
A FLEXIBLE, SCALABLE
APPROACH TO f

REAL-TIME GRAPHICS
1

€

Paul Anthony Shrubsole

A thesis submitted in partial fulfilment of the
requirements of The Nottingham Trent University

for the degree of Doctor of Philosophy

March 2000

ProQuest Number: 10183025

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10183025

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Abstract

There have been several implementations of multiprocessor

graphics systems in recent years that achieve high levels of realism

at high performance. However, it is common for these

implementations to be deficient either in their flexibility, so that

they become application dependent, or in their scalability, resulting

in a limited shelf life.

The aim of this research project is to design and investigate a

graphics architecture that is flexible and scalable, whilst providing

high quality output in real-time.

To achieve this, the thesis first focuses on high performance anti

aliasing techniques. New algorithms for performing texture anti

aliasing called texture potential mapping are presented which

provide very high quality output at high performance and can

easily be incorporated into multiprocessing environments.

The thesis then focuses on multi-processing architectures that can

incorporate these advanced rendering algorithms in a flexible way

whilst achieving scalable real-time performance. The latter part of

the thesis presents a new architecture called the cellular array that

embodies both flexibility and scalability in its design. Simulation

experiments of the cellular array are presented that examine the

behavior of this architecture for different applications and provides

strategies for ensuring that the multi-processing environment is

consistently well balanced.

Acknowledgements

The author expresses his sincere gratitude to Dr. Richard Cant
for his expert guidance both in and outside of the field of
computer graphics and also for his continued support during
this program of study.

Gratitude also goes to Professor Andrzej Bargiela and also the
other members of the Real Time Telemetry Systems Group
who helped provide both an intellectual and friendly research
environment.

I would also like to thank my girlfriend, Trudie van Kleef and
friends and family for their help and support during the writing
of this thesis.

Table of Contents

Abstract... i
Acknowledgements...ii
Table of Content...iii

Chapter 1: Real-time Graphics Issues.. I
1.1 Introduction.. 1
1.2 Real-time Image Generation... 3
1.3 Objectives for Real-time Systems...5

1.3.1 Screen Resolutions ...5
1.3.2 Lighting and Shading......................5
1.3.3 Anti-aliasing... 6
1.3.4 Frame R ate... 7
1.3.5 Latency..7
1.3.6 Scene Complexity.. 8
1.3.7 Texture Mapping.. 8

1.4 Compute Intensive Algorithms... 9
1.5 Multiprocessor Architectures...10

Chapter 2: Anti-aliasing... 11
2.1 Aliasing Effects in Real-time Computer Graphics.............................. 11
2.2 Strategies for dealing with Aliasing.. 13
2.3 Discrete Anti-aliasing - Supersamping.. 14

2.3.1 Advantages and disadvantages of Supersampling
methodologies 15

2.4 Llidden Surface Removal and Anti-aliasing...18
2.4.1 Analytic Algorithms - The A-buffer................................... 20
2.4.2 Overlapping Pixel Fragments...24
2.4.3 The Priority Mask... 26

2.5 Alternative Strategies for Filtering in the Continuous Domain 29
2.6 Recommended Scheme for Hardware Architecture............................ 32

Chapter 3: Texture Mapping... 33
3.1 Motivations for Texture Mapping... 33
3.2 The Mapping Process... 35

3.2.1 Other Texture Parameterisation Techniques....................... 36
3.3 Aliasing in Texture Mapping...37
3.4 Established Methods of Anti-aliasing Texture in Real-time...............40

3.4.1 MIP Mapping..40
3.4.2 Summed Area Table...41
3.4.3 Adaptive Precision Method.. 44
3.4.4 Footprint Assembly Mapping... 45
3.4.5 Other Methods of Anti-aliasing Texture............................. 46
3.4.6 Summary of Texture Mapping Techniques......................... 48

3.5 New Method: Potential Mapping.. 49

3.5.1 Evaluating Potential Values.. 52
3.5.2 Tracing around Transformed Pixels....................................53
3.5.3 Implementation and Performance Considerations.............58
3.5.4 Implications of Texture Potential Mapping....................... 59

3.6 Extensions to Texture Potential Mapping..60
3.6.1 Texture Potential MIP Mapping.. 60
3.6.2 Combining TPM and MIP Mapping...................................61
3.6.3 Aliasing Problem - Solution... 63
3.6.4 Choosing the Optimal Number of Samples........................ 67
3.6.5 Performance Measures and Comparison with Other

Methods...69
3.6.5.1 Comparison with Glassner’s Algorithm 71
3.6.5.2 Comparison with Footprint Assembly

Algorithm..73
3.6.5.3 Memory Requirements....................................81

3.7 Conclusion... 83

Chapter 4: Multiprocessor Graphics Architectures.. 84
4.1 The Need for Multiprocessing..84
4.2 Screen Subdivision Methods.. 88
4.3 Pixel Processing Systems..92
4.4 Object Based Parallelism and Image Composition..............................94
4.5 Image Compositions Methods..95
4.6 Summary... 99

Chapter 5: The Cellular Array Architecture...100
5.1 Autonomous Processing / Local Storage...................... 100
5.2 The Recombination Stage — FPGA Solution..........................104
5.3 Polygon Caching - Reducing the Distribution Problem..................... 105
5.4 Hidden Surface Removal and Anti-aliasing.. 107
5.5 Anti-aliasing - Pixel Fragment Recomposition...................................108
5.6 Cellular Array Experiments..109

5.6.1 Implementations Considerations...109
5.6.2 Simulation T est Data..110
5.6.3 Measuring Cellular Array Performance..............................112

5.7 Simulation Results...114
5.8 Incorporating Parallel Potential Mapping.. 118

5.8.1 Hardware TPM...118
5.8.2 Hardware TPM and the Cellular Array...............................122

5.9 Implications of Experimental Results.. 125
5.10 Conclusions... 127

Chapter 6: Conclusions and Future Work...128

References ... 131
Publications ... 134

iv

CHAPTER 1

REAL-TIME GRAPHICS ISSUES

1.1 Introduction

The realm of computer graphics has been studied and researched with intensity and vigour

ever since the conception of the vector display in the nineteen sixties. With the rapid

progress in speed, capacity and affordability of computer hardware over the past thirty

years, however, researchers and industry are still subservient to the immense computational

demands that are placed on computer systems in order to render realistic three-dimensional

scenes in real-time. These pressures have forced programmers and hardware designers to

consider computer architectures that make use of multiple processors in order to share out

the objects or the tasks that render them in order to achieve both immersion and realism

within a virtual reality environment. Furthermore, in order to make the most of available

time, money and resources, computer graphics systems tend to meet needs for the

technology of the day and thus lack of both flexibility and scalability. Such a philosophy,

however, ultimately leads to systems with a very limited shelf life.

The thesis proposes and explores a new software/hardware architecture that can cater for

the ever-growing demands on high performance and realism in real-time 3D computer

graphics. The report is split into six chapters, each focusing on a particular aspect of real

time graphics that is constantly in need of improvement in terms of both visual quality and

performance.

This chapter looks retrospectively at the evolution of real-time graphics systems in order to

lay out the key problems that 3D graphics architectures have to deal with and with which

this thesis aims to solve. Chapter 2 focuses on strategies for overcoming the effects of

aliasing in computer graphics and provides a way of dealing with multiple pixel fragments

that result from polygon rendering. This solution is then introduced again as a candidate

scheme for the work in chapter five. Chapter 3 looks at texture mapping and presents two

new algorithms for high quality anti-aliased texturing. Chapter 4 looks at multiprocessor

graphics architectures and examines their relative merits and disadvantages. A new

graphics hardware architecture is then presented in Chapter 5 that offers flexibility with

respect to types of graphics algorithms that may be employed and hardware scalability with

respect to performance demands. Chapter 5 also incorporates all of the previous research

illustrated in chapters two and three. The final chapter wraps up the research presented in

the thesis and provides a set of recommendations for future research and development.

2

1.2 Real-time Image Generation

In order to understand the operation and ethos of current real-time graphics systems, it is

valuable to look retrospectively at the evolution of real-time image generation. Since the

early days of vector displays, which could draw only dozens to hundreds of lines in real

time [SUTH63], the following features were introduced for the first time in high-end, real

time 3D graphics systems:

• Flat shading with lighting. 1977 [SCHA83]

• Gouraud shading and anti-aliasing of hundreds of polygons. 1977 [SCHA83]

• Gouraud Shading of thousands of polygons. 1988 [AKEL88J

• Antialiasing (on workstation). 1990 [HAEB90]

• Textures. 1988 [APGA88]

Although earlier instances of the above have been implemented, (e.g. the Apollo landing

simulator used flat shading with lighting in 1967) they were more one-off experimental

systems.

Until 1988, the only systems that could generate anti-aliased images with textures in real

time were high-end military flight simulators costing millions of pounds. These systems

had relatively low polygon performance compared to graphics workstations [SCHA83].

Graphics workstations traditionally have focused on displaying large numbers of

primitives, which are necessary for computer-aided design and other modelling

applications.

In the last several years, the two approaches have begun to converge. Flight simulators

have increased their polygon performance and graphics workstations have begun to support

antialiasing and texturing [EVAN91], This is not particularly surprising since computer

graphics has become much more commercially competitive in the past decade and certainly

more accessible since the conception of 3D accelerator cards for the PC.

A successful graphics system for today’s requirements and for those of the future should

therefore provide both flexibility and scalability in order to maintain a high polygon

3

performance with realistic rendering. A flexible graphics architecture allows us to adapt

and replace graphics geometiy and rendering algorithms to suit the needs of specific

applications. A scalable graphics architecture allows us to maintain an acceptable frame-

rate as the demand for visual realism grows.

In order to see how these requirements can be met, we must break down the performance

and realism issues into a specific set of requirements and objectives.

4

1.3 Objectives for Real-time Systems

Current systems display complex datasets consisting of tens to hundreds of thousands of

primitives in real-time and support fairly realistic lighting and shading models. Future

systems must exceed these performance levels, should be free of distracting artefacts, and

should provide support for more realistic rendering. The following is a review of the most

important issues that all graphics architectures need to deal with. The discussion also

provides the basis for the research issues discussed in the later chapters (other graphical

effects such as shadow generation, environment mapping, radiosity, etc., fall as sub

categories of those mentioned).

1.3.1 Screen Resolution

Ideally, a graphics system’s display resolution should match the resolution of the human

eye. Experiments on the human visual system indicate that the human eye can resolve

features separated by 1 to 10 arc minutes, depending on the brightness and contrast of the

features [ROSE73]. If we assume an 18-inch wide display screen viewed from 18 inches,

this corresponds to a linear screen resolution of 350 to 1150 pixels. Current high-resolution

monitors can comfortably display 1280 by 1024 pixels. This appears to be a reasonable

standard for high performance image-generation systems (head-mounted displays still

require significant improvements in this area and shutter glass technology appears to be

currently superseding this technology).

1.3.2 Lighting and Shading

A graphics system must accurately model the interaction between light and the elements of

a scene. The physics of light transport is fairly well understood. Unfortunately, to model

the physics exactly for non-trivial scenes requires a prohibitive amount of computation.

Rather than model the physics exactly, rendering algorithms make approximations that are

less costly to compute.

The most realistic methods that are in common usage are ray tracing and radiosity. These

are extremely compute-intensive, sometimes requiring days to compute a single scene

5

(radiosity has the advantage however in that surface interactions can be pre-computed for

static scenes). Generally, the more realistic the lighting and shading model, the more

computation that is required.

Most current high-performance systems support Gouraud or Phong lighting with Gouraud

shading. A few systems support Phong shading. Future systems need to support Phong

shading with multiple, local light sources in order to provide any significant boost in

realism. Furthermore, future systems should be flexible enough to allow new shading

algorithms to be added without affecting the overall graphics architecture. This is a non

trivial problem to solve if traditional interpolation techniques are employed throughout the

graphics pipeline from frustum clipping to rasterization.

1.3.3 Anti-aliasing

Raster display systems, by their nature, cause the familiar problem of “jaggies” or “stair-

casing”. This artefact is a manifestation of a sampling error called aliasing in signal

processing theory. Other common aliasing artefacts in computer graphics can be observed

when mapping textures onto 3D surfaces and can lead to stomach curdling results during

animations as the contents of textures swim around on the screen.

Aliasing artefacts occur when a function of a continuous variable that contains sharp

changes in intensity is approximated with discrete samples. In order to minimise the errors

that result from aliasing, a scheme of anti-aliasing should be introduced.

There are many strategies for overcoming aliasing (many of which are too compute

intensive to justify real-time implementation) and these will be discussed in more detail in

the next chapter.

Most high-performance systems support depth buffer methods in order to remove surfaces

that are obscured by surfaces closer to the viewer. This inevitably leads to problems when

polygons of varying depths contribute toward a single pixel and hence, aliasing effects are

observed. Current and future systems must allow for special cases, such as polygon

intersections and pixel contributions from several primitives without placing too much of a

burden on processing. Furthermore, the scheme of anti-aliasing adopted should be

algorithm neutral and not dictate the overall architecture of the system.

6

1.3.4 Frame Rate

To create the illusion of a moving image, the image must be updated rapidly. 13 Hz is an

absolute lower limit for motion to appear smooth for fixed objects in a scene.

Even this is insufficient if the view or elements in the scene move rapidly. Flight

simulators are one of the most demanding applications and require update rates of 30 to 72

Hz in order to avoid temporal aliasing. Frames must be double-buffered at least, so that

only finished frames are presented to the user (unless the system is fast enough to refresh

the screen ahead of the CRT beam). Another trick is to give objects the impression of

movement by incorporating motion blur [POTM83] (itself computationally expensive) so

that the frame rate can be lowered to an acceptable level.

Future 3D applications will employ more sophisticated rendering techniques. They will

render scenes of greater complexity including objects consisting of many micro-polygons

(smaller than one pixel). 3D graphics hardware that cannot achieve an acceptable frame

rate for these new demands will obviously become obsolete.

1.3.5 Latency

Latency, the time between sampling user inputs and displaying the image, is a crucial issue

for interactive, real-time systems [CANT96], Users sense latency as a lag between

movement of controls and a response in the visible image. Latency reduces controllability

and the illusion of being immersed in the simulated environment. In certain applications,

such as head-mounted displays or flight simulators, high latency can cause motion

sickness.

Latency is an issue distinct from the update rate. Many high performance graphics systems

increase their update rate by pipelining. For example, primitives of one frame can be

transformed, while primitives from the preceding frame are rasterized. Pipelining increases

the frame rate, but does not improve latency. The lower bound for latency is the frame

update time. Flight simulators perform predictive tracking to minimise the apparent

7

latency, but user motions can not be predicted with complete accuracy, and therefore the

results are not perfect.

1.3.6 Scene Complexity

The factor that generally receives the most attention in computer graphics research is the

number of primitives that can be displayed per unit time. This determines the maximum

complexity of the scene that can be displayed at a given rate. The highest performance

systems available display in the order of millions of polygons per second at their peak rate.

At a minimum update rate of 30 Hz, this corresponds to a scene complexity of the order of

tens to hundreds of thousands of polygons. Such scenes do not approach the visual

complexity of everyday life. Much higher performance is needed to display realistic scenes.

1.3.7 Texture Mapping

Rendering schemes that incorporate surface texturing greatly enhance realism but are

computationally expensive. Current algorithms for texture mapping tend to cause blurring

in order to anti-alias the textured surface with minimal computational cost. Future systems

will need to produce better quality, high performance texturing that does not impede the

remainder of the system [SHRU97]. This will be addressed in detail in chapter 3.

1.4 Compute Intensive Algorithms

The objectives set out above highlight that the most compute intensive elements of the

rendering pipeline [MOLN90] involve the use of both anti-aliasing and texture mapping.

Current algorithms that perform these tasks for real-time usage show deficiencies in either

image quality or algorithm flexibility or both. Hence, a fair proportion of the research

presented in the thesis has focused on developing new algorithms (or modifying existing

ones) that meet the requirements of quality and flexibility whilst ensuring that computation

is kept to a minimum.

9

1.5 Multiprocessor Architectures

Since the implicit requirements for the system involve both high performance and high

scene complexity, we would like to process millions of polygons at update rates of 30Hz

using anti-aliasing and texture mapping. However, the resultant number of computations

per frame for such a requirement is too great for a single processor to handle. Thus, the

rendering task must be distributed over multiple processors in order to achieve real-time

performance. If care is not taken however, the design of the multi-processor architecture

will place restrictions on the types of algorithms that may be used throughout graphics

generation process and may also prevent expansion for additional processors by hard

wiring processor networks. Existing multiprocessing architectures, such as the PixelFlow

system [MOLN92] are examined in chapter 4 along with their advantages and

disadvantages. The remainder of the research is dedicated to exploring how the limitations

011 flexibility and scalability may be overcome by presenting a cellular array architecture

that is flexible, scalable and makes use of the algorithms devised for texture mapping and

anti-aliasing also presented.

10

CHAPTER 2

ANTI-ALIASING

2.1 Aliasing Effects in Real-time Computer Graphics

Traditionally, anti-aliasing techniques in real-time computer graphics have been considered

a low priority when developing 3D graphics engines. This is understandable, since

generally, there is no “quick-fix” to solve the problems of aliasing - solutions have tended

to raise the cost of systems both in terms of resources and in terms of processing power. In

the long term, however, (according to Moore’s Laws), we find that such graphics systems

have to be redesigned from scratch multiple times as new technological possibilities

become feasible for real-time implementations. Thus, in order to design a flexible and

future-proof multi-processor graphics architecture, we must ensure that anti-aliasing lies at

its core. However, firstly we must investigate the causes of ‘aliasing’ in the context of

computer graphics.

Aliasing is a common artefact within the realm of computer graphics that results from

attempts to display a continuous geometric image containing high spatial frequencies on a

discrete display device with a comparatively low sampling rate. High frequency

components from the underlying image map incorrectly to lower frequencies, causing

staircase stepping and moire patterns in the static images. When a series of frames are

generated in real-time, aliasing is even more apparent [SZAB83] and can lead to:

Classical temporal aliasing - like the backwards-spinning wagon wheel in old movies -

fast speeds alias as slow speeds. Motion blur helps alleviate this problem.

Strobing - causing a fast moving object to appear to jump in discrete steps or appear

stationary. This is similar to above problem but samples are now in-sync with cyclic

variations in the signal.

Scintillation - small particles that drift between samples blinking on and off - scintillation

of animated textures when texture mapping can lead to extreme artefacts (see next chapter).

The "crawling ants effect" - the spatial aliasing "jaggies" slowly changing between frames.

Stretching and shrinking - a slowly moving small object (only a few pixels in size) will

seem to stretch and shrink in one-pixel steps as it crawls across the screen.

Dealing with these artefacts in an efficient and aesthetic way is not a trivial task and many

attempts have been made to overcome the problem of aliasing in real-time 3D graphics.

However, as mentioned earlier, many of these algorithms tend to lack flexibility since they

are optimised for a particular environment in a bespoke fashion, or they lack the speed

required to render a high number of texture mapped polygons in real-time. This chapter

provides a taxonomy of the more established techniques of anti-aliasing for real-time usage

and discusses possible strategies that have been implemented to deal with special cases of

aliasing artefacts that are difficult to manage. Ultimately, we must establish the most

suitable anti-aliasing scheme for a flexible, scalable multi-processing graphics environment

and this is presented in the final section of the chapter.

12

2.2 Strategies for dealing with Aliasing

The aim of any antialiasing scheme is to attenuate frequency components in the underlying

image that are higher than the Nyquist frequency of the display device. Any frequency

component of the signal that is higher than this limit will be reconstructed as a lower

frequency alias. Classical signal processing models using sampling and Fourier theoiy

require a four-stage process consisting of generating and then passing an analogue signal a

sampling system (e.g. an analogue to digital converter). Digital information is then

processed and finally reconstructed (e.g. using a digital to analogue converter). All

computer graphics anti-aliasing schemes must therefore band-limit the source before

reconstructing the final image. This is generally easier to do in the Fourier domain by

means of convolution [OPPE75].

By its very nature, antialiasing is a compute-intensive process, no matter which scheme is

used. Most current systems that perform antialiasing do so with steep performance

penalties (in some systems such as flight simulators, antialiasing is a fundamental part of

the application; even in systems such as these, where antialiasing cannot be "turned o ff , it

consumes significant hardware resources that could have been spent elsewhere).

Antialiasing plays a large role in determining the factors involving realism and speed for

real-time graphics hardware systems. Furthermore, antialiasing should not put too much

load on the system since we must also consider other compute intensive tasks such as

texture mapping, lighting and shading algorithms.

Antialiasing methods can be divided into two classes: analytic methods, which can pre

filter an image and take out its high frequencies before sampling pixel values, and discrete

methods, which estimate pixel coverage by sub-sampling using a brute force approach.

Discrete anti-aliasing algorithms have historically been chosen in preference over analytic

methods since they may be incorporated into systems that have initially been designed

without thought of anti-aliasing. However, the analytic approach is becoming more popular

in commercial implementations since it has become an algorithmically rich area of study

with realistic solutions for real-time graphics. Each of these schemes will now be discussed

in more detail.

13

2.3 Discrete Anti-aliasing - Supersampling

Many hardware and software systems anti-alias using some form of supersampling. This

involves sampling the image at higher than pixel resolutions and subsequently filtering the

samples down to a single sample per pixel. Supersampling can be done adaptively, based

on the local scene complexity of an image [WHIT80], but its simplest and most regular

form involves over-sampling the image uniformly such that an intermediate image is

computed at a higher resolution than the final output. Combining several of the pixels in

the high-resolution intermediate image then forms the output pixels. Combining

intermediate pixels, which overlap the output pixel over a range, by using a weighted

average can provide good quality results.

Although supersampling appears trivial, it is really a combined implementation of three

conceptual steps, although algorithmically the second and third stages are combined:

(i) Oversampling

High-resolution digital image - a continuous image is sampled at n times the

final resolution to produce a virtual image.

(ii) Digital low-pass filter

Band-limited high-resolution digital image - the virtual image is lowpass

filtered.

(iii) Decimation

Low-resolution digital image - the filtered image is resampled at the final

frame store resolution.

Figure 2.1 illustrates the distinction between classical anti-aliasing (Figure 2.1a) and

supersampling. Figure 2.1b shows that no chamiel between analogue information and a

sampler exists and therefore no point in which an anti-aliasing filter can be inserted in

order to band-limit the image. As continuous data is sent from the scene database (in most

real-time cases, polygon hierarchies), the rendering system interpolates along polygon

edges in screen space and samples discrete values. Since there is no continuous function

that can be sampled anymore, we simply increase the rate of sampling in order to reduce

aliasing artefacts.

14

Anti-aliasing filter
operation

Sampling systemAnalogue information

F(u) i i.
H{u) F(u)H(u)

(a) / s / 2 f s / 2

Rendering System
(Sampler)

Scene Database Display

(b)

Figure 2.1 (a) The ‘classical’ approach to anti-aliasing, (b) A graphics generation
system using discrete sampling.

Practical approaches to supersampling involve sampling multiple images at the resolution

of the final display with each one being displaced by a fractional unit of the filter kernel

size being applied (e.g. a 3x3 box filter results in 8 ‘displaced’ virtual images). These

results are then summating per pixel and dividing the size of the kernel.

Supersampling can be very expensive if a large number of samples are used to form each

output pixel. In order to overcome this problem, stochastic supersampling was developed

in order to reduce the number of samples by randomising the sampling process and

scattering high frequency information into noise [MITC87].

15

2.3.1 Advantages and Disadvantages of Supersampling methodologies

Supersampling methods are very popular in graphics implementations and for good reason.

The supersampling algorithms themselves are easier to implement than analytic methods.

Furthermore, it is a relatively simple task to ‘bolt’ supersampling techniques onto an

existing rendering scheme. This is an attractive gain in terms of flexibility. However,

several disadvantages to supersampling inevitably make it less attractive.

The most obvious technical drawback is that there is both an economic and technical limit

to increasing the resolution of the virtual image. Supersampling methods are essentially

brute force methods, which in turn, imply brute force costs. The computational power

required for a renderer is roughly proportional to:

No. of primitives x No. of subpixel samples x Frame rate x Primitive size

If we increase the number of samples by a factor of k, we can increase the Tenderer’s power

by a factor of k, reduce the number of object primitives, or reduce the frame rate, which is

undesirable.

A further problem involved with making use of supersampling for real-time systems is the

immense bandwidth required. If we consider a system that produces real-time 3-D images

at a frame rate of 30 frames per second on a screen of resolution 1280 * 1024 and a

supersampling density of 8 samples per pixel, we would require a bandwidth of:

1280 x 1024 x 8 samples/pixel x 3 bytes/sample x 30 frames/sec = 0.94 Gigabytes/sec

Another more subtle drawback is that since the frequency spectrum of computer graphics

images can extend to infinity, increasing the sampling frequency does not necessarily solve

the problem, it merely reduces the aliasing by raising the Nyquist limit. In effect,

supersampling simply shifts the effect up the frequency spectrum.

Ultimately, as well as flexibility and scalability, the following factors need to be considered

for real-time interactive systems: image quality, bandwidth requirements and hardware

complexity. Supersampling can produce very good results if implemented properly,

16

provided of course that sufficient samples are taken per pixel. However, the number of

samples directly affects the bandwidth once we begin to consider the other algorithmic

requirements of the system, such as hidden surface removal. It is therefore deemed

necessary to consider other methods of antialiasing that are algorithmically inexpensive and

yet produce good results with low bandwidth.

17

2.4 Hidden Surface Removal and Anti-aliasing

There are many strategies for removing hidden surfaces in real time 3D computer graphics.

The most commonly used of these is the z buffer (or depth buffer) [CATM74]. For each

pixel in the display, we keep a record of the depth of the primitive in the scene that is

closest to the viewer, plus a record of the colour or intensity that should be displayed to

show the object. When a new polygon is to be processed, a z-value and intensity value is

calculated for each pixel that lies within the boundary of the polygon. If the z-value at a

pixel indicates that the polygon is closer to the viewer than the z-value in the depth-buffer,

the z-value and the intensity values recorded in the buffers are replaced by the polygon's

values. After processing all polygons, the resulting intensity buffer can be displayed. This

strategy has the advantage in that it is algorithmically simple and its only real overhead is

its requirement for an extra block of memory of the order of the pixel resolution of the

screen. Care must be taken, however, as to the range and accuracy of depth values as they

are stored since a large range between front and rear camera clipping planes may result in

ambiguous depth comparisons for points that are very close together.

A scan-line based rendering approach is generally employed within polygon edge spans in

which z-values are interpolated. Such spans however will consist of a range of partially

obscured pixels from the left and right edges and a single depth sample will be insufficient

to avoid ‘stair-casing’.

When antialiasing and hidden surface removal are combined, there could well be many

such partial contributions from different edges within a given screen pixel depending on

the depth complexity and relative screen polygon size. Analysing this problem

geometrically leads us into the domain of continuous anti-aliasing.

18

Pixel

Figure 2.2 There may be many contributions of polygon faces in a pixel that need to

be taken into account for correct anti-aliasing

As Figure 2.2 shows, there may be many contributions from polygon edges. However, the

basic implementation of the z-buffer will only take the contribution from the nearest

polygon and will disregard the remaining polygons. This approach will clearly produce

spurious results and will be quite noticeable to the viewer when a large contribution to a

pixel from an edge that is further away is disregarded.

A further problem arises when two polygons intersect each other as shown in Figure 2.3.

In this case, there are likely to be many pixels where the two faces “overlap” in depth. A

simple-minded approach to the depth comparison will not provide the correct answer.

Again, only the contribution from the nearest face will be provided. Pixels where

intersecting surfaces are visible usually number in the hundreds in a typical 1280x1024-

resolution picture.

Boundary
Polygon contributions

19

Pixel b o u n d a ry

EYE Intersecting Polygons

Pixel boundary

DEPTH
 ►

Figure 2.3 Two polygon faces interpenetrate so that two contributions are made to the
pixel.

In order to deal with these problems directly, we must work in the continuous image

domain and process multiple polygon edge contributions for each pixel in screen space

geometrically. The A-buffer provides an elegant solution to this problem.

2.4.1 Analytic Algorithms - The A-buffer

In order to examine possible solutions to the problems of aliasing, it is relevant to

categorise the main sources of high frequency components in computer-generated images

(with the exception of texture mapping):

Explicit Edges: The zero-width boundaries of primitives have infinite spatial frequencies.

Implicit Edges: Interpenetrating object primitives cause implicit edges, which also have

infinite spatial frequencies.

High frequency Shading Effects: Certain shading effects, such as specular highlights,

shadows, and textures can contain high frequency components. For example, a Phong-

shades cylinder several pixels wide can have a specular highlight much narrower than a

pixel.

20

Figure 2.4 Sources of high frequency components in a displayed image:
(a) Explicit polygon edge (b) Implicit edge where primitives intersect and
(c) specular highlight.

If we ignore the process of texturing objects (see next chapter), we find that the main

source of high frequency components in most images is along polygon edges. Pixels near

polygon edges need extra sampling; pixels in the interior of polygons can generally be

sampled once per pixel. It is practically impossible to pre-filter intensities across polygons

exactly [WATT98] (with the exception of flat shaded polygons) since variations in

intensity are analytically too complex. However, we can evaluate fragment geometry to any

desired level of accuracy and use approximation to disctretise intensities.

A-buffer algorithms (anti-aliased, area-averaged, accumulation buffer) provide a hybrid

solution to analytic and discrete anti-aliasing by storing sub-pixel fragment information for

pixels that contain polygon edges, and simply storing colour and depth values for the

others. Fragment information can then be combined with polygon edges that further

contribute to a given pixel as the scene database is being processed. Fragment geometry is

straightforward to calculate analytically when object primitives are only polygonal and is

normally discretised using bitmasks.

The original A-buffer algorithm was used to produce high quality anti-aliased images in the

initial Reyes rendering system [CARP84]. This system was designed to work on virtual-

memory uniprocessors, such as the VAX 1 1/780. The algorithm, described by Carpenter

assumes that rendering is performed using a screen sized image buffer. The entry for each

pixel can contain a single colour and depth value, or else a pointer to a linked listed of

partially covering primitive surfaces. Initially, each pixel in the screen buffer is set to the

colour and depth value of the background. As primitives are rasterized, they are diced into

21

pixel sized pieces call fragments. Fragments may completely cover a pixel, or may only

partially cover it (if an edge of the polygon passes through the pixel, for example).

At each pixel affected by a polygon, a determination is made as to whether the fragment

covers the pixel completely or partially. If it covers the pixel completely and is the closest

surface so far, the fragment's colour and depth value replace the values stored in the screen

buffer. If it only covers the pixel partially, a record is made containing the fragment's

colour, depth, and partial coverage information (generally an alpha value).

The entry in the screen buffer is changed to a pointer, which points to this newly created

record. This record contains a pointer to another such record, containing the colour and

depth of the background. As additional primitives are rasterized, they are merged into the

screen buffer in this fashion.

In the original A-buffer paper, there is no restriction on the length of the linked lists of

fragments. In pathological cases, where many primitives partially cover a single pixel, the

linked lists can become arbitrarily long. However, fragments that completely cover a pixel

obscure all of the fragments behind them and truncate the list. This restricts the length that

lists can actually achieve. The structure of the list contains the following elements:

• Red, green and blue colour components

• Coverage (fractional double precision number representing area coverage)

• Object Tag

• Bitmask (size should be user defined for control of quality)

• Z depth

• Fragment Pointer

The fragment pointer maintains a link with other facets that are found to contribute to a

given pixel so that they may be processed at a later stage. The pixel coverage gives an

accurate value of the fraction of the pixel that is being obscured. One way to obtain the area

coverage is by assuming a circular pixel and using the perpendicular length from the circle

centre to the polygon edge as a key to a lookup-table. This method provides considerable

efficiency gains.

22

Bitmasks provide an efficient means of comparing the overlap between pixel fragments

[ABRA85]. We can thus combine the contributions of these fragments by performing

logical XOR operations on each successive pixel fragment that partially obscures the

previous. Achieving a Bitmask representation of a primitive edge intersection can be done

by finding where the edge intersects with the pixel edges, and then using a lookup table to

determine a 16-bit word representing "on-off states in a 4x4 grid. Thus, Bitmask subpixels

are “on” if they lie within or on an edge and “off’ outside the edge.

0 0 0 1

0 0 11

0 1 1 1

1 1 1 1

Figure 2.5 Polygon pixel fragments are represented using masks of bits.

Figure 2.5 shows how the Bitmask can be implemented. The edge intersection points are

determined by linear interpolation and require minimal computation. The resultant Bitmask

value in this case would be the 16-bit word 0001001101111111.

An index that identifies which object that is being considered (called an object tag) is also

stored in the list structure. This value can then be used to save time when two faces that

belong to the same object intersect. Since the faces of the edges will meet perfectly, we can

simply perform an OR operation without worrying about obscuring the pixel partially. This

requires a slight modification to the polygon database to cater for this feature and does not

incur any significant increase in complexity of the algorithm.

23

One version of the A-buffer implemented during research studies avoids the use of a

variable list structure for fragment comparison altogether, and makes use of a fixed set of

buffers instead. This avoids a possible loss in performance due to fragmentation of the data

in memory. It also helps to provide more control on the upper limit of depth complexity (i.e

the number of fragments per pixel) in the scene.

Experiments using the multiple A-buffer scheme exhibit anomalies in scenes which display

objects lying on planar surfaces. These anomalies can be observed along the edges of

objects that make contact with the surface. A more stringent algorithm is therefore required

in order to take special cases of edge intersections into account.

2.4.2 Overlapping Pixel Fragments

Planar intersection is assumed if the depth ranges of two different objects overlap. Figure

2.6 shows how that orientation of the objects is assumed and the ranges with which to

determine overlap.

EYE >
vis

zmin, zm ax,

front

zmin,

"front

zm ax nRXt

Figure 2.6 Finding the extremes of the edge intersections is important in order to
detect and evaluate overlap contributions to a pixel (visfr0nt)*

24

Once overlap has been established, the visible area of the front fragment can be determined

using the following equation:

visfront = zmaXncxt - zmiiifront

(zmax - zmin)front + (zmax - zinm)I1Cxt

However, there are certain instances where the calculation fails to produce a correct result.

Since only one proper depth sample is taken for each pixel at its centre, erroneous values

will occur when the pixel centre does not lie inside of the polygon edge. This could occur

when objects within a scene lie on a surface such as a tabletop and samples are taken

around the edge from the table, rather than from the object. Figure 2.7 illustrates this

problem, where the depth sample for face one lies outside of the object and hence the z-

slopes for this face cannot be determined. Thus, the contribution from face one is ignored

and only face two is considered.

F ace 1

vis

F ace 2

Figure 2 .7 Face 1 is not taken into account since sampling only takes place at
pixel centres.

We can minimise depth misses by simply taking more z samples (the discrete approach).

Figure 2.8 shows the case when additional z samples are taken at the pixel corners. Depth

misses, although less likely, will still occur. Essentially, we face the same problems

discussed earlier in the chapter regarding supersampling. A better approach therefore, is to

retain continuous geometric information about pixel fragments.

25

Fa<

Pixel
Boundaries

EYE
Figure 2.8 We can take more z samples to avoid depth m isses that lie outside of polygon
boundaries but we are minimising the problem rather than solving it.

Several strategies have been investigated in order to gain a more accurate means of

establishing depth values within pixel fragments. The most successful of these involves

storing both the slope of z with respect to screen-space x (dz/dx) and the slope of z with

respect to screen-space y (dz/dy) along the pixel centre depth value into the buffer. Hence

the calculations that are required at points within the pixel can be readily interpolated for

use with the Bitmask. Such an implementation produces better results. Storage-wise, the

enhancement will incur an additional 8 bytes per pixel in order to use the floating point

slope data along with the fragment data effectively.

2.4.3 The Priority Mask

Schilling [SCHIL93] proposed an enhanced solution to the above problem by generating a

subpixel mask that indicates which part of the pixel object is the front object and in which

part of the pixel the other object is the front object. This subpixel mask can be used to

modify the edge subpixel masks of the two objects so that:

Anew = A & NOT (A & B & NOT (C)) and

26

Bnew = B & NOT (A & B & C)

Where A is the edge subpixel mask for the first object; B is the edge subpixel mask for the

second object and C is the mask for both objects, known as the priority mask.

The calculation of the priority mask uses the increments for the depth value in the x and y

directions in order to define a plane that indicates where the first plane of the first object is

in front of the second plane by the sign of its z-value. The intersection with the plane z= 0

denotes the border between the two areas where the first plane or the second plane

respectively is in front of the other plane. The representation of this plane looks similar to

the representation of the polygon edges in some rendering systems such as the pixel planes

system (this will be described in more detail in chapter 4). The mechanisms that exist to

generate subpixel masks representing edges can therefore be used to generate the priority

mask.

We also need to test for cases in which a p-mask calculation is required since performing

these p-mask calculations on non-overlapping fragments is a rather redundant exercise. The

criteria are:

(i) A & B does not equal 0 (in which the subpixel masks of the two objects do not

overlap)

(ii) z2 - z l < (|dz2,x - dzl,x| + jdz2,y - dzl,y|) / 2

The second criterion ensures that the case in which the intersection of the two objects

occurs within a pixel area is true.

In order to increase efficiency, a lookup table can be used to find the p-mask based on the

line of intersection of two planes and based on the depth and difference in depth with

respect to x and y. The parameters are used for use with a lookup table using the straight-

line equation (origin of co-ordinate system at pixel centres).

F(x,y) = z + x*dzx + y*dzy = 0

27

The biggest difference in implementation between the A-buffer and traditional z-buffer

techniques is that the A-buffer contains lists of contributions to each pixel whereas the z~

buffer only stores one item per pixel (i.e. the one that is closest to the viewer). Many recent

rendering systems employ the z-buffer simply because the task of handling lists is deemed

too expensive to implement in hardware.

28

2.5 Alternative Strategies for Filtering in the Continuous Domain

An ideal pixel fragment composition algorithm would be one that could recursively refine

the accuracy for determining pixel contributions to any depth. In this case, the level of anti

aliasing could be varied according to the user’s priorities. It turns out that the hidden

surface removal algorithm developed by Warnock [WARN69] can meet this requirement

with some modification since it can, in theory, recursively look at primitives down to

subpixel resolution. Although the algorithm is elegantly simple, it consumes a considerable

amount of processor cycles compared with the A-Buffer. The algorithm therefore, is not

really considered as a serious contender and is included for the sake of intellectual

completeness.

Warnock’s algorithm belongs to a class of area-subdivision algorithms that follow the

divide and conquer strategy of spatial partitioning in screen space. This is achieved by

firstly dividing the screen into four quadrants. Polygons are displayed if a straightforward

decision can be made as to whether they are visible in a given area. If this condition is not

met, then the area is recursively subdivided into smaller areas until a decision can be made.

The projection of each polygon has one of four relationships to the area of interest as

illustrated by figure 2.9.

29

Surrounding
Intersecting

Contained Disjoint

Figure 2.9 Top: The four possible relations of projected polygons to an area square
area element. Bottom: The black lines show how the image space has been divided up
using this algorithm.

Traditional use of this algorithm ensures a cut-off point for the recursive reduction

procedure when a resolution of one pixel is reached. However, we can exploit this scheme

for situations where there are several sub-pixel contributions from different faces. It would

30

seem logical to continue reducing the area elements in the same way, until a satisfactory

level of sampling is achieved.

A modified Warnock’s algorithm appears to be an attractive alternative to the A-Buffer

since hidden surface removal and anti-aliasing would be provided by the same algorithm.

Due to the recursive nature of the reduction algorithm, it would also be feasible to

implement in hardware. However, the algorithm also opens up opportunities for worst-case

scenarios where performance will drop significantly. This is the result of the number of

operations being based on an order of O(pixels x polygons x sub-pixel-resolution) .

31

2.6 Recommended Scheme for Hardware Architecture

Discrete anti-aliasing methods, such as supersampling, provide only an incomplete solution

to the aliasing problem. An easy classical solution is not available because unlike image

processing, a continuous image-to-sampler channel does not exist. For example, a ray-

tracer intertwines the both the generation process and the sampling process together.

The alternative however, is to pre-filter an image and take out its high frequencies before

sampling the pixel values. In this case, we must examine the geometry of object primitives

before they are rendered. Bearing in mind that we can only approximate the required filter

(area calculations can be precise but intensities are discretised), we still have much more

control between qualitative results and efficiency. We therefore conclude that filtering in

the continuous domain provides a more robust solution in which a special-purpose analytic

render must be designed.

The modified A-buffer provides a well-balanced solution to continuous filtering in that it

provides the most balanced compromise between performance and quality using

geometrically derived sub-pixel fragments. Thus, the A-buffer is chosen as the candidate

anti-aliasing scheme for the proposed multi-processor architecture and will be re

introduced in chapter 5.

32

Chapter 3

Texture Mapping

3.1 Motivations for Texture Mapping

Early real-time graphics systems, such as flight simulators, gave us an insight into the

practicality of interacting with 3-D environments. Their main criticism however was their

lack of realism due to the extreme smoothness of surfaces. Not only were the scenes

visually uninteresting, but it was found that pilots training on flight simulators were unable

to make use of visual motion cues when "flying" at low altitude. However, as greater

processing power became more readily available, methods were devised try to give a better

representation of surfaces, thereby adding richness to the scene and linking more closely to

their "real-life" counterparts. The most startling difference can be observed by overlaying a

predetermined texture to each surface (see figure 3.1). Two aspects of texture that are

usually considered are the addition of a pre-specified pattern to a smooth surface and the

addition of the appearance of roughness to the surface. Thus, the demand for graphical

realism in modern real-time graphics systems has meant that texture mapping has become a

vital component in the graphics-rendering pipeline. However, the process of accurately

mapping texture values to the display requires a significant amount of computing power.

Figure 3.1 A simple rendered scene using flat shading (left) and the same scene using
texture mapping (right).

33

Normal real-time image rendering methods require that instead of mapping the texture

values (texels) on a polygon in 3-D space to the screen, screen pixels are effectively

mapped onto a region of the texture using a reverse projection. This means that whilst

image results would be fine when transformed screen pixels are of the same order of size,

shape and orientation as the stored texture pixels, when the sizes of the transformed pixels

in texture space vary, aliasing can readily occur causing the resulting texture of the image

to swim and scintillate. Therefore, a method of finding the average texture value within the

pixels needs to be adopted. Various techniques of dealing with aliasing in real-time

systems have been established over the years [HECK88]. All of them try to minimise its

effects by using various degrees of approximation. These methods however, avoid the

problem of directly dealing with general quadrilaterals in texture space, and will fail to

produce pleasing results at certain viewing distances and orientations. The result in this

case will be over-blurring or remnants of aliasing artefacts.

An alternative technique is therefore desirable in order to improve the quality of texture

mapping results at high-performance without requiring excessive computational power.

3.2 The Mapping Process

Since the basis of adding planar texture patterns to smooth surfaces is mapping, the texture

problem reduces to the specification of a transformation from one co-ordinate system to

another. The most commonly used method is to scan in screen space (x,y) and find the

transformation that maps to texture space u(x,y) and v(x,y). Thus, the amount of work done

during a point-to-point transformation for a polygon in object space is directly proportional

to the number of pixels the polygon covers in screen space

The mapping from screen space to texture space can be deduced by applying a perspective

matrix transformation expressed in homogeneous form (where division by w and q are

required for transforming to perspective view co-ordinates):

(A D G
B E
C F

H
I

[xw yw wj = [u v 1]

Hence the values of u and v are evaluated by finding the inverse of this matrix:

EI-FH FG-DI DH-EG" a d g"
[uq vq q] = [x y 1] CH-BI AI-CG BG-AH = b e h

BF-CE CD-AF AE-BD, f b

Resulting in:

u — ax + by + c and v — dx + ey + f

gh + hy + I gh + hy + 1

Since the formulae for u and v are quotients of linear expressions, uq, uv and q can be

computed incrementally when using scan-line methods for rasterization. This further

reduces the computational cost to 3 additions and two divides per screen pixel.

35

3.2.1 Other Texture Parameterisation Techniques

The affine transformation from camera space (i.e. after an inverse perspective transform

from screen space) to texture space is derived from basis vectors whose u and v directions

lie in the plane of a given polygon and whose origin lies at a vertex of the polygon. This

results in a parameterisation defined by a translation and rotation and works well for large

polygon surfaces.

However, u and v coordinates may also be defined by the geometry of groups of polygon

primitives defining an object at the modelling stage. In this case, a three stage mapping

process is generally used in which screen space maps to world space, object space maps to

an intermediate three dimensional texture space and is finally mapped to two dimensional

u,v coordinates.

36

3.3 Aliasing in Texture Mapping

If the method described above is used on a point-to-point basis, i.e. the centres of each of

the screen pixels are mapped to single texture values, then large chunks of the original

texture can easily become left out. This is analogous to the classic "j aggies" aliasing effect,

where edges within a pixel are not sufficiently sampled (i.e. sampling takes place below the

Nyquist rate). Texture aliasing arising from low sampling rates however, can often

deteriorate picture quality more seriously than "jaggies" do since more pixels are affected.

Furthermore, in a real time system, textures will tend to map at different orientations for

each frame at a rate of 30 to 60 frames per second. The resulting texture may well exhibit

Moire fringes and will appear to swim and scintillate [DUDG91].

Such a problem can be dealt with effectively by making use of a procedural texture

[SCHA80]. With a procedural texture, it may be possible to evaluate the average texture

within a pixel analytically - but there are few choices of "texture function" which allow this

- the major option being patterns built from a superposition of sinusoids (see figure 3.2).

With such a system, exact sampling of texture is possible, resulting in high quality anti

aliased images. Some early flight simulator texture mapping systems utilised this approach.

The drawback of this method is that the range of possible patterns is severely limited and

hence it is not possible to reproduce the majority of textures found in the real world. Figure

3.2a shows the results of aliasing using of point-to-point mapping. When compared with

the outcome of mapping procedural texture analytically, figure 3.2b, we see that anti

aliasing is clearly an essential part of the texture mapping process.

Aliasing can also be reduced by taking a large number of texture samples within a pixel

and applying a filter in texture space [FEIB80]. Figure 3.2c makes use of 16 samples

within each pixel evaluated incrementally and figure 3.2d uses 16 random samples for each

pixel. Note that the latter method produces better results but still exhibits spurious areas of

texture.

The method of applying more samples drastically increases the processing time required to

render each surface in a 3-D scene. More subtle techniques are therefore required that

retain as much of the original texture as possible whilst keeping the sampling rate low.

37

Figure 3.2 Original source texture is mathematically derived
for procedural texture mapping. The viewing angles for the
subsequent textured surfaces are chosen such that the
orientation of transformed pixels on an infinite plane produce
long, thin footprints at 45°.

Figure 3.2 (a) Texture is mapped on a point to point basis. Extreme aliasing effects
and fringing are exhibited as the texture becomes compressed with distance.

Figure 3.2 (b) The procedural texture is mapped analytically, producing excellent
anti-aliased results

38

Figure 3.2 (c) Aliasing effects are reduced by taking 16 samples at the same points
within each pixel.

Figure 3.2 (d) Effects of aliasing reduce further if the samples are taken randomly
within each pixel.

39

3.4 Established Methods of Anti-aliasing Texture In Real-time

3.4.1 MIP Mapping

Williams [WILL83] deals with the problem of texture aliasing by making use of several

images of the texture at various resolutions, each of which are derived from the original by

averaging down to lower resolutions. Each image in the sequence is at exactly half the

resolution of previous in the linear dimension (i.e. a quarter of the number of samples of its

parent). When a transformed screen pixel is covered by a collection of texture pixels

(texels), the MIP map pixels within a table corresponding to this collection most closely are

used to give a filtered colour value. This is obtained by bilinearly interpolating amongst the

four nearest values within the chosen table.

Since only a limited number of the tables may be stored, values from two adjacent tables

must be blended in order to deal with the difference of the transition of one resolution to

another across a surface. This is achieved by accurately determining the level of

compression within the MIP map and using this value to linearly interpolate between the

two closest tables.

MIP mapping has the advantage of speed since only two bilinear interpolations are required

to get a value from each adjacent table, plus an additional interpolation between the two

values (resulting in trilinear interpolation). However, this is generally at the expense of

accuracy. For example, a perspective projection may well require that the texture be

compressed in only one direction. This will tend to result in obvious blurring of the original

texture as the MIP map goes down to lower resolutions at greater viewing distances. Figure

3.3 illustrates the effect of blurring using a MIP map.

40

Figure 3.3 Effects of aliasing are not easily observable here, but blurring occurs as
the texture compresses with distance to the point where the texture becomes
unobservable.

3.4.2 Summed Area Table

Crow [CROW84] devised a scheme in which a single table of entries calculated from the

original texture is used by which a sum of texture values lying within a given rectangle can

be easily determined. Thus if we place a bounding rectangle around a transformed pixel in

texture space, an average texture value can be determined by evaluating the sum of texture

values within it using the summed area table and then dividing this value by its area. The

idea of making use of such a table is neat in that it does not require us to actually look at

each of the texture values within the rectangle at render time.

This method has an advantage over MIP mapping in that a virtually continuous range of

texture densities can be obtained in two directions independently. This improvement is

well illustrated in figure 3.5a, which has the same texture pattern and viewpoint as Figure

3.3, but uses the summed area technique in place of MIP mapping. The extra processing

required to perform the Summed Area Table method comes from the fact that now four

bilinear interpolations are required to map each of the comers of the screen pixel to texture

space in order to obtain a bounding rectangle.

To see where the Summed Area method becomes significantly less accurate, consider a

screen pixel that has undergone a perspective bilinear transformation to texture space. See

figure 3.4.

Transformed pixel
in texture space

Texel

Figure 3.4 Illustration of how the summed area table ignores substantial areas of the
texture at certain orientations.

It can be seen that a bounding rectangle will not suffice when the texture becomes

compressed and the surface is viewed at rotations about more than one axis with reference

to the surface. These cases therefore need to be taken into consideration since excessive

blurring will be observed when they occur. This effect is illustrated in Figure 3.5b. The

same texture pattern has been used as before, but this time it has been rotated by an angle

of 45° before being stored. This rotation has been reversed by the viewing transformation

creating a long, thin pixel footprint at 45° as shown in Figure 3.4 As with the MIP map, the

outcome is that the vertical strips are suppresses sooner than is necessary.

42

Figure 3.5a Effects of blurring are removed with the summed area table - but this is a
favourable orientation

Figure 3.5b Effects of blurring and fringing are evident here with the summed area
method. This is due to the orientation of the texture and the type of texture used.

43

3.4.3 Adaptive Precision Method

In an attempt to solve this problem, Glassner [GLAS86] refined the summed area method

by iteratively trimming away the excess areas of the bounding rectangle. This requires

some knowledge of the geometry of the transformed screen pixel, relative to its bounding

box, to be detected. The excess areas are then subdivided into either triangles or rectangles

that can then be deducted from the original sum (see Figure 3.6).

chunks of the
texture are
removed by
repeatedly
decomposing
into triangles
and rectangles

Mapped Pixel in
Texture Space

. , I
f f f e k ; "■

Figure 3.6 Illustration shows how the adaptive precision method is used to reduce the
texture to within the boundaries of the warped pixel.

Although the method minimises the errors that result from the summed area method, it is

found that producing an estimate on the number of subdivisions that need to be made for

good results, is difficult to produce accurately. This will, therefore, lead to unpredictable

results. Furthermore, the classification of general quadrilaterals tends to make the overall

process algorithmically complicated. Such an algorithm would be difficult to optimise or

implement in hardware. A particular problem also arises from the large number of

accesses, which may need to be made to the table for each pixel. In a highly optimised

system, these accesses will be the dominant factor in determining system performance.

44

3.4.4 Footprint Assembly Mapping

The assembly mapping technique [SCHI96] approximates a circular pixel in screen space

to a parallelogram in texture space. This parallelogram (or footprint) is based on an

inscribed ellipse that is the result of a texture transformation of the circle without

perspective deformation. Figure 3.7 shows how the parallelogram is formed based on the

transformed pixel.

Figure 3.7 The transformed pixel footprint is approximated as a parallelogram.

Since the dimensions of the parallelogram are based on the major and minor axes of the

ellipsoid, they are too difficult to calculate accurately in real-time. Therefore, the

dimensions and orientation of the footprint are approximated using the largest value of the

rates of change of u and v with respect to screen pixel co-ordinates.

Once the footprint has been approximated, the transformed pixel is approximated still

further by splitting it up into a number of texel squares in which MIP map samples may be

taken (whose centres lie on the major axis of the parallelogram). The number of these

square MIP mapped texture elements for the footprint is based on the relative proportions

of the dimensions of the parallelogram so that:

No. of MIP map square samples = major axis of ellipse
minor axis of ellipse

Figure 3.8 shows how the MIP mapped texture elements are formed based on the shape of

the footprint. We see that long, thin transformed pixels require many more samples

45

compared with more rhombus shaped footprints. Note also that the number of MIP mapped

texture elements are rounded to the nearest power of 2 for reasons of practicality.

Figure 3.8 The relative proportions of the left footprint require fewer MIP map
samples compared with the right footprint. The square boxes represent MIP samples.

This technique can provide good quality results and has been implemented in hardware.

However, at certain viewing orientations of the texture, a great many samples need to be

taken. As a result, the number of samples cannot be allowed to get too large if real time

performance is required and hence the quality must be reduced.

3.4.5 Other Methods of Anti-aliasing Texture

Other well established methods have less application in real-time systems since they tend

to work in texture space (such as Feibush-Levoy-Cook [FEIB80]). This means that a large

number of transformations from texture space to screen space may well occur for a single

pixel, in which the cost per screen pixel is proportional to the number of texture pixels

accessed. For the sake of completeness, some of these methods are discussed briefly, since

they have some application with regard to the analysis of texture aliasing.

All methods of texture anti-aliasing make some use of filtering to resample the image. This

is because filtering addresses the causes of aliasing rather than its symptoms (which point

sampling at a higher resolution does not). The cross sectional shape of the filter used

determines the quality of ant-aliasing and theoretically, the ideal low pass filter sinc(x) =

sin(jcx)/ 7tx, but its infinite width makes it impractical for computation. In practice, a finite

impulse response filter must be used. The most commonly used of this class of filters are

46

the box, the triangle, the cubic B-spline and the truncated Gaussian. Figure 3.9 shows the

shape of these filters respectively.

Figure 3.9 Cross sections of some of the common texture filters, ordered by quality.

The filter function used by Feibush, Levoy and Cook [FEIB80] saves time on calculation

by making use of a pre-calculated table of lookup values. This means that a more elaborate

filter function can be employed, such as a Gaussian form. The filtering algorithm uses the

following steps at each screen pixel:

• Centre the filter function on the screen pixel and find its bounding rectangle

• Transform the rectangle to texture space, where it becomes an irregular quadrilateral

and find its bounding box.

• Map all texels inside the rectangle to screen space

• Form a weighted average of the mapped texels using a lookup table, which is indexed

by each samples location within the pixel.

In order to reduce the number of texture accesses that need to be made, Greene and

Heckbert [GREE86] mapped an “elliptical weighted average” filter into texture space. The

47

filter shape is a circularly symmetric function in screen space and is warped by an elliptic

paraboloid function into an ellipse in texture space. Once the elliptic paraboloid is in

texture space, incremental methods can be used and thus, only a few arithmetic operations

need be used per texel.

3.4.6 Summary of Texture Mapping Techniques

The algorithms presented in the previous sections are now summarised in table 3.1 in order

to gain an overview of the status of texture mapping techniques.

Technique Advantages Disadvantages

Point to point sampling Fast, easy to implement Aliasing and scintillation effects

MIP mapping Fast box filtering Over-estimates of footprint size

leads to over-blur.

Summed Area Table Fast and efficient Table sizes are very large with

blurring still evident

Adaptive Precision Reduces effect of over-blur Algorithmically complex

FootPrint Assembly Good quality at fair performance Large sample counts force

reductions in quality.

Convolution methods Very high quality Not realistic in real-time

Table 3.1 Comparison of advantages and disadvantages of most popular mapping
algorithms.

48

3.5 New Method: Potential Mapping

Having examined the range of texture anti-aliasing methods, it becomes evident that there

is a bias either in favour of efficiency, leading to spurious areas of the resulting texture, or

in favour of texture integrity, where computation is greatly increased and hardware

implementation becomes impractical. It would therefore seem appropriate to balance the

scales of efficiency and integrity by developing a new method that takes all of the

following factors into account:

• A simple algorithm.

• Ability to cope with general texture patterns at any orientation.

• Speed.

• Ability to implement in hardware.

• Minimal Aliasing

• Minimal Blurring

Potential mapping is based on the idea of finding a quick way of performing the integral of

the texture pattern over the area of the transformed pixel, which avoids the problems of the

summed area table without introducing too much algorithmic complexity.

If we assume a screen pixel to be square then its resultant image after rotation and a

perspective transformation of its corner points will be a general quadrilateral. Ideally we

would like a method that deals with the quadrilateral directly without approximating it to

any simpler shape. Furthermore, as with Crow, we would like to avoid having to look at

each and every texture pixel that lies within the transformed pixel when determining the

average texture value (i.e. when finding the texture sum and the area of the quadrilateral).

Consider Gauss' Law in used physics. This states that the total outward electric flux over

any closed surface is equal to the free charge enclosed by that surface. In other words, the

charge contained within a volume can be found by traversing only the surface of that

volume. The law can be written symbolically as:

49

This is an extremely useful relation in the field of electromagnetism and surprisingly, we

can use the principles of Gauss’s Law to derive a new method of texture anti-aliasing. If we

reduce the integral by one dimension then, by analogy, the texture contained within a

transformed pixel can be found by traversing only its boundary. This is essentially the

principle behind Potential mapping.

Potential mapping for a given screen pixel is done by tracing around the boundary of its

transformed pixel in texture space. Whilst tracing the pixel from left to right, we force each

texture co-ordinate to have a corresponding "potential" value which is based on the actual

texture intensities down a column in texture-space (see figure 3.10). The total texture

intensity bounded by the transformed pixel within that column is then found from the

corresponding upper and lower "potential" values. If we integrate this over all the columns

within the transformed pixel, an average intensity value can be deduced. Since the

"potential" values only need to be calculated once for each texture map, they can be pre

computed and stored, leaving only one operation per texture column and only one division

per transformed screen pixel in order to average over the area.

50

i . ?

^lower

Texture strip. Texture
intensities within strip found
using Potential table.Texture pixel

Transformed
pixel

--► u

Figure 3.10 Illustration showing how texture strips are found whilst the texture pixel
is traced (note arrowheads around pixel boundary).

The method can be summarised algorithmically:

for u (left of transformed pixel to right)
find vlower and vupper
find "potential" across texture column, P(vlower, vupper)
Texture Sum = Texture Sum + P(vlower, vupper)
Area = Area + (vupper - vlower)

Average Intensity = Texture Sum / Area

51

The algorithm clearly shows that the problem of finding the summed area has now been

reduced to one dimension (i.e. the u direction) such that the number of iterations required

becomes solely dependent on the width of the transformed pixel. Note that we could

alternatively make use of horizontal texture strips and sum in the v direction just as easily.

The task of implementing Potential mapping optimally can essentially be divided into two:

the construction of a table of ‘potential5 values such that P(viowcr,vupper) is computationally

inexpensive, and finding vi0Wer and vupper as we trace around the pixel.

3.5.1 Evaluating Potential Values

As the boundaiy of the transformed pixel is being traced in texture space, the summed

texture values lying within each vertical strip need to be evaluated. This can be achieved by

building up a table of "potential" values. These values are derived from the texture by

storing a cumulative sum of texture values down each column of the original texture.

Figure 3.11 illustrates this:

Figure 3.11 Illustration shows how the potential table is formed for later use.

52

Now we can find the ‘potential difference’ (or summed texture), P, across the upper and

lower texture values in a vertical strip at horizontal texture position u (see figure 3.10) by

simply subtracting the upper and lower potential values corresponding to vupper and vioWer:

P(V|owcr»V upper) = P[U, Vlower] - P [u , VUpper]

Where the values of p are pre-stored in a potential table.

3.5.2 Tracing around Transformed Pixels

As with Crow's method, the four corners of the screen pixel need to be mapped into texture

space (Note: we find that only one corner need be mapped for pixels lying within a screen

polygon, see later). One way of performing the tracing operation is to start with the

extreme top left corner of the transformed pixel in texture space. We then find the

gradients to its nearest lower and upper corners and next the gradients from those corners

to its farthest right corner. Since we are ultimately dealing with discrete texture pixels, the

values of V|0wer and vupper can be evaluated trivially using unit increments in u. This method

is better known as the DDA algorithm and has performance drawbacks since four divides

must take place in order to find each gradient, with the process of rounding v to an integer

also consuming time [FOLE90].

Bresenham Tracing

The need for divide operations can be removed by using Bresenham's line drawing

algorithm [BRES65]. This algorithm avoids floating point calculations during tracing with

the advantage of guaranteeing accuracy by continually minimizing the error between the

traced edge and the true line (thus avoiding double-counting of contributions).

When the slope of a line is greater than 1, the usual procedure is to exchange the x and y

(in this case u and v) co-ordinates and plot the line "on its side". In the present case, we do

not wish to do this because it would result in more than one entry per column. To

compensate for this, a complicated calculation of the integration measure would be needed.

Instead, we just continue to use the algorithm in its original form, allowing near vertical

lines to be sparsely populated.

53

The consolidation of subpixel displacements into whole pixels requires a division for each

step along the line. In the normal Bresenham algorithm [BRES65] this is reduced to a

simple subtraction because we know that the only possible answers are 0 and 1 for a line at

less than 45 degrees. In the present case, we do not have this restriction but we can still

know the answer in advance to an accuracy of 1 unit if we calculate the integer part of

slope first. This might seem to cancel the original advantage but because the gradients are

nearly the same for all pixels in a scan-line in screen-space, this can be done just once per

line. Similarly, left and right gradients for pixels in a column are the same can be shared(

see figure 3.12).

We can make further efficiency gains by noting that adjacent pixel corners are shared

between screen pixels, so that only one bilinear mapping need be made for each pixel

except at the edges of the polygon. This commonality also applies to the pixel edges,

allowing a possible saving of a factor of two in the time taken to trace around each pixel.

54

Transformed
polygon in screen
space__________

Texel

Transformed
screen pixel in
texture space

Gradients from
transformed
gridlines can be
.used for all
pixels in
scanline.

Figure 3.12 Illustration showing how the cost of finding the gradients around each
transformed pixel in texture space can be reduced by mapping gridlines in screen
space prior to texture mapping.

There is one particular case when the calculation leads to a summed texture of 0! This

occurs when the fractional values for vi0Wer and vupper lie within the same texel. In order to

avoid modifying the algorithm to overcome this problem (since we would like to keep it as

simple as possible for hardware purposes), we can use the fact that the fractional viower and

Vupper values are always distinct when texture mapping takes place. If we double the

resolution of the potential table in the v direction so that the new table values are the

average of consecutive pairs of the old table values, then we can simply force upper values

of v in each strip to access the upper values in the table, and the lower values of v to access

the lower table values. Thus, we ensure that the summed texture is always greater than

Grid Lines

Screen Pixel

55

zero without incurring any modifications to the algorithm. To continue to exploit the

commonality of edges between neighbouring pixels, we must arrange for the two sets of

values to be retrieved during the same memory access. Since potential maps are generated

off-line, we simply change the format to ensure these values neighbour each other when

they are saved. Note that when tracing around pixels that lie on the edges of a polygon in

screen-space, it is possible to use the polygon edge rather than the pixel edge. We can use

therefore texture map the geometry data of pixel fragments in the manner chapter 2 in order

to provide improved anti-aliasing of the edges of textured polygons. This is a further

advantage of Potential mapping compared to the MIP map since it pre-filters the texture

and cannot "know” where the polygon boundary will lie.

Results of the potential mapping algorithm show that the effects of blurring and aliasing

are significantly reduced when compared with MIP mapping (figures 3.3 and 3.13a

respectively) and when compared with the summed area method (figures 3.5 and 3.13b

respectively). The residual Moire fringing which can be seen in these figures is the result a

top-hat style filter which has been used. To eliminate this fringing it would be necessary to

use a Gaussian form filter, which has a more gradual fall off at the edges. Unfortunately,

this is difficult to achieve without resorting to the brute force convolution techniques

described in chapter 2. In this case, all the texels that lie within and around the projected

pixel edges would need to be considered.

Since the texture patterns used in these images represent a severe test of a texture anti

aliasing system it is likely that the kind of patterns used more commonly in practical

applications will not display the effect so strongly. If the residual fringing is a problem, it

can easily be eliminated (at a cost of slight blurring) by passing the image through a filter

before display (in practice, an adjustment of the monitor focus can achieve the required

effect at zero cost!).

Figure 3.13 (a) Using the Potential Mapping Technique the excessive blurring noticed
in figure 3.3 is removed without introducing significant aliasing (the image of the
source texture is provided in figure 3.2)

Figure 3.13 (b) The effects of blur, aliasing and fringing are greatly reduced when
using potential mapping, even with the unfavourable texture orientation, as used in
Figure 3.5b (the image of the source texture is provided in figure 3.2).

57

3.5.3 Implementation and Performance Considerations

Test programs written for TPM research also include extra instructions to count the amount

of time taken by each stage in the process (note that section 3.7 provides an in-depth

comparison between competing algorithms). For a full screen image of texture at a shallow

angle (as shown in the illustrations above) the results show that the inverse perspective

transformation takes 12% of the time, set up operations take 40% and the remaining 48 %

is spent tracing around the edge of the pixels. At a less optimal orientation of the texture

map, (i.e. when the projected pixel is very long in the non-integrated direction) the time

spent tracing increases by 50%. If speed is more critical than memoiy size, then this

problem can be overcome by creating an alternative texture potential that is summed in the

opposite direction. Since the time taken to perform the inverse perspective transformation

will be the same as for the other algorithms, and the set up operations that need to be done

for each pixel are likely to be comparable to those required by the summed area table

method, these proportions give an approximate guide to relative performance. This

suggests a degradation of a factor of two in speed compared to the summed area table and

between two and four compared to MIP mapping, depending on how many samples and

scales the MIP map uses. When the texture system is being used optimally, the texels will

be of a similar scale to the screen pixels. In these circumstances, the number of entries that

need to be summed for each pixel edge will normally be only one or two. Consequently,

the time taken to trace around the pixels will disappear and TPM will be only marginally

slower than the summed area table or MIP Map.

All these estimates assume that all instructions other than divide and reciprocal take a

single cycle and no allowance has been made for cache misses. In many systems, the

external memory is much slower than the cache and instructions, which do not access it,

run very much faster than those that do. In such a system, the number of external memory

accesses provides an alternative performance measure. It is likely that the only external

accesses in any of the algorithms will be the reads from the texture map or potential.

On a single processor using current technology, none of the high-quality algorithms are

capable of real-time performance. Therefore, interactive systems will require multiple

processors or special hardware. TPM is well suited to parallel processing using a pipeline

58

architecture because it easily decomposes into the stages of transformation, pixel edge set

up, pixel edge tracing and the summation of the final results.

A subdivision of texture data can also be achieved by giving multiple texture processors a

separate region of the texture map. This would be easy to implement from a processor

networking perspective since the only data to be communicated between texture processors

are the sums over pixel edges and they only need to be between nearest neighbours.

Multiple copies of the potential map would be needed to avoid access conflicts between the

processors. Strategies for hardware implementations of texture potential mapping will be

revisited in more detail in chapter 5, which focuses specifically on parallel schemes.

3.5.4 Implications of Texture Potential Mapping

As remarked above, the justification for using the potential mapping method is that it is be

faster than existing high-quality methods whilst producing better quality results than

existing high-speed methods.

Whilst the new method is somewhat slower than those implemented current mainstream

hardware, it is interesting to note that this speed differential is outweighed by the

technological advances of recent years. Consequently a potential mapping system

implemented with current technology would have a better price/performance ratio than

would have been possible using MIP mapping or the summed area table at the time at

which they were first proposed.

The main criticism of TPM as it has been presented so far, is that a dependency exists

between the orientation of warped pixels and number of texture samples required to

perform integration. This starts to become an issue at more extreme orientations. The

current implementation does not facilitate any means to control the quality and

performance required. The following sections of this chapter refine TPM.

3.6 Extensions to Texture Potential Mapping

A drawback of the texture potential mapping algorithm is that the number of samples taken

in the u direction of a transformed pixel is dependent on the width of that pixel. This means

59

A drawback of the texture potential mapping algorithm is that the number of samples taken

in the u direction of a transformed pixel is dependent on the width of that pixel. This

means that, at certain viewing orientations, a great many samples may be required for

long, thin pixels (although the time taken is still less than a brute force method). When

these pixels are extremely distant relative to the viewer, we would like to able to limit the

number of samples taken in order to improve performance without incurring a degradation

of image quality. Furthermore, we would like to allow the user to control the best

compromise between quality and speed [CANT2000].

3.6.1 Texture Potential Mip mapping

The TPM algorithm produces good qualitative results, as shown on the left hand side of

Figure 3.14b using the source texture shown in figure 3.14a. This is more evident when we

compare with trilinear MIP mapping of an identical image shown on the right hand side of

the figure. However, one criticism that could be made of TPM, unlike methods such as

MIP mapping or the summed area table, is that the time taken per pixel by texture potential

mapping will vary according to the scale and orientation of the texture. This is due to that

fact that integration occurs in one direction only leading to an unpredictable variation in

the number of samples that need to be taken in the other direction. Texture Potential

Mapping thus has a weakness in that, when the projected pixels are very wide the number

of samples required, although smaller than needed by the brute force method, is still

excessive. In many of these cases, the summed area table, or even conventional MIP

mapping can produce quite adequate results.

Figure 3.14a The source texture used for subsequent
qualitative analysis of texture mapping techniques. It
should be noted that a qualitative match to the
electronic versions of the images would be slightly
affected by the printing process.

* & “ 1 * & * & n+S+SriWTITiTi

60

Figure 3.14b Texture Potential Mapping of a pattern at an extremely shallow angle
compared to trilinear Mip mapping of the same pattern at the same angle.

3.6.2 Combining TPM and Mip mapping

To overcome this problem, the combination of texture potential mapping with a MIP map

approach in the non-summed direction is presented. The algorithm has been named

Texture Potential MIP mapping (TPMM). The pre-processing phase produces a set of

potential maps, each one half the size of the preceding one in the x direction only. The

summation principle is used in the y direction. The resulting table is twice the size of the

original potential map. The generation of this table from the original texture pattern can be

done in either order but it is more efficient to filter and decimate for the MIP map before

constructing the potential since it means that the filtering process can be done with lower

resolution numbers.

Rather than box filtering in the image domain, the filtering has been done by Fourier

transforming the original texture, deleting frequency components above the Nyquist

frequency for each MIP map and then transforming back to the x space representation.

This method of filtering is time consuming but has the advantage of guaranteeing optimal

results. Similar results may be achieved with an FIR (fast impulse response) filter. An FIR

filter, is a digital filter for which each output sample is a weighted sum of a finite set of

input samples. The array of weights (known as coefficients or taps) have the same form as

the impulse response of the filter. Such filters work by convolution, but can perform any

61

transformation of the amplitude or phase spectrum (in our case, we we would require a low

pass filter). This method, however, would require a convolution window as large as the

texture pattern to achieve the same results.

To generate an anti-aliased, textured pixel we first apply the texture transformation to the

corners of the pixel. In an optimised implementation, this would be done incrementally and

the results from corners that are shared between pixels can be re-used. The workload for

this operation is thus only marginally greater than it would be for a non-anti-aliased texture

implementation. In fact, this extra amount relates precisely to the margins of pixels!

Next, the position of the extremes of the pixel in the x direction of texture space is

determined. This information will assist later in the process of edge tracing but its

immediate purpose is to determine the width of the pixel. From the logarithm of the width

of the pixel to the base 2 we can determine which of the MIP maps to use. The logarithm

need not be computed exactly and so all we need to do is to find the most significant bit

that is set. This would be easy in a hardware implementation whilst in software, if the

width of the pixel was expressed in floating point format, the exponent would contain the

information that we require.

At this point the procedure varies from that employed by normal MIP mapping, because in

the present case there is no unique “correct” choice of table to use. The decision must be

based on a trade-off between the accuracy with which we follow the edge of the pixel and

the number of samples taken. The intuitive answer to this would probably be to choose the

table so that the number of pairs of samples taken lies between, say, 4 and 8 or 8 and 16.

This can be done using a parameter n, with the maximum number of sample pairs being

limited to 2n. Clearly if we were to allow fewer than four pairs of samples there would not

be much chance of following an angled pixel footprint with any accuracy, whilst a number

much greater than sixteen implies an excessive amount of work.

62

3.6.3 Aliasing Problem - Solution

In order to choose an acceptable balance between quality and performance, we need to

understand how the image will be degraded if too few samples are chosen. The possible

observable effects that could arise are either aliasing or blurring of the texture. Clearly, it

is more acceptable to have blurring than aliasing but unfortunately a naive implementation

of TPMM does in fact give rise to aliasing in the middle distance at critical angles as

shown in Figure 3.15.

Figure 3.15 Illustration of the aliasing effect in a naive implementation of Texture
Potential MIP Mapping (left hand image) compared to the more acceptable blurring
effect (right hand image), which replaces it when the traced footprint is enlarged to
guarantee the inclusion of the whole of the pixel. Both of these images were created
using a very low sample count to illustrate the effect clearly.

To understand why this is so, consider the way in which the tracing process is affected by

going to one of the coarser maps and taking just a few samples as shown in Figure 3.16.

63

Areas contributing to aliasing.

Areas contributing to blurring.

Figure 3.16 Aliasing effects in the naive implementation of texture potential MIP
mapping. Left: Anti-aliasing at the resolution of the potential map. Right: lower map
resolutions used with a MIP map.

Where the traced pixel lies outside the ideal pixel, the result will be blurred because the

sampling footprint is too large and hence the frequency cut-off too low. These areas are

shown shaded on the figure 3.16 (left and right). The hashed areas show where the ideal

pixel outline is outside the traced pixel. This is much more significant because in this case

the footprint is too small and hence the frequency cut-off too high, potentially allowing in

frequencies above the Nyquist frequency and causing aliasing.

The left hand side of figure 3.16 shows what happens if the original (basic) resolution of

the potential map is used. In this case, the errors are very small and the resulting image will

show neither aliasing nor blurring. The right hand side of figure 3.16 shows the situation

when the texture value for the same pixel is calculated using one of the coarser MIP maps.

The errors are much more significant now and the size or the hashed areas (which cause

aliasing) is significant.

causing aliasing

64

To correct this situation, the traced pixel must be expanded to guarantee that it includes the

entire ideal pixel. This arrangement is shown in Figure 3.17. The total sample footprint is

increased in the vertical direction. When this is done, the aliasing that was evident in

Figure 3.15 is replaced by blurring.

Figure 3.17 Expanding the sampled pixel to cover a warped pixel.

The coordinates that are used to access the table can be derived by any line drawing

technique following the edges of the pixel. As with pure TPM presented earlier, either the

DDA algorithm or Bresenham's algorithm can be used, depending on available hardware

and bearing in mind that the slope calculation can be shared along a raster line. To expand

the footprint to include the whole of the ideal footprint we calculate the positions of the

intercepts at both edges of each column in the potential map and choose the largest value at

the top and the smallest value at the bottom. Note that these intercept calculations are

shared between neighbouring columns of texels.

At this point, it would seem that only one task remains - to find the optimal number of

columns, n for a given application. This is not the best way to proceed however because

there is an observed relationship between the ideal value of n for a given image and the

angle which the pixels’ long axis makes to the grid of the texture map. Very steep and very

shallow angles allow a much smaller value of n to be used while near 45 degree angles

65

require a larger value. The reason for this is that in the former situations the ratio between

the area of the ideal projected pixel footprint and that of the expanded footprint, is close to

1. A fatter pixel footprint also allows n to be smaller because the errors, although they have

the same absolute values, are reduced as a proportion of the total pixel area. Figure 3.18

illustrates this point.

There are thus many situations in which a smaller value of n can be chosen than that which

is required to cope with the most awkward cases. This is not surprising since these are the

configurations where Crow’s method or (in the fat pixel case only) traditional MIP

mapping also work quite adequately.

Areas contributing to blurring.? AC |
Figure 3.18 The effect of pixel angle on choice of MIP map.

66

3.6.4 Choosing the Optimal Number of Samples

From the above we see that the system would be most efficient if we could control the

number of samples as a function of the size, shape and angle of the pixel footprint, rather

than just keep it constant using the width. To do this we need a simple shape dependent

parameter that can be easily calculated and which reflects the way in which the number of

samples needed changes with all of these factors.

The ratio of area of ideal pixel to that of actual sampled pixel would provide a fair measure

but would require far too much calculation to be usable in the present situation. It is

possible, however, to find a simple parameter that behaves in an equivalent way. To make

this calculation, we approximate the waiped pixel to be a thin parallelogram and ignore

what happens at the ends. This assumption is certainly accurate in those cases where a large

number of samples need to be taken. It follows that we will never misclassify such a case.

If we make a mistake which causes too many samples to be taken then the consequence is

only a slight decrease in efficiency, which is outweighed by the time saved in making the

test itself.

If we consider an individual column in the pixel footprint in Figure 3.17, then the area of

the ideal slice is Ih and that of the sample actually taken is l(h+d). For the pixel as a whole

these values become Lh and L(h+d) respectively. The ratio of the areas is thus:

h h Equation 1

Now if there are n columns in the pixel it follows that d=(H-h)/n and so we have:

yj i H 1R — 1H---------- ,

nh n Equation 2

67

so w e can choose an accep tab le va lue fo r R and th en derive n by the equation:

n -
(R - l)

1 Equation 3

this is reasonably tractable since it only requires the total height of the pixel and a sample

of its “thickness” in the middle. If the equation is used in this form then there is a problem

where H«h (i.e. roughly square footprints) since a value of n=0 can result (or even a

negative value of n, given the possibility of rounding errors). This is unacceptable since the

minimum number of columns required is 1.

To prevent this from happening with a margin of safety, the equation is thus modified to

read:

This modification avoids negative or zero values for n and only becomes an influencing

factor for roughly square footprints since for non-square footprints, the ratio of H / h is

significantly greater than 1 and hence becomes the more dominant part of the equation.

in our experimental programs. We have found that it gives very good discrimination when

used in this way. Quite large values of R can be chosen to give qualitatively excellent

results without compromising speed. The improvement obtained by calculating n on a per-

pixel basis compared with simply choosing a value for the polygon is shown in Figure

hand side has been created using a similar average number of samples but with n being

Equation 4

Equation 4 has the advantage that it allows the minimum value of n to be controlled by R

and it introduces no extra computation compared to the original form (

Equation 3). To save computational time this quantity could be estimated on a per

polygon basis. However, it is most effective to calculate it for each pixel as we have done

3.19. To illustrate this effect clearly it is necessaiy to use a rather lower number of samples

than normal. The left hand side of the image uses a fixed n value of 2 whereas the right

68

Figure 3.19 Comparison between the effect of a fixed value for n (left hand image)
and individual calculation for each pixel (right hand image). The average number of
samples per pixel is 12 in both images.

3.6.5 Performance Measures and Comparison with Other Methods

Section 3.4 provided a short taxonomy of published algorithms for anti-aliasing texture.

Two of these algorithms will be used as a basis for comparison, namely, Adaptive

Precision and Footprint Assembly.

In estimating the performance likely to be achieved by any of these methods, a number of

different cost factors need to be considered. The true performance in a given situation

based on user requirements can then be estimated by taking appropriate notice of each of

them as the situation demands.

69

We can identify the following different performance criteria for texture antialiasing

systems.

i. Computational cost.

ii. Number of samples needed per pixel

iii. Bandwidth to texture memory

iv. Table size

A comparison based on computational cost at the level of individual arithmetic operations

would require an optimal implementation of each algorithm. Since all the algorithms in

question are quite complicated, this would be difficult to do with any certainty. The result

would also be machine dependent and, given the rate of technological change, time

dependent. In contrast, the slowest moving performance factor in recent years has been off

chip communication. For example, PC main memory bus speed has improved by only a

factor of 3 between 1989 and 1999, while processor speeds have gone up by a factor of 12.

This makes the number of texture samples required to generate a pixel a significant

performance factor since it determines the number of independent memoiy accesses that

will be required. It will also give an estimate of computational cost, since all the algorithms

have a processing requirement that is proportional to the number of samples.

Of course the number of accesses is not the only factor to be considered. The size of each

data item is also important because this will determine the total bandwidth that will be

needed for this traffic. Using bandwidth as a measure of performance can be deceptive

however, since different pixel packing and unpacking strategies will result in differing

levels of performance. The best strategy therefore is to keep both measures separate until

the hardware details are known. Consequently, although TPMM results have been

presented, bandwidth information is also included for completeness. Note also that the

effect of both of these numbers will, in turn be modified by any caching of samples which

is taking place, but this effect is very sensitive to the cache size relative to the size of the

texture map.

70

3.6.5.1 Comparison with Glassner’s Algorithm

Glassner’s paper [GLAS86] explores a number of different techniques for refining Crow’s

summed area table algorithm. Many of these proposals are not particularly practical since

they require multiples of the full summed area tables to be stored. Glassner’s most practical

method is similar to TPMM in its sampling patterns for long thin pixels (although the

number and size of samples differs). It is therefore possible to directly compare the two at a

theoretical level, without the need to compare results visually.

Glassner’s method improves on the rectangular approximation of the pixel footprint used

in Crow’s technique by subtracting further rectangular pieces from it. Because each piece is

a rectangle, its contribution can also be evaluated using the same summed area table.

Both TPMM and Glassner’s methods require a rather larger version of the texture map than

standard MIP mapping or basic (non-anti-aliased) texture mapping, although the summed

maps do not need to be quite as large as some have suggested [SCHILL96]. For a

256x256x8 bits per colour texture pattern a texture potential map could theoretically

require 16 bits per colour and a summed area table as many as 24. However, this worst case

is rarely met with practical textures and provided the colour values are calculated relative

to an average value (which can be calculated separately for each column in TPM with little

extra cost) 13 bits will almost always suffice. Indeed, if a small amount of compression of

dynamic range is accepted this can be reduced to 12. The required table sizes for each of

the techniques are summarized in a table at the end of this section.

When comparing sample count and bandwidth, the range of possible pixel footprint

configurations makes a direct discussion of the general case quite difficult. Because of this,

the simple cases when small values of n suffice will be examined first and then with the

limit of large n, in which simplifying approximations may be made. The behaviour

between these two points can then be inferred. In the simplest case Glassner’s method

reverts to the basic summed area technique and simply requires four samples per pixel.

TPMM also requires a minimum of four samples in general since each pixel will span two

columns. However, the summed area table samples require 16-24 bits per colour each

whilst TPMM needs only 12-16 bits per colour. In addition the TPMM approach is, at this

71

stage, already able to follow a diagonally oriented pixel to some extent since the two pairs

of samples can be vertically displaced relative to one another. In the horizontal direction,

the sampling methods are rather different and hence a direct comparison is difficult.

Superficially it might seem that the summed area method has an advantage in that its

sampling window can be positioned at the resolution of the original texture map whereas

TPMM is limited by the fixed sampling points of the current MIP map. However only

helps when the texture pattern contains a frequency component with a particular phase

relationship to the display pixel grid. This frequency component will then exhibit aliaisng

if the image moves.

For large numbers of samples the same simplifying assumptions can be made about the

pixel ends as were used in the discussion of the “R” parameter above. For TPMM the

number of samples required for a given “R” factor is double the value of “n” as given

earlier by Equation 3. For Glassner’s method, consider a section from the middle of a

diagonal pixel as shown in Figure 3.20.

Figure 3.20 The sampling of a pixel using Glassner’s adaptive precision technique.

The variables H,h and d have the same meanings as with the TPMM case. Glassner’s

method requires samples to be taken at the points marked A and, naively, two at each point

marked B. However, these multiple samplings will cancel, leaving a total of 8 samples.

These samples are of course shared between two columns, so the final result is 4 samples

per column. This means that for a given “R” the number of samples will be four times the

value of given by Figure 3.20. Each of these samples will require 54 bits to be retrieved

72

for a 24-bit colour texture. TPM needs 39 bits per sample on the same assumptions. TPMM

thus has an asymptotic advantage of a factor 2 for number of samples and better than 2.5

for bandwidth when compared with Glassner’s method for similar image quality. For the

less critical pixels, this will fall away progressively to equality for sample count and an

advantage of 18:13 for bandwidth.

The above analysis was based on the situation for individual pixels. However, the existence

of a discrete set of MIP maps in TPMM means that a demanded value of R and n will not

normally be achieved exactly. Consequently, if a given maximum value for R is requested

then on average the value of n actually used will be 50% larger than that given by the

equation. This will result in a 50% reduction in the advantage of TPMM over the adaptive

precision method if a "worst case" performance criterion is used.

73

3.6.5.2 Comparison with Footprint Assembly Algorithm

Another method that has been proposed to solve the shallow angle problem is the Footprint

Assembly technique. As discussed in section 3.4, Footprint Assembly uses a standard MIP

map table, but instead of allowing the scale to be determined by the largest dimension of

the projected pixel the smallest dimension is used and multiple samples are taken to avoid

aliasing. This technique can be used with single sample, bilinear or trilinear MIP mapping.

These techniques are compared with TPMM in terms of image quality, number of samples

taken and memory bandwidth.

Experiments have been performed using texture potential MIP mapping and Footprint

Assembly Mapping. In each case the image created was of a complete “ground plane” of

texture. The view of this ground plane was varied in two ways. Firstly, the angle of the

plane itself relative to the line of sight was varied between 0 (looking straight down at the

surface) and 1.5 radians. Since the angle of view chosen was 0.14 radians, this corresponds

to the angle at which the point at infinity becomes just visible at the top of the screen. Any

further rotation would simply add extra empty space at the top of the screen. This angle

will henceforth be referred to as the a angle since it corresponds to a rotation about the x-

axis in most conventional viewing coordinate systems. The second angle is that of the

texture pattern itself, rotating in its own plane. This is referred to as the (3 angle.

The performance of the methods needs to be assessed in terms of image quality in those

domains where significant differences can be detected and in terms of speed as an average

over a representative range of different possible configurations. The qualitative differences

under the same conditions can be observed in Figure 3.21 as distinct visual boundaries

changing from good to blurred and from blurred to non-visible.

74

N o Texture V isible

“Blurred” Region

Fade Out Point
No Texture Visible

“Blurred” Region

Transition Point

- “Good”
Region '> ^ y.

Figure 3.21 Comparison of Texture Potential MIP Mapping (left) with R=5.76 and
Footprint Assembly (right) with Nmax=4.

The critical set of angles described previously creates long thin projected pixels that lie

diagonally across the texture map. To make visual comparisons between the two methods

unambiguous, implementations without interpolation between the different MIP maps

were used for both algorithms. This creates clear discontinuities in the image in both

techniques. Comparisons can be made between the methods by matching the positions of

these discontinuities. The left hand side of Figure 3.21 shows the results of TPMM using

an R-value of 5.76 at the angle specified above. For comparison the right hand side shows

the results of Footprint Assembly mapping using bilinear interpolation and a maximum

MIP map sample count of 4 at the same set of angles. In the foreground of each half of the

image, there is a region where the texture is clear and well defined. At some point in the

distance, this gives way to a more blurred effect and finally the texture fades out

altogether. These features are annotated in Figure 3.21 and are present in all the images

created. Two sets of comparisons were done. One set is based on the matching between the

two algorithms of the point of transition to the initial blur. The other is the same except

that it uses the final fade out point.

75

150

° S a m p le s per Pixel - Footprint A ssem b ly
S a m p le s per Pixel TPMM Equal Cutoff
S a m p le s per Pixel TPMM Equal Blur
S a m p le Ratio TPM M :Footprint A ssem b ly Equal Cutoff

•* S a m p le R atio TPM M :Footprint A ssem b ly Equal Blur

100

T|

0.5

><

S a m p le Limit for Footprint A ssem b ly

Figure 3.22 Comparison of the number of samples required for Texture Potential
MIP mapping and Footprint Assembly at varying levels of image quality.

Figure 3.22 shows the relative number of samples required for each of the methods over a

range of different levels of image quality but with the quality matched in each case

between the two methods as described above and illustrated in 3.21. Two sets of curves are

shown, reflecting the two comparisons made.

Overall, the results indicate that TPMM represents a better compromise between image

quality and sample number/bandwidth for this kind of extreme situation. This advantage is

most pronounced where footprint assembly has a sample limit in the range 8 to 32,

corresponding to an average sample count in the range 10-100. This is also the most likely

region in which either technique might be used. It is also important to consider the

performance over the range of possible angles. The results in Figure 3.23 and Figure 3.24

use the “quality point” represented by N=16, R=3.38. Figure 3.23 shows the number of

76

samples required over a range of p values but at the critical a value. Footprint Assembly

requires 50 samples throughout this range. The number of samples required by Footprint

Assembly mapping is constant here because it is determined only by the projected pixel’s

shape. Conversely, that required by TPMM is reduced away from the critical p value since

here the relationship between the projected pixel and the texel raster is taken into account.

This can only increase the advantage of TPMM over Footprint Assembly. Note that this

curve is not quite symmetrical about n/4 since the pure TPM method used for narrow

pixels is slightly more efficient than the MIP mapping used for wide ones. In addition,

Figure 3.24 shows the variation in sample requirement against a whilst holding p fixed at

its critical value. Here the bandwidth required by Footprint Assembly mapping also

reduces away from the critical region - but less steeply than for TPMM.

30

25

20 o

in 0

t
8
o 15

I
E
2

10

/

5

0 A verage num ber o f sa m p le s for Texture Potential MIP m apping

nu I I I I I
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Rotation angle of texture map about y axis (Radians)

Figure 3.23 Number of samples required by Texture Potential MIP mapping versus
angle of rotation in the texture plane (P) R=3.38.

77

60

° Texture Potential MIP mapping
Footprint Assembly

8
0
1
E
cIBO)ra0)
><

1 1.1 1.2 1.3 1.4 1.5 1.6

Angle of rotation about x axis (Radians)

Figure 3.24 Number of samples required by Texture Potential MIP mapping
(R=3.38) and Footprint Assembly (N=16) versus angle of rotation of the texture plane
a.

These results clearly establish the greater efficiency of TPMM compared to Footprint

Assembly with bilinear interpolation for static images.

The process of matching the transition points blurring and cut-off between the outputs of

the two algorithms is of course a subjective one. In order to minimise the level of

subjectivity within this process, several graphics experts provided independent

assessments of where transition points occurred, from which average matches were made

and sample counts deduced. The alternative to this process of course is to keep the level of

performance fixed between the two algorithms evaluated the differences in quality

observed. Figure 3.25 provides three image pairs showing TPMM results on the left and

Footprint Assembly on the right using the number of samples. To obtain the outputs of

Figure 3.25a, a total of 8 samples per pixel are required. Figure 3.25b requires Msamples

and Figure 3.25c requires 30 samples per pixel.

78

gg§

Figure 3.25b The results of TPMM (left) and Footprint Assembly (right) using 8

samples.

Figure 3.25b The results of TPMM (left) and Footprint Assembly (right) using 14

samples.

79

Figure 3.25c The results of TPMM (left) and Footprint Assembly (right) using 30

samples.

These results clearly indicate that the transition points discussed occur noticeably later in

TPMM than in Footprint Assembly when the same performance levels are used. We can

comfortably infer then that TPMM provides better quality output when compared with

Footprint Assembly.

The bilinear interpolation within a layer in conventional (and Footprint Assembly) MIP

mapping is a measure that prevents aliasing phenomena that would otherwise arise from

the sharp transition between one texel and the next. If the surface is very close this aliasing

would manifest itself as a patchwork of squares which, on close inspection, have jagged

edges. There is room for difference of opinion as to how this problem should be resolved

since clearly there is a lack of information in the texture map as to what happens at scales

finer than one texel. The naive interpretation of constant colour over each texel produces

the result as described above but without the jagged edges. The linear interpolation

approach normally used in MIP mapping gives rise to a texture function that is continuous

(C°) but has discontinuous derivatives (not C1). It is possible to demand a greater degree of

continuity - but the interpolation required is rarely implemented at present since it is

computationally expensive. In conventional MIP mapping this aliasing problem can appear

at all scales and is particularly prominent when texture patterns are used which contain

sharp edges (high frequencies). One situation in which this problem shows up is when

such a texture is presented at a shallow angle. In this situation bilinear interpolation is

80

a texture is presented at a shallow angle. In this situation bilinear interpolation is essential

with conventional MIP mapping if aliasing is to be avoided. Footprint Assembly MIP

mapping allows the possibility that the extra samples used for bilinear interpolation could

be used to increase the value of N, instead with improved results for static images.

Unfortunately, the problem can also appear in the form of a scintillation effect with moving

images and this happens irrespective of the angle of the textured plane. It seems therefore

that the extra burden of interpolation cannot be avoided with Footprint Assembly if good

quality results are desired.

These same problems also need to be addressed with TPMM. In this case, because of the

asymmetry of the algorithm, the two directions need different treatment. In the MIP map

direction this can be done by scaling the contributions of the end columns of the pixel

according to their width. This approach has no effect on number of samples or bandwidth

required. A completely general treatment requires the summed direction to have the

interpolation applied also. In the summed direction, the problem only occurs with nearby

surfaces because the texture map is always used at maximum resolution in this direction

and so when the projected pixel is large it is finely sampled. If this effect is considered a

problem, it can be dealt with by sampling the two neighbouring entries at each end of each

column and interpolating between them. This will double the number of samples and

bandwidth required but need only be done for certain nearby surfaces - which are otherwise

undemanding in terms of required sample count. The impact on both average and worst

case performance for TPMM will thus not be very great.

If we consider bandwidth rather than sample count then the results are slightly less

unfavourable to Footprint Assembly since it deals with eight bit samples rather than the

twelve bits (or slightly more, depending on the texture map size) required by TPMM. The

sample count advantage of TPMM is about a factor of two at the critical set of angles and

is larger at many other orientations so the situation should remain favourable when the

bandwidth measure is used instead.

There remains the question of texture map size and here it has to be admitted that TPMM

does require a larger amount of memory than either Glassner’s method or Footprint

Assembly. However, it does not require an excessive amount as do, for example, the brute

81

force approach of separate MIP maps or summed area tables for each possible angle of the

texture pattern.

3.6.5.3 Memory Requirements

Typically, each MIP map layer in TPMM requires 1.5 times the memory of the original

texture pattern. The multiple layers require a further factor of two, resulting in a factor of

about 3 overall. It may be possible to use a factor 4 scaling between tables at some cost in

sample count. In this case, the overall factor would be about 2. This compares with a factor

of 1.33 for conventional or Footprint Assembly MIP Mapping and a factor 2 to 3 for

Crow’s or Glassner’s method. Table 3.2 summarises the necessary sizes for the various

methods described in the text. All the figures are based on a 256x256 texture map. The

range of values given in the first row reflect the differing requirements that can occur with

any of the summed area type methods depending on the content of the texture map. In the

case of TPMM, there is a further variation that comes from the possibility of utilising MIP

maps with a scaling factor of 4. Glassner's multiple table method allows a very wide range

of possibilities depending on the required quality. The figures given are for the most basic

version with just two tables.

Texture mapping Relative table size
.. .

(minimum)
■

Relative table size
,

(typical)

Relative table size
■;• ̂ ; • . V

(maximum)

I Basic and Brute force

integration

1 I 1

MIP mapping and

Footprint assembly

1.333 1.333 1.333

Potential map 1.5 1.625 2

Summed area and

Glassner's adaptive

method

2 2.25 3

Potential MIP map 2 3.25 4

II Glassner's multiple table

method

4

(2 tables)

4.5

(2 tables)

6

(2 tables)

Table 3.2 Table of texture map sizes required by the different methods.

82

3.7 Conclusion

It has been shown that Texture Potential Mapping provides high quality anti-aliased

texturing without demanding significant computation. It also has been shown how the

Texture Potential Mapping Algorithm can be modified to keep the required sample count

within reasonable limits by using the principles of MIP mapping in the non-summed

direction. The resulting algorithm has a favourable combination of sample count, table size

and quality compared with competing algorithms such as Footprint Assembly [SCHIL96]

or the Adaptive Precision method introduced by Glassner [GLASS86]. The results of the

algorithm are intermediate in quality between current real time hardware systems and what

can be generated offline. As such, it is a candidate for implementation in future real time

hardware.

The remainder of this thesis focuses on high performance hardware solutions for real-time

computer graphics that embody the new techniques presented thus far into a flexible and

scalable multiprocessing enviromnent.

83

CHAPTER 4
MULTIPROCESSOR GRAPHICS ARCHITECTURES

4.1 The Need for Multiprocessing

Achieving a high degree of realism in 3D applications requires a significant amount of

processing power. If we wish to enable realistic visual effects without visual artefacts, we

need to employ the techniques described in the previous chapters of this thesis. A single

processor performing this role for large datasets at high resolutions has an upper limit on

what achievable if an acceptable frame-rate is to be sustained. The remaining chapters of

this thesis explores ways in which graphics processing can be distributed amongst multiple

processors and later presents a scheme of autonomous cellular graphics processing.

Modern graphics hardware has to cope with a throughput of tens of millions of texture-

mapped polygons per second. Most hardware solutions on a PC offer this on a single

dedicated chip containing up to 70 million transistors. Their speciality tends to lie in the

acceleration of the rendering phase of the graphics pipeline only, using optimised scanline

based techniques whilst leaving geometry-processing phase to the host processor.

Hardware vendors are beginning to question this approach as the demand for better realism

grows. Nvidia’s Geforce chipset such as the Geforce2 ultra [NVID2000], is a good

example of this change in which transform and lighting responsibilities are freed up from

the host processor providing polygon rates of up to 30 million triangles per second. A

further step is to parallelise 3D graphics processing by distributing data and/or tasks across

multiple processors. An example of this is offered by the WildCat range of PC accelerator

cards from 3Dlabs [3DLA2000]. These cards allow for multiple graphics pipelines to work

in parallel. In the higher end graphics market, systems such as the Onyx 3000 series from

SGI [SGI2000] offers veiy good scalable 3D graphics performance but with a significantly

lower performance to cost ratio when compared with the previously cited examples.

The trend in graphics hardware design illustrate that future graphics solutions must offer

longer-term architectural solutions using multi-processing in order to keep up with the pace

of change with respect to graphics requirements.

There have been several different architectures that have been proposed and implemented

over the years that take advantage of parallelism in both the geometry and rendering

domain and these will initially be discussed along their respective advantages and

disadvantages before the new scheme developed as part of the research is introduced.

The 3D rendering tasks can be split up into 3 main component tasks, namely database

traversal, geometry processing and rasterization. On a simple system without sophisticated

effects, the geometry processing phase is the most computationally intensive of these and

requires floating point operations in order to perfonn geometric transformations on

primitives in object space. The rasterization stage, which primarily consists of integer-

based operations on primitives in screen-space, is less intensive. Furthermore, sophisticated

effects such as high quality texturing will also be required and will incur significant speed

costs on a single processor. Therefore, in order to achieve high performance with high

quality in real-time, we must distribute the compute intensive tasks and/or their assigned

objects over several processors.

A multiprocessing graphics architecture can be described as a cluster of geometry

processors and a cluster of rasterization processors that are connected via an appropriate set

of communication paths. The communication paths convey primitives, which are initially

specified in object co-ordinates, from one set of processors to another, redistributing the

primitives (or portions of primitives) where appropriate. The central problem with all

multiprocessor architectures lies in how to allocate primitives to processors and redistribute

them onto the screen during the rasterization stage.

The two basic forms of multiprocessing consist of pipelining and parallelism. A

computation may be pipelined by partitioning it into stages that can be executed

sequentially in separate processing elements (pipelining should not be confused with the

standard graphics pipeline, which does not require multiple processors). A computation

may be parallelised by partitioning the data into portions that may be processed

independently by different processing elements [FOLE90]. Figure 4.1 illustrates the

distinction between the pipeline and parallel multiprocessor schemes.

85

;

RasterizationGeometry Subsystem
Subsystem

Pipeline
Scheme

^ I w

Parallel
Scheme — ►

Figure 4.1 Pipelined or parallel architectures can be employed.

The ideal multiprocessing graphics architecture would be able to cope with a wide range of

application domains, such as:

• Architectural walkthroughs

• Flight simulation

• Medical imaging

• Molecular graphics

• Computer-aided design

• Entertainment

Each of which require a particular suite of graphical effects, scene complexity and

resolution in order to allow for any degree of realism. Therefore, in order to meet the needs

of current and future 3D graphics requirements we must ensure that parallel graphics

architectures are:

• Real-time capable.

• Flexible. The system should be algorithm neutral.

• Scalable. Extra processors will proportionately extra performance.

86

For a true multi-processor graphics architecture, scalability is a necessary condition, since

any system that allows algorithm neutrality will ultimately suffer in terms of performance

compared with its specialised counterparts.

To the author's knowledge, the architectures that have been implemented so far do not truly

embody both flexibility and scalability combined. In order to determine a multi-processing

architecture that meets all three of the above goals, we must ensure that the type of

architecture chosen does not constrain the range of algorithms that may be used and

furthermore, the choice of algorithm should not affect the rest of the design. For example,

the choice of shading algorithm should be independent of the hidden surface algorithm

used. Distributing intensive algorithms by task amongst several processors leads to a

pipelining scheme that will accelerate graphics but will ultimately intertwine the processes

involved. This therefore implies that any use of algorithm-based parallelism should not be

considered. Thus, if we eliminate algorithm-based parallelism as an option, we are left to

choose from some form of object-based parallelism or output-data based parallelism. A

variety of flavours of object and screen based parallel schemes have been implemented

over the years with varying degrees of success. These schemes will now be reviewed.

87

4.2 Screen Subdivision Methods

Screen space subdivision methods consist of parallelising the rasterization stage of the

graphics pipeline by assigning a fraction of the pixels of the screen to each processor. This

approach leads directly to the problem of how the screen should be partitioned. This is an

important factor since if processors adopt a bulk-partitioning scheme by assigning

contiguous blocks of the frame-buffer, there is a distinct possibility that load imbalances

will occur when most of the graphical scene is transformed to only a portion of the screen.

Thus the number of primitives in the busiest region would determine the frame rate of the

system and a small region size per processor would have to be allocated in order to

minimise this problem.

An alternative approach is to interleave the partitioning of the frame buffer so that an

improved balance of workload is achieved. Figure 4.2 illustrates this approach and shows a

more even balance across the screen. The example shows one possible configuration, in

which interleaved memory locations are indexed via a lookup table using a key based on

the ‘real’ pixel locations (in this case ‘real’ adjacent locations are separated by 2 pixels).

This scheme is more efficient than the contiguous region approach in that system

performance depends more on the total number of primitives.

G H I G H I G

Figure 4.2 Diagram showing the memory arrangement for Interleaving

The method of distributing work based on areas of the screen gives rise to an architecture

in which the sorting of primitives takes place in-between geometry processing and

rasterization. Thus a sorting network is needed to connect the parallel geometry processors

and parallel rasterization processors, since the primitives 011 any geometry processor may

fall anywhere on the screen and may well be too large to be solely allocated to an

individual processor. This network must take transformed primitives in screen space and

determine which region (or regions) they affect, and convey them to the appropriate

rasterizer. Figure 4.3 shows a schematic of the inter-processor communication.

screen

ma<

Figure 4.3 Schematic of Sereen-Space Subdivision Architecture where G =Geometry
process, R =Render process.

The network must communicate on a global level, since it receives its primitives from all

of the geometry processors and must send them to all of the rasterizers. It also follows that

a high bandwidth is required, as a description of the entire dataset must be transferred

between the geometry processors and rasterizers between each frame.

The stages of rendering in parallelised image space architecture, using a contiguous

89

memoiy arrangement, generally proceed for each frame as follows:

1. Transform primitives.

2. Sort image space primitives by screen region.

3. Transfer primitives to rasterizers using a high performance, high bandwidth

network.

4. Process each screen region in parallel.

5. Collect and assemble image fragments in an image buffer for display.

Such a scheme is not inflexible in terms of the order in which primitives are sorted and

transferred. We could for instance, allow the processors to perform the sorting operations

themselves and apply a search-on-arrival scheme. Furthermore, if an interleaved system of

screen partitioning is adopted, we could send sub-objects, such as scan-lines instead of the

object as a whole. It should be noted that when an interleaved memoiy arrangement is

employed, the later stages of the above procedure differ slightly in that each rasterizer must

handle all of the primitives, rather than just a subset that is relevant to an assigned region of

the screen.

Screen space subdivision methods have several attractive qualities such as:

• Object primitives distribution methods are independent of how rasterizers are assigned

to screen regions.

• Each rasterizer handles all of the primitives in a screen region, so the rasterization

method is unconstrained.

However, this approach also leads to the following disadvantages:

• It requires a global communication network, which must transfer all primitives between

geometry processors and rasterizers between frames.

• Bandwidth requirements for the network are high and scale linearly with performance.

• Complex software is required to implement sorting mechanisms

• Load imbalances can occur between rasterizers in a bulk partitioning system when

primitives are unevenly distributed over the screen.

90

• Its latency is high in that all primitives must be sorted before rasterization can finish.

• Interleaving makes it very difficult to incorporate custom rendering effects and

overlays. Software based interleaving provides some degree flexibility in this case but

will significantly reduce performance even for simple bit block transfers. Caching

algorithms and multiple back buffers are also difficult to implement.

Screen subdivision architectures, although intrinsically flawed, have been put into practice

with respectable performance output. Example architectures are Pixel Planes 5 [FUCH89]

and the Silicon Graphics Power Iris 4D/240GTX [AKEL89].

91

4.3 Pixel Processing Systems

One of the earliest implemented Parallel architectures is the pixel processing system

developed by the University of North Carolina called Pixel Planes [FUCH81]. This

involved many processors (SIMD - Single Instruction, Multiple Data) that were assigned to

individual screen pixels and were essentially a form of logic enhanced memory. Thus,

Pixel Planes made use of frame buffer subdivision in order to accelerate graphics

processing.

A prototype system was developed in 1986 [EYLE88] and used a design similar to that of

the VRAM chip except that the one-bit ALUs and associated circuitry replace the role of

the video shifter.

The performance of the pixel planes system did not solely rely on parallelism however

since each pixel processor would have to perform all the operations required for scan

conversion independently, leading to inefficiencies from redundancy. The scheme devised

to overcome this problem makes use of a linear expression tree in which linear expressions

are evaluated in parallel. Thus for every pixel (x,y), floating point coefficients A,B and C

are input to evaluate expressions of the form F(x,y) = Ax + By + C. Since many

rasterization calculations make use of linear forms, each pixel receives its own value of F

in its own local memoiy. Figure 4.4 shows the schematic for the Pixel Planes 4, logic

enhanced memory chip.

One of the main advantages for this system is its simplicity since it does not need to be

concerned with ordering or distributing tasks for each processor and hence there is no pre

or post processing required. However, pixel-processing systems suffer from a severe lack

of algorithmic flexibility and are not cost effective for appreciably high-resolution graphics

requirements.

92

Row D ecode

f

■ M ;
-

A ddress

Memory Array
(128 pixels, 72 bits per pixel)

' tii
Expression

Tree

.
To Video
Controller

Video Data Multiplexer

Figure 4.4 Schematic of the Pixel-Planes 4 logic-enhanced-memory chip

93

4.4 Object Based Parallelism and Image Composition

The object-parallel family of parallel architectures parallelises the inner loop of image-

order algorithms (which tend to be scan-line). These architectures process multiple

primitives in parallel, so that final pixels may be generated more rapidly. The usual

approach is to assign primitives to a number of object processors that enumerate the screen

pixels in scan-line order and store colour and depth values for their assigned primitives.

The pixel streams from each of the object processors can then be combined to produce a

single stream for the final image.

One of the first commercial implementations of a real-time, processor per primitive system

was the General Electric's NASA II flight simulator [BUNK89] which proved to be a

simple and appealing architecture with no defined limit on scalability. However, use of

object parallelism alone tends to restrict the types of primitives that can be displayed and

the types of shading algorithms that can be used. Furthermore, the sheer size of the

rendering task in real-time graphics makes a purely input data based scheme difficult to

construct unless the screen coverage of individual data items can be constrained in some

way.

94

4.5 Image Composition Methods

The principle of image composition methods has been used in various forms for many

years, particularly in the video industry, such as video overlay and chroma-key techniques.

In this scheme, geometry processors and rasterizers are paired to form renderers, as in

screen space subdivision methods. Each renderer is assigned a random portion of the

primitive database and is made responsible for the entire screen, as opposed to only a

portion of the screen. This means that each renderer computes a full screen image of its

portion of the primitives. These images are then composited together in such a way that

surfaces in one partial image hidden by those of another are eliminated. Figure 4.5 shows a

schematic of the inter-processor communication and Figure 4.6 shows the distinction that

is made between image composition methods and screen subdivision methods.

maae

Figure 4.5 Schematic of Image Composition Architecture

95

G g
BM WSm m mm

— „ -----------

j Compositor

Figure 4.6 Comparison of Screen Space Subdivision and Image Composition methods

The main advantage of image composition techniques is that no sorting or redistribution of

primitives is required in the Tenderers. Each renderer computes the image of its primitives

as if it were the only one in the system. The sorting network in this architecture takes the

form of a high-bandwidth network that composites images. The simplest way to do this is

to composite images pair-wise. This results in either a binary tree or pipeline structure for

the image composition network. Video scanout from each frame buffer occurs in the

normal way, except that the contents of each z-buffer are scanned out as well. Scanout

processes in each frame buffer are synchronised so that each frame buffer scans out the

same pixel at the same time. Since the network must operate at high speeds to maintain

real-time frame rates, special composition processors or compositors are required.

However, the compositor implementation may restrict the kinds of rendering algorithms

that the architecture can support.

An interesting property results from image composition architectures, since they can be

scaled to an arbitrarily high performance by adding Tenderers and compositors. This is a

result of employing a tree-based or pipelined composition network that can accommodate

96

an arbitrary number of nodes. Furthermore, Tenderers compute their sub-images

independently.

The advantages of image composition architectures are summarised as followed:

• Renderers work within a simple context. They compute their partial images

independently

• Load balance is automatic for geometry operations since each renderer can be given

roughly the same amount of work.

• Communication is local and the bandwidth is constant. It is determined by the

maximum rate in which images can be composited.

• The architecture is linearly scalable.

Flowever, image composition has the following disadvantages:

• It requires a distributed display database.

• It imposes constraints on the rendering algorithms that may be used since the rendering

method must produce pixels in a format suitable for compositing, and hence the

flexibility of the system is reduced.

• It requires a very high bandwidth for the image composition network for

communication between renderers.

• Up to a frame of pixel storage is required per renderer.

97

A good example of image composition is the PixelFlow system [MOLN92] which is

linearly scalable and achieves up to millions of triangles per second. The PixelFlow system

is composed of a series of renderers and shaders on a 256 wire back plane running at

132MHz. The renderers operate by sequentially processing 128x128 pixel regions of the

screen. They scan out the region’s rasterized pixels over the image composition network in

synchrony with the other renderers. The Shaders load pixels from the image composition

network; perform texture mapping and shading; blend subpixel samples for anti-aliasing

and finally forward pixel values to the frame buffer. Figure 4.7 shows a block diagram of

the prototype PixelFlow system.

Host Com puter and High R es Monitor
Monitor

Host
Interface R enderer R enderer S hader S hader Frame

Buffer

Im age com position network M essage P assing Network

Figure 4.7 Block Diagram of the prototype PixelFlow System.

98

4.6 Summary

To summarise the strategies outlined in this chapter, we see that object parallelism alone is

detrimental to our goal of flexibility since the screen coverage of transformed data objects

needs to be constrained in order to get significant performance improvements.

Furthermore, output based parallelism alone exhibits high bandwidth requirements and

load imbalances can readily occur when a large proportion of the dataset transforms to a

small fraction of the screen. The most promising semi-commercial solutions provided so

far have been image composition based architectures but, as outlined previously, they do

not provide a true flexible, scalable solution. It may be argued that no such solution can

possibly exist: by increasing system performance, we must forfeit the generality of the

problem and vice versa. The following chapter attempts to disqualify the previous

statement by investigating an alternative hybrid architecture in which the author attempts to

retain generality (i.e. flexibility) whilst achieving high performance.

99

CHAPTER 5
THE CELLULAR ARRAY ARCHITECTURE

5.1 Autonomous Processing / Localised Storage

Another approach to parallelising real-time graphics is to combine object-based and

screen-based parallelism together. Such an architecture would speed up the early part of

the graphics pipeline by using object based parallelism and then later recombine the

final image from processors that are dedicated to working in different parts of the

screen. Figure 5.1 illustrates the hybrid architecture, in which geometry processes are

bound to rasterization processes.

screen

maoe

Figure 5.1 Process schematic of hybrid graphics parallelism.

100

To the author’s knowledge, the benefits offered by this scheme have yet to be fully

exploited. One of the main reasons for this is due to problems that arise in the first stage

shown in figure 5.1. Here, some form of polygon distribution scheme is required that

will dynamically balance out the processing load evenly throughout the processor

network. The main goal of this chapter therefore, is to explore the potential benefits

offered by this scheme, whilst offering new solutions that overcome the distribution

problem.

Geometry processors and rasterizers are combined to form a rectangular array of

autonomous processors so that minimum interaction is required between each processor.

Figure 5.2 shows a schematic of the array, in which the horizontal direction refers to

processors dedicated to different parts of the screen and the vertical direction refers to

the primitives being processed. Here, the processor arrangement accommodates for three

objects that can be processed in parallel. Each of these objects can be divided into four

quadrants of the screen. The topology of such an arrangement has lead to the title of

‘cellular array’, which will be used to refer to the architecture throughout the remainder

of the thesis.

To Multiplexer for Display

l i t !
Screen Regions (quadrants)

Figure 5.2 Schematic of Cellular Array Architecture (objects are assigned to banks
of general processors which are clipped according to screen region)

101

The unconnected links at the top of the diagram go to the output hardware, which must

contain some multiplexing capability in order to create a single image from the four

separate parts. The links at the left-hand side are used to provide input to the processors

from a host processor. The form of input data at its most basic level would consist of

polygon mesh data that is distributed from the host processor to processor banks that

subdivide screen space. The inter-processor links in the vertical direction need to allow

RGB data to be created from their output at the frame rate of the system at least, and

would therefore need a sufficient bandwidth to accommodate for this.

By combining both object and image space parallelism, we immediately simplify the

form of intercommunications network required and decrease system bandwidth

requirements significantly since each processor would only need to receive primitive

vertex data as input and pixel data as output. Furthermore, object based constraints are

lifted since the screen coverage of each object would now be reduced to manageable

levels.

The potential advantages of cellular array processing are therefore threefold:

• It is flexible: Because each processor carries the complete set of graphics algorithms

representing the graphics pipeline, any change to the system is simply a

straightforward coding operation with no consequence to the hardware of the

system.

• It is scalable: An increase in rendering performance is possible simply by increasing

the number of processors in the horizontal direction when an increase in resolution,

depth complexity or rendering sophistication is required. Conversely, a greater

capability in terms of the number of objects rendered can be achieved by increasing

the number of processors in the vertical direction (the number of banks).

• It is not driven by fleeting technology: The only major dedicated hardware required

is the output multiplexer needed to reconstruct the final image. Such a device only

requires upgrading with advances in output display technology and thus tends to

102

have a relatively long shelf life. Furthermore, the addition of processors to the array

should only require code recompilation and the provision of an interface to the

multiplexer.

• Bandwidth is reduced to a minimum: Since geometry processing and rendering are

bound together for each processor, virtually all storage is localised so that each

processor receives mesh data as input and provides pixel fragment data as output to

the multiplexer.

However, there are two requirements that must first be met in order to ensure that

implementations of the cellular array are both truly flexible and scalable.

• The cellular array network must be re-configurable. That is, it must be relatively

simple to add new processors and processor banks to the network without requiring

detailed knowledge of the system.

• The cellular array must have a balanced loading and be scalable. In order to ensure

an even load balance in the array, the host processor would have to employ a rather

complex distribution algorithm. This would result in an undesirable bottleneck on

the system.

The following sections investigate how these requirements can be met.

5.2 The Recombination stage - FPGA Solution

Recombination logic needs to be able to adapt to different processor network

configurations. If no such feature exists, then we would restrict the range of possible

applications and would not meet our goal of flexibility and scalability. The cellular

array therefore requires some form of re-configurable hardware to sort out the

connection logic between processors. Field programmable Gate Arrays are a good

candidate for this role since the combination logic itself is very easy to program and we

have complete flexibility (even at run time) to reconfigure the cellular array. It is also

possible to pre-program a variety of recombination algorithms onto the FPGA to

perform the role of switch-able node-points between processors. Figure 5.3 illustrates

the core component requirements for each cell.

Figure 5.3 Schematic of a ceil indicating re-configurable networking nodes.

Once a processor configuration is established, we must also consider the time at which

recombination should occur. This is a critical factor since if it occurs too early, we must

‘pass-on’ data that may be required by other algorithms to finish the raster process. In

this case, the constraints on algorithmic flexibility will dictate once more. Hence, the

recombination should take place at the last minute so that data structures will merely be

pixel related.

Video Bus

RA
System Bus

FPGA nvuc Core GPU

104

5.3 Polygon Caching - Reducing the Distribution Problem

The architecture, although attractive in many ways, does carry with it the legacy of load

imbalances inherent in the distributed screen-based methods described in chapter four.

One solution to this problem would be to pre-sort the database so that the distribution of

objects is evenly spread with respect to screen region, combined with image based

interleaved memory [Clark and Hannah 1980]. Such solutions however, will over

burden the host processor in the first case and restrict flexibility in the second. An

alternative strategy is therefore required.

In the most extreme case, only a single processor within each bank of the cellular array

would be active at any one time (i.e. all current polygons are clustered within a small

region of the screen). A significant number of processor banks would therefore be

needed in order for the system to maintain a satisfactory ffame-rate (this case, although

undesirable, is also probabilistically rare). Therefore, in order to keep every processor in

each horizontal bank active at all times, each individual processor should be given

object data on demand as opposed to waiting for the busiest processor in a bank to finish

before allocation can occur again.

In order to meet this requirement, a per-processor polygon cache scheme is proposed, in

which the host processor passes new object data whenever a processor in a given layer is

idle, whilst simultaneously filling the caches of the other processors in that bank with

the same object data for subsequent processing. Thus, each processor can reach its

pertinent data as quickly as possible by clipping away irrelevant object space primitives

(a relatively inexpensive geometric operation) without waiting for its neighbours to

finish. The memory requirements for each cache elements consists of floating point

vertex data, texture coordinates and material properties. This approximates to 64 bytes

per entry for triangle mesh data. Figure 5.4 illustrates polygon caching using two cells.

The left cell can process larger polygons (with respect to screen space) without holding

up the right cell. Furthermore, the cache data can be used to retain estimates on load

distributions between successive frames.

105

s

Polygon Mesh Data

...
POLY 4

Figure 5.4 Internal cellular polygon caches ensure that all cells are busy

Ceil 1

POLY 4

106

5.4 Hidden Surface Removal and Anti-aliasing

In order to support a wide range of applications (e.g. flight simulators, CAD, V.R.

walkthroughs etc), the proposed architecture should be supplied with a basic set of

algorithms in software that are neutral so that they not constrain the range of special

effects that can be added in the future. This would allow the developer to build onto

them, as opposed to re-writing entire applications from scratch. These algorithms should

therefore be general in nature and should be used over a wide range of applications.

The most general of algorithms for rendering depend on the type of scheme and

graphical effects used throughout the graphics pipeline (see chapter 1). In the case of the

cellular array, we are considering a scheme that starts with database objects and results

in screen pixel information. We must ensure then, that sufficient information about

objects at the pixel level is maintained in order to facilitate the range of algorithms that

deal with aliasing, shading, alpha blending, texture mapping etc. This is normally

dictated by the form of hidden surface removal algorithm that is employed since

information about surfaces needs to be maintained in order to compare them with new

surfaces.

As mentioned in Chapter 2, the most sensible choice for high performance hidden

surface removal is the Z-buffer since it makes no demands on the general structure of

the other parts of the graphics pipeline. However, it does suffer from the fact that depths

are only sampled at a single point and only a single value is kept from the contributions

of surfaces to each pixel. Thus, more information about pixel contributions needs to be

generated with minimal computational cost and retained in such a way that the overall

system is not algorithmically constrained.

107

5.5 Anti-aliasing - Pixel Fragment Recomposition

The modified A Buffer described in chapter 2 is a good candidate for anti-aliasing since

it retains the advantages of performance offered by the Z buffer and also deals with

multiple pixel contributions to produce high quality results. Information about pixel

contributions and depth extremities would be passed in the vertical direction of the

array. However, since cellular processors are working with objects in local memory

until multiplexing occurs, care must be taken regarding the combination of pixel

fragments. We would therefore require some form of pixel assembler to combine

multiple fragments of each pixel packet into a single RGB value for the pixel. This

involves the composition of fragments in front-to-back order, taking into account how

much of the pixel each new fragment covers. Figure 5.5 illustrates the logic required to

make depth comparisons at the point of composition without anti-aliasing. By storing

pixel based information locally to each processor, inter-processor communication is

kept to a minimum and memoiy access conflicts are avoided.

multiplexer\

Figure 5.5 Logic required for a simple z-buffer compositor.

108

5.6 Cellular Array Experiments

5.6.1 Implementation Considerations

In order to ascertain how well the cellular array would perform using different

configurations and datasets, simulation runs were performed on a single processor using

the following assumptions as a basis for implementation:

1. The time taken to perform geometry calculations for each polygon with respect to

screen region is approximately proportional to the single processor case. The basic

geometry-processing phase of any graphics pipeline consists of camera/object

transforms, lighting calculations, texture clamping and vertex/shade clipping to the

viewing-frustrum. If we sub-divide individual polygons according to screen regions

in parallel, then the difference in the time taken to perform this operation (compared

to the non-subdivided case) will depend on the maximum number of new vertices

created as a result of sub-frustrum clipping. For large datasets, the number of

polygon intersections will be small compared to the total number of polygons. This

approximation can therefore be used as a basis for knowing when processor banks

should notify the host processor for more data in the simulation runs.

2. The optimal size of polygon caches can be approximated dynamically (this optimal

size in this case defines how much of each cache the cells can use rather than

physical size of the caches). This is a requirement since different scenes will require

different limits on the cache size if optimal results are to be observed. However,

there are several strategies to estimate this optimal size at run-time without

burdening the host processor (these will be discussed later).

3. Memoiy storage for pixel, depth and texture data is localised to each processor.

This is in fact a consequence of the architecture itself. Access conflicts are

minimised and bandwidth requirements are not an issue until final depth buffer

comparisons amongst each column of processors are made for display (see point 4).

109

4. The simulation results are independent of both the multiplexing technology used as

well as the speed of the bus to the multiplexer. The reason for this assumption is to

simply avoid obtaining results that depend on device dependent technology that will

change over time.

5. Estimates as to when the host processor should allocate polygons to cell banks is

achieved by cells calling back to the host on demand. If a given cell in a bank has

finished rendering, it is either ready to retrieve another polygon from the cache (no

call-back is necessary) or it is ready to obtain data directly from the host. In the

latter situation, it is likely that the other cells in the given bank are still actively

rendering. In this case, the host must also provide the same polygon data to the

other cells in the bank by pushing the data into their respective caches. In a physical

system, this would require a brief interruption in the execution of all processors in a

bank in order to perform a memory access. These interrupts have been

approximated to occur in a single cycle of the host.

5.6.2 Simulation Test Data

The characteristics of scene data must reflect not only the application environment, but

also the constraints defining how users can interact with it. For example, ground based

data in flight simulators will in general, bias polygon distributions to the lower half of

object space with atmospheric data such as clouds being described and rendered using a

different set of algorithms. Applications such as walkthroughs however, will consist of a

combination of large planar surfaces encompassing complex hierarchical objects

consisting of many polygons. Two distinct classes of datasets have used to represent

these extremes. Figure 5.6 illustrates the two sample data sets used to simulate interior

walkthroughs with the cellular array1. The bowling alley output represents a dataset that

uses relatively large planar surfaces with some symmetry evident in the distribution. The

Escher dataset however, represents a more extreme case with ‘random’ distributions of

polygon densities throughout the scene.

1 Line rendering is used here for clarity only - the actual output generated by the cellular array uses texturing and shading
algorithms.

110

p j p p j ^ l

Figure 5.6 Left: The bowling alley, consisting of 60777 polygons. Right: ‘Escher’s
House’, consisting of 10938 polygons.

To simulate exterior scenes, an implementation of a fractal landscape generation

algorithm was used. Fractal mountain scenes of increasing complexity were generated as

test data to control both the complexity and distribution of objects within scenes. Figure

5.7 shows several such datasets taken from a total of seven that were used to generate

results. The numbers of polygons generated for scenes in this case are 832, 3328 and

13312 polygons respectively.

Figure 5.7 Landscape data generated procedurally with increasing polygon count.
Mountain 1: 832 polygons, Mountain 2: 3328 polygons, Mountain 3: 13312
polygons

Figure 5.8 shows a typical test scene using shading and texturing. Several concentrations

of polygons (the trees and the helicopter) are also included in order to generate

additional loading bias in the data distribution.

I l l

Figure 5.8 One of the scenes used to generate flight simulator characteristics for
cellular array simulation runs. This scene consists of 20 000 Gouraud shading,
textured polygons.

5.6.3 Measuring Cellular Array Performance

A typical performance measure for many hardware graphics systems is based on the

number of Gouraud or Phong shaded triangles processed per second. Since such

information would not be realistic without a hardware implementation of the cellular

array, a relative performance measure is used against the results produced by a single

processor performing the same task. This is based on the total number of clipping /

render cycles taken to process the dataset. In the case of a single processor, this is

approximately proportional to the total number of polygons and z-buffer accesses made

(without sophisticated effects).

The following performance ratio gives us a relative measure of cellular array

performance with respect to varying banks:

N single / (C X N an-ay)

112

where NSingie is the number cycles taken to generate a single frame on a single process

and Narray is the number of cycles taken in an array using C processors per bank. The

division by C of course will result in a performance ratio approximate to one in a worse

case scenario using a single bank.

If we only wish to measure the relative performance of the effect of screen-based

parallelism however (i.e. for only a single bank of cells), then the ratio of the number of

the cycles taken for a single bank array to the number of cycles taken for a single

process is used instead i.e.

N s i n g t e / (B ^ N a i r a y) ,

with B being the number of banks in the array.

Finally, to deduce the overall cellular array performance, the measure of

Nsingle / Narray is Used.

113

Pe
rf

or
m

an
ce

5.7 Simulation Results

Figure 5.9 shows the performance results for varying numbers of processor banks using

four cells per bank, over a single 20 000 polygon mountain dataset and with 3 different

viewing orientations (as shown in figure 5.10). The distribution bias of polygons with

respect to screen region shifts from the lower half to the upper half. Since depth

complexity and resolution are fixed in this case, performance gains are most evident

when additional banks are added, as opposed to increasing the number of cells per

bank. The first performance measure given in the previous section is used to deduce

bank dependency.

Scalability Performance wrt banks for difference cache sizes

7

6

5

4

3

2

1

0
1 2 3 4 5 6 7 8 9 10

0 buffs

5 0 buffs

1 00 buffs

1 50 buffs

2 0 0 buffs

Number of Banks

Figure 5.9 Performance results of landscapes averaged over 3 different viewing
orientations with respect to an increasing number of processor banks.

114

SSflPfJiFt*
l l l l R

Figure 5.10 A 20000 polygon dataset viewed from three different camera
orientations.

The scaling of performance with respect to polygon cache size displays approximate

linearity [SHRU98], but becomes more unpredictable with increasing cache size. This is

due to the distribution task of the host processor finishing too early, so that certain

layers become 'bogged down' with the work of objects covering a large area of the

screen (and thus filling up their caches too quickly) whilst other banks are dealing with

smaller objects which take less time to process. In other words, the system has resorted

to the original scene-dependence/loading problem highlighted in chapter 4. Therefore,

care must be taken with respect to the actual size of the cache allocated to each

processor if we wish to retain any predictability of the system.

From the performance data provided in figure 5.9, we see that a cache limit of 100-150

polygon entries would provide a good combination of linearity and high performance.

The problem of unpredictable scalability can be therefore be reduced simply by

controlling the global polygon cache size. This can be achieved by exploiting frame-to-

frame coherence so that the appropriate global size of all polygon caches for consecutive

frames can be estimated. This data can be derived from the results of the previous frame

that was rendered. The cache size therefore, can be estimated by passing back the

maximum number of polygons that are present in the caches of each cell after a frame is

rendered. The host processor can therefore remotely call each bank with an average of

these sizes before distribution occurs for the next frame (an inexpensive role to play).

115

♦ ♦ ♦ ♦

Figure 5.11 shows how the gains in performance become saturated as we increase the

buffer size. The same data and orientations were used as in figure 5.8. This effect

depends more on the size of the dataset rather than its distribution. Hence, only an

approximation of the upper limit of the cache sizes is needed for good results.

Performance wrt Buffer Size for a single bank of Procs

0,800

0,700

0,600

g 0,500
c

§ 0,400

£ 0,300 +

0,200

0,100

0,000
50 1 0 0

Buffer Size

150 200

Figure 5.11 Performance gains for different buffer-sizes with a fixed number of
banks

So far, only a limited range of test data has been used to illustrate the behaviour of the

cellular array. The following tables provide an overview of how the performance varies

for a wider range of dataset distributions when a good estimate on the optimal cache

size is used from frame coherence. Table 5.1 again looks at the increase in performance

with varying banks with an average cache size given based on 3 random viewing

orientations of the datasets presented earlier. We see that performance boosts are not

quite as significant for smaller datasets as they are for the larger ones. However, the

bowling alley data still presents some minor problems for the array, particularly in the 4

116

bank case, where the increase in performance is not as great as expected compared with

the 2 bank case.

Table 5.2 shows how the cellular array performs as the number of cells within a single

hank is varied. The need for changing the number of cells per bank is more obvious than

the previous case since it is less dependant on the particular application and more on the

resolution of the final output display (in this case 768 x 768). Polygon caching is also

used here to generate performance estimates based on the sizes estimated for table 5.1

(using the overall performance measure). The benefits of caching in this case are not as

significant as in the multi-bank configuration since bank cells will take longer to bypass

irrelevant polygons.

DATASET Polygons Average

Cache size

1 Bank 2 Banks

>•

4 Banks
.

' . -* - ' .

8 Banks

M ountainl 832 100 2.60 5.08 5.24 8.36

Mountain2 3328 300 2.88 5.08 5.32 3.78

Mountain3 53248 600 3.56 6.96 13.36 24.8

Bowling Alley 60777 5000 3.92 7.32 7.6 14.12

E scher’s H ouse 10938 500 3.44 4.32 9.2 10.16

Table 5.1 Performance results from 5 different datasets using an optimal cache size
and varying number of banks with 4 cells per bank.

r DATASET Polygons 2 Cells per Bank 4 Cells per Bank 16 Cells per Bank

M ountainl 832 1.83 2.90 2.96

Mountain2 3328 1.43 1.87 2.03

Mountain3 53248 1.27 1.66 3.14

Bowling Alley 60777 1.91 3.94 5.7

E scher’s H ouse 10938 1.79 3.46 3.95

Table 5.2 Performance results from 5 different datasets using the optimal cache
size and a varying number of bank cells for a single bank.

117

5.8 Incorporating Parallel Potential Mapping

As discussed in chapter three, anti-aliasing schemes for texture mapping can easily

‘bog-down’ any graphics system when high quality, non-blurred results are required. As

a result, a form of hardware accelerated texture mapping must be implemented in order

to realistically meet these demands in real-time. This section provides a new mechanism

for hardware accelerated TPM that can be integrated into the cellular array.

5.8.1 Hardware TPM

Texture potential mapping (in its most basic form) can be decomposed into four distinct

stages:

(i) Transformation

(ii) Pixel Edge Set-up

(iii) Pixel Edge Tracing

(iv) Summation of Final Results

Implementing TPM and TPMM is a relatively simple task in software since the

algorithms do not have to deal with ‘special cases’ that can easily overcomplicate the

design. This therefore offers the opportunity to pipeline the latter half of these stages in

to distinct hardware components as shown in figure 5.12. Pipelining these tasks

provides only a partial solution though, since very large textures will still incur long

processing times.

118

TEXTURE MEMORY LOCAL BUS

PIXEL
DATA ►

TRACER SUMMER

Figure 5.12 Process schematic of TPM indicating the ‘potential’ for a viable
hardware implementation.

To fully accelerate TPM and TPMM, we must distribute multiple tracers and summers

(i.e. texture processors) so that each is responsible for a particular region of the texture.

This will ensure that render times will remain within tolerable limits, even when texture

sizes become very large.

In order to devise an efficient scheme of TPM acceleration, we must ensure that both the

waiting time for texture processors and communication bandwidths are kept to a

minimum. To achieve this, texture processors should be left with as large a portion of

the work as possible, even if this means that some duplication takes place. Since each

processor is responsible for a fixed region of texture space, it follows that the region of

screen space that they deal with will change over time as new frames are rendered. The

easiest way to implement this is to pass an entire polygon worth of data to each texture

processor and allow the processor itself to decide those parts for which it is responsible

to process. However, texture processor responsibilities will grow out of proportion

(almost to the same scale a scan converter), making at much more expensive to

implement in hardware. A better solution is to let each texture processor make decisions

based only on single scan-lines (as shown in figure 5.13). Thus, we must pass screen-

based polygon spans to each processor along with the texture matrix.

119

POLYGON SPAN DATA

TEXTURE
PROCESSOR

TEXTURE
PROCE SSOR

TEXTURE
PROCESSOR

RGB DATA

TEXTURE
PROCESSOR

Figure 5.13 One possible parallel texture configuration to distribute the texturing
task (textures accessed on a different bus).

A simulation of this scheme has been implemented in software to examine the

performance gains possible. The following algorithm was used to generate simulation

results.

For each polygon span
Pass texture matrix and span extents to each texture processor
For each texture processor

Warp span extents to texture-space
Clip according to assigned texture region
For each warped pixel

Perform TPM for an RGB value

Since each processor will subdivide span data to regions that it is responsible for, the

time taken to texture-map a given polygon span will depend entirely on the maximum

length of the warped sub-spans in texture space (the value ‘d’ indicated in figure 5.14).

120

W*rp«d Screen Polygon
i Texture M%p

y,

j * \

7 \ v 5
V>k__ f

\
v r

Proc 1
Region 1 '---------

Proc 2
Region2 4>—

Proc3 Proc 4
Region3 Region 4

Figure 5.14 Texture space parallelism splits up large textures and accelerates
render times when polygon spans cross texture boundaries.

Performance gains are most evident when large textures are used on large planar

surfaces such as those used in flight simulators and interior walkthroughs. Benefits of

this scheme are not so evident however when textures are ‘wrapped’ onto objects that

consist of many micro-polygons. In this case, a single texture is clamped onto

thousands of polygons resulting in ony a few texels per polygon. The case in which

small textures are tessellated over large surfaces however, is easily dealt with by

tessellating the texture into available texture memory before processing occurs. Figure

5.15a shows a mesh using shrink-wrap texturing of a 512x512 owl texture. Texturing

with four texture processors accelerates the process by a factor of 1.5 when compared to

a single processor. However, Figure 5.15b is textured on a per polygon basis using the

same configuration with much a more acceptable performance gain of a factor of 2.3.

The table below summarises the results of the average relative performance between the

two texture schemes against a single texture processor.

TEXTURE WRAPPING SCHEME Performance gain

Cylindrical W rap 1.54

Planar clamping to polygons 2.35

121

Figure 5.15 The left image uses texture wrapping based on-object space geometry
per object-mesh (the blimp) giving poor performance boosts when parallelised.
The version on the right clamps textures over large polygonal surfaces in which
texturing is significantly speeded up when parallelised.

5.8.2 Hardware TPM and the Cellular Array

The problem now remains as to how the Parallel texture scheme should be linked in

with the cellular array architecture [SHRU96]. There are two possible strategies that

can be employed here, each of which has different implications regarding efficiency

and complexity.

The first possible approach is to assign a texture processor to each individual cellular

processor within each bank of the array to form a ‘cubic’ array topology (in concept

only - in reality, they would be present on the boards of the cells themselves). This

would ensure a simple communication network since texture processors can receive

input direct from processor cells and output values along the same bus. However, the

problem of redundancy may well occur when cells are busy in the middle of a process.

The possibility of cells being idle (again causing redundancy) is minimal here, as empty

cells will quickly fill up with small polygons. Figure 5.16 shows the arrangement of

processors for this scheme.

Cellular Processor

Texture Processor
(contains 4 sub-processors [SHRUB96])

Figure 5.16 Each cell in the array is linked to its own texture processor such that a
‘cubic’ cellular array is formed.

Although this scheme has the advantage of simplicity, at must also be noted that

memory requirements are significant. 32MB of texture memory per processor would

provide a reasonable compromise between performance and cost, so that overloading

the system/graphics bus at run-time is not a controlling factor on performance.

An alternative strategy is to adopt a processor-farming scheme in which a bank of

texture processors is connected to all of cells in the array. In this scheme, a cell that

requires texturing of its assigned object may access any of the idle texture processors in

the bank. This ensures that texture processors work at peak efficiency, but there must be

a sufficient availability of them in order to avoid un-textured objects “queuing up” for

processing. Figure 5.17 shows how processors will communicate in such a scheme.

123

Texture Processor 2Texture Processor 1

Figure 5.17 A processor farming strategy dictates that all cells should have access
to each texture processor.

One further disadvantage of this strategy is the increase in the complexity of the

communications network required. Such complexity will restrict future re-configuration

requirements and as a result will restrict the overall flexibility of the architecture. It

may also be argued that performance gains offered by texture processor farming will be

somewhat hindered due to access conflicts. This will certainly occur if there are an

insufficient number of texture processors in relation to the number of cells in the array.

124

5.9 Implications of Experimental Results

The simulation results of the cellular array highlight several properties:

1. The benefits of polygon caching are most evident when large datasets are used.

Polygon caching also minimises the dependency on the actual distribution of datasets

without incurring any performance penalty.

2. The cellular array can employ a wide range of real-time graphics algorithms. Since

each general-purpose processor would carry the complete set of algorithms, any

change to the system is simply a straightforward coding, recompilation and uploading

operation with no consequence to the overall hardware of the system. This ‘one suit

fits all’ strategy means that the inter-processor aspect of the system is hidden from

the point of view of the programmer.

3. Techniques can be employed so that the cellular array shows predictable performance

scalability as new processors are added. An increase in rendering performance is

possible simply by increasing the number of processors in the horizontal direction

when an increase in resolution, depth complexity or rendering sophistication is

required. Conversely, a greater capability in terms of the number of objects rendered

can be achieved by increasing the number of processors in the vertical direction.

4. It is possible that the clock synchronisation required to composite multiple pixel

contributions may affect the performance estimates. The multiplexing technology

required to re-combine the final image is dependant on the output display technology

required and must be able to deal with pixel fragment contributions from multiple

cells dedicated to particular regions of the screen. Such device dependency is the only

factor influencing the flexibility of the architecture. Composition of information

should therefore occur at the last possible moment (i.e. rudimentary pixel data) so

that different compositing schemes can be used without influencing the graphics

algorithms used in the cellular array. The bus to the multiplexer must therefore run at

a sufficiently high speed in order to deal with this, as well as allowing for a variable

number of processor banks. This would cater for pixel data to be pipelined before

125

composition occurs.

If the stream of assembled pixels (RGB values) emerging from the multiplexer are

stored in a double-buffered frame buffer, the display can be refreshed at any rate

desired so that the responsibility of output synchronisation can be externalised from

the array. Furthermore, the addition of processors to the array would require a code

recompilation with the provision of an interface to the multiplexer.

5. Parallel TPM for high quality anti-aliased results can best be achieved by parallelising

on a per-cell basis as opposed texture-processor farming. The farming scheme is

considered too complex in terms of networking if a re-configurable system is

required. Furthermore, the gains in performance of cubic array are identical to the

simulation results for a single processor and therefore provide a much more

consistent boost in performance when using TPM.

126

5.10 Conclusion

Results generated by simulation experiments show that the cellular array provides a new

flexible and scalable means to generate high performance 3D graphics. The most

prominent factor as to the viability of a cellular array implementation is the cost of

localised storage for each processor. The overall requirements are considerably high

when compared with other parallel graphics schemes, with 32-64MB DRAM per cell for

execution code, depth and pixel buffers, geometric data and textures (pixel-buffer sizes

depend on the number of cells per bank). Fortunately, the current and projected costs for

high-speed memoiy are very low. This has already encouraged many hardware vendors

to include significant amounts of storage in their graphics technology at high-street

prices (particularly for texture storage). Furthermore, the burden of polygon distribution

decisions that need to be made to maintain a balanced loading is virtually completely

removed from the host processor. This is achieved by localised polygon caching to help

overcome distribution dependency.

127

CHAPTER 6
Conclusions and Future Work

6.1 Conclusions

It can be concluded from the results of this thesis that high quality real-time graphics

can be achieved in a flexible and scalable way. From a multi-processing perspective, the

cellular array presented provides a long-term solution in a domain that has historically

relied on short-term compromises to generate hard-wired results. From a quality

perspective, Texture Potential mapping and Texture Potential MIP mapping provide a

means to heightened realism in interactive graphics systems at a realistic computational

cost.

Several new contributions to graphics research have been presented in this thesis. The

most significant of these are summarised below.

• Texture Potential Mapping

This texturing algorithm produces excellent anti-aliased results and is simple to

implement in hardware. The algorithm significantly reduces the amount of

blurring that is evident in many other texture anti-aliasing algorithms and

produces output at a realistic level of performance.

• Texture Potential MIP mapping

This algorithm allows much better control over the balance between quality and

performance. By varying this balance, so that the output of this algorithm co-

coincides with the qualitative results of other published texturing algorithms it is

possible to establish accurate comparisons with respect to performance. Analysis

of these results show that Texture Potential MIP mapping is more efficient than

other high quality methods.

• Cellular Array Architecture

128

J

Simulations of the cellular array have shown that, by fusing object space and

image space parallelism together, we simplify inter-processor communications

and provide a much more flexible and general-purpose architecture.

Solutions to processor network reconfiguration have been provided along with a

means to integrate pixel fragment composition schemes for continuous anti

aliasing.

Results also show that the scene dependency inherent in the cellular array can be

greatly reduced by applying polygon caching algorithms without placing any

burden on the host processor.

• Parallel Texture Mapping

Texture Potential mapping can be implemented in hardware and parallelised by

distributing regions of large textures amongst several texture processors.

Simulation results of this scheme have shown that high performance gains are

possible. A realistic means of integrating this scheme into the cellular array have

also been provided.

6.2 Future Work

The following issues separate from the main objectives presented in this thesis are

suggested for further study:

Warnock’s algorithm, presented in chapter two was stated as offering an interesting

extension to continuous anti-aliasing. However, practical applications of this algorithm

for pixel fragment composition were not taken far due to the performance costs incurred

when compared with other methods. However, the approach itself is quite elegant from

an algorithmic perspective. The author therefore offers this as possible future research

topic.

Since only the behavioural properties of cellular array processing have been studied in

order to prove the validity of the architecture, it is hoped that the cellular array will be

129

analysed further from the perspective of a hardware implementation using up-and-

coming technology. The algorithms used to simulate the parallel environment are quite

naive in some respects and certainly require further refinement in order to map to a

physical hardware environment. Ultimately, a real multi-processor prototyping

environment would provide the best results and this is recommended as a further course

of action.

One suggested enhancement to polygon distribution in the cellular array is to give the

host processor greater decision-making powers as to which banks polygon data should

be allocated. This has been avoided at all costs during the research to ensure that the

host processor does not become a performance bottleneck in a real system. However, a

powerful host processor may provide enough idle cycles to be able to ‘squeeze-in5

additional allocation intelligence. Therefore, it is suggested that this be looked into at a

later phase during the hardware development cycle.

The inclusion of parallel TPM into the architecture requires a better estimate on the

overall increase in performance. The results depend very much on the texture

parameterisation scheme employed and the size of the textures used. A more in-depth

study of this is required in future studies.

130

REFERENCES

[3DLA2000] 3Dlabs inc., "Wildcat 3D Graphics Technology: The Architectural
Foundation for 100 ProCDRS performance",
http://www.intense3d.com/parascal.html

[ABRA85] Abram, G., L. Westover, and T Whitted, “Efficient Alias Free
Rendering Using Bit-Masks and Lookup Tables”, SIGGRAPH 85, July, 22-26.

[AKEL88] Akeley, K. adm T. Jermoluk, “High Performance Polygon
Rendering”, Computer Graphics (Proceedings of SIGGRAPH 88) vol 22, 239-
246

[AKEL89] Akeley, K., “The Silicon Graphics 4D/240GTX Superworkstation”,
IEEE Computer Graphics and Applications, vol 9, July 1989, 71-83.

[APGA88] Apgar, B., B. Bersack, and A. Mammen, “A Display System for the
Stellar Graphics Supercomputer Model GS10000“, SIGGRAPH 88, 255-262.

[BRES65] Bresenham, J.E., “Algorithm for Computer Control of a Digital
plotter"” IBM Systems, 4(1); 25-30,1965

[CANT96] Cant, R.J., “Optimising Display Update Rates in Virtual Reality
Systems”, Simulation In Industry ESS96 Conference Proceedings, Italy, October
1996,24-28

[CANT2000] Cant R.J., Shrubsole, P., "Texture Potential MIP Mapping, A New
High Quality Texture Antialiasing Algorithm", ACM Transactions on Graphics
Volume 19 No. 3 July 2000 (to appear in October)

[CARP84] Carpenter, L., “The A Buffer, an Anti-aliased Hidden Surface
Method”, SIGGRAPH 84, vol 18,103-108.

[CATM74] Catmull, E.E., “A Subdivision Algorithm for Computer Display of
Curved Surfaces”, PhD Dissertation, university of Utah, Dec 1974

[CROW84] Crow, F., “Summed Area Tables for Texture Mapping”,
Computer Graphics, vol 18, July 84.

[DUDG91] Dudgeon, A., “Algorithms for Texture Mapping”, In Proceedings
of the 23rd South Eastern Symposium on Systems Theory, March 1991, 613-617

[EVAN91] Evans and Sutherland Computer Corporation, ESIG4000
Technical Overview, 600 Komas Drive, Salt Lake City

[EYLE88] Eyles, J., J. Austin, H. Fuchs, T. Greer, J. Poulton, “Pixel Planes 4:
A Summary”, Advances in Computer Graphics Hardware II, Eurographics
Seminar, 88,183-208

131

http://www.intense3d.com/parascal.html

[FEIB80] Feibish, A., M. Levoy, L. Cook, “Synthetic Texturing using Digital
Filters”, Computer Graphics vol 14, July 80

[FOLE90] Foley & van Dam [et al], "Computer Graphics : principles and
practice", 2nd edn. Addison-Wesley, 1990, 874-900
[FUCFI81] Fuchs, H., J. Poulton, “Pixel-Planes: A VSLI-Oriented Design for
a Raster Graphics Engine”, VLSI Design 2(3), Q3 81, 20-28.

[FUCH89] Fuchs, H., J. Poulton, J. Eyles, T.Greer, J. Goldfeather, D.Ellsworth,
S. Molnar, G. Turk, B. Tebbs, L. Isreal, “Pixel Planes 5: A Heterogeneous
Multiprocessor Graphics System using Processor-Enhanced Memories”,
SIGGRAPH 89, 79-88

[GREE86] Greenberg, D.P., M.F. Cohen, and K.E. Torrance, “Radiosity: A
Method for Computing Global Illumination”, The Virtual Computer 2, 1986,
291-297

[GLAS86] Glassner, A., “Adaptive Precision in Texture Mapping”, Computer
Graphics, vol 20, November 86.

[HAEB90] Haeberli, P. and K. Akeley, “The Accumulation Buffer: Hardware
Support for High Quality Rendering”, Computer Graphics (Proceedings of
SIGGRAPH 90) vol24,309-318

[HECK88] Heckbert, P., Survey of Texture Mapping, Computer Graphics:
Image Synthesis, Computer Society Press, 1988,321-322

[MITC87] Mitchell, D.P., “Generating Anti-aliased Images at Low Sampling
Densities”, SIGGRAPH 87, 65-72

[MOLN90] Molnar, Steven and Henry Fuchs, “Advanced Raster Graphics
Architecture”, Chapter 18 in Computer Graphics: Principles and Practice by
James D. Foley, Andries van Dam, Steven K. Feiner and John F. Hughes,
addison-Wesley, New York, 1990, 855-922.

[MOLN92] Molnar Steven., John Eyles, John Poulton, “PixelFlow: High
Speed Rendering Using Image Composition”, Computer Graphics 26, July 92,
231-240

[NVID2000] Nvidia Corporation, Transform and Lighting Technical Brief,
http://www.nvidia.com/Products/GeForce2ultra.nsf/second.html, August 2000

[OPPE75] Oppenheim, A.V. and Shafer, R.W., Digital Signal Processing,
Prentice Hall. Englewood Cliffs NJ, 1975.

[POTM83] Potmesil, M., and I. Chakravarty, “Synthetic Image Generation
with a Lens and Aperture Camera Model”, ACM TOG, April 1982, 85-108

132

http://www.nvidia.com/Products/GeForce2ultra.nsf/second.html

[ROSE73] Rose, A., Vision: Human and Electronic, Plenum Press, New York,
1973

[SCHA80] Schachter, B., “Long Crested Wave Models”, Computer Graphics
and Image Processing, 1980,12:187-201

[SCHA83] Schacter, B., Computer Image Generation, John Wiley & Sons,
Inc, New York, 1983

[SCHI93] Schilling, A., “EXACT: Algorithm and Hardware Architecture for
an Improved A Buffer”, SIGGRAPH Annual Conference Proceedings, August
1993, 85-92.

[SCHI96] Schilling, A., “Texram: A SmartMemory for Texturing”, IEEE
Computer Graphics and Applications, May 1996, 32-41.

[SGI2000] SGI inc, SGI Onyx 3000 datasheet, Corporate Office, Mountain View
U.S., August 2000

[SHRU96] Shrubsole, P., R.J. Cant, “Proposal for Distributed Texture
Mapping”, Simulation In Industry ESS96 Conference Proceedings, Italy,
October 1996,29-33.

[SHRU97] Shrubsole, P., Cant R.J., “Texture Potential Mapping: A Way to
Provide Anti-aliased texture without Blurring”, Visualisation and Modelling ,
Academic Press, December 1997, 223-240

[SHRU98] Shrubsole, P., “Cubic Cellular Graphics Processing: A
Simulation”, Simulation Technology: Science and Art, 10th European Simulation
Symposium Proceedings, October 1998, 666-670

[SUTH63] Sutherland, I.E., “Sketchpad: A Man-Machine Graphical
Communication System”, SJCC, Spartan Books, Baltimore MD 1963.

[SZAB83] Szabo, N., “Digital Image Anomolies: Static and Dynamic”, in
Computer Image Generation, Bruce J., Schachter, Ed., John Wiley & Sons, New
York, 1983,125-135.

[WARN69] Warnock, J., “A Hidden Surface Algorithm for Computer
Generated Half-Tone Pictures”, Technical Report TR 4-15, NTIS AD-753 671,
Computer Science Dept, University of Utah, June 1969.

[WATT98] Watt A. and Watt M., “Advanced Animation and Rendering
Techniques”, ACM Press, New York, 125-127.

[WHIT80] Whitted, Turner., “An Improved Illumination Model for Shaded
Display”. ACM June 1980, 343-349

[WILL83] Williams, L., “Pyramidal Parametrics”, Computer Graphics vol
17, July 1983

133

Publications by Author

Proposal for Distributed Texture Mapping, Simulation In Industry ESS96
Conference Proceedings, Italy, October 1996, 29-33.

Texture Potential Mapping: A Way to Provide Anti-aliased texture without
Blurring, Visualisation and Modelling, Academic Press, December 1997,223-240

Cubic Cellular Graphics Processing: A Simulation, Simulation Technology, 10th
European Simulation Symposium Proceedings, October 1998, 666-670

Texture Potential MIP Mapping, A New High Quality Texture Antialiasing
Algorithm, R. J. Cant and P. A. Shrubsole, ACM Transactions on graphics, July
2000 (to be printed in October)

134

