
f o r r e fe r e n c e o n ly

Heuristic Optimisation for the Minimum Distance Problem

Evelyn Yu-San Chan

A thesis submitted in partial fulfilment of the requirements of the Nottingham Trent

University for the degree of Doctor of Philosophy.

August 2000

40 0707222 1m u lit ii

ProQuest Number: 10183000

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10183000

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Acknowledgements

I should like to take this opportunity to thank my Director of Studies, Dr John Bland, for

his confidence in me to carry out this research. I should also like to thank my Second

Supervisor, Dr John Baylis, for his endurance in guiding me in Coding Theory. Most

importantly, I should like to thank my family and friends for their tremendous support

throughout these years.

Abstract

In this thesis two heuristic optimisation techniques are investigated, with the aim of

obtaining minimum distance estimates of particular error-correcting codes.

Minimum distances are important in Coding Theory because the error-correcting

capability of codes is dependent upon them. However, the exact minimum distances of

many practically important codes are still unknown and so, for codes such as quadratic

residue (QR) codes, the minimum distance problem (MDP) remains open. In this thesis

the mathematical development of QR codes is presented and the MDP for particular QR

codes is then investigated using heuristic optimisation techniques.

Heuristic techniques are necessary due to the combinatorial nature of the problem and

the non-convex nature of the solution-space. In this thesis the particular heuristic

optimisation techniques applied to the MDP are tabu search (TS) and ant colony

optimisation (ACO). TS uses a neighbourhood search procedure in which use is made of

a memory facility, called the tabu list, which enables the search to progress beyond local

optima in the quest for a global optimum. Recently TS has been successfully applied to

Bose-Chaudhuri-Hocquengham codes using a short-term memory approach. In this

thesis longer-term strategies and a number of ‘memory’ lists are developed within a TS

algorithm, to find minimum distance estimates for large QR codes.

Recently several discrete optimisation techniques have been developed by analogy

with physical and biological processes (for example, simulated annealing and genetic

algorithms). Because analogies with natural phenomena have been used to successfully

derive non-deterministic heuristic methods which can be applied to NP-complete

combinatorial optimisation problems, there is a growing interest in this approach to

problem solving. ACO is a population-based method which was inspired by the

behaviour of a colony of ants and their ability to ‘optimise’ their collective endeavours.

In this thesis ACO is formulated in an error-correcting code context. A basic ACO

algorithm is first presented and then developed to incorporate the co-operation amongst

members of the colony. The developed ACO algorithm, together with TS as a local

improvement phase, is then applied to large QR codes to obtain minimum distance

estimates.

Contents

Abstract

1 Error-correcting Codes and Heuristic Optimisation
1.1 Introduction 1

1.2 Importance of Minimum Distances 2

1.3 Optimisation Methods 4

1.4 Heuristic Approaches 6

1.5 Thesis Outline 10

2 The Mathematical Structure of Codes and Generator Matrices
2.1 Introduction 12

2.2 Linear Codes 13

2.3 Polynomials and Cyclic Codes 15

2.4 Quadratic Residue Codes 16

2.5 Augmented and Expurgated Quadratic Residue Codes 19

2.6 Generator Matrices 20

3 Heuristic Optimisation
3.1 Introduction 25

3.2 Tabu Search 27

3.3 Tabu Search for the MDP 29

3.4 Minimum Distance Results using Tabu Search 35

3.5 Ant Colony Optimisation 42

3.6 Ant System 44

3.7 Ant System for the MDP 48

3.8 Minimum Distance Results using Ant System 57

O
td

>
4 Tabu Search for Minimum Distances

4.1 Introduction 63

4.2 Overview of the Developed Tabu Search Algorithm 64

4.3 Two-way Conversion 67

4.3 The Influential Candidate List 70

4.5 The Closeness Criterion 73

4.6 Dynamic Tabu List Management 74

4.7 Intensification 79

4.8 Diversification Strategies 80

4.9 Minimum Distance Results 87

5 Ant Colony System for Minimum Distances
5.1 Introduction 95

5.2 Overview of the Developed ACS Algorithm 96

5.3 ACS State-transition Decision Rule 99

5.4 Diversification Phase 100

5.5 Local Trail Intensity Update 104

5.6 Ant Co-operation 107

5.7 Intensification Phase 111

5.8 Global Trail Intensity Update 112

5.9 Minimum Distance Results 114

6 Conclusions
6.1 Summary 123

6.2 Achievements 130

6.3 Possible Improvements 133

6.4 Further Research 138

Appendices

References

Chapter 1

Error-correcting Codes and Heuristic Optimisation

1.1 Introduction

Codes were invented to convert complicated human language to artificial language.

Nowadays messages are often converted to sequences of binary digits {0,1} and these

digits are usually sent via a communication channel such as satellite communication

links or cables. Typical examples are uses of the Internet and sending e-mail

messages. Although communication channels are now more reliable than in past

decades, in theory, no real channel is ideal because there could be disturbances and

other interference that may corrupt the signal transmitted through the channel. These

errors may be caused by lightning, earthquakes, thermal noise etc. It is important to

note that for some applications a single error could lead to a disaster. Error-correcting

codes are therefore used to correct errors when messages are distorted through the

transmission in a communication channel [Roman 1997, Hill 1986].

Coding theory techniques are used to determine the correctability of errors that

occur when information is transmitted from one source to another. Binary codes are

widely used as errors in these codes can be easily corrected once the locations of the

errors are known. The minimum distance, d , (to be defined later) of a code is the

major parameter affecting its error-correcting performance. However, the exact

minimum distance values are still unknown for many practically important codes, and

therefore the estimation of d , herein called the minimum distance problem (MDP),

for such codes remains unsolved.

1

In general, discrete optimisation methods are tools that may be used to solve

combinatorial problems. The problem of finding the minimum distance d for any

linear code is known to be an NP-complete problem, that is, both solvable in non-

deterministic polynomial-time (i.e. in class NP) and can be translated into any other

problem in class NP [Welsh 1988, Garey and Johnson 1979, Berlekamp et al. 1978].

One way to approach the MDP is to use approximation algorithms [Foulds 1984,

Foulds 1981]. However, these algorithms cannot guarantee the final obtained solution

to be optimal but the computation time associated with the approximate solution can

be given. Therefore, the time that is required for finding a high quality approximation

becomes important.

Approximation methods may be divided into two categories: general algorithms

applicable to a wide variety of combinatorial problems and algorithms that are

tailored to specific problems [Baykasoglu et al 1999, Carlton and Barnes 1996]. In

this thesis, the heuristic optimisation techniques studied are tabu search (TS) and ant

colony optimisation (ACO). These two algorithms are general techniques that have

been successfully applied to different combinatorial problems such as scheduling

[Logendran and Sonthinen 1997, Forsyth and Wren 1997], the travelling salesman

problem [Carlton and Barnes 1996, Gambardella and Dorigo 1995] and the quadratic

assignment problems [Gambardella et al 1999, Laguna et al. 1991]. In this thesis, the

ideas behind these algorithms are then adapted to specifically tackle the minimum

distance problem (MDP).

1.2 Importance of Minimum Distances

A code is a set of strings over a certain alphabet; for example, a code whose alphabet

is Z2 is a binary code. A block code is a set C of strings of symbols, of fixed length

2

n, with the symbols being chosen from a finite ‘alphabet’ A. If |a| = q, then q'1 is

the number of strings of length n from this alphabet. Generally C contains only a

small fraction of the qn ‘words’ and those in C are called the codewords. The

codewords are the ‘meaningful words of the language’ and they correspond to the

actual word transmitted. In general the transmission channel is ‘noisy’ so that the

channel induces errors. The fact that |c| « qn is the key to the receiver being able to

recover the original message with a high probability of success, provided that no pair

of codewords are too ‘similar’ and that C has been well selected.

If A is a finite field F , the set of all words of length n over F , F n, can be

regarded as a vector space over F with dimension n. An (n,k) code over F is a k -

dimensional subspace of F n and an (n ,k) binary code has 2k vectors or codewords

in it, where ‘binary’ now means that F is GF(2) [Vermani 1996]. The weight w(x)

of a word is the number of non-zero digits in the word x . Let x , y e C and both words

are of length n . The Hamming distance d(x, y) , is the "difference" between words x

and y, meaning the number of places in which x and y have different alphabet

symbols, so

d(x,y) = w (x-y) (1.1)

Suppose C is a code with at least two codewords. The minimum distance d(c) of C

is the smallest distance between two distinct codewords. In symbols,

d(c) = min{d(c,d) \ c , de C , c ^ d] (1.2)

Since c A d implies that d(c,d)> 1, the minimum distance of a code must be at least

1. One way to determine d is by listing all pairs of the codewords, but for larger

3

linear codes, it would be more efficient to compute the weights of the individual

words, which will be proved in Chapter 2; d(C) = min (w(c)) for linear codes.
c e C ,c * 0

The determination of the error-correcting capability of a code is dependent on the

previously mentioned minimum distance of a code. Therefore, the exact minimum

distance of the code must be known. Any code C is t error-correcting if and only if

d(x, y) > 2t +1 [Baylis 1998]. An important class of linear codes is the quadratic

residue (QR) family. Very little is known about d(C) for the larger members of this

class. This thesis tackles the estimation of d(C) computationally.

Over the years researchers have worked on determining the values of d and have

found different upper bound results but exact values were not found for large QR

codes. In many cases the minimum distances were found by computer searches over

restricted subsets of codes. Coppersmith and Seroussi (1984) justified a method that

minimum weight codewords could be found by restricted searches. The aim of this

study is to obtain minimum distance estimates for some particular QR codes, using

developed TS and ACO algorithms.

1.3 Optimisation Methods

One of the most commonly used optimisation algorithms is an iterative search method

known as neighbourhood search [Glover and Laguna 1997]. This method aims to

solve most combinatorial problems by generating solutions and testing their quality.

With each move, a neighbourhood solution is generated in which a slight variation

from the previous solution is achieved consisting of configurations that can be

reached from one transition. With reference to Table 1.1, the major goal is to

minimise the cost (cost). The iterative search begins with an initial solution (soln)

with cost cost. For each move (move), a neighbourhood solution nbhdsoln is

4

generated. If nbhdsoln has a lower cost then both cost and soln are replaced by

nbhdcost and nbhdsoln, respectively. Otherwise, another neighbour is generated and

its cost compared to cost. This process continues until the termination criterion is

reached (move = maxmove) or no possible improvement can be found. However there

are some disadvantages of using iterative search methods; they often terminate at

local minima which are sometimes dependent on the setting of the initial solution. In

spite of this, iterative search methods are usually easy to formulate and a single run

may be executed in a reasonable amount of computation time.

Begin
• Generate initial collection of solution, soln
• Evaluate cost, the cost of soln

For move = 1 to maxmove
mincost — cost

For nbhd = 1 to maxnbhd
• Generate nbhdsoln, a neighbour of soln
• Evaluate nbhdcost, the cost of nbhdsoln

/* If a solution is improved, update and move */
If nbhdcost < cost

soln = nbhdsoln
cost = nbhdcost
nbhd = maxnbhd

End(If)
End (For)
If nbhdcost > mincost /* Trapped in local minimum - exit */

move — maxmove
End(If)

End(For)
• Output soln and cost
End

Table 1.1 Pseudo-code for neighbourhood search.

Two classes of iterative search methods are local search and population-based

search. The local search algorithm is an iterative search method and is based on the

generation of neighbourhood solutions (see Table 1.1). One example of a local search

algorithm is the hill-climbing technique in which the search generates solutions that

have slight variations from the solutions constructed previously. This is done via a

competitive strategy that favours better solutions. Tabu Search (TS) and simulated

5

annealings (SA) are types of local search algorithm. Population-based search uses a

collection of data to form different solutions. This is done by first selecting members

of the population to be ’parents’ and then making changes to these parents to produce

’children’ as new solutions. This type of search differs from local search since local

search is based on using a single ’parent’ to generate one or more ’children’ whereas

population-based search generates new solutions by re-combining aspects of two or

more existing solutions (parents). Genetic algorithms (GA) and ant colony

optimisation (ACO) are examples of population-based search algorithms.

1.4 Heuristic Approaches

This section reviews uses of different heuristic approaches for solving large

combinatorial problems. In the last two decades, heuristic optimisation techniques

have become popular for solving optimisation problems. Although heuristic

techniques are still based on approximation, continued investigation has inspired

growing interest in their ability to address realistic problems. For example, simulated

annealing (SA) is based on physical processes in metallurgy and genetic algorithms

(GA) seek to reproduce the biological behaviour of genes. More recently, a meta

heuristic (tabu search) was introduced by Glover (1989) as a master strategy that

guides and modifies other heuristics to produce solutions beyond local optimality.

Tabu Search (TS) uses memory of previously obtained solutions as an intelligent

problem solving tool. Ant colony optimisation (ACO) [Bonabeau et al. 1999]

simulates the ability of an ant colony to ‘optimise’ its collective activities. From all

these recent heuristic findings, a fundamental aim is to unite artificial intelligence

with optimisation to tackle NP-complete problems.

Simulated annealing (SA) was originally proposed by Metropolis et al (1953). It

was an analogy of the physical process of heating a solid to melting point, followed

6

f
r

-
'-

:

~

-<*

,

r"’" ■

r

by cooling to a crystallise state with a perfect pattern where the cooling method is

conducted under controlled conditions in order to avoid any imperfections. Almost

thirty years later Kirkpatrick et al (1983) adapted this simulation process to search for

feasible solutions in a combinatorial problem, with the aim of converging to an

optimal solution. For this reason the algorithm became known as ‘simulated

annealing’.

SA is an iterative improvement algorithm that attempts to avoid entrapment in a

local optimum by sometimes accepting a move that deteriorates the objective function

value (i.e. cost). The algorithm begins with a feasible solution and proceeds to

investigate the neighbourhood of this solution via a sequence of moves in search of

optimal solutions. An improved solution (i.e. one with reduced cost) is always

accepted but if a solution does not improve, then the solution may still be accepted

according to some specified probability. The probability of acceptance decreases

exponentially to zero as the number of moves increases. Without this facility, the

search may become trapped in a local minimum, thus exploration would cease. Apart

from its use in traditional application areas such as in scheduling [Cho and Kim

1997], the quadratic assignment problem [Wilhelm and Ward 1987] and the travelling

salesman problem [Cerny 1985], there are some successful applications of simulated

annealing in Coding Theory. Aarts and Laarhoven (1992) briefly reviewed the

application of local search to a special class of coding problems: covering and

packing. Zhang and Ma (1994) designed an annealing-based algorithm to carefully

tune some of the control parameters to find minimum distances for Bose-Chaudhuri-

Hocquengham (BCH) codes. Although this research is not focussed on simulated

annealing techniques, the results obtained by Zhang and Ma (1994) will be used for

comparison purposes.

7

The genetic algorithm (GA) was first introduced as a highly robust search

algorithm [Backhouse et al 1997, Felicity 1996] and in the last twenty years it has

been used successfully as an optimisation device. This idea of GA is based on the

evolutionary process of biological organisms in nature (i.e. a string of genes

(chromosomes) of a particular member of a species). During the course of evolution,

those individuals that adapt to the environment (i.e. fit individuals) will have a better

chance of survival and reproducing offspring whereas those less fit individuals will be

eliminated. This means that the fittest individuals will survive and the combination of

two of the fittest individuals (parents or ancestors) is likely to produce fitter progenies

(offspring). As a result, fitter offspring are evolved.

GA has been applied to a wide variety of problems such as the QAP [Lim et al

2000], the TSP [Larranaga et al 1999], scheduling [Sriskandarajah et al 1998] and

maximum set problems [Hifi 1997]. The basic optimisation idea of GA is to work

with populations of solutions and attempt to guide the search towards improvement by

testing the fitness of survival of each solution. Each solution contributes towards the

next generation in proportion to its fitness by using a probability function that is

biased to favour those with superior quality.

Tabu Search (TS) is a meta-heuristic that was first introduced by Glover (1986)

as an intelligent procedure that incorporates a hill-climbing technique and the use of

adaptive memory [Glover 1990, Glover 1989]. The hill-climbing technique is a

responsive exploration process that encourages the search towards the best solution

(e.g. minimum distance) and the adaptive memory feature enables the search of

solution-space to be effective and economical. In the neighbourhood search method

(see Section 1.3), the search continues until no possible improvements can be found.

However, many problems contain numerous local minima, which will trap the search.

To overcome this problem, TS uses a memory facility, called the ‘tabu’ list which

forbids solutions to be re-visited for a period of time. Furthermore, TS uses a

neighbourhood search procedure, in which the tabu list enables the search to progress

beyond local optima in order to find a global optimum. Consequently TS has been

used successfully in different areas such as the QAP [Taillard 1991, Skorin-Kapov

1990], flow-shop problems [Moccellin and Nagano 1998] and the layout problem

[Song and Vanellli 1992, Bland and Dawson 1991]. In recent years, TS has been

applied to Coding Theory to investigate lower bounds of some constant weight codes

[Bland and Baylis 1997]. Following Zhang and Ma (1994), Bland and Baylis (1995)

examined the effectiveness of estimating d for BCH codes [Hoffmsn et al. 1991]

using tabu search. Their results showed that lower minimum distances may be

obtained (compared to SA). In this thesis, longer-term strategies and a number of

‘memory’ lists are developed within a TS algorithm. The aim is, firstly, to improve

the minimum distance values obtained by Bland and Baylis (1995); since the exact

minimum distances for the BCH codes are known they can be used as target values

for the developed TS algorithm. Then minimum distance estimates are sought for

different QR codes, whose exact minimum distances are not known.

Recently several heuristic optimisation techniques have been developed by

analogy with physical and biological processes (for example, simulated annealing

[Kirkpatrick et al. 1983] and genetic algorithms [Backhouse et al. 1997]). Because

analogies with natural phenomena have been used to successfully derive non-

deterministic heuristic methods which can be applied to NP-complete problems, there

is a growing interest in this approach to problem solving. Ant colony optimisation

(ACO) [Dorigo and Gambardella 1997, Dorigo et al. 1991] is a population-based

method which was inspired by the behaviour of a colony of ants and their ability to

9

‘optimise’ their collective endeavours [Beckers et al. 1992]. Dorigo et al. (1991) have

drawn inspiration from the workings of natural ant colonies to derive an optimisation

approach to difficult combinatorial problems like the travelling salesman problem

[Dorigo et al. 1996], the quadratic assignment problem [Gambardella et al. 1999,

Maniezzo et al. 1994] and other related fields [Dorigo and Caro 1999]. Essentially,

ACO works by equating the notion of a candidate solution with the route taken by an

ant between two places. Ants leave pheromone as they travel, and routes that

correspond to good solutions will have a stronger pheromone trail than routes that

lead to poor solutions. ACO incorporates a positive-feedback mechanism which

reinforces the pheromone trails of good solutions. The ACO algorithm uses

information obtained by a number of individual agents (computational ants) to form a

(population) optimisation problem. Publications on ACO are relatively recent and

have shown that it may yield high quality results [Bland 1999]. An aim of this study

is to develop the ant colony optimisation algorithm and investigate the MDP for some

BCH and QR codes.

1.5 Thesis Outline

In Chapter 2, the mathematical developments required for constructing QR codes are

presented. Chen et al (1994) and Coppersmith and Seroussi (1984) developed

generator matrices for some small QR codes but no general approach has been

investigated. Also, to date, no research has been published that investigates minimum

distance estimates for large QR codes using heuristic optimisation techniques.

In Chapter 3, a detailed explanation of the short-term memory TS algorithm is

presented with minimum distance results for different QR codes. This is followed, in

the same chapter by an introduction to the basic ACO algorithm in the context of the

MDP. In Chapter 4, longer-term strategies (intensification/diversification approaches)

10

and a number of ‘memory’ lists (tabu list and influential candidate list) are developed

within a TS algorithm, to find minimum distance estimates for large QR codes.

Chapter 5 presents the development of a new strategy to incorporate co-operation

amongst members of an ant colony. The developed ACO algorithm, together with TS

as a local improvement phase, is then applied to tackle the MDP. A summary of this

thesis and its achievements are given in Chapter 6, together with the possible

improvements to the developed algorithms and scope for further research.

11

Chapter 2

Mathematical Structure of Codes and Generator Matrices

2.1 Introduction

Errors in binary codes can easily be corrected once the locations of the errors are

known. As a result these codes are widely used. A code can correct up to t errors

provided its minimum distance d>2t-\-\ [Pretzel 1992, Hill 1986]. The exact

minimum distances, however, are still unknown for many practically important codes,

such as the quadratic residue codes. The estimation of d for such codes is therefore

an important open problem.

Linear codes are the most widely studied types of codes because they are closed

under addition and scalar multiplication. This feature makes the encoding and

decoding of source messages much easier. In addition, the minimum distance of any

linear code can be determined by examining the individual codewords, rather than

calculating the distance between each pair of codewords. This makes the estimation

of d more efficient and economical.

Cyclic codes are a class of linear codes [Baylis 1998] which have the additional

structure of being closed under cyclic shifts. This in turn leads to efficient encoding

and decoding techniques, which make such codes of practical importance. All linear

codes, cyclic codes in particular, are completely determined by a generator matrix.

For cyclic codes, there are generator matrices in which each row is the cyclic shift of

the previous row.

The BCH family of codes [Lin 1970] is a family of linear cyclic codes whose

design principles make considerable use of the theory of finite fields. This theory

makes it possible to design a code with a minimum distance greater than or equal to

12

some pre-assigned value [Augot and Levy-dit-Vehel 1996]. The actual minimum

distances in the BCH family are in many cases known exactly which makes BCH

codes practically useful. This also makes them convenient ‘test codes’ for assessing

the efficiency of the heuristic search algorithms used for estimating the minimum

distance of linear codes defined by generator matrices.

Quadratic residue (QR) codes are cyclic codes of prime length p with the Galois

Field GF(s) as their alphabet, where 5 is another prime which is a quadratic residue

modulo p . Several upper and lower bounds on the value of cl are known for QR

codes and in some cases the exact value of d is known [Coppersmith and Seroussi

1984]. For many of the larger ones, however, the theoretical bounds (a and b),

which are consequences of the mathematical structure of these codes, is the best

information we have. For such cases, where a < d <b with a < b , heuristic search

methods will be used to try to find a codeword of weight less than b and hence

improve the upper bound.

2.2 Linear Codes

Linear codes (of which the BCH and QR codes are examples) are vector spaces whose

elements are the codewords, each of which is a string of length n whose individual

symbols are elements of some finite field. This finite field is also the set of scalars of

the vector space which means a code C is linear if it is closed under addition and

scalar multiplication. Furthermore, any linear code must contain the zero word

because 0 c = 0. The minimum distance of a linear code is the minimum weight of

any non-zero codeword. To prove this consider a linear code C where d (c) - d and

let w be the minimum weight of any non-zero codeword. For some pair of non-zero

distinct codewords, c l , c 2e C at distance d

13

d = d(c{, c 2) = w(cv ~ c 2)> w (2 .1)

and if c is a codeword of weight w , then

w = w(c--0) = d(c ,0)>d (2.2)

Hence w = d . So if a code is known to be linear, its minimum distance is the

minimum weight of the non-zero codewords. Hence, d(c) may be obtained by

scanning the weights of the individual codewords, rather than calculating d (c 15c 2)

for every pair of codewords. This makes the computational time for finding d

quicker since the time is now only linear in the size of C , rather than quadratic.

For binary codes the field is GF (2). If C has dimension k and minimum distance

d(c) = d , then C is called a [n,k,d]~code. A set S ={c1,c 2,...,cjt} is linearly

independent if and only if a , a ak all equal to zero is the only solution of

a c, +ci c , +... + a c. = 0 (2.3)
l —1 2 — L k — k —

The set of all linear combinations of the vectors in a given set S = {c, ,c 2 c k} is the

linear span of S and is denoted by (S) and if a nonempty subset 5 c 5 is linearly

independent and Î S ̂= then S* forms a basis for (s) . An advantage of linear

codes is that C can be described by using a basis of C , rather than having a list of all

the codewords. For this reason, linear codes are easier to generate. If C has length

n and dimension k , then any matrix whose rows form a basis for C is a generator

matrix for C .

A generator matrix G for a linear code C is a k x n matrix whose k rows are

sets of codewords making up a basis of the vector space. Hence k is simply the

dimension of this space. If G is a generator matrix for C and if a is a word of

14

length k written as a row vector, then a codeword c is a unique linear combination of

the words in the basis, so can be written as

c = a G (2.4)

for some a in A* where A is the alphabet. So for a linear code C given by a

generator matrix

G = t i . £ 2 y (2-5)

the problem of finding d(c) reduces to minimising w(aG). From now on the

Jc
members of A will be referred to as alpha-vectors.

2.3 Polynomials and Cyclic Codes

A polynomial /(x) can be expressed as f (x) = aQ + a]x + ... + <2 x" 1 where

aQ,..., a are the coefficients, chosen from some field F . The set of all polynomials

over F is denoted by F[x], with the operations of addition, subtraction and

multiplication of polynomials defined in the usual way. For each f & F \ x \ , the

degree of / is the largest power of x with non-zero coefficient. A code C of length

n can be represented as a set of polynomials over F of degree at most n - 1 , in

which f (x)represents the codeword ciq â

Cyclic codes are linear codes over a field F which are closed under cyclic shifts.

That is, if c = c c ...c and c e C , then c’ g C where c* = c„ , cn . Now
’ — 0 1 r t-l — — — n - l 0 1 71—2

identify c with the polynomial cq +c x + ... + c x* 1 in the ring F[x] modulo x” -1 ,

then C becomes the principal ideal in this ring consisting of all polynomial multiples

of g(x), where g(x) is an irreducible factor of x -1 [Baylis 1998]. g(x) is called a

generator of C .

15

This connection between cyclic codes and polynomial algebra has important

implications for encoding and decoding techniques, and for our purposes it provides a

useful form of generator matrices for cyclic codes.

If g { x) is + g ix + ... + g w_fcxn *, then the cyclic code having g(x) as its

generator polynomial has

G =

n -k

' n - k - 1 n -k8 .

.. .. 0
0 .. 0
: : 0

n -k

as its generator matrix. Since the generator matrix is in an echelon form its rows are

linearly independent and if row 1 corresponds to a codeword each row of the

generator matrix is a codeword by the cyclic property. If g =0 or g =0, then the

first or the last digit of all words in C are equal to 0 which contradicts the property

that cyclic codes are closed under cyclic shifts. Hence, g Q ^ 0 *g ^0. Cyclic

codes have generator matrices in which every row is a cyclic shift of the first row,

although not all generator matrices of a given cyclic code are of this form. G clearly

has k rows, so dim(C) = k.

2.4 Quadratic Residues Codes

The QR family of codes are believed to be good codes (in terms of their error-

collecting capability) but less is known about their minimum distances. QR codes are

linear and they share with BCH codes the property of being cyclic. Quadratic

Residue (QR) codes are cyclic codes of prime length p with the Galois field GF(s)

as their alphabet, where s is another prime which is a quadratic residue modulo p .

For the QR codes, the length of any codeword will be denoted as p .

16

• Quadratic Residues

Let p be an odd prime. If 1 <x< p , then r is a quadratic residue modulo p if

there is a natural number y for which

y2 =*(m od/?) (2*6)

p among the p - 1 numbers {l, 2 ,.. . ,p - l} .

Proof

P — 1The p ~ 1 numbers split into - pairs with the squares of each member of a given

P iY ((p - i \]

V 2 J
p

Furthermore, all of l 2, 22, 32... —— 1 I are different modulo p , because, if <2 Z,

v v 2 yy

p - 1

mod p

b l are two members of this list which are congruent modulo p , and a 2 = b 2 mod p ,

17

If jc has a square root modulo p , then a: is a quadratic residue. Otherwise, x is a

quadratic non-residue modulo p . J

The following theorems (Theorem 2.1 to 2.3) [Rosen 1986, Macwilliams and

Sloane 1977] provide the background for the mathematical development of the

generator matrices for QR codes. These particular theoretical results form the

mathematical basis for the generator matrices developed and used in this thesis.

Theorem 2.1
k

P — 1 H?
Suppose p is an odd prime, then there are exactly — - quadratic residues modulo

1

J

J

pair being congruent to each other modulo p . Explicitly, we have f

l 2 = (p ~ l)2 mod p

22 = (p - 2)2 mod p |

then a - b = 0 mod p , i . e . (a-b) (a + b) ^ 0 mod p , and because p is prime, this

implies a - b ^ O mod p or a + b = 0 mod p (Euclid’s lemma).

Hence a = b mod p or a = - b mod p . Since a and b are chosen from the range

1,2,3,-, P r i , the first possibility implies a = * , and the second is tmpossible. Hence

m the set p - l} there are only ^ distinct squares, namely

, 2 r \ 2 o 2 f p - l)1 v..,
I 2 , . Hence there are -------- quadratic residues in the set and the rest

in the set are non-residues.

Theorem 2.2

2 is a quadratic residue modulo p whenever p s ±l(mod 8).

Proof

Let p be an odd prime and a is an integer not divisible by p . The Legendre symbol

is defined by

/ \a =
1

/

1 if a is quadratic residue modulo p
-1 if a is a quadratic non - residue modulo p

From Gauss lemma,

residues modulo p of the integers a,2a,3a...,

p - 1

= (- l) / (modulo p) where I is the number of least positive

f p - n
2

\ J

p
a that are greater than — where

a — 2. I = is the number of least positive residues that are greater than

. If p = 1 (modulo 8), then p = 8̂ : +1 for some integer k , then

18

p - 1 P_ = 4 k - 2 k + —
2 _4_ 4_

- 2k = 0 (modulo 2). If p = 7 (modulo 8), p = Sk + l

P f , a o/, , = 2& + 2 = 0 (modulo 2).P_ = 4k + 3 - r 7 i2/c H—
4 4for some integer /c, then

Hence 2 is a quadratic residue if p = ±1 (modulo 8).

2.5 Augmented and Expurgated Quadratic Residue Codes

For binary QR codes, p = ± 1 (mod 8) and 2 is a quadratic residue. Following from

Theorem 2.1, the quadratic residues and the non-residues have degrees of ——- . The

QR codes Q, N , Q and N are defined by their generator polynomials q{x), n(x) ,

(x-l)g(x)and (x-T);r(x) respectively, where

(2.7)

(2.8)

q(x) = FI \x — a ‘
v ' i e Q '

n(x) — II [x - a JjeAf'

and a is a primitive pth root of unity in some extension field of GF(2). An element

(/* 1 ui v
2 j is primitive if a: & 1 for 1 < m < 2 -1 . It follows from Theorem 2.1

that Q, N have degree . Since the generator polynomial of any cyclic code

(2.9)

must be a factor of x P - 1 , it follows that

x P — 1 = (x — l)g(x)n(x)

The augmented QR codes Q and N generated by q(x) and n(x) are equivalent

linear codes. By definition of equivalence of linear codes [Baylis 1998], this means

that a generator matrix G* for N can be obtained from a generator matrix G of Q ,

by column interchanges on G and row operations on G . Hence q(x) can be obtained

19

by a permutation of the co-ordinate indices from n(x) and vice versa. Consequently,

the expurgated QR codes Q and N generated by (x-l)g(v) and (x - \)n (x) are also

equivalent and

Q q Q and /VciV (2-10)

The minimum distance for any augmented QR codes, Q and N is d > and if

2
p = S m~ l , then the minimum distance satisfies d - d + l > p . These results are

normally called the square root bounds [Macwilliams and Sloane 1977].

2.6 Generator Matrices

Theorem 2.3
p 1

The dimension of an augmented Quadratic Residue code is —— .

Proof

From Theorem 2.1, it is known that there are exactly ——- quadratic residues and

quadratic residues modulo p , the dimension of the generator matrix is

k - p -d eg (g(x))= p (p_ - n

v 2 y

p + 1 (2.11)

Since QR codes are linear and cyclic, one way of getting a generator matrix is by

cyclic shift the first row of codeword provided its lineal' combination will span the

code. Hence, the weight of a generator matrix, G , is the number of non-zero digits of

a word in G . For the expurgated QR codes, the dimension of a generator matrix is

p — 1
 (see example on page 23).

20

• Generator Matrices with weight = — — -

Since there are ^ quadratic residues modulo p between 1 and p , one form

of generator matrix is by cyclic shift of the first row of a codeword in which the first

row is formed by

1 X£ Q
G =Ijc

(2 .12)

0 x& Q

Q denotes the set of quadratic residues modulo p and each codeword

corresponding to a row of G has weight — — - , so d(c) < ~ ~ • F °r the larger QR

codes the generator matrix described will have its rows with the relatively large

' p - l 'weight of . Therefore the search may not find low weight words in a feasible

time. An alternative G matrix with significantly lower weight rows was found by

using the algebra of a polynomial representation of the codewords, and in some cases

this led to better results. For these, the best known results are of the form a< d < b ,

(a and b are positive integers).

• Generator Polynomials

A method of finding generator polynomial is based on factorisation through

cyclotomic cosets. Consider

i_ (x) = gcdjc ̂(x), x P - l) (2.13)m

21

where m.(x) is the minimal polynomial of a obtained from each cyclotomic coset

2 3C. ={i, 2i, 2 i, 2 i, ...} by writing

c (x) = n [x - a i) (2J4)j'sC.

Q and N are both disjoint unions of cyclotomic cosets. If r is the number of

cyclotomic cosets in Q and I is the number in N , then

x P - l = (x - l) l lm (x) l l m (x) ̂ ^
N ' i= 1 i v ' j = i j x '

Since Q and N are equivalent, the generator polynomials for augmented QR code

are

t

g(x) = n(x) = f l m, (x)
(2.16)

(=i i

or

i
g(x) = q (x) = U m (x)

j=i j

(2.17)

and the generator polynomials for expurgated codes are

g(x) = (x-l)^r(x) (2.18)

or

g(x) = (x-l)n(x) (2.19)

The first row of a generator matrix derived from the generator polynomial is the

binary string in which the ith component (where z = 1,2, . . . , p) is 1 if and only if i

corresponds to a power of x with non-zero coefficient. Using the developed

alternative G matrices, with rows of weight less than > reduced search times and

better (lower) estimates of d are obtained.

22

The dimension of augmented QR codes and expurgated QR codes are then fixed

n -)- 1 n — \
at —— and —— , respectively. Using the generator polynomial as alternative G

matrices, with rows of weight less than or equal to ----- , results in reduced search

times and better (lower) estimates of d than the generator matrix described in

equation (2.12).

• Example

In order to show the process of obtaining various generator matrices using a generator

polynomial, the following worked example is given for small p . In this study the

process will be programmed as a computational algorithm that can cope with large

values of p .

Consider p = 7 , from equation (2.6), the quadratic residues are

l 2 s 1 (modulo 7)

22 = 4 (modulo 7)

32 = 2 (modulo 7)

and the non-residues are 3, 5 and 6. From equations (2.13) and (2.14)

3 ,
X + X + 1

4 2 1 \ 7
X + X + X + 1 \ X + l

7 5 4 3
X + X + X + X

5 3 2
X + X + X + X

4 2 1
X + X + X + 1

4 2 t
X + X + X + 1

23

Hence, the generator polynomial for the augmented QR codes are

g(jc) = n(x) = x 3 + x + l and g(x) = q(x)= x 3 + x 2 +1 . The generator polynomial

for the expurgated QR codes are g(x) = (x-l)rc(x):= x* + x2 + x + l and

g(x) = (x - l)q(x) = x 4 + x 3 + x 2 +1 . Hence, the generator matrices for these codes

are

g(x) = n(x) = x 3 +x + l

g(x) = q(x) = x 3 + x 2 +1

g(x) = (x — l)n(x) = x 4 + x 2 + x +1

g(x) = (x- l)q(x) = x 4 + x 3 + x 2 +1

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

1 0 1 1 0 0 0 '

0 1 0 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 1

1 1 1 0 1 0 0 "

0 1 1 1 0 1 0
0 0 1 1 1 0 1

1 0 1 1 1 0 0 "

0 1 0 1 1 1 0
0 0 1 0 1 1 1

24

Chapter 3

Heuristic Optimisation

3.1 Introduction

Optimisation is a process that aims to find the best (i.e. optimal) value of an

objective function and the values of the associated variables (i.e. the optimum

point). The meaning of best depends on the context of the optimisation

problem. Also, some problems may be subject to constraints, which restrict the

feasible solution space.

Classical discrete-variable optimisation problems include the quadratic

assignment problem [Kelly et al. 1994], the travelling salesman problem [Foulds

1981] and transportation problems [Foulds 1984]. For example, an

unconstrained problem such as the quadratic assignment problem requires the

determination of the best (i.e. minimum) total interconnection distance of all

possible layouts (i.e. object-location couplings), together with the associated

costs. In this study optimisation is applied to the determination of minimum

distance estimates of error-correcting codes.

Consider the minimum distance problem (MDP), (C, w) , in which C is a

linear block code comprising the set of codewords of length n that are linear

combinations of k basis vectors (3., where (3. = {(3,.}, i = 1,2,...,k , j —1,2,...,n ,

and p e {0,1}. That is, codeword c e C (c & 0) is such that

k

c = ^ j a i j3. modulo2 ^ n

25

where a e {0,1}. Also w is an integer-valued objective function, w : C —> Z ,

such that c g C has an associated weight, w (c). For a particular codeword

cx g C with c x = {c .}, j = 1,2,...,n and cxj g {0,l}, then•\/

n
Me ,) = (3.2)

7=1

The MDP is to find a non-zero codeword c* e C that minimises w over C ,

that is,

{c*)= min w(c) V- > ceOfe} W

*
Since C is a binary linear code its minimum distance, d , is given by iv(c).

However, the cardinality of C is |c| = 2k so that when k is large the

determination of d by complete enumeration may not be practical. In this study

QR codes with values of k of the order of 102 will be investigated and so the

MDP expressed by equation (3.3) is combinatorial.

The combinatorial aspect of the determination of the minimum distance of a

linear code gives rise to certain difficulties in terms of the optimisation

procedure. In the first instance many combinatorial optimisation problems are

NP-complete; hence heuristic solution techniques become necessary. A second

difficulty lies with the general lack of ability of heuristic methods to determine

global optima of non-con vex problems. Non-con vex problems have numerous

local optima and the first encountered usually traps or terminates the procedure.

Tabu search and ant colony optimisation are heuristic combinatorial

optimisation techniques that have the ability to avoid entrapment by local

optima and hence search for a global optimum. Details of basic

26

implementations of these algorithms are now presented, first in general terms,

and then in an error-correcting code context for the MDP.

3.2 Tabu Search

Tabu search (TS) was introduced by Glover [Glover 1990, Glover 1989] as a

heuristic approach to combinatorial optimisation; a computational problem

solving tool that aims to find an optimum beyond local optimality.

In general TS is an iterative method in which the search progresses through

a solution space via neighbourhoods of the current solution. Use is made of a

memory facility called the tabu list [Laguna 1992, Glover 1990a] to avoid

returning to previously visited solutions and cycling in solution space. The tabu

list (whose length is usually specified) contains forbidden, or tabu, solutions and

operates as a first-in first-out queue of the most recent solutions. Besides its use

in the avoidance of cycling, the tabu list enables the search to progress beyond

local optima in the search for a global optimum.

Tabu search, in basic terms, may be formulated as shown in the pseudo

code in Table 3.1. Besides problem dependent data, typical generic input data

includes the size of the tabu list and the maximum number of moves through

solution space (maxmove), which may be used as a stopping criterion (i.e. when

move = maxmove).

With reference to Table 3.1, starting from an initial solution, soln, with

initial cost (i.e. objective function value), cost, the tabu list is initialised with the

inclusion of the start solution (or its characterisation). At the start of the

algorithm the best (i.e. lowest) cost, bestcost, and the associated solution,

bestsoln, will be cost and soln, respectively. Then within the move loop, a

neighbourhood of the current solution is generated and, with reference to the

27

contents of the tabu list, the non-tabu neighbourhood solution with the lowest

cost, minsoln, is identified (where minsoln has cost mincost). The tabu list is

updated with the inclusion of minsoln (or its characterisation). If mincost is less

than the current value of bestcost then both bestcost and bestsoln are updated.

As a final step in the loop, the search formally moves to minsoln in solution

space. On exiting the move loop the current value of bestcost and the associated

bestsoln are output.

Begin
• Input data
• Select initial solution, soln
• Evaluate initial cost, cost
• Initialise tabu list
• Current best solution bestsoln = soln and bestcost = cost
For move - 1 to maxmove

• Generate neighbourhood of soln
• Identify the non-tabu neighbourhood solution, minsoln, with

smallest cost, mincost
• Put minsoln in the tabu list
• If mincost < bestcost \

Bestcost — mincost
Bestsoln = minsoln

End (If)
• Update the search, soln = minsoln

End (For)
• Output bestsoln and bestcost

End__

Table 3.1 Pseudo-code for the basic tabu search algorithm.

The above process of moving through solution space via the non-tabu

neighbourhood solutions of least cost is the most basic tabu search algorithm.

In recent years many refinements have been incorporated into the basic

algorithm. These refinements (conceptual and computational) include the use

of,

• mechanisms to diversify the search by ‘jumping’ to unexplored regions of

the search space [Kelly et al. 1994]

28

• longer term memory facilities, in conjunction with the (short term) tabu list,

to aid exploration of the current region of search space [Xu et al. 1996]

• variable length tabu lists to make efficient use of computing time [Skorin-

Kapov 1994]

• efficient computational mechanisms to manage tabu list(s) [Hertz et al.

With various refinements, tabu search has been used by several researchers

to successfully investigate classical NP-complete discrete optimisation

problems, such as the quadratic assignment problem [Skorin-Kapov 1990], the

travelling salesman problem [Carlton and Barnes 1996], scheduling [Glover et

al. 1994] and transportation problems [Zachariasen and Dam 1996].

In the following section (basic) tabu search is formulated in an error-

correcting context for the MDP. Based on this, a developed algorithm is

presented in Chapter 4.

Tabu search for the MDP may be expressed formally as follows. Consider

a codeword cx e C , then a mapping function m may be defined on C such that

m : C —̂ C transforms one particular codeword to another (i.e. cx to cy).

Hence each c e C has an associated set, Mc , where Mc c M and comprises

mappings m* e M that are applied to c ,

The above mappings lead to the generation of neighbourhoods. The

neighbourhood N(cx) of codeword cx e C is given by

1997]

3.3 Tabu Search for the MDP

(3.4)

N{cx) = {cy \cy =m* (cx),m* G Mc_] (3.5)

It is assumed that if c x and c y e C then

c»eJV (cs)<s>ct e2V (c,) (3.6)

The tabu search procedure is such that if cx g C is the cun*ent codeword then

the search moves to the non-tabu codeword in N(cx) with lowest weight, cmin,

which is now stored in the tabu list T . Hence the search progresses via a

sequence of moves from cx E C to c min g C where

For the MDP (see equation (3.3)), each codeword c is obtained from an alpha-

vector a - {cr }, i - 1,2,..., k ; c = a G , where G is the generator matrix for code

C . In this sense, codewords may be characterised by their alpha-vectors and,

for the MDP, tabu search will operate in a -space. A merit of using alpha-

vectors rather than codewords is that, while both are binary strings, an alpha-

vector is shorter than its associated codeword and is therefore a useful

characterisation for computational reasons.

In implementation terms, codewords c e C will be characterised by

a = { a ,}, i = 1,2,..., k , where a g {0,1}. The search space is the set of all

kbinary ^-tuples, F' , (excluding a ~ 0), and the mapping m is from one &-tuple

to another m : —> F} such that a x G F* becomes

W(£i«in)= ™fFTw(£y)c e N (c x)~T
(3.7)

a y - m (a x) g F *

Furthermore, m may be considered as ^-tuples, m*, such that

(3.8)

30

a y = a x © m* (3-9)

where © means bitwise addition modulo 2. Hence, the set Ma is such that

M a c M and compromises those fc-tuples m* e M that are applied to a ,

M^ ={m | m e M , a e F kj (3-10)

k
The neighbourhood of a x e F' is given by

N (a x) = { a y | (xy = a x ® m ,m e M a } (3.11)

k
Because of the one-to-one correspondence between the elements of C and

equations (3.5), (3.6) and (3.7) remain valid and equation (3.7) is implemented

as

X 6* PjL m J y t I — i

(3.12)
4 " , »q ye N (a x)-T

where a ={a }, i = 1,2,..., k and T contains codeword characterisations
— y yi

(alpha-vectors) and the basis vectors /?., i - 1,2,...,A:, are those that comprise the

generator matrix of QR codes (cf. Chapter 2). In the study of cyclic codes, the

initial solution (without loss of generality) is taken to be

a = hoc = 0 ;i = 2 , 3 Also, the moves applied to a x e F* comprise set

M , where
S x

M a ={m \m* e M , a y = a x ® m *, dH{ax, a y)~ 1} (3.13)

and d H(a x, a y) denotes the Hamming distance between a x and a y. Hence

Equation (3.11) simplifies to

31

N(ax) = {ay | dH(ax, ay)=l} (3 .14)

and the neighbourhood size is therefore

|JV(«„)| = * (3.15)

where, to achieve equation (3.14), the elements of m are such that all except

one are zero.

In computational terms, basic tabu search for the MDP may be formulated

as shown in the flowchart in Figure 3.1. With reference to Figure 3.1, the input

data includes code details such as the generator matrix, G , and the length of the

p + 1 p — 1alpha-vectors, k , where k = — for augmented QR codes and k = ------ for
2 2

expurgated QR codes (see Chapter 2). Also, search details are required; the start

alpha-vector a 0 , the maximum number of moves (stopping condition), m ,

and the (maximum) length of the tabu list, L . Other variables such as move

number, m , alpha-vector, a , codeword, c , and minimum distance, d , are then

initialised as the current best values (using the subscript ‘best’). The initial size

of the tabu list is \T\ = 2 and the contents of T are the zero vector (length k), 0,

and a 0.

On entering the move loop a neighbourhood of the current point-of-search

(aQ) is generated and denoted by N (a 0) . In the MDP, following Zhang and

Ma (1994), N(gcq) comprises alpha-vectors , z‘ = l,2,...,& where

a i = a Q © m i . Here © means bitwise addition modulo 2 and m i is a vector of

length k in which all elements are zero, except for element i , which is one. For

each neighbourhood alpha-vector its associated codeword weight is calculated.

32

es

No

No
m - m

Yes

Output b Initialise
tabu list best /

Stop

m = m + 1

— mm

— min

Update
variables

Initialisation
m — 1

Generate neighbourhood

min

Figure 3.1 Flowchart of tabu search algorithm.

The non-tabu neighbourhood alpha-vector with the least codeword weight is

then identified, i.e. a min with (least) codeword weight d . The tabu list is
— 111111 min

updated to include a imn, (depending on the value of L , the tabu list, on a sweep

of the move loop, may release its least recent alpha-vector so that it loses its

tabu status). If d is less than the current value of d t then d t , a , . , c , .
' min best be.it — utl'1 —v tn

and mbest are all updated. Whether or not updating has taken place, provided

the maximum number of moves (m) is not achieved, the point-of-search
max

formally moves to a min in alpha-space. Once the maximum number of moves

has been performed the algorithm exits the move loop and outputs the current

values for d , a best, cbest and m best, prior to terminating.

In this study, the (basic) tabu search algorithm for the MDP has the

following features.

• Neighbourhood Structure and Search Strategy

The neighbourhood structure described earlier in this section is the same as that

used by Zhang and Ma (1994) in their investigation of minimum distances of

BCH codes by simulated annealing. This neighbourhood structure is

computationally easy to generate and its size is reasonable (k , the dimension of

the code). This strikes a balance between being too large (which may be too

time consuming to investigate) and too small (which would be quick to

investigate but poor for search puiposes).

The size of the neighbourhood is also a consideration when choosing a

strategy for the movement of the search through successive neighbourhoods. In

the outlined algorithm (see Figure 3.1) the strategy adopted to determine a min

was ‘best found in neighbourhood’ (BFIN). This strategy generally gives a

relatively high level of solution quality (i.e. good d values) compared with,

for example, a ‘first found in neighbourhood’ strategy (FFIN). With FFIN,

neighbourhood alpha-vectors are investigated sequentially and the point-of-

search moves to the (non-tabu) alpha-vector associated with the first

34

encountered weight value that is less than d (which may be greater than

d). If none are encountered then FFIN reverts to BFIN. FFIN may perform

quicker than BFIN but at the possible loss of solution quality.

• Tabu List Management

The tabu list has specified length L and is managed so that it operates as a first-

in first-out queue of alpha-vectors. The value of L has a direct bearing on the

operation of the algorithm, both in terms of solution quality and execution time.

If L is too small then, although it is possible to rapidly check for tabu alpha-

vectors, there is a danger that the search will become trapped in a cycle within

a -space. Alternatively, if L is too large then, while reducing the risk of

cycling, the computation time required to check the tabu list may become

prohibitive.

In the tabu search algorithm outlined in the flowchart in Figure 3.1 the

length of the tabu list grows from |r | = 2 (where move number m = 0) up to

\T\ = L (when move number m = L - 2) and is then maintained at a fixed length

L . For each move m such that (m + 2) > L the least recent alpha-vector

(starting with a 0) is released from the tabu list, although 0 is a permanent

member throughout the search.

3.4 Minimum Distance Results using Tabu Search

The TS algorithm described in the previous section was applied to a number of

BCH codes and different QR codes. In this study the maximum number of

moves m = 1 0 0 and the tabu list length L ~ m + 2 . The start solution
max max

35

(alpha-vector) and neighbourhood structure are those described in the previous

section.

All numerical experiments were performed using software written in Visual

C++ and conducted on a Pentium II 266 MHz computer (similarly for all

computational results reported in this thesis).

The BCH codes were the 10 codes investigated by Bland and Baylis (1995).

Results are presented in Table 3.2. With reference to Table 3.2, n and k

denote the length and dimension of the code, respectively, d BCH is the known

minimum distance, d is the obtained minimum distance using the basic TS
best

algorithm, with associated best move m and execution time ? .
° best best

Code n k d
BCH

d
best

m
best

t (h:m:s)
best v

1 111 64 21 26 1 0:00:00.44
2 127 57 23 24 1 0.00:00.28
3 127 50 27 31 0 0:00:00.00
4 255 115 43 60 9 0:00:13.28
5 255 107 45 65 2 0:00:03.63
6 255 99 47 68 11 0:00:12.41
7 255 91 51 71 6 0:00:06.48
8 255 87 53 70 3 0:00:02.58
9 255 79 55 78 1 0:00:00.99
10 255 71 59 77 4 0:00:02.86

Table 3.2 Minimum distances of BCH codes using the TS algorithm.

The results for d and m in Table 3.2 are identical to those of Bland
best best

and Baylis (1995). For code 3, m = 0 indicates that the value of d, is
J v x best best

associated with the start alpha-vector a 0 (i.e. a best - a 0). As seen in Table 3.2,

TS obtains the d values very fast and early in the search.

The following QR codes are investigated, those with generator matrices

with weight w(G) = ——- , augmented QR codes (n(x) and q(x), see Chapter 2),

36

and expurgated QR codes ((x-l)n(x) and (x-l)q(x), see Chapter 2). For each

type of QR code, 10 codes (characterised by prime number p) were investigated

using the basic TS algorithm.

The results for QR codes with w(G) = ~ ~ ~ are presented in Table 3.3. In

Table 3.3, d denotes the known minimum distance value (Codes 1 to 4) or
’ Q R

best known minimum distance bounds (Codes 5 to 10).

Code P d
Q R

w(G) d b e s t
m .

b e s t t (h:m:s)
b e s t

1 71 11 36 20 33 0:00:01.81
2 79 15 40 27 4 0:00:00.22
3 97 15 49 34 17 0:00:02.36
4 103 19 52 31 10 0:00:01.37
5 113 11-15 57 40 24 0:00:04.73
6 137 13-21 69 46 28 0:00:09.18
7 167 15-23 84 63 4 0:00:02.91
8 191 15-27 96 71 56 0:00:46.25
9 193 15-27 97 76 15 0:00:11.32
10 199 15-31 100 72 27 0:00:22.73

P _2
Table 3.3 Tabu search results using w(G) = —- — .

Results for augmented (n(x)) QR codes are presented in Table 3.4 for the

same values of p as in Table 3.3.

Code P d
Q R

w(G) d
b e s t

m
b e s t

t (h:m:s)
b e s t v '

1 71 11 15 11 24 0:00:01.05
2 79 15 23 15 16 0:00:00.99
3 97 15 27 16 95 0:00:11.26
4 103 19 27 20 13 0:00:01.98
5 113 11-15 31 16 1 0:00:02.22
6 137 13-21 47 29 90 0:00:24.06
7 167 15-23 43 35 4 0:00:02.91
8 191 15-27 47 36 25 0:00:19.72
9 193 15-27 57 38 1 0:00:01.31
10 199 15-31 51 40 9 0:00:08.40

Table 3.4 Tabu search results using n(x) .

37

A comparison of Tables 3.3 and 3.4 reveals that the QR codes with

P — 1w(G) = — produced relatively poor results. For these codes the minimum

distance associated with the start alpha-vector, i.e. d0, is approximately 100%

higher than the equivalent augmented QR code in Table 3.4.

As seen in Table 3.4, for Code 1 (p = 71) TS was able to obtain the known

minimum distance (d ^ - dQR = 11). Also the (relative superior) values of

dbest were 0bta*ned very fast and early in the search (except for Codes 3 and 6).

The results for the other QR codes investigated; augmented (q(x)) and

expurgated ((x-l)n(x) and (x-l)q(x)), are given Tables A l to A3, respectively,

in Appendix A. The best results in terms of obtained minimum distances (d)

are summarised in Table 3.5.

As seen in Table 3.5 the best results are, in general, obtained early in the

basic 100 move search. This indicates that to obtain improvements (i.e. lower

d values) the TS algorithm needs to be developed to include features such as

diversification and long-term memory. A developed TS algorithm for the MDP

is presented in Chapter 4.

To illustrate the operation of the basic tabu search algorithm, example

convergence curves for the case of Code 6 in Table 3.3 and Table 3.4 are shown

in Figure 3.2 and Figure 3.3, respectively.

38

Code P g(x) d
Q R

d
b e s t

m
b e s t

t (h:m:s)
b e s t v

1 71 n(x) 11 11 24 0:00:01.05
1 71 (x - 1) n(x) 12 12 20 0:00:00.40
1 71 (x-1) q(x) 12 12 34 0:00:00.68
2 79 n(x) 15 15 16 0:00:00.99
2 79 (x-1) ra(x) 16 16 15 0:00:00.41
2 79 (x-1) <?(x) 16 16 14 0:00:00.34
3 97 #(*) 15 15 96 0:00:04.79
3 97 (x -1) n{x) 16 16 37 0:00:04.28
4 103 (x-1) n(x) 20 20 7 0:00:00.93
4 103 (x-1) q{x) 20 20 7 0:00:01.26
5 113 (x — 1) n(x) 12-16 16 1 0:00:00.23
6 137 (x-1) n(x) 14-22 28 45 0:00:11.26
6 137 (x-1) q{x) 14-22 28 57 0:00:16.42
7 167 n(x) 15-23 35 4 0:00:02.91
7 167 q(x) 15-23 35 2 0:00:01.81
7 167 (x-1) n(x) 16-24 36 11 0:00:05.99
7 167 (x-1) q(x) 16-24 36 3 0:00:02.25
8 191 (x-1) q(x) 16-28 36 3 0:00:02.31
9 193 (x —1) n(x) 16-28 38 1 0:00:01.31
10 199 n(x) 15-31 40 9 0:00:08.40

Table 3.5 Table search results for QR codes.

With reference to Figure 3.2 it is seen that the weight of the generator

matrix is 69 and the search encounters several local minima within the first 28

moves (56, 54 and 50) until it reaches its final value of 46 from move 28. In

comparison, Figure 3.3 shows the effect of using augmented QR code n(x).

Although only one local minimum is encountered, the final weight of 29 is

p — 1
evidence of the superiority of using a generator polynomial with w(G) < ------

2

instead of the quadratic residues (where w(G) = — — -) as the generator matrix

(see Chapter 2).

39

Associated with the convergence curves shown in Figure 3.2 and Figure 3.3

are the search histories presented in Figure 3.4 and Figure 3.5, respectively.

With reference to both Figures 3.4 and 3.5, the graph points indicate the lowest

non-tabu weight values of each neighbourhood generated by the tabu search

procedure and hence represent the weights associated with the ’path’ the search

takes in a -space.

0 10 20 30 40 50 60 70 80 90 100

Move Number

„ _ j
Figure 3.2 Convergence curve for p = 137 using w>

2

In Figure 3.4 it is seen that the overall lowest non-tabu neighbourhood weight

was found in the 28th neighbourhood investigated, thereafter only higher weight

values are found. Figure 3.5 shows that the search process with a generator

matrix that has lower weight than that of Figure 3.4, quickly reached several

neighbourhood solutions with distance very close to the final value {db - 29).

With reference to Figure 3.3, although d was found late in the search, the

computational time is extremely quick and is quite close to d which

indicates the merits of a TS approach to the MDP.

0 10 20 30 40 50 60 70 80 90 100

Move Number

Figure 3.3 Convergence curve for p = 137 using augmented QR code n(x) .

0 10 20 30 40 50 60 70 80 90 100

Move Number

Figure 3.4 Search history for p = 137 using w(G) = ------- .
2

Although minimum distances found using this basic implementation of tabu

search were of an acceptable quality, an aim is to achieve lower distances.

Therefore some enhanced strategies will be presented in Chapter 4; these

include diversification and intensification strategies, long-term influential

candidate lists and intermediate-term memory tabu list.

41

50

45

^ 40

f 35

^ 30

25

20
0 10 20 30 40 50 60 70 80 90 100

Move Number

Figure 3.5 Search history for p = 137 using augmented QR code n(x) .

3.5 Ant Colony Optimisation

The natural phenomenon of how (real) ants find the shortest path between a

food source and the nest [Beckers et al. 1992] has been an inspiration to solve

many optimisation problems. Social insects like ants tend to make a collective

decision and although they are almost blind they communicate between one

another by depositing a substance called pheromone. At an instant in time, a

moving ant leaves a trail of pheromone to inform other ants of the visited path.

Any ant that encounters the trail marked by others is likely to detect and follow

the same path. Furthermore, each ant that detects the trail will reinforce it with

its own pheromone; thus the trail becomes stronger. However, ants that cannot

detect any pheromone laid on the trail previously, or an isolated ant, essentially

moves randomly.

The ability of real ants, in broad terms, to ‘optimise’ the route from their

nest to a food source is illustrated in Figure 3.6. With reference to Figure 3.6(a),

a number of ants leave the nest to seek food and arrive at a decision point in the

42

form of an obstacle blocking their path. The ants need to decide whether to turn

left or right. At this point in time they have no information to aid their decision

and so choose randomly; consider 50% of the ants turn in each direction, as

illustrated in Figure 3.6(b). Assuming each ant travels at the same speed, those

ants that turn right arrive at the food source quicker (because the path is shorter)

than those that turn left. Consequently, these ants (i.e. the right-turners) are

likely to choose the same path for their return journey (to the nest with food)

because of the existing pheromone trail (see Figure 3.6(c)). Furthermore, on the

return journey more pheromone is deposited, which reinforces that on the

existing trail. As a result, subsequent ants leaving the nest are more likely to

follow the path with the higher level of pheromone, that is, turn right when they

meet the obstacle, as shown in Figure 3.6(d). In this manner, over a period of

time, the ants will ‘optimise’ their route from the nest to the food source.

F o o d

??
N e s t

F o o d

N e s t

F o o d

N e s t

i
F o o d

N e s t

Figure 3.6 Behaviour of real ants.

The process described above, that is, decision-making aided by

reinforcement of information (i.e. positive feedback) is an example in the

natural world of autocatalytic behaviour. Over the past few years several

heuristic optimisation techniques have been developed by analogy with physical

and biological processes (for example, simulated annealing [Zhang and Ma

1994] and genetic algorithm [Backhouse et al. 1997]). Because analogies with

natural phenomena have been used to successfully derive non-deterministic

heuristic techniques, which can tackle NP-complete combinatorial optimisation

problems, there is now great interest in this approach to problem solving.

Ant colony optimisation (ACO) is the general name given to the approach to

problem solving by analogy with the collective performance of (real) ants. A

basic ACO algorithm, called the ant system, which uses artificial (or

computational) ants, is now described.

3.6 Ant System

The ant system was introduced by Dorigo [Dorigo et al. 1991] as (like tabu

search) a heuristic approach to combinatorial optimisation. Also like tabu

search, ant system is an iterative algorithm. However, compared with tabu

search, there is a major conceptual difference in the optimisation procedure.

Ant system does not search by means of a ‘path’ of successive solutions in an

appropriate solution space, rather, it aims to progressively improve an aid to

decision-making so that, at each iteration, better decisions may be made (i.e.

ones that lead to better objective function values).

A feature of ant system (and ACO in general) is the trace intensity matrix.

This matrix holds information for decision-making and its contents represents

the level of pheromone deposited by a colony of computational ants. The trace

44

intensity matrix is updated each iteration with the information obtained during

the iteration so that decisions that lead to improved objective function values

may be made and, like tabu search, algorithm termination at non-global optima

may be avoided.

Other (technical/computational) differences between ant system and tabu

search are that ant system (and ACO in general) is a population-based algorithm

and that it is stochastic in nature.

The (basic) ant system may be formulated as shown in the pseudo-code in

Table 3.6. Besides problem dependent data, typical generic input data includes

the maximum number of discrete time steps (maxstep), which may be used as a

stopping condition (i.e. when step = maxstep). These ‘time’ steps do not

measure the passage of time in a chronological sense but are used as counters in

the development of the decision-making capability of the algorithm. Also the

number of computational ants (ant) in the colony, i.e. colsize, is required.

With reference to Table 3.6, the elements of the colony trace intensity

matrix are initialised to a small positive number (to get the algorithm started in

computational terms. By strict analogy this number should be zero as

pheromone has yet to be deposited).

On entering the step loop each ant ‘constructs’ a solution (in a probabilistic

manner; explained later), solnfant], ant - 1,2,...,colsize, using data in the

colony trace intensity matrix. Also, the cost (i.e. objective function value)

associated with each solution is calculated, cost [ant], ant = 1,2,..., colsize.

The next operation in the pseudo-code in Table 3.6, i.e. the local

improvement phase, has no analogy with the endeavours of real ants; it is a

purely computational device to (try to) improve all (or some) of the current

45

values of cost[ant], ant = 1,2,...,colsize. If by the use of a local improvement

algorithm, a value of cost[ant], ant e {1,2,..., colsize}, is improved, then the

variable is updated together with the associated value/expression of soln[ant].

Whether or not a local improvement phase is included in the ant system

algorithm (its omission would be on the grounds of purism), the current solution

with the lowest cost is identified, that is minsoln with cost mincost, where

mincost = min {cost[ant] } ant - 1,2,...,colsize (3.16)

On the first time step {step = 1) the current (overall) best solution (bestsoln)

and associated cost {bestcost) will be minsoln and mincost, respectively. On

subsequent time steps, bestcost and bestsoln are updated if mincost, given by

equation (3.16), is less than the current value of bestcost.

Next, with reference to Table 3.6, the amount of pheromone deposited by

each ant during the current time step is calculated and expressed as elements of

a trace intensity matrix for each ant. Details of this matrix are given later, in

Section 3.7, but here it is noted that there is an inverse relationship between the

amount of pheromone deposited (i.e. magnitude of the matrix elements) by ant

number ant and its cost, cost[ant]. In this manner, better solutions (i.e. those

with lower costs) have greater pheromone deposits and hence will receive

greater favour in the decision-making phase (solution construction) of the next

time step. The ‘step-deposit’ trace intensity matrix for the colony of ants,

representing the collective performance of the colony in the current time step, is

obtained by combining all those of the individual ants.

As a final operation within the step loop the colony trace intensity matrix is

updated with the inclusion of the above step-deposit matrix. The updated

colony trace intensity matrix is used as the current trace intensity matrix in the

46

next time step (positive-feedback/autocatalysis). On exiting the step loop the

current values/expressions of bestcost and bestsoln are output, prior to

termination.

Begin
• Input data
• Set initial colony trace intensity data
For step — 1 to maxstep

For ant = 1 to colsize
• Obtain a solution, soln[ant], probabilistically using colony

trace intensity data.
• Calculate the cost, cost[ant]
End(For)
• Perform local improvement
• Determine the solution, minsoln, with the lowest cost, mincost
If step = 1
• Set current solution bestsoln and best cost, bestcost;

bestsoln = minsoln
bestcost — mincost

Else
If (mincost < bestcost)

bestcost: = mincost
bestsoln := minsoln

End(If)
End(If)
• Obtain trace intensity data for each ant
• Update colony trace intensity data

End(For)
• Output bestcost and bestsoln

End__

Table 3.6 Pseudo-code for the ant system algorithm.

The process, described above, of progressively improving an aid to decision

making that involves population-based information, is the most basic ACO

algorithm, called ant system. Although the algorithm is simple, it has been used

successfully to investigate classical NP-complete discrete optimisation

problems. These problems include the quadratic assignment problem

[Gambardella et al. 1999], the travelling salesman problem [Stutzle and Hoss

1997, Gambardella and Dorigo 1995], graph colouring [Costa and Hertz 1997]

and scheduling [Forsyth and Wren 1997].

47

ACO is a very recent heuristic optimisation approach to problem solving

which has yet to be fully explored in terms of its development. Recent

developments of ant system have concentrated on the elements of the colony

trace intensity matrix and the updating process. These have lead to the

following ant system variations.

• Max-min Ant System [Sttitzle and Hoss 1997], in which pheromone

deposits (i.e. matrix elements) are restricted to lie between specified

maximum and minimum values.

• Rank-based Ant System [Bullnheimer et al. 1997], in which only a

specified number of ants within the colony (those with the highest-ranking

cost values) deposit pheromone.

In the following section ant system is formulated in an error-correcting code

context for the MDP. A developed algorithm is presented in Chapter 5.

3.7 Ant System for the MDP

The ant system described in general terms in the previous section is now

formulated in an error-correcting code context for the MDP. This formulation is

illustrated by the flowchart in Figure 3.3. The ant system for the MDP has

several distinct phases which are now explained, with reference to Figure 3.7.

• Input Data and Initialisation

In this phase code details such as the generator matrix G and the length of

the alpha-vectors, k (where k ~ — + - for augmented QR codes and k - ——-
2 2

for expurgated QR codes) are read. Also input are ant system parameters

(explained in subsequent sections) such as a and b (state probability

parameters), Q (pheromone influence parameter), p (pheromone decay

48

parameter), the number of ants in the colony, x , and the maximum number of

(time steps), 5
A max

Start

Input data

Initialisation

x = 1

Generate c£

Calculate cx - ofG and
cf = w(cx)

No
x=x+1

YesCalculate n..1 it

Local improvement

Update t ..

Obtain At ..

Yeses
No

b e s tX = X .

H-best

Obtain t x. Yesx =■ x + 1
No

No

Yes
Output results

CftoT)
Figure 3.3 Flowchart of the ant system algorithm.

49

For the MDP, ‘solution’ and ‘cost’ mean alpha-vector, a , and its associated

weight, d , respectively, where d = w(c) with c = a G (c is the associated

codeword).

The elements of the colony trace intensity matrix, r , and the trail

desirability matrix, 1 7 , are all initialised to small positive numbers. For both

r and rj subscripts i and j denote the state and element number of an alpha-

vector, a ~ { a . j , j = 1,2 ,...,k (k elements), where a , e {0 ,1}, so / = 0,1 (2

states).

• State Probabilities and Solution Construction

On entering the step loop, each ant, x , constructs an alpha-vector, a x,

x - l,2 ,...,xmax, in the following manner.

The probability of an ant selecting (constructing) a particular* state i , for a

particular element, j , of an alpha-vector is unknown but assumed to be directly

proportional to it],,) , where a and b are user-specified input parameters.

In other words, the probability of a particular (i,j) coupling depends on the

amount of pheromone already on the coupling (t) and the ‘inherent’ goodness

or desirability of the coupling {rj .) . This leads to the following equation for they

probability of an ant choosing state 0 (rather than 1) in element j of an alpha-

vector,

Po j

(3.17)

where the denominator is a normalising term since

50

p° i +pl i =1 j=1 (3'18)

The actual decision as to whether alpha-vector element a * , x = l,2,...,xmax,

j = 1,2,...,k is 0 or 1 is made by comparing the value of Poj (given by equation

(3.17)) with random number r e [0,l] (a different random number is used for

each element j , for each ant in each time step). For ant x and element j if

r < P then a = 0, otherwise a = 1. In this manner each ant x in the colony,
o j j j

x = l,2,...,xmix, (probabilistically) constructs a set of alpha-vectors a x = {a*},

j = l,2,..,k. The associated codewords, cx , and weights, d x are given by

cx = a xG and d'x = w(cx) , respectively, jc = 1,2,...,jc .

The codeword cx = 0 is forbidden so a x = 0, r e {1,2,...,x } may be used“ — — v max

as a stopping condition.

• Local Improvement

As stated in Section 3.6, by strict analogy with real ants, this phase should

have no place in the ant system. However it does have computational merit in

the sense that it may improve the solution quality and convergence rate of the

ant system (at the expense of execution time). The particular algorithm used for

local improvement in this study is tabu search (see Section 3.3). For each ant,

the current alpha-vector is used as the start alpha-vector for tabu search, with the

aim of obtaining improved weights. If, for a particular ant, a weight lower than

its current weight is obtained by tabu search, then both the weight and

associated alpha-vector are updated.

51

• Best Cost and Solution

Whether or not local improvement is used, the lowest weight of the step,

d , is determined together with its associated alpha-vector, a - , where
min —

d =min{<i'v} x = l,2,...,x (3-19)
min max

and a min is such that w(aminG) = d . .mm >-— 111111 ' mm

The (overall) best values for the weight, with its associated alpha-vector,

codeword and step number, i.e. d , ccbest, cbest and s , respectively are

those associated with d . Except in step 1 these terms may need updating if,

during a particular time step, the determined value of d is lower than the

current value of d (see Figure 3.3).

• Pheromone Deposits of Individual Ants

In this phase, the elements of the trace intensity matrices for each ant, St x ,

are calculated, x ~ 1,2,..., x . The values of the elements depend on whether or
max

not alpha-vector element a . is in state i (that is whether or not state i and

element j are coupled). The values of the matrix elements may be calculated

as follows,

' e . .,x if a . = i
U J (3.20)St = \

i j

0 otherwise

By equation (3.20), for ant x , some ‘pheromone’ is deposited only when, for

particular values of i and j , a* =i (i.e. there is an (/, j) coupling). Note that

52

the amount of ‘pheromone’ depends on the value of d'K in a monotonically

decreasing manner. In other words, greater deposits are a consequence of lower

values of d \

Hence for each ant jc , its trace intensity matrix will have non-zero elements

only in entries where state i and element j are coupled. Furthermore, the

magnitude of these non-zero elements will be greater for those ants with lower

X x
values of d . Because lower values of d' are preferred (in minimisation

problems) the associated trace intensity matrix will have relatively more

influence in the probabilistic construction of (good) alpha-vectors in the next

time step. In equation (3.20) Q is a user-specified input parameter.

• Autocatalysis and Trail Evaporation

The analogy with nature in terms of autocatalysis and ant trail evaporation

may be modelled computationally by the following equation (the update t . box

in Figure 3.3)

v

t = or +Az*
ij ij ij

(3.21)

where the colony trace intensity matrix, At , is the sum of the trace intensity

matrices of the individual ants,

(3.22)
A t = V S t xU U

x—l

Equation (3.21) describes the positive-feedback (autocatalysis) on the colony

trace intensity matrix; the colony trace intensity matrix for the next time step

comprises (a proportion of) that of the current time step together with all the

pheromone deposited in the current time step. The user-specified input

53

parameter p , where 0 < p < 1, is used to model the evaporation of pheromone

with the passage of time.

• Trail Desirability

In other studies using ACO [Dorigo and Caro 1999, Dorigo and

Gambardella 1997] the trail desirability values, rj , have been fixed quantities

that represent some supposed or inherent ‘goodness’ of particular (/, j)

couplings (i.e. favoured/good couplings known, or established by an analysis of

the particular problem, prior to the use of ant system).

Unfortunately, with the MDP, it is not possible to determine a priori which

is the preferred state (0 or 1) for each element of an alpha-vector that will yield a

low weight value.

Notwithstanding this, an attempt is made to obtain 77. values (at each timeu

step) by using the frequency of ones, a , in the entry j , of the constructed

= 1 , 2 , . . ’ max ’

a j + 1

•^tnax + 2

■^max _ C T j + 1

X max + 2

if i = l
(3.23)

if i = 0

where

•V™ v (3.24)
o . = 2 j a j j =

x=l

In other words, r}._, is a measure of the relative frequency of an (/, j) coupling

in the colony and is used to represent the desirability of an (i, j) coupling. With

reference to equation (3.23), the denominator is a normalising quantity. The one

54

in the numerator is included to cope with situations in which a . = 0 , i.e.

77. = 0 is avoided, which would adversely affect equation (3.17).

• Output Data

The updated values of t . and calculated values of 77 are used as the

respective values in the next time step. On exiting the step loop (when 5 = j ,

see Figure 3.3). The current values for d , a best, cbest and s are output,

prior to termination.

With reference to the ant system for the MDP outlined above and illustrated

in the flowchart in Figure 3.3, the following comments are made.

• Input Parameters

Besides the number of ants in the colony, x , and the number of time
max

steps, smax, the user-specified input parameters are a , b , Q and p . In order to

determine the values of these parameters that are most beneficial to the

optimisation process for the MDP (they are problem dependent) numerical

experiments are required to be performed. Furthermore, since ant system is a

stochastic algorithm, once appropriate values of the input parameters have been

established, further numerical experiments should be performed to investigate

the repeatability of the output.

• Stagnation and Termination

Inappropriate values of input parameters may lead to an early occurrence of

the following situations. If t * » t * t j = 1,2,..., k and x e {1,2,..., }, then

by equation (3.17), for a particular ant, P ~ 1, j = 1,2,...,k . This may result in

55

the construction of a x = 0 , x e {l,2,...,xmax}, which will give the forbidden

codeword c = 0 and lead to termination.

X
T

Also, if the ratio - j - takes extreme values (either very much less than 1
t xo j

or very much greater than 1), x = 1,2,..., then the values of P and P

(see Equation (3.17)) will take extreme values (~ 0 or ~ 1) so that there may not

be any variation between the constructed a x , x - 1,2,..., x as time steps
J — max

progress. Hence ant ‘exploration’ will stagnate and improved costs d and

solutions a may not be obtained. Under these conditions the optimisation

process is in a state of ‘stagnation’.

• Time Considerations

Besides the quality of the final minimum distance value, factors which

affect the time to achieve a converged minimum distance include the number of

ants in the colony and the number of ants used in the local improvement phase.

Here a balance needs to be established between the number of ants needed for

useful exploration (within-colony variation between the alpha-vectors) and the

time the colony requires to obtain all its minimum distance values. Similar

time-benefit arguments apply to the use of a local improvement phase (i.e. what

proportion of the colony will be used for local improvement).

The primary stopping condition is when the specified maximum number of

time steps, s , is reached. The value of s should be set so that a sufficient
max max

amount of exploration is maintained while the best cost value, d , achieves

convergence.

56

3.8 Minimum Distance Results using Ant System

The ant system algorithm described in Section 3.6 was used to determine the

minimum distances of the same QR codes investigated in Section 3.4 using tabu

p — 1search; those with generator matrices with weight —— , augmented QR codes

(n(x) and q(x) , see Chapter 2) and expurgated QR codes ((x - l)n(x) and

(x - l)q(x) , see Chapter 2).

The initial trail and desirability matrices for the colony were set to

-r„(0) = 10 6 and rj (0) = 0.5, respectively, i = 1,2,..., £ and j = 0,1. The

maximum number of time steps was s = 500 and the number of ants in the
max

colony was linked to the size of the problem; x = k .
* max

First the values of the user-specified parameters (a , b , p , Q) were

investigated to obtain the combination most beneficial to the optimisation

process. The augmented QR code (n (x)) with p = 137 (code 6, see Tables 3.3

and 3.4) was used as a test code together with the following parameter values, a

= {1, 2, 3}, b = {0, 1, 2}, p = {0.7, 0.8, 0.9} and Q = (1, 10}. For each

combination of (a , b , p , Q) minimum distance results using the AS algorithm

were obtained with 10 different seeds for the random number generator (random

number r e [0,1] is compared with Pq, given by equation (3.17)).

Analysis of the minimum distance results gave the best combination (in

terms of the obtained solution quality and reproducibility) as (1, 0, 0.7, 10).

This combination of parameter values was then used by the ant system

algorithm to obtain minimum distances for all other QR codes. As with the test

57

code, the ant system algorithm was used with 10 different random number seeds

for each code (i.e. 10 runs per code).

The combination of user-specified parameters, i.e. (1, 0, 0.7, 10), were such

that the optimisation process did not suffer from stagnation [Maniezzo et al

1994] and exploration (i.e. generation of a variety of alpha-vectors) continued

for the duration of the runs. As a consequence the minimum distance values

were, in general, obtained late in the optimisation process with relatively long

execution times (compared to tabu search). The best values of the trail intensity

and desirability indices were a = 1 and b = 0, respectively, which implies that

the trail desirability, as formulated in this study, has no (beneficial) influence on

the optimisation process. The pheromone evaporation parameter p was such

that low values reduced the efficiency of the algorithm, i.e. longer execution

times were required to obtain good solutions; p = 0.7 gave the best results in

reasonable time. Q = 10 was the better value tested; a greater range of

pheromone deposit values (see equation (3.20)) is possible, which enhances

exploration, compared to the case in which Q - 1.

Results for QR codes with w(G) = ---- -- and augmented (n{x)) QR codes

are given in Figure 3.7 and Figure 3.8, respectively. Results for the other QR

codes; augmented (<?(x)) and expurgated ((x -l)n (jc) and (x - l) q(x)) are

given in Figures A l, A2 and A3, respectively, in Appendix A.

With reference to Figures 3.7 and 3.8, for each code (characterised by prime

number p) dQR denotes the known minimum distance (or bounds), and ,

58

d + and dbest denote the lowest, highest and mean value of the minimum
b e s t

distances obtained by the 10 runs for each code.

1 0 0

80

60

40

20

0
71 79 97 103 113 137 167 191 193 199

P

p 71 79 97 103 113 137 167 191 193 199
dQR 11 15 15 19 11-15 13-21 15-23 15-27 15-27 15-31

d
b e s t

19 27 36 39 44 52 63 71 78 72

d +
b e s t

28 32 40 43 48 58 72 83 84 87

d b e s t 25.3 29.9 38.6 40.7 45.6 55.2 68.9 79 80.6 81.3
p __ Jl

Figure 3.7 Minimum distances obtained by ant system using w(G) = ------- .
2

Inspection of the table in Figure 3.7 reveals that QR codes with

w(G) = — give poor values of dbest. In comparison the dĥ values for the

augmented QR codes (n (x)), shown in the table of Figure 3.8, are of reasonable

quality for the smaller codes, although the quality degrades as the size of the

code (characterised by the value of p) increases.

 —

0 "V- '•

Lowest d-best
Highest d-best
Mean d-best

59

♦ Lowest d-best
* Highest d-best
x Mean d-best

P

p 71 79 97 103 113 137 167 191 193 199

dQR 11 15 15 19 11-15 13-21 15-23 15-27 15-27 15-31

d b e s t
15 19 21 23 27 34 43 43 46 71

d /+ b e s t
15 27 41 36 39 54 71 64 75 83

d b e s t 15 21.9 28.6 29.2 31.8 42.5 63 52.1 58.5 78

Figure 3.8 Minimum distances obtained by ant system using n(x).

The ant system algorithm is stochastic and the graphs in Figures 3.7 and 3.8

illustrate, for each code, the variation in the minimum distances (d) obtained
b e s t

by the 10 runs.

A summary of all the obtained results for QR codes using the ant system

algorithm is given in Table 3.9, which contains the best minimum distances (i.e.

lowest di values) found for each value of p , together with the associated

time step numbers and execution times, s and t , respectively.
1 b e s t b e s t

Inspection of Table 3.5 (tabu search) and Table 3.9 (ant system) reveals, for

each value of p that the basic tabu search algorithm produced better quality

60

results in shorter execution times, compared to those obtained using the basic

ant system algorithm.

Code P g(x) d
Q R d

b e s t b e s t

To'

i
1

1 71 n(x) 11 15 147 0:00:16.20
1 71 q(x) 11 15 111 0:02:02.60
2 79 (x-1)n(x) 16 16 234 0:01:08.50
2 79 (x-l)q(x) 16 16 357 0:02:07.76
3 97 q(x) 15 18 465 0:05:02.91
4 103 n(x) 19 23 476 0:01:38.26
4 103 q(x) 19 23 500 0:04:42.54
5 113 q(x) 11-15 26 i l l 0:03:22.51
6 137 q(x) 13-21 30 461 0:05:03.19
6 137 (x-l)q(x) 14-22 30 464 0:07:28.80
7 167 (x-l)q(x) 16-24 36 446 0:09:35.67
8 191 (x-I)n(x) 16-28 36 450 0:06:15.47
9 193 (x-l)n(x) 16-28 40 441 0:11:46.84
10 199 (x-1)n(x) 16-32 52 500 0:14:54.63
10 199 (x-l)q(x) 16-32 52 483 0:07:22.37

Table 3.9 Minimum distances found by ant system using different
generator polynomials.

In order to improve the quality of the ant system results (at the expense of

execution time) a tabu search local improvement phase (see Section 3.7) was

included in the basic ant system algorithm to give an algorithm denoted by

AS(TS). The number of ants used in the local improvement phase was (the

p +1integer part of) (i.e. 20% of k) and the maximum number of tabu search

moves was m =100 per ant. In an attempt to show directly the influence of
max

the inclusion of the local improvement phase, the AS(TS) algorithm was used

with the same codes shown in Table 3.9. The minimum distances using

AS(TS), d , and associated time step numbers and execution time, s and
v ' best r best

t , respectively, are given in Table 3.10. Comparison of the minimum

distance results in Tables 3.9 and 3.10 reveals, as anticipated, local search

improves solution quality at the expense of execution time.

Code P g(x) d
Q R d~

b e s t
st

b e s t
t (h:m:s)

b e s t v /

1 71 n(x) 11 11 1 0:00:55.20
1 71 q(x) 11 12 1 0:00:05.17
2 79 (x-l)n(x) 16 16 2 0:00:58.55
2 79 (x-l)q(x) 16 16 2 0:00:38.61
3 97 q(x) 15 16 7 0:02:08.49
4 103 n(x) 19 19 20 0:22:06.12
4 103 q(x) 19 20 9 0:02:15.07
5 113 q(x) 11-15 20 13 0:04:19.16
6 137 q(x) 13-21 30 13 0:07:47.17
6 137 (x-l)q(x) 14-22 26 18 0:35:48.63
7 167 (x-l)q(x) 16-24 36 17 2:21:36.10
8 191 (x-l)n(x) 16-28 44 9 2:09:21.28
9 193 (x-l)n(x) 16-28 40 17 3:24:02.80
10 199 (x-l)n(x) 16-32 52 43 6:47:03.80
10 199 (x-l)q(x) 16-32 48 15 2:08:30.66

Table 3.10 Minimum distances found by AS(TS) using different
generator polynomials.

62

Chapter 4

Tabu Search for Minimum Distances

4.1 Introduction

In Chapter 3, although the minimum distances found using a basic implementation of

tabu search were of acceptable quality, some additional features are now included in

the algorithm with the aim of improving the solution quality. In Chapter 3, the

elements of the tabu list are alpha-vectors which keep track of the search in binary

space, but this type of tabu list is time-consuming to manage, especially when larger

codes are examined. In this chapter a two-way conversion is introduced that converts

alpha-vectors to integers with the aim of reducing the size of the list and improving

the search efficiency.

In many optimisation problems, extra moves beyond local optima are often

necessary (solution technique permitting) in order to improve the current best

solution. The short-term memory (basic) tabu search method described in Chapter 3

allows moves beyond local optima but it may not be effective enough to guide the

search for long periods. Hence the use of candidate list strategies [Glover and Laguna

1997], which enable the search to memorise certain important solutions for longer

periods so that the optimisation process does not require the excessive memory that

would be needed to store the complete search history. For finding minimum distances

(i.e. the MDP), the influential candidate list is introduced in this chapter to identify

’influential’ solutions, which may be used later on in the optimisation process. An

interesting aspect of BCH and QR codes are the distance bounds [Pless 1989]. In this

chapter the bounds are utilised as threshold values to measure the quality of the

search. j

63

15^^-
~ ~

■
"

.—
—

—

j

—
-r1--------

Finally, the tabu search framework may also comprise intermediate and long-term

memory, for diversification [Kelly et al. 1994, Skorin-Kapov 1994a, Glover 1990] and

intensification [Glover 1990] strategies, in order to seek continually superior

minimum distances. Intensification aims to examine ’promising’ regions thoroughly

whereas diversification drives the search into new regions. Use of the intensification

and diversification strategies of this study is based on the distance bounds of BCH and

QR codes and influential candidates are used as start solutions at different stages of

the search. For intensification, the influential candidate list has a ‘backtracking’ effect

in which the search returns to desirable regions and, for diversification, the influential

candidate is treated as a ‘penalty’ to force the search into new regions. These search

strategies enable the optimisation process to explore solution-space and exploit

superior solutions.

4.2 Overview of the Developed Tabu Search Algorithm

The basic tabu search algorithm of Chapter 3 is developed to include a number of

features (described in detail in Sections 4.3 to 4.8) designed to improve its capability

of obtaining lower minimum distance values. The developed algorithm, in overview,

is illustrated in the flowchart in Figure 4.1, which gives the strategic features.

With reference to the flowchart, typical input data includes code details such as

the generator matrix G and (for QR codes) prime number p , together with search

details such as the start solution z Q (where z 0 is an integer characterisation of the

start alpha-vector, a 0, explained in Section 4.3), the number of moves comprising a

search phase, m ^ (the entire search comprises a number of phases) and the overall

number of search moves, m . The algorithm utilises a number of lists; a tabu list,
max

an influential candidate list and lists to record the usage of particular ‘solutions’.

64

Details of these lists and how they are managed are given in Sections 4.4 and 4.6,

respectively.

Start

Input Data

Initialise lists

m - 0
p h a s e = 1

Perform Tabu Search

m - m + I

No

Yes
No

Closeness Criterion
Satisfied?

Identify new start
solution ready for

selected diversification
strategy

Yesm phase = (p h a s e) , m

Nobest improvei

Yes
p h a s e = p h a s e + 1

Identify new start solution
ready for intensification

Modify tabu and influential candidate list

No

Figure 4.1 Flowchart for the developed tabu search algorithm.

65

All lists are initially empty except the tabu list which contains 0 and z 0. At this

stage the overall best (i.e. lowest) minimum distance is d = w(cbesl) where

codeword cbest - & bestG and alpha-vector a besl = cr0 . The best move is m = 0 .

On entering the tabu search move loop, phase = 1 and m = 0. Tabu search is then

performed until the current move number, m , equals the current value of m . On
L x phase

performing a tabu search move a transition in solution-space is made from the current

solution to z m+i (the integer characterisation of a m+l, see Section 4.3) where the

current solution is either a phase start solution or z m (1 < m < m -1) . If necessary

the values/expressions of d , cbest, a besl and m are updated.

Next two decision points are encountered. If both the closeness criterion

(explained in Section 4.5) is satisfied and the value of d has reduced during the

latest phase of moves, then a new start solution is identified ready for the next phase

of tabu search moves. Conceptually this will be an intensification phase (see Section

4.7). Alternatively, if the closeness criterion is not satisfied or d has not reduced

then other start solutions are identified for the next search phase. This will be one of

the diversification strategies described in Section 4.8. Once a new start solution has

been established the algorithm lists (tabu and the influential candidate list) are

updated. Then, if the current value of m equals m , the current values of d t ,
1 phase max best

cbest, t tbes[and m are output, prior to termination. If not, then the phase count is

incremented and the value of m g is increased by a multiple of phase, prior to

entering the move (m) loop and actually performing the next phase of tabu search

moves (i.e. either intensification or diversification).

66

4.3 Two-way Conversion

In Chapter 3, elements stored in the tabu list are alpha-vectors (i.e. strings of binary

numbers which may need large storage requirements). Although technology is

available for large computer storage, it is highly desirable if the storage requirement of

a search can be kept as low as reasonably possible. One method of achieving this is to

use hash functions [Glover and Laguna 1997], which may be used to manage tabu lists

in a computationally inexpensive way. The method of reducing storage requirements

introduced in this chapter has the same broad objective as that of hash functions but is

significantly different in its form and ability.

In this chapter a two-way conversion mechanism is used to achieve reduced

storage requirements for tabu list elements. The conversion mechanism is such that

alpha-vectors may be converted to (blocks of) integers, and vice versa. Compared to

hash functions the main differences and similarities are as follows.

• Differences

1. A hash function approach has a random feature in the sense that a string of

data (i.e. binary data) could ‘hash4 to the same integer, although the

probability of such a collision is low. The two-way conversion approach

(explained below) is one-to-one from alpha-vectors to integers and vice versa.

2. With the hash function approach, once ‘hashing4 to an integer has taken place

the original data cannot be retrieved. This is possible with the two-way

conversion approach.

• Similarities

1. The hash function and two-way conversion approaches are both easy to

implement.

2. Both approaches lead to reduced storage requirements (compared to storing

alpha-vectors).

In Chapter 3 the tabu list elements are alpha-vectors, a = {a ,}, i = 1,2,...,/c,

where a e {0,1}. Computationally, each alpha-vector requires 2k bytes (2 bytes per

bit). Since the smallest QR code investigated in this study is such that k = 36

Z? Hb 1
(k — ^ P = 71) the minimum requirement is therefore 72 bytes. In view of

this it is impossible to have a (simple) one-to-one correspondence from an alpha-

vector to an integer because (for computers with a 16-bit data type) the maximum

31integer is 2 - 1 , which is equivalent to 4 bytes of memory. Because of this upper

limit on the number of bytes available to represent integers, the two-way conversion

approach divides an alpha-vector into a series of blocks of binary strings and each

31block is individually converted into an integer (no greater than 2 -1) . The number

of blocks, B , is given by,

where the square parentheses denote integer part only. The converted alpha-vector

consists of a series of blocks (B blocks) of integers z . , i = 1,2,..., B which comprise

the integer ‘vector’ z ;

z = { z r z2,..',zB } (4.2)

68

3 i ~ - (4.3)

Where

z .e{OX".X' - 1} , * = 1,2, . . . , 5 - 1

z Be {O X -> k mod31} (4.4)

The value of the integer z . , i = 1,2,..., B is given by,

31 i =1,2,...,5-1

z t = 2 ^ , ' 2 ' ’ 8 =
M J (4.5)

k mod 31 i = B

As an example, consider prime number p = 199 (the highest value used in this

study) so that k = 100. Furthermore, consider the following alpha-vector, a , to

correspond to a QR codeword (the number of blocks, by equation (4.1), is B - 4),

a = (0010010 ... all zeros0 block 1,31 elements

1101100 ... all zeros0 block 2, 31 elements
(4.6)

0110010 ... all zeros0 block 3,31 elements

1001100} block 4, k mod 31 elements

2 5
Then, using equation (4.5), z - 2 + 2 = 36, similarly for z2, z3 and z4 so that, by

equation (4.2),

Z= {36,27,37,25} (4.7)

Note that the storage requirement for a is 200 bytes (2k bytes) whereas that for z is

16 bytes (4 bytes per block).

To convert each integer block z e z , i = 1,2,..., B , back to form an assembled

alpha-vector, a , where

69

1,2,...,31 if j < BB J
— — C { c x } , i ■ /'/i o \

j =i 1 j (4.8)
1,2,..., & mod 31 if j = B

(C denotes concatenation of the blocks of binary strings, {a .} . , 7 = 1,2 ,...,B),

requires the remainder on repeated (g times) division by 2 of each integer block;

g = 31 if j < B and g - k mod 31 if j = B .

The example with p = 199 has shown that an order of magnitude reduction in

storage may be obtained by using the two-way conversion mechanism, which,

together with its inverse ability, illustrates the merits of this approach.

4.4 The Influential Candidate List

Although in some applications [Bland and Baylis 1995, Bland and Dawson 1991],

tabu search comprising short-term memory only (i.e. a tabu list comprising a relatively

few, and transitory, elements) has produced relatively good results, the search

becomes more powerful when longer term memory is included in the algorithm.

Therefore, in this chapter, another form of tabu list is introduced, in which ‘important’

elements that may influence the search process are permanently (i.e. long-term)

remembered. This (long-term memory) list, which will be called the influential

candidate list (ICL), contains integer characterisations of ‘important’ (or ‘influential’)

alpha-vectors for possible use at different stages of the optimisation process. Also,

use of this list enables the (intermediate-term) tabu list to remain of reasonable size

(see Section 4.6).

During each phase of the optimisation process the ICL stores the integer vectors

z associated with minimum distance values d that are less than or equal to the

current overall minimum distance, d , that is
best

70

7 . 6 {ICL} <=> d <d , i e {1,2,...,m } (4.9)
— ‘ / bent max

The ICL is used as a means of remembering candidates that may be influential on

the search in the longer term. In this study the phase start candidates (i.e. integer

vectors, z) for intensification and diversification (see Sections 4.7 and 4.8,

respectively) are selected from this list. For intensification an influential candidate

(IC) works in a similar manner to an ‘elite’ candidate [Glover 1997], that is, good

solutions are re-used to thoroughly examine a particular ‘promising’ region of

solution-space. In this study an IC may also be used for diversification purposes to

drive the search away from the current region. In other words, the IC concept is a

generalisation of that of an elite candidate.

To complement the use of the ICL, other lists are used to record the frequency

count and usability-state of the members of the ICL. Each IC has an associated

frequency count whose value (initially 1) is increased by 1 if the IC is used as a phase

start solution or if a non-tabu neighbourhood best solution is in the ICL. Usually, a

move would be made to this particular solution since it is no longer in the tabu list

(hence not tabu by the intermediate-term memory). However, since it is an IC, this

means that the search has previously visited this solution, which has, at some stage,

left the tabu list. The implication is that the search has returned to a previously

explored region of solution-space and there may be a danger of cycling; an IC with an

associated high frequency count would indicate this danger.

The usability-state associated with an IC is a boolean quantity (initially 0) which

becomes 1 permanently when the IC is used as a phase start solution. In general, an

IC with usability-state 1 is forbidden to be re-used as a phase start solution (those with

usability-state 0 are still eligible) unless all influential candidates have usability-state

71

(see random-start diversification in Section 4.8). The frequency count and usability-

state associated with an IC are utilised in the diversification strategies (see Section

4.8).

The process of making a single tabu search move, from z (the current integer

vector) to z min (the non-tabu neighbourhood best integer vector), is given in the

pseudo-code in Figure 4.2.

Begin
• Obtain the neighbourhood, N (z) , of current integer vector z with

associated current alpha-vector a ,
N(a) O N(z)

• Evaluate the weight of each neighbourhood codeword,

d „M = Whele S N(&
do

• Identify the non-tabu neighbourhood integer vector, z min , with the
lowest weight, d , where d 6 {d }

mm mm nbhd

if z g r
if d < d

min best

• z m[n enters both T and I
• f for z min initialised to 1, / e F
• u for z inin initialised to 0, u G U
Else
• £min enters T only
End (If)

Else
• z inln given tabu status but does not enter T
• f for z min increased by I
End (If)

While (z ^ n £ T) .
• Search moves from z to z min

End__

Figure 4.2 Pseudo-code for a tabu search move.

In the pseudo-code / and u denote the frequency count and usability-state,

respectively, associated with z min (when z inin is an IC) and the sets T , I , F and U

denote the tabu (intermediate-term) memory, influential candidate (long-term)

72

memory, frequency count and usability-state lists, respectively. Note that when z min

g T but zmin e I , then this particular z min has been previously visited (since

zmin e I) and has ’passed through’ T (since z min g T). In this case, the frequency

count associated with z min is increased by 1 but a move to this particular z min is not

made (hence it does not enter T), rather, z min is updated to represent the non-tabu

neighbourhood integer with the next lowest weight. A possible move from z to (the

updated) z min is then investigated.

4.5 The Closeness Criterion

With QR codes minimum distance estimates may be obtained using square root

bounds [MacWilliams 1977] as explained in Chapter 2. In this chapter use is made of

these bounds to aid decisions concerning the nature of the optimisation process (i.e.

intensification or diversification) during each phase of the search beyond the initial

m moves. The decision depends on whether or not the ’closeness criterion’ is
phase

d
satisfied. This is a relationship in which the distance ra tio is matched against a

d
best

specified threshold value, D, where 0 < D < 1. That is, the closeness criterion is

satisfied when

d (4.10)
bound ^ jrj

d
best

Here c/^ is the (square root bound) minimum distance estimate for a particular QR

code and d is the current overall lowest minimum distance value obtained during
best

the optimisation process.

73

As seen in inequality (4.10) the closeness criterion is a measure of the closeness

of d to d . I n this study D = 0.6 was found to provide a balanced’ decision
best bound

between intensification when (inequality (4.10) is true) and a diversification strategy

(when false); if D is set too high then this may be too restrictive and solutions that

belong to ’promising’ regions may not be identified. Alternatively, if D is set too low

then search effort may be wasted examining regions that may not contain ‘elite’

solutions.

4.6 Dynamic Tabu List Management

As stated in Chapter 3 the basic roles of a tabu list are to enable the search to escape

from local optima and to help avoid cycling in solution-space. General ideas

concerning the management of the tabu list have been proposed by Glover [Glover

1990] and adopted by other researchers [Chiang and Kouvelis 1996, Taillard 1991].

For example, Chiang and Kouvelis (1996) use a tabu list whose size varies (i.e. the list

'oscillates') between specified upper and lower bounds as the search progresses.

Skorin-Kapov (1994) uses a tabu list in which certain members lose and then regain

their tabu status (i.e. the list has ‘gaps’) as the search progresses.

The difficulty with the ‘oscillating lists’ approach is that the values of (pre

specified) upper and lower bounds are not obvious, in general. Also, the ‘list with

gaps’ approach does not reduce storage requirements since the tabu-de-activated

members are still stored, ready for re-activation at a later stage.

In this study the tabu list is dynamic in the sense that its size may vary as the

search progresses. Furthermore no bounds are specified; the tabu list size is

determined in an automatic manner by the optimisation process of each phase of the

search. Also, members of the tabu list that loose their tabu status are cleared from the

tabu list (although some may be retained in the ICL for possible future use). This

reduces storage requirements and increases search efficiency.

In this study the elements of the tabu list (and ICL) are integer vector

characterisations (explained in Section 4.3) of alpha-vectors (as used in Chapter 3).

To illustrate the management of the tabu list part of a hypothetical search (with phases

comprising 10 moves) is presented in Figure 4.3, the graph points indicate the search

history (i.e. the accepted neighbourhood lowest weight at each move, d , i = 1,2,...,10)

for the initial phase of 10 moves. The tabu list contains the initial elements 0 and z0,

where the start integer vector z0 has weight d , and, initially the current overall

lowest weight, d , is such that d = d = 9.
& best best 0

10
9
8
7

£ 6
- 50) °
£ 4

3
2
1
0

0 1 2 3 4 5 6 7 8 9 10

Move Number

T I F U
0 Si 1 0
So S2 1 0
Si s4 1 0

s5 1 0
S8 1 0

Figure 4.3 Search process after phase 1 (moves 1 to 10).

75

The integer vectors associated with the search history weights are z t ,

i - 1,2,...,10, which all enter the (intermediate-term memory) tabu list, T . With

reference to the graph in Figure 4.3, notice that d < d , i e {1,2,...,10} at moves 1, 2,

4, 5 and 8; the associated integer vectors; z x, z 2 , z4, z 5 and z8 are therefore

influential candidates and enter the (long-term memory) ICL, set I. For each member

of I, the frequency count and usability-state, / e F and u e U , respectively, / = 1,2,

4, 5 and 8, are initialised to 1 and 0, respectively.

The search history for the second phase of moves is shown in Figure 4.4. For

illustration purposes the start integer vector is taken to be the most recent IC, z8. The

tabu list is modified to contain the permanent member 0 , the tabu list members of the

preceding phase from z s_x, where z s is the selected start integer vector (here 5 = 8),

together with current phase tabu elements, z t , i= 11, 12,...,20. The selection of the

phase start integer vector, z s , depends on the nature of the phase optimisation process

and is explained in Sections 4.7 and 4.8. It is noted that elements z x to z6 have now

left T and are no longer tabu. With reference to Figure 4.4, at the start of the second

phase d - d - 5, and d < d , i e {11,12,...,20} for i - 14 and 17. Hence z14
r b e s t 8 i b e s t “ 1 4

and z xl enter I . Also, to record that z8 has been used as a phase start solution,

/ = / +1 = 2 and u = 1. The retention of elements z7 to z10 in T preclude the
8 8 8

search performing a back-track move from z8 and retracing a previous forward path

from z s .

16

U)
■3
£

(8) 11 12 13 14 15 16 17 18 19 20

Move Number

T
0

in
I s

I 10

I n

 I 20________

Figure 4.4 Search process after phase 2 (moves 11 to 20).

As a final illustration phase, the various lists for moves 21 to 30 are shown in

Figure 4.5, on the assumption that this phase started from z xl with integer vectors z,

such that d <d for i = 22 and 26. Hence f = / +1 = 2 and u = 1. Note that
i best J 17 J 17 17

this example indicates that z4 (no longer in T) has been revisited but not accepted

during this phase; / = / +1 = 2.

1 F U
I i 1 0

I 2 1 0

1 4 1 0

£5 1 0

I s 2 1

I l 4 1 0

I l 7 1 0

......

 ̂ **■ :

77

10
9
8
7

£ 6
& 5<D °
^ 4

3
2
1
0
(17) 21 22 23 24 25 26 27 28 29 30

Move Number

/ F U
Li 1 0

1 2 1 0

I 4 2 0

Ls 1 0

Is 2 1

Z.u 1 0

— 17 2 1

Z.22 1 0

Z.26 1 0

Figure 4.5 Search process after phase 3 (moves 21 to 30).

In general the tabu list operates as an intermediate-term memory, however, if the

particular optimisation phase is ’random-start diversification’ (explained in Section

4.8) then the phase start integer vector, denoted by z r , is obtained in a random

manner. In this case the tabu list is cleared of all elements except 0 and z r , and then

grows throughout this phase of the search. The tabu list is cleared because the search

’jumps’ to a new region of solution-space and so previous tabu elements are no longer

required. This process is repeated for all subsequent random-start diversification

phases. In these cases the tabu list acts as a short-term memory.

78

4.7 Intensification

An intensification strategy is used within tabu search for the purpose of exploring

‘attractive’ regions of solution-space thoroughly. The measure of ‘attractiveness’ is

problem dependent; low distance value is used in this study.

Intensification has been used with tabu search in the investigation of various

problems [Ben-Daya and Al-Fawzan 1998, Hertz et al. 1997]. For example, some

applications use intensification based on a measure of improvement in the solutions as

the search progresses [Chiang and Kouvelis 1996] while others are based on the

search returning to previous ‘good’ solutions for closer investigation [Glover 1990].

In this study an intensification phase is based on both solution improvement and

previously found solutions. Also, use is made of the minimum distance bounds for

QR codes, which may be considered as ‘target’ values.

With reference to the flowchart in Figure 4.1, intensification will be performed

after the initial phase of tabu search moves (upto move m = m g, where phase is the

input interval value), provided the minimum distance obtained in the last phase has

satisfied both the closeness criterion (see inequality (4.10)) and d has improved

(i.e. reduced).

As an example, consider the situation illustrated by the graph in Figure 4.3 (where

m - 10). Initially (move m = 0) d = d = 9 . Now if d and D are taken
phase best 0 bound

to be, for example, 3 and 0.5, respectively, then, since d = 5 from moves 8 to 10,

both the closeness criterion is satisfied and d has improved during the initial phase.

Hence by the flowchart in Figure 4.1, the next 10 tabu search moves (upto m ^ =

20) will be an intensification phase.

79

The start solution used for an intensification phase is the most recent member that

enters the ICL. This solution corresponds to the most recently found integer vector

with minimum distance value equal to or better than the current value of d t . It is
1 best

therefore an ‘elite’ solution that may be used to commence a thorough examination of

its region in the search-space.

With reference to the ICL (set I) displayed in Figure 4.3, the intensification phase

start solution will be z8. Hence Figure 4.4 illustrates an intensification phase (moves

11 to 20). Moreover, based on the graph and data in Figure 4.4, the subsequent phase

(moves 21 to 30) will also be an intensification phase, with z l7 as the start integer

vector.

4.8 Diversification Strategies

The purpose of a diversification strategy is to enable the search to explore new regions

of solution space in the hope of obtaining improved solutions. A diversification

strategy is usually employed when the search fails to yield an improved solution

within the current region of solution-space and the search needs to explore elsewhere.

Diversification is a very important component of a tabu search algorithm, without it

the search process may become localised to a small region in solution-space, which

would restrict the possibility of seeking a global optimum.

Researchers using tabu search have used a variety of techniques to diversify the

search process; for example, moving gaps in the tabu list [Skorin-Kapov 1994],

frequency-based memory [Chiang and Kouvelis 1996] and randomly chosen solutions

[Ben-Daya and Al-Fawzan 1998].

In this study a number of diversification strategies are used. The actual strategy

used for a particular phase of moves depends on the situation at the end of the phase,

80

that is, whether or not the closeness criterion is satisfied, and, whether or not the value

of d has reduced. With reference to the flowchart in Figure 4.1, the diversification
b est °

strategy box is expanded in Figure 4.6 to reveal the separate strategies, which are now

explained.

• First-Time Diversification

The ‘first-time diversification’ strategy acts a ‘first order’ strategy in the sense

that it is utilised the first time search diversification is required. With reference to the

flowchart in Figure 4.6, first-time diversification is used when, after the initial phase

of tabu search moves, either the closeness criterion is not satisfied or d has not
best

improved. Alternatively, it is used after an intensification phase if d has not

improved. In both scenarios an intensification phase is not justified, rather, the search

is encouraged to explore a new region.

C lo s e n e s s C r i te r io n
■ ^ . S a t i s f i e d ?

D iv e r s i f i c a t i o n u s e d
" - ^ b e f o r e ?

cl best i m p r o v e d ?

d i)est im p r o v e d ?

Improvement
Diversification

Prepare for
Equal-Best

Diversification

Prepare for
Random-Start
Diversification

Prepare for
Most-

Prepare for
Intensification

Prepare for
First-Time

Diversification

Figure 4.6 Flowchart for diversification strategies.

81

The start integer vector for the first-time diversification phase is the penultimate

IC to enter the ICL. This particular (start) IC, whilst being a ‘good’ solution, is further

back in the ICL than that used for intensification purposes, so that the search may

investigate a region sufficiently distant from the current search ‘position’ (i.e. the end

of phase integer vector).

With reference to the illustrative graph shown in Figure 4.3, if d = 3 and D
^ bound

- 0.7, then since d = 5, the closeness criterion (inequality (4.10)) is not satisfied.

Hence moves 11 and 20 are a first-time diversification phase with start integer vector

z 5 (with d5 = 6); the process explained in Section 4.6 is used to update lists T, /,

F , and U for this phase. Notice that z 5 is some way (hamming distance) back in the

phase and so the search would have the opportunity to move away from the current

search path and explore a new region.

• Most-improvement Diversification

Diversification strategies used subsequent to first-time diversification may be

considered as ‘second-order’ strategies and represent means of encouraging the search

to explore new regions under increasingly adverse conditions (in terms of obtaining

increasingly better solutions, i.e. lower weights).

With reference to the flowchart in Figure 4.6, the most-improvement

diversification strategy will be used for a phase of moves if, during the previous phase

of moves, the closeness criterion is not satisfied but there has been an improvement in

d . To illustrate this situation, consider the graph in Figure 4.3 to represent the first

phase of tabu search moves with first-time diversification (moves 11 to 20) starting

from integer vector z 5. The search path and lists for this first-time diversification

phase are shown in Figure 4.7.

82

Assume that the values of d and D are such that the convergence criterion is
bound °

not satisfied during moves 1 to 20. However, it is seen in Figure 4.7 that d has

improved during the current phase of moves. The subsequent phase of moves (21 to

30) will therefore use the most-improvement diversification strategy. The start

solution for this particular diversification phase is the integer vector with the earliest

found value of the end-of-phase db , that is, the first integer vector with the most

improved weight. With reference to Figure 4.7, d f = 4 from move 13 onwards so

that the start integer vector for most-improvement diversification is z l3.

10
9
8
7
6
5
4
3
2
1
0

(5) 11 12 13 14 15 16 17 18 19 20
Move Number

T / F U
0 Si 1 0

£2 1 0

15 Z.A 1 0
1

2io *8 1 0

111 1 0

Il3 1 0

Z.15 1 0

— 20 — 17 1 0

Figure 4.7 Search process after phase 2 (moves 11 to 20).

83

Compared to the first-time diversification strategy the start integer vector for the

most-improvement diversification strategy may require a greater ‘back-jump’ from the

search end-of-phase integer vector, and hence the possibility of greater diversification.

• Equal-Best Diversification

Like the most-improvement diversification strategy, the equal-best strategy is

performed subsequent to first-time diversification. If during a phase of moves the

value of db does not improve but integer vectors (at least one) with weights equal to

d (i.e. ‘equal best’) have been found (and hence entered I) , then equal-best

diversification is used in the next phase of moves. The equal-best diversification

strategy is not dependent on the closeness criterion.

To illustrate this situation, consider the graph and lists as shown in Figure 4.8,

which gives a search history for a first-time diversification phase (moves 11 to 20).

With reference to the graph in Figure 4.8, the weights are such that d, > d ,

i = 11,12,...,20, with equality when i = 13, 15 and 18 (hence z13, z l5 and z18 are

influential candidates). Since d is not reduced during this phase, moves 21 to 30
b e s t

will be an equal-best diversification phase.

The start integer vector for equal-best diversification is the earliest integer vector

found during the current phase with weight equal to d (i.e. the least recent IC).

With reference to the ICL in Figure 4.8, this will be z l3.

Again, compared to the first-time diversification strategy, the start integer vector

for equal-best diversification may require a greater ‘back-jump’ from the end-of-phase

integer vector, and hence the possibility of greater diversification.

84

10
9
8
7
6
5
4
3
2
1
0

(5) 11 12 13 14 15 16 17 18 19 20

Move Number

 T_
0

24
25

2io
2n

Z.20

Figure 4.8 Search process after phase 2 (moves 11 to 20).

• Random-Start Diversification

For a particular phase of moves, the random-start diversification strategy is used

under the same circumstances as the equal-best strategy, except that no influential

candidate has entered the ICL during the previous phase of moves (see flowchart in

Figure 4.6). With reference to the graph in Figure 4.8, if z n , z l5 and z I8 were such

that d > 6 , i= 13, 15 and 18 (and hence were not members of the ICL) then
i

d > d for / = 11, 12, ..., 20. Hence the random-start diversification is used for the
i best

next phase of moves (21 to 30).

The start integer vector for random-start diversification is generated randomly

from the least recent IC with usability-state 0 and the highest frequency count (if all

85

/ F U
21 1 0

2 2 1 0

24 1 0

25 2 1

2g 1 0

213 1 0

2l5 1 0

2l8 1 0

influential candidates have usability-state 1 then the least recent IC with the highest

frequency count is selected). With reference to the lists in Figure 4.8 (omitting z l3,

z l5 and z ls) the generating IC would be z x.

The random-start diversification start integer vector z r , is obtained from the

generating IC, z s , (where z s is z x in this example) by randomly selecting, for each

integer element z tj e z s , i = 1,2,..., B - 1 , an integer z rj e z r , i = 1,2,..., B - 1 , that has

For the last block { B) integer element z e {0,1,...,k m od31} and so z is chosen
gB rB

randomly from this set.

Random-start diversification (here moves 21 to 30) starts with the I , F and U

lists shown in Figure 4.8 (with z 13, z l5 and z18, and associated u and / values

omitted) except that for the generating IC, here z x; / = / +1 = 2 and u{ - \ . The

tabu list is cleared of all integers and contains 0 and z r only. The lists are then

maintained, in the manner previously described, for subsequent moves (21 to 30).

During a random-start diversification phase of moves the tabu list acts as a short

term memory; it is anticipated that the point-of-search will have (randomly) ‘jumped’

to a ‘distance point’ and hence would render the existing tabu list elements redundant.

The use of a least recent IC to generate the random-start integer vector makes use

of the full range of the ICL (not just members of a recent phase) and so gives as many

members as possible the chance to contribute to phase starts.

(2 - 1)a separation of at le as t----------- , i.e.
4

(2 1} , i — —1.
4

(4.11)

86

In practice, 5 candidate start integer vectors were randomly generated from a

generating integer vector, z s , and the one with the lowest weight was selected to be

z r . Also the Hamming distance between the associated alpha-vectors a g and a r

was checked and found to be suitably large (approximately 35% difference in

hamming distance).

4.9 Minimum Distance Results

In this study 10 codes (BCH and QR) were investigated by the developed tabu search

algorithm using a number of phases, in which each phase comprised 100 moves and

the maximum number of moves was set to rnmax = 1000. In all computational

experiments the same neighbourhood structure and start solution as in Chapter 3 were

used. Initially m = 100 and the size of a tabu list ranges between |r| = 2 (when

move number m = 0) and Iri = 2(m +1), after which the search terminates.
I I phase

BCH codes

In order to assess the developed algorithm, a comparison of the obtained results is

presented in Table 4.1 for various BCH codes (numbered as 1 to 10 in this study).

Here d denotes the known minimum distances for BCH codes and the values of
bound

d bb given in Table 4.1 represent minimum distances obtained by Bland and Baylis

(1995). Note that improvements were made using the developed tabu search

algorithm since this algorithm has extended the search used by Bland and Baylis

(1995). In Table 4.1, n and k denote the length and the dimension of a code. The

minimum distance obtained is denoted as d with the associated move, m, , and
best best

the executable time t
best

87

In Table 4.1 it is seen that codes 2, 5, 8 and 10 produced the same minimum

distance as the method used by Bland and Baylis (1995) and these minimum distances

were found early which implies that the search did not utilise the developed tabu

search algorithm. However, codes 1, 3, 4, 6, 7 and 9 have found minimum distances

lower than Bland and Baylis (1995). In general, the execution time for each code was

extremely quick and the minimum distances obtained are better than (or equal to)

those obtained by Bland and Baylis (1995).

Code n k d, , bound d
BB

d
best

m
best

hast (h:m:s)

1 127 64 21 26 24 122 0:00:25.55
2 127 57 23 24 24 1 0.00:00.28
3 127 50 27 31 27 288 0:00:28.06
4 255 115 43 60 58 806 0:16:30.48
5 255 107 45 65 65 2 0:00:03.63
6 255 99 47 68 66 603 0:09:24.96
7 255 91 51 71 70 512 0:06:21.13
8 255 87 53 70 70 3 0:00:02.58
9 255 79 55 78 74 958 0:09:04.76
10 255 71 59 77 77 4 0:00:02.86

Table 4.1 Minimum distances of BCH codes using the developed TS algorithm.

n k d SA h e s t Ch:m:s)
127 64 21 0:08:15.00
255 91 15 0:42:17.00

Table 4.2 Minimum distances using simulated annealing.

As a (very limited) comparison, the results for codes 1 and 7, obtained by Zhang

and Ma (1994) using simulated annealing, are given in Table 4.2. In Table 4.2 it is

observed that tabu search (see d and d) gives lower minimum distances
v BB best ' b

compared to simulated annealing (d). Also the execution times are considerably

quicker.

• QR codes

The tabu search algorithm described in the previous sections was applied to

various QR codes. These include codes in which the generator matrices have weight

1equal to — — , the augmented QR codes (n{x) and q{x)) and expurgated QR codes

(O -l)rc(jt) and (jt-1)q(x)). For each type of QR code, 10 specific codes (numbered

1 to 10 in this study), characterised by their value of prime number p, were

investigated. Results for n(x) , using the lower and upper bounds of the minimum

distances in the closeness criterion (see inequality (4.10)), are presented in Tables 4.3

and 4.4, respectively, and results for other QR codes are presented in Appendix B.

With reference to Tables 4.3 and 4.4, d denotes the known minimum
bound

distance bounds [MacWilliams 1977] i.e. (where appropriate) lower bound and upper

bound, respectively. For each code, the obtained minimum distance, d , the

associated move, m , together with the executable time t are presented. Note

that the developed algorithm has found the exact minimum distance in the case of

code 4 (see Tables 4.3 and 4.4). Furthermore, the execution time is short. Also, it is

observed that codes 6 and 7 have different values of d in Tables 4.3 and 4.4. The
best

reason for this is that for these particular codes the closeness criterion has influenced

the search route and led the search to take different paths in solution-space and hence

obtain different values of d . Although there is still a need to improve d ^ for

larger codes (i.e. codes 6 to 10), the results obtained are generally quite close to d

(upper value) and are obtained in short execution time.

89

Code P d , „ bound
d

best
m

best
t (h:m:s)

b e s tv '

1 71 l l 11 24 0:00:01.05
2 79 15 15 16 0:00:00.99
3 97 15 16 95 0:00:11.26
4 103 19 19 277 0:00:48.01
5 113 11 16 1 0:00:02.22
6 137 13 28 307 0:01:23.87
7 167 15 35 4 0:00:02.91
8 191 15 36 25 0:00:19.72
9 193 15 38 1 0:00:01.31
10 199 15 40 9 0:00:08.40

Table 4.3 Minimum distances obtained using n(x) and lower bound.

Code P d
bound

d
best

m
best

t (h:m:s)
best

1 71 11 11 24 0:00:01.05
2 79 15 15 16 0:00:00.99
3 97 15 16 95 0:00:11.26
4 103 19 19 277 0:00:48.01
5 113 15 16 1 0:00:02.22
6 137 21 29 90 0:00:26.47
7 167 23 32 633 0:04:41.00
8 191 27 36 25 0:00:19.72
9 193 27 38 1 0:00:01.26
10 199 31 40 9 0:00:08.40

Table 4.4 Minimum distances obtained using n(x) and upper bound.

In order to visualise the optimisation process for code 6 in Table 4.3 (for

example), the search route through the algorithm is given in Table 4.5 and the search

history (upto move 400) is given in Figures 4.9 to 4.12. With reference to Table 4.3

the search obtained d at move 307 and the search was terminated after 1000
best

moves.

With reference to Figure 4.9, the search starts with minimum distance dQ = 47

(the weight of the generator matrix) and the initial search (moves 1 to 100) found d

90

= 29 at move 90. Since d = 1 3 (see Table 4.3) the closeness criterion is not
bound

satisfied and so moves 101 to 200 (i.e. phase 2) are first-time diversification.

Phase Move Search Route
1 1-100 Initial Search
2 101-200 First-Time Diversification
3 201-300 Equal-Best Diversification
4 301-400 Equal-Best Diversification
5 401-500 Most-improvement Diversification

6 - 10 501-1000 Random-Start Diversification

Table 4.5 Search route for p = 137.

50
45

£ 40
■5 35
5 30

25
20

20 30 40 50 60 70 80 90 100
Move Number

Figure 4.9 Search history (moves 1 to 100) for p = 137.

■ . ■---

r n I n I'l 111t it n 1 T'l'i I'm 111 rrr in m m ri n i l 1; i u m m 7T Tm r T TrrTrrrrT!Trr'n-''-rT n-H TTi-rTrnT r

(7) 110 120 130 140 150 160 170 180 190 200
Move Number

Figure 4.10 Search history (moves 101 to 200) for p = 137.

91

The first-time diversification phase (phase 2) is shown in Figure 4.10 in which the

start solution is the penultimate IC of phase 1, which was found at move 7 (see Figure

4.9) and has minimum distance d7 = 30. Although d has not improved (still 29)

an IC was added to the ICL at move 125 (d = d = 29). Again the closeness
v 125 best °

criterion is not satisfied and so phase 3 is an equal-best diversification phase in which

the start solution is the integer vector z125.

(125) 210 220 230 240 250 260 270 280 290 300

Move Number

Figure 4.11 Search history (moves 201 to 300) for p = 137.

40

.c 35o>
'©
£ 30

25

I' I- IT rTTTTT'TTTTTT"'TTn'TTTTHTH I I ' I I I"1 \ I111 '"I TITTTT H"ITPTn

(228) 310 320 330 340 350 360 370 380 390 400

Move Number

Figure 4.12 Search history (moves 301 to 400) for p = 137.

92

Phase 3 is illustrated in Figure 4.11. As in phase 2 the closeness criterion is not

satisfied but an IC (z 22S) was added to the ICL. Hence phase 4 is another equal-best

diversification phase with start solution z 228 and d = 29.
228

Figure 4.12 shows the search history for phase 4. An improvement in the

minimum distance is made at move 307 with d = d = 2 8 . The closeness
best 307

criterion is still not satisfied so the next phase (phase 5) is a most-improvement

diversification phase with start solution z 307.

In phases 6 to 10 the minimum distances associated with the search solutions

were all greater than d = 28 and so these phases utilised random-start

diversification.

Minimum distance results using the developed tabu search algorithm are

presented in Table 4.6. These particular results are the improvements in the minimum

distance values compared to the equivalent results obtained using the basic tabu

search algorithm of Chapter 3.

With reference to Table 4.6, for prime number (p), G denotes the generator

polynomial (see Chapter 2), and d , d and d denote the minimum distance
r J v r bound QR best

bound used in the closeness criterion, the (range of) the minimum distance bound(s)

[MacWilliams and Sloane 1977] and the obtained minimum distance, respectively.

Associated with d is the move number, m , and execution time, t
best best best

Table 4.6 shows that the use of the developed tabu search algorithm may

improve some of the minimum distances obtained in Chapter 3. It is observed in

Table 4.6 that there is still scope to improve minimum distances, particularly for the

93

larger QR codes. In the next chapter a developed ACO algorithm will be presented

and focus on the larger QR codes.

Code p g(x) d
bound

d
QR

d
best

m
best

t (h : m : s)
best

1 71 q (x) 11 11 11 413 0:00:08.57
2 79 q (x) 15 15 15 213 0:00:05.76
3 97 (x - l) q (x) 16 16 20 643 0:00:31.45
4 103 n (x) 19 19 19 277 0:00:48.01
6 137 n (x) 13 13-21 28 307 0:01:23.87
6 137 q (x) 21 13-21 27 154 0:00:43.17
7 167 n (x) 23 15-23 32 633 0:04:41.00
7 167 q (x) 15 15-23 32 381 0:03:06.92
7 167 (x - 1) q (x) 16 16-24 32 164 0:01:09.26
8 191 q (x) 27 15-27 35 233 0:02:25.56
8 191 (x - 1) n (x) 16 16-28 36 109 0:01:09.75
8 191 (x - 1) n (x) 28 16-28 36 210 0:02:27.20
9 193 q (x) 15 15-27 38 110 0:01:04.26
10 199 q (x) 15 15-31 40 107 0:01:08.05
10 199 (x - l) q (x) 16 16-32 40 136 0:01:38.59
10 199 (x - 1) q (x) 32 16-32 40 324 0:04:37.65

Table 4.6 Minimum distances using the developed tabu search algorithm.

94

Chapter 5

Ant Colony System for Minimum Distances

5.1 Introduction

In this chapter an ant colony system (ACS) algorithm is presented with improved

decision-making capability compared to the ant system (AS) algorithm explained in

Chapter 3. Here ants deposit pheromone as a means of communication in a dynamic

environment, known as stigmergy [Dorigo and Caro 1999, Grasse 1959].

In the basic AS algorithm of Chapter 3 each ant generates an alpha-vector

(independently of the other ants) before autocatalysis and trail evaporation are used to

obtain the colony trail intensity for the next time step. The combination (summation)

of the trail intensity matrices for each ant (independently obtained) acts as a

communication tool to provide collective (i.e. colony) information. As time

progresses the quality of the colony information improves so that alpha-vectors with

associated low minimum distance values will have an increased probability of being

generated.

The ACS has improved decision-making capability compared to AS through the

use of a more general decision rule which incorporates the processes of exploration

and exploitation (see Section 5.3). Also, ACS uses local trail updating to allow ants

to modify their individual trail intensities (i.e. see Section 5.5) and produce a diversity

of solutions (alpha-vectors). Finally, a global trail updating rule is used with

autocatalysis and trail evaporation to focus on the selection of good solutions in the

next time step. This process is similar to reinforcement learning [Kaelbling et al 1996]

by which an agent (here ant) leams through interaction with a dynamic environment

95

in which better solutions are rewarded with higher reinforcements (pheromone

deposits).

A key feature of the developed ACS of this chapter is ‘ant co-operation’. Here an

interplay strategy between local trail updating (of ACS) and diversification (of tabu

search) is presented which enables ants to share information (i.e. co-operate) within

and between time steps (explained in Section 5.6).

5.2 Overview of the Developed ACS Algorithm

In this chapter an ACO algorithm is presented which includes several features

(explained in Sections 5.3 to 5.8) which are absent from the basic ant system (AS)

explained in Chapter 3. The presented ACO algorithm, which is of the ant colony

system (ACS) type [Dorigo and Gambardella 1997], is designed to improve the

capability of an ‘ant’ approach to optimisation (compared to the AS algorithm of

Chapter 3) in terms of obtaining lower minimum distances. An overview of the

developed ACS algorithm, showing strategic features, is given in the flowchart in

Figure 5.1.

With reference to the flowchart in Figure 5.1, input data includes code details

such as (for QR codes) prime number p and the generator matrix G . Also required

are ACO parameters with user-specified values (e.g. indices a and b , see Chapter 3).

search details are also required; the number of ants (x), the number of time steps
A max x

(t) and the number of moves per phase (m) used in the diversification phase
max phase

(see Section 5.4).

96

Start

Input data

Initialisation

t = 0

Obtain a_x
d x = w (a x G)

Diversification

No
x = x + lX = c.x

Yes

Update trail intensity for
each ant of the colony

Update colony trail intensity

No
C = C + C 0X - X

Yes

Intensification

Update colony trail intensity

No

Yes

Output results

Stop

Figure 5.1 Flowchart for the developed ACS algorithm.

97

The initialisation phase sets the initial values of the colony trail intensity and trail

desirability, 7 .(0 and 77.. (t) , respectively, where time step t = 0, bit state i = 0,1 and
y y

bit number j = 1,2,...,k with k = for augmented QR codes and k = ——- for

expurgated QR codes. Also, the alpha-vector for each ant is set to 0 (explained in

Section 5.6).

On entering the time step loop an inner and outer ant loop (variable x denotes ant

number x = l,2,...,x) is also entered. The ant loops are used to model ant ’co-
max

operation’, in terms of ’sharing’ information, as represented by the trail intensity

values, T .(t) , for each ant (explained in Section 5.6). The parameter c (with initial

input value c) in the decision point in the inner ant loop is used to allow an ever

increasing fraction of the colony of ants to generate alpha-vectors within the current

time step (the fraction is increased in the outer ant loop until x = x ; see Section
x * max

5.6).

Alpha-vectors are generated on entering the (inner) ant loop. Here a state-

transition decision rule is used that allows both exploration and exploitation [Dorigo

and Gambardella 1997], explained in Section 5.3. Next a diversification phase is

performed in which ants are encouraged to generate a diverse ’colony’ of alpha-

vectors as an exploration aid (see Section 5.4). During this phase certain alpha-

vectors are identified for the intensification phase (performed later).

After each fraction of the colony of ants has generated their alpha-vectors the trail

intensity for each ant of the colony is obtained and the colony trail intensity is

modified so that ants may share information and co-operate in exploration, i.e. a wide

search for low minimum distances, see Section 5.6. On exiting the outer ant loop

98

intensification is performed on those alpha-vectors identified during the

diversification phase, as explained in Section 5.7.

Finally, on leaving the time step loop, the overall lowest minimum distance

together with the associated alpha-vector and codeword are output, prior to

termination.

5.3 ACS State-transition Decision Rule

The state-transition decision rule used in the AS algorithm of Chapter 3, called the

random-proportional rule [Gambardella and Dorigo 1995] concentrated on

exploration only, i.e. obtaining (a diversity of) alpha-vectors in a stochastic manner.

In this chapter the pseudo-random proportional rule [Dorigo and Gambardella 1997]

is used, as follows,

where v is a user-specified input parameter, 0 < v < 1, which expresses the balance

between exploration and exploitation, and rx e [0,1] is a random number drawn from a

uniform distribution.

• Exploration

Exploration is a stochastic process in which the construction of an alpha-vector is

performed using a probabilistic rule. For ant x , at time step t , with alpha-vector

where probability P* (t) is given by equation (3.17) and r2 e [0,1] is a random

number drawn from a uniform distribution.

If r > v then exploration
(5.1)

else exploitation

a x = {a x], j = 1,2 , . . . , k,

0 if r < P x (t)
2 0 j W (5.2)

99

As previously stated, the above decision rule is identical to that used in the AS of

Chapter 3, except here it is used only if r > v . When r < v exploitation is used.

• Exploitation

Exploitation is a process in which the construction of an alpha-vector is

performed using a simple comparison of probability values,

* fO if P x (t) > P x(t)a . = < oj w i; (5
7 [1 otherwise

where, from equation (3.18), P*_ (f) = 1 - P* (t) .

The above pseudo-random-proportional rule is more versatile than the random-

proportional rule of Chapter 3 in the sense that the parameter v allows a combination

of exploration (i.e. the generation of a diversity of alpha-vectors) and exploitation (i.e.

the favouring of those couplings with high amounts of pheromone, in order to seek

alpha-vectors with relatively low minimum distances).

Once ant x has constructed its alpha-vector, a x = [a x}, j = 1,2,..., k then the

associated codeword and minimum distance are cx = a xG and d x =w(cx),

respectively. As with the AS algorithm, the codeword cx = 0 is forbidden and so

a x = 0 , x e {1,2 ,...,x } is used as a stopping condition.
— — max

5.4 Diversification Phase

The diversification phase of the developed ACO algorithm is illustrated by the

flowchart in Figure 5.2. In ACO ’diversification’ has a slightly different meaning to

that used in TS, where the search is encouraged to move into previously unexplored

regions of a -space. In an ACO context, diversification refers to the generation of a

population (colony) of alpha-vectors with a high level of diversity (or variation) i.e.

100

different alpha-vectors. However, to achieve ACO diversification the TS

diversification strategies of Chapter 4 Section 4.8 are employed (explained in this

section) together with (local) updating of the trail intensity, r* (t) , i = 0,1,

j = 1,2,..., k , for each ant x (see Section 5.5).

With reference to the flowchart in Figure 5.2, first the intermediate-term and long

term memories (i.e. tabu list, T *, and influential candidate list (ICL), /*) for each ant

x are initialised; I* is cleared and T x contains the zero integer vector 0 and the

integer vector associated with the constructed (start) alpha-vector, a x0, i.e. Zq ,

r e {1,2,..., xm̂ }. Next a phase of TS moves (comprising rn moves) is performed

during which the current lowest minimum distance value, d'x , is recorded and the
n u n

lists T x and I* are managed in the manner explained in Chapter 4 Section 4.8. After

the initial m moves the distance ratio for ant x , R x , is calculated, where
p h a s e

R * _ d bo,M (5 ' 4)

d “
m in

and matched against the (initial) threshold value Dq , where 0 < D < 1. As with the

closeness criterion of Chapter 4 Section 4.5, the value of D is taken to be 0.6.

With reference to the flowchart in Figure 5.2, if R x > Dq then the search is in a

’promising’ region of solution-space in terms of low minimum distances. This region

is investigated further by means of an intensification phase, which is performed later.

For the moment, the intensification phase start solution (integer vector) is identified to

be the most recent influential candidate (IC) in the ICL for ant x , i.e. in I *.

101

No No
phase = 2

Yes
Yes

phase = 1

Initialisation

phase = phase + 1
Perform TS
n phase moves

Identify start solution in
preparation for

intensification phase

Identify diversification
strategy and phase start

solution

V

Figure 5.2 Flowchart for the diversification phase.

If R* < Dq and provided phase < 2, then, since the search is not in a particularly

good region in terms of low minimum distances, a diversification strategy is identified

together with the appropriate phase start solution. A second set of m e moves is

performed prior to matching the current value of R x against D for the last time for

ant x within the current time step. The current value of R x is based on the current

value of d* which, if necessary, is updated during the second (diversification) set of

TS moves.

The identification of the diversification strategy is given in the flowchart in

Figure 5.3. The particular strategies, i.e. First-Time and Most-Improvement are the

102

same as those presented in Chapter 4, Section 4.8, and have the appropriate start

integer vectors. Here the Random-Start diversification strategy has a start integer

31
vector with elements randomly generated between 1 and 2 -1 . The conditions for a

diversification strategy and the particular strategy are based on the degradation of the

threshold value; D, = Dq - i . h , i = 0,1,2, where, in this study h ~ 0.1. In other words,

in general, the start integer vector is chosen further back in the search (i.e. /*) as the

threshold value degrades.

Yes

No
Yes

No
Identify phase start solution in preparation

for Most-Improvement Diversification

Identify phase start solution in preparation
for First-Time Diversification

Identify phase start
solution in

preparation for
Random-Start
Diversification

V
Figure 5.3 Flowchart for diversification strategies.

As previously stated, the aim of the diversification phase is to produce a diverse

set of alpha-vectors, a x,x = 1,2,..., jc (with, preferably, low minimum distances,

d*). To achieve this, TS diversification strategies are employed (explained above)

together with a local updating phase for the trail intensity for each ant and for the

103

colony, which influences the start integer vector used in the initial phase of TS moves.

The local pheromone level updating phase is now explained.

5.5 Local Trail Intensity Update

Besides the TS diversification strategies (presented in the previous section) another

component to aid diversification/variation in the population of alpha-vectors (and the

avoidance of stagnation) is the use of local updating [Dorigo and Gambardella 1997].

In the AS algorithm explained in Chapter 3 the alpha-vector for each ant is

obtained stochastically (pure exploration) using the random-proportional rule (see

equation (5.2)). This rule involves P*. (t) (see equation (3.17)) in which the colony

trail intensity, r .. (t) , remains fixed throughout the construction of all alpha-vectors,u

a x, x = l,2,...,x
— max

Local updating of the trail intensity is a feature of ACS algorithms [Dorigo and

Gambardella 1997] and involves the modification of r (f) within the current time

step so that P x (t) is not a fixed quantity for all ants x = l,2,...,x . In other words,
0 j max

at time step t , the value of P* (t) depends on x , which will aid variation in the

constructed alpha-vectors.

The particular trail intensity local updating rule used in this study is as follows,

which applies to ant x e {1,2,..., x } at time step t ,

where a = {a x j, j = 1,2,...,k and z=0,l. In equation (5.5) p is a user-specifiedj r

input parameter, 0 < p l <1, in which (1 -P L) represents the local pheromone

(1 PL)T. if a* = i

- P l} t ij + P } otherwise

104

where a = {a'x}, j~ l ,2 , . . . ,k and i = 0,1. In equation (5.5) p is a user-specified
j L

input parameter, 0 < p L <l , in which (1 - P L) represents the local pheromone

evaporation factor and P ^ T . . is a positive amount of pheromone deposited to affect

the value of P* (t) in such a way as to aid variation in a x, x = 1,2,..., (described

below). By talcing At = | r - r |, j = 1,2,...,&,, the influence of local updating

(by equation (5.5)) will be directly proportional to the difference in the trail intensity

values for bit states 0 and 1.

To investigate the influence of the local updating rule (given by equation (5.5))

X
on the expression for P \ (t) in the state transition rule used to generate alpha-vectors

(see equations (5.2) and (5.3)), equation (3.17) is considered (with the notation for ant

x and time step t omitted) and may be expressed as follows,

1
P°‘ ’ J - l 2 ' - ’k (5.6)

where

T
A. = — and £;. = — (5.7)

~oj

_ %
j ' Vo J

Since the trail desirability values fj,., i~ 0,1, j = 1 , 2 are fixed quantities at

each time step, Sj is constant at a time step. A graph of PQ. against A (for a > 1,

b > 0) for equation (5.6) is given in Figure 5.4.

105

A . + D
1+ D

1Figure 5.4 Graph of P

Using equations (5.5), if a. = 0 then, by equation (5.7),

(l - p f) t . + p A t . (5.8)
/I = ^ u ' ̂ y

(1 - p)r
V L 0 j

i.e. A - A +D (5.9)
j j J

p A t . (5.10)
where D = -------— -— > 0

} (1 - p) t
v L Oj

Hence, with reference to the graph in Figure 5.4, when bit number j has state 0, then

the effect of the local updating rule is to decrease the value of P so that the chance

106

of a subsequent ant choosing bit state 0 is (slightly) reduced. Alternatively, if c t — 1,

then equation (5.5) leads to

A (5.11)
A. = — J—

i 1 + D
j

and so the local updating rule (slightly) increases the chance of a subsequent ant

choosing bit state 0 (see Figure 5.4).

5.6 Ant Co-operation

As explained in Sections 5.4 and 5.5, the use of TS diversification strategies and a

local updating rule for the trail intensity aids diversity/variation in the ‘colony’ of

alpha-vectors.

In this section an ‘interplay’ strategy is presented for the above two

diversification mechanisms so that ants may share information and co-operate in the

diversification process.

Ant co-operation, in a computational sense, is modelled by the inner and outer ant

(.*) loops in the flowchart in Figure 5.1. To explain the co-operation (information

sharing) process an example is given for a colony comprising 4 ants only (x = 4).

Before entering the double ant loop the initial trail intensity for the colony has

been input, i.e. t (0) = t q , i ~ 0,1, j = 1,2,..., k, where t q is a small positive number.

Also, already input is the colony fraction, c q , where the current colony fraction, c , is

set to the input value; c = c q . The value of c q represents the fraction of the colony of

ants (in other words, c q . ants) that use the current colony trail intensity matrix in

the generation of alpha-vectors before applying the local updating rule to obtain a new

107

(updated) colony trail intensity matrix. In this example = —. Hence, initially,

1

All alpha-vectors are arbitrarily initialised to 0 ; a x = 0 , x = l,2,...,x . Note

that the initial bit states do not affect the state transition probabilities, P*.(0) (see

equation (5.6)) when local updating is first applied because, initially, tq = r = tq ,

j = so that D = 0 (see equations (5.9), (5.10) and (5.11)) and so X =1 is

maintained.

With an ant colony such that x = 4 , using the state-transition rule (equations

(5.1), (5.2) and (5.3)) with P A (0) based on t (0) , the inner loop generates (with TS

diversification) alpha-vectors for ants x = l and 2, i.e. a 1 and a 2 (a 1 and a 4 =0).

Next, in the outer loop, based on the current colony of alpha-vectors and the current

colony trail intensity matrix, the trail intensity matrix for each ant is obtained using

the local updating rule (equation (5.5)), i.e. matrices <5rJ(0), m = 1,2,3,4, where

St '(0) = { r"(0)} (5-12)
ij ij

and t J (0) is given by equation (5.5), in which the ant number m and time step t - 0

are omitted.

The colony trail intensity matrix for the current time step (t = 0) is then updated,

as follows to become

V0)(1)=M0)+i>J(0) (5.13)
W=1

108

As this stage jc = 2 i=- x so the inner loop is re-entered with c and *
max

incremented to 1 and 3, respectively. Now using equations (5.1) to (5.3) with P* (0)

based on ^ (O)^ (see equation (5.13)) the inner loop generates (with TS

diversification) alpha-vectors for ants x = 3 and 4, i.e. a 3 and a 4 (a 1 and a 2 are

those produced during the first tour of the inner loop). Again, in the outer loop, with

the current alpha-vectors, a m , m = 1,2,3,4 and current colony trail intensity matrix,

T,. (0)(1>, the trail intensity matrix for each ant is re-calculated, S t '” (0)U), m = 1,2,3,4,

using the local updating rule. The colony trail intensity matrix for the current time

step is again updated to become

r #(0) ® = r ,(0)m + 2 * ; (0)m (5.14)
m=1

Since x = x the outer loop is exited. Notice that after the second tour of the inner
max

loop the generation of the second 50% of the colony of alpha-vectors is influenced by

the alpha-vectors produced in the first tour of the inner loop. In other words,

information (in terms of trail intensity values/pheromone levels) obtained by the first

50% of the colony of ants is ’shared’ with the other 50% of the colony; i.e. the ants co

operate in the pursuit of alpha-vectors with diversity.

With reference to the flowchart in Figure 5.1, on leaving the outer ant loop and

after an intensification phase and a (global) colony trail intensity update, which gives

T (1) (explained in Sections 5.7 and 5.8, respectively), the double ‘ant co-operation’

loop is re-entered for time step t = 1. As at time step t = 0, during the first tour of

the inner loop the current colony trail intensity matrix (now r (1)) is used in the

generation process for a 1 and a 2 (first 50% of the colony at t = 1). Note that a 3

109

and a 4 are those of the previous time step (i.e. t — 0) and will have influence on the

generation of a 3 and a 4 (second 50% of the colony at t = 1) by the second tour of

the inner loop.

Hence in the pursuit of a colony of diverse alpha-vectors, the interplay of TS

diversification and local trail updating, in the strategy described above, not only

enables ants to co-operate within a particular time step but also between time steps.

The example explained above is for = —. The two extremes are cq = — and 1.
2 x

max

With c = —— the inner ant loop is not utilised and a generated alpha-vector is
0 x

max

influenced by the alpha-vectors generated on all preceeding outer loop tours at the

same time step. Also, since the colony trail intensity matrix is updated x times in

each time step (compared to twice when cq = ~ , see equations (5.13) and (5.14)),

such extensive use of the local updating rule may diminish the need for the TS

diversification component of ant co-operation. Furthermore, as with c q = ~ , the case

1
c = ----- is such that the current colony trail intensity matrix will contain
0 x

max

l . 1
information from the previous time step. Hence the case c = gives a particular

0 x
max

co-operation strategy with good information sharing between ants with respect to the

generation of diverse alpha-vectors.

At the other extreme, i.e. c q =1, the outer ant loop is not utilised and there is no

co-operation (information exchange) within a time step nor between time steps. Also

the local updating rule is applied (to all ants) only once per time step. Similarly for

110

the updating of the colony trail intensity matrix. Hence, compared to cq = ----- and
JC

max

i , the case cq = 1 results in reduced ant co-operation and a co-operation strategy in

which the TS diversification strategies are an important component for alpha-vector

diversity.

5.7 Intensification Phase

For the current time step, on exiting the ant co-operation phase, i.e. the outer ant loop

(see flowchart in Figure 5.1), the current best (i.e. lowest) minimum distance for each

ant, d x , x = l,2,...,x , and the associated integer vector, z xln, have been obtained
min max

by the (TS) diversification phase (see Section 5.4) and recorded. The next procedure

in the presented ACS algorithm is the intensification phase.

The intensification phase comprises a single phase of TS moves (m e moves)

applied only to those integer vectors identified for intensification during the

diversification phase (see Section 5.4). These particular integer vectors are in

‘promising’ regions of solution-space which are now investigated further.

Those ants x with integer vector zAn identified for intensification have a short

term memory tabu list, T x , x e {1,2,..., * } , initially comprising the zero vector 0

and the start integer vector z j , where z x0 = z xmhl. A TS phase of m moves is then

performed to attempt to improve the current value of d . The tabu list grows to a

maximum size of (m + 2) elements. If, during the intensification phase, an
p h a s e

integer vector is encountered with associated minimum distance lower than the

111

current value of d' , then d is updated to the lower value and recorded, together
min min

with its associated integer vector, .

On completion of the intensification phase the presented ACS algorithm has

produced a population of minimum distances, d x , x = l,2,...,x , and associated
y L min max

integer vectors, z xmin. For the current time step the overall lowest minimum distance,

d , is then identified, where
best

d = m in {d A } x = l,2,...,x (5.15)
best min max

together with the associated integer vector, zbest.

5.8 Global Trail Intensity Update

The final stage in the time step loop is the updating of the colony trail intensity

matrix, r (?). The updating technique is similar to that of the AS algorithm of

Chapter 3 (see equations (3.20) to (3.22)) except in the ACS approach only the best

ant’, i.e. the ant x with the lowest minimum distance obtained within the current time

step, deposits pheromone, by an amount denoted by S t ^ (t) . The purpose of only

using best ant’ information is, in the subsequent time step, to focus the generation of

alpha-vectors in a region of good solutions (alpha-vectors with low minimum

distances) and so speed up convergence.

The (global) trail intensity updating rule calculates the colony trail intensity

matrix for use in the subsequent time step and is given by

(— >

t (t +1) = (1 - p)t (r) c° + P St **(0 (5.16)
l] G ij G ij

112

In equation (5.16) the pheromone deposit at time step t, (t) , is calculated with

reference to the alpha-vector, a bes< = {abtit}, j = 1,2,..., k , associated with the d
A — j best

given by equation (5.15), in the following manner,

d b o u n d
b e s t1 if a f s‘ = i

best J
(5.17)

0 otherwise

where d ^ ^ is the appropriate square root bound for the particular QR code.

(i)coThe trail intensity matrix for the current time step is r (t) , where cq is the

colony fraction. For example, if cq = ~ then the current trail intensity matrix is

(2)
T (t) given by equation (5.14) but at general time step t .

The first term on the right-hand side of equation (5.16) represents the

autocatalytic (positive feedback) aspect of the process in which the factor (1- p) is a

trail evaporation factor. The parameter p c is user-specified, 0 < p <1, and acts as a

weighting factor for the feedback and pheromone deposit components of the global

updating.

The value of d given by equation (5.15) represents the lowest minimum

distance value found during a time step. The current lowest minimum distance found

* *
during all time steps so far is d (where d = d when t = 0) and is updated to

*
the value of d if during a time step d < d

best best best

113

On leaving the time step loop the current value of d is output together with the

associated alpha-vector and codeword, a*best and cbest, respectively.

5.9 Minimum Distance Results

The ant colony system algorithm described in Sections 5.3 to 5.8 was used to determine

the minimum distances of some large QR codes (p = 137, 167, 191, 193 and 199). The

augmented QR codes (n(x) and q(x)) and expurgated QR codes ((x-l)n(x) and (x-l)q(x))

were used in this investigation.

The initial trail and desirability matrices for the colony were set to t&.(0) = 1(T6 and

r/ij (0) = 0.5, respectively, i = 0,1 and j = 1,2,..., A:. The maximum number of time steps

was smax - 25. Since there is ‘ant co-operation’ in the ant colony system, the number of

ants in the colony was reduced from xmax = k (as used in the ant system of Chapter 3) but

remained dependent on the size of the problem. Here xmax - 0.25A: (or integer part) and

all ants are used in the aspects of the developed tabu search algorithm (i.e. diversification

or intensification, see Section 5.4 and Section 5.7, respectively).

First the values of the user-specified parameters v , p L and p G were investigated to

obtain the combination most beneficial to the optimisation process. The augmented QR

code (n(x)) with p = 137 was used as a test code (since this was used in Chapter 3 and

Chapter 4) with the following parameter values, a = 1, b = 0 (from Chapter 3) and Q =

d-bound (upper bound = 21), c0 = 0.5, v = {0.1, 0.3, 0.5}, and p L ~ p G = {0.2, 0.3, 0.4}.

For each combination of v and p L (= p G), minimum distance results using the ant

colony system algorithm were obtained with 10 different seeds for the random number

114

generator (random numbers rx and r2 6 [0,1] are used in the state-transition rule, see

equations (5.1) and (5.2), respectively).

In order to visualise the analysis of the obtained minimum distance results, the

ranges (i.e. dbest ~d~best, where dbesl and d~best denote the highest and lowest minimum

distance value, respectively, obtained by the 10 runs) are shown in Figures 5.5, 5.6 and

5.7 for each combination of v = (0.1, 0.3, 0.5) and p L - p G - (0.2, 0.3, 0.4).

Inspection of Figures 5.5, 5.6 and 5.7 reveals that v = 0.3 (i.e. 30% exploitation,

hence 70% exploration) gives the least variation (greatest repeatability) in the obtained

minimum distances for each value of p L (= p G).

0.1 0.3 0.5 v

Figure 5.5 Ranges of minimum distance obtained using p L = p G = 0.2.

115

0.1 0.3 0.5 v

Figure 5.6 Ranges of minimum distance obtained using p L ~ p G ~ 0.3.

0.1 0.3 0.5
V

Figure 5.7 Ranges of minimum distance obtained using p L = p G = 0.4.

Next, with v = 0.3, actual values of d *esl, d ^st and the mean minimum distance of

the 10 runs, dbest, are plotted in the graph in Figure 5.8. As observed in Figure 5.8, p L

- p G - 0.2 is the best value with the respect to solution quality and repeatability.

With v = 0.3 and p L - p G - 0.2 the (ant co-operation) colony fraction, c0, was

investigated by analysing the minimum distance results obtained by 10 runs (i.e. 10

different random number seeds) of the algorithm. Here (expressed as a decimal) c0 =

116

0.1, 0.25, 0.5 and 1.0. The obtained minimum distance results are shown in Figure 5.9

for each value of c0.

35
34
33
32
31
30

..............

* Lowest d-best
* Highest d-best
* Mean d-best1 ■

" ,...............

0.2 0.3 0.4 P l ’ P g

P l » P g
0.2 0.3 0.4

d
best

30 30 31

d +
best

32 33 33

d best 31.3 31.7 32.1

Figure 5.8 Minimum distances obtained for p = 137.

liliSlVhS'* #1 I

-----------L----- - ----------------- I----

--------------------- ------------

0.1 0.25 0.5

* Lowest d-best
* Highest d-best
- Mean d-best

0.1 0.25 0.5 1.0

d
best

32 33 30 31

d +
best

36 37 32 36

d best 34.9 35 31.3 34.6

Figure 5.9 Minimum distances obtained for p = 137.

117

From Figure 5.9, it is clear that with c0 = 0.5, the minimum distances obtained were

both of smaller range and lower than with c0 =0.1, 0.25 or 1. To confirm the parameter

settings as a = 1, b = 0 and Q = dbound, c0 = 0.5, v = 0.3 and P L - PG - 0.2, the

frequency of minimum distances found in the 10 runs are shown in Figure 5.10.

Figure 5.10 Frequency of the obtained minimum distances using different c0.
(a) 0.1, (b) 0.25, (c) 0.5 and (d) 1.

118

 ,___________________

(c)

jami

—

30 31 32 33 34 35 36 37

30 31 32 33 34 35 36 37

5

4

3

2

1 II
30 31 32 33 34 35 36 37

(d) 30 31 32 33 34 35 36 37

The bar charts in Figure 5.10 (a), (b), (c) and (d) illustrate the effect of ant co

operation, as represented by the value of c0, on the 10 obtained values of d best for c0 =

0.1, 0.25, 0.5 and 1.0, respectively. As observed in Figure 5.10, c0 = 0.5 gives the

highest frequency of the lowest dbesl values.

The computational results indicate that with high levels of ant co-operation (i.e. low

values of c0, here c0 =0.1 and 0.25) the algorithm finds d~est values very early in the

optimisation process (sbest = 2 for c0 =0.1 and sbest = 5 for c0 = 0.25). In this situation

the combination of TS diversification strategies and the local updating rule induces

relatively high diversity in the colony of alpha-vectors so that the focusing effect of the

global updating rule may not have significant influence on the colony trail intensity

matrix and hence may not lead to improved results.

With c0 = 1 (i.e. low level of ant co-operation) the algorithm found dbest later on in

the optimisation process (sbest =15; smm = 25). In this situation there is no sharing of

information within and between time steps so that there is a delayed learning process

which delays improved results.

With cQ = 0.5 a balance between the amount of ant co-operation, in terms of

diversity of alpha-vectors, as obtained by TS diversification and local updating, and the

effect of focusing by the global updating rule, produces relatively good results that may

be obtained reasonably quickly (in terms of time steps) and do not suffer from stagnation

(8 of the 10 runs obtained dbest values with sbest between 5 and 24).

Analysis of the minimum distance results gave the best combination of parameter

values (in terms of the obtained solution quality and repeatability) as a = 1, b = 0 and Q

119

= d bound, V = 0.3, p l = p G = 0.2 and c0 = 0.5. This combination of parameter values

were then used by the ant colony system algorithm to obtain minimum distances for all

other QR codes. As with the test code, the ant colony system algorithm was used with 10

different random number seeds for each code (i.e. 10 runs per code).

♦ Lowest d-best
* Highest d-best
» Mean d-best

p 137 167 191 193 199
^bound 21 23 27 27 31

d
best

30 40 44 49 47

d +
best

33 47 48 50 52

d best 31.4 43.4 46.2 49.6 50.4

Figure 5.11 Minimum distances obtained by the developed ant colony system
using n(x) and upper bound.

120

60

50

40

30

20
137 167 191 193 199

* Lowest d-best
* Highest d-best
- Mean d-best

p 137 167 191 193 199
d bound 13 15 15 15 15

d~
best

31 39 47 44 47

d +
best

32 40 47 49 51

d best 31.3 39.7 47 46.3 49.6

Figure 5.12 Minimum distances obtained by the developed ant colony system
using n(x) and lower bound.

Results for QR codes with the generator polynomial n(x) and dbound as the upper and

lower bound are given in Figure 5.11 and Figure 5.12, respectively. Results for other QR

codes are given in Tables Cl to C6 in Appendix C. Computational results were obtained

for the larger QR codes only (characterised by p = 137, 167, 191, 193 and 199); the exact

minimum distances for the smaller QR codes (p = 71, 79, 97, 103 and 113) have been

obtained by previous algorithms.

With reference to Figures 5.11 and 5.12, it is observed that, compared to the ant

system results given in Figure 3.8, the developed ant colony system (ACS) may produce

better quality results (see d b values for p = 137, 167 and 199 in Figure 5.11 and

121

values for p - 137, 167, 193 and 199 in Figure 5.12) and, furthermore, the algorithm

gives far greater repeatability.

The overall best minimum distances (i.e. lowest of values of d êst) obtained using

the developed ant colony system algorithm are given in Table 5.1. Inspection of Table

5.1 reveals that the improvements gained by the developed ACS over AS are at the

expense of very high execution times.

Code P g W dbound d
best best

t (h:m:s)
best

6 137 (x-l)n(x) 14 28 1 0:14:13.38
6 137 (x-l)n(x) 22 28 1 0:10:15.99
7 167 n(x) 15 39 10 5:51:13.80
7 167 q(x) 15 39 2 0:18:15.42
7 167 q(x) 23 39 2 0:21:31.08
8 191 q(x) 27 43 7 6:05:14.30
9 193 n(x) 15 44 4 5:41:48.50
9 193 q(x) 15 44 6 5:40:53.10
9 193 q(x) 27 44 6 3:28:06.10
10 199 (x-l)n(x) 32 44 6 1:50:36.48

Table 5.1 ACS results for QR codes.

Chapter 6

Conclusions

6.1 Summary

This thesis has investigated and developed two optimisation techniques, namely, tabu

search (TS) and ant colony optimisation (ACO) to determine minimum distance

estimates of error-correcting codes.

The minimum distance, d , is the smallest weight of the non-zero codewords

comprising a linear code C and, in terms of computational effort, requires |c| — 1

evaluations. A consequence of the linear nature of code C is that c = a G , where

codeword c ^ 0 , G is the generator matrix of dimension k x n and a is a k -tuple.

Furthermore |c| = 2*, so that when k is large the determination of d by complete

2
enumeration is not practical. In this thesis values of k ~ 10 are investigated and the

minimisation problem is combinatorial. The combinatorial nature of the determination

of the minimum distance of a linear code gives rise to difficulties in the optimisation

procedure. In the first instance this combinatorial optimisation problem is NP-

complete, so the computation time quickly becomes prohibitive. Hence heuristic

solution techniques become necessary. A second difficulty is the inability of most

heuristic methods to determine global optima of non-convex (multiple optima)

problems.

The particular linear codes studied were Bose-Chaudhuri-Hocquengham (BCH)

and quadratic residue (QR) codes. BCH codes were used because the exact minimum

distances of these codes are known and may be used as benchmark values for the

heuristic optimisation algorithms. In contrast the exact minimum distances of large

QR codes are not known but have lower and upper bounds [Macwilliams and Sloane

1977].

In order to investigate the minimum distance problem (MDP) of various QR

codes the mathematical derivation of the generator matrices was required. The Coding

Theory algebra for generator matrices for QR codes was developed in Chapter 2. One

form of generator matrix was obtained by cyclic shift of the first row of a codeword in

p — 1
which each codeword corresponding to a row of G has weight equal to —— .

Hence, for larger QR codes this generator matrix will have rows with a relatively

large weight. With large initial weight it was difficult to search for low weight

codewords in a feasible time. Another form of G was then developed, using the

algebra of a polynomial representation of the codewords, in which the weight of the

codewords in G have significantly lower weights than the generator matrix with

weight - - - - - • Use of this developed generator matrix gave improved results.

Tabu search (TS) is a recent heuristic optimisation technique that has the ability

to avoid entrapment by local optima and hence search for global optima. Using the

derived generator matrices for QR codes this thesis presents the development of an

effective and efficient TS algorithm to obtain minimum distances. Following Bland

and Baylis (1995), a basic TS algorithm was first implemented to find minimum

distances for different QR codes. The computational results show that with low

weight generator matrices, the basic TS algorithm was able to deliver reasonable

results in short execution times (see Chapter 3). In addition, a distributed processing

algorithm called ant system was presented. Ant system is a basic ant colony

optimisation algorithm (ACO) which uses information obtained by a number of

124

individual agents (computational ‘ants’) to form a population-based optimisation

algorithm. The ant system does not search by means of a ‘path’ of successive

solutions in an appropriate solution-space, rather, it aims to progressively improve an

aid to decision-making so that, at each iteration, better decisions may be made (i.e.

ones that lead to better objective function values). Although the ant system has

positive-feedback as its main optimisation mechanism, better quality results may be

obtained when used with tabu search as a local search improvement phase (i.e. the use

of tabu search for local improvement is beneficial to the optimisation process and,

therefore, will be used in the developed algorithm).

p d Q R d T S t ' T S *(*)
71 11 11 0:00:01.05 n(x)
79 15 15 0:00:00.99 n(x)
97 15 15 0:00:04.79 q(x)
103 20 20 0:00:00.93 (x - 1) n{x)
113 12-16 16 0:00:00.22 (x -1) n(x)

Table 6.1 Best results of the basic tabu search algorithm.

The overall best results using the basic tabu search algorithm with the smaller QR

codes (i.e. p = 11, 79, 97, 103 and 113) are presented in Table 6.1. With reference to

Table 6.1, d Q R denotes the square root bound results, d T S and t T S denote the obtained

overall best minimum distance and the associated execution time, respectively.

Inspection of Table 6.1 shows that the basic tabu search algorithm was able to find the

exact minimum distances (indicated by bold type). This indicates that with the use of

relatively low weight generator matrices (i.e. augmented and expurgated QR codes),

this algorithm is able to successfully tackle relatively small size problems.

To enhance the basic TS algorithm to tackle the larger problems (i.e. p = 137,

167, 191, 193 and 199), longer-term strategies and a number of ‘memory’ lists were

developed within a TS algorithm (explained in Chapter 4). The features and strategies

125

include a two-way conversion mechanism, an influential candidate list, a dynamic

tabu list, diversification (first-time, most-improved, equal-best and random-start) and

intensification strategies. Like hashing functions the two-way conversion reduces the

memory storage, however, unlike hashing functions, it has the capability of

converting integers to binary alpha-vectors and vice versa. The influential candidate

list and the dynamic tabu list were used to guide the search to explore for longer

periods. Different levels of diversification and intensification strategies enabled the

appropriate memory to be ‘re-activated’ so that the search did not require the

excessive memory that would be needed to store its complete history. Results show

that improvements may be obtained with the use of these features and strategies.

■ TS
a DTS

103 137 167 191 193 199

p d TS tTS d d t s t DTS

137 29 0:00:24.06 28 0:01:23.87
167 35 0:00:02.91 32 0:04:41.00
191 36 0:00:19.72 36 0:00:19.72
193 38 0:00:01.31 38 0:00:01.26
199 40 0:00:08.40 40 0:00:08.40

Figure 6.1 Best results of the basic and the developed tabu search algorithms
using n(x).

A comparison of the minimum distance results (with n(x)) for the larger problems

obtained using the basic tabu search algorithm (TS) and the developed tabu search

126

algorithm (DTS), is presented in Figure 6.1. With reference to the table in Figure 6.1,

dTS and tTS denote the best minimum distances and the execution times using the

basic tabu search algorithm (see Chapter 3) and dDTS and tDTS denote the best

minimum distances and the execution times using the developed tabu search

algorithm (see Chapter 4). The results show that there are improvements for p = 137

and 167. Even with the use of more moves and longer-term strategies, the search

process was still able to obtain d DTS in a very fast execution time. However, the

optimisation process was unable to find any improvements for some of the larger QR

codes (i.e. those withp = 191, 193 and 199).

In the ant system explained in Chapter 3 the computational results show that the

standalone AS algorithm produced reasonable results but improvements are possible

when used in conjunction with a tabu search local improvement phase (used in the

developed algorithm of Chapter 5). Another type of ACO algorithm is the ant colony

system (ACS), with its aim to improve the ‘intelligence’ of the ant system (AS). The

ACS (presented in Chapter 5) enhanced the capability of AS by using a state-

transition rule that incorporated both exploration and exploitation. The local trail

intensity update rule was formulated so that its use with some TS diversification

strategies allowed ants to share the knowledge of the colony (i.e. ant co-operation)

and avoid stagnation. The global trail intensity update rule was such that only the best

ant was allowed to deposit pheromone, which enables the optimisation process to

focus on the neighbourhood of the best quality alpha-vectors.

Figure 6.2 shows the ranges of the obtained minimum distances using the ant

system (AS) of Chapter 3 and the ant colony system (ACS) of Chapter 5, for n(x).

Results for the ant colony system are indicated by * on the horizontal axis in the graph

in Figure 6.2. Inspection of Figure 6.2 reveals that the developed ACS algorithm is

127

able to produce minimum distance values that are lower than those obtained using the

AS algorithm (i.e. for p = 137, 167, 193 and 199). Also, it is noticeable that the

ranges of the ACS minimum distances have low variation (based on 10 runs using 10

different random seed values). The developed ACS algorithm is superior to the AS

algorithm in terms of repeatability of results.

♦ Lowest d-best
* Highest d-best
» Mean d-best

137 137* 167 167* 191 191* 193 193* 199 199*

p d~best (AS) d L (AS) dbest (AS) dbest (ACS) d L (ACS) dbest (ACS)
137 34 54 42.5 30 33 31.4
167 43 71 63 39 40 39.7
191 43 64 52.1 44 48 46.2
193 46 75 58.5 44 49 46.3
199 71 83 78 47 51 49.6

Figure 6.2 Results of the ant system and the ant colony system using n(x).

As a final comparison, the best minimum distances (using n(x)) and associated

execution times for all algorithms investigated in this thesis, are presented in Table

6.2 and Table 6.3, respectively. In Table 6.2, d AS and d ACS denote the lowest

minimum distances obtained out of 10 runs of the AS and ACS algorithm,

respectively, and the associated execution times are denoted by tAS and tACS,

respectively, in Table 6.3.

&-P- S-

128

p d QR dTS d dts dAS dACS
137 13-21 29 28 34 30
167 15-23 35 32 43 39
191 15-27 36 36 43 44
193 15-27 38 38 46 44
199 15-31 40 40 71 47

Table 6.2 Best results for the MDP using n(x).

P tTS (h:m:s) tdts (h:m:s) t~AS (h:m:s) t~cs (h:m:s)
137 0:00:11.26 0:00:43.17 0:05:03.19 3:46:33.40
167 0:00:01.81 0:03:06.92 0:09:35.67 5:51:13.80
191 0:00:02.31 0:01:09.75 0:06:15.47 3:05:14.30
193 0:00:01.31 0:01:04.26 0:11:46.84 5:41:48.50
199 0:00:08.40 0:01:08.05 0:07:22.37 3:05:23.18

Table 6.3 Best Execution times for the MDP.

Inspection of Table 6.2 reveals that the most successful algorithm, in terms of the

obtained minimum distance estimates, is the developed tabu search algorithm (DTS).

A disadvantage of using an ACO algorithm (AS and ACS), rather than a tabu

search algorithm (TS and DTS), is the relatively large number of user-specified

parameters that are required to be ‘tuned’ to the particular problem under

investigation. Also, this type of algorithm is stochastic, which may make its use less

attractive for practical reasons (because of repeatability problems) when compared to

a deterministic technique such as tabu search. As a final (practical) consideration,

compared to tabu search, ACO algorithms require much longer execution times (see

Table 6.3).

Possible modifications to the developed ACS algorithm aimed at improving

solution quality without (significantly) increasing the execution times are suggested in

Sections 6.3 and 6.4.

For all the QR codes investigated in this thesis, a summary of the obtained lowest

minimum distances that are closest to the exact (or upper bound) value (dQR), and

129

have the fastest execution time, are given in Table 6.4. All minimum distances (dbest)

and execution times (tbest) reported in Table 6.4 were obtained by the developed tabu

search algorithm Obtained exact minimum distances are indicated by bold type.

p
d Q R ^ best h e s t g(x)

71 11 11 0:00:01.05 n(x)
79 15 15 0:00:00.99 n(x)
97 15 15 0:00:04.79 q(x)
103 19 19 0:00:48.01 n{x)
113 12-16 16 0:00:00.22 (x -1) n(x)
137 13-21 27 0:00:43.17 q(x)
167 16-24 32 0:01:09.26 (x -1) q(x)
191 15-27 35 0:02:25.56 q(x)
193 16-28 38 0:00:01.21 (x -1) n(x)
199 15-31 40 0:00:08.05 q{x)

Table 6.4 Overall best results.

6.2 Achievements

The main aim of this study is to investigate the use and application of heuristic

optimisation techniques to determine minimum distance estimates of error-correcting

codes (BCH and QR codes). In order to investigate the minimum distance of

(augmented and expurgated) QR codes, the required research has been presented and

discussed in the previous chapters. The main achievements are now stated.

• Development of the Generator Matrices for QR Codes

In order to investigate the MDP for error-correcting codes (e.g. BCH and QR

codes) the generator matrix, G , is required. The minimum distances for BCH codes

are known and were used in this thesis as benchmarks for the obtained minimum

distances. The generator matrix for this class of codes was that used by Bland and

Baylis (1995). However, for QR codes, the exact minimum distances are unknown,

particularly for the larger codes investigated in this thesis. For QR codes the generator

matrix was required to be developed mathematically in a way that could be adapted into

130

a computational algorithm that produced an appropriate generator matrix, G for a

given prime number, p .

In this thesis the mathematical development of generator matrices for QR codes

used the algebra of a polynomial representation of codewords. The mathematical

theory was then converted to a general algorithm that was able to automatically produce

the generator matrices for both augmented and expurgated QR codes for any

appropriate value of p .

• Adaptation of the Ant System to the Minimum Distance Problem

A feature of the ant system is the trace intensity matrix in which information is

held for decision-making and its contents represents the level of ’pheromone’

deposited by a colony of computational ants. The trace intensity matrix is updated

each iteration with the information obtained during the iteration so that decisions that

lead to improved objective function values may be made and, like tabu search,

algorithm termination at local optima may be avoided.

In this thesis the ant system algorithm was adapted and used in a Coding Theory

context. The computational ants produced a colony of alpha-vectors a = { a j},

j ~ 1,2,..., k , by probabilistically assigning bit state z’e{0,l} to bit number

j 6 {1,2,...,k} to form (/, j) couplings. The ‘cost function’ values for the MDP are

the codeword weights, w (aG), and the required minimum distance is d* , where d*

= min{w(aG)}.

• Development of the Tabu Search Algorithm

In this thesis, to enhance the basic TS algorithm, a two-way conversion has been

formulated to convert alpha-vectors (binary strings) to integers with the aim of

reducing the size of the tabu list and to improve the search efficiency (explained in

131

Chapter 4). Also, the developed algorithm incorporated candidate list strategies such

as the influential candidate list and the dynamic tabu list, which enabled the search to

memorise certain important moves for long periods, so that the search did not require

excessive memory to store its complete history. Based on the square root bound for

QR codes [Macwilliams and Sloane 1977] the closeness criterion utilised the given

bound as a threshold value to establish the quality of the search which was then used

to identify optimisation strategies such as diversification and intensification. For

intensification, the influential candidate list was used as a ‘backtracking’ mechanism

to guide the search to return to desirable regions and, for diversification, the

influential candidate was treated as a ‘penalty’ to force the search into new regions.

These two strategies enabled the search to both explore the search-space and exploit

the search process.

• Development of the Ant Colony System

The ant colony system (ACS) is an algorithm within the general framework of

ACO which is designed to improve decision-making (compared to AS) through the

use of a more general decision rule which incorporates the processes of exploration

and exploitation. The development of ACS uses a particular form of local trail

updating to allow ants to modify their individual trail intensities and produce a

diversity of solutions so that ants explore different solutions. In addition, a global

trail updating rule was used to guide ants to focus on the selection of good solutions

so that ants learn as time progresses. The main feature of the developed ACS is ‘ant

co-operation’. Ant co-operation is an interplay strategy between local trail updating

(of ACS) and diversification (of tabu search) which enables ants to share information

(i.e. co-operate) so that ants learn and produce a diversity of solutions to avoid

stagnation.

132

6.3 Possible Improvements

In this section some possible improvements to the developed TS and ACS algorithms

are presented. The following modifications have no conceptual basis in terms of the

backgrounds of TS and ACS; they are purely computational features, which, when

included in the developed algorithms may produce better results for the codes of this

study.

For the developed ACS algorithm the following modifications are a consequence

of observations that the alpha-vectors associated with the lowest minimum distances

are such that the elements are predominantly in state 0.

• Exploration

Based on the observations concerning alpha-vector elements, the following

modifications to the exploration case of the state-transition rule (see equation (5.2)) is

designed to increase the chances of an element of an alpha-vector being in state 0

when it has the greater chance of being in state 1. In other words, if, for ant x at time

t, P A (t) > P* (t) , j G {1,2,..., k) , then P* (t) is slightly increased.

The probability that an alpha-vector element a . , j e { 1 , 2 , . . . , has bit state 0 is

given by equation (5.6) (with x and t omitted)

P 1 (6 -1).
0J l + XajS b}

where

r . n . (6.2)
A and £ =-22_

' ^ J

in which t and r}.., i ~ 0,1, y' = l,2,...,^, denote trail intensity and desirability,

respectively.

133

A typical graph of F against A (omitting j) for equation (6.1) is given in Figure

6.3 and is shown as a continuous curve.

Figure 6.3 Graph of Fq against A .

1 — When F > Fq , that is, by equation (3.18), Fq < —, equation (6.1) leads to A > £ a

(see Figure 6.3). Hence, to increase the chance of a = 0 , j e {1,2,...,k } , in cases

i t
where F > Fq (i.e. A > e a), the local updating rule is used with a . = 1 (see equation

5.5);

A (6.3)
A = — J—

j 1 + Dj

where

p A t (6.4)
D = ----- —]—

J (1 ~ p) t
v ^ L J 0 /

134

and

A t =1 t - tj 1 oy ly
(6.5)

Hence, for ant a: at time step t, in the construction of alpha-vector a x - { a x.},

j = 1,2,..., k , the modified state-transition rule for exploration becomes

* fo if r < P x (t) (6’6)a . - \ o yw
j [1 otherwise

where random number r e [0,1] and

^oy(0 =
1 + Aaj£ bj

1-t-
\ a

if Aj

otherwise

1 + D,v J y
A typical graph of PQ against A (omitting j, x and t) for the equation,

1
-

1 +

-b
, X > £ a

(6.7)

(6.8)

is shown in Figure 6.3 as a broken curve.

Inspection of the graph in Figure 6.3 shows that for values of X such that

- b

X > e a (i.e. P > PQ), PQ (modified) given by equation (6.8) is greater than P

(unmodified) given by equation (6.1).

135

• Exploitation

As with stochastic exploration, the modification to the deterministic exploitation

case of the state-transition rule is designed to increase the possibility of an alpha-

vector element being in state 0 when it should be in state 1.

From equation (5.3), i.e. exploitation, for a x = {a*}, j = l,2,...,/c, and ant x at

time step t,

a x - 1 if P* (0 < — j °j 2 (h.y)

Hence, with reference to Figure 6.3, the range of X such that a . = 1 is chosen is

given by

i t
A > e a (6.10)

The following modification is designed to decrease the range of X that will result in

X Xa , =1, in other words, increase the range of X that will result in a . = 0 . The

modified state-transition rule for exploitation is taken to be

q j \ 1 s ^ e '~2 (6 .11)
* otherwise

Where user-specified parameter p is such that 0 < p < 1 . Hence, by equation
E E

(6.11) the range of X such that a , - 1 is chosen is now

x >
v

2 ~ P e

P e

e a (6 .12)

In other words the range of X that results in a , = 0 has increased by a factor / (seej E

Figure 6.3), where

136

(6.13)

• Random-Start Diversification

The Random-Start diversification strategy is a component of both the developed

TS and ACS algorithm. The proposed modification is designed to perform a ‘grape

shot' in a -space using candidate random-start integer vectors in which the associated

alpha-vectors have many zero entries.

If random-start integer vector, z r , is such that

where z . , i = 1,2,..., B , are integer blocks, then a further B start integer vectors may be

formed by 'exploding' zr in the following manner,

Hence in the modified Random-Start diversification strategy, for a randomly

generated start integer vector, z r , further candidate start integer vectors, z ri,

i = 1,2,..., B , given by equation (6.15), are considered. The actual start integer vector

selected for Random-Staid diversification is the one with the associated lowest

minimum distance.

Z r } (6.14)

z,-i ={ zl50,-.,0}

Zr 2 = { 0 , Z 2,.. .,0} (6.15)

137

6.4 Further Research

• Code-based Research

In this study, the minimum distances for various binary QR codes were

investigated. Although the exact minimum distances for these codes are not known

for the larger codes, researchers have been able to find ranges of these minimum

distances in which the minimum distance estimates could be calculated by using the

square root bound. With the rapid growth of computer technology, it is more efficient

to investigate minimum distances of codes computationally. The computational

results obtained in this thesis for large size QR codes indicate that heuristic

optimisation techniques are able to deliver good minimum distance estimates in

reasonable computation time, and for smaller size QR codes, the search was able to

find minimum distances equal to or very close to the square root bound results. An

area for further research is the investigation of some ternary QR codes [Higgs and

Humphreys 1995] as they have the rich algebraic structure and, to date, the minimum

distances for even small size codes are still unknown.

• Algorithm-based Research

In the ant colony system, there are many ways to improve or to change the ACS

approach. Unlike the TSP or routing problems where these problems have many

states to choose from, the MDP chooses between two particular states, 0 and 1, so a

major aim is to avoid stagnation. Ants were discouraged from choosing the same

alpha-vectors by using a local trail intensity updating rule to reduce the chances of

stagnation. There are different ways to formulate the local trail intensity updating rule,

for example, for those ants that generate alpha-vectors with high distance values, the

138

pheromone evaporation parameter p may be increased so that the poor solutions

(i.e. high distance values) will become less attractive. Another change to the ACS

could be to allow ants to decide when the local trail intensity updating rule should be

used. If ants generate alpha-vectors that are different from each other, yet their

corresponding distance values are of good quality, then the local trail intensity

updating rule could be de-activated until the quality of the distance values obtained

begins to decline.

Apart from the local trail intensity updating rule, the formulation of the global

trail intensity updating rule may also be modified. In ant system all ants contribute

pheromone to the next time step, while the ACS uses only the ant that obtained the

lowest distance (i.e. the best ant) to deposit pheromone for the next time step. It was

observed there is often more than a single ant that generates the same distance values

(with different alpha-vectors); the first encountered was used. An alternative strategy

to investigate would be to allow all best ants to deposit pheromone so that the search

procedure will not be focused by a single best alpha-vector, but a set of equally best

alpha-vectors.

139

Appendix A

Table A l, A2 and A3 give the minimum distances, d , and associated move
best

numbers and execution times, m and / , respectively, for various QR

codes using tabu search (explained in Chapter 3).

Code P d
QR

w(G) d
bust

m
bust

t (h:m:s)
best

1 71 11 15 15 2 0:00:00.04
2 79 15 23 16 9 0:00:00.24
3 97 15 17 15 96 0:00:04.79
4 103 19 27 20 21 0:00:03.46
5 113 11-15 33 21 24 0:00:04.89
6 137 13-21 39 29 2 0:00:00.71
7 167 15-23 43 35 2 0:00:01.81
8 191 15-27 47 36 31 0:00:21.53
9 193 15-27 43 40 1 0:00:00.41
10 199 15-31 51 43 4 0:00:04.23

Table Al Tabu search results using q(x).

Code P d
OR

w{G) d
best

m
bust

/ (h:m;s)
bust

1 71 12 16 12 20 0:00:00.40
2 79 16 20 16 15 0:00:00.41
n
J 97 16 22 16 37 0:00:04.28
4 103 20 24 20 7 0:00:00.93
5 113 12-16 26 16 1 0:00:00.22
6 137 14-22 34 36 45 0:00:11.26
7 167 16-24 56 40 11 0:00:05.99
8 191 16-28 48 40 1 0:00:01.21
9 193 16-28 42 38 1 0:00:01.21
10 199 16-32 60 44 2 0:00:01.98

Table A2 Tabu search results using (x - l)n (x) .

Code P d
OR

w(G) d
best

m
best

t (h:m:s)
best V 7

1 71 12 16 12 34 0:00:00.68
2 79 16 20 16 14 0:00:00.34

97 16 30 22 1 0:00:00.05
4 103 20 24 20 7 0:00:01.26
5 113 12-16 26 20 1 0:00:00.28
6 137 14-22 34 28 57 0:00:16.42
7 167 16-24 56 36 J 0:00:02.25
8 191 16-28 48 36 3 0:00:02.31
9 193 16-28 42 40 29 0:00:19.83
10 199 16-32 60 44 22 0:00:16.70

Table A3 Tabu search results using (x - l)q(x) .

Figures Al. A2 and A3 give the lowest, highest and mean value (d ,d +
best best

and dbest, respectively) of the minimum distances obtained with 10 runs of the

ant system (explained in Chapter 3) for various QR codes.

 — — *
*

I t ‘ . Lowest d-best
* Highest d-best
x Mean d-best

 *——

 J ;

71 79 97 103 113 137 167 191 193 199

P

P 71 79 97 103 113 137 167 191 193 199
d

OR
11 15 15 19 11-15 13-21 15-23 15-27 15-27 15-31

d
best

15 27 18 23 26 30 48 43 43 71

d +
best

15 32 35 35 41 53 68 67 75 80

d best 15 29.9 28.6 28.2 33.2 44.1 62.5 52.8 53.7 76.6

Figure Al Minimum distances obtained by ant system using q(x).

Lowest d-best
Highest d-best
Mean d-best

..........

71 79 97 103 113 137 167 191 193 199

71 79 97 103 113 137 167 191 193 199
d

OR
12 16 16 20 12-16 14-22 16-24 16-28 16-28 16-32

d
best

16 16 26 24 44 34 40 36 40 52

d +
best

16 20 38 36 48 52 66 44 66 84

d best 16 18.4 29 29.6 45.6 39.2 53.2 38.4 48.4 72.4
Figure A2 Minimum distances obtained by ant system using (x-l)n(x).

Lowest d-best

H ighest d-best

Mean d-best

71 79 97 103 113 137 167 191 193 199

P

P 71 79 97 103 113 137 167 191 193 199
d

OR
12 16 16 20 12-16 14-22 16-24 16-28 16-28 16-32

d~
best

24 16 28 24 38 30 36 48 48 52

d +
best

32 20 36 40 50 54 68 76 74 84

d best 27.2 18.4 31.2 28.4 43.2 42 54.8 60.4 60 72

Figure A3 Minimum distances obtained by ant system using (x-l)q(x).

Appendix B

The tables in this appendix (Tables B1 to B8) give the minimum distances (dbcst)

obtained by the developed tabu search algorithm presented in Chapter 4, together with

the associated move (mbesl) and execution times (I hest), for various QR codes

(characterised by prime number p). For each type of QR code; those with generator

p — 1
matrix with weight = —-— , augmented QR codes (q (x)) and expurgated QR codes

((x - l)n(x) and (x - l) g (x)), results are presented when both the lower bound and

upper bound value of the minimum distance (d) is used in the closeness criterion.
v boundJ

p d
bound d

best
m

best
t (h:m:s)

busi

7 1 1 1 1 9 5 4 9 0 : 0 0 : 2 1 . 6 9

7 9 1 5 2 3 5 6 7 0 : 0 1 : 3 2 . 6 0

9 7 1 5 3 0 4 9 2 0 : 0 1 : 2 9 . 7 5

1 0 3 1 9 3 1 1 0 0 : 0 0 : 0 1 . 3 7

1 1 3 1 1 3 4 6 4 9 0 : 0 2 : 0 5 . 3 3

1 3 7 1 3 4 6 2 8 0 : 0 0 : 0 9 . 1 8

1 6 7 1 5 5 6 7 2 9 0 : 0 5 : 4 2 . 0 2

1 9 1 1 5 6 7 1 9 3 0 : 0 2 : 2 0 . 2 8

1 9 3 1 5 7 0 2 1 9 0 : 0 2 : 5 9 . 5 5

1 9 9 1 5 7 1 3 1 3 0 : 0 4 : 1 6 . 3 9

Table B1 Minimum distances obtained using w(G) = ——— and lower bound.

P d
bound

d TS m
bust

t (h:m:s)
bust

7 1 1 1 1 9 5 4 9 0 : 0 0 : 2 1 . 6 9

7 9 1 5 2 3 5 6 7 0 : 0 1 : 3 2 . 6 0

9 7 1 5 3 0 4 9 2 0 : 0 1 : 2 9 . 7 5

1 0 3 1 9 3 1 1 0 0 : 0 0 : 0 1 . 3 7

1 1 3 1 5 3 4 6 4 9 0 : 0 2 : 0 5 . 3 3

1 3 7 2 1 4 6 2 8 0 : 0 0 : 0 9 . 1 8

1 6 7 2 3 5 6 7 2 9 0 : 0 5 : 4 2 . 0 2

1 9 1 2 7 6 7 1 9 3 0 : 0 2 : 2 0 . 2 8

1 9 3 2 7 7 0 2 1 9 0 : 0 2 : 5 9 . 5 5

1 9 9 3 1 7 1 3 1 3 0 : 0 4 : 1 6 . 3 9

Table B2 Minimum distances obtained using w(G) - ——— and upper bound.

p d
bound

d
best

m
best

t (h:m:s)
best V 7

71 11 11 413 0:00:06.21
79 15 15 213 0:00:04.78
97 15 15 96 0:00:04.39
103 19 20 21 0:00:03.46
113 11 21 24 0:00:04.89
137 13 29 2 0:00:00.71
167 15 32 381 0:03:06.92
191 15 36 31 0:00:21.53
193 15 38 110 0:01:04.26
199 15 40 107 0:00:08.05

ble B3 Minimum distances obtained using q(x) and lower boi

P d
hound

d
best

m
best

t (h:m:s)
best

71 11 11 413 0:00:06.21
79 15 15 213 0:00:04.78
97 15 15 96 0:00:04.39
103 19 20 21 0:00:03.46
113 15 21 24 0:00:05.38
137 21 27 154 0:00:43.17
167 23 35 2 0:00:01.81
191 27 35 233 0:02:25.56
193 27 40 1 0:00:00.41
199 31 43 4 0:00:04.23

Table B4 Minimum distances obtained using q(x) and upper bound.

P d
bound

d
best

m
best

t (h:m:sj
best v 7

71 12 12 24 0:00:08.83
79 16 16 15 0:00:0066
97 16 16 69 0:00:03.55
103 20 20 7 0:00:00.93
113 12 16 1 0:00:00.22
137 14 28 45 0:00:11.26
167 16 36 11 0:00:05.99
191 16 36 109 0:01:09.75
193 16 38 1 0:00:01.21
199 16 44 2 0:00:01.98

Table B5 Minimum distances obtained using (a : - 1) n(x) and lower bound.

p d
bound

d
bust

m
bust

t (h:m:s)
best

7 1 1 2 1 2 2 4 0 : 0 0 : 0 8 . 8 3

7 9 1 6 1 6 1 5 0 : 0 0 : 0 0 6 6

9 7 1 6 1 6 6 9 0 : 0 0 : 0 3 . 5 5

1 0 3 2 0 2 0 7 0 : 0 0 : 0 0 . 9 3

1 1 3 1 6 1 6 1 0 : 0 0 : 0 0 . 2 2

1 3 7 2 2 2 8 4 5 0 : 0 0 : 1 1 . 2 6

1 6 7 2 4 3 6 1 1 0 : 0 0 : 0 5 . 9 9

1 9 1 2 8 3 6 2 1 0 0 : 0 2 : 2 7 . 2 0

1 9 3 2 8 3 8 1 0 : 0 0 : 0 1 . 2 1

1 9 9 3 2 4 4 2 0 : 0 0 : 0 1 . 9 8

Minimum distances obtained using (jc - l) n(x) and upper boun

P d
bourn!

d
best

m
best

t (h:m:s)
best v 7

7 1 1 2 1 2 3 4 0 : 0 0 : 0 0 . 8 3

7 9 1 6 1 6 1 3 0 : 0 0 : 0 0 . 6 0

9 7 1 6 2 0 6 4 3 0 : 0 0 : 2 3 . 0 1

1 0 3 2 0 2 0 7 0 : 0 0 : 0 1 . 2 6

1 1 3 1 2 2 0 1 0 : 0 0 : 0 0 . 2 8

1 3 7 1 4 2 8 5 7 0 : 0 0 : 1 6 . 4 2

1 6 7 1 6 3 2 1 6 4 0 : 0 1 : 0 9 . 2 6

1 9 1 1 6 3 6 3 0 : 0 0 : 0 2 . 3 1

1 9 3 1 6 4 0 2 9 0 : 0 0 : 1 9 . 8 3

1 9 9 1 6 4 0 1 3 6 0 : 0 1 : 3 8 . 5 9

Table B7 Minimum distances obtained using (a : - 1) q(x) and lower bound.

P d
bound

d
best

m
best

t (h:m:s)
best

7 1 1 2 1 2 3 4 0 : 0 0 : 0 0 . 8 3

7 9 1 6 1 6 1 3 0 : 0 0 : 0 0 . 6 0

9 7 1 6 2 0 6 4 3 0 : 0 0 : 2 3 . 0 1

1 0 3 2 0 2 0 7 0 : 0 0 : 0 1 . 2 6

1 1 3 1 6 2 0 1 0 : 0 0 : 0 0 . 2 2

1 3 7 2 2 2 8 5 7 0 : 0 0 : 1 6 . 4 2

1 6 7 2 4 3 6
nJ 0 : 0 0 : 0 2 . 2 5

1 9 1 2 8 3 6 3 0 : 0 0 : 0 2 . 3 1

1 9 3 2 8 4 0 2 9 0 : 0 0 : 1 9 . 8 3

1 9 9 3 2 4 0 3 2 4 0 : 0 4 : 3 7 . 6 5

Table B8 Minimum distances obtained using (x - 1) q(x) and upper bound.

Appendix C

— +• —

Tables Cl to C6 give the lowest, highest and mean value (d , d and db*si,

respectively) of the minimum distances obtained with 10 runs of the developed

ant colony system algorithm (explained in Chapter 5) for various large QR

codes.

p 137 167 191 193 199
dbound 13 15 15 15 15

d
best

29 39 47 44 52

d +
best

31 39 48 47 55

d best 30.5 39 47.3 45.7 52.5

Table Cl Minimum distances obtained by ant colony system using q(x)
and lower bound.

P 137 167 191 193 199
d hound 21 23 27 27 31

d~
best

29 39 43 44 48

d +
best

31 39 48 47 52

d best 30.6 39 44.8 45 50.6

Table C2 Minimum distances obtained by ant colony system using q(x)
and upper bound.

P 137 167 191 193 199

d hound 14 16 16 16 16

d~
best

28 44 48 48 52

d*best
28 44 52 48 56

d best 28 44 44 48 53.3

Table C3 Minimum distances obtained by ant colony system using
(x-l)n(x) and lower bound.

p 137 167 191 193 199

^bound
22 24 28 28 32

d l s ,
28 44 48 48 44

best
30 48 48 48 44

d best 28.4 46.4 48 48 44

Table C4 Minimum distances obtained by ant colony system using
(x-l)n(x) and upper bound.

P 137 167 191 193 199

^bound 14 16 16 16 16

d
best

32 44 48 46 52

d +
best

32 44 52 46 52

d best 32 44 49.7 46 52

Table C5 Minimum distances obtained by ant colony system using
(x-l)q(x) and lower bound.

P 137 167 191 193 199

^ bound 22 24 28 28 32

d
be.si

32 44 48 46 52

d +
best

32 44 48 54 52

d best 32 44 48 48.4 52

Table C6 Minimum distances obtained by ant colony system using
(x-l)q(x) and upper bound.

References

1. Aarts EHL and Laarhoven V (1992). Local search in coding theory. Discrete
Mathematics, 106/107, 11-18.

2. Augot D, Charpin P and Sendrier N (1992). Studying the locator polynomial of
minimum weight codewords of BCH codes. IEEE Transactions on Information
Theory, 38, 960-973.

3. Augot D and Levy-dit-Vehel F (1996). Bounds on the minimum distance of the
duals of BCH codes. IEEE transactions on information theory, 42, 4, 1257-1260.

4. Backhouse PG, Fotheringham AF and Allan G (1997). A comparison of a genetic
algorithm with an experimental design technique in the optimization of a production
process. Journal o f the Operational Research, 48, 247-254.

5. Balas E (1965). An additive algorithm for solving linear programs with zero-one
variables. Operations Research, 13, 517-546.

6. Battiti R and Protasi M (1995). Reactive local search for the maximum clique
problem. Technical Report. TR-95-052, ICSI, 1947 Center St.- Suite 600 -
Berkeley, California.

7. Battiti R and Tecchiolli G (1994). The Reactive Tabu Search. ORSA Journal on
Computing, 6, 126-140.

8. Battiti R and Tecchiolli G (1995). The continuous reactive tabu search: Blending
combinatorial optimisation and stochastic search for global optimisation. Annals o f
Operations Research, 63, 153-188.

9. Battiti R and Tecchiolli G (1995a). Training neural nets with the reactive tabu
search. IEEE Transactions on Neural Networks, 6, 1185-1200.

10. Battiti R and Tecchiolli G (1995b). Local search with memory: Bench-marking
RTS. Operations Research Spektrum, 17, 67-86.

11. Baykasoglu A, Owen A and Gindy N (1999). Solution of goal programming
models using a basic taboo search algorithm. Journal o f the Operational Research
Society, 50, 960-973.

12. Baylis DJ (1998). Error-correcting codes. Chapman and Hall Publishers, London.

13. Beckers R, Deneubourg JL and Goss S (1992). Trail laying behaviour during food
recruitment in the ant Lasius niger (L). Ins Soc, 39, 59-72.

14. Beckers R, Deneubourg JL and Goss S (1992a). Trails and u-turns in the selection
of a path by the ant lasius niger. J. theor. Biol, 159, 397-415.

15. Berlekamp E, McEliece R and Van Tilborg H (1978). On the inherent intractability
of certain coding problems. IEEE Trans. Inform. Theory, IT-24, 384-386.

16. Ben-Daya M and Al-Fawzan M (1998). A tabu search approach for the flow shop
scheduling problem. European Journal o f Operations Research, 109, 88-95.

17. Bland JA (1998). Structural design optimization with reliability constraints using
tabu search. Eng., Opt.,30, 55-74.

18. Bland JA (1998a). A memory-based technique for optimal structural design,
Engineering applications o f artificial intelligence, 11, 319-325.

19. Bland JA (1999). Layout of facilities using an ant system approach. Eng. Opt., 32,
101-115.

20. Bland JA and Baylis DJ (1995). A tabu search approach to the minimum distance
of error-correcting codes. Int. J. Electronics, 79, 829-837.

21. Bland JA and Baylis DJ (1997). Modelling constant weight codes using tabu
search. Appl. Math. Modelling, 21, 667-672.

22. Bland JA and Dawson GP (1991). Tabu search and design optimisation, Computer-
aided Design, 23, 195-201.

23. Bland JA and Dawson GP (1994). Large-scale layout of facilities using a heuristic
hybrid algorithm. Appl. Math. Modelling, 18, 500-503.

24. Bonabeau E, Dorigo M and Theraulaz G (1999). Swarm Intelligence - From
natural to artificial systems. Oxford University Press, New York.

25. Bullnheimer B, Kotsis G and Strauss C (1998). Parallelization strategies for the ant
system. In: R. De Leone, A. Murli, P. Pardalos, G. Toraldo (eds.), High
Performance Algorithms and Software in Nonlinear Optimization; series: Applied
Optimization, 24, Kluwer:Dordrecht, 87-100.

26. Bullnheimer B, Hartl F and Strauss C (1997). A new rank-based version of the ant
system: a computational study. Technical Report POM-03/97, Institute of
Management Science, University of Vienna. Accepted for publication in the
Central European Journal for Operations Research and Economics.

27. Camazine S (1991). Self-organizing pattern formation on the combs of honey bee
colonies. Behavioral Ecology and Sociobiology, 28, 61-76.

28. Carlton W and Barnes JW (1995). A note on hashing functions and tabu search
algorithms. European Journal o f Operational Research, 237-239

29. Carlton W and Barnes JW (1996). Solving the travelling-salesman problem with
time windows using tabu search. HE transactions, 28, 617-629.

30. Cawsey A (1998). The essence of artificial intelligence. Prentice Hall Europe.

31. Cerny V (1985). Thermodynamical approach to the travelling salesman problem:
An efficient simulation algorithm. J Optimisation Theory Application, 45, 41-51.

32. Chan E (1998). Discrete Optimisation in coding theory, Nottingham Trent
University transfer report.

33. Chen X, Reed IS and Truong TK (1994). Decoding the (73,37,13) quadratic
residue code. IEEE Proc-Comput. Digit. Tech., 141, 253-258.

34. Chiang WC and Kouvelis P (1996). An improved tabu search heuristic for solving
facility layout design problems. Int J Prod. Res., 34, 2565-2585.

35. Cho J-H and Kim Y-D (1997). A simulated annealing algorithm for resource
constrained project scheduling problems. Journal o f Operational Research Society,
48, 736-744.

36. Colomi A, Dorigo M and Maniezzo V (1991). Distributed Optimization by Ant
Colonies, Proceeding of European Conference on Artifical Life, Paris, France,
Elsevier Publishing 134-142.

37. Colomi A, Dorigo M and Maniezzo V (1992). An investigation of some properties
of an “ant algorithm”. Elsevier Science Publishers B.V, 509-520.

38. Colomi A, Dorigo M, Maffioli F, Maniezzo V, Righini G and Trubian M (1999).
Heuristics from nature for hard combinatorial optimization problems. International
Transactions in Operational Research, 3, 1, 1-21.

39. Coppersmith D and Seroussi G (1984). On the minimum distance of some
quadratic residue codes. IEEE Transactions on Information Theory, 30, 407-411.

40. Come D, Dorigo M and Glover F (1999). New ideas in optimization. McGraw-
Hill Publishing Company, England.

41. Costa D and Hertz A (1997). Ants can colour graphs. Journal o f the Operational
Research Society, 48, 295-305.

42. Dakin RJ (1965). A tree search algorithm for mixed integer programming
problems, Computer J, 8, 250-255.

43. Dorigo M and Caro GD (1999). The ant colony optimization meta-heuristic. To
appear in D Come, M Dorigo and F Glover, editors, New ideas in optimization.
CGraw-Hill, 1999.

44. Dorigo M and Gambardella LM (1996). A study of some properties of ant-q.
Proceedings of PPSN IV-Fourth international conference on parallel problem
solving from nature, H-M. Voigt, W. Ebeling, I, Rech

45. Dorigo M and Gambardella LM (1997). Ant Colony System: A cooperative
learning approach to the traveling salesman problem. IEEE Transactions on
evolutionary computation, 1, 1, 53-66.

46. Dorigo M, Caro GD and Gambardella LM (1999a). Ant algorithms for discrete
optimisation. To appear in Artificial life, MIT Press.

47. Dorigo M, Maniezzo V and Colomi A (1991). Ant System: An autocatalytic
optimizing process. Technical Report 91-016, Diparimento di Elettronica e
Informazione, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano,
Italy.

48. Dorigo M, Maniezzo V and Colomi A (1996). The ant system: optimisation by a
colony of co-operating agents. IEEE Trans. Systems, Man and Cybernetics, 26, 1-
13.

49. George FAW (1996). Hybrid Genetic Algorithms with Immunisation to Optimise
Networks of Retail Outlets. Studies in Locational Analysis, 8.

50. Feng GL and Tzeng KK (1994). A new procedure for decoding cyclic and BCH
codes up to actual minimum distance. IEEE Transactions on information
theory,40, 5, 1364-1374.

51. Forsyth P and Wren A (1997). An Ant System for Bus Driver Scheduling.
University of Leeds technical report.

52. Foulds LR (1981). Optimization techniques. Springer-Verlag Inc, New York.

53. Foulds LR (1984). Combinatorial Optimization for Undergraduates. Springer-
Verlag Inc, New York.

54. Gambardella LM and Dorigo M (1995). Ant-Q: A reinforcement learning approach
to the TSP, Proceedings o f ML-95, Twelfth Intern. Conf .on machine learning,
Morgan Kaufamn, 252-260.

55. Gambardella LM, Taillard ED and Dorigo M (1999). Ant colonies for the QAP.
Journal o f the Operational Research Society, 50, 167-176.

56. Garey MR and Johnson DS (1979). Computers and Intractability: A Guide to the
Theory o f NP-completeness, W.H. Freeman, San Francisco.

57. Glover F (1989). Tabu Search - Part I. ORSA Journal on Computing, 1, 190-206.

58. Glover F (1990). Tabu Search - Part II. ORSA Journal on Computing, 2, 4-32.

59. Glover F (1990a). Tabu Search - A Tutorial. Interfaces, 20, 4, 74-94.

60. Glover F and Hubscher R (1994). Applying TS with influential diversification to
multiprocessors scheduling. Computers Ops. Res., 21, 877-884.

61. Glover F and Laguna M (1997). Tabu Search. Kluwer Academic Publishers,
Boston.

62. Glover F, Kochenberger GA, Alidaee B (1998). Adaptive memory Tabu Search for
binary quadratic programs. Institute fo r Operations Research and the Management
Sciences, 44, 3, 336-344.

63. Grasse P (1959). La reconstruction du nid et les coordinations interindividuelles
chez bellicositermes natalensis et cubitermes sp. La theorie de la stigmergie: essai
d’interpretation du comportement des termites constructeurs. Insectes Sociaux,
6,41-89.

64. Hang Y (1993). Efficient priority-first search maximum-likelihood soft-decision
decoding of linear block codes. IEEE Transactions on Information Theory, 39,
1514-1523.

65. Hertz A, Taillard E and Werra DE (1997). Tabu Search. Local Search in
Combinatorial Optimisation. 121-136. J Wiley and sons.

66. Hifi M (1997). A genetic algorithm-based heuristic for solving the weighted
maximum independent set and some equivalent problems, Journal o f the
Operational Research, 48, 612-622.

67. Higgs RJ and Humphreys JF (1995). Decoding the ternary (23,12,8) quadratic
residue code. IEEE Transactions on information theory, 142, 3, 129-134.

68. Hill R (1986). A first course in coding theory. Oxford University Press, Oxford.

69. Hoffman DG, Leonard DA, Lindner CC, Phelps KT, Rodger CA and Wall JR
(1991). Coding theory - the essentials. Marcel Dekker Publishers, New York.

70. Holzmann GJ (1998). An analysis of bitstate hashing. Formal methods in system
design, 13, 289-307.

71. Hubscher R and Glover F (1994). Applying tabu search with influential
diversification to multiprocessor scheduling. Computers Ops Res., 21, 8, 877-884.

72. Islam A and Eksioglu (1997). A tabu search approach for the single machine mean
tardiness problem. Journal o f the Operational Research, 48, 751-755.

73. Kaelbling LP, Littman ML and Moore AW (1996). Reinforcement learning: A
survey. Journal o f Artificial Intelligence Research, 4, 237-285.

74. Kanal LN and Lemmer JF (1986). Uncertainty in artificial intelligence. Elsevier
Science Publishers B.V., North-Holland, Oxford, Amsterdam.

75. Kelly JP, Laguna M and Glover F (1994). A study of diversification strategies for
the Quadratic Assignment Problem. Computers Ops Res., 21, 8, 885-893.

76. Kim JK and Hahn SG (1998). A new upper bound for binary codes with minimum
distance four. Discrete mathematics, 187, 1-3, 291-295.

77. Kincaid RD and Laba KE (1998). Reactive Tabu Search and Sensor Selection in
Active Structural Acoustic Control Problems, Journal o f Heuristics, 4, 199-220.

78. Kirkpatrick S, Gelett CD and Vecchi MP (1983). Optimisation by simulated
annealing. Science, 220, 671-680.

79. Laguna M (1992). Tabu Search Primer. Graduate School o f Business and
Administration, Campus Box 419, University o f Colorado at Boulder, Boulder, CO
80309-0419.

80. Laguna M, Barnes JW and Glover F (1991). Tabu search methods for a single
machine scheduling problem. J. Intelligent Manuf, 2, 63-74.

81. Larranaga P, Kuigpers CMH, Murga PH, Inza I and Dizdarevic S (1999). Genetic
algorithm for the travelling salesman problem: A review of representations and
operators. Artificial Intelligence Review, 13, 2, 129-170.

82. Lidl R and Niederreiter Harald (1986). Introduction to finite fields and their
applications. Cambridge University Press.

83. Lim MH, Yuan Y and Omatu S (2000). Efficient genetic algorithms using simple
genes exchange local search policy for the quadratic assignment problem.
Computational Optimization and Applications, 15, 3, 248-268.

84. Lin S (1970). An introduction to error-correcting codes. Prentice-Hall Inc.,
Englewood Cliffs, New Jersey.

1

85. Linial N and Sasson ORI (1998). Non-expansive hashing. Combinatorica, 18, 1,
121-132.

8 6 . Logendran R and Sonthinen (1997). A tabu search-based approach for scheduling
job-shop type flexible manufacturing systems. Journal o f the Operational Research
Society, 48, 264-277.

87. Macwilliams FJ and Sloane NJA (1977). Theory o f error-correcting codes.
Elsevier Science Publishers, Amsterdam.

8 8 . Matsuo T, Araki Y and Imamura K (1997). Relations between several minimum
distance bounds of binary cyclic codes. IEEE transactions, E80-A, 11, 2253-2255.

89. Metropolis, N, Rosenbluth A, Rosenbluth M, Teller A and Teller E (1953). j
Equation of state calculations by fast computing machines. Journal o f Chem.
Physics, 21, 1087-1092.

90. Moccellin JV and Nagano MS (1998). Evaluating the performance of tabu search
procedures for flow shop sequencing. Journal o f the Operational Research, 49,
1296-1302.

91. Miihlenbein H (1989). Parallel genetic algorithms, Population genetics and
combinatorial optimization, in Schaffer (ed.). Proceedings o f the third
international conference on genetic algorithms, Morgan Kaufmann.

92. Ohlemiiller M (1997). Tabu search for large location-allocation problems. Journal
o f the Operational Research Society, 48, 745-750.

93. Ostergard PRJ (1997). Constructing covering codes by Tabu Search. Journal o f
combinatorial design, 5, 1, 71-80.

94. Papadimitriou CD and Steiglitz K (1982). Combinatorial Optimization: Algorithms
and Complexity, Prentice-Hall, Englewood Cliffs, NJ.

95. Pless V (1989). Introduction to the theory o f the error-correcting codes - 2nd ed.
John Wiley and Sons Publishers.

96. Pless V (1996). Cyclic codes and Quadratic Residue Codes over Z4 . IEEE
Transactions on Information Theory, 42, 5, 1594-1600.

97. Pretzel O (1992). Error correcting codes and finite fields. Oxford University
Press, Oxford.

98. Reeves CR (1993) Modem Heuristic Techniques for Combinatorial Problems.
Blackwell Scientific Press, Oxford.

99. Roman Steven (1992). Coding and information theory. Springer-Verlag
publishers, New York.

100. Roman Steven (1997). Introduction to coding and information theory. Sopringer-
Verlag publishers, New York.

101. Rosen K (1986). Elementary number theory and its applications. Addison-Wesley
Publishers, Canada.

102. Roux O, Fonlupt C, Talbi EG and Robilliard D (1999). AnTabu, technical Report
o f Universite du Littoral, BP 719, 62228 Calais, France.

103. Sewell MJ (1987). Maximum and Minimum Principles - A unified approach, with
applications, Cambridge University Press.

104. Skorin-Kapov J (1990). Tabu search applied to the quadratic assignment problem.
ORSA Journal on Computing, 2, 33-45.

105. Skorin-Kapov J (1994). Extensions of a Tabu Search adaptation to the quadratic
assignment problem. Computers Ops Res, 21, 855-865.

106. Song L and Vanelli A (1992). A VLSI placement method using tabu search.
Microelectronics, 23, 167-172.

107. Sriskandarajah C, Jardine AKS and Chan CK (1998). Maintenance scheduling of
rolling stock using a genetic algorithm. Journal o f the Operational Research, 49,
1130-1145.

108. Stiitzle T and Hoss H (1997). Improvements on the ant-system: introducing the
max-min ant system. Proceedings o f the International Conference on Artificial
Neural Networks and Genetic Algorithms. Page 245-49, Springer Verlag, Vienna.

109. Stiitzle T and Hoos H (1998). Max-Min Ant System and Local Search for the
Traveling Salesman Problem. In S Voss, S. Martello, I.H Osman and C Roucairol,
editors, Meta-heuristics Advances and Trends in Local Search Paradigms for
Optimization. Page 313-329. Kluwer Academics, Boston.

110. Srivastava B (1998). An effective heuristic for minimising makespan on unrelated
parallel machines. Journal o f the Operational Research Society, 49, 886-894.

111. Taillard E (1991). Robust taboo search for the quadratic assignment problem.
Parallel Comput., 17, 443-455.

112. Vermani LR (1996). Elements o f algebraic coding theory. Chapman and Hall
publishers, India.

113. Voss S (1997). Optimisation by strategically solving feasibility problems using
tabu search. Modern Heuristics fo r Design Support, Unicom, Uxbridge, 29-47.

114. Welsh D (1988). Codes and Cryptography. Oxford Publisher.

115. Whittle P (1983). Optimization over time - dynamic programming and stochastic
control, Volume II, John Wiley & Son Ltd,Chichester.

116. Wilhelm M and Ward T (1987). Solving Quadratic Assignment Problems by
‘Simulated Annealing’. HE Transactions, 107-119.

117. Wodrich M and Bilchev G (1997). Cooperative distributed search: The ant’s way.
Control and Cybernetics, 26, 3, 413-445.

118. Woodruff DL and Zemel E (1993). Hashing vectors for tabu search. Annals o f
Operations Research, 44, 123-138.

119. Xu J, Chiu SY and Glover F (1996). Tabu Search for dynamic routing
communications network design. Graduate School o f Business, University o f
Colorado at Boulder, CO 80309-0419.

120. Zachariasen M, Dam M (1996). Tabu search on the geometric traveling salesman
problem. Meta-heuristics. Theory and Applications, Kluwer, Boston, 571-587.

121. Zhang M and Ma F (1994). Simulated annealing approach to the minimum distance
of error-correcting codes. International Journal o f Electronics, 16, 377-384.

