the point on the square. The 

response functions are given by

n ( x )  = U p -  f o f  + (f'p -  f c ) 2 (4.8)

r2{x) = ( f Q -  f c )2 + (f'Q -  f c ) 2 (4-9)

The intensity at interpixel locations is computed as a linear combination of the 

corresponding endpoint intensities, for example

f P =  (1 -  x ) . fA +  x . f B (4.10)

Substituting this in the previous equations gives us

r \ (a;) =  A\X2 +  2B\X +  C, (4.11)

r2{x) =  A 2x 2 +  2B2x  +  C  (4.12)

where
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C -  rA\

B\ =  (/jg -  /a ) ( /a  ~ fc )  +  {f'B ~  /a ) ( /a  “  /c ); 

£ 2  — ( /s  — /a ) ( /a  “  /c )  +  (/b  _  /a ) ( /a  -  /a);

A i = r B - r A ~  2Bi; 

A 2 = rB - r A -  2B2;

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

If we define B =  m in(B i, B2); A = vb — rA ~  2B ; and iff B  < 0 and A +  B > 0 

the CRF has a minimum on the square [68] and its value is given by

Thus the neighbourhood is searched to find the variation of image intensity in all 

directions starting with the horizontal and vertical directions. If the value returned 

by the corner response (R) is higher than the set threshold, then it is flagged 

as a corner. Lighting is a very important consideration for detecting features. 

Depending on the threshold level, the number of responses vary in the area where 

the MIC is applied.

The corner points of the objects obtained after applying the MIC algorithm in 

regions of the image were stored in arrays. In the other image (obtained from the 

right camera), a similar procedure was followed. The regions were defined in the 

same order as that done in the left image and stored in another array. This has been 

explained in section 4.2.3. The corresponding points were then matched. From the 

3-D information, the edges were deduced and the lengths and angles calculated as 

described previously in section 4.4.1. In the next stage towards automation, the 

corner points in the right image were obtained in any random order and then stereo 

correspondence was done automatically. The next step was to obtain the regions 

automatically and “go around” them. To achieve this, a region detection algorithm 

and an edge tracking (or boundary tracking) algorithm were implemented. These 

are described below.

(4.18)
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4.5.2 Region detection

Some region detection techniques were reviewed in section 2.3.4. For implementing 

region detection, one way is to find the LoG (Laplacian of the Gaussian) of the 

gradient magnitude image. The gradient of the image was found by convolving the 

image using the Sobel kernels and taking the resultant. The process of convolution 

has been illustrated in 4.34.

Input Image

(Col,Row)

P l  p 2 p 3 K , k 2 k 3

P 4 |  P 5 | P 6 X k 4 K  j K *

P  7 P * P 9 k 7 K * K ,

3x3 Pixel Neighbourhood 
P5 is pixel being computed

3x3
Convolution

Kernel

Weighted Sum 
Calculation

(K j*P i) +  
(K 2*P2) + 
(K 3*P3) + 
(K4*P4) +
(K5* p 5) +
(K 6* p 6) +  
(K 7* p 7) +  
(K 8* p 8) +

Output Image New Value for P5

(Col ,Row )

New value for 
Ps placed in 

output image

Figure 4.34: Convolution illustrated

Convolution is a very general-purpose algorithm that can be used in performing 

a variety of area process transformations. It can be thought of as a weighted 

summation process. Each pixel in the neighbourhood (assumed to be in the figure 

4.34 to be three by three) is multiplied by a similarly dimensioned convolution
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kernel; the sum that results replaces the value of the centre pixel of interest. Each 

element of the convolution kernel is a weighting factor (also called a convolution 

coefficient). The size and the arrangement of the weighting factors contained in 

the convolution kernel determine the type of area transform that will be applied 

to the image data. The convolution kernel is moved across the image, a pixel at a 

time. At the borders of the image there are problems with calculations and usually 

the data at the edges of the image can be ignored.

The Sobel kernels have been shown below:

- 1 0 1

1 to 0 2

- 1 0 1

1 2 1

0 0 0

- 1 1 to - 1

The two kernels were passed over the image and the resultant was obtained. This 

was done by taking the square root of the sum of squares of the both resultant 

pixel values.

Figure 4.35: (a) An image (b) its gradient

An image of an object and its computed gradient has been shown in 4.35. This 

procedure was followed by the routine for establishing edge connectivity. There 

are several routines. A simple, but coarse way is to use “filling” by expanding the 

pixel in the 8-directions (fig. 4.37(a)).

The LoG filter was then applied to the resultant image. This has an inherent 

smoothing operation. The Marr-Hildreth operator or the Laplacian of Gaussian



Chapter 4-Recognising and locating objects 79

operator is a circularly symmetric Mexican-hat shaped operator (figure 4.36) whose 

distribution in two-dimensions may be expressed in terms of the radial distance r 

from the origin by the formula

&2G(r) =  C i (  (4'19)7TCP

where o is the standard deviation.

Figure 4.36: Mexican hat (Sync) function 

A typical LoG mask looks like:

0 - 1 - 2 - 1 0

- 1 0 2 0 - 1

i t
o

2

G
O

2 - 1

- 1 0 2 0 - 1

0 - 1 - 2 - 1 0

The LoG Operator can also be approximated by the DoG (difference of Gaussian) 

operator. The significant features of the output of a centre surround operator, like 

the one above, are the places at which positive and negative values are adjacent -its 

zero-crossings. The most effective way to display the zero crossings of a convolution 

operation is to threshold the output array. By setting the threshold to zero, the 

zero-crossings can be visualised.

The result of the application of the LoG filter is shown in figure 4.37b. Some left
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Figure 4.37: (a) Filling operation (b) Application of the LoG filter

over noise can be removed by finding the perimeter of all regions (pixel lengths) 

and setting a certain threshold [109]. This eliminates smaller spurious regions.

To check for connectivity between the regions it is necessary to trace the edges or 

“go around” them. This can also be used to find corners of regions. This has been 

described in the next section.

4.5.3 Border tracing

The following is the algorithm [110] which was implemented for edge tracking:

This algorithm covers inner boundary tracing in both 4-connectivity and 8-connect­

ivity. 4-connectivity means that only the vertical and horizontal pixels in the 

neighbourhood of the pixel are considered whereas 8 connectivity means that all 

the 8 pixels surrounding the pixel of interest are considered. For this work, 8- 

connectivity was used.

1. The image is searched from top left until a pixel of a new region is found; this 

pixel P0 then has the minimum column value of all pixels of that region having the 

minimum row value. Pixel P0 is a starting pixel of the region border. A variable dir 

is defined which stores the direction of the previous move along the border element.

(a) dir=3 is assigned if the border is detected in 4-connectivity (figure 4.38)
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(b) dir =7 if the border is detected in 8-connectivity.

1

A

2 < -----------------

▼
3

Figure 4.38: Direction notation, 4-connectivity and 8-connectivity

2. The 3x3 neighbourhood of the current pixel is searched in an anti-clockwise 

direction, beginning the neighbourhood search in the pixel positioned in the direc­

tion

(a) (dir+3) mod 4

(b) (dir+7) mod 8 if dir is even(fig. 4.39 )

(dir+6) mod 8 if dir is odd

2

4

6

Figure 4.39: Search sequence in 4-connectivity and 8-connectivity

The first pixel found with the same value as the current pixel is a new boundary 

element Pn. The dir value is updated.

3. If the current boundary element Pn is equal to the second border element Pi, 

and if the previous border element Pn_i is equal to Po, the procedure is stopped. 

Otherwise step (2) is repeated.

4. The detected inner border is represented by pixels P0...Pn_2 -
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This algorithm first searches for the left-top border pixel. This algorithm faithfully 

follows the boundary and connects the circuit. In simple words, the algorithm picks 

the first pixel and searches the neighbourhood where to go next. The variable dir 

is helpful to decide which way to turn at sharp corners.

Seed
Point

slope

Figure 4.40: Inner boundary tracing

In the final step of automation, the boundary tracing algorithm described above 

was used for tracing the inner boundary to detect facets. This was done by first 

scanning the thickened gradient of the image along the horizontal lines and finding 

the transition from “on” to “off” (ie. 255 to 0). This location was considered as 

the seed point for a particular region (fig.4.40). During tracking, after every few 

points, the slope was calculated. This was compared with the previous slope as 

the tracker traced the boundary. A sharp change in slope implied a corner point 

of the region. These corner points were stored. The tracker continued tracing 

the boundary till the initial seed point was encountered again. This procedure was 

repeated for each region. The points obtained from both images were then matched 

for stereo correspondence and 3-D information was obtained.

Thus, in the final stages, all parts of the system were systematically automated 

beginning from feature extraction to recognition of objects. The next section de­

scribes the software developed.
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4.5.4 Software developed

The software was developed using Visual C + +  5.0 with use of MFC (Microsoft 

Foundation Classes). The image processing board used was of the Matrox Meteor 

type.

In the software, in the toolbar, some buttons were configured to be used for testing 

and training and also associating different objects. The frame buffer used for 

capture, processing and display was the default one with a handle being used to 

display it in the Windows environment. The channels could be switched to grab 

the left and right stereo images at the press of a button. The figure 4.41 shows a 

snapshot of the software developed.

eir=iFj

Figure 4.41: An example of an object in the developed software

MFC enables to the user to create a Windows skeleton using default classes to 

which the user-defined classes can be added. The main user-defined classes have 

been described below along with the main functions contained in them. The reader 

is referred to Appendix B while reading the details of the FuzzyArt Algorithm. 

Figure 4.42 shows the dependencies of the main classes in the program.

FuzzyArtF2Neuron: This contains two main functions. The function activation 

calculates the activation of each neuron depending on the input vector and weight
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FuzzyArtFOFI-
layersFacettype

FuzzyArtForMap- 
F0F1 layers

HypothesisTest

Classifylnput

Point to next neuron

Neuron

Initialise digitiser 
CRF 

ProcessLeftlmage 
ProcessRightlmage 

Stereo 
Makefacet 
Matchfacet 

Connect

ImgView

FuzzyArtF2Neuron

Learning

ResetMatchT racking

BuildFuzzyArtMap

RunFuzzyArtMap

CMainDoc

Figure 4.42: Dependencies of main classes in the program

vectors. The constructor creates a weight vector dynamically depending on the 

input vector size and initialises these weights to 1. The other function learning is 

used for learning the input vector according to the Fuzzy ART learning law.

F uzzyA rtFO Fllayers: The constructor of this class initialises the array X de­

pending on the input vector size. It contains the function CreateNewF2Neuron  

which dynamically creates objects of class Fuzzy A rt F2 Neuron  assigning alpha 

and beta values. The function F lO u tI f  F2Inactive transfers data from input 

array I to array X. The function CompeteF2 finds the node F2Winner which has 

maximum activation among the F2 layer neurons. The function UpdateFlFromF2 

updates the vector X (the top-down expectation) using the min operator between 

the weights of the winning node and the input vector I. The function match is used 

for the STM reset if the pattern difference (between the magnitude of X and I) is
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less than the vigilance chosing a new node, else the weights are updated using the 

function UpdateWeights.

F u z z y ArtForMapFOFllayers: This class inherits all functions of the above 

class FuzzyArtFO Fllayers. This is done when initialising the constructor. The 

function C lassify  Input makes a call to the function HypothesisTest which goes 

through the ART learning cycle (refer figure in Appendix B) viz. it makes calls 

to most of the functions in the class FuzzyArtFOFllayers to create new neurons, 

calculate the activations, find the neuron with maximum activation, update the 

vector X and perform reset or create a new neuron.

Neuron: This class is to create objects for the smallest element of the perceived 

object in the image. The constructor of this class contains data variables which 

hold the sequence number, length and angle and has a link to point to the next 

neuron (element) which is held in a linked list.

Facettype: This class holds information about each facet. Its constructor makes a 

call to the class Neuron. Hence objects of class Facettype contain objects of class 

Neuron. This class also has pointers to point to objects of its own class which are 

held in a linked list.

CMainDoc: The constructor initialises various parameters such as vigilance, 

learnrate etc. The function R unF uzzyA R T M A P  checks if both ART-modules 

have an input. If so, it finds the winners in both modules by calling C lassify  Input 

and performs the Mapfield matching and triggers matchtracking if necessary. If 

the input is present only at the ART-A module, then the function makes a predic­

tion. The function ResetMatchTracking raises the ART-A vigilance by a small 

amount to find a new neuron by calling HypothesisTest if necessary. The func­

tion WeightUpdate updates the weights of the Mapfield. The function BuildFuzz- 

yARTM AP  dynamically creates the input vector depending on the size of the input 

vector and creates objects of class F uzzy ArtForMapFOFllayers for both ART-A 

and ART-B. Training and testing are also distinguished by the function.

ImgView: This class contains most of the code for image processing. The con­
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structor initialises the image processing board by using functions from the Meteor 

library (such as MdigAlloc, MdisplayAlloc etc.) It allocates the 2D buffers using 

MbufAlloc2D. The function intensity  is used to read a location from the buffer and 

the function write to store a point in a buffer. The function C R F  is used for corner 

detection which uses the MIC algorithm. Two identical functions have been defined 

for both the left and the right image which process the images for corner points. 

These make calls to the function C R F  and perform non-maximal suppression and 

averaging and also detect regions and store points in arrays. The function Stereo 

finds the stereo correspondences in both images and computes 3-D information 

using the stereo equations. It also calculates lengths and angles and makes data 

available to recognise facets. The functions Make facet and Match facet create 

and match facets respectively by making calls to the class Facettype. The function 

Connect generates the connectivity matrix by checking for common points between 

faces.

4.6 Sum m ary

This chapter has first described initial experiments done for recognising objects 

using the ART-1 algorithm. Steps involved in recovering 3-D information using 

stereo vision have been explained. The ideas leading to the development of the 

system and a detailed description of the system has been given. The image pro­

cessing done and the software developed has also been described. The next chapter 

describes the results obtained in more detail and discusses them.



Chapter 5

RESULTS, IMPROVEMENTS 

AND DISCUSSION

This chapter presents the results obtained using the developed vision system. 

Firstly, stereo vision results are presented followed by results of object recognition 

using the system described in the Chapter 4. Improvements made to the system 

are then described. This is followed by the results obtained using the improved 

system. Lastly, a discussion on the achievements in light of the aims of the project 

has been given.

As mentioned earlier, the software has been developed in the Windows environment. 

To briefly describe the working of the software, the flowchart of the program has 

been shown in figure 5.1. The first level of facet training is initially done. The 

left camera image is then grabbed and image processing is performed. The same 

is done after grabbing the right image. The features are then matched along the 

epipolar lines. The X-Y-Z data is calculated using the stereo equations. The 3-D 

angles and lengths are also calculated. Each facet of the object is identified. Each 

facet then picks up its type number during matching. This is followed by grid 

generation to relate facets. This pattern is then associated with its object type 

by clicking the button bar (ie. object 1, 2, etc) and this data is fed to the ANN. 

The object is then rotated to get another characteristic view to be shown to the 

cameras and the entire process is repeated.

87
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First level of facet training

For every object 

Grab left image

Detect features in 
left image

Grab right image

Detect features in 
right image

Match features

Calculate 3-D 
Information from 

Stereo

L

Calculate 
angles and lengths

Identify facets

Match facet 
types

1r ..........
Generate

relation
grid for 
ships

. .

Train ANN

I
Rotate Object

Figure 5.1: Flow of the software procedure for training the system
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There are two buttons in the toolbar to be clicked to differentiate between the 

training and testing processes. During testing, a similar routine is followed but 

only one view is presented for recognition. The object recognised is displayed in a 

Windows message box (using the AfxMessageBox function). This has been shown 

in figure 5.2.

Hecotjn

■■■M R- V isionl

Figure 5.2: Recognised object

5.1 Stereo V ision R esults

Fig. 5.3 shows the types of objects considered. Fig. 5.4 pictorially shows a typical 

result obtained after stereo calculations. The calculated X-Y-Z co-ordinates of each 

corner point have been shown. The lengths and angles are also obtained. This has 

been shown in fig. 5.5 for the co-ordinates obtained in fig. 5.4. As it can be seen, 

there are some errors associated with each measurement. To quantify the errors 

obtained, readings were taken of the object shown in fig. 5.6. Three lengths were 

measured—A, B and C as indicated.
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Figure 5.3: Types of objects and the stereo rig

( - 1.85, 1.92 ,79 .49)

(-4.07 ,-2 . 15,80 .50)

(4 .2 4 ,-5 . 10,74 .21)
(-0.35 ,-5 .78,72 .24)

Figure 5.4: Calculated coordinates
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93.43
4.73

9.69

87 .7 6 °

87.38

19.75 5.204 .87>
9.76

91 .5 8 ° 57.35

161.0 9 °

5.05

Figure 5.5: Quantities calculated by the system

Figure 5.6: Object for measurement

The object was moved, starting from a distance of 56cms to lOOcms (from the 

centrepoint of the two cameras) in increments of 4 cms. The measured values of A, 

B and C are 6.4, 6.3 and 6.4 cms respectively. The values of the lengths calculated 

by the system have been displayed in the table shown in fig. 5.7. The readings 

were repeated 4-5 times to ensure consistency. The table also shows the errors 

between the measured and calculated readings. These measurements have been 

depicted graphically in figures 5.8, 5.9 and 5.10. The errors can be attributed to 

several reasons. The formulae used are approximations in the case of converging 

cameras for small angles (section 2.3). The errors during calibration (section 4.2.1) 

eg. finding the fixation point, also affect the accuracy of the readings. During 

corner detection, the error when averaging is used, also affects the accuracy of the
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Distance 

from the 

camera (cm)

Calculated 

length A 
(cm)

Measured 

length A 
(cm)

Error

(cm)

Calculated 

length B 
(cm)

Measured 

length B 
(cm)

Error

(cm)

Calculated 

length C 
(cm)

Measured 

length C 
(cm)

Error

(cm)

56 6.12 6.4 -0.28 5.96 6.3 -0.34 6.19 6.4 -0.21
60 6.19 6.4 -0.21 6.17 6.3 -0.13 6.24 6.4 -0.16
64 6.17 6.4 -0.23 6.13 6.3 -0.17 6.14 6.4 0.26
68 6.16 6.4 -0.24 6.05 6.3 -0.25 5.85 6.4 -0.55
72 6.17 6.4 -0.23 6.31 6.3 0.01 5.88 6.4 -0.52
76 6.18 6.4 -0.22 6.12 6.3 -0.18 6.08 6.4 -0.32
80 6.09 6.4 -0.31 6.07 6.3 -0.23 5.93 6.4 -0.47
84 6.19 6.4 -0.21 6.22 6.3 -0.08 5.67 6.4 -0.73
88 6.06 6.4 -0.34 6.36 6.3 0.06 5.84 6.4 -0.56
92 6.23 6.4 -0.17 6 6.3 -0.3 5.42 6.4 -0.98
96 6.15 6.4 -0.25 6.24 6.3 -0.06 5.64 6.4 -0.76

100 6.08 6.4 -0.32 6.23 6.3 -0.07 6.06 6.4 -0.34

Figure 5.7: Table of results

readings. Tolerances have been kept in software to deal with these errors. When 

adjacent sides are being compared to check if a facet is a square, a tolerance of 0.5 

cm has been kept. When checking for connectivity between facets a tolerance of 4 

pixels wide has been kept. These were sufficient for proper system performance at 

closer distances, typically 60 cms from the cyclopean origin. Also, for recognition 

of facets, levels 1 and 3 of matching were used (section 4.4.2). Though the stereo 

accuracy is sufficient for the purposes of this system, better accuracy would be 

required in other stereo applications where explicit model reconstruction and fusing 

of stereo data are required. From the graphs, it can be seen that the calculated 

values of length A (fig 5.8) have a constant error of almost -0.25 cm. From fig 5.10 

it can be seen that the errors obtained in the calculation of length C are larger than 

those obtained for length A and B. This suggests that the errors during calibration 

in the measurement of the fixation distance (Z0) and focal length(/)  have a more 

pronounced effect on the calculation of the depth value (Z).
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Figure 5.10: Length C
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5.2 R ecognition  results

Results obtained using the architecture described in Chapter 4 are first described. 

The limitations and drawbacks of the system are given in section 5.4. The im­

provements to the system viz. the addition of the pattern rotation layer and the 

modification of the neural network, are described next. This is followed by the 

description of results obtained with the modified system.

The views of objects taken for training and testing purposes are shown in figures 

5.11,5.12,5.13 and 5.14. Both stereo pairs in various poses of the object are shown 

in all cases. Training is done off-line when several characteristic views of objects are 

shown to the system. For testing only one stereo pair is shown. Each view gives 

rise to a pattern which is learnt by the ANN. Similar views give rise to similar 

patterns and are reinforced on the same node. A different pattern is learnt as a 

new node. During testing when a view is shown, it triggers the appropriate node, 

thus recognising the object. Details of the Fuzzy ARTMAP algorithm have been 

given in Appendix B. A vigilance (p) of 0.9 was used, a  =0.1 and (5—1 for fast 

learning. In some cases, not all facets are commonly visible in both the stereo 

images. The word “prediction” below has been used in the context of ANNs; when 

no input is applied at the ART-B module during the testing phase, the system 

predicts or recognises the appropriate pattern.

Cube

In cases 5.11 (a) (training) and (e) (testing), the cube is in a slightly rotated 

position, but gives rise to the same patterns, triggering the correct object. In case 

(d), in the left view only two facets are visible whereas three facets are visible in the 

right view. During stereo matching, only two of facets commonly seen are matched 

and the same node as in case (b) is triggered predicting a cube. In case (c), all 

three surfaces are visible with the cube as a prediction as in case (e).

Triangular Prism

In Fig. 5.12 (d) and (e), the prism is slightly rotated, showing 3 faces giving rise
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to the same patterns and triggering the same node which predicts the prism. In 

case (j), only the two rectangular surfaces are common in both views triggering 

the same node as in case (c) predicting a triangular prism. In case (b) the triangle 

and square are matched giving rise to the same pattern as in case (h) predicting a 

triangular prism. The other cases shown are training views and when similar test 

patterns arise, they trigger the appropriate node predicting a triangular prism.

Pentagonal Prism

In figs 5.13(a) and (c), the object is slightly rotated. Three faces are seen and the 

same node is accessed predicting a pentagonal prism. The same is true in cases (c) 

and (i). In case (h), three surfaces are seen in the left image and four surfaces in 

the right image. During stereo matching three surfaces are matched and trigger the 

same node as in case (c) predicting a pentagonal prism. The other cases shown are 

training views and when similar test patterns arise, they trigger the appropriate 

node predicting a pentagonal prism.

Pyram id

In Fig. 5.14 (a) (b) and (e), two triangular surfaces are seen, and they access the 

same node. Cases (c) and (d) are slightly rotated views showing four faces and they 

trigger the same node predicting a pyramid. In case (f), three triangular surfaces 

are seen in one view and two in the other. It triggers the same node as in case (b) 

predicting a pyramid. The other cases shown are training views and when similar 

patterns arise, they trigger the appropriate node predicting a pyramid.
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Figure 5.11: Stereo views of the cube
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Figure 5.12: Stereo views of the prism
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Figure 5.13: Stereo views of the pentagon
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Figure 5.14: Stereo views of the pyramid
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5.3 T im e required for recognition

The time required for training and testing of the patterns generated by the object 

was calculated. This was done using the Windows MFC functions clockQ and 

CLOCKSJPER_SEC. The training time for training 18 patterns of objects in a 

sequence was typically 60 ms. For accessing the object, the test time or recognition 

time was 10 ms. The software was developed on a computer with a Pentium 166 

Mhz processor.

5.4 D raw backs/lim itations o f the system

There are two main drawbacks to the current system:

(a) It is not totally invariant ie. still several views are needed for training

(b) Recognition is order dependent ie. recognition depends on the order of facets 

detected

These two points have been elaborated below:

(a) In the current system, re-training of the network has to be done if the object is 

completely rotated by 180 degrees. This requires several views of the object to be 

used while training. For example, in the figure shown below, in figures 5.15 (a),(b) 

and (c) the prism gives rise to the same patterns, but in fig 5.15 (d) a different 

pattern is generated and re-training of the network has to be done. This has been 

elaborated in the views of the pentagon shown in figures 5.16 and 5.18.
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(a) (b) (c) (d)

Figure 5.15: Views of a prism

Figure 5.16: View 1

Figure 5.17: View 2
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Figure 5.18: View 3

(b) The order of detection of the regions also determines the types of patterns 

generated. This can be visualised in figures 5.16 and 5.17. Hence a certain protocol 

has to be followed for detecting the regions.

What is needed is a scheme to re-assign the facet numbering in all possible combi­

nations and check against the learnt patterns.

5.5 Im provem ents to  the system

To overcome the problems mentioned in the above section and keep the training set 

to a minimum in order to improve the system, a pattern rotation layer was added 

to the vision system. The new system architecture has been shown in figure 5.19. 

The improvements to the system consist of:

(a) Addition of the pattern rotation unit

(b) Modification of the artificial neural network

The pattern rotation unit consists of an algorithm to manipulate the generated 

matrix in all possible combinations “without losing object connectivity” . Each 

generated combination is then sequentially fed to the neural network. The winning 

node with the maximum activation then predicts the correct object.

To manipulate the matrix without losing connectivity, two operations on the matrix 

were required as shown in fig. 5.20. In the first operation, rows 2 and 4 are swapped
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ARTMAP

ART-B

Data acquisition

Image Processing

ART-A

Facet Detection

Connectivity generation

Pattern Rotation

Figure 5.19: Final System Architecture 

and then the corresponding columns are interchanged to produce the final matrix.

It can be observed from the figure that the initial matrix is that shown fig.5.16 

and the final matrix is the same as fig. 5.18. Hence, the transformation has been 

done without losing connectivity. The number of possible combinations depend 

on the size of the occupied matrix. The algorithm first checks to see how many 

rows and columns are filled. If that number is “n”, then there are n factorial 

combinations possible. For example, if the number is 3, the following combinations 

can be generated

1,2,3; 1,3,2; 2,1,3; 2,3,1; 3,1,2; 3,2,1

ie. 6 (3x2) combinations. The flowchart for the algorithm that does this has been 

shown in fig. 5.21; pi is a dynamically allocated array and n is the number of filled 

rows.
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Figure 5.20: Matrix transformation

Once the number n is determined, an array is dynamically allocated which pro­

duces the n! combinations. These combinations are used for swapping the rows 

and columns. As each combination is produced a new final matrix is produced. 

Smaller rows and column arrays are allocated for intermediate storage which are 

flushed later after each operation along with the intermediate matrix. The patterns 

generated due to each combination are sequentially tested using the ANN in the 

final layer of the vision system. The pattern with the highest activation forms the 

closest match and predicts the correct object.
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While i>0

For every i till n 
Output 

combination

While
ii[i]>pi[i+1]

No

Yes

Yes

While
r>s

i = n-1

i=1

decrement j

decrement i

Swap pi[i] and pi[j]

r=n
s=i+1

Swap pi[r] and pi[s] 
decrement r and s

Figure 5.21: Flowchart of logic combination
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5.6 M odification o f th e  artificial neural network

The numbers for the facets are chosen randomly as mentioned previously. After 

the above modification to the system, although the chosen node with the highest 

activation predicts the correct object (being closest to the trained pattern), there 

is some possibility that the numbers chosen might give a high activation for other 

patterns. If two facets have been given numbers which are close eg. 0.15 and 0.20 

, the system should be able to distinguish between the two ie. the system should 

be number independent. To achieve this, another level of finer matching was used. 

In Fuzzy ARTMAP, the top-down expectation from the winning node is

X =  IA Z  (5.1)

where I is the input vector and Z is the weight vector from the winning node.

This scheme has been modified for the testing phase. (Please refer Appendix B for 

details of the Fuzzy ARTMAP algorithm)

Another new array X is first initialised containing all l ’s . In this case the size of 

the array is 36. Hence

X =  (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1.1.1,1,1,1,1,1.1,1,1,1,1,1,1,1,1,1}

A typical weight vector of a winning node would be

Z =  {0.3,0.3,0,0,0,0.5,0,0.5,0,0,0,0.5,0.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

This is obtainable since training of the patterns is done in one epoch. If the test 

input vector I is

1= {0.5,0.5,0,0,0,0.3,0,0.3,0,0,0,0.5,0.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} 

Then X is updated in the manner shown below

X -  { 0 , 0 ,1,1,1, 0 ,1, 0 ,1,1,1, 1 , 1 ,1,1,1,1,1,1,1,1„1,1,1,1,1,1„1,1,1,1,1,1,1}

ie. wherever the corresponding elements in Z and I are not matching, the respective 

element in X is updated with a zero, other elements remain 1. This check is made
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only upto the filled elements of the matrix of the input array. In this case, since 

four elements are not matching, they are set to 0. This operation is denoted as 

I® Z.

The reset criterion then changes to

i f  P a tternD if ference  =  -r^ rr- < p then reset (5.2)
|yV.|

The ratio of PatternDifference is 1 when there is an exact match. This happens 

at least to one of the patterns generated after passing through the rotation layer. 

In other cases, the ratio is lower. In the above case, it is 32/36. The activation of 

the winning node coupled with the new matching scheme described above is then 

used as a coarse to fine matching scheme to predict the correct object. First the 

node with the highest activation is checked with the above criterion by keeping 

the vigilance high (above 0.9). If the criterion is not met, then reset occurs and 

the node with the next highest activation is checked and this procedure continues. 

Another quantity called matchratio has been defined to determine how many facets 

are matching between the trained and tested patterns. For example if three facets 

are seen during training and two during testing, then matchratio is 0.67 (or there 

is a 66 % match). This ratio is also calculated during the above matching scheme.

Fig. 5.22 shows the characteristic views of the objects used for training the system. 

In all, 6 views were shown for the 4 objects. Only one of the two stereo views 

for each object has been shown in the figure. The test views of the objects also 

contained novel views which were not used for training. These created 6 nodes in 

the F2 layer in the ART-A module in the order of training, with the cube on node 

1, nodes 2 and 3 for the pyramid, node 4 for the triangular prism and node 5 and 

6 for the pentagonal prism.

C ube:

In fig.5.23 (a), all 3 faces are visible and the matchratio is 1. In case (b), only 2 

faces are visible giving rise to a correct prediction with a lower activation and a 

matchratio of 0.67. Case (c) shows a novel view which is recognised as a cube with
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a matchratio of 1, similar to case (a).

Pyram id:

In fig. 5.24 (a), two triangular surfaces are visible. Node 2 is accessed and the 

matchratio is 0.5. In case (b), Node 3 is accessed with a matchratio of 0.67 since 

the square and triangle are visible. In case (c), the novel view is in the opposite 

direction of the trained view. It has a high activation and a matchratio of 1 since 

all 3 facets of the trained view (on node 3) are visible. In case (d) node 2 is accessed 

with a high activation and a match ratio of 1.

Triangular Prism :

In fig. 5.25 (a), the prism is in the opposite direction of the trained view. All 3 

faces are visible giving a high activation and a matchratio of 1. In case(b), only 2 

surfaces are visible giving a matchratio of 0.67 and a lower activation. In case (c), 

only the two rectangular surfaces are seen. The system makes a wrong prediction 

by accessing node 6, with a low activation where the trained object also has two 

rectangular surfaces.

Pentagonal Prism :

In fig. 5.26 (a) and (b), the novel views access node 6. Three surfaces are visible 

giving a matchratio of 1 and a high activation. In case (c), only 2 rectangles are 

visible giving a lower activation and a matchratio of 0.67. In case (d), the novel 

view is in a direction opposite to the trained view (on node 5). The pentagonal 

prism is correctly predicted with a high activation and a matchratio of 1.
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Pyramid
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Triangular Prism Pentagonal Prism

Figure 5.22: Training views of the set of objects
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Prediction Cube
matchratio= 1; activation=0.989

(a)

Prediction Cube
matchratio= 0.67; activation=0.33

(b)

Prediction Cube
matchratio= 1; activation=0.989

(c)

Figure 5.23: Test views of the cube
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Prediction Pyramid
matchratio= 0.5; activation=0.25

Prediction Pyramid
matchratio= 0.667; activation=0.269

Prediction Pyramid
matchratio=l; activation=0.997

Prediction Pyramid
matchratio=l; activation=0.998

Figure 5.24: Test views of the pyramid



Chapter 5-Results, improvements and discussion 112

Prediction Triangular Prism
matchratio= 1; activation=0.996

(a)

Prediction Triangular Prism
matchratio=0.667; activation^.31

(b)

■

Prediction Pentagonal Prism
matchratio=0.667; activation=0.285

(c)

Figure 5.25: Test views of the triangular prism
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Prediction Pentagonal Prism
matchratio=T; activation=0.997

(a)

Prediction Pentagonal Prism
matchratio=l; activation=0.997

(b)

Prediction Pentagonal Prism
matchratio=0.667; acti vation=0.2 8 5

(c)

Prediction Pentagonal Prism
matchratio=l; activation=0.998

(d)

Figure 5.26: Test views of the pentagonal prism
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5.7 D iscussion

The current work has tried to break down objects into their constituent parts and 

relate them in order to recognise objects. The first part of training which learns and 

stores facets acts as a knowledge base. Keeping with the theory of Ullman (section 

2.1) this corresponds to early visual processing. This holds information about the 

constituent parts of the objects. This work has considered geometric surfaces for 

this purpose. If the levels of matching (described in section 4.4.1) are lowered to 

remove the level 3 match, then the square and rectangle could be recognised as the 

same, ie. a 4 sided figure. This would give coarse matching.

This work has taken a viewer-centred approach to object recognition. The system is 

trained on characteristic views of the object. The ANN (ie. Fuzzy ARTMAP) has 

been effectively used for “learning” the relationships of patterns and later for recall 

when novel views are presented. The system has tried to separate the process of 

perception and cognition by first segmenting the object by finding edges and then 

having an intermediate layer for relating facets.

Before the system was improved, the system could recognise objects with a slightly 

different viewpoint from the original shown to the system. If the object was suffi­

ciently rotated, then training of the new view had to be done. After the addition 

of the pattern rotation layer, the system has a capability to perform a process 

which has parallels to mental rotation (section 2.1). This considers both rotation 

in-plane and rotation in depth. Some approaches to in-plane rotation as in IVOR

[11] involve finding the principal axis and rotating the object.

The system still needs to be trained on a few characteristic views. If too few views 

are used for training, during testing the system makes no prediction at all. In 

certain cases like in 5.25(c), when partial information is available during testing, 

if this information is similar to that of another trained object, the system in some 

cases makes a wrong prediction. The above problems can be alleviated by training 

a few more characteristic views of the object under consideration, rather than just 

a single view.
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Another important feature of the system is the use of stereo vision which is similar 

to the way humans and mammals use to derive 3-D information. Thus two different 

views of the same object can be used for recovering depth. The separation between 

the cameras used is about 20 cms. As a result, in figs 5.11,5.12,5.13 and 5.14, 

some facets are not visible in both images. The vision system is yet able to make a 

prediction about the objects based only on the facets seen in both views. In future, 

it can be considered if the extra information in one of the views could also be used 

for recognition.

/ / i k

3i /

5 ”

1 r

3 ”
5”

Since the 3-dimensional lengths of the sides are known after stereo calculations, 

the system can distinguish between objects of smaller or larger sizes, if a threshold 

is set.

It can been seen that the work done has drawn inspiration from the human visual 

system though the current system is restricted to recognising polyhedral objects. 

Although the system has been tested for four objects with relatively small number 

of surfaces, the system can be extended to recognise more objects and objects 

having larger number of surfaces.

Rounded comer

One way of extending the system to include objects of rounded corners would be 

to break the facet into its constituent elements ie. edges and also arcs and use the 

sector angle of the arc as a property of the element.
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Virtual Edge

Also, in some cases due to shadow, part of a facet may appear to have a virtual 

edge. In these circumstances, it is possible to determine if both facets really exist 

by checking if the all corner points lie on one plane. The equation of a plane is given 

by ax + by + cz =  d and can be found by knowing the co-ordinates of 3 points. If all 

the other points satisfy this equation, then it is possible to say that the shadowed 

region is not a separate facet, but an integral part of one facet. Further, spurious 

points detected can be reduced by judging the proximity of these points to the 

edges detected. Points lying inside a region can be eliminated by checking if they 

lie on the same plane as the facet.

The following is the brief summary of the achievements of this work keeping in 

mind the aims of the project.

• Requirement for recovering 3-D information

Two CCD cameras in a stereoscopic set-up have been used to recover 3-D 

information. This allows one to recover 3-D co-ordinate information from 

only intensity data. Chapter 2 covered the theoretical aspects of this and the 

details of implementation were given in Chapters 4.

• Requirement for quick recognition time

The use of the ANNs based on the adaptive resonance theory (ARTMAP) 

can give recognition times of less than a second. A review of ANNs was done 

in Chapter 2.

• Requirement for invariant object recognition

A hierarchical system has been developed to first recognise parts of the object 

and then relate them in order to identify objects. Chapter 4 has dealt with 

this in detail. The pattern rotation unit added has improved the system by 

reducing the views required for training.
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• Requirement for the vision system to be used with a robot

As the vision system is capable of recognising and locating objects, it has 

the potential to be integrated with a robot, though the system needs to be 

improved. This has been elaborated in Chapter 6.

The next chapter gives some conclusions and recommendations for future work.



Chapter 6

CONCLUSIONS

The work described in this thesis falls into a number of domains of which stereo 

vision and invariant object recognition must be considered the main fields of inter­

est. The previous two chapters outlined the novel contribution that this work has 

given to the field. In conclusion a number of points can be made:

• A method for recognition and assessment of objects independent of the ori­

entation and rotation has been proposed and demonstrated.

• Three dimensional information about the objects can be obtained by the 

system. The co-ordinates are obtained with respect to the cyclopean point 

between the two cameras. Complete information about the object such as 

the lengths and angles can also be obtained.

• There are errors associated with each measurement obtained by the use of 

stereo vision. These have been quantified and displayed in the previous chap­

ter.

•  The errors obtained in measurements done using stereo vision are dependent 

on:

1) Accuracy of calibration

2) Accuracy of feature detection

3) Approximation in the stereo formulae

118
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•  The time taken for ANN recall is less than a second, typically 10ms. The 

total time taken for image processing and recognising objects is 18 seconds 

on a computer with a 166 Mhz processor. This time can be reduced by using 

a faster machine.

•  ARTMAP is a supervised artificial neural network which is capable of incre­

mental learning. This allows for several views of one object to be associated 

with the same object type.

• The addition of the pattern rotation layer and the modification of the ANN 

reduces the number of training views required for the system.

• Effective use of the ANN has been made to predict an object when only some 

parts of it are visible.

•  The work has drawn inspiration from biological nervous systems but has not 

attempted to duplicate them.

•  The system has been developed for simple geometric types of objects and not 

for free-form objects. There is a limitation on circular facets being recognised.

•  The maximum angle detected by the corner detector MIC algorithm is 145 

degrees.

•  The system has been tested for four objects viz. a cube, pyramid, triangular 

prism and pentagonal prism having five facet types viz. square, rectangle, 

equilateral triangle, isosceles triangle and a pentagon.

• Fewer training samples are needed if some information about the object is 

known. If recognition is done in a hierarchical manner as done in this thesis, 

fewer views are required than those used in VIEWNET [56]. This implies 

that some prior knowledge of the component sides which make up the object 

must be known. This means that we can recognise an object quicker if we 

know something about the object, than if we don’t know anything at all.

•  The vision system has the capability to be employed on a robot arm. Future 

work will determine how practical this system is for use with a robot. Some
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details about this have been explained in the next section.

• If the present vision system’s capability needs to be extended to include 

recognition of more than one object at a time, then the viewing area needs 

to be split with attention being focussed on one area at a time.

6.1 R ecom m endations for future work

• The vision system software has been developed on a separate computer con­

taining the image processing board. The next step in the integration with 

the robot would be to have the interface with the computer controlling the 

robot. The overall system has been shown in figure 6.1. Some software com­

mands will have to be written, for moving the robot arm when the object 

has been recognised. Once the robot is on its way to pick the object, it could 

be stopped a few times in between and the 3-D co-ordinates recalculated to 

improve accuracy.

•  The robotic cell will have to be illuminated properly. This is particularly 

important when the robot arm is moved about the object for obtaining dif­

ferent views. There are certain firms specialising in lighting (such as Nerlite). 

When deciding which lighting system to use, three things must be considered 

-what geometry of light is required to illuminate the features, what type of 

light source (eg. halogen, LED) best illuminates the features and how large 

the field of view is. Some types of lighting systems have been described in 

Appendix D.

• The stereo system could be improved by making it motorised or more flexible 

to change the vergence angles. This would allow one to gauge for accuracy 

at different vergence angles and baseline distances. This would also allow for 

better calibration.

• Improvements to the vision system including improvements in software for 

error checking and message display will have to be made.
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• For mounting the camera (figure 6.3), two types of configurations can be 

used:

(a) Fixed camera calibration

(b) Eye-in-hand configuration

Robot arm

Supervisory
computer

F/T sensor

Robot controller

M otor power 
& brake release

Figure 6.1: Overall system

Figure 6.2: Camera mounting configurations

The fixed camera configuration can be used if there is a single camera and 

the thickness of the object is not significant. If the objects are lying on 

a flat surface (like a table) then the system can be calibrated to get X-Y 

co-ordinates with respect to the table.

In the eye-in-hand configuration, the camera(s) can be placed on the robot 

arm, just above the manipulator. The robot has two co-ordinate systems: 

the tool co-ordinate system and the world coordinate system. The tool co­

ordinate system has an origin at the base of the end-effector while the world 

co-ordinate system has an origin at the base of the robot.
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Tool Coordinates

World Coordinates

Figure 6.3: The robot and the axes system

• If a stereo pair is mounted just above the end-effector, then the distance 

between the cyclopean point and the origin of the tool co-ordinate system 

can be found. This distance will be fixed. Since the 3-D co-ordinates of 

the object are known, it is possible to find the orientation of the object. For 

example, the side with the largest length can be found. Since the cameras will 

be mounted on the robot arm, the orientation of this edge with respect to the 

cyclopean co-ordinate system can be found. These can then be transformed 

into the tool co-ordinate system (which has the origin at the base of the 

gripper) and then into the world co-ordinate system. The arm can be steered 

to approach the edge in the normal direction and the object can be grasped 

using the gripper.

• If a single camera is mounted on the robot, then the robot will have to be 

moved precisely to get the two stereo views. The robot will have to be moved 

by the exact vergence angles and baseline distance to obtain the views as in 

calibrated set-up.

In both cases, once the robot is approaching an object, it can be stopped 2 or 

3 times to recalculate the co-ordinates to improve accuracy. This could also 

help to make a finer distinction between objects having facets with rounded 

corners and sharp corners.

• If more information about the object is required, three or more views can be
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taken by moving the robot around it in an uncalibrated setup.

•  Within the system, a library of objects can be held, thus facilitating the 

of task level descriptors to approach and pick the objects.
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APPENDIX A

ART-1 A lgorithm

The working of the ART-1 algorithm has been described below:

Figure 1.2 illustrates the main components of an ART-1 module. It consists of two 

layers of neurons or nodes. Fx with output vector X  =  (xi, registers the

F0 —> Fi input vector I  =  ( A, . . . ,  I m )> Each neuron in the layer Fi is connected 

to every neuron in the F2 layer through the bottom-up synaptic adaptative weights 

Zij. The index i indicates that the connection goes from the ith neuron in Fx to 

the jth neuron in the F2 layer.

© ©
reset

A
\ 7

ZH
IXI

© © • • • © X

Figure 1.2: ART-1 Architecture
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F2 Choice

Let Tj denote the total input from F\ to the j th F2 node given by,

(i.i)
* = 1

If some Tj > 0, then the F2 choice index J  is:

Tj =  max{Tj : j  — 1. . .  N}. (1.2)

J  is uniquely defined so that the output of the F2 layer is ‘zero’ except for the node 

with maximum activation. In this manner, y  =  ( y i , . . .  ,Vn)  has an output

Resonance or reset

Each node of F2 is connected to all Fi nodes through the top-down connections of 

strength Zji, which contain binary values. Thus, the ith F\ node input from the F2 

layer is

There is a vigilance subsystem formed by the comparator in Figure 1.2, which 

controls how much mismatch is tolerated between the bottom-up activity and the 

top-down learned expectations. In other words it compares the norm of vector X  

to the norm of vector p I, where p 6 [0,1] is the vigilance parameter.

The norm of a vector a = (oq, . . . ,  a a/) can be obtained by:

1 if j  = J
Vj =

0 if j  ^  J

N

Vi — ZjiVj (1.3)
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ART-1

Initialize weights

z..L - 1 +N

Read Input 
I = (I,

Compute activation for each F 
node that is not reset

Compete — find winning node

T =  max {T : j  -  I ... JV}

■No> P

Yes

Update weights

> Reset unit J

Figure 1.3: Flowchart of the ART1 algorithm
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vector X  is defined as:

— VJi or X  = V n I  = z j n I  (1-5)

Depending on the result of this comparison the vigilance subsystem may reset the 

actual active F2 category and search for another category or update the LTM traces 

(weights).

Learning

Learning then ensues if the vigilance parameter is met for the chosen category J. 

That is, if

,  (1-6) 

The connections in the bottom-up and top-down weights are updated as follows:

z new  = I n  z oU  ( 1 7 )

t ~ n e w
r y n e w    _______ J_________ / i  o \

7 ~  L -  1 + | z f w | { }

The above equations are for fast learning that use an algebraic form of the nonlinear 

differential equations for the LTM. Note that only two parameters are needed for 

the implementation of ART-1, p and L. L can take a value larger than 1. The 

above steps are summarised in the flowchart of the algorithm given in Figure 1.3.
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APPENDIX B

Fuzzy ARTM AP Algorithm

The fuzzy ARTMAP system incorporates two fuzzy ART modules, ARTa and 

ARTb. The working of each Fuzzy ART module is first explained. This is fol­

lowed by the dynamics of the whole ARTMAP system. (Please refer figure in 

Chapter 2)

FUZZY ART

Each fuzzy ART subsystem includes a field, FQ, of nodes that represent a current 

input vector; a field, F\, that receives both bottom-up input from F0 and top- 

down input from a field; F2, that represents the active code, or category. The F0 

activity vector is denoted I =  ( Iu -J m ) ,  with each component R in the interval 

[0,l](i=l,...,M). The Fi activity vector is denoted x =  (aq,..., x M), and the F2 

activity vector is denoted y  =  (?/i,..., vn)- The number of nodes in each field is 

arbitrary.

W eight Vector: Associated with each F2 category node j(j=  1,..., N) is a vec­

tor wj =  (wju of adaptive weights, or LTM(long-term memory) traces.

Initially, when each category is said to be uncommitted

Wji(O) =  ... =  wjM{ 0) =  1 (1-9)

After a category is selected for coding it becomes committed. Each LTM trace Wji 

is monotonically nonincreasing through time and hence converges to a limit. The 

fuzzy ART weight vector wj formally represents both the bottom-up and top-down 

weight vectors of ART 1.

139
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Parameters: Fuzzy ART dynamics are determined by a choice parameter a > 0 

a learning rate parameter (3 e  [0,1] and a vigilance paramter p e  [0,1].

Category Choice: For each input I and F2 node j , the choice function Tj is 

defined by

2}(I) =  (1.10)a  +  \wj |

where the fuzzy AND, or intersection, operator (A) is defined by

(P A q)i =  min(pi, qt) (1.11)

and where the norm |.| is defined by

Ip ! =  s & l t t l  (1.12)

for any M-dimensional vectors p and q. For notational simplicity, Tj (I) is written 

as Tj when the input I is fixed.

The system is said to make a category choice when at most one F2 node can become 

active at a given time. The category choice is indexed by J, where

Tj =  m ax{T j : j  =  1...N} (1*13)

If more than one Tj is maximal, the category j  with the smallest index is chosen. 

In particular, nodes become committed in order j  = 1,2,3,...When the Jth category 

is chosen, y3 — 1 and yj =  0 for j  ^  J. In a choice system, the F\ activity vector 

x  is characterized by the equation

I if F2 is inactive
x  =  <j (1-14)

IA  W j if the Jth F2 node is active.
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Resonance or Reset: Resonance occurs if the match function |I A iu j |/ |I | of the 

chosen category J  meets the vigilance criterion

> p (1.15)

That is, when the Jth category is chosen, resonance occurs if

|x| — |I A Wj| >  p|I| (1.16)

Learning them ensues, as defined below. Mismatch reset occurs if

|I A w./|
III < P (1.17)

That is, when

|x| =  |I A Wj| < p|I| (1.18)

the value of the choice function Tj is set to zero for the duration of the input 

presentation to prevent the pesistent selection of the same category during search. 

A new index J  is then chosen by eqn. 1.13. The search process continues until the 

chosen J satisfies eqn. 1.15.

Learning: Once search ends, the weight vector w j is updated according to the 

equation

w (pe») =  A w <,oM)) +  (1 _  0 )w M  (1 lg )

Fast learning corresponds to setting j3 = 1.0 

ARTM AP

The flowchart for the Fuzzy ARTMAP learning is given in figure 1.4. In the 

ARTMAP system, ARTa and ARTb are linked via an inter-ART module, F ab,
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called a map field, as follows:

ARTa and  ARTb: Inputs to ARTa and ARTb are in the complement code for: For 

ARTa, input I =  A =  (a, ac); and for ARTb, input I =  B =  (b, bc). Variables in 

ARTa or ARTb are designated by superscripts a or b. For ARTa, x a =  ( a r j , x%Ma) 

denotes the F f  output vector; y a =  denotes the F2° output vec­

tor; and w j =  (to£l5 1—wfyMa) denotes the jth ARTa weight vector. For ARTb, 

x fe =  (a?}, denotes the F{ output vector; y b = (yb, ...ybNb) denotes the

F | output vector; and w | =  {wbk>v ...,w b̂2Mb) denotes the feth ARTb weight vec­

tor. For the map field, x ab =  ( x f , ...,a$6) denotes the F ab output vector and 

Wjb = (Wjb, ..., WjNb)denotes the weight vector from the jth  F2° node to F ab. Com­

ponents of vectors x°, y “, and x ab are reset to zero between input presentations. 

Initially, each weight is set equal to one. Note, that |A| =  Ma and |B| =  Mb for 

all input vectors a and b.

Map Field Activation: Map field F ab is activated when one of the ARTa or 

ARTb categories becomes active. When the Jth F2a node is chosen, F2 — > F ab 

input is proportional to the weight vector wj b. When the Kth  F2 node is chosen, 

the F ab node K  is activated by one-to-one pathways between F2 and F ab. If both 

ARTa and ARTb are active, as in supervised learning, then F ab activity reflects 

the degree to which a correct prediction has been made. With fast learning, F ab 

remains active only if ARTa predicts the same category as ARTb, via the weight 

vector w f ,  or if chosen ARTa category J  has not yet learned an ARTb prediction. 

In summary, the F ab output vector x ab obeys

Xab

ybAWjb if the Jth F2 node is active and F2 is active 

if the Jth Fo node is active and F? is inactiveW3
Vb
0

if F2 is inactive and F2 is active 

if F2 is inactive and F2 is inactive.

(1.20)

If the prediction w j6 is discontinued by y b, this mismatch event triggers an ARTa 

search for a new category, as follows.
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Yes

Ia = (a,a c) --- Input I a, Ib — Ib = (b,b c)

Reset base vigilance 

Pa= Pa

Compute activation 
(Tj) for each F 2 node 

that is not reset

Compute activation 
(Tt) for each F 2 node 

that is not reset

Compete — find winning node
JVa}

Compete — find winning node 
Tk = max {Tt: fc = 1 ... N b}

Reset > / Reset
node J \  nbi k * >—N o *■

node K

— Yes-
Compute map-field activation 

Xab = YbAWab

Reset node J and 
raise vigilance 

|Ia A w ,
P« = -

|P|
-J- + e

Update LTM weights 
for ARTa, ARTb & Map-field

Another input?

(  END )

Figure 1.4: Fuzzy ARTMAP learning cycle
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M atch Tracking: At the start of each input presentation the ARTa vigilance 

parameter pa equals a baseline vigilance, pa. The map field vigilance parameter is 

pab. Match tracking is triggered by a mismatch at the map field F ab, that is, if

|xa6| < Pab \yb\ =  Pab (1-21)

as in eqn. 1.18. Match tracking increases pa , until it is slightly larger than the 

ARTa match value, |A A w J||A |_1, where A is the input to F f and J  is the index of 

the active F2 node. After match tracking, therefore

|xa| =  |AAw®| < pa|A| =  paMa (1.22)

When this occurs, ARTa search leads either to ARTMAP resonance, where a newly 

chosen F£ node J  satisfies both the ARTa matching criterion

|x®| -  | A Aw® | > Pa\A \  (1.23)

and the map field matching criterion

|x“*| =  |y*Awf | >  P„6|y6| (1-24)

or, if no such F2® node exists, to the shutdown of F2® for the remainder of the input 

presentation. Since w^(0) =  u$!(0) =  1 and 0 < p a ,pab  < 1> ARTMAP resonance 

always occurs if J  is an uncommitted node.

Map Field Learning: A learning rule determines how the map field weights wfy 

change through time, as follows. Weights wfy in F2 — > F ab paths initially satisfy

wfk{ 0) =  1 (1.25)

During resonance with the ARTa category J  active, w®5 approaches the map field 

vector x ab. With fast learning, once J  learns to predict an ARTb category K, that

association is permanent; ie., w fK = 1 and wabk =  0(k ^  K ) for all time.
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Gaussian ARTM AP Algorithm

The Gaussian ART module plays the same role within the ARTMAP architeture 

as does an ART1 module or a fuzzy ART module. The following describes the 

dynamics of Gaussian ART.

Categories

Each Gaussian ART category j  is defined by an M-dimensional vector fij represent­

ing its mean, o 2 representing its variance, and a scalar rij representing its count, 

the number of training samples it has coded. Thus, each Gaussian ART category 

requires 2M+1 components to represent an M-dimensional input, I  = (A, . . . , / m ) -

Category choice

During training, the category whose Gaussian distribution is the most probable 

“source” for input I  is chosen. The a posteriori probability of category j  given 

input I is
P W )  = p{JW b )  (1.26)

Categories are defined by separable Gaussian distributions, so that the conditional 

density of /  given category j  is

Pm  =  z~r rr«P ( 4  E ) d-27)
(2 tt)¥  ( n & a ! ) 1 \  ^  a»

and the a priori probability of j  is simply

145
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P ( j )  =  (1.28)
2^j'=i nj'

where N  is the number of categories. The density p(I) in eqn 1.1 is ignored because 

it is the same for all categories. For computational ease, a discriminant function 

Qj () is used to evaluate each category, obtained by taking the log of the numerator 

in eqn 1.1 with the dimensional scaling factor, (2^)^ , discounted

®(I) =  log ((a * )*  p (/|j)P (j)) =  - 1  g  -  j t o g  ( n ^ 4 )  +  % (p(j))

(1.29)

The non-reset ART category J  with the maximum discriminant function is chosen,

J  = arg max(gj(I)) (1.30)

Category Resonance and Reset

If a chosen category’s match value does not satisfy the ART reset parameter, p , 

then the category is reset. Category match is determined by the conditional density, 

that is, how well input I  matches with the shape of category f s  distribution,

g’A I )  =  log ( ( 2 * ) f Pm )  =  - ~ E  -  j l o g  ( ^ 4 )  ( ^ )
6 i=l a

= gj{l) -  log(P(J)) (1.32)

If g'j(I) > p, the category resonates; otherwise it is reset. If no committed ART 

category meets the reset condition, then an uncommitted category J \  with nj> =  

0, is chosen.

Learning

When category J  learns an input sample, /, its count, mean, and variance variables 

are updated to represent the sample count, mean, and variance,

n j n j  +  1 (1.33)
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a

fjtj := (1 -  rijl )pj  H -ra/J (1-34)

(1.35)
(1 -  rij +  Tij 1 (pji -  Ii)2 if rij > 1,

J i y2 otherwise;

The variance initialization parameter, 7 2, determines the isotropic spread in feature 

space of a new category’s distribution about its first sample.



APPENDIX D

Illumination Systems

Prom NER (http://www.nerlite.com)

Cameras see light as it is reflected from an object. Light is reflected differently 

from a metal ball than from a flat white label or a printed circuit board. The 

purpose of machine vision illumination is to control how the object appears to the 

camera. With these differences in mind, the company NER studies the geometric 

patterns of the light reflected from the part and designs lighting systems to con­

trol glare and reflection. Developed with a sophisticated knowledge of ray tracing 

and uniform lighting, NERLITEs enable vision engineers to work with clearer and 

crisper images. To meet the varied needs of machine vision applications, NER has 

created three distinct lines, with increasing levels of sophistication: DOAL, SCDI, 

and CDI.

Which Illumination System is Right?

There are essentially three questions to ask when you are determining which illu­

mination system is appropriate for your machine vision application:

What geometry of light is required to illuminate the features?

What type of light source (e.g., halogen, LED) best illuminates the features?

How large is the field of view?

Diffuse On Axis Light-DOAL

148
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Figure 1.5: Types of lighting

With the DOAL, light rays reflect off the beam splitter directly on to the object 

at nearly 90. With this approach, specular surfaces perpendicular to the camera 

appear illuminated, while surfaces at an angle to the camera appear dark. Non- 

specular surfaces absorb light and appear dark.

DOM
E ^ l Camera

Figure 1.6: Diffuse On Axis Light 

For last Specular Surfaces

DOALs provide diffuse, uniform illumination for flat specular surfaces. By provid­

ing greater uniformity than conventional sources, DOALs increase machine vision 

accuracy and repeatability up to 200%.

The DOAL’s rugged, compact design makes it the ideal solution for many applica-
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tions.

DOAL Benefits

• Provides superior uniformity throughout the illumination envelope

• Significantly enhances image quality

• Improves the accuracy and repeatability of machine vision performance on 

specular surfaces

• Compact, light weight package can be used on moving camera modules

• Illumination sources include LED, fiberoptic, and cold cathode fluorescent 

sources Cost-effective product line

Square Continuous Diffuse Iliuminator-SCDI

The SCDI works on the same principles as the DOAL, but with added uniformity 

for non-planar surfaces.With the SCDI, light rays reflect off the beamsplitter and 

the lower chamber, increasing the solid angle of illumination. The light source is 

tilted parallel to the beamsplitter increasing uniformity.

SCDI
Camera

I1

Object

Figure 1.7: Square Continuous Diffuse Illuminator 

For More Difficult Applications
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The SCDI is designed for imaging applications requiring significantly greater uni­

formity of diffuse illumination than provided by the DOAL. The SCDI provides 

extraordinary diffuse illumination performance. The patented design of the SCDI 

makes it ideal for moderately faceted and undulating specular surfaces.

SCDI Benefits

• Excellent uniformity (20% across the lighting envelope at close range)

• Extraordinary diffuse illumination

• Compact and easy to use

• Economical and low maintenance

• Illumination sources include LED, fiberoptic and cold cathode fluorescent 

sources

Cloudy Day Illum inator-CDI

The CDI is ideal for the most complicated uneven and specular surfaces, because 

it offers the greatest degree of light coverage-nearly 170. With the CDI, light 

rays come from two different sources, reflecting the light in as wide a hemispheric 

pattern as possible.

Camera

CDI

Figure 1.8: Cloudy day Illuminator 

For the M ost Difficult Applications
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The CDI is as close to “perfect” as a diffuse light source can be made, a true 

“Cloudy Day in a Box.” The CDI combines patented optics with precision in­

tegrating sphere technology to yield a self-contained continuous diffuse lighting 

environment unrivaled in the world of illumination technology.

The CDI is designed for those critical applications involving highly specular surfaces 

where any reflections of camera aperture or “seams” in the lighting envelope will 

cause a vision system to see defects where none exist. Examples of such applications 

include compact disk artwork verification and the inspection of solder patterns 

on circuit boards. The NERLITE CDI allows products to be inspected “in the 

package”-even blister-packaged pharmaceutical products and computer chips in 

the tube.

CDI Benefits

• Outstanding uniformity up to 10% maximum deviation within the lighting 

envelope

• Outstanding self-contained cloudy-day lighting for highly complex applica­

tions

• Ideal for extremely difficult specular surfaces

• Illumination sources include LED, fiberoptic, and white microfluorescent sources

•  Makes glass and clear plastic container surfaces disappear

•  Now available with fiberoptic light delivery
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Stereo Equations

P(X,Y,Z)

Baseline

Point in space

D/2D/2 Lens centre

Figure 1.9: Stereo imaging system

In figure 1.9, D  is the baseline distance, xL  and xR  are the disparities and /  is the 

distance from the image plane to the lens. From the figure,

x L  X  + 
f" Z

(1.36)

x R  X  -  D /2
S ~

(1.37)

Subtracting equations 1.36 and 1.37 gives

xL  — xR  — fD (1.38)
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D fZ  =
xL  — xR

Adding equations 1.36 and 1.37 gives

^  2 f XxL  +  xR  = _

X  -  2^ ( x L  + xR)  2

X = 2 (xL — xR)  

Since
- X I

y z

y  __ y%_ _  yD f  =  Dv
f  xL  — rcL — x R

Hence the co-ordinates of a point in space can be obtained using

, ,  D{xL + x R ) ' Y_  . z =
2(xL -  si?) ’ ^  -  s i? ’ s i  -  si?

(1.39)

(1.40)

(1.41)

(1.42)

(1.43)

(1.44)

(1.45)
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