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Data Structures for The Reconstruction of Engineering Drawings.

M. Waite

ABSTRACT.

An extension to the Region finding algorithm presented in [68] is 
described which constructs a description of the topology of a drawing 
with a single pass through the vector file of the drawing. The 
description constructed by the algorithm  is a developm ent of the 
Modified Wing-edged data structure described in [112]. The data structure 
presented here has two main components:- a series of directed graphs, 
each of which describes a set of connected vectors in the drawing; and a 
Containment hierarchy representing the positional relationships between 
the series of discrete graphs.

The intended use of the algorithm is as an intermediate stage in 
constructing three-dimensional representations of objects from digitised 
three-view engineering projections. A semi-automatic engineering 
drawing interpreter is presented which is based on the system developed 
by Aldefeld[2,3,4], but which uses the new algorithm to produce the 
drawing data structures and so decrease the constraints on the data 
format of the input drawing. It is envisaged that this new algorithm will 
enable the interpreter to work with the loosely structured, inaccurate and 
incomplete drawing data derived from scanned images of drawings.



The following is a list of corrections to errors which have been
found in the text.

Page 14. paragraph 2. line 2 "~
"boundary-representations" should read "Wire-frames

Page 16, paragraph 1, line 3 *-
"itermediate" should read "intermediate''»
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"indépendant" should read "independent".

Page 33, paragraph 2, line 2 t- 
"are" should read "is".

ERRATA*
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"L#EF" should read "L#FE".
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CHAPTER 1



1. Interpreting Engineering Drawings.

1.1 Introduction.

Engineering drawings are representations of the design of objects. The engineering drawing 

contains a stylised graphical representation of one or more related parallel projections of 

an object or assembly, drawn with regard to the mathematics of projection [17] and also to 

the accepted rules of draftsmanship [42]. Extra data in the form of text and symbols is 

woven around the graphical representation giving details of design decisions such as 

tolerances, materials, and finishes, and also detailing the relationship between separate 

drawing sheets and versions of drawings[34,43]. Significantly, some text and symbols are 

used as abbreviations for common entities which should, following the rules of projection, 

have appeared in the graphic but were omitted for the sake of clarity and time [18,44].

In principle, the representation of engineering drawings is a simple matter. Engineering 

drawings are made from collections of curve segments and text configured in two 

dimensional space. All that is required to represent a drawing is to create data entities 

which describe the types and positions of curves, and the font, size, orientation and 

location of any text[18]. In theory it is not difficult to write computer programs that can be 

used to create, store and retrieve such artifacts, although such programs tend to be large 

and suffer the concomitant problems of being difficult to design, verify and maintain. 

Managing the size and complexity of large computer systems is a field of research in itself 

which has yielded many different design methodologies. These tend to be classified as 

hierarchical top-down techniques or modular bottom-up techniques, the latter coming into 

favour in the late 1980's with the emergence of object-oriented design techniques, tools and 

languages [60,93], one influence from the artificial intelligence community anticipated by 

Sandewall[85].

Following the pioneering work of Sutherland!] 05] in developing the first useful computer- 

assisted drawing facility, a whole industry has grown around the development of 

computer systems for creating, storing, manipulating and displaying drawings. As the 

technology for storing and displaying drawings advanced, the design emphasis for such 

systems moved to increasing the throughput of designers by improving the communication
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between the designer and the computer system. This emphasis is typified by attempts to 

build some design skills into the computer-system [111], making it co-operate with the 

designer as an assistant rather than as a tool [20,56]. Increasing the communication 

between designer and machine has lead to some interesting attempts at using free-hand 

sketches as an input medium [44,49,64,89].

Engineering drawings have started to receive attention as a possible input medium for 

Computer-aided Design and Draughting systems. At the simplest level, this may involve 

placing the sheet containing the drawing on top of a digitising tablet and identifying the 

type and the end points of curves using a stylus. Such an approach obviously involves a 

great deal of repetitious action from the operator, leading to boredom, fatigue and errors. 

A more promising approach is to use a camera or digitising-scanner to produce an image of 

the drawing which can be stored in computer memory. Unfortunately, camera derived 

images are usually in a format which are incompatible with CAD systems. The camera 

produces an array of values representing the brightness or colour of a corresponding 

rectangle on the drawing, whereas most CAD systems store the drawing in vector format. 

Camera images have to be converted into the vector representations before they can be 

stored and manipulated using a CAD package. Converting a camera or scanned image into 

a vector image has received considerable attention, not only for its application as an 

engineering drawing input facility, but also in general as a precursor to image 

understanding in the field of computer vision[7,14,88].

Commonly the first stage of this conversion process is a thresholding process which maps 

the grey-scale images produced by the camera onto a binary image of black and white 

pixels[117], Line-following procedures then hunt across the image array looking for pixel- 

patterns which might correspond to lines, arcs, alpha-numeric characters or other 

symbols. Literature in this area might fairly be divided into that concerned with 

extracting graphical elem ents [9,12,22,24,32,65,72,74,80], that concerned with text 

extraction [71,89,107], and that concerned with symbol extraction [16,88,106]. This two 

stage process is a popular approach to vectorisation, but is not universal. Some novel 

apparatus have been described [6,30] which operate directly on the paper drawing, 

following lines with lasers and optical sensors and so by-passing the requirement to store 

and process a camera derived image.
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Extracting vector and text data from camera images is an im portant part in the 

development of new man-machine interfaces for CAD systems, but the graphical 

primitives and symbols obtained from this process only yields a low level of information 

about the drawing. The next stage is to construct a topological description of the drawing 

which provides a framework for representing the interaction and relative positioning 

between primitives and the more complex shapes that these interactions produce. These 

concerns were originally attended by artificial intelligence researchers in the early 1970's 

with the aim of constructing descriptions of drawings expressed in natural language in an 

attempt to mimic human geometric reasoning [7,23,59]. Lately, these concerns are being 

addressed by a field of computing science called 'Computational Geometry' which is 

interested in how geometric data is obtained, stored and manipulated in order to provide 

solutions to practical problems such as VLSI design and air-traffic control. Results to date 

have included some intuitively appealing data structures and algorithms. Data 

structures such as the 'Hammock' [19] and the Voronoi diagram [27,35] have been created 

along with algorithms to construct and manipulate them which can be used to efficiently 

answer queries on the relative positioning between entities. One significant algorithm is 

the plane sweep algorithm which has been variously applied to the efficient reporting of 

intersections between line-segments [10,11], and to windowing and clipping algorithms for 

general geometric figures in computer graphics[26]. An interesting enhancement of the 

plane-sweep algorithm was used to generate descriptions of the regions between line- 

segments in a restricted drawing[68]. A further development of this algorithm is 

presented in chapter three of this thesis, allowing a description of the regions in any line- 

drawing to be constructed.

The man-machine interface can be improved further by imbuing the machine with an 

expert’s understanding of the physical laws which apply to the artifacts being designed 

and by enabling the machine to construct a three-dimensional model of the objects being 

designed from its communication with the designer. The task of engineering drawing 

interpretation is to construct a representation of the intention of the designer from 

whatever channels of communication the designer chooses to use. This requires that CAD 

systems become expert systems. They must be able to acquire and store knowledge of their 

domain of usefulness, this requiring new techniques of knowledge representation [91] to be
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laid on top of geometric representation capabilities. The machine could then perform an 

important role in the loop between creativity and analysis[lll] by performing much of the 

routine analysis involved in design. Warman isolated four computationally intensive 

design activities which can be assigned to computers:-

Reduction - simplification which retains functionality 

Simulation - testing design functionality using models 

Optimisation - balancing economics against functionality 

Modularisation - deriving re-usable sub-units from the design.

To perform these roles in engineering and architectural design applications, the machine 

must be able to construct the three dimensional representation of the design in order to 

analyse it. In electrical or electronic design applications a similar assisting role could be 

played by a machine with an understanding of the logical design of the circuit in terms of 

connected components. Machine understanding of what is being designed provides a 

qualitative improvement over machine understanding of the arrangement of graphic 

primitives which constitute a diagram of the design.

In engineering applications, understanding designs means understanding the configuration 

of the components being designed, the materials from which they are made, how they are 

made, the dynamic interactions between such components and the interactions between 

components and environment. Examining only the first aspect, understanding the 

configuration of components requires data structures to be constructed which can represent 

the geometry of solid objects. Allen's paper [5] provides an overview of the solid 

modelling techniques currently in use in engineering CAD systems. He divides solid 

models into three categories, all three allowing quantitative analysis of the described 

object to be performed[15,31,81]. These three categories describe solids as:-

* combinations of solid primitives - commonly applied in Constructive Solid Geometry 

systems [113,1163, which are primarily useful for designs which can be described 

in terms of objects being welded, glued together or having other shapes drilled or 

cut out of them.
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* topologically related elementary surfaces - called the boundary representation of an

object[8,112]. This has advantages over the Constructive Solid Geometry 

representation in that sculpted surfaces such as car body shells can be described. 

The boundary representation is also used in medical applications[115].

* constructional operations performed on two-dimensional shapes - originated in

computer vision research [1], where the model is called the 'Generalised 

Cylinder' representation [14]. Useful in Engineering design for describing 

extrusions or other types of prismatic objects which appear in many engineering 

artifacts.

The ability to internally model solids provides an important level of functionality for 

CAD systems, but our main concern here is with constructing these internal models from 

the channel of communication between designer and machine. This requires that CAD 

systems exhibit some basic human abilities of pattern recognition, the ability to 

determine the similarities and dissimilarities between one image and another. This 

would enable graphical queries to be made upon the system's memory, finding previous 

designs sim ilar to the current one, recognising hand-w ritten text and sym bols. 

Unfortunately this is one area where theory is presently thin. Pavel made the surprising 

statement that shape theory as such does not exist [73] and that this is to blame for the 

lack of generalised pattern recognition systems. Her argument can be more clearly 

understood when one attempts to construct purely syntactic or structural descriptions of 

images, two approaches which have been followed in attempts to provide generalised 

pattern recognition facilities[29,70]. Deriving structural descriptions of connected 

components is simply a matter of defining line types and angles between these lines., 

yielding a rotation and size independent description of an outline[58,61,62]. Further, it is 

possible describe the hierarchic nesting between such outlines and retain independence 

from size, orientation and position. However, no further information can be given. 

Relating adjacent outlines causes problems - saying even that one shape is northwest or 

upper-left from another suddenly causes problems. Distinctions such as Left-of, Above, 

Below and Northwest-of place restrictions on the orientation of the picture. These 

relations change as the alignment of the picture with the observer change and so 

rotational independence has been lost.
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Constructing grammatical, syntactic or structural descriptions of an image which may 

allow general parsing techniques to be applied to image matching seems doomed to 

failure. At one point, scene analysis seemed to promise solutions to the problem of image 

understanding. In 1968 Guzman appeared to have solved a fundamental problem in vision 

by building descriptions of three-dimensional scenes by assigning convex or concave roles to 

edges in the image[36,37,38]. Waltz developed this further, enumerating all possible 

junction types in such a drawing[l 08,109]. Unfortunately this approach, which is elegant 

and easily manageable for plane-faced objects[84,921 of an "Origami W orld"[50,51], 

becomes complicated when applied to curvcd surfaces because of the relaxation of the 

rigidity of the constraints which guide the interpreter. Lines can no longer be assumed to 

have the same convexity/concavity assignment running their entire length, a requirement 

central to this approach to interpretation. Kokichi Sugihara has devoted many years 

pursuing this approach to image understanding applying it to data obtained from 

drawings and range-finders[94-103], and managing to apply it to objects with curved 

surfaces. This approach is however limited to interpreting axiometric and perspective 

views and therefore does not apply to orthographic projections.

Similar problems in producing generalised object descriptions beset the field of model- 

matching. Model-matching is the process of comparing a stored template against the 

image data using some criteria of 'likeness' or 'unlikeness'. In order to be effective, model- 

matching must have some level of independence from size and orientation constraints[110]. 

Measures of likeness must be made on shape-derived criteria else slight changes in size of 

the object owing to perspective diminution would prevent two instances of the object from 

being recognised. Suggestions of criteria which might be used to determine the likeness of 

an image instance to an image model include number of crossings[90], measures of symmetry 

[69], region adjacencies [104], junction types[87], relations between features[ 63,66,75,86], 

and similarities of grammatical descriptions[33]. Multi-view models [53], bearing some 

similarity to flat cardboard cut-outs which can be folded into three-dimensional objects, 

have been proposed which may eventually  provide m odel-m atching processes 

independent from orientation in three- dimensional space.

Approaches to provide working engineering drawing interpretation systems to date have



tended to avoid most of the profound problems facing computer vision researchers, taking 

advantage of the fact that engineering drawings tend to describe simpler objects than 

those encountered in in the vision domain. Techniques applied are generally constructive, 

bottom-up approaches - first extracting lines and symbols, then finding the loops of 

connected lines, then constructing surfaces and then solid objects. Section 1.2 of this 

chapter outlines these approaches in more detail.



1.2 Existing Engineering Drawing Interpreters.

1.2.1 A practical application of a digitising scanner.

One of the earliest attempts at constructing an engineering drawing interpreter was 

presented in some papers by Idesawa and his associates [47,48]. These papers outline the 

design of a scanner for the input of drawings into a computer, and complement this with a 

sample application for their scanner, a program which interprets three-view drawings of 

polyhedral objects. The program has five stages :-

a) Tidying up the drawing data. The drawing features are rotated so that they 

register squarely with the drawing axis, compensating for any mis-alignment between 

views which may be caused by inaccurately loading the paper into the scanner.

b) Calculation of three-dimensional vertices. These are a subset of the Cartesian 

product of the X, Y and Z components of the XY, XZ, and YZ views.

c) Construction of three-dimensional lines. The projections of lines in each view 

are fitted with three-dimensional vertices from the set generated in (b).

d) Elimination of 'Ghost figures'. Three-dimensional lines which do not have 

projections in each view are eliminated.

e) Construction of faces. The three-dimensional line set is allocated to the 

boundaries of the faces in the drawing. Allocation is constrained by the rules of planar 

geometry: all edges bounding a single face must be co-planar; all edges must be the 

intersection of two plane faces.

The program was not meant to be comprehensive, more a demonstration of the potential of 

using drawings as medium for communicating with computers. No attempt was made to 

deal with the projections of hidden parts, nor to interpret drawings of objects with curved 

surfaces.

This program identified one of the major difficulties in reconstructing objects from 

engineering drawings, that of overcoming the ambiguity inherent in the drawings. Each
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vertex and edge in a projection can represent any number of vertices and edges of the object 

which lie perpendicular to each other in relation to the line of sight of the projection. 

This is the cause of the "ghost figures" which Idesawa's algorithm generates with its 

simple combinatorial approach to constructing three-dimensional vertices and surfaces. 

Idesawa's approach to the elimination of "ghost figures" is to generate all possible 

surfaces, both actual and ghost, and to discard those which fail a series of validation 

tests. Surfaces which pass the tests are then composed into an object. The validation 

tests check that the surface is planar and that the surface can be back-projected onto all of 

the projections given in the drawing.

This approach to "ghost figure" elimination is effective for simple drawings, but could 

prove prohibitively expensive when the reconstruction produces a large number of 

candidate surfaces or when the drawing contains a large element of ambiguity, as occurs 

when hidden detail is shown in drawings of complex objects, and the projections of the 

details overlap and intersect each other producing spurious surface outlines.

The three main limitations of Idesawa's program have been the focus of most of the 

subsequent research efforts in the area of the interpretation of engineering drawings.

1) The system requires the user to identify closed loops in the drawing and also to 

identify correspondences between vertices in each view. This dependence on the user must 

be reduced to make the system practically applicable as an interface to a drawing system.

2) Idesawa's approach to the "ghost figure" problem  is com putationally 

expensive, does not cater for hidden detail and does not eliminate the more subtle "ghost 

figures" which might be constructed from some projections.

3) Idesawa's program cannot interpret projections of objects with curved surfaces. 

Curved surfaces increase the ambiguity in the drawing because not all the vertices and 

edges which occur in the projections of curved surfaces actually occur in the surfaces 

themselves. For example, the projection of a cylinder might show straight edges meeting 

a circle: the edges are projections of the curved surface, the 'horizon' of the curved surface, 

and so do not represent edges of the cylinder at all; similarly, the vertices where the edges 

meet the circle do not exist because the edges themselves do not exist.
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1.2.2 Constructing simple solids from Three view drawings.

A cruder version of Idesawa's system was presented in 1982 by Kimura et a!.[52]. The 

system constructs three-dimensional vertices from the views, allocates these vertices to 

lines in the views to create three-dimensional lines and then performs a tree-search to 

construct three-dimensional surfaces from loops of three-dimensional lines. The system 

makes no attempt to detect "ghost figures", although the authors acknowledge this as an 

area for future research.

1.2.3 Composing objects from candidate surfaces with a Theorem Prover.

Giles Lafue's program ORTHO [54] generates large sets of three-dimensional faces from 

the vertices and edges constructed from the two or three orthographic views: these sets 

often contain some "false" faces resulting from coincidental alignments of edges in the 

orthographic projections of the object. The most important property of ORTHO is its 

ability to identify and eliminate the "false" or "ghost" faces by the application of a 

theorem-proving technique. The set of generated surfaces is structured as a set of mutually 

dependent hypotheses to which a theorem-proving algorithm is applied. Discovering all 

the consistent hypotheses also discovers all the consistent sets of surfaces which compose 

valid objects.

The set of all possible three-dimensional surfaces is generated using the same method as 

Idesawa. These surfaces are structured around the edges and vertices of the drawing. 

Each edge and vertex contains a list of the candidate three-dimensional surfaces which 

contain that edge or vertex as part of their boundaries. These lists are called "Syntactic- 

sets" or "S-sets". A square surface would appear in the S-set of four edges and four 

vertices.

Initially, all the surfaces are labelled as being in an undefined or unmarked state. The 

theorem-prover then proceeds to label the unmarked surfaces as being either "real" or 

"ghost", attempting to construct systems of labellings which are internally consistent and 

which satisfy the topological rules of plane-faced solids. Internal consistency requires 

that a surface marked as "real" in one Edge is "real" in all the other Edges in which it 

appears. Topological rules insist that an edge is the meeting place of an even number of
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surfaces, and that each vertex is the meeting place of three or more surfaces. Both sets of 

constraint are locally based enabling solutions to be constructed without performing any 

global analysis of the object being constructed which might prove to be both complex and 

expensive.

The constraints imposed by these rules can be seen to propagate quite quickly once 

assertions are made as to which surfaces actually exist, and so false hypotheses which 

lead to contradictions are soon identified. A contradiction might be that after a certain 

number of assertions, one edge contains only "ghost" surfaces, or that another edge contains 

only one "real" surface and all its other surfaces have been marked as "ghosts", or that a 

vertex contains only two "real" surfaces. Once a contradiction has been reached by the 

theorem-prover, it must backtrack to the previous assertion and attempt to replace it with 

a new assertion, typically reversing the recent "real/ghost" assertion and transferring it 

to some other unmarked surface belonging to that edge. If no new assertion can be made to 

replace the previous incorrect one, then the theorem-prover must backtrack further. If no 

further backtracking can be done, then the object is irresolvable.

ORTHO provides improvements upon Idesawa's program in reducing the dependence on the 

user in the input stage. The user is no longer required to relate features between views. 

ORTHO matches vertices in one view with those in the others, and provides a degree of 

tolerencing to absolve digitisation errors. ORTHO still has some dependence upon the 

user for low-level interpretation of the input data, requiring explicit identification of all 

the closed loops in the drawing. Overlapping loops must also be identified and isolated 

from each other.

The main advantage ORTHO has over Idesawa's program is in the elimination of "ghost" 

surfaces. Here, using topological rules, ORTHO eliminates subtle ghosts which would 

confuse Idesawa's program, however the "ghost figure" elimination process is still based 

on the expensive generate and test paradigm, and nothing has been done to cope with 

hidden detail or curved surfaces.



1.2.4 Constructing solids from Wire-frames; constructing Wire-frames from Engineering 

Drawings.

Another treatment of the problem of interpreting engineering drawings evolved from an 

algorithm intended to derive volumetric descriptions of solids from the descriptions of the 

boundaries of solids given by three-dimensional wire-frames of edges and vertices.

The motivation behind the wire-frame algorithm was to enable volumetric descriptions of 

solids to be constructed from boundary-representations, which are typically smaller and 

cheaper to store than volumetric descriptions. This would enable volumetric analysis to 

be performed on solids cheaply stored in boundary-representation formats. This 

algorithm was described by Wesley and Markowsky in their paper "Fleshing out wire 

frames" [57].

The algorithm can construct every possible object which fits a given three-dimensional 

wire frame. The algorithm is built on established topological foundations and so can be 

relied upon to construct all possible solutions to a given wire-frame, to the extent that it 

can produce solutions to pathological cases where the objects constructed are not physically 

realisable.

The data set input to the program describes a three-dimensional wire-frame. In order to 

make the program interpret three^view engineering drawings, an extension is applied 

which first constructs a wire-frame from the drawing. This extension is described in 

"Fleshing out projections" [114].

A new level of ambiguity is introduced to the problem by attempting to construct a wire

frame from a set of engineering projections. The wire-frame constructed from the drawing 

might contain edges and vertices which do not exist in the object: these 'virtual' edges and 

vertices could cause the wire-frame to become contradictory and prevent any solutions from 

being found, or they could increase the ambiguity of the wire-frame and cause a large 

increase in the set of feasible solutions. The wire-frame which is constructed from the 

projections is therefore not assumed to be correct and so the constraints on the solution 

imposed by the wire-frame are relaxed. New stages are added to the Wire-frame
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algorithm which evaluate whether the wire-frame is correct and which amend the wire

frame as errors are found.

This algorithm eliminates all "ghost figures" except those caused by genuine ambiguity in 

the drawing which can not be resolved without more contextual knowledge about the object 

being constructed. A further advance on previous interpretation programs is the reduction 

in the dependence upon the user in the input stage. The algorithm finds all the closed 

loops in the drawing data, and structures these loops into faces according to the 

containment relationships between them.

Curved surfaces are not dealt with in detail in these papers, although the authors do 

actually claim that the new levels of ambiguity introduced by curved surfaces can be coped 

with by adding some extensions to their algorithms. Curved surfaces increase the 

disparity between the features of the projection of the object and the features of the wire

frame of the object. This disparity would have to be bridged, probably by searching 

through the range of possible wire frames fitting a given set of projections. This process 

would be computationally expensive, especially considering that each wire frame itself 

has its own, possibly large, space of object solutions.

1.2.5 An Engineering Drawing Interpreter as a CAD system interface.

Kenneth Preiss' engineering drawing interpretation program[76,77,78] shows a similar 

reduction in the dependence upon the user in the input stage as Wesley and Markowsky's. 

The program identifies the correspondence between projections of vertices in each view, 

and also the closed loops of edges which describe the projections of surfaces. This shift in 

the onus of interpretation from the user to the machine, is very important considering 

Preiss’ goal of producing a practical interface module to a CAD system for the input of 

engineering drawings and of transforming data from two-dimensional CAD systems into a 

form suitable for use by solid modelling systems.

Preiss' algorithm for producing three-dimensional surfaces is similar in operation to 

Lafue’s theorem-prover "ORTHO" [54]. Surfaces are generated and validated using 

topological rules which can be applied locally at edges and vertices. An improvement in
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solution time is gained by using a heuristic to structure the search path, although the 

value of this is unlikely to be significant because the time saving only applies to the 

generation of surfaces. This is only an itermediate stage in the overall reconstruction 

process, and it has no interaction with the next stage which assembles the solid from the 

three-dimensional surfaces. In effect, the construction of candidate surfaces may have 

improved, but the "ghost" surface problem must be dealt with by the process which 

composes the surfaces into objects. This provides no advance on Lafue's solution.

1.2.6 Interpreting Engineering Drawings is a Consistent Labelling Problem.

Haralick and Queeney[41] examine the problem of deriving a solid from orthographic 

views as a constraint propagation problem{39,40]. This is a class of problems which 

address the assignment of values to systems of variables wherein each assignment 

somehow constrains the range of values which can be assigned to all the other variables in 

the system. Consistent systems are found by searching through all the possible sets of 

assignments, hopefully using some heuristic or pruning method to contain the size of the 

search.

An interpretation of an Engineering Drawing is a consistent system. The system is a set of 

initially unassigned or unlabelled variables. These variables correspond to the 2d 

vertices, lines and closed loops of lines. To produce an interpretation, each variable must 

be assigned a value or set of values which correspond to 3d vertices, lines and surfaces. 3d 

vertices assigned to 2d vertices must be consistent with the views of the drawing and so 

each 3d vertex assigned must project onto a line or vertex in each view of the drawing. 3d 

lines must also back-project onto every view in the drawing. The 3d lines used to construct 

a surface must all be co-planar.

Applying these rules yields a set of candidate planar surfaces which back-project onto 

every view of the drawing. The rules applied so far are all locally based in that the 

constraints governing the assignment of labels to variables are all specified within the 

drawing system. A set of global constraints is used to govern the final stage of the object 

construction. Surfaces are selected from all the candidates in attempts to construct 

topologically valid objects. The global constraints demand the every edge is the meeting 

point of two surfaces in different planes, and each vertex is the meeting point of three or
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A similar paper by Er[28] constructs the object from the drawing in the same way, but uses 

the 'Dual Space' of the object, first used by Huffman[45,46] and Draper[25] in scene 

analysis problems, to simplify the validation of the construction.

These papers do not enhance the techniques of engineering drawing interpretation, but 

rather establishes the problem as one of constraint propagation similar to Waltz's junction 

labelling prolem in interpreting scenes of polyhedra [109].

1.2.7 Interpreting Engineering Drawings containing arcs and circles.

Woo and Hammer[118] in 1977 presented the first system capable of interpreting 

engineering drawings of objects incorporating simple circular surfaces. The system copes 

with only very simple curved surfaces. A circle is recognised in one view and is assumed to 

project onto a straight-line segment in the other views. Such matches enable the section of 

cylinders to be constructed. Obviously this approach is limited to cylinders lying 

orthogonal to the line of sight of the projection.

A more capable system was presented by Sakurai and Gossard[83]. Although limited to 

circles and arcs, the program demonstrates a significant increase in the range of objects 

which can be constructed. This increase in scope is facilitated by the identification of 

new types of vertices and edges - "p-vertices", "c-vertices" and "c-edges".

The two-dimensional "p-vertices" include all the vertices in the drawing data, plus some 

which are injected into the drawing at the far-left, far-right, top and bottom turning 

points of arcs, and also at the meeting points of edges with differing curves. The three- 

dimensional "c-vertices" of the object are composed by superimposing the "p-vertices" from 

each view with the projections of other views. The three-dimensional "c-edges", which 

include curved edges, are constructed from the "c-vertices" using a set of rules to identify 

silhouettes and tangency-lines.

Following this, a similar process to that described by Wesley and Markowsky [57,114] 

identifies the faces and surface projections of the object, and then constructs solid blocks

more surfaces. Surface compositions are arranged according to these constraints, and any

complete compositions which satisfy these rules are valid object interpretations.
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which are arranged into compositions which might yield valid solid objects.

The demonstration is limited to objects which can be described by straight lines, circles 

and arcs, although in theory this could be extended to other types of curve by extending 

the set of rules used to direct the interpreter.

The major restriction in the applicability of this system is that it can only cope with 

curved surfaces whose axis is parallel to one of the drawing axes. This restriction in the 

orientation of the interpretable objects is significant in that it is the only currently 

identified obstacle inthe way of producing an automatic engineering drawing interpreter 

suitable for a reasonable range of real applications. This restriction is imposed to make 

the task of identifying curved surfaces possible: in the restricted orientation allowed by 

th is system , it is re latively  easy to produce a set of ru les which id entify  the 

correspondences between curves and line-segments in the projections. For example, the 

correspondences between the projections of a cylinder could be that of rectangles in one 

view to a circle in a third view. Altering the orientation of the cylinder would produce a 

more ambiguous description. For example in one view it might look like an ellipse 

connected to two straight edges connected to an elliptical arc. Projections in other views 

would be equally convoluted.

1.2.8 Interpreting Engineering Drawings which include Ellipses.

Preiss [79] increases the range of curves which can be handled by an interpreter to include 

ellipses and elliptical arcs.

All the possible legal combinations of vertices, lines and curves which could appear in a 

system of orthogonal views of objects comprising plane and cylindrical faces are 

enumerated. This set of legal combinations imposes a set of constraints which guide an 

enhanced interpretation mechanism capable of reconstructing objects synthesised from 

cylindrical and plane-faces. Although the range of objects which can be interpreted is 

increased to include those with elliptical surfaces, the restrictions on the orientation of 

the object with regard to the line of sight of the projections is the same as in Sakurai and 

Gossard's system.

-18-



1.2.9 A quicker method of interpreting objects with curved surfaces.

Lequette [55] presented a modified version of the wire-fram e based approach to 

engineering drawing interpretation [57,83,114]. The main differences between this version 

and that described by Sakurai and Gossard was in its method of finding the "tangent" 

edges where surfaces with different curvatures meet. Lequette found these tangent edges 

while attempting to fit surfaces to the wire-frame rather than inferring their existence 

directly from the drawing views as performed in [83].

The surface fitting routine itself was similar to that developed by Sakurai and Gossard. 

Pairs of edges at each vertex were examined and the surface type between them 

established - planar, cylindrical, spherical or conical. The surface was then verified by 

traversing the edges describing the outline of the surface on the wire-frame, ensuring that 

the edges of the outline could be fitted to the proposed surface. A refinement to the 

verification procedure enabled tangent edges to be identified. If at one vertex of an edge no 

other edge could be found which lay inside the current surface, but another edge did exist 

which lay in a surface tangential to the current surface, then that vertex was recorded as 

possibly lying on a tangent edge. Once all the edges of a surface had been explored, all the 

recorded tangent vertices were examined to see if tangent edges could be fitted through 

them.

The main benefit in constructing tangent edges during the surface fitting process rather 

than earlier was that the initial wire-frame would be smaller and contain fewer spurious 

edges, resulting possibly in a quicker interpretation.

1.2.10 Building the interpretation from solid components.

Aldefeld[2,3,4] presents a new approach to drawing interpretation which constructs solid 

sub-parts directly from the drawing rather than follow the path of constructing three- 

dimensional vertices, lines and surfaces pursued in all the other systems described 

previously.
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All prismatic objects which have a constant cross-section perpendicular to their axis can be 

described as a lamina swept through a third dimension. Aldefeld's system constructs 

such prismatic objects directly from the drawing by finding the outlines of cross-sections 

and then finding the length of the axis in the other views. This approach copes with any 

shape of cross-section, including arbitrary curves. Many engineering drawings comprise a 

synthesis of such objects: Aldefeld's program decomposes these into sub-parts, reconstructs 

these independently and then recombines them to form the object in the drawing.

The outlines of cross-sections always appear in a drawing as a set of one or more connected 

or contained closed loops of curve segments, straight or circular. Each of these loops 

correspond to the projection of a surface or part of a surface. Pattern finders search the 

drawing for closed loops, attempting to construct the outlines of cross-sections of feasible 

components from them.

The simplest type of component to identify is the uniform thickness object. These appear 

in engineering drawings, when projected from a favourable line sight, as rectangles in two 

views and as the shape of the cross-section in the remaining view. The cross-section may 

be any shape - square, rectangular, circular or an irregular synthesis of line and/or arc 

segments. The pattern finders for uniform thickness objects search through the views 

attempting to construct rectangles. Finding a pair of correspondingly sized and positioned 

rectangles in two views would indicate the likelihood of a component's existence. 

Searching through the third view, the pattern finders attempt to construct a cross-section 

of size and position appropriate to the two rectangles. In the actual system, the pattern 

finders worked the other way around. One of the "pattern finders" is the system's user 

who identifies the cross-section. The automatic pattern finders then locate the 

corresponding rectangles.

Aldefeld suggested that another class of objects for which pattern finders could be built 

might be that of objects with rotational symmetry. The pattern finders would look for 

circles in one view, and the rotated irregular section in the other views.



A construction process builds components from the uniform thickness objects identified by 

the pattern finders. All the components constructed from the drawing are combined to 

form feasible objects. This process simply assigns labels to the components declaring them 

solid or space. The combination process is guided by evaluating the progress of the 

construction. The evaluator back-projects the constructed object over the drawing and 

assesses whether they correspond. The composition process is similar to that applied in 

the other systems described previously.

The unique selling point of Aldefeld's program lies in the way it constructs solid 

components directly from the two dimensional drawing. The usual approach is to 

construct three-dimensional surfaces first and then compose these surfaces into solid 

components, an approach that runs into difficulty when the components incorporate curved 

surfaces. Edges and vertices become ambiguous requiring an large increase in the 

intelligence of the surface construction procedure compared to that required to construct 

planar surfaces. Aldefeld avoids these problems by not constructing surfaces at all, and so 

the components constructed by his system can incorporate any surface type - as long as the 

component is an uniform thickness object. Although limited to this sub-set of all object 

types, the system is capable of interpreting a large set of practical engineering artifacts 

with which would present difficulties to systems based on the surface construction 

approach.

There are three drawbacks to this system

* First, this system relies upon the user to identify the combinations of closed loops 

which comprise the cross-section of a prism. No suggestion is made as to how the 

spurious loops created by the projection of overlapping com ponents m ight be 

automatically eliminated.

* Second, this system relies upon the axis of the uniform thickness objects being 

parallel to the drawing axis. Any unfavourable orientation would cause the shapes of 

the cross-sections and rectangles to become truncated, distorted and skewed, making the 

components difficult to construct properly. This problem is not unique to Aldefeld’s 

program - Sakurai and Gossard's system [83] suffers from the same limitation.
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* Third, this system copes with only a restricted set of object types - those 

constructed from combinations of prismatic components. Obviously this range could be 

expanded by extending the pattern finding and object constructing processes, but even so 

there would always be the possibility that some object type would be encountered 

which would not fit into the devised schema.

1.2.11 Sliced prismatic shapes yield larger object range.

The range of objects which can be represented using the swept cross-section construction is 

increased by allowing 'Cutting planes' to be incorporated into the object description[21]. 

Specifying one or more arbitrary slices through the prismatic object constructed using 

swept cross-sections allows complex objects to be described. This 'cutting' process is also a 

representative of how the object might actually be made by machining a part, such as 

machining cast parts and slicing extruded parts at angles. Describing such parts in terms 

of simple component geometries can be considerably more expensive than describing in 

terms of a simple solid which has been cut in certain places.

The system described by Cheng et al [21]. consisted of three processes:

* drawing decomposition - the separate views in the drawing are identified and 

the drawing is simplified by removing arcs, circles and their corresponding 'horizon1 

edges. Straight line-segments are inserted to connect the 'hanging' line-segments at 

either end of the removed segment. Following simplification, the drawing consists of 

only straight line-segments and describes a plane-faced polyhedron. A three- 

dimensional representation of this polyhedron is constructed by sweeping the outline of 

its cross-section through a third dimension.

* sub-part reconstruction - The three-dimensional polyhedron is projected back onto 

the drawing. The areas where the drawing and the back-projection differ define 

spurious sub-parts which must be added to or subtracted from the polyhedron to produce 

a representation of the original object. These sub-parts include all the parts of the 

object with curved surfaces. These sub-parts are constructed by applying a plane- 

cutting algorithm.

-22-



* sub-part composition - A final process composes the generated sub-parts into what 

Chen called a 'volume enclosure relational quasi-tree' describing the total object in 

terms of sub-parts being WITHIN, ON, IN and OUTSIDE other sub-parts. An 

algorithm for converting this relational description into a CSG tree was described.

The simplication stage introduced in this algorithm significantly reduces the amount of 

work that the sub-part identification and reconstruction processes have to perform. In 

Aldefeld's system, the drawing is simplified only when sub-parts are identified by the 

system and their outlines are removed from the drawing. Cheng removes all arcs, circles 

and horizon lines from the drawing, effectively presenting his sub-part identification and 

reconstruction processes with two simpler drawings: one containing only cylindrical 

objects; and the other containing only plane-faced objects.

1.2.12 An integrated contextual approach.

Two systems have been implemented which use knowledge-bases to interpret the drawing. 

The first[13] uses a set of production rules to determine the solid primitives of an object 

from the two-dimensional segments in the drawing. A more sophisticated and promising 

approach is outlined by Yoshira et al.[l 19] which pays more attention to the text in the 

drawing than to the drawing data itself.

The system is primed with a set of types of data structure which would typically contain 

information concerning dimensioning, finishes, tolerances and thread sizes. The program 

hunts through the drawing looking for text strings and for each one found, determines 

which data structure that piece of text belongs to and creates an instance of that structure. 

The fields of the structure are filled from the string, typically storing numerical data and 

the units of any measurement along with any appropriate understood keywords. Once the 

text is exhausted of meaning , certain fields in the data structure may still be unassigned 

and for each unassigned field a "demon' is loosed which attempts to find something to 

assign to the field. As an example, the description of a thread size is usually applied to 

a set of holes in the drawing which are connected to the text description by connecting 

lines. The demon attempts to find some holes to apply to the thread description, possibly 

by following arrows into parts of the drawing or by finding cirlces of an appropriate size.



Having constructed a series of data structures from the text in the drawing, the program 

then simplifies the drawing by extracting all the components which are fully specified by 

the data structures. A three dimensional object is then constructed from the simplified 

drawing following the path of constructing three-dimensional vertices, lines, surfaces and 

sub-parts after Wesley and Markowsky [57,114], The final object is composed from the sub

parts specified by the text and the sub-parts constructed from the drawing.

This system is promising in that it treats the drawing as a whole entity, building its 

interpretation from textual data as well as graphical data. This is necessary in 

understanding engineering drawings, and this necessity is underlined by the simple fact 

that text does appear on engineering drawings. If an engineer cannot fully understand the 

intention of the designer without text being supplied, then what chance does a machine 

stand.

No indication is given by the authors as to how successful and independant this system is, 

but it is obvious that the system is limited mainly by the types of data structures with 

which it is primed and by its understanding of the words in drawings. With sufficient 

effort put into maintaining its data base, this could evolve into a powerful and robust 

system.

1.3 The exent of progress towards fully automatic interpretation.

The main direction of development in systems for interpreting engineering drawings is 

decreasing the reliance upon the user. The first systems depended on the user to identify 

the closed loops in the drawings, and to identify the correspondences between the features 

in each view of the object [47,48]. This dependence successively decreased until, by the 

time Wesley and Markowsky presented their algorithm, the user was not required to 

perform these low-level tasks at all. Simple geometric algorithms were sufficient.

However, as algorithms became more competent at interpreting the drawings of plane

faced objects, the systems became reliant upon the user to determine which solution, from 

all those constructed, was the correct one. These systems could produce all the possible
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combinations of arrangements of solids which could be derived from a single drawing, but 

unfortunately were unable to distinguish solutions which were physically realisable from 

solutions which were the obvious intention of the drawing. Automatically performing the 

informed qualitative judgments necessary to identify the correct solution from a set of 

candidates would require an increase in the intelligence of the systems. They would 

require increased knowledge about engineering and the type of objects engineers produce. 

They would probably, like engineers, need to be able to read the text on the drawings to 

elicit further knowledge which could be used to guide the reconstruction process. A 

possible route to the future along these lines is shown by Yoshira[119].

Increasing the practical applicability of engineering drawing interpreters has increased 

the dependence upon the user. Interpreting drawings of objects with curved surfaces 

requires some assistance now to identify the boundaries between blended surfaces and to 

separate the overlapping projections of components of an object [2], Automating this 

procedure would require an increase in the intelligence and knowledge of the system.

Looking to the future when scanned images of engineering drawings become the main focus 

of attention rather than the perfect CAD system produced images which are currently 

being interpreted, the reliance upon the user may increase even more. The images would 

probably be imperfect, suffering from noise, blurring and other distortions. The user may 

initially be required to help the system produce a good image from the scanned image - to 

re-instate lost lines, to separate lines which have blurred together, to remove lines which 

are only creases in the paper.

Overall, while this technology is developing, the degree of automation will always be 

compromised by attempts to increase its generality and practical applicability.



1.4 The extent of progress towards a practically applicable engineering drawing 

interpreter.

The earliest attempts at interpreting engineering drawings concentrated only on the 

projections of plane-faced objects. Such projections obeyed simple rules, but even so 

provided the challenge of overcoming the ambiguity inherent in drawings where one line 

in a projection can represent any number of coincidental edges of the object. Following the 

expositions of Wesley and Markowsky, the interpretation of engineering drawings of 

plane-faced objects could be assumed to be complete and established.

Plane-faced objects are only a small sub-set of all the objects which can be represented by 

engineering drawings. Once the problem of interpreting the drawings of plane-faced 

objects had been solved, the next problem to be tackled was to extend this solution to a 

more practically relevant set of object types. Sakurai and Gossard extended the 

techniques developed by Wesley and Markowsky to cope with objects incorporating some 

curve types. The later algorithm of Preiss [79] catered for a larger number of curve types, 

increasing the range still further. Unfortunately, no-one had produced an algorithm 

which could interpret such objects when projected from arbitrary viewpoints. These 

programs which interpreted curved surfaces were rule based, and the task of collating the 

rules was simplified by restricting the orientations of the object in the projections.

Plane-faced objects had been interpreted using only limited knowledge of objects and the 

laws of projective geometry. Extending interpretation to objects with curved surfaces 

required much more knowledge about how certain types of objects looked when projected 

into two dimensions from certain view-points. This approach can become cumbersome 

when attempting to increase its generality. A large set of rules would be required to 

describe only a small set of object types when all view-points are to be considered. 

Alternatively, a new method of describing the structure of objects is required so that only a 

small set rules are required to describe an object from all view-points. This is a problem of 

knowledge representation.

The alternative approach to the interpretation problem offered by Aldefeld [2,3], 

extended the range of surfaces which could be coped with to include any curve. However
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the problem of orientation is also apparent in this system: the axes of the object 

primitives had to be parallel to the axis of one of the projections. This problem applied 

to primitives with either curved or plane-faced surfaces, and so in effect the system was 

more restricted in interpreting plane-faced objects than that offered earlier by Wesley and 

Markowsky. Consideration of the types of objects which could be reconstructed using 

Aldefeld’s method however, revealed his to be of more practical relevance than those 

limited to plane-faced objects even if they had no restrictions on the orientation of the 

objects.

Aldefeld’s approach suffered from another considerable drawback. His system as 

presented was semi-automatic and required interaction with a user in order to identify the 

outlines of geometric primitives in the drawings. In order to develop into a fully automatic 

system, it would have to isolate the geometries of the projections of primitives from one 

another, this being difficult when the alignment of the primitives overlap producing 

intersecting projections. The solution to this problem was to incorporate more knowledge 

from the user into the system. His system needed the user to separate any overlapping 

projections of object primitives and to insert auxiliary lines where different surfaces 

blended together. These tasks could only be performed by a system with considerable 

knowledge about the projections of the various types of object likely to be encountered, 

which once again is an example of an open problem of knowledge representation.

1.5 The aims of this project.

The remainder of this thesis describes the principles and components used to construct an 

engineering drawing interpreter. This system was developed using the work of Aldefeld 

[2,3,4] as the basis. Aldefeld’s approach to the problem was felt to be well suited to the 

eventual aim of interpreting engineering drawings recovered from a digitising scanner.

Other approaches described in section 1.2 relied heavily on the accuracy of the drawing 

data used by the interpreters and so would prove problematic when faced with the task of 

interpreting a scanned image. The drawing data obtained by reading a paper drawing 

from a digitising scanner is inaccurate. Creases and shadows on the paper can introduce 

new features in the drawing. Line-segments and arc-segments appear as jagged lines.
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Further inaccuracies may be added by the low-level interpretation tasks which are 

typically performed to obtain vector descriptions from the intensity array provided by the 

scanner. Thresholding, binarisation, line-encoding and arc-encoding filters are examples 

of these low-level interpretation tasks, just as susceptible to errors caused by ambiguity in 

their input data as the high-level drawing interpretation tasks discussed in section 1.2. 

These filters may generate lines and arcs which were unintended, and may also remove, 

distort and truncate intentional features.

The engineering drawing interpreters presented in section 1.2 all have one feature in 

common, they are "bottom-up" or "data-driven" procedures. The efficacy of such 

procedures is dependent upon the accuracy of the data they operate upon. Poor quality 

data yields poor results, which in this case would mean m isinterpretations or no 

interpretations at all. An obvious opposite approach would be to develop a "Top-down" 

interpreter. Such an interpreter would need to know the entire set of possible solutions 

and would be faced with the task of finding the best fit between known solution and the 

input data. This interpreter would be less vulnerable to poor quality drawing data 

because extraneous or missing features would typically register as a small mismatch with 

the known solution, unless the drawing quality was so poor as to be unreadable. 

Unfortunately some obstacles are encountered in attempting to realise such a system. The 

first and most critical obstacle is that the interpreter must know the entire set of possible 

solutions. Problems here exist in representing this knowledge. One problem is the size 

knowledge which must be stored - a dictionary of all engineering artifacts would be large. 

Another problem is the format that such a dictionary would take - how it would be 

organised, how would the descriptions be generalised to all instances of that object. The 

second obstacle is that the set of engineering artifacts is not fixed, entirely new designs 

might be encountered which would somehow need to be interpreted before being added to 

the interpreter's dictionary. This obstacle apparently contradicts the whole "top-down" 

paradigm, requiring some "bottom-up" interpreter to construct new dictionary entries.

Following this argument, it would seem that a "top-down" interpreter might overcome 

some of the difficulties of a "bottom-up" interpreter, actually identifying missing or 

incorrect features in the drawing. Similarly a "bottom-up" interpreter might overcome 

the problems encountered by a "top-down" interpreter when encountering an unknown
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artifact. Aldefeld’s approach to engineering drawing interpretation offers a practical 

mid-ground solution. It is a "top-down" approach in that it attempts to fit patterns to the 

drawing data. However it is not actually attempting to fit given objects into the data, but 

rather types of object. These types are sufficiently generalised to encompass many 

completely different instances. Associated with each object type is a construction rule 

sufficiently generalised to work with any drawing data deemed to fit that type. This 

enables the object to be built "bottom-up".

The main aim of this project is to provide a framework which will enable the principles 

developed by Aldefeld to be applied to digitised drawings. The system built by Aldefeld 

was limited to working with CAD system images in which the drawing data was 

complete, accurate and structured favourably for use by his system. Here we aim to 

provide some new components which will generate drawing data structures favourable for 

interpretation by a system similar to Aldefeld’s, and also to make the system less 

dependent upon accurate and complete data.



CHAPTER 2.
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2. Interpretation of an engineering drawing - a tutorial.

This chapter presents the method for interpreting three-view engineering drawings which 

is developed in this thesis. This presentation is an informal overview of how the method 

works illustrated with a simple example. By concentrating on how the interpretation 

process works, an appreciation for the sub-systems required is developed. These sub

systems are explored in more detail in subsequent chapters.

The example drawing - some stylised components of a bench vice.

Figure 2.1 shows the three-views given by the first-angle projection of the assembly of the 

base and the sliding jaw of a bench vice. Beneath these projections is an isometric 

projection of the assembly. The task of the interpreter is to derive sufficent three- 

dimensional information from the first-angle projections to produce the isometric 

projection.

The bench vice is not realistic. It has been styled so to be composed entirely of planar 

surfaces, whereas in reality some of these surfaces might be blended together producing arc 

segments in the drawing. These have been omitted to reduce the size and complexity of 

the reconstruction task presented in this example.



First angle projection and isometric projection 
of a stylised sub-assembly of a bench-vice.

F ig u r e  2 .1



2.1 Uniform thickness objects.

The problem is to find a set of simple three-dimensional geometric components which can 

be composed to form the three-dimensional object. In this example, the entire assembly 

can be broken down into five separate components (Fig. 2.3). These components are all from 

the class of uniform thickness objects. These have the defining property that the two- 

dimensional cross-section of the component is swept along an axis in a third dimension, 

perpendicular to the cross-section, to create a solid. Figure 2.2 illustrates the construction 

of an uniform thickness object, showing a cross-section and the sweep required to form a 

solid. Alongside this is a first angle projection of the object showing the cross-section in 

one view, and a rectangle in each of the other two views.

Allowing the simplifying assumption to be made that the orthographic projection of the 

uniform thickness objects are made from lines of sight parallel to or perpendicular to the 

axis of the objects, then a useful property of an orthographic projection of any single 

uniform thickness object is that the cross-section is presented in one view, while a rectangle 

is presented in each of the other two views. Therefore, to recover all the information 

required to reconstruct an uniform thickness object from the three projections is the shape of 

the cross-section and the length of the two rectangles perpendicular to the plane of the 

cross-section.



'Sweeping* a lamina through a 
a third dimension creates a 

solid.

First angle projection 
of a uniform thickness 

object.

Figure 2.2

The five uniform thickness components of the example object.

Figure 2.3



2.2 Interpretation of the three-view engineering drawine.

The task at hand is to identify all the projections of the component uniform thickness 

objects in the drawing. Identifying a single component requires finding a cross-section in 

one view, and two corresponding rectangles in the other two views.

This process is illustrated in figures 2.4 to 2.9.

Figure 2.4 shows the completed object below the first angle projections of the object. 

Figures 2.5 to 2.9 show the three-view drawing with various partitions of each view 

shaded. These shaded partitions indicate the projections of the uniform thickness object 

shown in the lower half of each plate.
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A uniform thickness component and 
the location of the cross-section 
and corresponding rectangles in the 

drawing.

Figure 2.5
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Cross-section and corresponding rectangles 
of a uniform thickness component.

Figure 2.6
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Cross-section and corresponding rectangles 
of a uniform thickness component.

Figure 2.7
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Cross-section and corresponding rectangles 
of a uniform thickness object.

Figure 2.8
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2.3 Identifying the projections of uniform thickness objects.

In figures 2.5 to 2.9, the projections of each uniform thickness object within the engineering 

drawing were shaded. The projections in each view were composed of a set of partitions 

connected together across shared edges.

Each view can be seen to consist of a set of partitions. The task of identifying the 

projections of the uniform thickness objects can be seen as the task of correctly identifying a 

sub-set of these partitions, fulfilling certain properties. The most local property is that 

the sub-set of partitions must all be connected across shared edges. Figure 2.10 shows two 

first angle projections of the example object. In the upper projection, two partitions which 

share edges are shaded. In the lower, two partitions which share only a vertex are 

shaded.

Several properties of correspondence across views apply. Assuming that the uniform 

thickness object is viewed along a line of sight perpendicular or parallel to its axis, then 

at least two of the sub-sets from the views must have the hull of a rectangle. All of the 

hulls of the sub-sets must be of a similar size: the two rectangles must have the same 

length perpendicular to the plane of the cross-section; one of the rectangles must have the 

depth as the cross-section; the other must have the same breadth as the cross-section. 

The hulls of the sub-sets must also be in sim ilar positions in each view. These 

relationships of size and position are illustrated figure 2.11.
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Relationships between corresponding positions in the three-views.
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2.4 False components may be identified.

The rules stated in the last section identified some of the correspondences between views 

required to construct a uniform thickness solid. Unfortunately, the simple application of 

these rules to a drawing consisting of an assembly of such solids, might allow more solids 

to be constructed than were intended to be.

For example, only a part of a cross-section might be identified which corresponds with a 

spurious rectangle in the other views, or the whole of a cross-section might be identified 

which corresponds with a number of rectangles in the other views. Figures 2.12 to 2.14 

show some exam ples of false solids which m ight be constructed follow ing the 

correspondence rules. In figures 2.12 and 2.13, two incorrect cross-sections and apparently 

corresponding rectangles are identified and shaded. The feasible but unintended solids 

are shown alongside. In figure 2.14, a correct cross-section is identified, and six possible 

correspondences are shown alongside the solids they would produce. 'Common sense' might 

indicate the bottom left most construction to be the correct one.

These incorrectly constructed solids are false interpretations and need to be eliminated. 

There are two options for eliminating the contruction of false solids from the drawing.

The first option would be to ensure that only the correct and complete cross-sections and 

rectangles are identified to the construction process. This requires an amount of 

intelligence to be applied to the process of selecting the sub-sets of partitions in each view.*
This would require an amount of a-priori knowledge about what the object being 

constructed looks like. One immediately realisable source of such knowledge would be a 

human expert who would guide the interpreter in its selection of partitions, either by 

selecting the partitions for it, or by verifying its selection of partitions.

The second option would be to allow the interpreter to construct all the solids it could from 

the drawing, and then employ a composition process which would attempt to compose sub

sets of the solids into an assembly. The composition process could employ a set of rules 

concerning three-dimensional soilds to verify its compositions. For example, no two solids 

could be allowed to occupy the same space, and no compositions would be allowed which



left some of the component solids floating in space or otherwise precariously connected to 

the rest of the assembly. A further obvious verification test would be to produce the three 

orthographic projections from the constructed solid and to compare these with those of the 

original drawing. Assemblies which failed to produce the correct projections could be 

discarded.
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2.5 An outline of the system which has been developed.

An version of an engineering drawing interpreter has been built following the approach to 

interpretation described in this chapter. The system has two main components: a path 

analysis program, and a reconstruction process.

The path analysis program takes the drawing data as input and from this constructs a 

data structure which describes all the separate partitions in the drawing and the 

positional relationships between the partitions.

The reconstruction process takes the data structure built by the path analysis program and, 

guided by the user, selects the sub-sets of partitions describing the cross-sections of uniform 

thickness objects. An automatic procedure attempts to find the corresponding rectangles in 

the other views and then constructs the component solids. The process of selecting cross- 

sections and constructing components is repeated until the complete assembly has been 

constructed.

A diagram of the system is provided in figure 2.15.
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3. A Region Analysis Program,

A significant proportion of the project work was concerned with extracting more 

sophisticated information from the raw data supplied from drawing files. Many of the 

previous drawing interpretation projects outlined in the first chapter tended to ignore this 

issue in favour of concentrating on the object reconstruction algorithms, with the 

experimenters presumably structuring their drawing data manually or using structured 

output from Computer Aided drawing systems. Bearing in mind the overall objective of 

automatically interpreting drawings read from image scanners, the automatic structuring 

of the image data into a format suitable for interpretation is an important goal to be 

achieved.

Before describing the algorithms used to structure the image data, it is necessary to 

describe the properties required of the data structures which we seek to construct. These 

properties are described informally in terms of the information that the interpretation 

algorithm requires from the drawing in order to perform its function. Section 3.1 outlines 

these requirements, section 3.2 describes a set of data structures which fulfill these 

requirements and section 3.3 provides an example of the use of the data structures to 

represent a drawing.

Plane-sweep algorithms appeared to provide an excellent base for developing algorithms 

to derive these data structures, and a brief background to this class of algorithms is given. 

A series of extensions to existing Plane-Sweep algorithms were required to enable them to 

cope with the variety of general geometric conditions appearing in line-drawings.

Section 3.4 describes the development of the Region Analysis program which followed 

two phases. The first phase extended an algorithm which could report the Regions inside 

and outside a simple self-intersecting polygon into an algorithm capable of reporting the 

Regions within any shape. The second phase developed upon this by incorporating the 

desired drawing data structures into the algorithm and so constructing the edge network 

essential to the representation of the adjacency relationships between Regions.
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3.1 Information requirements of the interpreter.

A drawing interpreter must have the drawing information available in a suitable format 

to answer the questions it must pose as it constructs its interpretations. The raw data from 

which this information is to be provided is simply a file of vectors. The data will be 

converted into data structures which express some of the two dimensional properties of the 

drawing, providing information about how vectors connect with each other, about the 

distinct shapes connected vectors form, and how these distinct shapes relate to each other.

3.1.1 Identify the separate views of the object.

The interpreter must know how the drawing features are shared among the three views of 

the object. A hierarchic structure representing the 'containment' relation between views 

and line-segments adequately fulfills this requirement. The root of the hierarchy will 

represent the ’paper' which contains the drawing. The next level in the hierarchy will 

represent the separate views of the object. The level below that will represent the 

drawing features contained in each view. Further levels of this hierarchy represent the 

lower levels of containment, namely Regions which contain smaller Regions.

3.1.2 Transform drawing features onto the object co-ordinate system.

In order to construct the object from the three views, the views must be transformed from 

the drawing co-ordinate scale to the three-dimensional co-ordinate scale of the object. 

The minimum X and minimum Y co-ordinate of each view must be provided to guide this 

transformation.

3.1.3 Connecting drawing features to each other.

The interpreter needs to know the entire set of drawing features and how these drawing 

features are positioned relative to each other. Intersection points of crossing lines need to 

be enumerated, and the connectivity between lines need to be expressed.

Qosed loops of connecting lines form Regions of space in the drawing, and these Regions



are the major tokens manipulated by the interpreter. The interpreter builds candidate 

three dimensional surfaces from Regions and combinations of adjacent Regions. Therefore, 

these Regions and the adjacency relationship between Regions need to be identified.

3.1.4 Identify and preserve consistency cues.

Having produced a set of three-dim ensional interpretations of each surface, the 

interpreter must try to compose these interpretations into a consistent arrangement which 

might constitute a valid three-dimensional object.

Some constraints govern the placement of three-dimensional surfaces next to each other. 

These constraints are implicit in the adjacencies between two-dimensional surfaces in the 

drawing. The boundary edge between adjacent surfaces may be either visible or hidden. 

A visible boundary edge dictates that the adjacent surfaces must not be coplanar in the 

composition of surfaces nearest the viewer along that line of sight. A hidden boundary 

edge dictates that the adjacent surfaces must be coplanar in the composition of surfaces 

nearest the viewer.

These constraints are governed by the attribute type of the line which states whether the 

line is visible (a solid line) or hidden (a dashed line). These line attributes are contained 

in the raw drawing data and must be preserved in the data structures. Two Regions, one 

contained entirely within the other, cannot both be in the same plane. The inner Region 

must be either a hole or a protrusion. Any existing containment relationships between 

Regions must be identified.



3.2 Data Structures which supply information to the interpreter.

The data structure used here to represent engineering drawings is a development from the 

''Modified Winged-Edge Data Structure' described in Weiler's discussion of CAD data 

structures[112]. In this structure, the word 'Edge' has a precise meaning which must be 

understood before the overall structure can be described. An Edge is a length of a line- 

segment which lies between two consecutive vertices within the line-segment, these 

vertices being the points where other line-segments cross it or the end-points of that line- 

segment itself. The sides of the Regions inside the drawing are all ’Edges’ - sometimes 

these Edges are the entire length of the Line-segments that contain them.

Each Edge has two sides. For clarity it is useful to have a consistent and recognisable name 

for each side of an edge; the names Above-Left and Below-Right are used. When an edge 

is a vertical edge, the edge has a Left side and a Right side. When the edge is not a 

vertical edge, the edge has an Above side and a Below side.

The Regions are described by their boundaries. The boundaries of Regions are described 

using lists of "Sides" of Edges - identifying not only the Edges on the boundary but also 

which side of each Edge faces into the Region. This enables the Adjacencies between 

Regions across Edges to be represented. One side of an Edge faces into one Region, the 

other side faces into an Adjacent Region. Examining all the Edges bounding one Region will 

identify all the Regions adjacent to that Region.

For convenience the Region boundaries are described by connecting together Sides of Edges. 

This is done by storing a connection to the next Side inside the Side of an Edge. The Head 

and Tail of the boundary description are the only connections stored within the Region 

descriptor.

The data structures are shown in a simple list notation. Square brackets [] are used to 

enclose data aggregates. For example, an entire list lies within one pair of brackets, and 

each list item lies within its own pair of brackets. Each Line item contains an Edge list 

within brackets, which consists of none or more Edge list items each contained by brackets.



List formats:-

Line L is t:-

[ Line-id, Visibility, Intercept, Slope, [Edge-list] 3;

Visibility is a flag which records whether the line segment is visible (solid line) or 

hidden (dashed line).

Edge List:-

[ Edge-id, Vertices, [Above-Left connection], [Below-Right connection] ];

where a Connection has the format :- 

[ Line-id, Edge-id, side of Edge, Region-id ];

Each Edge has two sides - a left side and a right side in the case of a vertical Edge - or an 

above side and a below side in the case of a non-vertical Edge. The names Left and Right 

or Above and Below will be used as applicable.

Each side of a particular Edge may participate in the description of a Region. The 

description of the Region is constructed from connected 'Sides' of Edges. The Connection 

structure shown above explicitly identifies the Line segment, the Edge within the Line- 

segment and the side of the Edge which forms the next part of the description of the 

Region for a given side of an Edge.

Storing the Region-id within the connection of a given Edge allows the Adjacency Graph 

to be built. Connecting the sides of Edges together to describe Regions automatically 

builds the Adjacency Graph. Given any Edge, it will be possible to identify the two 

Adjacent Regions on both sides of that Edge. By traversing the connected Edges for a given 

Region and examining the other side of each Edge, it is possible to identify all the Regions 

adjacent to a given Region.



Region List

[ Region-id, Type of Region, Head Edge, Tail Edge, Parent, Child, Sibling 3;

The "Type of Region" field indicates whether the Region is an Interior Region - which 

describes the boundary of a partition of white space - or an Exterior Region - which 

describes the boundary around the outside of a conglomerate of none ( an open polygon ) or 

more adjacent Interior Regions.

The "Head Edge" and "Tail Edge" entries identify the Line-segment and Edge within 

Line-segment of the Head and the Tail of the list of connected "Sides" of Edges which 

describe the boundary of the Region. The side of the head and tail Edges need not be 

identified explicitly: the Head always lies on the Below-Right side of an Edge, and the 

Tail always lies on the Above-Left side.

The "Parent", "Child" and "Sibling" entries are used to link the Region list item into a 

Containment hierarchy describing which Regions contain which. These entries contain 

the Region-id of the Regions which are Parent, Child and Sibling to the given Region.



3.3 An Example of the representation.

Here the practical details of how the adjacency graph will be constructed are ignored, and 

some simple examples of shapes and the resulting data structures are provided. The data 

structures are shown in a truncated format for the sake of clarity. Only unessential entries 

have been omitted.

Line List

[ Line-id, [Edge-list] 1;

Edge List:-

[ Edge-id, Vertices, [Above-Left connection], [Below-Right connection] ];

where a Connection has the format 

[ Line-id, Edge-id, side of Edge, Region-id ];

Region List

[ Region-id, Type of Region, Head Edge, Tail Edge, Parent, Child, Sibling ];



An Example of the Edge-based Data structures.

Lines.

[
[L#BA,[[lrBA,[L#DA,1,below,R#23r [L#CB,lrbelowrR#l]]] 
[L#CB,[ [ 1,CB, [L#BA,1,above,R#2], [L#CD,1,above,R#l]]3 
[L#CD, [[1,CD, [L#ED,1,left, R#13 r [L#CB,1,above, R#23 3 3 
[L#ED, [[1,ED, [L#ED,1,right,R#13, [L#DA,1,above, R#l]]3 
[L#DA,[[1,DA,[L#BA,1,below,R#l],[L#CD,1,below, R#2]]]
3.

Regions.

[
[R#l,Exterior,[L#BA,1],[L#DA,13 3 
[R#2,Interior, [L#DA,1], [L#BA,13 3

3
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Reading a Region list from these lists is done as follows - using figure 3.1 as the example.

(a) Select the Region using an entry from the Region table. The Region table entry 

contains the head edge and the tail edge pointers for the Region list.

eg. Follow Region R2.

Region table entry R2 yields Edge 1 of Line L#DA as the head, Edge 1 of Line L#BA 

as the tail. .

(b) Following the Head connection, the next connection is contained in the Below-Right 

entry for Edge 1 in Line Segment DA. This connection is [L#CD,l,below,R#2] - Below side 

of Edge 1 of Line CD.

(c) Follow connection and obtain successive connection.

eg. Below side of Edge 1 of Line CD -> [L#CB,1,above,R#2].

(d) Repeat (c) until the tail edge of the Region list is reached.

eg Above side of Edge 1 of line CB -> [L#BA,l,above,R#2]

Above side of Edge 1 of Line BA happens to be the tail of the Region list for R#2, 

therefore the journey is complete.

Following Region R1 would yield

(head) [L#BA, 1,1below, ] -> [L#CB,l,below,R#lj ->

[L#CD,above,R#l] -> [L#ED,l,left,R#l] ->

M E D ,1,right,R#l] -> [L#DA,1,above,R#l] (tail).

Notice that Line ED, sticking out on top of the shape, is correctly navigated. Line ED 

points to itself in the Above_Left connection, and to line DA in the Below JRight 

connection.



Figure 3.2 shows a further example of the Edge structures. This example shows two line 

segments (DA and CB) which have each been split into two edges. The Line entries for 

these lines contain two Edge list items - with the identifiers 1 and 2. The identity of the 

Edge EA is [L#DA,2j - Edge 2 of Line DA.



A More Complex example of the Edge-based Data Structures.

Lines.

[
[L*BA,[[1,BA,[L#DA,2,below,R#3], [L#CB,2,below,R#l]]] 
[L#CB, [[1,CF, [L#FE,1,left, R#2], [L#CD,1,left, R#l]],

[2,FB, [L#BA,1,left, R#3], [L#CB,1,below,R#1333

[L#CD, [ [ 1,CD, [L#DA, 1,above,R*13, [L#CB, 1,above,R#23 3 3 
[L#EF,[[1,EF, [L#DA,1,below,R#2],[L#CB,2,above,R#3333 
[L#DA,[[1,DE,[L#DA,1,below,R#2],[L#CD,1,right,R#2]3 

[2 ,EA,[L#BA,1,right,R#13,[L#FE,1,right,R#3333

Regions.

[
[R#l,Exterior,[L#BA,1],[L#DA,23 3 
[R#2,Interior, [L#DE,13, [L#FE,13 3 
[R#3,Interior,[L#DE,2],[L#BA,13 3

3
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3.4 Plane-sweep algorithms.

3.4.1 Intersection detection.

The basis of an algorithm which might provide some of the information structures for the 

drawing interpreter can be found in some of the recent work in computational geometry. 

We wish to construct representations of the Regions formed by the connections and 

intersections of line-segments. One such Region reporting algorithm belongs to the class of 

algorithms for counting and reporting the intersections of geometric entities, the class of 

plane-sweep algorithms.

Plane-sweep algorithms emerged in the late 1970’s as a technique which improved the

performance of intersection reporting [10] from the usual OC (n  ̂ - n) / 2) of brute force

algorithms to 0 (n  lg (n+k)), where k is the number of intersections in the set. These 

algorithms reduce the number of intersection tests performed by ordering line-segments and 

only performing intersection tests on line-segments which are close to each other.

The two-dimensional problem of ordering a set of line-segments is reduced to a series of 

one-dimensional problems of determining the vertical order of the line-segments passing 

through a given point on the X-axis. The whole set of one-dimensional orderings when 

considered as a whole represents the two-dimensional ordering.

The one-dimensional ordering is represented by a simple list structure called a 'Front1. 

The head of the list, in the example of vertical ranking, would represent the lowest line- 

segment, the tail of the list would represent the highest line-segment.

In the two-dimensional picture, these rankings change as lines end, other lines begin, or 

other lines cross over each other. At the points where these changes occur, the Front 

structure must be amended to reflect the change (see Fig. 3.3). The set of changes which 

are required to reflect all the changes between two successive Front orderings is called a 

'Transition'. For example when the Front reflects the vertical ordering of line-segments, a 

Transition between one ordering of the Front at a given point along the X-axis and the next



ordering would contain either ending lines, starting lines, intersections of lines or a mixture 

of the three which occur at a single point along the X-axis between the two successive 

orderings.
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Plane-sweep algorithm for detecting intersections.

8 states of consistency in vertical ranking of 
line-segxnents. The 'Front' contains references to lines in 
order of vertical ranking. The 'Front' must be re-ordered 
at the transition points (dashed lines) where one or more 
vertices lie.

Start-points (T1 - T3), Intersection points (T4), End-points 
(T5 - T9) - according to left-to-right 'sweep1.

Initial Transition List:-
(format:[vertex,[list of line-segments starting at vertex]])

[ [A, [AB]], [C, [CD]], [E, [EF]], [F, []], [D, []], [B, []] J

Note:- Intersection point 'G' is not inserted into the 
transition list until the intersection is found by applying 
an intersection test to lines AB & CD.
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The set of changes of orderings along a given axis is represented by the 'sweep' of the 

plane. The plane is 'swept' by initialising the Front to the empty state and by updating 

the Front according to the ordered set of Transitions. A horizontal sweep for instance may 

be from left to right or from right to left, according to the order of the Transitions, whether 

on ascending or descending X co-ordinate value.

Transitions, as already stated, contain a number of line end-points, start-points and 

intersection-points all at the same position along the sweep axis. End-points and start- 

points of line-segments are explicitly stated in the set of line-segments which are being 

processed. The ordered list of Transitions is prepared by sorting the vertices of the set of 

line-segments according to the axis of the sweep, X-axis or Y-axis, and according to the 

direction of the sweep, from left to right or from right to left. Intersection-points are not 

known when the list of Transitions is initialised, but are discovered and inserted into the 

list of Transitions during the progress of the sweep.

End_points, start_points and intersection-points cause the following changes to the Front 

structure.

At a line end-point, any lines which end there are removed from the Front. In a 

horizontal sweep from left to right, the right-most vertex of a line-segment is the end

point. In a vertical sweep from bottom to top, the top-most vertex is the end-point.

At a line start_point, any lines which start there are inserted into the Front. In a 

horizontal sweep from left to right, the left-most vertex of a line-segment is the start- 

point. In a vertical sweep from bottom to top, the bottom-most vertex is the start-point.

At an intersection-point, those lines which intersect there swap positions in the Front. 

Highest swaps place with Lowest, second-highest with second-lowest and so on.

Intersection detection is incorporated into this scheme by testing lines which find 

themselves with new neighbours after a re-ordering of the Front occurs. When an 

intersection test between two lines proves positive, the intersection-point is calculated 

and inserted into the appropriate place in the Transition list.
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3.4.2 Reporting the Regions in non-degenerate polygons.

An advantage of plane-sweep algorithms is that they provide a sense of coherence to the 

line-segment set, enabling the connections between line-segments to be followed. This 

quality is exploited in [68] to determine the regions inside non-degenerate polygons. Non

degenerate polygons are a class of polygons with strict limitations on the types of vertex 

allowed -

vertices must be either

(i) the point where two line-segment end-points meet 

or (ii) the point where two line-segments properly intersect. An improper

intersection would be a type of T-junction where one line-segment's end-point 

lies within another line-segment. Vertices where more than two line- 

segments meet are equally improper.

The approach taken to determine the regions is to attach the heads and tails of new 

Region-list structures to the Front and stretch these lists around the connections of line- 

segments and so follow the shapes around the inside and outside of the polygon.

Each entry in the Front represents a line-segment, and each line-segment has two sides. 

In a vertically ordered Front, each line-segment has an upper and a lower side. To each 

side of each line-segment is attached a Region-list. In the case of simple non-degenerate 

polygons, both ends of each line-segment connects to the end of other line-segments. 

Whenever a line-segment is inserted into the Front, it replaces another Line-segment 

already in the Front and inherits the Region-lists on both sides of the replaced Line- 

segment. These lists are extended around the vertex where the Line-segments met. 

Figures 3.4(i) and 3.4(ii) trace the progress of the construction of the Region lists around a 

polygon suggested in [68].



Reporting the Regions in a non-degenerate polygon.

B

5 ..Lines.

AB
AE
DE
DC
BC

6 Transitions

- First

- Last

The polygon has two interior 
regions and one exterior. 
Transitions are sorted from 
left to right.

B I B

Front entries and Region lists after first two transitions
Figure 3.4(i)
-67-



Front Entries and Region lists 
through Transitions F to C.

Figure 3.4(ii)
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Not all vertices mark the replacement of one line-segment by another.

The very first Line-segments inserted into the front obviously cannot replace their 

predecessors because there are no predecessors. In the case of non-degenerate polygons, 

the very first Line-segments inserted into the Front will be a pair and will actually touch 

each other at their start-points. At such junctions the Region-lists are initialised.

The polygon ends with two lines meeting at the same end-point. Here the Region-lists 

below the upper line-segment and above the lower line-segment are concatenated and 

detached from the Front. The Region-lists above the upper line-segment and below the 

lower line-segment are similarly concatenated and detached.

Intersection-points in a non-degenerate polygon mark the point where only two lines cross. 

At such a point, four Region-lists exist, one on each side of the two lines. Two of the lists, 

the list above the lower line-segment and the one below the upper line-segment, are 

concatenated and detached from the front. The other two lists are extended past the 

intersection-point. A new Region-list is started with the head attached to the Front as 

the Region-list below the upper line-segment, and the tail attached as the Region-list 

above the lower line-segment.

This algorithm forms the basis from which a time-efficient algorithm was developed to 

determine the Region formed by the inter-relationships of lines describing an engineering 

drawing.

The following section describes the amendments and extensions needed to the algorithm 

for it to be able to cope with any of the configurations of line-segments found in a drawing.

3.5 Extending the Region-finding algorithm enabling it to cope with general vertex types.

The region finding algorithm outlined in section 3.4.2 is capable of reporting the Regions 

inside non-degenerate polygons. Unfortunately the majority of polygonal shapes 

constituting an engineering drawing are degenerate in the sense that touching vectors often



occur where an end-point of one vector lies somewhere between the end-points of another.

Despite these drawbacks, the plane-sweep approach has some promising qualities :-

- no need for a separate intersection detection phase.

- reasonable performance / size curve.

- conceptual simplicity of the approach.

The problems in implementing such an algorithm are

- coping with a general vertex type.

- coping with vertical lines.

The problem of coping with general vertex types can be simplified by considering any 

vertex in a drawing to be a combination of one or more of the following simple vertex 

types:-

(a) Line segment End-points;

(b) Intersection points;

(c) Line segment Start-points.

By systematically dealing with these vertex types, complex Junctions which incorporate 

many of these simple vertices can be coped with.

The Plane-sweep algorithm is assumed to sweep along the horizontal axis from left to 

right. Under these constraints, an End-point of a line-segment is its right-most vertex, 

and the Start-point is the left-most vertex. Obviously a vertical line has neither a 

right-most nor a left-most vertex, and so the Junctions involving this class of lines do not 

easily fit into the three simple vertex types for which we are designing an algorithm to 

cope. Vertical lines need to be treated as a special type of Junction rather than as a line. 

This special type of Junction extends upwards and can pass through many of the complex or 

simple Junctions which occupy only one point in the plane.

In the following section, the extensions to the algorithm required to deal with the simple 

vertex types will be described. In section 3.7, further extensions are described which are 

needed to connect vertices together when a vertical line passes through them.



3.6 An outline of the algorithm.

The algorithm consists of two phases.

The first is an initialisation phase where the set of lines from the drawing are sorted into 

an ordered set of vertical Transitions.

The second phase is the actual Plane-sweep where the Front data structure is maintained 

by sweeping it across Transitions. For each Junction in the Transition, a separate procedure 

is called to deal with each of the three simple vertex types. A Remove procedure is 

called to remove the Front entries of line-segments with their End-points at the Junction. 

A Permute procedure is called to swap the order of any line-segments intersecting at the 

Junction. An Insert procedure is called to insert new entries into the Front for any line- 

segments with their Start-points at the Junction.

3.6.1 Initialisation - preparing Transitions from line data.

With regard to a horizontal sweep direction, a Transition is the set of Junctions which 

occur at different vertical positions at a single point along the X-axis. The Junctions in a 

Transition are complex vertices, each possibly consisting of a mixture of End-points, Start- 

points and Intersection-points of line-segments. Intersection-points are not explicitly 

stated in the line data of the drawing, and are calculated later by the Plane-sweep. 

Therefore at this Initialisation stage, Transitions consist of Junctions which consist of only 

line-segment End-points and Start-points.

The Remove procedure, as described in more detail later, searches the Front structure for 

line-segments which have their End-points at the current Junction. Therefore, all the 

Remove procedure needs to know about a Junction is its position. It does not need to know 

which lines have their End-point at that Junction.

The Insert procedure needs to insert new entries into the Front structure and so needs to 

know which line-segments have their Start-points at a given Junction. The Transition list 

must therefore include sufficient references to the line-segments for Junctions which are the



Start-points of line-segments. The Permute procedure, which copes with Intersection- 

points, searches the Front structure to find the entries of Intersecting line-segments. 

Therefore all the Transition list needs to store about an Intersection-point is its position.

The Initialisation phase constructs the initial Transition structure using the Start-points 

and End-points of line-segments. This structure is later updated by the Plane-sweep 

phase which discovers any Intersection-points and adds these to the Transition list.

An entry in the Transition list is created for each unique X component in the line data. 

Each entry in the Transition list contains a list of unique Junctions which have the same X 

component as the Transition. Each entry of the list of Junctions contains a list of line- 

descriptors of any line-segments with their Start-points at that vertex.

The format of the Transition list is 

[X-position [ Junction list 3 ]

The Junction list holds an entry for each vertex lying along that Transition at its X 

co-ordinate.

Tunction list item:-

[Y-position,[ list of line descriptors ] ]

The list of line descriptors holds an entry for each line-segment which starts at the 

position of that Junction within that Transition.



[
[ 1 0 0 ,  t [ 1 0 ,  [ ] ] ,  [ 4 0 ,  [ L 4 ] ] ,  [ 6 0 ,  [ L l f L 2 , L 3 3  3 3 3

[ 2 0 0 ,  [ [ 1 0 ,  [ L 5 , L 6 3  3 ,  [ 7 0 ,  [ ] ]  3 3

[ 2 5 0 ,  [ [ 6 0 ,  [3 3 3 3

[ 3 0 0 ,  [ [ 1 0 , [ L73 3 ,  [ 3 0 , [ 3 3 ,  [ 4 0 , [ L 8 ] ] ,  [ 7 0 , [ L 9 , L 1 0 3 3 33

3 .

A Transition list showing four Transitions, their associated Junction lists, and the lists of 

line-segments which have their Start-points at those Junctions. An empty list is 

signified by empty brackets.

In the first entry, representing a Transition at X = 100, there are Junctions at Y co-ordinates 

10,40 and 60. No lines start at point (100,10); Line L4 starts at (100,40); Lines LI, L2 and

Example Transition list.



3.6.2 The procedural elements of the Plane-sweep algorithm.

The Front progresses along the sweep axis by reading successive Transitions and updating 

the Front according to the list of Junctions found contained in the Transition. Each item in 

the Junction list describes the position of the vertex and contains a list of line descriptors 

of any lines which have their start-point at that vertex.

The progress of the Front is from left to right. Each Transition which is processed 

advances the Front one step. Contained in each Transition are one or more Junctions. 

These are ordered from bottom to top. An executive procedure is responsible for reading 

the Transitions and calling the procedures to update and advance the Front.

For each Junction, separate procedures are called to deal with the three simple types of 

vertex from which the Junction may be composed. The Remove procedure is called to deal 

with any line-segments which have their End-points at the Junction. The Permute 

procedure is called to deal with any line-segments which intersect at the Junction. The 

Insert procedure is called to deal with any line-segments which have their Start-points 

at the Junction. In the remainder of this section, these procedures wall be described in more 

detail. The Region-list handling operations have been deferred until section 3.7 which is 

devoted to describing the Region-list maintenance which must be performed by the 

procedures.

Incorporated into the Plane-sweep is an intersection detection function. Generally, the 

intersection test is only performed when an entry in the Front finds itself adjacent to an 

entry that it was not adjacent to before. Intersection tests therefore need only be performed 

in the locality of any re-ordering of the Front. Specifically

after a removal or series of removals, test the entry above the removal against the 

entry below the removal;

after a permutation, test the top-most entry coming out of the Junction against its 

higher neighbour in the Front, and test the bottom-most entry coming out of the 

Front against its lower neighbour;
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after an insertion, test the newly inserted entry against its higher and lower 

neighbours.

The test for intersection, if it proves positive, calculates the intersection point and adds 

that Junction to the Transition list for future processing (fig 3.5).

The Front is a list of entries which must be capable of supporting the following two 

operations. SUCCESSOR which returns the higher neighbour of a given entry, and 

PREDECESSOR which returns the lower neighbour of a given entry.



^ “/i,

INTERSECTION DETECTION USING A PLANE-SWEEP.

I I I P I R P R P R R
N N N E N E E E E E E
S S S R S M R M R M M
E E E M E 0 M 0 M 0 0
R R R U R V U V U V V
T T T T T E T E T E E

E E E

Series of 'Front 1 states across a set of 11 Transitions. Each
Transition here only contains a single vertex. The 'Front'
maintenance operation associated with that Transition is named 
below the Transition line.

Intersection tests are performed at circled numbers 1-5.
Test 1 gives point K, 2 gives L, 4 gives M. Tests 3 and 5 prove
negative.

Initial Transition list:

[ [A, [AB]3, EC, [CD], [E, [EF]}, • [G, [GH]3,
EB, [33, [H,[33, [F, [33, ED,[ 3 3 3 .

After intersection point K discovered at test 1:

[ [A, [AB3 3, [C, [CD] 3 , [E, [EF3 3, [K, [3 3, [G, [GH] ] ,
[B,[3 3, [H,[]], CF,[33, [D, [33 ].

Other intersection points (L & M) are inserted into the Transition 
list as they are found.

Figur<27$_.5



3.6.2.1 The Executive procedure.

The progression of the Front is controlled by an executive procedure called 'Advance_Front' 

which reads successive Transitions, reads through the list of Junctions for each Transition, 

and calls the Remove and Permute procedures. The Insert procedure is only called when 

the Junction list item contains a list of line-segments which start at that vertex.

Procedure Advance_Front; 
begin
Read Transition from Transition_list;

While n o t ( End-of Transition_list ) 
do begin

Read Junction from Junction_list of Transition

While n o t ( End-of Junction_list) 
do begin

Remove ( Junction, Front );
Permute ( Junction, Front );
Read Line-segment from Insertion_list of Junction;

While n o t ( End-of Insertion-list ) 
do begin

Insert (Line-segment, Front );
Read Line-segment from Insertion_list of Junction; 

end;

Read Junction from Junction__list of Transition; 
end;

Read Transition from Transition_list; 
end;

end; •

Pseudo-code outline of the Advance_Front procedure.



3.6.2.2 The Remove Procedure.

The Remove procedure climbs the Front structure evaluating the vertical height at that 

point along the X-axis of the line-segment referred to by each Front entry. The entries in 

the Front reference line-descriptors which detail the slope and intercept of each line- 

segment. The Remove procedure evaluates the vertical height of each line-segment at 

the current point along the X-axis using the slope-intercept formula

Y = (slope * X) + Intercept.

Any lines which pass through the current Junction are tested to see if their line-segment 

End-points lie there. If the line-segment does end at the current Junction, the entry 

referencing that line-segment is removed from the Front.

The Front is ordered according the the vertical ranking of the line-segments and so once a 

line-segment which passes above the current Junction is encountered, the Remove procedure 

can stop searching because all successive line-segments in the Front will pass even higher 

than that.

Figure 3.6 illustrates the progress of the Front across a scene. The search through the Front 

by the call to REMOVE is shown below each Transition line.

Procedure Remove ( Junction, Front ); 
begin
Read Current-entry from the tail entry of the Front;

While ( height of Current-entry < height of Junction ) 
do Read Current_entry from next entry in Front;

While ( height of Current-entry = height of Junction ) 
do begin

If ( End-point of Current-entry = Junction ) 
then Remove Current-entry from Front;
Read Current-entry from next entry in Front; 
end;

Test-for-Intersection( Current-entry,
predecessor( Current-entry ) );

end;

Pseudo-code outline of the REMOVE procedure.



The REMOVE procedure.

TO (A) T1(E) T2 (F) T3(G) T4 (D) T4 <B)
end>[} end> end>

2 ->AB end> EC EC EC 4 ->EC
1 ->AC 3 -> ED AB AB 3

2 -> AB end>FC FC 2 ->FC
1 -> AC 2 ->ED 

1 ->AC
end>AC
1

1 ->AC

T5 <C) 
end>
A - > y f  
3 - > y f  
2 
1

Remove is called seven times above. The tables show the transition 
number and the vertex within the transition. The order of the 
Front and the progress of Remove's climb is shown with numbered 
arrows, the climb ending when an entry higher than the vertex is 
found or the top of the Front is reached.

Entries are only removed from the Front during the calls for T4(D ) , 
T4(B) and T5 (C) .

F ig u r e  3 .6



3.6.2.3 The Permute procedure.

The Permute procedure similarly climbs the Front, this time looking for line-segments 

which pass through the current Junction but which do not have their end-points there. 

The Remove procedure has already removed any line-segments which pass through the 

current Junction and end there, and so any line-segments Permute encounters which pass 

through the Junction are line-segments which do not end there.

Owing to the ordering of the Front, any line-segments which do pass through the Junction 

will all be clustered together. The Permute procedure locates the bottom-most and top

most entries of this cluster, if it exists, and then reverses the order of the entries in the 

cluster. Top-most is swapped with bottom-moSt; second top-most with second bottom-most 

and so on. Having adjusted the order of the entries in the Front, the Permute procedure 

ends. Figure 3.7 illustrates the operation of the PERMUTE procedure.



NOTE Uses variables Lowest-entry and Highest-entry to store the addresses of the 
bottom-most and top-most entries of the cluster of entries which are to be reversed.
Uses variables low-swap-sub and high-swap-sub to respectively climb and descend the 
cluster of entries during the loop which reverses the order of the entries.
Calls procedure SWAP which exchanges the contents of two entries in the Front.

Procedure Permute ( Junction, Front ); 
begin
Read Current-entry from the tail entry of the Front;

While ( height of Current-entry < height of Junction ) 
do Read Current_entry from next entry in Front;

if ( height of Current-entry = height of Junction )
then begin

lowest-entry Current-entry;

While ( height of Current-entry = height of Junction ) 
do begin

highest_entry := Current_entry;
Read Current_entry from next entry of Front; 
end;

low_swap_sub <- lowest-entry; 
high_swap_sub <- highest-entry;

While ( low-swap-sub <> High-swap-sub ) 
do begin

swap( low-swap-sub, high-swap-sub ); 
low-swap-sub := successor ( low-swap-sub ); 
high-swap-sub predecessor( high-swap-sub ); 
end;

Test-for-Intersection ( Highest-entry,
successor( Highest-entry ));

Test-for-Intersection { Lowest-entry,
predecessor{ Lowest-entry ) );

*
end;

end;

Pseudo-code outline of the PERMUTE procedure.



The PERMUTE procedure.

TO (A) T1(E) T2(F) T3(G) T4 (D) T4 (B) T5(C)
end>[] end> end> end>[]

2 ->AB end> EC EC EC EC EC 4 ->EC
1 —>AC 3 -> AB AB AB AB 3 ->AB

2 -> / è  i ED end>FC FC FC 2 ->FC

AC 2 > , ed
1 -> AC AC 2 AC end>AC 1 ->AC

1

Seven calls to the permute procedure. The Front is searched from 
bottom to top for lines passing through the current vertex (in 
brackets). Only in calls for vertex F and vertex G do any lines get 
permuted.

Permute is always called AFTER Remove for a given vertex. Therefore 
in the calls for Transition 4 (T4), line ED has already been removed, 
and for Transition 5, all the lines have already been removed.

F ig u r e  3 .7



3.6.2.4 The Insert procedure.

The Insert procedure is called once for each line-segment appearing in the list of insertions 

attached to the current Junction. The Insert procedure climbs the Front looking for the 

place to insert each of the line-segments. If it finds any entries in the Front which pass 

through the Junction, it must search through the referenced line-segments, comparing their 

gradients, until it finds the entry with the gradient nearest to that of the line-segment 

which is to be inserted. The line-segment is inserted next to the nearest entry; above if 

the nearest entry has a lower gradient or below if the nearest entry has a higher gradient. 

If the Insert procedure does not find any entries in the Front which pass through the 

current Junction, the line-segment is inserted in the Front immediately below the next 

higher entry in the Front. The Insert procedure is illustrated in Figure 3.8.

Procedure Insert( Line-segment, Front ); 
begin
Read Current-entry from the tail entry of the Front;

While ( height of Current-entry < height of Line-segment )
or ( ( height of Current-entry = height of Line-segment )

and
{ slope of Current-entry < slope of Line-segment ) )

do Read Current_entry from next entry in Front;

Create New-entry;
Assign Line-segment to New-entry;
Attach New-entry between Current-entry

and predecessor of Current-entry; 
Test-For-Intersection ( Successori New-entry ), New-entry ); 
Test-For-Intersection ( Predecessor( New-entry), New-entry ); 
end;

Pseudo-code outline of the INSERT procedure.



The INSERT procedure.

TO (A) T1 <E) T2 (F) T4 (D)
[] d> AB A B a EC EC EC EC EC

AC A C ^ E D AB AB FC FC
AB EDc£ FC AC AC
AC AC ED DC

AC

INSERT procedure is called AFTER Remove and Permute for a given 
vertex. Insert is called only for vertices where line-segments 
start, which in the case above are the four vertices A, E, F and D.

Insert climbs the Front looking for a line which passes above the 
start vertex of the new line. The new line is placed below its 
higher neighbour in the Front. Where two or more lines share the 
same start vertex, they are arranged in order of increasing slope 
( see vertices A and E ).

F ig u r e  3 .8



3.6.3 Maintaining the Region-lists.

From the point of view of a horizontal plane sweep, any general Junction can be considered 

to have two sides, a left side and a right side.

On the left side of the Junction, none, one or more line-segments come together and meet at 

the Junction, When more than one line-segment meet, the Region-lists between adjacent 

pairs of these line-segments also meet. Region-lists which meet are concatenated 

together. Therefore, as the Remove procedure climbs the Front, it needs to concatenate the 

Region-lists of those adjacent line-segments which pass through the current Junction. The 

concatenation is always that of the Region-list above the lower line-segment to the 

Region-list below the upper line-segment. The Remove procedure performs this 

concatenation to all line-segments it encounters passing through the current Junction, 

whether they end there or intersect there.

On the right side of the Junction, none, one or more line-segments pass through the Junction 

and diverge away from each other to the right. Some of these diverging line-segments are 

line-segments which intersect at the Junction, and others have their Start-points at the 

Junction. Between these diverging line-segments new Region-lists begin. The Permute 

procedure is responsible for initialising new Region-lists between line-segments which 

intersect at the Junction. The Insert procedure is responsible for initialising new Region- 

lists between line-segments which start at the Junction.

The Region list maintenance performed across a complex vertex with both a left-hand side 

and a right-hand side is shown in figure 3.9.

The complicated part of Region-list maintenance is concerned with the two Region-lists 

which pass across the Junction from left to right. These are the Region-lists which are 

above the top-most line-segments and below the bottom-most line-segments which pass 

through the Junction. Three cases have to be considered when dealing with these lists:-

i) The Junction has a left-hand side and a right-hand side. The top-most and bottom

most region-lists entering the Junction from the left must be extended to become the top-
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Region list maintenance across a vertex.

Three vertex types
(i) Lines on the left and lines on the right (F,G,D & B )
(ii) Lines on the left only (C).
(iii) Lines on the right only (A, E ).

Left-hand side 
lists converge 
As REMOVE sees 
vertex F.

Two converging 
lists are 
concatenated by 
REMOVE.

Right-hand side:- 
new list created 
by PERMUTE after 
front re-ordered,

Lists passing across the 
Junction from left to 
right.
Top-most on left becomes 
top-most on right.
Bottom— most on left 
becomes bottom-most on 
right.

- 86-  Figure 3.9

INSERT diverts and 
creates lists

New line FC causes list 
between FB and FE to be 
diverted beneath FC.
New list created above 
FC.



most and bottom-most lists exiting the Junction to the right.

ii) The Junction has a left-hand side but no right-hand side. The top-most and bottom-most 

region-lists entering the Junction from the left must be joined together to flow around the 

right-hand side of the 'butt-end' which is this Junction.

iii) The Junction has a right-hand side but no left-hand side. There are no region-lists to 

pass from the left to the right of the Junction, so a new list must be formed around the left- 

hand side of this 'butt-end'. The head and tail of this new list become the bottom-most 

and top-most region-lists exiting the Junction to the right.

The complicated aspect of these situations is that by dividing the processing of the 

Transition into a Remove procedure, which deals exclusively with the left-hand side of 

the Junction, and into Permute and Insert procedures, which deal with the right-hand 

side, is that these procedures need to communicate with each other to decide which of the 

three cases (i - iii) fits the current Junction.

The Remove procedure is called first, and so must communicate to the Permute and Insert 

procedures something about the situation it has encountered. The Remove procedure 

might find one or more line-segments which pass through the Junction, in which case it 

must communicate the region-lists above the top-most line-segment and that below the 

bottom-most line-segment. The Permute and Insert procedures need access to these region- 

lists in order to attach them to the top-most and bottom-most line-segments exiting the 

Junction.

Alternatively, the Remove procedure might find that no line-segments pass through the 

Junction. This fact must communicated to the Insert procedure so that it knows that case

(iii) occurred and that it must initialise a new Region-list. The Permute procedure need 

never be called in this situation.

The Permute procedure is the next to be called. This procedure swaps the order of any 

remaining line-segments in the Front which pass through the current Junction. The 

Permute procedure only performs Region-list maintenance if it encounters one or more line- 

segments which must be reversed. Encountering one line-segment may seem a trivial case 

in that the single line-segment swaps places with itself, but the Region-list maintenance



is significant and must be performed.

Two Region list maintenance tasks are performed by Permute. First, it initialises new 

Region-lists between adjacent pairs of line-segments exiting the Junction. The tail of each 

new list is attached to below the upper line-segment of each pair, and the head is 

attached to above the lower line-segment. Second, it attaches the Region-lists passed to 

it by the Remove procedure to the top-most and bottom-most line-segments exiting the 

Junction.

The Insert procedure is called once for each line-segment which is to be inserted into the 

Front. Having located the position where the line-segment is to be inserted, one of four 

cases will be observed.

a) The new line-segment does not touch any other line-segment in the Front. In this case, 

the Insert procedure must consult the communication sent by the Remove procedure. If 

Remove encountered no line-segments, then the current Junction is a 'butt-end' and a new 

Region-list must be initialised and the ends of the list attached to the two sides of the 

line-segment. If Remove did encounter some line-segments, then the Region-lists from 

above the top-most must be extended and attached above the new line-segment, and the 

list from below the bottom-most must be extended and attached below the new line- 

segment (Fig. 3.10(i) T o p ).

b) The new line-segment touches other line-segments in the Front and is the highest line- 

segment exiting the Junction. In this case, the Region-list attached above the second- 

highest line-segment must be detached and re-attached above the new line-segment. A 

new Region-list must be initialised between the new line-segment and the second-highest 

(Fig. 3.10(i) Bottom).

c) The new line-segment touches other line-segments in the Front and is the lowest line- 

segment exiting the Junction. Here the Region-list attached below the second-lowest line- 

segment must be detached and re-attached below the new line-segment. A new Region- 

list must be initialised between the new line-segment and the second-lowest (Fig 3.10(ii) 

Top).

d) The new line-segment touches other line-segments in the Front but is neither the
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INSERT Region List maintenance.

CASE A new line is the only line at the vertex.

All previous entries have been 
REMOVEd.
Front at vertex B.
Line entry AB has been removed 
from the Front.
New line BC must inherit 
lists Above and Below AB.

No previous entries near 
vertex.
Front at 'butt-end' vertex 
A.
No lines existed at A and so 
new region list created 
around AC.

CASE B new line is highest of many lines at the vertex.

Before new line 
QP inserted.

List above 
previous top-most 
line diverted 
around new 
top-most line QP.

New list 
initialised 
between new 
insertion QP and 
lower neighbour 
QN.

F ig u r e  3 . 1 0 ( i )



INSERT Region List maintenance (continued).

CASE C new line is LOWEST of many lines at the vertex.

Before new line 
QR inserted.

List BELOW 
previous
bottom-most line 
diverted below 
new bottom-most 
line QR.

New list 
initialised 
between new 
insertion QR and 
higher neighbour 
QL.

CASE D new line is in the midst of many lines at the vertex.

Before new line List BELOW higher ‘ New list
QS inserted. neighbouring line initialised

'QN diverted below between new
new line QS. insertion QS and

higher neighbour 
QN.

F ig u r e  3 . 1 0 ( i i )



highest nor the lowest line-segment exiting the Junction. The Region-list attached below 

its higher adjacent line-segment must be detached and re-attached below the new line- 

segment. A new Region-list must be initialised between the new line-segment and its 

higher adjacent neighbour (Fig. 3.10(ii) Bottom).

Cases (a), (b) and (c) involve some processing of one or both of the Region-lists passing from 

left to right (if they exist). In cases (b) and (c), these lists are merely diverted from what 

at one point in the processing appeared to be the highest or lowest lines to what currently 

appears to be the highest or lowest lines. These diversions could occur many times in the 

processing of one Junction. Case (d) has no involvement with the Region-lists which pass 

from left to right, although close examination of the Region-list processing involved 

shows that it is identical to that performed in case (c).

When the Junction is a ’butt-end’ with no right-hand side - case (ii) - the Region-list 

above the highest line-segment entering the Junction must be concatenated with the 

Region-list entering the Junction below the lowest line-segment (Fig. 3.11). This 

concatenation describes the shape around the right-hand side of the Junction. This 

concatenation could be considered to be part of the processing of the left-hand side of the 

Junction and so would appear to naturally belong to part of the Remove procedure. In fact 

it is included as part of the executive procedure performed after the right-hand side 

procedures, Permute and Insert, have been executed. This concatenation is only required 

when the current Junction has no right-hand side, and the decision that no right-hand side 

exists can only be made after the Permute and Insert procedures have found respectively 

that no line-segments pass through the Junction and that no line-segments start at the 

Junction. The Permute and Insert procedures need to communicate whether a right-hand 

side exists to the executive procedure to enable it to decide whether to perform the 

concatenation of the two Region-lists. These Region-lists, if they exist, are already 

required to be returned by the Remove procedure for reasons previously discussed. 

Pseudo-code for the Remove, Permute and Insert procedures, extended to cope with General 

Vertex Types, is given in Appendix A.



Butt-end With No Right-hand Side.

After REMOVE Region 
Lists 1,2 & 3 have 
been maintained.

After PERMUTE & INSERT - no 
lines on right-hand side of 
Junction so concatenate 
list above top-most line 
<BC) with list below 
bottom-most line (DC).

Figure 3.11



3,7 Extensions required for coping with vertical lines.

As far the horizontal plane-sweep is concerned, a vertical line is an exceptional entity. It 

confounds the right-most / left-most categorisation of end-points and it has an absurd 

slope and intercept. It does not exist between Transitions.

For these reasons, vertical line-segments are not to be thought of as line-segments but 

rather as an extended Junction within a Transition. A single Transition might contain 

many separate vertical line-segments (Fig. 3.12).

The first extension to the algorithm is obviously to amend the items in the Junction list of 

the Transitions to enable them to describe vertical line-segments when necessary. For the 

sake of consistency then a vertex can be thought of as a trivial vertical line-segment with 

its bottom-most vertex in the same place as its top-most vertex. Items in the Junction lists 

now all describe vertical line-segments, many of them trivial single-point line-segments. 

The Junction lists are ordered on ascending bottom-most vertex. Figure 3.13 provides an 

example of the new Transition list structure.

In order to simplify the preparation of Transitions, Insertion lists, which always contain 

line-segments which are not vertical, are always attached to Junction list entries which 

hold the Starting-point of these line-segments as its bottom-most vertex. The Insertion 

list of a Junction list entry for a vertical line-segment only contains those line-segments 

with their Starting-point at the bottom-most vertex of the vertical line-segment. Any 

other line-segments whose Starting-points' lie within the vertical line-segment, excepting 

those at the bottom-most vertex, are stored in the Insertion lists of separate Junction list 

entries. This arrangement avoids the complications which could arise if the Insertion 

lists describing all the line-segments starting within a vertical line-segment were to be 

stored in the same Junction list entry. Problems could arise under that arrangement when 

successive vertical line-segments touch or overlap each other.

Processing a vertical line-segment Junction entry is similar to that described in the last 

section for simple single-point Junction entries. Processing is again divided into left-hand 

side and right-hand side procedures.



Vertical lines overlap single-point Junctions.

D

G

Q
R

T

U

H

A scene incorporating 4 vertical line-segments AB, CD, EF & GH.

Line-segment AB lies across 8 single-point Junctions A, K, L, M, 
N, 0, P, B.

Junctions A, K, P, B are points where new entries are inserted 
into the Front.

Junctions L & 0 are points where lines YO and WL are removed 
from the Front.

Junction N is the vertex where lines XR and YS swap places in
the Front, and Junction M is where lines XT and WS swap places.

,!
Other vertical lines

CD - two insertions at Junctions C and D;
EF - two removals at Junctions E and F;
GH - eight removals at Junctions G, Q, R, S, T, U and H.

F ig u re  3 . 1 2  
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Transition List incorporating vertical Lines.

[ [X,[XR,XT],,],
[W,[WS,WL],,],
[Y,[YO,YS],,3,
[A, [AH],AB],
[K, [K U ] , , ] ,

[P, [PQ3,,3,
I B , [ B G ] , , ] ,

[C, [CF3, DC],
[D,[DE],,]r 
[Hf [ ] r GH] ,  

[Ff []fEF] ].

Format of List item:- [vertex,[insertions],vertical line].

Lines with End-points lying within a vertical line are now 
REMOVE*d by the call for that vertical line - hence no 
entries are needed for vertices U,T,S,R,Q,G within GH.

Intersection points M & N are not inserted into this list 
until they are discovered by the plane-sweep.

F ig u r e  3 . 1 3
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In sections 3.7.1 to 3.7.4, the principles of operation is described for the Advance-Front, 

Remove, Permute and Insert procedures. Pseudo-code outlines of these procedures can be 

found in appendix B.
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3.7.1 Advance-Front

The executive procedure is changed to deal with vertical line-segments. Only one call to 

REMOVE and PERMUTE are made for each Vertical Edge, regardless of how many single 

point junctions occur within the vertical edge (Fig. 3.14). The most noticeable change is in 

the way the Insert procedure is called. Insert is now not only called for each entry in the 

Insertion list of the current Junction, but also for all the entries of all the Insertion lists of 

all the Junctions in the current Transition which lie within the current vertical line- 

segment. In the trivial case, when the vertical line-segment is a single-point, this will 

only include one Junction list entry and one Insertions list, if any.

More subtle changes include the necessity to store the top-most vertex of any vertical line- 

segments encountered. This enables the routine controlling the Insert procedure to make 

the evaluation needed to know when it has encountered a vertex which is outside of the 

current vertical line-segment.

The 'butt-end' processing has also changed slightly. In the event that a ’butt-end' is 

encountered which extends along a vertical line-segment, the Region-list manipulations 

required, either initialisation in the case of right-handed Butt-ends (Fig. 3.15) or 

concatenation in the case of left-handed Butt-ends (Fig. 3.16), must extend the Region-lists 

to include both vertices of the vertical line-segment.



Advance Front.

[vertex,[insertions]fvertical line].
[ [X,[XR,XT],,],

[W,[WS,WL],, ],
[Y,[YO,YS],,],
[A, [AH], AB],
[K,[KU],,],
[Pr [PQ ] r  r ] ,
[B,[BG],,],
[C,[CF],DC],
[D,[DE],,],
[H,[],GH],
[F,[],EF] ].

Transition list.

Advance-Front calls REMOVE & PERMUTE for Transition List 
entries for vertices X,Y,W,A,C,H & F. Four of these entries
- A,C,H & F - refer to vertical lines, and the calls to 
REMOVE and PERMUTE for these lines cover all the single-point 
vertices lying within them.

Advance-Front calls INSERT for entry containing an Insertions 
List - ie. all entries except F and H. An entry is required 
for each vertex where lines 3tart - even if the vertex is 
lying within a vertical line. Lines with their start-point 
on the lowest vertex of the vertical line are included in the 
insertions list of the entry containing the vertical line - 
eg entries A and C.

Figure 3 . 14



Right-hand *Butt-end' Processing.

E

F
B
P

G
QR

S

T
K
A

U
H

If, after calling REMOVE for a given Transition List entry 
it is realised that no left-hand side exists at that 
Junction - as occurs at vertices X,Y & Z and vertical line 
CD above - then ADVANCE-FRONT initialises Region-lists for 
the outsides of the new shapes.

These new Region-lists contain a single vertex in the cases 
of vertices X,Y & Z, and contain two vertices in the case 
of vertical lines such as CD.

The new Region-lists are hot attached to any entries in the 
Front. The assumption here is that the Junction had no 
left-hand side and so it must have a right-hand side. The 
right-hand side of the Junction is not represented in the 
Front until after INSERT has placed new entries in the 
Front at that Junction. The new Region-lists are passed 
to INSERT so that it can attach them to the new entries as 
they are placed in the Front.

The assumption that the Junction has a right-hand side may 
prove false in the case where a vertical line exists which 
does not touch any other line. The new Region-list is 
formed around the vertical line, but INSERT is not called 
because there is no Insertions list. The Left-hand 
butt-end processing, also performed by ADVANCE-FRONT and 
described later, then closes this region-list around the 
right-hand side of the vertical.

Figure 3.15 
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Left-hand *Butt-end' Processing.

w

B
p

M

K

A
" >

If, after all Front entries and Transition list entries for 
a given Junction have been processed, it is discovered that 
no right-hand side exists, then ADVANCE-FRONT must 
concatenate the Region-lists above the top-most line and 
below the bottom-most line on the left-hand side.

In the above scene, 2 left-hand butt-ends exist, both 
around vertical line segments - CD and GH.

* Region list above DE is ¿joined to that below CF

* Region list above GH is joined to that below AH.

F ig u r e  3 . 1 6



3.7.2 Remove.

A modified version of the Remove procedure climbs through the Front looking for all the 

line-segment entries which pass through the vertical line-segment, removing those which 

have their End-point there (Figures 3.17(i) and 3.17(ii)).

The Region-list processing performed by Remove is only slightly altered. Remove still 

identifies the top-most and bottom-most Region-lists falling within the length of the 

vertical line-segment, but now must ensure that these Region-lists incorporate the top

most and bottom-most vertex of the vertical line-segment, extending them to do so if 

necessary. Remove still concatenates the Region-lists between adjacent pairs of line- 

segments which fall within the Junction; however, the Junction is now a vertical line- 

segment, and so two vertices must be added to adjacent line-segments which both fall 

within the vertical line-segment, but are vertically separate and do not share the same



REMOVE incorporating Vertical line
and Region-list processing.

State of Region lists 
before ’REMOVE' is 
called.

First line found.

Extend lists above and 
below it to the 
Junction.

Next line found.

Below list extended 
down vertical to meet 
above list of previous 
line.
Above list extended to 
Junction.

Next line.

Below list joined to 
above list of previous 
line.

Above list extended to 
Junction.

F ig u r e  3 . 1 7 ( i )



REMOVE incorporating Vertical line
and Region-iist processing (cont).

Next Line.

Below list extends down 
vertical to join to 
Above list of previous 
line.

Above list extended to 
Junction.

Next Line.

Below list extends to 
join to Above list of 
previous line.

Above list extended to 
Junction.

— f 
I 
I
I

Next Line. No lines remain,
Below list extends down 
vertical to join to 
Above list of previous 
line.

Above list extended to 
Junction.

Extend above list of 
top-most to top vertex.
Extend below list of 
bottom-most list to 
bottom vertex.

Figure 3.17(ii)



3.7.3 Permute.

A modified version of Permute climbs the Front looking for all those line-segments passing 

through the vertical line-segment which have been left after the Remove procedure (Fig. 

3.18). An essential detail of this processing is that Permute must break these line- 

segments into groups of line-segments passing through the same point within the vertical 

line-segment. These individual groups are permuted as they are identified, and all 

groups within the vertical line-segment are processed so.

With regard to Region-list processing, Permute does the following. The top-most and 

bottom-most line-segments exiting the vertical line-segment are identified and the 

Region-lists passed forward from Remove (the top-most and bottom-most left-side Region- 

lists) are attached above and below these line-segments respectively. In some cases, when 

these line-segments are not at the top-most or bottom-most vertex of the vertical line- 

segment, these Region-lists must be extended by adding the vertex where the appropriate 

line-segment crosses the vertical. Permute must still initialise Region-lists between 

adjacent pairs of line-segments, but sometimes these adjacent pairs may be vertically 

separate in which case an additional vertex needs to be added to the new list to 

incorporate the points where the two line-segments cross the vertical.



PERMUTE with vertical line and 
Regiori-Iist processing.

B B

R

YS
XR
XT
WS

YS
XR
WS
XT

PERMUTE first intersecting 
group at M.

YS
XR
WS
XT

XR
YS
WS
XT

PERMUTE second intersecting 
group at N.

Region lists are initialised 
between adjacent pairs of lines 
which have been re-ordered.

Region lists 1 & 3 require only 
one vertex, whereas region list
2 requires two vertices to 
describe the vertical 
connection.

Figure 3.18

Lowest and highest region lists 
from left-hand side (set by 
REMOVE) are extended to meet 
the lowest and highest lines 
after the Permutations are 
performed.



3.7.4 Insert.

The Insert procedure changes only slightly. The only difference between this version and 

the previous version occurs when the new line-segment which is being inserted is found not 

to touch any other line-segment in the Front. Now Insert must examine the entries in the 

Front immediately above and below the new line-segment (Fig. 3.19).

If neither of the two neighbours lie within the vertical line-segment, then Insert must 

extend the Region-lists passed to it by the Advance-Front procedure and attach these to 

the new line-segment, ensuring that both lists include the Start-point of the new line- 

segment.

If the higher of the two neighbours lies within the vertical line-segment, then the 

Region-list below the neighbour is split in two at the Start-point of the new line-segment. 

The lower part is attached below the new line-segment, and the higher part is used in the 

initialisation of a new list between the new line-segment and the higher neighbour.

If the lower of the two neighbours lies within the vertical line-segment, then the Region- 

list above the neighbour is split at the Start-point of the new line-segment. The higher 

part is attached above the new line-segm ent, and the low er part is used in the 

initialisation of a new Region-list between the new line-



Insert Procedure for Vertical Lines
Incorporating Region-list Processing.

Left-side Region list First line inserted has no
initialised by neighbour.
ADVANCE-FRONT.

Extend left-side Region 
lists and attach to First 
line.

New line <DE) causes Region 
list around top vertex to 
be split at start point of 
new line (D).

Split Region list is 
extended to start point of 
new line (if necessary) and 
attached to new line.

These insertions could have been performed in the reverse 
order. Region-list processing remains the same.

Figure 3.19



3.8 Enabling the algorithm to construct an Adjacency Graph.

Sections 3.4 to 3.7 have described the extensions necessary to generalise the plane-sweep 

algorithm for reporting the regions inside a non-degenerate polygon. These extensions 

enable the algorithm  to report all the regions inside a collection of separate or 

overlapping polygons regardless of the type of polygon, including "open" polygons. This 

algorithm is now capable of reporting all the regions inside a line-drawing comprised of 

straight line-segments.

Section 3.2 described the set of data structures needed to provide a drawing interpreter 

with sufficient information to construct its interpretations. So far we have made no 

attempt to construct these data structures with the extended plane-sweep algorithm. The 

algorithm as it stands constructs no more than a series of lists of vertices which describe 

the separate regions. No links are provided which might show which regions are 

adjacent to which, nor which regions contain which. The extensions needed to describe 

these relationships are introduced now. The construction of the Adjacency Graph is the 

subject of the remainder of this section, and the construction of the Containment Hierarchy 

is discussed in section 3.9.

The plane-sweep algorithm currently constructs its descriptions of Regions from ordered 

lists of the vertices of the Regions. We now seek to alter this so that Regions are described 

by Edge-lists. Section 3.2 described in detail two of the data structures which are the 

components of the Adjacency Graph, these being the 'Line-segment' and the 'Edge*. Here 

we show how these data structures can be fitted into the Plane-sweep algorithm.

3.8.1 Pre-processing - initialising the Adjacency Graph and preparing a new Transitions 

structure.

In its initial state the Adjacency Graph contains a set of unconnected Graph structures, 

each consisting of one Line-segment whose Edge-list contains only one Edge. A function of 

the plane-sweep algorithm is to connect these small Graphs together to form a small 

number of larger Graphs, these connections being made where Line-segments intersect.
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The first task of the Pre-processing phase is to construct this initial state of the Adjacency 

Graphs. This is simply the procedure of reading each Line-segment from the file of 

drawing data and constructing one Line-segment structure for each one read. The Edge in 

the Edge-list of the Line-segment describes the single Edge of that Line-segment running 

from its Start-point to its End-point. Figure 3.20 shows a scene and its corresponding 

Adjacency Graphs, both before and after the Plane-sweep has discovered all the Edges.

The second task of the Pre-processing phase is to construct the Transition list. The only 

difference between the new Transitions structure and that used in the previous algorithms 

is that this time Edges are stored in the Insertion-lists of the Junction structures where 

previously Line-segments were stored. Vertical Edges pose the same difficulty as 

Vertical line-segments in the previous algorithm. This time, any Vertical Edges which 

start at the vertex are stored in a separate list inside the Junction structure - it is not 

enough to store just the Top-most and bottom-most vertices of the Vertical Edge because 

that Edge must be woven into the Adjacency Graph and so the plane-sweep procedures 

must be able to reference the actual Edge structure.

The new Junction structure contains the following elements :- 

Bottom-most vertex;

Insertion-list containing references to Edges;

List of Vertical Edges;

Edges in the Insertion-lists are those Edges whose left-most vertices are at the vertex. 

Edges in the list of Vertical Edges are vertical Edges whose bottom-most vertex lie on the 

vertex. Figure 3.21 shows a scene and its corresponding Transition List.



Line and Edge-based drawing descriptions.

G
Q
R

T

U
H

Line data structures for the above scene.
Initial state Final state.
[L#AB,[ 1»AB]]) [L#AB,([1,AK],[2,KL], (3,LM),[4,MN],[5,NO],[6,OP],[7,PB]]]
{L#CDf( 1,CD]]] [L#CD,{[1,CD]3 3
[L#EF,[ 1» EF]]] [L#EF,[[1,EF]]]
[L#GH,[ 1» GH]]] [L#GH,til»HU],[2,UT], (3fTS]f [4,SR], [5,RQ],(6,QG]]J

[L#DE,[ 1# DE]]] [L#DE, t 11rDE]]]
[L#CF,[ 1•CF]] ] tL#CF,1(1,CF]]] ;
[L#BG,[ IrBG]]] [L#BG,[ [ 1,BG]]]
{L#PQ,[ 1, PQ] ] ] [L#PQ,[11,PQ]]]

[L#KU,t 1 t KU]]] [LfKU,[[1,KU]]]
[L#AH,[ 1» AH]]] [L#AH,[tl,AH]]]
[L#Y0,[ l,YO]]] 1L#YO,{[1,YO]]]
[L#WL,[ 1» WL] ] ] [L#WL,t[1,WL]]]

tL#YS, I 1,YS]J] [L#YS,[ {1, YN ], [ 2 , NS]]]
[L#WS,[ 1,WS]]] (L#WS,[11,WM],[2,MS]]]
[L#XR,t 1# XRJ]] [L#XR,[{1,XN],12,NR]]]
[L#XT,{ lrXT]]] [L#XT,[[1,XM],(2,MT]]]

Line data structure format
[line id, [ [edge id, edge vertices],..]].
Edge lists are ordered from left to right, except 
for vertical lines, in which edge lists are 
ordered from bottom to top.

Figure 3.20
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Line and Edge 
structure 

Initial state

[L#AB, [[1, AB]] 
[L#CD,[[1,CD]] 
[L#EF,[(1,EF]] 
[L#GH, ni,GH))

[L#DE,[[1,DE]] 
tL#CF,[[1»CF]] 
[L#BG,[II,BG]] 
[L#PQ,[I1,PQ]]

[ L # K U , [ I 1 , KU]I  
[L#AH,[[1,AH]] 
[L#Y0,I[1,Y0]] 
[L#WLf [[1,WL]}

[L#YS,[[1,YS]] 
[L#WS,[[1,WS]] 
[L#XR, [£ 1,XR]] 
[L#XT,[[1 ,XT]]

Transition List for Edge-based plane-sweep.

[ [X, [L#XR,1],[L#XT,1]],,]
[W, [L#WS,1],[L#WL,1]],,]
[Y, [L#YO,1],[L#YS,1]],,]
[A, [L#AH,1]],L#AB], .
[K, [L#KU,1]],,],
[P, [L#PQ,1]],,],
[B, [L#BG,1]3,,3,
[c, [L#CF,1]],L#CD3,
[D, [L#DE,1]],,],
[H, 3,L#GH],
[F, 3,L#EF3 3.

Format of List item:-
[vertex,[insertion list],vertical line].

Insertion list format
t [line id, edge id],..].

Figure 3.21
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3.8.2. The Plane-sweep.

The basic ideas remain the same. A Front is maintained during a sweep from left to right 

across the plane. The plane-sweep passes across many Transitions where changes occur in 

the vertical ordering of lines in the Front. Each Transition consists of one or more discrete 

Junctions where localised changes occur in the Front.

The changes to the Front structure at each Junction is done in two phases, one dealing with 

the line-segments entering the Junction from the left-hand side, and the other dealing 

with those exiting to the right-hand side. As the plane-sweep progresses, some 

additional processing is performed to construct descriptions of the Regions of space 

enclosed within the drawing.

Changes are needed now to enable the descriptions of Regions to be constructed in the form 

of a graphs of Edges as opposed to the Region-lists of vertices used in the previous 

algorithms. An initial set of Adjacency Graphs already exists. The task confronting the 

plane-sweep is to weave these unconnected Edges together to form more complex graphs 

reflecting the structure of the drawing. A fundamental part of the problem of weaving the 

Edges together is that of how are Edges which meet at a Junction to be joined together.

With regard to the definition of Edges given in section 3.2 and considering the Edges 

involved in an intersection separately, there are two types of intersections which can occur 

between Edges. The first type is where the Edge is intersected somewhere between its 

end-points, this requiring that the Edge be split into two separate Edges. The second type 

is where the Edge is intersected on one of its end-points. Here the Edge does not need to be 

split into two.

A first requirement then is to split Edges in the Adjacency Graphs. Each Line-segment has 

an Edge-list, and each Edge belongs to only one Edge-list. Splitting an Edge involves 

inserting a new Edge into the Edge-list, inheriting the End-point of the existing Edge and 

with a Start-point at the point of intersection. The End-point of the existing Edge is 

amended to the point of intersection, where the new Edge begins. Edge-lists are ordered, 

so the new Edge must be inserted immediately after the existing Edge (Fig. 3.22).



Splitting Edges.

Line structure before and after update due to split of 
edges [L#XT,1] and [L#WS,1] at point M.

BEFORE AFTER

[L#WL,[[1,WL)]] t L#WL, [[l.WLJ]J

[L#YS,[[1,YS]]] 
[L#WS,[[1,WS]J] 
[L#XR,[[1,XR]]} 
[L#XT,[[I,XT]] J

[L#YS,[(1,YS]}]
[L#WS,{( 1,WM],[2,MS]]J 
[L#XR,[(1,XR]]]
[LfXT, 1(1,XM], [ 2, MT])]

Front entries now contain references to edges in 
form [line id, Edge id]. This maintains 
consistency through changes made to edges caused by 
splits. [L#WS,1] before the split refers to the 
edge from W to S. After the split [L#WS,1] refers
to edge from W to M. This is consistent because
the Front must contain the part of the edge
beginning at W in this case.

Figure 3.22



Connecting Edges at a Junction.

D  ____________________  E

State of line structure when vertex M has been reached. 
[L#AB,  U 1 , A K ) ,  [ 2 , K L ] ,  [ 3 , LM] , 14 , MB] ] )

[ L # W S , [ t l , W M ] , [ 2 , MS ] ] }

IL#XT,  ( ( 1 , XM] ,  1 2 , MT } ] ]

Connectiona between Edge-list items.
Format of edge-list item incorporating a connection for each side:-

[edge-id,edge vertices,(above-left connection], [below-right connection] ]

Format of connections
[connected edge-id, connected to' side)

[L#AB, .. [3,LM,[L#WS,1,below],I,,)],[4,MB, [,,],[L#WS,2,above]]]]

[L#WS,[[1,WM,[L#XT,1,below],[,,]], [2,MS,[,,],[L#XT,2,above]])]

[L#XT, {(1,XM,(L#AB,4,left],[,,]],[2,MT,[,,],[L#AB,3,right]]]]

Above the three lines and six edges involved in the connection around 
vertex M. Connections not involved in vertex M have been ignored.

Following the cycle around a vertex involves following the connection from
one side of an edge to the side OPPOSITE that indicated by the connection.

Following the cycle around M from [L#AB,3,below)

[L#AB,3,below] -> [L#WS,1,Below] -> [L#XT,1,below] -> [L#AB,4,left] ->
[L#WS,2,above) -> [L#XT,2,above] -> (L#AB,3,below]-> . . .

F i g u r e s . . 2 3



Having split any Edges which require it, the second requirement is to connect together all 

the Edges meeting at the vertex (Fig. 3.23). These Edges may include those which have 

been split by intersection, and those which have not been split but which start or end at 

the vertex. Edges which meet at a vertex are connected in a cyclical chain in a clockwise 

direction around the vertex. This connection between Edges in the chain is supported by 

the Region-list elements of the Edge structure. Each Edge can reference its clockwise 

neighbours through the Region-list elements. The Left-above Region-list elements 

reference the Edge's clockwise neighbour at its Right-most vertex, or Top-most vertex for a 

Vertical Edge. The Right-Below Region-list elements reference the Edge's clockwise 

neighbour at its Left-most or Bottom-most vertex.

The clockwise connection of Edges is consistent across all vertices in the drawing, including 

those vertices where only one Edge occurs (Fig. 3.24). A vertex where a single Edge has its 

Start-point, which might include the bottom-most vertex of a vertical edge, only has a 

right-hand side. Here the Right-below Region-list of that Edge references its Left-above 

side. A vertex where a single Edge has its End-point, which might include the Top-most 

vertex of a Vertical Edge, only has a Left-hand side. Here the Above-left Region-list of 

that Edge references its Right-below side.

The fact that Edges are split at intersection points means that the Permute procedure is no 

longer necessary. This procedure in the previous algorithms reversed the order of line- 

segment entries in the Front to reflect the change in vertical ordering of those line- 

segments across the intersection point. Now however, the Front contains entries for Edges 

rather than for line-segments and by definition these Edges have their end-points at the 

intersection points of the line-segments to which they belong. The re-ordering which now 

needs to be done across an intersection point is the removal of the Edges which end at the 

intersection point, and the insertion of the those which start there. These functions are 

performed by the Remove and Insert procedures respectively.

The follow ing sections describe the Plane-sweep algorithm in terms of the three 

procedures - 'Advance-Front', 'Remove1 and 'Insert'. Pseudo-code outlines of these 

procedures are given in Appendix C.



Connecting Edges at a vertex (cont)
- Trivial cases.

Line structure including edge connections describing 
the trivial cases where a line does not connect to 
any other line.

[L#VZ, [[1,VZ, [L#VZ,lf right], [L#VZ,1,left]]]]

[L#JI,[[lfJI,[L#JI,1,below],[L#JI,1,above]]]]

The right side of the vertical is connected in a 
cycle to its left side.

The above side of the horizontal is connected in a 
cycle to its below side..

V

€ )*

Figure 3.24



3.8.3 Advance-Front.

This procedure, as before, is the executive which controls the progression of the Front 

across the plane. It reads successive entries from the Transition-list, each entry containing 

one or more Junction entries. Each Junction entry describes either a single point vertex or a 

vertical edge. For each Junction entry, the executive calls procedures which perform the 

amendments to the Front order and the associated Region-list maintenance operations on 

first the left-hand side of the Junction and then the Right-hand side.

The Insert procedure is called once for each Edge with its Start-point on the Junction. 

When the Junction describes a Vertical Edge, the Insert procedure may be called for 

successive Junction entries whose Insertion-lists contain Edges starting in the Vertical 

Edge. The possibility of successive Junction entries falling within the range of a Vertical 

Edge is coped for by recording the Top-most-vertex of a Junction Entry before the Remove 

procedure is called. Any successive Junction entries whose Bottom-most vertex falls on or 

below the current recorded Top-most-vertex must lie within a Vertical Edge. In the case of 

Vertical Edges it is important that Remove is only called for the Vertical Edge and not for 

successive Junctions lying within the Vertical Edge.

3.8.4 The Remove Procedure.

The Remove procedure climbs the Front removing all Edges it finds which pass through 

the Junction. By definition all Edges which hit a Junction end there, and so the test to see 

whether Edges end at the Junction or not is no longer needed. However some extensions are 

needed to the intersection detection routines to handle the new list formats, and some of 

this extra processing is included in the Remove procedure.

In previous versions, intersecting Edges were handled by the Permute procedure which 

reversed the positions of intersecting Edges in the Front. Now intersection-points are 

where one set of Edges are removed from the Front to be replaced by a set of new Edges. 

The intersection detection routine must now not only update the Transition list by adding a 

new Junction entry for the Intersection-point but must also build an Insertion-list for that
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Undiscovered Intersections.

3

5

8

Two types of intersection which are not discovered before 
they are reached by the Plane-sweep. They are not discovered 
because only one of the lines is in the Front before the 
intersection point is reached. These 'undiscovered' 
intersections always involve either a vertical line or a number 
of lines starting at the intersection. The REMOVE procedure can 
determine when a line it encounters in the Front has to be split 
because of an 'undiscovered' intersection - such a line is always 
the only line at that particular vertex.

Figure 3.25
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Junction entry containing the set of Edges to be inserted at that point.

This has added one small but significant new feature to the Remove procedure, the need to 

split solitary edges which pass through the Junction and update the Transition-list. Most 

intersections of two or more non-vertical edges are discovered in advance as the Plane- 

sweep progresses, however the intersection between two or more non-vértical edges, where 

all but one of the Edges start at the intersection-point, and the intersection between a non

vertical edge and a vertical edge are not discovered. This is because such intersecting 

edges have not been adjacent to each other in the Front before the intersection-point is 

reached (Fig.3.25).

The implication is that any single Edge passing through the Junction without intersecting 

with any other Edge there must be split at that point into two Edges, regardless of 

whether the Junction describes a vertical edge or a single-point. One of these Edges is the 

one in the Front which ends there, and the other one must be added to Insertion-list of the 

Junction to describe the part of the Edge which begins there. A precaution must be taken to 

prevent an Edge of a line-segment which ends there from being split and so extended on the 

right-hand side of the Junction.

This requirement is satisfied by counting the number of Edges which are removed from 

each discrete single-point within the Junction. Whenever a new discrete point is reached, 

including the termination point where the first point above the Junction is read, the 

number of Edges removed from the previous lower point is checked and if only one Edge has 

been removed from there, and if the line-segment of that Edge did not end there, then that 

Edge is split. (The variable 'Last-Edge' always references the edge examined before the 

current one, even though it has been removed from the Front.)

Most of the procedure is concerned with connecting Edges to other Edges. Mainly this is 

concerned with connecting the side below one Edge to the side above its lower adjacent 

Edge. Sometimes, when the Junction describes a Vertical Edge, part of the Vertical Edge 

lies inbetween the Edge and its lower neighbour. In this case the Vertical Edge must be 

split into two, one part which lies between the Edges and the other which lies above 

them. The left side of the part between the Edges is used to connect them together.



Connecting Edges around the 'butt-end' of a Junction is now performed by the Remove 

procedure, and this is done irrespective of the type of Junction, Vertical or single-point and 

also irrespective of whether the Junction has a right-hand side or not.

In the case of a Vertical Edge, maintaining the ’butt-end’ requires that the two sides of the 

Edge are connected together into a cycle. This initial state assumes that the Junction has 

no Left-hand or Right-hand side. As the Remove procedure progresses, it might very well 

discover that the Vertical Edge has a Left-hand side, and so modifications are made to 

the Edge list around the Vertical Edge to incorporate these other Edges which have been 

discovered. The First Edge found for example might lie on the Bottom-most vertex. In 

this case the right side of the Vertical Edge must be connected to the below side of the 

First Edge, and the above side of the First Edge must be connected to the Left side of the 

Vertical Edge.

As mentioned previously, sometimes the Vertical Edge must be split. Maintaining the 

Edge list around the Vertical Edge when this happens is not as straight-forward as it 

might appear (Fig. 3.26). Always the Top-most-edge on the Left-hand side, which was 

initially the Vertical Edge but may eventually be another non-vertical Edge which ends 

on the Top-most vertex of the Vertical Edge, must be connected to the Top-most edge on the 

Right-hand side of the Junction, When a Vertical Edge is split, always below the Top

most vertex, the new Edge resulting from the split is always the new Top-most Edge. 

Therefore the Left side of the new Edge is connected to its Right side. On the Right side of 

the Junction, the new Edge must always be connected to the old lower Edge to maintain the 

cycle around the Vertical Edge.

The ’butt-end' processing for a single-point Junction is very much simpler than that for 

Vertical Edges. The above side of the Top-most Edge on the Left-hand side is connected to 

the below side of the Bottom-most Edge. In its implementation, all that is required is to 

connect the side above the First Edge found to its below side. Any successive Edges which 

pass through the Junction inherit the connection from Top-most to Bottom-most by a simple 

assignment.



REMOVE splits vertical lines.

Q

B
Q

g>

" - Q

Line AB 
contains 
only one 
edge - AB.

Split at L.
Connect edges around 
vertex L.
Connect around top 
of new edge LB.

Split at M.
Connect edges 
around M.
Connect around top 
of new edge MB.

No split. 
Connect 
Edges around 
M.

B

Split at N.
Connect edges at N. 
Connect around top of 
new edge NB.

No split.
Connect edge YN into 
group around N.

Figure 3.26

Split at o.
Connect edges at 0. 
Connect around top of 
new edge OB.



The final part of the procedure contains the usual Intersection-Test performed between the 

Edge im m ediately below those Removed and the Edge im m ediately above those 

Removed. After this the Top-most Edge encountered during the procedure is identified. 

This Edge is passed back to the calling executive procedure and for subsequent use by the 

Insert procedure so that the Edge list around the 'butt-end' of the Junction may be picked 

up and diverted around any Insertions. The Top-most edge is identified because of the 

clockwise direction of the Edge list by having the Top-most edge on the Left-hand side 

any of the Edges on the Right-hand side can be found.

Identifying the Top-most Edge is quite complicated. If no Edges at all fall within the 

Junction, and that means no Vertical Edge either, then the Junction has no Left-hand side 

and so a ’Nil’ reference is returned. If the Junction has only a Vertical Edge, or if the 

Junction has a Vertical Edge and all other Edges falling within it fall below its Top-most 

vertex, then the Vertical Edge is the Top-most Edge. (Note that when the Vertical Edge 

is split, the Top-most of the two resulting smaller Edges is always carried forward by the 

variable 'Vertical-Edge'.) If some non-vertical Edges fall on the Top-most Vertex, 

regardless of whether the Junction is a Vertical Edge or single point, then the last such 

Edge encountered is the Top-most Edge.

3.8.5 The Insert Procedure.

The Insert procedure is called once for each Edge which has its Start-point lying within 

the range of the current Junction. Insert climbs the Front looking for the position where 

the Edge should be inserted. Having placed the Edge in the Front, Insert performs some 

Region-list maintenance functions.

The overall effect of these Region-list maintenance operations is similar to those of the 

previous versions of Insert. Region-lists are formed on the right-hand side of the Junction 

between adjacent pairs of Edges, some of which might not share the same Start-point but 

might be at separate positions up the Vertical Edge. The Top-most and Bottom-most 

Region-lists on the Left-hand side of the Junction are inherited respectively by the Top

most and Bottom-most Edges on the Right-hand side of the Junction. Region-lists need to 

be extended around the Left-hand side of any 'butt-end's which are constructed.
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Region-list maintenance is determined by the Edges that Insert finds in the Front lying 

within the range of the Junction. The Vertical-Edge, if it exists, is not an entry in the 

Front but is available to Insert and does indeed count as a neighbour of any Edge inserted 

into the Front at that Junction. Region-list maintenance largely consists of connecting new 

Edges to its neighbours already in the Front - or to the Vertical-Edge. When no neighbours 

are found, it searches for traces remaining of the Left-hand side and attempts to connect 

these to the new Edge (Fig. 3.27).

Where a Junction has a Left-hand side, all the Edges on the Left-hand side of the Junction 

have been removed from the Front. The Left-hand side processing, namely the Remove 

procedure, assumes that no Right-hand side exists for the Junction and so knits the Region- 

lists around the right-hand side of the Junction as if it were a ’butt-end'. The first Edge to 

be inserted in a Junction therefore has to determine whether or not any Left-hand side 

exists and if so unravel the Region-list around the butt-end and divert them around itself.

If the Junction does not contain a Vertical-Edge, then the Left-hand side exists only if the 

Top-most-Edge has been passed forward from the Remove procedure. If the Top-most- 

Edge exists, then the Region-list around the 'butt-end' of the Junction must be broken and 

diverted around the new insertion. The below side of the new insertion inherits the 

connection to the below side of the Bottom-most Edge from above the Top-most-Edge, and 

the above side of the Top-most-Edge is connected to the above side of the new insertion. If 

the Top-most-Edge does not exist, then there is no left-hand side in the Junction and 

therefore the right-hand side of the Junction forms a 'butt-end'. The Region-list around 

this 'butt-end' is initially the connection from below the new insertion to above it. This 

may be diverted later as further Edges are inserted above or below the first Edge.

If the Junction contains a Vertical-Edge, then the Left-hand side does exist, even if it 

consists of no more than that Vertical Edge (Fig. 3.28). In this case, the Vertical-Edge 

must be examined to find out whether it had been split during the Left-hand side 

processing, and if so to find that part of the Vertical-Edge whose Start-point is the same 

as the Edge being inserted. If no part of the Vertical-Edge has the same Start-point as the
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INSERT - new insertion has no 
touching neighbour in the Front.

(Top-most Edge = nil) (Top-most Edge - nil)

X

[L#XT, [[1,XTr [],[]]]] [L#XT, [[1r XT, [], [L#XT,lrabove]]]]
Before XT inserted. After XT inserted in Front.

INSERT knows New insertion forms a right-handed 'butt-end' 
because there is no Top-most Edge from the Left-side available. 
Below side is connected around start-point to 
Above side.

(Top-most Edge = AB) (Top-most Edge - AB)

REMOVE connects above 
side of AB to below 
side of CB.

INSERT finds nothing in Front at 
vertex B. (AB and CB have been 
REMOVED).

AB and CB are removed 
from the Front.

The Top-most edge on 
the left-side of the 
Junction -AB- is 
stored in case 
subsequent insertions 
start at vertex B.

Top-most edge on left~3ide is checked 
and found to be AB.

Connection from above AB is inherited 
by below side of BD. Connection 
from above AB is made to above BD.

[L#AB,[[1,AB,[L#CB,1,below], []] 
[L#CB, [ [ 1,CB, IL#AB,1,below], []] 
[L#BD, [tl,BD, [1, [3 3] ]]

[L#AB,[[1,AB,[L#BD,1,above],[]] 
[L#CB,[[1,CB,[L#AB,1,below],[]] 
[L#BD,[[1,BD,[],[L#CB,1,below]]

33 
] 3

33
33
33

Figure 3 *_^4_



INSERT - new lines intersect with Vertical.

State of the Edge 
connections around AB after 
REMOVE called for line AB 
of scene on left.

0

N

M
L

New insertion AH 
starts at a 
vertex of 
vertical edge AL,

No split is 
needed.

Below of AH 
connected to left 
of AL - ie AH 
inherits right 
from AL.

Right of AL 
diverted to above 
AH.

New insertion KU causes edge AL to be 
split at K into edges AK and KL.

New Edge AK inherits identifier of AL 
within line AB, and so below’ AH is 
automatically connected to left of AK. AK 
inherits right connection to AH from AL.

New edge KL inherits left side from AL 
maintaining connection to WL.

Cycle around vertex K is built: Right of
KL is connected above KU; Below KU is 
connected right AK; Left AK is connected 
left KL.

Right of KL's higher neighbour ML is 
connected to right of KL.
Figure 3.28



new insertion then the nearest lower part of the Vertical-Edge must be split. The Left- 

hand side parts of the split must be connected together to maintain the Left-side Region- 

lists, which in the case of the Top-most Edge of the Vertical may involve connecting the 

Left-hand side of the Edge to the Right-hand side, if no non-vertical Edges on the Left- 

hand side end on the Top-most vertex of the Junction. On the Right-hand side, the parts 

of the Vertical-Edge which lie above and below the new insertion are respectively 

diverted around the top and bottom of the new insertion.

This procedure for connecting an Edge to the Vertical-Edge is the same for all Edges which 

do not share the same Start-point as their neighbours. Always the Vertical-Edge is split, 

if it has not already been so by the Left-hand side processing, and the resulting parts are 

connected to the new insertion.

Inserted Edges which do share the same Start-point as their neighbours which are 

already in the Front fall into two categories from the point of view of Region-list 

maintenance: those which have a higher neighbour including those which have both a 

higher and a lower neighbour (Fig. 3.29); and those with only a lower neighbour (Fig.

3.30). Generally the procedure is to divert an existing Region-list around one side of the 

new Edge, and to initialise a new Region list between the new Edge and the appropriate 

neighbour. If a higher neighbour exists, the Region-list connected below that Edge is 

diverted below the new Edge and a new list is initialised by connecting the below side of 

the higher neighbour to the above side of the new Edge. If only a lower neighbour exists, 

the Region-list above that Edge is diverted above the new Edge and a new region-list is 

initialised between them.



INSERT - new edge is NOT highest at vertex.

R R

Before inserting XT. After inserting XT.

New insertion XT inherits below side of its higher 
neighbour (XR). Below side of higher neighbour (XR) 
is connected to new insertion XT.

A

Before inserting BE. After inserting BE.

Below side of new insertion (BD) inherits below side of its 
higher neighbour (BE). Below side of higher neighbour (BE) 
is connected above new insertion (BD).

Figure 3.29



INSERT - new edge is highest at vertex.

R

T T

Before inserting XR. After inserting XR.

XR is found to be the top-most edge emerging from vertex X.
When inserting XR, the cyclic list around vertex X is followed 
from below the previous top-most edge (XT) until an edge is 
found which connects to the above side of the previous top-most 
edge(XT).

In the trivial case above, the below edge of XT is found to 
connect to the above edge of the previous top-mo3t edge, which 
also happens to be XT.

The connection to the previous top-most edge (XT) is diverted 
above the new top-most edge (XR). Below XR is connected above 
XT.

Less trivial case.

The cyclic list around B in the left hand diagram is 
followed from below BD to above AB, which connects to the 
top-most edge (BD) emerging from B.

The connection from above AB to above BD is diverted above 
new top-most edge BE in the right hand diagram. Below BE 
is connected above BD.

E

A

D

C
C

Figure 3.30
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3.9 Constructing the Containment Hierarchy.

3.9.1. Introduction.

The extended Plane-sweep algorithm provides a set of Adjacency Graphs for each set of 

interconnecting line-segments in the drawing. A Containment Hierarchy now needs to be 

constructed to relate these separate Adjacency Graphs to each other. The relationships 

which should be identified are of the nature of 'Adjacency Graph #A is contained by 

Adjacency Graph #B' (Parent), 'Adjacency Graph #B contains Adjacency Graph #A' 

(Child), and 'Adjacency Graph #C is contained by the same Adjacency Graph as contains 

Adjacency Graph #A' (Sibling).

The first stage in achieving this goal is to introduce Region Labels into the scheme (Fig.

3.31). Each Adjacency Graph constructed by the extended Plane-sweep algorithm 

contains one or more Regions, these explicitly described by the separate Edge-lists which 

are constructed within each Adjacency Graph. These Region-lists are in fact a basic 

component of the Adjacency Graph. Each separate Adjacency Graph consists of a 

conglomerate of none, one or more partitions which are connected together by sharing 

Edges. Each partition is described by a separate Region-list. The case where the 

Adjacency Graph contains no partitions is when the Adjacency Graph describes a set of 

connected line-segments which do not form any closed loops and so form an open rather 

than closed polygonal shape. One other Region-list describes the hull of the shape of 

the conglomerate. Therefore we have Region-lists which describe partitions, and 

Region-lists which describe the hulls of conglomerates of partitions. We will call the 

former type Interior Region-lists, and the latter type Exterior Region-lists. Every 

Adjacency Graph can be said to comprise one Containment Hierarchy wherein the Exterior 

Region-list contains all those Interior Region-lists which describe the partitions from 

which the conglomerate is comprised.

Each Region-list constructed by the Plane-sweep must be given a unique label to identify 

it, and this label must also identify the type of the Region-list, whether Interior or 

Exterior. These Labels are to be constructed into a hierarchy supporting the relationships 

mentioned previously, namely Parent, Child and Sibling, and so each Label must contain 

references to other labels which are its Parent, Children and Siblings (Fig. 3.32). This



Modified Edge structures link to Region labels.

Line-list item format.
[line-id,[ edge-list 3 ].

Edge-list item format:
[edge-id,vertices,[above connection],[below connection]].
Modified Connection structure:
[line-id,edge-id,side,Region-id]

The Edge data structure has been extended to include the name 
of the Region list that each side - Above/left and Below/right 
- participates.

Figure 3.31



Seven partitions - 21,3i,5i,7i,8i,9i,lOi
Three exterior Regions - le,4e,6e.

K z D - Q D  K I E H I I D H I I I

Region hierarchy.
Vertical connections express the 'Containment1 relationship, 

Horizontal connections express the 'Sibling' relationship.

Figure 3.32



Building the Containment hierarchy.

Transitions: numbers in circles show which vertex and which
side - left or right - of the Transition where Region list 
maintenance operations occur. The stages of construction of 
the Containment hierarchy are shown overleaf with references to 
numbered vertices.

Figure 3.33(i)



Building the Containment hierarchy (cont).

root root

* - r m

(start state)
©

Butt-end so new Region 
is an exterior

©

£20

©
Butt-end so new Region 
is an exterior

© ©
Butt-end so new Region 
is an exterior

©  ©
Figure 3.33(ii)



data structure is shown in Section 3.2. An additional requirement is to be able to reference 

Region-lists from the Region-Labels, for which connections to the head and tail Edges of * 

the Region-lists have been included.

The approach developed here is to construct the Containment Hierarchy on the fly. Every 

time a new Region-list appears to be starting, a new Region-label is created and 

tentatively positioned in the Containment Hierarchy (Figs. 3.33(i) and 3.33(ii) ). The 

position the new Region label adopts is determined by the proximity of other Region-lists 

in the Front, this described in more detail in sections 3.9.2 to 3.9.4.

This on-the-fly approach makes assumptions about Region-labels' types and positions in 

the Hierarchy based on evidence provided by Local features. Any new Region-list which 

is initialised around the Left-hand side of a 'butt-end' is assumed to be an Exterior Region. 

Similarly, any Region-list initialised between two adjacent touching edges on the Right- 

hand side of a Junction is assumed to be an Interior Region. These assumptions may 

subsequently be proved to be wrong and give cause to some restructuring of the Containment 

Hierarchy as contrary evidence is discovered. The causes and remedies of these wrong 

assumptions is discussed in detail later.

Despite the necessity of having to make assumptions during the construction of the 

hierarchy, caused by constructing the relationships between Region-lists before the 

complete shape of the Region is known, this on-the-fly approach has some advantage. If 

the algorithm waited until the complete shape of the Regions were known before 

allocating Region-labels to them, the Containm ent Hierarchy would have to be 

constructed bottom-up. The Children at a given level would always be described fully 

before their Parents. This would cause problems in that the overall Hierarchy would 

have to be constructed by merging together smaller Hierarchies as the common Parent of 

Sibling hierarchies were discovered. Temporary holding areas would be needed to hold 

partial results, and some method of identifying the relationships between separate 

hierarchies. In constructing the assumed relationships between Regions before the 

Region-lists are complete, the Hierarchy is constructed top-down so obviating some of the 

problems of bottom-up construction.



3.9.2 Determining the position of Region-Labels in the Containment Hierarchy.

■ :•

The Containment Hierarchy consists of at least two levels, though usually more, of 

Region-labels. The top most level of the hierarchy contains a single root Region which 

has an Interior type. The root Region can be considered to be the inside of the frame of the 

drawing. All other Regions in the drawing are contained within this frame.

The rest of the hierarchy depends on the drawing, but two general observations can be 

made. Each level in the Hierarchy consists of labels of the same type, Interior or 

Exterior, and alternate levels in the hierarchy have different types. Interior contains 

Exterior contains Interior contains Exterior. The levels above and below an Interior Region 

level will both contain Exterior Regions. The levels above and below an Exterior Region 

level will both contain Interior Regions.

Placing a new label in the Hierarchy is guided by the situation local to the Edges which 

constitute the boundaries of the new Region-list. How the decision is made depends on the 

type of the new Region-list, and on the type of the Regions belonging to Edges nearby in 

the Front.

3.9.3 Determining the position of an Exterior Region Label in the Containment Hierarchy.

Exterior Regions are always initialised around the Left-hand side of Junctions which are 

’butt-ends'. The ’butt-end' is initialised in either the Remove procedure when the Junction 

contains a Vertical-Edge, or in the Insert procedure when the Junction is a single-point (Fig. 

3 .3 4 (i)).

The main feature that the two types of Exterior Region initialisation share in common is 

that the new Region list consists of only one Edge (at that time), and that the Edge does 

not touch any other Edge in the Front (at that time).

The position that the Region-label adopts in the Containment Hierarchy is dependent on 

the position of Regions of Edges in the Front nearest the Junction. The two Regions which
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Positioning a new Exterior Region in the Hierarchy.

B

< k

C

0 -

The two types of butt-ends (Vertical AB and vertex C) around which 
new exterior Regions are formed.

END

è -
D

FRONT STATE

If the front is empty above the new insertion CD, the new exterior 
Region around CD is placed as a child at the start of the list of 
children of the ROOT of the hierarchy.

END
EF

D
CD

FRONT STATE

The front contains an entry (EF) above new insertion CD. The new 
exterior Region around CD will be placed in the hierarchy in a 
position relative to the Region list below EF.

Figure 3.34(i)



Positioning a new Exterior Region in the Hierarchy (cont).

(Possible context)

( 5

G

Line entry for EF 
[L#EF,[[1,EF,[],[L#GE,1,right

Higher Neighbouring Region is an Interior.
Below entry of edge EF shows that the Region below EF is 
interior Region 3i.
New exterior around CD is placed as a 'child' of 3i

(Possible context)

G

Line .entry.....for,-EF.
[L#EF, [ [1, EF, [] , [L#GE, 1, left,3jaJ ] ] ]

Higher Neighbouring Region is an Exterior.
Below entry of edge EF shows that the Region below EF is 
exterior Region 3e.
New exterior Region around CD is placed as a 'sibling' of 3e.

Figure 3.34(ii)



could be consulted with equal validity are that below the higher neighbouring Edge to the 

Junction, and that above the lower neighbouring Edge. Arbitrarily, the former shall be 

chosen. If the neighbouring Region is an Interior Region, then it is considered to be the 

Parent of the new Exterior Region. The New Label is positioned in the level of the 

Hierarchy immediately below the neighbouring Region (Fig. 3.34(ii) Top).

If the neighbouring Region is an Exterior Region, then it is considered to be a Sibling of the 

new Exterior Region. The New Label is positioned in the Hierarchy next to the 

neighbouring Region (Fig. 3.34(ii) Bottom).



3.9.4 Determining the position of an Interior Region Label in the Containment Hierarchy.

Interior Regions are always generated between two Edges which are connected together 

either directly, in which case they both share the same Start-point, or indirectly, in 

which case they are separated from each other by a part of a Vertical-Edge (Fig. 3 .35(i)).

The position of the New Interior Label is determined by examining one of the Regions on 

the other side of one of the two non-vertical Edges which bound the new Regions. 

Arbitrarily, the Region above the higher of the two Edges shall be chosen as a 

guide.

If the Region is an Exterior Region, then that Exterior Region is the hull of a conglomerate 

of Partitions, a member of which will be described by the new Region-list. The new 

Region-label is therefore nominated as a child of the Exterior Region (Fig 3.35(ii) Top).

If the Region is an Interior Region, then that Interior Region is a member of the same 

Adjacency Graph as the new Interior Region, and so the new Region is a Sibling of its 

neighbour and is placed accordingly beneath the Parent of that neighbour (Fig. 3.35(ii) 

Bottom).



Positioning a new Interior Region in the hierarchy.

Exterior Region from AD to AB (i) is diverted 
around new Edge AE (ii) by Region-list 
maintenance in Insert.
New Interior Region created between AE and AB.

N

K H

(iii)

M
New Region

Diverted Region

K

(iv)

Insert when new Edge not highest.

Region between LM and HK (iii) is diverted 
below new Edge NP (iv).
New Interior Region created between LM and NP

Figure 3.35(i)



Positioning a new Interior Region in the hierarchy

The Region above the higher of the two non-vertical Edges 
bounding the new interior is examined to determine the 
position of the new Interior label.

Region above higher neighbour is an Exterior.

is the TAIL of Region 3e . )

The Above entry of Edge AD shows that the Region above it is 
exterior Region 3e.
New interior Region is a 'child' of 3e.

Region Above higher neighbour is an Interior.

[L#PQ,[1,PQ,[[,,,3i],[]]))
(note. Above entry of PQ has no connection 
to any other edge because at this time it 
is the TAIL of Region 3i.)

The Above entry of Edge PQ shows that the Region above 
it is interior Region 3i.
New interior Region is a 'sibling’ of 3i.

Figure 3.35(ii)



3.9.5 Labelling conflicts.

Labelling conflicts are only encountered when two separate Region-list are to be 

concatenated - by the Remove procedure in the case of Region-lists meeting at the Left

side of a Junction, or by Advance-Front when Region-Lists meet on the Right-hand side of a 

Junction. A labelling conflict occurs when the Concatenate operation is given two ends of 

Region-lists, one a Head and the other a Tail, to join together and the two ends belong to 

different Region-lists. An invocation of Concatenate which does not encounter a labelling 

conflict is called a Closure, in which the Head and the Tail of the same list are joined 

together to form a closed loop.

Two types of labelling conflict can occur. In the first type the two meeting Regions have 

different labels, but the labels are of the same type, Interior or Exterior. The second type 

of conflict is when the two labels are of different types, one Interior and the other Exterior.

3.9.6 Conflict - Labels have the same type.

This type of conflict only occurs in Regions which contain more than one Right-handed 

'butt-end's. A Junction forms a Right-handed 'butt-end' if it only has a right-hand side.

The logical progression leading up to the labelling conflict is as follows. Each right- 

handed 'butt-end' of the shape is encountered separately. On the Left-hand side of the 

*butt-end’ a new Exterior Region is formed, and on the Right-hand side a new Interior 

Region is formed. Eventually a Junction is  encountered which marks the turning point of a 

cavity in the shape. Here, on the left-hand side of the Junction, the two separate Exterior 

Regions are submitted for Concatenation and the first labelling conflict is discovered. On 

the Right-hand side of the Junction, the two separate Interior Regions are submitted for 

concatenation and the second conflict is discovered (Fig. 3.36).

The problem to be solved at each conflict is that one of the Region Labels is superfluous 

and must be removed from the Containment Hierarchy. Decisions must be made as to 

which of the two labels is the redundant one and as to what manipulations need to be 

performed on the Hierarchy to safely remove a label.



Labelling Conflict: Labels have same type.

Shape with two right-hand butt-ends a and b.

4 snapshots of the Region list 
initialisations occuring around the 
butt-ends.

These Region lists would be correct if the 
butt-ends were in separate convex polygons

Figure 3.36



Repairing the hierarchy when conflicting
labels have the same type.

3e

e -
le

A

At vertex Cf Exterior Region label 3e is removed from the
Regions le and 3e hierarchy.
meet. The other Region in the conflict le

inherits 3e's ’children'.

----------41

V2i
i=>

At vertex C, Interior Region label 4i is removed from the
Regions 2i and 4i hierarchy.
meet. The other Region in the conflict 2i

inherits 4i's 'children' if it has any.

Figure 3.37



The nomination of the redundant label is purely arbitrary, and by way of example we 

shall choose the label which was most recently created. Having chosen the redundant 

label, it must be removed from the hierarchy. It is removed from the Child list of its 

parent and it is also removed from the Sibling list of other children of its Parent. The 

remaining problem is to find where to put any descendants of the redundant label. Since 

the Concatenation is effectively merging two Labels into one, the obvious and correct 

solution of this problem is to merge the descendants of the Redundant label with those of 

the surviving label. This is performed by joining the list of Children of the Redundant 

Label to the list of children of the surviving label (Fig. 3.37).



3.9.7 Conflict - Labels have different types.

Conflicts of this type occur in shapes with more than one left-handed 'butt-end'. Left- 

handed 'butt-end's occur at Junctions with only a left-hand side.

Shapes with more than one left-handed 'butt-end' always have cavities eating into the 

right-hand of the shape. The turning points of such cavities always form right-handed 

'butt-end's. These right-handed 'butt-end's, which are always encountered by the sweep 

before the left-handed 'butt-end's, are the origin of the labelling conflict. The plane- 

sweep mistakenly assumes the Junction where the cavity's turning point lies is a Right- 

handed 'butt-end' marking the start of a convex polygon. Two Region-lists are initialised 

here, an Exterior Region around the Left-hand side of the cavity, and an Interior Region 

around the right-hand side of the cavity. When one of the left-handed ’butt-ends' is 

encountered, the labelling conflict is identified (See Figures 3.38 and 3.40 for examples).

Inside the shape, the Interior Region originating from the Left-most turning point of the 

shape meets the Exterior Region initialised around the cavity. The Exterior Region-label 

must be disposed of.

Outside the shape, the Exterior Region originating from the Left-most turning point of the 

shape meets the Interior Region initialised around the cavity. The Interior Region label 

must be disposed of.

Having identified the Redundant label, which is always the label most recently 

generated, the problem of how repair the Containment Hierarchy arises. Removing the 

redundant label from the Hierarchy is simple enough, but the solution to the problem of 

where to place the Children of the redundant label is less obvious than in conflicts where 

both labels have the same type.

The position in the drawing of the children of the redundant label should be considered. 

The Redundant label was created under the assumption that it was a convex polygon, and 

the label was generated at the left-most vertex of that assumed polygon. Therefore any 

children of the Redundant Region lie to the right of the Edges around which it was



formed, and therefore these children lie outside of the actual shape, but within the 

cavity. These children then are Siblings of the actual shape. Figures 3.39 and 3.41 

illustrate how the hierarchy is repaired.

The Redundant label, regardless of type, is always a Child of the surviving label. The 

children of the Redundant label are therefore always of the same type as the surviving 

label, and so altering their position within the Hierarchy so that they become Siblings of 

the survivor maintains the consistency of the Hierarchy.



Labelling Conflict: Labels have opposite types.

___________ }  b

_______________________}  a

Shape with two left-hand butt-ends a and b.

le (? ■

\2i

3e<

0*

4 snapshots of the Region list initialisations.

These Region lists would be correct if the Region 
lists were initialised around nested convex polygons.

Figure 3.38



Repairing the hierarchy when conflicting
labels have opposite types.

ROOT

i=C>
le

L-. 4 H Z 1

At vertex Cf Interior 
Region 2i and Exterior 
Region 3e meet.

At Vertex C the most recently created 
Region list (3e) in the conflict is 
removed from the hierarchy.
3e's 'children* become 'siblings' of 3e's 
•parent' - 2i.

4i

6--------- J>
le

At vertex C, Exterior 
Region le meets 
Interior Region 4i.

At Vertex C the most recently created 
Region list (4i) in the conflict is 
removed from the hierarchy.
4i's 'children' become 'siblings' of 4i's 
'parent' - le.

Figure 3.39'



Labelling conflict when labels have opposite types
- a more complex example.

A scene similar to that in the previous diagram, again a 
labelling conflict involving opposite types being discovered at 
vertex C. By this time however, some of the Regions involved 
in the conflict have 'children'.

The labelling hierarchy built would be consistent with a scene 
constructed from nested convex polygons.
Note how 4i contains 7e, and how 5e and 3e are 'Siblings'.

Figure 3.40



Repairing the hierarchy when conflicting labels
have opposite types - a more complex example.

At vertex C, Interior 
Region 2i and Exterior 
Region 3e meet.

At Vertex C the most recently created 
Region list (3e) in the conflict is 
removed from the hierarchy.
3e's 'children' become 'siblings' of 
3e's 'parent' - 2i.

3e
7e

|&L
8i

5e
2i 6i &

id )

At vertex C, Exterior 
Region le meets 
Interior Region 4i.

At Vertex C the most recently created 
Region list (4i) in the conflict is 
removed from the hierarchy.
4i's 'children' become 'siblings' of 
4i's 'parent' - le.

Figure 3.41
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4. The Reconstruction Process.

4.1 Introduction.

Reconstruction is the process of building a three-dimensional description of an object by 

using the information provided by an engineering drawing of that object.

This chapter describes the Reconstruction program which has been produced. The 

program relies on the user to perform certain visual tasks which cannot presently be 

automated. The interaction with the user is briefly described in section 4.2, this giving a 

feeling of what parts of the Reconstruction process the program can perform automatically. 

The rest of the chapter describes the principles and procedures employed by the program 

to perform its part of the Reconstruction process.

A significant principle of Reconstruction is the matching of the features of components 

presented in the separate views. Section 4.3 describes the correspondences occurring 

between the images of components in the separate views. Section 4.4 considers the 

implications of another set of correspondences, this time those between the co-ordinate 

systems of the three-dimensional object and the co-ordinate system of the drawing.

The Reconstruction procedures employed by the program are divided into two categories.

The first category contains the procedures required to retrieve a three-dimensional 

description from the engineering drawing, these described in section 4.5.

Section 4.6 describes the second category which are the procedures required to convert this 

three-dimensional description into a more convenient and conventional surface-based 

description suitable for input to standard three-dimensional graphics display algorithms.

4.2 The user and the Reconstruction program.

The Reconstruction program builds a description of an object component by component.

The Reconstruction program relies upon the user to identify and select the cross-sections of



each component in the drawing. Each cross-section consists of one or more connected 

partitions in the drawing. A cross-section is identified by selecting all the individual 

partitions from which it is composed.

The data structures expressing the topology of the drawing are read from a file, and the 

drawing is displayed on the screen. A cross-hair cursor which can be moved in response to 

keyboard key presses is then positioned on the screen.

The user selects partitions in the drawing by moving the cursor over the desired partition 

and by then pressing the select key. The selected partition is recorded and is 

highlighted on the screen by filling its outline with colour. When all the partitions 

describing a cross-section have been selected, the terminate key is pressed. The process of 

selecting partitions is illustrated in figure 4.1.

The program then searches the drawing file for evidence supporting the assumption that a 

component with such a cross-section exists. If such evidence is found, it provides 

sufficient dimensioning information to construct a solid from the cross-section. If no such 

evidence is found, the cross-section is admitted to be invalid and is rejected.

The process of constructing solid components from cross-sections is repeated until the user 

decides that the object has been completely described, when the command can be given to 

stop the process.



Figure 4.1
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4.3 Correspondences between views.

This reconstruction process is only capable of building solids which are composed of 

uniform-thickness components. A uniform-thickness component is a solid which has a 

constant cross-section along an axis, and that axis is perpendicular to the plane of the 

cross-section (fig. 4.2). The cross-section may be a shape of arbitrary complexity, 

composed of any curve types.

Allowing a simplifying assumption to be made that the uniform-thickness component is 

only viewed from a line of sight parallel or perpendicular to the axis of the component, 

the observation may be made that any series of orthographic projections of the component 

would always show the cross-section in one view, and a rectangle in each of the other two 

views (fig 4.3). Therefore, given a two-dimensional cross-section of a component, all that 

need be done to construct a solid is to identify the corresponding rectangles in either or both 

of the other views and to extract the appropriate dimensioning information from them.

The cross-section in one view and the corresponding rectangle in another view share a 

common dimension. For example, if the cross-section was in the XY view and the 

rectangle was in the YZ view then the common dimension would be the Y dimension. The 

cross-section and the matching rectangle would both be of the same length and position in 

the Y dimension. Further, for every unique Y component of the vertices of the cross- 

section there would be a line, perpendicular to the cross-section, partitioning the rectangle 

in the YZ view. This additional property can be used as a more selective criteria when 

attempting to find a matching rectangle for a given cross-section - the rectangle must have 

a partitioning line for each unique vertex component in the cross-section.

The correspondences between views are elaborated in the next few sections, structured 

around the common dimension between pairs of views - the X dimension is common to the 

XY and XZ views, the Y dimension is common to the XY and YZ views, the Z dimension is 

common to the YZ and XZ views (fig 4.4). In order to simplify the expositions, 

correspondences are described in terms of the three dimensional co-ordinate axes of the 

object without worrying about how this three dimensional system is represented in the two 

dimensional drawing system. The complexities and complications involved in projecting 

the three dimensions of the object onto the orthographic views are discussed in section 4.4.
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4.3.1 X is the common dimension.

The X dimension is the common dimension between the XY and the XZ views.

A cross-section in the XY view is supported by a rectangle in the XZ view, and in the 

reverse case, a cross-section in the XZ view is supported by a rectangle in the XY view (fig

4.5).

In both the cases mentioned above, the cross-section corresponds to a rectangle in the other 

view with comers at the minimum and maximum X points of the cross-section. This 

rectangle must be partitioned by lines perpendicular to the plane of the cross-section, one 

occurring for each unique X component of the set of vertices of the cross-section. The 

perpendicular length, with respect to the plane of the cross-section, of the sides of the 

rectangle are used to set the length of the axis of the component.

In the case where the cross-section is in the XY view the axis is in the Z dimension. In 

the reverse case, where the cross-section is in the XZ view, the axis is in the Y dimension.



X is the common dimension -
the location of the axis in the corresponding view

Figure 4.5
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4.3.2 Y is the common dimension.

The Y dimension is the common dimension between the XY and the YZ views.

A cross-section in the XY view is supported by a rectangle in the YZ view, and in the 

reverse case, a cross-section in the YZ view is supported by a rectangle in the XY view (fig

4.6).

In both cases, the cross-section corresponds to a rectangle in the other view with comers at 

the minimum and maximum Y points of the cross-section. This rectangle must be 

partitioned by lines perpendicular to the plane of the cross-section, one occurring for each 

unique Y component of the set of vertices of the cross-section. The perpendicular length, 

with respect to the cross-section, of the sides of the rectangle are used to set the length of 

the axis of the component.

In the case where the cross-section is in the XY view the axis is in the Z dimension. In the 

reverse case, where the cross-section is in the YZ view, the axis is in the X dimension.



Y is the common dimension -
the location of the axis in the corresponding view.

Figure 4.6



4.3.3 Z is the common dimension.

A cross-section in the XZ view is supported by a rectangle in the YZ view, and in the 

reverse case, a cross-section in the YZ view is supported by a rectangle in the XZ view (fig

4.7).

In both cases, the cross-section corresponds to a rectangle in the other view with comers at 

the minimum and maximum Z points of the cross-section. This rectangle must be 

partitioned by lines perpendicular to the plane of the cross-section, one occurring for each 

unique Z component of the set of vertices of the cross-section. The perpendicular length, 

with respect to the cross-section, of the sides of the rectangle are used to set the length of 

the axis of the component.

In the case where the cross-section is in the XZ view the axis is in the Y dimension. In the 

reverse case, where the cross-section is in the YZ view, the axis is in the X dimension.

The Z dimension is the common dimension between the XZ and the YZ views.
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Z is the common dimension -
the location of the axis in the corresponding view.

Axis 
of 

component



4.4 Mapping three-dimensional co-ordinates onto two-dimensional drawing co-ordinates.

In the figure 4.8, an illustration is given of the two principle systems of orthographic 

projections, first-angle projection at the top, and third-angle projection at the bottom. In 

both illustrations, the z-axis origin is along the intersection of the planes X=0 and Y=0, 

and the value of z increases as we draw away from the page to the right.

The first point to notice is that the three-dimensional views of the object are all drawn on 

the same plane, the drawing plane, which is conventionally described in terms of an XY 

co-ordinate system. Conveniently, the dimensions of the orthographic views common to 

the XY drawing system correspond in a simple manner. The X co-ordinates of the XY and 

XZ views increase as the X co-ordinates of the drawing system increase, and the Y co

ordinates of the XY and YZ views increase as the Y co-ordinates of the drawing system 

increase. All that is needed to transform an X or a Y point in the drawing into an X or Y 

point in the object is a straight forward translation followed by a scaling operation. 

Each view has its own independent translation distance. The translation distance is 

simply the minimum X or minimum Y drawing co-ordinate of the set of points of that view.

The second point to note is that the Z co-ordinates of the object are mapped onto the XY 

drawing co-ordinate system. The Z co-ordinates of the YZ view are mapped onto the X co

ordinates of the drawing system, and the Z co-ordinates of the XZ view are mapped onto 

the Y co-ordinates of the drawing system. Referring to the plate we can see that in 

either of the projection systems the Z co-ordinates of the object increase as the X co

ordinates of the YZ view increase, but decrease as the Y co-ordinates of the XZ view 

increase. Therefore the mapping between the representation of the Z dimension in the 

drawing and the Z dimension of the object is, in the case of the YZ view, a transformation 

involving translation and scaling. In the case of the XZ view, the transformation requires 

an additional reflection operation to map drawing co-ordinates to object co-ordinates or 

object co-ordinates to drawing co-ordinates.

Using the preceding observations, we can now describe the mapping between drawing co

ordinates and object co-ordinates.

i) Translate the vertices of each view to the drawing origin. The minimum X and Y
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drawing co-ordinates of the set of vertices of a view are found, and these are 

subtracted from the X and Y co-ordinates of all vertices of the view,

ii) Reflect the Z components of the vertices of the XZ view by applying the following 

formula to the Z component of each vertex :-

reflected_Z_component = minimum_z_component_of_view
+

maximum_z_component_of__view 

Z_component_to_be_reflected;

It should be borne in mind that the Z components referred to are the Y components of

the drawing co-ordinates of the XZ view. Minimum_Z_component_of_view is 

minimum_Y of view XZ. Maximum_Z_component_of_view is maximum_Y of view 

XZ. A lso, after the tran slation  perform ed in (i) above, the

minimum_Z_component_of_view of view XZ would probably be zero.



4.5 The Reconstruction Procedures.

4.5.1 An overview of the Reconstruction Procedures.

The Reconstruction program accepts from one of the drawing views a set of partitions 

identified by the user as being a candidate cross-section section of a component in the 

drawing. The program performs a matching procedure to attempt to find rectangles in the 

other views of the drawing which correspond in position and size to the candidate cross- 

section. As a result of the matching procedure, either the candidate cross-section is 

rejected on the grounds that no corresponding rectangle can be found, or some dimensioning 

data is returned which enables the two-dimensional cross-section to be expanded into a 

three-dimensional component. This dimensioning data describes the length and position 

of the axis of the component.

Section 4.3 discussed the correspondence between a cross-section in one of the views and 

rectangles in the other two views. It was observed that every vertex in the cross-section 

matched to partitioning lines in the corresponding rectangles. This property exerts an 

extra constraint on the matching procedure, namely that not only are the position and size 

of rectangles to be considered when attempting to find matches, but also the presence of 

partitioning lines inside the rectangle.

In order to simplify the matching task, the partitioning constraint is exploited. Any 

rectangle matching the cross-section would contain one partitioning line for each unique 

vertex position in the common dimension of the cross-section and the supporting view being 

searched. These partitioning lines would all be of the same length, and would start and 

end at the same points along the dimension of the axis being sought. Instead of looking for 

rectangles in the supporting views, all the matching procedure needs to do is to find all the 

lines which correspond with the vertices of the cross-section, and then find the places 

along the dimension of the axis where these lines overlap. Only overlaps where every 

vertex of the cross-section is represented provide sufficient evidence to assume a 

satisfactory match (fig 4.9).

The length and positions of any overlaps satisfying these conditions are assumed to be the 

length and position of the axis of the component. Matches are further validated by



(Elevation 
-X

Y
)

Evidence of Rectangles

(Plan -XZ)

Correspondences between views

r

I
Search for overlapping lines along 
common dimension between pairs of views

Figure 4.9

-169-

§



ensuring that the cross-section has a match in both of its supporting views, and that both 

matches return the same dimensioning data. When the matching procedure finds more 

than one satisfactory overlap, it is assumed that more than one component with that cross- 

section exists, and one three-dimensional component is constructed for each set of 

dimensioning data.

The matching procedure consists of four stages, and these stages are described in more 

detail in the next four sub-sections. The first stage accepts the list of connected partitions 

chosen by the user and constructs the hull of the shape containing those partitions. The 

second stage creates targets for the attempted matches with the other views. The third 

stage searches through the other views, and records all the lines which hit parts of the 

targets. The fourth stage examines the list of lines which hit the targets, looking for 

overlaps where all parts of the targets are hit simultaneously. The position of the 

overlaps, if any exist, are passed to the construction procedure along with the hull of the 

cross-section. The construction procedures are described in section 4.6.



4.5.2 Determining the hull of the cross-section.

This procedure makes use of some of the data structures derived from the drawing by the 

Region Analysis Program presented in chapter 3. A number of separate list structures are 

used to describe some of the topological relationships between the features of the drawing.

One ordered list of edges exists for each Region in the drawing describing its boundary. 

For convenience this list will be referred to as the Region List. A Region list exists for 

every partition in the drawing, describing the interior boundary of the partition. Region 

lists which describe the interior of a partition are called Interior Region Lists. A Region 

list also exists for every conglomerate of adjacent partitions. Such a Region List is called 

an Exterior Region List, and it describes the Exterior boundary of shapes made up of one or 

more partitions.

Interior Region Lists contain edges ordered in a counter-clockwise direction around the 

inside of the partition. The head of the list is the top-most edge coming from the top

most vertex of the right-most vertices of the Region (fig 4.10).

Each item in the Region List is an Edge Descriptor. These Edge Descriptors define the 

vertices of the edges and also identify the Regions on each side of the edge. Every edge 

has two sides and each may participate in a separate partition boundary, although 

degenerate cases may occur where both sides participate in the same boundary. A naming 

convention has been adopted to differentiate between the two sides. One side is the the 

Below-Right side, which is the side facing downwards of any non-vertical edge, or the 

side facing right of any vertical edge. The other is the Above-Left side, facing upwards 

from any non-vertical edge, or facing left from any vertical edge. Figure 4.11 shows two 

connected partitions with their vertices labelled. Beneath them is the Line list which 

describes the shape. Each Line list item contains an Edge List, and each Edge List item 

contains an entry showing the connection from each side of the edge to the next edge in the 

corresponding Region List.

The cross-section is composed of the union of one or more partitions. In the trivial case 

where the cross-section consists of only one partition, the hull of the cross-section is simply
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Region List :
H-head, T-tail

Figure 4.10

Line-list For Above Shape.
[
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[Line-id,Edge-id,Side,Region List Id];

Figure 4.11



the boundary of that partition.

To determine the hull of a cross-section which is composed of many partitions, it is 

necessary to determine the top-most vertex of the right-most vertices of the set of 

partitions. This vertex is found because it is guaranteed to lie on the hull. From this 

starting vertex a navigation algorithm is applied to follow the edge lists around the 

outside of hull (fig 4.12(a)).

The navigation algorithm begins at the starting vertex and follows the edges around the 

outside of the hull, building a list of the vertices of the hull as it moves. The first vertex 

to be recorded is the starting vertex.

The navigation algorithm must now decide which edge to follow. The set of edges which 

are candidates to be followed are those edges which emerge from the starting vertex. 

The navigation algorithm must search through the candidate edges to find that edge 

which is closest, following a clockwise direction, to the twelve o'clock position (fig 4.12(b) 

). Along that edge, the vertex opposite to the starting vertex is added to the description 

of the hull.

Having found this first edge, the following procedure is repeatedly applied until it 

arrives back at the first edge. In the description of this procedure, the most recently 

obtained vertex is referred to as the 'Current Vertex' and the most recently obtained edge 

of the hull is referred to as the 'Current Edge'.

Starting from the Current Edge search around the Current Vertex in a clockwise direction 

until the candidate edge furthest from the Current Edge is reached (fig 4.12(c) and 4.12(d) 

). This furthest edge is nominated as the new Current Edge, and the vertex along that 

edge and opposite to the Current Vertex is nominated the new Current Vertex. The new 

Current Vertex is added to the description of the hull.

An illustration of this procedure is given in figure 4.13 showing the steps involved in 

finding the hull of a section composed of six partitions.



From this description of what the navigation procedure does, an implementation is 

derived which performs the navigation by using the Region lists and Edge Descriptors. In 

the following descriptions, the Region List is assumed to be a cyclical list where the tail is 

succeeded by the head. The next entry in a list beside a current entry is that entry which 

is next nearest the tail, unless the current entry is the tail entry in which case the next 

entry is the head entry.

The top-most vertex of the right-most vertices of the set of edges is found by searching 

through the set of Edge Descriptors. Having found this starting vertex, any one of the 

edges emerging from this vertex should be chosen.

By definition, all edges emerging from the starting vertex are to the left, or are vertical 

and below the starting vertex. Therefore, the most clockwise edge emerging from the 

starting vertex will be from the six o'clock position up to twelve o’clock. The Below- 

Right side of this edge will face into one of the selected partitions, and the Above-Left 

side will face into a partition which has not been selected as part of the section.

Searching through the edges around the starting vertex, the first edge on the hull is found 

when the edge with an Above-Left side facing away from the section is found. Taking 

any of the candidate edges around the starting vertex, test the Above-Left side. If it 

indicates a partition inside the section, then another candidate must be chosen. The next 

candidate is selected from the Region List indicated by the Above-Left side of the current 

candidate edge. Looking in this Region List, the next candidate is the neighbour of the 

current candidate edge.

Candidates are selected and tested until one is found whose Above-Left side contains the 

identifier of a partition which is not in the section. This candidate is elected as the first 

edge.

Once the first edge on the hull has been determined, the vertex at the opposite end of the 

first edge from the starting vertex is appended to the list of vertices describing the hull.

The subsequent edges of the hull are determined by repeated application of the same 

procedure. In the following description, the 'Current Edge' is the most recently obtained



edge on the hull. 'Current Partition’ is used to reference one of the partitions in the 

section, and is explicitly set in the description.

i) The Current Edge has two sides, one facing away from the section and the other 

facing into the section. The Current Partition is read from the side facing into the 

section. The neighbour of the Current Edge in the Region List is obtained and is 

nominated the candidate edge.

ii)  The side of the candidate facing away from the Current Partition is examined. If it 

holds the identifier of a partition which is part of the section, a new candidate 

edge must be selected. The partition identified by the side of the current 

candidate facing away from the Current Partition is selected as the new Current 

Partition. The neighbour of the current candidate edge in the Current Partition's 

Region list is selected as the new candidate edge. This process of selecting and 

testing candidates is repeated until a candidate is found with a side facing away 

from the section.

ii i)  The current candidate is elected as the new Current Edge of the hull. The vertex is 

appended to the hull description.

iv) Steps (i) to (iii) are repeated until the navigation arrives back at the first edge of
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4.5.3 Building targets for the searches for correspondences between views.

The Reconstruction program, as outlined in section 4.5.1, is based around matching a cross- 

section in one view with rectangles in the other views. To find rectangles to match with 

the cross-section, it is sufficient to search for lines which might constitute the sides of 

appropriate rectangles. Besides being of the right size and in the right position, the 

rectangles must also contain partitioning lines which correspond to the extension of the 

vertices of the cross-section to three-dimensions.

An important component of the reconstruction program then is a mechanism which can, 

given a cross-section in one view, determine what lines should be looked for in the other 

views. We will call this procedure targeting. Given a cross-section in one view, it is 

necessary to construct targets for the line searches through the other views. The 

targeting procedure constructs these targets.

Before describing how the targeting procedure works, it is first necessary to establish 

what types of lines we look for in one view to match a cross-section in another view. 

With regard to the restricted object types that we are trying to reconstruct, a cross-section 

in one view always corresponds to rectangles in the other views whose sides are parallel 

to the co-ordinate axes. The sides of these rectangles are always shown as vertical and 

horizontal lines. The line-segments we seek to match with the cross-section lie along 

vertical and horizontal lines which can be drawn through the vertices of the cross-section 

(Fig. 4.14).

Unfortunately, this simple observation needs some qualification. Horizontal and vertical 

lines in the drawing co-ordinate system do not strictly correspond to horizontal and 

vertical lines in the object co-ordinate system. The object co-ordinate system is three- 

dimensional and so we have three types of lines which run parallel to the various co

ordinate axes, lines which we can call for convenience X-lines, Y-lines and Z-lines running 

parallel to the X-axis, Y-axis and Z-axis respectively. The views in the drawing are 

each in different three-dimensional planes and so a vertical line in one view may be a line 

in a different dimension in the object co-ordinate system than a vertical line in another 

view.
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Horizontal and vertical lines passing through the vertices of the XZ view should be 

thought of as X-lines and Z-lines. Similarly, horizontal and vertical lines passing 

through the vertices of the YZ view should be thought of as Z-lines and Y-lines. 

Horizontal and vertical lines passing through vertices in the XY view should be thought 

of as X-lines and Y-lines.

Targets must be created in the object co-ordinate system and not in the drawing co-ordinate 

system. Each view in the drawing is the projection of a different object plane, so to be 

able to match features in one view with features in another view it would be necessary to 

convert the target into object co-ordinates and then apply a second transform to turn the 

object co-ordinates into the drawing co-ordinates of the view in which the match is 

sought. It is easier to once transform the features in each view into the three-dimensional 

object co-ordinate scale and to perform the matching procedures in that object co-ordinate 

scale.

Having converted the drawing co-ordinates into object co-ordinates by following the 

procedures outlined in section 4.4, the pair of targets for a cross-section in any view are 

created by preparing lists of the unique components of the co-ordinate points of the vertices 

of the cross-section, one list for the components of each dimension. A cross-section in the 

XZ view would produce one list containing all the unique X components of the vertices of 

the cross-section, and another list containing all the unique Z components.

These lists are used as targets for finding corresponding X-lines, Y-lines and Z-lines in the 

other views. A target created from Z components from a cross-section in one view would 

be used to find Z-lines in the other view with a Z dimension. A target created from X 

components in one view would be used to find matching X-lines in the other view with X 

components. A target created from Y components from one view would be used to find 

matching Y-lines in the other view with Y components.

4.5.4 The mechanism for searching for correspondences.

The matching mechanism is built around the plane sweep algorithm which also featured



prominently in the topological analyser program described in chapter 3. In this case, the 

plane sweep is used to find lines which lie close to the members of a set of target lines.

The plane sweep algorithm analyses the positional relationships between geometric 

entities on the same two dimensional plane, and it does this by reducing the two 

dimensional relationships into a series of one-dimensional relationships. One 

dimensional ordering of line-segments is based on relative positioning. Depending upon 

which dimension the ordering relation is based, we can make judgements like:-

'line #A is above line #B'

- ordering the relationship along the Y-axis;

'line #C is to the left of line #D'

- ordering the relationship along the X-axis;

'line #E is further away than line #F'

- ordering the relationship along the Z-axis.

The ordering relationships between lines is represented using an ordered list data structure 

called the 'front'. The tail of the list represents one extremity of the direction, and the 

head of the list represents the other. A sweep along the X-axis in the XY plane would 

maintain a front which represents the vertical ordering of the lines. The head item in 

the front list might represent a point at minus infinity along the Y-axis and the tail item 

might represent a point at plus infinity. All other items in the front list would represent 

lines passing through points between the two extremes, ordered on their position relative 

to the two extremes.

The ordering relationship between lines changes at certain points along the plane. The 

relationship 'line #A is above line #B' holds along a section of the XY plane until a point 

is reached along the X-axis when line # A is no longer above line #B. This occurs when one 

of three events happen at a point:-

when the furthest vertex of one or both of the lines is reached, and so one or both of
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lines #A and #B no longer exist;

when another line, say line #C, is encountered which lies between line #A and line #B;

when lines #A and #B intersect and so swap relative positions so that line #B is now

above line #A.

It is necessary to introduce some direction into the progression of the analysis of the lines 

in order to bring meaning to the terms ‘start of a line' and 'end of a line'. This direction is 

referred to as the 'sweep direction'. The plane sweep algorithm keeps track of the 

changing order of lines in one direction as the sweep progesses along another direction. 

For example, in a plane sweep along the XY plane, the algorithm keeps track of the 

vertical order of lines while the sweep progresses horizontally along the X-axis. If the 

sweep direction in this case happens to be from left to right, then the left-most vertices of 

lines are the 'starts of lines' - the left-most vertex is encountered before the right-most - 

and the right-most vertices of lines are the ’ends of lines’. Happily in this instance 

vertical lines may be ignored because we are looking for lines which run parallel to the 

sweep direction. More generally any lines perpendicular to the axis of the plane sweep 

can be ignored. Such lines usually cause problems with the plane sweep paradigm in that 

their start and end-points occur at the same point along the sweep axis and so some 

additional mechanism is required to cope.

In order to maintain the correct order in the relationships between lines it is necessary to 

adjust the order to reflect the changes wrought by the interference of the three event 

types. These events are the encounter of the end of a line, the encounter of the start of a 

line and the encounter of the intersection point of two or more lines. The change in the 

ordering of the front in response to these events is called a 'transition’. A transition is 

the change from one state of consistency in the ordering relation to another state of 

consistency at a single point along the sweep axis. One transition may consist of many 

events, all at the same point along the axis of the sweep but all at different positions in 

the front. For example in a sweep along the X-axis of the XY plane, transitions might 

take place at several individual points along the X-axis, and each transition might 

consist of many events causing changes to the order of the front at many different points
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Two types of event which contribute to transitions are explicitly stated in the data 

describing the drawing, namely the start and end-points of lines. Intersection points can 

be prepared by applying an exhaustive enumeration algorithm which tests for intersection 

every combination of pairs of lines in the drawing data, which can be computationally 

expensive. Alternatively the intersection tests can be incorporated as part of the 

mechanism which evaluates the relationships between lines. This second approach 

exploits the fact that at least two lines in any set of any number of intersecting lines will 

be adjacent to each other before the intersection point is reached. The mechanism 

performs an intersection test on those pairs of lines which find themselves newly adjacent 

to each other as a result of the re-ordering of the front, which can lead to fewer tests being 

performed than under the exhaustive enumeration approach.

The plane sweep mechanism has two parts, the first of which is a pre-processing part 

which prepares the data structure used by the plane-sweep and the second part is the 

plane-sweep itself.

The pre-processing part sorts the lines in the plane into a series of transitions. All start- 

points and end-points of lines which occur at the same transition point along the sweep 

axis are inserted into a list representing all the events which happen at this transition. 

The event list of each transition is itself ordered according to the order of the front. For 

example the lines in the XY plane for a horizontal sweep would be sorted into transitions 

along the X-axis from left to right. Each transition would contain a list of events which 

would be sorted according to the same vertical order relation as the front.

In order to perform the operation which inserts new lines into the front, the pre-processing 

phase must imbed additional information into the list of transitions. When a transition 

includes a vertex which is the start of one or more lines, a list must be created containing 

the descriptors of those lines.

After the pre-processing part, the front list is initialised and then the plane-sweep is 

performed by successively reading from the list of transitions. The events in each



transition are used to maintain the consistency of the front structure by removing, adding 

and swapping the positions of line items in the front. Every time a change occurs in the 

order of the front, an intersection test is performed on those lines which find themselves 

newly adjacent to each other. If any intersection points are calculated which lie on a 

transition which has not been encountered yet, then those intersection points are added to 

the event lists of those transitions.

The data structure representing the front is initialised. The front structure is an ordered 

list of line-segment descriptors. The order is based on the ranking of the relative 

positions of lines along a given dimension, which in this application could be parallel to 

either the X, Y or Z axis depending upon which view is being searched. Two sentinel line 

descriptors are inserted into the front in the initialisation. These line descriptors 

describe two reference lines which are at the two extreme points of the front. All other 

lines fit between these reference lines. This simplifies the algorithms needed to maintain 

the front: they never have to search past the top or the bottom of the list of line 

descriptors.

The sweep progresses by reading transitions from the sorted list prepared during the pre

processing phase. When a transition is read, the front is updated to reflect the change in 

line order that occurs at that transition. The updates required are a combination of 

DELETE, INTERSECT, and INSERT operations.

Delete.
4

The front is searched from bottom to top for any line-segments which have their end 

vertices at the transition point. Any such lines are removed from the front.

Intersect.

The front is searched from bottom to top for any sets of line-segments which intersect 

within the transition. The positions in the front of any lines in such a set are reversed. 

The top-most line of the set is swapped with the bottom-most line of the set, the second 

top-most with the second bottom-most, and so on.



Insert.

If the transition entry contains a list of line-segments which start at the transition, these 

lines are inserted into the front in positions relative to their ranking among the existing 

entries in the front. Any of these lines which have the same ranking because they have 

the same start point, are placed in the front relative to their order at some marginal 

advance in the sweep position.

Applying the plane sweep to matching lines to targets.

A property of the plane sweep is that the relative ordering of lines is established at all 

points along the sweep direction. This is useful for the matching procedure because it 

enables decisions to be made as to which lines are closest to a given target line at various 

points along the axis of the sweep. This enables us to find lines nearest to the target line, 

a useful ability in an application where practical drawing data may have been obtained 

from noisy and distorted souriven target scanners, and so the correspondences between 

views may be badly registered.

The simplest way of incorporating a target seeking mechanism into the plane sweep 

algorithm is to have this mechanism separate from the plane sweep mechanism. After 

every transition, a target checking procedure can be called to compare the positions of lines 

in the front against the set of targets.

Targets are held in a list with the same ordering relation as the front structure. The 

targets are prepared once only, see 4.5.3, and stay constant throughout the progression of 

the plane sweep. After each transition, the front and the list of targets are compared to 

each other. For each target in the list of targets, those lines in the front are found which 

lie closest on both sides of the target, and these lines are appended to a list detailing the 

nearest neighbouring lines on each side of the target. Any line which actually lies on the 

target is considered, arbitrarily and for convenience only, to lie on one side of the target 

and is added to the appropriate list of neighbouring lines. In the event that a number of 

lines intersect at the same point neighbouring the target, all these lines are added to the
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4.5.5 OVERLAPS.

For different types of object we will be looking for different types of correspondences 

between views. In the case of uniform thickness objects, we have been given a cross- 

section, and we are looking for rectangles in the other views. More specifically, we are 

looking for rectangles orthogonal to the cross-section in the two views which are 

orthogonal to the view containing the cross-section. This means that in this case we are 

looking for either horizontal or vertical lines, depending upon which pairs of views are 

being examined. The correspondences are expressed in the following table.

£ross--.s£ctian corresponding view lines sought
XY XZ vertical
XY YZ horizontal

YZ XY horizontal
YZ XZ horizontal

XZ XY vertical
XZ YZ vertical

The neighbours lists for each target contains all the lines which lie close to or congruent 

with the target line. To determine candidate rectangles within these lists, we look only 

at those neighbours which run parallel to the targets, these being either vertical or 

horizontal lines. From this set of parallel lines, we seek to determine and report any 

segments of the axis which lies parallel to the targets for which there exists a line- 

segment in each target: we look for the overlaps where every target is close to a

neighbouring parallel line. The start and end points of such overlaps are recorded.

4.6 Constructing solids.

The length of the overlaps is the final information required to construct solid components 

from a cross-section. The components are assumed to be uniform thickness objects, which 

have the same cross-section all along their axes. To construct a solid from a cross-section 

in the XY view, all that is needed is to find the Z co-ordinates of the start and the end of 

the component. These Z co-ordinates are the start and the end points of the sides of the 

rectangles corresponding to the cross-section in either the YZ or the XZ view. These Z co
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ordinates would also happen to be the start and end points of the overlap determined by 

the plane-sweep. If more than one overlap, and hence rectangle, were to be found, then 

more than one solid component would be constructed.

The three-dimensional components are represented by a circular list of vertices which 

describe the hull of the cross-section, a flag to indicate the plane in which the cross- 

section lies, and the start and end points of the length of the axis of the component. The 

axis of the component lies perpendicular to the plane of the cross-section. This 

representation is compact and requires the application of a simple algorithm to construct a 

set of three-dimensional surfaces which can be rotated and rendered by conventional 

graphics algorithms [67,72,82].

The surface construction algorithm first elaborates the two section ends of the component. 

These two ends are constructed by copying the cross-section: first using the start of the axis 

as the third dimension of each vertex; second using the end of thé axis as the third 

dimension. Then the algorithm travels around the hull of the cross-section constructing 

rectangular three-dimensional surfaces between adjacent pairs of vertices.

The rectangles are described by loops of four three-dimensional vertices. Two dimensions 

of each vertex are copied from one of the pair of vertices, and the third dimension is 

derived from one of the ends of the axis (Fig. 4.15).

These vertices are constructed in order:-

Two-dimensions from - Third dimension from -

i) first vertex start of the axis

ii) first vertex end of the axis

ii i) second vertex end of the axis

iv) second vertex start of the axis

From this explicit description of the component in terms of planar three-dimensional 

surfaces, any other convenient representation can be derived for input to a solid modeller.





4.7 Some examples of reconstruction.

In the next four pages, two drawings are shown which have been reconstructed using the 

reconstruction program. The drawings were prepared using a rudimentary computer- 

aided drawing system which constructed unordered files of vectors describing the drawing.

These vector files were submitted to the Region Analysis program and then reconstructed 

using the program described in this chapter.

Figures 4.16 to 4.19 show a brace constructed from planar surfaces. Figure 4.16 shows the 

third angle projection of the brace, and figure 4.17 shows the reconstructed solid with 

hidden lines removed. Figure 4.18 agains shows the solid above figure 4.19, which shows 

an exploded view of the uniform thickness components from which it is constructed.

Figures 4.20 to 4.23 show a 'Guide Bracket' - taken from page 54 of Hart [42] - composed of 

planar surfaces. Figure 4.20 show the First angle projection; Figures 4.21 and 4.22 are 

identical, showing the solid; Figure 4.23 shows the uniform thickness objects from which 

the object is composed.
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5. Conclusion.

This thesis has presented an engineering drawing interpretation system capable of 

producing three-dimensional representations of some objects from their two-dimensional 

orthogonal projections. This chapter makes an evaluation of the system and identifies 

some areas in which efforts for future development should be made, both specific to the 

components of this system and to the field of interpreting engineering drawings in general.

The system consists of two major components: a Region Analysis program which structures 

drawing data into a format susceptible for interpretation; a Reconstruction program 

which matches the projections of objects found in each view and combines the information 

contained in these projections to construct a three-dimensional representation. An 

evaluation of each component is made and areas for future enhancements identified.

5.1 An evaluation of the Region Analysis program.

An important aspect of drawing interpretation is that of ordering the drawing data to feed 

subsequent analysis and interpretation procedures. Drawing data is two-dimensional and 

so the ordering property must reflect the two dimensional arrangement of the drawing 

features. The data structures constructed by the Region Analysis program reflect the two 

dimensional arrangement. An unordered collection of line-segments is translated by the 

program into a description of the drawing in terms of the closed loops of white space - the 

Regions or partitions - which are caused by the two-dimensional arrangement of lines. 

This description is quite a rich one:- given any Region of the drawing, all the Regions 

which are entirely contained within that Region can be enumerated; given any Region, 

all the Regions which are directly adjacent to that Region can be identified; given any 

vertex, all the Regions meeting at that vertex can be found.

This description of the drawing is built from Edges. Edges, or more precisely Sides of 

Edges, are linked together to describe Regions. This is a significant improvement on the 

algorithm upon which the Region Analysis program was based, that presented by 

Nievergelt and Preparata [68] which constructs descriptions of Regions in terms of vertices. 

The vertex based description is adequate for describing the shape of the Regions but
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presents difficulties when attempting to represent the adjacencies of Regions. By 

constructing the description from linked Sides of Edges, the adjacency relationships are 

constructed as a side-effect. Given any Edge, the Regions on each side of the Edge are 

known. Given any Region, all the Edges of that Region are known. Therefore, given any 

Region, all the Regions directly adjacent to that Region are known. Examining the edges 

of these directly adjacent Regions allows the indirectly adjacent Regions to be identified.

The largest development of the Region Analysis program from the algorithm  of 

Nievergelt and Preparata is that of constructing the Containment Hierarchy during the 

progress of the Plane-sweep. By employing an analysis of the connection of Edges which 

is localised to the junctions of Edges - effectively guessing the role of the Edge purely by 

looking at how it connects to its immediate neighbours at its start-point and end-point - a 

global description of the drawing is constructed which links together all the separate 

adjacency graphs which might exist in the drawing. For example, one adjacency graph 

might be entirely contained within a single Region of another adjacency graph. The 

contained graph has no connecting edge to the containing graph - if such a connection 

existed the two separate graphs would merge into one. The Containment Hierarchy 

describes how Regions contain other Regions.

5.2 Areas for further development of the Region Analysis program.

There are two areas in which further development could be made from the Region 

Analysis program.

The first is to extend the range of line types from which a description can be constructed. 

The most obvious extension is to include curved line-segments. In terms of representing 

curved segments, very few amendments are required to the actual data structures used. 

Edges would require no amendment; currently the description of an Edge only includes its 

vertices and the links on each side of the Edge to other Edges in Region lists. There is no 

need to alter this description because no use is made of the type of the line from which the 

Edge is constructed. Line items would need amending:- a flag indicating the type of the 

line is needed, as are some parameters describing the line-segment. Currently with only 

straight line-segments, the parameters are intercept and slope. With a circular arc, the



parameters would be centre-point and radius. Elliptical arcs might describe the minor 

and major sub-axes.

The new line list formats are illustrated below.

General Format of line items:-

[ l i n e - i d ,  l i n e  t y p e ,  [ p a r a m e t e r s ] , [ Edge  l i s t ]  ]

Format of straight line segments:-

[ l i n e - i d ,  " s t r a i g h t ” , [ i n t e r c e p t ,  s l o p e ] ,  [ E d g e  l i s t ]  ] .  

Format of Circular Arc segments:-

[ l i n e - i d , " c i r c u l a r  a r c ” , [ r a d i u s , c e n t r e - p o i n t ] ,  [E d g e  l i s t ] ]  

Format of Elliptical Arc segments:-

[ l i n e - i d , " e l l i p t i c a l  a r c " , [ s u b - a x i s  v e r t i c e s ] , [ E d g e  l i s t ] ]

Alterations to the Region Analysis program would involve minor local changes to the 

intersection detection procedures. New procedures would need to be built to calculate the 

intersection points between two arcs, and between arcs and straight lines. These tests 

would have to be performed more often. Currently an Edge is never tested for intersection 

with an Edge which it touches at its start-point - straight lines can only intersect once so 

any test would be redundant. However arts can intersect twice, and arcs and straight lines 

can also intersect twice - therefore whenever an arc finds itself with a new neighbour, an 

intersection test must be performed - even if it touches that neighbour.

The second area in which improvement in the Region Analysis program can be made is in 

the quality of the description of drawings produced by the program. Currently the 

description is at one level the vague but useful topological description identifying the 

Containment and Adjacency relationships between Regions. At the other level the 

description is an explicit enumeration of the vertices of edges, a description which must be 

used when trying to identify the positional relationships between features in the separate

-196-



views of an engineering drawing. Using the vertex description is unpleasant because of the 

sheer size of the data that can be involved in describing a drawing.

An improvement upon this situation might be to incorporate positional relationships into 

the topological description of the drawing. Some sort of network might be constructed 

which would represent more explicitly the two-dimensional relationships between 

Regions enabling the correspondences between Regions in separate views to be identified 

without having to search through masses of vertex data.

5.3 An evaluation of the Reconstruction program.

This project has explored some of the issues involved in building an engineering drawing 

interpreter. In particular the approach to Engineering drawing reconstruction followed by 

Aldefeld [2,3,4] has been chosen as a basis for further development work. The 

Reconstruction program described in chapter 4 follows Aldefeld's technique in its 

approach.

The Reconstruction program can reconstruct collections of plane-faced uniform-thickness 

solids from the three-view engineering projections of those collections. These solids are 

reconstructed one by one. The cross-section of a solid is identified in one view, and the 

outlines corresponding to that same solid, viewed from different lines of sight, are 

identified in the other views of the drawing. The information obtained from the shape of 

the cross-section and its supporting outlines are used to construct a three-dimensional 

representation of the solid.

In applying the Region Analysis program as a pre-processor to obtain a description of the 

topology of a drawing, this system is capable of applying the reconstruction algorithm to a 

wider range of input data sources than the system described by Aldefeld. Aldefeld's 

system was limited to accepting the structured drawing data obtained from a specific 

computer aided draughting system. The Region Analysis program applied here can 

structure drawing data from any source of vectors into a format suitable for reconstruction.

5.4 Areas for future development of the reconstruction program.



There are two major areas in which the system could be developed further. First, the 

reconstruction phase could be made more automatic. Second, the range of object types with 

which it can cope could be extended. Increasing the level of automation of the 

reconstruction phase could be addressed by developing an algorithm to select candidate 

cross-sections from the drawing. The system already employs an algorithm which 

automatically finds the matching rectangles for a given cross-section. The new algorithm 

to select candidate cross-sections would have to verify its selections.

The first most obvious verification test is to reject all cross-section candidates for which no 

matching rectangles can be found. Having passed this test, each cross-section candidate 

would yield a solid, called a candidate solid.

Another verification test would have to analyse the interactions of the candidate solids. 

The whole set of configurations which can be produced from the set of candidate solids 

would have to analysed. Those configurations in which two or more solids occupy the 

same space, or those configurations in which impossible objects were produced would have 

to be eliminated. Configurations would also have to produce projections which match 

against the original drawing, particularly with regard to the appearance of hidden 

detail. This second verification stage is an object-based verification, requiring some 

expert knowledge of the world of solids. This could be further improved by increasing the 

expert knowledge into the field of realisable engineering shapes. The verifier could reject 

objects which were unstable or which produced objects composed of solids which were 

improbably connected, for example by balancing on a corner. Further analysis could 

determine the 'manufacturability' of the final object - although this may cause rejection of 

drawings whose intention were to be bad designs.

Extending the range of objects with which the system can cope requires two separate lines 

of attack. The first is to complete the implementation of the system. The system has 

been designed to cope with prismatic objects. Theoretically, this should include shapes 

with a cross-section of arbitrary complexity composed from any type of line-segment. The 

implementation is restricted to straight line-segments. Some further work could easily 

extend the range of the topology analyser to work with curved line-segments. Once these



had been incorporated into the data structures used by the interpreter, the interpretation 

phase would work much the same as it currently does, with a few amendments to 

determine where any horizon lines might appear in matching rectangles before the search 

could begin. A more sophisticated display mechanism would also be required to display 

objects incorporating curved surfaces, such mechanisms being readily available as parts of 

the solid modelling CAD systems.

Realising a full implementation of an interpreter for uniform thickness objects would 

extend the capability of the system to include many realistic engineering artifacts. 

Aldefeld suggests extending the range of types of objects to include those with rotational 

symmetry. This would lead a way into interpreting many drawings of those rotationally 

symmetric components which are usually drawn as a cross-section with another view 

giving concentric rings. Another range of objects under investigation is the type of 

deformed uniformed thickness objects - a uniform thickness object which can be arbitrarily 

sliced[21j. These provide a more compact representation than by extracting all the 

derived sub-components.

5.5 Areas for future work on Engineering Drawing interpretation.

The system upon which the work presented in thesis was based [2,3,4] was not originally 

designed to interpret engineering drawings read from pieces of paper, but to interpret 

perfect images working on the data structures provided by a Cad system with the intention 

of providing a new man-machine interface to that system. The work presented in this 

thesis has aimed at extending this approach to engineering drawing interpretation to 

lower level image descriptions. The Region Analysis program acts as an intermediary, 

obtaining the topological information needed to interpret a drawing from unordered vector 

data.

The central issue remaining in providing a practically useful engineering drawing 

interpreter is the reduction of the dependence of such interpreters upon perfect image data. 

This system, like all other attempts at engineering drawing interpretation, is dependent 

upon three things:-

a) All line-segments in the drawing must be present.



b) All line-segments must be complete and correctly positioned.

c) No extraneous line-segments must be present.

The most immediate application of engineering drawing interpreters is to provide a paper 

interface to Computer Aided Draughting systems. Unfortunately Engineering drawing 

data derived from image scanners is usually incomplete, inaccurate and noisy.

Overcoming the problems of dealing with scanned images requires a degree of guess-work 

to be applied by the interpretation system. It must try to guess where line-segments are 

missing - these can be lost in the scanning process or may have been neglected by the 

draughtsman because of error or to enhance clarity at the expense of completeness. It must 

guess which line-segments have been accidentally truncated or extended and remedy 

them. It must try to guess which line-segments are extraneous - line-segments added by 

the mis-interpretation of creases or marks on the paper.

No solutions to these problems are readily forthcoming. In fact the approach adopted by 

this project was chosen precisely because it was the one least affected by inaccuracies in 

the drawing data. Matching cross-sections in one view to rectangles of approximate size 

and approximate positions in other views are much less susceptible to registration errors 

than the other reconstruction approaches whose first stages include a three-dimensional 

vertex construction phase.

One approach to reducing the dependence, upon accurate image data is to try to force fit 

some of the object primitives which might be encountered. In the matching algorithm, 

rectangles are used as evidence of uniform thickness primitives. A useful activity might 

be to read through the drawing and construct as many rectangles as possible from the set of 

line-segments. Almost any pair of lines could be used as scant evidence of the existence of 

a rectangle, assuming that the line-segments may be distorted or incorrectly positioned. 

This could produce a new description of the drawing in terms of rectangles, and some of the 

largest rectangles may describe the separate drawing views.

Returning to the drawing data, cross-section candidates could be selected and then 

matched against the description of the drawing in terms of rectangles to find a supporting
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match. Obviously such an approach would be messy and computationally expensive. 

Several orders of magnitude of incorrect rectangles could be generated and similarly large 

numbers of incorrect solid components would be constructed as a result. The emphasis 

would then shift onto applying heuristics to narrow down the number of attempts with as 

little expenditure as possible.

Having obtained a superset of rectangles, the only remaining limitation is in the number of 

cross-sections which can be constructed. In order to alleviate the necessity of having all 

line-segments connected to each other, it is necessary to be able to construct cross-sections 

from collections of lines which do not form closed loops. All valid cross-sections will be 

contained in the set of partitions created by extending all line-segments. Only those 

which are bounded by absent line-segments will not necessarily be in there. Cross-sections 

can then be generated by combining sets of partitions which are adjacent across edges.

These approaches are only rough sketches of what might need to be done. Always an 

element of uncertainty is introduced by attempting to cope with uncertainty. It seems 

unlikely that any practical drawing interpreter can be developed for understanding real 

as opposed to ideal images until some method of codifying visual memory into generalised 

forms is developed.

Understanding engineering drawings as performed by humans most likely involves some 

memory feat. The drawing reminds the person of a previously encountered object or 

drawing. From the recalled likeness verification of the match to the drawing can be 

made. If differences between the two are limited to some localised details, the visualised 

image can be modified by incorporating new local features or by performing limited 

distortions. Larger differences may cause larger distortions to the visualised solution to be 

required, causing a sufficiently new instance to be constructed that it may be rememorised 

as an entirely new entity. Even larger differences between visualised solution and the 

drawing may cause a complete failure which can only be remedied by examining the 

represented artifact and so creating a new visual for future reference. It should be 

remembered that producing engineering drawings is a skill requiring some expertise on the 

part of the human practitioner. A draughtsman may be able to read and understand 

drawings which would hopelessly confound untrained laymen. A system capable of



understanding engineering drawings must be capable of incorporating the expertise of the 

draughtsman and so surpass the abilities of the untrained human. In order for the system 

to be of any commercial value, it must be able to work as effectively as a draughtsman and 

more cost-effectively. To this end, a more sensible approach might be to work down from 

the opposite direction to that employed currently.

A better objective might be to construct an ’artificial draughtsman' with an inbuilt ability 

to design solutions to engineering problems. This artificial draughtsman might require 

less initiative than is immediately considered. Engineering design, in common with most 

design tasks, is evolutionary in nature. The solution to one specific problem usually 

requires only a little mutation of a known solution to a previous problem. The more 

'expert' the designer, the more experience in previous problems and solutions it has. The 

relative 'intelligence' of the designer might be measured by how quickly the satisfactory 

solution can be 'mutated' into existence. Then confronted by a drawing, it might read the 

title and consider known solutions to similar problems and be able to compare these to the 

image with which it is confronted.

The most important task in this case is how to represent this expertise. Databases of the 

geometry of solids can quite easily be constructed and indeed are commonly used in CAD 

systems of any merit. Unfortunately few of the considerations which must be applied by 

engineering designers in developing a design are encompassed by geometry. What must be 

considered is how a given function can be achieved. The engineering database must not 

only store geometries but must also store the roles of the separate features of each drawing. 

Brackets must be described in terms of how they are used, bearings in terms of the motions 

they allow, mechanisms in terms of what they achieve and some essence of how they 

achieve it. A pump must be described in terms of a chamber of whatever geometry into 

which is drawn fluid from a given inlet pipe with a valve, this performed by some piston 

which then forces the fluid through the outlet via another valve. Knowing that this is 

how a general pump works, the expert when looking at a drawing of a pump will know he 

is looking for a leak-proof chamber, an inlet with valve, an outlet with valve and a 

piston. Knowing the function of these components, his memory can quite happily accept 

the geometries in the drawing and compare them against the constraints needed to be 

satisfied for them to work, and against previous well-known geometries which satisfy
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these constraints. If the drawing geometry is particularly ingenious or stupid, it may be 

remembered and appropriately placed in a priority queue of solutions, possibly arranged 

in order of cost, weight, size, and power, for future reference.

A system capable of understanding engineering drawings must encompass the abilities of a 

skilled designer. The common perception of computer systems is that they are worth 

buying because they perform their tasks more cost-effectively and in a more timely and a 

more precise manner than man, and these perceptions are true for many commercial 

applications of computing power which involve little more than performing numerical 

manipulations and simply indexing large collections of data. Unfortunately, attempts to 

mimic human expertise run into problems precisely because humans are very efficient at 

doing tasks which computers cannot do well, namely understanding images and recovering 

and learning from mistakes.

No-one should pay for a system which often makes mistakes in its interpretations, or 

which continually called for expensive expert human assistance to com plete its 

interpretations. Little value can be derived from a system which can only understand 

very simple drawings because such drawings can be quickly transferred onto the machine 

by hand. In order for an automatic engineering drawing interpreter to be accepted as 

useful, it must display the capabilities of an expert draughtsman.
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Appendix A.

Pseudo-code Outline of the Region Analysis program. 

Version which builds Regionjists from Vertices.
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This program is an extension of the algorithm described in [68]. This extension allows the 

algorithm to report the Regions around any scene composed from any arrangement of 

straight line-segments, with the significant exception of vertical line-segments which are 

dealt with in Appendix B.

Descriptions of Regions are constructed from linked lists of vertices. As they are being 

constructed, the lists are attached either above or below entries in the front. Tails of 

lists are always attached above a front entry, and heads of lists are always attached 

below a front entry. The lists are extended either by attaching new vertices to the head 

or the tail of the list, or by concatenating pairs of lists to form longer single lists. These 

operations are performed according to the context of how lines are found to connect to each 

other.

This appendix presents Pascal-like pseudo-code describing how these descriptions of 

Regions are constructed by a plane-sweep algorithm. The algorithm has four main 

procedures:

AdvanceJFront which is the executive procedure controlling the progress of the 

program;

Remove, the procedure which removes line-segments from the Front when their end

points are reached;

Permute, which re-orders entries in the Front when they are involved in an 

intersection;

and Insert, the procedure which places new entries in the Front when their 

Start_points are reached.
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Before the pseudo-code is presented, some minor procedures used in the code are described.

Front operators.

Front_Successor( front-entry ) - returns the next higher entry in the Front to the given front- 

entry.

Front_Predecessor( front-entry ) - returns the next lower entry in the Front to the given 

front-entry.

Below( front-entry ) - references the head of the Region-list attached below the given 

front-entry.

Above( front-entry ) - references the tail of the Region-list attached above the given front- 

entry.

Region list operators.

InitialiseJRegion_H ead ( Side of front-entry ) - this procedure generates a new list 

containing a single vertex corresponding to the start-vertex of the line-segment described 

by the given front-entry. A pointer to the head of the new list is stored in the specified 

side, Above or Below, of the given front entry.

Concatenate (tail of list) with (head of list) - joins the head and tail of the list(s) 

together. This either results in two separate lists being combined into one, or in a single 

list being turned into a closed loop of vertices by having its head attached to its tail. 

Extend_Tail (Front-entry) To (new_vertex) - appends new-vertex onto the tail end of the 

list above the specified Front-entry.

Extend_Head (Front-entry) to (new_vertex) - appends the new_vertex to the head of the 

Region_list below the specified front-entry.

Attach (end of list) to (Side of front-entry) - attaches either the head or tail of a list to 

the specified side of the front-entry.
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A l.l  Pseudo-code of the Advance Front procedure incorporating Region-list maintenance.

Notes:-

Procedure Remove returns three items ( the two lists are parameters to the Insert and 

Permute procedures)

Above-list - (if it exists) the Region-Iist attached above the top-most line-segment 

entering the Junction;

Below -list - (if it exists) the Region-list attached below the lowest line-segment 

entering the Junction;

Left-side-exists - a boolean flag (true or false) indicating whether the Junction has a 

left-hand side.

Procedure Permute is only called if Remove has found any line-segments which touch the 

current Junction, regardless of whether it removed them all.

Procedure Permute returns a flag indicating whether it found any line-segments which pass 

through the Junction. This is used as part of the test as to whether the Junction has a 

right-hand side.

Lines-inserted is a flag which indicates whether the Insertions-list of the current Junction 

is empty.

The Concatenate procedure is only called when the Junction is a

'butt-end' with no right-hand side. This is performed after all the right-hand side 

processing for the current Junction has been performed.

The Initialise procedure is only called when the Junction is a 'butt-end' with no left-hand 

side, as indicated by Left-side-exists. This initialisation does not attach the new 

Region-list to any Front entry, but attaches the tail to Above-list and the head to Below- 

list. If a Junction exists but has no left-hand side, it must by implication have a right- 

hand side. Above-list and Below-list in this case are used to communicate the new 

region-list to the Insert procedure to enable it to extend these around the first line-segment 

to be inserted at that Junction.
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Procedure Advance_Front; 
begin
Read Transition from Transition_list;

While n o t ( End-of Transition_list ) 
do begin

Read Junction from Junction_list of Transition

While n o t ( End-of Junction_list) 
do begin

(Above-list,
Below-list,
Left-side-exists) <- Remove(Junction,Front);

If(Left-side-exists)
then Lines-permuted <- Permute(Junction,Front,

Above-list,Below-list)
else begin

Lines_jpermuted <- false;
Initialise_Region_Head(Below_list);
Attach tail(Below-list) to Above-list; 
end;

Lines-inserted <- false;
Read Line-segment from Insertion__list of Junction;

If not (End-of Insertions-list) 
then Lines-inserted <- true;

While not(End-of Insertions-list) 
do begin

Insert(Line-segment,Front,Above-list,Below-list); 
Read Line-segment from Insertion_list of Junction; 
end;

If not(Lines-permuted or Lines-inserted) 
then Concatenate(Above-list,Below-list);

Read Junction from Junction_list of Transition; 
end;

Read Transition from Transition_list; 
end;

end;

Pseudo-code of the Advance Front procedure incorporating Region-list maintenance.
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A1.2 Pseudo-code outline of the REMOVE procedure incorporating Region-list maintenance.

NOTES.

Three new variables are used in this version of Remove.

Left-side-exists is a boolean flag set to true if any line-segments are found which have the 

same height as the Junction.

Be low-list holds the Region-list attached below the lowest line-segment found to 

enter the Junction. The lowest line-segment also happens to be the first line-segment 

found, if it exists.

Above-list holds the Region-list attached above the last line-segment found to enter the 

Junction. Once the search has ended, when the Current-entry lies above the current- 

Junction, Above-list happens to hold the Region-list attached above the highest line- 

segment found to enter the Junction.

The RETURN statement at the end of the procedure is merely a marker to indicate that 

the values of the parenthesised variables are returned to the calling procedure. How 

this is actually performed in an actual implementation depends on the language used.
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Procedure Remove ( Junction, Front ); 
begin

Read Current-entry from the tail entry of the Front;

While (height of Current-entry < height of Junction) 
do Read Current_entry from next entry in Front;

If (height of Current-entry = height of Junction)
then begin

Left-side-exists <- true;
Below-List <- Below(Current-entry);
Above-list <- Above (Current__entry) ;
If (End-point of Current-entry = Junction)
then Remove Current-entry from Front;
Read Current-entry from next entry in Front; 
end

else Left-side-exists <- false;

While (height of Current-entry = height of Junction) 
do begin

Concatenate(Below(Current-entry),Above-List); 
Above-list <- Above(Current-Line);
If (End-point of Current-entry = Junction)
then Remove Current-entry from Front;
Read Current-entry from next entry in Front; 
end;

Test-for-Intersection( Current-entry,
Front-predecessor(Current-entry ) );

Return( Above-list, Below-list, Left-side-exists );

end;

Pseudo-code outline of the REMOVE procedure incorporating Region-list maintenance.
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A1.3 Pseudocode outline of the PERMUTE procedure incorporating Region-list maintenance.

NOTE

A new variable Region-sub has been introduced which is used to climb the Front from 

Lowest-entry to Highest-entry and initialise new Region-lists between adjacent pairs of 

line-segments. Two new parameters, Above-list and Below -list, respectively hold the 

Region-list above the highest line-segment on the left-side of the Junction and below the 

lowest line-segment on the left-side of the Junction. These Region-lists were found by the 

Remove procedure, and may have belonged to line-segments which might or might not 

have been removed from the Front.
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Procedure Permute {Junction,Front,Above-list,Below-list); 
begin

Read Current-entry from the tail entry of the Front;

While (height of Current-entry < height of Junction) 
do Read Current_entry from next entry in Front;

if (height of Current-entry = height of Junction)
then begin

lowest-entry <~ Current-entry;

While (height of Current-entry = height of Junction) 
do begin

highest_entry <- Current_entry;
Read Current_entry from next entry of Front; 
end;

low_swap_sub <- lowest-entry; 
high_swap_sub <- highest-entry;

While (low-swap-sub <> High-swap-sub) 
do begin

swap(low-swap-sub, high-swap-sub); 
low-swap-sub <- Front_successor(low-swap-sub); 
high-swap-sub <- Front_predecessor(high-swap-sub); 
end;

Test-for-Intersection( Highest-entry,
Front_successor(Highest-entry));

Test-for-Intersection( Lowest-entry,
Front_jpredecessor(Lowest-entry) );

Attach Below-list below(Lowest-entry);
Attach Above-list above(Highest-entry);
Region-sub <- Lowest-entry;

While (Region-sub <> Highest-entry) 
do begin

Initialise_Region_Head(Front_Successor(Region-sub));

Attach below(Front_Successor(Region_sub))
to above(Region_sub)

Region-sub <- Front_Successor(Region-sub); 
end;

end;

end;

Pseudo-code outline of the PERMUTE procedure incorporating Region-list maintenance.
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A l.4 Pseudo-code outline of the INSERT procedure incorporating Region-list maintenance.

NOTES.

" All the Region-list m aintenance is performed in the section of code between the 

intersection tests and the end. The four cases of insertion likely to be encountered are 

catered for in only three code sections. The case where the inserted line lies between a 

higher and a lower line is implicitly dealt with in the section of code dealing with the 

case where the inserted line has a higher neighbour.

This version of Insert has two extra parameters.

Above-list and Below -list hold the end of the Region-list above the top-most left-side 

line-segment, and that of the Region-list below the bottom-most left-side line-segment. 

If there is no Left-hand side to the current Junction, these parameters hold the ends of a 

Region-list newly initialised by the Advance_Front procedure which wraps around the 

'butt-end' of the Junction.
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Procedure Insert( Line-segment, Front, Above-list, Below-list ); 
begin
Read Current-entry from the tail entry of the Front;
While (height of Current-entry < height of Line-segment) 
or ( (height of Current-entry = height of Line-segment)

and (slope of Current-entry < slope of Line-segment)
)

do Read Current_entry from next entry in Front;

Create New-entry;
Assign Line-segment to New-entry;

Attach New-entry between Current-entry
and Front_jpredecessor of Current-entry;

Test-For-Intersection( Front_Successor( New-entry ), New-entry ) 
Test-For-Intersection( Front_Predecessor(New-entry), New-entry )

If (height of Current-entry <> height of New-entry)
and (height of Front_predecessor(Current-entry)

<> height of New-entry)
then begin

Attach Above-List above(New-entry);
Attach Below-List below(New-entry); 
end

else If (New-entry touches a Higher-Line) 
then begin

Attach Below(Higher-Line) to below(New-entry); 
Initialise_Region_Head Below (Higher__line );
Attach Below(Higher_line) to Above(New-entry); 
end

else begin
(* New-entry touches a Lower-Line *)

Attach Above( Lower-Line ) to above New-entry; 
Initialise_Region_Head Below( New-entry );
Attach Below( New-Entry) to above( Lower-line ); 
end;

end;

Pseudo-code outline of the INSERT procedure incorporating Region-list maintenance.
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APPENDIX B.

Pseudo-code Outline of the Region Analysis program. 

Vertex-based Version which copes with Vertical Lines.
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This version of the Region Analysis program develops that presented in Appendix A into a 

version which can cope with any scene composed of straight-line segments, including 

vertical lines.

The main difference between this version and that presented in appendix A is that this 

version can cope with vertical line segments. This has required considerable reworking of 

the main procedures - Advance_Front, Remove, Permute and Insert.

Remove and Permute have been altered to operate on all vertices that they might find 

within a given vertical range of the Front instead of operating on a single point as in the 

previous version. These procedures can still work for single point junctions, this achieved 

by setting the top of the vertical range to the same value as the bottom of the range. The 

Region-list handling aspects of Remove and Permute remain essentially the same. 

Remove concatenates lists between successive front entries that it finds in the range with 

the added difference that some of these pairs of entries MIGHT now be vertically remote 

from each other, the connection between the lists requiring two vertices in this case, one for 

the top line and one for the bottom. Permute initialises new lists between pairs of 

adjacent lines coming out of the right-hand side of the junction, again with the added 

difference that some of these lines might be vertically separate and that connections 

between such require two vertices.

Insert has required a similar amendment. In the previous version, Insert diverted one 

Region-list and initialised another whenever the inserted line touched another entry in 

the Front. Now these operations have to be performed whenever Insert finds a neighbour 

for the inserted line which lies within the vertical range. If the neighbour is vertically 

remote from the new insertion, the Region-list coming from the neighbour towards the new 

insertion must be split at the start-vertex of the new insertion and diverted around one of 

its sides. The other end of the split list must be attached to a new list initialised to 

attach to the other side of the inserted line. When Insert finds that the new insertion 

has no neighbours, the Region-lists carried forward from the left-hand side of the Junction 

(if it exists) are extended around the new insertion. When the R egionjists are extended 

from the left-hand side to the right-hand side, care must be taken to divert them around 

the top and bottom vertices of the vertical range if they do not already pass through those
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Similar care must be taken when initialising and concatenating Region-lists around the 

left and right side respectively of a vertical line. Such operations are performed by the 

Advance-Front procedure, and must ensure that both the top and bottom vertices of vertical 

lines are included in the Region lists.
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Before the pseudo-code is presented, some minor procedures used in the code are described.

Front operators.

Front_Successor( front-entry ) - returns the next higher entry in the Front to the given 

front-entry.

Front_Predecessor( front-entry ) - returns the next lower entry in the Front to the given 

front-entry.

Below( front-entry ) - references the head of the Region-list attached below the given 

front-entry.

Above( front-entry ) - references the tail of the Region-list attached above the given front- 

entry.

Region list operators.

Initialise_Region_H ead ( Side of front-entry ) - this procedure generates a new list 

containing a single vertex corresponding to the start-vertex of the line-segment described 

by the given front-entry. A pointer to the head of the new list is stored in the specified 

side, Above or Below, of the given front entry.

Concatenate (tail of list) with (head of list) - joins the head and tail of the list(s) 

together. This either results in two separate lists being combined into one, or in a single 

list being turned into a closed loop of vertices by having its head attached to its tail.

Extend_Tail (Front-entry) To (new_vertex) - appends new-vertex onto the tail end of the 

list above the specified Front-entry.

Extend_Head (Front-entry) to (new_vertex) - appends the new_vertex to the head of the 

R eg ion jist below the specified front-entry.

Remove_tail (Front_entry) - removes the item at the tail of the specified list and re

attaches new tail to given Front_entry.

Remove_Head (Front_Entry) - removes the head item of the specified list and re

attaches new head to given Front_entry;
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Attach (end of list) to (Side of front-entry) - attaches either the head or tail of a list to 

the specified side of the front-entry.
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B .l Pseudo-code of the Advance Front procedure incorporating

Vertical-line and Region-list maintenance.

NOTES

Variable Junction is now a record structure which contains JunctionuTop and Junction.Bottom 

which respectively hold the top-most and bottom-most vertex of any vertical line- 

segment.

In the case of single-point Junctions, Junction-Top and Junction.Bottom both hold the same 

vertex.
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Procedure Advance_Front; 
begin
Read Transition from Transition_list;

While not(End_of Transition_list) 
do begin

Read Junction from Junction_list of Transition

While not ( End_of Junction_list) 
do begin

Top_of_vertical_line <- Junction.top;
Bottom_of_vertical_line <- Junction.bottom;

(Above_list,
Below_list,
Left_side_exists) <- Remove (Junction,Front);

If (Left_side_exists)
then Lines_permuted <- Permute ( Junction,Front,

Above_list,
Below_list)

else begin
Lines_permuted <- false;
Initialise_Region_Head (Below_list);
Attach Below_list to Above__list;
If (Top_of_vertical_line <> Bottom_of_vertical_line) 
then Extend_tail Below_list to Top_of__vertical_line; 
end;

(* start of section which reads through all the Junction
records for the current vertical line and Inserts all the 
Insertion-list entries for each Junction record. *)

Lines_inserted <- false;

While ( not (End_of Junction_list)
and (Junction.bottom <= top_of_vertical_line) )
do begin

Read Line_segment from Insertion_list of Junction;
If not(End_of Insertions_list)
then Lines_inserted <- true;
While not(End_of Insertions_list) ,
do begin V

Insert (Linje_segment, Front,
Top_of_vertical_line,
Bottom_of_vertical_line,
Above_list, Below_list);

Read Line_segment from Insertion__list of Junction; 
end;

Read Junction from Junction_list of Transition; 
end;

If not (Lines__permuted or Lines_inserted)
then Concatenate ( Above__list, Below_list) ;
end;

Read Transition from Transition_list; 
end;

end;

Pseudo-code of the Advance Front procedure with Vertical-line and Region-list maintenance.
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B.2 Pseudo code outline of the REMOVE procedure

with Vertical line and Region list maintenance.

NOTES Variable 'Previous_height' is used to determine whether the current line- 

segment found between Junction.Bottom and Junction.Top is vertically separate from the 

vertex previously found. If so, an extra vertex must be appended onto the Region-list 

before the Region-lists between the two line-segments are concatenated.
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Procedure Remove (Junction, Front); 
begin

Read Current_entry from the tail entry of the Front;

(* climb the Front until the first line-segment passing above
Junction.Bottom is found *)

While (height of Current_entry < height of Junction.bottom) 
do Read Current_entry from next entry in Front;

(* process first line-segment found between Junction.Bottom and
Junction.Top - if it exists *)

If (height of Current_entry <= height of Junction.top) 
then begin

Left_side_exists <- true;
Below_List <- Below(Current_entry) ;
Above_list <- Above(Current_entry) ;
Previous_height <- height of Current_entry;

If (End_point of Current_entry in Junction)
then Remove Current_entry from Front;

Read Current_entry from next entry in Front; 
end

else Left_side_exists <- false;

(* process other line-segments between Junction.Bottom and Junction.Top *)

While (height of Current_entry <= height of Junction.top) 
do begin

If (height of Current_entry > Previous_height)
then Extend Above_list to Previous_height;

Concatenate) Below(Current_entry), Above_List);
Above_list <- Above(Current_entry) ;
Previous_height <- height of Current_entry;

If (End_point of Current_entry in Junction)
then Remove Current_entry from Front;

Read Current_entry from next entry in Front; 
end;

Test_for__Intersection (Current_entry, predecessor (Current_entry) ) ;

Return ( Above_list, Below_list, Left_side_exists );

end;

Pseudo code outline of the REMOVE procedure with Vertical line and Region list 
maintenance.
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NOTES Only one intersection test is done between groups, that between the lowest entry 

in the group and the entry below it in the Front. The test on the highest entry is redundant 

between Groups, but is performed after the last group has been processed. The Region-list 

initialised between successive groups must be extended to include the vertices of the two 

groups. A variable 'First Group' is used to prevent this being performed below the lowest 

group.

B.3 Pseudo code outline of the PERMUTE procedure

with Vertical line and Region list maintenance.
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Procedure Permute ( Junction, Front, Above_list, Below_list ); 
begin

Read Current_entry from the tail entry of the Front;

While (height of Current_entry < height of Junction.bottom) 
do (* climb the Front looking for the first entry

above Junction.Bottom 
Read Current_entry from next entry in Front;

if (height of Current_entry <= height of Junction.top) 
then begin

(* process Line-segments found between
Junction.Bottom and Junction.top *)

lowest_entry <- Current_entry;
First-group <- True;

While (height of Current_entry <= height of Junction.top) 
do begin

(* Line-segments between Junction.Top and Junction.Bottom
are in groups which intersect at the same point *)

Group_lowest <- Current_entry;
Group_height <- height of Current_entry;

forms Region-list between successive groups - 
must not be performed for first group found *)

If not(First-Group)
then begin

(* group_lowest contains entry at bottom of
next group, group_highest contains the entry 
at the top of the last- hence lower -group *)

Initialise_Region_Head Below( Group_Lowest );
Attach Below(Group_Lowest)

to Above(Group-Highest) ;

Extend_tail Above(Group^highest) to Group_Highest; 
end

else First-Group <- false;

While (height of Current_entry = Group_height) 
do begin

(* Search for top-most Line-segment of current group *)

Group__Highest <- Current_entry;
Read Current__ent ry from next entry of Front; 
end;

(Continued...)
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(* Swap positions of entries in current group *)

low_swap_sub <- Group_Lowest; 
high_swap_sub <- Group_Highest;

While ( low_swap_sub <> High_swap_sub ) 
do begin

swap (low__swap_sub, high_swap__sub) ; 
low_swap_sub <- Front_successor (low_swap__sub) ; 
high_swap_sub <- Front_predecessor(high_swap_sub); 
end;

Test_for_Intersection(Group__Lowest ,
Front_predecessor(Group_Lowest));

Region_sub <- Lowest_entry;

While (Region_sub <> Group__Highest) 
do begin

(* Initialise new Region-lists between pairs
of adjacent Line-segments *)

Initialise_Region_head
Below { Front_Successor(Region_Sub));

Attach B e lo w( Front_Successor( Region_Sub) ) 
to Above( Region_sub );

Region_sub <- Front_Successor( Region_sub ); 
end;

end;

Test_for__Intersection ( Group__Highest,
Front_successor( Group_Highest ));

Attach Below_list to below(Lowest_entry); 
Attach Above_list to above(Group__Highest);

end;
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B.4 Pseudo code outline of the INSERT procedure

with Vertical line and Region list maintenance.

Procedure Insert ( Line_segment, Front, Top_of_Vertical__line,
Bottom_of_vertical_line, Above_list, Below_list );

begin

Read Current_entry from the tail entry of the Front;

While (height of Current_entry < height of Line_segment) 
or ( (height of Current_entry = height of Line_segment)

and (slope of Current_entry < slope of Line_segment) )

do Read Current_entry from next entry in Front;
(* Find position in Front of the new Line-segment, first searching

for those at the same position, then .searching through the 
slopes of those at the same‘position - if they exist. *)

(* Place new Line-segment into the Front *)

Create New_entry; Assign Line_segment to New_entry;
Attach New_entry between Current_entry

and Front_predecessor of Current_entry;

Test_For_Intersection(Front_Successor(New_entry), New_entry); 
Test_For_Intersection(Front_Predecessor(New_entry) , New_entry);

(* Region-list maintenance *)

If (height of Current__entry > Top_of_vertical_line)
and (height of Front_predecessor(New_entry)

< Bottom_of_vertical_line )
then begin

(* If the new line-segment doesn't touch any other and its nearest
neighbours don't lie within the vertical line-segment *>

If (height of New_entry <> Top_of_vertical_line)
then Extend_Tail Above_list to height of New_entry;

(* Extend the Region-lists passed forward from the
left-hand side from the Top of the vertical to the 
Start-point of the New line-segment - if necessary *)

If (height of New_entry <> Bottom_of_vertical_line)
then Extend_Head Below_list to height of New__entry;

(* Extend the Region-lists passed forward from the
left-hand side from the Bottom of the vertical to the 
Start-point of the New line-segment - if necessary *)

Attach Above_List to above(New_entry);
Attach Below_List to below(New_entry); 
end

(Continued...)
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else If
then

else If

then

else

else

end;

(height of Current_entry <= Top_of__vertical_line) 
begin
(* line-segment doesn't touch any other, but its higher

neighbour lies within the vertical line-segment... *)

Remove_Head below(Current_entry) ;
Extend_Head below(Current_entry) to height of New_entry;
Attach below ( Current_entry) to below ( New__entry ); 
Initialise_Region_Head below( Current_Entry );
Attach below(Current_Entry) to Above{ New_Entry);
Extend_tail Above( New_Entry) to height of New_Entry; 
end;

(height of Front_Predecessor (New__entry)
>= Bottom_of_vertical_line)

begin
(* the line-segment doesn't touch any other, but its

lower neighbour lies within the vertical line-segment...*

Remove_Tail above( Front_predecessor(New_entry) ); 
Extend_Tail Above(Front_Predecessor(New_Entry) )

to height of New_entry;

Attach above( Front-Predecessor( New-Entry ) )
to above(New_entry);

Initialise_Region_Head Below(New_entry) ;
Attach Below(New-Entry)

to Above(Front-Predecessor( New_entry ) );

Extend_tail Above(Front_Predecessor( New_Entry )
to height of Front-predecessor( New_Entry );

end;

If (New_entry touches a Higher_Line)
then begin

(* new Line-segment touches a line-segment which
is higher than it ... *)

Attach Below( Higher_Line)
to below( New_entry );

Initialise_Region_Head Below(Higher_line);

Attach Below(Higher_Line)
to Above( New_entry);

end

begin
(* the new line-segment touches a line-segment

which is lower than it ... *)

Attach Above( Lower_Line ) to above( New_entry ); 
Initialise_Region_Head Below(New_Entry) ;
Attach Below ( New_Entry) to Above( Lower_Line );

end;
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This version of the Region Analysis program is a development from that presented in 

Appendix B. Here the Region-lists are constructed by linking together sides of Edges 

instead of constructing lists of vertices. Building the Region lists from sides of Edges has 

the side-effect of constructing an Adjacency Graph which allows the relationships 

between neighbouring Regions to be identified.

A significant difference between a line-segment and an Edge is that a line-segment may 

pass through many vertices where intersections take place, whereas an Edge is purely the 

connection between two successive vertices along a line-segment. An implication of using 

Edges to build the Region-lists is that Edges and not Line-segments are referred to by Front 

entries. A further implication is that the Permute procedure is no longer required. At an 

intersection vertex, Edges are now removed from the Front and replaced by new Edges 

which start at the Intersection vertex.

A fundamental part of the processing required for constructing Edge-based descriptions of 

Regions is that of Splitting Edges into smaller Edges when they are found to intersect 

inbetween their end-points. A new function Split_Edges performs this operation, 

returning an ordered pair of pointers to the Higher/Right-most and Lower/Left-most edges 

produced by splitting the given Edge. Always the Lower/Left-most Edge resulting from a 

split inherits the identity of the Edge which was split. Edges which connected to the 

Edge which was split now all automatically point to the Lower/Left-most Edge resulting 

from the split.

The connections between Edges are actually embedded in the data structures of the Edges, 

one connection for each side of the Edge. The Front entries no longer contain pointers to 

the heads and tails of lists below and above the line-segments referred to by the entries. 

Front entries now contain only references to Edges - the embedded connections allowing all 

the list maintenance operations to be performed. These list operations need no longer be 

performed in terms of operations to the head and tails of lists - lists can now be extended at 

any point along their length by splitting the list and connecting in new edges, as must be 

performed when Insert causes splits to occur in the vertical line and hence extends the 

Region lists on the left-hand side of the vertical line.
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Constructing the Region-lists from Edges allows a new approach to 'Butt-end’ processing to 

be developed. Every Junction with a Left-hand side (with Edges to be Removed) is 

assumed to be a Leftjhand ’butt-end’. As Edges are found during Removes climb up the 

Junction in the Front, a connection around the Right-hand side of the Junction is constructed 

when the first Edge is encountered, and maintained by diverting the connection above 

successive Edges. A handle is maintained on the Top-most edge on the left-hand side and 

is passed to Insert, if it is called. Insert can then split the connection around the right- 

hand side of the Junction and divert the two ends of the connection above and below the 

first Edge inserted.

The only slight deviation from this method occurs in the case of Vertical Lines. In such 

cases, the connection around the right-hand side of the Junction is constructed in the 

Advance-Front procedure before Remove is called. At the same time, Advance-Front 

forms a connection around the Left-hand side of the the Vertical-edge, which effectively 

takes care of right-hand butt-ends (which have no Edges to Remove) involving Vertical 

lines. Insert need only concern itself with Right-hand butt-ends which occur around 

single point Junctions. Here the approach is the same as that adopted in Remove. A 

connection is formed around the left-hand side of the Junction when the first Edge is 

inserted (if there is no Edge passed to insert from the Left-hand side). This connection is 

maintained as other Edges are inserted by diverting the connection around the Junction 

above or below successive Edges which become the highest or lowest Edges emerging from 

the Junction. This maintenance is performed regardless of whether a left-hand side 

exists or not, and so the ’butt-end’ processing is largely transparent.

Diverting the connection above the Top-most-edge emerging from the right-hand side of 

the Junction is performed in two contexts, each requiring a different solution.

One context is that the new (most recently inserted) Top-most-edge does not share the same 

start-vertex as the previous Top-most-Edge. An implication of this is that the Junction 

contains a vertical line, and that therefore a left-hand side (which may merely be the 

left-hand side of the Vertical Line in the case of a butt-end) exists. Diverting the 

connection above the new Top-most Edge consists of following the list above the Top-most- 

edge on the left-hand side and diverting it above the new Top-most-edge just before the
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previous Top-most-edge is reached.

The other context is that the new Top-most-edge shares the same start-vertex as the 

previous Top-most-edge. In this situation no judgement can be made as to whether a left- 

hand side exists or not, and fortunately no such judgement needs to be made. The Edge 

which connects to the previous Top-most-Edge has one of its vertices at the start-point of 

the previous Top-most-edge. Finding that edge requires the clockwise cyclic link around 

the vertex to be followed until a connection back to the previous Top-most-Edge is found. 

That connection is then diverted above the new Top-most-Edge.

This method of navigating the vertex is applied whenever Insert places an Edge which 

touches only lower neighbouring Edges in the Front. A new function has been written to 

perform this navigation - Navigate-Vertex - which returns a pointer to the side of the 

Edge connecting to the side of the Edge from which the navigation started.

Before the pseudo-code is presented, some minor procedures used in the code are described.
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Edge functions.

Right( edge) and Below( edge ) effectively perform the same task, that of returning the 

address of the Below-Right side of the given edge. They are provided as separate 

functions for purely to assist in visualising which side of an Edge is being referred to.

Left( edge ) and Above( edge ) return the address of the Above-Left side of an Edge. They 

are identical yet separate to assist in visualisation of the side being referred to.

First_Edge( line ) - returns the first edge, ie Bottom-most (Verticals) or Left-most edge, in 

the Edge-list of the given line-segment data structure.

Last-Edge( line ) - returns the last edge, ie Top-most (Verticals) or Right-most edge, in the 

Edge-list of the given Line-segment.

Next_Edge( edge ) - returns the next edge, ie higher (Verticals) or further right edge, in 

the Edge-list of the Line-segment to which the given Edge belongs.

Start_Vertex( edge ) - returns the XY co-ordinates of the lowest (Verticals) or left-most 

vertex of the given Edge.

End_Vertex( edge ) - returns the XY co-ordinates of the highest (Verticals) or right-most 

vertex of the given Edge.

Split (edge) at (vertex) - splits the given Edge at the given vertex. It returns the ordered 

pair (High_Split_Edge, Low__SpIit_Edge) which contains the addresses of the higher 

(vertical) or further right (non-vertical) Edge, and the lower (vertical) or further left 

(non-vertical) Edge resulting from the split.

Navigate_Vertex (Start side of Edge) - follows the clockwise cyclic list around the 

bottom/left-most vertex of the Edge if the Above-left side is specified, or around the 

Top/Right-most vertex if the Below-right side is specified. The function returns the side 

of the Edge which connects (clockwise) to the starting side of edge.

Appendix - 31 -



Front operators.

Front_Successor( edge) - returns the next higher entry in the Front to the given Edge. 

Front_Predecessor( edge - returns the next lower entry in the Front to the given Edge.

Region list operators.

Assign (source side) to (new side) - the connection from the source side is assigned to the 

new side.

Connect (source side) To (destination side) - source side is connected to destination side. 

Source side is labelled as belonging to the same Region_list as destination side.

Next_Side (Source side) - returns a pointer to the next side after source side iin the Region-
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C .l Pseudocode of the Advance Front procedure with

Edge-based Region-list maintenance.

Procedure Advance_Front; 
begin
Read Transition from Transition_list;

While not { End__of Transition_list ) 
do begin

Read Junction from Junction_list of Transition

While not( End_of Junction_list) 
do begin

If ( Junction.Vertical_Line <> nil) 
then begin

Bottom_Vertex <- Junction.Bottom;
Top_Vertex <~ Junction.Top;
Vertical_Line <- Junction . Vertical__Line

(* Builds Initial Cyclical state of the 
Edge_list around the Vertical_Line *)

Connect Right {First_Edge (Vertical__Line) )
to Left(First_Edge(Vertical_Line));

Connect Left (First_Edge(Vertical_Line) )
to Right(First_Edge{Vertical_Line));

end

else begin
Vertical_Line <- nil;
Bottom_Vertex <- Junction.Bottom;
Top_Vertex <- Junction.Bottom; 
end;

Top_most_edge <- Remove(Junction,Bottom_Vertex, Top_Vertex, Front); 
Read Edge from Insertion_list of Junction;

While not (End_of Junction_list) and (Junction.Bottom < Top_vertex) 
do begin

While not ( End_of Insertions_list ) 
do begin

Insert ( Top_vertex, Bottom_vertex, Vertical_Line,
Top_most_edge, Edge );

Read Edge from Insertion_list of Junction; 
end;

Read Junction from Junction_list of Transition; 
end;

end;
Read Transition from Transition_list; 
end; 

end;
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C.2 Pseudo code outline of the REMOVE procedure with
Edge based Region list maintenance.

Procedure Remove( Junction, Bottom_Vertex, Top_Vertex, Front ); 
begin
Search Front for Lowest_Edge Between Current__Vertex and Top_Vertex;

If (Lowest_Edge exists) 
then begin

If { Lowest_Edge > Current_Vertex ) 
then begin

<* Can only occur if a Vertical_Line _ split Vertical Edge into 
Low_split and High_split and connect them to Lowest_Edge *)

Split First_Edge(Vertical_Line) -> (high_split, low_split
Connect Left(High_split) to Right(high_split);
Connect Right(High_split) to Right(low_split);
Connect Left(Low_split) to Below(Lowest_Edge);
Connect Above(Lowest_Edge) to Left(high_split);
Current Vertex <- height of Lowest_Edge;
end

else if (Junction has Vertical_Line) 
then begin

(* Divert cyclical Edge list 
to include the First Edge

Assign Above(Lowest_Edge) to
Right(First_Edge(Vertical_Line ));

Connect Right (First_Edge(Vertical_Line)) to
Below(Lowest_Edge);

end 
else begin

(* Construct Edge_list around ’butt_end' of 
Single_point Junction *)

Connect Above(Lowest_Edge) to Below(Lowest_Edge); 
end;

Previous__Edge <- Lowest_Edge;
Remove record of Previous_Edge ffom Front;
Read Current_Edge from next entry in Front; 
Edges_at_Current_Vertex <- 1;

from around Vertical 
*)
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While { Current_Edge <= Top_Vertex ) 
do begin

If ( Current_Edge = Current_Vertex ) 
then begin

Above(Current_Edge) <- Above(Previous_Edge);
Connect Above(Previous_Edge) to Below(Current_Edge); 
Increment Edges_at_Current_Vertex; 
end

else begin
{* Current_Edge doesn't touch Previous_Edge *)

If (Edges_at_Current_Vertex = 1)
and (End_Vertex (Previous_Edge)OTransition_point) 
then begin

(* Previous_Edge was solitary so split it in two and 
right_most part in Transitions List *)

Split Previous_Edge -> (New_edge, Previous_Edge );
Add New_Edge to TransitionJList;
end;

(* Split Vertical_Line and connect Lower part 
between Current_Edge and Previous_Edge *)

Split Vertical_Line 
Connect Left(High_split) 
Connect Right(High_split) 
Connect Left(Low_split) 
Connect Above(Current_Edge) 
Current__Vertex 
Edges_at_Current_Vertex 
end;

-> (high_split, low_split ); 
to Right(High_split); 
to Left(Low_split); 
to Below(Current_Edge); 
to Left(High_split);
<- height of Current_Edge;
<- l ;

Previous_Edge <- Current_Edge;
Remove entry of Previous_Edge from Front; 
Read Current_Edge from next Entry in Front; 
end;

(* Intersection test - Current_Edge is above the Previous_Edge 
removed, its predecessor is below *)

Test_intersection(Front-Predecessor(Current_Edge), Current_Edge ); 
end; (* if (lowest_edge exists);*)

(* Set Top_most Edge for passing forward to Insert procedure *)

If (Junction has a Vertical__Line) and (Lowest_Edge exists)
then If ( height of Previous_Edge < Top__Vertex ) 

then Top_most_Edge <- Last_Edge(Vertical_Line) 
else Top_most_Edge <- Previous_Edge

else begin
If (Junction has a Vertical_Line)
then Top_most__Edge <- First_edge (Vertical_Line)
else begin

if ( Lowest_Edge exists )
then Top__most_Edge <- Previous_Edge
else Top_most_Edge <- nil;
end;

end;

Return( Top_most_Edge );
end;
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C.3 Pseudo code outline of the INSERT procedure with
Edge based Region list maintenance.

Procedure Insert ( Top_vertex, Bottom__vertex, Vertical_Line,
Top_most_edge, Insertion);

begin
Place Insertion in Front;

Test_For_Intersection( Insertion, High_neighbour);
Test_For_Intersection( Insertion, Low_neighbour);

If ( High_neighbour hits Insertion )
then begin

Assign Below(Insertion) to Below( High_neighbour );
Connect Below(High_neighbour) to Below(Insertion) ;
Exit;
end;

if ( Insertion hits Low_neighbour )
then begin

Preceeding_side <- Navigate_Vertex( Above(Low_Neighbour) );
Connect Preceeding_Side to Above{Insertion);
Connect Below(Insertion) to Above(Low_jieighbour);
Exit;
end;

If ( Vertical_Edge = nil ) and (Top_Most_Edge <> nil )
then begin

(* No touching neighbouring Edge has been found and the Current
Junction does not contain a Vertical_Line _ this insertion is 
therefore the first and must inherit the Region_list from the 
Left_hand side else form a 'butt_end' *)

Assign Below( Insertion ) to Above( Top_most_edge);
Connect Above( Top_most_edge ) to Above{ Insertion );
Exit; 
end;

If ( Vertical_Edge = nil ) and (Top_Most_Edge = nil )
then begin

(* No touching Edge has been found and current Junction does not
contain a vertical edge -*• this insertion is therfore the first 
and since No Left_hand side exists - Form a 'Butt_end' *)

Connect Below{ Insertion ) to Above( Insertion );
Exit;
end;

if < Start_vertex(Insertion) = Top_vertex )
then begin

(* Special case __ Insertion is first Edge to be found lying
at the Top_most_Vertex. Region_list must be diverted from 
Vertical right to above Insertion *)

Assign Below(Insertion) to Above(Top_most_Edge);
Connect Above(Top_most_Edge) to Above(Insertion);
Exit;
end
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If
then

end;
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( Start_Vertex( Insertion ) <> Top_Vertex )
begin
(* Search up the Vertical for an Edge starting at the same

point as the new Insertion *)

V <- First_edge(Vertical_Line);
Finish <- false;

while n ot( Finish ) 
do begin

If ( Next_Edge( V ) = nil )
then finish <- true;
else if (Start_Vertex(Next_Edge(V)) >

Start_Vertex(insertion)) 
then finish <- true;
else V <- Next_Edge( V );

end;

If ( Start_Vertex( V ) < Start_vertex(Insertion) )
then begin

(* No Vertical_Line exists starting at same point as
Insertion _ so make one! Careful with connections 
on Left_side in case they must loop over the Top *)

Split V -> (high_split, low_split) ;

If < Next__Side ( Lef t (low_split) ) = Right (low_split) )
then Connect Left(High_split) to Right(high_split)
else Assign Left(High_split) to Left(low_split)

Connect Left(Low_split) to Left(High_split);
Connect Right(High_split) to Above(Insertion) ;
Connect Below(Insertion) to Right(low_split) ;
end;

else begin
(* V contains an Edge starting at the same point as

the Insertion - connect them together *)

Assign Below(Insertion) to Right( V ); 
Connect Right( V ) to Above(Insertion); 
end;
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APPENDIX P.

Pseudo-code Outline of the Region Analysis program. 

Edge-based version which builds a Containment Hierarchy.
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In Appendix C, a Region_Analysis program capable of constructing Adjacency Graphs by 

connecting Sides of Edges together was described.

In this version, a Containment Hierarchy is also constructed. To this end, Region_lists are 

now given unique labels and the Sides of Edges which compose the Region-lists now carry 

references to these Regionjabels. This makes it necessary to substantially modify the 

code that constructs the Adjacency Graph. In the version described in Appendix C, 

Region-lists could be split, concatenated and extended with impunity. Now more careful 

consideration is needed to maintain the consistency of the labelling of Edges within the 

Region_lists. In this version of the program, Edge operations will be performed entirely 

within the context of the R egion-lists. Typical operations are ExtendJH ead, 

ExtendJTail and Concatenate. All the R egionjist operators are described before the 

pseudo-code listings appear.

Using labelled lists to describe the Regions causes problems in dealing with 'Butt-ends'. 

In the version in Appendix C, it was safe to connect the Top-most-edge on the Left-hand 

side of a Junction to the Bottom-most-edge to form a list around the right-hand side of the 

Junction. Any lines subsequently emerging from the Junction on the right-hand side could 

split this list and divert it around themselves. Positing the assumption that all Junctions 

are left-handed 'Butt-ends' and then admitting exceptions later enabled a lot of processing 

to be done with a little code. Unfortunately this is no longer possible. Positing a 

Leftjhand butt-end would require a concatenation of the list above the Top-most-edge 

with that below the Bottom-most-edge. Should the two lists have separate labels, the 

two Regions would be combined by this operation leading to the disposal of one of the 

Region-labels - an undesirable result if a line should later be inserted at that Junction 

because then two separate lists would be expected, one to extend below and one above the 

new line.

As a result of using labelled lists, the program is substantially longer and more explicit in 

dealing with the various possible combinations of lines meeting at Junctions. The Remove 

and Insert procedures have each been split into smaller procedures. Remove does still 

exist, but now as an executive procedure which calls other procedures to perform most of its 

Region-list handling.
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Remove calls two procedures: Remove_Lowest_Edge - which performs the list handling 

associated with the first Edge that Remove encounters at a Junction; and Remove_Edge - 

which performs the list handling for all subsequent Edges discovered by Remove at that 

Junction. Rem ove_Edges/ generally speaking, concatenates the list below the 

Current_Edge with that above the preceeding Edge.

Insert is replaced by Insert_FirstJEdge and Insert_Edge. Insert_First_Edge performs the 

special job of extending the R egionjists from above and below the extreme lines on the 

Left-hand side of the Junction, over to the above and below side of the first Edge inserted 

on the right-hand side of the Junction. All subsequent Edges to be inserted at that Junction 

are processed by Insert_Edge - which generally diverts the Region above or below the 

nearest neighbour of the new Edge above or below the new E

dge itself, and then initialises a new Region between the new Edge and that neighbour. 

Some 'Butt-end' processing has been shifted back to the Advance-Front procedure - the 

executive which controls the plane-sweep.

At a Right-hand 'Butt-end' a new Exterior Region is initialised. Advance_Front performs 

this initialisation for lunctions with Vertical_lines should the Remove procedure fail to 

find any Edges to remove. For right-hand 'butt-end's without a VerticalJLine, this 

initialisation is performed in Insert_First_Edge. The rationale behind this is that Insert 

does not actually encounter Vertical-lines - so Advance-Front must cope with them - and 

AdvanceJFront does not process Insertions lists and so cannot handle 'butt-end's constructed 

around Insertions, which are non-vertical lines.

All Left-handed 'Butt-end's are handled by Advance-Front. This processing -

concatenating the Lowest and Highest lists coming out of the Left-hand side of the Junction 

- is only performed if Insert never gets called, ie. if there is no right-hand side to the 

Junction. Assuming all Junctions to be ’Butt-end's until proved otherwise, as was done in 

Appendix C, is no longer possible for reasons outlined previously. Once concatenated,

labelled Lists cannot be split into their component parts later.
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Right( edge ) and Below( edge ) effectively perform the same task, that of returning the 

address of the Below-Right side of the given edge. They are provided as separate 

functions for purely to assist in visualising which side of an Edge is being referred to.

Left( edge ) and Above( edge ) return the address of the Above-Left side of an Edge. They 

are identical yet separate to assist in visualisation of the side being referred to.

First_Edge( line ) - returns the first edge, ie Bottom-most (Verticals) or Left-most edge, in 

the Edge-list of the given line-segment data structure.

Last-Edge( line ) - returns the last edge, ie Top-most (Verticals) or Right-most edge, in the 

Edge-list of the given Line-segment.

Next_Edge( edge ) - returns the next edge, ie higher (Verticals) or further right edge, in 

the Edge-list of the Line-segment to which the given Edge belongs.

Start_Vertex( edge ) - returns the XY co-ordinates of the lowest (Verticals) or left-most 

vertex of the given Edge.

End_Vertex( edge ) -  returns the XY co-ordinates of the highest (Verticals) or right-most 

vertex of the given Edge.

Split (edge) at (vertex) - splits the given Edge at the given vertex. It returns the ordered 

pair (High_Split_Edge, Low_Split_Edge) which contains the addresses of the higher 

(vertical) or further right (non-vertical) Edge, and the lower (vertical) or further left 

(non-vertical) Edge resulting from the split.

Edge functions.
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Front operators.

Front_Successor( edge) - returns the next higher entry in the Front to the given Edge. 

Front_Predecessor( edge) - returns the next lower entry in the Front to the given Edge. 

Region list operators.

InitialiseJExteriorJRegionJHtead ( Side of Edge ) - creates a new R egionjabel of type 

Exterior, sets the given "Side of Edge" as the Head and tail, and positions the label in the 

Containment_hierarchy. To position the label, this function in reality needs access to the 

higher-neighbour of the given Edge as described in section 3.9.3.

Initialise_Interior_Region_Head ( Side of Edge ) - creates a new R egionjabel of type 

Interior and positions it in the Containment Hierarchy (See 3.9.4). The given "Side of 

Edge" is set as the Head and Tail.

Concatenate (tail_edge) with (head_edge) - joins the head and tail edges together. If 

the two edges belong to separate R egionjabel s, then amendments to the Containment 

Hierarchy are required according to context (See 3.9.5 - 3.9.7). If the two Edges belong to 

the same Region_list, then joining Head to tail causes a closed loop to be formed, 

indicating that the R eg ion jist is completed.

Extend_Tail (source side) To (n ew ja il side) - joins the new_tail side to the tail of the 

Region_list to which the source side belongs. Source side need not necessarily BE the tail 

itself.

Extend_Head (source side) To (new jiead  side) - joins the new_head side to the head of 

the R egionjist to which the source side belongs. Source side need not be the Head side.

Extend JT ailJD ow nJV ertical (source side) To (vertex) - the tail of the R e g io n jis t  to 

which the source side belongs must lie on a vertical edge. The tail is extended down the 

Edges on the right side of that Vertical_line until a vertical Edge starting at the specified 

vertex is encountered. The vertical Edge starting at that vertex must exist. The source 

side specified need not be the tail of the Region-list.
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Replace_Tail (source side) with (new_tail side) - the tail of the Region-list to which 

source side belongs is removed. The tail is replaced with the new-tail side.

Replace_Head (source side) with (new_head side) - the head of the Region_list to which 

source side belongs is removed. The head is replaced by the new_head side.

R etrace_T ail (new _tail side) - the Region_list to which new_tail side belongs is 

followed. The R eg ion jist is truncated at new_tail, which becomes the new tail of the 

Region_list.

Retrace JHtead (new_head side) - the R eg ion jist to which newjhead belongs is followed. 

The R eg ion jist ahead of newjhead is removed, the n e w j h e a d  becoming the new head, 

and the list between new_head and tail becomming the entire list.

Connect (source side) To (destination side) - source side is connected to destination side. 

Source side is labelled as belonging to the same R egionjist as destination side.

Next_side (source side) - returns the next side in the Region-list to which source side 

belongs.
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EL-1___Es.eu.dQ-c,o.de of, the Adaance_F.r.ont.. pcQ.cedujgL-M±t3i.
Containment Hierarchy maintenance.

Procedure Advance_Front; 
begin

Read Transition from Transition_list;

While n ot( End_of Transition_list ) 
do begin

Read Junction from Junction_list of Transition

While n o t ( End_of Junction_list) 
do begin

If ( Junction has 
then begin

Bottom_Vertex
Top_Vertex
Vertical_line
end

a Vertical_Line )

<- Junction.Bottom;
<- Junction.Top;
<- Junction.Vertical line;

else begin
Bottom_Vertex <- Junction.Bottom;
Top_Vertex <- Junction.Bottom;
Vertical_Line <- nil;
end;

(Top_Most_Edge, Bottom_Most_Edge) <- Remove ( Bottom^Vertex, Top__Vertex,
Vertical_Line, Front );

If (Top_Most_Edge = nil) and (Vertical__Line <> nil) 
then begin

{* Nothing has been removed and a Vertical Line exists- therefore 
a Right_Hand butt end - extend new Region around vertical line*)

Initialise_Exterior_Region_Head
-> R:yght {First_Edge (Vertical_Line) ) ;

Extend_Tail Right(First_Edge( Vertical_Line )
to Left (First_Edge( Vertical_Line );

<- Left ( First__Edge (Vertical_Line) );
<- Top_Most_Edge;

Top_Most_Edge
Bottom_Most_Edge

(Continued...)
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(* ensure first Insertion of Junction is handled by Insert_First *) 
First__Insertion <- true;

While not (End_of Junction_list) and (Junction.Bottom < Top_Vertex ) 
do begin

Read Edge from Insertion_list of Junction;
While not( End_of Insertions_list ) 
do begin

If (First_Insertion) 
then begin

First_Insertion <- false;
Insert_First( Top_Vertex, Bottom_Vertex,

Vertical_Line, Top_Most_Edge, Edge ) ;
end

else Insert_Edge( Top_Vertex, Bottom_Vertex,
Vertical_Line, Top_Most_Edge, Edge );

Read Edge from Insertion_list of Junction; 
end;

Read Junction from Junction_list of Transition; 
end;

If ( Vertical_Line <> nil ) and (First_Insertion) 
then

(* nothing inserted - so left-hand butt-end around 
Vertical_Line *)

Concatenate( Above(Top_Most_Edge),
Right( Last_Edge(Vertical_Line) ) )

If ( Vertical_Line «= nil ) and (First_Insertion) 
then

(* nothing inserted - so left-hand butt-end 
around single point Junction *)
Concatenate( Above(Top_Most_Edge), Below(Bottom_Most_edge) );

end;
Read Transition from Transition_list; 
end;

end;
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H aJ2___Paeudp-gQde oulJLjuie of. „the REMOVE .procedure with
Ealgejfrased.Regign^list.maintenance ,

Procedure Remove( Bottom_Vertex, Top_Vertex, Vertical_Line, Front ); 
begin

Current_Vertex <- Bottom_Vertex;
Search Front for Bottom_Most_Edge between Current_Vertex and Top_Vertex;

If (Bottom_Most_Edge exists) 
then begin

If (Vertical__Line Exists) 
then

(* Remove__Lowest_Edge is only called when the lowest edge has 
to be connected to something - ie a vertical line *)

Remove_Lowest_Edge ( Bottom_Most_Edge, Current_Vertex,
Vertical_Line);

Remove record of Bottom_Most_Edge from Front; 
Previous_Edge <- Bottom_Most_Edge;
Current_Vertex <- Start_Vertex( Bottom_Most_Edge ); 
Edges_at_Current__Vertex <- 1;

Read Current_Edge from next entry in Front;

While ( Current_Edge <=* Top_Vertex ) 
do begin

Edges_at_Current_Vertex <-
Remove_Edge( Previous__Edge, Current_Edge,

Current__Vertex, Edges_at_Current_Vertex,
Vertical_Line )

Current_Vertex <- Start_Vertex( Current_Edge );
Previous_Edge <- Current_Edge;
Remove entry of Previous_Edge from Front;
Read Current_Edge from next Entry in Front;

end;

(*Intersection test -Current_Edge is above the Previous_Edge 
removed, its predecessor is below *)

Test__intersection (Front_Predecessor (Current_Edge) , Current_Edge ); 
end;

(Continued...)
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(* Set Top_most Edge for passing forward to Insert procedure *)

If (Vertical_Line Exists) and (Previous_Edge exists) 
then begin

If ( Start_Vertex( Previous_Edge ) < Top_Vertex ) 
then begin

Top_Most_Edge <- Last_Edge( Vertical_Line );

Extend_Tail A b o v e ( Previous_Edge )
to L e f t { Top_Most_Edge );

end;

If ( Start_Vertex ( Previous_Edge ) ■» Top_Vertex ) 
then Top_Most_Edge <- Previous_Edge;

end

else begin

If (Vertical_Line Exists)
then Top_Most_Edge <- First_Edge( Vertical_Line );

If Not(Vertical_Line Exists) and ( Previous_Edge exists ) 
then Top_Most_Edge <- Previous_Edge

If Not(Vertical_Line Exists) and N o t ( Previous_Edge exists ) 
then Top_Most_Edge <- nil;

end;

Return( Top_Most_Edge, Bottom_Most_Edge ); 
end;
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D-.-3---Es.eudQzjc,a.,de outline,,of ,,tha..,.BEiaQyE-IQMES.T_EDGE procedure with
Edaebased Reaion_list maintenance, .

Procedure Remove_Lowest_Edge{ Lowest_Edge, Bottom_Vertexf
Top_Vertex, Vertical__Line);

begin

If ( Start_Vertex ( Lowest_Edge ) «= Top__vertex ) 
then begin

Extend_Head Below ( Lowest_Edge )
to L e f t ( First_Edge( Vertical_Line) ); 

Extend__Head L e f t ( First_Edge( Vertical_Line ) )
to R i ght ( First_Edge( Vertical_Line ) );

Exit;
end;

if ( Start_Vertex( Lowest_Edge ) = Bottom_Vertex ) 
then begin

Extend_head Below ( Lowest_Edge )
to Right ( First_Edge( Vertical_Line ) );

Exit; 
end;

If ( Start_Vertex ( Lowest__Edge ) > Bottom__Vertex ) 
then begin

(* split Vertical Edge into Low_Split_Edge and High_Split_Edge and
connect them to Lowest_Edge *)

Split First_Edge(Vertical_Line) at Start_Vertex(Lowest_Edge)
-> (High_Split_Edge, Low_Split_Edge );

Extend__head Below(Lowest_Edge) to Left(Low_Split_Edge);
Extend_head Left(Low_Split_Edge) to Right(Low_Split_Edge);
Extend_Head R i g ht( Low_Split_Edge) to Right(High_Split_Edge);

Exit ; 
end;

end;
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D .4 Pseudo-code outline of the REMOVE-EDGE procedure with
E<3ge_frase<3 Reqifln_.lig.t.jaiaintgnansg«.

Procedure Remove_Edge ( Previous_Edge, Current_Edge, Current_Vertex,
Top_Vertex,Edges_at_Current_Vertex, Vertical_Line)

begin

If ( Start__Vertex ( Current_Edge ) = Current_Vertex ) 
then begin

Concatenate A b ove ( Previous_Edge ) with Below( Current_Edge );
Return{ Edges_at_Current_Vertex + 1 );
Exit; 
end

If ( Start_Vertex ( Current_Edge ) <> Current_Vertex ) 
then begin

{* Current_Edge doesn't touch Previous_Edge *)

If (Edges_at__Current_Vertex = 1) and
not{Transition_point <> End_point( Previous_Edge) )

then begin

(* Previous_Edge was solitary -so split it in two and put
right_most part in Transitions List *)

Split Previous_Edge at Transition_point
-> (New_Edge, Previous_Edge ) ;

Add New_Edge to Transition_list; 
end;

If ( Start_Vertex( Current_Edge ) <> Top_Vertex ) 
then begin

(* Split Vertical_Line and connect Lower part between
Current_Edge and Previous_Edge *)

Split Last_Edge(Vertical_Line) at Start_Vertex(Current_Edge)
-> (High_Split_Edge,Low_Split_Edge);

Extend_Head Above(Previous_Edge) to Left(Low_Split_Edge); 
Concatenate L e f t { Low_Split_Edge ) with B e l o w ( Current_Edge ); 
Extend_Tail Right ( Low_Split__Edge ) to Right (High_Split_Edge) ;

end;

If ( Start_Vertex( Current_Edge ) = Top_Vertex ) 
then begin

Extend_Tail Above (Previous__Edge)
to Left(Last_Edge{ Vertical_Line) ); 

Concatenate Below(Current_Edge)
with L e f t ( Last_Edge( Vertical_Line) );

end;

Edges_at_Current_Vertex <- 1; 
end;

Return( Edges_at_Current_Vertex ); 
end;
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D.j-5----Pseudo-code outline of the. .IHSER1 .procedure with
Edqe_baged Reqi.oiî l.igt maintenance,

Procedure Insert_First( Top__Vertex, Bottom_Vertex, Vertical_Line,
Top__Most_Edge, Insertion) ;

begin

Place Insertion in Front;
Test_For_Intersection( Insertion, High__neighbour) ;
Test_For_Intersection( Insertion, Low_neighbour);

If N o t ( Vertical_Line Exists ) and ( Top_Most_Edge - nil ) 
then begin

(* No Left_Hand side - initialise new Region around insertion *)

Initialise_Exterior_Region_Head -> Below( Insertion );
Extend_Tail Below ( Insertion ) to Above { Insertion );
Exit; 
end;

If N o t ( Vertical_Line Exists ) and ( Top_Most_Edge <> nil ) 
then begin

{* Left_Hand side exists -Extend lists around new Insertion *)

Extend_Tail A b ove ( Top_Most_Edge ) to A b o ve( Insertion );
Extend_Head Below( Bottom_Most_Edge ) to Below( Insertion );
Exit; 
end;

If ( Vertical_Line Exists ) and ( Start_Vertex( Insertion ) = Top_Vertex ) 
then begin

Extend_Head Right(Last_Edge( Vertical__Line ) ) to Bel ow( Insertion ); 
Extend_Tail A b ove ( Top_Most_Edge ) to A b o ve( Insertion );
Exit; 
end;

If ( Vertical__Line Exists ) and ( Start_Vertex ( Insertion ) < Top_Vertex ) 
then begin 4

(* Search up the Vertical for an Edge starting at the same point
as the new Insertion *)

V <- First_Edge( Vertical_Line );
Finish <- false;

while n o t ( Finish ) 
do begin

If ( Next_Edge( V  ) - nil )
then finish <- true;
else if (Start_Vertex(Next_Edge(V)) >Start_Vertex(Insertion)) 

then finish <- true; 
else V <- Next_Edge ( V ) ;

end;

(Continued...)
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If ( Start_Vertex( V ) < Start_Vertex( Insertion > )
then begin

(* No Vertical_Line exists starting at same point as Insertion 
-so make one! Careful with connections on Left_side 
in case they must loop over the Top *)

Split V at Start_Vertex{ Insertion )
-> (High_Split_Edge, Low_Split_Edge);

L e f t ( High_Split_Edge ) <- Lef t( Low_Split_Edge );
Connect L e f t ( Low_Split_Edge ) to Le f t ( High_Split_Edge ); 
Retrace_Head R i ght ( Low_Split_Edge );
Extend_Head R i g ht( Low_Split_Edge ) to Below ( Insertion );

If { Top_Most_Edge = Low_Split_Edge ) 
then Top_Most_Edge <- High_Split_Edge;

Extend_Tail A b ov e( Top_Most_Edge )
to R i g h t ( Last_Edge( Vertical_Line));

Extend_Tail_Down_Vertical from Right (Last_Edge (Vertical_Line))
to Start_Vertex( Insertion ):

Extend_Tail Right{ Last_Edge( Vertical_Line )
to A b o v e { Insertion );

Exit; 
end;

If ( Start_Vertex( V ) = Start_Vertex( Insertion ) ) 
then begin

(* A Vertical__Line exists starting at same point as Insertion*) 
Connect Le ft( Low_Split_Edge ) to Le ft{ High_Split_Edge ); 
Retrace_Head Next_Side(Right{ Low_Split_Edge )) ;

Extend_Tail Next_Side(Right( Low_Split_Edge ))
to B e l o w ( Insertion );

Extend_Tail A b o v e ( Top_Most_Edge )
to Right{Last_Edge( Vertical_Line));

Extend_Tail_Down_Vertical from Right(Last_Edge(Vertical_Line))
to Start_Vertex( Insertion );

Extend_Tail Rig ht{ Last_Edge( Vertical_Line ) )
to A b o v e ( Insertion ):

Exit;
end;

end;

end;
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D-.Ja___ P..seudo-.sgde,,outline of the INSSRY-EP.GE procedure-Hith
Edae__based Reaion_list maintenance. _

Procedure Insert-Edge( Top_Vertex, Bottom_Vertex, Vertical_Line,
Top_Most_Edge, Insertion);

begin

Place Insertion in Front;

Test_For_Intersection ( Insertion, High__neighbour) ;
Test_For_Intersection{ Insertion, Low_neighbour);

If ( Start_Vertex (Insertion) «= Start_Vertex(High_neighbour) ) 
then begin

Replace_Tail Below(High_Neighbour) with Below(Insertion); 
Initialise_Interior_Region__Head -> Below(High_Neighbour); 
Extend_Tail Below (High__neighbour) to Above (Insertion) ; 
Exit; 
end;

if ( Start_Vertex (Insertion) * Start__Vertex (Low_neighbour) ) 
then begin

Replace_Head Above(Top_Most_Edge) with Above(Insertion); 
Initialise_Interior__Region_Head -> Below (Insertion) ; 
Extend_Tail Below(Insertion) to Above(Low_Neighbour); 
Exit; 
end;

If ( Vertical__Line Exists ) 
then begin

(* Search up the Vertical for an Edge starting at the same point
as the new Insertion *)

V <- First_Edge( Vertical_Line );
Finish <- false;

while n o t ( Finish ) 
do begin

If ( Next_Edge( V ) «' nil )
then finish <- true;
else if (Start_Vertex(Next_Edge(V)) >Start_Vertex (Insertion)) 

then finish <- true; 
else V <- Next_Edge( V );

end;

If ( Start_Vertex( V ) < Start_Vertex( Insertion ) ) 
then begin

(* No Vertical_Line exists starting at same point as Insertion -so
make one! Careful with connections on Left_side in case they 
must loop over the Top *)

Split V at Start__Vertex ( Insertion )
-> (High_Split_Edge, Low_Split_Edge);

(Continued...)

Appendix - 52 -



( Start_Vertex( High_Neighbour ) <= Top_Vertex ) 
then begin

Le f t ( High_Split_Edge ) <- Lef t( Low_Split_Edge );
Connect L e f t ( Low_Split_Edge ) to L e f t ( High_Split_Edge ); 
Retrace__Head Right ( Low_Split_Edge } ;
Extend_Head R i ght ( Low_Split_Edge ) to Below ( Insertion ); 
Initialise_Interior_Region__Head -> Below ( High_Neighbour );

Extend_Tail__Down_Vertical from Below ( High_Neighbour )
to Start_Vertex( Insertion );

Extend_Tail Below ( High_Neighbour ) to A b o v e ( Insertion );
Exit;
end;

If ( Start_Vertex( Low_Neighbour ) >- Bottom_Vertex )
then begin

L e f t ( High_Split_Edge ) <- Le f t ( Low_Split_Edge );
Connect L e f t { Low_Split_Edge ) to Lef t( High_Split_Edge );
If ( Top_Most_Edge = Low_Split_Edge ) 
then Top_Most_Edge <- High_Split_Edge;
Retrace_Tail A b o v e ( Top_Most_Edge );
Extend_Tail A b o v e ( Top_Most_Edge )

to R i g h t ( Last_Edge( Vertical_Line));

Extend_Tail_Down_Vertical from Right (Last__Edge (Vertical_Line) )
to Start_Vertex( Insertion );

Extend_Tail Right(Last_Edge(Vertical_Line))to Above(Insertion); 
Replace_Head R i gh t( Low_Split_Edge );
Extend_Head R i ght ( Low_Split_Edge ) to B elo w( Insertion );

Initialise_Interior_Region_Head -> B e l ow( Insertion );

Extend_Tail Below ( Insertion ) to R i gh t( Low_Split_Edge ); 
Extend_Tail_Down__Vertical from Right ( Low_Split_Edge )

to Start_Vertex ( Low__Neighbour ) ; 
Extend__Tail Right ( Low_Split_Edge ) to Above ( Low_Neighbour) ; 
Exit; 
end;

If ( Start_Vertex( V ) = Start_Vertex( Insertion ) ) 
then begin

(* A Vertical_Line exists starting at same point as Insertion*)

If ( Start_Vertex( High_Neighbour ) <= Top_Vertex ) 
then begin

Retrace_Head Next_Side( Right( V ) );
Initialise_Interior_Region_Head ->Below(High_Neighbour);

Extend_Tail__Down_Vertical from Below ( High_Neighbour )
to Start_Vertex( Insertion );

Extend_Tail Below{ High_Neighbour ) to Above(Insertion);
Exit;
end;

(Continued...)
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If ( Start_Vertex( Low_Neighbour ) >= Bottom_Vertex )
then begin

Replace_Tail Above ( Top_Most__Edge ) ;
Extend_Tail Above( Top_Most_Edge )

to Right( Last_Edge( Vertical_Line) ) ;

Extend_Tail_Down_Vertical
from Right{ Last_Edge( Vertical_Line ) )

to Start_Vertex( Insertion ):

Extend__Tail. Right ( Last_Edge( Vertical_Line ) )
to Above( Insertion );

Initialise_Region_Head -> Below( Insertion );
Extend_Tail Below( Insertion ) to Next_Side( Right(V) );

Extend_Tail_Down_Vertical from Next__Side ( Right ( V ) )
to Start_Vertex(Low_Neighbour);

Extend_Tail Next_Side( Right { V ) )
to Above( Low_Neighbour );

Exit; 
end;

Connect Left( Low_Split_Edge ) to Left( High_Split_Edge ); 
Retrace_Head Next_Side(Right( Low_Split_Edge )) ;

Extend_Tail Next_Side (Right ( Low_Split__Edge ))
to Below( Insertion );

Extend_Tail Above( Top_Most_Edge )
to Right( Last_Edge( Vertical_Line));

Extend_Tail_Down__Vertical from Right (Last_Edge (Vertical_Line) )
to Start_Vertex( Insertion ):

Extend_Tail Right( Last_Edge( Vertical_Line ) )
to Above( Insertion );

Exit;
end;
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