
The Nottingham Trent University
Library & Information Services

SHORT LOAN COLLECTION

Date Time Date Time

Please return this item to the Issuing Library.
Fines are payable for late return.

THIS ITEM MAY NOT BE RENEWED
Short Loan Coll May

40 0681768 2

ProQuest Number: 10183060

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com plete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Pro

ProQuest 10183060

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 4 81 06 - 1346

This copy of the thesis has been supplied on condition that anyone who consults it is

understood to recognise that its copyright rests with its author and that no quotation

from the thesis and no information derived from it may be published without the

author's prior written consent.

cfrtû 3

A NODE INTERFACE

FOR

PARALLEL PROCESSING

M.R.HAMMES BSc.

Ph.D Thesis

This thesis is submitted to the Council for National Academic Awards in partial

fulfilment of the requirements for degree of Doctor of Philosophy.

Trent Polytechnic Nottingham,

Department of Computing in collaboration with

the Department of Electrical and Electronic Engineering.

July 1989

ACKNOWLEDGMENTS

The Author would like to thank Dr. D. A!-Dabass for his guidance and support

through the duration of the research work. I would also like to thank the Department of

Computing at Trent Polytechnic for its support of the project and the Department of

Electrical and Electronic Engineering for the use of its facilities.

Finally, I would like to dedicate this work to my wife, Janet, who has been very

patient with me through the course of my research.

A NODE INTERFACE

FOR

PARALLEL PROCESSING

M.R.HAMMES BSc.

ABSTRACT:

A multiprocessor communication scheme for large parallel systems is devised to

offer total interconnectivity which is software programmable. The system combines

associated addressing with data broadcasting along a global bus to virtually eliminate

communications overheads in iterative, or cyclic, applications.

An overall introduction to parallel processing machines is given in chapter 1 and

leads to an extended treatment in chapter 2 of the limitations inherent in a range of

communication techniques currently employed in multiprocessor systems for parallel

processing. A new communication scheme can only be devised successfully after fully

considering the concepts that underlie the range of target applications. Performance

models are then formulated to assess the effectiveness of the new scheme compared to a

conventional common memory system. Only then will the detailed specification of the

design be made. The result is a MUlti Processor Interface (MUPl) to be integrated on a

single semi-custom silicon device to perform all interprocessor communications for a

Multi Interfaced-Node Net for Iterative Environments (MINNIE). Chapter 3 deals with

this process of devising the new scheme. Implementation details of turning the design

into working hardware is carried out in two stages: a 4-node prototype system using the

XILINX programmable device, followed by a full 64 node system using an MCE gate array.

Verification of the effectiveness of the proposed system is dealt with in chapter 5 where,

based upon the extensive use of the system, a new performance model is formulated to

include basic hardware parameters. Numerical examples are given to explore the

performance as the speed of the bus and allocator are increased. Summing up and

suggestions for future work are given in chapter 6.

CONTENTS

Section Page

1 INTRODUCTION 1

1.1 Parallel Computer Structures 4

1.1.1 Pipeline computers 5

1.1.2 Array computers 7

1.1.3 Multiprocessor systems 8

1.1.4 Data Flow computers 9

1.1.5 VLSI computing structures 10

1.2 FLYNN’S Classification 11

2 CURRENT INTERPROCESSOR COMMUNICATIONS SYSTEMS 13

2.1 SIMD - Array Processors 14

2.2 MIMD - Multi-Processors 19

2.3 The Transputer 22

2.4 interconnection Networks 23

2.5 Analysis of Systems 24

3 A NEW NODE INTERFACE UNIT FOR PARALLEL PROCESSING 26

3.1 Concepts 27

3.1.1 Problem Formalism 27

3.1.2 Common Variables 29

3.1.3 Separate Computation and Update 29

3.1.4 Double Copy of Common Variables 30

3.1.5 Distributed Memory 31

3.1.6 Input and Output Registers 32

3.1.7 Associative Addressing 33

3.1.8 Asynchronous and Data Flow Operations 35

3.2 Performance Models 36

3.2.1 Constraints 36

3.2.2 Global Memory System Model 38

3.2.3 MUPI/MINNIE System Model 39

3.2.4 Comparison 39

3.2.5 Illustrative Examples 40

3.2.6 Minimum time and optimum number of 44

processors

3.3 Design Specification 47

3.3.1 Read Unit 48

3.3.2 Write Unit 51

3.3.3 Queuing Unit 53

3.3.4 Node Address Unit 57

3.3.5 Bus-Switch Unit 58

3.4 Modes of Operation 60

3.4.1 Cyclic Mode 60

3.4.2 Data Flow/Asynchronous Mode 65

3.5 Classification of the Interconnection Strategy 68

3.6 Block View of System 70

4 DEVELOPMENT AND IMPLEMENTATION OF THE 72

MUPI/MINNIE SYSTEM

4.1 Four Node Prototype MUPI/MINNIE System 75

4.2 The 64 Node MUPI/MINNIE System 79

4.2.1 Read Unit 83

4.2.2 Write Unit 87

4.2.3 Address Unit 90

4.2.4 Queuing Unit 93

4.2.5 Bus-Switch Unit 96

4.2.6 Peripheral Modules Within MUPI 98

4.2.7 General Array Development Features 99

4.3 Development Support Facilities of MUPI/MINNIE 102

4.3.1 Interface Circuits For MUPI 102

4.3.2 MINNIE Control Program 103

4.3.3 Node Monitor Program 103

4.4 Concluding Remarks Concerning Development 104

5 EVALUATION, RESULTS AND DISCUSSIONS 105

5.1 Measurements of Timing Parameters 106

5.2 A First Order Vector Non-linear System 111

5.3 One node evaluation 113

5.4 Four node evaluation 115

5.5 Eight node evaluation 118

5.6 Discussion of results 120

5.7 A Performance Model with Hardware Parameters 122

5.3 An Example Using the New Model 126

6 SUMMARY, CONCLUSIONS AND SUGGESTIONS 136

FOR FUTURE WORK

6.1 Summary 137

6.2 Conclusions

6.3 Suggestions for Future Work

138

139

Appendix 1 MINNIE Control Program 141

A1.1 Main Menu 142

A1.2 Node Address Menu 143

A1.3 Read/Write Menu 144

A1.4 Listing of Control Program 146

Appendix 2 Node Monitor Program 157

A2.1 Listing of Node Monitor Program 158

Appendix 3 Circuit Diagrams for One Node, Board Buffers, 167

and Board/System Allocator System

Appendix 4 Circuit Diagrams for Windrush and MUPI 172

interface Boards

Appendix 5 Memory Maps for MUPI, Single Node and 175

Master Processor

A5.1 MUPI Memory Map 175

A5.2 Single Node Memory Map 176

A5.3 Master Processor Memory Map 177

Appendix 6 Pinout Specification of the MUPI Device 178

Appendix 7 Xilinx Logic Cell Array 180

Appendix 8 Program Listings for Evaluation of a 184

First Order Vector Non-linear System

A8.1 Listing of Support Procedures 184

A8.2 Listing of Main Procedures for Single Node Evaluation 186

A8.3 Listing of Main Procedures for Four Node Evaluation 186

A8.3.1 Node 00 Listing for 4 nodes 186

A8.3.2 Node 01 Listing for 4 nodes 187

A8.3.3 Node 02 Listing for 4 nodes 187

A8.3.4 Node 03 Listing for 4 nodes 188

A8.4 Listing of Main Procedures for Eight Node Evaluation 189

A8.4.1 Node 00 Listing for 8 nodes 189

A8.4.2 Node 01 Listing for 8 nodes 189

A8.4.3 Node 02 Listing for 8 nodes 190

A8.4.4 Node 03 Listing for 8 nodes 190

A8.4.5 Node 04 Listing for 8 nodes 191

A8.4.6 Node 05 Listing for 8 nodes 191

A8.4.7 Node 06 Listing for 8 nodes 191

A8.4.8 Node 07 Listing for 8 nodes 192

REFERENCES 194

Figures and Tables

Figures Page

1.1 Basic concepts of a pipelined processor. 6

1.2 Data Flow Graph. 9

2.1 Block Diagram of ILLIACIV. 15

2.2 The Central Architecture of the BSP. 17

2.3 Description of the C.mmp System. 20

3.1 Unique and overlapped subsets of variables. 29

3.2 Seperate computation and update phases. 30

3.3 Double copy of common variables with cyclic swapping. 31

3.4 Distributed memory view of nodes. 31

3.5 Communication unit with input and output registers. 32

3.6 Incorporation of address registers in a node. 33

3.7 Performance models, ti =100 and <j>=1.0. 41

3.8 Performance models, t̂ =1000 and <>=1.0. 42

3.9 Performance models, =10000 and <f>=1.0. 43

3.10 Read Unit. 49

3.11 Write Unit. 52

3.12 Queueing Unit. 53

3.13 Queueing System. 54

3.14 Bus-Q System. 55

3.15 Read Unit with Double Registers. 63

3.16 Performance models, (|)=0.9. 64

3.17 Performance models, (j)=0.1. 67

3.18 Block view of MINNIE. 70

3.19 Block view of a PE. 71

3.20 Block view of MUPI. 71

4.1 Block diagram of overall system. 74

4.2 Four node prototype system. 75

4.3 Single node components of four node system. 76

4.4 Components of prototype MUPI for four node system. 77

4.5 NADE signal. 79

4.6 MINNIE rack. 80

4.7 Allocation system for 64 node MINNIE system. 81

4.8 Read unit circuit. 84

4.9 Write unit circuit. 88

4.10 Address unit circuit. 91

4.11 Queueing unit circuit. 94

4.12 Bus-Switch unit circuit. 96

5.1 Results for the First Order Vector Non-linear System. 121

5.2 Graphs for Tg=1 OOOnS and T(=1 OOOnS. 128

5.3 Graphs for Tg=1 OOOnS and T,=1 OOnS. 129

5.4 Graphs for Tg=1 OOnS and T|=1 OOOnS. 130

5.5 Graphs for Tg=1 OOnS and Tj=1 OOnS. 131

A7.1 LCA Device organisation (XC-2064). 182

T ables Page

1.1 Classifications of parallel structures. 11

3.1 Variables used in the Performance Models. 37

3.2 Values of Rm[n for various I/O. 46

5.1 Timing results for individual equations. 114

5.2 Equation mappings for a 4 node system. 115

5.3 Equation mappings for an 8 node system. 119

5.4 Results for the First Order Vector Non-linear System. 120

5.5 Table of conditions which have been evaluated. 127

5.6 Various timing results for efficiency comparisons. 134

Photograph of one complete 8 node PCB 193

CHAPTER 1

INTRODUCTION

1.1 Parallel Computer Structures

1.1.1 Pipeline computers
1.1.2 Array computers
1.1.3 Multiprocessor systems
1.1.4 Data Flow computers
1.1.5 VLSI computing structures

1.2 FLYNN'S Classifications

1

CHAPTER 1

INTRODUCTION

The need to solve very large problems at moderate speed on the one hand, and

relatively smaller problems at very high speed on the other, has lead to the development

of special purpose parallel processing computers.

Parallelism in computing systems is simply executing more than one task at a

time, and clearly there is no limit in principle to the number of concurrent actions. So,

potentially, parallelism offers an arbitrary degree of improvement in computing speed.

There are two distinct phases of operation within a parallel machine, Al-Dabass

[1977], that need to be considered when analysing various architectures. There is an

overhead phase and a computation phase. The overhead phase includes the initialisation

of the machine, the cross communication of data among processors as well as the data

collection at the end of the computation phase. When evaluating the effectiveness of an

architecture both of these phases need to be considered in order to obtain a full picture

of the system under investigation.

When a program is divided into parallel parts and run on a number of machines,

it is clear that if only the computation phase of each machine were compared then the

advantage of one architecture over another would not be completely determined. The

overhead phase is the more important of the two as it is this phase which ultimately

determines the minimum achievable parallel run time, Al-Dabass [1976a]. Hence in

the design of parallel architectures not only must we consider the number of possible

processors but also the communications structure among them.

It is important to recognise that many levels exits where parallelism may be

employed, Zakharov [1984]. The main categories are:

(1) Within Functional Units:

Arithmetic, logical, and other operations can be implemented in bit-serial mode,

parallel by bit groups, or as whole operands concurrently. This category does

not generally affect the way a task/problem is formulated, although it does

determine the speed of execution.

Concurrent access to several interleaved memory units also fall into this

category, Hellerman [1967].

(2) Within Processing Elements:

The most obvious form of concurrency at this level is between different operands

being executed in parallel by different operations.

Another kind of concurrency here is where there is only a single instruction at

one time, but the functional unit to which the instruction refers may be able to

process a stream of operands overlapped in a pipelined fashion, Hockney and

Jessope [1981].

(3) Within Uniprocessing Computers:

With only a single processor there are many activities which can proceed

concurrently. Obvious examples are memory access and I/O.

3

(4) Many Processor Systems:

An obvious category of concurrency is where a computer system contains several

processors, either sharing main memory or not, and intercommunicating by

some means.

1.1 Parallel Computer Structures

Having shown that there are many levels within a system where parallelism can

be utilised this is an appropriate point to introduce parallel architectures which

utilise these various levels.

As their name implies, parallel computers are those systems that emphasis

parallel processing, and can be divided into the following three architectural

configurations, Hwang and Briggs [1985]:

(a) Pipeline Computers

(b) Array Processors

(c) Multiprocessor Systems

A pipeline computer performs overlapped computations to exploit temporal

parallelism. An array processor uses multiple synchronous arithmetic logic units to

achieve spatial parallelism. A multiprocessor system achieves asynchronous

parallelism through a set of interactive processors with shared resources. These three

approaches are not mutually exclusive, most existing computers are now pipelined, and

some also assume an "array" or a "multiprocessor" structure. The fundamental

difference between an array processor and a multiprocessor system is that the

processing elements in an array processor operate synchronously but processors in a

multiprocessor system operate asynchronously.

Other computing concepts to be introduced in this chapter include data flow

computers and some VLSI algorithmic processors. All these new approaches demand

extensive hardware to achieve parallelism. The rapid progress in the VLSI technology

has made these new approaches possible.

1.1.1 Pipeline computers

The basic idea in a pipeline processor is to introduce some simultaneity of

processing by breaking a complex, time-consuming function into a series of simpler,

faster operations. For example, floating-point operations involve exponent handling

and shifts of the fractions as well as an arithmetic operation.

The pipeline concept involves the division of an instruction into a number of

distinct stages, each of which can be allocated to a separate processing unit. Some of the

stages into which an instruction can be divided are:

(a) instruction fetch (IF);

(b) instruction decoding (ID);

(c) identifying the operation to be performed;

(d) operand fetch (OF);

(e) execution (EX); and

(f) returning the result to store.

In a nonpipelined processor, these operations must be completed before the next

instruction can be issued. In a pipelined computer, successive instructions are executed

in an overlapped fashion, as in figure 1.1. Four pipelined stages, IF, ID, OF, and EX,

are arranged into a linear cascade. The two space-time diagrams show the difference

between overlapped instruction execution and sequentially non overlapped execution.

S1 S2 S3 S4 (Stages)

(a) A pipelined processor.

s / \ [\
I , I2 I3 I4 I s

II h Is

1—
(10

H
H

II h h I4 i5

H
H h I 3 I 4 I5

1 2 3 4 5 6 7 8 Cycles

(b) Space-Time diagram for a pipelined processor.

Stages

EX

CF1

ID

IF

Output Output
»

1
I

H
—

(

I 2

I 1 I 2

I 1 I 2

h

I—
(

t\
D

I

I 3

------------------------------------►

(c) Space-time diagram for a nonpipelined processor

Figure 1.1 Basic concepts of a pipelined processor

6

1.1.2 Array computers

An array processor is a synchronous parallel computer with multiple

arithmetic logic units (ALUs), called processing elements (PEs), that can operate in

parallel in a lock step fashion. By replication of ALUs, one can achieve spatial

parallelism. The PEs are synchronised to perform the same function at the same time.

The PEs are usually organised as an array of processors connected in a nearest

neighbour mesh network, i.e. each PE has a direct link with its nearest neighbours.

A typical configuration contains a set of n processors, n memory modules, an

interconnection network and a control unit. The control unit sends the instructions to

the PEs. There is a facility to restrict the number of PEs that would execute an

instruction, hence PEs can be masked at any time. Each enabled PE will execute the

instruction using data obtained from its private memory module. Interprocess

communication takes place via the interconnection network.

The motivation for using a processor array may be illustrated by considering the

addition of two n*n matrices. Here, the n2 additions could be performed completely in

parallel in a single addition time, were there available n2 adders. Another example

might be in pattern recognition systems were each picture element (pixel) of an image

can be represented by an element in an array of processors then a transformation of the

picture can occur in one step rather then a step for each individual pixel.

1.1.3 Multiprocessor systems

Multiprocessor systems categorised as parallel processing systems are

collections of independent processors that work together. They execute different but

related programmes.

A basic multiprocessor system would contain two or more processors of

approximately comparable capabilities. All processors would have access to a selection

of common/global memory modules, I/O channels and peripheral devices. Most

importantly, the entire system must be controlled by a single integrated operating

system providing interactions between processors and their programmes at various

levels. Besides the shared memories and I/O devices, each processor has its own local

memory and private devices. Interprocessor communications can be done through the

shared memories or through an interrupt network.

Multiprocessor architectures are determined primarily by the interconnection

structure to be used between the memories and the processors to facilitate

interprocessor communications.

1.1.4 Data Flow computers

Conventional von Neumann machines are termed control flow computers because

instructions are executed sequentially as controlled by a program counter. Sequential

program execution is inherently slow. To exploit maximal parallelism in a program,

data flow computers were suggested in recent years, Dennis [1980], The basic concept

is to enable the execution of an instruction whenever its required operands become

available. Thus no program counters are needed in data-driven computations.

Programmes for data-driven computations can be represented by data flow

graphs. An example data dependence graph is given in figure 1.2 for the calculation of

the following expression: z = (x + y) * 2

X Y 2

Z

Figure 1.2 Data Flow Graph

A machine-level data flow program can be generated by constructing a data flow

graph for a conventional high- level program, Allen and Cocke [1976], Kuck et al.

[1981]. Note that the data flow graph shows how instructions are dependent on data. It

is meaningless to execute an instruction before all its required data is available.

9

Conversely, once an instruction has finished executing, all other instructions that are

waiting for its output can be safely activated. Execution of the program graph is thus

data driven.

1.1.5 VLSI computing structures

The rapid advent of very-large-scale integration (VLSI) technology has created

a new architectural horizon in implementing parallel algorithms in hardware Fairbairn

[1 982].

Highly parallel computing structures promise to be a major application area for

the million-transistor chips that will be possible In just a few years. Such computing

systems have structural properties that are suitable for VLSI implementation. Almost

by definition, parallel structures imply a basic computational element repeated

perhaps hundreds or thousands of times. This architectural style immediately reduces

the design problem by similar orders of magnitude.

Cost effectiveness has always been a major concern in designing special purpose

VLSI systems; their cost must be low enough to justify their limited applicability.

Special-purpose design costs can be reduced by the use of appropriate architectures

which have a repeating structure.

The use of VLSI technology in designing high- performance multiprocessors and

pipelined computing devices is currently under intensive investigation in both

industrial and educational environments.

1 0

1.2 FLYNN’S Classifications

In 1966 Flynn classified very high-speed computers into four broad categories

which have been widely accepted. Digital computers are classified according to the

multiplicity of instruction and data streams Flynn [1966]. The essential computing

process is the execution of a sequence of instructions on a set of data. An Instruction

Stream is a sequence of instructions as performed by a machine; a Data Stream is the

sequence of data called for by the instruction stream.

Computer organisations are classified by the multiplicity of the hardware

provided to service the instruction and data streams. Flynn’s four machine

classifications are:

This classification is elegant in its simplicity and symmetry, and naturally

encompasses any machine organisation which can be described as executing instructions

which operate on data.

SISD : Single instruction-single data streams

SIMD : Single instruction-multiple data streams

MISD : Multiple instruction-single data streams

MIMD : Multiple instruction-multiple data streams

STRUCTURE CLASSIFICATION

Pipeline Computers MISD

Array Processors SIMD

Multiprocessor Systems MIMD

Table 1.1 Classifications of parallel structures

With these classifications the three main structures introduced in section 1.1

are classified as shown in table 1.1. The pipeline structure is a series of instructions

which act on a single piece of data but, these operations can be overlapped which gives

the impression of an MIMD classification. The category of array processors are

classified as SIMD as the structure is such that an array of data is manipulated by single

instructions. Finally, the multiprocessor systems introduced in section1.1.3 can be

classified as MIMD as they are formed by a collection of independent processing elements

which work together.

1 2

CHAPTER 2

CURRENT INTERPROCESSOR

COMMUNICATION SYSTEMS

2.1 SIMD - Array Processors

2.2 MIMD - Multi-Processors

2.3 The Transputer

2.4 Interconnection Networks

2.5 Analysis of Systems

CHAPTER 2

CURRENT INTERPROCESSOR

COMMUNICATION SYSTEMS

In this chapter particular attention is focused on two of Flynn's classifications;

S1MD and MIMD, as most of the systems to date fall into these categories. By

comparison, pipelining falls into the MISD category, and data flow machines, not being

of a von Neumann architecture, do not fall into any of Flynn's classifications. There is a

section concerned with the Transputer, which is seen to be a major development in the

popularisation of parallel processing concepts. Interconnection strategies and methods

of performance analysis are introduced as they form vital areas of research in

determining the appropriate architecture.

2.1 SIMD - Array Processors

The idea of regular arrays of processors appears to go back to Unger in 1958,

Unger [1958]. The primary reason for this proposal was the problem of pattern

recognition.

The first machine actually designed with an array type architecture was the

Solomon computer, along the lines proposed by Slotnick in 1962, Slotnick et al.

[1962]. The machine was to be made up from a 32x32 array of intercoupled

processors, each operating in a bit serial mode with 4096 words of local storage. All of

the PEs could communicate with their four nearest neighbours leaving the PE's on the

edge of the array for I/O.

14

The main use of the Solomon's design was to be in the solution of linear systems

of equations and in the numerical solution of partial differential equations, principally

by finite differences. However, due to the choice of bit-serial operations and the

technology available a complete machine was never built. A much more powerful

Figure 2.1 Block Diagram of ILLIAC IV.

machine based on the Solomon idea, the llliac IV, Barnes et al. [1968], was proposed,

however, and this overcame many of the principle difficulties. Nevertheless, the llliac

IV did not appear until about ten years later!

The llliac IV system, figure 2.1, was developed at the University of Illinois in

the 1960s and fabricated by the Burroughs Corporation in 1972. The system was to

employ 256 PEs under the supervision of four CUs (control units). Due to cost

escalation and schedule delays, the system was ultimately limited to one quadrant with

64 PEs and one CU.

The llliac IV had its drawbacks and these were mainly due to the basic structure

of memory in relation to the processors, with each PE having direct access only to its

corresponding 2048-word memory. To solve this problem another machine was built

by Burroughs, the BSP (Burroughs Scientific Processor), Jenson [1978], which would

be an outcome of the llliac IV experience but free from many of the difficulties, see

figure 2.2. The main principle difference was simply that all the parallel PE's are

coupled to main memory not in a set of corresponding banks, but through an alignment

network.

The alignment network is such that all the PE's, in concurrent operation, can

access any part of central memory for input operands or placement of results. Because

alignment networks get rapidly more complex as the number of connections increases,

the number of PE's was limited to 16.

The BSP is not a stand-alone computer. It is a back end processor attached to a

host machine, a system manager. The motivation for attaching the BSP to a system

manager is to free it from routine management and I/O functions in order to

1 6

concentrate on arithmetic computations.

Two other machines need to be mentioned here, however, since they too are based

on the original Unger idea, and both have been built. They are the DAP .Reddaway

[1973], and the MPP, Batcher [1980].

Figure 2.2 The Central Architecture of the BSP

The ICL DAP was first delivered in 1980 and consists of a 64x64 array of

single-bit PE's of relatively modest speed. Each PE can communicate with its nearest

1 7

four neighbours and with 4096 single-bit elements in DAP memory. There is thus, a

total of 2 Mbytes of DAP memory, which is part of a larger memory in a host machine of

the ICL 2900 series. The most powerful feature of the DAP is that the problem of

coupling the processor array to memory is largely solved, since data can be structured

both horizontally and vertically, or the structure can be transformed in some

intermediate way by the attached host processor.

The other array computer mentioned, the Goodyear massively parallel processor

(MPP), was due to be delivered about mid 1982. It consists of very large number

(128 x 128) of single-bit PE's, designed all to operate in parallel on concurrent data

streams of the same kind, indeed the principle application of MPP is to concurrently

process the pixels from satellite images.

Each PE in the MPP is considerably more powerful and faster than those in the

DAP, and the level of integration much higher. Nevertheless the PE's are coupled in the

classical way only to the nearest neighbours, since any form of alignment network to

memory was considered (and indeed is) far too difficult to implement.

For improved maintainability, the array has four redundant columns of PEs.

The physical structure of the PE array is 132 columns by 128 rows. Hardware faults

are masked out with circuitry to bypass a faulty column and leave a logical array

structure of 128 x 128.

The machines so far mentioned are all array processors. Array processing

occurs when a group of processors perform the same instruction simultaneously on an

array of data. Sometimes the processors themselves are arranged in an array, but

sometimes they are pipeline processors, Krajewski [1985].

2.2 MIMD - Multi-Processors

In the last several decades many parallel variations of the von Neumann

architecture have been developed. The idea behind them has been to take several

processing units and memory modules and connect them in some network

configuration. One prominent example of such systems is C.mmp, a

multi-mini-processor system developed at Carnegie- Mellon University, Wulf and

Bell [1972]. C.mmp consists of 16 processing elements, modified PDP-11/40E

processors, connected to 16 memory modules via a crossbar switch, Hockney and

Jessope [1981]. It can be shown that, as in any crossbar architecture, there are two

kinds of buses: processor buses and memory buses. These buses are arranged in rows

and columns and the connections, called Switch, are placed at each cross-point.

Each processor has an 8K-byte local memory store that is used for operating

system functions. The shared memory provides a physical address space of 32

megabytes. There is also an interprocessor bus which connects the entire set of

processors which is used for general interprocessor communications.

The crossbar switch permits communication between any memory modules and

any processor. The existence of common memory permits close coupling between

processors and thus reduces communication costs. But the complexity of the

crossbar switch grows quite rapidly with the number of processors and memory

modules involved, making it difficult to build these systems for more than 20 or 30

processors.

Figure 2.3 Description of the C.mmp System.

In some systems each processor is allowed to have private/local memory as

mentioned for the C.mmp architecture, and these PE's are connected to each other by a

common bus. These systems are easy to build for hundreds of processors. But

communication occurs over a common bus, which makes interprocessor communication

very expensive. Hence these systems cannot exploit fine-grain parallelism in an

application.

TRAC, the Texas Reconfigurable Array Computer, Browne [1984], developed at

the University of Texas at Austin, provides a middle ground. TRAC connects a number of

processors to a number of memory elements via a Banyan network, Kruskal and Snir

[1985], which is far less complex than the crossbar switch but provides reduced

connectivity between the processors and memory elements.

20

Clearly the problem with the various architectures lies within the

communication paths. The availability of communication paths that would enable the

exchange of information between processors is the major drawback. The architecture of

the Homogeneous multiprocessor, Dimopoulos [1985], is such that it ignores the need

for every processor to be able to communicate directly to every other processor, as is

the case with crossbar switching. Instead it is claimed that virtually every application

can be formulated in such a way so that each computational subtask would require

information from only its neighbouring subtasks to complete the computation. The

Homogeneous multiprocessor is composed of k (k>=3) processing elements, k memory

modules, a network of k switches isolating the processing elements from each other, and

k I/O processors tied in a local network.

Each processing element owns its own memory module and accesses it via its

local bus. It also has the exclusive use of its associated I/O processor. The local buses

in the system are separated by intervening switches which provide the processors with

the ability to communicate with either one of its two immediate neighbours by

requesting the appropriate switch to close. Also, for I/O or data transfers to/from

distant processing elements, each processing element may utilise the local network.

Such a system as the Homogeneous multiprocessor cannot be thought of as a

general parallel processing machine because of its specific structure which requires

that the applications be written specially for it due to the nature of its interconnection

scheme. The critical part of the system lies within the network linked by the I/O

processors, this controls the long distance communication which under some

applications may be crucial and frequent.

2.3 The Transputer

A transputer is a microcomputer with its own local memory and several links

for connecting one transputer to another transputer.

A typical member of the transputer product family is a single chip containing

processor, memory, and serial communication links.

The transputer architecture simplifies system design by using point to point

communication links. Every member of the transputer family has one or more standard

links, each of which can be connected to a link of some other component. This allows

transputer links of arbitrary size and topology to be constructed.

Each link consists of a serial input and a serial output, both of which are used to

carry data and link control information. The communications are synchronised by a

common clock link for the channel.

There are a number of research projects currently in process which are trying

to utilise the transputer to its fullest capacity. One such project is the Esprit

Reconfigurable Transputer Project which aims to construct a machine containing 64

nodes where one node is typically made up from 18 transputers.

The reconfiguration of the system is achieved by routing the transputer links

through two software-driven VLSI switching circuits.

The ideas behind the transputer are faultless even though limited; major

criticisms being the fixed topology and speed of communications through the links. The

mode of communications is serial and hence the throughput is restricted because of this.

If the same ideas where adapted to a parallel communications scheme rather than the

serial mode then the system developed would have a larger capacity for data throughput.

The ideas put forward in this thesis regarding reconfigurable virtual topologies may be

adapted to form a new communications scheme for such a system as well as others.

2.4 Interconnection Networks

An investigation into present multiprocessor systems is more practically an

investigation of the various connection strategies employed to make up the systems. In

order to obtain a critical analysis of the various strategies employed the most

appropriate approach would be to define what an Interconnection Network (IN) is to be,

Bhuyan [1987]. Any processor/processing element should be able to access every

other within the system. A shared bus system would be the least complex but limits the

number of accesses to only one at a time, whereas with a crossbar switching network

all possible distinct connections can be made simultaneously. Both systems have their

drawbacks, the crossbar becomes too complex for a large number of elements and the

shared bus limits access to one processor. It would seem that the shared bus option

doesn't offer any great solutions, but if it is utilised in the right way in order to reduce

the amount of communication then it may be the most feasible way of connecting a very

large number of elements together in a system. Obviously whatever scheme is employed

the benefits that it offers will only be for a limited number of applications so the aim in

designing an IN would be to increase the number of applications as much as possible

giving a general parallel system.

2.5 Analysis of Systems

There have been various attempts to analyse parallel systems through modelling.

One of the more popular methods is that of Markovian models, Markenscoff [1985] and

Marsan and Gregoretti [1981], used to evaluate configurations of multiprocessors, both

multiple and shared bus systems. Because of the complexity of some configurations

approximate models are applied which have shown to be very accurate for a wide range

of configurations and loads.

Recent proposals and implementations indicate that bus structured

interconnection networks are best suited to multi-microprocessor systems, Levy

[1978], Thurber et al. [1972] and Kaiser [1980]. With this approach many different

solutions for the interconnection network are possible, depending on the location of the

shared memory modules and on the structure of the processing units, but little is known

about the efficiency of each alternative. Hoener and Roeder [1978], presented a simple

probalistic analysis of bus contention in a single bus multiprocessor system where

processors are organised in a priority hierarchy. Willis [1978], considered a

simplified model of multiple bus systems, assuming no queuing for busy resources.

Fung and Tomg [1979], developed a deterministic tool for the analysis of memory

contention and bus conflicts in multiple bus multiprocessor systems. Marsan and

Gregoretti [1981], used an asynchronous model to analyse the performance of a single

bus multiprocessor system with a single common memory module. This analysis was

extended to multiple bus and multiple common memory systems by Marsan and Gerla

[1 9 8 2].

It is difficult in general to prove that any given particular architecture is better

than any other, but relatively easy to show its superiority for a specific application,-

CHAPTER 3

A NEW NODE INTERFACE UNIT

FOR PARALLEL PROCESSING

3.1 Concepts

3.1.1 Problem Formalism
3.1.2 Common Variables
3.1.3 Separate Computation and Update
3.1.4 Double Copy of Common Variables
3.1.5 Distributed Memory
3.1.6 Input and Output Registers
3.1.7 Associative Addressing
3.1.8 Asynchronous and Data Flow Operations

3.2 Performance Models

3.2.1 Constraints
3.2.2 Global Memory System Model
3.2.3 MUPI/MINNIE System Model
3.2.4 Comparison
3.2.5 Illustrative Examples
3.2.6 Minimum time and optimum number of

processors

3.3 Design Specification

3.3.1 Read Unit
3.3.2 Write Unit
3.3.3 Queuing Unit
3.3.4 Node Address Unit
3.3.5 Bus-Switch Unit

3.4 Modes of Operation

3.4.1 Cyclic Mode
3.4.2 Data Flow/Asynchronous Mode

3.5 Classification of the Interconnection Strategy

3.6 Block View of System

most machines to date have been designed with a particular application in mind. A

natural corollary is that in order to obtain an interconnection structure that best meets

the communications overheads of a maximum number of applications its architecture

needs to be flexible in its reconfigurability to offer totally programmable

interconnections among the elements.

CHAPTER 3

A NEW NODE INTERFACE UNIT

FOR PARALLEL PROCESSING

When considering the construction of large parallel systems consisting of 1000's

of processing nodes communicating through a global bus, the need is recognised for an

interface unit (preferably a single silicon chip) to handle ail data and control protocols

between each node and the global bus. The design of the unit is seen to progress through

three stages: conceptional definition of its function and operation, performance

modelling to determine the superiority of the proposed system, and lastly a detailed

design specification of the unit.

3.1 Concepts

3.1.1 Problem Formalism

Consider a vector function F to be executed on a multiprocessor system. It is

divided into N sub-functions F-), F2 ... F^ which are executed in parallel. Sub-function

Fj will compute new values for the vector variable X; such that

Xj(T+1) = Fj(Xj(T) , Xej(T))

where Xj is an nj-vector of variables generated by node i;

Xej is an mj-vector of external variables generated by other nodes in the system

27

and needed in the i-th node to compute F\;

and, Fj is an nj-vector function.

The time index T relates the previous value of variables to the newly calculated

values indexed by T+1.

X:

Xe, =

* \
xe.1 , 1

xe.¡,2

xe.

r ^
f i,1

1,2

i,n.
V J

. X,

X.
1,1

X
1,2

Example: node 5 uses 3 external variables to generate 2 output variables. These

variables and corresponding algorithms are represented as shown below:

Xe.

xe
5,1

xe
5,2

v Xe- y

. Fs =

V

5,1

5,2

J

r
5,1

5,2

v y

28

3.1.2 Common Variables

The collection of variables generated by all N nodes form a pool of common

variables to be accessed for calculating new values. Thus two nodes i and] generate

unique subsets of common variables by accessing overlapped subsets of their own and

other variables as shown below in figure 3.1.

Figure 3.1 Unique and overlapped subsets of variables.

As nodes generate their variables at random, new values will over-write old

ones, sometimes before the old values have had the chance of being used by corresponding

nodes, thus leading to loss of synchrony and erroneous results.

3.1.3 Separate Computation and Update

To overcome the problem of over-writing values before they are used, the update

of common variables is held back until all nodes have completed their computation, and

thus no longer require the old values. Therefore each time cycle will consist of 2 phases:

computation, followed by update, as shown in figure 3.2.

i. Computation phase.

Figure 3.2 Separate computation and update phases.

3.1.4 Double Copy of Common Variables

The time delay that separates computation from updates may not be tolerated in

practice. An alternative method of avoiding loss of synchrony is to provide a double copy

of common variables: old and new, where nodes use the old copy (T) to access external

variables but feed the newly generated values (T+1) into a second copy. Access to the

two copies is then reversed before the begining of the next cycle, i.e. new becomes old,

and the old is over-written with the new.

30

Figure 3.3 Double copy of common variables with cycle swapping.

.5 Distributed Memory

Figure 3.4 Distributed memory view of nodes.

To prevent bottlenecks caused by heavy access to global memory let each node

have its own local memory to store its program, data and its own copy of the subset of

common variables, the latter consisting of Xj and Xei(as shown in figure 3.4.

3.1.6 Input and Output Registers

The subset of local memory that holds common variables will need special

interface facilities to maintain variable integrity and update synchrony. Such a

communications interface would initiate the distribution of new values of variables Xj

generated by each node into the external variable registers Xe's of destination nodes.

Therefore the common variable interface for each node would consist of : output

registers to hold Xj, input registers to hold Xej, and a communication unit Cj.

Figure 3.5 Communication unit with input and output registers.

3.1.7 Associative Addressing

Updating the multiple copies of external variables spread out over the whole

system is carried out in response to a new value being written into an output register

Xj ^. A broadcast protocol is the most efficient way of performing this function when

complemented by associative addressing within the communication unit for the input

registers.

A source node broadcasts the new value of x ^ together with its own address on

the global bus. Nodes that find a match with this address copy the associated data into

their input register. As all destination nodes perform this function at the same time, the

saving in global bus cycles is clearly evident. The incorporation of address registers

Figure 3.6 Incorporation of address registers in a node,

with input registers completes the fundamental structure of the interface unit. The

address vector Aej is an mj-vector which defines the source register addresses for the

external variables vector Xe;, i.e.

Ae. =

ae.i , 1

ae.1,2

ae.

V J

Moreover, Aj is an npvector which simply defines the addresses of the variables

generated by node i, i.e.

r >
i,1

a :¡,2

a.i, n;
V J

In practice all nodes are expected to have the same number of output registers; however,

not all registers within a given node are used in a given application.

3.1.8 Asynchronous and Data Flow Operations

The implied operation of the system considered so far assumes the availability of

all data at the beginning of the cycle which is taken to be synchronised to a regular

external event such as a clock or a master processor start signal. The updating of data is

assumed to have taken place before the start of the new cycle.

The system also needs to operate asynchronously, where the start of execution of

individual node workloads is dependent on the arrival of data from other nodes. Special

features need to be incorporated within the interface unit to cater for this mode of

operation. Apart from a facility to enable the master processor to switch the system

between synchronous and asynchronous modes, the main requirement centres on the

suspension of local processing until data arrives into the relevant input register. An

interrupt line is triggered by the arrival of data and causes resumption of processing.

This completes the conceptual definition of the proposed interface unit. For ease

of reference the unit will be termed MUPI (MUIti Processor Interface) and the resulting

parallel processing system MINNIE (Multi Interfaced-Node Net for Iterative

Environments), where 'iterative' refers to aapplications ranging from real-time

embedded systems to numerical integration for dynamical systems which formed some of

the original work in parallel processing, Al-Dabass [1976b].

3.2 Performance Models

The performance of the new system introduced above can be determined by

comparing it with a system based on a global memory accessed through a single global

bus employing conventional addressing techniques for data transfer, i.e. normal

read/write operations, or a one to one channel between processor and global memory at

any one time.

Consider that both systems contain V global variables which are available for

inter-processor data transfer, i.e. the global memory system would contain V locations

and the MUPI/MINNIE system would contain V output variable locations which are

divided equally among the nodes. Both systems contain the same number of processing

elements, i.e. there are N nodes. In terms of the analysis of the last section, V is the

sum of the number of the Xj variables generated by the N nodes, i.e.

N

V= Y n ,
jL u I
i=1

3.2.1 Constraints

To ease the derivation of a performance model, but without loss of generality, a

number of constraints are imposed. Let the number rrij of variables Xej used by each node

be the same and equal to I (Input variables). Let the number n, of variables Xj generated

by each node to be the same and equal to 0 (Output variables). Therefore with the global

memory system each node is able to read from I (input) locations and write to O

36

 i l ■ - -■ X r J . ■- - v : i A i .

(output) locations. With the MUPI/MINN1E system each node contains I input registers

and O output registers. In both cases the total number of global variables V are

distributed evenly among the nodes in the system i.e. V = N x O.

The model is derived from considering the worst case situation of both systems.

The worst case situation would be that when all of the global variable locations in both

systems are to be utilised, i.e. all O locations would be written to at least once and all I

locations would be read from at least once. For convenience and again without loss of

generality, it shall be assumed that all locations are accessed only once.

A list of all variable names and their meanings which are used in the

performance models are shown in table 3.1.

I Number of Input Registers

O Number of Output Registers

N Number of Nodes in the System

F Function to be executed

t i Execution time on a single processor system

T|g Number of accesses to Global memory system bus

T|m Number of accesses to MINNIE System Bus

tg Execution time on a Global memory system

tm Execution time on MINNIE system

«|> Overheads fraction

T Time taken for single access to system bus

Table 3.1 Variables used in the Performance Models.

3.2.2 Global Memory System Model

In this case the total number of global memory accesses i.e. the total number of

global bus accesses is given by:

Given that a function F can be executed in t-j time units on a single processor

system, the time it takes to execute on the global memory system can be estimated by

dividing the overall solution into two phases: a computation phase and a communications

phase. The time for the computation phase will be assumed to be the quotient of the

single processor time t-j and the number of processors N. Some absorbtion of

communications overheads within computation would normally take place to leave only a

fraction of the total data transfer time to represent the second phase, i.e.

T lg = N(l+0) (3 .1)

tg « V N + N(l+0)(J>T (3 .2)

where X = time taken for a single bus access and <|> is a dimensionless overheads fraction

such that <|> of the bus accesses occur after time t-j/N, i.e. after the computation phase

of function execution.

3.2.3 MU PI/MI NN IE System Model

In the case of the MUPI/MINNIE system the total number of global bus accesses

is reduced because of the employment of associative addressing, i.e. there are no read

operations, just write operations. The actual number of global bus accesses is given by:

T|m = NO (3 .3)

Otherwise, an identical argument to the one above is employed to determine the execution

time for the new system, which will clearly be,

tm= t-|/N + NO^T (3 .4)

3.2.4 Comparison

To compare the two models given by equations (3.2) and (3.4), consider the

worst case situation where there is no absorption of communications within the

computation phase, i.e. all communications occur after computations, giving <(> = 1.0.

Furthermore, the bus access time 1 can be eliminated from both equations by expressing

the execution times t-(, tg and tm in bus access time units. This gives the following pair

of equations for the overall execution time on the two systems:

Global Memory System: tg = t-j/N + N(l+0) (3 .5)

MUPI/MINNIE System: tm « V N + NO (3.6)

3.2.5 Illustrative Examples

Consider three seperate examples where the function F takes t-j =100, t-|=1000

and, ti =10000 time units on a single processor. Let the number of input and output

variables for each node in the systems be l=4 and 0=1, for all three examples. Equations

(3.5) and (3.6) reduce to :

Figures 3.7, 3.8 and 3.9 show the decrease in execution time as the number of

nodes in the system are increased. It must be stressed that when a particular function is

divided into N separate parts these are not usually of equal execution durations;

however, the assumption that they are is valid enough for the comparisons of the two

separate systems. It should also be pointed out that as the function is further divided

into a greater number of sub-functions that these sub-functions may require more or

less communications but again the assumption that all variables are accessed only once

is acceptable for comparison purposes.

Global Memory System: tg = t-j/N + 5N (3.7)

MUPI/MINNIE System: tm = t-j/N + N (3 .8)

Figure 3.7 Performance models, t-j =100 and <|>=1.0.

Time

Figure 3.8 Performance models, ti =1000 and <J>=1.0.

Time

Figure 3.9 Performance models, ti =10000 and <|>=1.0.

As is evident from figures 3.7, 3.8 and 3.9 a function F would take longer to

execute on the global memory system than it would on the MUPI/MINNIE system.

Furthermore, an optimum point is soon reached beyond which any further increase in

the number of processors would only increase the total execution time rather than

decrease it. Note that the corresponding minimum point is lower for the MUPI/MINNIE

system than for a global memory system, even if it is achieved using more processors.

The minimum point occurs because at some point in dividing a function the

communications phase will start to have a greater influence on the overall problem

solution time than the computation phase. This is to be expected from the position of the

variable N in the two terms for computation and overheads in equations 3.7 and 3.8.

3.2.6 Minimum time and optimum number of processors

Equations (3.2) and (3.4) are similar in structure and can be reduced to the

following form:

t = t-j/N + NC (3 .9)

where C is taken to be a constant and is system and function dependent. The forms of C

for the two systems are given in equations (3.2) and (3.4) as

C=(l+0)c|)T for the global memory system, and

C=0<}>T for the MUPI/MINNIE system.

Differentiating equation 3.9 with respect to N gives,

dt/dN = -t-|/N2+ C (3 .10)

equating to zero and rearranging gives

Nopt = V(ti/C) (3 .1 1)

which for the two separate systems yields,

Global Memory System: Nopt = [ti/((l+0)<j>T)]1/2 (3 .12)

MUPI/MINNIE System: Nopt = [^/(O ^T)]^ 2 (3 .13)

Substituting Nopt from equations (3.12) and (3.13) into equations (3.2) and

(3.4) and manipulating gives:

Global Memory System: tmin = 2[<j>T (l+ O)^]1/2 (3 .14)

MUPI/MINNIE System: tmin = 2[<j)T O X ^ 2 (3 .15)

The forms of the equations for the minimum achievable time are such that when

3.14 is divided by 3.15 they give the following ratio for the minimum execution times,

Rmin - [(l+0)/0] l/2 = [1 + I/O]!/2 (3 .16)

A particularly significant result as it is independent of the three variables of

single processor time t-j, bus time T and overheads fraction <|>.

Table 3.2 below shows the increase in the minimum time ratio as a function of

the ratio of the number of input to output registers I/O. The presence of this ratio is to

be expected as the difference between the two systems is due to the elimination of input

accesses I from the new system model. It is clear that the greater the number of data

input registers required in a system, assuming the same number of output registers,

the more powerful does the new system become as compared with an ordinary global

memory system.

I / O 1 2 4 8 1 6

R .
mm 1.4 1.7 2.2 3 4.1

Table 3.2 Values of Rmjn for various I/O.

3.3 Design Specification

The design of the new interface is divided into the following modules:

(1) Read Unit;

(2) Write Unit;

(3) queuing Unit;

(4) Node Address Unit;

(5) Bus-Switch Unit;

(6) Allocation System.

Each unit performs a specific function within the interprocessor

communications process and the global processor control functions.

47

A specification for the design of the unit is developed as follows:

(i) The read unit performs two functions; (a) reading in data from the global bus;

and (b) responding to read commands from the local processor. To allow for

anticipated hardware limitations, the read unit is specified to have four data

registers (D1-D4) to hold data read-in from the global bus, figure 3.10 There

is no conceptional limitations to the number of registers or word lengths.

(i i) When performing the first function, reading data from the global bus, the read

unit is constantly comparing the address on the global address bus with a store of

addresses, input variable addresses (IVAs). The IVAs correspond to the memory

elements that the processor requires to read from in the original global memory

system, and refered to as Aej (Addresses of external variables for node i) in

figure 3.6 earlier.

If a match with one of the IVAs is found then the read unit recognises that its

local processor requires the data currently on the global bus. This data is

copied into its relevant data register, pointed to by the matching IVA, and a

corresponding data flag is set. This flag forms an interrupt signal (enabled by

the processor) which alerts the processor to the arrival of data in a given

register. This is the associative addressing mode introduced earlier, i.e. all of

the IVAs are compared simultaneously.

The interrupt facility enables the processor to overlap processing with input.

3.3.1 Read Unit

48

} I'«- ■ ■ ■- a.*». - va*;-'-•£-■1'- I t 1 - i ~ t - iv >*»♦•*>> ■.••■•E.i

LAB LDB

1
Decoder 1

No Data
I

1
Decoder 2

<■

<

Figure 3.10 Read Unit.

(i i i) IVAs contents are variable and can be altered by the local processor through

decoder 1, figure 3.10. With this flexibility the local processor can vary its

image of the global memory i.e. it can specify which locations it wishes to read

from at any one time.

(i v) When the local processor wishes to access one of the data registers it performs a

normal read operation on it through decoder 2. If the register has not yet

received its data from the global bus, i.e. its corresponding data flag has not been

set, then if the processor has enabled its interrupts it will receive a 'no-data'

interrupt from the read unit. If the processor has not enabled its interrupts then

4 9

when access of a data register is performed there will be no resulting interrupt

and the processor will recieve whatever data is currently resident in the

register. If the data flag is set then the read operation from the local processor

will occur as normal.

If the local processor tries to read a data register while it is being updated via

the global bus then it will receive a 'no-data' interrupt. The data will only be

available when the update is complete. Two separate data register copies may be

accessed at the same instance, one by the local processor, the old copy, and one

by the global bus for updating, the new copy.

If two or more MUPIs recognise the address on the global address bus, i.e. achieve

a match with one of their IVAs then all of the matches would result in the data

being copied simultaneously. As such, interfaces operate independently while

copying data.

(i) The write unit broadcasts data that a local processor has calculated onto the global

bus. Although this unit may be designed to incorporate any number of data

items, this specification will only refer to a system with four write registers,

without loss of generality.

(i i) When a local processor generates a data item required by other processors it

writes the data to its MUPI unit. Decoder 3 (figure 3.11) within the write unit

recognises this and stores the data in an output data register and sets its

associated data flag. The unit, like all other units, is memory mapped so the

processor will access the locations as special addresses within its own memory

map.

(i i i) To write the data onto the global bus the interface unit requires control of it.

The write logic sends a bus request signal to the queuing unit which in turn

replies with a bus acknowledge signal when control of the global bus is granted.

On receiving this signal, the write logic copies the data stored in its output

registers onto the global bus. Only one full register, i.e. one of those with a set

data flag, is recognised and processed at a time. The write logic signals to the

active register to place its contents on the global bus while at the same time the

logic generates the address associated with this register and places this on the

global address bus.

(i v) The address is generated by combining the node address, obtained from the

address unit, with the output data register address which is generated by the

write logic.

3.3.2 Write Unit

51

LAB

i

LDB

Decoder 3

GDB = Global Data Bus
GAB = Global Address Bus

OVD DF
D1 DPI
D2 DF2
D 3 DF3
CIII DF4

<-

■ill
sitpis«w«s®

LAB = Local Address Bus
LDB = Local Data Bus

Queueing
Unit

Address
Unit

I
GDB GAB

Figure 3.11 Write Unit.

While the output data register is placing its contents on the global data bus it

clears its data flag; the write logic then iterates through the other flags to find

the next set flag. The process is repeated on the next full output data register.

(v) The process checks all registers in such a fashion that if data is entered into

register 3, say, while register 4 is active (writing to the global bus) then its

contents can eventually be written onto the global bus within this bus operation.

Once the logic concludes that there are no more full output data registers then it

resets the bus request signal so that the queuing unit can release control of the

global bus.

52

3.3.3 Queuing Unit

The queuing unit performs the function of gaining control of the global bus. The

queuing process is activated by a bus request signal from the write unit (see section on

write unit), and is specified as follows:

(i) The queuing unit simply waits for a signal from the global bus (bus queue

signal) asking the unit if its write unit needs the bus, figure 3.12. If it does,

the queueing unit halts the bus queue signal to prevent its propagation to the next

node, and sends a bus acknowledge signal to the write unit indicating that the

global bus is available for use.

Bus Acknowledge

Bus Request
* QUEUEING

UNIT
*

Bus
Queue
In

Bus
Queue
Out

Figure 3.12 Queueing Unit.

(i i) When the write unit no longer needs the global bus the queuing unit releases the

bus queue signal, i.e. it allows it to continue along the global bus. As such, the

bus queue signal is a round robin signal which travels around the system from

one MUPI to another, and is generated by the Master processor, figure 3.13. i

Figure 3.13 Queueing System.
'■5.

(iii) This is a single tier queuing scheme suitable for a small number of nodes. The

criteria for limiting the number of nodes is the time taken by the queue signal to

propagate round the nodes, - this time having to be 'insignificant' by comparison

to the global bus cycle time, e.g. an order of magnitude smaller. Furthermore, to

enable the global bus to deal efficiently with a large number of nodes, its cycle

time needs to be much smaller than the local processor/memory bus cycle time;

again say an order of magnitude smaller.

i

Practical values would be: 1jxS for local bus cycle; 100nS for global bus cycle;

and 10nS for the propagation cycle across each node of the round-robin signal.

54

For a large number of nodes a hierarchical system of round robin tiers is

introduced to speed up the detection of access requests to global bus. For

instance, at the highest level there will be several groups each of which contain

two devices as shown in figure 3.14. Each group of two devices would have its

own bus queue signal. The groups are also clustered together to form a second

series of groups for the next level and these again would have their own bus

queue signal.

Bus-Q 1 Bus-Q 2

Bus-Q 3

R = Request A = Acknowledge

Figure 3.14 Bus-Q system.

If device NO requests the bus then it would wait for its local bus queue (Bus-Q

1) to reach it. Bus-Q 1 remains in NO and a request signal (R) is sent to the

next level i.e. to Pseudo-Device PO. When PO receives a request signal it waits

for its own bus queue (Bus-Q 3) to reach it. When Bus-Q 3 reaches PO, the

device will hold the bus queue signal and send an acknowledge signal (A) to the

upper level. Both devices in group 1 of the upper level will receive the

acknowledge signal but only the device with the local bus queue {Bus-Q 1) will

act i.e. device NO is granted the use of the global bus.

(v i) When a device no longer needs the global bus, it releases its local bus queue

signal, which drops the request signal to the pseudo-device. The pseudo-device

then releases its bus queue signal and drops the acknowledge signal to the higher

level. When a device is using the global bus another device in another group e.g.

device N3 in figure 3.14 can request the bus; this will eventually result in a

request signal being sent to its pseudo-device (P1) which will wait for PO to

release Bus-Q 3.

(v i i) In a multilevel bus queue system the maximum time that a device has to wait

from first requesting the bus to finally being granted access to it is clearly

proportional to the number of levels, which for a binary tree system with n

devices (2 devices per level) gives

n=2m (3 .30)

i.e. m=log2n (3 .31)

where m is the number of wait units, and

1 unit = time for allocator to travel from one device to the next.

56

_ v _ -A -1 ’’ 'y - iV J :- •- '111- V*¥i, h~ ' .r .J

Whereas with the initial single level allocator system that this was developed

from would result in the maximum waiting time of (n-1) units.

The system for the multi-level allocators shown is based on a binary tree i.e.

two devices at each grouping and this can be extended to contain further devices

then the four shown and also to contain various numbers of devices in the

groups.

3.3.4 Node Address Unit

The node address unit contains a register for the storage of a node address and its

associated logic for the master processor to set up the address and for providing it to

other units within the MUPI. The specification is developed as follows:

(i) Node addresses for all MUPIs are set up by the master processor during the

initialisation stage. A daisy chained line from one MUPI to another provides an

enable signal to the node address unit giving the Master processor access to its

address register. The daisy chained signal is sourced at the master processor and

is clocked from one MUPI to another so that the master can in turn set up the

various node addresses within the system. This signal is necessary as there is no

other means to distinguish one MUPI from another before the addresses are set

up.

(i i) When the master processor clocks the enable signal through to a MUPI it has

complete access of the node address register of that MUPI, both read and write

57

.. . -• v,- •..} ■ ■ * ■ - = r : a «uxx ih r- vv- • ••• - • : V- s «¡»»¿-.v*-«.* .:

operations can be carried out. Once the address of a MUPI has been set then the

master processor either clocks the enable signal through to another MUPI or it

resets the enable to avoid any MUPI units being in an unknown state i.e. their

node address being set but unknown.

(i i i) The master processor in writing to a node address register within a MUPI sets a

flag within the node address unit of that MUPI signifying that the node is an

active node. This is important as not all the nodes in MINNIE will be required

for certain applications.

(i v) On request from the write unit the node address unit will place its address onto

the global address bus combining it with one of the output data register addresses

to form the full data address.

(v) The node address unit also provides the node address to the bus-switch unit, see

section 3.3.5.

3.3.5 Bus-Switch Unit

The bus-switch unit serves the function of switching the global bus through to

one of the local buses to give the master processor access to the local memory modules,

one at a time. This function is required so that the master processor can provide the

local processors with their sections of the program and data for processing. Also, for

the retrieval, if necessary, of data after the execution of the task being processed.

(i) The switch is straight forward in its operation: when the master processor

wishes to access the local memory module of a node, it would place the node

address of that node onto the global address bus with a selection of control

signals that specify switch on. The address will be interrogated by all

bus-switch units of active nodes in the system, i.e. only the nodes whose node

addresses have been set up. When a match is met the switch unit with the match

will place the local processor into a halt state, i.e. suspend its operations, and

switch the local bus through to the global bus.

(i i) Once the switch is active the master processor has access to the local memory

module of that node and performs read and write operations on it as if it were

part of the master processors own memory.

(i i i) The bus-switch is deactivated by one of three methods. The first method, used as

a last resort or as a final operation, is a global reset which will reset the whole

system i.e. all node addresses are reset and all active nodes become inactive. The

second method is to activate the switch of another node, i.e. a different address to

the one presently activated is specified in the master processors bus-switch

operation. The third method is to send a set of control signals that specify

switch off, switching any active switch within the system off.

59

i V ' -A 'Ji itf. I- W . «.'v-v/- \ ■•¿'¿■■•'A' i. iUAjs'.i.*'..*»4

3.4 Modes of Operation

A general purpose multiprocessor system should be flexible enough to operate in

a wide variety of modes. The design specification must include a large degree of

flexibility to enable the user to reconfigure the system to any one of a number of modes.

Two modes of operation are considered to be essential in any general purpose

multiprocessor:

3.4.1 Cyclic Mode

This mode of operation is probably the most utilised mode of the three. Its

strength lies in its ability to execute a system of equations via successive iterations i.e.

the values of the next state are dependent upon the values of the previous state. The

specification for its operation is developed as follows:

(i) A typical set of equations would be as follows:

Equations (3.19) and (3.20) are coupled and would be computed in parallel; they

are linked through the results of the previous computation. These equations can

be implemented on the system specified above with a slight modification to the

(a) Cyclic Mode;

(b) Data Flow/Asynchronous Mode.

x(T+1) = x(T) + Ay(T) (3 .19)

y(T+1) = y(T) + Bx(T) (3 .20)

60

.........................T '■■ ■ ■ “ ' ■ ^ 1

original specification of the MUPI read units. The solution uses two separate

nodes of the system, N1 and N2. Each node will have a store of initial values i.e.

values x(0) and y(0). The first cycle begins and the nodes compute the values

for i=0 i.e. N1 computes x(1) and N2 computes y(1). The values for i=0 are

calculated and then placed onto the global bus to be transferred to the other node

as they will be needed for the next computation cycle, i.e. x(1) will be sent to

N2 and y(1) will be sent to N1. When the computation and data transfers have

been completed this is made known to the master processor which restarts the

system for the next cycle.

(i i) The processors execute the equations in the second cycle in the same manner as

the first except that the previous values are now stored within the read units of

the interfaces. If one of the processors were to compute its new value e.g. N1

computes x(2) and transfer it to N2s read unit, before N2 accessed its read unit

for x(1) then when N2 does eventually access x(1) it results in an error as

x(2) will be in its place.

{ i i i) The solution would be to provide a separate register within the read units for

each value of x in the case of N1 and each value of y in the case of N2. This would

require that the read units contain a large bank of input registers when

computing a large number of values for the system of equations, which is usually

the case.

(i v) A more effective solution is to double-up the input registers so that when the

system is placed in the cyclic mode by the master processor one set of input

registers is accessible by the local processor for reading and the other set is

accessible by the read unit for updating with data from the global bus, see figure

61

iii- A~"

3.15. At the end of each cycle the register sets are swapped so that the local

processor can access the data that was updated in the previous cycle. If it is

required that all the values from all the cycles be kept then this can be achieved

in local memory which can be accessed by the master processor when a specific

number of cycles have been completed.

v) The read unit would still need to behave in the same manner as described

previously, i.e. data is copied into the input registers if the address is matched.

When the local processor reads a data register and there is no data the processor

is not interrupted as this would be pointless i.e. the data will have arrived in

the previous cycle if it was to arrive at all. When the system has completed its

execution in the cyclic mode the master processor will switch this mode off

returning the interfaces to a single bank of input registers which are accessible

by both the local processor and the global bus.

v i) The derivation of a performance model for this mode utilises the fact that a great

deal of the communications occur towards the end of each cycle i.e. after the

computation phase has finished on a given node. Thus on a well balanced

distribution of the workload, there is little chance for the communications to be

absorbed within computations. The model presented in section 3.2 will apply

here, where $ will assume a value near to unity; although a more practical figure

would be <{)= 0.9 due to the presence of some absorption as not all nodes in the

system will complete their computations at the same instance.

62

GAB GCB GDB

Figure 3.15 Read Unit with Double Registers.

(v i i) With an overheads factor of <t> = 0.9 the performance of the proposed system

(MUPI/MINNIE) shows a larger difference to that of the global memory system

given in section 3.2. Hence for the cyclic mode of operation the performance

models for the two systems are as follows:

Global Memory System: tg = t-|/N + 0.9N (I + O) (3.21)

MUPI/MINNIE System: tm = t-|/N + 0.9NO (3 .22)

A plot of these two equations with ti = 100, I = 4 and O = 1 can be seen in figure

63

3.16. It is clear that the gap between the two curves is smaller than that in

figure 3.7. The 10% decrease in the overheads factor has eroded the advantages

of the new system by a small ammount.

Time

Figure 3.16 Performance models, <|> = 0.9.

3.4.2 Data Flow/Asynchronous Mode

Von Neumann processors execute a program by fetching instructions

sequentially through the program counter. The instructions then call the data they need

from memory. Data flow architecture, Dennis [1980], on the other hand, has the data

calling for instructions when the data become available as a result of previous

calculations.

A limited version of the data flow is easily implemented on the MINNIE system.

Local processors enable interrupts which will signal the arrival of data at their input

registers. The interface (MUPI) sends an interrupt signal to its local processor to

initiate a data driven sequence of events. Though careful consideration of programming

a task the advantages of such a mode of operation can be derived.

(i) The interfaces are placed in a non-cyclic mode and interrupts are enabled. Some

overheads are necessary to facilitate the use of processors of a von Neumann

architecture whose actions are triggered by data driven interrupts. Ideally a

separate interrupt line needs to be provided for each input register; however,

this may be unpractical for a large number of input registers. A compromise

interface design is to enable the processor to interrogate the read unit to

determine the interrupt source, i.e. the input register number.

(i i) The interrogation of the input registers of the read unit would occur within the

interrupt routine of the local processor. There are various operations that can

be carried out if data is present at one or more of the registers. One such

operation would be to transfer the data into a table in local memory, - otherwise

it would be overwritten by other data coming in through the same input register.

65

The local processor would clear the data flags so that other data may arrive

through the same registers if necessary. The processor would use data in the

table when all required data elements for a specific operation or instruction

have arrived.

(i i i) All synchronisation of events within such a structure occurs with the structure

itself, i.e. only operations or instructions that have a complete set of operands

will be executed so there is no danger of the task over-running itself. As

mentioned earlier MINNIE is not a purely data flow machine hence there will be

unavoidable overheads which may degrade the performance of certain tasks

which are implemented in this manner.

(i v) The estimated performance for this mode of operation will depend on the portion

of the data communications overheads which is assumed to take place outside the

computation time, i.e. those that cannot be absorbed or overlapped within

computation. This effect is modelled as before through the parameter <j>. Consider

the case where almost total absorption can take place, say <j> = 0.1. The

performance models are:

Global Memory System: tg = t-j/N + 0.1 N (l+O) (3 .26)

MUPI/MINNIE System: tm =t-|/N + 0.1 NO (3 .27)

A plot of these two equations with t j= 100, I = 4 and O = 1 is shown in figure

3.17. Although the gap between the two curves is smaller than in figure 3.7

(setting $ = 0.1 implies almost total absorption of communications within

computations) the superiority of the new system is very evident in achieving a

minimum execution which is less than half that of an ordinary global memory

66

J. 7.■■ **2 - - _ . • i - l - ■ i ['i ■■ ■ /,•, v :' :'L' , s ’ I ' ■ ;

system.

Time

Figure 3.17 Performance models, (> = 0.1.

67

3.5 Classification of the Interconnection Strategy

Flynns classification scheme introduced in section 1.2 does not fully encompase

the interconnection strategy being employed in the newly devised system. The closest

classification of Flynns that would help to classify the scheme would be the MIMD

classification. Flynns classifications only specify the multitude of instruction and data

streams and not the concurrency of these streams nor the interconnection strategies

employed.

Artym and Mason [1988], have introduced a new scheme for interpreting the

coupling techniques for processor systems, the XPXM/C taxonomy. With this taxonomy

the method of processor coupling techniques can be classified with a greater degree of

flexibility. The XPXM taxonomy is based on the multiplicity of simultaneously-active

access paths between processors and memory modules, while XPXC is used to describe

multiprocessor systems which do not employ shared memory.

XPXM is broken down into four categories:

SPSM: single port, single memory,

SPMM: single port, multimemory,

MPSM: multiport, single memory,

MPMM: multiport, multimemory.

It must be stressed that single and multi within the taxonomy do not refer to the

number of coupled ports or memories but rather to the number able to support

simultaneous activity.

68

Likewise XPXC can be broken down into its four component groups which are

used for systems with no global memory, the groups are:

SPSC: single port, single channel,

SPMC: single port, multichannel,

MPSC: multiport, single channel,

MPMC: multiport, multichannel.

From these eight separate groups, the system specified earlier in this chapter

does not entirely fit into one group only. The method of communications being employed

is such that the number of channels used for communication purposes (simultaneously

active channels) is dependent upon the layout of the input address registers within the

read units of the interfaces. This is such that the specification of the system can change

from task to task or within a single task if necessary.

Of the eight different groups of the XPXM/C taxonomy, MPSM and SPSC combined

would represent the new system, i.e. the system contains a single multiport global

memory but the updates occur over a single ported channel. It must be stressed that

this classification does not effectively take account of the mode of communications

associated with the updates over the single channel, i.e. the associative mode of

addressing which reduces the amount of channel requests.

The XPXM/C taxonomy is such that it can be used as a good basis for comparison

of multiprocessors, discussion of their relative parallelism, and help to identify

common structures of the systems.

69

3.6 Block View of System

From the above system specification and the various modes of operation to be

employed a series of block diagrams of the system to be developed can be derived.

The block diagrams shown in figures 3.18, 3.19 and 3.20 show the three main

functional levels of the system specified above. The various levels are the MINNIE

system as a whole, a single processing element and a block diagram of the MUPI.

Figure 3.18 Block view of MINNIE.

70

Figure 3.19 Block view of a PE.

GDB = Global Data Bus LAB = Local Address Bus
GAB = Global Address Bus LDB = Locai Data Bus
GCB = Global Control Bus

Figure 3.20 Block view of MUPI.

71

CHAPTER 4

DEVELOPMENT AND IMPLEMENTATION

OF THE MUPI/MINNIE SYSTEM

4.1 Four Node Prototype MUPI/MINNIE System

4.2 The 64 Node MUPI/MINNIE System

4.2.1 Read Unit
4.2.2 Write Unit
4.2.3 Address Unit
4.2.4 Queuing Unit
4.2.5 Bus-Switch Unit
4.2.6 Peripheral Modules Within MU PII
4.2.7 General Array Development Features

4.3 Development Support Facilities of MUPI/MINNIE

4.3.1 Interface Circuits For MINNIE
4.3.2 MINNIE Control Program
4.3.3 Node Monitor Program

4.4 Concluding Remarks Concerning Development

CHAPTER 4

DEVELOPMENT AND IMPLEMENTATION

OF THE MUPI/MINNIE SYSTEM

The MUPI/MINNIE system is developed through two prototypes, the first of

which is constructed to facilitate the testing of the associative addressing scheme of data

transfers. The first prototype has various limitations imposed upon it as a full system

at this stage would be difficult to realise and would result In a far more intensive

testing scheme.

From the block diagrams in section 3.6 it can be seen that a Master processor is

required to facilitate various control functions such as initialisation and program

transfer. The role of the Master processor is taken by a development system, Windrush

Model 8000 Design Centre, Windrush [1985]. Plugged within the rack of the Design

Centre is a communications board (developed by the author specifically for this

project) which provides the necessary connections to the MUPI/MINNIE system, this

can be seen in figure 4.1 which shows a block diagram of the overall system.

The Design Centre executes a control program to perform the necessary steps in

setting up the various processor nodes within the system and monitoring the execution

of the task. An outline of the control program is given in appendix 1; it shows the

various levels of the menu driven program, a brief description of the program is given

in section 4.3.2.

The communications logic between the Master processor and the MUPI/MINNIE

system is straight forward as it only employs a few buffers and registers for the bus and

various control signals respectively. The transfer of blocks of program code is

achieved by employing a memory paging system within the Master processor, i.e. the

local memory of one nodal processor at a time is accessed within the memory map of the

Master processor. The access is achieved by switching through to the local bus via the

Master processor bus, the global bus of MINNIE and the MUPI switch logic.

its I

PE1

i

& Ì j | __

.' . :

PE2 PE3 PE4

■ ■■ • ' ■ ' I1

llfc lilÉ i;
• :

PE64

Interface
Board

i i i i i

lii&S
Master Processor

; ; ,

I
Comms iiP ?

: V Board * S?: s . 7 s - :s
m i

J Windrush

Figure 4.1 Block diagram of overall system.

74

Each node contains a monitor program in EPROM. The monitor provides the node

with the necessary reset procedures and various sub-routines that may be required by

the executing program. A brief description of the monitor is contained within section

4.3.3.

4.1 Four Node Prototype MUPI/MINNIE System

The four node system is developed with the following limitations imposed upon it

so that testing and evaluation of the associative addressing scheme could be carried out;

(i) only 4 nodes in MINNIE;

(i i) a small number of Input and Output registers for each MUPI;

(i i i) Cyclic mode of operation is not implemented;

(i v) only 4K of local memory for each node, 2K ROM and 2K RAM; and

{ v) there is only a single level allocator signal for the bus allocation scheme.

Global Bus

Interface
Board

Figure 4.2 Four node prototype system.

75

The system is housed in a single eurocard height rack which contains four

processor/node boards, one interface board and its own power supply, which can be seen

in figure 4.2. The interface board provides buffering for the connections to the Master

processor. Each processor board contains the following components which comprise a

single node, see figure 4.3:

(a) 6809 processor,

(b) Asynchronous communications adaptor,

(c) 2K of static RAM,

(d) 2K of ROM,

(e) Prototype MUPI.

i

Backplane connector

■«8Ì&:!Ì li
■

Decoding
togic

6809 processor

£K BAM

aK EPROM

Terminal connector

Asynchronous
I S K s
adaptor *
B K b itrv

Figure 4.3 Single node components of four node system.

76

The prototype MUPI is a collection of a few components which are as follows, see

figure 4.4:

(a) One Xilinx LCA chip,

(b) One 2K EPROM chip,

(c) Four 4x4 register file chips,

(d) five bus transceivers.

Prototype MUPI
!
M N M i

¡11 o> o>
CD Cl)
cc oc
"3- ■<r
X X

S* ' !
.......................

....

Xi l inx
Chip

Tranceiver

2K EPROM

4x4 Reg

4x4 Reg

Tranceiver

Tranceiver

Tranceiver

Tranceiver

Figure 4.4 Components of prototype MUPI for four node system.

The Xilinx LCA (Logic Cell Array) device is in effect a programmable gate array

as it provides the user with the ability to program the various gates and routes using a

CAD package running on an IBM PC. The configuration of the gates and routes chosen is

contained within the Eprom which downloads this data at power-up of the system. One

of the advantages of the LCA is that it is very flexible in that a circuit can be changed in

a matter of minutes. For more information concerned with the LCA refer to appendix 7.

77

As the LCA used has a limited number of pins that could be used for the circuit

itself, a bus transceiver is added which isolates some of the address lines of the Eprom

once configuration is completed giving rise to a few more pins which are used for

various signals. Also, since there is a limit to the number of gates within the LCA a few

register chips are added to act as both Input and Output registers of the MU PI.

All of the circuits were constructed on single height eurocards using wire

wrapping techniques. Although the prototype is limited it can still be used to investigate

the transfer of data by means of associative addressing techniques so that further

modifications can be made to the design before full implementation.

The NAPE Signal: Through various stages of testing using a logic analyser and a terminal

connected to the asynchronous communications adaptor it was necessary to introduce a

new control signal NADE (Node Address Data Enabled). This signal is needed as

continuous errors will occur with associative addressing as the address comparisons

are running continuously and a match may occur when an address is changing rather

then when it is active.

The NADE signal works in much the same way as a chip select line on a memory

chip, i.e. when an interface which has control of the global bus needs to send

address/data it also sends a low NADE signal which tells the other nodes in MINNIE that

the address/data are valid, see figure 4.5 for clarification.

NADE

ADDRESS
&

DATA
Active

Figure 4.5 NADE signal.

The inclusion of the NADE signal was the only result of the testing stages of the

first prototype, once the signal was introduced the transfer of data through the

associative addressing scheme was proven.

4.2 The 64 Node MUPI/MINNIE System

With the associative addressing scheme proven through the first prototype it

was decided to develop a substantial system which could form the basis of a

computational machine to be used for computing the solutions of various parallel

algorithms.

The structure of the 64 node system is not unlike that of the prototype 4 node

system in that the Master processor behaves in the same manner and there is one single

global bus with the same control lines. The topology chosen for the allocation system is

deduced from the physical structure of the system. The system is constructed on 8

separate printed circuit boards each containing 8 nodes, a subsidiary circuit for

allocation purposes and buffering to support the nodes. All 8 circuit boards are housed

in a large rack with a communications interface board and a power supply, see figure

4.6.

The nodes are grouped in sets of eights giving 8 nodes on 8 PCBs. The PCBs were

designed in sections using a PCB CAD package (Smartwork) such that only one node was

layed out and copied. The layout of the board buffering and subsidiary circuits were

added and the various connections between each node and these additions were made.

Figure 4.6 MINNIE rack.

Board 1 Board 2 Board 8

Allocators A1 - A9 Nodes 1 - 64

Fig. 4.7 Allocation system for 64 node MINNIE system.

As the nodes are physically split into groups of eight it seemed a logical solution

to use this as a basis for the multi-level allocator system. The allocator is split into

two levels, one level is for the rack itself and the other level is for each individual

board, i.e. there are nine allocators in total as can be seen in figure 4.7. A further

detailed description of the allocator systems signals is given in section 4.2.4.

The nodes as previously mentioned do not differ substantially from those in the 4

node system. Each node contains the following components:

(a) 6809 processor,

(b) 8K of static RAM,

(c) 2K of ROM,

(d) MUPI,

(e) Expansion port.

81

The expansion port is simply a connector which provides the necessary lines in

order to connect further devices such as an asynchronous communications adaptor or

memory expansion if necessary. The memory of the node is expanded to 8K of static RAM

to facilitate larger portions of program code and data although only half of this memory

will be accessible by the Master processor, refer to section 4.2.5.

In order to contain 8 nodes on a single PCB the MUPI has to be physically as

small as possible, ideally a single integrated circuit. With this in mind the MUPI for

the 64 node system was designed to fit within a single gate array device manufactured by

MCE (Micro Circuit Engineering), designed using their CAD packages on an IBM XT,

MCE [1985a, b, cj.

The gate array available contains 1440 gates and 64 pins and provided the

following constraints:

(a) Only 59 I/O pins available for use.

(b) Only 1050 gates usable.

Because of these restrictions several obstacles has to be overcome in order to fit

the design within the framework provided. A brief design description of each unit in

MUPI together with associated development problems will now follow.

4.2.1 Read Unit

As with all other units within MUPI, this unit is developed with its block diagram

in mind, (refer to section 3.3) as follows:

(i) The requirement is for a system with the ability to access two separate sets of

registers under the control of a cyclic unit. There is also the need for a bank of

input addresses which could be set up and verified by the local processor and

used to interrogate the global address bus for matching addresses. The data

associated with the matching addresses is stored in one of the data registers of one

of the register banks, dependent on the state of the cyclic unit. Also, the local

processor needs to gain access to one of the data register banks so as to read the

data that has arrived from the global bus. The circuit was developed using the

gate array development system (MCE BX software suite); the structure is

shown in figure 4.8.

(i i) The data register banks, R1 and R2 are shown as DR8B4 (Data Registers 8 Bit x

4) i.e. there are only 4 input data registers in each bank. The restriction to 4

registers is due to the number of usable gates for the array.

The input address registers are shown as IAR6B4 (Input Address Registers 6 Bit

x 4), i.e. four registers of length 6 bits. Only 6 bits are required to facilitate

64 unique addresses as each MUPI can only send 1 piece of data through its write

unit; the write unit is fully described in section 4.2.2.

LA = Local Address, GDI = Global Data in, LDI = Local Data In,
LDO = Local Data Out, DFO = Data Flag Out.

Figure 4.8 Read unit circuit.

(i n) As specified in section 3.3.1 the read unit requires data flags which are

associated with each input data register. These data flags are provided in the

small DFSET (Data Flag SET) module of the read unit. There are in effect only 4

data flags which are associated with both banks of data registers as when the data

flags are in operation only one data register bank will be active for both reading

and writing.

The read unit operates in such a manner that if the cyclic unit is set for

non-cyclic mode register bank R1 is active for inputting data from the global

bus and also active for being read from by the local processor. This is done by

the signals from the cyclic unit denoted by REG1, REG2, and SEL which enables

R1, disables R2 and selects R1 for reading through the multiplexer. Also, the CY

signal enables the data flags to be read and to provide interrupts when necessary.

(i v) In the cyclic mode of operation the register banks are alternatively selected and

made active and the data flags are no longer active. Initially R1 is active for

inputting data from the global bus and R2 is selected for being read by the local

processor through the multiplexer. When the present cycle is completed the

next cycle is initiated by an ST (STart) signal from the Master processor which

restarts the system. This ST signal performs a swap within the cyclic unit such

that R1 is no longer active to accept data from the global bus but rather R2 is

and like wise R1 is now selected for reading through the multiplexer and R2 is

not. The continuation of the cycles of the system will perform this operation

within the cyclic unit until the Master processor resets the unit back to

non-cyclic.

85

(v) The inputting of data from the global bus is performed mainly by the IAR6B4

such that this module recognises the various addresses or does not as the case

may be. When the module does match an address (when NADE is true, see section

4.1) with one within its register bank it sends the necessary SELECT signal to

the data banks and the data flag module. The data banks and the data flag module

will input the data from the global bus and set the necessary flag depending on

which of the modules are actively set by the cyclic unit as mentioned above.

(v i) All the modules within the read unit can directly or indirectly be accessed

externally i.e. either by the local processor or the Master processor. These

accesses are necessary to facilitate the various operations contained within the

read unit. The accesses occur through the local and global address buses which

are decoded to give internal address lines denoted by LA (Local Address) and GA

(Global Address). The Input Address register for example is accessed by the

local processor in order to set up the set of input addresses for the read unit

through LA.

86

, ■■ .'» S ,«■. ,,y: ... ■

4.2.2 Write Unit

The Write unit requires three separate modules:

(a) a bank of output data registers which are used to store the data to be

broadcast over the global bus;

(b) a request module which on receipt of a command from the local processor

will send a bus request signal to the queuing unit;

(c) a selection module which receives a bus acknowledge signal from the queuing

unit and performs the function of selecting the data registers in turn for outputting

their data to the global bus with the relevant address.

In figure 4.9 the bank of data registers are depicted by DR8Bn (n x Data

Registers of 8 Bits) and the other modules are shown as REQ (REQuest) and SEL

(SELection).

(i) DR8Bn allows the local processor to write to the registers to store the relevant

data for outputting to the global bus and for the selection module to control the

outputting of the data to the global bus. The inputting of data to the module,

through LDI (Local Data In), is achieved by the local processor performing a

normal write operation to one of the registers which will be selected via the

decoding logic through the Sel In lines of the module and verified as a valid

address by the IN signal. Outputting of data to the global bus, through GDO

(Global Data Out), is performed in much the same way as inputting, i.e. the

relevant register is selected by the selection unit through the Sel Out lines of

87

the data register module and confirmed by the CLK signal which performs the

confirmation of a valid selection.

I f
r
I

SEL

Only one line in
the final design.

/

LDI GDO
—

IN This would be the register
address which would combine

OUT with the node addressto give
a complete address. It is not
required as there is only one

DR8B register in the final design.

u

SET DFP

RES

CLK

REQ

%

I

I
j
11

LDI = Local Data In, GDO = Global Data Out,
RES = Reset, CLK = Clock for Outputing, SEL = Select,
DFP = Data Flag Present, GBB = Global Bus Busy,
E = Local Processor Clk, BACK = Bus Acknowledge,
NADE = Node Address Data Enable, SELOUT = Output Selection.

Figure 4.9 Write unit circuit.

(i i) The REQ module is activated by the local processor during a write operation to

the DR8Bn module as explained above. The REQ module receives the same inputs

as the DR8Bn module so that a data flag associated with the active register can be

88

set and a DFP (Data Flag Present) signal can be sent to both the selection module

and the queuing unit to initiate the queuing process within that unit, refer to the

queuing unit in section 4.2.4. The REQ module also provides the SEL module

with all the data flags so that the SEL module can select one when necessary. The

data flags within the REQ module are selected by the SEL module as mentioned

and hence one of the data registers in DR8Bn is chosen as described above. The

lines used to select one of the data registers are also used to reset the chosen

registers data flag within the REQ module as shown in figure 4.9. Hence, the REQ

module provides the SEL module with the necessary signals so that a choice can

be made of the relevant registers. If necessary the data flags within the REQ

module can be reset via a global reset signal, RES.

i) The SEL module is probably the most crucial of the three modules. It provides

the necessary signals for choosing one of the registers for outputting its data, it

outputs the address, and finally provides the important NADE signal which is

necessary for the global data broadcast operation. The SEL module as mentioned

earlier receives all the data flags as well as the DFP signal which initiates the

whole process. Once the SEL module receives a BUS ACKnowledge signal from the

queuing unit (see section 4.2.4) it performs the operation of selecting one of

the data registers from its set data flag and in the process outputs the address

associated with the register to the global address bus. The address outputted is a

combination of the selection address sent to the DR8Bn module and the node

address which is activated by the node address unit receiving the CLK signal from

the SEL module. Once the data and addresses have been sorted by the CLK signal

the SEL module sends out an active NADE signal which completes the process.

89

Since the data flag associated with an active register will be reset once the

process of data transfer is commenced, i.e. when the elk signal is active, the SEL

module will have the ability to select another register, if there are any

remaining set data flags available as signified by the DFP signal. If any of the

data flags are set then the process of outputting data is repeated. If there are no

remaining data flags selected then the SEL module remains idle and the DFP

signal is no longer active, which signals to the queuing unit that the global bus

is no longer required.

(i v) In the final designs of the write unit for the logic array the number of output

data registers are reduced to only one because of the shortage of available gates

in the array. The operation and design of the unit is as explained above except

for the removal of several selection lines as there is only one register to be

selected. The lines that are no longer necessary are the SEL IN lines and the SEL

OUT lines. The address which is outputted onto the global bus is now only the

node address and not a combination as mentioned above, hence only 6 bits are

required for the global address bus for data transfer purposes.

4.2.3 Address Unit

The address unit is closely linked with the write unit. The write unit requires

the ability to tell the address unit when to output the contents of its address register

onto the global address bus. Moreover, the Master processor needs access to set up the

address, and the switch unit will require a signal from the address unit to confirm the

switch address.

90

GDI GDO

CLK GPU

EIN EOUT

STP COM

SEL ERES

R/W RES

GBB NASET

G/E

NA6B

GDI = Global Data In, GDO = Global Data Out, GAO = Global Address Out,
EIN = Enable In, EOUT = Enable Out, STP = Step for enable,
SEL = Select, R/W = Global Read not Write, GBB = Global Bus Busy,
COM = Node Address Comparison, ERES = Enable Reset, RES ~ Reset,
NASET = Node Address Set, G/E = Global Clock Signal, CLK = Clock
signal from Write Unit.

Figure 4.10 Address unit circuit.

The address unit is comprised of only a single module, NA6B (Node Address 6

Bits), see figure 4.10. A number of signals are grouped together to form the control

signals for setting up the address. To enable the Master processor to set up the node

address registers in each MUPI, it needs to distinguish each MUPI uniquely. The

simplest and most apt method is to route a daisy chained signal from one MUPI to

another. This is known as the Enable signal and is seen in figure 4.10 as Ein and Eout

i.e. it enters the unit and exits it to facilitate the signal for the next MUPI.

91

(i) When the Master processor wishes to set up a series of addresses in various

MUPis it starts by sending a GBB (Global Bus Busy) signal which suspends all

operations within the MUPIs in the system, if there is any activity at all. The

Master then sets the Enable line and sends a STP (Step) signal to all the MUPis

which in effect clocks through the Enable signal by one unit which enables the

first MUPI in the system for the Master to read and write to its address register.

The Master now has the ability to read and write to the address register in a

normal memory access fashion using SEL (Select) R/W and G/E (Global IE

clock), also the global data buses GDI and GDO. When the Master has completed

the task of setting up the address in the first MUPI it can then enable the second

MUPI, if necessary.

(i i) The next MUPI in line would be enabled if the Master processor sends another

STP signal which again clocks the Enable signal through by one unit. Hence,

another address can be set up by the Master at this point. When the Master does

not wish to set up any more addresses, i.e. the number of nodes needed for an

application is reached, the Master would reset the Enable signal by sending a

NERES (Node Enable Reset).

(i i i) When an address has been set up by the Master processor then the node that has

been accessed now becomes an active node within the MINNIE system, and is

indicated via a signal from the address unit, NASET (Node Address Set). The

NASET signal is provided for the start/done module (STADON) which is

responsible for providing the local processor with the necessary signal to start

the computations, refer to section 4.2.6 for the peripheral modules of MUPI.

92

(i v) The address unit also provides the switch module with the node address

comparison confirmation so that the global bus can be switched through to the

local bus to enable the Master to send the code and data to the memory of the local

processor. The address unit recognises the address in on the GDI lines and sends

a comparison confirm signal if there is a match with the data within the address

register. Again as with the read unit this comparison is continuous with a mask

such that if the address has not been set up then there will be no positive

confirmation.

4.2.4 Queuing Unit

The unit is developed as a single module which receives signals from the write

unit to initialise its operation and also receives signals from the global bus to grant and

confirm access of the global bus.

The unit receives two signals from the write unit, DFP and CLK which initialise

and sustain the bus request procedure in turn, see figure 4.11. The DFP signal starts

the queuing process and once the write unit is in control of the global bus when the DFP

signal is no longer present the CLK signal holds the global bus for the remainder of the

present broadcast cycle.

DFP = Data Flag Present, BACK = Bus Acknowledge,
GBB = Global Bus Busy, RES = Reset, NADEI = NADE In,
NADEO = NADE Out, CLK = Clock for outputting ,
BREQ = Bus Request, AIN = Allocator In, AOUT = Allocator Out,
REQ = External Request for Bus, BUSY = MUPI Busy .

Figure 4.11 Queueing unit circuit.

When the queuing unit receives a DFP signal the unit waits for an allocator

signal to arrive through AIN (Allocator In). Once AIN arrives the unit holds it,

i.e. block its transfer through to AOUT unchanged as is the case if there were no

DFP signal. The queuing unit will on receipt of AIN send an external bus request

signal REQ to the queuing logic contained outside of MUPI.

(i i) The queuing logic contained outside of MUPI is required to facilitate the

multi-level allocator system introduced in section 3.5. This external logic

behaves in much the same way as the queuing unit itself. The external logic will

receive only one request at a time depending on which node has control of the

group allocator. The logic then waits for the system allocator and as with the

queuing unit will contain this signal once it arrives. On the arrival of the

system allocator the logic sends a common acknowledge signal to all of the MUPIs

within the group. Only one of the MUPIs within the group will act upon the

Acknowledge as the acknowledge is received by the queuing unit which internally

gates this signal with the request signal sent out. This signal, which is the

result of the gateing, is the BACK signal which is fed to the write unit to provide

the bus grant.

(i i i) When the write unit has completed its use of the global bus: (a) the DFP signal

will no longer be active, (b) the CLK signal will become inactive, (c) which

results in the queuing unit releasing the group allocator, i.e. letting the

allocator continue through to AOUT and to the next MUPI in the group. The

releasing of the allocator gives rise to the external bus request signal being

inactive which results in the external queuing logic releasing the system

allocator and dropping the acknowledge signal sent to the group. The allocators

in the system, i.e. the group and system allocators, are now free to be selected by

other nodes and groups respectively.

95

. V <*'« . .;v. ?» >!*_•. •• • »’ ** »•••* ,<¿-1 - / i "S' 1' ' ' yL’ > j ̂ i z •>. A V I ̂ *li}* p . ;

The bus switch unit, figure 4.12, is required to allow the Master processor to

switch the global bus to the local bus of only one node at a time to facilitate access to

local memories. The operation of the unit is initiated by the Master setting the GBB

signal so that it may obtain control of the global bus. Once the Master has control of the

global bus it will write to the MUPIs with the relevant node address as data and the

address such that it will be addressing all of the switch units at once.

4.2.5 Bus-Switch Unit

NNAEN SW

GBB

NCOM

RES

GD6

Gf\E

SWC

NNAEN == Not Node Address Enabled, GBB = Global Bus Busy,
NCOM = Node Address Compare, RES = Reset,
GD6 = Global Data 6, GNE = Global clock, SW = Switch signal.

Figure 4.12 Bus-Switch unit circuit.

(i) The switch units in the MUPIs perform the required switch operation if and only

if they receive a node address comparison confirmation from their respective

address units and the 6th global data line is set high (1). When these conditions

are true the unit will send a SWI signal to put the local processor into a halt

96
4

......... ■- ■ <-■ ■ s..,,. . ■„ ■ >> «»•_£>* • ‘ i\ ; H i's :? » « !

mode, i.e. data and address buses put into high impedance state at the end of the

present instruction. Once this has happened the unit will set internal switch

signal (SW) to route the global address and data bus through to the local address

and data bus with the direction of the data being dependent upon the state of the

global read/write signal.

(i i) A number of control signals are required to interface the Master processor to

local memory. These control signals are the R/W, /E, and /CS which are all

sourced at the Master processor. They can be routed through MUPI but because

of the limited number of I/O pins this option is not implemented. Instead they

were routed with the identical control lines from the local processor through a

multiplexor outside MUPI. The local processor provides a couple of signals to

indicate its halt state, these lines are used to switch the multiplexor from either

selecting the local or the global control lines through to the memory.

This method of connecting the control lines to the memory is also necessary as

the array would otherwise add considerable delay onto the crucial control

signals. The delays would cause conflicts with memory access.

(i i i) When the Master processor is switched to the memory of a chosen node it

performs normal read and write operations on it to set up program code and data.

On completing this transfer it can either: (a) turn the switch off using the 6th

data line, or (b) turn another MUPIs switch on by specifying another address. S

When switching another unit on, the active unit will be closed automatically as it

will not receive a node address comparison confirmation.

97

.'.sasHi

(i v) When the switch unit of thè MUPi is turned off its local processor is returned to

its normal state with an active reset. This reset signal is needed as conflict

tends to occur because the switch unit does not recognise when the end of a

present instruction has occurred and will hence interrupt it by switching the

buses during the execution of the present instruction. With the reset introduced

this will place the processor into a known safe state.

4.2.6 Peripheral Modules Within MUPI

Four peripheral modules have been developed to facilitate the operation of MUPI.

(i) Two of the modules, the local decoder and the global decoder, provide the

necessary internal decoding of both the local and global addresses and set various

selection lines to allow access to the main modules within the MUPI.

(i i) The third module is STADON (Start/Done) which provides the necessary data for

the local and Master processors to interrogate. After initialising the various

nodes in the system, i.e. address set up and code/data transfer, the Master

processor sends a start command to the MUPIs within the system. The start

command can either be in the form of a single line, i.e. a fast start, or an

addressed location, i.e. a slow start.

The STADON modules within the MUPIs act upon this start command only if their

respective node addresses have been set up. The STADON modules which are

contained within active MUPIs set the start flag within their modules. A local

processor interrogates its STADON module and upon recognising the start signal

98

will commence execution of the portion of program code within memory. On

completing the execution of its subtask a local processor will reset the start flag

within its STADON module. When all of the start flags in the system have been

reset, remembering that the inactive nodes contain reset start flags initially,

the Master processor will receive an interrupt to signify the completion of the

task.

(i i i) Thefourthmodule is actually a collection of modules which together facilitate the

multiplexing of the various buses throughout the MUPI. The multiplexor

modules provide the means for switching the buses to various locations when

necessary. Multiplexors were preferred to internal tristate gates for

connecting internal buses together as tristates would need more gates and be

more complicated to simulate and test. The decoding necessary for selecting the

appropriate paths through the multiplexors is carried out by the local and global

decoders mentioned above.

4.2.7 General Array Development Features

The array was developed in such a fashion as to facilitate simulations at all

levels. Each module was designed with a specific function in mind and simulated on its

own. Because each module was simulated separately the reliability of each module could

be confirmed and problems could be pin pointed accurately.

SIMULATION: With the simulations of the individual modules completed, the units

which MUPI is comprised of were pieced together and simulated as a complete unit to

confirm the interconnections between the various modules. Various problems were

99

brought to light at this stage which mostly concerned the polarity of the various control

signals which interconnected the various modules. The control signal which is sourced

at one module may be active-high when the receiving module expects it to be active-low

and vise versa. Once these minor problems were ironed out the units were assembled

together to form the complete MUPI which was simulated as a single functional unit as it

would be operating in the MINNIE system.

GATE COUNT: Simulations at this stage were successful in that they resulted in all of

the functions operating as designed. A gate count at this stage showed that the total

number of gates exceeded the number available for the array. Several modules within

the system were redesigned to reduce their gate count by paying particular attention to

the number of equivalent gates each functional gate represented. Module functionality

remained the same but some output circuits were different in that they were designed

using negative or mixed logic rather than positive logic as in the first design stage.

INITIALISATION: Various essential points had to be followed in order for the array to

function properly. The most important that was noted throughout the design was that of

initialisation; i.e. all of the modules would need to be initialised, especially those with

memory elements. The initialisation was achieved through the global reset line which

can be seen on the majority of the modules in the diagrams above.

LOADING and DELAY: The effects of signal loading were also noted in that the loading on a

particular gate resulted in an increased propagation delay through that gate. The

increase in propagation delay may result in the function of the gate not behaving as

designed if the timing is a critical factor. During simulations the simulator used (MCE

BXSIM) provided the option of simulating with various delay factors imposed on the

array which would take in account the fluctuations in operating supply voltage,

1 00

temperature and varying batches of silicon used for the production of the array.

PRODUCTION: Once the array was fully simulated the data concerned with the array and

a full list of the test patterns used for simulation was sent to MCE for production and

post production testing purposes. The layout of the array was completed at MCE with no

post layout simulation. The technology used for the array (5 micron CMOS) is such

that the capacitive loading of the routing does not impose a substantial delay on the gates

which would alter the functionality of the array.

When the final production parts were completed at MCE the arrays were

subjected to intensive testing using a functional tester which fed the array with the test

patterns used in the simulations. The tests at this stage resulted in a quality of

prototype devices which were implemented in a test board. Details concerning the

characteristics of the array and a full set of circuit plots of the array can be found in

the Customer Procurement Specification Document CPS [1988].

The test board that was developed was a two node system which would be able to

test the complete functionality of the array. The test board was such that it slotted into

the rack of the Master processor and all of the buffering between the two was contained

on the test board.

The test board resulted in the array being passed as a functional device which

could be used in the construction of the proposed 64 node system.

4.3 Development Support Facilities of MUPI/MINNIE

With the development of the parallel systems mentioned above there needed to be

some means to support them. The means of support were comprised of two interface

circuits which interfaced the main system with the Master processor and two sets of

software which helped to control the system. The software is divided into two separate

sections concerned with the main control program residing in the Master processor and

a node controller in the form of a monitor.

4.3.1 Interface Circuits For MINNIE

The two interface circuits were designed separately as one would sit in the rack of

the Master processor while the other would reside in the rack of the MINNIE system.

The interface circuit which was contained within the Master processor provided the

means for the Master to address the various control lines of the MINNIE system and also

provided the buffering for the address and data buses of the Master to both buffer and

isolate them from the global buses of the MINNIE system when necessary. The board

which contained the circuitry is a half height Eurocard which slotted into the backplane

of the Master rack and provided a link to the MINNIE interface board via a connector.

The MINNIE interface design is such that there is no intervening circuitry

between the incoming 34 way D connector and the MINNIE backplane. The boards main

function is to provide two RS232 connections to facilitate connections of terminals to

any two nodes within the system. The RS232 circuits are such that a connection could

be made between one of these circuits and any chosen node through the expansion ports

provided on the main circuit boards.

102

A set of circuit diagrams of the interface circuitry can be found in appendix 4.

4.3.2 MINNIE Control Program

The Control program is a menu driven program which resides on the Master

processor and gives the user full control of all aspects of MINNIE. The program was

developed to provide a support facility in the development of the parallel system.

The program allows the user to reset, initialise the node addresses, access the

local memories, set cyclic mode, and start the system. All of these operations are

possible with the use of single key commands except where specific node addresses, file

names and memory locations have to be specified. Adetailed description and listing of

the program can be found in appendix 1.

4.3.3 Node Monitor Program

The node monitor program was developed to facilitate the connection of a

terminal to any individual node in the system as well as providing various subroutines

that a subtask running on a node may require.

The monitor was written along the lines of a basic monitor providing various

commands such as memory dump, memory examine and change and jump to user

program. There is also the option to return control to the monitor rather then through

the keyboard to allow the node to function normally. A description of the program

together with its listing can be found in appendix 2.

4.4 Concluding Remarks Concerning Development

The development of the 64 node system concerned a large number of different

aspects. The array, the most important component of the system, was developed with the

operational facilities of the system in mind, while the remaining components were added

to the array to produce the complete system.

The circuits developed for the nodes can be found in appendix 3 which show the

details of a single node of the system and the associated control logic for the printed

circuit boards such as buffering and system allocator circuitry. It should be noted that

the circuits have not been explained in detail as it is assumed that the reader is

familiar with basic microprocessor systems. A number of points deserve a mention,

however: The global reset signal which is sourced at the Master processor resets each

MUPI in the system as mentioned previously; but, the reset signal also resets each

processor in the system at the same time which ensures that all processors are in a

known state. Also included in the node processor circuit is the fast start signal which is

fed to all of the processors as well as all of the MUPIs to allow the system to be

restarted quickly in the cyclic mode.

The various support circuits and software were necessary in the initial stages as

they provided the means to test and evaluate the various aspects of MUPI and MINNIE;

while in the latter stages of the development the support components tended to become

part of the system thus simplifying its use greatly.

CHAPTER 5

EVALUATION, RESULTS

AND

DISCUSSIONS

5.1 Measurements of Timing Parameters

5.2 A First Order Vector Non-linear System

5.3 One node evaluation

5.4 Four node evaluation

5.5 Eight node evaluation

5.6 Discussion of results

5.7 A Performance Model with Hardware Parameters

5.3 An Example Using the New Model

105

CHAPTER 5

EVALUATION, RESULTS

AND

DISCUSSIONS

In evaluating the MUPI/MINNIE system several timing measurements are taken

which are crucial to various aspects of the system. The timings taken are generally

concerned with the passing of data over the global bus and the allocation of the global

bus.

As well as timing measurements, several applications are implemented which

emphasise the Cyclic mode of operation.

5.1 Measurements of Timing Parameters

The parameters that are critical in the operation of the MUPI/MINNIE system

are those concerned with the transfer of data between nodes, the delays associated with

allocation of the global bus, various initialisation processes and online support via the

Master processor.

Initia lisation: The initialisation of the system is a once only overhead i.e. the

system is only initialised once for each separate application. The initialisation

procedure includes the resetting of the system, the setting up of node addresses and the

passing of sections of program code and data to the nodes. A detailed description of a

1 06

typical master program and listing used for initialisation is shown in appendix 1.

The time taken for the Master processor to initialise a full 64 node system is

calculated from the node address setup time and the time taken to pass a 2K block of

code/data to each node.

Node-Address: Using a timer connected to the Master which is started when the

process of setting up the node addresses begins and stopped when this process is finished

a time of 12mS was measured for 8 nodes having their node addresses setup with a

verification step included. This gives an average time of 1.5mS for each node address

setup.

Program and Data: Similarity the time taken for the Master to pass a 2K block of

code/data to any one node was measured in much the same manner i.e. a timer being

activated/deactivated by the Master processor. The time measured for passing the

code/data to one node was found to be 2.6 seconds,- a long time period as the operations

involved include a hard-disk access by the Master processor to retrieve the data to be

passed.

Using the above timing results the total time taken to initialise a full 64 node

system is 2 minutes 46.5 seconds.

S tart/R e-start: As well as engaging the system initially the Master processor also

provides online support i.e. the Master will start the system and restart it when and if

necessary. A restart is needed if the system is operating in the cyclic mode to execute

the next cycle. The overheads associated with the start function are negligible but those

associated with the restart function are of particular importance. Consider a task

running in the cyclic mode of operation, when a cycle is complete the Master is told so

and will restart the system. If the number of cycles is large and the time taken to

restart the system is comparable with a single cycle execution time then the overheads

grow rapidly with the number of cycles. For a full description and detailed listing of the

restart procedure refer to appendix 1.

The time taken by the Master processor to restart the system from first

recieving the done signal was measured to be 52.5mS with the Master using the normal

start operation of gaining control of the global bus and writing to the start registers.

There is a second start/restart option which was included in the design: it is a single

signal common to all the MUPIs in the system and only requires the Master to pulse it

without having to gain control of the global bus, this is known as Fast Start. The time

taken to achieve a Fast Start was measured and found to be 52.5mS. It can be seen that

the Fast start option is of no greater advantage at the moment as the actual procedure of

restarting the system is achieved by an interrupt routine within the Master. What is

needed is a circuit which can be programmed to facilitate the interrupt routine.

Global Bus Access: One of the most critical aspects of system operation during

program execution is the time taken to gain access of the global bus. A selection of

timings have been measured which give the best and worst case time durations for a node

wishing to gain control of the global bus. The signals that have been measured are the

two separate allocator signals and the time taken for a node to use the bus, i.e. the time

the allocator is held by a node which is using the bus. The times are given as follows:

(i) Let Ts be the time taken for the system allocator to propogate through one

pseudo-node. This was measured to be Ts = 1 uS.

(i i) Let x 'b be the time taken for a board allocator to propogate through one idle

node (not requiring the global bus). This was measured to be T 'b = 0.6uS.

(i i i) Let Tb be the time taken for a board allocator to propogate through a busy

node (one which wishes to use the global bus). This was measured to be X*b = 2.15uS

(includes bus use time).

(i v) Let Tw be the time that a node has to wait before it gains access to the global

bus. The minimum value for this time is when the node is granted the use of the bus as

soon as it is requested, i.e.

(v) The worst case for gaining access is when the node has to wait for all other

63 nodes in the system to complete their use of the global bus, i.e. the system allocator

will propogate from one pseudo node to another each time a node is finished with the

global bus, giving:

109

° r . V m a x “ 198.45US

However, in some sense the worst case for a node to gain access is not

completely negative, as it means that the global bus is being fully utilised. But, as it is

unlikely that all of the nodes in the system will want access at the same time, the worst

case situation can be regarded as that when only one node requires access and the

allocators in the system have to travel their maximum signal length before this request

is granted. With this situation the worst case timing can then be given by,

X 'w,max “ 7< Ts + T 'b) (5 .3)

V m a x = 63< + ”tb) <5 -2)

Equation 5.3 is arrived at by considering the board allocator and the system

allocators separatly; i.e. the board allocator has to pass through a maximum of 7 nodes

before it can service the request; similarily the system allocator has to pass through a

maximum of 7 pseudo nodes before the allocator can service the request. This worst case

situation can in some sense be seen to be more undesirable as it indicates that the global

bus is not being utilised when it is needed. Suggested future developments of the

allocation system are given in chapter 6.

Discussion: As mentioned above the time taken for a node to complete its use of

the global bus was measured to be 2.15uS. To increase the throughput of the global bus

this time will have to be reduced, by reducing both the global bus cycle time and the

allocator propogation time.

At the moment the timings taken are to broadcast of one byte of data, while the

design of the interface is such that future developments can incorporate increased data

transfer capacity, i.e. the 2.15uS used to broadcast one byte will not double as the

number of bytes doubles, - it will be less than that as the allocator overhead is only

present once.

In broadcasting multiple byte data, say 3 separate bytes, the time taken to do so

would be a function of two separate factors: the time taken for the MUPI to broadcast

one byte over the global bus, and the time taken for the MUPI to select a new register

for data transfer purposes. These two factors may be overlapped to some degree to

reduce the time taken, i.e. while a piece of data is being broadcast the MUPI can be

selecting the next piece of data. These factors must be considered in future develpments

of the system.

5.2 A First Order Vector Non-linear System

An application has been chosen which emphasises the benefits of MINNIE when

operated in the cyclic mode. The application was manually coded and is not the result of

parallel compilation of a serial program as envisaged for future applications. The

development of a parallel compiler forms a sister project which is nearing completion

here at Trent. The compiler would automatically detects parallelism within a sequential

program and produce code for the MUPI/MINNIE system. A detailed description and

listings of the various node programs are shown in appendix 8.

This application has been devised to demonstrate the advantages gained from

employing the associative addressing scheme. The application is not a specific one but

such a system of equations may occur in the real world, Whiting et al.[1975].

X t(T + 1) = X-i(T) + 10 - X3 (T) Cos[0 .0 7 X 2(T)] + X4(T) (5 .4)

X 2(T+1) = X2(T) + 22 - X3(T) X4(T) SinJO.OSX^T)] + X ^ T) (5 .5)

X3(T+1) = X3(T) + X ^T) + Sin[0.07 X2(T)] (5 .6)

X 4(T+1) = X4(T) +17 - Sin[0.07 X-j(T)] (5 .7)

X5(T+1) = X5(T) + Sin[X3(T)] + Cos[X4(T)} (5 .8)

X 6(T+1) - X6(T) + X2(T) + Sin[0.05 X2(T)] (5.9)

X 7(T+1) - X7(T) + 0.02Cos[X3(T)] (5 .10)

X8(T+1) = X8(T) + X-j (T) Sin[Cos[0.09 X-, (T)]] (5 .11)

Each equation is a function of its own previous value as well as the previous

values of other equations (refer to problem formalism section in chapter 3).

The system of equations was programmed for three different system

configurations to be computed over 256 cycles.

(a) 1 node Asynchronous.

(b) 4 nodes Cyclic.

(c) 8 nodes Cyclic.

These three configurations were chosen to illustrate the advantages gained when

the number of processors are increased in the cyclic mode.

The single node configuration was also executed in the cyclic mode so as to

determine the overheads associated with this mode. Although the overheads of the cyclic

mode can be evaluated from the measured cyclic restart time, confirmation of the

overhead figures would not be inappropriate here.

The following sections explain the programming of the system of equations as

well as the results obtained.

5.3 One node evaluation

The system of equations were programmed in a normal sequential manner

contained within a loop to be repeated 256 times. The results from the equations for X5,

X 6, X7, and Xq are stored in an array within local memory as these are the results

equations. The input registers of the node's MUPI were not setup as there is no global

communications. A detailed description and listing of the node programs are given in

appendix 8.

This configuration was timed at 23.5 seconds for the execution of 256 values.

The timing was achieved by using a timer/counter connected to the Master processor

which recieves a DONE signal from the local processor being utilised.

To confirm the timing of the asynchronous operation the program was aiterred so

as to compute only one equation at a time, i.e. there are now nine single node programs,

113

one for all eight equations and one for each equation alone. From the execution of the

individual equations each equation was timed separatly. The results are shown in table

5.1.

EQUATION X! X2 X3 X4 X5 X6 X7 X8 TOTAL

TIME (sec.) 2.4 3.1 2.3 2.3 4.7 1.6 1.4 6.1 23.9

Table 5.1 Timing results for individual equations.

From table 5.1 it can be seen that the sum total of the individual equations is

approximatley 400mS longer than all eight equations computed together. This difference

is due to the overheads associated with the computation of each equation in its own

separate loop of 256 and the storage of all values in local memory, not just those

associated with the output equations.

To confirm the overheads associated with the cyclic restart mechanism the single

node configuration was executed in the cyclic mode. This required removing the loop

within the program only, as the Master processor would now control the number of

cycles/calculations.

With this mode of operation the total execution time was timed at 37.9 seconds

which is 14.4 seconds longer than the asynchronous configuration. From these figures

the amount of time wasted during a cyclic restart was calculated as 56.25mS which is

comparible to the 52.5mS measured.

It can be seen that over the 256 cycles the cyclic restart overhead of 14.4

seconds is unacceptable as compared with the cyclic execution time of 37.9 seconds, - it

is over a third of the total time.

This only emphasises the fact that the cyclic restart mechanism should be totally

implemented in hardware, this would reduce this overhead by at least a factor of 100 if

not totally diminishing it except for a single TTL gate propogation delay which is

typically 20nS.

5.4 Four node evaluation

With the four node configuration the equations were allocated to the nodes in a

manner such that each node had an intermeadiate equation, either X2, X3, or X4, and

a results equation, either X5, X6, X7, or X8. So as to achieve as close to a balanced

system as possible, i.e. the computations of each node being as small and as equal as

possible, the single node timings in table 5.1 were taken into account to determine which

equations should be paired together.

Node Address Equations Total Time Input Register Addresses

(HEX) (sec.) 0 0 01 1 0 1 1

00 X-|, x 6 4.0 01 02 03 - -

01 X2, X7 4.5 00 02 03 - -

02 X3, x5 8.0 00 01 03 - -

03 X X CO 8.4 00

Table 5.2 Equation mappings for a 4 node system.

The mapping of equations and Input Register Addresses can be seen in table 5.2.

With the pairs of equations in the table are a set of times which are the sums of the pairs

individual times from table 5.1, these times will help to give some indication as to the

total execution time for the four node system. A detailed description and listing of

relevant programs are given in appendix 8.

Input Register Addresses: Consider the equations for node 00. Equations X-j and X6

require between them data from equations X2, X3, and X4 which are located at nodes 01,

02 and 03 respectively. Hence, the first three Input Address Registers for node 00

contain addresses 01, 02 and 03 while the fourth Input Address Register contains no

specific address as this is not used.

The Input Address Registers are set up by each local processor. The local

processor simply writes the necessary address to a particular memory location which is

contained within its MUPI. In this particular design the location of the IVAs in the local

processors memory map are locations $A00C through to $A00F, see appendix 5 for the

complete memory map of the local nodes.

The local processor will have within its local memory a list of IVAs which

correspond to the code to be executed by that node. Both the program code and the IVAs

are set up in the local memories by the Master processor during initialisation. Hence,

associated with each node program is a relevant data file which contains the IVAs for the

node. The data file is just a simple list of addresses, usually four although there may be

more, see chapter 6 for the use of more than four IVAs.

Execution: After initialisation the Master processor sends a START command

to all nodes. All active nodes, i.e. those nodes whose node address has been set up, will

have their START latch set. While this start procedure is occuring each local processor

is constantly reading its respective START location within its MUPI. If, and When, a

node recieves an active START signal from the START location the local processor will

initialise its IVAs. Initialisation of IVAs by the local processor is a simple task of

transfering four bytes of data from local memory to the 1VA registers in its MUPI. The

local processor then jumps to the portion of program code to be executed. On completion

of the portion of code specified the local processor will write a DONE to its MUPI which

will transfer it to the Global Bus.

Old and New Values: As introduced in section 3.4.1 the cyclic mode of operation utilises

two sets of Input Data Registers the first of which holds data from the previous cycle and

the second holds data from the present cycle.

The set of registers which hold data from the previous cycle can only be accessed

via the local bus for reading purposes only, where-as the set of registers which hold

data from the present cycle can only be accessed via the global bus for writing purposes.

At the start of a new cycle the two sets of registers are effectively swapped round

so that the local processor can gain access to the previous cycles data, i.e. cycle T-1,

where as the set of registers which contain data from cycle T-2 are swapped round to be

accessed via the global bus to recieve data associated with the present cycle, cycle T.

Results: With the four node configuration operating as outlined above the

total execution time was timed as approximately 22.9 seconds for 256 cycles.

If the wasted time associated with the cyclic restart mechanism, evaluated from

the single node asynchronous and cyclic configurations, is subtracted from the total

execution time for the four node configuration this would leave a time for computation

and communications. Hence, (22.9-14.4) gives 8.5 seconds for the computation and

communications parts of the task performed. This figure can be compared with the

summed total execution time for equations X4 and X8, allocated to node 03, which is given

as 8.4 seconds, see table 5.2. This comparison is justified as node 03 contains the

largest computational part of the task and will hence complete its portion last.

The comparison of the times given above re-emphasises the fact that there are

excessive overheads associated with the cyclic restart mechanism, it also shows that the

total execution time on a multi-node system is dependent on the node with the largest

computational part,- assuming that there are no holdups due to communications in the

form of forced synchronisation which may put some processors in a wait state while

waiting for data.

5.5 Eight node evaluation

For the eight node configuration each equation was allocated to a separate node.

The mapping of equations and Input Register Addresses are shown in table 5.3.

Node Address Equation Total Time Input Register Addresses

(HEX) (sec.) 0 0 01 1 0 1 1

00 Xi 2.4 01 02 03 - -

01 x2 3.1 00 02 03 - -

02 X3 2.3 00 01 - - - -

03 X4 2.3 00

04 x5 4.7 02 03 - - - -

05 X6 1.6 01

06 X7 1 .4 02

07 X8 6.1 00

Table 5.3 Equation mappings for an 8 node system.

The implementation procedure for the eight node configuration is much the same

as that for the four node configuration, the only difference being that eight nodes rather

than four nodes need to be initialised. A detailed description and listings of all node

programs are given in appendix 8.

The operation of the eight node configuration as mapped above in table 5.3

resulted in a total execution time of 20.6 seconds for the 256 cycles.

If, as for the four node configuration, the wasted time associated with the cyclic

restart mechanism is removed, this would give a time of 6.2 seconds for the computation

and communications parts of the task performed. From table 5.3 it can be seen that the

execution time for equation X8 is the longest at a time of 6.1 seconds which is comparible

with the 6.2 seconds calculated above for the computation and communications parts

together.

5.6 Discussion of results

The results from the 1,4 and 8 node configurations are shown in table 5.4 along

with the execution times less the cyclic restart time.

1 Node 1 Node 4 Nodes 8 Nodes

Asynchronous Cyclic Cyclic Cyclic

Total Execution

Time (sec.) 23.5 37.9 22.9 20.6

Total Execution

Time less Cyclic -------- 23.5 8.5 6.2

Restart (sec.)

Table 5.4 Results for the First Order Vector Non-linear System.

The timings shown in table 5.4 are plotted on the graph shown in figure 5.1.

There are 2 separate curves depicted: curve A, shows the results of the configuration

used in the Cyclic mode. Curve A is similar in appearence to those curves depicted in

chapter 3; however, due to the lack of hardware restart mechanism, a large portion of

the timing figures is due to the overhead of software restart. An estimate of this

overhead is obtained by subtracting the figure for the asynchronous mode from that for

the cyclic mode (both figures for one node), giving a figure of 14.4 sec. Taking this

figure away from all three results for the cyclic mode gives the lower row of results in

table 5.4. These are plotted as curve B in figure 5.1 which is similar in appearence to

the curves depicted in chapter 3 with the communications overheads having a dominant

role with the addition of more nodes to the system.

Figure 5.1 Results for the First Order Vector Non-linear System.

121

5.7 A Performance Model with Hardware Parameters

Experience gained from the extensive use of the system in the last section has

provided insight to derive a performance model to show the effect of the three major

hardware parameters: global bus cycle time, local bus cycle time and the allocator

propogation period.

The total execution time on a multi-node system executing in the cyclic mode is

given by ,

tm = NC{tC + t0 + tr} (5 .12)

where tm = Total Execution Time.

Nc = Number of Cycles.

tc = Total Time due to Computations.

t0 = Total Time for non-absorbed Communications Overheads.

Time taken to perform a Cyclic Restart.

t c : Let T| be the local bus cycle time. Let T|j be the number of machine

cycles performed by node i in executing its workload. Let T |max be the number of

machine cycles for the largest workload. The computation time tc is therefore given by,

t0 = î l maxT| (5 .13)

122

(a) a waiting period for the allocator to propogate, and (b) the global bus cycle time.

t Q : The communications overheads component of equation 5.12 is the sum of:

(i) Allocator Propogation Time: The maximum and minimum time that a node has to

wait before recieving the allocator are given by equations 5.3 and 5.1 respectively as,

X' = 7(T . + X*.)w,max v s b ’

Hence the average waiting time can be given as:

T 'w,av = ° - 5< T 'w,max + V m i n) = 3.5(Xs + X 'b) (5 - 1 4)

To simplify symbols, let Ta be the average (system and board) allocator time, i.e.

Xa = 0.5{ Xs + x 'b)

which reduces equ. 5.14 to

123

(i i) When a node which wishes to use the global bus recieves the allocator and

acknowledge signal, it begins the process of broadcasting the data. The time to carry out

this function was defined as Tb earlier, and has been timed to take 2.15uS.

(i i i) Tb is made up of a period proportional to the global bus cycle time, and the

allocator propogation time, T 'b. Let Tg be the global bus cycle time; and let k be a

constant of proportionality. The total time spent by the allocator signal to cross a

broadcasting node is therefore

Therefore with x 'b = 600nS and Tg = 1000nS and Tb = 2150nS, k is calculated to

(5 .15)

be 2.15 = 0.6 + k or

(i v) Let T0 be the time taken to broadcast one byte. This is made up of waiting time

for the allocator to arrive, t ' , and broadcast time Th , or,
W , civ u

Taking the average {system and board) allocator time Ta to replace Ts and T*b gives,

T0 = 8 Ta + 1.55 Tg (5 .17)

(v) Let r | m be the total number of global bus broadcasts that cannot be absorbed with

computation. The total overheads time t0 is therefore, t0 = T[m T0 .

t r : The cyclic restart component of equation 5.12 is measured as a constant equal to

56mS but when implemented in hardware can be reduced to approximately 20nS.

Hence from equation 5.12, the total execution time of a multi-node system can be

represented completely by its component parts as:

*m ” N c C n ^ X , + Tlm[8 T a + 1.55 Tg J + 20x10'9} (5 .18)

5.8 An Example Using the New Model

Using equation 5.18 a hypothetical example is calculated and the results are

plotted to show the possible execution times which can be achieved as the global bus and

the allocator are speeded up, e.g. Tg = 100nS and Ta = 60nS.

Due to the ability of associative addressing registers to capture data in parallel,

and the provision of 4 input registers in the MUPI/MINNIE system, a conventional global

memory system would require 4 times the number of global bus cycles to transfer the

same quantity of data. The overheads term needs to be multiplied by a factor of 4 when

applying the new model to a conventional system. However, the factor of 4 represents

the maximum theoretical advantage, and the more practicle factor of 3 is chosen for the

comparison.

The example is assumed to contain a total of 3000 machine cycles which are

divided equally between the nodes hence giving T|max = 3000N*1, where N=number of

processing nodes in the system. The example is executed over 256 cycles i.e. Nc=256.

The number of non-absorbed bus cycles, T|m , is set to be 80% of the total, i.e. 0.8N,

where in the simplest case each processor would broadcast one data item and 20% of

which are absorbed within the computation phase. For the conventional system the

communications overheads are simply 3 times this figure, otherwise an identical bus

cycle time and allocator propogation delay are assumed. tg is the multi processor time

using the global memory (conventional) system.

From these considerations the two equations are given as:

MUPI/MINNIE: tm = 256 { 3000 X, N '1 + 0.8 [8 Xa + 1.55 Xg]N } (5 .19)

CONVENTIONAL: tg = 256 { 3000 X, N’ 1 + 2.4 [8 Xa + 1.55 Xg]N } (5 .20)

It is assumed that the inclusion of the cyclic restart overhead is neglibie and

hence can be disregarded for the comparison.

The two equations 5.19 and 5.20 have been evaluated for a range of values for Xg,

Xj and Xa which reflect the timings for the present system and those which can be

achieved with todays technology.

Table 5.5 shows the various conditions which have been evaluated for both

systems.

Tg (nS) T| (nS) (ns> GRAPH

1000 1 000 600 Fig. 5.2

1 000 1 000 60 Fig. 5.2

1000 1 00 600 Fig. 5.3

1000 1 00 60 Fig. 5.3

1 00 1 000 600 Fig. 5.4

1 00 1000 60 Fig. 5.4

1 00 1 00 600 Fig. 5.5

1 00 1 00 60 Fig. 5.5

Table 5.5 Table of conditions which have been evaluated.

Figure 5.2 Graphs for Tg =1000nS and T(=1000nS.

Figure 5.3 Graphs for Tg =1000nS and T| =100nS.

Figure 5.4 Graphs for Tg =100nS and T¡ =1000nS.

Figure 5.5 Graphs for Tg =100nS and T| =100nS.

From the graphs in figure 5.2 it can be seen that the MUPI/MINNIE system

performs better than the conventional system for both situations of Ta= 600nS. All four

graphs show a minimum point for execution time which shows the variation in the

number of processors required to achieve this minimum time. The variation in the

number of processors required is largely due to the difference in the communications

overheads as the computation time is the same for all 4 cases, i.e. the computation time

is dependent on T(which is equal to 1000nS. When the number of processors in the

system are increased the communications overhead increases and the computation time

decreases. When the communications overheads is equal to the computation time the

minimum execution time is achieved. This can be shown in equation 5.21 which equates

the computation time with the communications overheads.

AN '1 -B N (5 .21)

where A = 0.768,

and B = 0.0013.

The constants A and B above are for the MUPI/MINNIE system with T| =1000nS,

Tg =1000nS and Ta =600nS. From equation 5.21 the minimum number of processors

can be calculated as:

N = (A /B)!/2 (5 .22)

For the above conditions this gives the number of processors for the minimum

execution time as 24.3. But, as the number of processors in a system cannot be a

fraction the number can be given as 24. Equation 5.22 is the same as equation 3.11, the

equation for the optimum number of processors which was derived from differentiating

the equation for the total execution time.

132

<•.■■ -.*4 i . ■- S - j U s y s-.vi' fc‘> & £ ■ ’ i M l n S S .t: C .;« , .

As Ta is reduced to 60nS for both systems the communications overheads are

reduced and the minimum execution time is reached later, i.e. more processors are

required, and is actually smaller than when Ta =600nS.

The graphs in figures 5.3 to 5.5 show the variations in the systems when both

the local and global cycle times are reduced. The Tg time is a contributing factor in the

communications overheads where as Tt is a contributing factor in the computation time.

Figure 5.3 shows the systems with a reduced computation time which makes the systems

more sensitive to communications than before, i.e. when T|=1000nS. Figures 5.4 and

5.5 both show a near perfect correlation between the MUPI and conventional systems

for Ta =60nS. This correlation is due to the computation time being the dominant factor

as the communications overheads are neglible here. Since the difference between the two

systems is due to the communications structure this correlation is expected when the

communications overheads are very small or the computational part is very large, i.e. a

large number of processors is required to achieve the minimum execution time.

It should be pointed out here that the minimum execution time is not always the

most desireable factor as the efficiency of the system is very low at this point, i.e. the

inclusion of one more processor here does not give a very high reduction in overall

execution time. In order to illustrate this fact the conditions for the MUPI/MINNIE

system in figure 5.2 with Ta =600nS are assumed. Another assumption which is to be

made is that 2 tasks can be executed on the same system independently of each other, i.e.

the communications paths are isolated, this is an enhancment which is explained in

chapter 6.

The efficiency E of a multiprocessor system is the ratio of the speed-up factor

achieved divided by the number of processors used, i.e.

r t “\

/ n (5 .23)

Table 5.6 shows the execution times and efficiencies for 6, 12 and 24 nodes for

the assumed conditions above.

Number of Processors

6

1 2

24

Execution Time Efficiency

0.1359 94%

0.0796 80%

0.0632 51%

Table 5.6 Various timing results for efficiency comparisons.

The optimum number of processors required for the minimum execution time is

given as 24 which gives an execution time of 0.0632 seconds. If the system in question

has only 24 processors and it is required to execute the task twice, with different

constants say, then the system can be utilised twice with 24 processors. But this would

give a total execution time of 0.1264 seconds where as if both tasks where to be executed

together using 12 processors each the total execution time is given as 0.0796 seconds

i.e. a further reduction of almost 40%.

It can be shown, Al-Dabass [1976b], that the efficiency of a system which is

operating at its minimum execution time is given as 50% as this is the point when

computations is equal to communications.

From this it can be seen that when deciding the number of processors to use in

executing a task a large number of factors have to be considered. When the parallelism

of a task is determined automatically by a compiler the computation time and

communications overheads can only be approximated. This approximation can be

achieved by considering the sizes of the subtasks, i.e. the number of machine cycles, and

the total ammount of communications required. When these approximations are made the

compiler can allocate the various subsections to various processors within the system.

The system may be executing a task at present and so the compiler may only have 5

processors at its disposal when it may require 15. This is where the bottlenecks may

occur as the compiler may not know which is the best course of action, i.e. does it

allocate the subtasks to only 5 processors or does it wait for the present executing task

to finish when it can use 15 processors, it is clear that the area of parallel compilers is

a complex and fertile area for research as there are numerous factors to consider.

CHAPTER 6

SUMMARY, CONCLUSIONS

AND

SUGGESTIONS FOR FUTURE WORK

6.1 Summary

6.2 Conclusions

6.3 Suggestions for Future Work

CHAPTER 6

SUMMARY, CONCLUSIONS

AND

SUGGESTIONS FOR FUTURE WORK

6.1 Summary

Software programmable total interconnectivity at hardware (bus) speed is the

underlying concept explored in this thesis. Associatively addressed input registers at

each node are programmed with source addresses of nodes from which data are required.

Once programmed, these input (destination) registers will recieve the updated contents

of their respective source registers automatically. The update is carried out by a

communication infra structure operating continuously and independently from local node

programs. It takes place dynamically along a global bus triggered by the arrival of new

data in output registers from their local node processors. A two layer mechanism

governs the operation of the communication system: a daisy chain allocator in the form

of hierarchical rings to detect an update request; and a broadcast system to enable input

registers to capture data by multiple nodes simultaneously.

A fundemental design feature was the integration of all the elements of the

communication system on a single silicon device attatched to each node to form an

interface unit (MUPI). A preliminary prototype was constructed and tested first using

the XILINX programmable device with 4 nodes. This was followed by the development of a

semi-custom gate array using the Micro Circuit Engineering (MCE) process for

developing such devices for the education sector.

6.2 Conclusions

(i) The associative addressing scheme employed in the interface device has proved to

be very effective as it allows a single node to transfer a data item in a single bus cycle to

as many nodes as require the data. Clearly the effectiveness of associative addressing

increases proportionally with the increasing number of destinations. In the extreme

case where a data item is to be sent to all 64 nodes, the speed advantage over a

conventional common memory system is a factor of 64.

(i i) A lower bound for the speed advantage is related to the ratio of input to output

registers. At the optimum number of processors for a given application the speed

advantage is related to the square root of this ratio. For the system implemented in this

thesis the ratio is 4 which gives a minimum advantage of 2.

(i i i) The multi-level allocation scheme provided a clear advantage over a single level

daisy chain. This advantage becomes more critical as more nodes are added to the system;

in the 64 node system the maximum waiting time is reduced from 63 to 14 time units.

(i v) Removing all communications tasks away from processors and concentrating

them within an interface unit attached to each node proved to be very successful;

processors are now free from delays associated with bus allocation and data transfer

leading to increased throughput.

(v) The integration of all communication circuits onto a single device proved to be

very successful,- it reduced the component count which considerably simplified the PCB

design and subsequent testing and diagnostics.

(v i) From the results presented in chapter 5 it is clear that the speed gain of parallel

systems is not only application dependent, but may seem eratic as the number of

processors is increased. This is due to the increase in communications which causes the

total execution time to increase. Faster communications will normally enable more

processors to be used to achieve lower execution time before the optimum is reached.

6.3 Suggestions for Future Work

The system may be further developed as follows:

(i) An automatic hardware restart mechanism is needed to eliminate the delay

inherent in software restart.

(i i) The allocation system can be improved to use a binary tree. This would decrease

the delays experienced by nodes trying to access the global bus.

(i i i) Data bus width can be easily increased to provide higher data throughput.

(i v) Local processors can be upgraded to more powerful 16, 32 or 64 bit devices with

on-chip floating point arithmetic units.

(v) The interface circuitry to the master processor may be enhanced to provide extra

functions such as real time clock for the restart mechanism.

(v i) Error detection and correction for the global bus is needed. Parity bits may be

added to enable the master processor to detect errors which can then be reported to the

139

sending node. Sending nodes may then re-broadcast the data; while recieving nodes

would not recognise data with incorrect parity.

(v i i) Direct communications with nearest neighbours may be provided.

(v i i i) Processor and interface unit may be integrated on a single device to provide

simpler construction of very large systems.

(i x) Complement the broadcast concept with a read facility, where a node may

request to read the output of another without having to be pre-programmed to recieve it.

Appendix 1

MINNIE Control Program.

The program was written on the Master processor using the 6809 programming

language PL9, see section A1.4. Various checks are incorporated to prevent faulty

operation, e.g. the user will not be able to start the MINNIE system if no node addresses

have been set up.

If the MINNIE system is put into the cyclic mode then the number of cycles is

prompted for and at the end of each cycle the Master processor automatically restarts

the next cycle unless all cycles have been completed.

There is also the facility for the user to start the allocators of the system using a

single key command or clearing them, again with the use of a single key.

The menus in the program begin with the main menu which contains all of the

basic control commands such as start, reset, cycle, etc. while there are two options

which lead to other menus. One of the two options is to set up the node addresses within

the system and the other is to provide access to local memories for reading and writing

code/data via the keyboard or a file on the Master processor system.

The MINNIE control program that runs on the Master processor is composed of a

selection of menus. The menus with a short explanation on their use follow:

A1.1 Main Menu

************ MAIN MENU ************

(1) SET UP NODE ADDRESS

(2) READ/WRITE CODE TO NODE

(3) SEND ALLOCATOR TO MINNIE

(4) RESET

(5) SLOW START

(6) FAST START

* (7) CYCLE 00

(8) CLEAR ALLOCATOR

(Q) QUIT

SELECT OPTION BY PRESSING CORRECT KEY

This is the main menu of the program which allows the user the ability to access

any of the major functions that are neccessary in using the MINNIE system. The menu

selections are chosen by single key strokes and two of the options refer to other menus,

(i) SET UP NODE ADDRESS, and (ii) READ/WRITE CODE TO NODE.

The only other option within the main menu which may need some explanation is

that of CYCLE. When the user wishes to use the cyclic mode this selection would be

made. If the user is not already in the cyclic mode, this is known by the * not being on

the menu as shown, then a prompt asking for the number of cycles will appear. The

user would insert the number of cycles which will now appear alongside the CYCLE

142

menu option. When the system is executing the number of cycles will be seen to be

decreasing as each cycle is completed.

A1.2 Node Address Menu

************ MENU ************

(1) READ ADDRESS 0 0

(2) WRITE ADDRESS 0 0

(3) GOTO NEXT NODE

(4) RETURN TO MAIN MENU

PRESENT NODE NUMBER 1

SELECT OPTION BY PRESSING CORRECT KEY

Again, with all of the menus the use of the Node Address menu is straight

forward. The first thing that should be noted is the PRESENT NODE NUMBER as this

tells the user which physical node the user has access to for reading and writing to the

node address register within its MUPI. The system always begins with physical node

number 1 and increases through the nodes of the system as GOTO NEXT NODE is selected.

When a node is chosen it automatically becomes active even if no address has been

specified hence the user shall have to be certain how many nodes are required for a

particular application.

When the user wishes to read the node address the selection READ ADDRESS is

chosen, this will display the address on the menu next to this selection. The writing of

a node address is again straight forward, the selection is made which will prompt the

user for an address which should be in the range $00 - $3F which facilitates addresses

0 to 63. At the moment there is no function to check the address to see if it has already

been chosen for another node. This checking feature is another fool proof procedure

which may be implemented in the future.

When all of the neccessary addresses have been set up the user would select the

RETURN TO MAIN MENU option which would reset the node address enable signal so as no

other nodes are activated.

A1.3 Read/Write Menu

The read/write menu is used to allow the user to read and write sections of code

and/or data to any of the active nodes within the MINNIE system. The first selection

that the user should make is that of node address. When this selection is made the user

is prompted for a node address within the range $00 - $3F. When the user inputs an

address this effectivly switches the local memory (4K only) of the node chosen through

to the memory map of the Master processor.

********* READ/WRITE m e n u *********

(1) NODE ADDRESS 0 0

(2) FILE NAME FRED

(3) READ CODE

(4) WRITE CODE

(5) DUMP CODE

(6) EXAMINE AND CHANGE CODE

(7) RETURN TO MAIN MENU

SELECT OPTION BY PRESSING CORRECT KEY

The user nows has several options to choose from. The local memory can be

dumped onto the screen with the choice of DUMP CODE which will ask for two addresses

which are the start and end addresses for dumping purposes. It must be mentioned here

that the mapping of the local memory into the Masters memory map is not a direct

relationship. The addresses do not correspond directly, the addresses are offset such

that address $D000 in the local memory is actually address $A000 in the Masters map.

Hence to dump addresses $D000 - $D0FF of the local memory onto the screen the user

should specify addresses $A000 - $A0FF,

Another option the user can choose is that of memory examine and change. This

option will again prompt the user for and address from which to start from

remembering the same offsets as mentioned for the dump option. The user can then

access the local memory byte by byte to examine or change it. A full selection of

commands associated with this option will be displayed on the screen.

The two selections which will probably be used more often are the READ CODE

and WRITE CODE options. These options will act upon a file which the user specifies

with the FILE NAME option. The file name that the user specifies should not contain an

extension as the control program assumes an extension of BIN for the file and DAT for

the data.

The user wishing to pass a section of program code to a node would specify the

node address, the code file name and would then select the WRITE CODE option which will

write the BIN and DAT files associated with the selected files name to the selected node.

The code is placed at address $D000 of the local memory and the data is placed at address

$DF00 of the local memory.

The user wishing to retrieve any data etc. from the node would first specify the

node address then would specify the file name. The option READ CODE would be chosen

which would result in the local memory section $D000 - $DFFF being placed in the

selected file on the Master processor giving it an extension of BIN.

A1.4 Listing of Control Program

/* MINNIE CONTROLLER 7

CONSTANT MAP START = $0D,
MAP_FINISH = $FA,
NOTHING = $00,
ONE =5 $01,
YSAVE = $1000,
YSAVE_HI = $10,
YSAVE LO = $00,
NODE_NUMBER = $08,
STACK INIT $1FFD;

AT $FF8A : BYTE MEMAP;
AT $E000 : BYTE RESG, START, GBB, EOUT, NACL, ASTA, RAM;
AT $E080 : BYTE STP, NAA, SW, DUMDUM, ST, REN, CY, NCY;
AT $C840 : BYTE FCB, ERROR(319);
AT $CC14: INTEGER LINE_POlNTER;

ORIGIN = $2000; STACK = *;

GLOBAL REAL NOT_MAIN, NODE, MA1, FN, D, SAD, EAD, DM, NOT_RW, C, A, S:
BYTE R_ADDRESS, W_ADDRESS, CHAR, ERFLAG, KEYCHAR, CN, RW_CHAR,
SA(30), LO(30), FILE(15), NA_C(2), LO_D(30), S_ADDRESS(5),
E_ADDRESS(5), DU(20), Q, COUNT, M(10), SADE(5), DUMMY, N_ADDRESS;

BYTE LOAD "LOAD,AOOO,";
BYTE LOAD_DATA "LOAD.AEFD,";
BYTE SAVE "SAVE,";
BYTE DUMP "DUMP,";
BYTE MEM_EXA "MEM,";
BYTE ADDR ",A000,AFFF";
BYTE EXT ".DAT";
BYTE COMMA

INCLUDE O.TRUFALSE.DEF;
INCLUDE O.IOSUBS.LIB;
INCLUDE O.TERMSUBS.LIB;
INCLUDE O.HEXIO.LIB;
INCLUDE O.REALCON.LIB;
INCLUDE O.STRSUBS.LIB;

PROCEDURE SAVE_GLOBAL_POINTER;
GEN $10, $BF, YSAVE_HI, YSAVE_LO;

ENDPROC;

PROCEDURE RESTORE_GLOBAL_POINTER;
GEN $10, $BE, YSAVE_HI, YSAVE_LO;

ENDPROC;

PROCEDURE PUTF(REAL N): BYTE BUFFER(20);
PRINT ASCII(INT(N), .BUFFER);

ENDPROC;

PROCEDURE DO_COMMAND(BYTE .STRING): BYTE COUNT, KHAR, BUFFER(80);
COUNT = 0;
REPEAT

KHAR = STRING(COUNT);
IF KHAR = 0 THEN KHAR = $0D;
BUFFER(COUNT) = KHAR;
COUNT = COUNT +1;

UNTIL KHAR = $0D;
LINE_POINTER = .BUFFER;
GEN $34, $20; /* PUSH Y 7
CALL $CD4B; /* FLEX "DOCMD" */
GEN $35, $20; /* PULL Y 7
ERROR = ACCB;

ENDPROC;

PROCEDURE DELAY;
CURSOR 24,22;
PRINT "PRESS ANY KEY TO CONTINUE";
CHAR = GET CH AR_NOECHO;
CURSOR 00,19;
ERASE_EOP;

ENDPROC;

PROCEDURE FIRQ;
REST ORE_GLOBAL_POlNTER;
IF S = 1 THEN

BEGIN
IF C = 1 THEN

BEGIN
CN = CN -1;
CURSOR 37,15;
PUT„HEX„BYTE(CN);
IF CN = 0 THEN S = 0;
ELSE

BEGIN
GBB = ONE;
RAM = ONE;

147

END;
ELSE S = 0;

END;
IF S = 0 THEN

BEGIN
GEN $35, $7E;
GEN $36, $7E;
GEN $35, $02;
GEN $34, $01;
GEN $37, $7E;
GEN $34, $7E;
CURSOR 70, 00;
PRINT "DONE”;
CURSOR 61, 21;

END;
ENDPROC;

PROCEDURE READ_ADDRESS;
CURSOR 22, 20;
ERASEJEOP;
R__ADDRESS = NAA AND $3F;

ENDPROC;

PROCEDURE WRITE_ADDRESS;
CURSOR 22, 20;
ERASE„EOP;
CURSOR 22, 20;
PRINT "ENTER ADDRESS : ";
RETRY_4:

CURSOR 56,20; PRINT " "; CURSOR 56, 20;
CHAR = G ET_H EXABYTE;
IF ERFLAG THEN GOTO RETRY_4;
IF CHAR AND $C0 THEN GOTO RETRY_4;

W_ADDRESS = CHAR;
NAA « W_ADDRESS;
R_ADDRESS = NAA AND $3F;
A - 1;

ENDPROC;

PROCEDURE NEXT_NODE;
CURSOR 22, 20;
ERASE_EOP;
IF NODE = NODE_NUMBER THEN

BEGIN
REN = ONE;
EOUT = ONE;
STP = ONE;
EOUT = NOTHING;
NODE = 1 ;

ST = ONE;
RAM = NOTHING;
GBB = NOTHING;

END;

r DISABLE FIRQ WHEN FIRQ FINISHED */
/* PULS A,B,DP,X,Y,U */
/* PSHU A,B,DP,X,Y,U */
/* PULS A : CC TO A V
r PSHS CC : NEW CC */
r PULU A,B,DP,X,Y,U */
r PSHS A,B,DP,X,Y,U */

148

ELSE
BEGIN

STP = ONE;
NODE = NODE + 1;

END;
ENDPROC;

PROCEDURE STATUSJJPDATE;
CURSOR 55, 06;
PUT_HEX_BYTE(R_ADDRESS);
CURSOR 55,08;
PUT_H EX_BYTE(W_AD DRESSS);
CURSOR 55,15; PRINT " ";
CURSOR 55, 15: PUTF NODE;

ENDPROC;

PROCEDURE NODE_ADDRESS;
REN = ONE;
EOUT = ONE;
GBB = ONE;
RAM = ONE;
STP = ONE;
EOUT = NOTHING;
NODE = 1;
HOME; ERASE_EOP;
CURSOR 22 ,01;
PR INT ********** *** NA MENU .************»»,
CURSOR 27, 06;
PRINT "(1) READ ADDRESS";
CURSOR 27, 08;
PRINT"(2) WRITE ADDRESS";
CURSOR 27, 10;
PRINT "(3) GOTO NEXT NODE";
CURSOR 27, 12;
PRINT "(4) RETURN TO MAIN MENU";
CURSOR 27, 15;
PRINT "PRESENT NODE NUMBER";
NOT__MAIN = 1;
A G A IN J : STATUSJJPDATE

CURSOR 22, 20;
PRINT "SELECT OPTION BY PRESSING CORRECT KEY";

RETRY_2: CHAR = GET CH AR_NOECHO
IF CHAR

CASE '1 THEN READ_ADDRESS;
CASE '2 THEN WRITE_ADDRESS;
CASE '3 THEN NEXT_NODE;
CASE ’4 THEN NOT_MAIN = 0;

ELSE GOTO RETRY_2;
IF NOT_MAIN = 1 THEN GOTO A G A IN J;
REN = ONE;
NODE = 0;
GBB = NOTHING;
RAM = NOTHING;

ENDPROC;

^ * R/W P R O C E D U R E S /

PROCEDURE CODE_NODE_ADDRESS;
CURSOR 22, 20;
ERASE_EOP;
PRINT "ENTER NODE ADDRESS [$00 - $3F] :
RETRY_6:

CURSOR 56, 20; PRINT " "; CURSOR 56,20;
CHAR = GET_HEX_BYTE;
IF ERFLAG THEN GOTO RETRY_6;
IF CHAR AND $C0 THEN GOTO RETRY_6;

N_AD DRESS = CHAR;
SW = $00;
D = 0;
T:

D = D + 1 ;
IF D < 32 THEN GOTOT;

SW = N_ADDRESS OR $40;
CURSOR 55, 04;
PUT_HEX_BYTE(N_ADDRESS);

ENDPROC;

PROCEDURE FILENAME;
CURSOR 22, 20;
ERASEJEOP;
PRINT "ENTER FILE NAME : ";
INPUT(.FILE,9);
CURSOR 55, 06;
PRINT " " ;
CURSOR 55, 06;
PRINT .FILE;
STRCOPY (.SA, .SAVE);
STRCOPY (.LO, .LOAD);
STRCOPY (.LO_D, .LOAD_DATA);
STRCAT (.SA, .FILE);
STRCAT (.LO, .FILE);
STRCAT (.LO_D, .FILE);
STRCAT(.LO_D, .EXT);
STRCAT (.SA, .ADDR);
FN = 1;

ENDPROC;

PROCEDURE READjCODE;
CURSOR 00, 19;
ERASE_EOP;
IF FN = 1 THEN

BEGIN
DO_COMMAND .SA;
CURSOR 00, 19;
ERASE_EOP;

END;
ELSE

BEGIN
CURSOR 24, 20;
PRINT "FILE NAME NOT SPECIFIED";
DELAY;

END;
ENDPROC;

PROCEDURE WRITEjCODE;

150

CURSOR 00, 19;
ERASEJEOP;
IF FN = 1 THEN

BEGIN
DO_COMMAND .LO;
DO_COMMAND .LO_D;
CURSOR 00, 19;
ERASE„EOP;

END;
ELSE

BEGIN
CURSOR 24, 20;
PRINT "FILE NAME NOT SPECIFIED";
DELAY;

END;
ENDPROC;

PROCEDURE START_ADDRESS;
CURSOR 22,20; ERASE_EOP;
PRINT "ENTER START ADDRESS :";
INPUT (.S_ADDRESS,4);
CURSOR 55, 04;
PRINT .S_ADDRESS;
SAD = 1;

ENDPROC;

PROCEDURE END_ADDRESS;
CURSOR 22,20; ERASE_EOP;
PRINT "ENTER END ADDRESS :";
INPUT (.E_ADDRESS,4);
CURSOR 55, 06;
PRINT .E_ADDRESS;
EAD = 1;

ENDPROC;

PROCEDURE DUMP_MEMORY;
IF SAD = 1 .AND EAD = 1 THEN

BEGIN
STRCOPY (.DU, .DUMP);
STRCAT (.DU, .S_ADDRESS);
STRCAT (.DU, .COMMA);
STRCAT (.DU, .E_ADDRESS);
HOME; ERASEJEOP;
DO_COMMAND .DU; DM = 1;
CURSOR 22 ,20; ERASE_EOP;

END;
ELSE

BEGIN
CURSOR 22, 20; ERASEJEOP;
PRINT "ADDRESSES NOT SPECIFIED COMPLETELY

END;
DELSY;

ENDPROC;

PROCEDURE DUMP_CODE;
D_CODE_AGAIN:

MA1 = 1; DM = 0; NOT_RW = 1;
HOME; ERASE_EOP;
CURSOR 20, 01;
PRINT ************* DUMP ROUTINE ******

CURSOR 22, 04;
PRINT "(1) START ADDRESS”;
CURSOR 22, 06;
PRINT "(2) END ADDRESS";
CURSOR 22, 08;
PRINT "(3) DUMP MEMORY";
CURSOR 22, 10;
PRINT "(4) RETURN TO READ/WRITE MENU";
IF SAD = 1 THEN BEGIN CURSOR 55, 04; PRINT .S_ADDRESS; END;
IF EAD = 1 THEN BEGIN CURSOR 55, 06; PRINT ,E__ADDRESS; END;

AGAIN_3:
CURSOR 22, 20;
PRINT "SELECT OPTION BY PRESSING CORRECT KEY";

RETRY_7:
CHAR = GETCHAR_NOECHO;
IF CHAR

CASE ’1 THEN START_ADDRESS;
CASE '2 THEN END_ADDRESS;
CASE '3 THEN DUMP_MEMORY;
CASE '4 THEN NOT_RW = 0;

ELSE GOTO RETRY_7;
IF DM = 1 THEN GOTO D_CODE„AGAIN;

ELSE IF NOT_RW « 1 THEN GOTO AGAINJ3;
ENDPROC;

PROCEDURE MEM_CODE;
MA1 = 1 ;
HOME; ERASE_EOP;
CURSOR 02, 02;
PRINT "ENTER START ADDRESS :
INPUT(.SADE,4);
STRCOPY(.M, .MEM_EXA);
STRCAT(.M, .SADE);
DO_COMMAND .M;
DELAY;

ENDPROC;

PROCEDURE READ_WRITE_CODE;
GBB = ONE;
RAM » ONE;
N_ADDRESS = $00;
NOT_MAIN = 1;

MENU_AGAIN_1:
MA1 = 0;
HOME; ERASE_EOP;
CURSOR 22, 01;
PRINT "******** READ/WRITE MENU ********»;
CURSOR 27, 04;
PRINT "(1) NODE ADDRESS";
CURSOR 27, 06;
PRINT "(2) FILE NAME";
CURSOR 27, 08;
PRINT "(3) READ CODE";
CURSOR 27, 10;
PRINT "(4) WRITE CODE";
CURSOR 27, 12;
PRINT "(5) DUMP CODE";
CURSOR 27, 14;
PRINT "(6) EXAMINE AND CHANGE CODE";
CURSOR 27, 16;

PRINT "(7) RETURN TO MAIN MENU";
CURSOR 55, 04;
PUT„HEX__BYTE(N_ADDRESS);
IF FN = 1 THEN

BEGIN
CURSOR 55, 06;
PRINT .FILE;

END;
AGAIN_2:

CURSOR 22, 20;
PRINT "SELECT OPTION BY PRESSING CORRECT KEY";

RETRY_5:
CHAR = GETCHAR_NOECHO;
IF CHAR

CASE ’1 THEN CODE_NODE_ADDRESS;
CASE ’2 THEN FILENAME;
CASE’3 THEN READ_CODE;
CASE ’4 THEN WRITE_CODE;
CASE '5 THEN DUMP_CODE;
CASE '6 THEN MEM_CODE;
CASE 7 THEN NOT_MAIN = 0;

ELSE GOTO RETRY_5;
IF MA1 = 1 THEN GOTO MENU_AGA!N_1;
IF NOT_MAIN = 1 THEN GOTO AGAIN_2;
SW = $00;
RAM = NOTHING;
GBB « NOTHING;

ENDPROC;

; * ;

PROCEDURE ALLOCATOR: BYTE DUM;
DUM = 0
REPEAT

DUM = DUM + 1;
UNTIL DUM = 50;
NACL = NOTHING;
NACL = ONE;
ASTA = ONE;
ASTA = NOTHING;

ENDPROC;

PROCEDURE CLEAR_A;
NACL = NOTHING;

ENDPROC;

PROCEDURE RE_SET;
RESG « ONE;
D = 0;
T:

D = D + 1;
IF D < 10 THEN GOTOT;

RESG = NOTHING;

S = 0;
ENDPROC;

PROCEDURE S_START;
GBB = ONE;
RAM = ONE;
ST = ONE;
RAM = NOTHING;
GBB = NOTHING;
S . 1;
CURSOR 70, 00;
PRINT ;
CURSOR 61, 21;

ENDPROC;

PROCEDURE FjSTART;
START = ONE;
START = NOTHING;
S = 1 ;
CURSOR 70, 00;
PRINT ;
CURSOR 61, 21;

ENDPROC;

PROCEDURE CYCLE;
GBB = ONE;
RAM = ONE;
IF C = 0 THEN

BEGIN
CY = ONE;
C — 1 ;
CURSOR 21, 23;
PRINT "ENTER NUMBER OF CYCLES (HEX) ";
RETRY_3:

CURSOR 51, 23; PRINT M CURSOR 51, 23;
CHAR = GET_HEX_BYTE;
IF ERFLAG THEN GOTO RETRYJ3;

CN = CHAR;
END;

ELSE
BEGIN

NCY = ONE;
C = 0;

END;
RAM = NOTHING;
GBB = NOTHING;

ENDPROC;

PROCEDURE QUIT;
CURSOR 22, 20; ERASE__EOP;
CURSOR22, 21 ;
PRINT "ARE YOU SURE (Y/N)";

RETRY_QUIT:

CHAR = GET CH AR_NOECHO;
IF CHAR

CASE 'Y THEN Q = ONE;
CASE 'N THEN Q = NOTHING;

ELSE GOTO RETRYjQUIT;
ENDPROC;

M A IN M E N U P R O C E D U R E '

PROCEDURE MAIN_MENU;
R_ADDRESS = NOTHING; W_ADDRESS = NOTHING;
Q = NOTHING; S = 0;

MAIN_MENU_P:
HOME; ERASEJEOP;
CURSOR 22, 01;
PR IN T "************ MAIN MENU ******
CURSOR 27, 03;
PRINT "(1) SET UP NODE ADDRESS";
CURSOR 27, 05;
PRINT "(2) READ/WRITE CODE TO NODE";
CURSOR 27, 07;
PRINT "(3) SEND ALLOCATOR TO MINNIE";
CURSOR 27, 09;
PRINT "(4) RESET";
CURSOR 27, 11;
PRINT "(5) SLOW START";
CURSOR 27, 13;
PRINT "(6) FAST START";
CURSOR 27, 15;
PRINT "(7) CYCLE;
IF C = 1 THEN

BEGIN
CURSOR 25, 15;
PRINT "*";

END;
CURSOR 27, 17;
PRINT "(8) CLEAR ALLOCATOR";
CURSOR 27, 19;
PRINT "(Q) QUIT";
CURSOR 37, 15; PUT_HEX_BYTE(CN);
CURSOR 20, 21;
PRINT "SELECT OPTION BY PRESSING CORRECT KEY";
IF A = 1 .AND S = 1 THEN

BEGIN
GEN $1C, $BF;

END;
RETRY_1:

IF S = 0 THEN
BEGIN

CURSOR 70, 00;
PRINT "DONE";
CURSOR 61, 21;

END;
CHAR = GET CH AR_NOECHO;
IF CHAR

CASE '1 THEN NODE_ADDRESS;
CASE '2 THEN READ_WRITE_CODE;
CASE '3 THEN ALLOCATOR;
CASE '4 THEN RE_SET;
CASE '5 THEN S_START;
CASE '6 THEN F_START;
CASE 7 THEN CYCLE;
CASE '8 THEN CLEAR_A;
CASE'Q THEN QUIT;

ELSE GOTO RETRYJ;
IF Q = NOTHING THEN GOTO MAIN_MENU_P;

ENDPROC;

P R O G R A M * /

PROCEDURE CONTROL;
SAVEjGLOBALPOINTER;
MEMAP = MAP_START; /* ALTER MEMORY PAGING TO LOOK AT MINNIE 7
RE_SET; / * RESET MINNIE 7
MAIN_MENU;
MEMAP = MAP„FINISH; /* RETURN MEMORY PAGING TO NORMAL 7
GEN $1 A, $40;

ENDPROC;

/ f t * - *

156

Appendix 2

Node Monitor Program

The monitor executes in such a way that when the system is switched on if the

user wishes to engage the use of the monitor a key is pressed on the keyboard which

gives the user complete control of the node. When the user has finished with the use of

the monitor the system command is given in order that the monitor program can regain

control. The system command is a single key stroke, pressing the letter S.

When the monitor is in system mode it is constantly interrogating its MU PI for a

start command. When a start command is recognised the monitor will read the table of

input addresses within its local memory and write them to its MUPI, it will then jump

into the subtask that the Master processor has created for it. When the subtask is

completed the monitor will deactivate the start signal in its MUPI by writing a done

command to it. The monitor then returns to the point in the program where it

interrogates both the keyboard for user intervention and its MUPI for another start

command.

The monitor program also contains an interrupt service routine which the

monitor itself is not concerned with. The interrupt routine is such that if an executing

subtask were to read one of the input data registers of MUPI with the interrupt enabled

then depending on the state of the register an interrupt will be received. The interrupt

is such that if there is no valid data within the register i.e.the data flag associated with

the register is not set, then on reading the register the local processor will be

interrupted. The interrupt routine will alter the program counter so that on returning

157

from the interrupt routine the instruction which triggered the interrupt i.e. the

reading of the data register, will be re-executed. The instruction may yet again result

in another interrupt which will give rise to it being executed once more. This cycle of

events will continue until data has arrived in the data register which sets the data flag

and does not result in an interrupt. This interrupt routine is only an option and can be

disabled if the local subtask does not wish to be interrupted.

The use of this interrupt routine is very convenient in that the processor does

not have to check the validity of previously accessed data.

A2.1 Listing of Node Monitor Program

/* START-UP PROGRAM FOR NODE 7

CONSTANT PROM_BASE = $F800,
l_ST = $DF00,
STACKJNIT = $CFFD,
YSAVE = $CFFE,
YSAVE_HI = $CF,
YSAVE_LO = $FE,
IO_BASE = $E8, /* TOP 8-BITS OF I/O ADDRESS AREA */

ACIA_SET = $10, ACIA_RESET = $03,
RX_DATA_FULL = $01, PARITY_STRIPPER = $7F,
TX_DAT A_EMPTY « $02,

CR = $0D, LF = $0A, SP = $20, BEL = $07,

INT_ON_MASK = $EF,

TRUE = -1, FALSE = 0, ZERO = $30, ONE = $31 ;

AT $8004 : BYTE ACIA_CTRL(0), ACIA_STAT, ACIAJ3ATA;
AT $A00C : BYTE IAR(4);
AT $A000 : BYTE ST_DONE;

/ *
* *

* THE MAIN BODY OF THE PROGRAM CODE STARTS HERE *
* *

* /

ORIGIN = PROM_BASE;

STACK = STACKJNIT;

/ *

* THE FIRST ITEM DECLARED WILL BE AT THE BASE OF *
* THE STACK i.e. THE STACK WILL GROW DOWN FROM *
* THIS POINT.

GLOBAL BYTE JUMP_REGISTERS(0), CONDITIONER, A C CU M ULA TO R ,
B_ACCUMULATOR, DIRECT_PAGE:

INTEGER X_REGISTER, Y_REGISTER, U_REGISTER, PROGRAM_CTR,
RTS_VECTOR:

BYTE ERFLAG, KEYCHAR, .B_POINTER, IN, MENU:

INTEGER FIRQ_COUNT, IRQ_COUNT;

DPAGE = IO_BASE; /* SHORTENS CODE WHEN ADDRESSING ’AT’ VARIABLES 7

* * * * * * * * * * * * * *

* I/O SUBROUTINES *
* * * * * * * * * * * * * *

* /
PROCEDURE INITIALIZE_CONSOLE_ACIA;

ACIA_CTRL = ACIA_RESET;
ACIA_CTRL = ACIA_SET;

ENDPROC;

PROCEDURE PUTCHAR(BYTE OUTCHAR);
REPEAT UNTIL ACIA„STAT AND TX_DATA_EMPTY;
ACIA_DATA = OUTCHAR;

ENDPROC;

PROCEDURE GETCHAR:BYTE INCHAR;
REPEAT UNTIL ACIA_STAT AND RX_DATA_FULL;
INCHAR = ACIA_DATA AND PARITY_STRIPPER;
PUTCHAR(INCHAR);

ENDPROC INCHAR;

PROCEDURE MACHINE_PUT;
PUTCHAR(ACCA);

ENDPROC;

PROCEDURE MACHINEJ3ET;
ACCA=GETCHAR;

ENDPROC;

PROCEDURE GET_UPPER_CASE:BYTE INCHAR;
INCHAR = GETCHAR;
IF INCHAR >= 'a .AND INCHAR <= 'z

159

THEN INCHAR = INCHAR - $20;
ENDPROCINCHAR;

PROCEDURE CRLF;
PUTCHAR(CR);
PUTCHAR(LF);

ENDPROC;

PROCEDURE PRINT(BYTE .STRING);
WHILE STRING

BEGIN
IF STRING = ’\ THEN

BEGIN
.STRING = .STRING + 1 ;
IF STRING

CASE ’N THEN CRLF;
CASE 'B THEN PUTCHAR(BEL);

END;
ELSE PUTCHAR(STRING);
.STRING « .STRING + 1 ;

END;
ENDPROC;

/ *
* * * * * * * * * * * * * * *

* BIT DUMP ROUTINE *
* * * * * * * * * * * * * * *

* /
BYTE MASK $01, $02, $04, $08, $10, $20, $40, $80;

PROCEDURE BITSOUT(BYTE BITCHAR):
BYTE COUNT;
COUNT = 8;
REPEAT

IF BITCHAR AND MASK(COUNT - 1) = 0
THEN PUTCHAR(ZERO);
ELSE PUTCHAR(ONE);

COUNT = COUNT - 1;
IF COUNT = 4

THEN PUTCHAR(SP);
UNTIL COUNT = 0;

ENDPROC;

/ *

* HEX I/O ROUTINES *
* * * * * * * * * * * * * * *

* /

PROCEDURE GETHEX_NIBBLE:BYTE INCHAR;
INCHAR = GETJJ PPER_CASE;
KEYCHAR = INCHAR;
ERFLAG = TRUE;
IF INCHAR >= '0 .AND INCHAR <= ’9 THEN

BEGIN

INCHAR « INCHAR - '0;
ERFLAG = FALSE;

END;
ELSE IF INCHAR >= ’A .AND INCHAR <= 'F THEN

BEGIN
INCHAR = INCHAR - 7;
ERFLAG = FALSE;
END;

ENDPROC INCHAR;

PROCEDURE GET__HEX_BYTE:BYTE INCHAR;
INCHAR = SHIFT(GET_HEX_NIBBLE,4);
IF ERFLAG = TRUE THEN RETURN;
INCHAR = INCHAR OR GET_HEX_NIBBLE;

ENDPROC INCHAR;

PROCEDURE GET_HEX_ADDRESS:!NTEGER INCHAR;
INCHAR = SWAP(INTEGER(GET_HEX_BYTE));
IF ERFLAG = TRUE THEN RETURN;
INCHAR = INCHAR OR INTEGER(GET_HEX_BYTE);

ENDPROC INCHAR;

PROCEDURE PUT_HEX_NIBBLE(BYTE OUTCHAR);
OUTCHAR = (OUTCHAR AND $0F) + '0; /* STRIP TOP 4 BITS TO MAKE ASCII 7
IF OUTCHAR > '9

THEN OUTCHAR = OUTCHAR + 7; /* A-F OFFSET 7
PUTCHAR(OUTCHAR);

ENDPROC;

PUT_HEX_BYTE(BYTE OUTCHAR);
PUT_HEX_NIBBLE(SHIFT(OUTCHAR, -4)); /* FIRST DIGIT 7
PUT_HEX_NIBBLE(OUTCHAR); /* LAST DIGIT 7

ENDPROC;

PROCEDURE PUT_HEX_ADDRESS(INTEGER OUTCHAR);
PUT_HEXJBYTE(SWAP(OUTCHAR)); /* FIRST TWO DIGITS 7
PUT_HEX_BYTE(BYTE(OUTCHAR)); /* LAST TWO DIGITS 7

ENDPROC;

PROCEDURE PUT_ASCII_BYTE(BYTE CHAR);
IF CHAR < $20 .OR > $7D

THEN PUTCHAR(\);
ELSE PUTCHAR(CHAR);

ENDPROC;

/ *

* GLOBAL POINTER ROUTINES *
* * * * * * * * * * * * * * * * * * * *

* /
PROCEDURE SAVE_GLOBAL_POINTER;

GEN $10, $8F, YSAVE_HI, YSAVE_LO; /* STY YSAVE 7
ENDPROC;

161

PROCEDURE REST0REjGL0BAL_P01NTER;
GEN $10, $BE, YSAVE_HI, YSAVE_LO; /* LDY YSAVE 7
ACCA = IO_BASE; /* RESTORE THE DIRECT PAGE 7
GEN $IF, $98; /* TFR B, DP 7

ENDPROC;

/ *
* *

* DUMP THE STACKED REGISTERS *
* *

* /
PROCEDURE ONEjSPACE;

PUTCHAR(SP);
ENDPROC;

PROCEDURE TWO_SPACES;
ONE_SPACE;
ONE_SPACE;

ENDPROC;

PROCEDURE REGISTER_DUMP(INTEGER STACKBASE);BYTE COUNT, CHAR, .B_POINTER;
PRINT("\N\NAA BB DP XXXX YYYY UUUU PCPC SPSP CC EFHINZVCMT);
.B_POINTER = STACKBASE+ 1; /* POINT AT ’A' 7
REPEAT

P UT_HEX_BYTE(B_PO INTER) ;
IF .B_POINTER > STACKBASE + 3 THEN

BEGIN
.B_PO INTER = .B_POINTER + 1 ;
PUT_HEX__BYTE(B__POINTER;

END;
ONE_SPACE;
.B_PO INTER = .B_POINTER + 1 ;

UNTIL .B_POINTER = STACKBASE + 12;
PUT_HEX_ADDRESS(.B_POINTER); /* STACK POINTER7
TWO_SPACES;
.B_POINTER = STACKBASE;
PUT_HEX_BYTE(B„POINTER); /* CCR IN HEX */
TWO_SPACES;
BITSOUT(B_POINTER); /* CCR IN BITS 7
CRLF;
CRLF;

ENDPROC;

/ *
* *

* SOFTWARE INTERRUPT SERVICE ROUTINES *
* *

* /
PROCEDURE SWI; /* DUMMY RTl INSTRUCTION ONLY 7
ENDPROC;

PROCEDURE SWI2; /* DUMMY RTl INSTRUCTION ONLY 7
ENDPROC;

162

PROCEDURE SWI3; /* DUMMY RTI INSTRUCTION ONLY 7
ENDPROC;

/ *

* HARDWARE INTERRUPT SERVICE ROUTINES *
* *

* /
PROCEDURE NMI;

RESTORE_GLOBAL_POINTER;
REGISTER__DUMP(STACK);

ENDPROC;

PROCEDURE FIRQ; /* DUMMY RTI INSTRUCTION ONLY 7
ENDPROC;

PROCEDURE IRQ;
GEN $32, $6A
GEN $35, $10
GEN $30, $1C
GEN $34, $10

ENDPROC;

/* ALTERS THE RETURN ADDRESS 7
/* LEAS 10,S * /
/* PULS X * /
/* LEAX -4,X * /
/* LEAS -10,S * /

PROCEDURE RESET;
JUMP PROMJ3ASE;

ENDPROC;

* HANDLE ARBITRARY PROGRAM COUNTER PULL FROM STACK *

PROCEDURE RETURN_FROM_SUBROUTINE;
GEN $34 ,$FF; /* PSHS CCAB .D P.X .Y .U .PC 7
GEN $8E, $FF, $FF; /* LDX £$FFFF 7
GEN $AF, $6A; /* STX 10,S (PC IS NOW $FFFF) 7
REST ORE_GLOBAL_POINTER;
REG ISTER_DUMP(STACK) ;
JUMP PROM_BASE;

ENDPROC;

* INITIALISE NODE *
* * * * * * * * * * * * *

PROCEDURE INIT(INTEGER REG_BASE):BYTE .R_POlNTER;
.R_POINTER = REG_BASE; /* POINT AT FIRST ADDRESS 7
REPEAT

IAR(.R_POINTER - REG__BASE) = R_POINTER;
.R_POINTER = .R_POINTER + 1 ;

UNTIL .R_POINTER = REG_BASE + 4;

IN = TRUE;
ENDPROC;

/ *
* * * * * * * * * * * * * * * * * *

* RUN NODE PROGRAMME *

* /

PROCEDUR RUN;
SAVE_GLOBAL_POJNTER;
GEN $34, $7F; /* PSHS S/U,Y,X,DPR,B,A,CCR 7
CALL $D000; /* JUMP TO NODE PROGRAMME 7
GEN $36, $7F; /* PULS S/U,Y,X,DPR,B,A,CCR 7
RESTORE_GLOBAL_POiNTER;
STJDONE = FALSE; /* SEND DONE SIGNAL FOR THIS NODE 7

ENDPROC;

/ *

* MEMORY EXAMINE AND CHANGE *

* /
PROCEDURE ADDRESS_PROMPT ;

PRINT("\NADDRESS? ");
ENDPROC GET_HEX_ADDRESS;

PROCEDURE MEMORY_EXAMINE_AND_CHANGE:
BYTE READ_BYTE, WRITE_BYTE, ADDRESS;
.ADDRESS = ADDRESS_PROMPT;
IF ERFLAG = TRUE THE RETURN;
PRINT("\N\N(+) next\N(-) prev\N(/) again\N");
TRY_AGAIN:

CRLF;
READ_AGAIN:

PUTCHAR(CR);
PUT_HEX_ADDRESS(ADDRESS);
ONE_SPACE;
PUT_HEX_BYTE(ADDRESS);
ONEjSPACE;
WRITE_BYTE = GET_HEX_BYTE;
IF ERFLAG = TRUE

THEN IF KEYCHAR = .OR KEYCHAR = '+ .OR KEYCHAR = '/
THEN BEGIN

IF KEYCHAR
CASE THEN .ADDRESS = .ADDRESS -1;
CASE'+ THEN .ADDRESS = .ADDRESS + 1;
CASE '/THEN GOTO READ_AGAIN;

GOTO TRY_AGAIN;
END;

ELSE RETURN;
ADDRESS = WRITEJ3YTE;
IF WRITE_BYTE <> ADDRESS

THEN BEGIN
PRINT(" ?\B");
GOTO TRY_AGAIN;

END;
.ADDRESS = .ADDRESS + 1;

164

GOTO TRY_AGAIN;
ENDPROC;

/ *
* * * * * * * * * * * * * *
* HEX/ASCII DUMP *

* /
PROCEDURE HEX_DUMP:BYTE .ADDRESS, COUNT, PASSES;

.ADDRESS = ADDRESS_PROMPT;
CRLF;

DUMP_AGAIN:
PASSES = 0;
REPEAT

COUNT = 0;
CRLF;
PUT_HEX_ADDRESS(.ADDRESS);
TWO_SPACES;
REPEAT

PUT_H EX_BYTE(ADDRESS{COU NT));
ONEjSPACE;
COUNT = COUNT + 1;

UNTIL COUNT = 16;
TWO_SPACES;
COUNT = 0;
REPEAT

PUT_ASCI!_BYTE(ADDRESS(COUNT));
COUNT = COUNT + 1;

UNTIL COUNT = 16;
.ADDRESS = .ADDRESS + 16;
PASSES = PASSES + 1;

UNTIL PASSES = 16;
PR!NT(" MORE? ");
IF GETJJPPER_CASE <> 'N THEN GOTO DUMP_AGAIN;

ENDPROC;

/ *
* *

* PL/9 NODE CONTROL MAIN PROGRAMME *
* *

* /
PROCEDURE MlNI_MONITOR;BYTE COUNT;

IN = FALSE;

SAVE_GLOBAL_POINTER;

INITIALISE_CONSOLE_ACIA;

RTS_VECTOR = .RETURN_FROM_SUBROUTINE;

CCR = CCR AND INT_ON_MASK; /* ENABLE IRQ 7

CRLF;

GEN $34, $FF;
REGISTER_DUMP(STACK);
MENU + TRUE;

REPEAT

REPEAT
IF ST_DONE = TRUE THE

BEGIN
IF IN = TRUE THEN RUN;
ELSE

BEGIN
IN IT(LST);
RUN;

END;
UNTIL ACIA_STAT AND TX_DATA_EMPTY; /* KEY PRESSED */

TRY_AGAIN:
PRINT("\N> ");
IF GETJJPPERjCASE

CASE *D THEN HEX_DUMP;
CASE 'M THEN MEMORY_EXAMINE_AND„CHANGE;
CASE 'R THEN

BEGIN
INIT(I_ST);
RUN;

END;
CASE’S THEN MENU = FALSE;

IF MENU = TRUE THEN MENU_AGAIN;

FOREVER;

Appendix 3

Circuit Diagrams for

One Node, Board Buffers, and

Board/System Allocator System.

The following circuit diagrams are of the circuits on a single 8-node cicrcuit

board. The one node circuit is repeated 8 times with the addition of the board buffers and

the board allocator circuitry and circuitry to facilitate the system allocator.

The order of the circuit diagrams is:

(a) Single Processing Node.

(b) Board Buffers.

(c) Board Allocator System.

(d) System Allocator Circuitry on 8-node board.

167

S A f iS ï i 'ÿ iW t r ; ■ V.;- ? ■ y t ^ i

«■

691-

oagggasssagayaçsQnccDçgBaQssESSs | ¡ ss|sgs§ss5ga|ïï£|ï££££s£ï5a£ïi;s£ |

vcc
«

P

o lo
uj

Í J

p=a-

a la
U v U-J

!N
uOj—*c

a la
Ut ^ UJ

a u
ö_s_

bo—=9c

n

± i
a la
».e*. u jja u

N «

S-SL

a la a k>
fc-*9eLKX UJ

a u
;>r*3_ 8o-̂ac LK̂ UJ

a uA-

öo-=̂

t]

Ho-̂ Sc

Í .

jaa.

I 13

Ì *
a
fi.«,
Q i

! .

h

a
ftJC,

uo -^c

!N
u°|—

>S3L

a
a.«.
a i

Í .
la
uj

r .

öq̂ -̂ c

T I
a la
LCg UJ

J□ u

(V «

ì J

ijoi—

¿8-i¿
V,

+¿B"IY/.
A

»A
+ts-\+L

A
*¿s-\+¿

a
y¿si>¿

i

"s
i

S
Y
S
T
E
M

A
L
L
O
C
A
T
O
R

C
I
R
C
U
I
T

W
I
T
H

B
U
S

A
C
K
N
O
V
L
E
D
S
E

R
E
S
E
T

F
O
R

H
U
P
I
»

O
N

B
O
A
R
D

t
D
Q
N
E

>
-

J
U
1
2
A

2

D
O
N
E

B
U
F
F
E
R

F
O
R

D
O
N
E

S
I
C
N
A
L

U
4
F

2

R
E
S
6

_

lI
N
V
E
R
T
E
D

C
L
O
B
A
L

R
E
S
E
T

S
I
C
N
A
L

SÄ

Ìt_
__

__
__

__
_i

--
 --

t_

__
_

*

ju
k-

-»

ä-

ai

__
__

_u
--

ik

__
__

__
_

kw

—

...
...

...
...

...
..

 .4
.

L .
...

...
...

...
...

...
...

...
...

....
...

...
...

...
...

...
...

...
.

 .
...

...
...

...
...

...
...

...

...

...
...

..

..„
.„

i,.
.,

-.X
...

...

...
...

...
...

...
...

...
...

. —
u.

r.
..

 ,.
r_

__
__

__
__

__
i_

__
__

__
__

__
__

I__
__

__
__

__
__

_
i:

..
...

...
...

...
...

...
...

...
...

...
..

1.

...
...

...
...

...
...

..

Appendix 4

Circuit Diagrams for

Windrush and MUPI

Interface Boards.

The following circuit diagrams are of the two interface boards which support the

MINNIE system. The first board is the interface board which sits in the Windrush rack

giving the Master processor control over the MINNIE system. The second board is the

MINNIE interface board which sits in the MINNIE rack and supports the system allocator

for the MINNIE system as well as providing two terminal interface adaptors for the

system which any node in the system can be linked to.

173

E
t
P
i
»

N
i
a

Vÿ«'

í~
i

H
r

"rr
-*r

a
DN

V8
*6

0
1

JLS
*

3 '♦-et
o

a
s

i
3¿

0008
031

00Z
¿

DO
S

002
H

28*0
□ OD

H
V

8 *1
o

o
et

00V
2

n
vxx

00»»
1V

X
X

OOOB

flS
S

Ä
v

x
v

a
x

x
a

Si,W
083
l S3

JSM
I

E
S

3

o
a

EU
la

v
iv

a
x

a
en

5
1

3
e

a
030

»•a
aa

M
13XW

<
»a

>03X
jl<

¿a
A

™TFT SïF
f-

F
*

TT

AVWnt jat
3

1
3

B
I
S

e
t
s

>
t

3
1

1
3

C
I
S

03
0

1
3

¿
3

■
 S

s
s

es
e
s

r
s

1
8

2
8

w

Î3ÜT

ittu

Tj-Is*-

V a lo i» Nia
' ON3 Z

TS37—
®r

----TTV —
¿T

If
'ty~—?r

2
B

V
icv
o
e
v

82V
■

2
V

¿
2

V
B

2
V

32V
♦
■

2V
82V
C

2
V

t
z
v

0
2

V
a
t
v

■
 T

V

¿
IV

«

I
V

S

 I
V

t
i
v

«
t
v

c
t
v

i I
V

o
i
v

8
V

■
V

¿
V

9
V

s
v

*v

Ü3di

Appendix 5

Memory Maps for MUPI,

Single Node

and Master Processor.

A5.1 MUPI Memory Map

The memory map for both the local and the global sides of the MUPI device is as

follows:

Local Bus Side of MUPI:

LOCATION READONLY WRITE ONLY

0 0 START DCNE

0 4 DATA FLAG 0 CLEAR ALL DATA FLAGS

0 5 DATA FLAG 1

0 6 DATA FLAG 2

0 7 DATA FLAG 3

0 8 DATAINO DATAOUTO

0 9 DATA IN 1

0A DATA IN 2

0B DATA IN 3

0C IVA 0 IVA 0

0D IVA 1 IVA 1

0E IVA 2 IVA 2

0 F IVA 3 IVA 3

175

• t •• ' ‘ '• . • ~ 2 - • _ «i • i à"'...... * ’ 1 J • * Ir •«..-1 ' J ■ •- ..'ü, - • <r-f* * ù ;‘. - .tw S't.'i- ..-'s _• S

Global Bus Side of MUPI:

LOCATION JJ§E MEANING

00 STP, step node address enable on.

01 NAA, node address (read/write).

02 SW, local memory switch.

03 DUMDUM, not used.

04 ST, slow start location.

05 REN reset enable signal.

06 CY, set cyclic mode.

07 NCY, set non-cyclic mode.

A5.2 Single Node Memory Map

The memory map of a single node is as follows:

LOCATION

$8000-$9FFF

$AOOO-$BFFF

$C000-$DFFF

$E000-$FFFF

USE

Asynchronous Communications Adaptor (Mirrored).

MUPI device (Mirrored).

RAM (8K).

EPROM (2K Mirrored).

It can be seen from the memory map that some of the devices are mirrored, this

is because the decoding has not been broken down more than necessary, hence the MUPI

device for instance can be accessed at locations $A000-$A00F, $A010-$A01F and so on.

A5.3 Master Processor Memory Map

The memory map of the master processor control part of the Windrush design

system is as follows:

LOCATION (Page F),

$A000-$AFFF

USE

$D000-$DFFF of Page 0 mapped here

so as to access locations within MINNIE

such as local memories.

$E000-$E006 1 bit control registers on master

interface board.

$E000 RESG, global reset.

$E0Q1 START, fast start.

$E002 GBB, global bus busy.

$E003 EOUT, enable out of master.

$E004 NACL, clear all allocators.

$E005 ASTA, start all allocators.

$E006 RAM, control for MINNIE access.

$E080-$E087 Specific locations within the MUPI

devices.

$E080 STP, step node address enable on.

$E081 NAA, node address (read/write).

$E082 SW, local memory switch.

$E083 DUMDUM, not used.

$E084 ST, slow start location.

$E085 REN reset enable signal.

$E086 CY, set cyclic mode.

$E087 NCY, set non-cyclic mode.

For further information concerning the memory mapping of the Windrush

System the reader should refer to the Hardware manual of the system [WIND39].

177

Appendix 6

Pinout Specification

of the MUPI Device.

A6.1 Pin Description

A basic description of the pins of the MUPI device is covered as follows:

Symbol Pin No. Name I /O

Vcc 33 Power supply
Vss 1 Ground

RES 23 Reset I
RESG 24 Global Reset I

LA0-LA3 6 0 - 6 3 Local Address Bus I/O
LA4-LA10 2 -8

LD0-LD1 3 1 - 3 2 Local Data Bus
I/O
LD2-LD7 3 4 - 3 9

LNE 1 4 Local Processor Clock I
LRNW 64 Local Read/Write Signal I
NCS1 40 Low enable local select I

GA0-GA5 2 5 - 3 0 Global Address Bus (i) I/O
GA6-GA10 1 3 - 9 Global Address Bus (ii) I

only part of the GA Bus is used
to output addresses on the global
bus for the use of other nodes.

178

GD0-GD7 4 1 - 4 8 Global Data Bus I/O

GNE 57 Master Processor Clock I
GRNW 51 Master Processor R/W I
NCS2 58 Master low enable select I

AIN 1 5 Allocator In I
AOUT 16 Allocator Out
0
REQQ 1 7 Request Out 0
ACKI 1 8 Acknowledge In I

EIN
EOUT

21
22

Enable In (for Node Address)
Enable Out

I
0

sw 53 Memory Switch Signal 0
DF 49 Data Flag Interrupt (no data) 0
DIN 50 Data In Interrupt 0

NADE 20 Node Address/Data Enable i/O

GBB 59 Global Bus Busy I

DONE 1 9 Processor Done 0
START 52 Fast Node Start I

FTEST 54 Various Test Pins for
FCLK 55 Silicon test when
FDATA 56 wafers are made.

Appendix 7

Xilinx

Logic Cell Array.

Design and implementation techniques for semi-conductor electronic systems

have evolved from discrete, to standard-logic, to custom and semi-custom devices.

Standard-logic devices are widely available from multiple sourcers, enjoy

widespread familiarity among designers, and can be easily and quickly used to

implement designs. However, they suffer from low levels of function integration, poor

circuit-board utilization and high power- consumption.

Custom and semi-custom devices, on the other hand, offer the highest degree of

function integration, low power consumption, excellent circuit-board utilization and

are supported by semi-automated design tools. But, they suffer from long design and

implementation leadtimes, high engineering costs and long production periods. In

addition, issues of multiple sourcing and minimum order quatities prevent many

potential users from qualifying with vendors of these devices.

The Xilinx family of Logic Cell Array (LCA) devices solves this dilemma. The

LCA offers not only the ease of implementation of standard logic devices, but also the

design flexibility, low power-consumption, and high function-density of custom and

semi-custom devices. Moreover, LCA-based products can be designed, implemented and

integrated into production systems very quickly, at a remarkably low cost.

A Logic Cell Array device contains three basic building blocks:

(1) Configurable Logic Blocks (CLBs).

(2) Input/Output Blocks (lOBs).

(3) Interconnect.

Figure A7.1 shows the organisation of an LCA device. This LCA version contains

64 CLBs (which is the version to be used in the implementation of the design), arranged

in an 8-by-8 matrix, with each logic block identified by its row and column letters.

Interconnects occupy the space between the rows and columns of the CLBs and between

the CLBs and the surrounding lOBs. lOBs are numbered to match the number of the

package pin to which they are connected.

Configuration is the process through which the functions to be performed by the

CLBs, lOBs, and interconnect of the LCA are defined. Configuration is specified with the

Xilinx XACT Design System, which produces configuration data. The configuration data

are loaded into an LCA, enabling it to perform the functions. Without the configuration

data, the LCA remains unconfigured. When all power is removed from the LCA, the LCA

returns to the unconfigured state.

Configuration data can be passed to an LCA device from the following sources:

(a) External Memory - At any time using a parallel 8-bit stream.

(b) External Processor Or Another LCA - At any time using a serial bit- stream.

The method that will be adopted is that of the External Memory where an eprom

containing the configuration data will sit next to the LCA on the circuit-board.

Configurable
Logic
Blocks
(CLBs) X

Y

Input/Output
Blocks
(lOBs) T

O

--

PAD
--

Interconnect □ □ □ □ □ □

Figure A7.1 LCA Device organisation (XC-2064).

The Xilinx XACT Design System is an integrated package of design tools for

developing configuration data for the LCAs. All aspects of configuration are specified

through interactive graphics software.

The Xilinx software that is currently being used does not contain a logic

simulator to simulate the logic configuration. But, the software does contain a Delay

command which calculates delays within the logic including rise, fall, and set-up times

of flip-flops, latches, and combinational logic.

For a more complete discription of the Xilinx system and the possible

configurations of the CLBs, iOBs, and Interconnect the reader should refer to the Xilinx

Manuals, Xilinx [1986a, b].

Appendix 8

Program Listings for

Evaluation of a

First Order Vector Non-linear System

The listings of the example programs for the evaluation of a first order vector

non-linear system have been devided into four sections; (i) the common procedures for

all nodes e.g. procedures for SIN and COS, (ii) the main procedure for the single node

evaluation, (iii) the various main procedures for the 4 node evaluation, <iv) the

various main procedures for the 8 node evaluation.

A8.1 Listing of Support Procedures

PROM BASE = $D000,
BEL = $07,
ESC = $1B,
RDR_FULL = $01,
TDR EMPT = $02;

AT $8004 : BYTE ACIA_CONTROL(0), ACIA_STATUS, ACIA_DATA;
AT $A000 ; BYTE STDONE;
AT $A004 : BYTE DF{4);
AT $A008 : BYTE DATA(4);
AT $DF04 : INTEGER Q;
AT $C000 : BYTE A{256);
AT $C100 : BYTE B(256);
AT $C200 : BYTE C(256);
AT $C300 : BYTE D(256);
AT $DA00 : BYTE E(256);
AT $DB00 : BYTE F(256);
AT $DC00 : BYTE G(256);
AT $DD00 : BYTE H(256);

ORIGIN = PROMJ3ASE;

real __pio2 1.5707963;

procedure _poly(real op, .table: byte count): real temp;
temp = table(count);
repeat

count = count - 1 ;
temp = temp * op + table(count);

until count = 0;
endproc real temp;

real sin_coeff
1 .0 ,
-0 .1 6 6 6 6 6 6 ,
8 .333332E -3 ,
-1 .9 85 2 E -4 ,
-2 .8 25 5 E -6 ,
-3 .7 0E -8 ;

procedure sin(real op): byte negative, quadrant;
if op = 0

then return real 0;
quadrant = fix(int(op / _pio2));
op = op - quadrant * _pio2;
negative = quadrant and 2;
if quadrant and 1

then op = _pio - op;
op « op * _poly(op * op, .sin_coeff, 5);
if negative

then op = -op;
endproc real op;

real cos_coeff
1 .0 ,

-0 .5 ,
0 .041666642 ,
-1 .3 88 8 39 7E -3 ,
2 .47609E -5 ,
-2 .6 05 E -7 ;

procedure cos(real op): byte negative, quadrant;
if op = _pio2

then return real 0;
quadrant = fix(int(op / _pio2));
op sa op - quadrant * _pio2;
negative = 0;
if quadrant = 1 .or quadrant = 2

then negative = 1;
if quadrant and 1

then op = „pio2 - op;
op ss _po!y(op * op, .cos_coeff, 5);
if negative

then op == -op;
endproc real op;

A8.2 Listing of Main Procedure for Single Node Evaluation

PROCEDURE MAIN;
A(0) = 2; /* INITIAL VALUES FOR ALL EQUATIONS 7
B(0) = 3;
C(0) . 7;
D(0) = 9;
E(0) = 13;
F(0) = 1;
G(0) = 6;
H(0) = 4;

Q = 0;

REPEAT
A(Q+1) =A(Q) + 10 - C(Q) * COS(0.07*B(Q)) + D(Q);
B(Q+1) « B(Q) + 22 - C(Q) * D(Q) * SIN(0.03*A(Q)) + A(Q);
C(Q+1) = C(Q) + A(Q) + SIN(0.07*B(Q));
D(Q+1) = D(Q) + 17 - SIN(0.07*A(Q));
E(Q+1) = E(Q) + SIN(C(Q)) + COS(D(Q));
F(Q+1) = F(Q) +B(Q) + SIN(0.05*B(Q));
G(Q+1) = G(Q) + 0.02 * COS(C(Q));
H(Q+1) » H(Q) + A(Q) * SIN(COS(0.09*A(Q)));

Q = Q + 1 ;
UNTIL Q = $00;

ENDPROC;

A8.3 Listing of Main Procedures for Four Node Evaluation

A8.3.1 Node 00 Listing for 4 nodes

/ * THE ALLOCATION OF INPUT AND OUTPUT REGISTER ADDRESSES IS SUCH THAT FOR
INPUTS THROUGH THE INPUT REGISTERS DATA(0) = B,

DATA(1) = C,
DATA(2) = D,

PROCEDURE MAIN;
IF Q = 0THEN

BEGIN
A(0) = 2;
F(0) = 1;

END;

ELSE
BEGIN

Q = Q - 1;
A(Q+1) =A(Q) + 10 - DATA(1) * COS(0.07*DATA(0)) + DATA(2);
F(Q+1) = F(Q) +DATA(0) + SIN{0.05*DATA(0));

/* INITIAL VALUE FOR A STORED IN MEMORY */
/* INITIAL VALUE FOR F STORED IN MEMORY */

Q = Q + 1;
END;

DATA(O) = A(Q); /* OUPUT VALUE OF A TO OTHER NODES 7
/‘ THROUGH THE OUTPUT REGISTER 7

Q ss Q + 1 ;
ENDPROC;

A8.3.2 Node 01 Listing for 4 nodes

THE ALLOCATION OF INPUT AND OUTPUT REGISTER ADDRESSES IS SUCH THAT FOR
INPUTS THROUGH THE INPUT REGISTERS DATA(O) = A,

DATA(1) = C,
DATA(2) = D,

PROCEDURE MAIN;
IF Q ss 0 THEN

BEGIN
B(0) = 3;
G(0) = 6;

END;

/* INITIAL VALUE FOR B STORED IN MEMORY 7
/* INITIAL VALUE FOR G STORED IN MEMORY 7

ELSE
BEGIN

Q = Q - 1;
B(Q+1) = B(Q) + 22 - DATA(1) * DATA(2) * SIN(0.03*DATA(0)) + DATA(O);
G(Q+1) = G(Q) + 0.02 * COS{DATA(1));
Q = Q + 1 ;

END;

DATA(O) = B(Q); /* OUPUT VALUE OF B TO OTHER NODES 7
I* THROUGH THE OUTPUT REGISTER */

Q = Q + 1;
ENDPROC;

A8.3.3 Node 02 Listing for 4 nodes

THE ALLOCATION OF INPUT AND OUTPUT REGISTER ADDRESSES IS SUCH THAT FOR
INPUTS THROUGH THE INPUT REGISTERS DATA(O) = A,

DATA(1) = B,
DATA(2) = D,

PROCEDURE MAIN;
IF Q ss 0 THEN

BEGIN
C(0) ss 7;
E(0) = 13;

/* INITIAL VALUE FOR C STORED IN MEMORY */
/* INITIAL VALUE FOR E STORED IN MEMORY 7

187

END;

ELSE
BEGIN

Q = Q - 1 ;
C(Q+1) = C(Q) + DAfA(O) + SIN(0.07*DATA(1));
E(Q+1) = E(Q) + SIN(C(Q)) + COS(DATA(2));
Q — Q + 1 ;

END;

DATA(O) = C(Q); /* OUPUT VALUE OF C TO OTHER NODES 7
/* THROUGH THE OUTPUT REGISTER 7

Q = Q + 1;
ENDPROC;

A8.3.4 Node 03 Listing for 4 nodes

/ * THE ALLOCATION OF INPUT AND OUTPUT REGISTER ADDRESSES IS SUCH THAT FOR
INPUTS THROUGH THE INPUT REGISTERS DATA(O) = A,

* /

PROCEDURE MAIN;
IF Q = OTHEN

BEGIN
D(0) - 9;
H(0) = 4;

/* INITIAL VALUE FOR D STORED IN MEMORY 7
/* INITIAL VALUE FOR H STORED IN MEMORY 7

END;

ELSE
BEGIN

Q = Q - 1;
D(Q+1) = D(Q) + 17 - SIN(0.07*DATA(0));
H(Q+1) = H(Q) + DATA(O) * SIN(COS(0.09*DATA(0)));
Q = Q + 1;

END;

DATA(O) = D(Q); /* OUPUT VALUE OF D TO OTHER NODES 7
/* THROUGH THE OUTPUT REGISTER 7

Q = Q + 1 ;
ENDPROC;

188

A8.4 Listing of Main Procédures for Eight Node Evaluation

A8.4.1 Node 00 Listing for 8 nodes

/ * THE ALLOCATION OF INPUT AND OUTPUT REGISTER ADDRESSES IS SUCH THAT FOR
INPUTS THROUGH THE INPUT REGISTERS DATA(O) = B,

DATA(1) = C,
DATA(2) = D,

* /

PROCEDURE MAIN;
IF Q = OTHEN

A{0) = 2; /* INITIAL VALUE FOR A STORED IN MEMORY 7

ELSE
BEGIN

Q = Q - 1;
A(Q+1) =A(Q) + 10 - DATA(1) * COS(0.07*DATA(0)) + DATA{2);
Q = Q + 1 ;

END;

DATA(O) = A(Q); /* OUPUT VALUE OF A TO OTHER NODES 7
/* THROUGH THE OUTPUT REGISTER 7

0 = 0 + 1;
ENDPROC;

A8.4.2 Node 01 Listing for 8 nodes

/ * THE ALLOCATION OF INPUT AND OUTPUT REGISTER ADDRESSES IS SUCH THAT FOR
INPUTS THROUGH THE INPUT REGISTERS DATA(O) = A,

DATA(1) = C,
DATA(2) = D,

* /

PROCEDURE MAIN;
IF Q = OTHEN

B(0) = 3; /* INITIAL VALUE FOR B STORED IN MEMORY 7

ELSE
BEGIN

Q = Q - 1;
B(Q+1) = B(Q) + 22 - DATA(1) * DATA(2) * SIN(0.03*DATA(0)) + DATA(O);
Q = Q + 1;

END;

DATA(O) = B(Q); /* OUPUT VALUE OF B TO OTHER NODES 7
/* THROUGH THE OUTPUT REGISTER 7

Q — Q + 1 ;
ENDPROC;

A8.4.3 Node 02 Listing for 8 nodes

THE ALLOCATION OF INPUT AND OUTPUT REGISTER ADDRESSES IS SUCH THAT FOR
INPUTS THROUGH THE INPUT REGISTERS DATA(O) = A,

DATA(1) = B,

PROCEDURE MAIN;
IF Q = 0 THEN

C(0) = 7; r INITIAL VALUE FOR C STORED IN MEMORY 7

ELSE
BEGIN

Q = Q - 1;
C(Q+1) = C{Q) + DATA(O) + SIN(0.07*DATA(1));
Q = Q + 1;

END;

DATA(O) = C(Q); /* OUPUT VALUE OF C TO OTHER NODES 7
I* THROUGH THE OUTPUT REGISTER 7

Q = Q + 1;
ENDPROC;

A8.4.4 Node 03 Listing for 8 nodes

/ * THE ALLOCATION OF INPUT AND OUTPUT REGISTER ADDRESSES IS SUCH THAT FOR
INPUTS THROUGH THE INPUT REGISTERS DATA(O) = A,

* /

PROCEDURE MAIN;
IF Q = 0 THEN

D(0) = 9; /* INITIAL VALUE FOR D STORED IN MEMORY 7

ELSE
BEGIN

Q = Q - 1;
D(Q+1) = D(Q) + 17 - SIN(0.07*DATA(0));
Q = Q + 1 ;

END;

DATA(O) = D(Q); /* OUPUT VALUE OF D TO OTHER NODES 7
r THROUGH THE OUTPUT REGISTER 7

Q = Q + 1;
ENDPROC;

A8.4.5 Node 04 Listing for 8 nodes

/ * THE ALLOCATION OF INPUT AND OUTPUT REGISTER ADDRESSES IS SUCH THAT FOR
INPUTS THROUGH THE INPUT REGISTERS DATA(O) = C,

DATA(1) = D,
* /

PROCEDURE MAIN;
IF Q = 0 THEN

E(0) = 13; /* INITIAL VALUE FOR E STORED IN MEMORY 7

ELSE
BEGIN

Q = Q - 1;
E(Q+1) = E(Q) + SIN(DATA(0)) + COS(DATA(1));
Q = Q + 1;

END;

Q = Q + 1 ;
ENDPROC;

A8.4.6 Node 05 Listing for 8 nodes

/ * THE ALLOCATION OF INPUT AND OUTPUT REGISTER ADDRESSES IS SUCH THAT FOR
INPUTS THROUGH THE INPUT REGISTERS DATA(O) = B,

* /

PROCEDURE MAIN;
IF Q = OTHEN

F(0) = 1 ; /* INITIAL VALUE FOR F STORED IN MEMORY 7

ELSE
BEGIN

Q = Q - 1;
F(Q+1) = F(Q) +DATA(0) + SIN(0.05*DATA(0));
Q ~ Q + 1 ;

END;

Q == Q + 1 ;
ENDPROC;

A8.4.7 Node 06 Listing for 8 nodes

/ * THE ALLOCATION OF INPUT AND OUTPUT REGISTER ADDRESSES IS SUCH THAT FOR
INPUTS THROUGH THE INPUT REGISTERS DATA(O) = C,

* /

PROCEDURE MAIN;
IF Q = 0 THEN

G(0) = 6; /* INITIAL VALUE FOR G STORED IN MEMORY */

ELSE
BEGIN

Q = Q - 1;
G(Q+1) = G(Q) + 0.02 * COS(DATA(0));
Q = Q + 1;

END;

Q — Q + 1 ;
ENDPROC;

A8.4.8 Node 07 Listing for 8 nodes

/ * THE ALLOCATION OF INPUT AND OUTPUT REGISTER ADDRESSES IS SUCH THAT FOR
INPUTS THROUGH THE INPUT REGISTERS DATA(O) = A,

* /

PROCEDURE MAIN;
IF Q = 0 THEN

H(0) = 4; /* INITIAL VALUE FOR H STORED IN MEMORY */

ELSE
BEGIN

Q = Q - 1;
H(Q+1) = H(Q) + DATA(0) * SIN(COS(0.09*DATA(0)));
Q = Q + 1;

END;

Q = Q + 1;
ENDPROC;

REFERENCES

Al-Dabass [1976a]: D.AI-Dabass , "An Evaluation of the Effectiveness of

Multiprocessor Clusters in Real-Time Applications," IFAC/IFIP International

Workshop on Real-Time Programming, Paris, 1976.

Al-Dabass [1976b]: D.AI-Dabass, "Parallel Processors in the Design and

Simulation of Dynamical Systems," PhD Thesis, Dept of Electrical Engineering and

Electronics, North Staffordshire Polytechnic, Staford, 1976.

Al-Dabass [1977]: D.AI-Dabass, "Microprocessor based parallel computers and

their application to the solution of control algorithms," Proc. Inter. Comput. Symp.,

1977, pp. 261-270.

Al-Dabass [1980]: D.AI-Dabass, "Common Memory Systems: Two Detailed Models,"

Control Systems Centre, UMIST, July 1980.

Allen and Cocke [1976]: F.E.AIlen and J.Cocke, "A Program Data Flow Analysis

Procedure," Communications of the ACM, vol. 19, no. 3, March 1976.

Artym and Mason [1988]: R.Artym and J.S.Mason, "XPXM/C: a taxonomy of

processor coupling techniques," IEE Proc., vol. 135, pt. E, no. 3, May 1988.

Barnes et al.[1968]: G.H.Barnes, R.M.Brown, M.Kato, D.J.Kuck, D.L.SIotnick, and

R.A.Stokes, "The llliac IV computer," IEEE Trans. Comput., vol. C-17, pp.746-757,

Aug. 1968.

194

Batcher [1980]: K.E.Batcher, "Architecture of a massively parallel processor,"

Proc. 7th Symp. Comput. Arch. SIGARCH8, May 1980, pp.168-173.

Bhuyan [1987]: L.N.Bhuyan, "Interconnection Networks for Parallel and

Distributed Processing," IEEE Computer, pp. 9-12, June 1987.

Browne [1984]: J.C.Browne, "TRAC: an environment for parallel computing,"

COMPCON, Spring '84, pp. 294-298.

CPS [1988]: "Customer Procurement Specification," C.P.S. no. D/76057/D, MCE

part no. MT76057, Trent Polytechnic, 1988.

Dennis [1980]: J.B.Dennis, "Data Flow Supercomputers,"IEEE Computer,

pp.48-56, Nov. 1980.

Dimopoulos [1985]: N.J.Dimopouios, "On the Structure of the Homogeneous

Multiprocessor," IEEE Trans, on Comput., vol. c-34, no. 2, pp. 141-150, 1985.

Fairbairn [1982]: D.G.Fairbairn, "VLSI: A New Frontier for Systems Designers,"

IEEE Computer, pp.87-96, Jan. 1982.

Flynn [1966]: M.J.Flynn, "Very High-Speed Computing Systems," Proc. of the

IEEE, vol. 54, no. 12, Dec. 1966.

Fung and Torng [1979]: F.Fung and H.Torng, "On the Analysis of Memory Conflicts

and Bus Contentions in a Multiple Microprocessor System," IEEE Trans, on Comput.,

Hellerman [1967]: H.Hellerman, "Digital Computer System Principles,"

pp.228-229, McGraw-Hill, New York, 1967.

Hockney and Jessope [1981]: R.W.Hockney and C.R.Jesshope, "Parallel

Computers," Published by Adam Hilger Ltd, pp. 158-178, 1981.

Hoener and Roeder [1977]: S.Hoener and W.Roeder, "Efficiency of a Multiprocessor

System with Time-Shared Busses," EUROMICRO 77, Sept. 1977.

Hwang and Briggs [1985]: K.Hwang and F.A.Briggs, "Computer Architecture and

Parallel Processing," McGraw-Hill Series in Computer Orginisation and

Architecture, 1985.

Jenson [1978]: C.Jenson, "Taking another approach to supercomputing,"

Datamation, vol. 24, pp. 159-172, Feb. 1978.

Kaiser [1980]: D.Kaiser, "iAPX 432 Object Prime Preliminary Draft," Intel

Corporation, Aug. 1980.

Krajewski [1985]: R.Krajewski, "Multiprocessing: an overview," Byte, May

1985, pp. 171-181.

Kruskal and Snir [1982]: C.P.Kruskal and M.Snir, "Some Results on Multistage

Interconnection Networks for Multiprocessors," New York University, Comput. Sci.

Dept., Tech. Rep. 51, 1982.

196

Kuck et ai. [1981]: D.J.Kuck et al., "Dependence Graphs and Compiler

Optimisations," Proceedings 8th Symposium on Principles of Programming

Languages, Jan. 1981.

Levy [1978]: J.V.Levy, "Buses, The Skeleton of Computer Structures," Computer

Engineering: a DEC View of Hardware System Design by C.G.Bell, J.C.Mudge and

J.E.McNamara, 1978.

Markenscoff [1985]: P.Markenscoff, "Markov models for a multiple processor

system with a shared bus," I EE Proc., vol. 132, pt. E, no.6, pp. 316-322, 1985.

Marsan and Gregoretti [1981]: M.A.Marsan and F.Gregoretti, "Memory Interface

Models for a Multiprocessor System, with a Shared Bus and a Single External

Common Memory," EUROMICRO Journal, Feb. 1981.

Marsan and Gerla[1982]: M.A.Marsan and M.Gerla, "Markov Models for Multiple

Bus Multiprocessor Systems," IEEE Trans, on Comput., vol. c-31, no. 3, pp.

239 -248 .

MCE [1985a]: Micro Circuit Engineering Ltd., "BX Simulator System User Guide,"

1985.

MCE [1985b]: Micro Circuit Engineering Ltd., "Array Design Manual," 1985.

MCE [1985c]: Micro Circuit Engineering Ltd., "BX Simulator System Technical

Reference Manual," 1985.

Reddaway [1973]: S.F.Reddaway, "DAP - A distributed array processor," Proc. 1st

Annu. Symp. Comput. Arch., Florida, Dec. 1973, pp.61-65.

Slotnick et al. [1962]: D.L.SIotnick, W.C.Borck, and R.C.McReynolds, "The

SOLOMON computer," Proc. AFIPS-FJCC, vol. 22, 1962, pp. 97-107.

Thurber et al. [1972]: KJ.Thurber, E.DJenson, L.A.Jack, L.L.Kinney, P.C.Patton

and L.C.Anderson, "A Systematic Approach to the Design of Digital Bussing

Structures," Proc. AFIPS Fall Joint Computer Conference 41, 1972.

Unger [1958]: S.H.Unger, "A computer oriented towards spatial problems," Proc.

IRE, vol. 46, pp. 1744-1750, Oct. 1958.

Whiting et al. [1975]: R.H.Whiting, C.B.Chang and M.Athans, "On the State and

Parameter Estimation for Manoeuvering Re-entry Vehicles," Proc. of the 6th

Symposium on Non-linear Estimation, San Diego, 1975.

W illis [1978]: P.J.Willis, "Derivation and Comparison of Multiprocessor

Contention Measures," IEE Journal of Computers and Digital Techniques, Aug. 1978.

Windrush {1985]: Windrush Micro Systems, "EURO-6X : Hardware manual,"

1985.

Wulf and Bell [1972]: W.Wulf and C.G.Bell, "C.mmp - A muli-mini-processor,"

in Proc. AFIPS Conf., 1972, vol. 41, part II, pp. 765-777.

Xilinx [1986a]: Xilinx, "LCA User's Manual," 1986.

198

Xilinx [1986b]: Xilinx, "LCA Development System," 1986.

Zakharov [1984]: V.Zakharov, "Parallelism and Array Processing," IEEE Tran, on

Comput., vol. c-33, no. 1, pp. 45-78.

