

ProQuest Number: 10182994

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10182994

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

PkD
q S / MOS

pvJ) SLC

qs (Hos fZ.ep .

THE PARALLEL AND DISTRIBUTED SIMULATION
OF NETWORK SYSTEMS

by

A. HOSSEINZAMAN

A thesis submitted in partial fulfilment of the
requirements of The Nottingham Trent University

for the degree of Doctor of Philosophy.

June 1995

Acknowledgements

I should like to thank my supervisor
Dr Andrzej Bargiela for his constant

help and encouragement throughout the
duration of the project.

COPYRIGHT
This copy of the thesis has been supplied on condition that anyone who consults it is
understood to recognise that its copyright rests with the author and that no quotation from
the thesis and no information derived from it may be published without the author’s prior
consent.

ABSTRACT

Successful computer simulation of water distribution system prompted the industry to
consider development of on_line decision support systems which would incorporate
existing telemetry systems and simulation software. Unfortunately, early attempts to
accomplish this undertaking proved to be unsuccessful, largely due to the rapid increase
of computational requirements of the simulation algorithms as a result of the increase in
the physical network size.

In spite of using sparsity exploiting techniques, the nonlinear network solving algorithm
demonstrates quadratic numerical complexity therefore is unable to cater for network
growth.

An original approach to the solution of such systems would be to partition the overall
problem into smaller units and solve these in isolation(and as a further improvement use
parallel processing in solving the derived subsystems). Once the solution of the smaller
units are known, they are combined in a coordinating routine to yield the overall solution.

The main objective of this research was therefore, to develop a suitable distributed
simulation algorithm and to implement it in a distributed computing system. The research
resulted in the development and implementation of a nonlinear diakoptics algorithm. This
research has established a framework for the development of a distributed computing
system based on the generalization of ADA rendezvous mechanism.

The overall distributed computing scheme was implemented on a tightly-coupled
transputer network and on a network of loosely-coupled workstations connected using
Ethernet communication link. The computational efficiency of the algorithm is evaluated
using two realistic networks and results are extrapolated to large scale systems.

The overall computational efficiency and the amount of storage required in the network
tearing method is strongly influenced by the way the system is partitioned. Two graph
partitioning techniques were evaluated and their performances in partitioning the given
example networks are compared and presented in the form of graphs in which derived
partitions are clearly depicted.

DEDICATION
I dedicate this thesis to my parents without whose love and support none of this would
have been possible.

Glossary of terms

A(i) Non-Zero elements in column i.

AS Adjacent set.

A Energy coefficient matrix in linear theory method.

B Pipe flow incident matrix in linear theory method.

C Cost function.

Ca4, Node/cut pipe incident matrix.

CN Contour number.

AC Cost difference.

D Diagonal elementry matrix.

AE Energy difference.

F(),f() Function of.

F’ Partial derivative of function F.

Afy Rate of change of flow in pipe

g(x) Vector of mass balances.

gi() Mass balance in node i.

H First derivative of pressure with respect to flow in pipe \p

h(f) Functional relationships between the flow and the
pressure drop.

IS Iterating set.

J Jacobian matrix.

Jf Similar to J but without the interconnecting elements between the
subnetworks.

L* Lower kth column elementry matrix.

L Lower triangular matrix.

Left hand factor ith matrix.

The cut pipe/subnetwork incident matrix.

Matrix which differs from Identity matrix in just one off-diagonal element.

Permutation matrix.

Quantifies the pressure drop in terms of the difference of pressures in the
end-nodes of the pipe and the difference of reference pressures xs in the
relevant subnetworks.

Flow in pipe j .

Hydraulic resistance of the i-j pipe.

Right hand factor ith matrix.

Temperature.

Column elementry matrix.

Pressure at node i.

Pressure difference.

Uncoordinated subsystem solutions.

Union of the Iterating set over the range j.

Upper triangular matrix.

Collection of nodes not adjacent to Z(i) nodes.

Sum of consumption (zj in all the nodes of subnetwork <5.

Collections of nodes not adjacent to W(i) nodes.

Consumption at node i.

Vector of consumptions Z{.

Consumption vector of the derived network due to partitioning.

Consumption vector of the cut-network.

Consumption vector derived from the sum of consumption in the cut-
networks and the partitioned subnetworks.

Set of nodes adjacent to node

List of Figures

Figure 1 Water distribution monitoring system.

Figure 2 Wlesh water’s telemetry and information management system.

Figure 3 Hull sources, Scada and Decision support system.

Figure 4 Computer application in water supply and distribution systems.

Figure 5 System before partitioning.

Figure 6 Block Upper Triangular form of matrix A.

Figure 7 The Pivotal selection procedure.

Figure 8 An example of sparsity_directed storage technique.

Figure 9 The partitioned 130 nodes network.

Figure 10 This diagram represents the format of the
corresponding Jacobian matrix of the water
network shown in Fig.9

Figure 11 The Decomposition model of the water network.

Figure 12 The Decomposed model showing the subsystem
solution and coordination tasks.

Figure 13 Example network for the common reference point.

Figure 14 System after partitioning into 2 subsystems together
with compensating flows.

Figure 15 Block structure of the Jacobian matrix.

Figure 16 Water distribution simulation program.

Figure 17 The 130 node network example.

Figure 18 Time response of Tree and Pipeline configurations.

Figure 19 Pipeline configuration.

Figure 20 Tree configuration.

Figure 21 Coordination time / problem-size graph.

Figure 22 Subsystem solution times. 95

Figure 23 A Contour tableau. 103

Figure 24 An example network for the contour tableau construction. 106

Figure 25 Table (a) the results of arbitrarily choosing the next
iterating node, and (b) the "greedy" algorithm - selecting
from amongst nodes with fewest neighbours which are present
in AS(i). 106

Figure 26 Flow chart for "greedy" algorithm. 107

Figure 27 The greedy algorithm results for a 130 nodes network. 107

Figure 28 (a) Neighbourhood search for new nodes to join the cluster,
(b) Curve representing optimal cost. 113

Figure 29 Simulated Annealing results for a 130 nodes network. 115

Figure 30 A tightly-coupled multiprocessor system. 121

Figure 31 A loosely-coupled distributed system. 122

Figure 32 The seven layers of the ISO reference model. 124

Figure 33 Layering in the Internet protocol suite. 126

Figure 34 Layering in the XNS protocol suite. 129

Figure 35 Conventional Vs Ada approaches to tasking. 132

Figure 36 The Remote Procedure call mechanism. 145

Figure 37 The ISO Communication Model. 147

Figure 38 Structure of the Ada Remote Rendezvous Layer. 149

Figure 39 Parameter Buffering at callee’s end. 151

Figure 40 Parameter Buffering at caller’s end. 152

Figure 41 The standard interface package. 152

Figure 42 The communication model. 153

Figure 43 Socket system calls for connection-oriented protocol. 155

Figure 44 Socket system calls for connectionless protocol. 156

Figure 45 Socket address structure and Low-level mapping. 157

Figure 46 Bytes and word length of the target system. 157

Figure 47 The Virtual Node Structure. 161

Figure 48 The data flow diagram for Water system simulation program. 166

Figure 49 The new subsystem solution routine calculating the subsystem
jacobians locally on the individual processing units. 168

Figure 50 The Remote Rendezvous Mechanism. 168

Figure 51 The data flow in a CLIENT/SERVER communication system. 169

Figure 52 The coordination routine components. 171

Figure 53 Simplified diagram of the coordination routine. 173

Figure 54 Simplified diagram of a subsystem worker task. 173

Figure 55 The water system simulation program Virtual Node structure. 174

Figure 56 The structure of distributed water system simulation program. 180

Figure 57 The Multi-library organisation of the Virtual Nodes. 181

Figure 58 The coordination time graph (including the work
packet setup time for individual subnetworks) of
a 65 nodes network. 188

Figure 59 This graph represents the subsystem solution time
of a 65 nodes network. 188

,r :- .^ v *' v -• ' , V ; . y' ► ,

List of Tables

Table 1 Tree and Pipeline configurations (1 master task
and 1 worker tasks - for both 65 and 130 node networks).

Table 2 Tree and Pipeline configurations (1 master task
and 2 worker tasks).

Table 3 Tree and Pipeline configurations (1 master task
and 3 worker tasks).

Table 4 Tree and Pipeline configuration (1 master task
and 4 worker tasks).

Table 5 pipeline configuration - "Flood-Fill" (1 master task
and 4 worker tasks).

Table 6 Tree configuration - "Flood-Fill" (1 master task
and 4 worker tasks).

Table 7 65 node network partitioned into 5 - 2 subnetworks
(convergence is achieved after 4 iterations).

Table 8 Table of results for a 65 nodes network(partitioned
into 2 - 5 subsystems) implemented in a distributed
Virtual Node environment.

Page No.

90

91,92

93,94

96,97

98

99

189,190

191

CONTENT

CHAPTER 1: Introduction to Water distribution systems. 16
1.1 Aims and Objectives 16
1.2 Review of Thesis 18
1.3 Water distribution monitoring systems. 20
1.5 Computer Applications in Water Industry. 23
1.6 Telemetry system operation. 24
1.7 Integrating SC AD A systems and Hydraulic Models for water

distribution control. 28
1.8 Integrating SC AD A systems - Future trend. 29
1.9 Computer simulation of water networks. 32

1.9.1 Mathematical model of water networks. 33
1.9.2 The Steady-State Network solution techniques. 36

1.10 CONCLUSION 41

CHAPTER 2: Solution techniques for linear system of equations. 43
2.1 Numerical Solution techniques 43

2.1.1 Gaussian Elimination Technique 43
2.1.2 GaussianJTordan elimination technique 47

2.2 Matrix Factorization techniques 48
2.2.1 Triangulation of Matrices 49
2.2.2 Bi_factorization technique 51

2.3 Sparse Matrix Technology 53
2.3.1 Sparsity_Directed Elimination Techniques 54
2.3.2 Sparsity_Directed ordering and storage techniques 59

CHAPTER 3: Network Decomposition Techniques 66
3.1 Introduction 66
3.2 Physical structure and sparsity of large water distribution system 67
3.3 Constructing a Decomposed Model 67
3.4 Network Tearing technique 69

3.4.1 Introduction 69
3.4.2 Tearing networks with common reference point 72
3.4.3 Tearing networks with temporary reference point 76
3.4.4 The Implementation 79

3.4.4.1 Processor Structure. 83
3.4.4.2 Computational Results. 86

3.5 Conclusion 101

CHAPTER 4: Automatic Network Partitioning techniques 102
4.1 Introduction 102
4.2 Greedy Cluster formation technique 102
4.3 Simulated Annealing technique 109
4.4 Conclusion. 117

13

CHAPTER 5: Distributed Computing 119
5.1 Aims and Objectives 119
5.2 Introduction to Distributed Computing Systems 119

5.2.1 Distributed computing system types 120
5.2.1.1 Tightly-coupled distributed systems 121
5.2.1.2 Loosely-coupled systems 122

5.2.2 Distributed computing architecture of a water distribution
system 123

5.2.2.1 Computer Network structure 124
5.2.2.2 Protocols for interprocess communication 126

5.3 Requirements of a distributed programming language 131
5.3.1 Parallelism 131
5.3.2 Interprocess Communication and synchronization 132
5.3.3 Partial Failure 134

5.4 Programming distributed systems in ADA 134
5.4.1 Strategies for programming distributed applications in Ada 135

5.4.1.1 Pre-partitioning scheme 138
5.4.1.2 Post-partitioning scheme 139

5.4.2 Object access in distributed systems 140
5.4.3 Virtual Node approach 141

5.4.3.1 What should Virtual Nodes represent. 142
5.4.3.2 Remote Communication 145

5.4.3.2.1 Remote Procedure Call 146
5.4.3.2.2 Remote Entry Call 149

5.4.3.4 Virtual Node structure 159
5.4.3.4.1 Template and non-template units 160
5.4.3.4.2 The interface units 160
5.4.3.4.3 The Root procedure 161
5.4.3.4.4 Virtual node types 162

5.5 Conclusion 163

CHAPTER 6: Implementation and Design. 165
6.1 The program overview 165

6.1.1 System’s functional units identification and data flow 165
6.1.2 Design of functional units 168
6.1.3 Virtual Node Design Process 173

6.2 Implementation details 176
6.2.1 Inter-virtual node communication issues 177

6.2.1.2 Dynamic communication port creation 177
6.2.1.2 Network wide ID for distributed components 178
6.2.1.3 Marshalling and unmarshalling of data 179
6.2.1.4 Message buffering and flow control 179

6.2.2 Multi-library mechanism 180
6.3 Performance and Results 183

6.3.1 The Program 183
6.3.2 Discussion of Results 186

6.4 Conclusion 193

14

CHAPTER 7; Conclusion and Further Research. 196
7.1 Conclusion. 196
7.2 Suggestions for Further Research. 201

REFERENCES 202

15

CHAPTER X: Introduction to Water distribution systems.

Chapter 1

1.1 Aims and Objectives

Successful computer simulation of water distribution system prompted the industry to

consider development of on__line decision support systems which would incorporate

existing telemetry systems and simulation software. Unfortunately, early attempts to

accomplish this undertaking proved to be unsuccessful, largely due to the rapid increase

of computational requirements of the simulation algorithms as a result of the increase in

the physical network size. To remedy this shortcoming, sparsity exploiting techniques

were incorporated in the simulation algorithm. These included "nearoptimal pivoting"

and "sparsity directed storage"techniques.

Although these techniques are efficient in exploiting the inherent sparsity of the water

distribution systems, the inability of nonlinear network solving algorithms (incorporating

these techniques) in accommodating for network growth means that alternative solution

methods are required.

A standard approach to the solution of such systems is to partition the overall problem

into smaller units and solve these in isolation (and as a further improvement use parallel

processing in solving the derived subsystems). Once the solution of the smaller units are

known, they are combined in a coordinating routine to yield the overall solution. This

approach is particularly suitable for systems such as water distribution networks which are

constructed from individual groups of highly connected nodes, the individual groups being

16

Chapter 1

only sparsely interconnected. For example, in the case of local water authorities, the city

can be divided geographically into several regions (i.e dense industrial or domestic

zones), with a few interconnecting links. The derived regions can then be mapped onto

the available local processor units in the computer network, resulting in a truly distributed

processing scheme. The overall solution is then achieved by the coordinating processor

which collates and re_adjusts the subsystem solutions.

The computational efficiency of such a distributed processing scheme is clearly related to

the number of processing nodes but is significantly effected by the efficiency of the

communication links/amount of transferred data between the computing nodes as well as

the efficiency of the coordinating task.

The main objective of this work was, to develop both a distributed simulation algorithm

and a suitable distributed computing environment. This research has demonstrated that the

concept of "virtual node" [5] for modelling the distributed processing nodes of a loosely-

coupled system, is a viable approach. The "Virtual Node" approach was selected amongst

other methods because: (i) it offers a compiler independent virtual node approach,

therefore conventional Ada compilers can be used to develop the distributed application

program, (ii) it allows the notion of virtual node type, which is particularly useful in this

implementation since it offers dynamic creation of processing nodes to fit a particular

partitioning scheme, and (iii) it uses a rendezvous like mechanism for inter-virtual node

communication - useful since rendezvous mechanism gives a better reflection of the work

load of the processing nodes in the system.

17

Chapter 1

1.2 Review of Thesis

The early attempts to develop on-line decision support systems for monitoring water

distribution systems had only limited success. This was due to the rapid increase of

computational requirements of the simulation algorithms as a result of an increase in the

physical network size. To overcome these shortcomings sparsity exploiting techniques

were incorporated in the simulation. These techniques are discussed in detail in Chapter

2. They include: Sparsity directed matrix inversion routines, Bi-Factorization, Bartels-

Golub decomposition, sparsity-directed storage techniques (i.e. Link-Lists), and near-

optimal pivoting techniques.

However, further investigations in order to determine the efficiency of these techniques,

in solving the derived system matrix revealed that their performance is highly dependent

on two factors, firstly is the pivotal strategy used in order to achieve minimum "fill-in"

thus reducing storage requirements and achieving speedup, and secondly is the storage

technique itself, These techniques would only reduce the computational requirements of

the simulation algorithm in the short term, and therefore can not be used as a long term

measure for reducing the computational requirements of the algorithm in the face of

continual network expansion. Chapter3 addresses this problem and develops a new

nonlinear parallel processing algorithm (i.e. nonlinear diakoptics).

The algorithm is initially run on a closely-coupled computing system (PC-based

Transputer System configured in "Tree" and "Pipe-line" modes) and its computational

efficiency is evaluated using two realistic networks (i.e. 65 node and 130 node networks).

18

Chapter 1

The result of these implementations indicate that the overall computational efficiency and

storage requirements of the nonlinear diakoptics algorithm is strongly influenced by the

way the system is partitioned. Chapter 4 introduces two graph partitioning techniques in

order to achieve optimum partitioning of the system. These techniques belong to two

theoretically different categories of algorithms. The first method known as "Greedy"

algorithm [45,89] has its basis in heuristic derivation and the second method known as

"Simulated Annealing" is based on the analysis of combinatorial optimization problems.

A modern water distribution and monitoring system consists of a number of local

operational control centres communicating with one another over communication lines.

This arrangement of processing power form a loosely-coupled computing system [6].

Chapter 5 introduces the distributed computing systems and in particular concentrates on

loosely-coupled systems. Furthermore, it identifies those characteristics of a water

distribution and monitoring system that are best suited to a loosely-coupled computing

system. Characteristics such as the need for periodic expansion of water distribution

systems which can be catered for by simply increasing the computing power (i.e. by

adding more computers to the network) to deal with network’s topological expansion.

Moreover, in order to develop application programs for loosely-coupled systems, the

programming language must have certain characteristics. They are: software

configurability, inter-process communication mechanism(synchronous or synchronous) and

finally the partial failure mechanism. The suitability of each language would be measured

on how many of these requirements it can satisfy. The Ada language satisfies most of the

19

Chapter 1

requirements, however, it is generally acknowledged that the language support in the area

of distributed systems is lacking [5].

This research establishes a framework for the development of a distributed computing

system based on the generalisation of the ADA rendezvous.

Chapter 6 presents the implementation of a distributed computing environment for water

system simulation, which serves to validate the general concept of distributed computation

using ADA Virtual Nodes. Major functional units of the system are identified and

diagrammatically defined - namely the coordination and subsystem solution routines. This

Chapter (i.e. Chapter 6) demonstrates that the concept of "Virtual Node" for modelling

the distributed processing nodes of a loosely-coupled system is a viable approach.

1.3 Water distribution monitoring systems.

The early water distribution systems employed very basic measurement devices which

monitor only few parameters in the system such as levels of water in reservoirs or pump

status. The distribution network itself was largely unmonitored due to the difficulty of

interpretation of the measurements by the human operator, without the aid of extensive

computer_based water system simulations.

However, water distribution systems have come a long way since then so that now, for

the current systems under consideration the data procured would not only be monitored,

but also evaluated and used to provide predictions, reports and operational control, thus

20

Chapter 1

Estimation*
Telemetry error detection
Leakage detection
Optimal Control

Application
Processor3Processor 1 Processor 2

Telemetry Processor

Control

Net. 2 N e U

Figure 1: Water distribution monitoring system.

21

Chapter 1

bringing about more effective and near optimum operation of sites, in addition to

providing comprehensive information to managers and users. Fig. 1 shows various

components of a telemetry system. Several separate monitoring outstations exist within the

water company, operating independently of each other and covering the different water

supply and distribution areas (i.e Netl,Net2,Net3). In addition to these distributed

multi_site systems self contained SC AD A systems are in operation, usually autonomously,

at large water treatment works and reclamation centres. The data is collated by the

telemetry processor and distributed amongst the application processors for telemetry error

detection, leakage detection and optimal control. However, the pivotal application in the

on-line decision support system for the simulation of water distribution system is the state

estimation.

The expansion of the monitoring systems is mirrored by the expansion of the

mathematical model of a network and consequently may imply additional processing load.

In this work the emphasis is on water network simulations only which require minimum

measurement set. The minimum measurement set is comprised of the mass balance

equations for all the nodes in the network except the reference node, plus one pressure

measurement in reference node.

1.4 SCADA system definition.

Amongst several systems that provide a means for "data acquisition" are[144], the

traditional master/RTU SCADA systems, Distributed Control Systems, Programmable

Logic Controllers, PC-based SCADA systems, Emergency shutdown systems, and Fire

22

Chapter 1

and Gas Control Systems. The term Supervisory Control may not be exactly applicable

in all instances but using the definition given below it covers almost all system control

categories. A supervisory control function is defined as a higher level control that

interfaces with a regulatory controller to provide integrated and/or remote control.

Regulatory control is defined as execution of a control algorithm, based on measured

input signals, and transmitting an output value to a field control device in order to provide

closed loop control of that process.

Since intelligent RTUs, distributed control units and programmable logic control units

provide discrete and regulatory control functions they all fall under the term Supervisory

Control and Data Acquisition.

1.5 Computer Applications in Water Industry.

The computer applications in water industry are wide spread, in particular computers are

used in the areas such as on-line monitoring and control, automated mapping/facilities

management (AM/FM), and Geographic Information Systems (GIS). The on-line

monitoring and control acquires up-to-date information about the operation of distribution

networks and treatment works.

The AM perform project-specific designs or mapping of facilities in graphic environment

with limited nongraphic data analysis. FM supports facilities inventory, management and

analysis without a sophisticated graphic display capability. GIS supports a wider range of

AM/FM applications such as network modelling, incident mapping and polygon overlay

23

Chapter 1

analysis. The overall picture of activities in these areas show a high level of interest in

computer applications amongst water utilities. Most utilities require more information

about integration among systems and data bases. Key areas of interest are integration of

FM systems and data bases with GIS data, interface of GIS with water models, and

sharing and transfer of data between GIS or AM/FM systems and CAD. Furthermore, the

FM and GIS systems are known[109] to have been linked or attempts are made to link

them to their Supervisory Control and Data Acquisition (SCADA) systems.

The degree of computerization and interest in new technology within the water industry

is high. The benefits of interfaced computer systems seem to be well realized within the

industry. Although many utilities are investigating AM/FM and GIS and are interested in

new technologies such as electronic document management system (EDMS), most are still

in their preliminary stages of implementations.

1.6 Telemetry system operation.

The early water network simulation systems were composed of a number of remote

stations whose tasks were to monitor and gather data, and a main computer centre. The

data(pressure/flow measurements and occasionally consumption) sent by the remote

stations is utilized by the network simulating software installed at the telemetry computer

centre, yielding directives for the overall control of the network. The processing power is

concentrated at the telemetry computer centre, thus leaving the remote stations with little

or no processing power. Information procurement was on a continuous polling of remote

stations basis ("time skew"), with monitored data reading being updated every few

24

Chapter 1

O u ts ta fo fis

Figure 2: Welsh water’s telemetry and information management system.

25

Chapter 1

minutes. However, this method of monitoring as mentioned before was not equipped to

deal with network growth and proved to be fatal in the face of failures, since a computer

shutdown would mean that backup hardware needed to be operational immediately.

In the new telemetry systems however, the remote stations are equipped with powerful

microcomputers or workstations capable of running simulation algorithms locally at the

remote site. This way, communication between the remote stations and the central unit is

reduced to merely call for raising alarm conditions or selected data transmission (which

would be small in volume). Information procured by the main station is displayed in the

normal way on computer display terminals operating sophisticated high resolution

graphics. Fig.2 shows the Welsh water’s telemetry and information management system

using the newer telemetry systems. The data which originates from telemetry remote

stations is processed by the simulating software installed at the telemetry computer centre

(TCCs).

Another system in operation for the control of city of Hull’s water distribution system is

shown in Fig.3. The system has a pre-set pressure profile in order to prevent pressure

rises above that can be tolerated by the 100 year old pipe network. The Decision Support

System(DSS) employed in the project, on detecting a rise in the pressure above the set

profile, signal a pump stop via the SC AD A system, and the pressures are then controlled

by the DSS using the remaining valves and occasionally pumps starts and stops.

26

Chapter 1

MICROWAVE
UNK

COTTINGHAM
m

m -Nsin
OUTSTAHONl

PLC

DOELEIO
OUTSTATIOH

wrm
LEASED

. UNB

[M U G
OVTSTATIOlSf

WITH
LEASED
UNB

CLOUGH RD

MIELfGENT
OUTSTAHON

u

PRIVATE WIRE

PLANT m
works™

/ ■ l i \ (mmm.

DECISION
SUPPORT
SYSTEM

ETHERNET

A1ARM/REP0RTS
GRAPHIC
PLOTTER

RADIO

If
PSTN WmKBfl

OUISTAUON

TOPHHLLOW
wrw

RADIO

t
PSTN w t e u x b t t

CWISTATKW BS

RADIO

t
PSTN maimr

o b b t a j jo n

RAYWELL
RESERVOIR

RADIO

t
PSTN WTHDOBfT

CWTJIAllCN
SPRINGHEAD

PS

Figure 3: Hull Sources,Scada & Decision Support System.

27

Chapter 1

1.7 Integrating SC ADA systems and Hydraulic Models for water distribution

control.

The SC AD A system is only a part of a distributed control system(DCS). The infra

structure of the SCADA system corresponds to control and monitoring activities within a

DCS. However, the decision making process for determining the best course of action

while meeting demand at minimum cost, is carried out in another supervisory layer.

Integration of this layer and the SCADA system in use yields a DCS.

The integration of the optimization and control system and the Hull city’s SCADA

system yielding a DSS for the control of the Hull water sources, is one example of DCS.

The system is designed to collect data from a SCADA system, decide on the most

appropriate course of action, based on meeting demand at minimum cost, while being

constrained by distribution pressure and reservoir conditions. Once a control schedule for

pumps and valves has been determined, the operating instructions are returned to the

SCADA system for action.

The Integrated SCADA simulator (ISS) of DUPage County,Chicago (DWC) in United

States, is yet another example of such systems in operation. DWC sought technology to

combine current water distribution system data with a hydraulic model for near real-time

simulation. The link between DWC’s SCADA system and hydraulic model would provide

the tool to allow operations personnel to become skilled managers of their water

distribution system[I21]. A computer network (two central processors and five

workstations) runs the SCADA system for command and control,of system pumps,valves,

28

Chapter 1

and other essential services. Pressures, flow rates, and equipment status are reported on

three-second scan frequencies. The SCADA system, activated in 1991 is now an integral

part of the DWC system operation (ISS). The critical success factor for the

implementation of the ISS lies in the ability of operators to efficiently use these decision

support tools under normal and emergency operating conditions. The capability of the ISS

to take current operating data and combine them with projected water demands in near

real-time, provides an important pumping and storage management tool.

1.8 Integrating SCADA systems - Future trend.

The use of SCADA systems for automatic control and monitoring of industrial processes

(including water distribution systems), has been prevalent since their birth in 1960s. As a

result, subsequent developments have followed in areas such as "Programmable Logic

Controllers (PLC)" in the early 1970s, Distributed Control Systems (DCSs) in 1975, and

PC-based SCADA systems much later[26,35,109,121].

Integrating the current SCADA, DCS, PLC, PC-based systems technologies can provide

data acquisition control and management capabilities for local, wide area and global area

facilities, whether these be offshore platforms, oil, gas or "water networks", or electric

utility distribution networks. Integration of these technologies must however meet the

operational and facility management requirements of the end user whether a major

offshore platform or a small, low budget SCADA system.

In the case of water distribution systems, for example, the requirements include: (i)

29

Chapter 1

design of the water system infrastructure - the design includes the hydraulic components

of the system (i.e. pipes,pumps and reservoirs), (ii) supply of water to consumers - to

provide the demanded water quality, with adequate pressure to all consumers in that area,

(iii) efficient management of the overall supply and distribution system.

The objective of an efficient computerized control and information management of a

water distribution system, includes minimization of high operating cost(e.g. electricity

cost for pumping), control of water quality, and leakage control. Furthermore, control of

such system is in two fold: first is the "off-line" control which involves the use of

computer control modules for network simulation, demand prediction and schedule

optimization^.e. they do not require reference to real-time system measurements), and

finally is the "on-line" control of the overall water system operation by accommodating

the "real-time" interaction between the telemetry system, the control system and the water

system (Fig.4).

The telemetry and SCADA systems have greatly improved the monitoring and control of

water systems. The monitored signals are acquired by use of remote transducers and are

transmitted directly to control system, whereas the command signals are generated by the

control system and transmitted to remote actuators.

Historically, there have been communication data transmission rate limitations on

SCADA systems implementation since system economic justifications also included

communication facilities. With current and imminent technology implementation of local,

30

Chapter 1

Control Data
Channel

Held Data
Channel

Front-End Data
ManagerSupply A

Distribution
Network

System

Demand
Stonge

D*U ProCMMAf,
Data Attlyafe,
Dcm*o4 Amfym
Data Archive,
Data DtelAT

System Opm tkn*,
Sayatem M odtarinf
Sysitt* Evaluation,
System Alarms,
Decision Support

Network Modetiuf,
Systeto DcsUol
Demand Prediction
System Ptanntef,
Control SctaHrtinj

Figure 4: Computer application in water supply and distribution systems.

wide and global area networks based on high data rates fibre optic cables, satellite

communications, and ISDN networks, will provide a data highway infrastructure

primarily for corporate data transmission requirements but will also include real-time

supervisory control and data acquisition. The minimum data transmission rate for such

data transfer infrastructure, may be 64kb/s. This 64kb/s data channel may be considered

as the narrow lane of the overall data transfer super highway. With a large number of

orbiting satellites(ORBCOMM will have 36 in orbit by 1998) there will be the capability

to provide truly global communications.

The answer to the question "how is the integration of the aforementioned systems

achieved", however, is the term defined by International standard organisation(ISO) as

"open system". The open systems through UNIX, X-windows, and Ethernet TCP/IP, also

the explosion in low cost processor power has had a huge impact in the process of

integrating the aforementioned systems on one control highway. For example, X-windows

31

Chapter 1

is seen by many as the single most important development for bringing together system

computing, including DCS as part of management information system(MIS). X-windows

are versatile, device independent and supported by wide range of platforms, from

mainframes, through workstations to PCs. It is operating system independent, being well

supported especially by UNIX variants.

Another factor for easier integration, is object-oriented programming. Objects can be

anything from system items to control loops. Once an object is defined, it can be reused

or instantiated wherever it is required with minimal effort. For configuration purposes,

icons representing objects can be named and linked together, all performed on screen.

The distributed control approach encourages further distribution of intelligence with the

distributed system. The ultimate goal is to provide intelligence for sensor diagnostics,

monitoring and control with fault tolerance at I/O level. Thus achieving independence

from the host. Furthermore, included in their systems some companies employ new

technologies such as "neural networks" and "fuzzy process controllers". Although in their

infancy, they offer control in areas of non-linear processing and noisy signals, which

were difficult to model.

1.9 Computer simulation of water networks.

Simulation of water distribution systems involves the solution of a large set of

simultaneous equations. The early water distribution simulation software although

32

Chapter 1

successful in simulating water networks suffered from its inability to deal with network

growth which is an inherent feature of water distribution systems. The growth in network

size resulted in higher computational time and storage requirements which frequently

outpaced the available computing resources. Even with the introduction of sparsity

exploiting techniques the computational requirements of the simulation algorithm was

quasi-quadratic. Clearly this meant that the use of simulation algorithms on realistic

networks would be impractical due to the loss of real-time performance or computational

requirements that are not economically justified. A topological model of water networks is

constructed from the flow and pressure relationships. An accurate model for the water

network behaviour can be formulated by simply applying the basic rules of continuity

within pipe networks [145].

This model is comprised of a large set of non-linear relationships depicting the inflows

and the outflows at a node or flow between two nodes of the pipe network. Therefore,

solving network flow problems involves solving the derived set of simultaneous non-linear

equations. Since the equations are non-linear the methods of solution are iterative and

limited. Three most commonly used techniques are [140];(i) the Newton_Raphson

method, (ii) the linear theory method, and (iii) the Hardy Cross method, which are

explained in detail in the following sections.

1.9.1 Mathematical model of water networks.

A water supply and distribution system consists of a collection of nodes that are

interconnected by various elements such as pipes, valves, pumps,and reservoirs. Each

33

Chapter 1

Reference

Figure 5: System before partitioning.

element in the network is characterised by a mathematical function that describes the

relationship between the element flow and the head difference between the two ends of

the element. The form of the relationship depends on the physical characteristics of the

element. The system governing equations can be formulated in accordance with the

following rules: (i) nodal mass balance^ the algebraic sum of all the inflow and outflow at

each node is equal to zero, and (ii) energy conservation - the total sum of the all head

losses around any loop in the network is equal to zero.

Using these rules and the functional relationships between flow and pressure drop for

every link of the network (Fig.5), the pipe flow fjj equation can be derived which is

dependent non linearly on the pressure difference at the end nodes of the pipe,

34

Chapter 1

fij(x)-Rij(x1-xj)0^ ' 7

where Ry is the hydraulic resistance of the i-j pipe and the vector of the nodal pressures is

x={ ... xn }T ; n is the number of nodes in the network.

The nodal pressures x are usually calculated from mass balance equations in n-1

network nodes and one reference pressure in an arbitrarily selected n-th node.

Si (x) - E f i j (x > (2)jtUi

9„(x)-xr <3)

where gj() is a mass balance in node i (i.e. i = 1 ..n-1), is a set of nodes adjacent to

node i, gn(x) is a pressure measurement in a reference node the value of which is xr.

In the network without storage elements, &() corresponds to the consumption/supply out

node i, for i= { l,...n -l} , and to a measurement of the reference pressure in node n.

Zrg^x(4)

The system of non_linear equations to be solved can therefore be represented in a

compact form as:

Z - g (x)

Chapter 1

(5)

where Z=[Z, ... Zn.1,Z„]T and g(x) = [g1(x) ... gn(x)]'r.

The solution of (5) involves linearization of the system of equations and iterative

improvement of the initial estimate of the vector x , x0.

g (x) - g (x *)+ * 9 £ !L \x A <6 >

introducing J=(5g/5x) for the Jacobian matrix and noting(5),

Z = g (x k) + J A x

So

A x ^ J ' 1 (Z ~ g (x k))

and the iterative solution is obtained as:

x k+1'=xk+ Ax

(7)

(8)

(9)

1.9.2 The Steady-State Network solution techniques.

The non_linearity of the mass balance equations imply that the solution technique is

iterative. The three most frequently used methods are; Linear theory, Newton-Raphson

and Hardy-Cross method. These methods are presented in the following sections.

36

Chapter 1

EINEAR THEORY METHOD

The linear theory method was initially developed in a loop formulation to determine the

set of unknown flows [145]. More recently, the method was developed to solve for the

nodal heads [70]. In both cases, the net inflow/outflow to the network was assumed

known, which is perhaps a reasonable assumption at the design stage but is less tenable in

the context of operational behaviour.

In a network of N pipes and J nodes and L loops, there are exactly (J-l) linear

continuity equations:

E <10)jts

where Q, = flow in the jth pipe in loop,

~1 inflow (i d
b, “ {+1 outflow

0 unconnected

Zi = consumption at node i,

S —[1,2, ... k], k=N -l (no. of pipes-1) independent nodal equations.

The L non-linear energy equations are:

E a i i <12)
i z T

where T = set of pipes incident with loop 1, where 1=[1,2, ...L]. Collecting eqns.(lO)

and (12) together a matrix of continuity and energy equation given by eqn.(13):

37

Chapter 1

~B " " Z
A [Q] - Sh

The way to linearize the energy equations is to let Q "1 be a constant for a given

iteration. The result is to solve N -l+ L linear equations with the same number of

unknowns. To solve the network problem it is necessary to solve the linear system of

equations, recalculate the a terms, and resolve the linear equations repeatedly until the

solution converges. The linear theory method tends to overcorrect the Qj’s so that it is

possible to base the a terms, not on the new value of the Q;’s but on the weighted average

of the old and new Qs’s. This tends to speed convergence.

NEWTON RAPHSON METHOD

The Newton_Raphson method is a powerful numerical method for solving systems of

non-linear equations. This method formulates a set of simultaneous linear equations which

can be solved for flow or pressure correction in the water network.

The equation(5) is comprised of a set of nonlinear equations. Since the equations are

non_linear the solution method would be iterative. Thus the solution of (5) involves

linearization of the equations in (5) and iterative improvement of the initial estimates of

the pressures as given by:

g (x) - 5r (x ‘) + | , A x (1 4)

38

Chapter 1

(1 5)
A x = J _1 (Z - g (x k))

and the improvements to the initial estimates found by:

(i e)
X k+1 m X k + Ax

Convergence is achieved comparatively quickly with this approach since

NEWTON_RAPHSON method adjusts the pressures in all the nodes simultaneously. This

is particularly important when analyzing networks having large numbers of pipes. Another

important factor in achieving faster convergence is the closeness of the initial estimates to

the real pressure measurement values, the closer these estimates are to the actual values

the faster the convergence.

HARDY CROSS METHOD

The Hardy_Cross method is one of the first and widely used method of analysis[145].

This method makes corrections to initial assumed values by using a first order expansion

of the energy equation in terms of correction factor for the flow rate in each loop in the

water network. The relevant equations for Hardy Cross method can be derived from

eqn.(8) by rearranging it to:

(1 7)
J Ax - (g (x k) - z)

This is analogous to solving a set of simultaneous equations(Ax=b). Thus, the continuity

equations for the pipe network using the loop equations(AQ) is:

39

Chapter X

mk
F (A Q k) - T , a i + A ! ? J c l n < 1 8)

i - l

where = constant,

Q i = initial estimates of flow in ith pipe(satisfies continuity _ Known),

mk = number of pipes in the kth loop(known),

AQ = correction to kth loop to achieve convergence(unknown),

F — difference in the head between the two fixed pressure points.

Now by rearranging eqn(18) for the kth loop, we can calculate AQk.

Reflecting the correction according to the gradient descent for a single equation gives:

AQk(n+l) - AQk{n) - () (1 9)
F(AQk)

This process continues until (AQk(n + l) - AQk(n + l) ~ 0), when the convergence is

achieved. The process is of course iterative and is dependent on the accuracy of the initial

guess which must be reasonably good if an answer is to be obtained rapidly. However,

the method is suitable for manual solutions and small computers or hand calculators and

produce adequate results for most problems. Furthermore, Hardy_Cross method can be

viewed as the special case for Newton_Raphson method. The Hardy Cross performs

iterations on separate equations, one at a time, while the NewtonJRaphson method iterates

on the set of equations simultaneously. The Hardy Cross method was developed to

facilitate hand computations, and has the advantage of simplicity. The simplicity of the

method is helpful in programming the method, but what is more important is the small

amount of storage required by it. This is due to the fact that every node is considered

40

Chapter 1

individually and the mass balance equation is formulated and solved for that particular

node before other nodes are considered. In contrast, in Newton-Raphson method, the

mass-balance equations of the whole network is formed in a system matrix and solved in

order to obtain the improvement to the initial estimate of pressures in the system.

The Hardy Cross method suffers from a problem of solvability and convergence [35].

Various conditions, such as large pipe diameters or very low flows, which cause the

iterative scheme to converge very slowly, or even diverge. Ad hoc procedures have been

developed [35] to improve the convergence under such conditions, but there is no

guarantee of convergence.

1.10 CONCLUSION

1 - The inherent nonlinearity of water distribution systems implies that the on-line

monitoring of such systems, is a computationally intensive task. However, since the water

distributions networks are topologically comprised of semi-independent systems, the

distributed computing scheme seems an ideal match for modelling such systems. The goal

of this work was therefore to develop a suitable distributed simulation algorithm and an

appropriate distributed computing environment.

2 - Future widespread use of optimal control technology in water supply and distribution

systems are likely to be dependent on an increase in the use of more sophisticated

SCADA systems and the availability of more commercially available control software.

41

Chapter 1

The present trend is towards the integration of SCADA systems and DCSs, thus bringing

about a more effective and efficient control of real-time systems including the water

distribution system. In the future, water utilities will continue to benefit from the new on

line decision support software derived from the integration of the aforementioned systems.

Enhanced software will yield greater benefits through more effective data management,

reduce costs, wider applications and improved staff effectiveness.

3 - The Newton-Raphson method was selected from amongst the methods described in

the preceding sections since, firstly there are fewer equations to solve, and secondly, the

nodal equations are very much easier to formulate and automatically give maximum

sparsity.

42

Chapter 2

CHAPTER 2: Solution techniques for linear system of equations.

2.1 Numerical Solution techniques

The set of simultaneous equations derived from the mathematical model of the water

distribution network, for all three methods are equations (8),(13) and (18) and they belong

to: "linear theory" method, "Newton_Raphson" method and "Hardy Cross" method

respectively. Solution of the derived simultaneous equation is analogous to finding the

solution x of the system Ax=b, where A is a nonsingular square n by n real sparse

matrix and b a full vector. The algorithm may be grouped into two categories: direct

methods and iterative methods [33]. Direct methods are based on Gauss elimination; the

equations or the unknowns of the system are modified in successive steps until the

solution is found. In the iterative methods, an initial guess is usually made for x, and this

guess is then improved until sufficient accuracy is obtained. Both methods have

advantages and disadvantages in each particular case and it is difficult to state general

rules as to which is the most convenient. This chapter focuses on direct methods for

solving Ax=b, with A real nonsingular square matrix of order n.

2.1.1 Gaussian Elimination Technique

Gauss elimination is a well known procedure for solving linear equations [43,50,52].

The elimination by columns is the most popular version of the algorithm. In this approach

diagonal elements are chosen as pivots in the same order as they appear in the main

diagonal. Thus, it is important to order matrix A so that the elements on the main

diagonal are not only greater than zero but also results in having a diagonally dominant

matrix A (matrix is diagonally dominant by rows if each diagonal element is not less than

43

Chapter 2

the sum of the moduli of the other elements in its row). Diagonal dominance of A would

help to minimize the round_off error, thus resulting in a more stable system numerically.

The topic under which these issues are studied is called pivots selection or "ordering"

which shall not be discussed any further here.

Considering the system Ax=b, Gaussian elimination by columns consists of n steps.

The purpose of the kth step is to eliminate all the nonzero elements of the matrix which

lie on column K below the diagonal. At the first step, the nonzeros of column 1 of A are

eliminated by subtracting convenient multiples of rowl, element by element, from each of

the remaining rows with a nonzero in column 1. The element Ay belonging to the row that

is going to be subtracted from other rows(rowl in this case) and to the column that will

be eliminated(columnl in this case), is called the pivot and assumed to be nonzero. Prior

to elimination rowl is normalized by dividing all its nonzero elements by the pivot. A

matrix A(2)is obtained with An(2)=0 for i> 1 and An(2) = l.

At the second step, A22(2) is selected to be the pivot. Again we assume A22<2)̂ 0 . Row2

is normalized and all nonzeros of the second column below the diagonal are eliminated by

subtraction of convenient multiples of the normalized second row from the corresponding

rows. Note that, since A21(2)=0, the elements of column 1 will not be affected. A matrix

A(3) is obtained with Au(3)=0 for i> 1, Ai2(3)=0 for i> 2 and An(3)=A22(3)= l . In another

words, A(3) is upper triangular unit diagonal in its first two columns.

At the beginning of the kth step we have a matrix A® with zeros on its first k-1

columns below the diagonal and ones on the k-1 initial positions of the diagonal. The

44

following

example shows A® for the case n=6, k -3 :

Chapter 2

'1 . .
0 1 . .
0 0 . .
0 0 . . .
0 0 . .
0 0 . .

This process continues until, at the end of step n the matrix A(n+1) is obtained, which has

only zeros below the diagonal and ones on the diagonal, and is thus upper triangular unit

diagonal. Thus, the kth step of Gaussian elimination by columns is equivalent to

pre_multiplication of A® by the inverses of elementary matrices Dk and L^:

A (-fc+1) - (l £) ~1D]c1A k (2 1)

where

(Ac) kk = Akk *2 2)

(i f) ik -A$k (2 3)

for i> k , and A(1)=A (Dk is a diagonal elementary matrix and Lkc is a lower column

elementary matrix).

45

Chapter 2

2.1.2 Gaussian Jordan elimination technique

The algorithm for Gauss_Jordan elimination [53] is similar to Gaussian elimination, the

main difference being that, at the beginning of step k, the matrix A(k)has zeros in its

column 1 to k-1 both above and below the diagonal. The following example shows A^for

the case n= 6,k= 3:

'1 0 . . .

0 1
0 0

0 0
0 0

0 0

The kth step consists of the elimination of the nonzeros on the column K of A® both

above and below the diagonal. Row k is first normalized by dividing all its elements by

the diagonal. Row k is first normalized by dividing all its elements by the diagonal

element. Then, convenient multiples of the normalized row k are subtracted from all

those rows which have a nonzero on column k either above or below the diagonal. The

matrix A0̂ 15 is thus obtained with zeros on its k initial columns. This process is

continued until, at the end of step n, the identity matrix A(n+1)(= I) is obtained. The kth

step of Gauss_Jordan elimination by columns is equivalent to pre_multiplication of A00

by Dk_1 and by the complete column elementary matrix (Tkc)_1.

A (k+D M (yC) -iD-iAk (25)

where A(1) m A and :

(D*)* = Akk®

(Tkc)ik = A*00 for all i/=k.

46

Chapter 2

Thus, we have:

(Tn) ^ (T2C) (26)

2.2 Matrix Factorization techniques

The analysis of a large network systems involves the solution of large number of

simultaneous equations of the form Ax=b [100,107,133]. Furthermore, several solutions

are often required with the same coefficient matrix A but with a series of different b

vector. The solution of the preceding set of linear equations can be written as x=A'1b,

however, explicit inversion of A, though A is sparse, results in a dense A 1. This means

an increase of n2 in the storage requirement and n3 increase in the arithmetic operations.

An alternative method is Gauss elimination(or methods based on Gauss elimination). As

discussed in section 2.1, this method reduces the number of arithmetic operations to about

(n3/3), but requires an indeterminate number of storage locations. In general however it is

significantly better than direct inversion, but requires a systematic form of logic to

achieve an efficient computer program. This is achieved using one of the various

modifications of the basic Gauss elimination techniques, which are generally known as

matrix factorization methods. These methods use Gauss elimination to obtain the inverse

of the coefficient matrix implicitly as the product of several factor matrices. They do not

in themselves improve on the storage requirements of the number of arithmetic operations

need using Gauss elimination. However, because of their systematised logic, they lend

themselves to numerical techniques and computer programming, which, when sparsity

47

Chapter 2

techniques are included, can drastically reduce both the number of operations and storage

requirements.

2.2.1 Triangulation of Matrices

Triangular decomposition(or triangulation of matrices) is one of the most widely used

methods of manipulating coefficient matrices to solve simultaneous linear equations. The

Triangular decomposition of the coefficient matrices is performed in two phases: i)

forward elimination (the implicit factorization of A into the product of a lower

triangular(L) matrix and upper triangular matrix(U)) and ii) back substitution(solving the

upper triangular system for the unknowns, x vector) [33].

The LU method of factorization consists of expressing the coefficient matrix A as the

product of two factor matrices, such that:

A - L U (2 7)

where L = a lower triangular matrix,

and U = an upper triangular matrix which has unity elements on its diagonal.

The ability to factorize in this way is the fundamental property of any square matrix.

Thus if the set of simultaneous linear equations to be solved are written in matrix form

Ax=b, then substituting for A(eqn 19) gives:

L U x~ b (2 8)

48

Chapter 2

Letting Ux=y, then from equation 20, we have:

L y ~ b (2 9)

Since L is lower triangular matrix, y can be found from L and b by forward substitution,

and since U is an upper triangular matrix the unknown vector x can be found from U

and y by forward substitution.

To improve numerical stability, some form of numerical pivoting is usually required at

each factorization step. Numerical pivoting attempts to reduce round off error by

reducing growth in the magnitude of the matrix elements[33]. There are three basic

methods with varying degree of numerical stability: i) firstly is the "complete pivoting",

this method selects the element a ^ o f matrix A) with the largest absolute value in the ith

submatrix(Axy , i < x < n , i < y < n) and interchanges rows i and r and columns i and c. It

is the most stable method, but it is rarely used since it involves n2 search for each pivot

elements, ii) secondly is the partial pivoting which is the most commonly used technique.

It selects the element ari with the largest absolute value in the ith column(Ax>i, i < x < n)

and interchanges rows i and r. It is not as stable as the complete pivoting in theoretical

sense, but in practice gives good results[143]. It requires only an n search for each pivot

element, iii) thirdly is the pairwise pivoting. This method selects between a pair of rows,

using one to reduce the other. The left most nonzero column on the row pair is examined

and the element with the largest absolute value is selected as the pivot. Although pairwise

pivoting is theoretically less stable than partial pivoting, in practice it appears to be just as

stable [128]. Pairwise pivoting has been used in a parallel algorithm for solving dense

49

Chapter 2

system of linear equations [116].

2.2.2 Bi factorization technique

The bi_factorization(BF) method is a combination of the well known product form of

inverse and triangular factorization. The original factorization method was modified by

Tinney and other authors [36,133,134]. The Zolenkopf’s BF [110] is a derivation of

Tinney’s approach. The principle requirement of the BF method is that, it should be used

for sparse matrices that have nonzero diagonal terms and are strictly symmetric or

asymmetric in element value but with a symmetric sparsity structure. Some may argue

that this is a disadvantage since there are many problems which do not have these

features, there are conversely many systems that do. The BF method is an important and

frequently used technique for solving large engineering problems.

The method is based on finding 2n factor matrices for an nth order problem, such that

the product of these factor matrices satisfies the requirement:

L (n) L {n-D . . . L {2) L {1)A R {1) R {2) . . . R in-1] R (n) = U (3 0)

where A = original coefficient matrix,

L = left_hand factor matrices,

R = Right_hand factor matrices,

U = Unit matrix of order n.

Premultiplying equation 22 by the inverses of the left_hand factor matrices consecutively

gives:

50

Chapter 2

A R {1)R {2) . . - (L (1)) “1 (L (2>) - 1 . . . (L ^ - 1*) - 1 ^ ^) - 1

Post_multiplying equation 23 by left_hand factor matrices consecutively gives:

A R (1)R {2) . . . i ? (n- 1)JR{ij)L {i3)L (i3_1) . . . L (2)L (1)=C7

Finally, premultiplying equation 24 by A'1 gives:

R (1)R (2) . . . R (n“1* R (n) L (n> L (iJ~1) . . . L (2)L (1) - A ' 1

Thus, the factor matrices L and R at the kth reduction step are given by:

!■(*>_ 1 kk
Zkk1

- (* - 1) r (*) _ ik
^ i k . U - l)akk

aD (*) _ _

UJ,> . (^-Dakk

/ _ (Jr-l) _ (*-1) \ (*) _(*-!) akj f3,'i "= a.^ ^ . (Jr-1)akk

(3 1)

(3 2)

(3 3)

(3 4)

(3 5)

(3 6)

(3 7)

For symmetrical matrix A:

Chapter 2

a / ' 1̂ ati01'1'

therefore = Lu®*

In the case of symmetrical coefficient matrices, equation Rik(k)= L^00 indicates that,

except for the diagonal elements , the kth row of Rw is identical to the kth column of

L®. Also, the diagonal elements of R® are all unity and since these are known implicitly,

it is sufficient only to evaluate the elements of L®. Therefore, the required number of

operations and the amount of storage is reduced to almost a half.

2.3 Sparse Matrix Technology

Introduction

Many of the elimination or factorization techniques described in the preceding sections,

used in the solution of a system of linear equations of the form Ax=b(A is a sparse n*n

matrix) are not the most efficient way of solving such sparse systems. These techniques

do not take advantage of the sparsity that is present in matrix A and its factored forms.

Another unfortunate property of the elimination or factorization techniques is that new

nonzero elements can continuously be generated(Fill ins). This would further degrade the

original system’s degree of sparsity. When using direct methods for the solution of sparse

linear equations, it is important to design the algorithms to preserve as much as possible

of the system’s initial sparsity. This would be advantageous when considering sparse

systems, the most evident is in information storage and retrieval systems. Algorithms can

be made more efficient if only the nonzero elements with matrix A and its factored forms

are stored and processed. Furthermore the fill_in phenomenon can be controlled by the

52

Chapter 2

order in which the pivotal rows and columns are selected.In the following sections the

sparsity exploiting techniques that are employed in the solution of a set of linear equations

derived from the water distribution system, will be studied.

This section presents the solution methods employed in the simulation of large water

distribution systems. The solution techniques are then compared with all other existing

solution techniques in areas such as "pivot selection", "sorting and ordering" and

"storage".

2.3.1 Sparsity Directed Elimination Techniques

In the simulation of water networks, the mathematical model derived for the system

incorporates the MA28 routine of the Harwell Library [37]. This subroutine implements

the BarteIs_Golub decomposition of the system’s coefficient matrix. What follows is the

description of the algorithm.

For solving a large sparse system of linear equations, represented as Ax=b, where A is

a large sparse coefficient matrix, and may be unsymmetric. The MA28 routine solves the

system by first reordering the matrix into block upper triangular form (Fig.6). This is

done by the application of "row" and "column" interchanges to the original basis of

Gaussian elimination. The elimination can be defined in the equation form as:

, . . M±A = PUQ (3 8)

where M; = is a matrix which differs from I in just one off_diagonal element(

representing row operation)

for i = {l ... r},

53

Chapter 2

P,Q = are permutation matrices,

and U = is an upper triangular matrix.

PAQ

Figure 6: Block Upper Triangular form of matrix A.

Equation Ax=b is easy to solve since the factorization (30) allows A'1 to be expressed in

the form:

A '1 - QTU~1 P TMrMr_1 . . ,M± (3 9)

Another similar approach , was purposed by Gill and Murray [51]. Their method

incorporates orthogonal matrices in contrast to Gaussian elimination. Later on Saunders

[120]adapted Gill and Murray’s algorithm for sparse matrices.Basically, it involves using

the factorization:

where L = is a lower triangular matrix,

54

Chapter 2

A=LQ (4 0)

and Q = is an orthogonal matrix.

However, the algorithm only stores L, this is explained by the fact that:

A -1 - ATL-TL-1 (4 1)

This can be proved by the following equations:

from (32) A']= (LQ)’̂ Qr'lr1,

and AT= (LQ)T — QTLT,

then QT= ATL‘T.

Remembering that Q is orthogonal, and substituting in QT= ATL"T into the equation for A'

1 above gives:

A - ^ A ^ L -1

Since orthogonal reduction causes more fill_in than Gaussian elimination, matrix L will

have more nonzeros than there are matrices M; of Bartel_Golub algorithm, but the fact

that Q does not have to be stored is a very appealing prospect.

The Forrest and Tomlin approach [46] differs from Bartel Golub in that the permutation

is applied to the rows as well as the columns to produce an upper triangular matrix.

Unlike Bartel_Golub algorithm, Forrest and Tomlin algorithm performs interchange

which results in a greater fill_in and instability[112]. This means that the Forrest_Tomlin

55

Chapter 2

algorithm require frequent factorization. However, to remedy the instability problem it is

required to monitor the growth in the size of matrix elements and perform factorization

when necessary.

Another method was purposed by Golub and later improved by Gentelmen [53,48] for

the solution the aforementioned system of linear equations with A being m by n where

m >n . Golub suggested the use of orthogonal reduction to upper triangular form. In

Golub’s algorithm matrix A is decomposed to:

A-Q nUn (4 2)

where Qn is an m by n orthogonal matrix(i.e QnT = Q,,'1), and Un is an n by n upper

triangular matrix. Thus multiplying both sides of equation(35) by AT gives:

A TAx= A Tb (4 3)

Substituting (35) into (36) results in:

UnQlQnUnX-UfeZb <4 4)

which then reduces to(i.e with respect to orthogonality of Qn):

Unx - <4 5)

and this may be solved by a simple back substitution. The decomposition of matrix A in

(35) is performed using Householder Transformation matrices. Orthogonal reduction

techniques includes the traditional methods of Givens[52] and Householder[62].

56

Chapter 2

Peter and Wilkison [103] suggest yet another technique based on Gaussian elimination

which removes much of the instability present in the method of normal equations. They

first perform the decomposition A=LU, so that the normal equations take the form :

iF tfL U x - UTL Tb (4 6)

This then reduces to :

L tLUx - L Tb (4 7)

This may be solved by using the symmetric decomposition:

L t L - L2D2l I (4 8)

of the n by n matrix LTL. The ill_conditioning of the normal equations is avoided by the

multiplication of U'T to (39).

Augmented matrix method was proposed by Hachtel[104]. Considering the set of

equations

' I A r b

a t 0. X 0.

and applying block elimination the equivalent system:

is obtained from which it is evident that x is our required solution and r is the residual

57

Chapter 2

J A r b
0 - A TA. X - A Tb

vector b-Ax. Hachtel’s suggestion is to solve (42) directly, taking full advantage of its

sparseness and form. This way of expressing the least squares problem was used by

Bjorck[105] in his iterative refinement method and by Seigel[123] to avoid instability

problems. Such form of state estimation equations were used in the context of water

distribution systems by Bargiela[12,7].

Duff and Reid[124] decided however, to ignore symmetry of (42) and use straight

unsymmetric Markowitz in choosing the pivot. In this way account can be take of the

sparsity of the right hand side and the fact that only a partial solution of (42) is required.

The gains from doing this are often so great that they outweigh the disadvantages of

utilizing an unsymmetric solution process, this particularly true if it is desired to solve

several systems with the same coefficient matrix.

2.3.2 Sparsity Directed ordering and storage techniques

Ordering techniques:

In an ideal situation it would be desirable to solve the system globally and find an

ordering which among all the orderings, produces the optimal one in some well defined

sense. However, finding an optimum ordering that minimizes the memory requirement

and computation time for the solution process is too complex to be achieved for practical

problems. Rose and Tarjan[113] showed that the problem of finding

58

Chapter 2

and ordering that results in minimum fill_in during an associated Gaussian elimination

process is NP_complete, implying that the problem is computationally intractable. Since

the memory requirement for solving the system Ax=b is a linear function of the number

of fill_ins generated during Gaussian elimination process the results of Rose and Tarjan

imply that even a simplified problem of finding an optimum ordering that minimizes

memory requirement is computationally a very hard problem. It is very important to

realize that, although the word optimum is often used to describe ordering

algorithms[63,135], no known algorithm are optimal in a global sense for general sparse

matrices. On the other hand a suboptimal ordering method is achievable and purposed by

several authors[63,17,136,75,34,38]. These techniques differ from one another in one or

more of the following: i) the set of elements from which the choice of pivot is made, ii)

the rule for selecting a pivot for a given stage of the Gaussian elimination process from a

set of candidates.

The objectives of a good suboptimal ordering algorithm are that it must lead to a

significant reduction in the number of fill\-ins, arithmetical operations and rounding

errors(however, these techniques are heuristics). The two existing ordering algorithms are

"a priori" and "local strategy" methods. In the a priori method used by

[38,39,40,41,96,97,86], the columns(rows) are first ordered and then, at each stage of the

elimination, the pivot is chosen from within the first column of the reduced submatrix Ak

shown in Fig.7. Even though these a priori methods give results which are far from

optimal, they give a great improvement over not ordering for sparsity at all. Indeed using

a crude a priori approximation of Markowitz’s[86] ordering, Sato and Tinney[118]

59

Chapter 2

Figure 7: The Pivotal selection procedure.

observe a 4:1 improvement over not pivoting for sparsity.

In local strategies[13,38], the pivot is selected from among all the nonzeros in the

reduced submatrix using knowledge of its actual updated structure at that stage of the

elimination. The most popular ordering technique is that suggested by Markowitz[86]

which chooses the nonzeros at each stage, that minimizes the product of the number of

other nonzeros in the candidates row and column.

This product is the maximum fill in that can be created by the a*;00 pivot element of

matrix A00. Other methods derived by other authors

[13,64,63,38,92,65,66,20,44,14,115,142] have failed in their attempt to out perform the

Markowitz method. On the contrary, the results of the experiments carried out

60

Chapter 2

by[63,17,13(J,75,34,38]show the Markowitz criterion to be about the best.

Markowitz method was adapted the MA28 Harwell subroutine, for its numerical

stability. The stability criterion la^00] > u.maXila^j is placed on the pivot; an element

is rejected if its absolute value is smaller than u times the maximum absolute value of the

other nonzero elements in its same row. If u = l , then partial pivoting is performed, while

u=0 causes pivots with minimum upper bound on the fill_in to be selected. Gill and

Murray[50] alleviated the problem of factorized form of A containing more nonzeros than

A itself, by avoiding the storage of the orthogonal matrix Q(of A=LQ). Pivotal column

was chosen from columns with least nonzeros. A pivot was selected from the element

within the pivotal column that had least number of nonzero in its row. It is a stable

algorithm for moderately ill_conditioned problems, but not for problems with widely

differing row scallings. However, the GolubJHouseholder and the Golub Givens

procedures are very stable numerically. Powel and Reid[108] showed that Householder

variant is stable even in the presence of widely differing row scaling, provided that

suitable row and column interchanges were included.

The Peter and Wilkison[106] algorithm for the ill-conditioned system of equations is as

stable as the Golub method as far as stability is concerned. This level of stability is

achieved because matrix LTL(of equation(31)) is well conditioned. This will usually be so

if the row interchanges are included in the decomposition (31) to limit the size of the

off_diagonal elements of L. From the sparsity point of view this algorithm is usually

more satisfactory than the Golub algorithm[54]. Following the unconventional approach of

61

Chapter 2

Duff and Reid[37] of the unsymmetric solution of the symmetric problem, it was

recommended by Duff[42] that, for the least square problems, as the matrix becomes

squarer and more dense, the augmented matrix method becomes a very suitable method

for solving these problems. Duff and Reid[43] recommended that, the choice of method

should depend principally on the degree of stability that is required. In such cases

therefore, they recommended Peters_Wilkinson algorithm. In other cases however,

Hachtel’s scheme in its symmetric version unless rapid processing of further vectors b is

important in which case the unsymmetric approach is recommended.

Storage Techniques

Row Pointer 1 4 5 7 9

N onjeros -3 -46-1 1 2 3 3

Column Pointers 1 2 4 3 1 4 3 4

Figure 8: An example of Sparsity_directed storage technique.

The basic requirement of any sparse storage scheme is, easy acquirement of the matrix

62

Chapter 2

elements and minimization of storage requirement for the sparse matrix. However, the

best scheme in any particular case is dependent on the structure involved and the use to

which the matrix will be put. Primarily storage schemes belong to two main categories :i)

static storage scheme(individual elements are merely accessed), and ii) dynamic storage

scheme(allowing the change if a zero element to a nonzero element). The simplest and

most straight forward of static storage scheme is the coordinate storage used by

Phillips[107], Page and Wilson[98]. Here, the nonzero elements along with their

coordinates are stored. Scheme used by Curtis and Reid[99,100] and Brandon[101] is

called a column pointer/row index(row pointer/column index) scheme and is shown in

Fig. 8. Another static storage is the bit map used by Gustavson et. al.[102]. This method

has the advantage of requiring only one bit per element but has the disadvantage of

storing bit information for the zeros also. Furthermore, high degree of granularity is

required in programming such scheme in high level languages, thus making it unpopular,

although it may be suitable for parallel computing machines. However, attributes such as

ease of access and economy of space makes the static storage the row pointer/column

index(column pointer/row index) the best.

The most important form of dynamic storage scheme is the infamous "link_list"[79].

The link_list is consisted of a set of parallel array retaining information such as: i)row

index ii)column index, iii) pointer to the next element in the row,iv) pointer to the next

element in the column, v) pointer to previous element in the row, vi)pointer to the

previous element in the column. However,link_lists usually retain some of these

attributes. For example, subroutines MA28 and MAI8 use only attributes (iii) and (iv).

63

Chapter 2

To manipulate in this network of interlinked arrays one or two extra integer arrays are

required. This is most prevalent in the Bi factorization technique[146]. Gustavson[55] has

purposed a storage scheme which is used in the Harwell sparse linear programming

routine LA05A[56]. This scheme essentially store two copies of the matrix: one oriented

by rows and the other by columns.

64

Chapter 3

CHAPTER 3: Network Decomposition Techniques

3.1 Introduction

In the preceding chapter, various sparsity directed solution techniques have been

discussed assuming that the whole system is analyzed simultaneously. For every network

problem, a combination of these elimination and ordering technique can be used to obtain

the solution. However, in certain very large sparse network problems these techniques

may fail to deliver the required solution efficiently. For example, any change to the

physical size of the network would require that the whole system of nonlinear equations

be solved all over again. In the case of the decomposed system solution what is required

is the solution to the modified part of the network followed by the coordination of

solutions. The associated attributes of such techniques are i) reduction of the highly

complex and interconnected networks to a set of subsystems each of which require less

storage and are generally much easier to solve, ii) they offer better configuration

flexibility, that is the ability to simulate water networks of varying size without the

incursion of time penalties or the need for different computational techniques in order to

cope with the numerical complexity of the problem, iii) greater robustness of the

system(i.e. where a processor suddenly fails, its job can be reallocated to the other

processor within the distributed processing network). The need for the decomposition

techniques as applied to the solution of electrical power distribution systems, has been

raised by Kron[80] and Himmelblaun[59], Kulikowski[81], Dantzig[29], Nemhauser[94],

Lasdon[83], Geoffrion[49], and Mine[90], Mesarovic[88] and Vichenevetsky[137].

65

Chapter 3

3.2 Physical structure and sparsity of large water distribution system

Decomposition techniques are particularly suitable for networks which contain groups of

highly interconnected nodes, the individual groups being only sparsely connected. Water

distribution system is one such system. Each densely populated or industrial area will

have a number of nodes interconnected by many pipes , where as different areas will

only be connected by a few pipes. Fig.9 shows a 130 nodes water distribution system

together with the sparsity pattern of its Jacobian matrix. This is the type of structure

which is amenable to decomposition and in particular the network tearing method of Kron

which will be described in the following sections. The idea of decomposing such systems

is depicted in Fig. 10. Because the sparsity of the matrix reflects the sparsity of the

original network (provided the rows and columns are ordered suitably) the tearing of the

matrix equations can be made by inspecting the graph of the original water network.

However, partitioning such systems by inspection may not always result in the best

possible decomposed format. Because of this reason, an automatic clustering algorithm

has been implemented to partition the network efficiently. This is discussed in Chapter 5.

3.3 Constructing a Decomposed Model

The decomposed model for the system is constructed using the goal coordination

principle given by Mesarovic et al[88]. The interconnection is cut at the subsystem level

and the model itself resembles Fig. 11. The model consists of a coordination level and a

subsystem solution level. The coordination level must therefore attempt to neutralize the

effect of the imbalance incurred due to tearing of the interconnecting elements. The

derived subsystems are solved totally independently from each other and the final solution

66

Chapter 3

Figure 9: The partitioned 130 nodes network example.

Figure 10: This diagram represents the format of the corresponding Jacobian matrix of the
water network shown in Fig.9.

67

Chapter 3

of the system is given by the coordinating level.

3.4 Network Tearing technique

3.4.1 Introduction

Network tearing(Diakoptics) was pioneered by Kron[80] and further developed by

Happ[57]. Roth[114], R.Onederra[95] and Shun ichi Amari[3] have been able to derive

the same equations as Kron. Kron showed that splitting up a system into a number of

parts, and solving the problem on each part separately, it is possible for linear systems to

combine the subsystem solutions into an overall solution as an analytical process. This

results in saving both of computational time and storage space compared to either a

distributed iterative improvement or centralised methods. Our study of Kron’s network

tearing stem from Brameller’s[18] interpretation of the algorithm. Brameller uses the

concepts of circuit topology and elementary matrix algebra in his approach to derive the

same equations as Kron. Network tearing involves dividing the original network into a

number of component networks so that each subnetwork is isolated from the rest of the

system. The matrix of the coefficients for each small network is solved independently, as

if the other component networks were non existent. The solution of the full network is

then obtained from the solution of the component networks by a simple routine procedure.

The solution obtained is an exact solution within the limitation imposed by the accuracy

of the parameters of the original problem and the number of digits used in the calculation.

No approximation or iterations are carried out at any stage. Kron’s method would

68

Chapter 3

Subsys. nSubsys. 1 Subsys. 2

Figure 11: The Decomposition model of the water network.

normally involve the direct solution of a set of matrix equations, including the inversion

of the subsystem matrix for each region and the inversion of the system matrix of the

intersection network.

The computing required to perform network tearing can be implemented in a

hierarchical manner which is illustrated in Fig. 12. The subproblems are concerned with

solving the subsystem matrices derived from the partitioning of the system matrix into

independent blocks using Diakoptics, and the master problem(coordinating routine)

combines these solutions with the intersection data to achieve the overall solution. In the

following sections of this chapter the special cases of diakoptics of systems with and

without common reference point, will be presented.

69

Chapter 3

Coordination: Evaluate the unknown parameters
from the solution of the subnetworks
and the solution of the torn networks

Solve subsystem 1 Solve subsystem 2 Solve subsystem n

Figure 12: The Decomposed model showing the subsystem solution and coordination tasks.

R e f e r e n c e

Figure 13: Example network for the common reference point.

Chapter 3

3.4.2 Tearing networks with common reference point

With reference to Fig. 13, the network is decomposed into three subnetworks by tearing

the appropriate pipes(i.e shown as dotted lines in Fig. 13(a)). The torn network’s system

matrix takes the form of a block diagonal matrix and the torn branches form an additional

network referred to as the intersection network as shown in Fig 13(b). The effects of the

tearing can be eliminated by the addition of the compensating flows to the derived

subnetworks at the end nodes of the torn branches in the subnetworks. Thus, equation(8)

of chapter l(section 1.3) for such a network shown in Fig. 13 would be given by:

A x=J~1(Z~g(xk)) (51)

and the iterative improvement to the solution is obtained as

x k+1=*xk+Ax (5 2)

The iterations of (51) and (52) are continued until |Ax| is below some pre-set limit e.

While the solution of (51) is theoretically feasible, in practice it implies considerable

computational effort due to the need for an inverse of a large Jacobian matrix. Such an

inversion has, at best, quadratic numerical complexity. With the network partitioned as in

Fig 13(b), the subnetworks can be solved concurrently providing that the effect of the

removed interconnecting branches is compensated by adding appropriate flows to the

corresponding boundary nodes. Thus the vector Z becomes:

71

Chapter 3

Z ' - Z + z 1 (5 3)

where

z ' - C ^ f + i x) (5 4)

With \f/ denoting cut-pipes in the network and C«vJ, being a node/cut-pipe incidence matrix

defined as follows:

1, if the node a, is a sending node of the cut-pipe \p

Ca4, ={ -1, if the node a, is a receiving node of the cut-pipe \p

0, if the node a, is not incident to cut-pipe

The removal of cut-lines decouples subnetworks so that the Jacobian matrix for the

partitioned network assumes block diagonal form and becomes amenable to distributed

computation of pressures x’ in subnetworks. By analogy to equation (51) can be written

as:

A (Z + z /-gr (xk)) (5 5)

Substituting for z and linearizing cut-line flows around their values assumed for x0, the

correction to the pressures in the subnetworks Ax’ can be calculated as follows,

A x ' - J - 1'(Z+Cay f i (x 0) - g { x k)) + J '-l /C ^ A f t (5 6)

and with Z'0= Z + C a^.f^(x0) (56) becomes:

A x ' - J - 1' (z'0- g (x k)) +J~1'cay& fq (5 7)

Since the corrections to subsystem states Ax’ are the function of the corrections to cut-line

flows Afy, additional equations relating partitioned network pressures and cut-line flows

need to be found. These are obtained as pressure balance equations for the removed

72

Chapter 3

networks, (Fig. 13(b))

h (f y) +Pq-0 (5 8)

where h(f\J/) is a functional relationship between the flow and the pressure drop across the

pipe, \}/, and

P ^ - C ^ x /^ 6x s (5 9)

quantifies the pressure drop in terms of the difference of pressures in the end-nodes of the

pipe and the difference of reference pressures x6 in the relevant subnetworks. The cut-

pipe/subnetwork incidence matrix, M^, is defined as follows:

l ,if the flow in the cut-pipe \p is directed into subnetwork 5

= {-l,if the flow in the cut-pipe \p is directed away from subnetwork d

0,if the cut-pipe \p is not incident to subnetwork 5

and Ca/ .

Linearizing (58) and (59) around the x0, the pressure balance equations for the removed

networks can be written as follows:

h(fy(x0)) +bh/bfy. kfy+Cyax0+Cyakx'+Myb.x6+MybAxb = 0 (6 0)

Assuming that the pressure balance holds for x0, (60) simplifies to:

H. A f ^ C ^ aAx'+M^6A x b=0 (6 1)

where H = 5h/Sf^ | fvt(x0) .

73

Chapter 3

The corrections to the subnetworks’ reference pressures Axs, are related in (61) to the

change of flow in cut-pipes Afy and consequently affect the mass transfers between

subnetworks. It is necessary, therefore, to consider equations representing mass balance

for the subnetworks:

Z6+Mb^ f y = 0 (6 2)

where Zs is a sum of Zt in all nodes of subnetwork 5, I5, Z5=Ei£lfiZj, and M6vt= M ^T.

Noticing the definition of Z and the equations (53) -(54), the subnetwork mass balance

(62) can be linearized around x0 to give:

0 (S 3)

where

4 - Z 6+MH f̂(x(6 4)

Equation (57), (61) and (63) form the basis for the distributed solution of the nonlinear

network system. They can be represented in a matrix form:

■ J ' -C ' .t 0 " ' A x r 'z'a- g (x kY
H A . 0

0 0 $<--
1 4

If the block diagonal matrices in J’ have much higher ranks than matrices and C ^, it

is economical to solve concurrently the following auxiliary problems,

J 1. A x ,l=Z/0- g (x k) (6 6)

to obtain the uncoordinated subsystem solutions Ax”

74

Chapter 3

A . (Z;0-ff(xk)) (6 7)

A - C + „ A x "

0 > if

----1

\ '*o
tsq

and subsequently coordinating them by taking into account corrections to subnetwork

reference pressures and inter-subnetwork flows. Equation (67) allows us to re-formulate

(65) and to reduce the coordination problem to the following:

M
(6 8)

On solution to (68) the iterative update to the calculated pressure is found from equations

(57) and (67) as:

A x l-‘A x l,+J~1'cay A f y (6 9)

and

A x - A x / +Ka6A x 6 (7 0)

giving

x k+1=xk+Ax (7 1)

which is analogous to (52).

3.4.3 Tearing networks with temporary reference point

In the preceding section, it has been assumed that each component network contains a

common reference pressure node to which there are connection from one of more node

75

Chapter 3

z - - f

Reference

7 « - f*3 1 :

Figure 14: System after partitioning into 2 subsystems together with compensating flows.

in the individual subnetworks. However, it became apparent that in the case of the water

distribution system, the reference pressure node would fall in only one of the component

networks. Thus, this would mean that only one subnetwork could be solved. An example

of such a system is shown in Fig.5. Fig. 14 shows the system after partitioning. Like in

the previous case, the solution process of the subnetworks requires that the effect of the

removed branches be compensated. This is done by adding appropriate flows to the

corresponding boundary nodes of the component networks, and is given by:

Z '= Z+z'

where z = compensating flows into the end nodes of the cut branches, in the

corresponding subnetwork. By removing the linking components, the system is

decoupled, the Jacobian matrix of the partitioned network takes the form of a block

76

Chapter 3

diagonal matrix. This is of course a suitable structure for distributed computation of

pressure corrections in subnetworks x’. By partitioning the network, an imbalance is

created which is compensated for by the compensating flows z’. Thus the pressure

corrections for each subnetwork would be:

j ' A x ' - z ' - g f x *) (7 2)

where Z’= Z + z’

and z — Ca{ = flow in the torn network.

Substituting for Z’ in (3):

j ' A x ' ^ Z + C ^ f y - g i x *) (7 3)

But f ̂ is nonlinear thus needs linearizing about the equilibrium point as follows:

A x ' - t T 1 ' (Z + C a y f y (x 0) + C a y A f y - g (x k)) (7 4)

here the rate of change of flow Afy is an unknown together with Ax’.

Furthermore, a relationship exists between the pressure drop in each torn pipe and the

pressures in the subnetworks measured with respect to each subnetwork reference

pressures x . Change of flow in the torn branch would effect the pressures in the

subnetwork, measured with respect to their subnetwork reference pressure. Of course

that, this relationship needs to be linearized thus resulting in the relationship between the

correction to the flow in the torn pipes being equal and opposite to the correction to the

Chapter 3

subnetwork pressures.

In addition to two unknown entities Ax’ and Af* exists another unknown which defines

the correction to the pressure node of each subnetwork. Remembering flow balance law,

then : " total consumptions in each subnetwork = total input into each subnetwork(or

compensation flows)". Once linearized the corrections to the flows in the torn pipes Af*.

Therefore, x can be found from the pressure drop in the torn pipes and the Ax’ can be

found from equation(5) by substituting for Afy already found. Once the pressure

correction to the subnetwork pressures(Ax’) are obtained they are added to the pressure

correction of the local pressures(Ax) in order to find the overall pressure corrections of

the system:

Ax “ A x 7+A x 5 (7 5)

and

x k+1=xk+Ax (7 6)

3.4.4 The Implementation

Early successes in the computer simulation of water distribution systems [26,129,11)

72,9,10,8] prompted the industry to incorporate these techniques in the development of

the o n jin e decision support systems. However, these attempts were largely frustrated by

the rapid increase of the computational requirements of the simulation algorithms with the

increase of the network size. Even taking the full advantage of the sparsity exploiting

techniques, the numerical complexity of the nonlinear network solving algorithms is

78

Chapter 3

quasi_quadratic with respect to network size. Therefore, alternative approaches to the

problem had to be thought of, since the use of the existing techniques would result in

either the loss of the real_time performance of the on_line decision support systems or

uneconomical computational requirements.

The network tearing algorithm presented in this thesis is based on Kron [80] network

tearing algorithm. Kron showed that by splitting up a system into a number of parts,

solving the problem on each part separately, and combining the subsystem solutions into

an overall solution, an exact answer could be obtained, with a saving both of

computational time and storage space over a direct system solution, even on a sequential

computer. The algorithm is basically comprised of Newton Raphson iterative process

with diakoptical calculation of state increments at each iteration. Fig.5 shows a small

water distribution network before partitioning, whose Jacobian matrix (Fig. 15) has a

block diagonal structure augmented by off-diagonal nonzero elements ’x’ representing

interconnections between (partitioned) subnetworks. This jacobian structure is ideal for

parallel processing when the network is partitioned as shown in Fig. 14. The Jacobian

matrix of the partitioned network assumes the structure as in Fig. 15 but without the

interconnecting elements.

The nonlinear network tearing algorithm developed in section 3.4.2 can be summarised

as follows [60]:

Stepl: Read-in the system description data.

Step2: Form subsystem data packets and send them to individual solvers.

79

Chapter 3

Figure 15: Block structure of the Jacobian matrix.

Step3: Calculate subsystem solutions.

Step4: Coordinate partial solutions.

Step5: If the coordinated corrections from step 4 are less than a given value

then STOP otherwise repeat from step 2.

The algorithm was programmed entirely in Parallel Fortran[149]. Fig. 16 shows the

structure of the water system simulation program incorporating nonlinear diakoptics.

After initial reading of system data by module 1.1, packets of data describing individual

subsystems are being sent by module 1.2 to multiple copies of network solvers 1.3. The

results produced by modules 1.3 are transferred to module 1.4 which collates packets of

results arriving from individual solvers in an arbitrary order and then sends a complete

set of results for coordination to module 1.5. If the coordinated state estimates satisfy the

80

Chapter 3

Threadl

Read
network

Send
subsystem
date£ > Subsystem Data

Solve
subsystem!Coordinate

Enable/Disablejsolutions

Receive
subsystem
solutions

Convergence data

Output
Results

Worker TasksMaster Task

Figure 16: Water distribution simulation program.

81

Chapter 3

convergence criterion the results are output, otherwise the state estimates are transferred

to module 1.2 and the cycle of computation is repeated. Since the program was targeted

to run on a distributed multiprocessor system, issues such as communication overheads

and coordination of currently executing tasks had to be taken into account. To minimize

communication overheads modules 1.2,1.4 and 1,5 were programmed as "threads" rather

that tasks(this is a facility provided by 3L Fortran[149]). In this way, the modules placed

on the same processor make use of common memory for accessing data, thus reducing the

data transfer time.

Since actual data transfer takes place between modules 1.2JL3 and 1.3__ 1.4, the only

way of reducing the data transfer time would be to minimize the actual amount of data

being transferred. This is achieved for modules 1.2 and 1.3 by actually calculating the

Jacobian submatrices within module 1.3 and sending from 1.3 to 1.4 only those columns

of the inverse of the Jacobian submatrices which correspond to the end_nodes of the torn

branches.

3.4.4.1 Processor Structure.

The algorithm described in the previous section maps well onto a "tree structure" of

processors where the root processor executes threads 1,2 and 3, and the tree branch

processors(workers) execute the subsystem solvers, 1.3. Given that each transputer

provides only four links for interconnections with other transputers, a two layer tree of

transputers imposes a limit of three concurrent subsystem solvers. If a greater number of

modules 1.3 is to be executed concurrently, transputers need to be connected as a multi-

82

Chapter 3

Figure 17: The 130 nodes network example.

layer tree where each transputer of the lower layer is connected to up-to three transputers

of the higher layer. A three-layer-tree will then accommodate up to 12 concurrent solvers,

a four-layer-tree, up to 33 solvers, etc.

An alternative pipeline configuration is seen as a "general purpose" configuration which,

in particular, can be used for the execution of our algorithm but it implies the overhead of

a greater data traffic through individual transputers. Fig. 18. gives the graphical

representation of the performance of pipeline and tree configurations.

As an example, consider a four-processor system(root and 3 workers W1,W2, and W3)

and represent the time required for the transfer of results as "R". In the pipeline

83

Chapter 3

W3Root Root H2

Root W1W2

Time

Figure 18: Time response of Tree and Pipeline configurations.

configuration, the root transputer sends 3 data packets of duration D to worker W l. W1

retains one packet of data and passes on the remaining two packets to W2. Similarly, W2

retains one data packet and passes the other packet to W3. The total time spent on

propagating data packets is 6D. Assuming now that the subsystem solution times S are

identical, W3 will be the last to complete its calculations and in the worst case scenario,

where there is no concurrent transmission of results, the time required to propagate

packets of results to the root transputer will be 6R giving a total time =6D +S+6R .

A 2-layer tree configuration avoids entirely the need for the re-transmission of data

packets by the workers so the maximum delay incurred in starting the third worker is 3D;

a saving of 3D compared with the pipeline configuration, while the subsystem solution

times are as before, the transmission of results back to the root transputer does not

involve other workers and can be accomplished concurrently with subsystem solutions

giving rise to the best time attainable in the tree configuration of = 3D +S + R , if D is

84

Chapter 3

greater than R, or ttot =D +S+3R , if R is greater then D. Consequently the maximum

performance advantage of the tree over the pipeline configuration is 3D+5R or 5D+3R

depending on the relative length of D and R. In the context of realistic 65 and 130 node

networks, the relevant timings were performed. Times D and R were found to be of the

order of l-2ms and the subsystem solution times(3 subsystems) were found to be 780 and

1780ms for the two systems respectively. It is not surprising therefore that the expected

performance advantage of the tree configuration, of 8-16ms, was seen at best marginal

compared to the subsystem solution times, implying that our distributed simulation

algorithm is not sensitive to transputer configuration. These results are corroborated by

the findings of other researchers [16], who reported that the tree configuration of the

processors executing diakoptics algorithm, does not offer significant advantages over the

pipeline configuration. However, compared to [16], the implementation of diakoptics

proposed in this thesis requires much lower volume of data transfer.

3.4.4.2 Computational Results.

The algorithm was implemented on a 486 unix workstation hosting a T800 transputer

equipped with 4Mb memory and four networked T800 transputers each having 1Mb

memory, Figs. 19 and 20. The water system simulation program was coded in

Parallel_Fortran77. Initially the transputers were configured as a pipeline using the 3L’s

"flood-fill" configuration software. In flood-fill configuration, tasks are automatically

mapped onto the available processors.

However, the result of "flood-fill" configuration suggest that it assigns the worker tasks

85

Chapter 3

to the first two transputers situated immediately after the root transputer in a pipeline

configuration (Fig. 19). This means that while some of the worker tasks are running on

the allocated transputers, the remaining worker tasks are allocated to the root transputer.

This phenomenon contradicts the definition of flood-fill configurer as was described

before in this chapter.

To verify that flood-fill does not fulfil its role as the automatic configuration tool, a

number of programs were developed in order to configure the transputers as a pipeline

formation. These programs configured the transputer array as:

i) 1 master task and 1 worker task (i.e. the root processor runs the coordination task and

all but one subsystem solution task - Table 1),

ii) 1 master task and 2 worker tasks (i.e. the root processor runs the coordination task

and all but two subsystem solution tasks - Table 2),

iii) 1 master task and 3 worker tasks (i.e. the root processor runs the coordination task

and all but three subsystem solution tasks - Table 3),

and finally

iv) 1 master task and 4 worker tasks (i.e. the root processor runs the coordination task

and all but four subsystem solution tasks - Table 4).

The timing results obtained from configuration (iii) and (iv), shown in Tables 3 and 4,

were almost identical to (ii), shown in Table 2. This result confirms that the extra

parallelism provided by the tasks in configurations (iii) and (iv) were not utilized.

86

Chapter 3

Furthermore, timing results obtained from configuration (ii) were almost identical to the

results obtained while using the "flood_fill" configuration program (Tables 5 and 6).

The performance of the water system simulation program was evaluated on two realistic

65 and 130 nodes networks (see Fig. 17).

In order to gain some insight into the computational efficiency of the algorithm itself and

to establish basic reference data for the future investigation of the optimal network tearing

the following were investigated: i) coordination time vs. the number of torn branches and

ii) subsystem solution time vs. the subsystem size.

The networks were partitioned into 2 - 5 subnetworks in several different ways, varying

the number of torn branches. For each partitioning, an attempt was made to have

subsystems of approximately the same size so that the allocation of subsystems to

processors did not affect the results. In the case of 2,3 and 4 subsystems the subsystem

solver tasks were placed on the worker transputers only, but in the case of 5 subsystems,

a subsystem solver task was also placed on the root transputer. It is important to note that

the solver tasks had to be individually placed on the selected transputers and the data

packets had to be appropriately managed by a separate router software since, as was

mentioned before, the standard "Flood Configurer" tended to send data packets only to

some of the "workers" leaving others idle. The time required to coordinate subsystem

solutions,(Fig.21), was to depend almost quadraticly on the coordination problem size, as

defined by the combined count of subsystems and the coordination problem size, and the

torn branches between them. On other hand, the subsystem solution times were found to

depend quasi-linearly(power 1.25) on the number of nodes in subsystems(Fig.22).

87

Chapter 3

These results indicate that while it is advantageous to solve subsystems concurrently one

needs to be careful about subdividing the system into too small subnetworks, since the

implied increase of the coordination time may outweigh the concurrent processing gains.

Indeed, for a 130 node network subdivided into two subsystems, 2.920sec was needed for

subsystem solution and only 0.189sec for coordination of partial solutions, giving a total

of 3.109sec. The same network, subdivided into 4 subsystems, required 1.300sec for

concurrent solution of subsystems and 1.895sec for coordination if the number of torn

branches was minimized (19) and as much as 3.975sec if the number of torn branches

was high(29). This gives corresponding totals of 3.195sec and 5.275sec. Consequently, it

is apparent that the full benefits of the distributed simulation algorithm will be derived

from its application to large systems. By way of an example, the simulation of a 1300

node network partitioned into five subsystems with, say, 30 torn branches (the number of

torn branches does not depend on the network size but only on the number of subsystems

and the average node connectivity) will still require approx. 4secs for coordination of

subsystem solutions, and the concurrent execution of five 260 node subsystems is

estimated to require 17sec giving a total of 21secs. This compares very favourably with

estimated 90secs needed to simulate this system on a single transputer using our algorithm

and 130secs needed if the network tearing algorithm is not used. It is worth pointing out

that the volume of data transmitted between tasks is linearly proportional to the network

size, so the data transfer times will continue to be negligible.

88

Chapter 3

T800
Worker

T800
Worker

T800
Worker

T800
WorkerHost Unix

Workstation
T800
Root

Running
TRANSX
Software

Figure 19: Pipeline configuration.

Host Unix
Workstation

T800
Root

Running
TRANSX
Software

T800
Worker

T800
Worker

T800
Worker

T800
Worker

Figure 20: Tree configuration.

89

Chapter 3

Table 1(a); Pipeline configuration (1 master task and 1 worker task - 65 nodes).

Number of

Subsystems

Number of

cut branches

Network

size

Subsystem

Solution

time(Secs)

Coordination

time(Secs)

2 5

65

1.928 0.158

3 11 1.760 0.775

4 14 1.516 1.014

5 16 1.448 1.111

Table 1(b): Pipeline configuration (1 master task and 1 worker task -130 nodes).

Number of

Subsystems

Number of

cut branches

Network

size

Subsystem

Solution

time(Secs)

Coordination

time(Secs)

2 4

130

5.851 0.184

3 11 5.351 1.066

4 19 5.2 1.895

6 27 4.695 3.975

90

Chapter 3

Table 2(a): Pipeline Configuration (1 master task and 2 worker tasks).

Number of

Subsystems

Number of

cut branches

Network

size

Subsystem

Solution

time(Secs)

Coordination

time(Secs)

2 5

65

1.162 0.158

3 11 1.180 0.775

4 14 0.862 1.014

5 16 0.889 1.11

2 4

130

3.042 0.184

3 11 3.415 1.066

4 19 2.821 1.895

6 27 2.470 3.975

91

Chapter 3

Table 2(b): Tree configuration (1 master task and 2 worker tasks).

Number of

Subsystems

Number of

cut branches

Network

size

Subsystem

Solution

time(Secs)

Coordination

time(Secs)

2 5

65

1.155 0.158 1

3 11 1.181 0.775

4 14 0.857 1.014

5 16 0.897 1.111

2 4

130

3.031 0.183

3 11 3.425 1.066

4 19 2.829 1.895

6 27 2.489 3.975

92

Chapter 3

Table 3(a): Pipeline configuration (1 master task and 3 worker tasks).

Number of

Subsystems

Number of

cut branches

Network

size

Subsystem

Solution

time(Secs)

Coordination

time(Secs)

2 5

65

1.162 0.158

3 11 0.912 0.775

4 14 0.755 1.014

5 16 0.745 1.111

2 4

130

3.043 0.183

3 11 2.762 1.066

4 19 2.821 1.895

6 27 2.358 3.975

93

Table 3(b): Tree configuration (1 master task and 3 worker tasks).

Chapter 3

Number of

Subsystems

Number of

cut branches

Network

size

Subsystem

Solution

time(Secs)

Coordination

time(Secs)

2 5

65

1.155 | 0.158

3 11 1.181 0.775

4 14 0.857 1.014

5 16 0.897 1.111

2 4

130

3.031 0.183

3 11 3.425 1.066

4 19 2.829 1.895

6 27 2.489 3.975

94

Chapter 3

t i m e (s e c)

4

3

2

1

1 0 4 020 3 0
Problem _size

Figure 21: Coordination time / problem_size graph (problem-size represents the total number
of subnetworks plus total number of cut-lines).

time(Soc)
3

2

1

10 20 30 40 50 TO60

Ave. subsystem_size

Figure 22: Subsystem Solution Times with respect to Average subsystem-size (i.e. tota]
number of nodes in a subnetwork).

95

Chapter 3

Table 4(a): Pipeline configuration (1 master task and 4 worker tasks).

Number of

Subsystems

Number of

cut branches

Network

size

Subsystem

Solution

time(Secs)

Coordination

time(Secs)

2 5

65

1.163 0.158

3 11 0.913 0.775

4 14 0.755 1.014

5 16 0.745 1.111

2 4

130

3.046 0.183

3 11 2.763 1.066

4 19 2.821 1.895

6 27 2.359 3.975

96

Table 4(b): Tree configuration (1 master task and 4 worker tasks).

Chapter 3

Number of

Subsystems

Number of

cut branches

Network

size

Subsystem

Solution

time(Secs)

Coordination

time(Secs)

2 5

65

1.147 0.158

3 11 1.188 0.775

4 14 0.857 1.014

5 16 0.913 1.111

2 4

130

3.013 0.183

3 11 3.460 1.066

4 19 2.929 1.895

6 27 2.538 3.975

97

Chapter 3

Table 5: Pipeline configuration - "Flood_Fill" (1 master task and 4 worker tasks).

Number of

Subsystems

Number of

cut branches

Network

size

Subsystem

Solution

time(Secs)

Coordination

time(Secs)

2 5

65

1.204 0.15

3 11 0.956 0.735

4 14 0.826 0.961

5 16 0.819 1.053

2 4

130

3.167 0.174

3 11 2.962 1.011

4 19 3.065 1.797

6 27 2.641 3.776

Chapter 3

Table 6: Tree configuration - "FloodJFill" (1 master task and 4 worker tasks).

Number of

Subsystems

Number of

cut branches

Network

size

Subsystem

Solution

time(Secs)

Coordination

time(Secs)

2 5

65

1.205 0.150

3 11 1.240 0.735

4 14 0.906 0.961

5 16 0.952 1.052

2 4

130

3.164 0.174

3 11 3.618 1.011

4 19 2.997 1.796

6 27 2.661 3.776

Chapter 3

3.5 Conclusion

This chapter introduced the Network tearing or diakoptics. This technique despite being

applied to linear electrical systems, was shown to be adaptable for decomposing nonlinear

systems such as the water distribution system considered here. The essence of the

modification is the application of decomposition technique to the increments of

appropriate variables rather than to their absolute values. The experience of implementing

and executing on a parallel hardware, seems to indicate that the algorithm is well suited

for execution on parallel computing hardware such as a transputer platform. However,

when implementing the algorithm care must be taken with regard to the minimization of

data transfer. The communication of data and results between the coordination routine and

subsystem solver routines is minimized by transferring the individual columns of the

subsystem Jacobians related to the cut_pipes only, and the individual column solution of

the subsystems. The storage space required by the algorithm is also minimized by a the

use of row-column index sparsity storage scheme [42].

100

Chapter 4

CHAPTER 4: Automatic Network Partitioning techniques

4.1 Introduction

The decomposition techniques developed for large scale problems all require the system

to be partitioned into subsystems(i.e clusters) such that elements in the same subsystem

are "strongly" interconnected, but subsystems themselves are "weakly" interconnected.

The overall computational efficiency and the storage requirement of any decomposition

method is strongly influenced by the way the system is decomposed. In cases where the

system has a simple layout, a fairly good cluster partition can be determined by inspection

but for complex systems, an algorithm must be used to systematically partition the

associated graph into an optimal arrangement of clusters. Development of such algorithm

has proven to be NP complete (execution time is not bound by a polynomial function of a

problem size) optimisation problem[117]. No method for exact solution with a computing

effort bounded by a power of N has been found for any of these problems.

Consequently, "heuristic" methods have been proposed[67]. The objective of these

methods is to form clusters with graph nodes, while traversing the graph. In every step,

the number of nodes adjacent to the cluster is tracked. The order in which the graph is

traversed depends on the criteria used to add node to the cluster being formed. In the

following sections the two graph partitioning techniques which were studied, will be

presented.

4.2 Greedy Cluster formation technique

As was mentioned in the preceding section, since the partitioning problem was shown to

101

Chapter 4

be a non-polynomial bound optimization problem[117], thus heuristic methods have been

purposed to solve it. One such method is known as the "Greedy strategy"("greedy" is a

common term in the graph literature[45] and is attributed to Jackedmonds[89],it means

that the algorithm determines the direction for iteration generally by checking for the

"cheapest" local condition). The algorithm studied here is based on the concept of

"contour tableau" which consists of an array of three columns, as shown in Fig.23. The

left most column is call the "iterating set"(IS), the middle column the "adjacent set"(AS),

and the right most column the "contour number"(CN).

The entries of the tableau are determined as follows:

Stepl: Choose an initial iterating node and store it in IS(1).

Step2: store in AS(1) all nodes that are adjacent to the node in IS(1).

Step3: Place the cardinality of AS(1) in CN(1).

Step4: Let i = l.

Step5: If CN(i)=0, stop!

Step6: Choose the next iterating node, denoted by ni+1, from AS(i) and place it in

IS (i+ l).

Step7: Update A S(i+l) from AS(i) by deleting the node ni+1 and adding the set V

representing all nodes adjacent to ni+1 that are not already in AS(i).

Step8: CN (i4T)= |A S (i+ l) |.

Step9: Let i= i-fT , go to step5.

In order to clarify step 7 assume that in AS(i) and AS(i+l) the stored adjacent nodes of

the sets of iterated nodes are:

102

Chapter 4

IS AS ON
isci) AS(1) CN(1)
IS(2) AS (2) CN(2)

IS(3) AS (3) ON (3)

IS (-4) AS(4) CN(4)

Figure 23: A Contour tableau.

{ (J JS(j)}
j - i

and

i + l

(U J S (j ') }
J-l

respectively.

Instead of finding A S(i+l) at each iteration an efficient way of updating AS(i4-l) from

AS(i) needs to be found. Now sets:

{ I S (i + l) }

and

{ A S (i) - I S i i + l) }

103

Chapter 4

are adjacent to:

(U I S (j))
j - i

Since { AS(i) -IS(i+ l) } and V (i.e. set V representing all the nodes adjacent to ni+1 that

are not already in AS(i) or { Uj=1i+1 IS(j)}) are adjacent to:

i + l
{ (J JS(j')}.

J-l

It is now possible therefore, to update A S(i+l) from AS(i) by deleting IS (i+ l) and

adding V, which is precisely step 7.

To illustrate this methodology an example network is considered. Fig.24 shows a graph

with nine nodes. It is clustered into two groups of nodes, {n1,n2,n3, n4} and {n6,n7,n8,n9}

which are separated by node n5. To construct the contour tableau the initial node is

selected arbitrarily, say n1? and stored in IS(1). Since {n2,n3,n4,n5} are the nodes adjacent

to nl5 they are stored in AS(1). Consequently, CN(1)=4. Select arbitrarily an iterating

node from AS(1), say n3, and put it in IS(2). Observe that the nodes that are adjacent to

{n1}n3} are {n2,n4,n5}. Thus they are put in AS(2) and hence CN(2)=3. The algorithm

continues in this way until CN(i)=0, resulting in the tableau shown in Fig.25(a).

Moreover, if X denotes the set of nodes of a given graph, then the set of AS nodes

always separates X into three subsets; namely,

104

Chapter 4

Z(i) »U JS(j')
> 1

AS(i),

and

P v ^ (i) * X - Z (i) - A S (i)

where Z(i) nodes are not adjacent to W(i) nodes. The size of AS(i) (i.e. CN(i)) varies in

each step, it is when CN(i) is very small, that Z(i) and W(i) form clusters.

In the contour construction algorithm (described in stepl to step9) there are only two

places where choices are made. They are in stepl when choosing the initial iterating node

and in step6 when choosing the next iterating node. The methodology adopted in this

section for choosing the next iterating node, is that of "greedy” strategy. The greedy

algorithm requires that at every iteration only the node in AS(i) that yields minimum j V j ,

be chosen. If a tie is encountered, a node is chosen arbitrarily among the ties.

To illustrate this strategy, examine the graph shown in Fig.24. If n3 is chosen as the

initial iterating node, then applying the greedy strategy to the graph results in the tableau

shown in Fig.25(b). Indeed, it achieves the goal of separating the two clusters

{ n ! ,^ ,^ ,^ } and {n6,n7,n8,n9} through the node {n5}.

The flow chart of the greedy algorithm is given in Fig.26. Results obtained from the

application of the greedy algorism to the water distribution network is shown in Fig.27.

105

Chapter 4

n3n2

n4
nl

n5

n9

n6

n7n8

Figure 24: An example network for the contour tableau construction.

CNCNASI S

nlnl

n2n3

n2,n4,n6,n7,n8,n9 n3n5

n4n2,n4,n7,n8,n9n6

n5n2

n6n9

n7n7

n8 n9n8n4

n9

(a)

Figure 25: Table (a) the results of arbitrarily choosing the next iterating node,
(b) the "greedy" algorithm - selecting from amongst nodes with fewest neighbours which are
present in AS(i).

106

"IS

Chapter 4

S e t D e la y

Q s t d u s te i '
s iz e

s to r e It ir
IS

Q st starting
s to r e n e ig h b o u rs
o f s ta r t in g n o d e
In A S

S to r e v a lu e
In C N

S e a r c h from
I - ak m ax + 1 ..k m s x
fo r lo ca l m in C N

S e a ro h fro m I —1 .. k
fo r lo c a l m in C N

S to re d u s t e r In d u s t e r v e c to r
+ b o t t le n e c k n o d e _____________

D ele te every th ing In K ,IS ,A S ,and CN

C N -

Figure 26: Flow Chart for "greedy" algorithm.

Greedy
Algorithm

Figure 27: The Greedy algorithm results for a 130 nodes network.

107

Chapter 4

4.3 Simulated Annealing technique

The application of Simulated annealing optimization technique has been reported in

fields as wide as electrical engineering , operations research, communications and

computer science. This technique basically requires solving large scale combinatorial

problems(and the most well known of these problems is known as the travelling salesman

problem).

Any combinatorial problem can be defined at any moment in time as a pair(R,C), where

R is the finite set of configurations and C is a cost function. The problem now is to find a

configuration for which C takes its minimum value. There are two possible approaches

for solving a combinatorial optimization problem, firstly is the "optimization algorithm"

yielding a globally optimal solution, having extensive amount of computation, secondly is

an "approximation algorithm" yielding an approximate solution in an acceptable amount

of time. The excessive computation time requirement of the first approach makes it

unattractive for computer implementation, thus the remaining approximation method is the

only sensible alternative. Approximation algorithms can be divided into two categories: i)

algorithms tailored to specific problem, and ii) general algorithms applicable to a wide

variety of combinatorial optimization problems.

The simulated annealing algorithm belongs to the second category, it is a general

optimization technique for solving combinatorial problems. The simulated annealing

algorithm was first introduced by Metropolis et al[76] in statistical mechanics. Later on

Kirkpatrick et al[122] derived the connection between statistical mechanics and

108

Chapter 4

combinatorial optimization. In statistical mechanics, solids are annealed by first raising

the temperature to a point where the atoms are randomly arranged and then gradually

lowering the temperature and forcing the atoms to arrange themselves into the lowest

energy state.

Kirkpatrick et al. [76] have proposed an approach to optimisation of NP-hard

combinatorial problems based on simulating the process of annealing physical matter. In

this model the configuration of a possible solution to the combinatorial problem

corresponds to atomic positions and the cost of the configuration corresponds to the

internal energy. A low-energy atomic state is reached by very slow cooling, and the

equivalent minimum-cost configuration may be achieved in the combinatorial problem by

simulating an analogous procedure.

Partitioning of the water network using Simulated Annealing

The objective of the nonlinear network tearing algorithm is to optimize the execution

time for the simulation of the water network. In order to achieve this objective, it is

essential to derive an optimal partition of the network shown in Fig. 17.

An optimal partition in this case (i.e. in the case of nonlinear diakoptics) means dividing

the network into a number of subnetworks, while minimizing the number of cut branches

required in order to achieve such partitions. Furthermore, the execution time of the

nonlinear network tearing algorithm is dependent on its coordination and subsystem

solution times. The coordination time reflects mainly the time taken to solve the

intersection network (a matrix of interconnecting branches which were cut during the

109

Chapter 4

application of optimal network partitioning) plus the coordination of the subsystem

solutions. The subsystem solution time, on other hand, represents the time taken to solve

the derived subnetwork. The time is dependent on the maximum number of nodes in any

subnetwork (i.e. subnetwork size). Thus the partitioning scheme employed in this case

should be chosen in order to achieve a balance between the number of nodes in a

subnetwork and the number of branches linking the subnetworks (which are cut in order

to obtain the required partition). The estimate of computation time required is given by

the following function (Irving et al[69]):

C - aV* + bby (7 7)

where Sk = number of cut_branches,

5 = maximum size of the subnetworks,

and a and /3 are weighting factors. The choice of exponents x and y for \p and 5

respectively, has been determined by the approximate order of solution times required for

subsystems solution and full matrix solution of the intersection network in the parallel

implementation of the nonlinear network tearing algorithm. As was mentioned in

chapter3, the subsystem solution time depends quasi-linearly (power 1.25) on the number

of nodes in subsystems [60], while the coordination time depends almost quadraticly on

the coordination problem size, as defined by the combined count of subsystems and the

number of branches linking the subsystems which were cut during the network

partitioning.

In simulated annealing algorithm, searching out the lowest cost configuration is

110

Chapter 4

considered analogous to achieving the lowest energy state of configuration of the physical

system by annealing. Here the physical system resembles our example network in

Fig.28(a) and the desired optimum cost is plotted against time in Fig.28(b). To ensure

that the subnetworks assume an ordered lowest cost state during their formation(or

crystallisation) the temperature in the annealing process should be lowered(cooled) very

slowly. During this cooling process the system is permitted to move into high as well as

low energy state at each temperature, where the probability of it being in a given energy

state is determined by the Metropolis criterion[76], which allows the configuration to

accept a state which increases its energy by AE with probability:

where T is the temperature. All configuration changes that do not increase the energy are

accepted as an optimization by iterative improvement. However, since the probability of

accepting changes to the system state that increases the energy, behaves exponentially, the

rate of accepting changes to the energy state will decrease as the temperature T is

reduced. The sequence of values chosen for the temperature T during the cooling process

is termed the "annealing schedule" and is studied later in this section.

The simulated annealing algorithm applied to the water distribution network therefore,

can be described by the following steps:

Stepl: Assign each node to an arbitrary subnetwork.

Step2: Set the initial "temperature" T.

Step3: For a number of iterations do:

111

Chapter 4

Step4: For each node in the network:

Step4.1 : Make a trial re_assignment of the node to a randomly selected

neighbouring subnetwork(if one exists).

Step4.2 : Evaluate number of cut lines and the size of subnetworks(i.e calculate

the cost function).

Step4.3 : If the trial reassignment has reduced the cost, accept the reassignment.

Step4.4 : If the trail reassignment has increased the cost by AC,

Step4.4.1 : Generate a random number RN in the range [0,1].

Step4.4.2 : Calculate RP = exp(-AC/T).

Step4.4.3 : If RP > RN accept the reassignment, otherwise reject the

reassignment.

Step5 : Select next node.

Step6 : Decrease T (T =aT where a =0.99).

Step7 : If the prescribed number of iterations at the current temperature has been reached

and no cost reduction is achieved go to exit, otherwise repeat from step3.

Step8 : Write_out results, stop!.

The simulated annealing algorithm is similar to iterative improvement algorithm in that,

they start off at a given configuration, a sequence of iteration is generated, each iteration

consisting of a possible transition from the current configuration to a configuration

selected from the neighbourhood of the current configuration. If this neighbouring

configuration has a lower cost, the current configuration is replaced by this neighbour,

otherwise another neighbour is selected and compared for its cost value. They terminate

112

Chapter 4

All n o d e s

Figure 28 (a) Neighbourhood search for new nodes to join the cluster, (b) Curve representing
optimal cost.

when a configuration is obtained whose cost is no worse than any of its neighbours.

Furthermore, step4.4 defines the main difference between the simulated annealing and the

iterative improvement method, that is the ability of simulated annealing to "escape" from

local optima in an attempt to locate the global optimum. The iterative improvement

algorithm is therefore modified to permit the temporary acceptance of trials which

increase the value of the cost function. However, since the probability of accepting a trial

that increases the cost behaves exponentially (i.e. exp(-AC/T)), the rate of accepting trials

that increase the cost will decrease as the temperature T is reduced.

113

Chapter 4

Annealing Schedule

The annealing schedule describes how the temperature T is controlled during

minimization of the cost function and hence the probability of accepting changes to

configuration that result in an increase to the cost function. The algorithm started with

temperature set to a value (e.g T = 100,000), where essentially all proposed changes to the

configuration are accepted(of course this would depend on the initial configuration, in this

case the graph is regarded as unconnected), then reducing the temperature

exponentially [76]:

Tn - (. ^) n T0 (8 3)
1 0

with the ratio Tj/Tq = 0.99 [76,122,126]. At each temperature all possible

configurations^.e all possible neighbouring nodes which could assigned to the

subnetwork) are attempted, if they exist. What is of importance here, is the fact that, if

one assignment of the neighbouring node to the current subnetwork is rejected, all other

neighbouring nodes of the subnetwork under consideration that have not already been

examined will be selected with equal probability. Therefore, tables must be set up which

keep a record of each node accepted and their neighbours, which effectively become

subnetwork’s neighbours. The result of the application of simulated annealing to a 130

nodes network is shown in Fig.29. These cluster formations were obtained only at a slow

cooling schedule. In contrast however, a rapid cooling schedule resulted in isolated

regions being formed which in theory belong to the same cluster.

114

Chapter 4

Figure 29: Simulated Annealing results for a 130 nodes network.

Rate - 0.99
Temperature -100,000
Max. No. of Subnets. - 10

The advantages and disadvantages associated with simulated annealing.

The simulated annealing method, being an iterative method, suffers from shortcomings

such as: i) iterative improvement ends in a local minimum and there is no information

about how far it is from a global minimum, ii) local minimum obtained depends on the

initial configuration for which there is no information available, and iii) no bound on

computation time.

Moreover, the iterative improvement method does have the advantage of being generally

applicable - configurations, a cost function and generation mechanism are usually easy to

define. To avoid the aforementioned disadvantages, following measures are recommended

in the literature: (i) execution of the algorithm for a large number of initial

115

Chapter 4

configurations, say N at the cost of an increase in computation time; (ii) use of

information gained from previous runs of the algorithm to improve the choice of an initial

configuration for the next run, (iii) introduction of a more complex generation

mechanism(or equivalently, enlargement of the neighbourhoods), in order to be able to

"jump out" of the local minima corresponding to the simple generation mechanism. To

choose the more complex generation mechanism properly requires detailed knowledge of

the problem itself, (iv) acceptance of transitions which corresponds to an increase in the

cost function in a limited way(in an iterative improvement algorithm only transitions

corresponding to a decrease in cost are accepted).

4.4 Conclusion.

In this section two partitioning schemes were presented. The first scheme has its

theoretical basis in a heuristic derivation - the "greedy algorithm". The second scheme is

the simulated annealing approach which is theoretically based on the analysis of the

combinatorial optimization. The application of ad hoc heuristic methods is strongly

problem dependent and thus can not be generalized to tackle broader fields of graph

partitioning problems. On the other hand however, the simulated annealing algorithm is a

more general approach for graph partitioning problems.

Computational results indicate, however, that the performance of the simulated annealing

algorithm is strongly dependent on the chosen cooling schedule, especially as far as the

116

Chapter 4

quality of solution is concerned. In order to apply the algorithm to a particular

partitioning problem, a number of items have to be defined: a set of configurations, a

generation mechanism for transitions and a cost function. As far as the performance of

the algorithm is concerned, it can be concluded that for our implementation the quality of

the solution obtained by the simulated annealing algorithm is at least as good as (and

sometimes better) than the results obtained from the application of heuristic

algorithms(greedy).

117

CHAPTER 5: Distributed Computing

Chapter 5

5.1 Aims and Obfectives

A modern water telemetry system is generally comprised of: several out-stations,

regional telemetry computer centres and at its heart is a main computing centre. The data

gathered by the telemetry out-stations is processed by the software installed at the regional

telemetry computer centres. These centres are running a scope of software packages to

monitor system data, provide predictions and operational control. In addition, they

provide comprehensive information to managers and users, thus bringing about a more

effective and near optimum operation of sites. The term used to accurately describe such

systems is Supervisory Control and Data Acquisition (SC AD A).

The regional telemetry computer centres communicate with each other and other parts of

the system via communication links (e.g. Ethernet). This type of arrangement of the

processing power within a water distribution system can be viewed as a Loosely-coupled

computing system (i.e. a system where processing elements communicate solely through

message passing). In the case of a distributed physical system, such as a water

distribution network, the Loosely-coupled computing system provides flexibility of

coordinated subsystems solution. This is particularly important since the periodic

expansion of water distribution system can be satisfied by simply increasing the

computing power (i.e. simply adding more computers to the network) to deal with

network’s topological expansion.

The objective here is to develop a suitable environment for the implementation of the

nonlinear network tearing algorithm [60] in a Loosely-coupled computing network.

5.2 Introduction to Distributed Computing Systems

The progress of computer technology has reached new heights in recent years, this

progress is characterised by the introduction of powerful low cost personal computers

(PC) and workstations, and the more recently introduced Inmos transputer chip. This

118

Chapter 5

indicates the fact more processing power is available economically for use, thus bringing

the processing closer to the hardware it is monitoring or controlling.

Another area of technology which benefitted from this progress is the network

communication, thus providing the medium through which processors(PCs, workstations

...etc) can communicate[32,31]. Consequently, this gave rise to the construction of large

distributed computing systems simply by linking processors together over distances

ranging from few meters within a single room to thousands of kilometres across

continents. The idea of distributed computing has been utilized to an extent that

distributed computing systems comprised of multiple autonomous computers connected

through a network are trite in industrial and commercial sectors. The communication

between the autonomous processors on the network(i.e. Ethernet,token ring...etc) is

usually made possible by the communication program. This layer of software which

provides the communication primitives for exchange of data over the network is known as

the communication protocol. This layer is situated between the application layer and the

physical network layer, thus making the underlying physical network layer transparent to

the application layer.

5.2.1 Distributed computing system types

The indiscriminate use of the term distributed system to describe a wide range of

multicomputer and multiprocessor computer systems of differing designs and goals has

been the subject of much discussion in the scientific circles. The question is "what type of

system actually qualifies as a distributed system?".

From the discussions two lines of thought emerged; firstly were those describing

distributed systems as multicomputer and multiprocessor whether in close proximity and

sharing resources or remote and communicating over a network by sending messages; and

finally were those describing a distributed system to be solely made of geographically

distributed computers connected by a communication network(i.e. LAN or WAN).

However, the increasing use of distributed systems in all sectors consequently led to their

119

Chapter 5

further development, thus enabling scientists to draw up a definition in order to narrow

the field down to[6]: "A distributed computing system consists of multiple autonomous

processors that do not share primary memory , but cooperate by sending messages over a

communication network". Each processor in such a system executes its own instruction

stream(s) and uses its own local data, both stored in its local memory. Occasionally

processors may need to exchange data; they do so by sending messages to each other over

the network.

The most important characteristic of a distributed system is "transparency". As far as the

application programmer is concerned, transparency eliminates the need to program the

communication operations explicitly, providing instead a range of interfaces to remote

services enabling application programs to access files, devices and system resources

wherever they are located in the network.

Distributed systems can be characterised by their interconnection networks. The network

determines the speed and reliability of interprocessor communication, and spatial

distribution of the processors. The following sections describe different types of

distributed systems.

5.2.1.1 Tightlv-coupled distributed systems

A tightly-coupled distributed system consists of a multiprocessor system where the

processors communicate through shared variables, where a shared variable may be read

from or written to by an arbitrary number of processors.

Design of concurrent processing systems requires deep analysis. Since speed of

component processes are assumed to be nonzero and finite, but otherwise arbitrary, it is

necessary to analyze all possible execution sequences, however unlikely some of them

may be , to guarantee the absence of "race conditions"(i.e. where two processes are

accessing a variable simultaneously). Special protocols for mutual exclusion are often

required for a process to access shared-variables in an exclusive manner.

120

Chapter 5

For tightly-coupled systems shared-variables provide clear and better solutions to the

mutual exclusion problem. Broadcasting a message can often be implemented by storing

the message in a variable that can be read by every process. Examples of tightly-coupled

systems are[6]: the cosmic cube[125], hypercubeflll], and Transputer networks[87].

Fig.30 show an example of a tightly-coupled computing system.

shared memory

program A program Cprogram B program D

cache
memory

cache
memory

cache
memory

cache
memory

processor

input/output

Figure 30: A tightly-coupled multiprocessor system.

5.2.1.2 Looselv-coupled systems

A system of processors in which the interactions are solely through messages, is called a

Loosely-coupled distributed system. Such systems are attractive from the programming

view point since, they are designed by decomposing a specification into its separable

components, each component could then be implemented by a process running on a

different processor. A further advantage of using Loosely-coupled system in contrast to a

tightly-coupled systems is that in a loosely-coupled system the required variables are sent

in message packets between processes, therefore a process can commence its computation

immediately after receiving the message packets. In a tightly-coupled system, the mutual

121

Chapter 5

exclusion between processes is achieved by sending synchronisation messages (e.g. ADA

rendezvous, or distributed wait signal). This increases the data access time for each

process, thus increasing the overall execution time. An other problem associated with

tightly-coupled systems, is the possibility of race conditions existing between processors

accessing shared variables(as was mentioned before). The only solution is to encapsulate

such shared variables in a procedure which incorporates mutual exclusion access to its

resources. In contrast,the executable section of each process, in a loosely-coupled

systems,is performed in a serial manner thus enforcing mutual exclusion access to shared

variables with each distributed process. Fig.31 shows an example of a loosely-coupled

system.

local network

memory

processor

I/OVOVO

program Cprogram Bprogram A program D

memory

processor processor

memory

processor

memory

Figure 31: A loosely-coupled distributed system.

5.2.2 Distributed computing architecture of a water distribution system

The basic infrastructure of a water distribution system in use today consists of a large

122

Chapter 5

number of out stations monitoring and collecting system data, and a SCADA system

which utilizes the data to provide the overall water system operational control. The

SCADA systems are in operation autonomously at large water treatment works and

reclamation centres. Such systems enable operators to monitor pressures and flow rates

throughout the distribution network and operate various elements(i.e. pumps and valves)

from a central location. The objective of controlling the water distribution system is to

achieve hydraulic performance required by consumers in an economically efficient

manner. For example, the purpose of optimal control for pump-cost minimization is to

provide the operator with the least-cost operation policy for all the pump stations in the

water distribution system. Therefore, the operation policy for a pump station is simply a

set of rules or a schedule that indicates when a particular pump or a group of pumps

should be turned on or off over a specified period of time. The optimal policy should

result in the lowest total operating cost for a given set of boundary conditions and system

constraints.

In general, the optimal control is directly integrated with an associated SCADA system;

alternatively the control system may be developed as an independent annex of the overall

operating environment. Thus , the control system can be viewed as an ensemble of

optimization and network analysis and simulation routines that run on a federation of

dedicated personal computers and workstations connected by a network(i.e. Ethernet,

token ring ...etc). In fact the water system simulation program described in this report is

primarily destined to run in such a computing environment. As was described in the

preceding sections, such clusters of computing power resemble a loosely-coupled

distributed computing system.

5.2.2.1 Computer Network structure

The communication between distributed computer systems is established by well-defined

protocols. Since these protocols can be complex, they are designed in layers to make their

implementation more manageable. For each layer there are protocols which constitute a

framework for the communication at that layer. However, because of the independent

123

Chapter 5

development of the layers, they tend to vary across networks. To harmonise these

differences the ISO (International Standard Organisation) Open System Interconnection

model (OSI) [131] were introduced(Fig.32). The complete description of different layers

in this model can be found in [130]. In the ISO model of the network communication

system, the lowest layer providing user-process to user-process communication is the

transport layer. Thus, whatever the communication protocol for process interaction, it

would be built on top of the transport layer of the host communication system. The

protocol layer would prevent the application programmer from explicitly programming

communication operations, providing instead a range of primitives for connecting to

remote services required by the application program. Therefore, making the

communication protocol layer "transparent" to its users.

applicationapplication

data link

physical

transport

network

data link

network

physical

presentationpresentation

session

transport

session

layer host
protocols

host

Figure 32: The seven layers of the ISO reference Model.

To establish communication between user-processes communication primitives "SEND"

and "RECEIVE" are perfectly adequate, but there are many combinations of the

124

Chapter 5

primitives depending on their connection pattern, for example, many-to-one and one-to-

one interprocess communication, and whether or not they are synchronous(i.e. blocking).

The most common combination in most languages is a synchronous RECEIVE primitive

and a synchronous SEND primitive. In the absence of synchronous RECEIVE and SEND,

periodic monitoring of the receiving port is required.

5.2.2.2 Protocols for interprocess communication

The interprocess communication protocol suite provided by UNIX 4.3BSD system are:

TCP/IP protocol suite(the Internet family), Xerox Networking systems(Xerox NS), the

OSI protocols and Unix-to-Unix copy(UUCP). These protocols would be described in the

following sections. However, since in this report the emphasis is on the usage of TCP/IP

protocols, it was not deemed necessary to describe the other protocols in any great depth.

Thus, the inner workings of these protocols were glossed over in favour of a more

general description of their important aspects.

The Internet Protocols

In order to satisfy the networking needs of the US department of defense (DoD), the

Advance Research Project Agency (ARPA) of DoD sponsored the development of the

ARPANET. Consequently, in 1980s a new family of protocols referred to as the TCP/IP

protocol suite was specified as the standard for the ARPANET. The TCP/IP has been

implemented on everything from personal computers to the largest supercomputer. It is

used for both Local Area Networks(LANs) and Wide Area Networks(WANs). The reason

for the increased use of the TCP/IP protocols is their inclusion in the BSD UNIX system.

The existence of this protocol along side of BSD Unix in workstations allowed many

organizations and university departments to establish their own LANs.

Although the protocol family is referred to as TCP/IP, the family has more members

than TCP and IP. Fig.33 shows the relationship of the protocols in the protocol suite

along with their approximate mapping into the OSI model (approximate because the

TCP/IP was developed before the OSI model became available).

125

Chapter 5

USER
PROCESS

UDPTCP

ARPICMP

OSI Layer 3

hardware
interface OSI Layer 1-2

Figure 33: Layering in the Internet protocol suite.

The TCP(Transmission Control Protocol) is a connection-oriented protocol that provides

a full-duplex, byte stream communication link for the user process. The UDP(User

Datagram Protocol), on the other hand, is a connectionless protocol for user processes.

The data is transmitted as datagram packets each having in its header the destination

address of the receiver. The Internet Protocol(IP) is yet another protocol that provides a

packet delivery service for the TCP and UDP protocols. User processes are not involved

with the IP layer.Finally there are those protocols whose main role is to map an Internet

address into a hardware address - they are Address Resolution Protocol(ARP) and

Reverse Address Resolution (RARP). Some networks may require them but the majority

do not.

User processes interact with TCP/IP protocols by sending and receiving either TCP data

or UDP data. These two protocols are referred to as TCP/IP or UDP/IP to indicate that

126

Chapter 5

both use the IP layer. The TCP module provides the necessary logic for establishing and

terminating connection between processes, the sequencing of data that might received out

of order, the end-to-end reliability and the end-to-end flow control. UDP, on the other

hand, provides only two features that are not provided by the IP protocol; port numbers

and an optional checksum to verify the contents of the UDP datagram.

Port Numbers

It is possible for more than one process at a time to be using either TCP or UDP

protocols. This requires a mechanism for identifying the data associated with each user

process. This is the reason why both the TCP and the UDP protocols use a 16-bit integer

number as their "port numbers". Thus if a client want to contact a server, the 32-bit

Internet address of the host on which the server resides would be combined with its port

number to form a unique network wide address. The UDP and TCP headers both contain

the source port number and the destination port numbers. The TCP ports are independent

of the UDP ports, since the IP header specifies the protocols.

The inclusion of the control information by the different protocol modules is known as

"encapsulation". The combination of information from different sources using identifiers

such as port numbers, protocol types, and Internet addresses is called "multiplexing".

Both TCP and UDP use the IP layer, if however the size of the packet, passed down

from these layers, to the IP layer is greater than the Maximum Transmission Unit(MTU)

of the network access layer, the packet is fragmented before it is passed to the network

access layer. Upon receiving the fragmented packet, the receiving IP layer has to

reassemble the fragments into a single datagram before it is passed to either UDP or the

TCP layer. Whether fragmentation takes place or not, the size of the data packet

exchanged by the two UDP(TCP) layers remains the same.

The UDP datagram created by a user process, is sent by the IP layer as soon as it arrives

in the IP layer. Thus the concept of buffering does not apply to UDP. TCP layer, on the

127

Chapter 5

other hand, provides this facility.

The maximum size of an IP datagram is 65,536 bytes. However, as soon as the size of

an IP datagram exceeds the size of the underlying network’s MTU, fragmentation occurs.

Since UDP packets are transmitted using the IP layer, if the result of adding the UDP

header and the IP header causes the datagram to exceed the network’s MTU, again

fragmentation occurs (as mentioned previously). This means that sending a 2048 byte

UDP packets on an Ethernet network guarantees fragmentation. TCP functions differently

since it breaks up the data into segments. The segment size used by TCP layer is agreed

on between the two ends when a connection is established.

Xerox Network Systems

Xerox Network Systems(XNS) is the network architecture developed by Xerox

corporation in the late 1970s for integrating their office products and computer systems.

XNS is an "open" system(i.e. open-ended, easily expandable), and Xerox has published

and made available the protocols used by XNS. Most 4.3BSD systems provide support for

the XNS protocol suite. XNS is similar in structure to the TCP/IP protocol suite. It

provides several different protocols, some of those are: Echo protocol(ECHO), Routing

Information Protocol(RIP), Packet Exchange Protocol(PEX), Sequenced Packet

Protocol(SPP), Error Protocol(ERROR) and finally Internet Datagram Protocol(IDP). The

arrangement of the layers in the XNS protocol suite, and their approximate mapping onto

the OSI model is shown in Fig.34.

OSI Protocols

OSI protocols have become popular lately and many organisations^.g. US government)

have stated their intentions to move towards network based on OSI standards.

Unfortunately networks based on OSI protocols are still in their infancy. However, a

nonproprietary implementation of many of the OSI protocols is available as the ISODE

128

Chapter 5

OSI Layer 5-7user
process

user
process

ECHO ERRORRIP PEX SPP

OSI Layer 4

IDP
OSI Layer 3

hardware
interface OSI Layer 1-2

Figure 34: Layering in the XNS protocol suite.

software package . This package runs under 4.3 BSD and System V.

Amongst some of the services this package provides are: Remote Operation

Service(Similar to the Remote Procedure call techniques), FTAM(Transfer of text and

binary files, directory listings, file management), FTAM/FTP gateway and VT(Virtual

Terminals). It is predicted that a gradual shift from non-OSI protocols to the OSI

protocols is taking place, and the next major release of 4.xBSD should have support for

some of the OSI protocols.

Unix-to-Unix Copy

UUCP is a collection of programs that can be used to copy files between different

systems and to execute commands on other systems. Some of these programs are as

follows: "uucp" program(this is different from UUCP, since UUCP represents the

collection of the programs) invoked by users, copies a file from one system to another,

"uuxn program spools a command for execution on another system, "uucio" program

129

Chapter 5

usually run as a daemon process to perform the actions that have been requested by

previous uucp or uux commands, and "uuxqt" program executes files that were generated

by uux.

However, the underlying fact remains that UUCP does not provide the primitives

necessary for user processes to establish interprocess communication across the network.

5.3 Requirements of a distributed programming language

Ideally, programming support for distributed applications must fulfil there primary

requirements. Firstly is the ability to assign different part of a program to run on different

processors, this is known as "configuration" or "mapping". Secondly, the processors in a

distributed system must be able to communicate with one another in an asynchronous or

synchronous manner. And finally is the ability to detect and recover from partial failure

of the system.

The suitability of a distributed programming language for a given distributed hardware

would be measured on how many of the aforementioned requirements it can satisfy.

5.3.1 Parallelism

The underlying reason for supporting parallelism is achieving speedup through

parallelism by running an application program on a distributed computing platform.

Parallel applications can be classified by the grain of parallelism they use. The grain is

the amount of computation time between communications. Fine-grain parallelism is most

suited for tightly-coupled distributed systems. On the other hand , the communication

overhead prohibits the use of fine-grain parallelism, thus rendering large-grain parallelism

as the only suitable alternative for loosely coupled distributed systems.

Finally therefore, a truly parallel distributed programming language should provide the

means to encapsulate the grains and allow them to communicate with one another.

Moreover, the encapsulating mechanism should also be mappable to the underlying target

130

Chapter 5

hardware.

5.3.2 Interprocess Communication and synchronization

Whilst a distributed programming language providing the means by which truly

distributed application programs can be developed, the underlying operating system on the

other hand must also provide the communication primitives(e.g. SEND, RECEIVE ...etc)

for the distributed processes to communicate with each other. In the preceding sections a

distributed computing system was described as "a federation of autonomous processors

that do not share primary memory, but cooperate by sending messages over

communication network", thus leaving the task of selecting an appropriate message

passing mechanism to the programmer. Message passing can be performed either

synchronously or asynchronously, as was mentioned in the preceding sections. In an

asynchronous communication, the sender does not need to wait for the availability of the

receiver and it proceeds with its execution after sending the message. If a reply message

is expected by the sender, it can later wait explicitly for the reply. In synchronous

communication, the sender is blocked until the receiver accepts the message. Synchronous

communication is easier to use , but it has the potential disadvantage of reducing

parallelism (i.e. no data is exchanged between the caller and the callee before a link is

established, thus the caller should receive an acknowledgement before it can proceed

further with its execution).

An important form of synchronous communication is Remote Procedure Call (RPC)[15].

An alternative method, which was first used for inter-task communication in Ada

language[l] and later employed in other languages[6], is the Entry Call(Rendezvous). The

rendezvous mechanism provides a high-level conceptually consistent mechanism for

interprocess communication which unlike other communication methods does not rely on

explicit calls to the underlying operating system(Fig.35).

Whatever form of communication may be chosen, the operating system knows little or

nothing about the content of the messages. Messages are typically regarded as sequences

131

Chapter 5

Conventional
h igh-level
language

/ V isib le
\ m ulti-tasking
\ O/S

task

task
task

(a) Conventional

Ada

Hidden
run-time
system

task task

Rendezvous

(b) Ada

Figure 35: Conventional Vs Ada approaches to tasking.

132

Chapter 5

of bytes. This imply that the sender and receiver of the message must agree on the form

and contents of the message, because inconsistencies will probably go undetected.

5.3.3 Partial Failure

The programming language used to develop a real-time application, must provide some

form of recovery mechanism for processor failure situations. This is known as the partial

failure property. Therefore, failure of a processor in a distributed computing system

should not effect the correct functioning of the other processors in the system. Amongst

the programming languages that provide such a mechanism, is the Ada language with its

"exception" mechanism. In an erroneous situation when an exception is raised, exception

handlers written in the code earlier can handle the situation and allow the system to

recover.

5.4 Programming distributed systems in ADA

Ada programming language retains certain characteristics that make it an ideal language

for the development of real-time application. These include strong typing, abstraction(i.e.

packages), separate compilation and fault tolerant mechanism(i.e. exceptions).

However, although the advantages of Ada for uniprocessor environment running real

time embedded applications have been well documented, its implementation of real-time

application programs in distributed environment presents several problems. These

problems generally stem from the fact that an application program developed as a

collection of communicating processes in Ada cannot be mapped onto a distributed

computing system, because the nesting and packaging features of the language allow tasks

to share data. It is possible to simulate the effect of shared memory in a loosely-coupled

distributed system, but this would require complex message exchanges which results in

large overheads and delays in communication and response time respectively.

Furthermore, even if the sharing of data is banned amongst remote tasks, the mechanism

for configuration management, structuring and design in Ada do not provide the kind of

133

Chapter 5

units appropriate for execution in a distributed environment. In addition, neither packages

nor tasks possess all the properties necessary for representing the required units of design

and distribution. A task may not be a library unit in its own right, but must always be

enclosed in some other unit (e.g. a package). Therefore, it is not convenient to treat a

task as a unit of distribution, separate from the encapsulating unit containing it. On the

other hand , a package does not have its own “thread of control”, except that used for its

initialization, and consequently does not model well a concurrent process running on a

separate processor. The only construct which Ada recognizes as being independently

executable is the " main program". No individual library unit can be executed outside the

context of a "main program". Ada, therefore provides no single structural unit which is

entirely suitable for modelling abstractions of independent network nodes. In the next

sections strategies for overcoming such problems in Ada are investigated.

5.4.1 Strategies for programming distributed applications in Ada

The selection of a distributed approach is influenced by the nature of the application.

Applications influence the effort spent for development and implementation of distributed

systems. Expressiveness and generality of approaches will be dependent on the

applications. For instance, application program developed for embedded systems, in many

cases, lead to simple and effective but very restrictive solutions. Projects which provide

solutions for general purpose applications have to solve many problems. For example, the

implementation of remote communication mechanism.

There are various methods for developing distributed application programs in

Ada[23,4,138]. The target architecture for distributed execution of the Ada program plays

a predominant role in selecting an approach. It strongly influences the design and

implementation decisions made. Every implementation relies heavily upon the underlying

hardware and software design. The hardware configuration may consist of loosely-coupled

or tightly-coupled systems. The approached support different storage models, like

distributed memory, shared memory or global virtual memory. They use various

134

communication models, like message passing or shared objects.

Chapter 5

The methodologies used for programming distributed applications in Ada, are categorised

according to their architectural requirements(as mentioned above). They have emerged

into four main approaches from which a strategy can be derived to suit the needs of the

target architecture. These four are[4]: i) Distributed Target Compiler approach, ii)

constrained design, Distributed_Target APSE approach[30], iii) source code distribution

approach, and iv) separate programs approach.

The first method would use a validated Ada compiler to generate object code for

distributed targets.In this method, the Ada software is written as a single application

program. Pragmas inform the compiler what processors comprise the system and where

the various code units are to be allocated. The compiler then produces separate object

code files for each processor in the system.The major problem with this method is that if

the processors do not share a common memory, then a distributed run_time Kernel must

be built to synchronize the processors.

The second approach restricts the software design so that the only communication

allowed between loosely coupled processors is through the task rendezvous. The designer

partitions the application program into "Virtual Nodes (VN)", the VNs are statically

assigned to physical nodes (PN). The PNs may be single or multicomputer systems. The

multiple processors of a physical node must be tightly coupled with a common memory to

allow access to shared data. Processors mapped to a VN should be homogenous to avoid

conflicts between various data representations in shared memory. Further requirement of

this approach is for the Ada Programming Support Environment (APSE) to incorporate

automated construction tools to automatically generate object code suitable for the target

system.

The third method partitions the Ada source code and compiles for the specific targets

with existing compilers. The objective of this method is to permit multicomputer

programs to be developed in the Ada language with a minimum of design restrictions.

135

Chapter 5

The multicomputer application is developed as a multitasking Ada program on the APSE.

Thus, the application is developed and tested independently of how the software is

distributed on the target hardware. The tested multitasking software is then partitioned for

the multicomputer system architecture. This process may be automated with a tool called

the Automated Software Partitioner(ASP). The distributed software may be tested on the

APSE by placing the main program for each processor in an associated task and

importing a package written to simulate the communications network of the target

architecture.

The fourth technique uses somewhat more traditional method. This involves the design

and development of separate source programs for each processor in the distributed

system. The interprocessor interface software is explicitly coded in each application. In

the first three approaches a single Ada program is partitioned onto its functional

boundaries and each section is mapped onto a processor in a distributed system. On the

other hand, however, in the fourth approach an Ada program is provided for each

processor and the collection of programs constitute the application software.The

comparative study of the four methods explained above , indicates that no one approach

can be identified as the universally better approach than the others. Rather, conditions

surrounding a particular application will suggest the best approach for that application.

The fourth method for example ,"A program per processor",has the drawback of not

conforming with the intended use of Ada. This is the result of extending the program

boundary beyond that of a single Ada program, therefore losing software portability.

Furthermore, the data transfer between processors is confined to procedure and function

calls when other Ada language features(such as Rendezvous) is a more appropriate means

of communication.

The basic characteristic of the first three approaches, on the other hand, is that the

application software is viewed as a single Ada program, distributed across the target

system. The main advantage of this method is that all interfaces between the distributed

program fragments can be type checked by the compiler.

136

Chapter 5

Within these approaches two general strategies can be identified: post-partitioning and

pre-partitioning.These partitioning schemes will be explained in the following sections.

5.4.1.1 Pre-partitioning scheme

With the view to using standard Ada compilers, the approach of choosing a specific Ada

construct as the only possible partitioning unit is the most attractive one. However, no

one unit provides adequate resources for partitioning an Ada program for execution on a

distributed system, due to the reasons mentioned in the preceding sections. New strategies

had to be devised to deal with the shortcomings associated with distributing Ada

programs. Furthermore, these approaches must conform to the context of the current

language definition.

The "virtual node" approach for partitioning a program for distributed execution has

been the subject of discussion in both academic and industrial circles[147]. The working

group responsible for development of such strategies acknowledge that the virtual node

approach is quite useful since it requires limited changes to the language(i.e. imposes

limited restriction on use of some of the features of Ada). They accept, on the other

hand, the criticisms regarding the partitioning restrictions imposed on the users of the

methodology [147].

A virtual node is a collection of library units and a unit of distribution for Ada

programs. Virtual nodes could be allocated to a single physical node but a single virtual

node could not be allocated to more than one physical node. The granularity of a

distributed program is defined by its virtual node components. The virtual node approach

rules out task as a distributable unit since it can not be a library unit, however, a task can

be a component of a virtual node.

The communication between virtual nodes is restricted to either remote rendezvous or

remote procedure call(RPC) or both, thus ruling out data sharing. It is possible, however,

for two virtual nodes to have units in common. In these cases, the library unit must either

be the interface unit of other virtual nodes or be templates, in which case they can be

replicated on each virtual node without violating their semantics. A template library unit

137

Chapter 5

is one which does not have a global state(e.g. generic packages with only type

declarations or procedures or tasks which do not access global memory). Finally, the

application program is viewed as a network of communicating virtual nodes.

5.4.1.2 Post-partitioning scheme

In post-partitioning scheme, the application design process is divided into two phases:

functional design (application program) and functional distribution (hardware mapping)

[24,73,77,74]. The partitioning information and source code are usually kept separate.

Strong requirements are put on the run-time system for efficiency,especially when high

fault tolerance is required.

This strategy is based on the hypothesis that all Ada entities (data or control) can be

distributed. Therefore, this enables an initial program to be designed without any

restrictions. This approach is attractive, but it is also the most complex to implement.

This is due to the fact that, mechanisms guaranteeing the coherency between different

copies of variables shared by the various modules, distributed throughout the distributed

system, have to be foreseen. Hence a specific distributed operating system capable of

providing such mechanisms must be available.

The method of partitioning on any part of an Ada program is developed in the APPL

project [25]. The aim was to supply an application independent system that supports the

execution in a distributed environment. The functional mapping of the application is

described in a separate language, APPL(Ada Program Partitioning Language). The

development of a system may start on a uniprocessor system and may later, in the final

integration phase, be transferred to the distributed target. The APPL approach gives the

application no knowledge of the distribution. Hence, all fault tolerance has to be

implemented within the underlying run-time system.

138

Chapter 5

5.4.2 Object access in distributed systems

The structure of Ada permits two different modes of access among execution

objects(subprograms or tasks). One is by passing parameters in subprogram calls or task

entries. The other mode is by shared variables that exist in the common scope of the

execution objects.

Ada requires that parameters be passed by copy. To avoid possible inefficiencies

parameters that are arrays, records or task types may be passed by reference provided the

effect is by copy. In the case of execution objects on tightly-coupled machines passing by

reference, while keeping the appearance of by copy, can be efficient. However, in the

case of loosely-coupled machines, passing by reference will lead to memory address

error. It is natural therefore to pass all parameters by copy. On the other hand,

communication between two execution objects through shared variables can be most

naturally implemented with a shared logical memory.

Tightlv-coupled machines

In the case of tightly-coupled machines, shared data object references can be

implemented as in a uniprocessor case. This requires that the underlying hardware

memory protection system allow user processes on multiple machines to access the same

regions of physical memory, but otherwise creates no problems for handling variables or

pointers not already present in the language. Access to remote execution objects requires

a signalling mechanism among the processors involved to permit the receipt of a remote

call, but requires no special mechanism for handling the actual parameters of the call.

The trade-offs between communication by shared variables or message passing are the

same as for a uniprocessor implementation.

Looselv-coupled machines

In a loosely-coupled architecture, significant differences exist between shared variables

139

Chapter 5

and message passing communication. Each shared variable reference to a remote data

object must be translated into a remote procedure call to a server process on the processor

holding the object. This server must perform the required operation, and if necessary

return a message containing the value of the object. On the other hand, if the variables

are communicated via message passing, references to them will be to the local copies and

communication overheads will be substantially less.

5.4.3 Virtual Node approach

The post-partitioning approach for distributing Ada programs(e.g. APPL[25]), makes a

clear distinction between the programming phase and the program partitioning phase. This

method therefore allows an application program to be developed as a single program

using the complete range of features that Ada has to offer. This means that programs can

be developed using traditional methods for designing software for uniprocessor systems.

A specific methodology for distributed system is not required.

However, a consequence of using such methods is that the run time system must support

remote variable updates. This is most complex to implement since mechanisms

guaranteeing the coherency between different copies of variables shared by the various

modules distributed throughout the distributed system have to be foreseen. Hence a

specific distributed operating system capable of providing such mechanisms must be

available. Furthermore, while the application can be debugged using off the shelves

standard debugger for uniprocessor systems, testing the program on the distributed

hardware would require a distributed debugger. In addition, distributed application

programs may look different from application programs that are not distributed and the

software designer will have to know a priori if the target is distributed or not. If this is

the case then the benefits of this approach are greatly diminished. Finally, this approach

requires a considerable investment in tools to support software development for

distributed targets.

In view of the shortcomings associated with post-partitioning, it was decided that pre-

Chapter 5

partitioning would offer a more cost effective alternative compared with post-partitioning.

In the pre-partitioning scheme a particular Ada construct is selected as the sole unit for

partitioning throughout the design and programming process. The programmer is obliged

to accept any constraint the choice of construct entails. The notion underlying this

strategy is that of "Virtual Node", which is an abstraction of a physical node in the

distributed system[71,132].

The essential properties of a virtual node are as follows:

- Its internal state is invisible to the other nodes.

- It has activities(control flows), which consists of local actions communication and

coordination actions with the other nodes of the system.

- It communicates with other nodes through well defined interfaces and according to

message like transmission protocols(communication by shared variables is excluded).

- It can be executed autonomously on physical nodes of the target system or be

incorporated in a group of virtual nodes to form a new executable program.

Furthermore, it must be possible to define a virtual nodes configuration by explicitly

indicating the connections between these nodes, thus enabling the separation of component

programming phase from that of the definition of the final system’s configuration. The

interfaces of the virtual nodes are then described through their communication ports with

the outside world, and a system configuration can then be defined using the external

interfaces and the specification of the ports connections.

The notion of virtual node is found in most languages which have been designed with the

intention of supporting distributed programming(e.g. the "guardian" of Argus[84], the

"task module" in conic[127], and the "processor module" in starmod[22]).

5.4,3,1 What should Virtual Nodes represent,

A virtual node can represent a number of constnicts in Ada, these objects range from an

entire program in one extreme and extend to single tasks or simple packages in the other

141

Chapter 5

extreme. Several projects adopted the virtual node approach for developing distributed

applications. The Michigan Distributed Ada[139] project uses library packages and

subprograms as the unit of distribution. Application programs are specified as sets of

cooperating virtual nodes, where each virtual node is a collection of library packages and

subprograms. The Michigan Distributed Ada (MDA) project allow the specification of

distributed program by the special pragmas to indicate where each object should reside in

the distributed network. The MDA project, like the Honeywell Distributed project[25],

adopts the post-partitioning approach to develop distributed programs.

The SD-Ada Multiprocessor System[21] distributes the Ada tasks of a program amongst

the processors of a tightly-coupled system. However, making tasks the unit of allocation

would have a number of problems. The first problem is basically that of task

identification when they are allocated to different processors, while belonging to the same

program (unique Ada pathnames should be specified for every task). This can result in

tasks on one processor being statically dependent on tasks on another processor. In

addition, any data visible to that program must be located in a shared memory visible to

all processors involved. A solution is defined in the form of a "library unit" to be the unit

of allocation to a processor. Any task objects that are declared within the library package

specifications are created when the task declaration in the corresponding package

specification or body is elaborated. Hence by controlling the processor that elaborates

these "active" library units, the user is able to control the allocation of library tasks to

processors. The library tasks are therefore the only tasks over which the user has any

control; all other tasks execute on the same processor as the task that creates them.

The post-partitioning approach of MDA and Honeywell distributed Ada, will not be

considered further because of the shortcomings that are generally associated with the post

partitioning schemes(as mentioned before). Moreover, the SD-Ada project is targeted at

tightly-coupled distributed systems thus making it unsuitable for loosely-coupled systems

studied here in this report. The remaining part of this section is devoted to methodologies

which rely on the notion of virtual nodes for programming distributed loosely-coupled

systems in Ada. The partitioning scheme employed in these methods is that of the pre-

142

Chapter 5

partitioning approach.

The first of these methods studied here is that of ASPECT-York Distributed Ada[68]

project. From amongst language constructs offered by the Ada language, packages are

chosen to represent virtual nodes. They satisfy most of the conditions set for a language

construct to be effective as a virtual node[71]:

- separate compilation and library units, and

- exception handling facilities to cope with communication failures.

However, packages are static units, this means that dynamic instantiation of packages is

not possible. Limitation had to be imposed upon the sharing of library packages since if

one instantiation of the library unit exists in the system, all procedure calls,entry calls,

and variable updates associated with that unit can potentially occur from a remote site,

thus violating the interface conventions between virtual nodes(mentioned in the preceding

sections). Another subject examined by the project is the inter-virtual node

communication. The underlying question was whether to use a remote version of Ada’s

inter-task communication mechanism(rendezvous) or the remote procedure call (RPC)

mechanism adopted by other projects[15,82,93]. The RPC was chosen since the ASPECT

project provides multi-language support and the only well known mechanism for

transferring control between virtual nodes(written in other languages) is RPC as compared

with remote rendezvous.

The second and final method is that of the DIADEM project[5]. The DIADEM project

examined two constructs that Ada provides which may be used to represent virtual nodes.

These were "tasks" and "packages". Tasks could not represent the unit of distribution

since Ada’s scoping rules allow them to share data thus violating the virtual node rules on

"no data sharing allowed unless defined within a template area"(as mentioned before).

Furthermore, tasks can be library units since they must always be enclosed in some other

unit(e.g. packages). These shortcomings therefore make tasks unsuitable for distribution.

A package, on the other hand, does not suffer from these shortcomings, but lacks its own

143

Chapter 5

"thread of control" and consequently does not model well a concurrent process running on

a separate processor. Furthermore, reconfiguration would not be possible, without

shutting the whole system down. This is due to the fact that packages are static constructs

and can not be dynamically instantiated.

Acknowledging these shortcomings associated with tasks and packages, it was concluded

that Ada does not provide any single structural unit which is entirely suitable for

modelling abstractions of independent network nodes.

The solution adopted in DIADEM is to define the required distributed components as

independent Ada subsystems called virtual nodes. The subsystems represent the highest

level units of problem decomposition and although they can be arbitrarily complex

structures, from the point of view of distribution they are logically atomic units that can

only sensibly execute on a single machine. They are thus strongly cohesive entities

grouping together intimately related objects, but having minimal interaction with other

virtual nodes. However, the preferred method of inter-virtual node communication in

DIADEM project is the "remote entry call".

5.4.3.2 Remote Communication

With the exception of shared variables, there are two methods available in Ada for

expressing communication between virtual nodes, they are "procedure" and "entry" calls.

The RPC mechanism, adopted by the ASPECT-YD A, can be supported by introducing

additional Ada code in the form of stubs which interface to the underlying communication

system. A call from a client in one virtual node to a server in a virtual node located on a

different physical processor is carried out by means of the intermediate mechanism shown

in Fig.36. The client and server stubs are produced as transformation of the virtual node

root package specification. The client stub is a package body which replaces the virtual

node root package body of a remote virtual node, while the server stub is a complete

package which is placed on the processor holding the virtual node.

144

Chapter 5

Figure 36: The Remote Procedure call mechanism.

5.4.3.2.1 Remote Procedure Call

A remote call starts as a local subprogram call from the client to the client stub, which

packs the call parameters and call identification details into a record then passes this to

the RPC mechanism. This constructs the call message, sends this message to the

processor on which the virtual node resides, and suspends the client task awaiting the

arrival of the result message corresponding to that call.

At the called processor, the server stub forms a template to create a server task which

acts as the thread of control to execute the incoming call. This stub task unpacks call

parameters and passes them to the RPC mechanism to return to the caller. If an

unhandled exception occurs during the call execution then this is caught by the server stub

and passed back to the client stub for propagation. Once the results or unhandled

145

Chapter 5

exceptions have been sent back to the caller the server stub task terminates. As this server

task is unknown to the user’s Ada program there are some optimisation which reduce the

overhead normally associated with Ada tasks; for example no server task ever has any

entries. A user created task must leave some information when it has terminated as

reference may be made to it from elsewhere in the program. Server stub tasks are not

known by the original program and so have no such requirement, so there is no

permanent memory overhead associated with servicing a RPC request.

When the result message arrives back at the calling processor, it is passed back to the

client stub, which is reactivated. This unpacks any returned values and returns them to

the client, unless there was a unhandled exception during the call, in which case it re

raises the exception in the client.

The use of dynamically created server stub tasks as thread of control causes parallel

execution of RPC requests, so maintaining the Ada semantics for simultaneous

subprogram calls from different tasks.

The syntax of entries are very similar to procedures. The differences between them lie in

the underlying protocol by which concurrent calls are selected and processed, the context

in which the called code is executed, and the fact that with entry calls, the caller is able

to "optout" after a certain time period has elapsed. This last difference is the most

important when it comes to the implementation of remote calls.

From the point of view of the message exchanges needed to conduct a transaction,

procedure calls behave in a similar way to simple entry calls because there are no extra

timing signals needed to handle the possibility of the caller timing-out. In other words,

remote procedure calls effectively represent a subset of Ada’s three possible types of

remote entry call. Therefore, an implementation of remote entry calls is likely to be able

to support remote procedure calls with very little, if any, modification. The reverse is

certainly not true.

146

Chapter 5

The communication system developed in DIADEM is able to support both remote entry

call and re-entrant remote procedure calls. Therefore, the choice between them is based

mainly on user-oriented issues. The remainder of this section is devoted to the explanation

of the remote entry call and how it was implemented in DIADEM, since the selected

method of inter-virtual node communication in this report is remote entry call.

Having chosen rendezvous as the sole means of communication between virtual nodes, in

order to achieve communication transparency(for flexible system configuration) it is

necessary to extend the rendezvous mechanism to support remote transactions. Fig.37

shows the communication layer and how it relates to internationally accepted standards for

network communication such as ISO reference model. In the ISO model the lowest layer

providing end-to-end services is the transport layer. Therefore, implementation of the

remote rendezvous end-to-end protocol is naturally handled by a layer of software built on

top of the transport layer. However, due to variations of services offered by different

transport layers , a software layer known as "standardising layer" is introduced to smooth

out these variations and hide the special characteristic of a particular communication

system.

Application Application

Presentation- Presentation

Session Session

Transport Transport

NetworkNetwork Network

Data LinkData Link Data Link

PhysicalPhysical Physical

s?ir+
(D

to
<t>I
«■
I
§

H

Figure 37: The ISO Communication Model. 147

Chapter 5

The standardising layer, providing the interface between the host communication

software and the Ada application software, may well contain processes external to the

Ada "world". In such circumstances, it is the responsibility of the Ada compiler and

linker to combine Ada and non-Ada software within an Ada program. This is achieved by

the use of an INTERFACE pragma which notifies the Ada compiler that the body of a

library unit is written in another language.

5.4.3.2.2 Remote Entry Call

The primary objective of the remote rendezvous mechanism is to reproduce, on the

callee’s node, the conditions which would have existed had the caller not been remote.

This is achieved by creating a surrogate task to make the entry call on the caller’s

behalf(Fig.38).

Each virtual node which can serve as a callee in a transaction has a permanent task which

listens at a prearranged communication port for incoming messages signalling an entry

call. When this so called entry port task has determined which entry the call is intended

for, it generates a new local agent task(surrogate task) to issue the call on behalf of the

remote caller. The called task therefore, experiences precisely the same call it would have

experienced had the caller not been remote. On completion or failure of the call, the local

agent task communicates the result directly to the caller and then terminates.

One remaining issue was the buffering of data,"should the in and in out parameters for

the rendezvous be sent to the callee’s node?". This meant that all the in parameters would

be incorporated in the first message sent to the callee to be stored until the call is

accepted. This meant storage space had to be provided on the callee’s end. Alternatively,

data could be stored on the caller’s end until the entry call is accepted by the callee. The

latter approach is clearly more efficient, however, this extra efficiency in parameter

buffering is gained at the expense of more message exchanges. This extra complexity

introduces a delay between the time when the call is accepted, and the start of the

148

Chapter 5

application
iiyer

Application
Layer

REC
Layer

REC
Layer

Entry
Port
TaskREC

procedure

Agent
Taskfs)

accept Callee Task

local

send

Standard standard
Interface interface Terminates

Igure 38: Structure of the Ada Remote Rendezvous Layer.

149

rendezvous - an inefficiency that is present for all entry calls.

Chapter 5

The DIADEM project adopted the former method(Fig.39), thus avoid risking the extra

complexity and time delay involved in the latter approach(Fig.40).

Requirements of the standard interface

The first requirement, essential in all remote communications, is to support the dynamic

creation of ’’communication end points" or "ports". Two types of ports are required, one

for sending messages, and the other for receiving them. Where ports have to be explicitly

identified in the remote communication layer, they must be associated with remote system

independent names. For a single remote rendezvous transaction, four uni-directional ports

are required, one of each type(incoming and outgoing) for both the caller and callee.

Moreover, since Ada tasks may be generated dynamically, it is also necessary to be able

to create and close communication ports dynamically.

In conjunction with ports, two primitives are required for transferring messages between

ports; the synchronous(i.e. non-blocking) SEND primitive which is used to send a

message to a single destination and the synchronous(i.e. blocking) RECEIVE primitive

which may receive messages from any source.

There are various computing environment within which the standard interface must be

implemented, however, the distributed system of interest in this report consisted of a

network of workstations running a general purpose multitasking operating system(e.g.

UNIX,VMS). Take the UNIX operating system, for example, it supports a wide variety

of services ranging from datagrams to virtual circuits(as mentioned before). Moreover, a

local area network based on communicating UNIX machines provides complete

communication transparency, with all the message routing and naming functions handled

automatically. Thus, the configuration of the network can be completely hidden from the

application software with little difficulty.

150

Chapter 5

Standard Interface Laver

Fig.41 shows the package STANDARD COMM which establishes the DIADEM

standard interface to the physical communication layer. This package forms part of the

pre-defined environment of every virtual node library. Its body written by the system

programmer, would determine how the communication layer is constructed for the target

network. As can be seen from the diagram, the package ST AND ARDCOMMS defines

three main types. The first, SN_ID, is the type of the software node identifier assigned to

each of the software nodes in the system. The other two are private types since they are

not intended for direct use by the remote rendezvous layer. The first of these,

HEADERTYPE is used for the field at the head of each message packet. This contains

essential system-dependent routing information. The second, RETURNADDRESS, is

used to define a field in call packets received by entry port task. This field contains the

network address of the port to which the answer message should be sent.

caller callee

Remote r,/ill
entry call1 = ■ ===== 11 - = e zrr====~-

queued

jiCa
accepted
rendez.
begins

Remote Remote
Rendezvous —. —» ■ = ===== Rendezvous
ends ends

Proceeds Proceeds

Figure 39: Parameter Buffering at Callee’s end.

151

Chapter 5

caller callee

Remote
entry call"

Ready to start rendezvous

Confirmation and "in" param.

Remote
Rendezvous-
ends

Proceeds

Call
queued

Call
accepted
rendez.
begins

Remote
Rendezvous
ends

Proceeds

Figure 40: Parameter Buffering at Caller’s end.

with "pakage defining system_dcpendent type ADDRBSSJSTRUCT - HEADER*
u s e ...
package STANDARD_COMMS is

type SN J D is new NATURAL;
type RBTURN_ADDRESS is private;
type HEADER_TYPE is private;
generic

package CALLER_PORTS is
generic

package PRIMITIVES is

procedures: ALLOCATE^.)
DEALLOCATE(..)
SEND(...)
RECEIVBC...)

end PRIMITIVES;

end CALLER_PORTS;

generic

package CALLEE_PORTS is

procedures: ALLOCATE(..)
DEALLOCATE(..)
SEND(..)
RECEIVE(..)

end CALLEEJPORTS;
private

end STANDARD_COM M S;

Figure 41: The standard interface package.

152

Chapter 5

STANDARD COMMS contains two generic packages - CALLER_PORTS and the

CALLEE_PORTS. Instantiation of one of these packages causes the generation of two

logical ports according to the model illustrated in Fig.42. CALLEE PORTS is

instantiated in the entry port task of each software node, and generates one static

receiving port and one sending port. These both exist for the life-time of the software

node, and the receiving port must reside at a fixed network address. The correspondence

between this network address, the software node identifier and the physical node is stored

in the network name table(s). The package CALLER_PORTS, on the other hand, is

instantiated in the declarative part of each internode calling unit and causes the generation

of a similar pair of ports. In addition, these packages define a range of primitives

associated with the logical ports.

Software Node ID Physical Node ID Port Adress
I X A

J Y B

Software
Node(I) Node(J)Static

receiving
port /

’callee
task

standard standard
interface interface

Figure 42: The Communication Model.

153

Chapter 5

Implementation Issues

The package STANDARD_COMMS is designed specifically to be implemented on top of

most commonly used type of communication systems. The system of interest here, is

based on a network of SUN workstations connected by Ethernet, and hence involves

implementation of the standard interface on top of the Berkely UNIX 4.3 BSD system

provided with the SUN workstations.

The inter-process communication facilities provided by UNIX are based on sockets.

There are many different kinds of sockets and associated primitives supporting a wide

range of services. Two standardized communication domains, are currently available - the

UNIX domain(AF_UNIX) and the Internet domain(AF_INET). The former of these is

only suitable for communication on single machine, but using the latter it is possible to

make the distribution of processes over the network completely transparent to processes

themselves.

The Internet domain protocols are comprised of connection-oriented and connectionless

protocols.

Connection-oriented protocol

Fig.43 shows a time line transaction that takes place for a connection-oriented protocol.

The server process starting first, creates a socket end-point whose address is defined by a

record type template. The "bind" system call subsequently uses the address structure of

the socket to construct a unique system wide name for the socket(i.e. the server process

calling the bind system call registers its address with the underlying communication

system, indicating that: this is my address, any messages received for this address must

be passed to me). The "listen" system call then indicates that the socket is willing to

receive connection. The listen call is immediately followed by an "accept" call which

takes the first connection request on the queue and creates another socket with the same

properties as previous socket. If there are no connection requests pending this call blocks

the caller until one arrives. If a call is accepted however, a read is performed on the

154

Chapter 5

ports. An acknowledgement is sent to the client if the read system is successful.

Server

Client

block until
connection
from client

connection

data(request)

process request

data(reply)

write Q

socket 0

bind 0

read ()

socket 0

read ()

connect ()

accept 0

write 0

listen 0

Figure 43: Socket system calls for connection-oriented protocol.

Connectionless protocol

For a client-server using a connectionless protocol, the system calls are different from

that of connection-oriented protocols. Fig.44 shows these system calls. The client does

not establish a connection with the server. Instead, the client just sends a datagram to the

server using the "sendto" system call, which requires the address of the destination (the

server) as a parameter. Similarly the server does not have to accept a connection from a

client. Instead, the server just issues a "recvfrom" system call that waits until data arrives

from a client. The recvfrom returns the network address of the client process, along with

the datagram, therefore the server can send its response to the correct process.

Chapter 5

Server

Client

block until
data received
from a client data(request)

process request

data(reply)

recvfrom ()

socket ()

socket 0

bind 0

sendto 0

bind 0

sendto ()

recvfrom Q

Figure 44: Socket system calls for connectionless protocol.

Socket addresses

The BSD networking system calls require a pointer to a socket address structure as an

argument. For the Internet family the address record type(structure in C) is shown in

Fig.45. Moreover, since the socket address is used by the BSD communication layer, it

must be formatted into fields of bits, each field defining different component of the socket

address record. Such record blocks can be modelled in Ada by a record representation

clause which associates each record component with specific location of its bit field in the

block of data. Since each component of the record occupies certain number of bits , it is

important to have some means of determining the position of the record

components.Furthermore, the alignment of the component of the record type may help to

access the data quicker. In Ada the position of record components is aligned according to

the number of "storage-units" they occupy. The storage-unit size differs from one

computer to the next, in our implementation however, storage-unit size is given in the

predefined package SYSTEM as 8bits. On the other hand, if this record is to be used by

156

Chapter 5

type IN_ADDR is
record
s_addr :1NTEGER_32;

end record;

type SOCKADDRJN is
record

sin_family :1NTEGBR 16;
sin_port :INTEGER 16;
sin addr :IN_ADDRl
dummyl :INTEGER_32;
dummy :INTEGER_32;

end record;

for SOCKADDR_IN use
record at mod 8;
sin_family at 0*word range 0.. 15;
sinj>ort at 0*word range 16..31;
sinaddr at l*word range 0..31;
dummyl at 2*word range 0..31;
dummy2 at 3*word range 0..31;

end record;

Figure 45: Socket address Structure and Low-level mapping.

Bits and Bytes for Sun/SPARC system s.

Byte n Byte n+1 Byte n+2 Byte n+3

31 32 ... 24 23 22 ... 16 15 14 ... 08 07 06 ... 00

Figure 46: Bytes and Word length of the target system.

157

Chapter 5

the communication layer, the byte order of the record type must correspond to the byte

order of the underlying system. In this case(i.e. network of SUN workstations) the bit and

byte ordering is as shown in Fig.46. Using the given byte ordering format the final

address record representation clause is as shown in Fig.45.

5.4.3.4 Virtual Node structure

The preceding sections introduced the concept of virtual nodes as an important

structuring method for supporting the development of flexible distributed program. A

number of Ada constructs were examined which may represent the virtual node in a

distributed system, unfortunately none of them is entirely suitable for representing virtual

nodes(as mentioned before). They each possess some of the required properties, but not

the necessary combination.

Moreover, the problem of "thread of control" in packages may be solved by an

encapsulated task(i.e. an active package). However, the problem of dynamic allocation of

packages can only be overcome if Ada langauge is extended(e.g. package types).

In view of difficulties of representing a virtual node any single Ada construct, the

DIADEM project has chosen a more general solution[5]. In DIADEM virtual nodes are

modelled by a collection of library units connected in the normal way to form complete

program structures. This has two important advantages: it allows virtual nodes to be

designed as complete subsystems, with all the complexity possible in a normal Ada

program, and it means that virtual nodes are no longer limited to presenting only a single

interface to the rest of the system, but may define as many interfaces as appropriate for

the desired communication pattern.

Furthermore, no additional instructions(e.g. pragmas or formal comments) are added to

the units in a virtual node library in order to allow visibility or sharing of other library

units. Instead, the virtual node structure is realised by the definition of special classes of

library units(which will be described in the subsequent sections), and the formulation of a

set of "composition rules" controlling their use. These rules are designed to meet the

158

Chapter 5

following criteria:

- to allow the sharing of information(e.g type definitions) between virtual nodes, whilst

avoiding the sharing of objects.

- to provide virtual nodes with well defined interfaces by which the entries intended to be

callable by other virtual nodes can be made visible.

- to ensure that, apart from these dependencies, virtual nodes are completely independent

subsystems.

5.4.3.4.1 Template and non-template units

Sharing of library units between virtual nodes is only acceptable if the units do not

contain, or give access to the declaration of an "object" which would associate an internal

state with the unit, such as a variable, a file , a task object or an external device. The

only units which can be shared amongst virtual nodes are those which do not contain, or

affect any such objects. These are called "template units" because one of their main role

is to define type s which are subsequently used as a "template" for creating objects.

Template units are not allowed to reference, by way of "with" clauses, any non-template

unit which might possess objects having an internal state. However, template units are

allowed to "with" other template units. A unit which possess an object as defined above

can only reside within one virtual node, and if it is to be indirectly used by others this

might be by communication over the appropriate interface.

5.4.3.4.2 The interface units

As described before, the rendezvous has been chosen by the DIADEM project as the

means of inter-virtual node communication. Therefore, the next requirement is to provide

virtual nodes with well defined interfaces. This service is provided by another special

category of library unit - the "interface package", such interfaces make visible the

159

Chapter 5

minimum information necessary for communication in order to preserve the modularity of

virtual nodes. An interface package contains one or more "interface tasks" which define

the set of remotely callable entries. These represent the externally visible operations

provided by the virtual node. A given virtual node may possess as many interface

packages as appropriate for the communication pattern of the system.

5.4.3.4.3 The Root procedure

The final requirement is to ensure that, apart from the sharing of template units, and

references to interface packages for communication purposes, virtual nodes are

independent of one another.

In the case of virtual nodes, a library units must be disjoint. This ensures that no shared

component exists between the virtual nodes other than the template units. This is achieved

by making the rule that non-template units, which conceptually reside within just one

virtual node, may only have "with clauses" naming other template units, interface

packages, or non-template units residing in the same virtual node.

In addition to any part it may play in the functioning of a virtual node, the library unit

representing the virtual node root has two main roles; it acts as the starting point for the

virtual node’s dependency graph, and must provide a means of generating a separate

"thread of control" in which the virtual node executes. Amongst a number of suitable

candidates(e.g. task bodies and procedures) for the role of representing virtual node root,

procedures were chosen [5] because they are the units recognised by Ada as executable

main programs, and they provide an elegant method of instantiating virtual node types for

execution in the same software node. Fig.47 illustrates how the various categories of

compilation units are used to build virtual nodes. This shows a typical pair of

communicating virtual node objects which contain a moderate number of non-template

units.

Chapter 5

Template units

Dependencies
Non
template
units

Interface
unit

Inter-node call

VN
root VN

rootV N \
ObjectV N \

Object

Figure 47: The Virtual Node Structure.

5.4.3.4.4 Virtual node types

On of the fundamental principles of a "type" is that each derived instance should

possess all the attributes defined for the type. In particular, each instance should possess

the same number of component objects. Copies of objects declared in the root procedure

of a virtual node type will be created each time the procedure is called by a "thread of

control" task. However, objects defined in non-template packages higher up in the virtual

node dependency graph will not be recreated for each virtual node instance. This is due to

the fact that an Ada virtual node requires copies of all the objects defined in the transitive

closer of the virtual node roots context clause, but because of the semantics associated

with main programs this does not occur. Only one copy of the objects declared outside

the root procedure will be created the first time the procedure is elaborated.

Consequently, multiple virtual node instances share access to a single object rather than

each having a separate copy. This problem is alleviated by allowing only a single virtual

node type to every node, since instantiation of the type is carried out by down-loading an

161

Chapter 5

d starting up a new copy of the program. This is guaranteed to re-create all component

objects and insure that all instances are identical. Unique virtual node objects are not

affected by this problem either, since by definition they are never duplicated.

To provide a true representation of virtual node types instances of which may be

generated dynamically and called by other virtual node, it is necessary to have at least

one level indirection in the naming scheme. This allows references to a newly created

instance to be bound dynamically when it comes into existence.

The only indirection facility provided by Ada is associated with the naming of instances

of a task type by means of access variables. This facility is used in DIADEM project to

support callable virtual node types(i.e. server types) by defining the form of the interface

of a virtual node type as a task type declared in a globally visible template unit. Each new

instance of the virtual node dynamically instantiates a copy of the interface task by means

of an allocator function executed when the root procedure is called. The corresponding

access value is then exported to potential clients to allow them to call the interface task.

Effectively, these access values represent capabilities, the possession of which permits one

virtual node to call another.

The provision of dynamically created interface tasks is dependent on the passing of

access values between nodes of the network. For communication purposes, an access

value is only used on the machine where it originated.

5.5 Conclusion

This chapter discussed the spectrum of possibilities regarding the design of distributed

computing system to be used in the context of water distribution systems. One of the

primary requirements of a water distribution system is the ability to expand. Expansion of

the network is closely mirrored by the increased complexity of its mathematical model

thus requiring more computational power. The distributed computing model presented

consisted of two types - namely the tightly-coupled and the loosely-coupled systems. The

most suitable type satisfying the aforementioned requirements of the water distribution

162

system was to be that o f the loosely-coupled system.

Chapter 5

Moreover, in order to develop application programs for loosely-coupled systems, the

programming language has to have certain characteristics. These are ; software

configurability, inter-process communication mechanism(synchronous or synchronous) and

finally the partial failure mechanism (e.g Safety Critical systems). The suitability o f each

language would be measured on how many o f these requirements it can satisfy. The Ada

language satisfies most o f the requirements, however, it is generally acknowledged that

the ADA language support in the area o f distributed systems is lacking.

Several strategies have been devised[23,4,138,30,24,25,71,132,84,36,131,68,5] to

overcome the problems associated with lack of language support in this area. These

strategies tend to agree that the best approach to program distributed applications in Ada,

is pre-partitioning o f the application program. On the subject of inter-process

communication mechanism two methods predominate - namely the Remote Entry Call and

Remote Procedure Call. There are strong arguments for and against using either o f these

methods. However, the conclusion here is that, the interprocess communication required

of an application program should be the deciding factor(Hosseinzaman and Bargiela

ADA-UK Conference[61]).

163

CHAPTER 6: Implementation and Design.

Chapter 6

6.1 The program overview

The mathematical model of water distribution systems, derived in Chapter 1, is strongly

nonlinear. To solve such nonlinear systems of equations iterative solution methods need to

be employed (e.g. Hardy Cross, Newton Raphson ...etc). From amongst the methods

studied in Chapter 1 Newton Raphson method was selected to solve water distribution

system simulation problems.

However, the major drawback of the water system simulation program, incorporating an

iterative solution method, was its inability in dealing with rapid growth in the

computational requirements with increase of the physical network size. A classical way of

overcoming this problem is to partition the system into smaller subsystems, solve the

derived subsystems then combine the subsystem solutions to yield the overall network

solution. This approach lead to the development of a nonlinear network tearing algorithm

(described in Chapter 3), which is derived from the original work done by Kron[80] on

tearing linear systems. The nonlinear network tearing algorithm introduced a particularly

efficient method of calculating a coordinated solution as it is a direct analytical technique

avoiding any iterative recalculation of subsystem solutions.

The water distribution system is thus solved by consecutive Newton_Raphson iterations

interleaved by diakoptical coordinated solution to linearized subsystems representing

iterative corrections.

6.1.1 System’s functional units identification and data flow

In the water system simulation program (Fig. 48(a)) the topological data input contains the

erroneous estimates of the system’s pressure measurements, this data is transformed by

the program to give the true pressure estimates of the system. The program is comprised

of state estimator program incorporating a network tearing algorithm (Fig. 48(b)). The

water distribution system pressure estimates are derived by a sequence of Newton

164

Chapter 6

Raphson iterations with each iterative correction to the pressure estimates calculated as a

diakoptical coordinated solution to linearized subsystems.

With reference to the mathematical model of the water networks the main computational

effort involved in solving equations (84) and (85) is the inversion of the Jacobian matrix

J. Applying nonlinear diakoptics to the system results in the partitioning of J into blocks

representing the jacobian of the subsystems. Solving (84) "block-at-a-time" and then

coordinating the partial solutions(Fig.48(c)), computational saving can be achieved.

However, while the "partitioned jacobian" approach works well when implemented on a

single CPU computer it is not best suited for parallel distributed processing architecture

as it tends to overburden the coordinating task with additional calculations and sending

large amount of data associated with each jacobian block. Furthermore, sending large data

in a distributed system creates large overheads which ultimately result in large processing

times. Consequently the parallel processing gains are easily wasted on coordination and

communication overheads. To avoid such problems the network is partitioned before its

linearization. This means that subsystem jacobians are calculated on the individual

processing units(Fig.49). Thus, only a small amount of data is transferred between the

coordinating unit and the worker units.

A x = J _1 (Z - g (x k)) (8 4)

x k+1= xk+ A x (8 5)

The design concept used to define the distributable components of the water system

simulation program is that of "virtual node". Consequently, the preferred method

communication^] is the remote rendezvous mechanism. The remote rendezvous end-to-

end protocol consists of a layer of software appropriately called Remote Rendezvous

layer. The main components of this layer are illustrated in Fig.50. Each Ada node

which can serve as a callee in a transaction has a permanent task which listens at a

prearranged communication port for incoming messages signalling an entry call. When

this so called entry port task has determined which entry the call is intended for, it

165

Chapter 6

(A)

w ater sy ste m resu lts
sim u lation .)= = = >
program I

data

(B)

/ Estate >[Estimator
A program 7

Network
Tearing
program^

V

(C)

_dataj=>
linearize^
netw ork
m od el /

coordinate
subsystem
solutions

subsystem]
solvers /

convergence
detector

new N
pressure
.estimate

Figure 48: The data flow diagram for Water system simulation program.

166

Chapter 6

generates a local agent task to issue the call on behalf of the remote caller. The called

task therefore experiences precisely the same call it would have experienced had the call

not been remote. On completion or failure of the call, the local agent task communicates

the result directly to the caller and then terminates. All the components making up the

remote rendezvous layer must interact with the network communication software to

transfer messages between the various physical nodes. Referencing the ISO model, on the

other hand, the lowest layer that provides end-to-end service is the transport layer, thus

the remote rendezvous layer must interact with the transport layer of the underlying

communication system. However, there are differences between the transport layers of

different systems, thus in order to harmonise these differences another layer of software is

introduced between the remote rendezvous layer and the communication system. This

layer takes the form of a predefined package called ST AND ARDCOMMS (described

before). This package provides the message passing primitives required to support remote

rendezvous transactions. In this scheme software in a distributed system is thought as

consisting of the following layers(Fig.51): (i) Application software layer, (ii) The remote

rendezvous layer, (iii) The standardising layer, and (iv) Host communication/operating

system layer.

6.1.2 Design of functional units

The task of programming the water system simulation algorithm in Ada using the

"virtual node" concept is performed in two stages: first the algorithm is segmented along

the functional boundaries and defined as virtual nodes, and then virtual nodes are

transformed into what is called "Ada nodes". The transformation mainly involves the

introduction of extra code to support remote rendezvous transactions. In order for the Ada

virtual nodes to communicate with other virtual nodes in the network, they are given an

interface package. The interface packages provide the remotely visible entries, defined

within the interface task that can be called by other Ada nodes.

This research resulted in an efficient implementation of Ada Virtual Nodes.

167

Chapter 6

Data
Selection
.monitor

subsystem
solverscoordinate

subsystem
solutions

'convergence
detector linearize

network
model

New
pressure
estimates

invert
system
.matrix

'calculatê
different
svector J

Figure 49: The new subsystem solution routine calculating the subsystem jacobians
locally on the individual processing units.

E ntry
P o rt
T ask

R eceiv ing
D a ta B uffe r

Unix \
Cofmmmic*doi
Uyer .

'C rea te
loca l A gen t
T asks

C allee T ask
Call
REC
Layer

Call
REC
Layer

C all L ocal
T ask
E ntryRemote

Entry call
Control
unit

R esu lt
B u ffe r

Figure 50: The Remote Rendezvous Mechanism.

168

Chapter 6

Node(i) Node(j) entry
port
tasklocal

agent
calling
task

callee
task

Layers(l) and

sendreceivi receivesend

Layer(3)

comm.
port(i)

Layer(4)

physical link

Figure 51: The data flow in a CLIENT/SERVER communication system.

169

Chapter 6

In the water network simulation program, it was necessary to identify the program

components that can be programmed as virtual nodes or virtual node types. On the other

hand, the decomposed model of the water distribution system, comprised of coordination

and subsystem solution processes, which can be programmed as independent virtual

nodes. The subsystem solution processes do vary in numbers according to the partitioning

scheme employed, thus they can be coded as virtual node types which can be instantiated

dynamically. The process of coordination, on the other hand, is the same for every

partitioning scheme, thus it should be regarded as a unique virtual node which is

generated statically.

The coordinating program (Fig.52) initially receives the worker interface task’s addresses

(including their access values) as they are instantiated by their root procedures. This

would enable the coordination program to call the target worker’s interface task. It is

acknowledged that the practice of sending access values to another machine in the

network is hazardous since the use of such parameter in a different address space may

have unpredictable effect. However, this value is purely used for task identification

purposes by the coordinating program. Having the access value of the worker interface

task enables the coordinating program to send the data to the target worker, by identifying

the correct instance of the worker task.

The coordination program responsibilities therefore are: first of all to prepare data

destined for worker tasks. The data is encapsulated in a packet incorporating the unique

identification information of each work task. Then it waits for the result packets to arrive.

The order in which the result packets arrive in the coordination program’s buffer is

arbitrary, thus incorporated in each result is a worker identification number which helps

the unpacking and storage of the result packets in the correct order. A simplified diagram

of the coordination program is shown in Fig.53.

In contrast, the worker tasks send their interface task’s access values to the coordination

170

Chapter 6

subsystem
data ^

Worker ID tnd
Access Vslue
of task type*

Send data S et
sending
buffer
size

Workers.
f S e t u p \
co m m u n ica tio n]
v p o rts . JSend flag

Set
receiving
buffer
size

Workers.

Receive
subsystem
solutions

Receiving buffer

Unix communication

Figure 52: The Coordination routine components.

program, following their dynamic instantiation. The worker task then waits for the

incoming data packets dispatched by the coordination routine. Upon receiving the data

packets, the access value of the worker interface task, unpacked from the data packet, is

used by the worker task in order to call the interface task of the target worker. This

ensures that the correct instance of the worker virtual node type receives the data.

Initially the data arrives in the "entry port task". This task’s responsibility is to monitor

the communication ports for incoming data. Subsequently, the entry port task generates a

dynamic "local agent task" (i.e SOLVER_TASK_AGENT) and passes to it the actual

parameters of the remote call. A simplified diagram of the subsystem worker tasks is

shown in Fig.54. The entry port task then loops back to repeat the process for other calls.

The actual entry call is made by the surrogate SOLVERTASKAGENT in the form of a

local entry call. When the entry call is accepted and the call is completed, the worker

program waits for an acknowledgement from the coordination program to send the result

packets.

171

Chapter 6

6.1.3 Virtual Node Design Process
With reference to the preceding section, it was decided to program the coordination

process as a unique virtual node object and the subsystem solution process coded as

virtual node types, since the coordination process is a unique component that exists

throughout the life of the system, it is clearly best modelled as a unique virtual node

object. The number worker tasks performing the subsystem solutions however, varies

dynamically to suit different partitioning schemes. Consequently, these are best

implemented as virtual node types which can be instantiated dynamically. Fig.55

illustrates the water system simulation program’s Virtual node structure.

Interface units

Unlike the interface tasks of virtual node types those of unique virtual node objects are

statically defined in interface packages. Considering our water system simulation

program, the coordination virtual node for example has one entry,

REQUESTINITIALJD ATA, for receiving the access values of the worker tasks and

another entry, RECEIVE_FINAL_RESULTS, for receiving the final results(i.e.

subsystem solutions).The concept of a type, on the other hand, requires that each derived

instance should structurally, and functionally be identical. In particular, each instance

should have the same number of objects. Copies of objects declared in the root procedure

of a virtual node type will be created each time this procedure is called by a thread of

control task. However, objects defined in non-template packages will not be recreated for

each virtual node instance. Only one copy of these objects is created the first time the

root procedure is elaborated. To overcome this problem an Ada node type is derived from

a single virtual node type, since instantiation of the type is carried out by down-loading

and starting up a new copy of the program.

172

Chapter 6

coordination

Interface_Unit worker 1

SEND_WORKER .PACKETS

worker 2

worker n

Figure 53: Simplified diagram of the coordination routine.

witty_pott_task

Figure 54: Simplified diagram of the subsystem worker task.

coordination

173

Chapter 6

coordjpacketheadercoord_types subsystem _packets

standard_comms

nonjemplate
ask workers

global_datasend
resultsnonjemplate

solve
subsystems

data
and
convergence
analysis

network
tearing
algorithm

create
interface
task

entry
port
task

subsystem_VN_type_rootcoordination_VN_root

Figure 55: The water system simulation program Virtual Node structure.

To provide a true representation of a type, instance of which may be called by other

virtual nodes, it is necessary to have a level of indirection in the naming scheme. Ada

provides such an indirection facility for task types by means of a "task access value". To

support an equivalent facility for virtual node types it is necessary to allow access values

to be passed between virtual nodes resident on different machines. This is precisely the

reason for the existence of module "SEND ACCESS VALUE" in Fig.54. The root

procedure of the "SUBSYSTEM_VN_TYPE" dynamically creates an instance of a

globally visible task type. This is possible since the task type is defined within a template

unit. It then makes a call to the coordination virtual node and sends it the access value of

this dynamic interface task. The coordination virtual node therefore registers each

particular instance of the subsystem virtual node type as soon as it is brought into

existence. The coordination virtual node thus has a collection of access values which

174

Chapter 6

record all current instances of the task types, and uses them to call the particular

subsystem virtual node type.

Template and non-template units

The definition for COORDINATIONPACKETS is used by both coordination virtual

node and subsystem virtual node types, therefore it is defined as a template package.

SUBSYSTEM_PACKETS and SUBSYSTEM_TEMPLATE are referenced by them for

inter-virtual node communication, thus they qualify as template units. Both the

COORDINATION TYPES and SUBSYSTEM TYPES are referenced by the template

packages above, thus they may reside within the template library. The two special units,

HEADER and STANDARDCOMMS, may also reside within the template library since

they are referenced by the coordination and subsystem virtual node and virtual node types

respectively. Moreover, they only define the templates for the communication and

interfaces to the underlying operating system (which will be explained in the next

section).

In Fig.55 units identified as non-template, for both coordination and subsystem virtual

node and virtual node type respectively, do not satisfy the composition rules. On the other

hand, the PRIVATE_TEMPLATE units represent units that are only used by the

subsystem virtual node type. However, this does not imply that unique virtual nodes such

as the coordination program can not have their own private-template units. The

components within either the coordination virtual node or subsystem virtual node types

can gain access to the template unit by the use of a "with" clause.

6.2 Implementation details

The process of programming the water system simulation program in Ada consists of two

phases, first the development of programming model for distributed environment(Ada

"virtual node" approach) and then the construction of a remote rendezvous layer for inter

process communication. The preceding sections have comprehensively covered the

175

Chapter 6

programming model, hence the virtual node approach. In particular the data flow analysis

allowed identification of the system’s functional activities, and the communication pattern

between these entities. In addition, it identified that the distributable elements can be

suitably represented if they were partitioned into two classes, namely the coordination

process and the subsystem solution process. Using this model for developing the virtual

nodes resulted in the creation of a coordination unique virtual node and subsystem virtual

node types. However, detailed design of these entities is found in the preceding sections

and would not be elaborated further here. The remaining parts of this section will

therefore be concentrating on issues that were not covered by the previous sections.

6.2.1 Inter-virtual node communication issues

6.2.1.2 Dynamic communication port creation

The first requirement of the standard interface discussed in the preceding sections, is that

of the communication layer, upon which remote rendezvous layer is based, must support

the dynamic creation of ports to act as communication end-points. The explicit use of

primitives(e.g. OPEN and CLOSE) for dynamic creation of communication ports is

discouraged if the communication end-points provided by different environment are to be

used. Thus, there can not necessarily be a correspondence between the "logical ports"

viewed by the remote rendezvous layer, and the physical communication end-points

created in the underlying communication system.

To overcome this problem, the required communication end-points are created in the

initialization part of a generic package. These logical ports can only be accessed the

associated communication primitives defined in the package. In our implementation the

operating system in use is UNIX, the communication end-points are called "sockets". In

order to create the sockets dynamically, two separate generic package are defined in the

standard interface, namely the CALLER PORTS and the CALLEE PORTS. These

generic packages provide the communication primitives. For instance, if a caller wishes to

call another unit on the callee side, the procedure SENDCALLER, defined in the

176

Chapter 6

generic package CALLER_PORTS of the package STANDARD COMMS along with

other primitives(e.g. RECEIVECALLER procedure), is called. The body of the

SEND_CALLER instantiates the generic package CREATE COMM CALLER PORTS,

defined within HEADER package, which creates the UNIX socket communication end

points. Similarly, there exists procedure SEND CALLEE for calling units on the caller

side.

6.2.1.2 Network wide ID for distributed components

The usage of generic packages in the process of creating the communication end-points

automatically associates, by the naming rules of Ada, the communication primitives with

the encapsulating package. In fact, the name of the package can be regarded as the name

of the pair of logical ports and appears in the full name of the associated primitives.

However, high-level naming of ports are unavoidable, since in order to issue a remote

entry call, a task must explicitly identify the static port of the node it wishes to call. In

our program the generic packages, whose instantiation creates the communication ports,

retain the addresses of both the caller and the callee nodes. Thus instantiating these

packages would automatically assign to them their physical node ID and their port

addresses. When both the caller and the callee ports are created, all that is needed by the

caller to call the callee task is only one system independent identifier - namely the

software node identifier. This would assign a unique network ID to the caller port, which

is sent to the callee node as part of the original message. Therefore, the network name

table store: the software node ID, physical node ID and the port-address for each software

node in the system. The NFS facility of UNIX operating system, on which our

implementation of the remote rendezvous is based, provides the network wide visibility of

files. Thus, system wide name management can be based on a common file stored on a

single node. This has the advantage that new software nodes can be easily added to the

system at any stage simply by updating the common file.

177

Chapter 6

6.2.1.3 Marshalling and unmarshalling of data

In the remote rendezvous call, messages arriving at the callee’s receiving port would be

of different sizes and types, this can create a problem since it would be almost impossible

to predetermine in which order they may arrive. To alleviate the problem, message

packets are transmitted as "records", this provides a convenient way of encapsulating

different data types. These records consist of different fields that can contain different

types of data. In fact, record types define a contiguous section of memory within which

memory fields are reserved for specific objects. Thus they provide a suitable constructs

for messages transmitted over the network. However, although records are meaningful to

Ada, but they are regarded by the communication layer as strings of bits on both ends of

the communication network. Therefore to allow conversion of the received data to the

required type, data packets contain information to that effect.

The remaining problem would be, how to convert the received data to the required

type?. One way would be to use the predefined package UNCHECKEDCONVERSION.

The use of such package for type conversion is not recommended by Ada RM[1] unless in

extreme circumstances. The alternative approach adopted by DIADEM is based on the

use of variant records. All incoming messages to a callee node are variants of a single

record type covering all the remotely visible entries, the discriminant being an

enumeration type for the target entry. The advantage of this approach is that the type

conversion is done automatically when a message is received, and requires no explicit

type conversion.

6.2.1.4 Message buffering and flow control

The preceding section introduced the notion of variant record types representing the data

packets for transmission over the network. The space for the record is allocated in the

normal way by the Ada runtime system. However, in order for messages to be sent or

received from a communication port, they must reside in the memory associated with the

port. In this case, it is achieved by simply copying the data from the record allocated by

the Ada runtime system to the space allocated to the communication ports.

178

Chapter 6

During a remote rendezvous transaction, the space for receiving incoming messages is

created by the communication system and released by the Ada program after use.

Conversely, the space for sending outgoing messages is created by the Ada program, and

released by the communication system once the message has been dispatched. In order to

hide the specific technique employed to perform these operations, two special primitives

are provided. The ALLOCATE procedure returns an access value to a record of type

CALLJPACKET, referenced by the REFCALLPACKET, generated by the

communication system. The DEALLOCATE procedure accepts an access value to a

record of type ANSWERJPACKET, referenced by REF ANSWER PACKET, and

releases the space.

The inter-process communication facilities provided by UNIX is the connectionless

datagram protocol(UDP), as mentioned before. This protocol does not provide any flow

control facility, thus messages sent by different workers simultaneously can be lost or

corrupted. To prevent situation, a form of handshaking is employed to synchronize the

transmission. The workers do not send data unless they receive a signal from the callee

side indicating that the callee virtual node is ready to receive data from the caller virtual

node. The flow control mechanism described here is shown in Fig.56.

6.2.2 Multi-Iibrarv mechanism

The distributable virtual nodes and instances of virtual node types are organised into two

libraries - namely the "coordination component library" and the "subsystem worker

library".

These libraries were created using the Alsys multi-library environment tool[2]. In the

multi-library environment, the libraries are organised into families. The libraries of a

family can import units from each other. This is done through the link mechanism, which

effectively creates a reference from the importing library to the original library that holds

the unit. The object code, symbol tables and other information associated with the actual

compilation unit itself remains in the original library.

179

Chapter 6

Standard.Stadd*
toWetfea

Set i f

Standard

Weit

Resohs

Figure 56: The structure of distributed Water system simulation program.

180

Chapter 6

For example, considering Fig.57, apart from aforementioned library units(i.e.

coordination and subsystem worker libraries) exists another library which houses those

components that are shareable between the virtual nodes and instance of virtual node types

- namely the "template” library. Using the link facility, components of both coordination

library and subsystem library can reference the template units situated in the template

library but part of the same families of libraries.

H eader [subsystem types

5tandard_commiuiication \

Figure 57: The Multi-library organisation of the Virtual Nodes.

The specification of the interface task of the worker’s virtual node types is defined within

a template package as was explained in the preceding sections. However, the body of the

interface could not be defined within the same template package since this would have

compromised the composition rules. To overcome this problem, the interface task

specification had to be copied to the subsystem worker library. The copying of such units

would mean that all the units which the template unit is dependent on, had to be copied as

well.

181

Chapter 6

Clearly this would have defeated the idea of multi-library environment. Fortunately,

Alsys multi-library mechanism provides an alternative to straight forward copying of

files, this facility is known as "Alternate version of bodies", This mechanism allow two

compilation units to share the same actual parent unit while they exist in different

libraries. Thus, it was possible to define the specification of the interface task of the

virtual node types to exist in the template library while having a body defined in

subsystem worker library.

6.3 Performance and Results

The primary objective of the final part of this report was to explore the possibility of

developing a suitable environment for the implementation of our nonlinear network

tearing algorithm[60] in a loosely-coupled computing network, using the Ada language.

Moreover, the computational performance of the algorithm would be examined, and the

results shall be examined to determine the suitability of such an environment.

The performance of the water distribution system simulation program was evaluated

using data obtained from two realistic pipe networks - the 65 nodes and 130 nodes

networks. The algorithm was programmed in Ada using the "virtual node" concept to

develop its distributable components.

The program is implemented on a network of SUN/SPARC workstations connected by an

Ethernet communication link, having a UNIX operating system. The inter-process

communication provided by UNIX is based on connectionless User Datagram

Protocol(UDP) sockets.

6.3.1 The Program

The structure of the simulation program incorporating a nonlinear network tearing

algorithm is shown in Fig.56. The decomposed mathematical model of the water

distribution system is comprised of a coordination routine and a subsystem solution

182

Chapter 6

routine(as was mentioned before). These entities resembling the distributable components

of the simulation program, were coded as a unique virtual node object and instances of a

virtual node type respectively. The communication mechanism in use, is a remote

rendezvous mechanism which is an extended version of the standard rendezvous system

employed in the Ada language for inter-task communication. The extension is necessary

to cater for the remoteness of the processes. The communication pattern is based on a

CLIENT/SERVER model. The remote rendezvous mechanism is built on a connectionless

Internet user datagram protocol.

The coordination virtual node(VN) is started before the subsystem program, since the

coordination VN represent the SERVER node in the implementation and all the instances

of subsystem VN types are its CLIENTS. The coordination VN begins its task by reading

the system data. This data is then segmented into required number of packets, available

for transmission to the subsystem VN types. As was mentioned before, for every callable

VN in the system there is a package defining the "call" and "answer" message types for

each remotely visible entry. In the case of coordination VN, this package is known as

COORDINATION_PACKETS and packets are defined as record types - the

CALLJPACKETS and the ANSWERPACKET.

However, the data segmentation is suspended until after the reception of a message from

each of the subsystem VN types. These messages represent the access values of the

interface task of the instances of the subsystem VN types. This value together with other

identification parameters, incorporated into the data packet helps identifying the correct

instance of the subsystem VN types.

Segmentation of the data resumes and the partitioned data is stored in the dynamically

allocated data packet(ANSWER_PACKET in this case) of the

COORDINATION_PACKETS package. Before sending the packet, it is important to

determine its size(in bytes), since this value is required to inform the underlying

communication of the size of the packet being sent. Furthermore, system calls initiated by

the communication layer to call the underlying communication system’s primitives(e.g.

183

Chapter 6

SENDTO of UDP) require the data packet to be sent by reference. Thus the constructed

data packet is in fact a pointer to the data packet record(i.e. REF ANSWER PACKET).

Once the data is dispatched to the individual subsystem worker VN types, the data packet

is deallocated.

The entry port task of the subsystem VN types detecting that data is arrived at the

communication port, allocates a data packet of the appropriate type(i.e.

COORDINATION_ANSWER_PACKET in this case), to copy the data from the

communication area into the Ada program memory area. The data packet is deallocated

and the memory released after the data is copied.

To call the appropriate instance of the subsystem VN type, a surrogate task is

instantiated to make the entry call on behalf of the coordination VN. The surrogate task is

an instance of a task type known as SOLVERTASKAGENT, defined in procedure

SELECT_AGENT. The entry call is accepted in the body of the interface task of the

subsystem VN type, and rendezvous commences. The subsequent stages of the subsystem

worker routine is concerned with obtaining the solution of the subsystem units. When

these results are obtained, the subsystem VN types wait their turn before transmitting the

result packets. This mechanism for controlling the data flow had to be introduced, at this

stage, since this facility was not provided by the Internet UDP layer. This means that

without it the subsystem worker VN types had no way of knowing whether the buffer on

the receiving end is full or empty, thus messages could get corrupted or lost as a result.

Upon receiving confirmation flag, the subsystem VN type dynamically creates the

appropriate data packets(REF_CAL_PACKET pointer to the CALL PACKET record

defined in SUBSYSTEM_PACKETS package). Size of each packet is evaluated and sent

to the underlying communication system’s primitive(e.g. SENDTO). The dynamically

instantiated packet are deallocated at this stage.

On the coordinating side, data packets arriving consecutively are collated and the

subsequent stages of the coordination process ensue. The data transmission pattern, as

described above, is repeated until overall system solution is obtained. The final solution

184

Chapter 6

data are stored and the coordination VN and instances of subsystem VN types are

terminated.

6.3.2 Discussion of Results

The initial tests were performed using data from a 65 nodes pipe network. The network

was partitioned into 2 to 5 subnetworks with varying number of cut-branches. The result

of these tests are presented in Tables 7(a) - 7(d), while Table 8 presents a summary of the

results by considering the average value of subsystem solution time for each partitioning

scheme (i.e. partition of 65 nodes network into 2 to 5 subnetworks). Similar to the

transputer implementation of the algorithm[60] attempts were made to partition the

network in such a way that resulted in subsystems of approximately the same size. The

Alsys multi-library mechanism helped to organise the compilation units into independent

libraries. The construction of the virtual nodes and virtual node types were finally

completed using the "link" and "Alternate version" facilities of the multi-library

mechanism. The link facility established the links for referencing the template units. The

alternate version of the body of the subsystem interface task was created, thus hiding of

implementation details of the interface task(adhering to composition rules).

The results of the aforementioned tests are presented graphically in Fig.58 and Fig.59,

similar to the transputer implementation, these results reflect the time taken to coordinate

subsystem solutions and the subsystem solution times respectively. The coordination time

(Fig.58) includes the setup and transmission times of data packets intended for every

subsystem solver executing in a virtual node.

In Fig.58 coordination times are evaluated for different partitioning scheme mentioned

above(2 to 5 subsystems). The quadratic dependence of the coordination time on problem-

size (i.e. number of cut-branches plus the number of subsystems derived from the

partitioning scheme) is depicted, similar to the transputer implementation. This seems to

reaffirm the fact that there is a point beyond which partitioning of the network into a

greater number of subnetworks is not efficient. This is governed by the increase in the

185

Chapter 6

problem-size, which results in the coordination time increase by increasing the

coordination matrix size (i.e. representing the compensating flows in the torn networks),

thus outweighing the decrease in subsystem solution times. On the other hand, the

pseudo-linearity of Fig.59 indicates that the subsystem solution times increase quasi-

linearly with respect to subsystem size.

The presented subsystem solution times together with the coordination times for the

given partitioning schemes (65 nodes network partitioned into 2-5 subnetworks

respectively) seems to indicate that, while it is advantageous to solve the subsystems

concurrently in the distributed environment (i.e. network of SUN/SPARC workstations

interconnected by an Ethernet communication link), subdividing the network into too

many small subnetworks results in an increase in the coordination time thus outweighing

the concurrent processing time gains.

The results obtained here concerns only the coordination and subsystem solution times,

these include the communication overheads which may be significant in comparison with

the actual time spent on coordination and subsystem solution. In our implementation, for

example, the underlying communication is consisted of connectionless internet user

datagram protocols(UDP), this protocol layer rests on top of the IP layer of UNIX

communication system. The maximum allowable packet size by the network, including

the header, is 1500 bytes(MTU of Ethernet network) which means data packets larger

then 15kbytes are subject to fragmentation at the sending end and reassembly at the

receiving end. This happens despite the fact that maximum IP datagram size is 65kbytes.

Consequently fragmentation and reassembly times are added to the total transmission time

of the data packets sent over the network[141].

However, such large packets would only be sent if the network is partitioned into small

number of subsystems, which does not typify a normal partitioning criteria for large

networks. Two predefined packages providing system dependent features were extensively

used throughout our implementation, they were the SYSTEM and CALENDAR packages.

The package SYSTEM provides system dependent features of a particular computing

186

Chapter 6

system. For example the system calls to the underlying communication system required

the addresses of communication ports which were of type ADDRESS defined in package

SYSTEM. The STORAGE_SIZE attribute defining the number of bits in each addressable

storage unit of the host machine, is also defined in package SYSTEM.

The package CALENDAR, on the other hand, provides a range of procedures and

functions for time and date evaluation. In particular function "CLOCK" was used, this

function returns the current value of TIME at the point it is called. The value returned by

this function is expressed in seconds. This function was used in order to determine the

coordination and subsystem solution times of coordination VN program and subsystem

VN type program respectively.

187

Chapter 6

Secs

14

12
11

Work packets set up time

Problem size
403520 25 3010 15

Figure 58: The coordination time graph (including the work packet setup time for individua]
subnetworks) of a 65 node network.

Secs

3 0 GO 7 0 8 0TO— 2 0 ------3 0 Average Subsystem size

Figure 59: This graph represents the subsystem solution time of a 65 node network.

Chapter 6

Table 7(a): 65 node network partitioned into 5 subnetworks(4 iteration).

Subnetwork

Number

Subsystem

solution

times(Secs)

Average

number of

nodes/

subnetwork

Number of cut-

branches

Coordination

time(Secs)

1 8.123

13 16 13

2 7.2

3 7.15

4 6.0

5 5.12

Table 7(b): 65 node network partitioned into 4 subnetworks(4 iteration).

Subnetwork

Number

Subsystem

solution

times(Secs)

Average

number of

nodes /

subnetwork

Number of cut-

branches

Coordination

time(Secs)

1 10.12

16 14 9.7

2 9.32

3 6.78

4 5.3

189

Chapter 6

Table 7(c): 65 node network partitioned into 3 subnetworks(4 iteration).

Subnetworks

Number

Subsystem

solution

times(Secs)

Average

number of

nodes /

subnetwork

Number of cut-

branches

Coordination

time(Secs)

1 12.12

21 11 8.025
2 13.3

3 7.0

Table 7(d): 65 node network partitioned into 2 subnetworks(4 iteration).

Subnetworks

Number

Subsystem

solution

times(Secs)

Average

number of

nodes/

subnetwork

Number of cut-

branches

Coordination

time(Secs)

1 15.025

32 5 5.67
2 16.25

190

Chapter 6

Table 8: Table of results for a 65 nodes network (partitioned into 2 - 5 subsystems)

implemented in a distributed Virtual Node environment.

Number of

Subnetworks

Number of cut-

branches

Network

size

Subsystem

solution

time(Secs)

Coordination

time(Secs)

2 5

65

15.5 5.67

3 11 10.7 8.025

4 14 7.75 9.7

5 16 6.6 13.0

191

Chapter 6

6.4 Conclusion

This chapter was concerned with design and development of a distributed computing

environment, for distributing the water system simulation program, using the Ada

language. The partitioned Jacobian approach was superseded by the more efficient

approach whereby the network partitioning and linearization are performed on the

individual processors thus reducing the amount of data transfer between the subsystem

workers and the coordination routine.

The concept of "virtual node" provided an abstraction of the target physical processing

node in Ada, therefore enabling distributable components of a system to be coded and

then mapped onto the underlying distributed computing system.

As mentioned above, the distributable components comprised of coordination and

subsystem solution processes. The process of coordination is static therefore it was best

represented as a unique virtual node. On the other hand, the subsystem solution process

comprised of a collection of independent programs varying in numbers according to the

partitioning scheme employed, and was programmed as Virtual Node types. Consequently

if a greater number of subnetworks is appropriate for a given network new worker tasks

can be instantiated from the already defined Virtual node base type.

Moreover, water distribution system is periodically subject to expansion therefore

requiring more processing power, the extra processing power needed is easily provided by

simply instantiating new tasks of worker virtual node type on a separate processing node

in the target distributed computing system.

The in ter-virtual node communication is provided by remote entry call, an extended

version of Ada’s rendezvous mechanism incorporating the remote call mechanism. An

added advantage of using familiar mechanism for inter-virtual node communication is the

fact that the remote call is processed on the machine of the callee, thus providing a

clearer picture of the work-load of each of the physical nodes, enabling a more even

distribution. The remote rendezvous mechanism forms a layer of software which is

192

separately developed from that of the application program layer.

Chapter 6

The problem of virtual node types sharing objects defined in the non-template packages

can be avoided by ensuring that every instance of the virtual node type is assigned to a

single physical node. Even if the virtual node type had to share the physical processing

node, it should be grouped with unique virtual nodes. However, the remaining problem

was that of access to remotely visible entries. To overcome this problem the interface task

of the virtual node type was placed within a template package, then an access type was

defined as a reference to the interface task type. The access values of the interface task of

the subsystem virtual node type can now be used by the coordination virtual node to call

the appropriate instance of the subsystem worker tasks.

This research has established a platform for the development of a distributed computing

system based on the generalisation of ADA-rendezvous mechanism. A standardising layer

cooperating with the remote rendezvous layer was created to insulate the application

program development stage from the differences that may exist between different

computing environment’s communication systems. Thus the explicit use of communication

primitive at remote rendezvous layer was not required. To create communication end-

points(sockets) a generic package defined within the standardising layer is instantiated

whose body consequently create the communication end-points dynamically and deallocate

them after use.

To solve the problem of type conversion during the transmission of data packets over the

communication network, discriminant record types were introduced. Therefore, no

explicit data conversion was necessary since the conversion would take place

automatically, thus alleviating the need for the use of UNCHECKED_CONVERSION

package.

The distributed water system simulation program was tested on realistic networks. The

distributed computing system environment consisted of a federation of SUN/SPARC

workstation having large local memory with UNIX operating system. The results obtained

193

Chapter 6

seems to indicate that the coordination time is quasi-quadraticly dependent on the problem

size, on the other hand the pseudo-linearity of the subsystem solution times indicates that

an increase in the subsystem size would almost inevitable result in an increase in the

subsystem solution time.

This research has demonstrated that the concept of "virtual node" for modelling the

distributed processing nodes of a loosely-coupled system, is a viable

approach(Hosseinzaman and Bargiela[61]). The DIADEM[5] approach was selected

amongst other methods[68,71,25,4] to represent the distributed water system simulation

program because: (i) it offers a compiler independent virtual node approach. Therefore

conventional Ada compilers can be used to develop the distributed application program,

(ii) it allows the notion of virtual node type, which is particularly useful in this

implementation since it offers dynamic creation of processing nodes to fit a particular

partitioning scheme, and (iii) it uses a rendezvous like mechanism for inter-virtual node

communication - useful since rendezvous mechanism gives a better reflection of the work

load of the processing nodes in the system.

194

CHAPTER 7: Conclusion and Further Research.

Chapter 7

7.1 Conclusion.

The early water distribution systems employed basic measurement devices to monitor and

control the system. Monitoring of system parameters was confined to reservoir’s water

level or pump status, the distribution network itself was largely unmonitored because of

the difficulty of interpreting the measurement data by the human operator due to the

enormity of the collated system data. Clearly automation were needed to assist the

operator in monitoring the water network. On the other hand, the continued price

decreases in both required hardware and software meant that the automation of the system

monitoring, in order to achieve optimal control, could successfully and economically be

performed.

The initial successes in the simulation of water distribution systems prompted the

industry to consider the development of on-line decision support systems which would

integrate existing telemetry systems and simulation software. Attempts made to

accomplish the undertaking of developing on-line decision support system ended in

failure, because of the rapid increase of the computational requirements of the simulation

algorithms with increase of the physical network size.

To overcome such problems, sparsity exploiting techniques were employed in the

simulation. The sparsity-directed techniques exploit the inherent sparsity of water

distribution systems in order to achieve speedup. These techniques were discussed in

Chapter 2. They include: sparsity-directed matrix inversion routines - Bi-factorization and

Bartels__Golub decomposition, sparsity-directed storage techniques - "Link-Lists", and

near-optimal pivoting techniques.

However, the results of our investigations indicate that, the efficiency of the techniques

employed in solving the derived system matrix is highly dependent on two factors, firstly

is the pivotal strategy used in order to achieve minimum "fill-in" thus reducing storage

requirements and achieving speedup, and secondly the storage technique itself. However,

despite the fact that, using these techniques may reduce the computational requirements of

195

Chapter 7

the simulation software in the short term, but in the long term they cannot meet the

growing computational requirements due to periodic expansion of the network. Hence

alternative solution methods have to be found.

Chapter 3 addresses this problem and focuses on the parallel processing algorithms. The

research resulted in the development and implementation of a nonlinear diakoptics

technique. The objective was to partition the system into a number of parts, so that each

part is isolated from the rest of the system. The component networks are solved

independently on different processing units simultaneously, and the solution of the

complete network is obtained by coordinating the component network’s solutions. Two

methods were employed for obtaining the component network’s solutions - "the

partitioned system matrix" after linearization and "the partitioned system matrix" before

linearization. However, while the linearized partitioned system matrix method works well

when implemented on a single CPU computer, it is not best suited for a truly parallel

processing architecture, as it tends to overburden the coordinating task with additional

calculations and sending large amount of data associated with each jacobian block. Thus

partitioning before linearization approach was chosen instead.

The algorithm was initially run on a closely-coupled(PC-based Transputer system

configured in "Tree" and "Pipe-line" modes) computing system. The results indicate that

the processor topology has little effect on the program’s execution time. Contrary to

Bowden [16], storage problems were not encountered. The computational efficiency of the

algorithm was evaluated using two realistic networks and results were extrapolated to

large scale systems(i.e. 1300 nodes). The results obtained indicate that the time required

to coordinate subsystem solutions depends almost quadraticly on the coordination problem

size, on the other hand, the subsystem solution times were found to depend quasi-linearly

on the number of nodes in the subsystem.

The overall computational efficiency and storage requirement of the network tearing

algorithm was found to be strongly influenced by the way the system is partitioned. In the

cases where the system has a simple layout, a fairly good cluster partition can be

196

Chapter 7

achieved by inspection, while for complex systems an algorithm must be used to

systematically partition the graph into an optimal arrangement of clusters.

This research resulted in the development of a new nonlinear parallel processing

algorithm (nonlinear diakoptics).

Chapter 4 describes two graph partitioning techniques with different theoretical basis.

The first method known as the "greedy algorithm", has its basis in a heuristic derivation.

The second method known as "simulated annealing", however, is theoretically based on

the analysis of combinatorial optimization problems. The application of the heuristic

method was found to be strongly problem bound, thus cannot be generalized for use in

broader range of partitioning problems. On the other hand, the simulated annealing

algorithm is generally applicable to a wide range of graph partitioning problems.

However, an important conclusion from the results of the computer simulation, indicates

that, the performance of the algorithm strongly dependent on the selected cooling

schedule. As far as the performance of the algorithm is concerned, it can be concluded

that for our implementation the quality of the solution obtained by the simulated annealing

algorithm is at least as good as (and sometimes better) than the results obtained from the

application of heuristic algorithms(greedy).

Chapter 5 covered issues concerning the water distribution system topology and

demonstrated how they can be resolved using a distributed computing model. One of the

primary requirements of a water distribution system is the ability to expand. Expansion of

the network is closely mirrored by the increased complexity of its mathematical model

thus requiring more computational power. The distributed computing model presented

consisted of two types - namely the tightly-coupled and the loosely-coupled systems. The

most suitable type satisfying the aforementioned requirements of the water distribution

system was to be that of the loosely-coupled system.

Moreover, in order to develop application programs for loosely-coupled systems, the

programming language had to have certain characteristics. These are: software

197

Chapter 7

configurability, inter-process communication mechanism(synchronous or asynchronous)

and finally the partial failure mechanism. The suitability of each language would be

measured on how many of these requirements it can satisfy. The Ada language satisfies

most of these requirements, however, it is generally acknowledged that the language

support in the area of distributed systems is lacking.

This research has established a framework for the development of a distributed

computing system based on the generalisation of the ADA-rendezvous.

Several strategies were devised[23,4,138,30,24,25,71,132,84,36,131,68,5] to overcome

the problems associated with lack of language support for the development of large truly

distributed software. These strategies tend to agree that best approach to program

distributed applications in Ada, is pre-partitioning of the application program. On the

subject of inter-process communication mechanism two methods predominate - namely the

Remote Entry Call and Remote Procedure Call. There are strong arguments for and

against using both of these methods. However, the conclusion here is that, the application

program inter-process communication needs, should be the deciding factor.

Chapter 6 has documented the implementation of a distributed computing environment,

for water system simulation,which served to validate the general concept of distributed

computation using ADA Virtual Nodes. Major functional units of the system were

identified and diagrammatically defined - namely the coordination and the subsystem

solution routines. The partitioned Jacobian approach was superseded by the more efficient

approach whereby the network partitioning and linearization are performed on the

individual processors thus reducing the amount of data transfer between the subsystem

workers and the coordination routine.

The concept of "virtual node" for modelling the distributed processing nodes of a

loosely-coupled system, has been implemented and demonstrated to be a viable approach .

The DIADEM[5] approach was selected amongst other methods[68,71,25,4] to represent

the distributed water system simulation program because: (i) it offers a compiler

198

Chapter 7

independent virtual node approach. Therefore conventional Ada compilers can be used to

develop the distributed application program, (ii) it allows the notion of virtual node type,

which is particularly useful in this implementation since it offers dynamic creation of

processing nodes to fit a particular partitioning scheme, and (iii) it uses a rendezvous like

mechanism for inter-virtual node communication - useful since rendezvous mechanism

gives a better reflection of the work-load of the processing nodes in the system.

199

Chapter 7

7.2 Suggestions for Further Research.

A new nonlinear network tearing algorithm is introduced in this thesis. The algorithm’s

applicability to a wider range of nonlinear engineering problems should be explored and

compared with its application to problems associated with the simulation of large water

distribution systems. Examples of nonlinear systems which could benefit from the newly

developed nonlinear network tearing algorithm developed in this work includes; electricity

distribution systems, gas distribution networks, traffic management systems, and industrial

process control systems.

The future trend in the area of water distribution and control systems, depends on the

availability of methodologies for integrating the existing technologies such as Distributed

Control and SCADA systems to develop a more sophisticated on-line decision support

systems. The introduction of X-windows is a step in the right direction for providing such

environments. Another key to easier integration, beyond the hardware, the operating

systems, the communication and databases, is Object-Oriented programming[58]. Thus a

comparison can be drawn between the object-oriented methodology and the Virtual Node

approach introduced in this thesis. Although one may argue that they are not exactly the

same, but the virtual node concept could be interpreted as a starting point in solving the

problem of integrating the available technologies.

The introduction of Ada9x, which is a fully Object-Oriented language, could be viewed

as the ultimate tool for developing these objects. Furthermore, the Ada9x '’partition”

mechanism adopts many of the characteristics of the Virtual Nodes, therefore allowing for

an easier transition between software languages, if it is decided to use Ada9x as the sole

programming environment for development and integration of such technologies.

200

References

REFERENCES

[1] "Ada Language Reference Manual", Jan. 1983, ANSI/MIL-STD 1815A.

[2] "Alsys Ada compiler RM", Alsys ltd, 1992.

[3] Amari,S.,"Toplogical Foundations of Kron’s Tearing of Electrical Networks,"

R.A.A.G. Memoirs, 3, pp.322-349,1962.

[4] Armitage,J.W, and Chelini, J.V., "Ada Software on Distributed Targets: A Survey of

Approaches", Ada Letters, 1985, 4(4), pp. 32-37.

[5] Atkinson,C.,Moreton,.T,and Natali,.A, "Ada for Distributed Systems", 1988,

Cambridge Univ. Press.

1
[6] Bal. H, "Programming Distributed Systems", 1990, Prentice Hall.

[7] Bargiela,A.,"On-line Monitoring of Water Distribution Networks",

PhD Thesis, University of Durham, 1984.

[8] Bargiela,A., AlDabass,D.,"A simulated real-time environment for verification of

advanced water network control algorithms", 5th System Science Conference, Wroclaw,

Sept. 1986.

201

References

[9] Bargiela,A.,"Opimal telemetry system for water networks", Int. Symposium on

optimal Modeling of Water Distribution Systems, Lexington, K.Y., May 1988.

[10] Bargiela,A., Hainsworth,G., "A graphical interactive software tool for confidence

limit analysis",AWWA Conference on Computer and Automation in the Water Industry,

Denver, CO, 2-4 April 1989.

[11] Bargiela,A.,Hainsworth,G.,"Pressure and flow uncertainty in water systems," ASCE

Jou. of Water Resources Planning and Management, Vol. 115, pp.212-229,1989.

[12] Bargiela,A.,"Nonlinear Network Tearing Algorithm for Transputer System

Implementation" Proc. TAPA’ 92, pp. 19-24, Nov. 1992.

[13] Berry,R.D, "An optimal ordering of electronic circuit equations for a sparse matrix

solution," IEEE Tans. Circuit Theory, Vol. CT-18, pp. 139-145, 1971.

[14] Bertele,U., and Brioschi,F.,"On the theory of the elimination process," J. Math.

Anal.Appl., Vol. 35,pp. 48-57,1971.

[15] Birrel, A.D, and Nelson,R.J, 1984, "Implementing Remote Procedure Calls",ACM

Trans. Comput. Syst.,Vol.2, Feb 1984,Assoc, for Computing Machinary Inc.

202

References

[16] K.Bowden/'Kron’s Method of Tearing on a Transputer Array", The Computer

Journal, Vol. 33,No.5,1990.

[17] Bozzi,U.,and Tiramani,A.R,"Techniques for reordering equations for the solution of

sparse linear systems,"Calcolo, Vol.9, pp. 139-142, 1972.

[18] Brameller,A., John,M.N,Scott,M.R, "Practical Diakoptics for Electrical Networks,"

Chapman and Hall Ltd, 1979.

[19] Burns,A. et. al. "A Review of Ada Tasking", YCS.78, Dept, of Computer Science,

University of York, 1985.

[20] Canal,M.,"Elimination ordonees,un processus dimuant le volume des calculs dans la

resolution des systemes lineaires a matrice creuse," in Proc. Power Systems Computation

Conf. London, 1963.

[21] A.Cholerton."Ada for Closely-coupled Multi-processor Targets", In Proceedings,

TRI-Ada’89,PA,Oct.23-26,1989.

[22] R.P.Cook:"* MOD - A language for Distributed programming," Proceedings of the

1st International Conference on Distributed computing systems,

Huntsville, Alabama,pp.233-241 (Oct. 1979).

203

References

[23] Cornhill,D.,"Four approaches to partitioning Ada programs for execution on

Distributed Targets", 1984,IEEE Computer Soc. 1984 Conf. on Ada Applications and

Environments, pp. 153-164.

[24] Cornhill,D., "A survivable Distributed Computing System for Embedded Application

Programs Written in Ada", Ada Letters, 1983(Nov/Dec).

[25] Cornhill,D., Beaue,J. and Silverman,J., "Preliminary Reference Manual for the Ada

Program Partitioning Language", Honeywell(Jan 1983).

[26] Coulbeck,B.,Sterling,M.,"Optimised Control of water distribution systems," IEE

Proc. Vol. 125, Oct. 1978.

[27] Crichlow,J.M,"An Introduction to Distributed and Parallel Computing", 1988,

Prentice Hall International(UK) Ltd.

[28] Dantzig,G.B, Harvey,R.P, Mcknight,R.D, and Smith,S.T,"Sparse matrix techniques

in two mathematical programming codes," in [585, pp.85-99].

[29] Dantzig,G.B, Wolfe,P.,"Decomposition Principle for linear Programs," Operation

Research, 8(1), pp. 101-111,1960.

[30] Darpra, Maderna, stammers, et. al. , "Using Ada and APSE to support Distributed

204

References

Multi_microprocessor Targets”, Ada letters, 1984, Vol.3, No.6.

[31] Davies, D.W. et al, 1979,"Computer Networks and their protocols”, Chichester:

John Wiley & Sons.

[32] Davies,D.W. and Barber,D.L.A, 1973,"Communication Networks for computers”,

London: John Wiley & Sons.

[33] Dahlguist,G.,and Bjork,A., "Numerical methods," Englewood cliffs, NJ; Prantice-

Hall, 1974.

[34] Dembart, B., and Erisman,A.M,"Hybrid sparse matrix methods," IEEE Trans.

Circuit Theory, Vol. CT-20, pp. 641-649, 1973.

[35] Dillingham, J.H, "Computer Analysis of Water Distribution system part II," water

and sewage works, Feb. 1967, pp. 43-45.

[36] Downes,V.A, and Goldsack,S.J.,"The use of the Ada Language for programming a

distributed system",in V.H. Hoase, Proc. IFAC/IFIP workshop on Real-time

programming, pp. 39-44, pergamon Press, Oxford 1980.

[37] Duff,I.S, and Reid,J.K, "Some design features of a sparse matrix code," ACM

Trans. Math. Software, Vol.5, pp. 18-35, 1979.

205

References

[38] Duff,I.S, and Reid,J.K, "A comparison of sparsity orderings for obtaining a pivotal

sequence in Gaussian elimination," J. Inst. Math. Appl., Vol 14, pp. 281-291,1974.

[39] - , "Pivoting for size and sparsity in linear programming inversion routines," J.

Inst. Math. Appl., Vol. 10, pp. 289-295, 1972.

[40] - , " On the product form of inverses of sparse matrices and graph theory," SIAM

Rev., Vol. 9,pp. 91-99,1967.

[41] - , "Solution of a system of simultaneous linear equations with a sparse coefficient

matrix by elimination methods," BIT, Vol.7,pp.226-239, 1967.

[42] Duff,I.S, "A survey of sparse matrix research," Proc. IEEE, Vol.65, No4, Apr.

1977.

[43] Duff,I.S, and Reid,J.K, J. Inst. Maths. Applies. 1976.

[44] Edelmann,H., "Optimal strategies in the direct solution of the systems of linear

equations with sparse matrices," Z.Agnew. Math. Mech.,Vol. 45, pp. 13-18,1965.

[45] Edmonds,J.,"Matroids and the Greedy algorithm," Maths. Programming,

Vol. 1,pp. 127-136, Nov. 1971.

206

References

[46] Forrest, J.J.H, and Tomlin,J.A,"Updating triangular factors of the basis to maintain

sparsity in the product form simplex method," Mathematical Programming, 2(1972), pp.

263-278.

[47] Garey,M.R, and Johnson,D.S,"Computer and Intractability," Freeman, San

Francisco, 1979.

[48] Gentelman,W.M, 1973, J. Inst. Maths Applies, Vol. 12, pp. 329-336.

[49] Geoffrion,A.M, "Solving Bicriterion Mathematical Programs Operation

Research,Vol. 15, pp.39-54, 1967.

[50] Gill,P.E, and Murray,W., 1973 Linear Algebra Applies., Vol.7,pp.99-138.

[51] Gilland,P.E, and Murry,W.,"A numerically stable form of the simplex algorithm,"

Linear Algorithm Appl., 7(1973), pp. 99-138.

[52] Givens, J.Inst. Maths. Applies., 1976, Vol. 17, pp. 267-280.

[53] Golub,G. 1965. Num. Math. Vol.7, pp. 206-216.

207

References

[54] Golub, G., 1969, Information Processing, Vol.68,North Holland.

[55] Gustavson,F.G,"Some basic techniques for solving sparse systems of linear

equations," in Proc. Conf. at IBM Research Center,NY,Sept. 1971,pp.41-52.

[56] - /'FORTRAN subroutines for handling sparse linear programming bases," HMSO,

London, England, AERE Rep. R.8269,1976.

[57] Happ,H.H, "Diakoptics and Piecewise methods," IEEE Trans. PAS-89, 1970,

pp. 1373-1382.

[58] M.Heitz,B.Labreville, "Design and Development of Distributed Software Using

HOOD and Ada", Proc. of Ada Europe Int. Conf., 1988,ppl43-156.

[59] Himmelblau, D.M.:"Decomposition of Large_Scale systems," Chem. Eng. Sci.

21,pp.425-438, 1966,Chem. Eng. Sci. 22, pp.883-895, 1967.

[60] Hosseinzaman,A. and Bargiela,A.,"Parallel simulation of Nonlinear Networks, using

Diakoptics," Proc. of Int. Conf. on Parallel Computing and Transputer Appl. 1992,

Barcelona, Spain, pp. 1463-1473.

[61] Hosseinzaman,A. and Bargiela,A.,"ADA’s Virtual Node based Water System

Simulator", Proc. of ADA UK International Conference, ADA UK JOU., April 1994,

208

References

London, England.

[62] Householder,A.S, "The Theory of Matrices in Numerical Analysis," Blaisdell, 1964,

New York.

[63] Hsieh,H.Y, and Ghausi,M.S, "On optimal pivoting Algorithms in sparse matrices,"

IEEE Trans. Circuit Theory(corresp.), Vol.CT-19,pp.93-96,1972.

[64] Hsieh,H.Y, and Ghausi,M.S, "On sparse matrices and optimal pivoting algorithms,"

IBM Tech. Rep. TR 22.1249.

[65] Hsieh,H.Y,"Pivoting-order computation method for large random sparse systems,"

IEEE Trans.Circuits and Systems, Vol. CAS-21,pp. 225-230,1974.

[66] - , "A probabilistic approach to optimal pivoting and prediction of fill-in for

random sparse matrices," IEEE Trans. Circuit Theory, Vol. CT-19, pp. 329-336,1972.

[67] Hu,T.C,"Integer Programming and Network Flow," Reading MA, Addison_Wesley,

1969.

[68] Hutcheon,A.D, and Wellings,A.J.,"Ada for Distributed Systems", 1987, Computer

Standards and Interfaces,(North- Holland).

209

References

[69] Irving,M.R.,and Sterling,M.J.H,"Optimal Network Tearing using Simulated

Annealing", IEE Proc., Vol.l37,Pt.C,No.l,Jan 1990.

[70] Isaac,L.T and Mills, K.G (1980), "Linear theory method for Pipe network analysis,"

Jou. Hydr. Div.,ASCE, 106(7), 1191-1201.

[71] Jessop,W.H,"Ada Packages and Distributed Systems", SIGPLAN Notices 17(2),pp.

28-36(Feb 1982).

[72] Jowitt,P.,Xu,C.,"Optimal valve control in water distribution networks," ASCE Jou.

of Water Resources Planning and Management, Vol. 116, pp.455-472,1990.

[73] M.KamradjR.Jha and G.Eisenhauer,"Reducing the complexity of reconfigurable

systems; Ada", 2nd International Workshop on Real Time Ada issues, 1988.

[74] M.Kamrad,R.Jha and D.cornhill,"Distributed Ada",ACM, 1987.

[75] Key,J.E,"Computer program for the solution of large sparse unsymmetric systems of

linear equations," Int. J. Numer. Methods Eng., Vol. 6, pp. 497-509, 1973.

[76] Kirkpatrick,S., Gellatt,C.D, and Vecchi,M.P,"Optimization by simulated annealing,"

Science, 1983,220, pp.671-680.

210

References

[77] J.Knight and M.Rouleau,"A new approach to fault tolerance in distributed Ada

programs,"2nd International Workshop on Real Time Ada issues, 1988.

[78] Knight,J.C, and Urquhart,J.I.A, "On the implementation and Use of Ada on

Fault_Tolerant Distributed Systems", 1984, ADA Letters, pp. 53-64.

[79] Knuth,D.E, The Art of Computer Programming. Vol. Fundamental Algorithms.

Reading, MA: Addison-Wesley, 1965.

[80] Kron,G.: Diakoptics:"The Piecewise solution of LargeJScale systems," Mcdonald,

London, 1963.

[81] Kulikowski,R.,"Optimization of Large_Scale systems," Fourth congress of IFAC,

Warszawa, 1969, survey paper 16,pp. 1-40.

[82] B.W.Lampson: "Remote Procedure Calls," pp.365-370, Vol.105,1981.

[83] Lasdon,L.S,"Optimization Theory for large systems," Macmillan Co. London, 1970.

[84] Liskov, B., "Linguistic Support for distributed programs", IEEE Transactions on

Software Eng., SE-8,No.3,May 1982.

211

References

[85] Lorin,H., "Parallelism in Hardware and Software: Real and apparent concurrency",

1972, Prentice Hall Inc., Englewood Cliffs, New Jersey.

[86] Markowitz,H.M, "The elimination form of the inverse and its application to linear

programming," Management Sci. , Vol.3, pp. 255-269, 1957.

[87] May,D. and Shepherd,R.,"The Transputer Implementation of occam", 1984,Proc. Int.

Conf. on Fifth Generation Computer Systems, pp. 533-41, Tokyo.

[88] Mesarovic,M.D,Macko,D.,Takahara,Y.,"Theory of Hierarchical Multilevel

systems," Acad. Press, New York, London, 1970.

[89] Metropolis,N., and Rosenbluth, A.W,"Equation of state calculations by fast

computing machines," J.Chem. Phys.,1953, Vol.21,(6),pp. 1087-1092.

[90] Mine,H.,Ohno,K.,"Decomposition of Mathematical Programming Problems by

Dynamic Programming," J. Math. Anal, and Appl., Vol.32, pp.370~385,1970.

[91] Morris,D.S, Wheeler,.T, "Distributed Program Design in Ada: An example", IEEE

Comput. Soc. 2ND INT. CONF. on ADA Applications and Environment, 1986, pp. 21-

29.

[92] Munkres,J.,"Algorithms for assignment and transportation problems," J.SIAM,Vol.

212

References

5, pp. 32-38, 1957.

[93] B.J.Nelson: "Remote Procedure Call", CMU-CS-81-119, Detartment of Computing

Science, Carngie-Mellon University(Mayl981).

[94] Nemhauser,G.L,"Decomposition of linear programs by Dynamic Programming,"

Naval Res. Logist. Quart. 11, pp. 191-195, 1964.

[95] Onederra,R.,"Diakoptics and codiakoptics of electrical networks, R.A.A.G, Memoirs

2, pp.369-388,1958.

[96] Orchard-Hays,W., Advance linear programming computing Techniques. New York:

McGraw-Hill, 1968.

[97] - / ’Analysis of sparse systems," D.Phil. thesis, Oxford Univ.,

Oxford, England, 1972.

[98] Page,E.S,and Wilson,L.B, Information representation and Manipulation in a

computer. Cambridge, England: Cambridge Univ. Press, 1973.

[99] - , "The solution of large sparse unsymmetric systems of linear equations," J. Inst.

213

Math. Appl., Vol. 8, pp. 344-353, 1971.

References

[100] - ,"The solution of large sparse unsymmetric systems of linear equations, "J. Inst.

Math. Appl.,203 pp. 1240-1245,1971.

[101] - ,"The implementation and use of sparse matrix techniques in general simulation

programs," Comput. J., Vol. 17,pp. 165-170,1974.

[102] - / ’Symbolic generation of an optimal Crout algorithm for sparse systems of linear

equations," J. Assoc. Comput. Mach., Vol. 17,pp. 87-109,1970.

[103] Peters,G., and Wilkinson,J.H, 1970, Comput. J., Vol. 13, pp. 309-316.

[104] - "Extended application of the sparse tableau approach-Finite elements and least

squares," Elec.Sci. and Eng. Dep. and Comput. Sci: Dep., UCLA, Tech. Rep.,1974.

[105] - /'Iterative refinement of linear least squares solutions I," BIT, Vol.7, pp. 257-

278,1967.

[106] Peters,G.,and Wilkinson,J.H, 1969, Information Processing, Vol.68,North Holland.

[107] Phillips,W.,"The storage and the inversion of large sparse matrices," Math, and

214

References

Stats. Group,ICI Wilmslow Rep., 1970.

[108] Powell,M.J.D, and Reid,J.K, 1969, In Inform. Processing, Vol.68, North

Holland,pp. 122-126.

[109] A.J.Purves and A.L.Cesario, "Computer Application in Water Industry",

Water/Engineering & Management, 1993.

[110] Ralston,A., and Wilf,H.S, "Mathematical methods for Digital computers," J.Wiley

and Sons, Inc. New York, 1960.

[111] Ranks,S.,Won,Y. and Sahni,S., "Programming a Hypercube Multicomputer",

1988,IEEE Software, Vol. 5, No.5, pp. 69-77.

[112] Reid,J.k,"A sparsity ̂ Exploiting variant of the BartelsGolub Decomposition for

linear programming Bases," Aug. 1975, computer Science and system division, Harwell.

[113] Rose,D.J, and Tarjan,R.E, "Algorithmic aspects of vertex elimination," in Proc.

7th Ann. ACM Symp. on the Theory of computing, pp. 245-254, 1975.

[114] Roth,J.P,"An application of Algebraic Topology to Numerical Analysis, on the

existence of a solution to the network problem," Proc. Nat. Academy of Sciences,

Vol.41,pp.518-521.

215

References

[115] Sakamoto,A.,Shirakawa,I., and Ozaki,H.,"Ordering of pivot operations on sparse

systems of equations," Information processing in Japan, Vol. 12,pp. 84-89,1972.

[116] Samch,A.H, "On some parallel algorithm on a ring of processors," comput. Phys.

comm. Vol. 37, pp 159-166,1985.

[117] Sangiovanni_Vincebtelli,A. and Chen,L.,"An Efficient Heuristic Cluster Algorithm

for Tearing Large_Scale Networks," IEEE Trans. CAS, Vol. CAS24,1977.

[118] Sato,N., and Tinney,W.F, "Techniques for exploiting the sparsity of the network

admittance matrix," IEEE Trans. Power, Vol. PAS-82,pp. 944-949,1963.

[119] Sato,N. and Tinney,W.F, "Techniques for exploiting the sparsity of the network

admittance matrix," IEEE Trans, on Power Apparatus, and sys. 82(1963), pp 944-950.

[120] Saunders,M. A, "LargeJScale linear programming using the Cholesky

factorization," Report STAN_CS_72_252(S tarn ford Univ., 1972).

[121] A.M.Schulte & A.P.Malm, "Integrating Hydraulic Modeling and SCADA systems

for system planning and control",Water/Engineering & Management, 1993.

[122] Sechen,C., and Sangiovanni_Vincentelli,"The timber_Wolf placement and routing

References

package," in Proc. 1984 custom Integrated Circuit Conf.(Rochester NY), May 1984.

[123] Siegel,I.H,"Deferment of computation in the method of least squares," Math.

Comput., Vol. 19, pp.329-331, 1965.

[124] - ,"A comparison of some methods for the solution of sparse overdetermined

systems of linear equations," J. Inst. Math. Appl., Vol. 17, pp. 267-280, 1975.

[125] Seitz,C.L., "The Cosmic Cube", 1985, communication ACM, Vol.28, No. 1,pp.22-

33.

[126] Sheild,J., "Partitioning Concurrent VLSI simulated programs onto a multiprocessor

by simulated annealing," IEE Proc. Vol. 134, Pt.E,No.l ,Jan. 1987.

[127] M,Sloman,J.Magee and J.Kramer: "Building Flexible Distributed Systems in

Conic",pp.86-105 in Dist. Computing Systems program, ed. D.A. Duce,Peter Peregrinus

Ltd. (1984).

[128] Sorenson,D.C,"Analysis of Pairwise pivoting in Gaussian elimination," IEEE

Trans, comput., Vol. C-34, pp 274-278, 1985.

[129] Sterling,M.,Bargiela,A.,"Minimum norm state estimation for computer control of

water distribution systems," IEE Proc. Part D, Vol. 131, March 1984, pp.57-63.

217

References

[130] Stevens, W.R., "Unix Network Programming", 1991, Prentice-Hall,Inc.

[131] Tanenbaum,A.S,"Computer Networks", 1981, Prentice/Hall International.

[132] Tedd,M., Crespi-Reghizzi,S., and Natali,A., " Ada for Multi microprocessors, The

Ada companion Series, Cambridge University Press(1984).

[133] Tinney,W.F, and Walker,J.W, "Solution of sparse network equations by optimality

ordered triangular factorization," Proc. IEEE, 55 1967, pp 1801-1809.

[134] Tinney,W.F, "Some examples of sparse matrix methods for power network

problems. In Proc. of the 3rd Power systems comput. conference. Rome 1969.

[135] Tinney,W.F, "Optimal ordering for sparsely coupled subnetworks," Bonneville

Power Administration, Portland,OR, Internal Rep., 1968.

[136] Tosovic,L.B, "Some experiments on sparse sets of linear equations," SIAM J.

Appl. Math., Vol.25,pp. 142-148,1973.

[137] Vinchenevetsky,R.,"Serial solution of Parabolic Partial Differential Equations,"

Simulation, Vol. 13, pp.47-48, 1969.

[138] Volz,R.A., et. al., "Some Problems in Distributing Real_time Ada Programs across

218

References

machines", 1985, Ada in use, Proc. of the Ada Int. Conf., Paris , pp. 72-84.

[139] R.A.Volz,P.kirshnan and R.Theriault,"Distributed Ada - A case study", In

Distributed Ada 1989, Proceeding of Symposium,pp. 17-59,1989.

[140] Walski, T.M, - Analysis of water distribution system,VNR - New York.

[141] A.J.Wellings et.al.,"Communication between Ada programs," IEEE Trans., pp 145-

152,1984.

[142] Wilkinson,H., and Reinsch,C., Handbook of Automatic computation . Vol.2, New

York:Springer Verlag,1971.

[143] Wilkinson,J.H, "Error analysis of direct methods of matrix inversion," J.ACM,

Volume 8, pp. 281-330,1961.

[144] B.Williams,"Integrating SCADA systems - Applications and Technology",Control

Systems, Nov. 1994.

[145] W ood,DJ, "Computer Analysis of Water Distribution system", Journal of the

HYDRAULICS DIVISION _ Proceeding of the American Society of Civil Eng. July 1972.

219

References

[146] Zolenkopf,K., "large sparse sets of linear equations," Academic Press, 1971.

[147] -,4th International Workshop on Real Time Ada issues, Ada letters, Vol. x,

No.9,1990.

[148] "ADA-to-C" interface release notes, Alsys Ltd,199_ .

[149] Parallel FORTRAN, User Guide, Version 2.1.4, 3L Ltd.

220

