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Adaptive Thermal Sensor Array Placement for
Human Segmentation and Occupancy
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Abstract— Thermal sensor array (TSA) offers privacy-preserving, low-cost, and non-invasive features, which makes it
suitable for various indoor applications such as anomaly detection, health monitoring, home security, and monitoring
energy efficiency applications. Previous approaches to human-centred applications using the TSA usually relied on the
use of a fixed sensor location to make the human-sensor distance and the human presence shape fixed. However, placing
this sensor in different locations and new indoor environments can pose a significant challenge. In this paper, a novel
framework based on a deep convolutional encoder-decoder network is proposed to address this challenge in real-life
deployment. The framework presents a semantic segmentation of the human presence and estimates the occupancy in
indoor-environment. It is also capable to segment the human presence and counts the number of people from different
sensor locations, indoor environments, and human to sensor distance. Furthermore, the impact of the distance on the
human presence using the TSA is investigated. The framework is evaluated to estimate the occupancy in different sensor
locations, the number of occupants, environments, and human distance with classification and regression machine
learning approaches. This paper shows that the classification approach using the adaptive boosting algorithm is an
accurate approach which has achieves an accuracy of 98.43% and 100% from vertical and overhead sensor locations
respectively.

Index Terms— Thermal sensor array, occupancy estimation, sensor placement, semantic segmentation, deep learning,
shallow neural network, adaptive boosting, human-centred approach, adaptive system

I. INTRODUCTION

OCcupancy estimation, which refers to counting the num-
ber of people in a given area, has a significant impact

on facing essential challenges in various sectors. For example,
occupancy estimation systems have been applied to manage
social distancing during emergencies such as the coronavirus
COVID-19 pandemic period. This is primarily crucial in older
adult homes to ensure social distancing policies are observed,
and alerts are triggered when needed. The need for an accurate
occupancy estimation will become more apparent for older
adults who prefer to live in their own homes.

Long-term care for older adults is costly and will increase
due to the increasing population in the ageing community [1].
Besides, there is low acceptability of nursing homes among
older adults [2]. This raises the need for alternative solutions
that provide them with independent living in their homes.
Despite the fact that homes occupied by an average of 3.14
people per household [3], most of the previous research work
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on assisted living to help older adults to live independently in
their own homes assumed they live in a single residential envi-
ronment [4]. Therefore, it is essential to add a new functional
layer to distinguish between single and multi-occupancy status
in smart home solutions to make them applicable to real-life
scenarios. Occupancy estimation systems are also applicable in
other areas; for instance, energy used in buildings have at least
40% of the total energy consumed [5]. This percentage can be
reduced by adopting the consumption of energy systems based
on the number of people participating in the environment at
the time these systems work.

Unlike sensing approaches for the outdoor environment, the
privacy preservation of the sensor is crucial for deployable
domestic applications. However, the trade-off between the
performance and the privacy of the visual sensors commonly
used to monitor indoor occupancy is one of the deployment
limitations of such systems on a larger scale. For example,
the vision-based sensor offers high performance in occupancy
estimation for the indoor environment. However, it violates
user privacy which makes the acceptability of vision-based
systems very low by end-users. In contrast, ambient-based
sensors such as the infrared sensor (PIR) provide high privacy
capability. Nevertheless, intelligent solutions based on the PIR
sensors require prior information of the home layout [6], which
makes the usability feature of these sensors low. The PIR
sensors lack the capability of distinguishing human subjects.

Lately, there have been some works using the Thermal
Sensor Array (TSA) to estimate the occupancy in the domestic
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environment. The motivation behind using this sensor is that
it features privacy-friendly, high-performance, low-cost, and
low-power capabilities. The main gap for most research works
utilising this type of sensor is that the sensor’s algorithm is not
adaptive to operate in different locations (e.g. walls, ceiling).
This is because the temperature of the captured thermal objects
varies with the distance between these objects and the sensor.
Therefore, previous works based on this sensor to detect
human existence were usually fixed at a location that has a
constant distance between human objects and the sensor [7].
Such poor adaptability of the TSA’s location raises significant
concerns about the deployability of this sensor applications,
for example, placing the sensor on the ceiling of the room
reduces the sensor’s field of view, which means that more
sensors will be needed to cover a wider area.

This paper proposes and investigates an adaptive framework
for TSA for human segmentation and occupancy estimation,
which has the capabilities to work from different sensor-
location configurations, and in a noisy thermal environment.
In summary, the main contributions of this paper include:
• a robust and adaptive occupancy estimation framework,

able to estimate the occupancy from different sensor lo-
cations, human-sensor distance, human-human distance,
and in an unseen noisy domestic environment;

• the use of a deep encoder-decoder convolutional neural
network to semantic segment the human from a low-
resolution TSA’s output;

• an investigation of the impact of the sensor operating
distance on the human presence;

• the capability of the proposed framework to segment the
human presence from a distance of up to 9 meters.

The remaining parts of this paper are organised as follows:
in Section II a summary of the related work regarding oc-
cupancy estimation in the smart environment is presented.
Section III explains the proposed framework architecture.
Experimental results are presented and discussed in Section
IV, and V followed by pertinent conclusions drawn in Section
VI.

II. RELATED WORK

Research has been conducted to investigate the methods for
counting the number of occupants in a home environment for
different purposes using different sensing approaches [8], [9].
Nevertheless, the usage of the TSA for occupancy estimation
is relatively low [10] compared to other sensing methods. [11]
have utilised the PIR sensor to distinguish between the single
and multi-occupancy environment in the aim of determining
the visit time of the older adults in a single inhabitant environ-
ment by measuring the randomness of the PIR-based binary
data using different entropy measures. The PIR sensor has
been used in multi-occupancy indoor environment [12]–[15].
However, these works were only able to identify whether more
than one person occupies the environment without providing
an exact estimation of the number of people. Furthermore,
they relied heavily on the sensor layout and the ground-truth
annotated sensor data.

Other privacy-friendly sensing approaches reported in [16]–
[18] have proposed multi-modal systems to solve the problem

of counting the number of people in the home environment.
They were based on the usage of multiple environmental
sensors such as lighting, temperature, movement, CO, CO2,
and humidity. Although the multi-modal approach increases
these systems’ performance, it raises serious questions about
the applicability of these systems in real-use case scenarios.
This is because these works have assumed that ventilation
does not affect the performance of their proposed systems.
However, ventilation may alter the level of humidity, CO, and
CO2 in the home environment, resulting in a wrong estimate
of the occupancy.

Recently, [19] overcame the PIR sensor’s deployability
problem to count the number of people in a home environment
by introducing a new algorithm, based on continually tracking
each person’s location in the home, without requiring other
additional information such as the ground-truth annotated
sensor data. However, it is not clear whether the algorithm
will work when two people simultaneously walk alongside
each other, for example, the caregiver who helps the older
adult to walk.

Beltran et al. [20] suggested a multi-modal system, consist-
ing of a PIR sensor and a TSA to estimate the occupancy.
The purpose of using the PIR sensor was to detect the empty
occupancy environment and the TSA to count the number of
people in the environment. However, the proposed system may
fail to estimate the occupancy when a person has been inactive
for a long time, for example, sleeping as the probability of
identifying human radiation as the background temperature
increases. Furthermore, the TSA is placed in a fixed location,
which results in the system not being work at a different sensor
location. Other works [7], [10], [21]–[27] that used the TSA
to estimate the occupancy also contain similar sensor location
adaptation problems.

Naser et al. [28] proposed a framework capable of distin-
guishing between human radiation and animal pet radiation
acquired by a TSA. It is able to estimate the entropy point of
animal pet and human radiations as a feature to be classified.
The motivation behind this work was to remove any noise
heat such as hot objects similar to the human temperature in
order to only keep the human presence in the thermal scene
to further human activity recognition. Other TSA applications
based on human detection have also been proposed [29]–[33]
with the same problem of sensor location adaptability.

The use of semantic segmentation using the deep con-
volutional encoder-decoder network is not explored yet. To
the best of our knowledge, the deep learning-based semantic
segmentation of the human presence from different TSA
placements has been proposed for the first time in this paper
methodology.

III. HUMAN-CENTRED OCCUPANCY ESTIMATION USING
THERMAL SENSOR ARRAY

The data acquisition stage of the proposed framework is
based on using the TSA. Specifically, the MLX90640 sensor
[34] is used. The sensor measures the temperatures of objects
in its field of view and returns the information as a 32 × 24
matrix. This sensor is chosen to estimate the occupancy as it



A. NASER et al.: ADAPTIVE THERMAL SENSOR ARRAY PLACEMENT FOR HUMAN SEGMENTATION AND OCCUPANCY ESTIMATION 3

Fig. 1: The proposed framework to estimate the number of people in the thermal scene obtained using the TSA after
applying a set of pre-processing techniques, a deep convolutional encoder-decoder network to semantic segment the human

presence, and post-processing techniques that consider the characteristics of the used sensor.

is a privacy-preserving and low-cost sensor [35], which makes
it suitable for home environment applications. Moreover, the
refresh rate of the sensor is between 0.5Hz and 64Hz, and
this makes it capable of detecting swift human movements.

A schematic diagram of the proposed system designed to
suit the characteristics of the TSA is shown in Fig 1. For
example, the TSA is not light sensitive compared to the
camera sensor. However, the TSA is sensitive to environmental
temperature and of low resolution. Therefore, it is crucial to
develop a systemic framework that depends on the type of
the used sensor per itself. Besides, the proposed framework
segments the human presence from a noisy heat-map using
a deep convolutional encoder-decoder network. A set of pre-
processing and post-processing techniques are introduced to
make the sensor output applicable to the proposed segmenta-
tion technique. A detailed description of the proposed frame-
work stages is provided below.

A. Pre-possessing
The pre-processing stage consists of three sequential phases.

The first phase is to increase the resolution of the original heat-
map obtained by the TSA through interpolating the original
32 × 24 temperature matrix to 96 × 72 by repeating refined
temperature values 3 times in each dimension. Fig 2(a) shows
an example of the raw heat-map and Fig. 2(b) shows the
result of interpolating the heat-map by a factor of 3. This
factor is chosen because it provides the best visual resolution
of the TSA sensor-based heat-map and is proportional to the
size of the input image of the used convolutional encoder-
decoder network described in Sec. III-B to segment the human
presence.

The detected human temperatures vary depending on the
distance between the human and sensor locations. Also, the
covered parts of the human body have a higher temperature
than the uncovered parts. The normal maximum human tem-
perature detected using the MLX90640 sensor from a nearby
point is 33◦C. Thus, the second phase of the pre-processing
stage is to filter any value that has a higher-temperature than

Fig. 2: Heat-maps visualisation of (a) original heat-map, (b)
interpolated heat-map.

33◦C by converting it to the minimum temperature value in
the temperature matrix. By doing so, thermal noises such as
a hot kettle will be removed, and the human presence will
remain as a foreground object in the thermal scene.

It should be noted that Fig 2 shows a visualisation of
the temperature matrix using colour mapping to facilitate
the reader’s visibility of sensor data visually. Moreover, the
mentioned maximum filter converts any temperature above
the set limit to the minimum temperature in the acquired
temperature matrix to maintain the variance between the
temperature values. If the filter converts the high temperatures
to zeros, this will cause the variance to be high, which results
in a different colour scheme. Continually, the third phase of
the pre-processing stage is to export the colour mapped matrix
to an RGB image.

B. Semantic Segmentation for the Human Heat-Map

To separate a human subject from the RGB image produced
after the pre-processing step, a semantic segmentation is ap-
plied. Semantic segmentation aims to classify each pixel in the
image into a corresponding class. In contrast, object detection
classifies the regions of the image into a different class and
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Fig. 3: The Human presence using the thermal sensor array at different distances after applying the proposed pre-processing
techniques.

draws a bounding box around the object of interest. In order
to make TSA adaptive to different locations, object detection
may not work well due to the high intra-class variation of
the human object in the thermal scene at different sensor
locations and human-sensor distances. Fig 3 shows the human
presence in the thermal scene after applying the pre-processing
techniques at distances from 1m to 9m. It can be observed
from the Fig 3 that the human presence changes its size and
topology with respect to the distance. Therefore, instead of
detecting the human object, this paper proposes to use a deep
convolutional encoder-decoder network to classify each pixel
in the thermal scene acquired by the TSA to either human or
background classes.

The convolutional network architecture proposed in [36]
is used here. The first path of this network, the encoder, is
used to capture the context of the thermal image. The encoder
consists of a typical stack of convolutional and max-pooling
layers. The following part is the decoder part, which is the
symmetric expanding part that enables the precise localisation
using transposed convolutions. In total, the architecture of
this network has 23 convolutional layers. The reason behind
choosing this network architecture with the TSA is that it is
designed for low-resolution images and does not require an
extensive dataset as it performs excessive data-augmentation
techniques per itself.

The network is optimised using Adaptive Moment Estima-
tion (Adam) [37] to compute the adaptive learning rates for
each parameter using gradient descent optimisation approach.
This optimiser computes the first squared gradients mt (the
mean) and the second squared gradients vt (the uncentered
variance) as follow:

mt = β1mt−1 + (1− β1) gt (1)

vt = β2vt−1 + (1− β2) g2t (2)

mt is the estimate of the first moment of the gradient, where
vt is the estimate of the second moment of the gradient.
These estimates are biased towards zero, particularly during
the initial time steps when the decays rates are small (i.e. β1
and β2 are close to 1). To compute the bias-corrected first and
second moment estimates:

m̂t =
mt

1− βt1
(3)

v̂t =
vt

1− βt2
(4)

Then, the network weight update as follow:

wt = wt−1 − η
m̂t√
v̂t + ε

(5)

The initial default value for β1 is 0.9, β2 is 0.999, and 10−8

for ε.
The network is trained with a dataset containing 47 labelled

thermal images acquired from one human object from a
vertical position at distances from 0.5m to 9m. The output
of this network is a matrix that shows the class (human or
background) of each pixel, i.e. a binary mask that shows the
human presence in the scene.

C. Post-possessing
The semantic segmentation technique proposed in the pre-

vious section has one drawback which comes from the low-
resolution thermal sensing methodology itself. Unlike the RGB
camera, the TSA also senses the thermal noises left by humans
even when they have left the thermal scene, which has a similar
temperature to the human body. As a result, the semantic
segmentation may classify these noisy pixels belong to human.
To overcome this drawback, a post-processing stage containing
three phases is introduced.

The first phase is the connectivity-filter to remove thermal
noises that have a similar human temperature, for example,
noises that generated by the human body or a warm object that
have similar temperature with the humans such as a warm cup
of coffee. The connectivity-filter is based on morphological
operations. Specifically, the 8-connected algorithm [38] finds
each connected component in the mask generated by the
semantic segmentation network. The methodology behind this
algorithm is to cluster each object based on the connectivity of
its values. Each value in the mask mentioned above belongs
to the same object if it has the same value (0 or 1) and is
connected along the diagonal, horizontal, or vertical direction.
Any connected component which is less than or equal to 30
pixels is considered to be a thermal noise and to be removed.
This size is calculated based on finding the minimum human-
size acquired using the TSA from a maximum distance of
9m. Next, the second image processing technique used is the
Flood-Fill algorithm [39] to fill holes in human existence in
the mask obtained from the last step. These holes may appear
as a result of thick clothing, which reduces the temperature
acquired for the human body by using the TSA. This decreases
in the human temperature values can be seen as background
pixels by the semantic segmentation network.

Since the colourmap is a colourful representation of the
scene temperatures, human at far long distances from each
other lead to colour the distant human presence to background
colours. Therefore, the second phase of the post-processing
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Fig. 4: Illustrative results of the proposed framework, (a) the thermal images after applying the pre-processing techniques,
(b) the human presence locations after using semantic segmentation, connectivity filter, and the extra human validation

techniques.

stage is to repeat the previous steps starting from obtaining
a new RGB image of the interpolated heat-map without the
locations of segmented human presence and adding the new
segmented human, if found to the previously segmented mask.
This extra-human presence validation phase repeats until the
scene turned to an empty occupancy.

Fig 4 shows a few examples of applying the pre-processing,
semantic segmentation, extra-human validation, and the con-
nectivity filter to locate the human presence in the thermal im-
ages obtained by the TSA. Figs 4 (a) shows the pre-processed
heat-maps in different sensor location, human pose, human-
human distance, and sensor-human distance, where Figs 4
(b) shows the corresponding human presence in these thermal
images after applying the semantic segmentation, extra-human
validation, and the connectivity filter. As mentioned earlier, the
encoder-decoder network for the semantic segment the human
heat-map were only trained to detect the human presence with
only one person from a vertical position, and these illustrative
examples are all unseen data for the network.

At this stage, the human presence in the heat-maps con-
verted to RGB images has been determined. However, human
temperature values are lost because they are converted to RGB
values to focus on pixel intensity rather than the temperature
value. Therefore, the third phase of the post-processing stage is
to restore human temperatures through multiplying the masks
obtained using the semantic segmentation, connectivity filter,
and the extra human validation, which shown in 4 (b), by
the interpolated heat-maps to count the number of people as
described in the following section.

D. Estimating the Occupancy Using Machine Learning
Approach

The final stage of the proposed methodology is to count the
number of people using the TSA. If the sum of the computed
mask from the semantic segmentation and the post-processing
techniques is zero, it means no human presence in the thermal
scene. Otherwise, two different machine learning approaches
were evaluated to estimate the occupancy. In particular, a
classification model using Adaptive Boosting (AdaBoost) [40]
and a regression model using shallow neural network [41]
have been developed to count the number of people after

segmenting the human presence from the thermal images.
The primary difference between these two approaches is that
classification deals with the problem of predicting a discrete
class label, where the output of the regression is a continuous
quantity.

1) Classification for Occupancy Estimation : Boosting is a
type of classification algorithms, which seeks to boost the
accuracy of a weak learner (a classifier that performs poor
in a given classification problem) by having multi-learners
and then fuse them to a strong learner. The weak learners
in AdaBoost are decision trees with a single split, called
decision stump. The weights of the observations in the first
iteration are equal. The classification model in AdaBoost is
then improved by training the decision trees sequentially.
Each of these weak learners tries to correct its predecessor
by focusing on the incorrect observations in the previous
iterations by updating weights. Therefore, misclassified objects
in the previous iteration carry more weights than the correct
classified observations to enable the weak learner to classify
the hard samples in the training dataset.

In this paper, an extension of the AdaBoost algorithm
to a multi-class problem called AdaBoost.M2 described in
Algorithm 1 is used as a holistic classification approach. The
e-th training set for this algorithm includes the segmented
human heat-maps x obtained after applying the pre-processing,
semantic segmentation, and the post-processing techniques,
where y represents the class label (the number of people
belongs to the set Y ). The distribution Dt(i, y) is maintained
over the training set E and updated sequentially in each
iteration c based on the output of that iteration. As mentioned
earlier, misclassified training samples carries more weights
than those correctly observed in the next iteration. By doing
so, the update rule guarantees the upper bounds on training
and generalisation error rates.

2) Regression for Occupancy Estimation: The second step
to estimate the occupancy is a regression through estimating
the relationships between the segmented heat-maps and the
number of people in the scene using an artificial neural
network. In particular, a shallow neural network with only one
hidden layer with sigmoid neurons and one output layer is used
to determine the number of people in the scene. The input of
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Algorithm 1 The AdaBoost.M2 algorithm to classify each thermal scene into a class label, which represents the number of
people in each scene.

Input: 1) Series of E of training samples {(x1, y1), . . . , (xe, ye)} with labels ye ∈ Y = {1, . . . , j}
2) D represents the distribution over the E samples
3) Weak learning algorithm DecisionTree
4) Counter C for the number of iterations

1: Initialize: The weight vector: w1
i,y = D(i)/(J − 1), where i = 1, . . . , E, y ∈ Y − {yi}.

2: for c = 1, 2, . . . , C do
3: qc(i, y) =

wc
i,y∑

y 6=yi
wc

i,y

4: Dc(i, y) =
W c

i∑E
i=1W

c
i

(y 6= yi)
5: Call DecisionTree. . Given the distribution D, and label weighting function qc; return a hypothesis
Gc : X × Y → [0, 1]

6: εc =
1
2

E∑
i=1

Dc(i, y)

(
1− gc(xi, yi) +

∑
y 6=yi

qc(i, y)gc(xi, y)

)
. Calculate the psudo-loss of gc.

7: βc = εc/(1− εc)
8: wc+1

i,y = wci,yβ
1
2 (1+gc(xi,yi)−gc)(xi,y)
c . Update the new weights vector, for i = 1, . . . , E, y ∈ Y − {yi}

9: end for
Output: gf (x) = argmax

y∈Y

C∑
c=1

log 1
βc
gc(x, y)

the network is the segmented heat-maps, and the output is the
number of people. The network is trained using the Levenberg-
Marquard backpropagation algorithm [42]. This algorithm
aims to minimise the sum of the squares of deviations S(β) of
a set of pair n (xi, ŷi) of input heat-maps x and the number
of people ŷ by finding the parameters β of the model output
f(x,β).

β̂ ∈ argminβ S(β) ≡ argminβ

n∑
i=1

[ŷi − f (xi,β)]2 (6)

The training of the network terminates when an increase
in the mean square error of the validation dataset is detected.
In this network, in contrast to classification, the result in the
regression is a continuous value. Therefore, the output ŷ is
rounded to the nearest decimal point as our goal is to estimate
the discrete number of people.

IV. EXPERIMENTS

To evaluate the performance of the proposed methodology,
experiments were conducted with two different configurations
of sensor locations. Correspondingly, two kinds of data were
collected in different indoor environments and sensor loca-
tions.

At the first stage, the data was obtained while placing the
sensor on a vertical position, as shown in Fig 5(a). Within
this stage, two subsets of data were collected. The first subset
consists of 47 thermal scenes in which only one person moves
in the sensor field of view up to 9 meters long. The thermal
objects in this subset are then labelled as either human or
background objects. The second subset is used to analyse the
effect of human distance on sensor performance. It is obtained
in a human presence at distances of 0.5m to 9m away from
the sensor. This subset is collected every 0.5m, and its size
is 325. The third subset collected with one, two, and three

Fig. 5: Data collection stages from two different indoor
environments, (a) the sensor is placed on the wall, (b) the

sensor is on the ceiling.

different occupants moving in the sensor field of view to assess
the performance of the occupancy estimation system. The size
of this subset is 214.

The second stage aims to assess the adaptability of the
proposed framework to work in a different indoor environment
and sensor location. In this stage, the sensor is placed on
the ceiling of the room, as shown in Fig 5(b). The dataset
was collected in four different scenarios: one, two, three, and
four occupants were moving in the scene. The size of this
dataset is 203. In addition to the above dataset, 128 thermal
scenes were collected from two empty-human environments
and sensor locations with thermal noises such as hot kettle,
laptop, and heater when turned on to evaluate the proposed
framework ability to detect the empty occupancy environment.
In total, 917 thermal scenes collected to conclude the results
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Fig. 6: The effect of distance on human presence, (a) the minimum, maximum, and average temperatures, (b) the size of the
human presence in the thermal scene, (c) the variance in human temperature, (d) the estimate of the entropy.

of this paper.

A. Human-Sensor Analysis

To assess the impact of the distance on the human presence
using TSA, a subset of the described dataset above is used.
The dataset has different human heat-maps every 0.5m and
up to 9m in length as described earlier, which makes a total
of 18 distance steps. Further, an average human heat-map at
every 0.5m is computed. This average human heat-map for
each distance step aims to avoid biased analysis of a random
selection of a human heat-map.

Fig 6(a) shows the effect of the human-sensor distance
on the value of the acquired temperature. Specifically, the
minimum, maximum, and average temperature of a human
presence at different distances are shown. It can be seen the
acquired human temperatures decrease when a person moves

away from the sensor.

As shown in Fig 6(b), and Fig 6(c) the sizes and the
temperature variances of human presence vary depends on
the relative location of the human subject to the sensor.
One observation can be drawn from these figures; there is
a significant decrease in the size of the human presence and
temperature variance in the first 1.5m. The decrease in the
size of the human presence and the variance continues beyond
1.5m, but with a smaller interval.

The common pattern of Fig 6(a), Fig 6(b), and Fig 6(c)
is that they all have relatively stable values starting from a
distance of 6m meters and beyond. However, this stability
does not exist in the entropy estimation of human presence at
different distances, as shown in Fig 6(d). Besides, it can be
identified that a linear relationship between the entropy metric
for the human presence and the distance for every 1m.
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Based on these results, it can be concluded that the TSA
and all the metrics calculated based on the thermal images
are quite sensitive to the distance. Furthermore, the calculated
statistical metrics, in particular, the entropy point estimate can
be used to determine the human distance from the sensor using
a suitable function approximator (e.g. our shallow ANN).

B. Occupancy Estimation Experimental Results
The first experiment was to use the collected empty occu-

pancy dataset and evaluate the performance of the proposed
framework to detect the empty human environment before pro-
ceeding to the classification or regression models as described
in Section III-D. The proposed framework was able to detect
the empty occupancy with 100% accuracy. This performance
validates the proposed pre-processing, semantic segmentation,
and post-processing techniques in segmenting only the human
presence from the thermal scene.

The second experiment was to examine the performance of
the classification approach using AdaBoost. The used dataset
obtained from the vertical position. In this validity, the dataset
is divided into 70% for model training and 30% for testing.
The performance of this classification model in occupancy
estimation is 98.43% achieved accuracy.

The third experiment is to validate the performance of
the classification model with a different machine learning
approach. In this experiment, the regression approach based
on a shallow neural network is used. The same data used to
train and test the classification model, is also used to train
and test the shallow network. This dataset is divided into 70%
for training, validating and testing the shallow neural network
during the network training stage, and 30% for testing the
performance of the trained shallow neural network to count
the number of people in the thermal scene. The performance
of the regression model in occupancy estimation is 93.75%.

The results of the above experiments show that the classi-
fication model has better accuracy than the regression model.
The assumed reason for the lower accuracy in the regression
was due to the uncertainty for some of the regression outputs.
Hence, as mentioned above, the output of the regression is
a continuous numerical value. Since this paper is concerned
with counting a discrete number of people, the output of the
regression model is rounded to the nearest decimal number.
Uncertainty occurs when the output has one half (e.g. 1.5,
2.5, etc.).

V. DISCUSSION

This experiment has two main aims. The first aim is to
validate the adaptability feature of the proposed framework
for operating in a different indoor environment and sensor
location. Therefore, the sensor is installed on the ceiling
of the room in a different home. Hence, the trained deep
convolutional encoder-decoder network from a vertical sensor
location is used to segment the human presence from the
overhead thermal scenes. The second aim of this experiment
is to validate the possibility to parametrise the proposed
framework to predict more people in the scene. Therefore,
the dataset collected for this experiment contains more people

compared to the previous experiment described in Section IV-
B.

The configuration of this experiment dataset is divided in the
same way as the vertical sensor dataset used in the previous ex-
periment is divided with the same classification and regression
approaches. Regarding the classification approach using the
AdaBoost algorithm, the system achieves an accuracy of 100%
in estimating the occupancy from 1 to 4 different occupants
moving in the thermal scene. However, the system achieves
58.33% accuracy using a shallow neural network to estimate
the occupancy.

The classification approach using the AdaBoost algorithm
shows a high-performance in estimating the occupancy in dif-
ferent sensor location and environment using the proposed pre-
processing, human segmentation, and post-processing tech-
niques. However, the regression approach shows a lower
performance in estimating the occupancy from the overhead
thermal scenes. This was due to the high uncertainty of the
output of the regression model in the overhead thermal scenes
compared to vertical-based scenes. On the other hand, the
regression approach is a promising approach to estimate the
occupancy in an unsupervised learning problem, in which the
number of people is greater than the number used to train the
model.

Furthermore, the proposed approach of this paper has been
compared with the state-of-the-art approaches. Table I shows a
comparison of the proposed approach and other notable works
in terms of the experimental setup, adaptability of the sensor
placement, occupancy estimation technique, and experimental
results.

VI. CONCLUSION AND FUTURE WORK

Thermal sensor array (TSA) is a privacy-friendly and low-
resolution sensing technique. This paper has proposed a novel
framework which is adaptive to TSA location for human
segmentation and occupancy estimation. The proposed frame-
work is evaluated in different indoor environments, sensor
locations, the number of occupants, and machine learning
approaches. Furthermore, an investigation in the impact of
human distance on the TSA is provided. From the obtained
results, it can be concluded that the use of a deep convolu-
tional encoder-decoder network with the pre-processing and
post-processing techniques that consider the characteristics of
the low-resolution TSA is an accurate approach for human
segmentation. Besides, the adaptive boosting classification
algorithm provides accurate results to estimate the occupancy
in the proposed framework.

This research confirms that human-centred applications us-
ing TSA should focus on segmenting human presence rather
than human shape detection. This is because the intra-class
variations in the human presence using the TSA is relatively
high compared to the normal camera with respect to the
human-sensor distance and sensor location. Future work could
be conducted to evaluate the accuracy of the entropy point
estimate and other statistical measurements in predicting the
distance between the human and the sensor location. Also,
to assess the reliability of this low-cost TSA to detect the
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TABLE I: A comparison of the experimental setup, sensor placement, occupancy estimation method and results of the
proposed system with the state-of-the-art.

Paper/Method Ref. Sensor Adaptive Sensor Placement Sensor Location Estimation Method Accuracy

Beltran et al. [20] TSA, PIR Non-adaptive Ceiling K-Nearest Neighbors NA
Gomez et al. [22] TSA Non-adaptive Wall Convolutional Neural Network 53.7%
Tyndall et al. [10] TSA, PIR Non-adaptive Ceiling K* algorithm 82.56%

Metwaly et al. [25] TSA Non-adaptive Ceiling Feedforward Neural Network 98.90%
Wall AdaBoost.M2 98.43%

Proposed in this paper TSA Adaptive Wall Shallow neural network 93.75%
Ceiling AdaBoost.M2 100%
Ceiling Shallow neural network 58.33%

abnormal human temperature in the human presence using
reliable medical thermometers. Besides, future work could also
be directed to maximise the occupancy estimation coverage
area through a multi-sensor fusion approach.
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