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Abstract
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Conventional machine control typically requires the measurement of numerous parameters in 
order to define the system state. These various parameters, from sensors such as shaft encoders, 
accelerometers, etc., are combined through the control system to provide output actuation. For 
many problems, the vast number of input transducers required and the complexity of control 
algorithms mean that such problems are not economically addressable. This is particularly true 
when non-linearity of the process and time variant process parameters are encountered. In 
contrast a skilled operator would be able to judge, for example, the quality of cut by visual 
inspection of the workpiece, and based on experience adjust some of the parameters in order to 
improve the performance. The work reported in this thesis attempts to employ Artificial 
Intelligence in combination with remote sensing, in order to reduce the need for feedback sensors 
and achieve a more effective computer control solution.

The research uses automation of lace trimming as a suitable platform for investigation. The 
main problems here are cutter path detection in real-time and coping with material flexibility. The 
system has to work with many different patterns and sizes of lace as well as tolerating 
misalignment. To achieve a sufficient degree of automation, the trimming path must be located 
without prior knowledge of the lace pattern. A Fuzzy Reasoning Rule-based technique is applied 
to overcome the problem of material pattern variation and distortion. Finding the river location 
across the lace strip must be carried out in real-time. To achieve this, a novel approach, namely 
the Line Mapping Method, is devised to speed up the search for the path. Experimental results 
indicate that the path can be successfully detected in different lace patterns in real time, whilst 
coping with lace distortion.

Work has been reported in using non-tactile means to cut deformable materials. Although 
the use of non-tactile cutters reduces material deformation, distortion due to mechanical feed 
misalignment persists. Changes in the lace pattern are also caused by the release of tension in the 
lace structure as it is cut. To tackle the problem of distortion due to material flexibility in general, 
a novel approach using inexact algorithms, i.e., fuzzy logic, neural networks and neural fuzzy 
technique, is developed. A Spring Mounted Pen is used to emulate material distortion caused by 
tactile cutting and feed misalignment. Using pre- and post-processing vision systems, it is 
possible to monitor the effects of flexibility and generate on-line information for error 
compensation. Applying the algorithms developed, the system can produce excellent results, 
much better than a human operator.

The system developed is a novel approach to flexible sheet material trimming and has further 
applications where modelling system behaviour characteristics is difficult. Such systems can 
range from controlling a robot moving on a slippery surface or piloting a boat. Furthermore, by 
relying on the intelligent software engine, problems such as transmission backlash, joint flexibility 
and stick-slip can potentially be compensated for. When characteristics of the mechanism, such 
as component wear and temperature, change over time, the controller can learn the new system 
behaviour and automatically make appropriate compensation. An industrially sponsored 
programme of work has just commenced to develop a commercial machine tool controller based 
011 the developed principle.
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Glossary

Activation function
Algorithm for computing the activation value of a network node as a function of its net 
input. The net input is usually the sum of the weighted inputs to the neurode, but may 
take on many other forms.

AI
Artificial Intelligence.

ANN
Artificial Neural Networks.

Back-propagation
A learning rule for multilayer feedforward networks, in which weights are adjusted by 
backward propagation of the error signal from outputs to inputs.

Batch training
Procedure for training neural networks, in which the weights are adjusted for each 
epoch.

Bias
Weight from an unit in a neural network that is always on. Acts on a network unit like 
an offset. All units in a network, except those in the input layer, usually have a bias. 

Binary image
A black and white digitised image represented as zeros and ones.

Bitmap
A binary image represented by zeros and ones.

CAD
Computer Aided Design.

CAM
Computer Aided Manufacturing.

CCD Camera
Charge coupled device camera.

CCIR
European monochrome broadcasting system standard which requires 625 lines at a 50- 
Hz frame rate.

Defuzzification
The process of converting fuzzy outputs into a single raw or crisp output.
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Digital image
A representation of a visual image by an array of brightness values.

Edge
A change in pixel values (exceeding some threshold) between two regions of relatively 
uniform values. Edges correspond to changes in brightness which can correspond to a 
discontinuity in surface orientation, surface reflectance or illumination.

Edge detection S
The ability to determine the ti*ue edge of an object. #

Epoch
Presentation of a set of training patterns to an Artificial Neural Network.

FAM Bank
Fuzzy Associative Memory bank, which is used to reduce the number of the fuzzy rules 
for speeding up the calculation. J

Frame
Digital data representing a single image at a specific point in time.

Fuzzification
The procedure of calculating an input value to represent a degree of membership in one 
or more fuzzy sets. §

Fuzzy Engine
An intelligent software kernel based on applying fuzzy logic technique.

Fuzzy Logic
Fuzzy logic is an extension of set theoretic multivalued logic in which the truth values ;| |
are linguistic variables (or terms of the linguistic variable truth).

Fuzzy Set
A fuzzy set is a set containing elements which have varying degrees of membership in 
the set. Elements in a fuzzy set can be members of other fuzzy sets on the same 
universe.

Gradient decent
Algorithm for minimising some error measure by making small incremental weight 
adjustments proportional to the gradient of the error. ;g

Gray level (scale)
A quantised measurement of image irradiance (brightness), or other pixel property 
usually given in integer values.

Gray scale image
An image consisting of an array of pixels where each pixel has a value representing the 
average light intensity on the area. Typically, 16, 64, or 256 levels are possible for each ?
pixel, depending on the number of bits available to process and store data.
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Histogram
Frequency counts of the occurrence of each intensity (gray level) in an image usually ,1
plotted as the number of pixels with a given gray value vs. gray level. |

Image enhancement f
The use of processing techniques to accentuate certain properties to improve the nature ff
of the information received from an image. j§

Image processing
Transformation of an initial image into a second image with more desirable properties, f

xix

I

1

such as increased sharpness, less noise and reduced geometric distortion.
Inexact Algorithms

An innovative approach which applies fuzzy logic, neural network and neural fuzzy 
technique as an intelligent kernel for solving very complex problems.

Intensity
The relative brightness of an image or portion of an image. J

Learning rate
Parameter that regulates the relative magnitude of weight changes during learning. |

V':
Learning rule |

An algorithm for adjusting the weights and connections of a network based on %
:%

experience. J
Least mean-square rule

Window-Hoff rule. Learning rule in which change of weight is proportional to the 
difference between the actual activation and the desired activation. The rule leads to 
minimisation of mean-squared error.

Machine vision
The ability of an automated system to perform certain tasks normally associated with 
human vision, including sensing, image formation, image analysis, and image 
interpretation or decision making.

Membership Function
If X is a collection of objects denoted generically by x then a fuzzy set A in X is a set of $

y§
ordered pairs: A = {(x ,p .(x ))L t€ X}. is called the membership function, or

grade of membership of x in A which maps X to the membership space M (0, 1).
Momentum factor p

Constant used to promote stability of weight adaptation in a learning rule. To prevent 4?
excessive weight change and possible oscillation, weight changes are moderated by a 
term that is proportional to the previous weight change and the momentum factor. I

I
a
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Network paradigm
Particular choice of a set of network attributes to achieve a particular kind of 
processing.

Neural Engine
An intelligent software kernel based on applying neural network approach.

Neural Fuzzy Engine
An intelligent software kernel based on applying neural fuzzy theory.

Neural Networks
Networks of adaptable nodes which, through a process of learning from task examples, 
store experiential knowledge and make it available for use.

Neurode
Active unit in a neural network. Consists of a set of inputs from other neurodes and an 
output that can go to any number of other neurodes. Performs an activation function on 
its inputs to produce an activation value that is placed on the output. Can contain local 
storage that is used to compute the activation value. A neurode is activated by the 
update procedure.

NTSC
Standard for colour image in America which augments the RS-170 standard by utilising 
a 3.58 MH colour sub carrier on the video signal.

PAL
Standard for colour images in the European broadcast system which is the equivalent of 
NTSC in the American system.

Path-following-error
The difference between the desired path and the actual path.

Perceptron
Simple network developed by Roseblatt, consisting of an input layer connected to a 
single neurode. The activation function of this unit is a linear threshold function applied 
to the inner product of the input and weight vectors.

Pixel
The smallest element of a scene, a picture element, over which an average brightness 
value is determined and used to represent that portion of the scene. Pixels are arranged 
in a rectangular array to form a complete image of the scene.

Probability
The term of probability in the document denotes a confidence level.
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Resolution
The smallest feature of an image which can be sensed by a vision system. Resolution is 
generally a function of the number of pixels in the image, with a greater number of 
pixels giving better resolution.

RS 170
Standard TV monitor interface; 525 scans, interlaced, 1/30 second, active time 52 
microseconds, retrace time 11.6 microseconds.

Sigmoid function
Nonlinear activation function whose output is a non decreasing and differentiable 
function of the input with maximum and minimum saturation values.

Spring Mounted Pen (SMP)
A pen with a spring on the top connected with the Z axis of a cutting mechanism. This 
mechanism is used to emulate the movement (distortion) of the material strip due to the 
cutting forces caused by a tactile cutter.

Squashing function
Function whose value is always between finite limits, even when the input is unbounded. 

Sum-squared error
Measure of total error of a network for a given set of input target pairs.

Supervised learning
Learning procedure in which a network is presented with a set of input pattern target 
pairs. The network compares its output to the target and adapts itself according to the 
learning rules.

Thresholding
Separating elements or regions of an image for processing based on pixel values above 
or below a chosen (threshold) value or gray level.

Unsupervised learning
Learning procedure in which a network is presented with a set of input patterns. The 
network adapts itself according to the statistical associations in the input patterns. 

Weight
Connection strength. Strength of a connection between two neurodes, which 
determines the amount of effect that one neurode can have on the other. Connections 
have a positive, zero, or negative weight. Positive values are excitatory, and negative 
values are inhibitory.
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Chapter 1 
I n t r o d u c t io n

1.1 Machine Vision System

1.2 Scope of the Project

1.3 Literature Review

1.4 Outline of the Thesis

1.1 Machine Vision System

In manufacturing industry, tasks requiring the use of eyesight have in the past always 

been carried out by human operators. This restricted the spread of automation mainly to 

repetitive mechanical tasks, working with materials of good and consistent quality, or to 

those where variations are closely controlled and the necessary feedback of information from 

the process is of a fairly simple kind.

Machine vision is both better and worse than eyesight. In certain circumstances it can 

be faster. It will continue working round the clock and will not tire. It can work in 

conditions which would be very unpleasant or impossible for a human operator. It can take 

dimensional measurements better than a person can estimate by eye, and can give an 

objective measure of other variables such as colour which an inspector could only assess 

subjectively. On the other hand machine vision is not backed by the power of the human 

brain, it needs time to analyse a complex scene or to look for several characteristics. It is 

fussy about lighting and may have difficulty in coping with reflections and with insignificant 

random variations in the objects it is looking at. At present there are two broad areas of 

application for vision systems in industry:
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1) Inspection - This is at present by far the most important area [HOL84] and there is a

great diversity of application, including not only the visual examination for 

defects such as normally done by eye but also measurement of dimensions or 

other characteristics, counting, checking of orientation, and so on.

2) Guidance - Applications include control of robots, vehicles, orientation devices and so

on in parts handling, sorting and transport.

The benefits of using machine vision are as follows:

1) No alternative - There are some situations where vision has provided a solution to a

problem where no alternative has been found feasible, such that it has been 

the means of making a new production process possible;

2) Safety and reliability - Where human life is at stake, whether it is in handling dangerous

drugs or potentially lethal vehicles, every item must be inspected at least 

once, sometimes more often, and even then there may be sample testing of 

finished products;

3) Product quality - Below the absolute demands of safety there is the large and increasingly

important area of product quality. In a highly competitive world, quality is 

often as important a consideration as price;

4) Automation aid - If machine vision is instrumental in the introduction of flexible

automation, then it can claim an important share in many tangible and 

intangible benefits, like reduced work in progress, shorter door-to-door time, 

possibly a change from manufacturing for stock to manufacturing against 

orders, shorter lead time from design to production, and capital savings 

through the purchase of adaptable plant and tooling with a longer life than 

dedicated equipment.

Widespread use of robotics and CAD/CAM in the industrial sector provides a need for 

an automated process of acquiring vision information in digital form. At the same time,
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social, industrial, and economic changes mandate a need to increase productivity in the 

manufacturing sector of the economy, improve levels of quality and reliability in the finished 

product, and provide better traceability of parts going into the item being manufactured for 

product-defect liability aspects.

1.2 Scope of the Project

Conventional machine tool control techniques use sensors such as shaft encoders and 

piezoelectric transducers to provide the necessary feedback signals. Such sensors supply 

local information on angular displacement of a rotating shaft or deflection of a machine 

membrane. This information is combined and used to control and monitor the operation of 

machine tools and robots. Although conventional techniques provide a reasonable means of 

control and monitoring, their effectiveness is very low. This is mainly due to the complexity 

of the signal combination method (control loop) and the high cost of feedback sensors.

When conventional sensors alone are used, a fairly complex technique would be required 

to determine whether there is a fault such as a blunt cutter head. In contrast a skilled 

operator would be able to judge the quality of cut by visual inspection of the workpiece. By 

employing remote sensing (camera) to monitor the performance of the machine, at the end- 

effector point, as well as feeding back the conventional signals, it should be possible to 

achieve a more effective solution [PRO90].

In such a situation, there will be no need to resort to complex methods to derive the 

information from the local sensors. In applications such as flexible material processing, e.g. 

lace cutting where visual effects of the finished product are more important than their 

engineering precision, it may be possible to reduce the use of conventional feedback sensors 

and rely almost entirely on remote sensing. Furthermore, it would be interesting to 

determine the effect of eliminating local sensors altogether and to rely on remote sensing and 

post-process monitoring alone.
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Figure 1-1: Samples o f lace patterns

This project uses automated lace trimming as a good example for experimentation and 

assessment of the effectiveness of using remote sensing for control and monitoring. Lace is 

difficult to cut automatically. It comprises a fine and intricate pattern, with various densities 

of knit and holes (see Figure 1-1). On most designs the pattern repeats many times across 

the width and length, but in practice the repeats are never absolutely identical. Furthermore, 

lace is flexible, extensible and easily distorts, effectively changing the pattern [NOR91]. 

Norton-Wayne experiences this problem and states that "this characteristic of lace makes it 

impossible to cut a consistent position" [NOR91]. Russell et al. approach this problem by 

trying to locate a reference feature in the lace motif so that they can keep track of the 

changes in the pattern due to stretch [RUS88]. Moreover, the vision system has to work 

with many different lace patterns and sizes and tolerate misalignment, stretch and other 

distortions of the lace [SHE94a]. By coupling the pre and post processes (Figure 1-2), it is 

possible to monitor the process and generate on-line information for the controller and hence 

overcome the flexibility problem.
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Figure 1-2: Integrating the pre and post processing visions with 

a industrial production system

In this programme of work it is proposed to use computer vision to find the cutter path 

and monitor the effectiveness of path finding and cutting processes downstream of the cutter. 

A closely coupling between the two allows detection of errors and alteration of control 

parameters on line.

The main emphases of the project is to investigate the use of inexact algorithms, e.g., 

fuzzy logic, neural networks, and neural fuzzy technique, in order to overcome the problems 

of complexity and flexibility. Furthermore, it is proposed to use the inexact algorithms as the 

basis for achieving optimal quality which satisfies visual demands rather than engineering 

precision. Employing inexact matching techniques, potentially allows development of 

methods for detecting unsatisfactory or faulty operation which may be applicable to similar 

manufacturing processes such as sign cutting. Multi-processing techniques may be use to 

satisfy the real-time requirements for the coupling.
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1.3 Literature Review

The first published paper for the automatic cutting of deformable materials using 

machine vision was in 1988 [RUS88], This lace cutting system employs a low-cost binary 

vision system which uses a Micron Technology IS32 DRAM as its optical sensor to give a 

256 by 64 pixel binary image. An Intel 8751 single-chip microcomputer interfaces directly 

with the IS32 vision sensor. This microcomputer performs the image processing operations 

and transfers the results to a BBC personal computer for display. The BBC personal 

computer also issues commands to select the operations performed by the vision system. A 

back lighting structure is selected in the system.

A form of template matching is used to determine the position of the lace in the vision 

system image. A 'slice' across the width of the lace pattern, at a point which includes some 

distinguishing feature, is recorded as a template. By examining the difference between this 

template and the lace image, the extracted information can be used to determine the actual 

position of the lace image. According to the experimental results mentioned in the paper 

[RUS88], the 8051 microcomputer takes about 2 seconds to perform a template match over 

the full area of the image. The exact time depends upon the precise location of the lace 

within the field of vision.

The experimental results indicate that the speed for detecting a cutting path is 

insufficient for a commercial type of machine. As template matching is used to determine the 

actual position of the lace image, prior knowledge for each lace pattern is required before the 

system is operated.

In 1992, another computer vision based lace scalloping system was reported [BRI92] 

[KIN93]. This system was designed for tracking pre-defined path along a patterned web of 

material. The system uses multiple digital signal processors (DSPs) to acquire and process 

image data from a high-resolution line-scan CCD camera. Control information is generated
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to allow cutting of the web along the tracked path using a C 02 laser beam defected by a 

galvanometer mounted mirror. Illumination of the system is achieved by back-lighting of the 

web along the line of view of the camera.

The vision system comprises a high speed, high resolution linescan camera (0.1 mm and

0.35 mm in each direction) coupled via a specifically designed interface to two LSI VME 

DSP boards with multiple Motorola 56001 devices (Figure 1-3). The DSP boards 

communicate with the supervisory computer (68020 processor) over the VMEbus. The 

linescan camera is a 2K element CCD device with specifications sufficient to allow a spatial 

resolution of 0.1 mm. The camera's field of view is 200 mm wide. The interface board 

allows the first DSP to set the threshold of the image data and also compiles 24 bit data 

packets which are then transferred into shared memory. The lace movement is sensed by a 

high resolution optical encoder. The second DSP in the system is responsible for the 

tracking of the material and derivation of the control signals for the laser cutter. The basic 

technique is to use a pre-defined reference map. The reference map is made by scanning one

s t a r t  u n  e-s c a n

HD-
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> PIXEL COUNTER
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  t X .  I g4  BIT SHIFT REGISTER I
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V M EBUS
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€8020

oo OPERATOR INTERFACE

DSP 1 - 56001  

CAMERA CONTROL 
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SHARED MEMORY

D S P 2 -S 6 0 0 1
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Figure 1-3: The hardware structure o f the King's lace scalloping system [KIN93]
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pattern repeat and manually defining the required cutting path using the high resolution 

display. This is required for each new material sample and the results are stored on disk.

Centre-weighted line match (incremental algorithm) and decaying impulse response of a 

particular filter [KIN93] are used to perform the matching and tracking processes of the lace 

pattern. This approach is robust against distortion and scale errors of ±10% in both 

directions across the web. The results of the above processing are placed in a FDFO buffer 

ready for passing to the laser positioning controller. According to the experimental results 

stated in the report, scalloping is successfully carried out at web speeds of 220 mm/s (13.2 

meter/minute). This is limited primarily by the processing capability of the DSP performing 

the tracking algorithm.

Similar to the previous case, template data from one repeat of the lace pattern is defined 

manually as a reference map for tracking the actual cutting path. This is considered a 

disadvantage from the automation point of view.

1.4 Outline of the Thesis

This report is structured into eight chapters.

Chapter 1 introduces the machine vision system and the main goals of the project. The 

present techniques developed for deformable material processes are reviewed. 

Chapter 2 presents the vision equipment employed in the system and the techniques used to 

process the captured images. Methods to correct the optical distortion are also 

discussed.

Chapter 3 briefly describes the selected test rig, presents the methods to calibrate the camera 

with this CNC machine and the scheme to manage the operation of the vision 

based control in real-time.
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Chapter 4 presents the real-time automatic lace trimming system. The fundamentals of 

fuzzy logic theory are described. A number of methods are designed to detect the 

cutting path from a lace pattern, including the pixel intensity directed feature 

extraction approach, fuzzy pattern recognition technique and line mapping 

method. The scheme to supervise the vision system and the cutting mechanism is 

presented. Various experimental results are provided to verify the developed 

methods.

Chapter 5 defines a coupled vision based control system using inexact algorithms, such as 

fuzzy logic, neural networks and neural fuzzy technique. Through a learning 

process, the intelligent system can automatically detect and correct the processing 

errors, e.g., path-following-errors. The theories of neural networks and neural 

fuzzy system are introduced here.

Chapter 6 describes a new type of learning technique - the rapid learning algorithm. Only 

one frame of the training process is required to minimise the deviation between 

the intended pattern and the actual drawing pattern. The scheme of engaging a 

neural-network-based kernel to create the compensated pattern to the controller 

is presented.

Chapter 7 discusses the work conducted and some problems encountered during the 

experiments. Future work is suggested.

Chapter 8 concludes the thesis.

Five appendices are provided at the end of this document:

Appendix A provides information on the telecentric lens for the vision system.

Appendix B lists the PACER VMC HPGL commands used in the project.

Appendix C illustrates various samples of SMP following processes using the 2VMethod 

(together with the Piecewise Error Compensation Algorithm) and the 

3VMethod, respectively.
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Appendix D illustrates a number of samples of SMP following processes using the Generic 

Error Compensation Algorithm.

Appendix E provides copies of papers published by the Author.
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f
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2. VISION SYSTEM 
AND IMAGE ANALYSIS

Chapter 2
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Chapter 2
V ision  System  and  Im age  Analysis

2.1 Introduction

2.2 Configurations of the Vision System

2.3 Thresholding Operation

2.4 Image Extraction and Analysis

2.5 Correction of Optical Distortion

2.6 Summary

2.1 Introduction

Machine vision and digital imaging technology is multi-disciplinary in the sense that the 

field uses the knowledge of traditional engineering and computer programming for the 

different parts of the process. The process can be subdivided into the following three 

activities:

1) Obtaining the digital representation of an image;

2) Employing computational techniques to process or modify the image data;

3) Analysing and using the results of the processing for the purpose of guiding robots or 

controlling automated equipment, assuring a level of quality in a manufacturing process 

or supporting statistical analysis in a computer-assisted-manufacturing (CAM) system.

A machine vision system comprises all the elements necessary to obtain a digital 

representation of a visual image, to modify the data and to present the digital image data to 

the external world. The system may appear complex in an industrial environment due to all
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Figure 2-1: Industrial vision based manufacturing system

the associated manufacturing process equipment used in the application. The complexity is 

reduced when the system is viewed in terms of the three main functional components:

1) Image acquisition;

2) Processing;

3) Output or display.

Factory automation applications involve the use of vision technology in the inspection tasks 

to improve the quality of the products produced, in the data collection tasks for inventory 

and management control, and in the process or machine control tasks for improving 

manufacturing productivity. A simple industrial vision system used for factory automation 

could be characterised by a single camera monitoring an assembly line as shown in Figure 2-

1. The vision system observes the object, determines if it is within specifications and 

generates command signals according to the determined results. The image acquisition 

equipment includes the lights, camera and the frame grabber. The processing equipment 

includes both hardware and software in the vision processing unit and the output equipment 

is the electronics interfacing the system to various parts of the manufacturing world.
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A machine vision system’s image acquisition time depends on the size of the image 

matrix, the processing time of the frame-grabbing electronics and the type of the camera. 

Tube type cameras operating in a conventional RS-170 mode will produce 30 images per 

second for standard commercially available monitors; the number of images per second could 

be increased by an estimated factor of five or ten by using a non-RS-170 mode. Solid state 

cameras can acquire the image as ten microseconds; the time required to read out the signal 

from the sensor will depend on the size of the matrix, processing speed and system 

bandwidth.

Image acquisition using machine vision systems is as much as ten times greater than of 

the human vision system. This ratio is increasing with time as the state of the art in 

electronics improves, while that of the human system is not changing. The task response 

capability of the machine vision system is on the order of fifteen times greater than of the 

human system [LOU90]. In tills respect, a machine vision system is potentially allowed to 

achieve a better performance than a human operator.

2.2 Configurations of the Vision System

The proposed machine vision system mainly consists of five elements: 1) Frame 

Grabber, 2) Camera and Lens, 3) Video Multiplexer, 4) Analog Monochrome Video 

Monitor, and 5) Illumination, which are closely integrated with a host system (Intel 80486 

processor running at 66 MHz).

• Frame Grabber

A VFG-512 Frame Grabber is used in the project. The basic function of the VFG-512 

Frame Grabber is a plug-in card for the IBM PC. It has 256K bytes of frame memory 

organised as 512x512x8 bits. The VFG Frame Grabber digitises the incoming video signal
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to 8 bits resolution at a rate of 30 frames per second from a standard RS-170 video input in 

real time. With the 8-bit A/D converter, the pixel resolution increases four fold to 256 gray 

levels. Each pixel uses 8 bits of storage in the frame memory, where the pixel may take a 

value between 0 and 255 with value 0 corresponding to the black and 255 to the white level. 

Image data stored in the on-board frame memory can be enhanced or modified by image 

processing techniques for displaying on the video monitor. Besides, data in the frame 

memory can be stored onto disk for later use. The image acquired can be displayed 

simultaneously on an analog video monitor.

The VFG Frame Grabber hardware consists of four major sections as shown in Figure 2-

2. The Bus Interface section of the host computer decodes the frame memory access and 

I/O commands from the PC bus. The Frame Memory Subsystem consists of a dual-ported 

frame memory and a frame memory controller. The Digitisation Logic section digitises the 

incoming RS-170 interlaced video signals to 8-bit resolution and stores them into the frame 

memory. A phase locked loop circuit is used to synchronise the digitisation clock with 

incoming video signals. Also, a 10 MHz pixel clock is generated for digitising and displaying 

the image. The Display Logic section generates RS-170 or CCIR interlaced video output 

signals by reading frame memory contents at a rate of 10 million pixels per second. Any of 

the four 256x8 bits output Look Up Tables can be selected for pixel transformation prior to

video 
output 
— 1>

video
input

-o o- c u 

bits bits

 ̂ host computer

Frame
Memory

Display
Logic

Digitisation
Logic

Host System  
Bus Interface

Figure 2-2: The VFG Frame Grabber block diagram
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Figure 2-3: The VFG memory block partition 

displaying on a video monitor.

As depicted in Figure 2-3 the VFG frame memory is organised as 512 by 512 pixels 

which are divided into four 64K byte memory blocks and mapped to four quadrants on the 

monitor screen, so only one block of the frame memory can be accessed by the PC at a time. 

Any of the sixteen 64K bytes memory address slots in the PC can be juniper selected as the 

mapping slot for the VFG frame memory. The frame memory is dual-ported, so the PC can 

access the frame memory randomly and it has a scan mode which allows simultaneous image 

acquisition and display. However, the image displayed has a time lag of one frame period.

• Camera and Lens

Two TM 526 Black and White CCD (Charge Coupled Device) Cameras (PULNIX) are 

connected to the frame grabber via a Video Multiplexer. Two different sizes of standard 2/3 

inch lenses (RS) are mounted on the cameras:

- 8.5 mm FI.3 lens (pre-processing vision system);

- 16 mm FI.4 lens (post-processing vision system).
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• Video Multiplexer

A VIDMUX-4 (solid state, quad video multiplexer, ImageNation Corp.) board is used in 

the vision system to switch four input video signals to the frame grabber. Dip switch 

selectable port address allowing up to sixteen vidmux - 4 boards in one computer. A simple 

command line written in C programming language can operate the video multiplexer to 

switch between different channels.

• Analog Monochrome Video Monitor

A Hitachi VM-920 Monochrome Video Monitor is engaged to receive the video signal 

from the frame grabber and continuously display the black and white gray-level pictures. 

This Monochrome Monitor is used to display the real-time image when the target object is 

arranged within the field of vision.

• Illumination

Illumination is a key parameter affecting the input to a machine vision system since it 

directly affects the quality of the input data and may require as much as 30% of the

O
CCD Cam era

Fluorescent
Lamp

object

Figure 2-4: Schematic diagram o f the front lighting vision system
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CAMERA 2 
(16mm lens)

CAMERA 1 
(8.5mm lens)

VIDEO MONITOR 
(VM-920)

LIGHTING 
(fluorescent lamps)

FRAME GRABBER 
(VFG-512)

VIDEO MULTIPLEXER 
(VIDMUX-4)

HOST COMPUTER 
(IBM PC)

Figure 2-5: Block diagram for the vision system overview

application effort. It is necessary to customise the illumination for each application since 

there is essentially no standardised general purpose machine vision illumination equipment. 

The method and specific source of light energy affect the amount of processing and 

achievable results.

The methods for industrial applications can be subdivided into four categories: 1) back 

lighting, 2) front lighting, 3) structured lighting, and 4) strobe fighting. As illustrated by 

Figure 2-4, front fighting which employs fight reflected from the object is applied to 

construct the illumination system in the project. The illumination sources and the camera are 

both on the same side of the object. This method of illumination is used to obtain 

information on the surface features as well as for dimensioning. A block diagram which is 

shown the interrelation among these vision elements is illustrated in Figure 2-5.

2.3 Thresholding Operation

Thresholding operation or bi-leveling operation, is used to remove the gray-level trends 

in an image, to make the gray-level regions more discrete, to 'segment' (or split into distinct 

parts) an image. Thresholding normally refers to setting all the gray levels below a certain
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level to zero; or above a certain level to a maximum brightness level. The maximum 

brightness will be 255 on an 8-bit plane system. This will screen out unwanted variations in 

an image where all those variations are around, above or below a certain grey level.

Thresholding can be used to create a binary image (bitmap). Rarely is it possible to 

identify a perfect gray-level break. Normally errors are made in the classification of pixels as 

background or foreground as soon as any thresholding is done. When classifying a range of 

gray scales into one set, two types of error can be made:

1) Not all pixels are caught that should be included;

2) Some pixels caught should not be in the group.

The choice of threshold level aims to balance these two types of error, but there are 

circumstances when it is more favourable for there to be more of one than the other. The 

threshold function operator may be applied on a global scale to the entire image, or different 

threshold values may be used for different objects and regions of the image. Two different 

methods have been attempted in the project to bi-level a 256 gray-level image. The first 

approach is based on histogram shape analysis. The second method examines the average 

intensity of each vertical strip of an image.

2.3.1 Histogram analysis

Many scenes, in industrial applications for instance, consist simply of an object on a 

uniform background, or perhaps a slowly varying background. Such a scene is very 

straightforward to segment simply by looking at its histogram. A histogram is a graphical 

representation of the frequency count of the occurrence of each intensity (gray level) in an 

image. The abscissa or x-axis is the values of gray levels and the ordinate or y-axis is the 

number of pixels having that gray level. The histogram is constructed by
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1 7 5  (coventional)
ANALYSED OBJECT

Figure 2-6: Gray level histogram analysis using optimal thresholding

1) Digitising the image frame;

2) Counting the pixels at each gray scale level;

3) Plotting the frequency count of pixels at each gray level.

If an image consists of an object of approximately the same gray level that differs from 

the gray level of the background, the resulting histogram is bi-modal. Pixels of objects form 

one of its peaks, while pixels of the background form the second peak. A method based on

Figure 2-7: Bi-level lace bitmap image (using optimal thresholding)
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approximation of the histogram of an image, using a weighted sum of two or more 

probability densities with normal distribution, represent a different approach called optimal 

thresholding. The threshold is set as the closest gray level corresponding to the minimum 

probability between the maximums of two or more normal distributions, which results in 

minimum error segmentation [SON93].

Figure 2-6 shows the histogram analysis using the optimal thresholding. The difficulty 

with this method is in estimating normal distribution parameters together with the uncertainty 

that the distribution may be considered normal. The difficulties may be overcome if an 

optimal threshold is sought that maximises gray level variance between objects and 

background.

(DWHtTE BACKGROUND

LIGHT INTENSITY ANALYSING

(2) BLACK BACKGROUND

Figure 2-8: Spectral map analysis using white and black backgrounds

SPECTRAL MAPS
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As illustrated in Figure 2-7, after the bi-leveling operation, using optimal thresholding 

the image shows up as a bitmap (2-colour black and white image). Inspecting the resulting 

bitmap, it is clear that this thresholding process is unsuitable for this problem. By analysing 

the spectral map of the background image (no object within the scene), the irregular light 

intensity of the illumination system is highlighted. Since two fluorescent lamps are employed 

to build the front lighting system (for cost effectiveness), a continuous change of the lighting 

all over the entire scene has occurred (see Figure 2-8, where the X and Y show the pixel 

grid; the Z axis shows the pixel gray-level). Using the optimal thresholding operation, which 

adopts only one thresholding level, normally produces dissatisfied outcomes for the project.

A new bi-leveling method based on examining the average intensity of each vertical strip 

of an image has been developed to solve the above problem. This method is described in the 

following section..

2.3.2 Average intensity analysis

This method is based on finding the average intensity of each vertical strip and 

examining which points lie above and below this threshold. Equation 2-1 represents the 

calculation of the thresholding points over the entire image.

Figure 2-9: Bi-level lace bitmap image (using average intensity analysis)
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'L(x-y)\x.i
Thresholding Point( i)   (2-1)

( j  + 1)

where i = 0 to 255, and j = 0 to 255 on an 8-bit plane system.

Figure 2-9 illustrates the bi-leveled image using average intensity analysis. Compared 

with the binary image presented in Figure 2-7, it is clear that this new thresholding method 

can produce better results than using the conventional histogram analysis (optimal 

thresholding).
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Figure 2-10: A line captured by the vision system 

(a black line on white paper)

2.4 Image Extraction and Analysis

In the project three types of objects are analysed for producing the movement data to a 

cutting mechanism: 1) black line on white paper, 2) pattern on white paper, and 3) lace web. 

Various image processing techniques are applied in order to distinguish (extract) the object 

from the raw image. In the following sections, the author describes the methods for 

extracting a line (Section 2.4.1) and a pattern (Section 2.4.2) on white paper. The technique 

used to obtain the cutting path from a lace web is presented in Chapter 4.

2.4.1 Line extraction

As an image of paper is captured by the vision system (illustrated in Figure 2-10), the 

data is transferd to the host system and stored in the memory. The average intensity 

analysis is applied to transform the image into a binary bitmap. The small amounts of 'noise' 

in the binary image can be removed by looking for two consecutive points from neighbouring 

pixels (both 3x3 and 5x5 square windows are used) [SON93]. The line skeleton operation is 

then applied to create a skeleton of the extracted bitmap pattern. The line skeleton operation
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(a) bi-leveling and n oise reduction (b) line sk eleton  operation

Figure 2-11: Line extracting operation

consists of thinning the region of a pattern without losing the essential shape. Figure 2-11 

illustrates the two main stages of extracting a path from a gray-scaled image (Figure 2-10).

2.4.2 Pattern extraction

As a pattern image is captured by the CCD camera (see Figure 2-12), it is transformed 

into a black and white bitmap. After removing noise within the image, a border following 

process is engaged to find the cutting path around the pattern. The border following 

operation is a method to outline a pattern image by following the edge around the object and 

back to the beginning (if the object in an image has a continuous edge all around it). As 

depicted in Figure 2-13, the border of the pattern has been successfully detected.

Figure 2-12: A pattern image taken by the camera 

(a rabbit on paper)
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a) bi-leveling and n oise reduction b) border following p rocess  

Figure 2-13: Pattern extracting operation

2.5 Correction of Optical Distortion

Most conventional cameras which use fish-eye lenses create view angle and 

magnification errors while providing high resolution and contrast. The methods to correct 

the distorted image can mainly be divided into two areas: 1) use of software filter, 2) using a 

special camera lens.

Figure 2-14 illustrates a grid pattern captured by a CCD camera using 8.5 mm FI.3 lens. 

This kind of wide angle lens is a relatively short focal length lens which has a large angular 

field of view. When used to view an object in a machine vision application, wide angle lenses

Figure 2-14: A grid pattern captured by a CCD camera

2-15



C h i -H s i e n  Vi c t o r  S H I H ,  D e p a r t m e n t  o f  C o m p u t in g , T h e  N o t t in g h a m  T r e n t  U n i v e r s i t y , 1 9 9 6

view the part "straight on" in the middle of the field and at a relatively large angle at the 

edge. If using focal length lenses results in a more constant viewing angle and small 

magnification errors over the depth of field, how long must a lens focal length be and how 

far away from the object must the camera be to produce "zero" viewing angle and 

magnification (the ratio of the size of the image to the size of the object or part) error ? A 

very long distance indeed - infinitely far away.

2.5.1 Correcting by software filter

The accurate imaging of relatively flat objects, where the object thickness is very small 

(say 1%) compared to the object's length and width, is a much easier task than is the imaging 

of 3-dimensional objects.

In this project only flat objects, such as paper and lace web are used. A simple software 

filter is developed to solve the view angle error caused by the fish eye lens. For instance, a 

vision system is organised as 256 by 256 pixels and mapped into frame memory. By 

analysing the grid image shown in Figure 2-14, it is possible to find suitable correcting ratios 

in both abscissa and ordinate. A 256 by 256 array filter is built to record these measured 

correcting ratios which can be used to recover the distorted image.

2.5.2 Correcting by telecentric lens

For conventional camera lenses, the viewing angle increasingly tilts inward across the 

field and at the edge may be tilted by 'tens of degrees', depending on the focal length of the 

lens and the size of the field of view. These changes in the viewing angle can cause real 

problems in machine vision applications.

Facing this problem, design engineers have adopted a technique of presenting a part 

from a number of different views, with each view detailing what we would see if looking in a
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Figure 2-15: Telecentric lens and adaptor

given direction. Within a single view, all lines of sight are parallel. This is, within the view, 

we do not vary the viewing angle. This is a crucial concept because if engineers want to 

inspect the part in a manner consistent with the drawing, engineers want the imaging lens and 

inspection system to also maintain a constant viewing angle across the entire view.

Optical engineers describe lenses which maintain a constant viewing angle as being 

"telecentric", where errors in telecentricity are usually a few degrees at most. For example, a 

lens which is telecentric to within 1.0 degree has a viewing angle of 1.0 degree at the edge of 

the field of view compared with the viewing angle in the middle of the filed, which is usually 

defined as 0.0 degree.

In contrast, the 'normal' lens on a 8.5 mm camera has more than a 40 degree viewing 

angle change between the center and edge of its field. Telecentric lenses (Figure 2-15), 

designed especially for machine vision applications, are now available which have very close 

to ideal "zero" viewing error while keeping the camera to part distance consistent with 

inspection equipment size limitations. Compared to conventional camera-type lenses, 

telecentric lenses reduce viewing angle and magnification errors by a factor of 10 or more. 

(Refer to Appendix A for the detailed information on this matter)
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2.5.3 Implementation

In this project, we have employed the software filter to recover the distorted image (for 

cost effectiveness). It is noted that in order to speed up this operation a simplified software 

recovering method has been used. As already mentioned, when a conventional camera lens is 

used to inspect an object, the lens views the part 'straight on' in the middle of the field and at 

a relatively large angle at the edge. If the one can manage the vision system only using the 

middle (centre) part of the field to view an object, most of the viewing angle error can be 

ignored. Engineers can simply calculate the magnification error and find a proper correcting 

ratios in both X and Y axes. The pair of correcting ratios can be used to recover the 

distorted image through the entire object.

Figure 2-16 shows two processed sample patterns. As depicted, the original image 

contains 256 by 256 pixels. However, the actual size of the image analysed is only 226 by 

226 pixels around the middle of the field (from location (15, 15) to (240, 240), depicted in 

Figure 2-16).

Figure 2-16: Two processed sample patterns
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(a) (b)

Figure 2-17: Corrected patterns (1.45862 :1)

Assuming the camera used a 8.5 mm conventional lens, the correcting ratios (X = 

1.45862 and Y = 1) can be obtained. The pair of correcting ratios are multiplied by the 

vectors of the extracted objects. The binary patterns can be converted as shown in Figure 2- 

17. However, by using this approach a small amount of viewing angle error will still appear 

within the converted image. For instance, when a pattern is captured (8.5 mm lens) at the 

working distance (object to lens) of 35 cm or 13.78 inch, according to the experimental 

results, the maximum error detected is approximately 1 mm in both X and Y axis directions. 

However, in the project, this inaccuracy can still be tolerated. Indeed, if a machine vision 

application is highly dependent on precision measurement, it is highly recommend to employ 

the telecentric lenses rather than using software filters.

Figure 2-17 shows the corrected patterns using the simplified software converting 

method. Take an example of case (b), only 226 vectors (data points) are used to record the 

path (from Xj5 to X24o)- The detected vectors are transformed into a set of machine 

movement data and down-loaded into the controller of the cutting mechanism.

2.6 Summary

This chapter discusses the vision system and its relevant components employed in the 

project. It also briefly introduces the techniques used to extract a binary pattern from a gray

scale image. The methods applied to correct a distorted image are also presented.
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Particular attention is paid to the thresholding operation which is used for bi-leveling a 

gray-scale image into a binary bitmap. Two methods have been described. The first method 

is based on analysing the light intensity histogram (optimal thresholding). The second 

technique, developed within the project, is to find the average intensity of each vertical strip 

of the image and examine which points lie above and below this threshold. According to 

numerous experimental results applying the average intensity analysis has a better outcome 

than using the conventional histogram analysis.

As a pattern is extracted from an image, after line skeleton operation or border 

following process, the cutting path is created and fitted into a software filter where the 

distorted pattern can be converted. A simplified software recovering method has been 

presented to speed up this correcting process. An alternative approach using telecentric 

lenses to correct the distortion has been described.
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M achine  V ision  and  Control

3.1 Introduction

3.2 System Configuration

3.3 Calibration of the Camera

3.4 Path Following Process

3.5 Connection between Frames

3.6 Summary

3.1 Introduction

A CNC cutting machine (Pacer Compact 800+) is used together with the vision system 

as the testing rig in the project. The CNC machine is controlled by an enhanced HPGL 

language via a DOS device drive or via a serial interface. By setting a device drive 

(PACER$) in CONFIG.SYS file, which allows engineers to configure their own developed 

environments and adjust the control commands, selecting operating parameters by a set of 

commands from the host system.

There are two kinds of machine controller (68k processor based) available for use: a) 

VMEbus based and b) PC based. The PC based controller, which is used in the project, is 

made of one printed circuit board that is installed within the PC or via RS232 connected to 

an IBM compatible PC which acts as a machine console. The loading of the timer registers 

occurs at the end of each interpolation movement. The rate at which the controller accesses 

the timers is proportional to the speed of motion. The axes positions are only updated at the 

end of each interpolation movement [MAC92].
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DRIVE
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SYSTEM

(IBM-PC)

PACER 

VMC (OEM) 68k 

CONTROLLER

Figure 3-1: Block diagram of a PC based CNC system 

3.2 System Configuration

As depicted in Figure 3-1, motors are connected to a standard three-axes VMC 

controller. An extra relay device is used to switch data signals between two motors. This 

switch is triggered by an external signal from the host system. In the test rig, the device is 

used to swap control commands between X axis motor and Xe (driving a conveyor system) 

motor. A similar approach can be utilised to attach more extra motors to the CNC system.

There are two ways in which a host system can communicate with the VMC controller. 

The first method is to write a set of HPGL commands and copy them into the device drive. 

The second approach is to use a serial link controlled by Kermit directly sending the 

command to the controller. MS-Kermit is a program that implements the Kermit file 

transfer protocol for the entire IBM PC family. It performs two major functions, terminal 

emulation and file transfer. Both approaches have been used during the development. In the 

final version of the programs, only the first method is used (refer to Appendix B for more 

information about the PACER VMC HPGL).
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3.3 Calibration of the Camera

It is essential to properly register (calibrate) the camera with the CNC machine before 

the vision system delivers the control information for the cutting process. Two schemes have 

been proposed for the registration of the machine vision system: 1) Manual calibration, and

2) Automatic calibration.

3.3.1 Manual calibration

As illustrated in Figure 3-2, in the control machine system the camera is used to guide 

the machine based on the analysed pattern. The pattern is captured by the camera (8.5 mm 

lens) at the working distance of 35 cm (13.78 inch). A white paper marked with a black 

cross is placed underneath the camera. The image is analysed, the location of the crossing 

point is calculated and passed to the cutting mechanism. This information is then used to 

guide the cutter (pen) to the target position (centre of the cross).

$ CCD Camera 
J  with 8.5mm lens

3 axes 
cutting

mechanism
35 cm 
(13.78 inch)

Pattern

Figure 3-2: Schematic o f the machine vision system
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Tracing the target position

target
position

(a) captured im age (b) finding crossing point

[ Current origin - X: 3910, Y: 235 ]

Figure 3-3: Processes o f tracing the crossing point

By visual inspection, if the current calibration is inaccurate a gap (mismatch) is found 

between the pen and the target position. Measuring the distances of the gap in X and Y axis 

direction, a suitable modification can be determined. A configuration file has been created to 

record all the system parameters. Simply modifying the related data (ASCII format) within 

the file, the updated configuration will adjust the parameters as soon as the system is re

started. This method is based on a trial and error approach which is depending on the 

experience of the operator. Figure 3-3 shows the main stages of detecting the target position 

(crossing point).

3.3.2 Automatic calibration

Instead of using the method described above, an alternative approach is to program the 

system to automatically calibrate itself. To achieve this, first, the machine is set to draw a 

cross on white paper. Then, move the machine back to its origin and capture a frame of the 

drawing where the location of cross point is found. Depending on the relative position of 

this cross point, the inaccuracy can be measured and corrected.
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Unfortunately, two difficulties have been found using this scheme. Firstly, the resolution 

of the vision system is about 1 mm per pixel, which means that the system cannot detect any 

error (gap) smaller than this value. Secondly, a pen has to be mounted on the cutting head of 

the CNC machine. In the other words, if a cutter is employed in the system, it is not possible 

to draw a cross on paper for the calibration. However, for the commercial type of machine, 

the first problem mentioned above can be overcome by means of adapting a higher resolution 

vision system. Also, a better camera mounting bracket can be engaged to ensure the 

steadied mounting with the cutting mechanism.

3.4 Path Following Process

When a pattern is captured by the vision system and analysed, a set of control 

commands is created and sent to the cutting mechanism. Basically speaking, 110 matter what 

the shape of the pattern is, the cutting path created is composed of a series of path following 

commands. The machine follows a batch of movement data which can be a straight line, an 

arc, or a circle. Depending 011 the size of the movement data in a batch, the average time 

taken to pre-process these data into control commands is approximately 1-4 seconds in the 

68k based machine controller.

Figure 3-4 illustrates two samples collected from the path following process. A second 

line is drawn by the testing rig with a felt-tip pen connected on the Z axis to replace a cutter. 

As already mentioned in Section 2.5, since a conventional vision system is employed in the 

project, the fish-eye lens of the camera can create view angle and magnification errors. A 

simplified software filter (Section 2.5.3) is developed for rapidly correcting the distorted 

image. However, a small amount of view angle error will still appear within the converted 

image. Once the converted image is analysed to produce a set of vectors for controlling the 

cutting mechanism, the result of this path following process will not be completely accurate
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(carefully inspect the samples in Figure 3-4). Nevertheless, this inaccuracy can still be 

tolerated throughout the process.

Furthermore, in order to increase the speed of this transformation, as the batch is 

detected larger than a certain amount of data, these data are cut into small pieces and 

transmitted to the machine controller. By adopting this approach, a large amount of time can 

be saved by waiting for the controller to process the data. Only vectors are used to record 

the detected cutting path, which is a set of polylines. Of course it is possible to generate a 

smoother path by using circular arcs instead of employing straight lines, but this is not the 

objective of the project.

3.5 Connection between Frames

As shown in Figure 3-2, a CCD camera is mounted on a three-axes cutting mechanism. 

The camera is moved with the cutting head in both X and Y axis direction (the camera is not 

connected with the Z axis). This keeps the camera and the cutter in a constant position 

relative to each other. Consequently, it is easy to detect the position of the object from the

error

Figure 3-4: Two samples o f path following process
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captured image, and to correct the errors between frames. Besides, since the camera is 

followed by the X and Y axes of the machine, the camera can capture images at different 

locations of the workplace. This enables the wider viewing field of the vision system. The 

camera can be set to have lower working distance (object to lens) where the resolution of the 

camera is higher.

The vision system captures an image while the machine is cutting / drawing an object. 

The vision system has to consider the more complex two dimensional image shifting 

problem. However, this approach yields more accurate results than the conventional setting, 

where the camera is fixed instead of rowing around with the cutter. This method also avoids 

small drifts due to mechanical slippage. The method for analysing shifting images in two 

directions and determining a suitable position for capturing the next frame are described 

next.

3.5.1 Detection of the capture point

When the first frame of the pattern is captured and bi-leveled, the centre line between 

the upper and lower boundaries of the pattern in the frame is found. The last (most right 

hand side) intersection between the analysed pattern and the centre line is located (Figure 3- 

5). This position is used for capturing the next frame of the pattern which is designated as 

the 'capture point'.

The machine starts moving from the 'start of cutting' position and stops at the 'end of 

cutting' position, which are labelled in Figure 3-5. As the machine reaches the capture point 

within the path during the cutting process, the vision system is triggered to take a new image 

frame which is temporarily stored in the memory.

Besides, the machine continuously moves until it reaches the 'end of cutting' point. The 

distance ('L' indicated in Figure 3-5) between the capture and the end of cutting points is the
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capturing target pattern
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K e n d  of 
cutting

captured frame

Figure 3-5: Example o f detecting the capture point between frames

key where the cutting machine can continuously work between frames - Since the process of 

capturing and analysing a frame normally takes the CPU a few hundred milli-seconds, we add 

an extra length (say 30 vectors) of the path behind the capture point (see Figure 3-5). 

Before the machine completely ends the cutting process, a new batch of the vectors from the 

second captured image has already been obtained and down loaded to the machine 

controller. This enables the cutting process to operate in real-time.

Figure 3-6 represents the calculation of the cutting path and capture point within the 

second captured frame. Indeed, this approach not only can deal with the pattern which has 

small deviation from a straight line (see Figure 3-6), but also can be used to analyse a curve 

which has large deviation from the straight line, such as illustrated in Figure 3-7.
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Figure 3-6: Detecting the cutting path and the capture point within the second frame

3.5.2 Calculating the location of the detected path

Once the cutting path is extracted from a captured image, the location of the path has to 

be transformed into an absolute position related to the bed of the machine. As already stated 

in Section 2.5.3, a camera with 8.5 mm conventional lens has the correcting ratio of (X: 

1.45862, Y: 1). Also the camera is installed with the working distance of 35 cm (see Figure 

3-2). According to the experimental results, the magnification (the ratio of the size of the 

image to the size of the object or part) is 29. Hence, the actual parameters applied to the 

image are (X: 42.3, Y: 29.0). The following Equations represent the computation of the 

process.

Xn =  Ox  +  ( VXn * P X )

Yn — O y  + ( Yy/j X P y  ) , n = 15 ... 240

where Xn and Yn are the transformed data;
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  : centre line,

© : capture point.

: upper / lower boundary,

regions of 
capturing

Figure 3-7: Example of capturing the images between frames

Ox and O y  are the position when the camera captures an image (origin);

VXn anc* Vyn are original vectors;

Px  and PY are the actual correcting parameters (42.3, 29.0); and

V is the nth vector (data).

Using this approach, the absolute position of the cutting path can be obtained. The host 

computer triggers the vision system to grab an image. It sends a request to the VMC 

controller in which the controller will reply with the current cutting head position to the host 

computer {Ox , Oy).  Since the Frame Grabber digitises an incoming video signal at a rate of 

33 mill-seconds per frame, this delay will directly affect the accuracy of the obtained position 

data (position of the cutter). In other words, the image-capturing process has actually 

happened 'after' the host PC receives the position data. Figure 3-8 shows a possible 

hierarchy of this event.

To avoid this inaccuracy, the relationship between the moving speed and the direction of 

movement must be calculated while the machine is capturing an image. A reasonable 

correction can be obtained to compensate this error.
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(2) received position data

capture
pointmachine 

moving path
vectors

(1) trigger the camera & 
request for position data

(3) captured image

Figure 3-8: Events that happen when capturing an image and asking for the position data 

3.6 Summary

This discusses the cutting mechanism and the machine vision process developed in the 

project. The selected 68k based three-axis CNC cutting machine is described. In order to 

construct a conveyor system on the cutting machine, an extra motor has been attached on the 

VMC controller.

The methods developed for calibrating the vision system with the cutting mechanism 

have been presented. The advantages and disadvantages of applying either approaches, i.e., 

manual calibration or automatic calibration, are discussed. A scheme for managing the 

control system to continuously grab new images as well as guiding the machine to trace the 

targets in real-time is developed. Finally, an equation has been derived and used to transform 

the detected vectors into absolute position on the bed of the machine.
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Chapter 4  
L a c e  P a t t e r n  D e t e c t io n

4.1 Introduction

4.2 Fuzzy Logic

4.3 Detection of First Cutting River

4.4 Line Mapping Process 

4.5 Supervision of the System

4.6 Experimental Results 

4.7 Summary

4.1 Introduction

Lace manufacturing is an important industry worldwide, and particularly for the East 

Midlands in the United Kingdom. Lace is commonly knitted on Raschel machines which cost 

up to £500,000 each and must run 24 hours per day for profitable operation. Typically four 

such machines are supervised by one operator, who patrols and attempts to spot any defects 

visually, as soon as it occurs.

Lace is manufactured in webs up to 3.5 meters wide with many pattern repeats across 

the width. It is supplied to garment manufacturers in long lengths wound on a reel and must 

be cut into short strips before sewing. For reasons of appearance the lace must be cut into 

two matching mirror image pieces so that the finished trim will be symmetrical about the 

centre line of the garment. The point where the lace pattern is cut must also be consistent so 

that all garments from a production batch have a similar appearance. It is essential therefore 

that the separation is a high quality operation so as not to impede sales of the finished 

material.
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The preparation of the short lengths of lace trim for sewing onto garments is typical of 

many processes in the clothing industry - highly labour intensive and completely lacking in 

automation. At the present time lace is cut to size in the following manner. Lengths of lace 

several meters long are impaled on a row of nails. Successive layers of lace are placed on 

top of each other in mirror image pairs with care being taken to line up the pattern correctly. 

When approximately fifty layers have been built up a sharp knife is used to cut the pile into 

short sections with each cut at a predetermined position in the lace design. The result is 

identical piles of lace pieces arranged in matched mirror image pairs.

Presently the scalloping of lace is performed manually, which is a lengthy and expensive 

process and results in slowing the rate of production. A small number of machines have been 

developed that use a simple passive cutter mechanism that relies on the structural strength of 

the lace pattern. In such systems the cutter is held stationary while the lace is run against it. 

This approach is only suitable in cases where the lace pattern is of very shallow scallop. In 

the case of deep scallop patterns a more sophisticated method of guidance, employing an 

active cutter, is required.

Although modern lace production methods are mechanised there is still considerable 

variation between samples of the same lace even when taken from the same production 

batch. Unlike rigid engineering materials lace has essentially no stiffness and can stretch, 

shrink, wrinkle and distort in other ways depending 011 the conditions under which it has 

been stored and its state of tension when viewed. For this reason some form of sensing is 

required to ensure that succeeding lengths of lace are cut at the same point in the lace design.

Cutting or 'scalloping* lace might seem a million miles from the traditional concerns of 

instrumentation and control. In fact, and incremental, vision based machine control systems 

using CCD cameras have potential for all kinds of web applications where deformable 

materials are processed. Machine vision is the most promising methodology for meeting
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Cutting
PathCutting

Path

Figure 4-1: A typical lace pattern

these requirements. Unfortunately, lace comprises a fine and complex pattern of threads 

(Figure 4-1), which must be identified in real time. Even immediately below the point of 

knitting, small distortions are unavoidable; the lace rapidly contracts inwards at the edges by 

several centimetres. Moreover, the machine oscillates at about 6 Hz. close to the point of 

knitting; the lace moves both backwards and forwards at each cycle, with a net advance of 

about 1 millimetre. Thus the lace advances at no more than 6 mm/second. These facts 

present a number of problems to the typical image processing setup [SAN95].

An experimental vision based system has been developed (Figure 4-2) for automation 

lace scalloping. On-line pattern recognition is performed to detect the cutting path (river), 

which is indicated in Figure 4-1. The cutting path is vectorised and transferred to a trimming 

mechanism. In order to satisfy industrial requirements two main conditions must be satisfied. 

To achieve a sufficient degree of automation: Firstly, the river must be found without prior 

knowledge of the lace pattern scanned. Two attempts which applied traditional image 

processing methods and fuzzy reasoning ride-based technique have been made to detect the 

river within various lace patterns. Secondly, finding the river location across the lace strip 

must be carried out in real-time. To achieve this, a novel approach called the Line Mapping 

Method (LMM) is used to speed up the search for the river in subsequent frames.
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Figure 4-2: Prototype o f a vision based lace trimming system

A bi-level image, shown in Figure 4-3, is used. After a thresholding operation a river 

shows up as a dark area (pixel group) within the edges that crosses from one side of the 

image to the other in a nearly unbroken sequence. There are thick threads that cross the 

river at intervals. These are indistinguishable from the material surrounding the river 

(marked by circles in Figure 4-3). Allowance must be made for small breaks in continuity of 

the river due to these cross threads.

The approaches developed can be structured into three sections: detection of first 

cutting river, line mapping process and supervision o f the system. The vision based lace 

trimming system is performed using an IBM PC and a video frame grabber with a CCD array 

scan camera as input device. Image are displayed on a monochrome video monitor. The 

vision system has the standard resolution of maximum 256 pixels by 256, 8 bits (256 gray 

levels) per pixel. All software was written in "C". In the following section the author 

presents the concept of the fuzzy logic algorithm employed in the system for detection of the 

first cutting river across the lace pattern.
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Ithick threads\
River

Figure 4-3: Bi-level lace bitmap (binary) image

4.2 Fuzzy Logic

During the past few years, fuzzy logic has been finding a rapidly growing number of 

applications in fields ranging from consumer electronics and photography to medical 

diagnosis systems and securities management funds. What is exploited in most of these 

applications is the tolerance for imprecision.

In contrast to classical logical systems, fuzzy logic is aimed at a formalisation of modes 

of reasoning which are approximate rather than exact. Basically, a fuzzy logical system may 

be viewed as a result of fuzzifying a standard logical system. Thus, one may speak of fuzzy 

predicate logic, fuzzy modal logic, fuzzy default logic, fuzzy multi-valued logic, fuzzy 

epistemic logic, etc. In this perspective, fuzzy logic is essentially a union of fuzzified logical 

systems, and precise reasoning may be viewed as a special case of approximate reasoning.

4.2.1 Introduction

Fuzzy logic is a vigorous, yet forthright, problem solving technique with wide-ranging 

applicability [VI093], In general, it is most useful in handling problems not easily definable
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by practical mathematical models, such as lace pattern detection, etc.. Fuzzy logic derives 

much of its power from its ability to draw conclusions and generate responses based on 

vague, ambiguous, qualitative, incomplete, or imprecise information. In this respect, fuzzy- 

based systems have a reasoning ability similar to that of humans [VI093].

Lotfi Zadeh is most widely associated with fuzzy logic [ZAD88]. In 1965 he presented 

the original paper formally defining fuzzy set theory, from which fuzzy logic emerged. 

Zadeh extended traditional theory to solve the paradoxes sometimes generated from the 

"nothing-or-all” classifications of Aristotelian logic. Traditionally, a logic premise has two 

extremes: either entirely true or entirely false. However in the fuzzy world, a premise ranges 

in degree of truth from 0 to 100 percent, which allows it to be partially true and partially 

false.

Because fuzzy logic is rule based, it only requires a small amount of memory and it is 

nonlinear, meaning that it can perform very complicated computations more easily than 

traditional methods. The goal of fuzzy logic is to simplify a complicated application and 

eliminate expensive tools, complex language, processors, and massive amounts of 

mathematical logic.

Figure 4-4 illustrates the flow of data through a fuzzy system [VI093]. System inputs 

undergo three transformations to become system outputs. First, a fuzzification process that 

uses pre-defined membership functions maps each system input into one or more degrees of 

membership. Then, the rules in the rule base are evaluated by combining degrees of 

membership to form output strengths. And lastly, the defuzzification process computes 

system outputs based on strengths and membership functions.
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Figure 4-4: Dataflow o f a fuzzy-logic-based system

4.2.2 Principles

Fuzzy logic provides a wide variety of concepts and techniques for representing and 

inferring from knowledge which is imprecise, uncertain or lacking in reliability. At this 

juncture, however, what is used in most practical applications is a relatively restricted and yet 

important part of fuzzy logic centering on the use of fuzzy if-then rules. This part of fuzzy 

logic will be referred to as the calculus o f fuzzy if-then rules [ZAD92] because it constitutes 

a fairly self-contained collection of concepts and methods for dealing with varieties of 

knowledge which can be represented in the form of a finite number of if-then rules in which 

the antecedents and/or consequents are fuzzy rather than crisp. The importance of the 

calculus of fuzzy if-then rules stems from the fact that much of human knowledge lends itself 

to representation in the form of a hierarchy of fuzzy if-then rules. Furthermore, the calculus 

of fuzzy if-then rules provides an effective method for dealing with man/machine systems in a 

qualitative framework.

Mathematical equations that describe the calculus of fuzzy if-then rules are presented 

here. They are presented without derivations or proofs. This information can be found in 

Jamshidi [JAM93], Lee [LEE90] and Zadeh [ZAD85/88/92]. The point of departure in the
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calculus of fuzzy if-then rules is the interpretation of a fuzzy if-then rule. If we assume for 

simplicity that the antecedent and consequent of a rule have a single conjunct, the rule may 

be expressed as

if X is A then Y is B

where B and A are fuzzy predicates in U and V which play the role of elastic constraints on X  

and Y. In terms of these constraints, the rule may be interpreted in two ways. First, as a 

joint possibility distribution of X  and Y, in which case the possibility distribution in question 

may be expressed as

n ( X , Y ) = A x £

where A x B represents the Cartesian product of A and B. This implies that the possibility 

distribution function of X  and Y may be expressed as

n (u,v) = fiA(u) A p*(v)

where \iA and \iB are the membership functions of A and B, respectively, and A denotes the 

'minimum' operator. In the second interpretation, the rule in question is interpreted as a 

conditional possibility distribution, II {X I Y), of Y given X. More specifically,

II(X I Y) = ~iA ®B

where '—i A' is the negation of A and 0  is the bounded sum.

A basic question is : How should two or more rules be combined ? In the case of the 

joint possibility distribution, the interpretations are combined disjunctively. More 

specifically, a collection of fuzzy if-then rules of the form

4-8



C h i -H s i e n  V i c t o r  SI1IH, D e p a r t m e n t  o f  C o m p u t in g , T h e  N o t t in g h a m  T r e n t  U n i v e r s it y , 1996

if X is A[ then Y is B j, i=z j ... n

defines the joint possibility distribution

Yl(X,Y)=A1 x B 1 + - + A n x B n

in which V  plays the role of disjunction. Thus, if the Cartesian product A; x B is visualised 

as a fuzzy point, n  (X,Y) may be viewed as a fuzzy graph or fuzzy relation R which may be 

expressed as

R = L i (Ai x B i)

If a rule is interpreted as a conditional possibility distribution, the membership function of the 

output may be expressed as

pB(v) = mpu( l A (A,. (1 - [iAi(u) + p B (v))) A \xAj (u.)

where the supremum is taken over the domain of X. It can be shown that if bt is taken to be 

the output of rule / when input X  is A is applied, then B is contained in the intersection of the 

%, i.e.,

B (̂ -bJn b 2 o . . .n b n

From the entailment principle of fuzzy logic, it follows that the output may be expressed as

Y is(bx n...nZ?/()
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In qualitative systems analysis and intelligent control, a fuzzy rule set may be interpreted as a 

qualitative description of the input-output relation of a system. Thus, a rule set of the fonn

i f  X is Aj then Y is B} 
i f  X is A2 then Y is B2 
i f  X is An then Y is Bn

may represent the input-output relation of a system R, which the relation in question 

expressed as the fuzzy relation

R(XtY ) m ' £ l <At x B l)

Li the case of a serial combination of R1 and R2, the problem is to derive the input- 

output relation of the serial combination, R12, from the knowledge of the input-output 

relation R1 and R2. In the case of Rl, the fuzzy if-then rules are of the form

if (Xy is A[ and X2 is Ay) then (IJ is B\ and Y2 is Bf) 

and the corresponding fuzzy input-output relation may be expressed as

Rl(Xi ,X2,Yl, Y2) = (A. x Af xB)  x B?)

The same approach may be used to compute the input-output relation of any 

combination of systems each of which is characterised by a collection of fuzzy if-then rules. 

This makes it possible to analyse in qualitative terms the behaviour of a complex system 

whose constituents are characterised by fuzzy rule-sets with linguistic variables rather than 

algebraic or differential equations. Important application areas for this approach are 

industrial process control, prediction and signal processing, and large scale system modeling.
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Another important application area relates to probabilistic systems in which the 

underlying probabilities are not know with sufficient precision to be treated as numbers. The 

calculus of fuzzy if-then rules provides a basis for dealing with such probabilities as 

collections of fuzzy if-then rules. More specifically, assume that X and Y are random 

variables whose probability distributions are described in linguistic terms. For instance,

p(X): if X  is small then probability is low

if X  is medium then probability is high

if X  is large then probability is low

q(Y IX): if (X is small and Y is large) then probability is high

where q(Y I X) is the conditional probability distribution of Y given X. The problem is to 

compute the probability distribution of Y in the form of a collection of fuzzy if-then rules 

with linguistic variables.

Since computation with probabilities involves the operations of addition and 

multiplication, it is necessary to have a method for operating on functions characterised by 

collections of fuzzy if-then rules. For example, if f(X) and g(Y) are described in terms of 

such rules as disjunctions of fuzzy points then f(X) and g(Y) may be expressed as

/(X ) = £ ,  (/-* /< ')

and

g { Y ) - Z ,  (GjXG')

Furthermore, iff(X) and g(Y) are combined through a binary operation e.g., multiplication 

or addition, then the resulting function may be expressed as
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h(X,Y) =f(X) * g(Y)

It can be shown that the fuzzy rule set associated with h(X,Y) is given by

KX,Y)  = Z i J{(F(x G j )x(F'*G'j )}

This result provides the basis for computation for imprecisely-known probabilities which are 

expressed as collections of fuzzy if-then rules involving linguistic variables. In the case of 

such probabilities, we have

q(Y\X)  = £ j (Qj xQl )  

r(X,Y)  = p(X)q(Y  IX)

In the application of the calculus of fuzzy if-then rules, a problem of basic importance 

relates to the calibration of the membership functions of the linguistic values. The current 

practice in the design of fuzzy-logic-based systems employing such rules involves, for the 

most part, the use of cut-and-trial procedures. Recently, however, researches have been 

taken towards the development of adjustment algorithms - some of which are based on 

neural network techniques - for a systematic approach to the problem of calibration.

The calculus of fuzzy if-then rules provides a systematic way of dealing with systems in 

which it is either necessary or advantageous to describe the input-output relations in the form 

of fuzzy if-then rules. The calculus of fuzzy if-then rules is simple and close to intuition. 

Furthermore, it is largely self-contained and does not require an extensive familiarity with 

fuzzy logic. For these reasons, the calculus of fuzzy if-then rules has become a widely used 

tool in systems analysis, control, pattern recognition, decision analysis, diagnostics and 

related fields [ZAD92].

4-12



C h i -H s i e n  Vi c t o r  SHIH, D e p a r t m e n t  o f  C o m p u t in g , T h e  N o t t in g h a m  T r e n t  Un i v e r s it y , 1996

4.2.3 Implementation

A fuzzy algorithm is an ordered sequence of instructions that may contain fuzzy 

assignment and conditional statements. In practice, engineers can express the fuzzy 

conditional statements in the form:

IF A THEN B 

where A and B have fuzzy meaning, for instance

IF x is centre THEN y is large 

where centre and large are viewed as labels of fuzzy sets.

Degrees of truth are the major currency of production systems. Production systems are 

based on repetitive use of the construct

IF [antecedent] THEN [consequence]

This construct is applicable to situations in which there is usually only one correct decision. 

Because we cannot be entirely certain that some facts are true or that certain relations hold, 

each fact and each production rule are associated with a certainty factor. The certainty 

factor, a number in the interval [0, 100](%), indicates the certainty with which each fact or 

rule is believed. Inexact reasoning is based 011 the construct

IF [antecedents {to degree Xn)]

THEN [consequences (to degree Yn)]
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Such constructs are applicable to decisions involving phenomenological data and situations in 

which there might be more than one correct decision. For example, consider these two rules, 

with respective certainty factors of 90(%) and 80(%), leading to conclusion Dj&2-

IF [A and B and C] THEN [D{ = 0.9]

IF [E and F and G] THEN [D2 = 0.8]

Additionally, suppose that the facts A, B, C, D, E, F, and G have certainty factors 0.6, 

0.3, 0.5, 0.8, 0.6, and 0.7, respectively. Then the following computation produces a 

certainty factor of 0.48 for system output D (applying min-max inference):

IF mill (A, B, C)certainty factors = min (0.6, 0.3, 0.5) = 0.3

THEN 0.3 x  0.9 — 0.27 (degree o f output, D j)

IF min (E, F, G )certa[nty  factors = min (0.8, 0.6, 0.7) = 0.6

THEN 0.6 x0.8 = 0.48 (degree o f output, Df)

Therefore, the combination degree of conclusion D is

max ( Dj , D2) deSree o f output _ m ax  (0 .2 7 , 0.48) = 0.48

By combining this degree of truth concept, fuzzy logic extends conventional logic in two 

ways. First, sets are labelled qualitatively (using linguistic variables such as "positive small", 

"negative large", "centre", "left", "right”, and so on), and the elements of these sets are

assigned varying degrees of membership. For instance, a temperature 22°C and a

temperature 27°C may both be members of a set of "hot" temperature, although the 

temperature 27°C has a higher degree of membership (see Figure 4-5). Furthermore, any 

action or output resulting from a premise being true executes to a strength reflecting the 

degree to which that premise is true [VI093].
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Figure 4-5: Fuzzy sets for temperature

Linguistic variables are defined as variables whose values are sentences in a natural or 

artificial language [ZAD73]. Thus, if high, pretty high, very high, etc. are values of density, 

then density is a linguistic variable. Natural language is a powerful tool allowing Man a 

comprehensive, but not very precise, description of reality. Its main power consists of an 

ability to employ vague notions. Every vague notion defines a certain class of objects whose 

boundaries are difficult to determine. Vague notions have so far been modelled by classical 

sets. It implies that borderline elements have to be put either into the set or outside it and 

appears to be the main reason for the often criticised inadequacy of mathematical methods in 

practice [NOV89].

Classical set theory is governed by logic that permits a proposition to possess one of 

two values: true or false. This logic does not accord well with the need to represent vague 

concepts. We see objects in shades of gray scale, not only in black and white.

The key idea in fuzzy set theory is that an element has a degree of membership in a fuzzy 

set. Consequently a proposition need not be simply true or false, but may be partly true to 

some degree. We assume that this degree is a real number in the interval [0, 100]. Consider 

the fuzzy set "tall". The elements are men, and their degrees of membership depend on their 

heights. For instance, a man who is 7 feet tall might have degree 100, and men of 

intermediate heights might have intermediate degrees. Different individuals will have
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differing opinions whether a given man should be described as tall. A possible representation 

could be:

n S e i
5’°" ____0-0 (%)
5’4" 9.0 (%)
5'8" 33.5 (%)
6*0" 50.0 (%)
6'4" 83.5 (%)
6'8" 97.5 (%)
70" 100.0 (%)

According to this representation, the fuzzy set "tall" is defined by its domain. This is 

symbolised as

tall: height —> [0, 100]

"Height" is the domain or source of "tall", and [0, 100] is the target [NEG85]. It is not easy 

to use precise mathematical analysis to describe the behaviour of a system that is too 

complex or ill-defined, but it is using linguistic variables and fuzzy logic.

Information used in decision-making or reasoning processes can be uncertain, imprecise, 

or incomplete. In many cases of human reasoning, the reasoning ways based on vague 

statements and loose concepts are often considerable. Furthermore, some vague concepts 

are often represented by transformations of other vague concepts. Inference procedures that 

incorporate uncertainty are becoming more important in rule-based systems. In this project, 

the presented approach draws on this characteristic to cope with the flexibility problems 

described above. In the next section, the author will take a real case to explain how the 

researcher applied the fuzzy inference technique to detect the cutting paths within the 

distorted lace patterns.
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4.3 Detection of First Cutting River

Two attempts have been made to find the first river within the lace pattern without prior 

knowledge of the pattern scanned. The first approach is based on Pixel Intensity Directed 

Feature Extraction (PIDFE) using traditional image processing methods. The second 

algorithm developed is based on Fuzzy Pattern Recognition (FPR) technique applying fuzzy 

reasoning rule-based method.

4.3.1 Pixel Intensity Directed Feature Extraction

In order to detect the river, a pixel intensity map is created to determine significant 

differences. This approach hinges on detection of large variations in intensity to highlight the 

river. Other contextual information such as pattern repeat cycle, river continuity and contour 

closing is used to speed up the process of feature extraction. This process can be broken 

down into the following tasks:

• Finding the edges of the lace.

• Converting the 256 level grey scale image into a bi-level bit map.

• Finding the repeating period of the pattern.

• Finding all probable rivers across the lace allowing for breaks.

• Finding the correct river from this list.

43.1.1 Edge finding

The black background surrounding the lace will be the darkest area of the image (the 

dark areas within the edges being lightened by the fine threads of the material). The first 

approach, therefore, may be to look for a sudden increase in point intensity. However, 

ambient lighting, shadows and reflections make this technique unreliable due to the difficulty 

in quantifying 'sudden' and 'increase'. Therefore, use can be made of the fact that these

4-17



C h i -H s i e n  Vi c t o r  S H I H , D e p a r t m e n t  o f  C o m p u t in g , T h e  N o t t in g h a m  T r e n t  U n i v e r s it y , 1 9 9 6

Figure 4-6: Example o f bi-leveled lace image

phenomena tend to affect a large area and to work in terms of average intensities. By finding 

the average intensity of each vertical strip and examining which points lie above and below 

this threshold a clear pattern emerges with most of the area within the edges being brighter 

(certainly the thicker material actually on the edges) and all of the area outside the edges 

being darker. Thus, by finding the first and last points in a vertical strip which are above this 

value, the edge of the lace at that position is found. The small amounts of 'noise' in the 

image can be removed by looking for two consecutive points and the whole process can be 

speeded up by taking the average from a single strip from the middle and using this over the 

whole length.

A similar technique restricted by the boundaries found above is used to produce a bi

level representation of the lace pattern. The only difference being that the average must be 

calculated for each strip rather than using a single value (refer to Section 2.3.2). The points 

above and below the threshold are stored as 1 and 0 respectively in a bit map (Figure 4-6).

4.3.1.2 Finding the pattern repeat

The repeating period of the pattern (see Figure 4-7) must be found quickly and 

accurately from the above information. The technique used here is based on looking for
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'landmarks' within the bit map, the most prominent being the large dark areas within the 

pattern. By defining large as being more than a set number of consecutive points within a 

strip (currently set to 16) and ordering the bit map in column order, the search can be 

speeded up by scanning the data for bytes containing zero and then scanning adjacent bits for 

the other required eight bits. This size ensures that whatever the alignment of the bits, the 

zero byte is always present.

Once these areas are found for each column, their widths and lengthwise offsets are 

calculated for rows eight bytes wide (aligned on the zero byte found earlier). By finding the 

distance between each dark area and all subsequent ones, the most frequently occurring 

distance will be due to the pattern repeating (if it were not for the cutoff at the edges of the 

image, this would occur for every dark area within the frame). This distance is the repeat 

period for the pattern and has been found to be accurate to within 2 % of the actual value.

4.3.13 Finding river candidates

Taking a column down one side of the image it would be possible, excluding cross 

threads, to simply take each dark area and follow it to the right until:

- the other side is reached;

Figure 4-7: The repeating period o f the lace web
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~ its boundary left the edge of the lace;

- it could proceed no further.

This would be marginally more complex if the river was allowed to loop back on itself but 

because of manufacturing techniques for the type of application considered here, this does 

not happen. As each river stretches along the length of the image, its top and bottom edge is 

stored. If this becomes too wide (more than twelve points for all samples tested) then the 

river can be discarded since this must be part of the pattern.

When the river can proceed no further by these means, it must initially be assumed that it 

has reached a cross thread. If this is not the initial search, then the previous river can be used 

to indicate the direction of the next point at the current stage of the pattern. However, for 

the first river the system must look for the nearest dark point without backtracking. A bias 

can be placed on this search depending on the direction of the previous points and distance 

from the middle. If the distance to this point is greater than a pre-determined threshold (an 

effective value has been found to be five points) then the river can be considered to have 

reached a premature end and is considered to be invalid.

4.3.1.4 Verification

The rivers found in the previous step can be tested against each other, as they are found, 

and only maintain the best case. Once a better one has been found, the previous best can be 

discarded and the new one takes its place. Two values are required to compare every two 

rivers. The first is a measure of symmetry within the width of the lace. This value is 

calculated by considering the coordinates of the points where the river changes direction (its 

outermost points) at the top and bottom of a cycle. These, when subtracted from their 

nearest edge and then subtracted from each other give a value for symmetry; the lower the 

value, the more symmetrical the river. The second is a measure of repeatability. In a perfect 

situation, the difference in river position one period further 011 from the start would be zero.
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The smaller this difference, the higher would be the confidence. By comparing these two 

values, for each river, the best alternative can be found. When the best river has been found, 

the repeatability and symmetry values can be compared with a pre-determined threshold to 

ensure that it is satisfactory. If not, the machine must stop rather than cut a wrong path.

By using this approach, the detection of the river heavily depends 011 the feature of the 

repeated cutting path. The two extremes of the river should be equi-distant from their 

nearest edge, and after a distance equal to the repeat 'period' of the design. The river should 

be back at the same position relative to the two edges as it was when it started. As the lace 

pattern is distorted, these features of the river are 110 longer presented. This causes the 

dissatisfied results when the system applies this scheme to analyse the lace pattern contained 

the distortion bigger than 5-10 percent. In order to overcome the problems of material 

distortion due to the trimming and transporting processes, a Fuzzy Reasoning Rule-Based 

Technique is presented in the system.

4.3.2 Fuzzy Pattern Recognition

The scheme for applying fuzzy inference techniques to find the first river across the lace

Rule B a se

group
position

rules

FUZZY
REASONING

RULE-BASED
SYSTEM

probability

group d ensity

input
functions

output
functions

Input M em bership Output M embership
Function Function

Figure 4-8: Context diagram fo r  system overview
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Figure 4-9: Second level DFD for decision making process

pattern with no previous knowledge can be broken down into the following tasks:

• Defining system input and output membership functions;

• Fuzzification process;

• Inference and composition;

• Defuzzification process;

• Verification.

Figure 4-8 illustrates the context data flow diagram of the system. This system reads two 

input variables {Group Position and Density) after each black pixel group has been 

processed. The fuzzification process then assigns a value to represent an input’s degree of 

membership in one or more fuzzy sets. During inference and composition process, strengths 

are computed based on antecedent values and then assigned to the rules' fuzzy output. 

Finally, the defuzzification process employs compromising techniques to calculate the 

average weight for system output (Figure 4-9). These steps are described in detail as 

follows.
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Figure 4-10: Corresponding positions for black pixel group A and B 

4.3.2.1 Defining system input and output membership functions

The degree of fuzzy membership is decided from overlapping sets of a membership 

function, which is defined normally based on intuition or experience. The pre-defined 

membership functions cover the entire range of values for system input and output, and will 

define a degree of truth for every point in the universe of discourse. As the system is tuned 

to accomplish desired responses to given inputs or output, it is accepted that membership 

functions change several times. Nevertheless, once the system is in operation, these

Bi-levelling operation

Calulating average densities

Y,(N °-0f  p ixel)
Group Density

Figure 4-11: An example fo r  calculating the group densities fo r  group A and B
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membership functions will not be modified. The shapes and number of fuzzy-set membership 

functions we choose depend on parameters such as the required exactitude, steadiness and 

responsiveness of the system. Different shapes such as triangles and trapezoids are often 

employed to define fuzzy-set membership functions [ZAD88][ZIM87].

The objective here is to find the river along a lace pattern, by using linguistic variables to 

represent the common feature of the river shape in various lace patterns. These common 

features may be described as:

a) the position of the river is around the centre of the pattern;

b) the density of the river pixel group is not high.

From these linguistic descriptions, two system inputs, group position and group density, can 

be defined. By monitoring the position and density of the black pixel groups, as depicted in 

Figure 4-6, across a lace pattern, the fuzzy reasoning rule-based system can determine 

whether the pixel group is a probable segment of the river. Figure 4-10 and Figure 4-11 

illustrate the two system inputs corresponding to an example lace pattern together with two 

candidate groups A and B.

Two initial experiments were carried out to define the system input and output

N o  o f  s a m p l e

: r  g r o u p Group position

Figure 4-12: Frequency histogram fo r the position o f pixel groups
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N o  o f  s a m p l e
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Group density

&  R i v e r  g r o u p  

□  N o n - r i v e r  g r o u p

Figure 4.13: Frequency histogram for the densities of pixel groups

membership functions. Figure 4-12 and Figure 4-13 illustrate the frequency histograms 

which were taken from the experiments for defining input membership functions 

[ROB 89] [TUR84].

From these experimental results we can obtain a set of data from the River group part 

(see Figure 4-12 and Figure 4-13) to define the membership functions. Triangular 

membership function is most common and has proved to be a good compromise between 

effectiveness and efficiency. Overlapping between fuzzy-set boundaries is desirable and the

Left Mid-Left Middle Mid-Right Right P.S. P.L.100 100

110 250
S y s t e m

I n p u t

S y s t e m

I n p u t
G roup Position Group Density

N.L.= Negative Large 
N.M .= Negative Medium 
N.S.= Negative Small 
Med .= Medium  
P.S.= Positive Small 
P.M.= Positove Medium  
P.L.= Positive large

N.L. N.M. N.S. Med. P.S. P.M. P.L.100

40 >0 80 100 120 
PR O BA BILITY

140 160
S y s t e m  O u t p u t

Figure 4-14: System input and output membership functions
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key to smooth operation of the system. To simplify the procedure of defining fuzzy 

membership functions, an overlap of 50 percent between adjacent fuzzy sets is used in this 

experiment. In addition to each fuzzy set the central value and the slopes on either side are 

chosen. Figure 4-14 shows the fuzzy sets associated with the inputs and output of the 

system.

43.2.2 Fuzzification process

Fuzzification is the procedure of calculating an input value to represent a degree of 

membership in one or more fuzzy sets. This process uses two basic steps which are repeated 

for each system input. First, a crisp input has to be read and scaled to a value between 0 and 

100. Second, the input must be translated to a degree of membership function. Figures 4-15 

and 4-16 show two system inputs, position and density. Each value of system input has a 

degree of membership in each of these sets. Once the degrees of memberships are assigned, 

we can utilise these values to evaluate the rules.

43.2.3 Inference and composition

Fuzzified inputs are processed through a pre-defined set of rules using min-max 

evaluation to form fuzzified outputs. The author developed a set of rules that have the form

Left Mid-Left Middle Mid-Right100

30

90 98
Group B

58 64
Group A

N.S. P.S.Med. P.L.
100

2 5

5 2  5 7
G roup B

250

Fig. 4-15: Fuzzy sets for  "group position" Fig. 4-16: Fuzzy sets for "group density"
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R u l e  1 : I F  p o s i t i o n  i s  L e f t A N D d e n s i t y  i s  N . L . T H E N p r o b a b i l i t y  i s  N . M .

R u l e  2 : I F  p o s i t i o n  i s  L e f t A N D d e n s i t y  i s  N . S . T H E N p r o b a b i l i t y  i s  P . S .

R u l e  3 : I F  p o s i t i o n  i s  L e f t A N D d e n s i t y  i s  M e d . T H E N p r o b a b i l i t y  i s  P . S .

R u l e  4 : I F  p o s i t i o n  i s  L e f t A N D d e n s i t y  i s  P . S . T H E N p r o b a b i l i t y  i s  N . M .

R u l e  5 : I F  p o s i t i o n  i s  L e f t A N D d e n s i t y  i s  P L , . T H E N p r o b a b i l i t y  i s  N . L .

R u l e  6 : I F  p o s i t i o n  i s  M i d - L e f t A N D d e n s i t y  i s  N . L . T H E N p r o b a b i l i t y  i s  P . S .

R u l e  7 : I F  p o s i t i o n  i s  M i d - L e f t A N D d e n s i t y  i s  N . S . T H E N p r o b a b i l i t y  i s  P . M .

R u l e  8 : I F  p o s i t i o n  i s  M i d - L e f t A N D d e n s i t y  i s  M e d . T H E N p r o b a b i l i t y  i s  P . L .

R u l e  9 : I F  p o s i t i o n  i s  M i d - L e f t A N D d e n s i t y  i s  P . S . T H E N p r o b a b i l i t y  i s  M e d .

R u l e  1 0 : I F  p o s i t i o n  i s  M i d - L e f t A N D d e n s i t y  i s  P . L . T H E N p r o b a b i l i t y  i s  N . L .

R u l e  1 1 : I F  p o s i t i o n  i s  M i d d l e A N D d e n s i t y  i s  N . L . T H E N p r o b a b i l i t y  i s  P . S .

R u l e  1 2 : I F  p o s i t i o n  i s  M i d d l e A N D d e n s i t y  i s  N . S . T H E N p r o b a b i l i t y  i s  P . M .

R u l e  1 3 : I F  p o s i t i o n  i s  M i d d l e A N D d e n s i t y  i s  M e d . T H E N p r o b a b i l i t y  i s  P . L .

R u l e  1 4 : I F  p o s i t i o n  i s  M i d d l e A N D d e n s i t y  i s  P . S . T H E N p r o b a b i l i t y  i s  P . S .

R u l e  1 5 : I F  p o s i t i o n  i s  M i d d l e A N D d e n s i t y  i s  P . L . T H E N p r o b a b i l i t y  i s  N . L .

R u l e  1 6 : I F  p o s i t i o n  i s  M i d - R i g h t A N D d e n s i t y  i s  N . L . T H E N p r o b a b i l i t y  i s  P . S .

R u l e  1 7 : I F  p o s i t i o n  i s  M i d - R i g h t A N D d e n s i t y  i s  N . S . T H E N p r o b a b i l i t y  i s  P . M .

R u l e  1 8 : I F  p o s i t i o n  i s  M i d - R i g h t A N D d e n s i t y  i s  M e d . T H E N p r o b a b i l i t y  i s  P . L .

R u l e  1 9 : I F  p o s i t i o n  i s  M i d - R i g h t A N D d e n s i t y  i s  P . S . T H E N p r o b a b i l i t y  i s  M e d .

R u l e  2 0 : I F  p o s i t i o n  i s  M i d - R i g h t A N D d e n s i t y  i s  P . L . T H E N p r o b a b i l i t y  i s  N . L .

R u l e  2 1 : I F  p o s i t i o n  i s  R i g h t A N D d e n s i t y  i s  N . L . T H E N p r o b a b i l i t y  i s  N . M .

R u l e  2 2 : I F  p o s i t i o n  i s  R i g h t A N D d e n s i t y  i s  N . S . T H E N p r o b a b i l i t y  i s  P . S .

R u l e  2 3 : I F  p o s i t i o n  i s  R i g h t A N D d e n s i t y  i s  M e d . T H E N p r o b a b i l i t y  i s  P . S .

R u l e  2 4 : I F  p o s i t i o n  i s  R i g h t A N D d e n s i t y  i s  P . S . T H E N p r o b a b i l i t y  i s  N . M .

R u l e  2 5 : I F  p o s i t i o n  i s  R i g h t A N D d e n s i t y  i s  P . L . T H E N p r o b a b i l i t y  i s  N . L .

Figure 4-17: System rule base

of

IF [antecedent_one\ AND [antecedent_two\ THEN [consequence]

which are listed in Figure 4-17. The antecedents of rules correspond directly to degrees of 

membership calculated during the fuzzification process. Each antecedent has a degree of 

truth assigned to it as a result of fuzzification.

In inference and composition processes, strengths are enumerated based on antecedent 

values and then assigned to the rules' output strengths. Figure 4-18 illustrates the actual 

fuzzy outputs calculated during the rule evaluation process for pixel group A. The strength 

of a rule is assigned the value of the weakest {minimum) antecedent. As more than one rule 

applies to the same specific action, the strongest {maximum) value of rules is used :

a) from Rule 4:

N .M .m le strength -  mj n (antecedent one, antecedent Jwo) 

= min (68,35) -  35

b) Rule 5:

N .L ™ ie strength 1 -  m jn  (68, 65) = 65,
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R u l e l :

R u ! e 2 :

R u l e 3 :

R u l e 4 :

I F  p o s i t i o n  i s  6 8  

I F  p o s i t i o n  i s  6 8  

I F  p o s i t i o n  i s  6 8  

I F  position is 68

A N D

A N D

A N D

A N D

d e n s i t y  i s  0  

d e n s i t y  i s  0  

d e n s i t y  i s  0  

density is 35

T H E N  p r o b a b i l i t y  i s  N . M .  

T H E N  p r o b a b i l i t y  i s  P . S .  

T H E N  p r o b a b i l i t y  i s  P . S .  

T H E N  o r o b a b i l i t v  i s  N.M.
R n l e S : I F  position is 6S A N D density is 65 T H E N  p r o b a b i l i t y  i s  N.L,
R u l e 6 :

R u l e 7 :

R u l e 8 :

R n l e 9 :

I F  p o s i t i o n  i s  3 0  

I F  p o s i t i o n  i s  3 0  

I F  p o s i t i o n  i s  3 0  

I F  position is 30

A N D

A N D

A N D

A N D

d e n s i t y  i s  0  

d e n s i t y  i s  0  

d e n s i t y  i s  0  

density is 35

T H E N  p r o b a b i l i t y  i s  P . S .  

T H E N  p r o b a b i l i t y  i s  P . M .  

T H E N  p r o b a b i l i t y  i s  P . L .  

T H E N  p r o b a b i l i t y  i s  Med.
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Figure 4-18: Inference and composition for pixel group A

from Rule 10 also

N L.rule strength = min (3 0 , 65) = 30,

the maximum rule strength on fuzzy set N.L. is

N .L P de strength =  m a x  (65> j q j  =  £5

c) Rule 9:

Med.rule strength =  m in  ^  3 5 )  =  M

In order to further improve the speed of this calculation, the Fuzzy Associative Memory 

(FAM) Bank [NED91] is applied to reduce the number of rules. Inspecting the FAM Bank 

(Figure 4-19), the following fuzzy system rule can be formulated:

from rule (A) indicated in Figure 4-19,

IF the Group Position is Right

AND the Group Density is Positive Small

THEN the Probability* is Negative Medium

* refer to glossary of terms
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Rule (A): IF Position is Right and D ensity is P .S .
THEN Probability is N egative Medium  

Rule (B): IF Position is Near Mid. and  Density is N .S. 
THEN Probability is Positive Medium

P rob P osition
ability Left M L M id M R R ight

N L NM PS PS PS NM

>>
N S PS P M (‘* PM PM PS

(A
C
Q M ed PS PL PL PL PS
D

PS NM M ed PS M ed
(A)

NM

PL NL NL NL NL NL

Figure 4-19: Fuzzy Associative Memory (FAM) Bank 

to determine the probability

This FAM Bank is comprised of 5 x 5 rules. We can reduce the 25 rules per FAM Bank to 

11 rules per table by compounding the rules in the Bank. For instance, rule (b) indicated in 

Figure 4-19 merges three [antecedent one]s of the rules to take the form:

from rule (B),

IF the Group Position is Near Middle 

AND the Group Density is Negative Small 

THEN the Probability is Positive Medium

43.2.4 Defuzzification process

The defuzzification process is to convert its fuzzy outputs into a single raw or crisp 

output. There are more than 30 valid defuzzification methods. In these experiments, we 

choose the "centre-of-gravity method" which is a common and accurate defuzzification 

technique for resolving both the vagueness and conflict issues [ZAD8 8 ]. Figure 4-20 is used

to illustrate the defuzzification of the output using the centre of gravity method:
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100

C e n tro id
Point

35
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60 80 100 
Weighted Average = 39.37 (24.61 %)

40

Figure 4-20: Defuzzification process for pixel group A

a) A centroid point on the x axis is found for each output membership function;

b) The membership functions are limited in height by the applied rule strength;

c) The areas of the membership functions are calculated;

d) The defuzzified outputs are derived by weighted averages of the centroid points and 

the enumerated areas:

, f Y(shaded area X centroid point)
Weighted average = -------------------------------- --------

]T  {shaded area)

By relying on the use of fuzzy inference technique, each black pixel group could be

input 1

outputs

input 2

Figure 4-21: Output pattern o f the fuzzy engine
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calculated and assigned an average weight (probability). For instance, in Figure 4-11, the 

output value for group A is 39.37 (24.61 %) (refer to Figure 4-20), also the group B is 

134.64 (84.15 %). Since the average weight of group A is only 24.61% (less than 50%), this 

means that the pixel group only has a 24 percent probability of being a segment of the river. 

It is, therefore, concluded that group A is not a part of the river. Figure 4-21 illustrates the 

output pattern of the fuzzy kernel using the FAM Bank (stated in Figure 4-19).

4.32.5 Verification

Once all the black pixel groups have been assigned a probability value (average 

weight), the pixel groups whose probability values are less than 80 (50%) are abandoned (see 

Figure 4-22). The verification process can then be broken down into the following tasks:

a) Calculate the distance between two adjacent groups;

b) If the distance is shorter than a specified value (set to six pixels long in these 

experiments) a network is built to record this path;

c) Continuously trace the distances between pixel groups while recording all the

N on-river group

R iver group

Figure 4-22: Each probable river segments whose weights 

are bigger than 80 (50%)
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The "distance" between group 1 and group 2 is 

SQRT ((xl-x2)2 + (yl-y2)2)

(x l, y l)

group1
® ®

*“(x2, y2)

group2

Figure 4-23: Example for calculating the distance 

between pixel groups

correct paths until a new pixel group reaches the border of the image (right hand 

edge of the frame);

d) Calculate the total probability values and divide by the number of the group in this 

path (average probability);

e) If the average probability is bigger than a specified value, (110 or 75% was used in 

the experiments) then the correct river has been found; if the average probability is 

less than this value, repeat step (c) to (e) until the correct river is located.

Figure 4-23 illustrates the computation of the distance between two adjacent pixel groups. 

By calculating the distances and tracing the average probabilities in all these segments, the 

river location, highlighted in Figure 4-24, can be pin-pointed.

4.4 Line Mapping Process

When the first cutting river in the lace strip is successfully detected, the extracted 

knowledge can be used to speed up the search in subsequent frames. In order to meet the 

real-time requirements of the system, instead of using traditional pattern matching
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Storting
position

Destination

Figure 4-24: Interconnection between each probable river segments

techniques, a new approach called the Line Mapping Method (LMM) has been developed to 

achieve fast response and higher reliability. This approach is divided into the following 

processes:

4.4.1 Indicating and registering one repeat cutting cycle

A centre line is located by calculating the distance between the upper and lower

boundaries shown in Figure 20. Three crossing points between the cutting river and the

centre line are marked. The cutting path (river) between the intersections © and 0  labelled

upper 
boundary

centre line

lower
boundary

Figure 4-25: Extracting a repeat cutting cycle
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borders of 
the black 
pixel groupP$

border following process

Figure 4-26: Borders o f the black pixel group

in Figure 4-25 indicates a repeat cutting cycle, which acts as a reference path for detection 

of subsequent frames.

4.4.2 Capturing the following frame

The next frame of a 256 grey scale lace image is captured by the frame grabber from the 

CCD camera and temporarily stored in a memory block. An image thresholding operation is 

employed to transform the image into a black and white bitmap. This bi-leveled lace image is 

then applied for detecting the borders of the black pixel groups which may be candidates for 

river segments. As depicted in Figure 4-26, the border following technique is used to find 

the borders (outlines) of the potential river segments.

4.4.3 Mapping the reference path into the new frame

Since the lace strip is liable to distort as it is passed through the trimming mechanism, 

the reference path (river) is mapped onto the new frame for the detection of the next cutting 

river. With careful inspection it is clear, from Figure 4-27, that the two halves of the image 

do not completely match (the reference path is not completely within the river banks).
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reference path

river banks

Figure 4-27: Mapping the reference path into a new lace image

A river, as stated previously, crosses from one side of the image to the other in a nearly 

unbroken sequence. Some allowance has to be made for cross threads produced as a result of 

the manufacturing process. These are thick white threads which cross the river at intervals 

and are indistinguishable from the material surrounding the river. For this reason, the 

detection must allow for small breaks in continuity.

The LMM technique has been developed for solving this problem. The detection will be 

started from the left hand side of the frame and ended at the right. As the matching point has

STAGE ONE STAG 5  T W Q

border of black 
—^7 pixel group

matching < C / 
point

thick  ̂
threads

STAGE THREE SIAGE..FQUR
cutting

Reference
path

Figure 4-28: Using the reference path for searching next cutting path
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been obtained (described in Section 4.5), the reference path is mapped onto the new frame to 

find the next border of the river. Several possible connecting borders can be found - A, B, 

C, D and E labelled in Figure 4-28 (stage two). The border closest to the mapped reference 

path is then chosen to become a part of the river (border E is selected in the example). Using 

the same method, the reference path is repeatedly employed to search the rest of the river 

segments until it reaches the end of the frame. After all the segments of the river have been 

found, lines between adjacent river borders are connected, as illustrated in Figure 4-28 (stage 

four), the entire river bank can be constructed. By using the detected river bank, a smooth 

line (the cutting path) can be created with in the centre of the river bank.

To summarise the scheme mentioned above:

1) Grab the first frame of the lace image;

2) Use the fuzzy reasoning technique to detect the first cutting river across the pattern;

CUTTING PATH
(RIVER)

REFERENCE PATHBINARY LACE IMAGE

Cutting Path
Bitmap D ata Cutting

Path R eference
Path

Bitmap D ata FUZZY PATTERN 
DETECTION ^

LINE MAPPING 
PROCESS

Cutting Cycle

Dynamic 
Lace Im age MACHINE VISION 

PR O CESS .
CUTTING CYCLE

System
InformationSUPERVISION OF 

. THE SYSTEM ^

Cutting Cycle
CUTTING

MECHANISM G enerating
Data

Control 
C om m and '

VECTOR
GENERATORAxis

Positions

VectorsCNC 68k 
CONTROLLER

Vectors
FIFO BUFFER

Figure 4-29: DFD fo r  the lace trimming system overview
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3) Find the intersections between the centre line and the cutting path;

4) Locate the capture and end of cutting points, respectively;

5) Generate machine movement data from the beginning to the end of cutting position;

6 ) Start trimming the lace pattern and continuously track the dynamic position of the 

cutter;

7) Capture the second lace image when the cutter reaches the capture point;

8 ) Use fuzzy technique to find the cutting river in the second frame for defining the shape 

of the reference path;

9) Download the machine movement data of the reference path;

10) Using the LMM method to map the reference path into the third and the subsequent 

frames of the lace image for fast detection of the repeat cutting path;

11) Continuously trim the strip of the lace into the desired pattern between frames.

Figure 4-29 illustrates the level 01 DFD for the system overview.
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+ X

CCD Camera

Cutter
m oving

direction

+ Y / - Y

Lace Strip cutting path (river)

Figure 4-30: The vision system and the cutter

4.5 Supervision of the System

Since the CCD camera is mounted on both X and Y axes of the machine, the camera is 

moved with the cutter (Figure 4-30). The advantage of using such a construction is that the 

camera and the cutter are kept in a constant position relative to each other. Consequently, it 

is easy to calculate the real cutting position from the captured image, as well as to correct the 

errors between these two captured frames.

On the other hand, since the lace strip is transported past the vision system by the 

conveyor belt following the Y axis, the vision system has to consider the more complex two 

dimensional image shifting problem. Nevertheless, this "look-and-move" strategy yields 

more accurate results than the "eye-to-hand co-ordination" approach [WOL91], and also 

avoids small drift due to material length or missing steps of the motor(s). The strategy for 

analysing images moving in two directions and generating the vector data for machine 

control is discussed in the following sections.
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4.5.1 Detecting the First river and finding the capture point for next frame

As the lace strip is transported past the field of vision, the first frame of the lace image is 

captured and temporarily stored in memory. After the fuzzy reasoning process, the cutting 

rivers across the lace pattern are found. The next stage of the system will then decide the 

capture point on the cutting path for the second lace image. When the machine is in 

operation, the camera is moving together with the cutter, so finding the position where the 

camera can capture a similar image for the LMM process is critical. As shown in Figure 4- 

31, a centre line can be drawn across the first frame, and an intersection between the cutting 

river can then be found. This position is engaged for grabbing the second frame of the lace 

image.

4.5.2 Generating machine movement data and grabbing the second frame

While the first cutting river has been detected, using the fuzzy reasoning method, the 

machine control data is generated and downloaded to the machine controller. The controller 

transforms the motion data into the real machine movement data and starts driving the cutter

First c a p tu re d  fram e S econd  ca p tu re d  fram e

start of 
cutting

centre

upper boundary

;apturel
point

end of ! 
.cutting

Figure 4-31: Vision and cutting procedure
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to cut the strip of lace. When the machine starts cutting the lace strip, the controller 

simultaneously responds to the machine console with the current position on the XY axes. 

The machine console then continuously tracks the cutting positions until it reaches the 

capture point (shown in Figure 4-31, first captured frame). Consequently, the CCD camera 

is triggered to capture the second frame of the lace image which is stored into memory for 

processing.

Since the system takes approximately two hundred milli-seconds to find the next cutting 

river, this will stop the cutting process between two captured frames. To solve this problem, 

we simply add a quarter of the repeat cutting cycle (LI, between capture and end of cutting 

points, indicated in Figure 4-31) to the cutting path. Thus, while the machine is trimming 

past the capture point, the vision system grabs a frame as well as finding the cutting river 

before the machine actually ends trimming. This enables continuous operation of the system 

in real-time.

4.5.3 Finding the reference path and the next capture point

As the second lace image is stored in the memory, the fuzzy reasoning rule-based 

technique is, again, employed to find the second frame of the lace image. The second 

intersection with the cutting river can be designated as the capture point for the next frame. 

As the machine continuously trims the lace and reaches the 'end o f cutting' position in the 

first frame, the movement data of the second cutting path has already been produced and 

stored. Therefore, the machine could continuously cut the lace pattern through subsequent 

frames in an unbroken sequence.

LI and L2 indicated in Figure 4-31 are taken from the first frame, and coupled to the 

second frame for determining the length and shape of the reference path (a repeat cutting 

cycle). After the reference path has been defined, its corresponding position with the centre
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line (first pixel of this module) is then registered. This will be used for detection of 

subsequent frames.

4.5.4 Line mapping operation

After the reference path has been determined, the extracted knowledge can be used to 

speed up the search for the river in subsequent frames. Figure 4-32 shows an example of 

mapping the reference path into the following frame. Utilising the Line Mapping Method 

(LMM), the new cutting river across the lace image can be successfully and quickly detected.

4.6 Experimental Results

Various experiments were carried out to investigate the effectiveness of this method. 

Numerous lace patterns were employed for detecting the river location. All cutting paths 

across the patterns were successfully found. The time taken to isolate the river and produce 

cutting path depends on complexity of the pattern. Time taken for most kinds of motif, using 

the fuzzy reasoning rule-based technique, is typically about 300 milli-seconds using an Intel 

80486 processor running at 6 6  MHz. Nevertheless, in the case of a very few intricate lace

upper 
boundary

lower 
boundary

Figure 4-32: Mapping the reference path into subsequent frame

centre
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Figure 4-33: Example A o f river extraction

patterns (e.g. Figure 4-33), up to 1.5 seconds is required.

Once the river path on the first frame is found, this knowledge can be utilised by the 

LMM to speed up the detection for the river in subsequent frames in real time. The time to 

detect a repeat cutting path using LMM is dependent on how complex the motif is, the 

length of one repeat cutting cycle and the distortion of the pattern. On most kind of lace 

patterns detection time is about 150 to 200 milli-seconds. The frame grabber digitises a 

incoming video signal at a rate of 30 frames per second. Typically a repeat cutting cycle of 

the lace strip is around 9 to 15 cm. Therefore the speed for tracking the lace pattern using 

the LMM is approximately 25 to 35 meters / minute (higher performance could be obtained 

with a faster computer). Some sample lace patterns together with the resulting river path are

Figure 4-34: Example B o f river extraction
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Figure 4-35: Example C of river extraction

shown in Figures 4-33 to 4-35.

The strip of lace is likely to stretch or contract while it is passed through the machine via 

the feed mechanism. Several experiments have been carried out for investigating the 

capability of this approach. Various kinds of lace patterns have been examined under the 

following status: 1) Non-distortion, 2) Contraction, 3) Stretch, and 4) Un-parallelism.

/ ) No-distortion

Under this condition, all cutting paths across the lace patterns were successfully found. 

Original Lace Im age D e te c ted  Lace Im age

Figure 4-36: Un-distorted lace pattern
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Original Lace Im age D e te c ted  Lace Im age

Figure 4-37: Lace pattern under 30% contraction (successfully detected)

Figure 4-36 illustrates a typical lace pattern as well as its detected cutting path.

2) Contraction

Figure 4-37 and Figure 4-38 show that the lace motifs have been contracted with 30 

per-cent and 40 per-cent of the pattern. The cutting paths within these two frames have been 

successfully detected by applying the novel techniques. On the other hand, when we use 

traditional image processing methods [SHE94a] to examine these distorted patterns, 

according to the experimental results, none of them could find the river, or even pinpoint the

Figure 4-38: Lace pattern under 40% contraction (successfully detected)

Original Lace Im age D e te c ted  L ace Im age
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wrong paths.

The feature of the lace motif under 50 per-cent of contraction is illustrated in Figure 4- 

39. With careful inspection of this picture we can find that parts of the river banks are 

overlapped, it is difficult to find a nearly unbroken river across the strip of the lace. In the 

real working situation, although the skilled human operator could find the cutting path from 

the contracted lace pattern, it would be impossible to separate this pattern correctly by using 

knife or lace cutter. Consequently we can ignore this situation in our experiments.

3) Stretch

Lace was stretched lengthwise in order to emulate stretch resulting from lace transport. 

Figure 4-40 shows that the lace pattern has been stretched as much as possible, and its 

detected river across the pattern. Typically, about 15 to 30 per-cent of lace can be stretched, 

depending on material and patterns.

Compared with the previously reported method [SHE94a], the fuzzy logic based 

Original L ace Im age Failure D etection

overlapped 1

Figure 4-39: Lace pattern under more than 50% contraction 

(fail to detect the correct cutting path)
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Original L ace Im age D e te c ted  Lace Im age

Figure 4-40: Lace pattern under maximum stretch

approach (FPR: Fuzzy Pattern Recognition) is more effective. The traditional image 

processing technique (PIDFE: Pixel Intensity Directed Feature Extraction) for finding the 

river heavily depends on the repeat of the lace pattern. In other words, the two extremes of 

the river should be equi-distant from their nearest edge, and after a distance equal to the 

repeat period of the design, the river should be back at the same position relative to the two 

edges as it was at the start. When lace is distorted, these features of the river are absent. 

That is why the conventional method fails when strips of lace are slightly distorted (5- 10%).

4) Un-parallelism

As the lace strip is placed on the cutting bed by an operator, a small degrees of deviation 

in the angle between the lace and the conveyor belt will normally occur. Figure 4-41 depicts 

the skewed lace patterns captured by the camera. Applying the methods developed, the 

cutting paths in the lace patterns up to ± 20 degrees of deviation in the angle can be 

successfully detected (see Figure 4-41). According to the experiences of the researcher, as 

the angle of the deviation between a lace strip and the conveyor belt is larger than 20 

degrees, the lace strip is not possible to be rolled on successfully by the conveyor system. 

Accordingly we only consider that the deviation angle of the lace strip is not larger than ± 20 

degrees in our experiments.
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detected
river

Figure 4-41: Detections o f cutting paths within the lace patterns 

up to ± 20 degrees of deviation

Experimental results indicate that the objectives have mostly been fulfilled. The system 

requires no prior knowledge of any particular lace pattern or any training. A combination of 

FPR technique and the LMM can be used to successfully detect the cutting river within 

various lace patterns in real time. Compared with the conventional image processing 

methods [KIN93][RUS88][SHE94], it is not only easier to design and implement the system, 

but also more effective in coping with distortion. Furthermore it does not require any 

training or prior knowledge of the lace pattern.
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4.7 Summary

This chapter describes the techniques developed to detect the cutting paths within 

various lace patterns in real time. The author has described two attempts based on Pixel 

Intensity Directed Feature Extraction (PIDFE) using traditional image processing methods 

and Fuzzy Pattern Recognition (FPR) technique applying fuzzy reasoning rule-based method 

to detect the first river within a lace pattern without prior knowledge of the pattern scanned. 

According to numerous experimental results, the FPR technique shows to be more effective 

in coping with distortion than the PIDFE method.

As the first river has been successfully found, the extracted knowledge can be used by 

the Line Mapping Method to quickly detect the cutting paths within the subsequent frames. 

By relying on this method, it can achieve fast response and higher reliability. The 

combination of the Fuzzy Pattern Recognition Technique and the Line Mapping Method can 

be used to successfully detect the cutting river within various lace patterns in real time.

The techniques developed to supervise the vision system and the cutting process have 

been described. The CCD camera has been mounted on the X axis of the cutting mechanism 

in which the "look-and-move" strategy yields more accurate results than the "eye-to-hand co

ordination" approach, and also avoids small drift due to material length or missing steps of 

the motors.
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Chapter 5
T ightly  Coupled  V ision  and  C ontrol  System

5.1 Introduction

5.2 Neural Networks

5.3 Neural Fuzzy Theory

5.4 Configurations

5.5 Pre-processing Vision System

5.6 Post-processing Vision System 

5.7 Closely Integrating the Remote Sensing Based Control

5.8 Experimental Results 

5.9 Summary

5.1 Introduction

Lace is most commonly manufactured by a knitting process in a web up to 3.5m wide 

with multiple pattern repeats across its width [KIN93]. The web is separated into lengths, 

which involve 'scalloping' - cutting along the edges of the pattern. This is performed by 

operators who guide the lace onto rotary knife cutters. Lace is deformable (it may even be 

manufactured with elastic yams to enhance its elasticity) and the variability of the 

manufacturing process produces large tolerances 011 the pattern dimensions (up to ± 1 0 %, 

sometimes in combination with pattern skew). Further practical problems can result from 

distortion of the lace as knitting tensions are released during the separation process.

For economic reasons a lace web speed of 1111/s is desirable which requires very rapid 

processing of image data to provide real-time control of the cutting mechanism. The task is 

made difficult by the deformable nature of the lace whose dimensions vary with tension and
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manufacturing conditions and the changes in the pattern caused by the release of tension in 

the lace structure as it is cut. The extent of stretch varies depending on material and the 

structural pattern of lace. Specially when tactile cutters are used, cutting forces may result 

in changing the image. This contributes to the complexity of real-time pattern recognition 

problem.

Work has been reported using a guided laser cutter to separate the deformable materials 

[KIN93]. This system uses multiple digital signal processors to acquire and process image 

data from a line-scan CCD camera. Control information is then generated to allow cutting of 

the web along the tracked path (based on pre-defined template poses) using a CO2 laser 

beam deflected by a galvanometer mounted mirror. Although the use of laser reduces this 

deformation, distortion due to mechanical feed misalignments persists. Changes in the lace 

pattern are caused also by the release of tension in the lace structure as it is cut. In order to 

tackle the problem of distortion due to material flexibility in general, a novel approach using 

inexact algorithms, i.e., fuzzy logic, neural networks and neural fuzzy technique, have been 

developed and described here. We proposed a tightly coupled vision control system using a 

tactile cutter (for cost effectiveness). By employing the pre- and post-processing vision 

systems with the intelligent machine console, it is possible to monitor the process and 

generate on-line information for the controller and hence overcome the flexibility problem.

In this programme of work it is proposed to use a strip of paper on which has been

Example A Example B

Figure 5-1: The curve patterns on a strip o f paper captured from a CCD camera
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B racket

Spring

Felt-Tip P en

"stretch"

Figure 5-2: Spring Mounted Pen (SMP) connected with the testing rig

drawn a curve to simulate the river extracted from the lace patterns (Figure 5-1). A spring

mounted pen (SMP), which is a pen with a spring on the top connected with the Z axis of the 

cutting / drawing mechanism, is employed to emulate the movement (distortion) of the lace 

strip due to the cutting forces caused by a tactile cutter. Figure 5-2 shows the schematic of 

the SMP together with the axes of the testing rig.

The main emphasis of the work is to investigate the use of inexact algorithms in order to

overcome the problems of lace distortion. Furthermore, it is proposed to use the inexact 

methods as the basis for achieving optimal quality which satisfies visual demands rather than 

engineering precision. Employing inexact algorithms, potentially allows development of 

methods for detecting unsatisfactory or faulty operation which may be applicable to similar 

manufacturing processes such as knitting and garment producing, etc.

In the following sections, first, we are going to discuss the concepts of Neural Networks 

and Neural Fuzzy theories, respectively, and then explain in detail how they have been 

implemented by means of using C programming language in an IBM compatible personal 

computer.

Spring Mounted Pen

Paper Strip
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5.2 Neural Networks

Artificial neural networks or simply "neural nets" go by many names such as 

connectionism, parallel distributed processing, connection science, neural computing and 

neuromorphic systems. Whatever the name, all these models attempt to achieve good 

performance via dense interconnection of simple computational elements. In this respect, 

artificial neural net structure is based on our present understanding of biological nervous 

systems. A simple, three-layer back-propagation model comprising two input neurodes 

(iactive units in ci neural network) [EBE90], five hidden neurodes and three output neurodes 

is illustrated in detail in Figure 5-3. Designing artificial neural networks to solve problems 

and studying real biological nets may also change the way we think about problems and lead 

to new insights and algorithmic improvements.

5.2.1 Introduction

Artificial neural net models have been studies for many years in the hope of achieving 

human-like performance. These models are composed of many nonlinear computational 

elements operating in parallel and arranged in patterns reminiscent of biological neural nets. 

Computational elements or nodes are connected via weights that are typically adapted during

BIAS,

connections
(weights)

-— ► output t

input 1 output 2

-► output 3input 2

BIAS,

input layer hidden layer output layer

Figure 5-3: Back-propagation network structure
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use to improve performance. Aleksander and Morton [ALK90] have the following 

definition:

Neural computing is the study o f networks o f adaptable nodes which, through a 

process o f learning from task examples, store experimental knowledge and make it 

available for use.

A  neural network is a processor of information consisting of simple processing elements 

connected together. Each processing element is a vary simple model of a neuron in the 

brain: hence the term neural networks. Thus a neural network could be described as 

mankind's attempt to create an artificial brain. Present neural networks try to mimic some 

processes in the brain in order to harness its ability to infer and induce from incomplete or 

confusing information.

What makes these networks powerful is their potential for performance improvement 

over time as they acquire more knowledge about a problem, and their ability to handle fuzzy 

real world data. That is, a network 'taught' certain data patterns, is able to recognise both 

these patterns and those which are similar: the network is able to generalise.

Work on artificial neural networks has a long history. Development of detailed 

mathematical models began more than 50 years ago with McCulloch and Pitts, Hebb, 

Minsky, Rosenblatt, Widrow until 1969. Unfortunately, the claims by Rosenblatt as to what 

his machine could do were somewhat exaggerated, and in 1969 Minsky and Papert wrote a 

book, Perceptrons [MIN69], which showed that there were various problems with these 

neural networks and so the subject went out of fashion until the mid 1980s. During this 

time, however, various people were still working in the field, including Aleksander, 

Kohonen, Hopfield, and the PDP group including Rumelhart, McClelland and Hinton. 

Neural networks have become fashionable again because it has been realised that there are 

limitations as to what Expert Systems can do, and the success of Hopfield and the PDP
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group. In 1986 Rumelhart and McClelland published Parallel Distributed Processing 

[RUM8 6 ] in which it is shown how the objections of Minsky and Papert could be overcome, 

and work in the field has flourished.

5.2.2 Principles

The potential benefits of neural networks extend beyond the high computation rates 

provided by massive parallelism. Neural nets typically provide a greater degree of robustness 

or fault tolerance than von Neumann sequential computers because there are more 

processing nodes, each with primarily local connections. Damage to a few nodes or links 

thus need not impair overall performance significantly. Most neural net algorithms also 

adapt connection weights in time to improve performance based on current results. 

Adaptation also provides a degree of robustness by compensating for minor variabilities in 

characteristics of processing elements. Traditional statistical techniques are not adaptive but 

typically process all training data simultaneously before being used with new data. Neural 

net classifiers are also non-parametric and make weaker assumptions concerning the shapes 

of underlying distributions than traditional statistical classifiers. They may thus prove to be 

more robust when distributions are generated by nonlinear processes [LEP87].

A neural network is not programmed to complete a given task, rather it adapts and 

acquires knowledge (learning process, which can be supervised or unsupervised) over time in 

order to complete the task. Instead of performing a program of instructions sequentially as 

in a von Neumann computer, neural networks explore many competing hypotheses 

simultaneously using massively parallel nets composed of many computational elements 

connected by links with variable weights. Once the network has learned to perform a task, it 

can then be set to undertake that task. For instance, a network which is used to classify a 

massive set of data would first be taught what those sets are categorised by which class, and 

then would be put in the mode whereby it reported whether the set it was being shown was 

one it had been taught.
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Figure 5-4: Basic model o f Neuron

output

A neural network consists of simple processing elements connected together. There are 

various ways in which these elements can be connected, in single or multiple layers, fully or 

partially connected, etc. Besides there are very many forms of neural network of which the 

main types are the 'Perceptron' types, Hopfield nets, Boltzmann machines, Weightless or n- 

tuple nets, Kohonen nets, the neocognitron and ART classifiers. 'Perceptron' networks is 

one of which are used most, and are more applicable in the area covered by the investigations 

reported here, and it is described next.

52.2.1 Perceptron networks

In these networks the main element is an extension of the McCulloch and Pitts neuron; 

this is shown in Figure 5-4. The output of the element is some function of the weighted sum 

of all the inputs. Sometimes the output value is used directly, or the output is processed by, 

say, a threshold or the sigmoid function which will be explained later. In some networks it is 

important to know that the element has 'fired' (in the same way that a neural in the brain 

produces an active output), and this occurs if the weighted sum exceeds a given threshold. 

For other networks, the actual value of the output is required.

Neural networks are specified by the net topology, node characteristics, and training or 

learning rules. These rules specify an initial set of weights and indicate how weights should
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be adapted during use to improve performance. Learning is the process of deciding what the 

values of the weights should be. This is often achieved by comparing the output of the 

element with what it should be (this is a form of supervised learning) and adjusting the 

weights appropriately. Normally the Widrow-H off Delta rule is used to adjust weights.

A single layer network of such neurons can perform simple functions. However, one of 

the criticisms raised by Minsky and Papert was that such a network could not solve a non 

linearly separable problem: that is one where one straight line cannot separate opposing 

classes. However, a multiple layer network, which is shown in Figure 5-3, can solve such 

problems.

hi learning mode, the network is separately presented with the data in the training set, 

both the required input and output for each item in the set, and the weights adjusted 

accordingly using the generalised delta rule, by propagating errors between the actual output 

and the desired output back through the network. This can take time as the whole data set 

must be presented many hundred times. This is a severe disadvantage of the method. 

However, a great many workers in the field use back propagation learning on multi layer 

perceptrons.

In this project, the author has employed the most widely used of the neural network 

paradigms - back propagation (or called back-error propagation) networks which has been 

applied successfully in applications studies in a broad range of areas.

5.22.2 Back-error propagation

Back-propagation is one of the easiest networks to understand. Its learning and update 

procedure is intuitively appealing because it is based on a relatively simple concept: If the 

network gives the wrong answer, then the weights are corrected so that the error is lessened 

and as a result future responses of the network are more likely to be correct.
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Back-propagation is a tremendous step forward compared to its predecessor, the 

perceptron. The perceptron was limited to only two layers of processing units, with only a 

single layer of adaptable weights. This key limitation meant that the perceptron could only 

classify patterns that were linearly separable. Back-propagation overcomes this limitation 

because it can adapt two or more layers of weights, and uses a more sophisticated learning 

rule. The power of back-propagation lies in its ability to train hidden layers which act as 

layers of "feature detectors" - units that respond to specific features in the input pattern, and 

thereby escape the restricted capabilities of single-layer networks.

Typically, back-propagation employs three or more layers of processing units. Figure 5- 

5 shows the topology for a typical three-layer back-propagation network. The bottom layer 

is the input layer - the only nodes in the network that receive external input. The above is 

the hidden layer, in which the processing units are interconnected to layers above and below. 

The top layer is the output layer. Back-propagation networks do not have to be fully 

interconnected, although most applications have been done with fully interconnected layers.

A back-propagation neural network is trained by supervised learning. The network is

hidden neurodes

input neurodes

output patterns

output neurodes

input patterns

Figure 5-5: A three-layered back-propagation network (fully interconnected)
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presented with pairs of patterns - a set of input pattern together with a target output(s). 

Upon each presentation, weights are adjusted to decrease the difference between the 

network's output and target output. A training set (a set of input / target pattern pairs) is 

used for training, and is presented to the network many times. After training is stopped, the 

performance of the network is tested.

The back-propagation learning (training) algorithm involves a forward-propagating step 

followed by a backward-propagating step. The forward-propagation step begins with the 

presentation of an input pattern to the input layer of the network, and continuous as 

activation level calculations propagate forward through the hidden layers. In each successive 

layer, every processing unit sums its inputs and then applies a sigmoid function, which is 

shown in Figure 5-6, to compute its output. The output layer of units then produces the 

output of the network. The following assumes a sigmoid logistic non-linearity is used where 

the function f(x) in Figure 5-6 is

The back-propagation training algorithm is a generalisation of the least mean square (LMS) 

algorithm. It uses an iterative gradient search technique to minimise a cost function equal to 

the mean square error between the actual output of a multilayer feed-forward perceptron and 

the desired output [DAY90] [LIP87]. It requires continuous differentiable non-linearities.

neurode H f(x) 
output

1 + exp (-x)

large negative 
net input

large positive 
net input

Figure 5-6: Sigmoid transfer function used in back-propagation network
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Notation
i
o

Description
input value 
output value

t target value
w connection weight
n number of nodes in a layer

i (subscript) input layer
h / j  (subscript) hidden layer
I (subscript) output layer
p (subscript) given pattern

learning coefficient (eta)
a momentum factor (alpha)
5 error term (delta)

Table 5-1: Notation of the back-propagation Network

A bias unit is employed as part of every layer but the output layer of the back- 

propagation network. This unit has a constant activation value of 1. Each bias unit is 

connected to all units in the next higher layer, and its weights to them are adjusted during the 

back-error propagation. The bias units provide constant term in the weights' sum of the units 

in the next layer. The result sometimes is an improvement on the convergence properties of 

the network.

Table 5-1 illustrates the notation chosen by the author which is going to be used 

throughout the document for back-propagation networks. Just as there is no standard for 

back-propagation network implementation, there is no standard for its notation. The author 

does hope that some clear, consistent standard notation is adopted soon. The detailed 

implementation of the network is discussed next.

5.2.3 Implementation

To describe the implementation of the back-error propagation model, we first look at 

the ways that input is presented to a network and the normalisation techniques used. Next
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we present the equations that describe the network training and operation. These equations 

are divided into two categories: feedforward calculations and error-propagation calculations. 

The feedforward calculations are used both in training mode and in the operation of the 

trained network. Back-propagation calculations are applied only during training.

5.2.3.1 Network input

On the left of Figure 5-3, inputs are shown coming into the input layer of the network, 

to a layer of processing neurodes. Beware of the urge to "mix and match" the input data in 

an attempt to reduce the number of input neurodes. For instance, resist the urge to combine 

parameters before presentation to a neurode. It will be more efficient for the engineer to 

allow the network to take a little longer to train successfully, than if it fails to train at all.

For the version of the back-propagation network created by the author, each input can 

take on any value between zero and one. Does this normalisation process constrain the 

engineers in any way ? Probably not. Whenever we deal with a digital computer system that 

is receiving input, we are limited by the size of the number we can put in. As long as the 

resolution of the input data does not get lost in the normalisation process, we are all right.

To implement the network described here, the source codes written in C use standard 

floating point variables. This type of variable is 32 bits in length and uses 24 bits for the 

value and 8  bits for the exponent. We, therefore, have a resolution of about one part in 

sixteen million, or seven decimal places. Normalising input patterns can actually provide a 

tool for pre-processing data in different ways. The pattern can be normalised by considering 

all of the n inputs together, normalising each input channel separately, or normalising groups 

of channels in some way that makes sense. In some cases, the way chosen to normalise the 

inputs can affect the performance of the network, so this is one place to try different 

approaches.
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5.23.2 Feedfoi'ward calculations

In the following section, mathematical equations that describe the training and testing / 

running modes of a back-propagation network are presented. They are presented without 

derivations or proofs. This information can be found in Rumelhart and McClelland 

[RUM8 6 ], specifically in Chapter 8 .

The net input to a hidden neurode is calculated as the sum of the values for all 

connections coming into the neurode, as described in Equation 5-2 (refer to Table 5-1 for the 

notation). Note that this includes the input from the neurode we call the bias unit, which is 

assumed to have an output of one at all time and is otherwise treated as any other neurode.

The output of a hidden neurode as a function of its net input is described in Equation 5-

3. This is the sigmoid function to which we previously referred. The nonlinear nature of this 

sigmoid transfer function plays an important role in the performance of the neural network. 

Other functions can be used as long as they are continuous and possess a derivative at all 

points. Once the outputs of all hidden layer neurodes have been calculated, the net input to 

each output layer neurode is calculated in an analogous manner, as described by Equation 5-

4. Similarly, the output of each output layer neurode is calculated as described by Equation

inputj = ij = 'EwjiOt (5-2)

1
(5-3)outputj  = O j  =  —

1 *r* c 1

5-5.

input, = i, = (5-4)
J

1
(5-5)OUtpUt, — O, — ------------r

' ' 1 + e 1
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During the feedforward calculations, two mathematical operations are performed by each 

neurode, and the output state, or activation, is obtained as a result. The first is a summation 

of previous layer neurode outputs multiplied by interconnecting weights, and the second is 

the squashing function (whose value is always between finite limits, even the input is 

unbounded).

52.3.3 Training process

During the training phase, the feedforward output state calculation is combined with 

backward error propagation and weight adjustment calculations that represent the network's 

learning, or training. Equation 5-6 presents the definition o f the error. Note that the 

engineer implements the error calculation in the back-propagation training algorithm on a 

neurode-by-neurode basis over the entire set of patterns, rather than on a pattern-by-pattern 

basis. The errors have been summed over all neurodes, giving a grand total for all neurodes 

and all patterns. We, then, divided the grand total by the number of patterns, to give an 

average sum-squared error value.

Error,, =0.5£ ( / , „ - o „ ) 2 (5-6)

The goal of the training process is to minimise this average sum-squared error over all

training patterns. The error signal is represented by 5/ for output layer neurodes and defined

by Equation 5-7 (in the case of using the sigmoid function).

5, = o /( l - o / )(r/ ~ o / ) (5-7)

We implement the back-propagation algorithms using batch (epoch) training which 

accumulates the S'v for each neurode for the entire training set, adds them, and back 

propagates the error based on the grand total 5. Before we can update weights, we initialise 

each weight to some value. Neural network researchers have recommended a number of
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variations on the initial weight range. For example, Lee [LEE89] has shown that in some 

instances initialising the weights feeding the output layer to random values between -0.3 and 

0.3, while initialising weights feeding the hidden layer to 0. In the experiments, the random 

number initialises to values from -0.3 to 0.3 works well and is almost always a good place to 

start.

Now we look at how to update weights that feed the output layer wy by using 5/. To a

first approximation, the updating of these weights is described by Equation 5-8. The learning

coefficient (rj) can be assigned values between 0  and 1 .

+ fij (5-8)

This kind of weight updating sometimes gets caught in what are called local energy minima 

[DAY90J[EBE90]. Ideally, we would like to move the position to the bottom of the bowl 

where the energy is minimum; this position is called the globally optimal solution. We can 

help the search of global minima by using the "momentum" factor which can take on values 

between 0 and 1. Equation 5-9, which is just Equation 5-8 with the momentum term added, 

becomes the equation the engineer actually uses in the back-propagation network to update 

the weights feeding the output layer.

wjjCW -  Awfj!da  + Wyld +r\btOj (5-9)

where Aw is the previous weight change (the new weight is equal to the old weight plus the 

weight change).

Now that we have the new values for the weights feeding the output neurodes, we turn 

our attention to the hidden neurodes. Again the author refers to the derivation by Rumelhart 

and McClelland [RUM8 6 ]. They show that the error term for the hidden neurode is 

presented by Equation 5-10. The weight changes for the connections feeding the hidden
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layer from the input layer are now calculated in a mamier analogous to those feeding the %
output layer which is described by Equation 5-11 (refer to Table 5-1 for the notation).

1—0

.old„, , ...oldw f  = Awj ja + w f  + r|5yO(. (5-11)

The choices of r\ and a  depend on the applications. Rumelhart and McClelland [RUM8 6 ] 

frequently use values of 0.5 and 0.9, respectively, as a place to start.

5.2.3.4 Testing and running the network

The set of calculations that results in obtaining the output state of the network, which is 

simply the set of the output states of all of the output neurodes, is carried out in exactly the 

same way during the training phase as during the testing / running phase. The test /  run 

operational mode just involves presenting an input set to the input neurodes and calculating 

the resulting output state in one forward pass.

5.2.4 Software engine

In this section, the author takes a detailed look at how the back-propagation network is 

implemented using C programming language, specify and run the network on PCs, and 

examine how a network specification is turned into working code. Figure 5-7 shows the 

actions of a single processing element. Each processing element computes its output or 

activation as a function of its inputs. Inputs are weighted and summed to form the net input 

to the element.
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Figure 5-7: DFD for processing element data model

5.2.4.1 Storage allocation

In most neural network implementations, it is necessary to manipulate large vectors and 

matrices of numbers for recording the massively parallel architecture. Activation values and 

weights are stored and manipulated as vectors, which are especially important when co

processors are used because engineers can get a much better performance by giving them 

whole vectors to compute all at once, rather than element by element. For many real-world 

applications, the storage needed for the data can become substantial because there are lots of 

processing elements and even more connections. Consider for example, a three-layer 

network with 30 input nodes, 36 hidden nodes, and 5 output nodes. Assuming 200 patterns 

are used for training, we g e t:

Number o f bytes o f storage = (Number activation values +  Number interconnections) x g

= {[200 X (30 + 36 + 5)] + [5 X (36 + 1) + 36 X (30 + 1)]} X 8 

= (14200 +1301) X 8  

= 124008 (bytes) = 121 Kbytes

The amount of storage needed to run a neural network is governed by the size of the 

executable code plus the size of the network. To up speed training, patterns are read in once 

from the input device, e.g. hard disk driver, and store in memory. An alternative, much
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slower, method is to repeatedly read the patterns from disk for each presentation to the 

network. Clearly, storing all patterns simultaneously in memory is a faster method but it 

demands more storage. On the other hand, keeping patterns on disk is slower but uses less 

memory space. On machines with 32-bit addressing, such as the 80386 or 80486, it is 

possible to use more sophisticated virtual memory techniques to run the network.

The simplest way to declare for activation values and weights is to use static storage. 

The problem of this simple scheme is that neural networks are memory hungry : 121 Kbytes 

were needed for weights and activation values for the example given earlier. This does not 

work on MS-DOS based systems because of the 64-Kbytes segment limit by the processor 

architecture. Dynamic arrays use storage most effectively and solve the problem 

encountered with static arrays. Dynamic array sizes can be available and limited only the 

amount of physical memory available. A vector is a one-dimensional array, and a matrix is 

two dimensional. The C language does not directly support two-dimensional memory 

allocations. A matrix is declared as an array, with each element being an array [EBE90]. 

Figure 5-8 presents how to visualise a two-dimensional matrix (15 xlO). The element in the 

xth row and yth column is referred to by matrix[x][y\, just as it would be for the static array. 

Therefore, once storage has been allocated, reference to the array need not be aware of the 

particular storage allocation technique used. This makes for easy transparent use in

BASE ADDRESS ROWS COLUMNS

pointer

Vector of 15 pointers Vector of 10 cells

Figure 5-8: Dynamic memory allocation o f a two-dimensional matrix
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programs. Next, the author is going to describe how a network specification is turned into 

working codes in the following sections.

5.2 A.2 Propagating error signals

The error term at the output layer, delta_out, is computed from the difference between 

the actual output and the desired target values for each node in the output layer, for each 

training pattern:

delta out — (target - vector out) X vector_out X (1 -  vector_out)

where vector out is the activation vector at the output layer. The error at the hidden layer, 

delta Jiidden, is calculated recursively from the error terms of units in the output layer, using 

the following formulas:

sum = sum + delta_out Xweight(hidden-output)

delta Jiidden = sum X vector hidden X (1 -  vectorJiidden)

where delta_out x  weight(fiidden-output) is the product of the delta of an output unit and the 

weight of the link between the hidden unit and the output unit. Also sum is the error term, 

derived from all output units to which the hidden unit is connected.

5.2A.3 Adapting weights

The weight changes depend on the propagated error terms. The magnitude of the 

weight change is controlled by the learning rate constant eta (r|). The higher eta is the bigger 

the weight changes and the faster the network is able to train. Nevertheless, high eta 

increases the chance of oscillation. The momentum term alpha (a) damps high-frequency
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weight changes and reduces the risk of oscillation while still permitting fast learning rates. 

The change in weight, at the hidden to output connections is:

weight change -  [(eta x  (delta_out x  vectorJiidden)’] + (alpha Xold_delta_out)

This product is summed over all units of the hidden layer. The new value of the weight is:

weight(hidden-output) = weight(hidden-output) + weightjchange

Note that the bias weight (Section 5.2.2.2) is calculated in exactly the same way as any other 

weights. The adaptation of the input to hidden layer weights follows a similar set of rules. 

This completes the description of the engine for a back-propagation neural network.

52.4.4 Training successfully ?

How does an engineer know whether the network is training correctly, and how can an 

engineer tell how well it is doing? The easy way is to look at the output nodes and compare 

them to the target values. The difference between the actual output and the target gives the 

error at a node for a given pattern:

error = error + (target[p][jJ -  vector_out[p][j]) 2

By summing the error over all output nodes for all patterns and taking the average, we get a 

measure of training performance. The average sum squared error is presented by the 

following formula. When the error is less than the required maximum error (or satisfactory 

error level), training is tenninated. And the network is ready for use.

error = error (number^patterns x  number_output_nodes)
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5.3 Neural Fuzzy Theory

In recent years, the studies on neural fuzzy systems have been developed on the basis of 

theories of neural networks and fuzzy set. Human reasoning is somewhat fuzzy in nature, so 

the typical neural fuzzy systems should process some reasoning ability. Additionally, a 

neural fuzzy system should be designed to implement the fuzzy implication operation, which 

is considered to conform to the characteristic of dynamic thinking action of human beings, 

and take advantages of the fuzzy approximation inference theory conveniently. In the 

following sections, the author has discussed the concepts of neural fuzzy systems and 

presented an elegant scheme to integrate the neural network and fuzzy logic.

5.3.1 Introduction

The controls of complex systems or processes have been successfully treated by many 

control engineers and theorists. However, the complexity of their analytical models makes 

the analysis of their input/output relation and their analytical approach veiy difficult. Hence, 

many researchers and engineers have focused their attention on artificial neural networks and 

fuzzy control systems, where the applications are frequent and give good results [LEE90] 

[MAM74] [RUM8 6 ], as viable alternatives to traditional analytical modelling and control. 

These applications have successfully been applied to control dynamic systems for which the 

conventional control methods do not always satisfy all the requirements.

Since most machining processes are stochastic, nonlinear and sometimes unclearly 

defined, they are suited to control by means of fuzzy logic. Materials cutting and processing 

in general are good examples of these processes. Numerous applications of the fuzzy 

systems to the control of ill-defined complex process have been reported since Mamdani's 

first paper [MAM74]. Conventional and modem control theories need a precise knowledge 

of model of the process to be controlled and exact measurements of input and output
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parameters. However, due to the complexity and vagueness of practical processes, the 

application of these theories is still limited.

Fuzzy logic based design has several advantages including simplicity and ease in design. 

However, fuzzy logic design is associated with some critical problems as well. As the system 

complexity increases, it becomes difficult to determine the right set of rules and membership 

functions to describe the system behaviour. A significant amount of time is needed to 

properly tune the membership functions and adjust rules before a solution is obtained. For 

more complex systems, it may be even impossible to come up with a working set of rules and 

membership functions. Besides, once the rules and membership functions are determined, 

they remain fixed in the fuzzy logic controller, i.e. controller cannot learn from experience.

Artificial neural networks have been shown to have the capability of approximating 

arbitrarily complicated continuous functions. The training process of the artificial neural 

network reduces the overall network error to a minimum by adapting its weights based upon 

the error function. The technology of neural networks has been successfully applied to solve 

many difficult engineering problems such as control [KUM90] [NAR90], fault detection and 

pattern recognition [CH093b] [VIL90], among others. Nevertheless, one of the drawbacks 

of using conventional neural network technology alone to solve engineering problems is its 

"black-box" characteristics, hi most cases, engineers camiot interpret the network's 

decision-making process from a heuristic point of view; they can only know that the network 

gives a correct input-output mapping. Clearly, neural networks can solve many complex 

problems. But it may not be the most effective way to implement it, as today, 

implementation of neural network is more costly compared to fuzzy logic implementation. A 

conventional embedded controller can be easily used to implement fuzzy logic by proper 

programming. Neural implementation by programming is also possible but will be slower. A 

dedicated hardware implementation is also more common today for fuzzy logic than neural 

networks, especially considering cost.
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Use of neural networks associated with fuzzy logic based designs to learn system 

behaviour seems to be a good way to solve above mentioned problems. Using system's 

input-output data, neural networks can learn the behaviour of the system and accordingly can 

generate fuzzy rules and membership functions. Neural networks is a data driven system and 

does no use programming. By proper learning, neural net can develop good generalisation 

capabilities and thus, can solve many problems that are either unsolved or inefficiently solved 

by existing techniques.

5.3.2 Principles

In many real processes, control relies heavily upon human experience. Skilled human 

operators can control such processes quite successfully without any quantitative models in 

mind. The control strategy of the human operator is mainly based on linguistic qualitative 

knowledge concerning the behaviour of an ill-defined process. Fuzzy controllers have been 

implemented in many types of systems with success. It is found to have the desired 

robustness quality for control under disturbances and plant uncertainties. Knowledge in 

linguistic form can be coded as rules in a fuzzy controller, thus enabling the use of 

knowledge from an expert operator in the design.

It has been observed that many real problems, such as pattern recognition and control, 

are solved effectively by artificial neural networks. This is due to their non-linear 

mechanism, and their self-learning capability. Because neural networks are designed in an 

attempt to mimic the human brain, they emulate human performance and thereby function 

intelligently. On the other hand, fuzzy set theory, which can model uncertainty or ambiguous 

data so often encountered in real life, enable a system to tackle real life situations in a manner 

more like humans, which is noted to be somewhat fuzzy in nature. Neural networks and 

fuzzy logic have been used for systems decision and adaptation. Neural networks have 

provided a robust means of making systems decisions for nonlinear applications, while fuzzy 

logic has proven capable of properly classifying "gray area" decisions.
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The key benefit of fuzzy logic is that it lets you describe the desired system behaviour 

with simple "if-then" relations. In many applications, this gets an engineer a simpler solution 

in less design time. It can also be used to optimse the performance directly. While this is 

certainly the beauty of fuzzy logic, at the same time it is its major limitation. In some cases, 

the knowledge that describes desired system behaviour is contained in data sets. Here, the 

designer has to derive the "if-then" rules from the data sets manually, which imposes a major 

effort with large data sets. Most people have hence looked into neural networks. However, 

only in a few applications have neural net solutions shown better results compared with other 

methods.

The recent growth in attention to neural networks on the one hand and fuzzy logic on 

the other has led to many suggestions for their combined use in control. Many simulation 

programmes and actual hardware implementations of systems are now available which 

demonstrate that these techniques can actually work in applied domains. Similarities exist 

between the neural networks and the fuzzy logic controllers. They both can handle extreme 

nonlinearities in the system. Both techniques allow interpolative reasoning which frees us 

from the true /  false restriction of logical systems such as the ones used in symbolic AI. For 

instance, once a neural network has been trained for a set of data, it can interpolate and 

produce answers for the cases not present in the training data set. Similar properties hold for 

a fuzzy controller. The weighted average scheme of fuzzy control and the sum of the 

products of the neural networks are similar in principle. It has been shown that both of these 

techniques can use interpolative reasoning which enables them to go beyond the traditional 

true-false restriction of the AI symbolic methods.

To put it briefly, both neural networks and fuzzy logic are powerful design techniques 

which both have their strengths and weaknesses. Neural networks can learn from data sets, 

while fuzzy logic solutions are easy to verify and optimse. Table 5-2 presents a summary of 

these properties. It becomes obvious that a clever combination of the two technologies
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Knowledge
representation, ' s*ft; .• \  $•$ \ %

Explicit, verification and 
optimisation are easy and 
efficient (+++).

Implicit, the system cannot be 
easily interpreted or modified 

(-).
Tra inability None - everything must be 

explicitly defined.
Trains itself by learning from 
examples - data sets (+++).

Table 5-2: The strengths and weaknesses of fuzzy logic and neural networks

delivers the best of both worlds [ALT94]. Combine the explicit knowledge representation of 

fuzzy logic with the learning power of neural networks, and we get Neural Fuzzy 

technologies.

Synthesis of neural network with fuzzy logic offers a key advantage over traditional 

control systems. They offer model-free estimation of a control system. The user need not 

specify how the controller's output mathematically depends on its input. Instead fuzzy 

methods model the control system using fuzzy inference rules to construct the fuzzy 

controller. In this case, the user only needs to provide structured knowledge of the control 

process. In addition, neural approach may be preferable if the user can provide a statistically 

representative set of numerical training samples of the system. Because of these advantages, 

we consider in incorporating the concept of fuzzy set into the neural networks to construct a 

neural fuzzy system. The main idea in integrating the fuzzy logic controllers with neural 

networks is to use the strength of each one collectively in the resulting neural fuzzy system. 

This fusion allows:

1) A human understandable expression of the knowledge used in control in terms of the 

fuzzy control rules. This reduces the difficulties in describing the trained neural network 

which is usually treated as a black box;

2) The fuzzy controller learns to adjust its performance automatically using a neural 

network structure and hence learns by accumulating experience.
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Figure 5-9: General architecture of neural fuzzy systems

It is noted that although fuzzy logic is a mechanism for propagating uncertainty, it may 

involve in some cases an increase in the amount of computation with high flexibility.

Figure 5-9 presents a general architecture of the proposed neural fuzzy system. This 

system reads desired fuzzy input/output membership functions and fuzzy rule base, after pre

processing and normalising these data, the actual training sets (a set of input/output pattern 

pairs) for the neural network can be generated, and is presented to the network many times. 

The initial weight for the connection between neurodes in the different layers is produced by 

a weight generator which is initially randomised with values from within an interval, e.g. 

between -0.3 and 0.3. A multi-layer feedforward network with sigmoid elements is 

employed, and the back-propagation supervised training algorithm is used for training. After 

training is complete, the network can be used for imitating the inference procedures of the 

fuzzy system.

The concept of neural fuzzy system has recently received much attention [LIN91] 

[MIT92] [OKA92]. Many alternative ways of integrating neural networks and fuzzy logic 

have been proposed in scientific literature [CEL92] [CH093a] [FRE93] [KHA93] [LEN93]. 

Only very few have been already successfully applied in industrial applications. In the
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following sections the author is going to describe a novel method used to construct a 

modified version of neural fuzzy kernel which has been successfully implemented and tested 

in this project for solving complex problems. Before we move on this topic, first, we would 

like to discuss the responses of fuzzy systems. There are mainly three types of fuzzy 

membership functions commonly used at present - symmetric triangles, symmetric trapezoids 

and "bell” shaped functions. By associating with different shapes of fuzzy input/output 

membership functions, refer to Figure 5-10, the system can produce various kinds of 

responses for different applications. In the following section, the reasons for combining 

symmetric triangles and symmetric trapezoids to define the system input and output 

membership functions for constructing the neural fuzzy system used in this project are 

explained.

5.3.3 Fuzzy inferences

In this section, two experimental results have been presented to explicate the 

characteristic of the fuzzy responses. Different combinations of the input /  output fuzzy 

membership functions have been tested.

Rule B ase

input 
variable 1 rules

FUZZY INFERENCE 

SYSTEM
input 

variable 2 resp onse  
/  output

input
functions

output
functions

Input M em bership Output M em bership
Function Function

Figure 5-10: Overview o f a fuzzy inference engine

5-27



C h i- H s ie n  V i c t o r  SHIH, D e p a r t m e n t  o f  C o m p u t in g ,  T h e  N o t t i n g h a m  T r e n t  U n i v e r s i t y ,  1 9 9 6

NL NM NS PS PM PL 100 
80 

60 

40 

20 

0
0 10 20 30 40 50 60 70 80 90 100 110 120

Input - triangular membership function Output - triangular membership function

10 20 30 40 50 60 70 80 90 100 110 120

Input - trapezoid membership function

IN P U T  fu nction

RULE b a s e

-20 -10 0 10 20 30 40 50  60 70 80 90 100 110

Output - trapezoid membership function

IF input = NL THEN output = NL 
IF input = NM THEN output = NM 
IF input = NS THEN output = NS 
IF input = PS THEN output = PS 
IF input = PM THEN output = PM 
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O U T P U T  fu nction

Figure 5-11: Fuzzy membership functions and the rule base

5.3.3.1 One input with one output

Two different types (symmetric triangles and symmetric trapezoids) of fuzzy 

membership functions as well as the rule base, which have been applied in this experiment, 

are illustrated in Figure 5-11. Both input and output functions are separated into six 

overlapped fuzzy sets (NL, NM, NS, PS, PM and PL, where N is Negative, P is Positive, L 

is Large, M is Medium and L is Large). Using combinations of these two types of 

membership functions, four different system response patterns can be obtained from the 

output of the engine.

Figure 5-12 shows the system response patterns acquired from the one-input and one- 

output fuzzy engine. It is obvious to observe that the use of the symmetric triangle input and 

symmetric trapezoid output membership functions in the fuzzy engine can produce the best 

(closest) outputs to the target pattern.
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Figure 5-12: Responses o f the fuzzy engine with one input and one output

5.3.3.2 Two inputs with one output

The fuzzy system using two-inputs and one-output is one of the most common utilised

inference engines. Similar to Figure 5-11, symmetric triangles and symmetric trapezoids are
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Y Po' "
NL - 1 NS MD PS PL

NL NL i NM NS MD PS

NS NS NM MD PS PS

«  MD MD NS MD PS PM

PS PS ! PS PS PM PM

PL PM PM PM PL PL

Table 5-3: Fuzzy rule base, FAM Bank

applied in the testing. The input membership function is divided by means of five overlapped 

fuzzy variables (fuzzy sets). Also the output membership function is separated into seven 

regions. Twenty-five rules are used in the inference process. The Fuzzy Associative 

Memory (FAM) Bank (refer to Section 4.3.2.3) is depicted in Table 5-3.

(A)

(B)

Figure 5-13(a): Responses o f the fuzzy system with two inputs and one output

USE OF SYMMETRIC TRIANGLE 
/ SYMMETRIC TRIANGLE

USE OF SYMMETRIC TRIANGLE 

/ SYMMETRIC TRAPEZOID
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(D)

Figure 5-13(b): Responses of the fuzzy system with two inputs and one output

The fuzzy engine reads two external values (a  and |3) to assign degrees of membership 

in one or more fuzzy sets. Strengths are computed based on the rule base and presented to 

the rules' fuzzy output (y). Finally, the "centre-of-gravity method" is employed to calculate 

the average weight for system output. Figures 5-13 (a) and (b) illustrate the fuzzy outputs 

using different combinations of membership functions.

5.3.3.3 Discussion

It is obvious to see (Figure 5-12) that the output patterns of the fuzzy engine can be 

changed dramatically in terms of associating two types of fuzzy membership functions. The 

use of the symmetric triangle input and symmetric trapezoid output membership functions

USE OF SYMMETRIC TRAPEZOID 

/  SYMMETRIC TRIANGLE

USE OF SYMMETRIC TRAPEZOID 

/  SYMMETRIC TRAPEZOID
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(type (B) labelled in Figure 5-12) in the fuzzy engine can provide the closest outputs to the 

desired pattern. Careful inspection of Figure 13 (a) and (b) reveals that the inference engine 

using triangular and trapezoid membership functions can produce the smoothest output 

pattern comparing to other combinations. In this project, this type of membership functions 

are used to build the inference engines.

5.3.4 Construction of neural fuzzy system

5.3.4.1 Problems o f current approaches

The concept of neural fuzzy theory has received much attention recently. Various 

alternative ways of integrating neural networks and fuzzy logic have been proposed in the 

scientific literature [CEL92] [CH093a] [FRE93] [KHA93] [LEN93]. The problem of using 

current neural fuzzy techniques in the proposed project is that the shape of the fuzzy 

membership functions generated by these methods do not ssatisfy the requirements of the 

proposed system. As mentioned in the previous section, in order to obtain an ideal response 

pattern the symmetric triangular and trapezoid membership functions are employed for the 

construction of the inference engine. Using a similar method described in [LEN93], the 

system can produce the membership function as depicted in Figure 5-14.

The membership function of this fuzzy system is implemented using multi-layer pre

trained neural network which enables off-line learning of the function using fully connected 

back-propagation feedforward network. Diagram (a), (b) and (c) in Figure 5-14 show the 

final results of the membership functions used 0 .0 0 1 , 0 . 0 0 0 0 0 1  and 1 0  ; 2  as the satisfactory 

error (5) level (or error tolerance) to train the neural fuzzy system, respectively. It is clear 

from the figure that the response pattern (actual output) cannot entirely match the desired 

output. The problem of using such membership function is that these imprecise output 

values will cause a certain amount of error and interfere with the performance of the neural 

fuzzy engine, and further affect the entire system. According to the obtained experimental



C h i -H s i e n  Vi c t o r  S H I H , D e p a r t m e n t  o f C o m p u t in g , Th e  N o t t in g h a m  T r e n t  U n i v e r s i t y , 1 9 9 6

-  desired output 
-a -o -a - actual output

0 . 9

0 .8 -

0 . 7 .

0 .6 .

satisfactory error 
le v e l: 0.001 

(error tolerance)

0 . 5 -

0 . 4 .

0 . 3

0.2

0.1

Ia 1 -
0 . 9 -

0 .8-

0 . 7 -

0 . 6-

satisfactory error 
le v e l: 0.000001

0 . 5 -

0 . 4 -

0 . 3 -

0 . 2 .

0.1

p 1 .
0 . 9 -

0.8

0 . 7

0 . 6 -

satisfactory error 
le v e l: 1.E-12

0 . 5 .

0 . 4 -

0 . 3

0 . 2 -

0.1

Figure 5-14: Example of using common neural fuzzy technique 

to generate the fuzzy membership function

results, such as shown in Figure 5-14, it seems impossible to make an ideal triangular 

membership function by utilising this common neural fuzzy architecture.

53.4.2 Proposed neural fuzzy architecture

In order to generate suitable fuzzy membership functions suitable to the project, various

kinds of neural network architectures have been investigated and tested. Two different
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structures for generating the system input membership functions which produced superb 

results are described in detail next. The methods used to produce the system output 

membership functions, and transfer thq fuzzy rule base into a set of network connections are 

also presented.

5.3.4.2.1 Generating fuzzy input membership functions

In order to design an effective architecture for training the neural fuzzy system suitable 

to the problem in hand, several initial experiments were undertaken to construct the 

membership function. A small number of representative data set were used for these 

experiments. As a result of these experiments, two types of network have been found to 

have excellent effects. These novel network architectures are described below.

(1) Type A

The first type of neural network architecture used is fully connected multi-layer 

network with sigmoid activation function, five neurodes in the first hidden layer and two

membership
function

BIAS,

BIAS,

input output

input layer hidden layers output layer

Figure 5-15: Type A network architecture for generating

fuzzy input membership function
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neurodes in the second layer. The supervised back-propagation training algorithm was 

engaged during the learning process. A primary element of the network for generating 

an input membership function is depicted in Figure 5-15.

From the neurodes in the second hidden layer of the network, (a) and (b) labelled in 

Figure 5-15, both sides of the membership function can be yielded, respectively. These 

two signals are then fed into a filter (labelled c) which simply does the minimum (A) 

operation. Finally, the entire membership function can be successfully generated and 

obtained from the output of the network.

(2) Type B

This type of structure employed is a multi-layer network with sigmoid function, 

eight neurodes in the first hidden layer and two in the second layer. The back-error

BIAS
membership

function

A

BIAS

input output

input layer hidden layers output layer

Figure 5-16: Type B network architecture for generating 

fuzzy output membership function
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propagation learning algorithm is applied. Dissimilar to the Type A network 

architecture, partial connections between the neurodes in the first and second hidden 

layers are used. The left portion of the membership function can be obtained from the 

first neurode in the second hidden layer, (a) labelled in Figure 5-16, also the right 

portion of the function is generated from the second neurode (b). The node (c) in 

Figure 5-16 combines these signals into a triangle membership function using a 

minimum operation.

The difference between these two types of structures is the matter of time taken for 

training and recalling the neural networks. It is obvious to find that the number of the 

neurodes in the hidden layers of the Type A architecture is less than in the Type B network. 

Accordingly, obtaining an output from the Type B network in the recalling mode (testing or 

running the trained network) will take a little bit longer than in the Type A structure. 

However, the time taken to successfully converge the Type A network is, according to the 

experimental results, more than five times longer than training the Type B network.

1
0.9 
0.8 
0.7 
0.6 
0.5  
0.4 
0.3 
0.2 
0.1 

0

w *
j g g  c(y) a* minimum (a(x), c(x)}

symmetric triangular 
fuzzy input 

membership function

Figure 5-17: A fuzzy input membership function generated by
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Depending on the requirements of the applications, if the neural fuzzy system is used for on

line training, the time spent for converging the neural networks becomes critical. Use of 

Type B network will be highly recommended there. On the other hand, if the size of the 

network structure or the time taken to recall (use) the trained network is limited, Type A 

network structure should be considered.

An example of using such a technique to generate the fuzzy input membership function 

(symmetric triangle) is illustrated in Figure 5-17. It is noted that by utilising the method not 

only the triangular or trapezoid input membership function can be created, but also the "bell" 

shaped membership function. Two example structures applying Type A and Type B network 

used six fuzzy variables (fuzzy sets) are illustrated in Figure 5-18 and 5-19, respectively.

5.3.4.2.2 Generating fuzzy output membership functions

A neural network architecture as depicted in Figure 5-20 is designed to generate a fuzzy 

output membership function such as trapezoid membership function. A three-layered fully

output (s) 2  - 5

sy ste m  input 
m em bership function

output 1

hidden layer 2

.hidde n, layer i

inpiit.Layer

input

Figure 5-18: Fuzzification process constructed by the Type A network

5-37



C h i -H s i e n  Vi c t o r  S H I H , D e p a r t m e n t  o f  C o m p u t in g , T h e  N o t t in g h a m  T r e n t  U n i v e r s i t y , 1 9 9 6

(A) E l 0  IS]

output(s) 2 - 5

output laver

sy stem  input 
m em bership  function

output 6

hidden laver 2

hidden laver 1

input

Figure 5-19: Fuzzification process constructed by the Type B network

connected back-propagation network including three neurodes in the hidden layer and two in 

the output layer with sigmoid function is used. Only a small number of representative data 

set is required for training the network - the scheme for producing the learning data sets will 

be described in Section 5.3.4.3.

Figure 5-21 shows the output data collected from the trained network. In the example a

membership
function

input

outputsBIAS.

BIAS;

input layer hidden layers output layer

Figure 5-20: Neural network architecture for generating a

fuzzy output membership function
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... I j  output d a ta  from the ne tw o rk  | ......\ .!..

symmetric trapezoid 
fuzzy output 
membership function

0 .37  0 .385  0 .4  0 .4 1 5  0 .43  0 .445  0 .46  0 .475  0 .49  0 .5 0 5  0 .52  0 .5 3 5

output 1 Cul) output 2 Ch2)

Figure 5-21: A fuzzy output membership function

symmetric trapezoid output membership function is utilised to generate the data set for 

training the network. It is very encouraging that only less than ten seconds is required to 

successfully converge the network {delta (5) is set to 0.00000001) in which a 486 DX-2 PC 

running at 6 6  MHz is engaged.

Other shapes of fuzzy output membership functions, such as triangle and "bell" shaped 

function, are also investigated. The experimental results indicate that the network 

architecture employed here can define various shapes of the fuzzy output membership 

functions qualified in the project. An example of the network structure which produces a 

complete output membership function using six fuzzy variables is illustrated in Figure 5-22.

5.3.4.2.3 Connections of the rule base

An example of connecting the rule base of a neural fuzzy system which has two inputs 

and one output is illustrated in Figure 5-23. Nine rules can be derived from the FAM bank. 

As an illustration, the following two conditions can produce the same consequence:

IF input 1 - a  AND input 2 - A THEN output =1 

IF input 1 ~c  AND input 2 - B  THEN output ~1
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0  0  0  0  o  o
output d ata

output layer fu zzy  output 
m em b ersh ip  function

hidden layer i

input layer

Figure 5-22: N etw ork structure f o r  generating fu zzy  output m em bership function

A minimum (A) operation is used to merge neurode (a) and (A) {aA indicated in Figure 5- 

23). The same approach is applied to the neurode (c) and (B). The output signal 1 can be 

acquired in terms of utilising the maximum (V) operation to join the node aA and cB. This

procedure can be represented by the Equation 5-12. Using the same approach, the rest of 

the rules can be arranged within the network.

v : MAX

A: MIN

input 1

B

outpu t input 1

output

'' V 
input 2

input 2

Figure 5-23: Connections o f the rule base

FAM B an k
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Output 1 -  V [ A (a, A) , A (c, B) ] (5-12)

53.4.3 Generating the training pattern pairs

In this section the scheme of generating a set of input/output pattern pairs for training 

the neural fuzzy engine is described. Symmetric triangles are used for the system input 

membership function. Also the system output membership function is arranged by the 

symmetric trapezoids. A program was written to automatically create the training data sets. 

The user only needs to specify some particular points of the membership function, the 

program can produce the actual learning data for the network. A normalisation process is 

included in this program.

As depicted in Figure 5-24, five points in the system input membership function and six 

points in the output membership function are selected (marked by circles). The program 

reads this data points and creates a set of learning data for training the system - twenty three

ip function
U 100

desired pattern

0 -//- 
-20 20 40 60 80 100

output membership function

120

u 100

I desired pattern

-20
40
60
80

120

pick-up points
-40
25
30
60
65

120

15 20 25 30 35 40 45 50 55 60 65 70
-//—0  

120

Figure 5-24: The points have to be identified for generating the training data
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-  , _  ,Input Membership Function
Raw data Normalised data  n

i n p u t

Output Membership Function
Raw data Normalised data  §

-20 0 100 0 .0 0 .0 1 .0 0 2 5  65 0 .0  .4625  .5 625

4 0 0 100 .42857 0 .0 1 .0 10 2 5 .5  6 4 5 0.1 4 6 3 7 5  .5 6 1 2 5

42 10 100 .4 4 2 8 6 0.1 1.0 20 26  64 0 .2  .465 .560

4 4 2 0 100 .4 5 7 1 4 0 .2 1.0 3 0 2 6 .5  6 3 .5 0 .3  .46625  .5 5 8 7 5

4 6 30 100 .4 7 1 4 2 0 .3 1 .0 40 2 7  63 0 .4  .4675  .5575

48 40 100 .48571 0 .4 1 .0 50 2 7 .5  6 2 .5 0 .5  .46875  .5 5 6 2 5

5 0 50 100 .50 0 .5 1.0 6 0 28  62 0 .6  .47 .555

5 2 60 100 .51429 0 .6 1 .0 70 2 8 .5  6 1 .5 0 .7  .47125  .5 5 3 7 5

54 70 100 .52857 0 .7 1 .0 80 29  61 0 .8  .4725  .5525

56 80 100 .5 4 2 8 6 0 .8 1 .0 9 0 2 9 .5  6 0 .5 0 .9  .47375  .5 5 1 2 5

58 90 100 .5 5 7 1 4 0 .9 1 .0 100 3 0  60 1.0  .475 .550

60

62
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100

100

100

100
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80

.5 7 1 4 3

.58571
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0 .9
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66 100 70 .6 1 4 2 9 1.0 0 .7 § n o n n a l i s a t i o n  to  v a l u e s  f r o m  0.3 t o  0.7
68

70

72

7 4

76
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80

120
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100
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100

100
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3 0
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0

0

.6 2 8 5 7

.6 4 2 8 6

.6 5 7 1 4

.6 7 1 4 3

.68571
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1.0

1 .0

1 .0

1 .0

1 .0

1 .0

1 .0

1.0

1 .0
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0 .3

0 .2

0.1

0 .0

0 .0

Table 5-4: The actual training data sets fo r  the neural fuzzy system

data in the input membership function and eleven data in the output membership function are 

automatically selected. Table 5-4 lists the data pairs for training the neural fuzzy kernel to 

generate the membership functions illustrated in Figure 5-24. It is noted that the 

normalisation process for training the output membership function in the project is set to the 

values from within the interval [0.3, 0.7]. According to various experimental results, a 

shorter network converging time was found applying this value than using the conventional 

interval [0 .0 , 1 .0 ].

5.3.4.4 The neural fuzzy engine

The architecture of the neural fuzzy engine which used two inputs and one output 

variables is described in detail in this section. For modeling the inference engine a multi-layer
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feedforward network with sigmoidal elements was used. A back-propagation training 

algorithm was applied for training, with learning rate (rj) of between 0.4 and 0.9 and 

momentum factor (a) of between 0.6 and 0.999. A random pattern presentation scheme was 

used for training. The connectivity matrices were initially randomised with values from 

within the interval [-0.3, 0.3].

Three fuzzy variables, such as left, middle and right, are applied to construct the input 

membership functions, also the output membership function are arranged by six fuzzy 

variables - NL, NM, NS, PS, PM, and PL. Figure 5-25 shows the system input and output 

membership functions together with the rule base. The synthesis of the neural fuzzy engine, 

presented here, goes through three phases:

1) Synthesis of neural network which realises the fuzzification of input variables;

2) Synthesis of neural network which realises the evaluation of the fuzzy control rules;

3) Synthesis of neural network which realises the defuzzification algorithm.

Using all the techniques described previously, the entire architecture of the neural fuzzy

left Middle Right
100

xInput 1

p Output

N.L. N.M. N.S. P.S. P.M. P.L.
100

left Middle Right
100

Input 2

left

input 2  ■■ Mid
iillfl

Left

input 1 

Mid Right» &

NL NS NM

NM PS PM

NS PM PL
L J

Figure 5-25: Fuzzy membership functions and the rule base
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Figure 5-26: Architecture o f a two-input and one-output neural fuzzy engine

engine as depicted in Figure 5-26 can be constructed. Layer one and layer two of the 

network read two external variables as well as transforming them into two fuzzified terms. 

The inference and composition process, layer three of the network, distributes the computed 

strengths of the signals from layer two and assigns to the fourth layer of the system. The 

defuzzification process then takes the output linguistics which is computed by the fourth and 

fifth layers of the engine, and calculates the weighted average. The crisp output (system 

response) of the engine can finally be obtained from the sixth layer of the network.

The author made the decision to implement the fuzzy inference system using neural 

networks for the following reasons:
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1) Fewer data points are required because the network is able to generalise;

2) It allows off-line or even on-line training of the engine. This results in flexibility in 

membership function definition;

3) New data points may be added to re-train the network at a later time.
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5.4 Configurations

The vision station constructed in the project consists of proprietary components such as 

two black and white CCD cameras, a four channel video multiplexer, an input/output plug-in 

card (a video frame grabber, 256K bytes of frame memory organised as 512x512x8 bits) and 

a video monitor. The above components are integrated within a desktop host environment. 

A CNC cutting mechanism (Pacer COMPACT 800+) is employed for driving the cutter (a 

Spring Mounted Pen - SMP, is engaged here). In addition an extra conveyor system is fitted 

on the machine for the transportation of strips of material (a lace or paper) under the vision 

system and the cutter. A M68000 based micro-controller controls both the cutting 

mechanism and the transportation system. The host system bus is used to provide the 

communication channel among the various elements of the system.

Figure 5-27 illustrates the configuration of the vision based machine control system 

developed. The host system receives the external video signal which is exchanged by the 

video multiplexer between two cameras, as well as displaying the captured image on the 

video monitor. The control data is then generated and transferred to the cutting mechanism

CAM ERA 2 

POST-PROCESS

video
signals

CAM ERA 1

£ HOST
SYSTEM

PRE-PROCESS
lighting VIDEO

lighting MONITOR
roller ' low d irec tion  ’ < 1 ;
O

co n v e y o r belt

flow direction
p a p e r

68k CNC controller
control lines

Figure 5-27: Configuration o f the tightly coupled vision based control system
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Figure 5-28: Block diagram for the system overview

and the transportation system (conveyor). The interconnection between these components is 

depicted in Figure 5-28 at a block diagram level.

The mode of motion control is closed loop. That is, the feedback signal is generated 

from the image input rather than any rotation sensors in the axes. Although the controller in 

the selected testing rig is not a real-time environment it provides a satisfactory means of 

developing a prototype which is, from the cost and performance point of view, effective for 

experimentation. The non-real-time nature of the controller of the testing rig results in 

compromising the overall system throughput and not being able to set the event priorities 

within the system to appropriate levels.

As mentioned previously a spring mounted pen is guided by the machine to draw a curve 

on the paper strip to emulate the distortion of the lace strip due to the cutting forces caused 

by a tactile cutter. As depicted in Figure 5-29, camera one picks up an object image and 

passes it to the pre-processing vision system which processes the raw image and generates 

the machine movement data. The cutting mechanism receives the data and drives the cutter 

following the obtained cutting path. The processed object is then transported under the
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second CCD camera by the conveyor system. This camera captures an image of the 

processed object and transfers the data to the post-processing vision system in which the 

system examines the data and feeds back the analysed information to the pre-process vision 

system. The feed-back signal is provided to correct the subsequent cutting processes and 

results the precise handling of the object in correcting the motion.

5.5 Pre-processing Vision System

The pre-processing vision system captures a 256 grey scale image of the target path 

from camera one and temporarily stores it in the memory. An image bi-leveling 

(thresholding) operation is applied to transform the image into a black and white bitmap. 

The target path on the paper strip, as indicated in Figure 5-30, is then extracted by means of 

a line skeletonisation (skeleton) process (detailed description of these operations is presented 

in Section 2.4.1).

As a standard CCD camera mounted with a conventional lens is used in the project, the 

captured image tends to be distorted (refer to Section 2.5). The extracted cutting path is

PROCESS
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\  Data
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Data / VectorsRaw Image
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OF SYSTEM

PRE-PROCESSING  
.V IS IO N  SYSTEM^,
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Supervising

Feedback
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POST-PROCESSING' 
v. VISION SYSTEM V Raw Image

Feedback
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Figure 5-29: Context diagram o f the closely integrated vision based control system
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LINE SKELETON OPERATIONS*  F i n d i n g  t h e  c u t t i n g  p a t h ,  - W O I T -  #

Figure 5-30: Processes o f the pre-processing vision system

vectorised as well as corrected by a software filter, and transferred to the controller of the 

cutting mechanism. Figure 5-31 shows the path after correcting its distortion together with 

its vectorised drawing path for controlling the cutting mechanism. The machine moves at the 

starting position and pauses at the end position (indicated in Figure 5-31). When the cutter 

reaches the capture point within the path, in order to produce a new set of cutting data, an 

image of paper is captured and analysed. It should be noted that there is no feed-back 

information used here from the post-processing vision system to create the actual cutting 

path. The combination of the pre- and post-processing vision systems to produce the cutting 

path which is applied the feedback signal will be discussed later this chapter.

5.6 Post-processing Vision System

As the machine movement data is transferred to the cutting mechanism, the post

processing vision system starts to monitor the cutting (drawing) process. The analysed 

information is fed back to the machine console also. In order to emulate the distortion of the 

lace cutting process the spring mounted pen (SMP) is engaged to replace the tactile cutter.
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Figure 5-31: The actual cutting path generated by the 

pre-processing vision system

The distortion of the pattern is artificially generated by the spring. An experiment, where the 

SMP is guided to follow a square wave on paper, has been undertaken to evaluate the 

characteristics of the spring.

5.6.1 Square wave following

This experiment has been carried out to investigate the characteristic of the SMP which 

artificially creates the distortion of the cutting process for emulating the material stretch. 

The SMP is attached on the Z axis of the CNC machine controlled by a PC console. The 

SMP is led to follow a pre-defined square wave.

When the cutting mechanism is preset, the machine console controls the SMP to draw a 

path (as illustrated in Figure 5-32) on paper. Obviously, due to the flexibility of the spring, 

the path-following-errors appear between the desired square wave and actual drawing line 

(see Sample One, Figure 5-32). In addition, Sample Two in Figure 5-32 illustrates two 

drawn paths taken when the Z axis of the CNC machine is set to different contact pressure.
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The reset of the cutting head can cause the SMP to bear different levels of pressure hence 

produce different drawing patterns.

It can be observed that the path-following-error will be generated when the direction of 

the drawing is changed - the larger the angular variation of the path following, the larger is 

the error. The amount (magnitude) of the path-following-error generated is depended on the 

characteristic of the spring engaged, the pressure on the SMP, and the frictional force in 

between the tip of the pen and the paper (refer to Figure 5-33). As any one of the system 

coefficients is altered, the result of the SMP drawing will be entirely different.

5.6.2 Information feedback

The post-processing vision system is engaged here to capture as well as examining the 

image of the resultant path and the target pattern. The deviation between the paths (the 

path-following-errors) is fed back to the host system. The host PC analyses the information

J path-following-errors

actual 
drawing pathdesired  

square wave

,>>»%>>>•;>>>»

Figure 5-32: Samples o f square wave following process
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Z axis

Characteristic of 
the spring

Pressure

Paper Strip Frictional force

Figure 5-33: Three system coefficients affects the path following process

obtained from the post-processing vision system and determines a necessary compensation to 

improve the operation for the subsequent process (closed loop control). This analysed (learned) 

data is then used to build a record that can be utilised for further analysis.

While the resultant path is transported beneath the camera of the post-processing vision 

system, an image of the paper strip is captured and stored in the memory. The path- 

following-error appearing in this frame is detected by a software analyser developed by the 

researcher (the program will be described in Section 5.7.3.1). Since the extreme complexity 

of the path-following-error caused by the SMP is affected by three system parameters, such 

as characteristic o f spring, the pressure, and the friction force (Figure 5-33), it seems to be 

very difficult to use conventional methods, where physical sensors are applied to measure all 

of the system coefficients hence find the related information to correct this error. In order to 

overcome the problems of complexity, the inexact algorithms, namely fuzzy logic, neural 

fuzzy technique, and neural networks, are considered.
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Figure 5-34: The control scheme of a close-loop learning process

5.7 Closely Integrating the Remote Sensing Based Control

As stated previously, two cameras together with the CNC machine are integrated using 

a host computer. The host system supervises the data flows and control actions among all 

the elements. The tightly integrated system is divided into three sub-systems: pre-processing 

vision system, post-processing vision system, and motion control system. In this section, the 

author describes the techniques derived for incorporating two vision systems to correct the 

path-following-errors.

5.7.1 Introduction

The principle aim is to design a vision based control system, in the most natural way, in 

terms of imitating the operator's control action and experience or knowledge. Imagining that 

the host system controls the cutting mechanism fitted with a SMP to draw a line on paper 

with no correcting action. Path-following-errors occur between the desired path and the 

actual drawing line. Utilising the previous experiences, the human operator analyses the 

difference between the paths and determines a possible correcting action. The operator then 

controls a joy-stick (X/Y axes) of the machine tracing the desired path as close as possible. 

This approach, as depicted in Figure 5-34, can be described as follows:
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1) Analysing the difference between two curves, the path-following-error is 

represented as linguistic description, e.g. the error between curves on X coordinate 

is huge;

2) Expressing the operator's control actions by a set of control rules;

3) Control the machine guiding the SMP to following the desired path;

4) Repeat stages 1) to 3) to get the drawn curve closer to the desired path (learning 

procedure).

A human operator usually controls a machine based on his experience and/or knowledge 

which normally can be expressed as a set of control actions (rules). By modeling an 

operator's control actions to design a computer based control system, one does not need to 

understand how the system parameters (i.e. pressure, frictional force, etc.) physically affect 

the performance of the controlled system in detail. A driver, for example, who does not need 

to understand the frictional force between the tires of the car and the road, or the weights of 

the passengers, can drive the vehicle quite well. Applying this idea to implement the system, 

the author proposed two different schemes attempting to solve the SMP problem:

1) Correcting the error based on analysing the shape of the curve;

2 ) or based on analysing the segments of the curve.

Figure 5-35 shows a resultant path extracted from a paper image. Different shapes of 

cuiyes (portions of the path, marked by squares in Figure 5-35) is detected. The first 

proposed approach is to recognise / understand the shapes of the curves scanned (captured 

by the camera of the pre-processing system), and the difference between the desired path and 

the actual drawn line. When the system detects a curve similar to the one already in the 

record, the linked path-following-error of the record can be used to calculate an appropriate 

correcting action for the new curve. The detailed description of the method is discussed in 

the next section.
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EXTRACTED
CURVE

SHAPE OF THE CURVE

\

Figure 5-35: Various shapes of curve from a scanned path

The second proposed method is based on analysing the segments of the curve. Since the 

resolution of the camera in the pre-processing vision system (Pre-PVS) is only 256 by 256 

pixels, the maximum points to represent the scanned curve is limited by this factor. An 

example of the vectorised curve pattern is illustrated in Figure 5-36 (refer to Chapter Two 

for the detail). This method analyses only a segment of the path at a time rather than the 

entire curve. A segment contains two or three data points (pixels) in the scanned path. By 

examining the locations of these points relative to the each other, the system can determine a 

possible modification to correct the path-following-errors. Based on this concept, two 

different schemes were designed and implemented. The first approach suggested is based on 

manipulating three consecutive data points (pixels) on the path. By calculating the angle 

between these points, the correcting path can be predicted. The second method investigated 

is based on the analysis of two adjacent data points (a segment of a path). Connecting a line

DATA POINTS 
. (P IX E L S )

segment of 
the curve

ORIGINAL CURVE

Figure 5-36: A vectorised curve pattern
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between these two points, the angles between the line and the X / Y coordinates are used to 

determine a necessary correction for this segment.

As the Pre-PVS (Pre-Processing Vision System) grabs an image of the paper strip, the 

curve extractor (refer to Section 2.4.1) analyses the 256 by 256 gray scale image and picks 

up the drawing path. This path information is vectorised by the path generator and 

transferred to the 6 8 k controller. The SMP is conducted by the two and half axes cutting 

mechanism which drives the SMP to draw a curve overlapping he desired path. When the 

processed curve passes under the camera in the post-processing vision system, a frame of 

512 by 512 gray scale image is taken and saved. It is worth noting that different resolutions 

of the cameras are chosen to design the pre- and post-processing vision systems. The reason 

for using higher resolution in Post-PVS than in Pre-PVS is that much detailed information is 

required in the Post-PVS for analysing the difference between the two paths.

5.7.2 Using curve shape analysis

As the curve on paper is scanned by the Pre-PVS, 226 data points (refer to Section 

2.5.3) are used to represent and record the path. The top and bottom points of the path are 

detected which are used to calculate the centre points (Figure 5-37). A path segment 

between two centre points is defined as a shape of curve. This data reduction operation was 

developed and employed to reduce the number of the vectors in the curves. Seven points 

(vectors) are used to record a curve of the path. After separating all the curves within the 

scanned path (as shown in Figure 5-37 (e), ten different shapes of curves are found), a vector 

direction encoding technique is applied to encode the curves into sets of numbers. Thirty six 

directions encoding is used in the experiments. The coded curves together with their path- 

following-errors are linked and recorded.

The idea of this method is to utilise the record of the processed curves as well as their 

linked path-following-errors. When a shape of a new detected curve is matched with a curve

5-56



C h i- H s ie n  V i c t o r  S H I H , D e p a r t m e n t  o f  C o m p u t in g ,  T h e  N o t t i n g h a m  T r e n t  U n i v e r s i t y ,  1 9 9 6

scanned path 
with the top, bottom 

and centre points

define regions 
of curves

data reduction 
operation

connect line 
between points

record the 
shape of curve

Figure 5-37: Example of detecting the curve shapes from a scanned path

ill the record, its linked error data is provided to be a reference for calculating the correction. 

For example, a new scanned curve is similar to the registered curve A in the record, and its 

linked error record A is -5 pixels. Consequently the system can predict a correcting curve by 

adding extra five pixels to the scanned curve in the desired path.

The problem of using such approach is that, according to the experimental results, it is 

very rare to find that two curves can be completely matched. However, a alternative method 

is to employ an approximately matching scheme instead of using the exact mapping 

technique. When a new curve is found similar (say 90 per-cent matching) to a registered 

curve, the linked path-following-error is used to correct the error between lines. 

Unfortunately, the results of applying this scheme are unsatisfactory. Furthermore, since the
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learning process (for correcting the errors) is heavily dependent on the shapes of the curves 

scanned, it is very difficult to judge when the system is 1 0 0  per-cent trained - the error may 

appear when the system detects a new shape of curve. This results that the system becomes 

unreliable and ineffective. Assuming we can record all different shapes of curves and their 

corresponding errors, a huge database has to be created for registering the information. As a 

result the system needs to take a long time to search the mapped patterns throughout the 

record. This seems not very practical for use in a real-time machine control system. Due to 

unsatisfactory results obtained from this scheme this approach was abandoned.

5.7.3 Using path segment analysis

Two schemes based on examining each individual segment of the path have been 

designed and implemented. The first method is based on manipulating the angles between 

three consecutive coordinates in the path (3VMethod). The second method is based on the 

analysis of the angles between the two adjacent coordinates and the X/Y coordinates 

(2VMethod). The overall system diagram is presented in Figure 5-38.

The path-following-error is firstly detected by a colour-curve extractor described in the 

next section. The error data is fed into the A.I. Engine One which analyses the difference 

between the paths also decides the amplitude o f the correction for further process. Camera 

One, as indicated in Figure 5-38, in the Pre-PVS is triggered to capture a new frame of the 

desired path on paper. At this time, before the extracted curve is sent to the path generator, 

the segments of the extracted path are passed to the A.I. Engine Two which determines the 

pattern (shape) of the correction for the path. Both the amplitude and the pattern are used to 

generate a predicted correcting path. Finally, the path generator vectorises the predicted 

path and produce the movement data to the machine.

According to the information provided by the A.I. Engines, the CNC machine drives the 

SMP to following the desired path. A small path-following-errors may still appear in the first
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Figure 5-38: Incorporation of vision and motion control systems

corrected frame. Continually applying this approach the error information is repeatedly 

supplied to the A.L Engines to calculate more accurate correcting actions (learning process) 

until two paths are finally matched.

57.3.1 Colour curves differentiation

Two different colour felt-tip pens are utilised in the experiments to draw lines on paper. 

The black pen is used to draw a desired path on a white paper strip by the operator. The 

spring mounted pen (used yellow or red) is driven by the CNC machine to draw a second line 

on paper. The Post-PVS is trigged to capture an image of these two paths and stores it in 

memory. Since the vision system, engaged in the project, is only a monochrome frame 

grabber, it is not an easy task to distinguish two different colour lines (e.g. black and yellow) 

in terms of analysing the gray scale image. A colour curve differentiating technique, 

therefore, has been developed to solve this problem.
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desired path (black colour)

drawing line (yellow colour)

drawing direction

Figure 5-39: Example o f Black and yellow colour lines 

grabbed by a monochrome frame grabber

As illustrated in Figure 5-39, a black line and a yellow line on paper is captured by the 

frame grabber and saved as a 256 gray scale image. By visual inspecting it is clear to see that 

the gray scales of these two lines are very similar (comparing it with the original colour 

picture). Figure 5-40 shows the gray levels representing the black and yellow lines. Two 

areas of overlapped gray levels can be found in this instance. The overlapped sections cause 

the difficulty in extracting the patterns. The method developed to differentiate these two 

colour lines is as follows:

1) Selecting the thresholding from point (a) to point (d) (indicated in Figure 5-40), the 

gray-scaled image can be converted into a black and white bitmap by using the

dark light

overlapped overlapped 
section 1 section 2

noise signal

black line

yellow line (gray level)

o

(a) (c)

150 250

Figure 5-40: Example o f different gray levels represent colours
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average intensity analysis mentioned in Section 2.3.2. After removing the 'noise' in 

the bitmap, line skeleton operation is applied to process the pattern (Figure 5-41 

(a)). The location of the processed pattern (two extracted lines) is recorded.

2) Setting the thresholding between point (a) and (c), the strip bi-leveling operation is, 

again, used to transform the image (Figure 5-39) into a bitmap. After noise

Thresholding level: point (a) to (d)

(a)
bi-leveled image 
with noise

after noise 
reduction

(c)

-pattern one-

line skeleton

Thresholding level: point (a) to (c)

■pattern two-

bi-leveled image 
with noise

curve recovery

noise reduction

line skeleton

Figure 5-41: Example o f distinguishing two colour lines, (a)
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-  s u b t r a c t i o n  o f  p a t t e r n  1 a n d  p a t t e r n

/ ~ ' \  ~
'  yellow line

Figure 5-41: Example o f distinguishing two colour lines, (b)

reduction process and line skeleton operation, the processed pattern may be split 

into several segments (see Figure 5-41 (a), step (f)). Connecting arcs between two 

adjacent segments, the black line can be reconstructed and stored in the memory 

(curve recovery process).

3) Subtracting the first and the second patterns, the yellow line can be obtained (Figure 

5-41 (b)).

5.7.32 Three-vector method

This method is based on analysing the angles between three consecutive coordinates of 

the scanned path. As already mentioned, the scamied path from the Pre-PVS is digitised and 

stored in the memory. Two hundred and twenty six coordinates (vectors) are used to 

represent the scanned path (desired drawing path). As the angle between these coordinates 

is small, the correction added on the desired path by the operator is large. Yet if the angle is 

large (near 180 degree), the correction is small. We can derive a set of control rules from 

human operator's control actions. This is the key to solve the SMP path following problems.

Figure 5-42 shows the correlation between the angle and the correcting magnitude. As 

we can see, Angle A has the smallest angle (approximately 70 degrees) and Angle D has the 

biggest angle (230 degrees) in the example. When the angle is equal to 180 degree (Angle
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Figure 5-42: Correlation between angle and the 

correcting energy (direction and magnitude)

B), the correcting magnitude is set to zero. If the angle is close to 0 (or 360) degree, a large 

positive (or negative) correcting magnitude will be added to the Y coordinate of the scanned 

path. Equation 5-13 and 5-14 summarise the above.

No. of Segments
Predicted Path = £ 5 'egment(i)prcdictedpath (5-13)

i= l

Segment(i)prcdkledpmh = Segment(i)crlglnal/Mh (5-14)

where i is the ith segment of the path. From the equations above it is clear that each segment 

of the predicted path is affected by its neighboring coordinates. In fact, if one of the 

correcting segments is wrong, it will affect all the rest of the corrections and produce 

unsatisfactory results.
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/ |  p red icted  pa th  *
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; d es ired  path

d esired  path
predicted path

Figure 5-43: Example of predicting a corrected drawing 

path using 3VMethod

Figure 5-43 illustrates two sample paths together with their predicted patterns. Sample 

A is a regular shape of curve extracted from a lace pattern. Sample B is an irregular path 

which can be a triangle, trapezoid, arc, square, straight line, or a mix of all the shapes. It is 

believed that starting from analysing the results of tracking regular shapes of curves can 

obtain better and unmistakable experiences than directly handling irregular paths.

In the experiments, various control parameters were created and used in the testing. By 

adjusting these parameters, the magnitude of the correction relating to the angle of the 

coordinates is affected. Changing these system parameters will directly affect the 

performance of the SMP path correcting algorithm. As the predicted path data is transferred 

to the machine controller, the SMP is driven to draw a second curve line (as depicted in 

Figures 5-44 to 5-46, drawing from left to right).

Compared to the pattern drawn without the correction, it is obvious that about 60 to 80

percent of the path-following-error has been successfully removed in terms of applying the

3VMethod. Indeed, small sections of curves completely match. However, we might be

asked why use of this method cannot produce completely satisfactory results, or why it
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desired path

(a) without correcting action

(b) with correcting action
actual drawing

inaccuracy

desired path

Figure 5-44: Example A, using 3VMethod to correct the error

cannot remove the rest of the error in the paths. From Equation 5-14 we understand that by 

applying this algorithm each predicted segments is affected by others. This means when a 

segment of the predicted path is inaccurate, the rest of the segments are affected and yield 

inaccurate outcome. A clear example of the situation is represented in Figure 5-46.

In addition, this method only adds the corrections in the Y coordinate of the scanned 

path. If the angle of the path is changed dramatically (degree of the angle is very small), no 

matter how big a correcting magnitude is added to the Y coordinate, the path-following-

desired path

desired path

actual drawing 

\

(a) without correcting action

(b) with correcting action

actual drawing

Figure 5-45: Example B, using 3VMethod to correct the error
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(a) without correcting action

actual drawing
desired path

actual drawing

desired path

start to lose position (b) with correcting action

Figure 5-46: Example C, using 3 VMethod to correct the error, 

the SMP lost its position after a sharp angle of curve

error still cannot be completely recovered. From observing a human operation controls the 

SMP, we found that the X axis of the machine has to be moved backward when a sharp 

angle curve is followed (marked by circles in Figure 5-45).

The researcher has learned two important factors from this investigation. First, the 

correction of the SMP error must be made in both X and Y coordinates, not only in one 

direction. Second, it is better that the correction made for each of the segments in the path is 

self-reliant. This will be a great help to the researcher for constructing the system - it is 

easier to correct only one error in a segment at a time rather than several errors from 

different segments together. A novel method has been designed based on this idea. 

Consequently an experimental system has been developed which yields excellent results. 

This is described in the next section.
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Figure 5-47: Calculating a new corrected vector 

from  01 and 02 using the 2VMethod

5.7.33 Two-vector Method

Similar to the 3VMethod, each time, this approach only manipulates a small portion of 

the desired path to predict the correction. Every two consecutive coordinates (a segment) 

are analysed over the entire path. As a straight line is connected from Coordinate 1 to 

Coordinate 2 (refer to Figure 5-47), the angles (01 and 02) between the line (y) and the X / 

Y coordinates are used to compute the possible correcting energies (b(x) and 5(y)j. Figure 

5-47 represents the calculation. The angles 01 and 02 are related to the each other - 01 and 

02 are complementary. These two angles are passed to an A.I. engine which is designed by 

using inexact algorithms to determine the correcting energies (5(x) and 5(y)). The prediction 

of the new estimated coordinate (ACoordinate2(bx2, by2)) is calculated by Equation 5-15. 

Equation 5-16 describes the procedure of computing the pattern of the predicted path.

bx(i) = x(i)+5(x);., by(i) = y(i)+ 5(y), (5-15)

n
Predicted Path = Coordinate (1) + £  ACoordinate (/)

(5-16)
n

= {xl,yl} + £{5x(/),5y(/)}
1=2

5-67



C h i- H s ie n  V i c t o r  SHIH, D e p a r t m e n t  o f  C o m p u t in g ,  T h e  N o t t i n g h a m  T r e n t  U n i v e r s i t y ,  1996

where i is the ith segment of the path and n is the number of coordinates in the path.

Three different techniques based on the inexact algorithms, such as fuzzy logic, neural 

fuzzy theory, and neural networks have been applied to determine the correcting energies, hi 

the following sections, the author presents a novel learning approach - the Piecewise Error 

Compensation Algorithm (PEC Algorithm) developed for solving the SMP following 

problems.

5.7.3.3.1 Fuzzy inference process

As the desired path is scanned by the Pre-PVS, the path is vectorised into 226 points. 

Two A.I. engines (one-input /  one-output fuzzy inference system) are employed to predict 

the correcting energies which are divided into two parts: 1) pattern o f correction, and 2 ) 

amplitude of correction. Both input and output fuzzy membership functions are divided into 

six overlapped fuzzy sets (NL, NM, NS, PS, PM, and PL). Symmetric triangular input 

function and symmetric trapezoid output function are applied to construct the fuzzy 

membership functions. The inference rules are listed in Table 5-5, where P is Positive, N is 

Negative, L is Large, M is Middle, and S is Small.

This system is mainly divided into two functional blocks. First, the fuzzy engine one 

reads the path-following-error (difference between paths) from the Post-PVS and decides a 

possible amplitude of correction. Then a new scanned path from the Pre-PVS is fed into the

IF Angle is NL THEN correction is NL
IF Angle is NM THEN correction is NM
IF Angle is NS THEN correction is NS
IF Angle is PS THEN correction is PS
IF Angle is PM THEN correction is PM
IF Angle is PL THEN correction is PL

Table 5-5: Fuzzy rule base 
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Figure 5-48: Use of fuzzy engines to predict a compensated (predicted) path

fuzzy engine two to calculate the pattern (shape) o f correction (Figure 5-48). Equation 5-17 

describes the process of combining these two data sets to produce the segments of the 

predicted path.

Predicted Segment (i) = Pattern^gment(i) * AmplitudepaUl (5-17)

Figure 5-49 shows the initial setting of the system input and output membership 

functions. By applying this setting into the fuzzy engine, the system can produce a set of 

linear outputs. In order to adjust the fuzzy response to qualify the requirements of the 

system, a tuning process, which is illustrated in Figure 5-48, is devised to tune the fuzzy 

output membership function. As a result of various experiments, it was noticed that by 

adjusting a small part of the data points in the fuzzy output membership function (symmetric 

trapezoid), we can tune the response of the system into a desired pattern.
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Figure 5-49: System input / output membership functions and the fuzzy output pattern

•The tuning process

As depicted in Figure 5-49, the membership functions have to be transformed into a set 

of data (input-configuration) for implementing the fuzzy engine. Figure 5-50 shows the 

configuration file of the output membership function. Since the symmetric trapezoid output 

membership functions are utilised to construct the engine, four data points are required to 

present a fuzzy variable. In order to simplify this procedure, only two data points S 1 and S4

output membership function configuration file

fuzzy
set S1 S2 S3 S4

NL -20 -15 15 20
NM 0 5 35 .4 0
NS 20 25 55 60
PS 40 45 75 80
PM 60 65 95 100!
PL 80 85 115 120 ; - v f h  

S1 S2

symmetric
trapezoid

output
membership

function

5 2  = S1 + 5
53  = S4 - 5

-0 -v 
S 3 S 4

Figure 5-50: Output membership function and its input-file
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fuzzy
set

NL  
NM  
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PS  
PM  
PL

output m em bership function configuration file

Figure 5-51: Computing the fuzzy output membership function

are used and S2 and S3 are calculated as follows: S2 = SI + 5  and S3 = S4 -5 (Figure 5-50), 

where ± 5 are taken from the experiments.

Assuming that a fuzzy engine is applied to create a set of non-linear output data, as 

shown in Figure 5-51. Mapping the centre points of the fuzzy sets into the input membership 

function, six intersection points (A, B, C, D, E and F, labelled in Figure 5-51) can be 

determined. By manipulating these points and providing the outputs to Equation 5-17, an 

initial configuration of the output membership function (SI and S4) can then be obtained.

(SI + S 4 ) ^ m /  = (IntersectionPoint) ^ M (5-17)

The shape of the output pattern (curve) can be modified by selecting different values of SI 

and S4. For instance, in Figure 5-51 at intersection point C, two sets of data: SI = 5 & S4 = 

53, and SI = 10 & S4 = 48 are both satisfied in Equation 5-17 ((5 + 53) / 2 and (10 + 48) / 2 

are both equal to 29). The shape of the output pattern between points B and D in Figure 5- 

51 is adapted by means of different values of SI and S4 at point C. This process is heavily
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dependent on designers' experiences. A significant amount of time is also needed to properly 

tune the membership functions before a solution is obtained. An example of configuration of 

the system output membership function which can be used to produce the non-linear fuzzy 

outputs is listed in Figure 5-51.

As stated previously, a corrected segment is equal to a predicted pattern of the segment 

times the predicted amplitude of the path. As the paper strip is passed to the Post-PVS, 

fuzzy engine one detects the path-following-errors and determines the amplitude of the 

correction. Also the Pre-PVS scans and analyses a new path on paper and provides the 

vectors to fuzzy engine two where the pattern of the correction is created. Combining the 

pattern and the amplitude, a predicted path can be constructed. This approach is divided 

into two functional blocks: fuzzy pattern prediction and fuzzy amplitude prediction.

a) Fuzzy pattern prediction

Using the technique stated in Figure 5-47, two system variable 01 and 02 can be

INPUT M EM BER SHIP 
FUNCTION

RULE BA SE
T rian g u lar

Function
FUZZIFICATION

P R O C E S S D e g re e  of 
M em bership Rule

Angle C orrecting
E n erg yRULE EVALUATION O u tp u t

S tre n g th

NORM ALISATION 
^  P R O C E S S  ^ DEFUZZIFICA TION 

.  P R O C E S S  .
v Sw itch Sw itch

T rapezo id  
F unction  2SU PER V IS IN G Trapezoid 

Function 1

  L  O U TPU T  M EM BERSHIP
O U T PU T M EM BER SHIP FUNCTION (TW O) 

FUNCTIO N (O N E) --------------------------------------

T a s k  N u m b er

Figure 5-52: Fuzzy engine two fo r determining the correcting energies
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obtained. These variables are provided to the fuzzy engine to determine the compensated 

pattern. The tuning process is engaged to configure the fuzzy system. The engine uses the 

same input membership function and the rule base. However, two different system output 

membership functions are provided to the system (Figure 5-52) where two different output 

patterns can be generated. The engine reads the first input variables (01), and output 

membership function one is used for to the defuzzification process. The correcting energy 

(b(x)i) can be found. Applying the same approach to the second input variable (02) where 

the output membership function two is applied, the corresponding correcting energy (5 (v)z) 

can also be produced.

good match

©2

Normalisation Process

01  = 25  degree = 27 .8%

0 2  = 80  degree = 8 8 .8 %
drawing path

desired path

inaccuracy

new  pattern

original pattern

original pattern

new pattern

correcting energy

5 ( x ) i
80

R ESPONSES OF THE FUZZY SYSTEM

normalised  0

normalised 0

correcting energy 10O

5 ( y ) i  so
r 80

Figure 5-53: Example o f tuning the fuzzy system's response patterns
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o u tp u t  - t r a p e z o id  m e m b e r s h ip  fu n c t io n s

JNSjNMjNLi- 100

-30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130

for correcting energy 5(x)i

NL 10 15 95 100
NM 38 43 88 93
NS 63 68 93 98
PS 73 78 106 111
PM 77 82 113 118
PL 70 75 125 130

H PLPW
NLi 100

0
-30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130

for correcting energy 5(y)i

NL -30 -25 25 30
NM -15 -10 30 35
NS -5 0 45 50
P S 25 30 60 65
PM 55 60 85 90
PL 80 85 115 120

Figure 5-54: The results of tuning the output membership functions

Various experiments are undertaken to tune the output membership function into the 

desired pattern. As illustrated in Figure 5-53, a bell shaped path is used to test the response 

of the fuzzy system.

The system is initially configured by means of the rules mentioned in Table 5-5 and the 

membership functions in Figure 5-49. Carefully inspecting the paths in Figure 5-53, two 

sections of path-following-error are observed. The drawn path (using SMP) starts to lost its 

position at location A (marked by a circle), and re-matches with the desired path at location

100 ,  C o rrec tin g  .. . .  ......

» Ener®
80 |
70 i- .............. |.............. ]. - .

60

50 : ................. |............... I......

5 ( x ) i

30

10
Norm alised 0

10 90o 30 40 60 70 10020 50 80

Figure 5-55: Output patterns o f the fuzzy system
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B. The system calculates the angles of the path at the position A and B. After normalising 

angles © 1  and ©2 , the regions of the output patterns between these two data sets (the darker 

areas, as depicted in Figure 5-53) are modified.

The system has to increase the corrections in X direction and decrease in Y direction. 

The adapting procedures undertaken in the project are based on the trial and error method, 

and are highly dependent on engineers' experiences. Once the patterns of the system outputs 

are decided, the timing process (described in the previous section) is applied to alter the 

output membership functions. Figure 5-54 and Figure 5-55 represent a sample of the tuned 

output membership functions and the fuzzy output patterns (5(x)j and 5(y)i). Two example 

paths using the fuzzy 2VMethod are shown in Figure 5-56.
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Figure 5-56: Examples o f finding the compensated path 

using the fuzzy 2VMethod
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SlopeDown (Xd)
(Yu) Top

scanned path
centre

centredrawing line

bottom 2
(Y d 2)SlopeUp

(Xu)bottom 1
(Ydi)

Figure 5-57; Detecting the inaccuracy of path following

b) Fuzzy amplitude prediction

Once the pattern of correction is determined, the next step is to decide the amount of the 

amplitude needed for the correction. As the first processed frame is passed under the Post- 

PVS, an image is taken and sent to the host system. The colour curve differentiating 

technique is employed to distinguish two different colour lines. The top, bottom and centre 

positions in both paths are taken to measure the inaccuracy of the SMP following. The 

distances between these points within the different paths (Figure 5-57) are calculated and 

passed to an A.I. Engine, such as a fuzzy, neural networks, or a neural fuzzy system. The 

engine takes the data and calculates the average errors for each of the parameters - Top, 

Bottom, SlopeUp, and SlopeDown. For instance, in Figure 5-57, Bottom -  (hottonij + 

bottoni2) -r 2. Moreover, these parameters are used by the A.I Engine to determine a 

suitable amount of amplitude for the correction.

Figure 5-58 illustrates the fuzzy engine used to generate the updated amplitudes (Yu, Yd,

Xu, and Xd) of the correction. The system reads four parameters - Top, Bottom, SlopeUp,

and SlopeDown, respectively. Each of the parameters is passed to the fuzzy engine to decide

a set of correcting amplitudes. Combining the new obtained amplitudes and the old data, the

updated amplitudes can finally be attained. Using a configuration similar to Fuzzy Engine
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Figure 5-58: Detecting the amplitudes of the correction using the PEC Algorithm

Two described previously, the symmetric triangle input and trapezoid output membership 

functions are engaged to construct the Fuzzy Engine One. As indicated in Figure 5-59, a 

different system output membership function is employed to configure the engine. This 

inference system can produce a non-linear output pattern similar to the sigmoid transfer 

function, which is used to compute the correcting amplitudes. Figure 5-60 illustrates the 

drawing paths applied two predicted amplitudes of correction during the learning process.

5.7.3.3.2 Neural fuzzy inference process

In this approach, two Neural Fuzzy Engines have been assigned to replace the fuzzy

-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130

output - trapezoid membership functions

output membership function configuration file

fuzzy
set

S1 S2 S3 S4

NL -40 -35 35 40
NM -10 -5 35 40
NS 10 15 55 60
PS 35 40 75 80
PM 60 65 95 100
PL 80 85 115 120

Figure 5-59: System output membership function for Fuzzy Engine One
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Figure 5-60: Example of applying different amplitudes to generate the compensated path

engines described in the last section. Instead of using the fuzzy membership functions and 

rules, the neural fuzzy system makes use of neural network for forming the required 

membership functions and the rule base. Using the same algorithms to correct the path- 

following-error, Neural Fuzzy Engine One determines the amounts of amplitudes for the 

correction. Besides, the Neural Fuzzy Engine Two constructs the correction pattern. 

Combining these two data sets, the predicted drawing path can be formed.

Similar to the tuning process, the weight bases (weights_a and weights_b labelled in 

Figure 5-61) of the neural fuzzy system are adjusted and tested by a neural fuzzy training 

subsystem. The system is divided into three functional blocks: obtaining the training data, 

training the network and testing the trained network. As depicted in Figure 5-61, the system 

updates (tunes) the weight bases to form the required system membership functions. After 

certain iterations of training, the system tests the outputs of the engine. The weights are 

continuously updated until the outputs of the system match the desired patterns. As the 

neural fuzzy system is learned successfully, it is employed to form the compensated drawing 

path. Figure 5-62 illustrates the data flow diagram for the system overview.
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Figure 5-61: Neural fuzzy training subsystem

Two types of network architecture of the neural fuzzy system based on the techniques 

described in Section 5.3.4 are constructed. Layer 1 and layer 2 of the networks act as a 

fuzzification process, where Type A architecture (Figure 5-63) is fully connected structure
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Figure 5-62: Use o f neural fuzzy engines to generate a compensated path
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and the Type B network (Figure 5-64) is partially connected. Both of the networks can

successfully produce the desired outputs. According to the experimental results Type B 

architecture needs less converging time to train the network than the Type A nets.

Nevertheless, since Type B structure uses more neurodes, it takes a little bit longer time to 

recall (use) the trained network.

An example of the system input and output membership functions generated by this 

novel neural fuzzy architecture is represented in Figure 5-65. It can be seen that the

symmetric triangle and trapezoid membership functions can be successfully created by the 

network. The combination of these two types of membership functions can enforce the

accuracy of the neural fuzzy system responses correctly.

5.7.3.3.3 Neural network inference process

The objective of this approach is to use a fuzzy system to supply the training data for a

Laver 6 
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output
linguistics

Layer 4 
output terms
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composition

Layer 2 
input terms

Layer 1
input
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Figure 5-63: Type A neural fuzzy architecture
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Figure 5-64: Type B neural fuzzy architecture
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Figure 5-65: Membership functions generated by the neural fuzzy engine

multi-layered neural network and use the trained network to generate the correcting 

information to eliminate the SMP following error.
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The network is trained with the supervised back-propagation algorithm on the input / 

output data pairs created by a fuzzy engine until it has learned the output actions determined 

by the fuzzy system, e.g. it basically becomes a "clone" of the fuzzy controller in the sense 

that its output behaviour imitates that of the fuzzy engine. The trained neural network is 

applied to guide the end effector to follow an irregular path.

The network constructed in the project is a fully connected three-layer back-propagation 

model comprising one input neurode, five hidden neurodes and one output neurode. The 

general architecture of the proposed system is shown in Figure 5-66. The flow of the 

process is in three steps. First, obtain a set of training data from the fuzzy engine. As the 

fuzzy system (described in Section 5.7.3.3.1) has been successfully designed (tuned), it is 

used to produce the training set for teaching the neural engine. Second, train the neural 

network. And, finally, test and recall the trained neural engine.
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Figure 5-66: General architecture of constructing the 

proposed neural network inference system
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Figure 5-67: Applying two neural engines to generate the compensated path

As the network is successfully trained, the inference kernel reads the path-following- 

error and determines the amplitude of the correction. Besides, the desired path is fitted into 

the second neural engine which produces the pattern of the correction. Combining the 

outputs from these two engines, the compensated drawing path can be determined. Figure 

5-67 illustrates the correlation among these tasks.

5.8 Experimental Results

Numerous experiments were carried out to evaluate the efficiency of this approach using 

the 2VMethod and the PEC Algorithm. Irregular shapes of curves are used in the testing. 

The Pre-PVS captured an image of the desired drawing path, the host system analyses the 

image and creates a compensated path for the frame. The Post-PVS grabs an image of the 

processed object. The path-following-errors between the intended path and the resultant 

path are used to decide a suitable amplitude for the correction.
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Figure 5-68: Using the 2VMethod and the PEC Algorithm to 

determine the amplitude of the correction (Frame Zero)

Figure 5-68 depicts the drawn line with no correction and its four predicted amplitudes 

(New: Yu, Yd, Xu, and Xd) for the correction. These four parameters are used to determine 

the compensated path for the subsequent frame. Figure 5-69 shows Frame One of the 

corrected path and its updated amplitudes. The similar process is continuously carried out 

until the two paths are matched together. Figure 5-70 and Figure 5-71 illustrate the Frame 

Two and Three of the correcting processes.

r n i
drawing line f  /  \,\

*7% A' ^

, !  \  \ i  v

desired path

giffe&ap.m tia
SlopeUp: -9333

Top: -0.963 BOttO
■ 1 SlopoOown:

ACCEPTING THIS M ODIFICATION i /Colt)? y **;

Figure 5-69: Correcting process - Frame One
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Figure 5-70: Correcting process - Frame Two
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Figure 5-71: Correcting process - Frame Three

According to various experiments, after three frames of correcting processes almost all 

the path-following-error caused by the spring can be eliminated. In addition, the obtained 

(learned) control parameters can be utilised to correct the SMP following errors in the 

subsequent frames as well as dealing with any irregular shapes of curves. The results 

indicate that the ZVMethod applied the Piecewise Error Compensation Algorithm only needs 

a few frames of self-learning processes to precisely correct for the path-following-errors 

caused by the SMP. Table 5-6 represents some samples of the learned control parameters
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Amplitudes
Sample No. Yu Yd Xu Xd

1 -989.595 831.023 s § -426.6J 471V
2 -978.326 809.895 -403.630 -403.630
3 -994.032 800.000 -414.500 -423.826
4 -1139.712 654.622 -481.951 -496.701
5 -965.462 594.649 -463.252 -448.141
6 -802.240 479.759 -293.050 -302.190
7 -915.919 451,220 lillllMlll -285,083
8 -849.369 508.109 -340.063 -339.047
9 -977.224 525.947 -346.914 -350,083
1 0 -860.326 492.808 -305.640 -305.000

Table 5-6: Examples o f the learned amplitudes

acquired from various training processes. It can be seen that once the Z axis of the cutting 

mechanism is reset (this will change the pressure applied to the SMP), the obtained system 

parameters Yu, Yd, Xu, and Xd are entirely altered. Various sample patterns of the SMP 

path following process using the 2VMethod together with the PEC Algorithm are illustrated 

in Appendix C.

5.9 Summary

This chapter discusses the inexact algorithms employed in the tightly coupled vision and 

control system. The system is mainly divided into two sections: pre-processing vision system 

(Pre-PVS) and post-processing vision system (Post-PVS).

A spring mounted pen (SMP) is engaged to emulate the movement of the lace strip due 

to the cutting force caused by the tactile cutter and the mechanical feed misalignment. Due 

to the flexibility of the dynamic structures (such as lace patterns and the SMP) and 

complexity of the correcting process, the inference methods based on fuzzy logic, neural 

fuzzy technique, and neural networks are applied to overcome the problems. Moreover, it is
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proposed to use the inexact algorithm as the basis for achieving optimal quality which 

satisfies visual demands rather than engineering precision.

A number of approaches have been described attempting to correct the path-following- 

error. The experimental results indicate the capability and effectiveness of the proposed 

algorithms. The development of the system is a novel approach to martial processing and 

has further applications where deformable materials and structures are processed.
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G e n e r ic  E r r o r  C o m p e n sa t io n  A l g o r it h m

6.1 Introduction

6.2 Detecting the Correcting Pattern 

6.3 Detection of Correcting Amplitude 

6.4 The Correction Process 

6.5 Experimental Results

6.6 Summary

6.1 Introduction

A learning method, the Piecewise Error Compensation Algorithm (PEC Algorithm), 

developed for minimising the errors caused by the Sprint Mounted Pen was described in the 

previous chapter. The PEC Algorithm can learn to correct the system's behaviour in terms of 

analysing the differences (path-following-errors) between the intended patterns and the 

actual patterns. Approximately three frames of correcting process are required before the 

machine reacts correctly in minimising the deviation.

In order to increase the speed and the accuracy of the correcting process, an 

improved learning algorithm is developed. This algorithm is based on utilising the 

2VMethod together with a new scheme for detecting the correcting pattern as well as the 

amplitude. Similar to the PEC Algorithm, the inexact algorithms are employed to construct 

the A.I. kernel. Equations 6-1 and 6-2 describe the process of computing a compensated 

path.
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n
Compensated Path  =  £ { Compensated segm ent[i] +  Original segm ent[i] } (6- 1)

b(x , y), =  CF (6-2)

where n is the number of coordinates in the path, CP  denotes the Correcting Pattern, CA is 

the Correcting Amplitude and 5(x,y)j is the compensated segments. In the following 

sections, this new type of learning algorithm is described, and is divided into two functional 

blocks: detecting the correcting pattern  and detection o f the correcting amplitude.

6.2 Detecting the Correcting Pattern

In order to detect (obtain) the deviation caused by the spring, the SMP is driven to 

follow a template (a square wave) on paper. The image of this square wave is captured by

•©

(a)

drawing direction

(b)

Figure 6-1: (a) Vectorising the square wave; (b) Drawing 

a second path fo llow ed  the template using the SMP
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the vision system. A software filter is developed to detect this captured image - six 

coordinates, such as shown in Figure 6-1 (a), can be obtained. This data is then transferred 

to the controller.

The SMP is driven to draw a second line on the paper. It is clear that the path- 

following-errors appear. The path-following-errors appear when the direction of the 

drawing changes, i.e. from direction - X  to - Y ,  - Y  to - X ,  - X  to +Y and +Y to - X  (see 

Figure 6-1 (b)). There are four different types of deviation patterns that can be detected. 

They are labelled as nXnY,  nYnX,  nXpY and pYnX where 'n' denotes negative and 'p' 

means positive.

The inexact algorithms are employed here for constructing the A.I. engines to 

produce the compensation patterns. The artificial neural network approach engaged to learn 

the correcting action from these deviation patterns is illustrated. Figure 6-2 depicts the use 

of the nXnY deviation pattern to produce the learning data set for training a neural engine 

(ANN Engine). Eleven data points (a, b, c , ..., k labelled in Figure 6-2) which are taken from 

experience are chosen in this instance.

Table 6-1 represents the training data pairs collected from the nXnY deviation

output
1.0
0.8
0.6
0 . 4

0.2
0.0

_  , 0  . 1  . 2  . 3  . 4  . 5  . 6  . 7  . 8  . 9  1 . 0
input to the neural engine

Figure 6-2: Obtaining the training data set from a deviation pattern

nXnY deviation

6-3



C h i- H s ie n  V i c t o r  SHIH, D e p a r tm e n t  o f  C o m p u t in g .  T h e  N o t t i n g h a m  T r e n t  U n i v e r s i t y ,  1996

label a b C
■ - ■■■■■■■ ---- ——

d e
- j 1-

1  h 8 k
input 0.0 0.1 0.2 0.3 0.4 0.5

output 0.395 0.402 0.405 0.410 0.422 0.470

label g h 8 R '§ $ ¥ ! &  -
input 0.6 0.7 0.8 0.9 1.0

output 0.520 0.570 0.630 0.750 1.000

Table 6-1: The training data pairs collected from nXnY pattern

pattern. As the training data is fed into the neural engine, which is a standard fully 

interconnected three-layer back-propagation network, after learning and updating procedure 

the trained neural engine can be used to generate a correcting pattern. Using the similar 

approach stated above, the learning data sets from nYnX, nXpY and pYnX deviation 

patterns can all be obtained and utilised for teaching the network. Figure 6-3 illustrates the 

processes and data sets used to produce the correcting patterns.

As mentioned previously, four different shapes of deviation patterns, i.e., nXnY,  

nYnX, nXpY and pYnX,  can be detected from the result of following the template. Once

No. of 
Neurodes 

and Layers

Random
Number

DESIRED OUTPUTSDEVIATION
PATTERNS

GENERATING 
INITIAL WEIGHTS,Training 

Coeffi- 
cients ,

Desired
OutputPattern Desired

Output Initial
Weight

GENERATE 
TRAINING 

DATA PAIRS ADAPT WEIGHTS

Updated
Weight

WEIGHTS
Input
DataInput

Data Actual
Output

Original
WeightInput

DataINPUT DATA SETS COMPUTE
ACTIVATION

Figure 6-3: The neural engine used to learn the correcting patterns
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(90  degrees) - Y

coordinate 2

62

coordinate 1+x -X (180  degrees)

5(x) = b(nXpY) 
5(y) = b(pYnX)

(270 degrees) +Y

Figure 6-4: Depending on the direction (angle) o f the path, two sets 

of correcting patterns can he chosen to assign for the 2VMethod

the neural engine has successfully learned from these samples to produce the correcting 

patterns, the 2VMethod is then, used to calculate the compensated segments. Dissimilar to 

the scheme mentioned in Section 5.7.3.3, instead of using only two correcting patterns (refer 

to Section 5.7.3.1: the tuning process, Figure 5-53), two sets of correcting patterns are used, 

i.e. {b(nXnY), b(nYnX)} and {b(nXpY), b(pYnX)}. Depending on the direction (angle) of the

line between two detected coordinates, one of the correcting pattern pair is assigned to the

correcting energies b(x) and b(y). For example, if the angle of the line between two 

coordinates is less then 180 degrees (Figure 6-4), then Equation 6-3 is engaged by the 

2VMethod; or if the angle of the line is larger than 180 degrees then Equation 6-4 is active.

b(x) = b(nXnY), b(y) = b(nYnX) (6-3)

6 (.v) = b(nXpY), 5(y) = b(pYnX) (6-4)

where b(nXnY) is the correcting pattern generated by the neural engine which uses nXnY 

deviation pattern as the learning data. Since the cutting mechanism employed in the project
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WEIGHTS ________________
(nXnY)(nYnX) WEIGHTS

Compensated  
Pattern yWeights

Weights

SELECTING 
A PROPER 

WEIGHT BASI
EQUATION 6-2

01/02
Correcting 
Patterns ,

Weights
Correcting
Amplitude

NORMALISATION 
PROCESS .

NEURAL ENGINENormalised
Data

Figure 6-5: Use of a neural engine to compute the compensated pattern

is controlled to move from +X to -X  direction, that is why we only need to consider the 

angles of the coordinates which are larger than 90 degrees and less than 270 degrees.

As the angles 01 and 02 (labelled in Figure 6-4) are detected, this information is 

normalised into the range of [0, 1]. Additionally, this normalised data is passed into the 

trained neural engine in order to produce the correcting energies 5(x) and d(y) which can be 

used to create the correcting pattern by utilising the 2VMethod. Figure 6-5 represents this 

procedure.

6.3 Detection of Correcting Amplitude

Once the correcting patterns are obtained, the next step is to determine the amount of 

correcting amplitude required. As already mentioned while the Z axis of the testing rig is 

reset, three system parameters of the SMP are altered (refer to Section-6-2). This results in 

changing the magnitude of the path-following-errors (Figure 6 -6 ). In order to measure the 

maximum amount of path-following-error that can be produced by the SMP, the actual 

length of the deviation is calculated.
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Figure 6-6: Sample of template following using different system setting

Figure 6-7 depicts an example of calculating two maximum deviations caused by the 

SMP. The vision system is used to detect the length of LI (or L2). The actual length of LI 

is then transformed into the machine control unit which is 40 steps / mm. As an illustration, 

if LI is measured as 8.9 mm, the maximum machine control units can be added in the original 

path in b(nXpY) side is 356 steps (8.9 mm x 40 steps / mm).

Since a low resolution vision station is engaged in the project, it is non-trivial to set 

up the system to detect and calculate the precise length of the deviation (LI / L2 indicated in 

Figure 6-7). In order to improve this process, an alternative approach is developed. The

L1: maximum deviation 1 
L2: maximum deviation 2

Figure 6-7: Example o f calculating maximum deviations
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path two (nYnX) ►

Figure 6-8: Samples o f calculating the lengths o f the drawing lines

SMP is driven to draw three short straight lines (six centimeter was used in the experiments) 

on paper, as shown in Figure 6 -8 .

The three lines were drawn on the white paper and captured by the camera. After 

correcting the optical distortion, the actual lengths of these lines are calculated. For 

example, path one in Figure 6 - 8  is calculated as 51.5 mm. And the cutting mechanism is 

actually moved 60 mm. Therefore we can calculate the deviation is 8.5 mm, and the 

maximum machine control units can be added in the original path in b(nXnY) side is 340 

steps (8.5 mm x 40 steps / mm). Noted that based on to various experimental results the 

researcher assigns that the maximum deviations in nXnY and nXpY sides are identical. This 

is why only three lines need to be drawn rather than four lines.

6.4 The Correction Process

As the testing rig is set up, the SMP is driven to draw a square wave on paper. Four 

deviation patterns are taken to create the learning data sets for training the neural network 

kernel. In addition, the testing rig is driven to draw three straight lines on white paper. The
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TESTING RIG

Compensated
Path

Original 
Path

C A LC U LA TIN G ^  
THE COMPENSATED) 
^ -^ A T T E R N ^ -^

WEIGHT BASES

Correcting 
Patterns .W eights

Amplitudes
VISION STATION NEURAL ENGINE

AMPLITUDES (MAX. 
DEVIATIONS)Image 01/92

Original
Path AmplitudeLengths

IMAGE ANALYSING DETECTING
AMPLITUDE

Figure 6-9: DFD for the overview o f the correcting process

vision system then captures an image of the drawing. Three different maximum deviations 

(nXnY/nXpY, nYnX and pYnX) are detected and stored in a configuration file.

A new frame of the desired drawing path is grabbed by the camera and analysed. The 

detected pattern (original path) is then vectorised and fed into the trained neural engine 

(Figure 6-9). By using Equations 6-1 and 6-2, the correcting patterns and amplitudes as well 

as the original detected path are used by the 2VMethod to create the compensated path. 

This vectorised data is, finally, transferred to the controller. Figure 6-10 illustrates the 

detected correcting amplitudes and the compensated path generated by the neural engine.

6.5 Experimental Results

Various experiments were carried out to evaluate the effectiveness of this approach. 

Regular and irregular shapes of paths are used in the testing. The modified version of the 

2VMethod and Equation 6-1 / 6-2 are used to create the compensated pattern. Figure 6-11 

depicts the processes of correcting the path-following-errors using the Generic Error 

Compensation Algorithm (GEC Algorithm). Frame (a) in Figure 6-11 shows the amount of
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Amplitudes o f  Correction

nYnX pYnX nXnY nXpY
Intended Path 0 0 0 0

Compensated Path -7 5 4 6 2 3 -3 2 4 .5 -3 2 4 .5

1000

8 0 0

6 0 0
Intended path

4 0 0

200

-200

-4 0 0
Compensated path

-6 0 0

-8 0 0

-1000
0 -1000 -2000 -3 0 0 0 -4 0 0 0 -8 0 0 0 - 9 0 0 0 -10000-5 0 0 0 -6 0 0 0 -7 0 0 0

Figure 6-10: Example o f applying the neural kernel 

to create the compensated path

deviation generated. After the learning process (Frame (b)) the maximum deviations are 

detected and stored in a configuration file. The intelligent machine console, then, takes the 

compensated patterns from the trained neural engine together with the maximum deviations 

to create the compensated path. Lastly, the cutting mechanism controls the SMP to draw a 

second line overlapping with the desired pattern (such as shown in Frame (c), Figure 6-11).

As mentioned previously, a low resolution vision station is engaged. While the 

system calculates the maximum deviations during the learning process, a certain amount of 

error is introduced due to camera distortions. Besides, the SMP is liable to vibrate while the 

testing rig retreats the pen to move to a new position - this will cause random positional 

errors. In other words, both situations stated above will strongly affect the precise detection 

of the maximum deviations. Consequently, when the obtained information is provided to the 

controller, the results of the SMP following process may be inaccurate.

Figure 6-11 (c) depicts the result of SMP following process using the neural network 

approach. As we can see, almost all the errors are successfully removed - the intended path
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(a) the  intended path and  the actual drawing path (with no correction)

intended path
drawing path

(b) the learning p rocess

(c) the  intended path and the  com pensated  drawing path (with correction)

Figure 6-11: The processes of correcting the path-following-errors 

using the Generic Error Compensation Algorithm (GEC Algorithm)

and the actual path are matched together. A small amount of inaccuracy left between the 

paths is caused by the miscalculation of the maximum deviations. This can be easily worked 

out by means of a higher accuracy / resolution vision system and experimental set up.

In fact, if both deviation patterns and the correcting amplitudes (maximum 

deviations) can be precisely analysed and recorded by a high accurate sensing station, the 

entire path-following-errors caused by the spring can potentially be removed by applying this 

GEC Algorithm with the 2VMethod. More samples of SMP following process and their 

detected compensated patterns can be found in Appendix D.
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6.6 Summary

This chapter describes a Generic Error Compensation Algorithm developed for 

correcting the path-following-errors generated by the SMP. In contrast to the previous 

chapter (the PEC Algorithm), only one frame of learning process is required before the 

system can correctly minimise the errors. The system is developed based on applying the 

inexact algorithm. The neural network approach was used to implement this algorithm.

A number of experiments were carried out to estimate the capability of this method. 

Any regular and irregular shapes of paths were used for testing the SMP following. 

According to the experimental results, using the algorithm developed the intelligent machine 

console can potentially remove all the errors due to flexibility of dynamic structures.
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D isc u ss io n

7.1 Discussion

7.2 Future Work

7.1 Discussion

The previous chapters have described the various algorithms applied to develop a vision 

based intelligent control system to deal with problems in handling flexibility of dynamic 

structures, such as lace patterns and the spring mounted pen.

In order to compensate the errors due to these deformable structures, the inexact 

algorithms, namely fuzzy logic, neural networks, and neural fuzzy technique, have been 

employed in the system to construct an intelligent host controller. Using the pre- and post

processing vision stations with the intelligent controller, the system can automatically 

compensate for flexibility. The machine vision system developed consists of the following 

main components.

§ Lace Pattern Detection

• pixel intensity directed feature extraction (PIDFE);

• fuzzy pattern recognition technique (FPR);

• line mapping method (LMM);

• supervision of the system.
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§ Correction of Cutting Operation

• colour curves differentiation;

• three-vector method (3VMethod);

• two-vector method (2VMethod);

• piecewise error compensation algorithm (PEC Algorithm);

• generic error compensation algorithm (GEC Algorithm).

In order to allow investigation of the algorithms, the software has been written by the 

author to measure the capabilities and effectiveness of the approaches. The development of 

the software has been carried out using an IBM compatible personal computer and the 'C' 

programming language (Borland C/C++ compiler, Version 3.1). The programes have been 

developed with a high degree of modularity. This makes it possible to further develop and 

implement new algorithms which can then transparently substitute those already present in 

the machine vision system.

7.1.1 Pixel intensity directed feature extraction

The first approach attempted to detect the first cutting river across a lace pattern and is 

based on the analysis of pixel intensity directed features in which various traditional image 

processing methods are used to extract the information from the scanned image.

By relying on this scheme, the extraction of the river heavily depends on the features of 

the repeated cutting path (refer to Section 4.3.1). As the lace web is deformed (distortion 

due to mechanism feed mis-alignments and/or changes in the pattern caused by the release of 

tension in the lace structure as it is cut), these features of the river are no longer presented. 

This causes detection of the river to fail (or even detection of the wrong path) when the 

construction or stretch in the lace web is bigger than 5-10 percent.
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7.1.2 Fuzzy pattern recognition

In order to deal with the problems of material flexibility, a fuzzy reasoning rule-based 

technique is devised to analyse the distorted lace patterns (Section 4.3.2). According to 

numerous experimental results, the recognition system incorporating this technique can 

successfully extract the correct cutting paths within various lace motifs without prior 

knowledge of the lace patterns scanned. Up to 40 percent of lace distortion can be correctly 

analysed to obtain the cutting river. On most kind of lace motifs, about 300 milli-seconds 

(Intel 80486 DX2-66 processor) is required to extract the river using this algorithm.

However in a very few intricate lace patterns, such as shown in Figure 7-1, careful 

inspection shows that the river within the pattern is very tiny. After the thresholding 

operation and noise reduction (using average intensity analysis), a part of the river bank is 

wiped out, which is indicated in Figure 7-2. This will cause inaccuracy as this information is 

used to create the cutting path at the centre of the river banks.

To overcome this problem, the researcher has developed a scheme in which the 

program, firstly finds out the over-thresholding location within the pattern, then decreases a 

certain degree of threshold and re-bi-levels these problem areas of the image. To detect the 

locations of the river banks which might have caused the problem, the system measures the

% river bank 1

Figure 7-1: Sample lace pattern with problem river bank
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river bank

distance 
between 
river banks

Figure 7-2: After bi-leveling process, part of the river bank is wiped out

distance between two river banks, which is indicated in Figure 7-2. If the distance is larger 

than a certain value, it can be this area conducted that may be over-thresholding. The 

threshold value is determined imprecisely. As the system inspects all the river banks over the 

entire frame, the problem areas are located (marked by squares in Figure 7-3 (a)).

Furthermore, the system decreases the thresholding point and uses it to bi-level these 

detected blocks within the gray-scaled image. These re-bi-leveled blocks are replaced into 

the original binary image in which the new bitmap is then used to create the cutting path. In 

contrast to the river constructed without the re-thresholding process, this scheme shows to 

have dramatic improvements. The locations of these problem blocks are recorded in a map 

which is used as reference for the bi-leveling operations in the subsequent frames. In other

(a) find out the problem areas (b) after re-thresholding process

Figure 7-3: Processes o f fixing the problem areas
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words, as the system notices this difficulty, this knowledge can be continuously used for the 

following analysis. There is no need to carry out the double thresholding processes after the 

detection of the first frame.

However, since most of the lace motifs used do not involve such problem, in the current 

version of the programmes developed by the researcher, this function is set to a manual 

mode. As an engineer finds an unsatisfactory detection of the river, simply pressing 7?' re 

thresholding will be initiated. The system will automatically detect the problem areas, re

threshold these blocks and create the new cutting path for the user, such as depicted in 

Figure 7-4.

7.1.3 Line mapping method

As the first cutting river is extracted from a lace pattern, this data is used as a reference 

path for the line mapping process (Section 4.4). According to numerous experimental 

results, the method shows to have fast response and high reliability. The speed for tracking 

the lace motif employing this method, using an Intel 80486 DX2-66 processor, is 

approximately 25 to 35 meters per minute. Higher performance could be obtained with a

O bject R e-analysed, p lease wait River found !! confirm  (Y /R /F /N ) ? y

(a) ask ed  for re-thresholding (b) new  d etected  cutting river

Figure 7-4: Re-analysing the image to obtain a more accurate river
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better camera and frame grabber (faster rate of digitising a incoming video signal) or/and a 

faster host system, e.g., Pentium processor, DSP or Alpha CPU, etc.

7.1.4 Supervision of the system

As mentioned in Section 4.5.2, since the recognition system takes approximately two 

hundred milli-seconds to extract a cutting path from a lace pattern, this task will interrupt the 

cutting process between two captured frames. To solve the problem, we add a quarter of 

the repeat cutting cycle to the cutting river. Thus, while the machine is trimming past the 

capture point (see Figure 4-31), the vision system grabs a frame of lace image as well as 

finding the cutting path and transmitting the data to the cutting mechanism before the 

machine actually ends trimming. This enables continuous operation of the system in real

time.

Unfortunately, the controller in the selected testing rig is not a real-time environment - in 

the project we use a CNC machine as our cutting mechanism. The controller (6 8 k 

processor) reads a batch of machine movement data from the host system and transforms 

them into a series of control commands to guide the motors leading the axes. This data 

transformation process is normally taken the 6 8 k micro-controller more than 3 seconds to 

complete it. The non-real-time nature of the controller results in compromising the overall 

system throughput and not being able to precisely set the event priorities within the system to 

appropriate levels. Nevertheless, the selected cutting mechanism provides a satisfactory 

means of developing a prototype which is, from the cost and performance point of view, 

effective for experimentation.

7.1.5 Colour curves differentiation

In the post-processing vision system, a black and white camera with a monochrome 

frame grabber is employed to distinguish two different colour lines (Section 5.7.3.1). A
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width of ’ 
the line “T two lines matched

two lines matched (a) original drawing

(b) transform into bitmap
■  : pixel

Figure 7-5: Example o f transforming two lines into bitmap

colour curve differentiating technique has been developed to perform this task. According 

to various experiments, a number of difficulties have been found.

The resolution of the vision system is approximately 1 mm per pixel in which the width 

of the line drawn by the felt-tip pen is about 1 to 1.5 mm depending on the speed of drawing 

and the pressure applied to the pen. As depicted in Figure 7-5, the line captured by the 

camera is appeared between two grids of the pixel array. After the bi-leveling operation, part 

of the single line is recorded as two-pixel width (see Figure 7-5 (b)). This will cause 

inaccurate detection of the SMP following process (Section 5.7.3.3.1, fuzzy amplitude 

prediction) - If two captured lines are very close to each other, it is very difficult to detect 

the actual distance (path-following-error) between them. For example, in Figure 7-5 two 

lines are partly matched, these overlapped segments are detected either as one-pixel wide, or 

as two-pixels wide (marked by circles).

Of course, it is possible to develop a complex algorithm to 'understand' all these 

situations in order to conquer the problem described above. Flowever this is not the main
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objective in the project. Although the limitation of applying the colour curve differentiating 

technique to distinguish two very close lines has been found, this approach still works 

satisfactorily in other situation. The remaining problem will cause unreliable prediction for 

generating the amplitude of the correction while the scamied path is close or overlapped 

with the drawing path.

Since for cost effectiveness unsuitable low-resolution monochrome vision equipments 

are used, extra image analysing operations have to be undertaken in order to fulfill the 

objectives. These extra processes, such as line skeleton and curve recovery operations, will 

cause the detected (extracted) pattern to lose its original shape. In other words, the 

extracted pattern is only 'similar' to the original object, not exactly the same. The above 

mentioned problems will strongly affect the processes of correcting the path-following- 

errors. Since inexact algorithms are employed in the project, the tolerant nature of the 

techniques developed can be utilised to conquer and eliminate such difficulties. However, in 

this case, more learning steps are required for deriving the proper knowledge to entirely 

correct these errors.

It should be noted that the author strongly recommends to choose a suitable vision 

equipment rather than using the software functions to compensate the flaw caused by the 

inappropriate use of the sensing system. For instance, it is recommended to apply a colour 

camera and frame grabber instead of using a black/white camera in the post-processing vision 

system.

7.1.6 Three-vector method

This method has been devised to correct the SMP following problems. The algorithm 

(Section 5.7.3.2) is based on analysing the angles between three consecutive coordinates of 

the scanned path. The correction made by the analyser is only added in the Y coordinate of 

the scanned path. According to various experimental results, this method can deal with
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irregular shapes of paths. Approximately 60 to 80 percent of path-following-error caused by 

the spring can be successfully removed.

If the correction made in a segment of the path is inaccurate, the rest of the segments of 

the path are also affected. Besides, the correction is only considered in the Y direction of the 

path. No matter how big the correcting magnitude given to the original path, when the curve 

in the desired scanned path is sharp (the angle of the curve is changed dramatically), the 

path-following-error cannot be entirely eliminated. From the experiences of investigating the 

3VMethod, two important conclusions have been derived (refer to Section S.7.3.2):

1) the correction of the SMP error has to be made in both X and Y coordinates, not 

only in one direction; and

2 ) it is better that the correction made for each of the segments in the path is self- 

reliant.

An improved algorithm based on this concept was developed. The algorithm produced 

excellent results which are discussed next.

7.1.7 Two-vector method

This method manipulates every two consecutive coordinates over the entire scanned 

path. As a line is connected between these two data points, the angles between the line and 

the X and Y coordinates are used to calculate the correcting energies for this segment (see 

Section 5.7.3.3). Inexact algorithms have been employed in the system to determine the 

correcting energies. Almost all path-following-errors between the paths can be eliminated. 

Three novel techniques based on the inexact algorithms have been applied to design and 

construct the inference kernel:
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• fuzzy logic;

• neural fuzzy algorithm;

• and neural networks.

According to the experimental results, all these approaches have been shown to have the 

ability to successfully remove the errors created due to spring flexibility. Employing the 

fuzzy logic to design the inference engines (Section 5.7.3.3.1) has had several advantages 

including simplicity and ease of design. However, as the system complexity increases, it 

becomes difficult to determine the right set of rules and membership functions to describe the 

system behaviour. A significant amount of time is needed to properly tune the membership 

functions and adjust rules before a solution is obtained.

Artificial neural networks together with fuzzy logic were used (neural fuzzy technique, 

Section 5.7.3.3.2) to learn the system behaviour to solve the above mentioned problems. 

Using the system's input-output data, neural networks can learn the behaviour of the system 

and can accordingly generate fuzzy rules and membership functions. By proper learning, 

neural nets can develop good generalsiation capabilities and thus, can solve the problems of 

designing a complex system. The main idea in integrating the fuzzy logic controller with 

neural networks is to use the strength of each one collectively in the resulting neural fuzzy 

inference system. The fuzzy engine learns to adjust its performance automatically using the 

neural network structure and hence learns by accumulating experience.

The third approach, used to design the system, is to let a fuzzy controller supply the 

training data for a back-propagation neural network (Section 5.7.3.3.3) and use the trained 

network to determine an appropriate action to correct the error. The intention of utilising 

such a technique is to demonstrate that the large effort required for developing a high speed 

real-time fuzzy controller, which is generally achieved by adapting a fuzzy logic chip, can be 

avoided by designing a software fuzzy controller in a "quick-and-dirty" manner and 

combining it with a simple method to implement neural engine.
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input 2

100:

output

input 1

Figure 7-6: The output pa ttern  c rea ted  by a  2-input / I -output fu zzy  engine

The advantage of applying such an approach is that less recalling time is required by 

using the trained neural network kernel than the fuzzy controller. The larger the number of 

fuzzy rules, the longer is the time required for reasoning. Particularly when a considerable 

number of rules, e.g., more than 1 0 0  rules, are processed in the inference kernel of a fuzzy 

system, a significant amount of time can be reduced by using the neural network which learns 

the responses from the fuzzy system [BAL93][FRE93].

Figure 7-6 shows an example of applying a two-input / one-output fuzzy system to 

produce the learning pattern for training a standard fully connected three-layered neural 

network comprising two input neurodes, eight hidden neurodes and one output neurode. 

The network is trained with supervised back-propagation algorithm on the input / output 

data pairs created by the fuzzy kernel until it has learned the output actions determined by 

the fuzzy system. The trained neural engine basically becomes a clone of the fuzzy controller 

in the sense that its output behaviour (see Figure 7-7) imitates that of the fuzzy kernel.

It should be mentioned that a special scheme for fast convergence of a neural network 

has been devised to train the neural engines in the project. As the initial weights of a neural
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input 2

100;

output

input 1

Figure 7-7: The output pattern produced by the trained neural kernel

net have been randomly assigned, the learning coefficient (v\) and the momentum factor (a) 

(set to very high values - 0.9 and 0.95, respectively) are usually chosen for the problem in 

hand. This causes an unstable convergence of the neural net, because of the oscillation of the 

training process. The weights of the network connections are recorded while the smallest 

mean square error is detected. After several hundred learning iterations the last recorded 

connection weights, which have the smallest learning error, are used as a place to start 

another training process. Then an ordinary training procedure is applied. By using such an 

approach most of the local energy minima can be avoided while converging a neural 

network. This method has been employed to train the neural engines used in the Generic 

Error Compensation Algorithm stated in Chapter 6 .

There are only twenty-four rules that have been derived in the fuzzy controller to 

express the operator's control actions in this project. Almost the same speed of reasoning 

process has been found in both fuzzy and neural kernels. In short, supposing that the results 

obtained in our experiments also hold in other environments, it might be reasonable to 

assume that a well-designed fuzzy controller employed as the teacher of a neural network 

will lead to further performance improvements in a combined fuzzy and neural approach.
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7.1.8 Piecewise error compensation algorithm

The Piecewise Error Compensation Algorithm is derived to detect the correcting pattern 

and the correcting amplitude which are utilised by the 2VMethod for determining a 

compensated pattern. This algorithm is implemented by means of fuzzy logic (Section 

5.7.3.3.1), neural networks (Section 5.7.3.3.2) and neural fuzzy technique (Section 

5.7.3.3.3), respectively.

Through an on-line self-learning process, the intelligent controller can make an 

appropriate compensation to eliminate the deviation. According to the experimental results 

show that approximately three frames of correcting process are demanded to remove the 

errors.

7.1.9 Generic error compensation algorithm

In order to further improve the performance of correcting the SMP following problems, 

a Generic Error Compensation (GEC) Algorithm is developed and tested. After following a 

pre-defined template (square wave), the intelligent machine console analyses the result of the 

process. A neural network based kernel is engaged to learn to correct the deviation from this 

processed frame. A modified version of 2VMethod is applied to create the compensated 

path which is fed back to the controller. Applying the algorithm developed, only one frame 

of learning process is required to successfully remove the errors between the intended path 

and the actual path. Any regular and irregular shapes of paths can all be dealt with.

Since the A.I. engine leams the deviation pattern directly from the result of template 

following process, in contrast to the PEC Algorithm, the GEC Algorithm should produce 

more accurate outcomes. Of course the limitations of the vision system should be taken into 

account. The inaccuracy of the vision system limits the correcting capability of the A.I. 

kernel. However, if a sensing system can precisely detect the deviations between the desired
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....... .....O -.....
start

i '
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end

i (a) the template

(b) processed frame

Figure 7-8: (a) The new type of template;

(b) A possible outcome o f SMP following process

and the actual patterns. By utilising this approach, it is possible to remove all the errors due 

to flexibility of dynamic structures.

Since a conveyor system is attached within the test rig (as stated in Section 3.2), the 

cutting mechanism employed in the project is only controlled to move from +X to -X  

direction and +Y and -Y  in both directions. However, in a general type of CNC machine the 

system normally can move from both +X to -X  and -X  to +X directions. Two dimensional 

patterns (-X/+X and -Y/+Y) can be drawn in this type of machine. In order to correct the 

true 2-D patterns, instead of following a square wave a new type of template has to be 

applied. Figure 7-8 represents this template as well as a possible outcome from following the 

template using the SMP. Four sets of correcting patterns can be derived by analysing this 

drawing.

Applying the same methods described in Sections 6.2 and 6.3, the deviation patterns and 

the maximum deviations (correcting amplitudes) can be detected. Figure 7-9 depicts this 

process. Extending the technique developed in the 2VMethod, the A.I. kernel can learn from 

the obtained deviation data and produces the compensated pattern. Figure 7-10 illustrates an

example of an intended pattern and its derived compensated pattern using this scheme.
7-14
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Figure 7-9: Detecting the deviation patterns and the correcting amplitudes

1 3

a) In tended P attern
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1 end
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b) C o m p e n s ate d  Pattern

end start

9

Figure 7-10: Computing the compensated pattern from a desired pattern 

7.2 F u ture  W ork

This Section outlines the potential research areas in which the developed algorithms can 

be applied to solve problems where the characteristics of the system are complicated and 

difficult to mathematically model. Future research could entail compensation of vibrational
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A

errors and/or control induced errors using inexact algorithms. Besides, the use of a well 

combined fuzzy logic / neural network controller could lead to improving the performance of 

automated manufacturing processes.

7.2.1 Compensation of vibrational errors and control induced errors

Manufacturing with high accuracy is influenced by numerous factors. These can be 

classified as follows: machine tool and its controlling equipment, workpieces, fixtures/jigs 

and tools. The listing must be completed by taking to consideration the environmental 

conditions [SZA93].

It is possible to propose a system in which sensors are used to collect the displacement 

data that indicates the movement of a end effector. This information is then fed into a 

intelligent controller which is based on the inexact algorithms developed. By comparing the 

intended paths and the actual paths, the controller can automatically learn to create the %

compensation paths for correcting the errors due to vibrational errors and/or control induced 

errors. This approach is essentially trying to avoid using very complex sensors to monitor all 

the system and environment factors, such as mentioned previously. Through comparing the 

difference between the required shape and the resultant shape, the controller can make the 

appropriate compensation (Figure 7-11).

As an illustration, a flat bed CNC cutting machine can be fitted with optical encoders 

which are used to monitor the actual movement of the end effector. A host controller can be J

used to produce movement commands to guide the machine tool. Due to the environmental 4

influences (e.g., changing of temperature, dust content) and/or the original defects in the

cutting machine (e.g., link flexibility, backlash, vibration), errors could be found between the -M
ti

intended output (from the controller) and the actual output. The neural fuzzy kernel is then f

employed here to learn the deviations (errors). This enables the system to make suitable -f
I

compensation to correct the errors. ?
I

7-16 1
I

d



C h i -H s i e n  Vi c t o r  SHIH, D e p a r t m e n t  o f  C o m p u t in g , T h e  N o t t in g h a m  T r e n t  U n i v e r s it y , 1996

P R E -P R O C E S S IN G  
. DATA 1 .

In te n d e d
P a th s

C o m p e n s a te d  
P a th s  -D a ta  S e t  1

NEURA L FUZZY 
K ERN E L

D a ta  S e t  2

L e a rn e d
In fo rm ationP R E -P R O C E S S IN G  

.  DATA 2 /

A ctual
P a th s

K N O W L E D G E  B A S E

Figure 7-11: Using the intelligent kernel to make appropriate compensation

It is worth noting that although the optical encoders are proposed in the example 

system, different sensing system, such as infrared array sensors, high resolution CCD camera, 

etc., may also be considered too. In fact, as long as a sensing system can accurately detect 

the actual movement of the end effector, it will suffice.

7.2.2 Well combined fuzzy logic / neural network controller

As stated in Section 5.3.2, both fuzzy logic and neural networks are powerful design 

techniques which both have their strengths and weaknesses. Neural networks can learn from 

data sets, while fuzzy logic solutions are easy to deal with inexact information. A effective 

combination of the two technologies can deliver the best of both worlds. The Neural Fuzzy 

kernel was developed in the project to integrate the fuzzy logic controllers with neural 

networks. In addition, it is also possible to propose a system applying fuzzy logic and neural 

network engines respectively in terms of using the strength of each one collectively to solve 

very complex problems.

As illustrated in Figure 7-12, a neural engine reads a set of normalised data from the 

external sensing system. Since the neural networks is good for grouping massive data, it can 

be employed here to transform the data set into a linguistic term, which is then fed into a
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Figure 7-12: Well-combined fuzzy logic / neural network kernel

fuzzy engine. By utilising the rule base and the membership functions, the fuzzy engine can 

read the linguistic terms (antecedent) and generate a set of control actions to operate a 

machine.

The key benefit of fuzzy logic is that it allows description of the desired system 

behaviour using simple linguistic terms. This gives an engineer a simpler solution in less 

design time. However, in some cases, the knowledge that describes the desired system 

behaviour is contained in data sets, e.g., from the sensors. Here, the designer has to derive 

the fuzzy rule base from the data sets manually, which implies a major effort with large data 

sets.

To solve the above mentioned problem, a neural network can be proposed in the system 

for grouping a large data set into a fuzzy linguistic term. For example, an automated 

manufacturing system contains three sensors which continuously monitor the system and 

environmental factors: 1) speed of the monitor, 2) position of the tool and 3) temperature of 

the workpiece. The neural engine classifies the data sets from the sensing system into 

different groups such as Speed is group Aj, Position is in group Bj and Temperature is 

group Cj, where group A, B and C are linguistic terms (fuzzy sets). These classified data
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sets (terms) are fed into the fuzzy engine. Using the calculus of fuzzy if-then rules, these 

input terms are inferred and composed into a set of output terms. The defuzzification 

process takes place to produce the output value. For instance,

IF (S is Aj and P is B1 and T is C2) THEN (CA is D})

IF (S is A2 and P is B3 and T is Cj) THEN (CA is D2)

IF (S is A2 and P is B2 and T is C3) THEN (CA is D3)

•  •  •  •
•  •  ♦ •

IF (S is Ai and P is Bj and T is Ck) THEN (CA is Dn)

where S is Speed, P is Position, T is Temperature and CA is Control Action. As the Ai , Bj 

and Ck are obtained from the neural engine, these sets are used by the fuzzy engine to 

produce a set of Control Actions (Dn) for controlling a machine.

Synthesis of fuzzy logic and neural networks offers a key advantage over traditional 

control systems. It provides model-free estimation of a control system. The user need not 

specify how the controller's output mathematically depends on its input data. The user only 

needs to provide a statistically representative set of numerical training samples of the system 

(e.g., the sensing data sets) and structured knowledge of the control process for developing 

the intelligent kernel. It is believed that a welt combined fuzzy logic /  neural networks 

controller, such as described above, can lead to an improved design and implementation of a 

control system as well as one that is more effective to maintain.

7-19



C h i -H s i e n  Vi c t o r  S H I H , D e p a r t m e n t  o f  C o m p u t in g , T h e  N o t t in g h a m  T r e n t  U n i v e r s i t y , 1 9 9 6

8. CONCLUSIONS

Chapter 8



C h i -H s i e n  Vi c t o r  SH1H, D e p a r t m e n t  o f  C o m p u t in g  , T h e  N o t t in g h a m  T r e n t  U n i v e r s it y , 1996

Conclusions

A vision based intelligent machine control system has been developed. This system uses 

automated lace trimming as a suitable platform for experimentation and assessment of the 

effectiveness of using remote sensing for control and monitoring. In order to monitor the 

processed objects as well as using the fed-back information to correct the processing errors, 

a closely integrated remote sensing based control using the pre- and post-processing vision 

stations has been designed and implemented.

The objective of detecting the river in an unseen lace pattern in real-time has been 

achieved. This has enabled the development of a working prototype for an automatic lace 

scalloping machine. As the complexity of lace patterns, it is very difficult to detect the 

cutting paths within various lace patterns with no previous knowledge. Besides, it is found 

that the biggest problem in automating the process of lace scalloping is that of dealing with 

lace distortion in real time. Distortion, not only creates problems for the pattern recognition 

task, it also complicates the feeding and cutting processes.

Comparing the two approaches used in traditional image processing [SHE94a] and the 

fuzzy pattern recognition technique to find the first river without prior knowledge, the fuzzy 

logic based approach is more effective. Using the fuzzy technique, the river within the lace 

pattern with up to 40% contraction can be successfully detected. However, the traditional 

method has failed under the same circumstance. According to the experimental results, a 

combination of fuzzy pattern recognition technique and the line mapping method can be 

applied to detect the distorted river within various lace patterns in real time. Besides, in 

contrast to the schemes mentioned in [RUS8 8 ] and [KIN93], the proposed algorithm is not 

only easier to design and implement, it is also more effective in coping with distortion.
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Furthermore, the presented method does not require any training or prior knowledge of the 

lace pattern.

An innovative approach based on modeling human operators' experience and control 

actions using inexact algorithms are developed to solve the complex problem of material 

flexibility. The experimental system uses the pre- and post-processing vision station to 

closely couple the feedback information to the controller. By translating a skilled operator's 

knowledge into a set of linguistic terms or groups of network connections, the intelligent 

machine can learn from experience (on-line learning) and self-adjust the control actions to 

match the desired objective. A.I. engines are constructed in order to detemiine suitable 

actions to correct the processing errors.

A spring mounted pen is used in the experiments to emulate the movement of the lace 

strip due to the cutting forces caused by tactile cutting and the transportation mechanism. 

This system has been implemented in terms of fuzzy logic, neural networks and neural fuzzy 

technique respectively. Numerous experiments have been carried out to evaluate the 

effectiveness of this approach. According to various experiments, applying the Piecewise 

Error Compensation Algorithm, requires approximately three frames of training process 

before the machine reacts correctly in minimising the error. Furthermore, only one frame of 

training process is necessary by means of utilising the Generic Error Compensation 

Algorithm to compensate for the errors. Both learning techniques can successfully deal with 

any regular and irregular shape of paths, and can produce excellent outcome even better than 

a human operator.

The development of the system is a novel approach to flexible material processing and 

has further applications where modeling system behaviour characteristics is difficult. 

Examples of such systems can range from controlling a robot moving on a slippery surface, 

driving a car on snow or piloting a boat, etc. Furthermore, by relying on the intelligent 

software kernel together with the vision system the controller no longer needs to rely on
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accurate position fed-back from sensors. Backlash, joint flexibility, poor feedback and stick 

slip [REA91][STE90] can potentially be compensated for by the controller. While the 

characteristics of the mechanism, such as component wear, temperature variation, change 

over time, the controller can automatically make appropriate compensation. It is sensible to 

anticipate that computer hardware will decrease continuously in cost while increasing in 

performance. In contrast, mechanical hardware costs are more likely to stay in line with 

inflation in the future years [HOD95]. Consequently, it is reasonable to make a shift from 

mechanical hardware to computer with the associated intelligent software kernel in 

automated industrial applications.
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T e l e c e n t r ic  L e n s

This appendix provides a description of the Telecentric Lens which can be employed to 

reduce viewing angle error and magnification error in a conventional vision system.

A .l Introduction

The Computar 55 Telecentric is a 55mm f2.8 telecentric lens which reduces or 

eliminates viewing angle error and magnification error while providing high resolution and 

contract with low distortion. This compact, light weight lens is competitively priced and can 

be used with 1", 2/3”, 1/2" and 1/3" format cameras. Options include 0.75X converter and 

2 X extender.

Machine vision has made the Telecentric lens popular because a conventional lens 

cannot accurately portray objects which are off axis to the lens, or at different distances from 

the lens. Viewing angle error and magnification error are inherent in conventional lenses, 

and these perspective distortions can create significant interpretation problems for software.

A true Telecentric lens, however, maintains a constant viewing angle at any point across 

the clear aperture of the objective lens. This characteristic of the Telecentric lens enables the 

machine vision system to generate images of objects which appear dimensionally accurate 

regardless of viewing angle or proximity to the lens. By eliminating perspective distortion, 

the Telecentric lens produces a dimensionally accurate image which is simple for software to 

interpret.
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(a) coventional lens (b) Telecentric lens
(exhibiting viewing angle error) (without viewing angle error)

Figure A -l: Top view of nine identical cylinders using CCD camera 

A.2 Problem Description

Figure A-l (a) shows an exaggerated top view of nine identical cylindrical objects as 

viewed by a conventional lens. Whether these objects are stationary or moving on a 

conveyor belt, the conventional lens will see each cylinder as dimensionally different, 

depending on its location relative to the axis of the lens. This viewing angle error is difficult 

for software to interpret.

Figure A-l (b) illustrates the same top view of the same nine objects as seen by a 

Telecentric lens, which eliminates viewing angle error. Note that each cylinder appears to 

have the same shape and dimensions, regardless of viewing angle.

(a) coventional lens (b) Telecentric lens
(exhibiting magnification error) (without magnification error)

Figure A-2: Front view o f three identical boxes using CCD camera
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Figure A-2 (a) shows an exaggerated lateral view of three identical boxes which are 

positioned at different distances from a conventional lens. Note that the box located closest 

to the lens appears larger, while the box farthest from the lens appears to be smaller, while 

the two objects off axis to the lens also exhibit viewing angle error.

Figure A-2 (b) illustrates the same boxes as seen by a Telecentric lens. Note that all 

three boxes now appear to have the same shape and dimensions. That is the Telecentric 

Advantage.

A.3 Object Displacement vs. Image Size

An important problem with the conventional lens is that image scale magnification 

changes as a function of distance between object and lens. As the distance to a conventional 

lens increases, image size decreases. As this distance decrease, image size increases. Using 

a Telecentric lens, however, there is little or no apparent change in image size as an object 

dithers within given boundaries (see Figure A-3).

(a)

(b)

Figure A-3: (a) Conventional lens with aperture stop inside lens;

(b) Telecentric lens with entrance pupil at infinity and aperture stop behind lens

D epth of Focus

-j -* r
...

Stop
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One of the most important benefits to be derived from the Telecentric lens is a reduction 

or elimination of magnification error or change in image size associated with variable 

distance between object and lens. But it is important to understand that three are inherent 

technical constraints to the application of this proven technology. First, this discussion 

assumes that dithering movement remains within the optical depth of field. Second, the lens 

will be truly telecentric or display no image movement only at close working distances and 

for objects which are smaller than the diameter of the first element in the lens. The 

Computar 55 Telecentric is truly telecentric when used at magnifications of 0.4X to 1:1. A 

field of view larger than the objective lens diameter will not yield true telecentricity, but will 

yield substantially less error than a conventional lens.

A.4 Field of View vs. Image Size

To understand Figure A-4, it is important to remember that system magnification is 

divided into optical and electronic components: Optical magnification is the ratio of the size 

of the image to the size of the object or part, while electronic magnification is a function of

normal 
ttg lens

Depth of field b a sed  on  the 
num ber of pixels required in a  

typical sen so r to p roduce 
10-90% transition in rise time 

for the  visible spectrum  
peaked at 580 NM

Telecentric Lens

12 ID 8 8  4 2 0  -2 -4 45 -3 -TO -12

distance that object m oves along optical axis

Figure A-4: O bjec t m otion requ ired  to produce  

1% error in image scale at various magnifications
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r r u i t u n #

distance
\ ^ w n c i  ia

format
8 " 55mm+0.75X 2/3"

1 1 " 55mm 2/3"
1 1 " 55mm+0.75X 1/2 "
15" 55mm 1/2 "
15" 55mm+0.75X 1/3"
19" 55mm 1/3"
2 2 " 55mm+2.0X 2/3"
32" 55mm+2.0X 1/2 "
37" 55mm+2.0X 1/3"

Table A-l: O ptions ava ilab le to reproduce a 2" w ide ob ject

camera format and monitor size. If, when considering various camera formats, it is desirable 

to fill each sensor aperture equally, then the image size must be adjusted for each camera 

format.

With a 1/2" camera format, for example, 1 5" wide object can be reduced to the 

horizontal dimension of the sensor (6.4mm) by using: (a) the 55mm lens with object distance 

of 50", (b) this lens with 0.75X converter at 38" working distance, or (c) with the 2 .0 X 

extender at 95". Table A-l displays the options available to reproduce a 2" wide object as 

large as possible on a monitor within reasonable physical constraints not dictated by camera 

format. Object size on the monitor will be 16" for a 20" monitor, or 9.5" for a 12" monitor.

It is helpful to note that the camera format can be changed without disturbing the 

balance of the inspection station. The information on a 2/3" sensor using the 55mm lens 

alone can be reproduced on a 1/2" sensor using the 55mm lens and a 0.75X converter. The 

same is true for 1/2" and 1/3" sensors.
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Appendix B 
PACER VMC HPGL

This appendix provides a description of the PACER VMC HPGL used to command the 

CNC machine in the project.

B .l Introduction

PACER machines are controlled by an enhanced HPGL language via a DOS device 

driver or via a serial interface. This means that the PACER machine can be adequately 

controlled by even the most rudimentary CAD package, while allowing OEMs to configure 

more sophisticated packages to get the best from the system.

B.2 The Device Driver, PACER$

The PACER driver is called 'PACERS', and is a character device driver. There are three 

versions of the device driver, PACERVS1.EXE, PACERVS2.EXE and PACERDPR.EXE, 

that communicate with the controller via COM1, COM2 and shared memory respectively. 

All three drivers present an identical interface to DOS and Windows software. The driver is 

loaded by a line in CONFIG.SYS such as:

d e v ic e h t g h = c : \p a c e  r \p a c e r d p r .e x e

It is envisaged that a CAD package could be installed so that the plotter is assumed to 

be on device 'PACERS', rather than the more conventional 'PRN' or 'COM1'. Thus, plotting 

a design from the CAD package causes it to be cut on the PACER machine without any 

further human intervention on the PC. For instance, plotting can be spooled from DOS
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programs using the DOS PRINT command. The following commands may be added to 

AUTOEXEC.BAT:

ih print /D :P A C E R $  

e c h o  = > P A C E R $  ( S e e  s e c t io n  ’Driver H a n d sh a k in g '  for a n  e x p la n a t io n  of this)

Likewise, plotting can be spooled from Windows by configuring your plotter as being on 

device PACER$, and allowing Print Manager to spool the job to the Pacer controller. 

Configuration, initialisation and depth control commands can be put in a file, and can be sent 

to the machine by a line in AUTOEXEC.BAT such as:

P R IN T  INIT.HPG

Other commands to change the behaviour of the machine can be copied to 'PACERS' 

between plots from the CAD system. The serial version of the Compact 800 will behave 

rather like an HPGL plotter, but with additional commands to perform toolsetting, depth and 

speed control, etc.

B.3 Installing the Card

The card should be installed in a free 16-bit slot in the PC. The 10-way ribbon cable 

supplied can be used to connect a standard 9-way serial port to the 10-way IDC connector 

on the card. If the cable is being connected to a serial port on the PC, the cable should be 

connected to the pinout marked 'PL8  IDE COM'. If it is being connected to some other, 

non-PC serial port, the connector can be plugged into 'PL4 TERMINAL' to behave as a 

DTE serial port, or 'PL8 ' to behave as a DCE serial port. In both cases, the red strip should 

be towards the metal plate end of the card.
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Note that if the card has the DPR chips installed, and the PACERDPR driver is being 

used, then there is no need to connect the serial cable. However, any DOS memory 

manager, (such as QEMM, EMM386, 386MAX) need to be instructed to exclude the 

memory region EFOO-EFFF, as this is where the DPR memory resides. This is done by 

appending 'X=EF00-EFFF to the memory manager line in CONFIG.SYS.

B.4 Link Settings

JP1 (Reset). The 68000 controller will reset when these pins are shorted together. A reset 

switch can be fitted, but is only useful for R&D.

JP2 (ROM type). With pins 2-3 shorted, this selects 27256 ROMs. With pins 1-2 shorted, 

this selects 27512 ROMs. The VMC software is currently supplied on 27256s, and this link 

MUST NOT be moved from pins 2-3.

JP3/JP4 (RAM type). There are 4 possible settings for these two links. The meaning is as 

follows:

JP3:l-2, JP4:l-2 DPS5128P (1Mb)

JP3:l-2, JP4:2-3 TC55100PL (256K)

JP3:2-3, JP4:l-2 DPS2568P (512K)

JP3:2-3, JP4:2-3 43256-85 (128K)

JP5 (Watchdog enable). This link MUST be left open, as there is currently no software 

support for the watchdog function.

JP 6/7 (Machine type). These links are labelled 'A' and 'B'. Each link can be in one of two 

positions, labelled 'O' and T. The meanings are as follows:

A=0, B=0 Compact 800

A= 1, B=0 K range defaults
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A=0, B=1 HD range defaults

A=1, B=1 Not defined, but may be 'test mode’ in future

B.5 Testing the Card

A simple test that the card is working can be achieved by running the DOS program 

'VMC_CTRL.EXE', supplied with the card. With no arguments, this program enquires the 

card status every second, and displays it on the screen. PACER Systems recommend that

the DOS VMC program is installed, and used to test the system. To install VMC, the

minimum requirements are:

1) The driver, PACER$, installed as above,

2) A directory C:\VMC, containing: VMCX.EXE, SETUP.FMT, LANGUAGE.FMT, 

PACER.PCR, PACER.HPG

3) A directory, C:\VMC\PACER, where user jobs can be stored.

HPGL has essentially two groups of commands. One group consists of two-letter 

mnemonics and arguments. Most plotting is done with this set. These commands are 

queued in a large buffer. The second group start with an ESCape character, and are 

executed immediately. These 'queue-jump' the other commands, and are used for 

interactive/real-time commands.

As a job progresses, the machine status will change. Each time that happens, the current 

status will be transmitted back. As this type of message is asynchronous and 'unexpected', 

the message will commence with a BELL character (Ctrl-G), and terminate with a newline 

(Ctrl-J). Some commands will cause text to be returned. In this case the text is expected, 

and the text will NOT start with a BELL. It will, however, still be terminated with a newline 

character.
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B.6 Commands

B.6.1 Immediate commands

HPGL specifies a dot between the 'ESC' and the command letter. In the Pacer 

implementation, this dot will be optional.

Command

ESC.A:

ESC.O:

ESC.R:

ESC.K:

HPGL meaning

Output m/c type & ver 

Output status 

Reset plotter 

Flush input buffer

Pacer meaning 

Output ROM version 

Output status (Pacer format) 

Reset controller 

Flush input buffer

Immediate commands (Pacer extension)

ESC.C 0: Pause

ESC.C 1: Continue

ESC. C -1: Toggle Pause/continue state

ESC.D ddd,ttt: Set Immediate depth of cut. ddd in mm. (Cleared by IN;) Set thickness to

ttt in mm. (Not cleared by IN;)

ESC.F 0: Seek datums (Only available if machine has datum switches - See ESC.#)

ESC.F 1: Auto Toolset (Only available if machine has an auto toolset plunger - See

ESC.!)

ESC.F 2: Initiate manual toolset

ESC.F 3: Confirm manual toolset (Set Z bed position)

ESC.F 4: Set XY origin

ESC.F 5: Goto XYZ origin

ESC.F 6 : Empty swarf (if possible) and park (Only available if parking has been

enabled - See ESC.@)

ESC.G 0, nnn: Move Z axis Up by nnn millimetres (Note 1)
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ESC.G 1, nnn: Move Z axis Down by nnn millimetres (Note 1)

ESC.G 2: Move Z axis to bed position

ESC.G 3: Move Z axis to 'Pen Up' position

ESC.G 4: Move Z axis to 'Park' position

ESC.G 5, nnn: Move X axis Left by nnn millimetres (Note 2)

ESC.G 6 , nnn: Move X axis Right by nnn millimetres (Note 2)

ESC.G 7, nnn: Move Y axis Forward by nnn millimetres (Note 2)

ESC.G 8 , nnn: Move Y axis Backwards by nnn millimetres (Note 2)

ESC.G 9: Immediate splindle motor on (engineer's use only).

ESC.G 10: Immediate splindle motor off (engineer's use only).

ESC.G 11: Move Z axis to 'Pen Down' position.

ESC.G 12, nnn: Move X axis Right and Y Forward by nnn millimetres (Note 2)

ESC.G 13, nnn: Move X axis Left and Y Forward by nnn millimetres (Note 2)

ESC.G 14: Immediate swarf vacuum on.

ESC.G 15: Immediate swarf vacuum off.

ESC.G 16: Immediate Laser Enable on.

ESC.G 17: Immediate Laser Enable off.

ESC.V f,p: Set velocities (now) where:

'f is feed rate, 'p' is plunge rate all in metres per minute. Note that any 

parameters omitted will be left unchanged.

ESC.P c,f,p: Set multipass options where:

'c' is the maximum cut in mm, 'f is the finishing cut in mm, and 'p' is the 

number of finishing passes. (See 'MP' below.

ESC.L nnn: Set laser strike delay to nnn tenths of a second.

= This enables the driver into handshaking. (See section below)

Notes: (1) Z axis movements default to 6  mm if 'nnn' is omitted.

(2) X and Y axis movements default to 100 mm if 'nnn' is omitted.
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B.6.2 Machine configuration commands

The following commands are required to be sent to the controller whenever the 

controller starts from cold (Reset command, power on, hardware reset). This is because the 

controller does not have any non-volatile memory, and needs to be told about the machine 

that it is controlling.

ESC.# xyc, zc, c,m: Set conversion factors, ’xyc' is the number of horizontal machine

steps per millimetre, 'zc' is the number of vertical machine steps per 

millimetre, 'c' is 1 if the machine has a Compact800-style joystick 

control panel, (zero otherwise), in' is the maximum intstep used in 

interpolation. The default value is 60, and should ONLY be changed 

on specific instructions from Axiomatic Technology Ltd.

ESC.@ xp,yp,xs,ys: Set PARK position to (xp,yp), and swarf bin position to (xs,ys), and

enable park command. All in mm. 'xs' and 'ys' ommitted if machine 

does not have a swarf bin.

ESC.$ xh,yh,xlh,ylh: Set auto-homing microswitch positions in mm. (xh,yh) is the position 

of the microswitches with respect to the router spindle. (xlh,ylh) is 

the position of the microswitches w.r.t. the auxilary pen/knife holder, 

(xlh and y lh not yet implemented).

ESC .! xt, yt,zt: Set Auto toolset plunger position to (xt,yt,zt), in mm, and enable auto

toolsetting.

ESC.X xys,zs,a,zt,dr: Set velocities (now) where:

'xys' is horizontal slew rate, 'zs' is vertical slew rate, 'zt' is the toolset 

speed, dr is the driveoff speed for seeking datums, all in metres per 

minute, 'a' is acceleration in percent of G. Note that any parameters 

omitted will be left unchanged.

ESC.W nnn: Set park position to nnn millimetres above the bed (default 50mm).

ESC.& xl ,y 1 ,x2,y2: Set hard clip limits (Bed area).
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B.6.3 Enquiring from the machine

ESC.*: Perform ROM checksum. Return '* 0 AJ' for success, '* n AJ' for

failure, where 'n' is a non-zero integer.

ESC.D: Enquire thickness and depth of cut. Returns:

D d t AJ 'd' is the immediate depth of cut, 't' is the thickness, both in mm.

ESC.V: Enquire velocities. Returns:

V f p AJ 'f is feed rate, 'p' is plunge rate both in metres per minute.

ESC.X: Enquire velocities. Returns:

X xys zs a AJ 'xys' is horizontal slew rate, 'zs' is vertical slew rate, all in metres per

minute, 'a' is acceleration in percent of G.

ESC.P: Enquire multi-pass parameters. Returns:

P c f p AJ 'c' is the maximum cut, 'f is the finishing cut, both in mm, and 'p' is the

number of finishing passes.

ESC.T: Enquire Tooltype and diameter. Returns:

T 't' diam AJ 't' is the tool type, one of 'P' (pen), 'K1 (knife), 'R' (router), 'E'

(engraving head), 'M' (Miller), 'L' (Laser). Diam is tool diameter in 

mm.

ESC.O: Enquire status. Returns:

0  d s i c w p q rAJ 'd' is the drive status, 's' is the system status (See 'Status Returned

from Machine' for format), 'i' is the state of the hardware input bits as

a hexadecimal number. The bits are as follows:

0001 Safety Circuit switch

0002 Offline button

0010 Z Datum switch (Toolset button on Compact 800 range)

0020 Toolset switch

0040 X Datum switch

0080 Y Datum switch
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Drive state is: 0: Stopped, 1: Seeking Datums, 2: Auto Toolset, 3:

Moving (Cutting or slewing).

’c' is the time since the controller was started in tenths of a second. W 

is the text 'cold' until the 'ESC #' command is used, and 'warm' 

subsequently, 'p' is the number of outstanding paths to cut. 'q' is the 

number of paths since the last IN command, 'r' is the ram size 

installed in the card.

ESC.Z: Enquire XYZ position on millimetres relative to origin. Returns:

Z X= 1234.56, Y=1234.56, Z=123.45AJ

B.6.4 Vector commands

PU;

PUx,y;

PD;

PD x,y;

PD x,y,x,y,...,x,y;

PA;

PA x,y;

PA x,y,x,y,...,x,y;

PR;

PR x,y;

PR x,y,x,y,...,x,y;

AA x,y,ang;

AA x,y,ang,ct;

AR x,y,ang;

AR x,y,ang,ct;

AT x 1 ,y 1 ,x2,y2,x3,y3;Three-point arc. (HPGL/2).

RT x 1 ,y 1 ,x2,y2,x3 ,y3; Relative Three-point arc. (HPGL/2).

B-9

Lift pen.

Lift pen and move to (x,y).

Pen down.

Pen down and draw to (x,y).

Pen down and draw polyline.

Set absolute mode.

Set absolute mode and move/draw to (x,y).

Set absolute mode and move/draw polyline.

Set Relative mode.

Set Relative mode and move/draw to (x,y).

Set Relative mode and move/draw polyline.

Draw arc absolute centre (x,y), angle ang.

Draw arc absolute centre (x,y), angle ang, ct ignored. 

Draw arc relative centre (x,y), angle ang.

Draw arc relative centre (x,y), angle ang, ct ignored.
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Cl rad; Draw circle radius rad.

Cl rad,ct; Draw circle radius rad, ct ignored.

B.6.5 Configuration and control commands

SP; or SPO; End job. This is required.

SP pen; Select specified pen.

IN; Lift pen, select solid line type, absolute mode, clear immediate depth of

cut.

DF; Lift pen, select solid line type, absolute mode.

SO; Set origin to the current point. (Compatible with the Aristo plotter SO

command.)

IWx 1 ,y 1 ,x2,y2; Input Window (clipping).

SC; xmin,factor,ymin,factor,2; Scale plot by factor

NR; Not Ready - go offline until online pressed.

OA; Output actual pen position in machine units.

OC; Output commanded pen position in HPGL units.

OF; Output factors for X & Y (plotter units per millimetre).

OI; Output identification.

OH; Output hard clip limits, ie bed area, (in millimetres)

OS; Output current scale command

OW; Output Window (in millimetres)

TT type,diam; Set tooltype for all pens. Type can be: 'P' (pen), 'K' (knife), 'R' (router), 'E'

(engraving head), 'M' (Miller), 'L' (Laser). Diam is tool diameter in mm.

STn; Perform Self-test number 'n'. Currently self-tests 1-4 are defined. Test 1 is

the text 'Pacer Systems Limited'. Test 2 is the word 'PACER'. Test 3 sets 

pen depths for a variety of depths suitable for cutting from 12mm thick 

material, and does a simple, multidepth job. Test 4 just set the pen and
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depth parametes as above, but does not actually cut anything. 'IN' and 'SC' 

commands can precede these commands.

B.6.6 Configuration commands (Pacer extension)

DE pen,dl,d2;

DE pen, depth;

DE 0, depth;

DE pen;

DE;

TH thickness;

HO pen, min, max;

DE pen,dl,d2,type,dia; Set depth range for 'pen', and define its type. Type can be: 'P'

(pen), 'K' (knife), 'R' (router), 'E' (engraving head), 'M' (Miller), 'L' 

(Laser). Dia is tool diameter in mm. This will override the last 

TT command.

Set depth range for 'pen'

Set depth for 'pen'

Set depth for all pens. All depth values are in mm.

This will return pen information for pen 'pen'.

This will return all the current pen information.

Set material thickness in mm.

Hole control for 'pen'. Circles with radius less than 'min' get 

discarded, while circles with radius between 'max' and 'min' get 

drilled as holes.

(see note on depth control for more details of the DE commands) 

Flush buffer. All commands before this are discarded (unless 

already executed).

Multipass suspend/resume. x=l for resume, x=0 for suspend.

SR rl0,rl5,r20,r30,r40,r50,r60,r70,r80;

Set Radii for speed control.

The machine needs to slow down round arcs, especially small arcs, 

or it will stall. This command determines how much the machine 

slows down for each possible radius. Arcs with radius below 'rlO' 

(in mm) will be cut at not more than 10% of the current slew 

speed. Arcs with radius between 'r 1 O' and ’rl5' will be cut at not 

B - l l

FL;

MPx;
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more than 15% of slew speed. Likewise, Radii 'rl5' to 'r20' at 

20%, ’r20' to 'r30' at 30%, 'r30' to 'r40' at 40% and so on. Arcs 

with radius more than r80 will be cut at full speed. Note that 

these values must be in order of increasing radius. Any value 

unset will take the previous value multiplied by 1.5. The default 

values are: 2, 3, 5, 8, 10, 15, 25,45, 70mm.

SA alO, a30; Set angle for speed reduction.

The machine needs to slow down at corners between vectors. If 

the angle is sufficiently small, less than ’a30' (in degrees) then the 

machine can continue cutting at full speed. However, if the angle 

is greater than 'a30' but less than 'a 10' (in degrees) then the cutter 

will not excede 30% of slew speed. Also, if the angle is greater 

than 'alO' but less than 90 then the cutter will not excede 10% of 

slew speed. If the angle at the intersection is greater than 90 

degrees, then the cutter will instantaneously stop at the corner. 

'alO' must be greater than 'a30'. The default values are 20 degrees 

for 'alO' and 10 degrees for 'a30'.

Sets the debug level. This controls the number of messages that 

the controller produces. The level is treated as an 8-bit word of 

binary flags. Thus, a level of 6 indicates that flags 2 and 4 are set. 

the meanings are as follows:

0: No debug messages. Errors, warnings and status only.

1: Print design vectors after they have been parsed.

2: Messages from Machine vector generation.

4: Print vectors at cutting/interpolation stage.

8: Display ramp table when acceleration changed.

16: Print movement requests to Drive controller

DB level;
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When the controller is run from the Pacer machine control software, these messages will end 

up in the VMC.ER log file. This information is extremely useful to Pacer staff when trying 

to diagnose a problem. Note that debug flags 1 and 4 will have an adverse affect on machine 

performance due to the very large amount of data being transmitted.

B.6.7 Commands with different meaning

Command HPGL meaning PACER meaning

FS force,pen; Set force for 'pen' See note on Depth Control

FS force; Set force for all pens See note on Depth Control

VS speed, pen; Set speed for 'pen' See note on Feed Rate

VS speed; Set speed for all pens See note on Feed Rate

B.7 Depth Control

Note that there is no standard HPGL command for depth. We could invent one, but we 

would then have no support for it in the CAD systems that are out in the field. The solution 

is based on the FS (Force Select), SP (Select Pen) commands, and a single new command 

DE (Depth control). The DE command could be used in a header file at the start of a job, or 

may be built up in an interactive OEM program.

HPGL supports 8 pens, with a force value in the range 1-8 for each pen. The default 

force for each pen is 1 (minimum force). In its simplest form, DE sets an absolute depth for 

each pen number. This would allow RoboCAD users to plot each of 8 layers in a different 

pen, and thus get the 8 layers cut at 8 different depths.

For example: DE 1, 3.2; DE 2, 10.55;
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This would mean that pen 1 cut at a depth of 3.2mm, and pen 2 at 10.55mm. A more 

sophisticated form of the DE command would set for each pen a depth for force=l and a 

depth for force=8. Other forces would be interpolated.

For example, DE 1, 3.3, 5.05;

This would mean that at minimum force, pen 1 cut at 3.3mm, while at maximum force pen 1 

cut at 5.05mm. The the commands 'SP1; FS 1,1;' would set a depth of cut of 3mm for the 

next path, while 'SPl; FS 1, 4;’ would set the force for pen 1 to 4. Interpolating between 

3.3mm and 5.05mm, 4 is 3/7 of the way up the scale, and would thus set a depth of (3.3 + 

(3/7)*(5.05-3.3)) nun. The actual depth cut is the sum of the depth associated with the 

current pen, and the current immediate depth, set with the 'ESC D' command.

B.8 Feed Rate Control

HPGL associates a feed rate (velocity) with each pen, and this will be our aim in the 

long term. However, our current controller has no facility for associating a feed rate with a 

path - feed rate commands are actioned immediately.

In the interim, Pacer recommend the use of the ESC.V command to set the feed rate. 

When implemented, the VS command will be actioned soon after it is received by the device 

driver, rather than being queued. Also note that the interim implementation will ignore the 

pen number on the VS command. If the buffer is empty and the machine is idle, then VS and 

ESC.V are identical.

B.9 Status Returned from the Machine

The version string can be obtained by ESC.A or OI. The string returned is as folllows:
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$ R e v i s io n  x x .x x  $  d escr ip t io n ,  co p y r ig h t  AJ

where 'description' describes the board, and 'copyright' is the PACER copyright message. 

For example:

$ R e v i s io n  6.1 $  P a c e r -V M C  H P G L  controller , (c) A x io m a t ic  T e c h n o lo g y  1 9 9 4  AJ

There are two types of status that are returned asynchronously. Firstly, there is the

system status. This is a 16 bit word of binary flags. From the flags, it is possible to deduce 

what commands are available. The flags are transmitted back as a single hexadecimal 

unsigned integer in the range 0000 to FFFF. The values associated with each flag are as 

follows:

0001: S afety circuit broken.

0002: XY position known (Position has not been lost since last seek datums).

0004: Tool height known (Position has not been lost, or tool changed, since last 

toolset).

0008: Data buffer full (Set when less than 2K available; Cleared when more than 4K 

available).

0010: Active: machine is moving.

0020: Offline: Machine has acknowledged offline request button.

0040: Paused: Machine has received a pause command.

0080: Parking: Machine is moving to the park position.

0100: Seeking: Machine is seeking datums.

0200: Autotoolsetting.

1000: Machine has Compact-800 style joystick panel.

2000: Autotoolset has been enabled.

4000: Park has been enabled.

8000: Machine has Datum switches.

B-15



C h i -H s i e n  Vi c t o r  SHIH, D e p a r t m e n t  o f C o m p u t in g , T h e  N o t t in g h a m  T r e n t  U n i v e r s it y , 1 9 9 6

The format of the message returned is as follows:

AG S  hhhh AJ

Secondly, there is en error message. The format of the message returned is as follows:

AG E n x xx x  AJ

where 'n' is the error number. Possible numbers are:

1: Bad HPGL two-letter mnemonic, 'xx' contain the offending two letters.

2: Serial transmission error, xx is a hexadecimal number containing the error bits from 

the serial chip.

3: Movement discarded: machine busy.

4: Command discarded: Feature not enabled.

5: Bad ESC command, 'x' contains the offending command character.

6: Command discarded: Safety circuit broken.

7: Movement discarded: machine offline.

8: Interrupt error. This is fatal, and causes the controller to restart.

9: Three-point arc error.

10: Exception ii' at 'address'. Report all instances of this error to PACER Systems.

11: Insufficient buffer space for self-test.

12: Cannot park Z, clear-check, up-check, down-check while not toolset

13: Path too big to fit in memory

14: Material Thickness too great for current tool position

B.10 Driver Handshaking

Normally, it is the responsibilty of the application to handshake with the controller by 

using the '0008' bit in the status word returned from the controller. This allows immediate
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commands to be sent, even though the buffer is (nearly) full. However, if the driver is to be 

driver by the DOS 'PRINT' command, or directly from a CAD package that does not have 

the facility to send other immediate commands, (such as Pause/Continue), then the driver 

must handshake with the controller to prevent the controller data buffer overflowing. This is 

done by sending a single '=' character to the driver. Note that this only applies to the serial 

version as the DPR version cannot overrun data.

B .l l  Restrictions

The data is assumed to have been through PPD. That is, the data must be linked, sorted 

and nested ready for cutting. Neither the device driver nor the controller will change the 

order in which the vectors are processed. Initially, the VS command will be interpreted 

immediately, as the the current generation of PACER machines have no concept of a 

'queued' change in feed rate.

Note that 'AT' and 'RT' are HPGL/2 extensions to the HPGL language, and that he job 

needs to be terminated by an 'SPO' or 'SP' command.

B.12 Controller Interface

The interface to the machine is via four 'C' functions, as follows:

v o id  c o n tr o l !e r J m m e d ia t e _ w r i te  (char  * c o m m a n d ) ;

'command' is a null-terminated ASCII string that starts with an escape character. This 

function may take a few seconds before it returns, if the immediate queue is full. Only one 

immediate command should be in each call to this function.-
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int co n tr o lle r „ v ec to r _ w rite  (char  * c o m m a n d ,  int w a it  J a g ) ;

'command' is a null-terminated ASCII string containing HPGL two-letter commands, 

seperated by a semicolon. The maximum length for 'command' is IK. If 'w aitjag ' is TRUE, 

die routine will wait until the data has been transmitted (suspending the task in the 

meantime). It will return ther number of bytes actually transmitted.

int c o n tr o l le r _ r e s p o n s e _ r e a d  (ch ar  *buffer, u n s ig n e d  b u f f j e n . ,  int w a i t j a g ) ;

'buffer' is the address of a memory block into which the response will be put. The available 

length of 'buffer' should be stored in 'buffjen'. If 'wait_flag' is TRUE, the routine will wait 

until a response arrives (suspending the task in the meantime), and will eventually return 

TRUE. If 'w aitjag ' is FALSE, the routine will return immediately, returning TRUE if a 

message was available and has been put into 'buffer'.

int c o n t r o l le r _ a s y n c _ r e a d  (ch a r  *buffer, u n s ig n e d  b u f f j e n ,  int w a i t j l a g ) ;

’buffer' is the address of a memory block into which any asynchronous messages from the 

controller will be put. The available length of 'buffer' should be stored in 'buffjen'. If 

'w aitjag ' is TRUE, the routine will wait until a response arrives (suspending the task in the 

meantime), and will eventually return TRUE. If 'w aitjag ' is FALSE, the routine will return 

immediately, returning TRUE if a message was available and has been put into 'buffer'.
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Sam ples of SM P Follow ing  U sing

THE 2VMETHOD AND THE 3VMETHOD

This appendix provides various samples taken from the experiments of SMP {Spring 

Mounted Pen) following applying the 2VMethod (together with the Piecewise Error 

Compensation Algorithm) and the 3VMethod.

C .l Two-Vector Method (2VMethod)

Figure 2V-A-1 to Figure 2V-D-4 illustrate the results of SMP following using the 

2VMethod together with the Piecewise Error Compensation Algorithm. Figure 2V-A/D-1 

(i.e. Figure 2V-A-T, Figure 2V-B-1, Figure 2V-C-1, and Figure 2V-D-1) are the patterns 

which do not add any correcting commands to the scanned paths. Figure 2V-A/D-2 to 

Figure 2V-A/D-3 are the patterns produced through the learning processes. Figure 2V-A/D- 

4 are the final results of the path-following-processes using 2VMethod. Almost all the path- 

following-errors caused by the spring are successfully eliminated.

In contrast to the SMP following utilised 2VMethod, some sample patterns using 

3VMethod are illustrated and described below.

C.2 Three-Vector Method (3VMethod)

Figure 3V-1 to Figure 3V-6 shows the final results of using the 3VMethod for the SMP 

following process. By applied the 3VMethod about 60 to 80 percents of path-following- 

errors can be removed. Compared with the SMP following applied 2VMethod, it is obvious 

to see that the 2VMethod can produce excellent results better than the 3VMethod.
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Figure 2V-A-2: Frame OneFigure 2V-A-1: Frame Zero
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Figure 2V-C-1: Frame Zero Figure 2V-C-2: Frame One
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Figure 2V-C-3: Frame Two Figure 2V-C-4: Frame Three
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Figure 2V-D-1: Frame Zero Figure 2V-D-2: Frame One
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Figure 2V-D-3: Frame Two Figure 2V-D -4: Frame Three
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Figure 3V-1: Sample One (3VMethod) Figure 3V-2: Sample Two (3VMethod)
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Figure 3V-3: Sample Three (3VMcthod) Figure 3V-4: Sample Four (3VMethod)
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Figure 3V-5: Sample Five (3VMethod) Figure3V-6: Sample Six (3VMethod)
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Sam ples of SM P Follow ing  U sing  the  
Generic  E rror  Com pensation  Algorithm

This appendix provides various samples taken from the experiments of SMP {Spring 

Mounted Pen) following using the modified vision of 2VMethod in which the GEC 

Algorithm (Generic Error Compensation Algorithm) is applied. A number of regular and 

irregular shapes of curves are used in the experiments to verify the effectiveness of this 

learning algorithm.

In contrast to the standard 2VMethod with the PEC Algorithm (Piecewise Error 

Compensation Algorithm), the results of SMP following applied the GEC Algorithm indicate 

that the technique developed is only required one learning frame in order to successfully 

minimise the path-following-errors.

Figure D-l to Figure D-5 illustrate five regular shapes of curves together with the 

results of SMP following. The original desired patterns and their compensated paths are also 

included. Figure D- 6  to Figure D-10 depict five different irregular shapes of drawing 

patterns. The compensated paths created by the A.I. kernel using the inexact algorithms are 

illustrated.
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ABSTRACT

Lace is liable to stretch as it is passed 
through the feed mechanism, in which a vision 
system is engaged to detect the changes of the 
motif and find the cutting path (river) across the 
lace pattern. The vision system has to work 
with many different lace patterns, sizes and 
tolerate misalignment, stretch and other 
distortions. A Fuzzy Reasoning Rule-based 
technique is employed in order to overcome the 
problems of flexibility. Several experiments 
have been carried out using lace patterns of 
varying complexity. All cutting paths across the 
patterns were successfully found. Experimental 
results indicate that this method can correctly 
detect the river path in different lace patterns.

I. INTRODUCTION

Handling lace in terms of cutting it along 
the designed paths is usually carried out 
manually. Skilled operators use high speed 
rotating blades or hot wire to cut the lace along 
the designated path. In order to satisfy

industrial requirements two main conditions 
must be satisfied [4]. Firstly, to achieve a 
sufficient degree of automation the river must 
be found without prior knowledge of the lace 
pattern. Secondly, the process of river location 
must be carried out in real-time. To achieve 
this, the extracted knowledge can be used to 
speed up the search for the river in subsequent 
frames. The resolution required for image 
analysis is considerably lower than that 
provided by general purpose Charge Coupled 
Device camera (Figure 1). A bi-level image 
merely consisting of bright and dark areas 
would suffice (Figure 2) [4].

In white or near white lace, after the 
thresholding operation, a river shows up as a 
dark area (pixel group) within the edges that 
crosses from one side of the image to other in a 
nearly unbroken sequence (Figure 2). There are 
thick white threads that cross the river at 
intervals that are indistinguishable from the 
material surrounding the river (marked by 
circles in Figure 2). Allowance must be made 
for small breaks in continuity of the river due to

U liick th r e a d s  |
R iv e rI k f S & s I l i

Cutting  P a th  
(River)

Figure 1: Lace image received from 
the CCD camera

Figure 2: Bi-level lace bitmap image



these cross threads. • Defuzzification process;
• Verification.

Lace comprises a fine and intricate pattern, 
with various densities of knit and holes. On 
most designs the mirrored pattern repeats many 
times, but in practice the repeats are never 
absolutely identical. Furthermore, lace is 
flexible, extensible and easily distorts, 
effectively changing the pattern. Norton-Wayne
[1] experienced this problem and states this 
characteristic of lace making it impossible to cut 
in a consistent position. Russell [3] et al. 
approached this problem by trying to locate a 
reference feature in the lace motif so they can 
keep track of the change in the pattern due to 
stretch. Moreover, the vision system has to 
work with many different lace patterns and 
sizes and tolerate misalignment, stretch and 
other distortions [4]. To overcome the 
flexibility problem, we employ an inexact 
decision making theory - fuzzy rule-based 
inference technique.

In classical normative decision theory the 
components of the basic model of decision 
making under certainty are taken to be crisp sets 
or functions. By crisp we mean dichotomous - 
that is, of the yes-or-no type rather than of the 
more-or-less type" [8 ]. The set of actions is as 
precisely defined as the set of possible states 
and the utility function is also assumed to be 
precise. In descriptive decision theory this 
precision is no longer assumed; but ambiguity 
and vagueness are very often modeled verbally, 
which usually does not permit the use of 
powerful mathematical methods for purposes of 
analysis and computation. The presented 
approach draws on this characteristic to cope 
with the flexibility problems described above.

II. PATTERN RECOGNITION

The scheme for applying fuzzy inference 
techniques to find the first river across the lace 
pattern with no previous knowledge can be 
broken down into the following tasks:

Defining system input 
membership functions; 
Fuzzification process; 
Inference and composition;

and output

The system reads two input variables (position 
and density) after each black pixel group has 
been processed. The fuzzification process then 
assigns a value to represent an input’s degree of 
membership in one or more fuzzy sets. During 
inference and composition process, strengths 
are computed based on antecedent values and 
then assigned to the rules' fuzzy output. 
Finally, the defuzzification process employs 
compromising techniques to calculate the 
average weight for system output. These steps 
are described in detail as follows.

2.1 Defining system input 
membership functions

and output

The degree of membership is decided from 
overlapping sets of a membership function, 
which is defined normally based on intuition or 
experience. The pre-defined membership 
functions cover the entire range of values for 
system input and output, and will define a 
degree of truth for every point in the universe of 
discourse. The shapes and number of fuzzy-set 
membership functions we chose depend on 
parameters such as the required exactitude, 
steadiness and responsiveness of the system. 
Different shapes such as triangles and 
trapezoids are often employed to define fuzzy- 
set membership functions [7] [8 ].

The objective here is to find the river along 
a lace pattern, by using linguistic variables to

U n it!

\  lid-1 .ell

tm M iddle

Mid-Right

Figure 3: Corresponding positions for
black pixel group A and B



Bi-levelling operation  S r ifo .  M

Calulating average volumes

£ ( No. o f  p ixel)
Group Density

Figure 4: A example for calculating the 
group densities for group A and B

represent the common feature of the river shape 
in various lace patterns. These common 
features may be described as:

i) that the position of the river is around 
the centre of a lace pattern;

ii) the river pixel group density is not 
large.

From these linguistic descriptions, two system 
inputs, group position and group density, can 
be defined. By monitoring the position and 
density of the black pixel groups (Figure 2) 
across a lace pattern, a fuzzy decision making 
system can determine whether the pixel group 
is a possible segment of the river. Figure 3 and 
Figure 4 illustrate the two system inputs 
corresponding to an example lace pattern 
together with two candidate groups A and B.

Two initial experiments were carried out to 
define the system input and output membership 
functions. Frequency histograms were used cm 
the sample data to define input membership 
functions [2] [5]. From these
experimental results we can obtain a set of data 
from the River group part to define the 
membership functions. The triangular 
membership function is most common and has 
proved to be a good compromise between 
effectiveness and efficiency. Overlapping 
between fuzzy-set boundaries is desirable and 
the key to smooth operation of the system. To 
simplify the procedure of defining fuzzy 
membership functions, an overlap of 50 percent 
between adjacent fuzzy sets is used in this 
experiment. Besides, each fuzzy set is chosen 
according to the central value and the slope on 
either side (Figure 5).

2.2 Fuzzification process

Fuzzification is the procedure of calculating 
an input value to represent a degree of 
membership in one or more fuzzy sets. This 
process uses two basic steps which are repeated 
for each system input. First, a crisp input has to 
be read and scaled to a value between 0  and 
100. Second, the input must be translated to a 
degree of membership function. Figure 5 
shows two system inputs, position and density. 
Each value of system input has a degree of 
membership in each of these sets. Once the 
degrees of memberships are assigned, the 
values are used to evaluate the rules.

, Degree o f  
membership 

I a:ft M id-Left M iddle M id-R ight Right

0 58 78
G r o u p  P o s i t io n

118 138 196
System  

Input

N l .  N.S. M ed. P S .  P.L.
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65

S v s tc m
InputG r o u p  D e n s i ty

Degree o f  
membership

P.L.
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POSSIBILITY itput
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Figure 5: System input and output membership functions
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Figure 6: System rule base

2.3 Inference and composition

Fuzzified inputs are processed through a 
pre-defined set of rules using min-max 
evaluation to form fuzzified outputs. The 
author developed a set of rules that have the 
form of

IF [antecedent_1] AND [antecedent_2] 
THEN [consequence]

which are listed in Figure 6 . The antecedents of 
rules correspond directly to degrees of 
membership calculated during the fuzzification 
process. Each antecedent has a degree of truth 
assigned to it as a result of fuzzification.

In inference and composition processes, 
strengths are enumerated based on antecedent 
values and then assigned to the rules' output

strengths. Figure 7 illustrates the actual fuzzy 
outputs calculated during rule evaluation 
process for pixel group A. The strength of a 
rule is assigned the value of the weakest 
(minimum) antecedent. As more than one rule 
applies to the same specific action, the strongest 
(maximum) value of rules is used :

i) from Rule 4:
N M rûe streno4i

= min (antecedent_1, antecedent_2)
= min (68, 35) = 35

ii) Rule 5:
N L rule strength 1 = min (68> 65) _ 65>

from Rule 10 also 
l rule strength2

= min (30, 65) = 30 
then the maximum rule strength on fuzzy set

N.L. is
yy £  rule strength

= max (65, 30) = <55
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Figure 7: Inference and composition for pixel group A
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Hi) Rule 9:
Med.rule stren8th

= min (30, 35) =  30_

2.4 Defuzzification process

Defuzzification process is to convert its 
fuzzy outputs into a signal raw or crisp output. 
There are many defuzzification methods. In 
these experiments, we chose the "centre-of- 
gravity method" which is a common and 
accurate defuzzification technique for resolving 
both the vagueness and conflict [6 ] [7]. Figure 
8  illustrates defuzzification of the output using 
the centre of gravity method. The weighted 
average is calculated as follows:

,  y  (sh a d e d a re a  x  cen troid  po in t)Weighted average = -------------------------- —-------- -— —
] T  ( sh aded  a re a )

By relying on the use of fuzzy inference 
technique, each black pixel group is calculated 
and assigned an average weight (possibility). 
For instance, in Figure 4, the output value for 
group A is 39.37 (16.14 %) (see Figure 8 ), also 
group B is 134.64 (95.53 %). Since the 
average weight of group A is only 16.14% (less 
than 50%), the pixel group only has a 16 
percent possibility of being a segment of the 
river. Therefore group A is not a part of the 
river.

2.5 Verification

River group

Figure 9: Each possible river segments 
whose weights are bigger than 80 (50%)

than 80 (50%) are abandoned (Figure 9). The
verification process can then be broken down
into the following tasks:

i) Calculate the distance between two adjacent 
groups;

ii) If the distance is shorter than a specified value 
(set to six pixels long in these experiments) a 
network is built to record this path;

iii) Continuously trace the distances between pixel 
groups while recording all the correct paths 
until a new pixel group reaches the border of the 
image (right hand edge of the frame);

iv) Calculate the total possibility values and divide 
by the number of the group in this path 
(average possibil ity);

v) If the average possibility is bigger than a 
specified value, (110 or 75% was used in the 
experiments) then the correct river has been 
found; if the average possibility is less than this 
value, repeat step (iii) to (v) until the correct 
river is located.

The ”d istance* between group 1 and group 2 is

S Q R T  ( ( x l - x 2 ) J  +  ( y l - y 2 ?  )

w w m
g r o u p l/  X ' x “ ‘ -v 2 )

group2

Once all the black pixel groups have been 
assigned a possibility value (average weight), 
pixel groups whose possibility values are less

Figure 10 : An example for calculating
the distance between pixel groups
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Figure 11: Interconnection between each possible river segments

Figure 10 illustrates the computation of the 
distance between two adjacent pixel groups. 
By calculating the distances and tracing the 
average possibilities in all these segments, the 
river location, highlighted in Figure 11, can be 
pin-pointed.

III. EXPERIMENTAL RESULTS

A number of experiments were carried out 
to evaluate the effectiveness of this method. 
Various kinds of lace patterns were employed 
for detecting the river location. All cutting 
paths across the patterns were successfully 
found. The time taken to isolate the river and 
produce cutting path depends on complexity of 
the pattern. Time taken for most kinds of motif 
is typically about 0.3 second using an Intel 
80486 processor running at 6 6  MHz. 
However, in the case of a very few intricate lace 
patterns (e.g. Figure 1), up to 1.5 seconds is 
required. Once the river path on the first frame

is found, this knowledge can be utilised to 
speed up the detection for the river in 
subsequent frames to meet the real-time 
requirements of the system. Some sample laces 
together with the resulting river path are shown 
in Figure 12 and Figure 13.

IV. CONCLUSION

We have described attempts to develop a 
fuzzy reasoning rule-based system for 
detecting various kinds of lace patterns. 
Experimental results indicate that the objectives 
have mostly been fulfilled. The system 
requires no prior knowledge of any particular 
lace pattern or training. According to the 
results this method can precisely detect the 
proper river path within diversified lace 
patterns. Comparing with the previously 
reported methods [3] [4], it is not only relatively 
easy to design and implement the system by 
means of using the fuzzy reasoning techniques, 
but also more maintainable.

Figure 12: Example A o f river extraction Figure 13: Example B of river extraction
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A fuzzy reasoning rule-based system for handling lace pattern distortion

Nasser Sherkat, Chi-Hsien V. Shih, Peter Thomas

The Nottingham Trent University, Department of Computing 
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A B STR A C T

Much progress has been made in using computer vision to automate the process of lace scalloping. Because the material is 
flexible, dealing with stretch due to mechanical feed produces a challenge. The vision system has to work with many 
different patterns and sizes of lace as well as tolerating misalignment. A Fuzzy Reasoning Rule-based technique is employed 
in order to overcome the problems of material flexibility. Several experiments have been carried out using lace patterns of 
varying complexity. All cutting paths across the patterns were successfully found. Experimental results indicate that this 
method can correctly detect the river path in different lace patterns, and cope with lace stretch as well as distortion.

Keywords: lace pattern, fuzzy reasoning, image analysis, CCD camera, FAM bank, vision system

1. INTRODUCTION

Handling lace in terms of cutting the material along the designed paths is usually carried out manually. Skilled 
operators use high speed rotating blades or hot wire to cut the lace along the designated path which is illustrated in Figure
1. In order to satisfy industrial requirements two main conditions must be satisfied.5 Firstly, to achieve a sufficient degree 
of automation the river must be found without prior knowledge of the lace pattern. Secondly, the processes of river 
location and cutting must be carried out in real-time. To achieve this, the extracted knowledge can be used to speed up the 
search for the river in subsequent frames. The resolution required for image analysis is considerably lower than that 
provided by a general purpose Charge Coupled Device camera (Figure 2). A bi-level image merely consisting of bright 
and dark areas would suffice (Figure 3).5

In white or near white lace, after the thresholding operation, a river shows up as a dark area (pixel group) within 
the edges that cross from one side of the image to the other in a nearly unbroken sequence (Figure 3). There are thick 
threads that cross the river at intervals that are indistinguishable from the material surrounding the river (marked by 
circles in Figure 3). Allowance must be made for small breaks in continuity of the river due to these cross threads.

1
Path

Figure 1: A typical lace pattern



Figure 2: Lace image received from the 
CCD camera Figure 3: Bi-level lace bitmap image

Lace comprises a fine and intricate pattern, with various densities of knit and holes. On most designs the mirrored 
pattern repeats many times, but in practice the repeats are never absolutely identical. Furthermore, lace is flexible, 
extensible and easily distorts, effectively changing the pattern. Norton-W ayne2 experienced this problem and states that 
this characteristic of lace makes it impossible to cut in a consistent position. Russell4 et al. approached this problem by 
trying to locate a reference feature in the lace motif so they can keep track of the change in the pattern due to stretch. 
Moreover, the vision system has to work with many different lace patterns and sizes and tolerate misalignment, stretch and 
other distortions.5 To overcome the flexibility problem, we employ an inexact decision making theory based on fuzzy 
rule-based inference technique.

In classical normative decision theory the components of the basic model of decision making under certainty are 
taken to be crisp sets or functions. By crisp we mean dichotomous - that is, of the yes-or-no type rather than of the more- 
or-less type.9 The set of actions is as precisely defined as the set of possible states and the utility function is also assumed 
to be precise. In descriptive decision theory this precision is no longer assumed; but ambiguity and vagueness are very 
often modeled verbally, which usually does not permit the use of powerful mathematical methods for purposes of analysis 
and computation. The presented approach draws on this characteristic to cope with the flexibility problems described 
above.

2. PA TTER N  R E C O G N IT IO N

The scheme for applying fuzzy inference techniques to find the first river across the lace pattern with no previous 
knowledge can be broken down into the following tasks:

Defining system input and output membership functions;
• Fuzzification process;

Inference and composition;
Defuzzification process;
Verification.

Figure 4 illustrates the context data flow diagram of the system. This system reads two input variables (Group Position 
and Density) after each black pixel group has been processed. The fuzzification process then assigns a value to represent 
an input's degree of membership in one or more fuzzy sets. During inference and composition process, strengths are 
computed based on antecedent values and then assigned to the rules' fuzzy output. Finally, the defuzzification process 
employs compromising techniques to calculate the average weight for system output (Figure 5). These steps are described 
in detail as follows.
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Figure 4: Context diagram for system overview Figure 5: Second level DFD for decision 
making process

2.1 Defining system input and output membership functions

The degree of membership is decided from overlapping sets of a membership function, which is defined normally 
based on intuition or experience. The pre-defined membership functions cover the entire range of values for system input
and output, and will define a degree of truth for every point in the universe of discourse. As the system is tuned to
accomplish desired responses to given inputs or output, it is accepted that membership functions change several times. 
Nevertheless, once the system is in operation, these membership functions will not be modified. The shapes and number of 
fuzzy-set membership functions we choose depend on parameters such as the required exactitude, steadiness and 
responsiveness of the system. Different shapes such as triangles and trapezoids are often employed to define fuzzy-set 
membership functions8 9.

The objective here is to find the river along a lace pattern, by using linguistic variables to represent the common 
feature of the river shape in various lace patterns. These common features may be described as:

i) the position of the river is around the centre of the pattern;
ii) the river pixel group density is not large.

From these linguistic descriptions, two system inputs, group position and group density, can be defined. By monitoring 
the position and density of the black pixel groups (Figure 3) across a lace pattern, a fuzzy decision making system can

M i d - R i g h t

U n it I 
p ixe l

M i d - L e f t

M i d d l e

Figure 6: Corresponding positions for black pixel group A and B



Figure 7: A example fo r  calculating the group densities fo r  group A and B

determine whether the pixel group is a possible segment of the river. 
Figure 6 and Figure 7 illustrate the two system inputs corresponding 
to an example lace pattern together with two candidate groups A and 
B.

Two initial experiments were carried out to define the 
system input and output membership functions. Figure 8 and Figure 
9 illustrate the frequency histograms which were taken from the 
experiments for defining input membership functions3’7.

From these experimental results we can obtain a set of data 
from the River group part (see Figure 8 and 9) to define the 
membership functions. Triangular membership function is most 
common and has proved to be a good compromise between 
effectiveness and efficiency. Overlapping between fuzzy-set 
boundaries is desirable and the key to smooth operation of the 
system. To simplify the procedure of defining fuzzy membership 
functions, an overlap of 50 percent between adjacent fuzzy sets is 
used in this experiment. In addition to each fuzzy set the central 
value and the slopes on either side are chosen. Figure 10 shows the 
fuzzy sets associated with the inputs and output of the system.

2.2 Fuzzification process

Fuzzification is the procedure of calculating an input value 
to represent a degree of membership in one or more fuzzy sets. This 
process uses two basic steps which are repeated for each system 
input. First, a crisp input has to be read and scaled to a value 
between 0 and 100. Second, the input must be translated to a degree 
of membership function. Figures 11 and 12 show two system inputs, 
position and density. Each value of system input has a degree of 
membership in each of these sets. Once the degrees of memberships 
are assigned, we can utilise these values to evaluate the rules.

Figure 8: Frequency histogram for the 
positions of pixel groups

Figure 9: Frequency histogram for the 
densities of pixel groups
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Figure 11: Fuzzy sets for "group position" Figure 12: Fuzzy sets for "group density"

2.3 Inference and composition

Fuzzified inputs are processed through 
a pre-defined set of rules using min-max 
evaluation to form fuzzified outputs. The author 
developed a set of rules that have the form of

IF [antecedent_one] AND [antecedent_two)
THEN [consequence]

which are listed in Figure 13. The antecedents 
of rules correspond directly to degrees of 
membership calculated during the fuzzification 
process. Each antecedent has a degree of truth 
assigned to it as a result of fuzzification.

In inference and composition processes, 
strengths are enumerated based on antecedent 
values and then assigned to the rules' output 
strengths. Figure 14 illustrates the actual fuzzy 
outputs calculated during the rule evaluation process for pixel group A. The strength of a rule is assigned the value of the 
weakest {minimum) antecedent. As more than one rule applies to the same specific action, the strongest {maximum) value 
of m les is used :

R u l e l : I F  p o s i t i o n  i s  L e f t A N D d e n s i t y  i s  N . L . T H E N p o s s i b i l i t y  i s  N . M .

R u l e  2 : I F  p o s i t i o n  i s  L e f t A N D d e n s i t y  i s  N . S . T H E N p o s s i b i l i t y  i s  P . S .

R u l e  3 : I F  p o s i t i o n  i s  L e f t A N D d e n s i t y  i s  M e d . T H E N p o s s i b i l i t y  i s  P . S .

R u l e  4 : I F  p o s i t i o n  i s  L e f t A N D d e n s i t y  i s  P . S . T H E N p o s s i b i l i t y  i s  N . M .

R u l e  5 : I F  p o s i t i o n  i s  L e f t A N D d e n s i t y  i s  P . L . T H E N p o s s i b i l i t y  i s  N . L .

R u l e  6 : I F  p o s i t i o n  i s  M i d - L e f t A N D d e n s i t y  i s  N . L . T H E N p o s s i b i l i t y  i s  P . S .

R u l e  7 : I F  p o s i t i o n  i s  M i d - L e f t A N D d e n s i t y  i s  N . S . T H E N p o s s i b i l i t y  i s  P . M .

R u l e  8 : I F  p o s i t i o n  i s  M i d - L e f t A N D d e n s i t y  i s  M e d . T H E N p o s s i b i l i t y  i s  P . L .

R u l e  9 : I F  p o s i t i o n  i s  M i d - L e f t A N D d e n s i t y  i s  P . S . T H E N p o s s i b i l i t y  i s  M e d .

R u l e  1 0 : I F  p o s i t i o n  i s  M i d - L e f t A N D d e n s i t y  i s  P . L . T H E N p o s s i b i l i t y  i s  N . L .

R u l e  1 1 : I F  p o s i t i o n  i s  M i d d l e A N D d e n s i t y  i s  N . L . T H E N p o s s i b i l i t y  i s  P . S .

R u l e  1 2 : I F  p o s i t i o n  i s  M i d d l e A N D d e n s i t y  i s  N . S . T H E N p o s s i b i l i t y  i s  P . M .

R u l e  1 3 : I F  p o s i t i o n  i s  M i d d l e A N D d e n s i t y  i s  M e d . T H E N p o s s i b i l i t y  i s  P . L .

R u l e  1 4 : I F  p o s i t i o n  i s  M i d d l e A N D d e n s i t y  i s  P . S . T H E N p o s s i b i l i t y  i s  P . S .

R u l e  1 5 : I F  p o s i t i o n  i s  M i d d l e A N D d e n s i t y  i s  P . L . T H E N p o s s i b i l i t y  i s  N . L .

R u l e  1 6 : I F  p o s i t i o n  i s  M i d - R i g h t A N D d e n s i t y  i s  N J L . T H E N p o s s i b i l i t y  i s  P . S .

R u l e  1 7 : I F  p o s i t i o n  i s  M i d - R i g h t A N D d e n s i t y  i s  N . S . T H E N p o s s i b i l i t y  i s  P . M .

R u l e  1 8 : I F  p o s i t i o n  i s  M i d - R i g h t A N D d e n s i t y  i s  M e d . T H E N p o s s i b i l i t y  i s  P . L .

R u l e  1 9 : I F  p o s i t i o n  i s  M i d - R i g h t A N D d e n s i t y  i s  P . S . T H E N p o s s i b i l i t y  i s  M e d .

R u l e  2 0 : I F  p o s i t i o n  i s  M i d - R i g h t A N D d e n s i t y  i s  P . L . T H E N p o s s i b i l i t y  i s  N . L .

R u l e  2 1 : I F  p o s i t i o n  i s  R i g h t A N D d e n s i t y  i s  N . L . T H E N p o s s i b i l i t y  i s  N . M .

R u l e  2 2 : I F  p o s i t i o n  i s  R i g h t A N D d e n s i t y  i s  N . S . T H E N p o s s i b i l i t y  i s  P . S .

R u l e  2 3 : I F  p o s i t i o n  i s  R i g h t A N D d e n s i t y  i s  M e d . T H E N p o s s i b i l i t y  i s  P . S .

R u l e  2 4 : I F  p o s i t i o n  i s  R i g h t A N D d e n s i t y  i s  P . S . T H E N p o s s i b i l i t y  i s  N . M .

R u l e  2 5 : I F  p o s i t i o n  i s  R i g h t A N D d e n s i t y  i s  P . L . T H E N p o s s i b i l i t y  i s  N . L .

Figure 13: System rule base



i) from Rule 4:

ii) Rule 5:

yy m rule strength
= min (antecedent one, antecedent two) 
= min (68, 35) = 35.

R u l e l  1  

R u l e l  2  

R u l e l 3  

R u l e l 4  

R u l e  1 5  

R u l e l 6  

R u l e l 7  

R u l e l  8  

R u l e  1 9  

R u l e 2 0  

R u l e 2 1  

R u l e 2 2  

R u l e 2 3  

R u l e 2 4  

R u l e 2 5

N.L.mle strength 1 = min (68> 65) = 65>

from Rule 10 also
N.L.™le strength2 = min (30> 65) = 30,

the maximum rule strength on fuzzy set N.L. is
N L mle strength

iii) Rule 9:
M ed d le  l e n g  = = m

In order to further improve the speed of this 
calculation, the Fuzzy Associative Memory (FAM) Bank1 is 
applied to reduce the number of the rules. Inspecting the 
FAM Bank (Figure 15), the following fuzzy system rule can 
be formulated:

from rule (A) indicated in Figure 15,
IF the Group Position is Right
AND the Group Density is Positive Small
THEN the Possibility is Negative Medium

This FAM  Bank is comprised of 5 x 5 rules. W e can reduce the 25 
rules per FAM  Bank to 11 rules per table by compounding the rules 
in the Bank. For instance, rule (b) indicated in Figure 15 merges 
three [antecedent o/iejs of the rules to take the form:

from rule (B),
IF the Group Position is Near Middle
AND the Group Density is Negative Small
THEN the Possibility is Positive Medium

2.4 Defuzzification process

The defuzzification process is to convert its fuzzy outputs 
into a single raw or crisp output. There are more than 30 valid 
defuzzification methods. In these experiments, we choose the 
"centre-of-gravity method" which is a common and accurate 
defuzzification technique for resolving both the vagueness and 
conflict issues8. Figure 16 is used to illustrate the defuzzification of 
the output using the centre of gravity method:

R u l e l :

R u l e 2 :

R u l e 3 :

R u l e 4 :

I F  p o s i t i o n  i s  6 8  

I F  p o s i t i o n  i s  6 8  

I F  p o s i t i o n  i s  6 8  

I F  Dosition is 68

A N D

A N D

A N D

A N D

d e n s i t y  i s  0  

d e n s i t y  i s  0  

d e n s i t y  i s  0  

density is 35

T H E N  p o s s i b i l i t y  i s  N . M .  

T H E N  p o s s i b i l i t y  i s  P . S .  

T H E N  p o s s i b i l i t y  i s  P . S .  

T H E N  p o s s i b i l i t y  i s  N.M.
R u l e 5 : I F  position is 68 A N D densit\ is 65 T H E N  n o s s i b i l i t v  i s  N.L
R u l e 6 :

R u l e 7 :

R u l e 8 :

I F  p o s i t i o n  i s  3 0  

I F  p o s i t i o n  i s  3 0  

I F  p o s i t i o n  i s  3 0

A N D

A N D

A N D

d e n s i t y  i s  0  

d e n s i t y  i s  0  

d e n s i t y  i s  0

T H E N  p o s s i b i l i t y  i s  P . S .  

T H E N  p o s s i b i l i t y  i s  P . M .  

T H E N  p o s s i b i l i t y  i s  P . L .

Rule9:___1FwaMpn is.30._AND density is 35 THEN possibility is Med,
R u l e  1 0 :  W position is 30 A N D  density is 65 T H E N S f i S S i b i l i t y  i s  N L.
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d e n s i t y  i s  3 5  

d e n s i t y  i s  6 5  

d e n s i t y  i s  0  
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d e n s i t y  i s  3 5  
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d e n s i t y  i s  0  
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d e n s i t y  i s  0  

d e n s i t y  i s  3 5  

d e n s i t y  i s  6 5

T H E N  p o s s i b i l i t y  i s  P . S .  

T H E N  p o s s i b i l i t y  i s  P . M .  

T H E N  p o s s i b i l i t y  i s  P . L .  

T H E N  p o s s i b i l i t y  i s  P . S .  

T H E N  p o s s i b i l i t y  i s  N . L .  

T H E N  p o s s i b i l i t y  i s  P . S .  

T H E N  p o s s i b i l i t y  i s  P . M .  

T H E N  p o s s i b i l i t y  i s  P . L .  

T H E N  p o s s i b i l i t y  i s  M e d .  

T H E N  p o s s i b i l i t y  i s  N . L .  

T H E N  p o s s i b i l i t y  i s  N . M .  

T H E N  p o s s i b i l i t y  i s  P . S .  

T H E N  p o s s i b i l i t y  i s  P . S .  

T H E N  p o s s i b i l i t y  i s  N . M .  
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Figure 14: Inference and composition 
for pixel group A

Rule (A): IF Position is Right and Density is P.S.
THEN Possibility is Negative Medium 

Rule (B): IF Position is Near Mid. and Density is N.S. 
THEN Possibility is Positive Medium
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Figure 15: Fuzzy Associative Memory 
(FAM) Bank to determine the possibility

i) A centroid point on the x axis is found for each output membership function;
ii) The membership functions are limited in height by the applied rule strength;
iii) The areas of the membership functions are calculated;
iv) The defuzzified outputs are derived by weighted averages of the centroid points and the enumerated areas:
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Figure 16: Defuzzification process for pixel group A
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Figure 17: Each possible river segments 
whose weights are bigger than SO (50%)

Figure 18 : An example for calculating the 
distance between pixel groups
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By relying on the use of fuzzy inference technique, each black pixel group could be calculated and assigned an average 
weight (possibility). For instance, in Figure 7, the output value for group A is 39.37 (24.61 %) (refer to Figure 16), also 
the group B is 134.64 (84.15 %). Since the average weight of group A is only 16.14% (less than 50%), this means that 
the pixel group only has a 16 percent possibility of being a segment of the river. It is, therefore, concluded that group A is 
not a part of the river.

2.5 Verification

Once all the black pixel groups have been assigned a possibility value (average weight), the pixel groups whose 
possibility values are less than 80 (50%) are abandoned (see Figure 17). The verification process can then be broken 
down into the following tasks:

i) Calculate the distance between two adjacent groups;
ii) If the distance is shorter than a specified value (set to six pixels long in these experiments) a network is built to 

record this path;
iii) Continuously trace the distances between pixel groups while recording all the correct paths until a new pixel 

group reaches the border of the image (right hand edge of the frame);
iv) Calculate the total possibility values and divide by the number of the group in this path (average possibility);

Non-river group

:R iver group
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Figure 19: Interconnection between each possible river segments

v) If the average possibility is bigger than a specified value, (110 or 75% was used in the experiments) then the 
correct river has been found; if the average possibility is less than this value, repeat step (iii) to (v) until the 
correct river is located.

Figure 18 illustrates the computation of the distance between two adjacent pixel groups. By calculating the 
distances and tracing the average possibilities in all these segments, the river location, highlighted in Figure 19, can be 
pin-pointed.

3. E X PE R IM E N T A L  R ESU LTS

A number of experiments were carried out to evaluate the 
effectiveness of this method. Various kinds of lace patterns were employed 
for detecting the river location. All cutting paths across the patterns were 
successfully found. The time taken to isolate the river and produce cutting 
path depends on complexity of the pattern. Time taken for most kinds of 
motif is typically about 300 milli-seconds using an Intel 80486 processor 
running at 66 MHz. However, in the case of a very few intricate lace 
patterns (e.g. Figure 20), up to 1.5 seconds is required. Once the river path 
on the first frame is found, this knowledge can be utilised to speed up the 
detection for the river in subsequent frames to meet the real-time 
requirements of the system. Some sample lace patterns together with the 
resulting river path are shown in Figures 20 to 22.

The strip of lace 
is likely to stretch or 
contract while it is 
passed through the ma
chine via the feed 
mechanism. Several ex
periments have been 
carried out for investigat
ing the capability of this 
approach. Various kinds 
of lace patterns have

Figure 20: Example A of river extraction

Figure 21: Example C o f river extraction Figure 22: Example B of river extraction
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Figure 27: Lace pattern under maximum stretch 

5. FU T U R E  W O R K

Remote sensing will be used to post-process the scalloped lace in real-time in order to monitor the effectiveness of
path finding and cutting process downstream of the cutter. A tight coupling between the two allows detection of errors and
alteration of control parameters on line.
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Figure 25: Lace pattern under 40% contraction (successfully detected)

Lace was stretched lengthwise in order to emulate stretch resulting from lace transport. Figure 27 shows that the 
lace pattern has been stretched as much as possible, and its detected river across the pattern. Typically, about 15 to 30 
per-cent of lace can be stretched, depending on material and patterns.

Compared with the previously reported method5, the fuzzy logic based approach is more effective. The traditional 
image processing technique for finding the river heavily depends on the repeat of the lace pattern. In other words, the two 
extremes of the river should be equi-distant from their nearest edge, and after a distance equal to the repeat period of the 
design, the river should be back at the same position relative to the two edges as it was at the start. When lace is distorted, 
these features of the river are absent. That is why the conventional method fails when strips of lace are slightly distorted 
(5- 10%).

4. C O N C LU SIO N

In the preceding sections of this paper, we have described the development of a fuzzy reasoning rule-based 
system for detecting various kinds of lace patterns. Experimental results indicate that the objectives have mostly been 
fulfilled. The system requires no prior knowledge of any particular lace pattern or any training. According to the results 
of the experiments this method can successfully detect the river path within varied lace patterns. Compared with the 
conventional image processing methods,4 5 it is not only easier to design and implement the system by means of using the 
fuzzy reasoning techniques, but also more effective in coping with distortion.

Original Lace Im age Failure D etection

•>'*'* *•«■■■•• *v t ,v : 
*er lapped | |

Figure 26: Lace pattern under more than 50% contraction 
(fail to detect the correct cutting path)
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Figure 27: Lace pattern under maximum stretch 

5. FU TU R E W O R K

Remote sensing will be used to post-process the scalloped lace in real-time in order to monitor the effectiveness of
path finding and cutting process downstream of the cutter. A tight coupling between the two allows detection of errors and
alteration of control parameters on line.
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Abstract

A novel approach to deal with problems in handling 
flexible materials has been described.. A number of 
solutions to this problem have been developed by 
innovative combination of fuzzy logic and neural 
networks (inexact algorithms). Using the pre- and post
processing vision systems, it is possible to monitor the 
lace scalloping process as well as generating on-line 
information for the Artificial Intelligence engines. This 
allows overcoming the problems of material distortion 
due to the trimming operation. A Spring Mounted Pen 
(SMP) is used in experiments to emulate the distortion of 
lace pattern caused by tactile cutting and feed 
mechanism misalignment. Applying the algorithms 
developed, the system can automatically compensate for 
flexibility and produce excellent outcome better than a 
human operator.

1 Introduction

A number of attempts have been made to automate the 
process of lace scalloping and quality inspection
[1][2][3][4]. Work has been reported in  using laser 
technology to cut deformable materials [5]. Although

using laser reduces this deformation, distortion due to 
mechanical feed misalignments persists. Changes in  the 
lace pattern are also caused by the release of tension in 
the lace structure as it is cut. In order to tackle the 
problem of distortion due to material flexibility in 
general, a novel approach using inexact algorithms, e.g., 
fuzzy logic, neural networks and neural fuzzy technique, 
have been developed and described here.

As depicted in Figure 1, a spring is used to mount a 
pen onto the Z axis of the machine (Spring Mounted 
Pen). This device is employed in the experiments to 
emulate the movement of the lace strip due to the cutting 
forces caused by the tactile cutter and feed misalignment. 
A black line is drawn on paper to emulate the river path 
within a lace strip. The pre-processing vision system 
captures an image of the paper strip and stores it in 
memory. A pattern (deshed cutting path) is extracted 
from the image and transferred to the machine console. 
This information is used to guide the SMP to draw a 
second line on the paper strip. As the processed object is 
passed under the camera of the post-processing vision 
system, an image is taken and analysed to inspect the 
"quality” of this drawing. The host system takes this fed- 
back information and determines suitable correcting 
actions to improve this operation.

Bracket

Spring

Felt-Tip Pen

Spring Mounted P.en

Paper Strip

Figure 1: Spring Mounted Pen (SMP) connected with the testing rig
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the path following process

Figure 2 represents the results of following a square 
wave using the SMP. Due to the inherent characteristics 
of the spring, the path-following-errors appear between 
the desired path and the actual target line. Each time the 
pen is put in contact with paper, the axial load on the 
spring changes. This consequently causes the pattern 
generated by the SMP to alter (pathl and path2 indicated 
in Figure 2).

It is clear to observe that the path-following-eiTor 
will be generated when the direction of the drawing is 
changed - the larger the angular variation of the path 
following, the larger is the error. The amount 
(magnitude) of the path-following-error generated is 
depends on the characteristic of the spring engaged, the 
pressure on the SMP, and the frictional force in between 
the tip of the pen and the paper (refer to Figure 3). As 
any one of the system coefficients is altered, the result of 
the SMP drawing will be entirely different.

As shown in Figure 4, while the drawn path is 
transported beneath the camera of the post-processing 
vision system, an image of the paper strip is captured 
and stored in the memory. The path-following-error 
appearing in this frame is detected. Since the extreme 
complexity of the path-following-error caused by the 
SMP is affected by the three system parameters 
mentioned above, it seems to be very difficult to use 
conventional methods, where physical sensors are 
applied to measure all of the system parameters hence 
find the related information to correct this error. In 
order to overcome the problems of complexity, the 
inexact algorithms are considered and introduced here.

3 Proposed Method

An innovative method based on modeling human

CAMERA 2 

POST-PROCESS

video
s ig n a ls

CAMERA 1

HOST
SYSTEM

PRE-PROCESS
lighting VIDEO

MONITORlighting
roller flow direction , ‘
O

conveyor belt

flow direction
paper

68k CNC controller
control lines

Figure 4: Schematic diagram o f the testing rig
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Figure 5: The overview of the vision and motion control systems

operators' experience and control actions using fuzzy 
logic and neural networks are developed to solve the 
problem. By translating a skilled operator's knowledge 
into a set of linguistic terms or groups of network 
connections, the intelligent machine console can learn 
from the experiences (on-line learning) and self-adjust 
the control actions to match the desired objective. Figure 
5 shows a data flow diagram for the system overview. 
Two A.I. engines are constructed in the system in order 
to determine a suitable correction added to the original 
path. This correction is separated into two "energies’’:

1) Correcting pattern; and
2) Correcting amplitude.

The path-following-error is detected and fed into 
A.I. Engine One which analyses the difference between 
the paths also decides the amplitude of correction for 
further processing. Camera One, as indicated in Figure 
5, is triggered to capture a new frame of the desired path 
on paper. At this time, before the extracted curve is sent 
to the path generator, the segments of the extracted path 
are passed to A.I. Engine Two which determines the 
correcting pattern. Both the amplitude and the pattern 
are utilised to generate a predicted correcting 
(compensated) path. Finally, the path generator reads 
the predicted path and the original path to produce the 
machine movement data.

According to the information provided by the A.I. 
Engines, the machine guides the SMP to follow the 
desired path. A small path-following-error may still 
appear in the first corrected frame. Using the scheme 
stated above the error information is repeatedly supplied 
to the A.I. Engines to calculate more accurate correcting 
actions until two paths are finally matched (learning 
process). Two schemes based on examining each 
individual segment of the path have been designed and

- O n  x t ao O +

Y

a n g le  D

+Y -Y (direction)
(magnitude) {    ■■■.................  j | ’.correction

■ i   ; angle
(degree) o ia o  360

Figure 6: Correlation between angle and the 
correcting energy (direction and magnitude)

implemented. The first method is based on manipulating 
the angles between three consecutive vectors in the path 
(3VMet hod). The second method is based on the analysis 
of the angles between the two adjacent vectors and the 
X/Y coordinates (2VMethod).

3.1 3VMethod

Figure 6 illustrates the correction between the angle and 
the correcting magnitude. As the angle between these 
three consecutive vectors is small, the correction added 
on the desired path is large. Yet if the angle is large 
(near 180 degrees), the correction is small. The 
following Equations represent this concept.

No of SegmentsCompensated Path = £ segment(i) correclC(l
j m  1

iSegment(i)corrected = Segment(f)original + £  (correcting energy) n
7J«1
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Figure 7: Calculating a new corrected vector 
using 2VMethod

3.2 2VMethod

Applying this approach, every two consecutive vectors 
are analysed over the entire path. As a straight line is 
connected from Vector 1 to Vector 2 (refer to Figure 7), 
the angles (01 and 02) between the line (y) and the X /  Y 
coordinates are used to compute the possible correcting 
energies (bfx) and 5(y)). Figure 7 represents the 
calculation. The angles 01 and 02 are complementary. 
These two angles are passed to an A.I. engine which is 
designed by means of using inexact methods to 
determine the correcting energies (5(x) and 5(y)). The 
prediction of the new estimated vector (AVector2(bx2, 
5y2)) is calculated by Equation 3.2-1. Equation 3.2-2 
describes the procedure of computing the pattern of the 
predicted path.

&*(0 = * (0 + 5(a),, 5y0') = y(/)+5(y)i (3.2-1)

Predicted Path =  Vector 1+  £  AVector(i)
/■ 2 (3.2-2)

= {xl ,yl }  + £{5jc(/),5y(/)}i-2

where i is the i*  segments in a path and n is the number 
of vectors in the path.

Once the pattern of correction is determined, the 
next step is to decide the amount of the amplitude needed 
for the correction. As the first processed frame is passed 
under the post-processing vision system, an image is 
taken and sent to the host system. A software recogniser 
is employed to distinguish two different colour lines on 
paper. The top, bottom and centre positions in both 
paths are taken to measure the inaccuracy of the SMP 
following. The distances between these points within the 
different paths (Figure 8) are calculated and passed to an 
A.I. Engine. The engine takes the data and calculates 
the average errors for each of the parameters - Top, 
Bottom, SlopeUp, and SlopeDown. These parameters are 
then used by the A.I Engine One to determine a suitable 
amount of amplitude for the correction.

Figure 8: Detecting the inaccuracy of path following

Three different techniques based on the inexact 
algorithms, such as fuzzy logic, neural fuzzy theory, and 
neural networks, have been applied to determine the 
correcting energies (pattern and amplitude). The 
detailed description of applying the inexact algorithms to 
create the correcting energies can be found in [6].

4 Experiment Results

A working prototype is constructed. A number of 
experiments have been carried out to evaluate the 
effectiveness of this algorithm. This approach has been 
implemented using fuzzy logic, neural networks and 
neural fuzzy technique respectively.

Figure 9 shows an example of applying 3VMethod 
in the SMP following process. Compared to the pattern 
drawn without the correction, about 60 to 80 percent of 
the path-following-error has been successfully removed 
by applying the 3VMethod. The results of SMP 
following using 2VMethod is illustrated in Figure 10. 
Through the self-adapting process, the intelligent 
console can automatically make the appropriate 
compensation. According to various experiments, after 
three frames of correction almost all the errors caused by 
the spring can be eliminated. Figure 11 depicts two 
different correcting paths created by the neural fuzzy 
engine during the self-learning process.

(a) without correcting action

\ \  / /  v \  A  /^  / \ A  / /

(b) with correcting action

d esired  pa th

desired p a th

actual drawing

Figure 9: Example of using 3VMethod 
to correct the error



actual drawing

(a) Without correction (b) First corrected frame

(c) Second corrected frame (d) Third corrected frame

Figure 10: Samples of using 2VMetliod to correct the error

5 Conclusion 7 References

In the preceding sections of this paper, we have 
described attempts to develop an intelligent tightly 
coupled vision based control system using inexact 
algorithms. The development of the system is a novel 
approach to material processing and has further 
applications where modeling system behaviour 
characteristics is difficult, such as controlling a robot 
moving on a slippery surface, drive a car on snow, or 
piloting a boat, etc. Only less than three frames of 
learning process are required before the machine reacts 
correctly in minimising the error. According to various 
experimental results, the developed system can deal with 
any irregular shape of path, and can produce excellent 
outcome better than a human operator.
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ABSTRACT

During the last few years automating lace handling has received much attention in the 
United Kingdom. Research and development is ongoing in the two main areas of automatic 
lace cutting and automatic lace quality inspection. This paper reports on research and 
development work under gone at the Nottingham Trent University, in collaboration with 
local industry, in automation of lace scalloping. The research is reviewed in its various 
stages of development. An innovative scheme, based on neural fuzzy theory, for dealing 
with the problem of lace distortion, due to its flexible nature, is described.

Keywords: machine vision, fuzzy logic, neural networks, neural fuzzy theory, spring 
mounted pen, on-line self-learning.

I. INTRODUCTION

Lace, intended for decoration of clothing and furniture, is mass produced in wide rolls. In 
order to increase the production rate, the rolls are made by repeating the desired lace strips 
side-by-side (Figure 1). At the second manufacturing stage the repeated strips are separated 
along pre-designated paths (rivers) which run throughout the length of the roll. The process 
of trimming the lace has been carried out manually. This is a lengthy and expensive process 
and results in slowing the rate of production. A small number of machines have been 
developed that use a simple passive cutter mechanism that relies on the structural strength 
of the lace pattern. In such systems the cutter is held stationary while the lace is run against 
it. This approach is only suitable in cases where the lace pattern is of very shallow scallop. 
In the case of deep scallop patterns a more sophisticated method of guidance, based on an

cutting
path

cutting
path

Figure 1: A typical lace pattern



active cutter, is required.

A vision based system has been developed for 
industrial lace scalloping. On-line pattern 
recognition is performed to detect the cutting 
path, which is vectorised and transferred to a 
trimming mechanism. In order to satisfy industrial 
requirements two main conditions must be 
satisfied. To achieve a sufficient degree of 
automation, first, the river must be found without 
prior knowledge of the lace pattern scanned. A 
fuzzy pattern recognition technique has been 
developed to detect varied shapes of rivers within 
the lace patterns. Secondly, finding of the river 
location across the lace strip must be carried out 
in real-time. To achieve this, a novel approach 
called the Line Mapping Method is used to speed 
up the search for the river in subsequent frames.

Work has been reported in using lasers to cut deformable materials [1]. Although using 
lasers reduces this deformation, distortion due to mechanical feed misalignments persists. 
In addition using laser is not free from problems and a tight control is of laser parameters is 
required in order to achieve a satisfactory level of performance. Changes in the lace pattern 
are caused also by release of tension in the lace structure as it is cut. Our experiments with 
lace handling have pointed out that the biggest problem to overcome is that of non-linear 
behaviour due to flexibility. To tackle the problem of distortion due to material flexibility in 
general, a novel approach, using fuzzy logic, neural networks and neural fuzzy theory, has 
been developed. A Spring Mounted Pen (SMP), Figure 2, is used in the experiments to 
emulate the distortion of lace pattern caused by tactile cutting. Using the machine vision 
station and the intelligent software kernels, it is possible to monitor the scalloping process 
as well as generating on-line information fed back to the host system. This allows 
overcoming the problems of lace distortion due to the trimming operation. Two A.I. 
engines are constructed in the system to determine a compensation fed-back to the 
controller for correcting the errors. This paper is structured into two main sections: lace 
pattern detection, and correction of cutting operation.

2. LACE PATTERN DETECTION

2.1 Fuzzy pattern recognition

As a lace pattern is captured by a CCD camera, after a thresholding operation a river shows 
up as a dark area (pixel group) within the edges that cross from one side of the image to the 
other in a nearly unbroken sequence. There are thick threads that cross the river at 
intervals. These are indistinguishable from the material surrounding the river (marked by 
circles in Figure 3). Allowance must be made for small breaks in continuity of the river due 
to these cross threads. The objective here is to find the river along a lace pattern with no 
previous knowledge, by using linguistic variables to represent the common feature of the 
river shape in various lace patterns. These common features may be described as:

+x+Y.

CCD Camera

+Z
Spring

Spring Mounted Pen

Paper Strip
desired
path

Figure 2: Spring Mounted Pen 
connected with the test rig



a) the position of the river is around the centre of 
the pattern;

b) the density of the river pixel group is not high.

The method for applying fuzzy inference 
technique to find the cutting path can be divided 
into the following functional blocks:

• Defining fuzzy membership functions;
• Fuzzification and rule evaluation;
• Defuzzification and verification.

threads

Figure 3: Bi-level lace bitmap image

1) Defining fuzzy membership functions

From the linguistic descriptions, two system 
inputs, group position and group density, can 
be defined. By monitoring the position and 
density of the black pixel groups across a lace 
pattern, a fuzzy inference engine can
determine whether the pixel group is a
possible segment of a river. Two initial
experiments were carried out to define the 
fuzzy input and output membership functions. 
Frequency histograms were used on the 
sample data to define input membership 
functions [2]. In this way a set of data can be 
obtained from the River group part to build 
the membership functions.

2) Fuzzification and rule evaluation

Rule (A): IF Position is Right and Density is P .S .
THEN Possibility is N egative Medium  

Rule (B): IF Position is Near Mid. and Density is N .S. 
THEN Possibility is Positive Medium

Poss
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Figure 4: Fuzzy Associative Memory 
Bank to determine the possibility

The fuzzification process computes an input value to represent a degree of membership in 
one or more fuzzy variables. These fuzzified inputs are processed through a pre-defined set 
of rules using min-max evaluation to form fuzzified outputs. As depicted in Figure 4, the 
Fuzzy Associative Memory Bank is applied here to reduce the number of the rules for 
speeding up the calculation.

3) Defuzzification and verification

Defuzzification process is to convert its fuzzy outputs into a single raw or crisp output. In 
these experiments, we choose the "centre-of-gravity method” for resolving both the 
vagueness and conflict issues. The weighted average is calculated as follows:

, Y  (shaded area x  centroid point)Weighted average = ■“ -----------------------------------------
y  (shaded area)

( 1)

By relying on the use of fuzzy inference technique, each black pixel group could be 
calculated and assigned an average weight (possibility). Once all the black pixel groups



have been assigned a possibility value, the pixel groups whose possibility values are less
than 50% are abandoned. The verification process can then be broken down into the
following tasks:

a) Calculate the distance between two adjacent groups;
b) If the distance is shorter than a specified value (set to six pixels long in these

experiments) a network is built to record this path;
c) Continuously trace the distances between pixel groups while recording all the correct 

paths until a new pixel group reaches the border of the image (right hand edge of the 
frame);

d) Calculate the total possibility values and divide by the number of the group in this path 
{average possibility);

e) If the average possibility is bigger than a specified value, (75% was used in the 
experiments) then the river has been found; if the average possibility is less than this 
value, repeat step (c) to (e) until the correct river is located.

By calculating the distances and tracing the average possibilities in all these segments, the 
river, highlighted in Figure 5, can be located.

2.1 Line mapping process

When the first cutting river in the lace strip is successfully detected, the extracted 
knowledge can be used to speed up the search in subsequent frames. In order to meet the 
real-time requirements of the system, instead of using traditional pattern matching 
techniques, a new approach called the Line Mapping Method (LMM) has been developed to 
achieve fast response and higher reliability. This approach is divided into the following 
processes:

1) Indicating and registering one repeat cutting cycle

A centre line is located by calculating the distance between the upper and lower boundaries 
shown in Figure 6. Three crossing points between the cutting river and the centre line are 
marked. The cutting path (river) between the intersections © and © labeled in Figure 6 
indicates a repeat cutting cycle, which acts as a reference path for detection of subsequent 
frames.
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' I  72 B-

ibility

I 65 I 78 I

66 1 Destination

74 1H
1 8 6

■■■■"■ ■ : R iv e r  p a th

Figure 5: Interconnection between each possible river segments
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The next frame of a 256 grey scale lace image 
is captured by the frame grabber from the 
CCD camera. An image thresholding 
operation is employed to transform the image 
into a black and white bitmap. This bi-leveled 
lace image is then applied for detecting the 
borders of the black pixel groups which may 
be candidates for river segments.

centre line

lower
boundary

Fig. 6: Extracting a repeat cutting cycle

upper
boundary 2) Capturing the following frame

matching
point

threads

SIAQEJmEE STAGE POUR

Reference

Figure 7: Using reference path for  
searching next cutting path

3) Mapping the reference path into the 
new frame

Since the lace strip is liable to distort as it 
is passed through the trimming 
mechanism, the reference path (river) is 
mapped onto the new frame for the 
detection of the next cutting river. Some 
allowance has to be made for cross 
threads produced as a result of the 
manufacturing process. These are thick 
white threads which cross the river at 
intervals and are indistinguishable from 
the material surrounding the river. For 
this reason, the detection must allow for 
small breaks in continuity.

The LMM technique has been developed for solving this problem. The detection will be 
started from the left hand side of the frame and ended at the right. As the matching point 
has been obtained (described in [3]), the reference path is mapped onto the new frame to 
find the next border of the river. Several possible connecting borders can be found - A, B, 
C, D and E labeled in Figure 7 (stage two). The border closest to the mapped reference 
path is then chosen to become a part of the river (border E is selected in the example). 
Using the same method, the reference path is repeatedly employed to search the rest of the 
river segments until it reaches the end of the frame. Once all the segments of the river have 
been found, lines between adjacent river borders are connected, as illustrated in Figure 7 
(stage four), the entire river bank can be constructed. The detailed description of detecting 
the lace patterns in real-time can be found in [3] [4].

3. CORRECTION OF CUTTING OPERATION

A SMP is employed to emulate the movement of the lace strip due to the cutting forces 
caused by the tactile cutting. A black line is drawn on paper to emulate the river path 
within a lace strip. The pre-processing vision station captures the image of the paper strip 
and stores it in the memory. A pattern (desired cutting path) is extracted from the image 
and transferred to the machine console. This information is used to guide the SMP to draw 
a second line on the paper strip. Due to the error introduced by the spring, the path-



following-errors appear between the 
desired path and the actual target line. 
Since the pressure Jpetween the SMP and 
the surface varies every time they come to 
contact the generated path changes (path

desired 
square wave

drawing path  1 draw ing pa th

A novel method based on modeling human
operators' experience and control actions
using neural fuzzy theory is developed to
solve the complex problems. The
intelligent machine console can learn from
the experiences (on-line learning) and self- ,

A A , . * * u *u Figure 8: Samples o f square waveadjust the control actions to match the * 1 . ,, . , . T . following process using the SMPdesired objective. Two A.I. engines are 01 0
constructed in the system in order to
determine a suitable correction added to the original path. The scheme for applying neural 
fuzzy technique to compensate for the error can be divided into the two functional blocks:
2VMethod\ and Piecewise Error Compensation Algorithm.

3.1 The 2VMethod

This approach manipulates a small portion of the intended path to determine a necessary 
correction for compensating the deviation. Every two consecutive coordinates are analysed 
over the entire path. As a straight line is connected from Coordinate 1 to Coordinate 2 
(indicated in Figure 9), the angles (01 and 02) between the line (y) and the X / Y 
coordinates are used to compute the possible correcting energies (5(.r) and h(y)). The 
angles 01 and 02 are related to the each other - 01 and 02 are complementary. These two 
angles are passed to a neural fuzzy kernel which is designed by means of applying neural 
fuzzy theory to determine a suitable compensation (5(x) and 5(y)). This correction is 
separated into two "energies": a) Correcting pattern; and b) Correcting amplitude.

In the following section, a novel on-line self-learning scheme named the Piecewise Error 
Compensation Algorithm (PEC Algorithm) based on the neural fuzzy technique derived to 
calculate the correcting engines is presented.

3.2 The PEC Algorithm

Two neural fuzzy engines are 
used by the PEC Algorithm to 
determine a necessary 
compensation (correcting 
pattern and correction 
amplitude) to eliminate the 
errors caused by the spring. 
The neural fuzzy system makes 
use of neural network for 
forming the required 
membership functions and the

ACoordinate 2
1 6 x 2  =  x 2 + 6 ( x ) ;

p red ic ted  pa th  6 y 2  =  y 2  +  &(y)

/  (x2,y2) \  
Coordinate 2 original pa th

Coordinate 3 
(x3.y3)02 Coordinate 4

coordinate
ACoordinate 4 

(6x4, 6y4)Coordinate 1
(x i .y i)

ACoordinate 3 
(6x3,6y3)X  coordinate

Figure 9: Calculating new corrected vectors 
from  01 and 02 using the 2VMethod



rule base. Equation 2 describes the processes of combining the correcting pattern and 
amplitude to create a compensated path.

Predicted Segment(i) = Patternsemmia) ■ Amplitude^ (2)

where i is the ith segment of the path. The prediction of the new estimated coordinate 
(ACoordinate2(bx2, &y2)) is calculated by Equation 3. Equation 4 presents the procedure 
for computing the pattern of the predicted path.

hx(i)**x(i)+b(x)it by(i) = y(i)+b(y)i (3)

Predicted Path -  Coordinated) + J^ACoordinate(i)
1=2 (4)

= {xl,yl} + £{bx(i),by(i)}
1 -2

where i is the ith segment of the path and n is the number of coordinates in the path. As the 
first processed frame is passed under the post-processing vision station, an image is taken 
and sent to the host system. A software recogniser is used to separate the scanned path and 
the drawing path (see Figure 10). The top, bottom and centre positions in both paths are 
taken to measure the inaccuracy of the SMP following process. The distances between 
these points within the different paths are calculated and passed to the neural fuzzy kernel 
one which determines a suitable amount of amplitude for the correction. The detailed 
description of this approach can be found in [5].

4. EXPERIMENTAL RESULTS

A working prototype is constructed. Numerous experiments were carried out to evaluate 
the efficiency of this scheme. The results of SMP following using the 2VMethod with the 
PEC Algorithm is illustrated in Figure 11. Through the on-line self-adapting process, the 
intelligent controller can automatically make the appropriate compensation. According to 
various experiments, after three frames of correction, almost all the errors caused by the 
spring can be eliminated. Figure 12 depicts a compensated paths created by the neural 
fuzzy engine during the self-learning process.

5. CONCLUSION

In the preceding sections of this paper, 
we have described attempts to develop a 
vision based intelligent controller using 
neural fuzzy theory. Just less than three 
frames of learning process are required 
before the machine reacts correctly in 
minimising the errors. According to
various experimental results, the
developed system can deal with any 
regular and irregular shapes of path, and

SlopeD ow n (Xd)
(Yu) Top

scanned path
centre

centredrawing line

SlopeU p
(Xu)bottom i

Figure 10: Detecting the inaccuracy 
of the SMP following process



(a) W ith o u t co rre c tio n (b) F irst c o rr e c te d  f ra m e

(c) S e c o n d  c o rre c te d  f ra m e (d) T hird c o rre c te d  fra m e

Fig. 11: Samples o f correcting the errors using the 2VMethod and the PEC Algorithm

can produce excellent 
outcome better than a 
human operator.

The development of the 
system is an innovative 
approach to flexible sheet 
material processing and 
has further applications 
where modeling system 
behaviour characteristics 

is difficult. Such systems can range from controlling a robot moving on a slippery surface 
or piloting a boat. Furthermore, by relying on the intelligent software kernels together with 
the vision system the controller no longer needs to rely on accurate position feed-back. 
Backlash, joint flexibility and stick slip can potentially be compensated for by the controller. 
When characteristics of the mechanism, such as component wear, temperature variation,
change over time, the controller can automatically make appropriate compensation.
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ABSTRACT

This paper describe a computer vision based system for 
automatic lace scalloping. The main problem other than 
scalloping path detection in real-time is that of coping with 
material flexibility. This problem varies depending on the 
material type and the complexity of the lace pattern. The 
vision system has to work with many different patterns and 
sizes of lace as well as tolerating misalignment. In order to 
satisfy industrial requirements two main conditions must 
be satisfied. To achieve a sufficient degree of automation, 
first, the river must be found without prior knowledge of 
the lace pattern being scalloped. A Fuzzy Reasoning Rule- 
based technique is applied to overcome the problems of 
material distortion. Next, finding the river location across 
the lace strip must be carried out in real-time. To achieve 
this, a novel approach called the Line Mapping Method 
(LMM) is devised to speed up the search for the river in 
subsequent frames. Several experiments have been carried 
out using lace patterns of varying complexity. All cutting 
paths across the patterns were correctly found. 
Experimental results indicate that the river path can be 
successfully detected in different lace patterns in real time, 
while coping with lace distortion.

1. INTRODUCTION

Lace is subject to stretch due to its diaphanous nature. It is 
mass produced in rolls up to 3.3 meters wide. 
Traditionally, the strips of lace are separated, manually, 
along designated paths (river) which run throughout the 
length of the roll (Figure 1). This is a lengthy and 
expensive process and results in slowing the rate of 
production.

A vision based system has been developed for industrial 
lace cutting. On-line pattern recognition is performed to 
detect the river. The cutting path is vectorised and

Fig. 1: A typical lace pattern

transferred to a trimming mechanism. In order to satisfy 
industrial requirements two main conditions must be 
satisfied, Shericat et al (1). To achieve a sufficient degree 
of automation, first, the river must be found without prior 
knowledge of the lace pattern scanned. A Fuzzy Reasoning 
Rule-based technique is applied to overcome the problems 
of material distortion. Next, finding of the river location 
across the lace strip must be carried out in real-time. To 
achieve this, a novel approach named the Line Mapping 
Method (LMM) is used to speed up the search for the river 
in subsequent frames.

[th ick th rea d s]
River

Fig. 2 : Bi-level lace bitmap image

A bi-level image, shown in Figure 2, is used (1). After a 
thresholding operation a river shows up as a dark area 
(pixel group) within the edges that cross from one side of 
the image to the other in a nearly unbroken sequence. 
There are thick threads that cross the river at intervals. 
These are indistinguishable from the material surrounding 
the river (marked by circles in Figure 2). Allowance must 
be made for small breaks in continuity of the river due to 
these cross threads.

Unlike traditional, rigid engineering materials, lace has 
essentially no stiffness and can shrink, stretch and distort. 
To overcome the flexibility problem, we employ an inexact 
decision making method based on fuzzy rule-based 
inference technique. As the first cutting river has been 
recorded, the LMM is engaged to achieve fast detection and 
higher reliability. The entire system can be broken down 
into three functional blocks: fuzzy pattern recognition, line 
mapping process and supervision of the system.

2. FUZZY PATTERN RECOGNITION

Using linguistic terms (variables) the common features of 
the river shape in various lace patterns are characterised. 
These common features may be described as:



a) the position of the river is around the centre of the 
pattern;

b) the density of the river pixel group is not high.

The method for applying fuzzy inference techniques to find 
the first river across the lace pattern with no previous 
knowledge can be divided into the following tasks:

• Defining system input and output membership 
functions;

• Fuzzification process;
• Rule evaluation;
• Defuzzification process;
• Verification.

This system reads two input variables (Group Position and 
Density) after each black pixel group has been processed. 
The fuzzification process sets a value to represent an input’s 
degree of membership in one or more fuzzy variables. 
During the inference and composition process, strengths 
are calculated based on antecedent values and assigned to 
the rules' fuzzy output. Finally, the defuzzification process 
employs compromising techniques to calculate the average 
weight for system output. These steps are described in 
detail as follows.

1) Defining system input and output membership 
functions

From the linguistic descriptions mentioned above, two 
system inputs, group position and group density, can be 
defined. By monitoring the position and density of the 
black pixel groups (Figure 2) across a lace pattern, a fuzzy 
inference engine can determine whether the pixel group is a 
possible segment of a river.

Two initial experiments were carried out to define the fuzzy 
input and output membership functions. Frequency 
histograms were used on the sample data to define input 
membership functions, Roberts (2) and Turksen (3). In this 
way can be obtained a set of data from the River group part 
to build the membership functions.

2) Fuzzification and rule evaluation

The fuzzification process computes an input value to 
represent a degree of membership in one or more fuzzy 
variables. These fuzzified inputs are processed through a 
pre-defined set of rules using min-max evaluation to form 
fuzzified outputs. The Fuzzy Associative Memory Bank is 
applied here to reduce the number of the rules for speeding 
up the calculation.

3) Defuzzification process

Defuzzification process is to convert its fuzzy outputs into a 
single raw or crisp output. In these experiments, we choose 
the "centre-of-gravity method" for resolving both the 
vagueness and conflict issues, Zadeh (4). The weighted 
average is calculated as follows:

. . . . . .  , T (shaded area x centroid point)Weightedaverage =  **   -
^(shaded area)

By relying on the use of fuzzy inference technique, each 
black pixel group could be calculated and assigned an 
average weight (possibility).

4) Verification

Once all the black pixel groups have been assigned a 
possibility value, the pixel groups whose possibility values 
are less than 50% are abandoned. The verification process 
can then be broken down into the following tasks:

a) Calculate the distance between two adjacent groups;
b) If the distance is shorter than a specified value (set to 

six pixels long in these experiments) a network is built 
to record this path;

c) Continuously trace the distances between pixel groups 
while recording all the correct paths until a new pixel 
group reaches the border of the image (right hand edge 
of the frame);

d) Calculate the total possibility values and divide by the 
number of the group in this path (average possibility);

e) If the average possibility is bigger than a specified 
value, (75% was used in the experiments) then the 
correct river has been found; if the average possibility is 
less than this value, repeat step (c) to (e) until the 
correct river is located.

By calculating the distances and tracing the average 
possibilities in all these segments, the river, highlighted in 
Figure 3, can be located. The detailed description of the 
fuzzy pattern recognition system can be found in Sherkat et 
al (5)(6).

3. LINE MAPPING PROCESS

When the first cutting river in the lace strip is successfully 
detected, the extracted knowledge can be used to speed up 
the search in subsequent frames. In order to meet the real
time requirements of the system, instead of using 
traditional pattern matching techniques, a new approach 
called the Line Mapping Method (LMM) has been 
developed to achieve fast response and higher reliability. 
This approach is divided into the following processes:

Starting
position

River p a th Destination

Fig. 3: Interconnection between river segments
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Fig. 4: Extracting a repeat cutting cycle

1) Indicating and registering one repeat cutting cycle

A centre line is located by calculating the distance between 
the upper and lower boundaries shown in Figure 4. Three 
crossing points between the cutting river and the centre line 
are marked. The cutting path (river) between the 
intersections © and © labeled in Figure 4 indicates a 
repeat cutting cycle, which acts as a reference path for 
detection of subsequent frames.

2) Capturing the following frame

The next frame of a 256 grey scale lace image is captured 
by the frame grabber from the CCD camera and 
temporarily stored in a memory block. An image 
thresholding operation is employed to transform the image 
into a black and white bitmap. This bi-leveled lace image 
is then applied for detecting the borders of the black pixel 
groups which may be candidates for river segments. As 
depicted in Figure 5, the border following technique is used 
to find the borders (outlines) of the potential river 
segments.

borders of 
the black 

pixel group

border following p ro cess

Fig. 5 : Borders of the black pixel group

3) Mapping the reference path into the new frame

Since the lace strip is liable to distort as it is passed 
through the trimming mechanism, the reference path 
(river) is mapped onto the new frame for the detection of 
the next cutting river. With careful inspection it is clear, 
from Figure 6, that the two halves of the image do not 
completely match (the reference path is not completely 
within the river banks).

A river, as stated previously, crosses from one side of the 
image to the other in a nearly unbroken sequence. Some 
allowance has to be made for cross threads produced as a

r e fe r e n c e  p a th \

r iv e r  b a n k s  I

Fig. 6: Mapping the reference path

result of the manufacturing process. These are thick white 
threads which cross the river at intervals and are 
indistinguishable from the material surrounding the river. 
For this reason, the detection must allow for small breaks 
in continuity.

The LMM technique has been developed for solving this 
problem. The detection will be started from the left hand 
side of the frame and ended at the right. As the matching 
point has been obtained (described in Section 4), the 
reference path is mapped onto the new frame to find the 
next border of the river. Several possible connecting 
borders can be found - A, B, C, D and E labeled in Figure 7 
(stage two). The border closest to the mapped reference 
path is then chosen to become a part of the river (border E 
is selected in the example). Using the same method, the 
reference path is repeatedly employed to search the rest of 
the river segments until it reaches the end of the frame. 
After all the segments of the river have been found, lines 
between adjacent river borders are connected, as illustrated 
in Figure 7 (stage four), the entire river bank can be 
constructed.

4. SUPERVISION OF THE SYSTEM

Since the CCD camera is mounted on the X axis of the 
machine, the camera is moved with the cutter. The 
advantage of using such a construction is that the camera 
and the cutter are kept in a constant position relative to 
each other. Consequently, it is easy to calculate the real 
cutting position front the captured image, as well as to 
correct the errors between these two captured frames. On 
the other hand, since the lace strip is transported past the
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Fig. 7: Searching a new cutting path



u p p e r  bo u n d ry

low er b o u n d a ry

start oti 
cutting

centre

u p p er boundry

lower b o u n d ary

[capturei I point j

First ca p tu red  fram e Second captured fra me

Fig. 8: Vision and cutting procedure
vision system by the conveyor belt following the Y axis, the 
vision system has to consider the more complex two 
dimensional image shifting problem. Nevertheless, this 
"look-and-move" strategy yields more accurate results than 
the ”eye-to-hand co-ordination" approach, Wolfe et al (7), 
and also avoids small drift due to material length or 
missing steps of the motor(s). The strategy for analysing 
images moving in two directions and generating the vector 
data for machine control is discussed in the following 
sections.

4.1 Detecting the first river and finding the capture 
point for next frame

As the lace strip is transported past the field of vision, the 
first frame of the lace image is captured and temporarily 
stored in memory. After the fuzzy reasoning process, the 
cutting rivers across the lace pattern are found. The next 
stage of the system will then decide the capture point on 
the cutting path for the second lace image. When the 
machine is in operation, the camera is moving together 
with the cutter, so finding the position where the camera 
can capture a similar image for the LMM process is critical. 
As shown in Figure 8, a centre line can be drawn across the 
first frame, and an intersection between the cutting river 
can then be found. This position is engaged for grabbing 
the second frame of the lace image.

4.2 Generating m achine m ovem ent data and grabbing  
the second frame

While the first cutting river has been detected, using the 
fuzzy reasoning method, the machine control data is 
generated and downloaded to the machine controller. The 
controller transforms the motion data into the real machine 
movement data and starts driving the cutter to cut the strip 
of lace. When the machine starts cutting the lace strip, the 
controller simultaneously responds to the machine console 
with the current position on the XY axes. The machine 
console then continuously tracks the cutting positions until 
it reaches the capture point (shown in Figure 8 - first 
captured frame). Consequently, the CCD camera is
triggered to capture the second frame of the lace image 
which is stored into memory for processing.

Since the system takes approximately two hundred milli
seconds to find the next cutting river, this will stop the

cutting process between two captured frames. To solve this 
problem, we simply add a quarter of the repeat cutting 
cycle (LI, between capture and end of cutting points, 
indicated in Figure 8) to the cutting path. Thus, while the 
machine is trimming past the capture point, the vision 
system grabs a frame as well as finding the cutting river 
before the machine actually ends trimming. This enables 
continuous operation of the system in real-time.

4.3 Finding the reference path and the next capture 
point

As the second lace image is stored in the memory, the fuzzy 
reasoning rule-based technique is, again, employed to find 
the second frame of the lace image. The second 
intersection with the cutting river can be designated as the 
capture point for the next frame. As the machine 
continuously trims the lace and reaches the 'end of cutting’ 
position in the first frame, the movement data of the second 
cutting path has already been produced and stored. 
Therefore, the machine could continuously cut the lace 
pattern through subsequent frames in an unbroken 
sequence.

LI and L2 indicated in Figure 8 are taken from the first 
frame, and coupled to the second frame for determining the 
length and shape of the reference path (a repeat cutting 
cycle). After the reference path has been defined, its 
corresponding position with the centre line (first pixel of 
this module) is then registered. This will be used for 
detection of subsequent frames.

4.4 Line mapping operation

Fig. 9: Mapping the reference path

Matching 
• point “



Fig. 10: An example of river extraction

A fte r  th e  reference path h a s  b e e n  d e te r m in e d , th e  ex tr a c te d  

k n o w le d g e  c a n  b e  u s e d  to  s p e e d  u p  th e  s e a r c h  fo r  th e  r iv er  

in  s u b s e q u e n t  fr a m e s . F ig u r e  9  s h o w s  a n  e x a m p le  o f  

m a p p in g  th e  r e fe r e n c e  p a th  in to  th e  f o l lo w in g  fr a m e . 

U t i l i s in g  th e  Line Mapping Method (LMM), th e  n e w  

c u t t in g  r iv er  a c r o s s  th e  la c e  im a g e  c a n  b e  s u c c e s s f u l ly  a n d  

q u ic k ly  d e te c te d .

5 .  E X P E R I M E N T A L  R E S U L T S

V a r io u s  e x p e r im e n ts  w e r e  ca rr ie d  o u t  to  in v e s t ig a te  th e  

e f f e c t iv e n e s s  o f  th is  m e th o d . N u m e r o u s  la c e  p a ttern s  w e r e  

e m p lo y e d  fo r  d e te c t in g  th e  r iver  lo c a t io n . A l l  c u t t in g  p a th s  

a c r o s s  th e  p a tte rn s  w e r e  s u c c e s s fu l ly  fo u n d . T h e  t im e  

ta k en  to  is o la te  th e  r iv er  an d  p r o d u c e  c u tt in g  p a th  d e p e n d s  

o n  c o m p le x ity  o f  th e  p a ttern . T im e  ta k en  fo r  m o s t  k in d s  o f  

m o t if ,  u s in g  th e  fu z z y  r e a s o n in g  r u le -b a s e d  te c h n iq u e , i s  

ty p ic a l ly  a b o u t 3 0 0  m il l i - s e c o n d s  u s in g  an  In te l 8 0 4 8 6  

p r o c e s s o r  r u n n in g  at 6 6  M H z . N e v e r th e le s s ,  in  th e  c a s e  o f  

a v ery  f e w  in tr ica te  la c e  p a ttern s  ( e .g .  F ig u r e  1 ), u p  to  1 .5  

s e c o n d s  i s  req u ired . O n c e  th e  r iv er  p a th  o n  th e  fir st fr a m e  

is  fo u n d , th is  k n o w le d g e  c a n  b e  u t i l is e d  b y  th e  L M M  to  

s p e e d  u p  th e  d e te c t io n  fo r  th e  r iver  in  s u b s e q u e n t  fr a m e s  in  

rea l t im e . T h e  t im e  to  d e te c t  a rep ea t c u tt in g  p a th  u s in g  

L M M  is  d e p e n d e n t  o n  h o w  c o m p le x  th e  m o t if  is ,  th e  le n g th  

o f  o n e  rep ea t c u t t in g  c y c le  an d  th e  d is to r tio n  o f  th e  p a ttern . 

O n  m o s t  k in d  o f  la c e  p a ttern s d e te c t io n  t im e  is  a b o u t 1 5 0  to  

2 0 0  m il l i - s e c o n d s .  T h e  fr a m e  g ra b b er  d ig i t i s e s  a in c o m in g  

v id e o  s ig n a l  at a rate o f  3 0  fr a m e s  p er  s e c o n d . T y p ic a lly  a  

rep ea t c u t t in g  c y c le  o f  th e  la c e  s tr ip  is  aro u n d  9  to  15  c m .  

T h e r e fo r e  th e  s p e e d  for  tr a c k in g  th e  la c e  p a tte rn  u s in g  th e  

L M M  is  a p p r o x im a te ly  2 5  to  3 5  m e te r s  /  m in u te .

T h e  s p e e d  fo r  s e a r c h in g  th e  r iv er  lo c a t io n  a c r o s s  la c e  s tr ip  

u s in g  L M M  is  a p p ro p r ia te ly  th ree  to  f iv e  t im e s  fa s te r  th an  

u s in g  th e  fu z z y  d e te c t in g  m e th o d  a lo n e . A  s a m p le  la c e  

p attern  to g e th e r  w ith  th e  r e s u lt in g  r iv e r  p a th  i s  s h o w n  in  

F ig u r e  10 . A ls o  a d is to r te d  la c e  s a m p le  w ith  i t s  

s u c c e s s fu l ly  d e te c te d  r iv er  is  d e p ic te d  in  F ig u r e  11 .

6 .  C O N C L U S I O N

In  th e  p r e c e d in g  s e c t io n s  o f  th is  p a p er , w e  h a v e  d e s c r ib e d  

a tte m p ts  to  d e v e lo p  a fuzzy reasoning rule-based system 
a n d  th e  line mapping method fo r  d e te c t in g  v a r ie d  ty p e s  o f  

la c e  p a ttern s  in  rea l t im e . E x p e r im e n ta l r e s u lt s  in d ic a te  

th a t th e  o b j e c t iv e s  h a v e  m o s t ly  b e e n  fu lf i l le d . T h e  s y s te m  

req u ire s  n o  p r io r  k n o w le d g e  o f  a n y  p a r ticu la r  la c e  p a ttern  

o r  a n y  tr a in in g . A c c o r d in g  to  th e  r e s u lt s  o f  th e

Fig. 11: Lace pattern under 40% 
contraction (successfully detected)

e x p e r im e n ts ,  a  c o m b in a t io n  o f  fu z z y  p a ttern  r e c o g n it io n  

te c h n iq u e  an d  th e  L M M  c a n  b e  s u e d  to  s u c c e s s fu l ly  d e te c t  

th e  c u tt in g  r iv er  w ith in  v a r io u s  la c e  p a ttern s  in  real t im e . 

C o m p a r e d  w ith  th e  c o n v e n t io n a l  im a g e  p r o c e s s in g  

m e th o d s ,  ( 1 ) ,  R u s s e l l  an d  W o n g  (8 ) ,  it  i s  n o t o n ly  e a s ie r  to  

d e s ig n  a n d  im p le m e n t  th e  s y s te m , b u t a ls o  m o r e  e f fe c t iv e  

in  c o p in g  w ith  d is to r tio n . F u rth e rm o re  it d o e s  n o t req u ire  

a n y  tra in in g  or  p r io r  k n o w le d g e  o f  th e  la c e  p attern .
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ABSTRACT

During the last few years autom ating lace handling 
has received m uch attention in the United Kingdom. 
R esearch and development is ongoing in the two main 
areas o f autom atic lace cutting and autom atic lace 
quality inspection. This paper reports on research 
and development work under gone at the Nottingham  
Trent U niversity, in collaboration w ith local industry, 
in autom ation o f lace scalloping. The research is 
reviewed in its various stages of development. Three 
different methods together w ith their associated 
experim ental results are described and the m erits of 
each are discussed. An innovative approach, based 
on neural fuzzy logic, for dealing w ith the problem  of 
lace distortion, due to its flexible nature, is described.

1. INTRODUCTION

Lace, intended for decoration o f clothing and 
furniture, is m ass produced in wide rolls. In order to 
increase the production rate, the rolls are made by 
repeating the desired lace strips side-by-side. A t the 
second m anufacturing stage the repeated strips are 
separated along pre-designated paths (rivers) which 
run throughout the length o f the roll (Figure 1). The 
process o f trimming the lace has been carried out 
m anually. This is a lengthy and expensive process 
and results in slowing the rate o f production. A small 
num ber o f machines have been developed that use a 
simple passive cutter m echanism that relies on the

cutting
pathcutting

path

structural strength of the lace pattern. In such 
system s the cutter is held stationary while the lace is 
run against it. This approach is only suitable in cases 
where the lace pattern is o f very shallow scallop. In 
the case o f deep scallop patterns a more sophisticated 
method of guidance, based on an active cutter, is 
required.

A vision based system has been developed (Figure 2) 
for industrial lace cutting. On-line pattern 
recognition is perform ed to detect the river. The 
cutting path is vectorised and transferred to a 
trim m ing mechanism. In  order to satisfy industrial 
requirements two main conditions m ust be satisfied
[1]. To achieve a sufficient degree of autom ation, 
first, the river m ust be found without prior knowledge 
o f the lace pattern scanned. Tw o attem pts which 
applied traditional image processing methods and 
fuzzy pattern recognition technique have been made 
to detect varied shapes of rivers w ithin the lace 
patterns. Next, finding o f the river location across 
the lace strip m ust be carried out in real-time. To 
achieve this, a novel approach called the Line 
Mapping Method (LMM) is used to speed up the 
search for the river in subsequent fram es.

W ork has been reported in using lasers to cut 
deform able m aterials [2]. A lthough using lasers 
reduces this deform ation, distortion due to mechanical 
feed misalignments persists. In order to tackle the 
problem  of distortion due to m aterial flexibility in 
general, a novel approach has been developed and 
described here. A  Spring Mounted Pen (SMP) is 
used in the experim ents to em ulate the distortion of 
lace pattern caused by the tactile cutter. U sing the 
pre- and post-processing vision system s, it is possible 
to monitor the scalloping process as well as 
generating on-line inform ation to the host system. 
This allows overcoming the problem s o f lace 
distortion due to the trim m ing operation. This paper 
is structured into three sections: detection o f first 
cutting river, line m apping process, and correction of 
cutting operation.

F igure 1: A typical lace pattern
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Figure 2: Schematic of the vision based control system

2. DETECTION OF FIRST CUTTING RIVER

Tw o attem pts have been m ade to find the first river 
w ithin the lace pattern w ithout prior knowledge o f the 
pattern scanned.

The first scheme [1] is based on pixel intensity 
directed feature extraction. In  order to detect the 
river, a pixel intensity m ap is created to determine 
significant differences. This approach hinges on 
detection o f large variations in intensity to highlight 
the river. O ther contextual inform ation such as 
pattern  repeat cycle, river continuity and contour 
closing is used to speed up the process of feature 
extraction. This process can be broken down into the 
follow ing tasks:

1) Edge finding

By finding the average intensity of each vertical strip 
o f the lace im age and examining which points lie 
above and below this threshold a clear pattern 
em erges with m ost o f the area w ithin the edges being 
brighter and all o f the area outside the edges being 
darker. Thus, by finding the first and last points in a 
vertical strip which are above this value, the edge of 
the lace at that position is found. The points above 
and below the threshold are stored as 1 and 0 
respectively in a bitm ap (Figure 3).

2) F inding the pattern repeat

The technique used here is based on looking for 
'landm arks' w ithin the bit m ap, the m ost prom inent 
being the large dark areas w ithin the pattern. By 
finding the distance between each dark area and all

subsequent ones, the m ost frequently occurring 
distance will be due to the pattern repeating.

3) Finding the river candidates

Taking a column down one side of the im age it would 
be possible, excluding cross threads, to simply take 
each dark area and follow  it to the right until:

- the other side is reached;
- its boundary left the edge o f  the lace;
- it could proceed no further.

This would be m arginally m ore com plex if the river 
was allowed to loop back on itself but because of 
m anufacturing techniques for the type of application 
considered here, this does not happen. As each river 
stretches along the length o f the im age, its top and 
bottom edge is stored. If  this becomes too wide then 
the river can be discarded since this m ust be part of 
the pattern. W hen the river can proceed no further by 
these means, it m ust initially be assum ed that it has 
reached a cross thread. If  this is not the initial search, 
then the previous river can  be used to indicate the

[ th ic k  th re a d sfew; •'sa

Figure 3: Bi-level lace bitmap image



direction o f the next point a t the current stage o f the 
pattern. How ever, for the first river the system m ust 
look for the nearest dark point w ithout backtracking. 
A bias can be placed on this search depending on the 
direction o f the previous points and distance from  the 
middle. If  the distance to this point is greater than a 
pre-determ ined threshold then the river can  be 
considered to have reached a prem ature end and is 
considered to be invalid.

4) F inding the correct river from  this list.

The rivers found in the previous step can be tested 
against each other, as they are found, and only 
m aintain the best case. Tw o values are required to 
com pare every tw o rivers. The first is a m easure of 
sym m etry w ithin the width o f the lace. The second is 
a m easure o f repeatability. By com paring these two 
values, fo r each river, the best alternative can be 
found. W hen the best river has been found, the 
repeatability and symmetry values can be com pared 
w ith a pre-determ ined threshold to ensure that it is 
satisfactory. If  not, the machine m ust stop rather than 
cut a w rong path.

The detection o f the river heavily depends on the 
feature o f the repeated cutting path. The two 
extrem es o f the river should be equi-distant from  their 
nearest edge, and after a distance equal to the repeat 
'period' o f the design. The river should be back at the 
sam e position relative to the two edges as it w as when 
it started. A s the lace pattern is distorted, these 
features o f the river are no longer presented. This 
causes the dissatisfied results w hen the system applies 
this scheme to analyse the lace pattern contained the 
distortion bigger than 5-10 percents.

In order to overcom e the problem s o f m aterial 
distortion due to the transporting process, a Fuzzy 
Reasoning Rule-Based Technique is presented in the 
system . This approach can be divided into the 
follow ing functional blocks:

• Defining system  input and output membership 
functions;

• Fuzzification process;
• Rule evaluation;
• D efuzzification process;
• Verification.

1) Defining system input and output membership
functions

After a thresholding operation a river shows up as a 
dark area (pixel group) w ithin the edges that cross 
from one side o f the im age to the other in a nearly 
unbroken sequence. There are thick threads that 
cross the river at intervals. These are 
indistinguishable from  the m aterial surrounding the 
river (marked by circles in Figure 3). Allowance 
m ust be made for sm all breaks in continuity o f the 
river due to these cross threads.

The objective here is to find the river along a lace 
pattern, by using linguistic variables to represent the 
common feature o f the river shape in various lace 
patterns. These com m on features may be described
as:

a) the position o f the river is around the centre of the 
pattern;

b) the density o f the river pixel group is not high.

From  the linguistic descriptions, two system inputs, 
group position and group density, can be defined. 
By monitoring the position and density of the black 
pixel groups across a lace pattern, a fuzzy inference 
engine can determine w hether the pixel group is a 
possible segment o f a river.

Tw o initial experim ents were carried out to define the 
fuzzy input and output mem bership functions. 
Frequency histogram s were used on the sam ple data 
to define input m em bership functions [3][4]. In this 
way a set o f data can be obtained from  the River 
group part to build the m em bership functions.

Rule (A): IF Position is Right and D ensity is P S.
THEN Possibility is N egative Medium  

Rule (B): IF Position is Near Mid. and Density is N.S.
THEN Possibility is  Positive Medium

PncQ- Position
ibility Left M L M id M R Right

N L NM PS PS PS NM

>»
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c
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Q
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(A) 1

N M ,
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Figure 4: Fuzzy Associative Memory 
(FAM) Bank to determine the possibility
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Figure 5: Output pattern of the fuzzy engine

2) Fuzzification and rule evaluation

The fuzzification process com putes an input value to 
represent a degree o f membership in one or more 
fuzzy variables. These fuzzified inputs are processed 
through a pre-defined set o f rules using min-m ax 
evaluation to form  fuzzified outputs. A s depicted in 
Figure 4, the Fuzzy Associative M em ory Bank is 
applied here to reduce the num ber o f the rules for 
speeding up the calculation.

3) Defuzzification process

D efuzzification process is to convert its fuzzy outputs 
into a single raw or crisp output. In these 
experim ents, we choose the "centre-of-gravity 
method" for resolving both the vagueness and conflict 
issues [5]. The weighted average is calculated as 
follows:

, y  (shaded area x  centroid point)Weighted average =-------------------------------------------
(shaded area)

By relying on the use o f fuzzy inference technique, 
each black pixel group could be calculated and

assigned an average w eight {possibility). F igure 5 
illustrates the output pattern o f the inference engine.

4) Verification

Once all the black pixel groups have been assigned a 
possibility value, the pixel groups whose possibility 
values are less than 50%  are abandoned. The 
verification process can then be broken down into the 
following tasks:

a) Calculate the distance between two adjacent 
groups;

b) If  the distance is shorter than a specified value (set 
to six pixels long in these experiments) a network 
is built to record this path;

c) Continuously trace the distances between pixel 
groups while recording all the correct paths until a 
new pixel group reaches the border o f the image 
(right hand edge o f the frame);

d) Calculate the total possibility values and divide by 
the num ber of the group in this path {average 
possibility);

e) If  the average possibility is bigger than a specified 
value, (75% w as used in the experiments) then the 
correct river has been found; if the average 
possibility is less than this value, repeat step (c) to 
(e) until the correct river is located.

By calculating the distances and tracing the average 
possibilities in all these segments, the river, 
highlighted in Figure 6, can be located. The detailed 
description o f the fuzzy pattern recognition system 
can be found in [6] [7].

3. LINE MAPPING PROCESS

W hen the first cutting river in the lace strip is

Starting position

Destination

Figure 6: Interconnection between each possible river segments
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Figure 7: Extracting a repeat cutting cycle

successfully detected, the extracted knowledge can be 
used to speed up the search in subsequent fram es. In 
order to meet the real-tim e requirem ents o f the 
system , instead o f using traditional pattern  matching 
techniques, a new approach called the Line Mapping 
Method (LMM) has been developed to achieve fast 
response and higher reliability. This approach is 
divided into the following processes:

1) Indicating and registering one repeat cutting cycle

A  centre line is located by calculating the distance 
between the upper and lower boundaries shown in 
Figure 7. Three crossing points between the cutting 
river and the centre line are m arked. The cutting path 
(river) between the intersections 0  and ®  labeled in 
Figure 7 indicates a repeat cutting cycle, which acts 
as a reference path for detection of subsequent 
fram es.

2) Capturing the following fram e

The next fram e o f a 256 grey scale lace image is 
captured by the fram e grabber from  the C C D  cam era 
and tem porarily stored in a memory block. An image 
thresholding operation is employed to transform  the 
im age into a black and white bitm ap. This bi-leveled 
lace image is then applied for detecting the borders of 
the black pixel groups which may be candidates for 
river segments. As depicted in Figure 8, the border 
following technique is used to find the borders 
(outlines) o f the potential river segments.

3) M apping the reference path into the new fram e

Since the lace strip is liable to distort as it is passed 
through the trimming m echanism , the reference path 
(river) is m apped onto the new fram e for the detection 
o f the next cutting river. W ith careful inspection it is

b o rd e r  following p ro c e s s

Figure 8: Borders of the black pixel group

clear, from Figure 9, that the two halves o f the image 
do not completely m atch (the reference path is not 
com pletely within the river banks).

A  river, as stated previously, crosses from  one side of 
the image to the other in a nearly unbroken sequence. 
Some allowance has to be made for cross threads 
produced as a result o f the m anufacturing process. 
These are thick white threads which cross the river at 
intervals and are indistinguishable from  the m aterial 
surrounding the river. F or this reason, the detection 
m ust allow for small breaks in continuity.

The LMM technique has been developed for solving 
this problem. The detection will be started from  the 
left hand side of the fram e and ended at the right. As 
the matching point has been obtained (described in
[8]), the reference path  is mapped onto the new frame 
to find the next border of the river. Several possible 
connecting borders can be found - A , B, C, D and E 
labeled in Figure 10 (stage two). The border closest 
to the mapped reference path is then chosen to 
become a part o f the river (border E is selected in the 
example). Using the sam e method, the reference path 
is repeatedly employed to search the rest o f the river 
segments until it reaches the end o f the fram e. After 
all the segments of the river have been found, lines 
between adjacent river borders are connected, as 
illustrated in Figure 10 (stage four), the entire river 
bank can be constructed.

Figure 9: Mapping the reference path 
into a new lace image

reference path

river banks
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Figure 10: Using reference path for searching next cutting path

4. CORRECTION OF CUTTING OPERATION

As depicted in Figure 11, a spring is used to connect 
between a pen and the Z axis of the cutting 
mechanism (Spring Mounted Pen, SMP). This device 
is employed to emulate the movement of the lace strip 
due to the cutting forces caused by the tactile cutting.

A black line is drawn on paper to emulate the river 
path within a lace strip. The pre-processing vision 
system (see Figure 2) captures the image of the paper 
strip and stores in the memory. A pattern (desired 
cutting path) is extracted from the image and 
transferred to the machine console. This information 
is used to guide the SMP to draw a second line on the 
paper strip. Figure 12 represents the results of 
following a square wave. Due to the imperfection 
generated by the spring, the path-following-errors 
appear between the desired path and the actual target 
line. As the SMP is born different pressure, the

pattern of the SMP drawing will alter (path 1 
path 2 indicated in Figure 12).

and

A novel method based on modeling human operators' 
experience and control actions using inexact 
algorithm, e.g. fuzzy logic, neural networks, and 
neural fuzzy technique, is developed to solve the 
complex problems. The intelligent machine console 
can learn from the experiences (on-line learning) and 
self-adjust the control actions to match the desired 
objective. Figure 13 shows the data flow diagram for 
the system oveiview. Two A.I. engines are 
constructed in the system in order to determine a 
suitable correction added to the original path. The 
system can deal with any irregular shapes of paths. 
According to various experimental results, the 
machine applied this method can produce the 
excellent outcome better than a human operator. The 
detailed description of this approach is beyond the 
scope of this paper.

+x+Y.

CCD Camera

+z

Paper Strip

curve (river)

Bracket

Spring

Felt-Tip Pen

stretch

Figure 11: Spring Mounted Pen (SMP) connected with the testing rig
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5. EXPERIMENTAL RESULTS

A number of experiments were carried out to evaluate 
the effectiveness of this method. Numerous lace 
patterns were employed for detecting the river 
location. All cutting paths across the patterns were 
successfully found. The time taken to isolate the river 
and produce cutting path depends on complexity of 
the pattern. Time taken for most kinds of motif, 
using the fuzzy reasoning rule-based technique, is 
typically about 300 milli-seconds using an Intel 
80486 processor running at 66 MHz. Nevertheless, 
in the case of a very few intricate lace patterns, up to
1.5 seconds is required. Once the river path on the 
first frame is found, this knowledge can be utilised by 
the LMM to speed up the detection for the river in 
subsequent frames in real time. The time to detect a

repeat cutting path using LMM is dependent on how 
complex the motif is, the length of one repeat cutting 
cycle and the distortion of the pattern. On most kind 
of lace patterns detection time is about 150 to 200 
milli-seconds. The frame grabber digitises a 
incoming video signal at a rate of 30 frames per 
second. Typically a repeat cutting cycle of the lace 
strip is around 9 to 15 cm. Therefore the speed for 
tracking the lace pattern using the LMM is 
approximately 25 to 35 meters / minute. Two sample 
lace patterns together with the resulting river paths 
are shown in Figure 14 and Figure 15. Also a 
distorted lace sample with its successfully detected 
river is depicted in Figure 16.

6. CONCLUSIONS

The objective of detecting the river in an unseen lace 
pattern in real-time has been achieved. This has 
enabled the development of a working prototype for 
an automatic lace scalloping machine. It is found that 
the biggest problem in automating the process of lace 
scalloping is that of dealing with lace distortion in 
real time. Distortion, not only creates problems for 
the pattern recognition task, it also complicates the 
feeding and cutting processes.

Compared with the approaches used traditional image 
processing methods [1] and the fuzzy pattern 
recognition technique to find the first river without 
prior knowledge, the fuzzy logic based approach is 
more effective. Applying the fuzzy technique the 
river in the lace pattern up to 40 % contraction is 
successfully detected where the traditional method is
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F igure 13: The overview of the vision and motion control systems



F igure 14: Example A o f  river extraction

F igure 15: Example B o f  river extraction

failed. According to the results of the experiments, a 
combination of fuzzy pattern recognition technique 
and the LMM can be applied to detect the distorted 
river within various lace patterns in real time. 
Besides, in contrast to the scheme mentioned in [9], 
the proposed algorithm is not only easier to design 
and implement, but also more effective in coping with 
distortion. Furthermore it does not require any 
training or prior knowledge of the lace pattern.
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Close coupling of pre- and post-processing vision stations 
using Inexact Algorithms

Chi-Hsien V. Shili, Nasser Slierkat, Peter Thomas

The Nottingham Trent University, Department of Computing 
Burton Street, Nottingham NG1 4BU, United Kingdom

ABSTRACT

Work has been reported using lasers to cut deformable materials. Although die use of laser reduces material 
deformation, distortion due to mechanical feed misalignment persists. Changes in the lace pattern are also caused by the 
release of tension in the lace structure as it is cut. To tackle the problem of distortion due to material flexibility, the 
2VMethod together with the Piecewise Error Compensation Algorithm incorporating the inexact algorithms, i.e., fuzzy logic, 
neural networks and neural fuzzy technique, are developed. A Spring Mounted Pen is used to emulate the distortion of the 
lace pattern caused by tactile cutting and feed misalignment. Using pre- and post-processing vision systems, it is possible to 
monitor the scalloping process and generate on-line information for the Artificial Intelligence engines. This overcomes the 
problems of lace distortion due to the trimming process. Applying the algorithms developed, the system can produce 
excellent results, much better than a human operator.

Keywords: machine vision, pre- and post-processing vision stations, self-learning, fuzzy logic, neural networks, neural 
fuzzy, Inexact Algorithms, PEC Algorithm, 2VMethod, Spring Mounted Pen.

1. INTRODUCTION

A number of attempts have been made to automate the process of lace scalloping and quality inspection12345. Work 
has been reported in using lasers to cut deformable materials6. Although using lasers reduces this deformation, distortion 
due to mechanical feed misalignments persists. Changes in the lace pattern are caused also by the release of tension in the 
lace structure as it is cut. In order to tackle the problem of distortion due to material flexibility in general, a novel 
approach using inexact algorithms, namely fuzzy logic, neural networks and neural fuzzy technique, have been 
developed. A Spring Mounted Pen (SMP) is used in the experiments to emulate the distortion of lace pattern caused by 
tactile cutting. Using the pre- and post-processing vision stations and the intelligent software kernels, it is possible to 
monitor the scalloping process as well as generating on-line information fed back to the host system. This allows 
overcoming the problems of lace distortion due to the trimming operation. Figure 1 shows the data flow diagram for the 
overview of the pre- and post-processing vision stations. Two A.I. engines are constructed in the system to determine a 
necessary compensation fed-back to the controller for correcting the errors.

2. CONFIGURATION OF THE SYSTEM

The vision system consists of proprietary components such as two black and white CCD cameras, a four channel 
video multiplexer, an input/output plug-in card (a video frame grabber, 256K bytes of frame memory organised as 
512x512x8 bits) and a video monitor. The above components are integrated within a desktop host environment. A CNC 
cutting mechanism (Pacer COMPACT 800+) is employed for driving the cutter (or the SMP). In addition an extra 
conveyor system is fitted on the machine for the transportation of strips of material (lace or paper) under the vision system 
and the cutter. A M68000 based micro-controller controls both the cutting and the transportation mechanism. The host 
system bus is used to provide the communication channel among the various elements of the system.
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Figure 1: The overview o f  the vision and motion control systems
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Figure 2: Schematic diagram o f the vision based control station

Figure 2 illustrates the configuration of the vision based machine control system developed. The host system receives 
the external video signal which is exchanged by the video multiplexer between two cameras, as well as displaying the 
captured image on the video monitor. The control data is then generated and transited to the cutting mechanism and the 
transportation system (conveyor).

A spring is used to mount a pen onto the Z axis of the cutting mechanism (see Figure 3). This device is employed to 
emulate the distortion of the lace strip. A black line is drawn on paper to emulate the river path within a lace strip. The 
pre-processing vision system  captures an image of the paper strip and stores it in the memory. A pattern (intended 
drawing path) is extracted from the image and transferred to the machine console. This information is used to lead the 
SMP to draw a second line on the paper strip. As the processed object is passed under the camera of the post-processing 
vision system, an image is taken and analysed to inspect the quality of the SMP following process. The host system takes
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Figure 3: Spring Mounted Pen (SMP) connected with the testing rig

this fed-back information, obtained from the post-processing camera, and determines suitable correcting actions to improve 
this operation.

Figure 4 represents the results of following a square wave using the SMP. Due to the inherent characteristics of the 
spring, the path-following-errors appear between the desired path and the actual target line. Each time the pen is put in 
contact with paper, the axial load on the spring changes. This consequently causes the pattern generated by the SMP to 
alter (path 1 and path 2 labelled in Figure 4). Path 1 depicts a different Z axis setting to Path 2.

3. PRE-PROCESSING VISION STATION

The pre-processing vision system captures a 256 grey scale image of the target path from camera one and 
temporarily stores it in the memory. An image bi-leveling (thresholding) operation is applied to transform the image into a 
black and white bitmap. The target path on the paper strip, as indicated in Figure 5, is then extracted by means of a line 
skeletonisation (skeleton) process. Since conventional camera lenses are employed in the system, the fish-eye lenses 
create view angle and magnification errors - the captured image tends to be distorted. A software filter is developed and

start —  -  — — —i -  end

Figure 4: Samples o f  square wave following process using the SMP

j  path-following-errors
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Figure 5: Processes o f the pre-processing vision station; (A) capturing an image,
(B) bi-levelling and line skeleton, and (C) correction o f distortion and vectorising.

used to correct the distortion caused by the fish-eye lenses. The 
extracted target path is corrected by the filter and, then, 
vectorised as well as transferred to the controller of the test rig.

4. POST-PROCESSING VISION STATION

The post-processing vision system is engaged here to 
capture the image of the generated (processed) path and feed
back the analysed information to the host system. The host PC
takes the information to build a statistic record for analysing the
operation. This record is then used to improve the process for the
subsequent frames (closed loop control).

As the drawn path is transported beneath the camera of the 
post-processing vision system, an image of the paper strip is 
captured and stored in the memory. The path-following-error 

appearing in this frame is detected by a software analyser developed by the authors. Carefully inspecting the results of the 
SMP following process in Figure 4, it can be seen that the deviation will be generated when the direction of the drawing is 
changed - the larger the angular variation of the path following, the larger is the error. The amount (magnitude) of the
path-following-error generated is depended on the characteristic o f the spring engaged, the pressure on the SMP, and the
frictional force  in between the tip of the pen and the paper (refer to Figure 6). As any one of the system coefficients is 
altered, the result of the SMP drawing will be entirely different. It seems to be very difficult to use conventional methods, 
where physical sensors are applied to measure all of the system coefficients hence find the related information to correct 
this error. In order to overcome the problems of complexity, the inexact algorithms are considered.

5. CLOSELY INTEGRATING THE REMOTE SENSING BASED CONTROL

As stated previously, two cameras together with the CNC machine are integrated using a host computer. The host 
system supervises the data flows and control actions among all the elements. The tightly integrated system is divided into

Characteristic of 
the spring

Z axis

Pressure

Paper Frictional force

Figure 6: Three system coefficients 
affects the SMP following process
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three sub-systems: pre-processing vision system, post-processing vision system, and motion control system. In this section, 
the techniques for incorporating two vision systems to correct the path-following-errors are described.

5.1 The integrated controller

The principle aim is to design an intelligent vision based control system, in the most natural way, in terms of imitating 
the operator's control action and experience or knowledge. Imagine that the host system controls the cutting mechanism 
fitted with a SMP to draw a line on paper with no correcting action. Path-following-errors occur between the desired path 
and the actual drawing line. Utilising the previous experiences, the human operator analyses the difference between the 
paths and determines a possible correcting action. The operator then controls a joy-stick (X/Y axes) of the machine 
tracing the desired path as close as possible. This approach, as depicted in Figure 7, can be described as follows:

1) Analysing the difference between two curves, the path-following-error is represented as linguistic description, e.g. 
the error between curves on X coordinate is huge;

2) Expressing the operator's control actions by a set of control rules;
3) Control the machine guiding the SMP to following the desired path;
4) Repeat stages 1) to 3) to get the drawn curve closer to the desired path (learning procedure).

A human operator usually controls a machine based on his experience and/or knowledge which noimally can be 
expressed as a set of control actions (rules). By modeling an operator's control actions and knowledge to design a 
computer based control system, one does not need to understand how the system parameters (e.g. pressure, frictional force, 
etc.) physically affect the performance of the controlled system in detail. A driver, for example, who does not need to 
understand the frictional force between the tires of the car and the road, or the weights of the passengers, can drive the 
vehicle quite well. Applying this idea to implement the system, the authors proposed an innovative scheme using the 
inexact algorithms attempting to solve the SMP problems. This approach can be divided into two functional blocks: i) 
2VMethod, and ii) Piecewise Error Compensation Algorithm. The fuzzy logic, neural networks and neural fuzzy 
technique are used to implement this approach, respectively. In this paper we present a summary of the neural fuzzy 
theory for constructing the A.I. engines.

5.2 2VMethod

As shown in Figure 8, this approach only manipulates a small portion of the intended path to determine a necessary 
correction for compensating the deviation. By translating a skilled operator's control actions into a set of linguistic terms 
and groups of network connections, the intelligent machine console can learn from the experiences (on-line learning) and 
self-adjust the control actions to match the desired objective.
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Every hvo consecutive vectors are analysed over the entire 
path. As a straight line is connected from Vector 1 to Vector 2 
(indicated in Figure 8), the angles (01 and 02) between the line (y) 
and the X / Y coordinates are used to compute the possible 
correcting energies (S(,r) and 5(y)). Figure 8 represents the 
calculation. The angles 01 and 02 are related to the each other - 
01 and 02 are complementary. These two angles are passed to a 
neural fuzzy kernel which is designed by means of applying neural 
fuzzy theory to determine a suitable compensation (5(x) and 5(y)).
This correction is separated into two "energies":

i) Correcting pattern; and
ii) Correcting amplitude.

In the following section, a novel on-line self-learning scheme named the Piecewise Error Compensation Algorithm (PEC 
Algorithm) based on the neural fuzzy technique derived to calculate the correcting engines is presented.

5.3 Piecewise Error Compensation Algorithm

Two neural fuzzy engines are used by the PEC Algorithm to determine a necessary compensation (correcting pattern 
and correction amplitude) to eliminate the errors caused by the spring. Table 1 depicts the rules used to build the neural 
fuzzy engines, where P denotes Positive, N is Negative, L is Large, M is Medium and S is Small. The neural fuzzy 
engine one determines the amounts of amplitudes for the correction. Also, the neural fuzzy engine two constructs the 
correction pattern. Combining these two data sets, the compensated drawing path can be formed.

The neural fuzzy system makes use of neural network for forming the required membership functions and the rule 
base. As illustrated in Figure 9, the weight bases (weights_a and weights_b labelled in Figure 9) of the neural fuzzy 
system are adjusted and tested by a neural fuzzy training subsystem. The system is divided into three functional blocks: 
obtaining the training data, training the network and testing the trained network. The system updates (tunes) the weight 
bases to form the required system membership functions. After certain iterations of training, the system tests the outputs 
of the engine. The weights are continuously updated until the outputs of the system match the desired patterns. As the 
neural fuzzy system is learned successfully, it is employed to form the compensated path.

IF Angle is NL THEN correction is NL
IF Angle is NM THEN correction is NM
IF Angle is NS THEN correction is NS
IF Angle is PS THEN correction is PS
IF Angle is PM THEN correction is PM
IF Angle is PL THEN correction is PL

Table 1: Rule base for building 
the neural fuzzy engines

predicted path

Vector 2 
(x2, y2) original path

Vector 3 
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A Vector 4 
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Figure 10: Membership functions generated 
by the neural fuzzy engine

An example of the system input and output Fi« ure
membership functions generated by this novel
neural fuzzy architecture is represented in Figure 10. It can be seen that the symmetric triangle and trapezoid membership 
functions can be successfully created by the network. The combination of these two types of membership functions can 
enforce the accuracy of the neural fuzzy system responses correctly. By utilising the new network structure better results 
have been achieved. The results indicate that this scheme performs better than those previously reported78. Figure 11 
represents the neural fuzzy architecture developed in the project.

The learning process is split into two steps. First, the neural fuzzy kernel one reads the path-following-error from the 
post-processing vision station and determines a possible correcting amplitude. Then a new detected path from the pre-



processing vision station is fed into the neural fuzzy kernel two to compute the correcting pattern. Equation 1 describes 
the processes of combining the correcting pattern and amplitude to create a compensated path.

PredictedSegment(i) = Patternxsmmm • Amplitude^ (1)

where i is the i* segment of the path. The prediction of the new estimated vector (AVector2(bx2, by2)) is calculated by
Equation 2. Equation 3 presents the procedure for computing the pattern of the predicted path.

bx(i) = x(i)+5(x),., by(i) = y(i)+5(y),. (2)

Predicted Path = Vector (1) + Y  AVector(i)
ft (3)

= {x l,y l} + £{5x(/),Sy(i)}
;»2

where i is the i* segment of the path and n is the number of vectors in the path.

Once the correction pattern is obtained, the next step is to determine the amount of the amplitude required for the 
correction. When the first processed frame is passed under the post-processing vision station, an image is taken and sent 
to the host system. A software recogniser is used to separate the scanned path and the drawing path (see Figure 12). The 
top, bottom and centre positions in both paths are taken to measure the inaccuracy of the SMP following process. The 
distances between these points within the different paths are calculated and passed to the neural fuzzy kernel one. The 
intelligent kernel takes the data and computes the average errors for each of the parameters - Top, Bottom, SlopeUp, and 
SlopeDown which are used to determine a suitable amount of amplitude for the correction.

As the neural fuzzy engines are successfully trained, inference engine one reads the path-following-error and 
determines the amplitude of the correction. Besides, the desired path is fitted into the second neural fuzzy engine which 
creates the pattern of the correction. Combining the outputs from these two engines (using Equation 1), the compensated 
path can be formed. Various shapes of cutting paths extracted from the lace patterns captured by the pre-processing vision 
station have been used to test the developed algorithms. Through the on-line self-learning process, the intelligent host 
system can determine a necessary correcting path to compensate the deviation.

6. EXPERIMENTAL RESULTS

A working prototype is constructed (Figure 13). Numerous experiments were carried out to evaluate the efficiency of

SlopeDown (Xd)
(Yu) Top

scanned path
centre

centredrawing line

tx)ttom2
(Yds)SlopeUp

(Xu)bottom 1

Figure 12: Detecting the inaccuracy o f the SMP following process



Figure 13: Prototype o f  a vision based intelligent control station

this approach using the 2VMethod and the PEC Algorithm. Irregular shapes of curves are used in the testing. The pre
processing vision station captured an image of the intended drawing path, the host system analyses the image and creates a 
compensated path for the frame. The post-processing vision station grabs an image of the processed object. The deviation 
(path-following-error) between the intended path and the resultant path was used to determine a suitable amplitude for the 
correction.

Figure 14 (A) depicts the drawn line with no correction and its four predicted amplitudes (New: Yu, Yd, Xu, and Xd) 
for the correction. These four parameters are used to determine the compensated path for the subsequent frame. Figure 14 
(B) shows Frame One of the corrected path and its updated amplitudes. The similar process is continuously carried out 
until the two paths are matched together. Figure 15 (C) and (D) illustrate the Frame Two and Three of the on-line 
correcting processes. According to various experiments, after three frames of correcting processes almost all the path- 
following-error caused by the spring can be eliminated. In addition, the obtained (learned) control parameters can be 
utilised to correct the SMP following errors in the subsequent frames as well as dealing with any regular and irregular 
shapes of paths. The results indicate that the 2VMethod applied the PEC Algorithm only needs a few frames of self- 
learning processes to precisely correct for the path-following-errors caused by the SMP, and can produce excellent 
outcome better than a human operator. Figure 16 illustrates two different regular shapes of paths extracted from the lace 
patterns and their compensated paths created by the neural fuzzy kernels. To show the algorithms developed can also
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Figure 15: On-line correcting processes; (C) Frame Two, (D) Frame Three

handle irregular shapes of patterns, two irregular shapes of paths and their detected compensated patterns are presented in 
Figure 17.

The development of the intelligent control station is an innovative approach to flexible sheet material processing and 
has further applications where modeling system behaviour characteristics is difficult. Such systems can range from 
controlling a robot moving on a slippery surface or piloting a boat. Furthermore, by relying on the intelligent software 
kernels together with the vision system the controller no longer needs to rely on accurate position feed-back. Backlash, 
joint flexibility and stick slip can potentially be compensated for by the controller. When characteristics of the mechanism 
change over time, such as component wear, temperature change, etc., the controller can automatically make appropriate

1000

800
desired path (PATTERN A )

600

400

200

0
■200

■400

-600
compensated path•800

-10000 -2000 ■4000 -6000 -8000 10000 12000

1000
-100
-200
-300
-400
-500
-600
-700
-800
-900

desired path ( PATTERN B )

compensated path

-3000

Figure 16: Two regular shapes o f paths extracted from the lace patterns 
and their compensated paths generated by the neural fuzzy engines
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Abstract

This paper presents an novel approach for tackling 
problems associated with flexibility o f dynamic 
structures. A number of solutions to this problem have 
been developed by innovative combination o f fuzzy logic 
and neural networks - inexact algorithms. A Spring 
Mounted Pen is used in the experiments to emulate the 
deviation of an end-effector caused by flexibility. A pre- 
and post processing vision based machine control system 
is developed. Comparing the desired pattern and the 
actual output, the intelligent machine console can 
automatically make appropriate compensation through 
on-line self-learning process. Various experimental 
results indicate that using the algorithms developed the 
system can compensate for flexibility and produce 
excellent results, much better than human operators.

1. Introduction

Manufacturing with high accuracy is influenced by 
numerous factors. These can be classified as follows: 
machine tool and its controlling equipment, workpiece, 
fixtures / jigs, tools and environmental conditions. 
Vibrational errors and control induced errors that appear 
in a manufacturing system are normally ruled by these 
factors. Minimising the effect of such errors is usually 
costly. It would be desirable to rely on the intelligence of 
the controller to compensate for errors due to flexibility 
rather than resorting to costly processes of tightening the 
tolerance.

CAM ERA 2

To tackle the problem of 
mechanical flexibility in 
general, a novel approach 
using inexact algorithms, 
i.e. fuzzy logic, neural 
networks and neural fuzzy 
technique, have been 
developed and described 
here. A Spring Mounted Pen 
(SMP) is used in the 
experiments to emulate the 
movement of an end-effector 
caused by flexible

mechanical structures. Using pre- and post-processing 
vision systems, it is possible to monitor the processing 
errors as well as generating on-line information to the 
Artificial Intelligence engines. This allows overcoming 
the problems of inaccuracy due to flexibility of dynamic 
structures. The developed method is essentially trying to 
avoid using very complex sensors to monitor all the 
system and other environmental factors, such as 
mentioned previously. Through a self-learning process - 
the intelligent kernel compares the difference between 
the required shape and the resultant shape to make the 
appropriate compensation.

For example a system which is subject to errors due to 
flexibility of the workpieces is a lace scalloping machine. 
A number of attempts have been made to automate the 
process of lace scalloping and quality inspection
[1][2][3]. Work has been reported in using laser 
technology to cut deformable materials [4]. Although 
using laser reduces this deformation, distortion due to 
mechanical feed flexibility and misalignments persists. 
Changes in the lace pattern are also caused by the release 
of tension in the lace structure as it is cut. By using the 
developed algorithm, the problems in lace trimming can 
be overcome.

2. System Overview

Fig. 1 illustrates the configuration of the developed 
vision based machine control system. The host system

video
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PRE-PROCESS
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tlow direction

conveyor belt
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control Knee

Fig. 1: Schematic diagram of the test rig
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Fig. 2: Spring Mounted Pen (SMP) 
connected with the testing rig

receives the external video signal which is exchanged by 
the video multiplexer between the two cameras, as well 
as displaying the captured image on the video monitor. 
The control data is then generated and passed to the 
cutting mechanism and the conveyor system.

A SMP, as depicted in Fig. 2, is guided by the machine to 
draw a curve on a paper strip to emulate the distortion of 
the deformable material due to the cutting forces caused 
by tactile cutting and feed misalignment. Fig. 3 
represents the results of following a square wave using 
the SMP. Due to the inherent characteristics of the 
spring, the path-following-errors (PFEs) appear between 
the desired path and the actual target line. Each time the 
pen is put in contact with the paper, the axial load on the 
spring changes. This consequently causes the pattern 
generated by the SMP to alter (pathl and patli2 indicated 
in Fig. 3).

It is clear that the PFE will be generated when the 
direction of the drawing is changed - the larger the 
angular variation of the path following, the larger is the 
error. The amount (magnitude) of the PFE generated 
depends upon the type o f the spring engaged, the 
pressure on the SMP, and the frictional force between 
the head of the pen and the paper (refer to Fig. 2). As 
any of the system coefficients are altered, the result of the 
SMP drawing will be different.

3. Integrating the Remote Sensing 
Based Control

We have proposed a vision based intelligent control 
system using inexact algorithms. As shown in Fig. 4, the 
PFE is detected and fed into A.I. Engine One which

analyses the difference between the paths and decides the 
amplitude of correction for further processing. Camera 
One (pre-processing system) is triggered to capture a new 
frame of the desired path on paper. At this time, before 
the extracted curve is sent to the path generator, the 
segments of the extracted path are passed to A.I. Engine 
Two which determines the correcting pattern. Both the 
amplitude and the pattern are utilised to generate a 
predicted correcting (compensated) path. Finally, the 
path generator uses the predicted path and the original 
path to produce the machine movement data.

According to the information provided by the A.I. 
Engines, the machine guides the SMP to follow the 
desired path. A small PFE may still be detected by the 
post-processing vision system in the first corrected frame. 
Using the scheme stated above the error information is 
continuously supplied to the A.I. Engines to calculate 
more accurate correcting actions until the two paths are 
finally matched (learning process). An innovative 
approach named IVMetliod based on examining each 
individual segment of the path using inexact algorithms 
has been developed. These methods form the basis of the 
compensation system.

4. 2VMethod using Inexact Algorithms

As depicted in Fig. 5, this scheme manipulates a small 
portion of the detected path to determine a suitable 
compensation for correcting the PFEs [5]. This method 
is based on modelling human operators' experience and 
control actions using the combined fuzzy logic and 
neural networks. By translating a skilled operator's 
knowledge into a set of linguistic terms or groups of 
network connections, the intelligent machine console can 
learn from the experiences (on-line learning) and self-

j path-toltcwing-errors
rrrrrrrr

actual 
drawing pathdesired 

square wave

drawing path 1

Fig. 3: Samples of square wave following process
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adjust the control actions to match the desired objective. 
Two A.I. engines are constructed in the system to 
determine a suitable correction. This correction is 
separated into two "energies":

1) Correcting pattern; and 2) Correcting amplitude.

Three different approaches, using fuzzy logic, neural 
networks and neural fuzzy technique respectively, have 
been applied to determine the correcting energies [6]. In 
this paper the 2VMethod, employing the neural fuzzy 
technique to compensate the PFEs, is described.

Fig. 6 shows the scheme using two Neural Fuzzy Engines 
(NFEs) to predict the correcting pattern and amplitude 
(compensated path). Table 1 lists the rule base used to 
construct the NFE, where N is Negative, P is Positive, L 
is Large, M is Medium and S is Small. This system is 
mainly divided into two functional blocks. First, NFE 
One reads the PFEs from the post-processing vision 
system and decides a possible amplitude of correction.

Then a new detected path from the pre-processing vision 
system is fed into NFE Two to calculate the correcting 
pattern. Equation 1 represents the process of combining 
these two data to create the compensated path.

Predicted Segment(i) = Pattern^^  ̂x AmplitudepaUl (1) 

where i is the 1th segment of the path.

4.1 Prediction of correcting pattern

To determine the pattern of correction, every two 
consecutive vectors are analysed over the entire path. As 
a straight line is connected from Vector 1 to Vector 2 
(refer to Fig. 5), the angles (01 and 02) between the line 
(y) and the X / Y coordinates are used to compute the 
possible correcting energies (5(x) and 5(y)). Fig. 5 
represents the calculation [5] [6]. The angles 01 and 02 
are complementary. These two angles are passed to the 
A.I. Engine Two which is designed by means of using 
inexact methods to determine the correcting energies 
(5(x) and 5(y)). The prediction of the new estimated 
vector (AVector2(hx2, by2)) is calculated by Equation 2. 
Equation 3 describes the procedure of computing the 
pattern of the predicted path.

IF Angle is NL THEN Correction is NL
IF Angle is NM THEN Correction is NM
IF Angle is NS THEN Correction is NS
IF Angle is PS THEN Correction is PS
IF Angle is PM THEN Correction is PM
IF Angle is PL THEN Correction is PL

Table 1: Rule base for the NFE
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bx(i) = x ( i ) + b ( x ) i , by(i) = y(.i)+b(y);  (2)

Predicted Path — Vector 1 +  ]T AVector (i)
(3)

=  { x l , y l }  +  ± {bx(i) ,by( i) }
1 = 2

where i is the i* segments of the path and n is the 
number of vectors in the path.

A tuning process has been developed to adjust the 
responses of the NFEs into a desired pattern. Fig. 7 
depicts an example of tuning the system's responses in 
terms of analysing the difference between the intended 
path and the actual path. Carefully inspecting the bell 
shaped path, two sections of PFEs are observed. The 
drawn path starts to lose its position at location A 
(marked by a circle), and re-matches with the desired 
path at location B. The system calculates the angles of 
the desired path at the position A and B. After 
normalising angles ©1 and 02, the regions of the 
system's response pattern (the darker areas, as indicated 
in Fig. 7) are modified. By repeating this process, the 
final forms of the response patterns can be obtained.

4.2 Prediction of correcting amplitude

Once the pattern of correction is determined, the next 
step is to decide the amount of the amplitude needed for 
the correction. As the first processed frame is passed 
under the post-processing vision system, an image is 
taken and sent to the host system. A software recogniser

is employed to distinguish two different colour lines on 
paper. The top, bottom and centre positions in both 
paths are taken to measure the inaccuracy of the SMP 
following (Fig. 8). The distances between these points 
within the different paths are calculated and passed to the 
NFE One (see Fig. 6). The engine takes the data and 
calculates the average errors for each of the parameters -
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Fig. 7: Example of tuning the neural fuzzy 
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Fig. 8: Detecting the inaccuracy of path following

Top, Bottom, SlopeUp, and SlopeDown. These 
parameters are then used by the engine to determine a 
suitable amount of amplitude for the correction.

A novel neural fuzzy architecture, as shown in Fig. 9, 
has been devised to achieve fast training speed and 
higher accuracy of response [6]. By applying the new 
network structure better results have been achieved. The 
results show that the new method performs better than 
that previously reported [7] [8].

5. Experimental Results

6. Conclusion

We have described attempts to develop a vision based 
intelligent control system for compensating errors due to 
flexibility of dynamic structures. The development of the 
system is a novel approach to material processing and 
has further applications where modeling system 
behaviour characteristics is difficult, such as to control a 
robot moving on a slippery surface, drive a car on snow 
or pilot a boat, etc. Furthermore, by relying on the 
intelligent software kernel together with the vision 
system the controller no longer needs to rely on accurate 
position feedback from the sensors (encoders) on the 
mechanism. Backlash, joint flexibility, poor feedback 
and stick slip can potentially be compensated for by the 
controller. While the characteristics of the mechanism 
change over time due to component wear, temperature 
change, etc., the controller can automatically make 
appropriate compensation.
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A working prototype is 
constructed. A number of 
experiments have been 
carried out to evaluate the 
effectiveness of this
algorithm. Fig. 10
illustrates two different 
compensated (correcting) 
paths generated by the 
NFEs during the learning 
process. Only less than 
three frames of learning 
process are required before 
the machine reacts 
correctly to minimise the 
errors (Fig. 11). Various 
experimental results
indicate that by relying on 
the algorithms developed 
the system can deal with 
any regular and irregular 
shapes of paths and 
produce excellent results, 
much better than a human 
operator.

Output Value

weighted average

Input Data

Layer 6 
weighted 
average

Laver 5
output
linguistics

Laver 4 
output terms

Laver 3 
inference & 
composition

Laver 2 
input terms

Laver 1
input
variables

Fig. 9 : Architecture o f a two-input and one-output neural fuzzy engine
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A b s t r a c t

This paper describe a computer vision based system for automatic lace scalloping. The main problem  
other than scalloping path detection in real-time is that o f coping with material flexibility. This problem varies 
depending on the material type and the complexity o f the lace pattern. The vision system has to work with many 
different patterns and sizes o f lace as well as tolerating misalignment. In order to satisfy industrial 
requirements two main conditions must be satisfied. To achieve a sufficient degree of automation, first, the 
river must be found without prior knowledge o f the lace pattern being scalloped. A Fuzzy Reasoning Rule- 
Based Technique is applied to overcome the problems of material distortion. Next, finding the river location 
across the lace strip must be carried out in real-time. To achieve this, a novel approach called the Line 
Mapping Method (LMM) is devised to speed up the search for the river in subsequent frames. Several 
experiments have been carried out using lace patterns o f varying complexity. All cutting paths across the 
patterns were correctly found. Experimental results indicate that the river path can be successfully detected in 
different lace patterns in real time, while coping with lace distortion.

1. Introduction

Handling lace in terms of cutting the material along the designed paths is usually carried out manually. 
Skilled operators use high speed rotating blades or hot wire to cut the lace along the designated path which is 
illustrated in Figure 1. This is a lengthy and expensive process and results in slowing the rate of production.

Work has been reported in using computer vision for cutting deformable materials. The first published 
paper was in 1988 [1]. The system employed a low-cost binary vision system which used a Micron Technology 
IS32 DRAM as its optical sensor to give a 256 by 64 pixel binary image. An Intel 8751 single-chip 
microcomputer interfaced directly with the IS32 vision sensor. A form of template matching was used to 
determine the position of the lace in the vision system image. The experimental results mentioned in [1] showed 
that the 8051 microcomputer took about 2 seconds to perform a template match over the full area of the image. 
The experimental results indicate that the speed for detecting a cutting path is insufficient for a commercial type 
of machine. As template matching is used to determine the actual position of the lace image, prior knowledge 
for each lace pattern is required before the system is operated.

Figure I: A typical lace pattern

mailto:vsh@doc.ntu.ac.uk
mailto:ns@doc.ntu.ac.uk
mailto:pdt@doc.ntu.ac.uk


Figure 2: The prototype of the lace trimming machine

Another computer vision based lace scalloping system was reported in 1993 [2]. This system was designed 
for tracking pre-defmed path along a patterned web of material. The system uses multiple digital signal 
processors (DSPs) to acquire and process image data from a high-resolution line-scan CCD camera. Control 
information is generated to allow cutting of the web along the tracked path using a CO2 laser beam deflected by 
a galvanometer mounted mirror. Details of the control algorithms used in the system are not reported. 
According to the reference [2], "Centre-weighted line match (incremental algorithm) and decaying impulse 
response of a particular filter are used to perform the matching and tracking processes of the lace pattern. Scale 
errors of ±10% in both directions across the web is allowed by using this approach." Scalloping speeds of 220 
mm/s (13.2 meter/minute) are reported. Similar to the previous case, template data from one repeat of the lace 
pattern is defined manually as a reference map for tracking the actual cutting path. This is considered a 
disadvantage from the automation point of view.

In 1994, a automatic lace trimming system using real-time vision was developed by the authors (Figure 2). 
On-line pattern recognition is performed to detect the cutting path automatically (without pre-defining a 
template). The cutting path is vectorised and transferred to a trimming mechanism. In order to satisfy industrial 
requirements two main conditions must be satisfied [3]. To achieve a sufficient degree of automation, first, the 
river must be found without prior knowledge of the lace pattern scanned. A Fuzzy Reasoning Rule-based 
technique is applied to overcome the problems of material distortion [4][5]. Next, finding of the river location 
across the lace strip must be carried out in real-time. To achieve this, a novel approach named the Line 
Mapping Method (LMM) is used to speed up the search for the river in subsequent frames [6] [7].

A bi-level image, shown in Figure 3, is used [3]. After a thresholding operation a river shows up as a dark 
area (pixel group) within the edges that cross from one side of the image to the other in a nearly unbroken 
sequence. There are thick threads that cross the river at intervals. These are indistinguishable from the material 
surrounding the river (marked by circles in Figure 3). Allowance must be made for small breaks in continuity of 
the river due to these cross threads.

Unlike traditional, rigid engineering materials, lace has essentially no stiffness and can shrink, stretch and

It h ick  th rea d s |

Figure 3: Bi-level lace bitmap image
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distort. To overcome the flexibility problem, we employ an inexact decision making method based on fuzzy 
rule-based inference technique. As the first cutting river has been recorded, the LMM is engaged to achieve fast 
detection and higher reliability. The entire system can be broken down into three functional blocks: fuzzy 
pattern recognition, line mapping process and supervision of the system.

2 . F u z z y  P a t t e r n  R e c o g n it io n

The scheme for applying fuzzy inference techniques to find the first river across the lace pattern with no 
previous knowledge can be broken down into the following tasks:

Defining system input and output membership functions;
• Fuzzification process;
• Inference and composition;
• Defuzzification process;

Verification.

Figure 4 illustrates the context data flow diagram of the system. This system reads two input variables (Group 
Position and Density) after each black pixel group has been processed. The fuzzification process then assigns a 
value to represent an input's degree of membership in one or more fuzzy sets. During inference and composition 
process, strengths are computed based on antecedent values and then assigned to the rules’ fuzzy output. Finally, 
the defuzzification process employs compromising techniques to calculate the average weight for system output 
(Figure 5). These steps are described in detail as follows.

1) Defining system input and output membership functions

The degree of membership is decided from overlapping sets of a membership function, which is normally 
defined based on intuition or experience. The pre-defined membership functions cover the entire range of values 
for system input and output, and will define a degree of truth for eveiy point in the universe of discourse. As the 
system is tuned to accomplish desired responses to given inputs or output, it is accepted that membership 
functions change several times. Nevertheless, once the system is in operation, these membership functions will 
not be modified. The shapes and number of fuzzy-set membership functions chosen depend on parameters such 
as die required exactitude, steadiness and responsiveness of the system [8] [9]. Different shapes such as triangles 
and trapezoids are often employed to define fuzzy-set membership functions. Symmetric triangular fuzzy 
membership functions are applied in the project.

The objective here is to find the river along a lace pattern, by using linguistic variables to represent the 
common feature of the river shape in various lace patterns. These common features may be described as:

i) the position of the river is around the centre of the pattern;
ii) the density of the river pixel group is not high.



Figure 6: Corresponding positions for black
pixel group A and B

Figure 7: A example for calculating the group
densities for group A and B

Hi River group 
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F igure 8: Frequency histogram for the F igure 9: Frequency histogram for the
position of pixel groups densities of pixel groups

From these linguistic descriptions, two system inputs, group position and group density, can be defined. By 
monitoring the position and density of the black pixel groups (Figure 3) across a lace pattern, a fuzzy decision 
making system can determine whether the pixel group is a possible segment of the river. Figure 6 and Figure 7 
illustrate the two system inputs corresponding to an example lace pattern together with two candidate groups A 
and B.

Two initial experiments were carried out to define the system input and output membership functions. 
Figure 8 and Figure 9 illustrate the frequency histograms which were taken from the experiments for defining 
input membership functions [10][11],
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Figure 11: Fuzzy sets for "group position" Figure 12: Fuzzy sets for group density

From these experimental results we can obtain a set of data from the River group part (see Figure 8 and 9) 
to define the membership functions. Triangular membership function is most common and has proved to be a 
good compromise between effectiveness and efficiency. Overlapping between fuzzy-set boundaries is desirable 
and the key to smooth operation of the system. To simplify the procedure of defining fuzzy membership 
functions, an overlap of 50 percent between adjacent fuzzy sets is used in this experiment. In addition to each 
fuzzy set the central value and the slopes on either side are chosen. Figure 10 shows the fuzzy sets associated 
with the inputs and output of the system.

2) Fuzzification process

Fuzzification is the procedure of calculating an input value to represent a degree of membership in one or 
more fuzzy sets. This process uses two basic steps which are repeated for each system input. First, a crisp input 
has to be read and scaled to a value between 0 and 100. Second, the input must be translated to a degree of 
membership function. Figures 11 and 12 show two system inputs, position and density. Each value of system 
input has a degree of membership in each of these sets. Once the degrees of memberships are assigned, we can 
utilise these values to evaluate the rules.

3) Inference and composition

Fuzzified inputs are processed through a pre-defined set of rules using min-max evaluation to form 
fuzzified outputs. The author developed a set of rules that have the form of

Rule 1: IF position is Left AND density is N.L. THEN possibility is N.M.
Rule 2: IF position is Left AND density is N.S. THEN possibility is P.S.
Rule 3: IF position is Left AND density is Med. THEN possibility is P.S.
Rule 4: IF position is Left AND density is P.S. THEN possibility is N.M.
Rule 5: IF position is Left AND density is P.L. THEN possibility is N.L.
Rule 6; IF position is Mid-Left AND density is N.L. THEN possibility is P.S.
Rule 7: IF position is Mid-Left AND density is N.S. THEN possibility is P.M.
Rule 8: IF position is Mid-Left AND density is Med. THEN possibility is P.L.
Rule 9: IF position is Mid-Left AND density is P.S. THEN possibility is Med.
Rule 10: IF position is Mid-Left AND density is P.L. THEN possibility is N.L.
Rule 11: IF position is Middle AND density is N.L. THEN possibility is P.S.
Rule 12: IF position is Middle AND density is N.S. THEN possibility is P.M.
Rule 13: IF position is Middle AND density is Med. THEN possibility is P.L.
Rule 14: IF position is Middle AND density is P.S. THEN possibility is P.S.
Rule 15: IF position is Middle AND density is P.L. THEN possibility is N.L.
Rule 16: IF position is Mid-Right AND density is N.L. THEN possibility is P.S.
Rule 17: IF position is Mid-Right AND density is N.S, THEN possibility is P.M.
Rule 18: IF position is Mid-Right AND density is Med. THEN possibility is PL.
Rule 19: IF position is Mid-Right AND density is P.S. THEN possibility is Med.
Rule 20: IF position is Mid-Right AND density is P.L. THEN possibility is N.L.
Rule 21: IF position is Right AND density is N.L. THEN possibility is N.M.
Rule 22: IF position is Right AND density is N.S. THEN possibility is P.S.
Rule 23: IF position is Right AND density is Med. THEN possibility is P.S.
Rule 24: IF position is Right AND density is P.S. THEN possibility is N.M.
Rule 25: IF position is Right AND density is PL. THEN possibility is N.L.

Figure 13: System rule base
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Figure 14: Inference and composition for pixel group A

IF [antecedent_one\ AND [antecedent_Pwo] THEN [consequence]

which are listed in Figure 13. The antecedents of rules correspond directly to degrees of membership calculated 
during the fuzzification process. Each antecedent has a degree of truth assigned to it as a result of fuzzification.

In inference and composition processes, strengths are enumerated based on antecedent values and then 
assigned to the rules' output strengths. Figure 14 illustrates the actual fuzzy outputs calculated during the rule 
evaluation process for pixel group A. The strength of a rule is assigned the value of the weakest (minimum) 
antecedent. As more than one rule applies to the same specific action, the strongest (maximum) value of rules is 
used:

a) from Rule 4:
N .M l u ê strength _ m[n (antecedent one, antecedent two)

= min (68,35) -  35
b) Rule 5:

N.L.mle strength 1 = min (68> 65) = 65>
from Rule 10 also

N L rule strength2 = min (30> 65) = 30j
the maximum rule strength on fuzzy set N.L. is 

N .L rule l e n g th  _ max (65> 30) = 65
c) Rule 9:

Med.rnle stren8th = min (30, 35) = 20

In order to further improve the speed of this calculation, the Fuzzy Associative Memory (FAM) Bank [12] 
is applied to reduce the number of the rules. Inspecting the FAM Bank (Figure 15), the following fuzzy system 
rale can be formulated:

from rule (A) indicated in Figure 15,
IF the Group Position is Right
AND the Group Density is Positive Small
THEN the Possibility is Negative Medium

This FAM Bank is comprised of 5 x 5 rules. We can reduce the 25 rales per FAM Bank to 11 rules per table by 
compounding the rules in the Bank. For instance, rule (b) indicated in Figure 15 merges three [antecedent 
o/ie]s of the rules to take the form:



Rule (A): IF Position is Right an d  Density is P.S.
THEN Possibility is N egative Medium 

Rule (B): IF Position is N ear Mid. an d  Density is N.S. 
THEN Possibility is P ositive Medium
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Figure 15: Fuzzy Associative Memory 
(FAM) Bank to determine the possibility

from rule (B),
IF the Group Position is Near Middle
AND the Group Density is Negative Small
THEN the Possibility is Positive Medium

4) Defuzzification process

The defuzzification process is to convert its fuzzy outputs into a single raw or crisp output. There are more 
than 30 valid defuzzification methods. In these experiments, we choose the "centre-of-gravity method" which is 
a common and accurate defuzzification technique for resolving both the vagueness and conflict issues [8]. 
Figure 16 is used to illustrate the defuzzification of the output using the centre of gravity method:

a) A centroid point on the x axis is found for each output membership function;
b) The membership functions are limited in height by the applied rule strength;
c) The areas of the membership functions are calculated;
d) The defuzzified outputs are derived by weighted averages of the centroid points and the enumerated 

areas:

. . . . .  , Y  (sh aded  area x  cen troid po in t)
W e ig h ted  a v e ra g e  =  ------------------------------------- ---------

Y  (sh a d ed  a rea )

By relying on the use of fuzzy inference technique, each black pixel group could be calculated and assigned 
an average weight (possibility). For instance, in Figure 7, the output value for group A is 39.37 (24.61 %) (refer 
to Figure 16), also the group B is 134.64 (84.15 %). Since the average weight of group A is only 24.61% (less 
than 50%), this means that the pixel group only has a 24 percent possibility of being a segment of the river. It
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Figure 16: Defuzzification process for pixel group A
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Figure 17: Each possible river segments 
whose weights are bigger than 80 (50%)

is, therefore, concluded that group A is not a part of the river.

Figure 18 : An example for calculating 
the distance between pixel groups

5) Verification

Once all the black pixel groups have been assigned a possibility value (average weight), the pixel groups 
whose possibility values are less than 80 (50%) are abandoned (see Figure 17). The verification process can then 
be broken down into the following tasks:

a) Calculate the distance between two adjacent groups;
b) If the distance is shorter than a specified value (set to six pixels long in these experiments) a network 

is built to record this path;
c) Continuously trace the distances between pixel groups while recording all the correct paths until a new 

pixel group reaches the border of the image (right hand edge of the frame);
d) Calculate the total possibility values and divide by the number of the group in this path (average 

possibility);
e) If the average possibility is bigger than a specified value, (110 or 75% was used in the experiments) 

then the correct river has been found; if the average possibility is less than this value, repeat step (c) to 
(e) until the correct river is located.

Figure 18 illustrates the computation of the distance between two adjacent pixel groups. By calculating the 
distances and tracing the average possibilities in all these segments, the river location, highlighted in Figure 19, 
can be pin-pointed.

3 . L in e  M a p p in g  P r o c e s s

When the first cutting river in the lace strip is successfully detected, the extracted knowledge can be used to 
speed up the search in subsequent frames. In order to meet the real-time requirements of the system, instead of 
using traditional pattern matching techniques, a new approach called the Line Mapping Method (LMM) has been 
developed to achieve fast response and higher reliability. This approach is divided into the following processes:

Starting
position

Destination

Figure 19: Interconnection between each possible river segments
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Figure 20: Extracting a repeat cutting cycle

Figure 21: Borders o f the black pixel group

Figure 22: Mapping the reference path 
into a new lace image

1) Indicating and registering one repeat cutting cycle

A centre line is located by calculating the distance 
between the upper and lower boundaries shown in 
Figure 20. Three crossing points between the cutting 
river and the centre line are marked. The cutting path 
(river) between the intersections ® and ® labeled in 
Figure 20 indicates a repeat cutting cycle, which acts as 
a reference path for detection of subsequent frames.

2) Capturing the following frame

The next frame of a 256 grey scale lace image is captured by the frame grabber from the CCD camera and 
temporarily stored in a memory block. An image thresholding operation is employed to transform the image 
into a black and white bitmap. This bi-leveled lace image is then applied for detecting the borders of the black 
pixel groups which may be candidates for river segments. As depicted in Figure 21, the border following 
technique is used to find the borders (outlines) of the potential river segments.

3) Mapping the reference path into the new frame

Since the lace strip is liable to distort as it is passed through the trimming mechanism, the reference path 
(river) is mapped onto the new frame for the detection of the next cutting river. With careful inspection it is 
clear, from Figure 22, that the two halves of the image do not completely match (the reference path is not
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Figure 23: Using the reference path for searching next cutting path



completely within the river banks).

A river, as stated previously, crosses from one side of the image to the other in a nearly unbroken sequence. 
Some allowance has to be made for cross threads produced as a result of the manufacturing process. These are 
thick white threads which cross the river at intervals and are indistinguishable from the material surrounding the 
river. For this reason, the detection must allow for small breaks in continuity.

The LMM technique has been developed for solving this problem. The detection will be started from the 
left hand side of the frame and ended at the right. As the matching point has been obtained (described in
Section 4), the reference path is mapped onto the new frame to find the next border of the river. Several possible
connecting borders can be found - A, B, C, D and E labeled in Figure 23 (stage two). The border closest to the 
mapped reference path is then chosen to become a part of the river (border E is selected in the example). Using 
the same method, the reference path is repeatedly employed to search the rest of the river segments until it 
reaches the end of the frame. After all the segments of the river have been found, lines between adjacent river 
borders are connected, as illustrated in Figure 23 (stage four), the entire river bank can be constructed. By using 
the detected river bank, a smooth line (the cutting path) can be created within the centre of the river bank.

To summarise the scheme mentioned above:

a) Grab the first frame of the lace image;
b) Use the fuzzy reasoning technique to detect the first cutting river across the pattern;
c) Find the intersections between the centre line and the cutting path;
d) Locate the capture and end of cutting points, respectively;
e) Generate machine movement data from the beginning to the end of cutting position;
f) Start trimming the lace pattern and continuously track the dynamic position of the cutter;
g) Capturing the second lace image when the cutter reaches the capture point;
h) Use fuzzy technique to find the cutting river in the second frame for defining the shape of the reference 

path;
i) Download the machine movement data of the reference path;
j) Using the LMM method to map the reference path into the third and the subsequent frames of the lace

image for fast detection of the repeat cutting path; 
k) Continuously trim the strip of the lace into the desired pattern between frames.

4 . S u p e r v is io n  o f  t h e  S y s t e m

Since the CCD camera is mounted on the X axis of the machine, the camera is moved with the cutter. The 
advantage of using such a construction is that the camera and the cutter are kept in a constant position relative to 
each other. Consequently, it is easy to calculate the real cutting position from the captured image, as well as to 
correct the errors between these two captured frames. On the other hand, since the lace strip is transported past 
the vision system by the conveyor belt following the Y axis, the vision system has to consider the more complex 
two dimensional image shifting problem. Nevertheless, this "look-and-move” strategy yields more accurate 
results than the "eye-to-hand co-ordination” approach [13], and also avoids small drift due to material length or
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missing steps of the motor(s). The strategy for analysing images moving in two directions and generating the 
vector data for machine control is discussed in the following sections.

4.1 Detecting the first river and finding the capture point for next frame

As the lace strip is transported past the field of vision, the first frame of the lace image is captured and 
temporarily stored in memory. After the fuzzy reasoning process, the cutting rivers across the lace pattern are 
found. The next stage of the system will then decide the capture point on the cutting path for the second lace 
image. When the machine is in operation, the camera is moving together with the cutter, so finding the position 
where the camera can capture a similar image for the LMM process is critical. As shown in Figure 24, a centre 
line can be drawn across the first frame, and an intersection between the cutting river can then be found. This 
position is engaged for grabbing the second frame of the lace image.

4.2 Generating machine movement data and grabbing the second frame

While the first cutting river has been detected, using the fuzzy reasoning method, the machine control data 
is generated and downloaded to the machine controller. The controller transforms the motion data into the real 
machine movement data and starts driving the cutter to cut the strip of lace. When the machine starts cutting 
the lace strip, the controller simultaneously responds to the machine console with the current position on the XY 
axes. The machine console then continuously tracks the cutting positions until it reaches the capture point 
(shown in Figure 24 - first captured frame). Consequently, the CCD camera is triggered to capture the second 
frame of the lace image which is stored into memory for processing.

Since the system takes approximately two hundred milli-seconds to find the next cutting river, this will stop 
the cutting process between two captured frames. To solve this problem, we simply add a quarter of the repeat 
cutting cycle {LI, between capture and end o f cutting points, indicated in Figure 24) to the cutting path. Thus, 
while the machine is trimming past the capture point, the vision system grabs a frame as well as finding the 
cutting river before the machine actually ends trimming. This enables continuous operation of the system in 
real-time.

4.3 Finding the reference path and the next capture point

As the second lace image is stored in the memory, the fuzzy reasoning rule-based technique is, again, 
employed to find the second frame of the lace image. The second intersection with the cutting river can be 
designated as the capture point for the next frame. As the machine continuously trims the lace and reaches the 
’end o f cutting’ position in the first frame, the movement data of the second cutting path has already been 
produced and stored. Therefore, the machine could continuously cut the lace pattern through subsequent frames 
in an unbroken sequence.

LI and L2 indicated in Figure 24 are taken from the first frame, and coupled to the second frame for 
determining the length and shape of the reference path (a repeat cutting cycle). After the reference path has 
been defined, its corresponding position with the centre line (first pixel of this module) is then registered. This 
will be used for detection of subsequent frames.
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Figure 25: Mapping the reference path into subsequent frame



Figure 26: Example A of river extraction

Figure 27: Example B of river extraction

4.4 Line mapping operation

After the reference path has been determined, 
the extracted knowledge can be used to speed up the 
search for the river in subsequent frames. Figure 25 
shows an example of mapping the reference path into £ c  earactkm
the following frame. Utilising the Line Mapping 
Method (LMM), the new cutting river across the lace 
image can be successfully and quickly detected.

5 . E x p e r im e n t a l  R e s u l t s

Various experiments were carried out to investigate the effectiveness of this method. Numerous lace 
patterns were employed for detecting the river location. All cutting paths across the patterns were successfully 
found. The time taken to isolate the river and produce cutting path depends on complexity of the pattern. Time 
taken for most kinds of motif, using the fuzzy reasoning rule-based technique, is typically about 300 milli
seconds using an Intel 80486 processor running at 66 MHz. Nevertheless, in the case of a very few intricate lace 
patterns (e.g. Figure 26), up to 1.5 seconds is required.

Once the river path on the first frame is found, this knowledge can be utilised by the LMM to speed up the 
detection for the river in subsequent frames in real time. The time to detect a repeat cutting path using LMM is 
dependent on how complex the motif is, the length of one repeat cutting cycle and the distortion of the pattern. 
On most kind of lace patterns detection time is about 150 to 200 milli-seconds. The frame grabber digitises a 
incoming video signal at a rate of 30 frames per second. Typically a repeat cutting cycle of the lace strip is 
around 9 to 15 cm. Therefore the speed for tracking the lace pattern using the LMM is approximately 25 to 35 
meters / minute. Some sample lace patterns together with the resulting river path are shown in Figures 26 to 
28.

The strip of lace is likely to stretch or contract while it is passed through the machine via the feed

Original Lace Image D etected Lace Image

Figure 29: Un-distorted lace pattern



Original Lace Image D etected Lace Image

Figure 30: Lace pattern under 30% contraction (successfully detected)

Original Lace Image D etected Lace Image

Figure 31: Lace pattern under 40% contraction (successfully detected)

mechanism. Several experiments have been carried out for investigating the capability of this approach. 
Various kinds of lace patterns have been examined under the following status: 1) Non-distortion, 2) contraction, 
3) and stretch.

1) Non-distortion

Under this condition, all cutting paths across the lace patterns were successfully found. Figure 29 
illustrates a typical lace pattern as well as its detected cutting path.

2) Contraction

Figure 30 and Figure 31 show that the lace motifs have been contracted with 30 per-cent and 40 per-cent of 
the pattern. The cutting paths within these two frames have been successfully detected by applying the novel 
techniques. On the other hand, when we use traditional image processing methods [3] to examine these 
distorted patterns, according to the experimental results, none of them could find the river, or even pinpoint the 
wrong paths.

The feature of the lace motif under 50 per-cent of contraction is illustrated in Figure 32. With careful 
inspection of this picture we can find that parts of the river banks are overlapped, it is difficult to find a nearly 
unbroken river across the strip of the lace. In the real working situation, although the skilled human operator 
could find the cutting path from the contracted lace pattern, it would be impossible to separate this pattern 
correctly by using knife or lace cutter. Consequently we can ignore this situation in our experiments.

3) Stretch

Lace was stretched lengthwise in order to emulate stretch resulting from lace transport. Figure 33 shows 
that the lace pattern has been stretched as much as possible, and its detected river across the pattern. Typically, 
about 15 to 30 per-cent of lace can be stretched, depending on material and patterns.
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Figure 32: Lace pattern under more than 50% contraction 
(fail to detect the correct cutting path)
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Figure 33: Lace pattern under maximum stretch

Compared with the previously reported method [3], the fuzzy logic based approach is more effective. The 
traditional image processing technique for finding the river heavily depends on the repeat of the lace pattern. In 
other words, the two extremes of the river should be equi-distant from their nearest edge, and after a distance 
equal to the repeat period of the design, the river should be back at the same position relative to the two edges as 
it was at the start. When lace is distorted, these features of the river are absent. That is why the conventional 
method fails when strips of lace are slightly distorted (5- 10%).

6. C o n c l u s io n

In the preceding sections of this paper, we have described attempts to develop a f iz zy  reasoning rule-based 
system and the line mapping method for detecting varied types of lace patterns in real time. Experimental results 
indicate that the objectives have mostly been fulfilled. The system requires no prior knowledge of any particular 
lace pattern or any training. According to the results of the experiments, a combination of fuzzy pattern 
recognition technique and the LMM can be used to successfully detect the cutting river within various lace 
patterns in real time. Compared with the conventional image processing methods [3][12], it is not only easier to 
design and implement the system, but also more effective in coping with distortion. Furthermore it does not 
require any training or prior knowledge of the lace pattern.
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Abstract - In the development of an intelligent controller to 
manage the flexibility of dynamic systems, the combination 
of fuzzy logic and neural networks, inexact algorithms, can 
be applied in constructing an intelligent kernel. Using 
human operator's experience and knowledge, correcting 
actions can be translated into groups of network connections 
and sets of control rules. In order to emulate the distortion 
of an end-effector caused by flexible mechanical structures, 
a Spring Mounted Pen (SMP) is designed and engaged in the 
experiments. A machine vision station is constructed in the 
test rig to monitor the results of the SMP following process. 
By analysing the processing errors as well as feeding back 
on-line information to the intelligent controller, the 
problems of inaccuracy due to flexibility of dynamic systems 
can be overcome. The method developed is essentially trying 
to avoid using very complex sensors to monitor all the system 
and environment factors. Through a on-line self-learning 
process - the intelligent kernel compares the difference 
between the desired pattern and the resultant pattern to 
make the appropriate compensation.

I. INTRODUCTION

In high accuracy manufacturing systems, control 
induced and vibrational errors are normally ruled by 
various factors. These can be classified as follows: 
machine tool and its controlling equipment, workpiece, 
fixtures / jigs, tools and environmental conditions.

In order to manage the problems of mechanical 
flexibility in general, an innovative scheme based on 
inexact algorithms, fuzzy logic, neural networks and 
neural fuzzy technique, has been developed. A Spring 
Mounted Pen (SMP) is used in the experiments to emulate 
the movement of an end-effector caused by flexible 
mechanical structures. Applying computer vision, it is 
possible to monitor the processing errors as well as 
generating on-line information to an Artificial 
Intelligence kernel. 2VMethod together with a Piecewise 
Error Compensation Algorithm (PEC Algorithm) have 
been developed to automatically compensate for deviation 
due to mechanical flexibility. These methods have been 
reported in [1][2][3].

A new type of network architecture for constructing an 
intelligent neural fuzzy controller used in the system is 
developed to achieve fast training speed and higher 
accuracy. Through on-line self-leaming process - the 
controller analyses the errors between the required shape 
and the resultant shape to make the necessary 
compensation. This paper is mainly concerned with the 
scheme used to design the novel neural fuzzy architecture. 
The 2VMethod and the PEC Algorithm are briefly

reviewed. The results of using the intelligent kernel to 
create correcting patterns to overcome the problems of 
deformable structures are presented.

II. COMPENSATING ALGORITHMS

Two algorithms, the 2VMethod and the PEC 
Algorithm, are developed and used by the neural fuzzy 
kernel to determine the compensation pattern.

A. The 2VMethod

As depicted in Fig. 1, every two consecutive 
coordinates are analysed over the entire path. A straight 
line is connected between Vector 1 and Vector 2 (labelled 
in Fig. 1). The angles (01 and 02) between the line (y) 
and the X / Y coordinates are used to calculate the 
compensated vectors (5(x),5(y)). This correction is 
separated into two "energies" :

1) Correcting pattern; and 2) Correcting amplitude.

An on-line self-leaming approach called the PEC 
Algorithm based on the inexact algorithms is applied to 
compute the correcting energies.

B. The PEC Algorithm

The learning procedure is divided into two steps. First, 
the Neural Fuzzy Engine (NFE One) reads the path- 
following-errors from the vision station and determines a 
possible correcting amplitude. Then a new detected path 
is fed into the NFE Two to compute the correcting pattern. 
Equation (1) describes the process of combining the 
correcting pattern and amplitude to create a compensation

5 x 2  = x2 + 6(x)j
a  v e c to r  c 
(5 x 2 ,6y2}

c o m p e n s a t e d  p a t h

Vector 2 
(X2. yg) d e s i r e d  p a t h

V ector 3  
(X3.V3)

Vector 4 
(x4, y4)coordinate

V ecto r 1
(xi.yi)

6 ( x ) 2

4  V ecto r 3  
(5 x 3 ,6y3)X  coordinate

Fig. 1. Calculating new compensated vectors using the 2VMethod
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Fig. 2. Detecting the inaccuracy of the SMP following process

path.

PredictedSegment(i) = Pattern ĝmcnt(i) • Amplitude^ (1)

where / is the i111 segment of the path. The computation of 
the new compensated vector (AVector2(bx2, by2)) is 
calculated by (2). Equation (3) presents the procedure for 
calculating the pattern of compensation.

bx(i) = x(i)+5(a),., by(/) = y(i)+5(y),. (2)

membership function is symmetric trapezoid. The reason 
for choosing such combination of membership functions is 
that the system can produce the smoothest output pattern.

A proposed technique has been tested using the neuro- 
fuzzy architecture discussed in [4]. Applying this 
approach, the membership function of the fuzzy system is 
implemented using multi-layer pre-trained neural network 
which enables off-line learning of the function using a 
fully connected back-propagation feedforward network. 
Diagram (a), (b) and (c) in Fig. 3 show the results of the 
trained membership function used 0.01, 0.000001 and 10' 
12, respectively, as the satisfactory error (5) level to train 
the neuro-fuzzy kernel. It can be seen that the actual 
outputs of the kernel cannot completely match the desired 
pattern. The problem of using such membership function 
is that these imprecise output values will cause a certain 
amount of error during the inference procedure and 
compromise the performance of the intelligent kernel.

In order to improve the accuracy of the outputs. A new 
type of neural fuzzy architecture is introduced here. This 
system is divided into three functional blocks.

A. Generating input membership functions

Compensation Path -  Vector (J) + ]T A Vector (/)

= {xJ, y l}  + ffbx(i),by(i)}

where i is the i* segment of the path and n is the number 
of vectors in the path.

As the first processed frame is passed under the vision 
station, an image is taken and sent to the host system. A 
software recogniser is used to separate the intended path 
and the resultant path (see Fig. 2). The top, bottom and 
centre positions in both paths are taken to measure the 
inaccuracy of the SMP following process. The distances 
between these points within the different paths are 
calculated by NFE One which produces a suitable amount 
of amplitude for the correction. Combining the outputs 
from the NFEs (using (1)), the compensation path can be 
formed. The detailed description of applying the 
2VMethod and the PEC Algorithm to create the 
compensation patterns can be found in [2][3]. The 
method used to construct the NFEs engaged in the project 
is discussed next.

III. NEURAL FUZZY SYSTEM

A fully connected multi-layer network with sigmoid 
activation function, five neurodes in the first hidden layer 
and two in the second layer is used in the system. The 
supervised back-propagation training algorithm was 
engaged during the learning process. A primary element 
of the network for generating an input membership 
function is depicted in Fig. 4. From the neurodes in the 
second hidden layer of the network, (a) and (b) labelled in 
Fig. 4, both sides of the membership function can be 
yielded, respectively. These two signals are then fed into 
a filter (labelled (C)) which simply does the minimum (A) 
operation. Finally the entire membership function can be 
successfully generated and obtained from the output of the

satisfactory error 
lev e l: 0.000001

The concept of neural fuzzy theory has received much 
attention recently. Alternative methods of integrating 
neural networks and fuzzy logic have been proposed in the 
scientific literature. We have made use of neural networks 
for forming the required fuzzy membership functions and 
the fuzzy rules. The symmetric triangle and trapezoid 
membership functions are commonly used in fuzzy 
kernels. In our system, the shape of input membership 
function used is symmetric triangle, and the output

satisfactory error 
lev e l: 1.E-12

gygf.-fra/nfng

dosirod output j 
o -  actual output •

satisfactory error 
lev e l: 0.001 
(error tolerance)

Fig. 3. Samples of the generated membership functions



membership
function

BIAS)

output data from the natwortt
in p u t

(a )
. b i a s )

symmetric trapezoid 
fuzzy output 
membership function

i n p u t

(«)
o u t p u t

o u t p u t  1 ( t > l ) o u t p u t  2  ( D 2 )

Fig. 7. Sample of output membership 
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Fig. 5. Sample of input membership 
function generated by the NFE

network.
An example of using this network structure to produce a 

symmetric triangle membership function is illustrated in 
Fig. 5. In fact, by utilising the method the triangular, 
trapezoid or "bell" shaped input membership function can 
all be created.

B. Generating output membership functions

A network architecture as shown in Fig. 6 is designed 
to create an output membership function. A three-layered 
fully connected back-propagation network including three 
neurodes in the hidden layer and two in the output layer 
with sigmoid function is used. Only a small number of 
representative data set is required for training the

m e m b e r s h i p

f u n c t i o n

\

i n p u t

B I A S ) o u t p u t s

B I A S )

i n p u t  l a y e r h i d d e n  l a y e r s o u t p u t  l a y e r

Fig. 6. Network structure for 
generating an output membership function

network.
Fig. 7 shows the output data collected from the trained 

NFE. In the example a symmetric trapezoid output 
membership function is utilised to produce the training 
data set. Only less than ten seconds is required to 
successfully converge the network (5: 0.00000001) in 
which an Intel 486 CPU running at 66 MHz is engaged. 
Other shapes of output membership functions can also 
created by applying this approach.

C. Connections of the rules

An example of connecting the rules of the NFE which 
has two-input and one-output nodes is presented in Fig. 8. 
Nine rules were derived from the Fuzzy Associative 
Memory (FAM) Bank. For instance, the folio whig two 
conditions can have the same consequence:

IF input_l = a AND input_2 = A THEN output = 1
IF input_l = c AND input_2 = B THEN output = 1

A minimum (A) operation is used to merge neurodes
(a) and (A) (indicated in Fig. 8). The same approach is 
applied to neurode (c) and (B). The output neurode (1) 
can then be acquired by joining nodes aA and cB  using a 
maximum (V) operation. Equation (4) represents this 
procedure.

Output 1 = V[A(a, A ), A(c,B)] (4)

Using the same method, the rest of the rules can be 
arranged within the network.

V :  M A X :

i n p u t _ 1

cDC JcC

o u t p u t s

i n p u t  1

A: MIN:

o u t p u t a b c  -

A
r  <

\V 2
S

4

B 5 3
/ ..... \
t 1 ;

c 4
V

2 5
J

i n p u t  2

FAM Bank

i n p u t _ 2

Fig. 8. Connections of the rules



following path
Fig. 11. Samples of SMP following applied the NFEs

Fig. 9. Schematic diagram of the test rig

IV. Experimental Results

Various experiments have been carried out to evaluate 
the effectiveness of this algorithm. The SMP is connected 
with the Z axis of a CNC machine (Fig. 9). Fig. 10 shows 
two compensated paths generated by the NFEs during the 
learning process.

Once the compensated path is derived, this data is 
transferred to the controller of the test rig. The SMP is, 
then, driven to draw a line over the original path. Fig. 11 
illustrates two samples of the SMP following process. Fig. 
11-a presents the SMP following without adding any 
compensation. Fig. 11-b shows the sample after three 
learning frames where the compensation is fed-back to the 
controller. It can be seen that almost all the deviation can 
be successfully removed.

The experimental results indicate that using the 
algorithm developed the intelligent controller can deal 
with any regular and irregular shape of patterns and 
produce good results, even better than human operators. 
Fig. 12 presents a two-input / one-output neural fuzzy 
architecture developed. By applying the new network 
structure excellent results have been achieved and can 
perform better than that previously reported [4][5].

V. Conclusion

This paper introduced an intelligent controller using a 
neural fuzzy theory for handling flexibility of dynamic 
structures. The development of the algorithm is a novel 
approach to flexible sheet material processing and has 
further applications where modelling system behaviour 
characteristics, such as controlling a robot moving on a 
slippery surface or piloting a boat, is difficult. 
Furthermore, by relying on the intelligent controller

together with the sensing station the system no longer 
needs to rely on accurate position feed-back. Backlash, 
joint flexibility and stick slip can potentially be 
compensated for by the controller. When characteristics 
of the mechanism change over time, such as component 
wear, temperature change, the controller can 
automatically make appropriate compensation.
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Abstract -  This paper describes a novel approach to tackle 
problems associated with handling flexibility of dynamic 
structures. A number of solutions to this problem have been 
developed by innovative combination of fuzzy logic and 
neural networks - Neural Fuzzy Technique. In order to 
emulate the deviation of an end-effector caused by flexibility, 
a Spring Mounted Pen (SMP) is designed and used in the 
experiments. The Piecewise Error Compensation Algorithm 
(PEC Algorithm) and the Generic Error Compensation 
Algorithm (GEC Algorithm) are devised to correct the 
deviations. Comparing the desired pattern and the actual 
output pattern, the vision based intelligent controller can 
automatically make appropriate compensation through an 
on-line self-learning process. Various experimental results 
indicate that applying the algorithms developed the 
intelligent kernel can compensate for flexibility and produce 
good results.

I. INTRODUCTION

Manufacturing with high accuracy is influenced by a 
number of factors which can be classified as follows: 
machine tool and its controller, workpiece, fixtures / jigs, 
tools and environmental conditions. Vibrational errors 
and control induced errors that appear in a manufacturing 
system are normally ruled by these factors. Minimising 
the effect of such errors is usually costly. It would be 
desirable to rely on the intelligence of the controller to 
compensate for errors due to flexibility rather than 
resorting to costly processes of tightening the tolerances.

In order to tackle the problem of mechanical flexibility 
in general, a novel scheme based on fuzzy logic and neural 
networks has been developed and described here. A 
Spring Mounted Pen (SMP) is used in the experiments to

emulate the movement of an end-effector caused by 
flexible mechanical structures (Fig. 1). Using machine 
vision station, it is possible to monitor a error as well as 
generating on-line information to the Artificial 
Intelligence kernel. This allows overcoming the problems 
of inaccuracy due to flexibility of dynamic structures. The 
developed algorithms are essentially trying to avoid using 
very complex sensors to monitor all the system and other 
environmental factors, such as those mentioned previously. 
Through a self-learning process - the intelligent kernel 
compares the difference between the desired shape and the 
resulting shape to make the appropriate compensation in 
real time.

For example a system which is subject to errors due to 
flexibility of the workpiece is a lace scalloping machine. 
A number of attempts have been made to automate the 
process of lace scalloping and quality inspection 
[ 1 ] [2][3][4][5]. Work has been reported in using laser 
technology to cut deformable materials [6]. Although 
using laser reduces this deformation, distortion due to 
mechanical feed flexibility and misalignments persists. 
Changes in the lace pattern are also caused by the release 
of tension in the lace structure as it is cut. By using the 
developed algorithm, the problems in lace trimming can 
be overcome.

II. SYSTEM OVERVIEW

The host system receives an external video signal as 
well as displaying the captured image on the video 
monitor. The machine movement commands are 
generated and passed to the cutting mechanism and the 
transportation system (conveyor). A SMP, as depicted in

+x+Y.

C C D  C a m e r a

+Z,

Spring Mounted Pen

P a p e r  S t r i p

f o l l o w i n g  p a t h

Bracket

Spring

Fett-Tip P en

" s t r e t c h "

Fig. 1 Spring Mounted Pen (SMP) connected with the test rig

^^.:./+B



start end

Fig. 2 Samples o f  square wave following process using the SMP

Fig. 1, is guided by the machine to draw a path on a paper 
strip to emulate the distortion of the deformable material 
due to the cutting forces caused by tactile cutting and feed 
misalignment. Fig. 2 represents the results of following a 
square wave using the SMP. Due to the inherent 
characteristics of the spring, the path-following-errors 
(PFEs) appear between the desired path and the actual 
target. Additionally, each time the pen is put in contact 
with paper, the axial load on the spring changes. This 
consequently causes the pattern generated by the SMP to 
alter (pathl and path2 indicated in Fig. 2).

It can be seen that the PFE occurs when the direction of 
the drawing is changed - the larger the angular variation 
of the path following, the larger is the error. The amount 
(magnitude) of the PFE generated depends on the 
characteristic o f the spring engaged, the pressure on the 
SMP and the friction force between the tip of the pen and 
the paper. As any one of the system coefficients is altered, 
the result of the SMP drawing will be different.

AV«ctor 2
6x2- x2 + &00j

predicted path 6  y2 -  y2 + 6 ( y  ) 2

original path(x2. y2)

Vector 3 
(6x3, 6y3)X coordinate

Fig. 4 Calculating new corrected coordinates

system incorporating a neural fuzzy technique. As shown 
in Fig. 3, the PFE is detected and fed into A.I. Engine One 
which analyses the difference between the paths. It also 
decides the amplitude of correction for further processing. 
The vision station is triggered to capture a new frame of 
the desired path on paper. At this time, before the 
extracted curve is sent to the path generator, the segments 
of the extracted path are passed to A.I. Engine Two which 
determines the correcting pattern. Both the amplitude and 
the pattern are utilised to generate a predicted correcting 
path. Finally, the path generator uses the predicted path 
and the original path to produce the machine movement 
data (compensation path).

Two innovative schemes named the Piecewise Error 
Compensation Algorithm (PEC Algorithm) and Generic 
Error Compensation Algorithm (GEC Algorithm) form the 
basis of the compensation system. The detailed 
description of the PEC algorithm based on the neural 
fuzzy technique can be found in [7][8]. In the following 
section, the GEC algorithm using neural network 
approach is presented.

IV. THE GEC ALGORITHM

. ...'%\\ ‘V v\ -

(taw in g  pa th  1 * « ^ g p a t h 2

Fig. 3 The overview o f the vision and motion control systems

and 02 are complementary. 
These two angles are passed to 
an A.I. engine to determine the 
correcting energies - 5(x) and 
5(y). The prediction of the new 
estimated coordinate
(ACoordinate2(bx2, 6y2)) is 
calculated by (1). Equation (2)
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III. INTEGRATING THE REMOTE 
SENSING BASED CONTROL

We have devised a vision based intelligent control

Raw Image

Raw Image 
Data

Knowledge

Amplitude 
of the 

Correction

As depicted in Fig. 4, this approach considers a small
portion of the desired path to predict the correction. Every
two consecutive coordinates (a segment) are analysed over 
the entire path. As a straight line is connected from 

Coordinate 1 to Coordinate 2 
(refer to Fig. 4), the angles (01 
and 02) between the line (y) and 
the X / Y coordinates are used 
to compute the possible 
correcting energies (S(.t) and 
5 (y )) . The angles 01 and 02 are 
related to the each other - 01



describes the procedure of computing the pattern of the 
predicted path.

5*0) = *0)+5(a),, 5y(/) = y(i)+5(y), (1)

Predicted Path = Vector (7) + Y  AVector(i)
& (2)

= {xl,yl) + £  {6*0), 5y0)}
1 - 2

where i is the i* segment of the path and n is the number 
of vectors in the path. The correcting energies, 6(a), and 
6(y)j , are also separated into two functions: correcting 
pattern (CP) and correcting amplitude (CA). Equation (3) 
presents the relationship.

5 (*, v), = CPsegmenlU) x C A ^  (3)

A. Detecting the Correcting Pattern

In order to detect the deviation caused by the spring, the 
SMP is driven to follow a template (a square wave) on 
paper. The image of this square wave is captured by the 
vision station. A software filter is developed to detected 
this captured image - six coordinates, such as those shown 
in Fig. 5 (a), can be obtained. This data is then transferred 
to the controller.

The SMP is driven to draw a second line on the paper.
It is clear that the PFEs appear. The PFEs appear when
the direction of the drawing changes, i.e. from direction - 
X to -Y, -Y to -X, -X to +Y and +Y to -X (see Fig. 5
(b)). There are four different types of deviation patterns 
that can be detected. They are labelled as nXnY, nYnX, 
nXpY and pYnX where 'n' denotes negative and 'p' means

j-i j- .■ h i -t l  i ■■ r_ (r 'c o o rd in a te s

drawing direction

Fig. 5 (a) Vectorising the square wave; (b) Drawing 
a second path followed the template using the SMP

output 
1.0 

0 8 
0.6 

0 .4  

0.2 
0 0

Fig. 6: Obtaining the training data set from a deviation pattern 

positive.

The neural network approach is employed here to learn 
the correcting action from the deviation patterns (as shown 
in Fig. 6) for constructing the intelligent engine to produce 
the compensation patterns. Fig. 6 depicts the use of the 
nXnY deviation pattern to produce the learning data set 
for training a neural engine (ANN Engine). Eleven data 
points (a, b, c,..., k labelled in Fig. 6) which are taken 
from experiments are chosen in this instance. As the 
training data is fed into the neural engine, after learning 
and updating procedure the trained neural engine can be 
used to generate a correcting pattern. The neural engine 
constructed in the system is a standard fully interconnected 
three layer back propagation network. Using the similar 
approach stated above, the learning data sets from nYnX, 
nXpY and pYnX deviation patterns can all be obtained 
and utilised for teaching the networks.

As mentioned previously, four different shapes of 
deviation patterns, i.e., nXnY, nYnX, nXpY and pYnX, 
can be detected from the result of following the template. 
Once the neural engine has successfully learned from these 
samples, the GEC algorithm is, then, used to calculate the 
compensated segments. Dissimilar to the PEC algorithm, 
instead of using only two correcting patterns [7][8], two 
sets of correcting patterns are used, i.e. {b(nXnY), 
b(nYnX)} and [b(nXpY), b(pYnX)}. Depending on the 
direction (angle) of the line between two detected 
coordinates, one of the correcting pattern pair is assigned 
to the correcting energies b(x)t and b(y){ . For example, if 
the angle of the line between two coordinates is less then 
180 degrees (Fig. 7), then (4) is engaged by the GEC 
algorithm; or if the angle of the line is larger than 180 
degrees then (5) is used.

b(x) = b(nXnY), b(y) = b(nYnX) (4)
6(a) = b(nXpY), b(y) = b(pYnX) (5)

where b(nXnY) is the correcting pattern generated by the 
neural engine which uses nXnY deviation pattern as the 
learning data. Since the cutting mechanism employed in 
the project is controlled to move from +X to -X direction, 
we only need to consider the angles of the coordinates 
which are larger than 90 degrees and less than 270

nXnY deviation



(90 d e g re e s )  -Y mm x 40 steps / mm).

coordinate 1
-X  (180  d e g re e s )+X

(2 7 0  d e g re e s )  + Y

Fig. 7 Depending on the direction (angle) o f the path, two sets of 
correcting patterns can be chosen to assign for the GEC algorithm

degrees. As the angles 01 and 02 (labelled in Fig. 7) are 
detected, this information is normalised into the range of 
[0, 1]. Additionally, this normalised data is passed onto 
the trained neural engine in order to produce the 
correcting energies 5(a), and 5(y)j which can be used to 
create the correcting pattern. Fig. 8 represents this 
procedure.

B. Detection of Correcting Amplitude

Once the correcting patterns are obtained, the next step 
is to determine the amount of correcting amplitude 
required. As already stated when the Z axis of the test rig 
is reset, three system parameters of the SMP are altered 
(refer to Section II). This results in changing the
magnitude of the PFEs (Fig. 9). In order to measure the 
maximum amount of PFEs that can be produced by the 
SMP, the actual length of the deviation is calculated.

C. The Correction Process

As the test rig is set up, the SMP is driven to draw a 
square wave on paper. Four deviation patterns are taken 
to create the learning data sets for training the neural 
network kernel. Besides, four different maximum 
deviations (nXnY, nXpY, nYnX and pYnX) are detected and 
stored in a configuration file. A new frame of the desired 
drawing path is grabbed by the CCD camera and analysed. 
The detected pattern (original path) is then vectorised and 
fed into the trained neural engine. By applying (1), (2) 
and (3), the correcting patterns and amplitudes as well as 
the original detected path are used to create the 
compensated path. This vectorised data is, finally, 
transferred to the controller.

V. EXPERIMENTAL RESULTS

A working prototype is constructed. A number of 
experiments have been carried out to evaluate the 
effectiveness of this algorithm. Fig. 11 illustrates the 
processes of correcting the deviation by applying the GEC 
algorithm using the neural network approach. As 
depicted, almost all the PFEs can be successfully removed 
after one frame of training procedure. Two samples of 
SMP following process and their compensated patterns can 
be seen in Fig. 12 and Fig. 13. The test rig developed by 
the authors is illustrated in Fig. 14.

Fig. 10 depicts an example of calculating two maximum 
deviations caused by the SMP. The vision station is used 
to detect the length of LI (or L2). The actual length of LI 
is then transformed into the machine control unit which is 
40 steps / mm. As an illustration, if LI is measured as 8.9 
mm, the maximum machine control units that can be 
added in the original path in b(nXpY) side is 356 steps (8.9 Fig. 9  Sample o f template following 

using different system setting
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Fig. 8 U se o f a neural engine to compute the compensated pattern Fig. 10 Example o f calculating maximum deviations



drawing path

(a) the intended path and the actual drawing path (with no correction)

(b) th e  lea rn in g  p ro c e s s

(c) th e  in ten d ed  p a th  a n d  th e  c o m p e n s a te d  d raw in g  p a th  (with co rrec tion )

Fig. 11 The processes o f correcting the PFEs using the GEC algorithm

Various experimental results indicate that by relying on 
the algorithms developed the system can deal with any 
regular and irregular paths and produce excellent results, 
much better than a human operator.

VI. CONCLUSION

We have presented attempts to develop a vision based
PATTERN (A) : Regular Path

intelligent control system for compensating errors due to 
flexibility of dynamic structures. The development of the 
system is an innovative approach to flexible material 
processing and has further applications where modeling 
system behaviour characteristics is difficult. Such systems 
can range from controlling a robot moving on a slippery 
surface, driving a car on snow or piloting a boat, etc. 
Furthermore, by relying on the intelligent software engine

500

original path
400

300

200

100

0
■100

compensated
path

-200

-300

-400

■1000 -2000 -30000 -4000 -5000 -6000 -7000 -8000 -9000 ■10000

PATTERN (B) : Irregular Path
1500

1000

compensated 
/  path

5 00

original patho

-500

1000

1500 o -2000 -4000 -6000 -0000 10000 12000

Fig. 12 Two compensated paths generated by the neural engine using the GEC algorithm



PATTERN (A) PATTERN(B)

Fig. 13 Samples o f SMP following using the GEC algorithm

together with the vision system the controller no longer 
needs to rely on accurate position fed-back from the 
sensors (encoders). Transmission backlash, joint 
flexibility, poor feedback and stick slip can potentially be 
compensated for by the controller. While the 
characteristics of the mechanism change over time, such 
as component wear, temperature change, and/or cheaper 
materials used in construction, the controller can 
automatically make appropriate compensation. An 
industrially sponsored programme of work has just 
commenced to develop a commercial machine controller 
based on the developed principle.

It is sensible to anticipate that computer hardware will 
decrease continuously in cost while increasing in 
performance. In contrast, mechanical hardware costs are 
much likely to stay in line with inflation in the future 
years. Consequently, it is reasonable to, where possible, 
make a shift from mechanical hardware to computer with 
the associated intelligent software kernel in automated 
industrial applications.
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Fig. 14 Prototype o f  a vision based intelligent control station
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