
41 0675838 1

ProQuest Number: 10183127

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10183127

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

HOTTING*5 TRENT
UNIVE:' '"RARY

New Hybrid Genetic Algorithms for

Parameter Search

Tarek A. El-Mihoub

A thesis submitted in partial fulfilment of the

requirements of Nottingham Trent University for the degree

of Doctor of Philosophy

April 2006

Contents

1 Introduction.. 1

1.1 Hybrid genetic algorithms.. 1

1.2 Research Perspective..3

1.3 Dissertation Overview..3

2 Literature Review..6

2.1 Single-point search and local search methods.. 7

2.1.1 Improving efficiency of local search.. 8

2.1.2 Avoiding the trap in a local optimum...11

2.1.3 Dynamic hill clim bing... 12

2.1.4 Guided local search..12

2.1.5 Tabu search... 13

2.1.6 Simulated annealing...14

2.2 Population-based search methods.. 16

2.2.1 Ant colony optimisation.. 16

2.2.2 Genetic algorithms.. 19

2.3 Hybrid genetic algorithms...31

2.3.1 Capability enhancement...31

2.3.2 Optimising the control parameters................................ 37

2.4 Learning and local search...38

2.4.1 Lamarckian learning... 39

2.4.2 Baldwin learning... 39

2.4.3 Hybrid Lamarckian-Baldwinian m odels... 41

2.5 Balance between local and global Search..42

2.5.1 Frequency of local search... 43

2.5.2 Duration of local search...45

2.5.3 Probability of local search and local search selection.....................................46

3 Extent of local search... 52

3.1 Duration of local search and hybrid performance..52

3.1.1 The exploring ability... 52

3.1.2 The ability of recovering from sampling errors..56

3.1.3 The ability to combat the hindering effect..56

3.2 Experiments.. 58

4 Local search and hybrid’s performance..68

Contents

4.1 Population size and local search..70

4.1.1 Population sizing m odels...71

4.1.2 Computation complexity and population s ize ... 73

4.2 Local search and population size requirements..76

4.3 Algorithms and test functions... 79

4.4 Experiments and discussion.. 80

4.4.1 Effects on convergence speed..81

4.4.2 Effects on solution quality... 82

4.4.3 Effect on required population s ize .. 85

5 Improving Lamarckian Search... 90

5.1 The proposed search algorithm.. 92

5.1.1 The search mechanism.. 93

5.1.2 An illustrative example... 94

5.2 Empirical methodology used.. 96

5.3 Experiments.. 98

5.3.1 Minimum population size..98

5.3.2 Effect on schema processing..101

5.3.3 The search method as a stand-alone algorithm...105

6 Evolution to adapt the duration of local search...112

6.1 Adaptation in genetic algorithms..112

6.2 Adaptation in hybrid algorithms..115

6.2.1 Duration of local search and self-adaptation.. 117

6.3 The Algorithm... 121

6.4 Test functions... 122

6.5 Experiments.. 124

6.5.1 Evaluating the performance of the self-adaptive hybrid algorithm.............. 125

6.5.2 Evolutionary self-adaptation versus co-evolutionary self-adaptation..........144

6.5.3 Variation or Adaptation..150

7 Self-adaptive learning approach.. 153

7.1 Utilising local search information..154

7.2 The evolutionary self-adaptation of learning approach.....................................155

7.2.1 The algorithm...156

7.3 Experiments.. 157

7.3.1 Search effectiveness.. 158

7.3.2 Search efficiency... 162

7.3.3 Evolution of learning strategy..166

Contents

7.4 Conclusions. ..169

8 An ant-based algorithm to self-adapt genetic-local hybrids................................. 171

8.1 Ant colony optimisation... 172

8.2 Ant colony optimisation and genetic algorithms... 173

8.3 Ant optimisation and genetic-local hybrid self-adaptation................................ 174

8.4 Experiments.. 178

8.4.1 Search effectiveness and efficiency...180

8.4.2 The ability of the AntSAHG algorithm to adapt to different environments ..185

9 Conclusions and further work.. 188

9.1 Research findings and contributions...188

9.1.1 Duration, probability of local search, learning strategy and hybrid’s

performance ..189

9.1.2 Avoiding interference with the genetic search..192

9.1.3 Adapting the duration of local search.. 193

9.1.4 Adapting the learning strategy................................. ..195

9.1.5 Ant-based algorithm to self-adapt the hybrid's control parameters.............. 196

9.2 Future Directions... 197

9.2.1 Avoiding interference with the genetic search..197

9.2.2 Optimal utilisation of search tim e ... 197

9.2.3 Ant-based algorithm as a self-adaptive mechanism......................................198

9.3 Summary... 201

Bibliography..204

List of Figures

Figure 2.1. Convergence to a Maximum by Brent’s Method 9

Figure 2.2: Pseudo Code of a Genetic Algorithm. 22

Figure 2.3: Samples Can Misguide the Genetic Search. 28

Figure.3.1: The Combined Effect of the Pure Lamarckian Learning Strategy

and the Complete Local Search on Problem Search Space. 53

Figure 3.2: The Combined Effect of the Pure Lamarckian Approach

and the Duration of Local Search. 54

Figure 3.3: The Combined Effect of the Pure Lamarckian Strategy.

and the Partial Local Search on Problem Search Space. 55

Figure 3.4: The Effect of the Partial and the Complete Local Search

on Fitness Landscape. 57

Figure 3.5: The Landscape of the Test Function Used. 59

Figure 3.6: Comparing the Sampling Ability of SGA and HGA with

a Partial and a Complete Local Search. 61

Figure 3.7: The Effect of Duration of Local Search on the Sampling Ability

of the Global Genetic Algorithm. 62

Figure 3.8: The Effect of Local Search Duration on Sampling Local Optima. 64

Figure 3.9: The Ability to Find the Global Optimum. 65

Figure 3.10: The Effect of Local Search Duration on Innate

and Acquired Fitness 67

Figure 4.1: The Gambler Starts with a Capital of a Building-Blocks

and Ends with either 0 or N Buiiding-blocks. 72

Figure 4.2: Fitness Landscapes for the Test Functions. 81

Figure 4.3: Effect of Learning Strategy on Convergence Speed. 82

Figure 4.4: Effect of Learning Strategy and Search Probability on Solution

Quality Using Different Population Sizes. 83

Figure 4.5: Solution Qualities for F2. 84

Figure 4.6: Solution Qualities for F1. 84

Figure 4.7: Effect of Learning Strategy and Search Probability

on Population Size. 86

Figure 4.8: Effect of Lamarckian Proportion and Search Probability

on Solution Quality 87

IV

List of Figures

Figure 4.9: Effect of Learning Strategy and Local Search Probability

on Population Size of F1. 89

Figure 5.1: An Illustrative Example. 95

Figure 5.2: The Effect of Group Size and the Probability Factor on

the Hybrid’s Minimum Population Size and Convergence Speed

of the MaxOne Problem. 100

Figure 5.3: The Effect of Group Size and the Probability Factor on

the Hybrid’s Minimum Population Size and Convergence Speed

of the Binlnt Problem. 101

Figure 5.4: Effect on the Schema Processing when Solving

the Binlnt Problem. 102

Figure 5.5: Solving the Schwefel Function 103

Figure 5.6: The Results of the Five-modal Exponential Problem Experiments. 104

Figure 5.7: The Ten-modal Exponential Problem. 105

Figure 5.8: The Convergence Details of the Schwefel Function. 106

Figure 5.9: Comparing the Convergence of the Proposed Algorithm with

the Pure Genetic Algorithm and the Hybrid on 5-modal

Exponential Problem. 107

Figure 5.10: The Convergence Speed of the Proposed Algorithm

as a Stand-Alone Algorithm. 108

Figure 5.11: Comparing the Effect of the Probability Factor and the Group

Size on Algorithm Performance. 109

Figure 5.12: Comparing the Convergence of the Proposed Algorithm with

the Pure Genetic Algorithm and the Hybrid on 5-modal Problem. 110

Figure 6.1: The Self-Adaptive local-search-Duration Hybrid (SADH) Algorithm. 122

Figure 6.2: Results of Optimising the Ellipsoidal Function with 10 Variables. 128

Figure 6.3: Optimising the Ellipsoidal Function Using the Baldwinian Approach. 129

Figure 6.4: Optimising the Ellipsoidal Function Using

the 50% Lamarckian Approach. 130

Figure 6.5: Optimising the Ellipsoidal Function Using the Lamarckian Approach.131

Figure 6.6: The Results of Solving the 20-dimensional Rastrigin Problem. 132

Figure 6.7: Optimising the Rastrigin Function using the Pure

Baldwinian Approach. 133

Figure 6.8: Optimising the Rastrigin Function Using 50% Lamarckian approach. 133

Figure 6.9: Optimising the Rastrigin Function Using the Lamarckian Approach. 134

V

List of Figures

Figure 6.10: The Results of Optimising the Schwefel Function

with 10 variables. 135

Figure 6.11: The Baldwinian Search and the Schwefel Function.

Figure 6.12: Optimising the Schwefel Function Using

the 50% Lamarckian approach. 136

Figure 6.13: Optimising the Schwefel Function Using

the Lamarckian Approach. 137

Figure 6.14: The Results of Solving the Griewank Problem with 10 Variables. 138

Figure 6.15: Optimising the Griewank Function Using the Baldwinian Approach. 139

Figure 6.16: Optimising the Griewank Function Using

the 50% Lamarckian Approach. 140

Figure 6.17: Optimising the Griewank Function Using

the Lamarckian Approach. 140

Figure 6.18: The Results of Optimising the Rosenbrock Function

with 10 Variables. 141

Figure 6.19: Optimising the Rosenbrock Function Using

the Baldwinian Approach. 142

Figure 6.20: Optimising the Rosenbrock Function using

the 50% Lamarckian Approach. 143

Figure 6.21: Optimising the Rosenbrock Function Using

the Lamarckian Approach. 144

Figure 6.22: The Effect of Modifying the Mutation Rate

on the Baldwinian Search. 146

Figure 6.23: The Combined Effect of Modifying the Mutation Rate and

the 50% Baldwinian approach. 147

Figure 6.24: The Effect of Modifying the Mutation Rate

on the Lamarckian Search. 147

Figure 6.25: The Co-evolutionary Self-adaptive Baldwinian Search

with the Sechwefel Function. 149

Figure 6.26: The Co-evolutionary Self-adaptive Baldwinian Search

with the Rastrigin Function. 150

Figure 6.27: Using a Random Number of Local Iterations

with a Baldwinian Hybrid. 151

Figure 7.1: Percentages Converged to the Global Optimum

of the Ellipsoidal Function. 159

vi

List of Figures

Figure 7.2: Percentages Converged to the Global Optimum

of the Griewank Function. 160

Figure 7.3: Percentages Converged to the Global Optimum

of the Rastrigin Function. 161

Figure 7.4: Percentages Converged to the Global Optimum

of the Schwefel Function. 162

Figure 7.5: Convergence Speed of the Ellipsoidal Function. 163

Figure 7.6: Convergence Speed of the Griewank Function. 164

Figure 7.7: Convergence Speed of the Rastrigin Function. 165

Figure 7.8: Convergence Speed of the Schwefel function. 166

Figure 7.9: The Evolution of Learning Strategy when Solving

the Ellipsoidal Problem. 167

Figure 7.10: The Evolution of Learning Strategy when Solving

the Rastrigin Function. 168

Figure 7.11: The Evolution of Learning in the ASH Algorithm Solving

the Ellipsoidal Function. 169

Figure 7.12: The Evolution of Learning in ASH Algorithm Solving

the Rastrigin Function. 170

Figure 8.1: The Search Space and the Neighbourhood Notion. 176

Figure 8.2: The Speed of Finding the Global Optimum of

the Ellipsoidal Problem. 181

Figure 8.3: The Speed of Finding the Global Optimum of

the Griewank Function. 181

Figure 8.4: The Ability to Find the Global Optimum of the Schwefel Function. 182

Figure 8.5: The Speed of Finding the Global Optimum of

the Schwefel Function. 183

Figure 8.6: The Ability to Find the Global Optimum of the Rastrigin Function. 184

Figure 8.7: The Ability to Find the Global Optimum of the Ridge Function. 185

Figure 8.8: The Ability to Adapt to Different Population Sizes. 186

Figure 8.9: The Ability to Adapt to Different Optimisation Problems. 187

Figure 9.1: Search Space for the Problem of Finding an Optimal

Combination of Operators and Strategies 201

Abstract

A genetic algorithm is a computational optimisation algorithm that is inspired by the

principles of natural selection and genetic dynamics. Hybridising other optimisation

techniques within the genetic algorithm framework can enhance the search performance.

The chances of improving the performance of a hybrid depend on the details of its design.

This thesis aims to employ learning to utilise the genetic information that is readily

available to maximise the effectiveness and the efficiency of a hybrid. Learning can be

incorporated in different ways to achieve this goal. It can utilise solution-specific

knowledge to improve its contribution in the search process. It can also utilise the direct

and indirect influence of the design choices on the exploration-exploitation trade-off to

adapt the search control parameters to a problem without external control.

This thesis examines the different hybrid design issues and their effect on the hybrid’s

performance. It contributes towards discovering the nature of the relations between the

hybrid design choices and the hybrid’s performance. The research demonstrates that the

two main drawbacks of the basic learning models, which are the hindering effect and the

diversity limitation, can be alleviated through adjusting the duration and the probability of

local search. Some of the search method’s features that enable it to be incorporated within a

genetic search to accelerate finding high quality solutions are defined. They empower the

search method to learn the nature of the search space through using the genetic information.

An effective model with such features is also presented.

This thesis also investigates different ways of achieving a balance between exploration and

exploitation. Utilising learning to make use of the direct influence of the details of the local

method on this balance can help to find an optimal setup for this method. The investigation

demonstrates the effectiveness of applying co-evolution for such utilisation. It also analyses

the effect of using the fitness as productivity metric on the search’s behaviour. It also

illustrates the impact of the hindering effect on this mechanism and the possible ways to

combat it. The research shows the effectiveness and the efficiency of employing evolution

to use the indirect influence of the learning model on the utilisation of the search time for

online learning of the effectiveness of the different learning strategies. It also explains the

slow convergence of the evolutionary self-adaptive algorithms that adjust more than one

control parameter based on the probabilities of introducing epistasis.

A novel form of hybridisation between ant-based and genetic-local hybrid algorithms is

proposed. This work has demonstrated the ability of ant-based algorithms for reinforcement

Abstract

learning. They have been shown to be capable of finding, without any form of human

intervention, an optimal setup for a genetic-local hybrid algorithm that can effectively and

efficiently solve a given problem.

List of publications

El-Mihoub, T., Hopgood, A.A., Nolle, L., Battersby, A.: Performance of Hybrid Genetic

Algorithms Incorporating Local Search, Proceedings of the 18th European Simulation

Multiconference ESM 2004, Magdeburg, Germany, 13-14 June 2004, pp 154-160, ISBN 3-

936150-35-4.

El-Mihoub, T., Hopgood, A.A., Nolle, L., Battersby, A.: Hybrid Genetic Algorithms: a

review to appear in the Special Issue "Hybrid Intelligent Systems using Neural Networks,

Fuzzy Logic, and Genetic Algorithms” of Engineering Letters journal.

El-Mihoub, T., Hopgood, A.A., Nolle, L., Battersby, A.: Self-adaptive Baldwinian Search

in Hybrid Genetic Algorithms, to appear in Proceedings of the 6th Fuzzy Days International

Conference on Computational Intelligence, 2006

El-Mihoub, T., Nolle, L., Schaefer, G., Nakashima, T,, and Hopgood, A.: A Self-Adaptive

Hybrid Genetic Algorithm for Color Clustering, to appear in Proceedings of the 2006 IEEE

International Conference on Systems, Man, and Cybernetics.

Acknowledgments

First, I would like to thank and praise Allah. Without his help this thesis would have not

been possible.

I would like to thank my academic supervisors Adrian Hopgood, Lars Nolle, and Allan

Battersby for their boundless and instructive help, criticism and patience. I am grateful to

them for always having an open door to discuss, listen and help with my research.

I am also grateful to my colleagues and friends who have provide help, advice and

companionship during my study.

I should also acknowledge the encouragement and the support of my brothers and sisters.

Gratitude is also due to my sons Mohamed Algasim and Mayyar who make my life and my

study enjoyable.

Finally, my wife deserves special mention for her constant support and understanding.

To my parents

and my sister Amal

Chapter 1 Introduction

This dissertation investigates the degree to which learning can extend the

effectiveness and efficiency of hybrid genetic search algorithms. It describes a set of

experiments that provide detailed insight into the effect of design choices for the hybrid on

the search’s behaviour and how they relate to each other. It proposes a probabilistic local

search method as a solution to the problem of interference between genetic schema

processing and the use of local knowledge. It also describes and evaluates hybrid genetic

algorithm solutions that can adapt to a wide range of optimisation problems.

A genetic algorithm is a population-based search and optimisation technique that mimics

the process of natural evolution. The two main concepts of natural evolution, which are

natural selection and genetic dynamics, inspired the development of this method. The basic

principles of this technique were first laid down by Holland (Holland 1975) and are well

described, for example, in (De Jong 1975) (Goldberg 1989a).

1.1 Hybrid genetic algorithms

A genetic algorithm evolves a set of candidate solutions through examining their

fitness to select the most promising ones, and manipulating those using genetic operators in

order to find optimal solutions. Genetic algorithms are able to find acceptable solutions to a

wide verity of problems (De Jong 2005). However, they are likely to be outperformed by

problem-specific techniques in both speed and accuracy of the final result (Areibi et al.

2001). Genetic algorithms are not well suited to fine-tune the solutions quality (Reeves

1994), but on the other hand they are effective at exploring the search space (Ibaraki 1997).

The incorporation of a local search method or a problem-specific technique into a genetic

algorithm is essential if an effective and efficient algorithm is desired (Areibi et al. 2001).

Combining global and local search is a strategy used by many successful global

optimisation approaches (Talbi 2002), and hybrid genetic algorithms have in fact been

recognised as a powerful algorithmic paradigm for evolutionary computing. In particular,

the relative advantage of hybrid genetic algorithms over genetic algorithms is quite

consistent on complex search spaces (Lobo and Goldberg 1997).

The idea of improving the performance of a genetic algorithm by combining it with local

search methods for solving complicated optimisation problems has been investigated

extensively during the past decade, and different forms of hybridisation have been proposed

(Preux and Talbi 1999). A genetic algorithm can be used to capture a global view of the

1

Chapter 1 Introduction

entire search space of the optimisation problem while the local search method can be

utilised to incorporate some of the domain knowledge by performing local exploitation

(Lobo and Goldberg 1997). Because of the complementary properties of genetic algorithms

and local search methods, the hybrid approach often outperforms either method when they

are used individually (Goldberg and Vosser 1999).

The two common approaches for combining a genetic algorithm with a local search method

are Lamarckian evolution (the active form) and the Baldwin effect (the passive form)

(Anderson et al. 1997). Both forms use the metaphor that an individual learns during its

lifetime. In Lamarckian evolution, direct learning passes the improved characteristics of

each individual from one generation to another. This means both the change in the

genotypic information and the improved phenotypic fitness are passed to the next

generation as genotypic information at the end of the learning process. On the other hand,

in the Baldwin effect, only the improved phenotypic fitness is passed at the end of learning

process (Hinton and Nowlan 1987). Lamarckian is discredited in nature, but useful as an

algorithm. Although the Baldwin search strategy is slower than the Lamarckian strategy, it

is better at avoiding premature convergence by maintaining diversity (Whitley et al. 1994).

Search algorithms need to balance exploration across the search space with exploitation of

the optimum region. As local search in a hybrid genetic algorithm enhances exploitation,

the balance needs to be redressed to achieve optimal performance. Achieving this balance is

strongly dependent on the settings of a hybrid genetic algorithm’s control parameters,

which have significant impact on its performance (Hart 1994). Choosing suitable values for

these parameters is one of the main difficulties when building a practical pure or hybrid

genetic algorithm (Deb 1997).

In addition to parameter adjustment, there are several issues that need to be taken into

consideration when designing a hybrid search algorithm. These issues include decision­

making between global and local search to maximise effectiveness and efficiency based on

their cost, reliability and ability to use knowledge of problem domain (Lobo and Goldberg

1997). Incorporating some knowledge of the problem domain and some knowledge of the

strengths and weakness of the search methods can guide hybrid genetic algorithms to make

these decisions effectively. The way of utilising local information, i.e. the learning

approach, within a hybrid algorithm is also an important issue that faces the designers of

hybrid genetic algorithms due its effect on its performance.

Chapter 1 Introduction

1.2 Research Perspective

The focus of this dissertation is on gaining an understanding of the hybrid genetic

algorithm’s design issues and their influence on the hybrid’s performance. Hybrid design

choices related to the incorporation of a local search method are analysed to uncover key

features and relations that make a hybrid’s search effective and efficient without the need of

choosing the settings for the control parameters manually. The proposal, here, is to

investigate these design issues by designing, developing and testing hybrid genetic

algorithms that employ learning to direct their operations, and to adapt their control

parameters to find high quality solutions to a wide range of optimisation problems

efficiently. This investigation will focus on a decision-making problem and learning

strategies in order to get the most out of the genetic algorithm, as a global search method,

and the problem-specific technique, as a local search method. It will also examine possible

methods of controlling the hybrid genetic algorithm’s vast parameter space to make the

algorithm’s performance more effective without the need for any forms of human

intervention. The question this research seeks to address is “to what extent can the

incorporation of learning help a hybrid genetic algorithm search a solution space more

efficiently?”

The existing theoretical models of genetic algorithms are limited in use and applicability.

Therefore, the majority of theoretical work has been derived from experimentation. The

approach taken in this thesis is also based on the careful design, collection and analysis of

experimental results.

1.3 Dissertation Overview

This dissertation is divided into 9 chapters, beginning with this introduction. A

literature review of global optimisation, which is concentrated on genetic algorithms and

their hybrids, follows in chapter 2. Chapter 3 investigates the impact of the duration of local

search on the hybrid’s performance, whereas chapter 4 studies the effect of the probability

of local search and learning strategies on the hybrid’s performance. A probabilistic search

method is proposed in chapter 5 as a solution to reduce interference between genetic

schema processing and utilising local knowledge within a hybrid. Applying evolution to

self-adapt the duration of local search as a way to optimise the utilisation of hybrid’s time is

explored in chapter 6. The use of an adaptive technique to decide on the learning strategy is

investigated in chapter 7. Chapter 8 studies the use of ant colony optimisation to fully self-

adapt genetic-local hybrids. Chapter 9 draws the thesis to an end by providing a discussion

and recommendations.

3

Chapter 1 Introduction

In the following, the content of each of these chapters is outlined in greater detail.

Chapter 2 introduces single-point and population-based optimisation techniques. It

discusses the difficulties they face when used to solve global optimisation problems. An in-

depth examination of genetic algorithms and the different ways of hybridising them with

other search and optimisation methods follows in order to shed some light on the

effectiveness and efficiency of hybridising genetic algorithms. Two major genetic-local

hybrid design’s issues are then discussed. These issues include the different approaches for

employing local search information and various mechanisms for achieving a balance

between a global genetic algorithm and a local search method. This chapter emphasises on

the importance of combining genetic algorithms with other techniques to build competent

genetic algorithms that solve hard problems quickly, reliably and accurately without the

need for any forms of human intervention.

The third chapter investigates the influence of the duration of local search on the

performance of hybrid genetic algorithms. Its interactions with the learning strategy and

their combined effect on the sampling ability of the global genetic algorithm are studied. It,

then, analyses the effects of the duration of local search on its role in a hybrid to provide

insight into the expected behaviour of a hybrid depending on the duration of its local

search. The results shed some light on the combined effect of the duration of local search

and the learning strategy on the hybrid’s performance.

In the fourth chapter, the effects of the learning strategy and the probability of local search

on the performance of two hybrids with different mechanisms for deciding between global

and local search are explored. The way that both the learning strategy and the probability of

local search interact with each other and their combined effect on the hybrid’s performance

is analysed. The effect of both these factors on the population size requirements,

convergence speed, and solution quality is investigated. The results emphasise the

importance of the relation between the probability of local search and the learning strategy

on the hybrid’s performance.

A simple probabilistic search method is developed in the fifth chapter as a secondary search

method within a hybrid genetic algorithm. The developed method aims to make use of

some of the available genetic information to reduce any conflict with the genetic algorithm

schema processing in order to utilise the efficiency of the Lamarckian learning approach to

produce an effective search. This chapter evaluates this method as a secondary method in a

hybrid and as a stand-alone optimisation algorithm using three test functions with different

Chapter 1 Introduction

marginal fitness contribution of their genes. The results of the evaluation illustrate the

ability of the developed method to reduce disrupting the genetic schema processing.

The advantages and disadvantages of applying evolution to self-adapt the control

parameters associated with the utilisation of the local search within a hybrid genetic

algorithm are explored in the sixth chapter. The effect of this form of adaptation on the

hybrid’s performance on different test functions is studied. The impact of the implicit use

of the productivity metric as a measure to decide on local search control parameter values

on the self-adaptive hybrid’s performance is also analysed. The influence of the interactions

between learning strategy and local search method on the self-adaptation behaviour and the

possible ways to improve this form of adaptation are also studied. The performance of the

developed algorithm is compared with another adaptive algorithm.

The aim of the seventh chapter is to investigate the use of an adaptive approach to decide

on the learning mechanism. Assigning different learning strategies for the population’s

individuals over the course of the run via some intelligent means is investigated through

applying evolution to self-adapt the learning mechanism within a hybrid genetic algorithm.

This chapter examines the effect of this form of adaptation on the hybrid’s performance in

order to get some insight into its advantages and disadvantages. It also investigates the

interactions between this form of adaptive learning and two different adaptive hybrid

genetic algorithms.

In chapter 8, a novel form of hybridisation between an ant-based algorithm and a genetic-

local hybrid algorithm is proposed. An ant colony optimisation algorithm is used to monitor

the behaviour of a genetic-local hybrid algorithm in order to dynamically adjust the

probabilities of using the genetic operators, the local search operator, its duration, and the

learning strategies to adapt the hybrid’s performance to a given problem. The effectiveness

of using ant-based algorithm as a reinforcement learning approach is compared with the

effectiveness genetic algorithms in self-adapting hybrid genetic algorithms.

This thesis is drawn to an end by chapter 9, where a summary of the research findings is

given and the main contributions of the thesis are evaluated in some depth. Next, this thesis

is evaluated, suggesting where some more experiments are needed and where some

methods need further development. Finally, a section on further work describes key

directions of interesting further study to the research in the thesis.

Chapter 2 Literature Review

Optimisation is concerned with the computation and characterisation of the

minimum or maximum of mathematical functions (Hopgood 2001 pp. 164). Optimisation

problems are widespread in the mathematical modelling of real life systems for a very

broad range of applications (Horst and Pardalos 1995). Such applications include

economies of scale (Joborn et al. 2004), allocation and location problems (Houck et al.

1996) (Joines and Kay 2002), operation research (Tsang and Voudouris 1997), structural

optimisation (Striz and Sobieszczanski-Sobieski 1996) (Kim and de Week 2004),

engineering design (Deb 1999), network and transportation problems (Dorigo et al. 1999),

chip design (Areibi and Yang 2004), database problems (Bommel and der Weide 1992),

nuclear (Back et al. 1996 cited in Back et al. 1997) and mechanical design (Giraud-Moreau

and Lafon 2002) (Deb and Goel 2001), chemical engineering design (Lin and Miller

2004a) and control (Wang et al. 2003), and molecular biology (Morris et al. 1998)

(Shmygelska and Hoos 2005). These applications include also a number of other

combinatorial optimisation problems such as integer programming (Rudolph 1994) and

related graph problems (Grefenstette et al. 1985) (Julstrom 1999).

Researchers in different fields have suggested a huge number of optimisation techniques.

Unlimited refinements have made these techniques work on specific types of applications.

All these procedures are based on some common ideas and are furthermore characterised by

a few additional specific features. This chapter reviews some of these optimisation methods

and concentrates on solving the following general global optimisation problem (f)

m a x / (x) : x e S (2.1)

where f(x) is a continuous function on S (S here refers to the search space or the set of

all possible solutions), and S C 91r/ is a compact body. Some of the methods that will be

described require additional assumptions on the objective function f(x) or the feasible

region S . They will be noted whenever necessary. The optimal global solution value

/* = max *=*/<%> (2.2)

is assumed to exist and is attained, i.e. the set
S ’ = { * e S : / (*) = /* } (2.3)

is not empty. It is also assumed one or more local optimum values can exist with

flocal = m ax,e, / (*) ^ f (2-4)

where s C lS .

6

Chapter 2 Literature review

This chapter starts with an overview of single point search methods, the difficulties they

face when used to solve global optimisation problems, and the different techniques used to

improve their efficiency and effectiveness. Then, ant algorithms and genetic algorithms, as

population-based search methods, are reviewed. After that, the difficulties genetic

algorithms face when globally optimising problems and a brief description of the

techniques to overcome these difficulties are given. The hybridisation of single-point search

methods and the genetic algorithms, as choice to overcome the obstacles of global

optimisation, is discussed. Some issues that affect the hybrid performance and design are

reviewed.

2,1 Sinqle-point search and local search methods

The simplest form of search is single-point search. Its procedure can be

summarised in the following four steps:

Step I: Choose a potential solution from the search space and evaluate its merit or

fitness. Define it as the current solution.

Step 2: Modify the current solution to generate a new solution and evaluate the new

solution merit or fitness.

Step 3: If the new solution is better than the current solution, then exchange it with

the current solution; otherwise discard the new solution.

Step 4: Repeat the two previous steps until no modification can improve the current

solution.

The effectiveness of the single-point search depends on the modification applied to the

current solution. If the modification operator returns a potential solution from the search

space selected uniformly at random, the search becomes an essentially exhaustive search

(Michalewicz and Fogel 2000 pp.58) with a probability of re-sampling the same solution

more than once. However, if the modification operator uses neighbourhood information to

generate a new potential solution, the algorithm will be biased by the current solution. The

search for an optimum will be concentrated around the current solution and can be easily

trapped in a local optimum. This form of search is known as local search method or

neighbourhood search.

From the previous description of the local search algorithm, it is clear that any local search

has the following three basic components:

Chapter 2 Literature review

Neighbourhood: represents the subset of potential solutions that are immediately

reachable from a potential solution. If the size of this set is small then the

neighbourhood can be searched very quickly, but the search algorithm can be easily

trapped at a local optimum. In contrast, if the size of the neighbourhood is very large

there is less chance of being trapped, but the efficiency may suffer (Michalewicz and

Fogel 2000 pp.58).

Modification operator: represents the way of generating the next potential solution

from the current potential solution and determines the size of the neighbourhood

(Michalewicz and Fogel 2000 pp.58).

Accept function: represents the policy used for accepting moves suggested by the

modification operator.

The simplest form of local search is the random walk method, where the modification

operator chooses randomly a solution in the neighbourhood of the current potential

solution. The new solution then becomes the current solution regardless of the difference

between the merits of both solutions. The algorithm locates the optimum by keeping the

overall best solution encountered during the random walk. This algorithm, as many other

algorithms, does not have a well defined stopping criterion.

The hill-climbing search differs from the random walk method in the accept function,

where the current solution is replaced by the new solution only if it is better than the current

solution. Searching large neighbourhoods for an improving potential solution can be very

time consuming. This problem faces optimising continuous functions where the number of

members of the neighbourhood is infinite. Probabilistic sampling from the neighbourhood

is usually used to solve this problem. Soils and Wet (1981 cited in Hart 1994) proposed a

random local search for continuous functions. They used a normal distribution with zero

mean to modify every dimension of the current solution and depending on the rate at which

better solutions are found, the variance of the normal distribution is modified. The

algorithm is halted after a fixed number of function evaluations or when the step size

becomes smaller than a given threshold.

2.1.1 Improving efficiency of local search

More advanced forms of local search methods have been used to improve the

efficiency of local search in finding the local optimum. These advanced forms make use of

additional local information to accelerate the search. These methods include bracketing

search methods (Press et al. 1993 pp. 397), gradient methods (Press et al. 1993 pp. 405),

and Fast Local Search (FLS) (Tsang and Voudouris 1997).

Chapter 2 Literature review

2.1.1.1 Bracketing search methods

Bracketing search methods use the relative merits of additional potential solutions

compared to the current potential solution in order to produce a better solution and to

reduce the number of function evaluations needed to reach the local optimum. Among the

efficient bracketing methods are the golden section method, and Brent’s method.

— - parabola through © © ©
 parabola through 6) 6)

Figure 2.1: Convergence to a Maximum by Brent’s Method.

The golden section method is similar to the bisection method. It starts with two solutions

that bracket the local optimum. This method selects the next potential solution so that it is

within a distance of 0.38917 from one solution and 0.61803 from the other (Press et al.

1993 pp.399) in order to minimise the worst-case possibility. After evaluating the merit of

the new produced solution, the two best potential solutions are selected as the new

bracketing solution. The process is repeated until the best solution converges at the

optimum.

On the other hand, Brent’s method starts with three potential solutions. The method fits a

parabola to those solutions. It then uses the maximum of the parabola as the next potential

9

Chapter 2 Literature review

solution of the overall function. The method iteratively narrows the bracket based on the

position of the new solution relative to the others (figure 2.1).

2.1.1.2 Gradient methods

These methods use the gradient of the objective function at the potential solution,

to direct the search towards an improved solution in order to speed the convergence. There

are many methods that rely on the gradient and for detailed information on variants of these

methods the reader can refer to (Press et al. 1993).

If the objective function is sufficiently smooth at the current potential solution, the

algorithm can use the directional derivative to proceed in the direction of the steepest ascent

in order to reach the optimum. This can be achieved through finding the angle around the

potential solution for which the magnitude of the derivative of the objective function with

respect to some step size is maximised. The maximum occurs in the direction of the

gradient — Y f(x). The steepest ascent method can generate a new potential solution from the

current one using the following formula:

Xk+\ ~ Xk "*■ °^k^ f (Xk) (2-5)

where k > 0 , V f(xk) is the gradient at x k and ak is the step size.

The right step size is critical to guarantee the best rate of increase in the objective value of

potential solutions over several iterations. The Newton method incorporates second-order

derivative information into the above formula to find the optimum of a quadratic basin in a

single step. The following formula is used in the Newton method to generate new solutions.

•**+i = x it + (V 2/ (* jk) r IV /(* jk) (2.6)

where V 2 f(x k) is the Hessian matrix

v7c**)

d f 2 d f 2 d f 2
d x f dxxdx2 dxld x i

d f 2 d f 2 d f 2
dxzd x , d x \ dx2dxl

d f 2 d f 2 d f 2
dxndxl dxnd x2 dxn

(2.7)

The Newton method requires calculation of the inverse Hessian matrix, which is a time

consuming task. Quasi-Newton methods estimate the inverse Hessian instead of calculating

it using different techniques. The Newton-Gauss method, for example, uses Gaussian

elimination to generate the inverse Hessian.

10

Chapter 2 Literature review

2.1.1.3 Fast local search

Tsang and Voudouris (1997) proposed the Fast Local Search (FLS) algorithm as a

refinement of a local search that adapts its neighbourhood. It can speeds up the search by

shadowing less promising parts of the neighbourhood. The neighbourhood is divided into a

number of smaller sub-neighbours, which can be either active or inactive. Initially all sub­

neighbourhoods are active. FLS visits the active sub-neighbourhoods in some order. If a

sub-neighbourhood is examined and does not contain any improving solution, it becomes

inactive. Otherwise, it remains active and the improving solution is accepted. This may

cause some sub-neighbourhoods to be reactivated, if they are thought to contain improving

solutions because of the change in the current potential solution. As the potential solution

improves, more and more sub-neighbours become inactive, and when all sub­

neighbourhoods have become inactive, the best solution found is the local optimum.

2.1.2 Avoiding the trap in a local optimum

The probability of being trapped in a local optimum is high for search methods that

use a neighbourhood information as a basis for its search. This probability can be increased

further by utilising speed up techniques that use additional local information. Variants of

the model of local search have been proposed which reduce this probability. Variations can

happen at different phases of the search. It can happen during neighbourhood generation, in

the course of formulating the rule of accepting for new potential solutions or the stopping

criterion.

The simplest variant of local search is multi-start where the search is repeated from a new

starting potential solution. By choosing a new starting potential, the search algorithm is

allowed to continue and locate a potentially different local optimum. The result of this

algorithm is the best local optimum encountered over all runs of the algorithm, which can

be the global optimum. Dynamic Hill Climbing (DHC) (Yuret and de la Maza 1993) is a

multi-start local search, which uses a diversity-based distance metric to ensure locating a

new local optimum.

Simulated Annealing (SA) (Kirkpatrick 1983), Tabu Search (TS) (Glover 1989) and

Guided Local Search (GLS) (Tsang and Voudouris 1997) utilise different techniques to

escape local optima. These search methods, which can be considered as neighbourhood

search methods, aim to avoid local optima by using heuristic methods that allow non­

improving moves to be made. When examining the neighbourhood around the current

potential solution, the next candidate potential solution is not necessarily the neighbour

with a better fitness value.

11

Chapter 2 Literature review

The basic ingredients of these variants are described in brief in the following subsections.

2.1.3 Dynamic hill climbing

Dynamic Hill Climbing (DHC) algorithm (Yuret and de la Maza 1993) is a multi­

start local search that is designed to force the local search method to explore the search

space uniformly. The algorithm chooses the starting points of the local search

independently and as far as possible from the points that are already evaluated to maintain

the diversity of the search to avoid local optima. The local search in a DHC method tries to

find a local optimum in the neighbourhood of the starting point. The direction of the move

is selected randomly with a pre-selected step length. If the move improves the current

solution then the step length is doubled and the move is pursued in the same direction. On

the other hand, the step length is halved in cases where the move worsens the current

solution. The next longest step is then tried in the same direction. The reduction in step size

increases the accuracy of the optimum when the search approaches a local optimum. The

process iterates until no further improvement in the current solution is possible. The DHC

continually seeds the local search with new points to start from. The process is repeated

until the stopping criteria are satisfied.

DHC algorithm has found practical applications ranging from medical imaging (De la Maza

and Yure 1995) to the energy minimisation problem for determining the shape of organic

molecules, the travelling salesman problem, and the problem of assessing the structure of

sedimentary deposits using seismic data (Yuret 1994).

2.1.4 Guided local search

Guided Local Search (GLS) algorithm (Tsang and Voudouris 1997) extends local

search methods with the concept of features, i.e. a set of attributes, which characterise a

solution to the problem. It assumes that any solution can be described by a set of features

owned by a specific solution. Each feature is assigned a cost value. Features should be

defined so that the presence of a feature in a solution affects the value of the objective

function through the feature’s cost. A feature with a high cost is not attractive. Initially, all

the features have a zero feature cost. Whenever the search method reaches a local optimum,

the GLS modifies the cost of all the features owned by the local optimum in order to induce

the search to explore other regions which do not exhibit costly features. A GLS has been

successfully applied to a number of hard combinatorial optimisation problems, and real

world problems. They have also been applied to difficult continuous optimisation problems

(Voudouris and Tsang 1995) (Voudouris 1998).

12

Chapter 2 Literature review

2.1.5 Tabu search

Building upon his previous work, Glover proposed in 1989 a new heuristic search

method, which he called Tabu Search (TS). Glover described it as a meta-heuristic

optimisation method whose role is to guide and orient the search of another heuristic

specially tailored to the problem at hand. Many computational experiments have shown that

the tabu search has become an established optimisation technique, which can compete with

most known techniques (Glover 1990).

The basic principle of TS is to pursue the search even when it encounters a local optimum

by accepting non-improving solutions. At the same time, the systematic use of memory

helps to avoid cycling back to already sampled solutions in the neighbourhood of current

potential solution. This short-term memory, called tabu lists, records the recent history of

the search. The use of short-term memory helps TS to perform extensive exploration. It also

makes the structure of the neighbourhood dependant on the current state of search. For this

reason TS can be described as a dynamic neighbourhood search technique (Hertz et al.

1995)

The TS in its basic form, is a combination of a local search method with short-term

memory. The elements of the memory are called tabus (disallowed moves). Tabus, as

mentioned above, are stored in the tabu list. Usually, only a limited quantity of

neighbourhood information is recorded. Unfortunately, a large memory, which is

computationally expensive to search, is required to store all solutions, therefore it is seldom

used. The most commonly used tabus involve recording the last few modifications

performed on the current solution. The probabilistic TS can significantly reduce the tabus

list length and the computational cost of checking, however excellent solutions maybe

missed (Hertz et al. 1995).

Tabu lists are usually implemented as circular lists of fixed length (Gendreau 2003). Some

authors, however, have proposed varying the tabu list length during the search (Glover

1989) (Joines et al. 2000a).

When there is no danger of cycling, aspiration criteria that allow revoking tabus are used to

guarantee that a tabu list is not prohibiting attractive moves. The most commonly used

aspiration criterion is one that allows a move regardless of being in the tabu list, if that

move can produce a solution better than the current best solution. More complicated

aspiration criteria have been used (Lin and Miller 2004a).

13

Chapter 2 Literature review

The TS may use intermediate-term memory to gather information about promising regions

of the search space. In the case that the TS discovers such an area, normal search halts and

an intensive search is performed to find the best solutions in the current region. On the

other hand, a TS algorithm may use long-term memory to record the total number of

iterations that various solution components have been involved in. The aim is to prevent the

search from spending most of its time in a restricted portion of the search space and guide it

to more interesting parts of the search space. When unexplored parts are noticed, the TS

algorithm uses a diversification mechanism, such as restart and continuous diversification,

to force the search into these areas. The TS integrates intensification and diversification to

explore the search space efficiently.

TS are well adapted to discrete optimisation for which a finite set of moves can be used to

reach any solution from any other solution in a finite number of moves. The TS can be

straightforwardly applied to continuous functions by choosing a discrete encoding of the

problem. It can also be modified to suit continuous problems without the need for discrete

encoding. Instead of forbidding already visited solutions, the algorithm prevents visiting

solutions that are close to already visited ones (Rolland 1997) (Lin and Miller 2004b).

2.1.6 Simulated annealing

Simulated Annealing (SA) (Kirkpatrick et al. 1983) is a stochastic optimisation

method that avoids the trap in a local optimum by accepting non-improved solution based

on principles of condensed matter physics. This technique has been successfully applied to

different optimisation problems.

The concept of SA is based on the manner in which liquids freeze or metals re-crystallize

during the process of annealing. In an annealing process, a melt, initially at high

temperature and disordered, is carefully and slowly cooled so that the system at any time is

approximately in thermodynamic equilibrium. As cooling proceeds, the system becomes

more ordered and approaches a frozen ground state at T=0. Hence, the process can be

though as an adiabatic approach to the lowest energy state.

Two conditions are essential for the system to attain the ground state. The initial

temperature must not be very low and it must be decreased at a sufficient slow rate. The

annealing time must be long enough to allow any necessary transformations to take place

and prevent the system from forming defects or freezing out in meta-stable states (trapped

in a local minimum energy state).

Chapter 2 Literature review

In any heated metal sample and at temperature T, the probability of a cluster of atoms to

exist at configuration i, which is defined by a set of atomic positions { r j and an energy

state E{rJ, is defined by the Boltzmann probability factor:
E{r,}

P(E{ri}) ^ e k *T (2>8)

where k B is Boltzmann’s constant. Cooling the metal slowly makes atoms move between

relatively higher and lower energy levels and allows them to equilibrate at each temperature

T. The material will reach the ground state (global optimum), a highly ordered form in

which the probability of the existence of a high energy state throughout the material is very

little.

The slow movement towards an ordered ground state of the physical system is similar to

progression to a global optimum in a system where the energy function is replaced by the

objective function, f (x) to be optimised. To simulate the annealing behaviour, a control

parameter T that determines the stability of a potential solution must be specified and the

criteria of accepting a new potential solution in the standard iterative local search method

should be modified. If there is no improvement in the merit or the fitness of the current

generated solution, x, , compared to the current potential solution, x , the probability of

accepting it as a potential solution is determined by the Boltzmann probability distribution

as given in equation 2.9.
f (x t) ~ f (x lp)

P(x,)= e T (2-9)

This probability is compared against a randomly generated number over the range [0, I]. If

this probability is greater than the generated number, the current generated solution is

accepted as the current potential solution. Repeating this iterative improvement many times

at each value of the control parameter T, the methodical thermal rearrangement of atoms

within a metal at temperature T is simulated. The value of the control parameter T is

initially set high and is periodically reduced according to a cooling schedule.

One of the difficulties in using simulated annealing is that it is very difficult to choose the

rates of cooling and the initial temperatures (Davis and Steenstrup 1987). The selection of

these parameters depends on heuristics and varies with the function to be optimised. In

addition, the number of function evaluations required to slightly improve the current

solution dramatically increases near the global optimum and as the temperature becomes

low (Davis and Steenstrup 1987).

15

Chapter 2 Literature review

2.2 Population-based search methods

In contrast to single-point search methods, which keep refining a single solution 4

until no further improvement can be achieved, population-based algorithms maintain a |

population of candidate solutions. Using a population of candidate solutions helps search

algorithms to avoid being trapped in a local optimum and consequently can often find f

global optimal solutions. They are also well fitted for multi-objective problems.

Two of the most successful and widely recognised population-based optimisation methods |

are reviewed. Ant Colony Optimisation (ACO) and Genetic Algorithms (GA) are discussed :]i

in the following sections. 5

2.2.1 Ant colony optimisation J

Real ants are capable of finding the shortest path from their nest to a food source 4

without visual sensing. Ants deposit a substance called pheromone while walking, forming 4
a pheromone trail. Ants can smell pheromone and when choosing a route, they

probabilistically tend to follow paths which are rich in pheromone. The pheromone trail r|

allows the ants to find their way back to the food source or to the nest. It can also be used

by ants to find the location of food sources found by their nest mates. \

The pheromone trail following behaviour enables the ants to discover the shortest paths.

The ants that happen to pick the shorter path will create a strong trail of pheromone faster |

than the ones choosing a longer path. This stimulates successive ants to choose the shorter

path until eventually all ants have found the shortest path. The pheromone trail following a

behaviour also explains the ants’ ability to adapt to changes in the environment, such as

new obstacles interrupting the currently shortest path. -?}.

Ant colony members exchange information using a simple form of indirect communication

mediated by pheromone formation, known as stigmergy (Dorigo et al. 1999). This form of J

stigmergtic communication plays a crucial role in ant foraging behaviour. The combined <<

effect of an autocatalytic (positive feedback) mechanism (Dorigo et al. 1991) and implicit »

solution evaluation complements the stigmergtic communication role in the emergent of

shortest path-finding behaviour. Implicit solution evaluation is based on the fact that shorter
|

paths will be completed earlier than longer ones and therefore they will receive pheromone
Ireinforcement more quickly. Implicit solution evaluation together with an autocatalytic

mechanism can be very effective (Dorigo et al. 1996). The shorter the path, the sooner the

pheromone is released resulting in more ants using the shortest path. I

16

Chapter 2 Literature review

Ant foraging behaviour is a kind of distributed optimisation mechanism in which each

single ant contributes to find the shortest path to food sources. Although a single ant is

capable of finding a path between nest and food source, it is the ant colony which finds the

shortest path.

Dorigo et al. (1991) proposed that stigmergtic communication can be applied to solve

difficult optimisation problems. Based on this, they proposed the Ant System (AS) to solve

the Travelling Salesman Problem (TSP). Several improvements have also been applied to

this algorithm (Dorigo and Di Caro 1999). These improved versions of the AS can be

described as population-based optimisation algorithms that are inspired by the behaviour of

natural ant colonies, in the sense that they solve their problems by population cooperation

using indirect communication through modifications in the environment.

Ant algorithms were first proposed as a multi-agent approach to difficult optimisation

problems such as the TSP (Dorigo et al. 1991) (Dorigo and Di Caro 1999) and the quadratic

assignment problem (Maniezzo et al. 2004). There is currently much ongoing activity to

extend and apply ant-based algorithms to many different discrete optimisation problems

(Dorigo et al. 1999). Recent applications include problems such as vehicle routing

(Maniezzo et al. 2004) (Dorigo et al. 1999), sequential ordering (Maniezzo et al. 2004),

graph colouring (Shawe-Taylor and Zerovnik 2001) and routing in communications

networks (Di Caro and Dorigo 1998) (Dorigo and Di Caro 1999). A variety of other

applications also exist.

2.2.1.1 Ant colony optimisation approach

Ant foraging behaviour can be easily applied to solve discrete optimisation

problems by simulating behaviour through artificial means. In addition to being an

abstraction of real ants, artificial ants can be enriched with some additional capabilities in

order to make them more effective and efficient.

A population or a colony of artificial ants collectively searches for good solutions to the

optimisation problem under consideration. According to the assigned notion of

neighbourhood, each artificial ant performs a sequence of local moves in order to build a

solution. It starts from an initial state selected according to some problem dependent

criteria. It then continues to move through adjacent states until a solution is build.

An ant selects the next state from its adjacent states using a probabilistic decision policy.

This policy makes use of local information, which can include in addition to the amount of

Chapter 2 Literature review

pheromone laid on the paths connecting adjacent states, problem specific knowledge and

the ant past actions. Usually, the decision policy does not look ahead to predict future

states.

Pheromone variables associated to problem states are used to represent the laid pheromone.

These variables are used to store numeric information that represents the colony’s current

and past performance. This information is only available for ants that are accessing the

state.

An artificial ant keeps an internal state which stores its past actions (local moves). The

internal state can also store useful information to compute the quality of the global solution

or the contribution of each executed move. Moreover, it can play a fundamental role in

managing the feasibility of the solutions.

Initially, there is no pheromone on all solutions paths. Therefore, the probability of visiting

adjacent states depends entirely on the ant’s internal state and problem specific knowledge.

An ant walks through adjacent states using the decision policy until it builds a solution.

The algorithm simulates pheromone trail formation by modifying numeric information

stored in the pheromone variables of the path followed. In this way, the artificial ants

modify their environment to reflect the past history of the whole ant colony. This form of

stigmergetic communication plays a major role in the utilisation of collective knowledge. It

changes the problem landscape according to past history of the ant colony.

Artificial ants can use online step-by-step, online delayed or a combination of both to

release pheromone. In online step-by-step, ants release pheromone while they are building

the solution. However, in online delayed, they deposit pheromone after building a solution

by moving back to all visited states. The decision about which strategy should be used to

release pheromone is problem dependent.

In general, the amount of pheromone deposited is made proportional to the quality of

solution an ant has built (or is building) in order to induce the ants toward promising search

regions. In this way, if a move contributes to the generation of a high quality solution, the

amount of pheromone deposited will be proportional to its contribution. Ant algorithms can

also use implicit solution evaluation to stimulate successive artificial ants into follow

shorter paths.

Chapter 2 Literature review

As with any population-based optimisation algorithm, using autocatalysis can lead the ant

colony search to premature convergence (Dorigo et al. 1999). For this reason, pheromone

trail evaporation and stochastic state transition are usually employed within the

optimisation process. An evaporation mechanism modifies pheromone information over

time allowing the ant colony to slowly forget its past history, directing the search into new

regions of the search space.

Once an ant has accomplished its task, which includes building a solution and depositing

pheromone information, the ant dies. It contributes to the ant colony search by modifying

the problem landscape according to the quality of the solution it found.

The search continues by creating a new ant which, in turn, builds a new solution and

modifies the problem representation accordingly. This process continues until a termination

condition is satisfied.

In addition to online updating of pheromone, ant algorithms can update offline. The

algorithm can use global information, to deposit additional pheromone information, at the

end of the algorithm iteration in order to bias the search from a global perspective. It can

allow a “daemon” to observe the ant’s behaviour in order to collect global information. It

can also apply problem specific local optimisation methods, to deposit additional

pheromone offline, based on the observation of all solutions generated by the ants.

It is possible to enrich ant algorithms with extra capabilities such as look ahead (Michel and

Middendorf 1998) and backtracking (Di Caro and Dorigo 1998) in order to improve

efficiency. Ants can also be hybridised with local search methods (Dorigo and Di Caro

1999) (Shmygelska and Hoos 2005).

Ant colony optimisation algorithms, as a consequence of their concurrent and adaptive

nature, are particularly suitable for distributed stochastic problems where the presence of

exogenous sources determines a non-stationary in the problem representation in terms of

costs and/or environment.

2.2.2 Genetic algorithms

In nature, individuals, who have “good” genetic structures, have better chances of

winning limited resources than their rivals. As a result, they have more chances to mate.

The genetic structures of produced offspring are mixtures of the genetic structures of their

parents. These structures are usually as good as that of their parents and can sometimes be

better since there is a possibility of combining the parents’ structures to produce new good

19

Chapter 2 Literature review

structures. The result of these operations and other genetic operations is the propagation of

good genetic structures in the following generations and the gradual death of less successful

structures. The goodness of a genetic structure depends on the features controlled by it. If

these features are enabling an individual to survive in its environment, the related structure

can be described as good structure; otherwise it is regarded as being less successful.

Natural evolution is an optimisation process (Fogel 1997) in which the quality of the

species is maximised. It is, however, an open-ended dynamic process in which the quality

of an individual can only be defined in relation to the environment in which it exists.

Natural evolution optimises the functionality of individuals.

From an information science point of view, natural evolution can be regarded as a huge

information processing system. Each individual carries its genetic information, which is

referred to as the genotype. The interactions between the individual’s genotype and its

environment cause development of its character, which constitutes the phenotype, while an

individual grows up. The genetic information is eventually passed on to the next generation

if the individual shows traits that enable it to reproduce before it dies. The individual can be

regarded as the mortal survival machines of potentially immortal genetic information

(Corno et al. 1998).

The two main concepts of natural evolution, which are natural selection and genetic

dynamics, have inspired the development of a population based search and optimisation

technique. This method is known as a genetic algorithm. The basic principles of this

technique were first laid down by Holland (Holland 1975) and are well described, for

example in (De Jong 1975) (Goldberg 1989a).

2.2.2.1 Genetic algorithm basics and some variations

Genetic algorithms start with an initial population of individual structures or

chromosomes. Each of these chromosomes represents a potential solution to a given

optimisation problem. Each individual is assigned a fitness score based on its observed

performance in solving a given problem. A high fitness score reflects a good characteristic

that a specific solution exhibits. Individuals with a high fitness have more opportunity to

become part of the mating pool, where some of the individuals are probabilistically selected

for reproduction based on their fitness. Next, the genetic operators (usually mutation and

crossover) are applied to the individuals in the mating pool producing offspring. The rates

at which these operators are applied are an implementation decisions. If the rates are low

enough, it is more likely that some of the offspring produced will be identical to their

2 0

....
-L

1

i
Chapter 2 Literature review f

parents. The two populations of children and parents are then merged to create a new

generation. The result of applying a set of genetic operations that mimics natural selection

and genetic dynamics is a new generation of individuals, which contain a higher proportion

of good characteristics than the previous generation. Over many generations, good

characteristics are spread though the population. They are mixed and exchanged with other

favourable characteristics as the search progresses. The population will eventually converge

to an optimal solution, if the genetic algorithm is well-designed (Beasley et al. 1993a).

‘ftPseudo code for a genetic algorithm is shown in figure 2.2.

The first step involves the generation of an initial population of chromosomes which

represent the potential solutions to the optimisation problem. The chromosomes represent

genotypes that are manipulated by the genetic algorithm. Each chromosome consists of

several genes and every gene or group of genes has some phonotypical meaning such as a

parameter in the problem search space. The genes of each chromosome control the location |

of an associated solution in the problem search space. Normally, the initial population of

chromosomes is generated randomly, although problem-specific knowledge can be used to

influence its generation (Reeves 1993). In the canonical genetic algorithm, the potential

solutions were encoded as binary strings, each gene consists of a group of bits and each

gene represents a parameter in the problem search space. The initial population of the

canonical algorithm is generated randomly.

In the evaluation part of a genetic algorithm, each individual is assigned a fitness score that

reflects how far that individual is from the optimum compared to other individuals. The

fitness assignment is performed by mapping the genetic structure to a point in the

phenotype domain and then evaluating this point using the function to be optimised.

The selection mechanism probabilistically selects the fittest chromosomes from the

population to survive and mate. These individuals represent near-optimal solutions. A

variety of selection schemes has been used. Holland proposed a fitness proportional

selection mechanism, where the probability of selecting any chromosome for mating is

calculated by dividing the chromosome fitness by the total fitness assigned to all the

chromosomes in the population.

21

Chapter 2 Literature review

Begin
t = 0
initialise(Population(t))
evaluate(Population(t))
while termination criteria not satisfied
Begin

t = t + 1
MatePool(t) =select(Population(t-1))
MatePool(t) =crossover (matePool(t))
MatePool(t) =mutate(matePool(t))
evaluate(MatePool(t))
Population(t)=merge (MatePool(t),Population(t-1))

End

Fitness scaling, fitness ranking (Baker 1985) (Whitley 1989), and tournament selection

(Goldberg and Deb 1991) techniques have been proposed as alternatives to the proportional

selection mechanism in order to overcome associated problems (Beasley et al. 1993a)

(Hopgood 2001 pp. 180). The first problem is that the selection pressure of this technique

becomes very weak as the population converges upon a narrow range of values. Fitness

scaling techniques have been proposed to avoid this problem where the relative fitness of

the individual is used in calculating the selection probability instead of the absolute fitness.

Fitness scaling, however, can aggravate another problem associated with a fitness

proportional selection mechanism. The selection pressure of the fitness proportional

selection mechanism with the existence of a highly fit individual (but not the optimal) in

the population can make that individual rapidly take over the population and lead to

premature convergence (Beasley et al. 1993a). Rank-based selection, where the

chromosomes in the population are ranked and the probability of selection is a function of

rank rather than fitness, was proposed to solve this problem. If the selection probability of a

chromosome is proportional to its rank, the rank is referred to as linear, otherwise it is

nonlinear. Nolle et al. (2000) proposed a nonlinear rank strategy with the ability of adapting

its selection pressure online through controlling a specific control parameter. Tournament

selection is another proposed scheme, where a small set of chromosomes is chosen at

random and the best chromosome is selected for mating. This technique is less susceptible

to premature convergence and its selection pressure can be adjusted by controlling the size

of the set. Ranking and tournament selections are the natural choices for problems in which

End

Figure 2.2: Pseudo Code of a Genetic Algorithm.

2 2

Chapter 2 Literature review

it is difficult to precisely specify a fitness function (Grefenstette 1997). Boltzmann

selection mechanisms (Mahfoud 1997) control the selection pressure of the genetic

algorithm based on principles from simulated annealing to indefinitely prolong the search

in order to locate better final solutions.

Elitist strategy is a scheme to bias the selection, where the best chromosome in the parent

population is chosen and all but one of the children’s population (Eshelman 1997). It biases

the search to exploit the genetic information of the best chromosome found so far.

Due to the selection mechanism’s important role in guiding the genetic search and

maintaining a high genotype diversity (Back and Hoffmeister 1991), several researchers

have studied how different selection schemes affect the algorithm’s performance (Goldberg

and Deb 1991) (Back and Hoffmeister 1991) (Zhang and Kim 2000)(Goldberg and Sastry

2001).

The aim of a crossover operator is to recombine the good features, which are scattered

through the mating population, into better chromosomes (Eshelman 1997). There is no

guarantee that crossover will always produce better chromosomes, however the existence of

the selection operator eventually discards children with less favourable features. The

crossover is probabilistically applied to randomly selected pairs from the parent mating

pool. Crossover is not usually applied to all chromosomes of the mate pool. However, a

high fraction of them undergo crossover. Holland originally proposed the one-point

crossover, where a randomly selected point is picked in the genetic structure and new

children are generated by swapping the segment at that point between the two parents.

Other crossover operators have been devised, often involving more than just one point.

Using a two-point crossover operator can improve the performance of the genetic algorithm

compared to a single point operation. More than two, however, can reduce the performance

(De Jong 1975 cited in Goldberg 1989a). Multi-point crossover can disrupt the building-

blocks and at the same time can explore the search space more thoroughly. Uniform

crossover is another type of crossover where each gene is created by copying the

corresponding gene from a parent according to a randomly generated crossover mask.

Uniform crossover has the advantage that the ordering of genes is entirely irrelevant

(Syswerda 1989).

Eshelman et al. (1989) investigated the effect of the different crossover operators on the

genetic algorithm performance theoretically, in terms of positional and distributional bias,

and empirically, using several problems. They found no overall winner. Reduced surrogate

23

Chapter 2 Literature review

crossover (Booker 1987) was introduced to increase the crossover productivity as the

population converges. The productivity of uniform crossover makes it more suitable for

small populations (De Jong and Spears 1992). However, reduced surrogate two-point

crossover is more suitable for large populations.

Mutation is another genetic operator, which is applied to each of the offspring

independently. In contrast to crossover, a mutation operator alters one or more genes of the

chromosome to produce a new chromosome. This operator is typically applied with a low

probability.

The mutation operator has a great influence on the genetic algorithm search. Mutation

guarantees that no point in the search space has a zero probability of being visited. It helps

to prevent the permanent loss of useful gene values that may be accidentally lost during the

search. In addition, the mutation plays an important role in making small refining moves

that are not efficiently made using crossover and selection alone (Rosin et al. 1997).

Mutation can be very effective in solving many optimisation problems even when used

without crossover (Eshelman 1997).

The order of genes within a chromosome is critical in order for the building-block

hypothesis (Goldberg 1989a) to work effectively. An inversion operator (Holland 1975),

which works by reversing the order of genes between two randomly chosen positions

within a chromosome, was suggested in attempts to find gene orderings which have better

evolutionary potential (Goldberg 1989a p i66). The reorder process expands the search

space. In addition to the genetic algorithm search for good sets of gene values, it is

simultaneously optimising the gene ordering too (Beasley et al. 1993b). The use of uniform

crossover can eliminate the need for reordering (Syswerda 1989).

After new offspring have been created, the genetic algorithm uses a replacement

mechanism to merge both parents and children populations in order to produce the next

generation. The most commonly used replacement techniques are generational and steady

state. In generational genetic algorithms, the population of parents is completely replaced

by the children population to produce the new generation. If this mechanism is used

without elitist strategy there is a risk of losing good building blocks for ever. In the steady

state mechanism, only one mating per cycle is allowed to replace a pair of parents. This

gives the genetic structures of the parents the chance to compete and mate with that of their

children. Steady state genetic algorithms suffer a higher gene loss than do their generational

counterparts (De Jong and Jayshree 1992). The parent selection and replacement strategies

24

Chapter 2 Literature review

must complement each other in terms of the overall effect they have on the exploration-

exploitation balance (De Jong and Spears 1993). The replacement technique can be biased

toward the fittest chromosomes and can lead to premature convergence if combined with

biased reproduction. An unbiased version can protect the search from being trapped in local

optima (Eshelman 1997). Other merge biased techniques have been borrowed from

evolution strategies (Back et al. 1991). For example, Eshelman (1991) combined the

(jU + A) replacement selection technique with unbiased reproductive selection, to select the

best individuals from both parents and children populations. Muhlenbein and Schlierkamp-

Voosen (1993) used {jLL,A) in their breeder genetic algorithm to produce /(offspring

(A > jU) and the best JU offspring are chosen to replace the parents population.

2.2.2,2 Schema theorem, implicit parallelism and building blocks hypothesis

While each genetic operator is simple to understand independently, the resulting

behaviour of the genetic algorithm can be quite complex. The notion of schema processing

is used to explain the behaviour of genetic algorithms and to justify their ability to search.

A schema is a pattern of gene values which may be represented (in binary code) by a string

of characters in the alphabet (0, 1, #}. A particular chromosome is said to contain a

particular schema if it matches that schemata, with the ‘# ’ symbol matching anything. So

for example, the chromosome ‘1101’ contains among others, the schemata

’l # # r , ’# l # i y l l # r , ’110#’. The order of a schema is the number of ‘O’ and ‘1’ symbols it

contains (2, 2, 3, 3 respectively in the example). The defining length of schema is the

distance between the outermost non-# symbols (4, 3, 4, and 3 respectively in the example).

The notion of schema processing is used to illustrate the property of implicit parallelism

where a large quantity of schemata is being processed simultaneously while processing a

relatively small quantity of chromosomes. The property can be explained as follows. Since

each chromosome contains many different schemata (2 L where L: chromosome length),

the processing of a single chromosome is, in fact, a processing of all the schemata that are

contained in that chromosome.

Assuming that an individual’s high fitness is due to the fact that it contains good schemata,

the power of a genetic algorithm can be explained according to the schema theory. This

theory states that a particular schema receives trails according to the ratio of schema fitness

to population average fitness as long as the schema is not disrupted by crossover or

mutation. As a consequence short, low-order, above average schemata receives

k
3

25 i

Chapter 2 Literature review

exponentially increasing trials in subsequent generations of a genetic algorithm. Such

schemata are called building blocks.

Goldberg (1989a) believes that the primary source of the genetic algorithms search power is

their ability to find good building blocks that when combined together can produce high-

order schemata with better fitness. The previous hypothesis is known as the building block

hypothesis. Goldberg imposed two conditions on a genetic algorithm in order to be

effective as predicted by schema theory. The related genes should be close together in a

chromosome and the interactions between genes should be little. These two conditions are

known as the recommendation of the building block hypothesis.

The schema theorem provides good bounding advice on how to assure the growth of good

schema and how growth can be sustain to takeover the population (Goldberg and Sastry

2001). Bridges and Goldberg (1987) tried to derive an exact formula for schemata

propagation under specific assumption by extending an exact formula for the expected

propagation of chromosomes in genetic algorithm, under selection and crossover. Attempts

have been done to derive a generalised schema theorem (Goldberg 1987) (Goldberg and

Deb 1991) (Whitley et al. 1992). Goldberg and Sastry (2001) show that the schema theorem

works with different selection schemes and genetic operators. They explore its ramification

for the choice of selection operator and parameterisation of the algorithm.

2.2.2.3 Performance of genetic algorithms

The performance of a pure genetic algorithm as any global optimisation algorithm

depends on the mechanism for balancing the two conflicting objectives, which are

exploiting the best solutions found so far and at the same time exploring the search space

for promising solutions. The power of genetic algorithms comes from their ability to

combine both exploration and exploitation in an optimal way. Holland (Goldberg 1989a,

pp.36) draws an analogy between the behaviour of genetic algorithms and a k-armed bandit

problem with unknown payoff distribution. The similarity then was used to show that the

exponential allocation of trials according to observed performance offers genetic algorithms

with near-optimal sampling.

However, although this optimal utilisation may be theoretically true for a genetic algorithm,

there are problems in practice. These arise because Holland assumed that the population

size is infinite, the fitness function accurately reflects the suitability of a solution, and the

interactions between genes are very low (Beasley et al. 1993a).

Chapter 2 Literature review

In practice, the population size is finite, which influences the sampling ability of a genetic

algorithm and as a result affects its performance. The consequences of using limited

population sizes on the performance of genetic algorithms, the problems associated with it

and the impact of hybridising a genetic algorithm with other search techniques to

alleviating these problems are discussed in this section.

Stochastic sampling is used to alleviate the consequences of finite population size. As a

result, the performance of a genetic algorithm will be subject to stochastic errors. The

accumulation of stochastic errors causes the population to converge at a single point in the

search space, even in the absence of selection pressure. This problem is known as genetic

drift (Thierens et al. 1998). The rate of genetic drift provides a lower-bound on the rate at

which a genetic algorithm can converge towards the optimal solution. The rate of

convergence of the genetic algorithm must be sufficiently large to counteract any genetic

drift. The genetic drift can be slowed down by increasing the mutation rate which also can

slow down the convergence to the global optimum. The solution to resist the genetic drift is

to find a way to maintain diversity in the population without decelerating the search.

Incorporating a local search method within the global genetic algorithm can be a solution

for combating the effect of the genetic drift. Applying a local search method to a solution

can introduce new genes into the population without decelerating the search. The proper

use of a local search method can also accelerate the search towards the global optimum

(Hart 1994). This, in turn, can guarantee that the convergence rate is large enough to

obstruct any genetic drift.

Fi
tn

es
s

Chapter 2 Literature review

3000

2500

2000

1500

1000

500

0 200 400 800600 1000 1200 1400 1600

Search Space

Figure 2.3: Samples Can Misguide the Genetic Search.

Limited population size can affect the sampling ability of a genetic algorithm in other ways.

It can affect exploitation of information which is gathered by the algorithm to guide the

search to the most promising regions. A genetic algorithm may sample bad representatives

of good search regions and at the same time good representatives of bad regions. In figure

2.3, for example point ci is a good representative of region A, while points b and c are

bad representatives of regions B and C, respectively. Based on the samples, a genetic

algorithm can direct the search to a local instead of a global optimum. In other words, the

sampling error caused by a genetic algorithm with limited population size can cause

premature convergence. The solution to avoid such problems is to ensure that each region is

represented by a solution that reflects the region’s fitness. If a genetic algorithm is forced to

sample only the local optimum of each basin of attraction (points a , b and c in figure

2.3), its sampling ability can be improved which in turn reduces the possibility of premature

convergence. This means mapping all the points of the search space to their local optima. In

which case, the role of the genetic algorithm becomes limited in guiding the search toward

the global optimum among local optima.

28

Chapter 2 Literature review

Mapping the current solutions of the genetic algorithm to local optima can be accomplished

by applying a local search method to the solutions. Regardless of mapping details, the

mapping can ensure fair representation of the different search areas and help to fight

premature convergence.

A finite population size can cause a genetic algorithm to produce solutions of low quality

compared with the quality of solution that can be produced using local search methods. The

difficulty of finding the best solution in the best found region accounts for the genetic

algorithm operator’s inability to make small moves in the neighbourhood of currents

solutions (Reeves 1994). The use of the blind mutation operator with a high rate in order to

introduce diversity into population can lead the search to re-explore already visited regions.

Michalewicz (1996 pp.108) proposed a non-uniform mutation operator that explores the

search space during early stages of the genetic algorithm and refines the solutions in latter

stages.

Utilising a local search method within a genetic algorithm can improve the exploiting

ability of the search algorithm on the condition that it does not limit the exploring ability of

the genetic algorithm (Hart 1994). If the right balance between global exploration and local

exploitation capabilities can be achieved, the algorithm can easily produce solutions with

high accuracy (Lobo and Goldberg 1997).

Although the rate of convergence is fast during the early stages of the genetic algorithm, a

drastic reduction in convergence rate in latter generations is often encountered before the

genetic algorithm provides an accurate solution. The reason for the change in convergence

rate is that genetic algorithms can rapidly locate the region in which a global optimum

exists, and take a relatively long time to locate the exact local optimum in a region of

convergence (De Jong 2005). A combination of a genetic algorithm and a local search

method can speed up the search to locate the exact global optimum. In such hybridisation,

applying a local search to the solutions that are guided by a genetic algorithm to the most

promising region can accelerate convergence to the global optimum. The time needed to

reach the global optimum can be further reduced if the local search methods and local

knowledge are used effectively (Hart 1994). A local search method can provide a genetic

algorithm with good representatives of the different regions of the search space (Gruau and

Whitley 1993) and accelerate locating the global optimum starting within its basin of

attraction.

Chapter 2 Literature review

In a pure genetic algorithm, the appropriate balance of exploration and exploitation required

for good performance depends on the amount of diversity in the population, the details of

the genetic operators and the problem to be optimised. This balance is usually achieved by

selecting suitable values of the genetic algorithm’s control parameters such as population

size and crossover, as well as mutation probabilities and selection pressure. The

relationship between control parameter values and search performance is complex, not

completely understood, and problem dependent (Eiben et al. 1999).

A large population size induces the search to perform more exploration which means slow

convergence. On the other hand, populations of a small size can converge with a faster rate

but its associated limited diversity can cause premature convergence. The optimal

population size depends on the complexity of the search domain (Harik et al. 1999).

A high selection pressure can push the search toward fast exploitation of the information

gathered and expose the search to premature convergence problems. A low selection

pressure pushes towards the other side of the equilibrium equation. The choice of selection

scheme can control the rate of genetic drift which affects the convergence rate (Rogers and

Priigel-Bennett 1999). The chances of premature convergence increase when a high

selection pressure is combined with a small population size.

Standard mutation and crossover operators are simply two forms of more general

exploration operators that can perturb genes based on any available information (Spears

1992). In addition, both operators have an exploitation role. The mutation operator exploits

the neighbourhood of current solutions to construct new longer building blocks. The

crossover operator exploits the genetic structure of the current solutions to combine good

building block into longer structures. The trend of both operators in performing either

exploration or exploitation depends on the gathered information, the details of both

operators, and the details of the genetic algorithm itself. The correct mix of these two

operators is essential for the genetic search.

The limitation of genetic algorithms comes mainly from the improper choice of control

parameters (Deb 1997). These methods are not expected to work on an arbitrary problem

with any arbitrary control parameter setting. Depending on these parameters the algorithm

can either succeed in finding a near-optimum solution in an efficient way or fail. Choosing

the correct parameter values is a time-consuming task. In addition, the use of rigid, constant

control parameters is in contradiction to the evolutionary spirit of genetic algorithm (Eiben

et al. 1999).

30

Chapter 2 Literature review

Other search techniques can be utilised to set the values of these parameters while the

search is progressing. The ability of fuzzy logic to represent knowledge in imprecise and

non-specific ways enables it to be used to reason on knowledge that is not clearly defined

or completely understood. This ability makes fuzzy logic a suitable choice for adapting the

control parameters of a genetic algorithm. Fuzzy logic has allowed a group of researchers to

devise ways of optimising performance and solution quality of genetic algorithms (Richter

and Peak 2002). It is used to incorporate the many heuristics and techniques of experienced

genetic algorithm researchers into fuzzy logic system in order to adapt the control

parameters. The goal of such systems is generally to speed up the convergence of the

genetic algorithm and/or obtain better quality solutions (Herrera and Lozano 2001).

Incorporating other search methods within the framework of a genetic algorithm can help to

overcome most of the obstacles that arises when optimising problems as a result of finite

population size. Hybridisation as a solution for some of the problems that face genetic

algorithms when used to solve real world problems is the main topic of the following

sections.

2.3 Hybrid genetic algorithms

Hybrid optimisation methods, as any hybrid system, are based on the

complementary view of search methods (Hopgood 2001 pp.223). Different search methods

can be seen as complementary tools that can be brought together to achieve an optimisation

goal. The ultimate goal of any optimisation algorithm is to find the exact global optimum

using minimum resources.

Hybrid genetic algorithms are genetic algorithms that incorporate one method or more to

improve the performance of the genetic search. There are several ways in which a technique

can complement the genetic search.

2.3.1 Capability enhancement

A technique can be utilised within a genetic algorithm to enhance search

capabilities. A genetic algorithm is normally viewed as a global search method that can

capture the global view of a problem domain. Different techniques can be incorporated

within a genetic algorithm to improve its performance in different ways. When a genetic

algorithm as a global search method is combined with a problem-specific method as a local

search method, the overall search capability can be enhanced. The enhancement can be in

terms of solution quality and/or efficiency. This performance can also be improved by

ensuring production of feasible solutions in the case of highly constrained problems. This

31

Chapter 2 Literature review

thesis focuses on the global-local complementary view of genetic hybrids which have been

variously referred to as memetic algorithms (Moscato 1989), genetic-local search methods

(Yamada and Reeves 1998), Lamarckian genetic algorithms (Morris et al. 1998),

Lamarckian search, and Baldwinian search (Julstrom 1999). How to improve the

performance of this class of hybrids in optimising continuous functions is the subject of this

research.

Function approximation techniques can also be incorporated in a genetic search to speed up

the search. It is also possible to utilise other techniques to replace one or more of the

genetic operators in order to overcome some of the problems that face genetic search.

2.3.1.1 Improving solution quality

Local search methods and genetic algorithms are usually viewed as two

complementary tools. A local search algorithm's ability to locate local optima with high

accuracy complements the ability of genetic algorithms to capture a global view of the

search space. Holland (1975 cited in (Michalewicz 1996 pp.107)) suggested that the genetic

algorithm should be used as a pre-processor for performing the initial search, before

invoking a local search method to optimise the final population. Bilchev and Parmee

(1995), for example, used their ant colony model for continuous search spaces as local

search method to improve the quality of the solutions produced by a genetic algorithm in

order to solve a heavily constrained real-world engineering design problem.

Performing local search on a genetic algorithm’s population, as mentioned before, can

introduce diversity and help to overcome the nemesis of drift stall. It enables fair

representation of different search areas in order to fight premature convergence.

Incorporating a local search algorithm also introduces an explicit refinement operator which

can produce high quality solutions.

2.3.1.2 improving efficiency

The efficiency of a local search in reaching a local optimum integrates the

efficiency of a genetic algorithm, in isolating the most promising basins of the search space.

Therefore, incorporating a local search into a genetic algorithm can result in an efficient

algorithm. The efficiency of the search can be enhanced in terms of the time needed to

reach the global solution, and/or the memory needed to process the population.

Efficiency in terms of the time needed to reach a solution of desired quality is a major

concern in genetic algorithm design. In real-world problems, function evaluations are the

most time consuming part of the algorithm. For example, the designer of today’s complex

32

Chapter 2 Literature review

engineering systems usually relay on expensive computer analysis and simulation

programs, where the execution time for a single function evaluation can be of the order of

hours or days (Hacker et al. 2002). Finite element analysis (FEA), computational fluid

dynamics (CFD), heat transfer and vehicle dynamic simulations are examples of such

programs. For this reason, time is often measured as the number of fitness function

evaluations. Hybridisation in addition to parallelisation (Cantu-Paz 1998), time utilisation

(Goldberg 1999), and evaluation relaxation (function approximation) can be used to speed

up a genetic search (Goldberg 2003).

Genetic algorithms often show significant improvement in search speed when combined

with local search methods utilising domain or specific knowledge. There is an opportunity

in hybrid optimisation to capture the best of both schemes (Lobo and Goldberg 1997). This

is the reason why genetic hybrids are being increasingly used to solve real-world problems.

Most of the local search methods reviewed in this chapter have been mixed with genetic

algorithms in real-world applications (Yen et al. 1998) (Besnard et al. 1999) (Liang et al.

1999) (Preux and Talbi 1999).

Population size is crucial in a genetic algorithm. It determines the memory size and the

convergence speed in serial genetic algorithms and affects the speed of search in the case of

parallel genetic algorithms. Efficient population sizing is critical for getting the most out of

a fixed budget of function evaluations. The gambler ruin’s model (Harik et al. 1999) was

used to estimate the population size of genetic algorithms. This model was used to show

that population size depends on two parameters, which can be affected by incorporating

local search. The two parameters represent the standard deviation of the population and

signal difference between the best and second best building blocks. If a local search method

is incorporated in such a way as to reduce the standard deviation of the population and to

increase the signal difference between the best and the second best chromosome, the

resulting hybrid can be efficient even with small population sizes. Espinoza et al. (2003a)

showed the effect of incorporating a local search method on reducing the population size,

compared with a pure genetic algorithm.

2.3.1.3 Guarantee feasible solutions

In highly constrained optimisation problems, the crossover and mutation operators

generally produce illegal or infeasible solutions and hence waste search time. This problem

can be solved by incorporating problem-specific knowledge. Problem-specific knowledge

can be used either to prevent the genetic operators from producing infeasible solutions or to

repair them.

33

Chapter 2 Literature review

The Partial Matched crossover (PMX) (Goldberg and Lingle 1985) was proposed for use in

order-based problems to avoid the generation of infeasible solutions. Grefenstette et al.

(1985) suggested a heuristic crossover operator that could perform a degree of local search

for the Travelling Salesman Problem (TSP). Davidor (1991) designed “analogous

crossover” where local information is used to decide which crossover sites can produce

unfit solutions. Heuristic crossover operators were used to solve a timetabling problem in

order to ensure that the most fundamental constraints are never violated (Burke et al. 1995).

Freisleben and Merz (1996) proposed the Distance Preserving crossover (DPX) to produce

feasible solutions to solve TSP without losing diversity. They used a non sequential 4-

change as a mutation operator for the same reason. Cycle crossover (CX) (Oliver et al.

1987), Order crossover (OX) (Oliver et al. 1987), Matrix crossover (MX) (Homaifar et al.

1992), Modified Order crossover (MOX) (Wroblewski 1996), Edge Recombination

crossover (ERX) (Whitley et al. 1989), 2-opt operator (Jog et al. 1991), 3-opt operator (Jog

et al. 1991) and Or-opt operators (Jog et al. 1991) are examples of crossover and mutation

operators which have been developed for the TSP. A special edge recombination crossover

(Magyar et al. 2000) has been constructed for the three Matching Problem (3MP). The

crossover operator has been replaced with the gene-pooling operator to produce feasible

solutions when optimising the number and positions of fuzzy prototypes for efficient data

clustering (Burdsall and Giraud-Carries 1997a).

A problem-specific knowledge search method can be used to recover the feasibility of

solutions generated by the standard genetic operators. Repairing such solutions can help the

genetic search to avoid the danger of premature convergence, which occurs when all or

most solutions are infeasible (Orvosh and Davis 1993) (Ibaraki 1997). Konak and Smith

(1999) combined a genetic algorithm with a cut-saturation algorithm for the backbone

design of communication networks. They use a uniform crossover operator with a K-node-

connectivity repair algorithm to repair infeasible offspring. Areibi and Yang (2004) used

repair heuristics in their proposed approach to solve VLSI circuit layout. The approach

combines a hierarchical design technique, genetic algorithms, constructive techniques, and

advanced local search. They also used the OX operator to avoid infeasible solutions in

solving VLSI design problems.

2.3.1.4 Fitness function estimation

If the fitness function is excessively slow or complex to evaluate, approximation

function evaluation techniques can be utilised to accelerate the search without disrupting

search effectiveness. This is because genetic algorithms are robust enough to achieve

convergence in the face of noise produced by the approximation process. Fitness

34

Chapter 2 Literature review

approximation schemes, replace high-cost accurate fitness evaluation, with a low-cost

approximate fitness assignment procedure. This can be achieved either by evolutionary

approximation, where the fitness of a chromosome is estimated from its parents’ fitness, or

function approximation, where the fitness function is replaced by an alternate simpler

model. Jin (2005) provides a comprehensive survey on fitness approximation techniques.

The selection of an appropriate approximation model to replace the real function is an

important step in ensuring that the optimisation problem is solved efficiently. Neural

network models have widely been used for function approximation (Lawrence et al. 1996).

Willmes et al. (2003) compared neural networks and the Kriging method for constructing

fitness approximation models in evolutionary algorithms. Jin and Sendhoff (2004)

combined the k-nearest-neighbour clustering method and a neural network ensemble to

estimate the solutions’ fitness. Burdsall and Giraud-Carrier (1997b) used an approximation

of the network’s execution to evaluate solutions fitness instead of constructing a radial

basis function network (RBF) to optmise the topology of a neural network. The

approximation is based on an extension of the nearest-neighbour classification algorithm to

fuzzy prototypes. Ankenbrandt et al. (1989) implemented a system of fuzzy fitness

functions, to grade the quality of chromosomes, representing a semantic net. The system is

used to assist in recognizing oceanic features from partially processed satellite images.

Pearce and Cowley (1996) presented a study of the use of fuzzy systems to characterise

engineering judgment and its use with genetic algorithms. They demonstrated an industrial

design application where a system of problem-specific engineering heuristics and hard

requirements are combined to form a fitness function.

2.3.1.5 Operation substitution

Genetic algorithms present a methodological framework that is easy to understand

and handle. This framework is open to the incorporation of other techniques (Schwefel

1997). It is possible to utilise other techniques to perform one or more of the genetic

algorithm operations. These incorporated techniques can be used to replace either the

crossover operator, mutation operator or both.

In Probabilistic Model-Building Genetic Algorithms (PMBGA) or Estimation of

Distribution Algorithms (EDA) (Pelikan et al. 1999b), a probabilistic model is utilised to

learn the structure of a problem on the fly. This model is used instead of the standard

genetic operators to ensure a proper mixing and growth of building blocks. These

algorithms replace the standard crossover and mutation operators of genetic algorithms, by

building a probabilistic model that estimates the true distribution of promising solutions.

35

Chapter 2 Literature review

New potential solutions are then generated by sampling this model. Population Based

Incremental Learning (PBIL) (Baluja 1994), Univariate Marginal Distribution Algorithm

(UMDA), Compact Genetic Algorithm (CGA), Bivariate Marginal Distribution Algorithms

(BMDA), Factorized Distribution Algorithms (FDA) and the Bayesian Optimisation

Algorithm (BOA) (Pelikan et al. 1999a) are all examples of PMBGA that are reported to

have a better search ability, than that of the simple genetic algorithm, in solving a broad

class of problems (Pelikan et al. 1999b). Tsutsui et al. (2005) proposed the Aggregation

Pheromone System (APS), which introduced the concept of pheromone trail of the ant

colony optmisation into the PMBGAs, to solve real-valued optimisation problems.

Leng (1999) proposed the Guided Genetic Algorithm (GGA), which is a hybrid genetic

system that borrows the concept of feature and penalties from the Guided Local Search

(GLS). The GGA modifies the fitness function by means of penalties to escape local

optima. Two specialised crossover and mutation operators, which are biased by the

penalties to change genes that are involved in more penalties, are used in order to explore

the search space.

When a problem-specific representation is used in a genetic algorithm, the standard genetic

variation operators are usually replaced with problem-specific operators. Hedar and

Fukushima (2003) replaced the ordinary crossover with a simplex crossover that produces a

simplex offspring from mating n + l simplex parents (n is the dimension of the problem to

be solved). They also used a mutation operator that was more suitable. Quantum-inspired

genetic algorithms (Han and Kim 2002) (Han and Kim 2004) (Talbi et al. 2004) borrow the

concepts of quantum bit and states superposition from quantum computing. In these

algorithms, the individuals are represented as a string of quantum-bits. Quantum-gates are,

then, used to modify these individuals instead of crossover and mutation operators. The

power of these algorithms comes from the great diversity they provide by using quantum

coding. Each single quantum individual in reality represents multiple classical individuals.

The results reported from using this hybridisation to solve combinatorial and continuous

optimisation problems are promising.

Tan et al. (1995) replaced the standard mutation operator by simulated annealing to solve

system identification and linearization problems. The results showed a more accurate

search and faster convergence when compared with a pure genetic algorithm. Riopka and

Bock (2000) proposed a collective learning genetic algorithm, in which an intelligent

recombination based on the exchange of knowledge between chromosomes, is used to

effectively find high quality solutions to combinatorial optimisation problems. Magyar et

36

Chapter 2 Literature review

al. (2000) introduced several heuristic crossover and local hill-climbing operators to solve

the 3MP. Fundamental to the technique is adaptation of operator selection. Two fuzzy

connective-base (FCB) crossover operators types (dynamic and heuristic) have been

proposed in (Herrera and Lozano 1996) for real-coded genetic algorithms to fight

premature convergence problems.

2.3.2 Optimising the control parameters

The setting of genetic algorithm control parameters is a key factor in the

determination of the exploitation versus exploitation trade-off. Other techniques can used to

monitor the behaviour of a genetic algorithm in order to adapt its control parameters to

improve search performance. A collection of fuzzy rules and routines can be used for

dynamically adjusting the control parameters of genetic algorithms. A fuzzy logic

controller uses feedback from the current state of search to improve performance and avoid

undesirable behaviours such as premature convergence.

It is also possible to incorporate a genetic algorithm within another technique to optimise

control parameters, since genetic algorithms are in practice very effective optimisation

techniques. A genetic algorithm can be applied to optimise a neural network in a variety of

ways. It can be utilised to adjust the neural network weights (Belew et al. 1991) (Montana

1995) (Liang et al. 2000) their topology (Miller et al. 1989) (Koza and Rice 1991) (Arena et

al. 1993) (Chaiyaratana and Zalzala 2000) and learning rules (Chalmers 1990) (Fontanari

and Meir 1991). For a comprehensive review of evolving neural networks the reader can

refer to (Yao 1999). Karr (1991) described an application to the cart-pole balancing system

and used a genetic algorithm to evolve the membership functions of a fuzzy controller. The

resulting, optimised fuzzy logic controller performed better than the controller based on

membership functions designed by a human expert. These promising results have been

confirmed by an application of the method for online control of a laboratory pH system

with drastically changing system characteristics (Karr and Gentry 1993). Genetic

algorithms can also be used to automate the learning of fuzzy control rules (Valenzuela-

Rendon 1991). They have also been used to optimise the control parameters of ant colony

optimisation algorithms (White et al. 1998) (Botee and Bonabeau 1998) (Pilat and White

2002).

Some of design choices faced by a hybrid genetic algorithm designer while solving real

world problems are discussed in the following sections. Due to their major impact on

hybrid genetic performance, the discussion concentrates on different learning strategies and

mechanisms that can be used to achieve a balance between exploration and exploitation.

37

Chapter 2 Literature review

First, the relation between genetic/local search and evolution/learning is presented. Then,

different techniques that can be used to achieve the optimal division of labour between

global genetic algorithm and local search method are reviewed.

2.4 Learning and local search

Organisms in different biological systems try to learn about themselves and their

environments to acquire new skills and improve their innate characteristics in order to adapt

to their environment and improve their chances of survival and reproduction. In this way,

learning can increase an organism’s chances at being selected to evolve. Performing a local

search on a solution has a similar effect in hybrid genetic algorithms. A local search method

uses local knowledge about a specific solution and its surrounding to improve its chances to

be selected by the genetic algorithm to propagate its characteristics into the next

generations. Since the genetic algorithm in itself is a model of the evolution process, the

local search is usually viewed as learning process.

Evolution is concerned with the change in genetic structure of the population as a result of

natural selection and genetic operators. Modification operators of genetic algorithms also

work on the genotype or the genetic structure of the individual. However, the selection

operator works on phenotype or the merit of traits that an individual shows in its

environment. For this reason some kind of mapping from genotype to phenotype is

embedded in genetic algorithms. In contrast to evolution and genetic algorithms, both

leaning and local search methods work on phenotype. The other difference between

evolution and learning is the time scale in which they occur.

Two basic biological learning models have been proposed to explain the way by which

learning affect evolution. According to the Lamarckian model, learning can affect evolution

directly through passing acquired traits as a result of learning from parents to their

offspring. This model, which is known as Lamarckian evolution, was rejected by the

Darwinian school of thought. This school believes that learning has indirect effect on

evolution. Learning can guide evolution through an indirect mechanism, known as the

Baldwin effect (Baldwin 1896). Learning can accelerate the genetic acquisition of learned

traits without the Lamarckian mechanism. Through learning, individuals can improve their

traits or their ability to adapt to their environment and this can increase their chances of

survival and the passing of their genetic structures to next generations. The next generations

will not be dominated only by individuals who have good genetic structures but also by

individuals with the ability to learn and improve their fitness. This gives good genetic

structures more chance to survive even when they are represented in the population by

38

Chapter 2 Literature review

individuals with under average fitness. Learning and evolution should aim to fulfil common

goals in order for the Baldwin effect to occur. This condition is already satisfied in

optimisation problems where the common task of local and genetic algorithm search is to

optimise the same function.

The way of utilising gained information through local search within a hybrid genetic

algorithm has a great impact on the performance of search process. Two basic approaches

based on biological learning models have been adopted to utilise these information; the

Lamarckian approach and the Baldwinian approach (Hinton and Nolan 1987). There is also

a third model, which is a mixture of the basic models and its effectiveness has been proven

in solving real-world problems (Orvosh and Davis 1993) (Houck et al. 1997) (Joines et al.

2000b) (Sung-Soon and Byung-Ro 2005).

2.4.1 Lamarckian learning

Lamarckian approach is based on the inheritance of acquired characteristics

obtained through learning. This approach forces the genetic structure to reflect the result of

the local search. The genetic structure of an individual and its fitness are changed to match

the solution found by a local search method. In the Lamarckian approach, the local search

method is used as a refinement genetic operator that modifies the genetic structure of an

individual and places it back in the genetic population.

Lamarckian evolution, in spite of being recognised as never occurring in biological systems

due to the lack of a mechanism to accomplish it, can be simulated in a computer in order to

shed light on issues of general evolvability. Lamarckian evolution can accelerate the search

process of genetic algorithms (Whitley et al. 1994). On the other hand, by changing the

genetic structure of individuals, Lamarckian can disrupt schema processing which can

badly affect the exploring abilities of genetic algorithms. This may lead to premature

convergence (Whitley et al. 1994). When a Lamarckian approach is adopted, inverse

mapping from phenotype to genotype is required. The inverse mapping may be computable

in many simple applications. However, the computation will typically be intractable, for

real-world problem solving (Tunery 1996). Most of hybrid genetic algorithms that repair

chromosomes to satisfy constrains are Lamarckian and the technique has been particularly

effective in solving TSP (Julstrom 1999).

2.4.2 Baldwin learning

The Baldwin learning allows an individual’s fitness to be improved by applying a

local search, whereas the genotype remains unchanged. In this way, it improves the

39

Chapter 2 Literature review

solution’s chances to propagate its structure to the next generations. Like natural evolution,

learning does not change the individual’s genetic structure, however it increases its chances

of survival. The Baldwinian approach, in contrast to the Lamarckian one, does not allow

parents to pass their learned or acquired characteristics to its offspring. Instead, only the

fitness after learning is retained. A local search method in the Baldwinian approach is

usually used as a part of the individual’s evaluation process. The local search method uses

local knowledge to produce a new fitness score that can be used by the global genetic

algorithm to evaluate the individual’s ability to be improved.

The Baldwin effect is somewhat Lamarckian in its results although it uses different

mechanisms (Turney 1996). It explains interactions between learning and evolution by

paying attention to balances between benefit and cost of learning. The Baldwin effect

consists of the following two steps (Turney et al. 1996). In the first step, learning gives

individuals the chance to change their phenotypes to improve their fitness. Individuals, who

found learning useful and help their fitness to improve, will spread in the next population.

In the second step, if the environment is sufficiently stable, the cost associated with

learning results in selection favouring individuals that have the traits, which are acquired by

others through learning, already coded into their genotype. Through this mechanism, called

genetic assimilation, learning can accelerate the genetic acquisition of learned traits

indirectly. A critical precondition for genetic assimilation appears to be a strong correlation

between genotype and phenotype space so that nearness in the phenotype space implies

nearness in the genotype space (Mayley 1996). Otherwise, the acquired traits have little

chance of eventually becoming encoded in the genome via chance through genetic

operations.

Hinton and Nolan (1987) illustrated how the Baldwin effect can transform the fitness

landscape of a difficult optimisation problem into a less difficult one, and how the genetic

search is attracted toward the solution found by learning. Gruau and Whitley (1993)

showed how local search can change the landscape of fitness function into flat landscapes

around the basin of attraction. This change in fitness landscape is known as the smoothing

effect. They demonstrated the impact of the smoothing effect on the search process. This

learning strategy could be more effective but slower than Lamarckian, since it does not

disrupt schema processing of genetic algorithms (Whitley et al. 1994). Baldwinian search

can also have the effect of obscuring genetic differences and, thus, hindering the evolution

process (Mayley 1996). This is known as the hindering effect. Essentially this occurs as a

result of different genotypes mapping to the same or similar phenotypes (as a result of the

smoothing effect) with equivalent fitness scores being produced. The genotypes cannot be

40

Chapter 2 Literature review

effectively discriminated according to their fitness values without considering the learning

cost and the evolution of effective solutions is hindered. The Baldwinian effect can

aggravate the problem of multiple genotype to phenotype mappings (Houck et al. 1997)

(Julstrom 1999). This problem can also waste the resources of hybrids that use clustering

techniques in the genotype domain to reduce unnecessary local search, in contrast to the

Lamarckian approach which has been shown to help alleviate this problem (Joines and Kay

2002).

Hart et al. (1995) pointed to the importance of considering the cost of learning, which has

been ignored by most researchers when studying the impact of the Baldwinian strategy on

the hybrid search by analysing its performance based on the number of generations of the

genetic algorithm only. Learning can introduce a computational cost which overweighs its

benefits in search.

2.4.3 Hybrid Lamarckian-Baldwinian models

Hybrid Lamarckian-Baldwinian models are created with a view towards combing

the advantages of both forms of learning models (Orvosh and Davis 1993). The

combination of the Baldwinian and the Lamarckian approaches can be done at two different

levels. Hybridisation can be used at the individual-level, where some individuals evolve

using the Lamarckian approach while the other individuals evolve using the Baldwinian

approach (Houck et al. 1997) (Joines et al. 2000b). Houck et al. (1997) found that this form

of partial Lamarckian approach outperformed both the pure Lamarckian and the pure

Baldwinian approaches on a selected set of test problems.

The other level is the gene-level, where a number of genes evolve using the Lamarckian

strategy and the remaining genes evolve using the Baldwinian approach (Sung-Soon and

Byung-Ro 2005). This approach was used to solve the sorting network problem. It can

reduce the problem search space and help to produce an efficient search (Sung-Soon and

Byung-Ro 2005).

The effectiveness of adopting the pure Lamarckian approach, the pure Baldwinian

approach, or any mixture of them in a hybrid is affected by the fitness landscape, the

representations, the percentage of population performs local search and local search method

used (Michalewicz and Nazhiyath 1995) (Turney 1996) (Houck et al. 1997) (Joines et al

2000b) (Ishibuchi et al. 2003)

Chapter 2 Literature review

2.5 Balance between local and global Search

The hybrid algorithm should strike a balance between the two contrasting

objectives, which are exploration and exploitation, in order to be able to solve global

optimisation problems. According to the hybrid theory (Goldberg and Voessner 1999),

solving an optimisation problem and reaching a solution of desired quality can be attained

in one of two ways. Either the global search method alone reaches the solution or the global

searcher guides the search to the basin of attraction from where the local search method can

continue to lead to the desired solution. In the genetic-local hybrid, the main role of the

genetic algorithm is to explore the search space in order to isolate the most promising

regions of the search space or hitting the global optimum. However, the main role of the

local search method is to exploit the information gathered by the global genetic algorithm.

The division of the hybrid’s time between the two methods influences the efficiency and

the effectiveness of the search process. The optimal division of algorithm’s time is an

important issue that faces the designers of hybrid genetic algorithms.

Although the aim of combining a global genetic algorithm and a local search method is to

reap the best out of the exploring ability of the former, and the efficiency of the latter in

reaching local optima, the two methods can interact in a more complicated way than the

one described above. Rosin et al. (1997) argued that the mutation operator in a hybrid plays

a different role than it does in a pure genetic algorithm. The local refinement requirement of

the mutation operator becomes unnecessary in the existence of an explicit local search

method allowing the mutation operator to take a more exploratory role. Land (1998)

suggested using larger mutations, at least large enough to move from one basin to another,

in cases where each individual of the population is completely locally optimised. He went

further, when he argued that local search obviates the need for crossover in solving the

graph bisection problem, because local search is able to build the very same building blocks

that the crossover would otherwise combine.

The exploring ability of the genetic algorithm can be further improved by utilising local

search to ensure fair representation of different regions of a search. This can improve the

ability of the genetic algorithm to direct the search to the most promising regions of the

search space. Once the algorithm has guided the search to the basin of attraction of the

global optimum, utilising local search can further improve the search to produce an

effective optimisation algorithm. The first goal of the hybridisation, which is the

effectiveness of search, can be satisfied if a genetic algorithm and a local search method

cooperate in the manner mentioned above. However, there are other forms of interaction,

42

Chapter 2 Literature review

destructive forms of interactions. For example, the mutation and crossover operators can

disrupt good and complete local solutions which may waste algorithm resources and

produce an inefficient search. The Lamarckian local search can disrupt the schema

processing of the genetic algorithm which may lead to premature convergence and produce

an ineffective search.

In addition to the role of genetic operators of systemically exploring the search space, they

perform some form of local search with relative low cost compared to the more accurate

local search methods. The improper use of the expensive local search in a hybrid can waste

algorithm resources. The algorithm should be able to decide wisely on both methods,

especially when both can achieve the desired task, taking into account the benefits and costs

of their utilisation. The condition of an appropriate use of both methods in addition to the

condition of interacting in a cooperative way should be satisfied in order to produce an

effective and efficient search algorithm.

Researchers have proposed different techniques to enable the hybrid to mix both methods

wisely or at least to reduce the consequences of the improper use of the expensive local

search. These techniques are based on modifying the different parameters of a local search

method within a hybrid. Modifying the parameters of the local search, such as the

frequency of local search, the duration of local search, and the probability of local search

can help the hybrid to strike a balance between the two search methods.

2.5.1 Frequency of local search

The number of continuous uninterrupted generations that a genetic algorithm

performs before applying local search is usually referred to as the frequency of local search.

In the traditional hybrid genetic algorithm, the frequency of local search is one for example.

The staged hybrid genetic algorithm (Mathias and Whitley 1992) (Mathias et al. 1994) was

designed to separate the two search methods into two distinct stages by increasing the

frequency of the local search in order to minimise the interference between the two search

methods. Mathias and Whitely (1992) used a local search frequency of two to solve the

TSP. However, in a hybrid algorithm to solve the static correction problem (Mathias et al.

1994), the genetic search algorithm was allowed to continue uninterrupted for ten

generations before applying a single iteration of waveform steepest ascent iteration to each

individual in the population. This hybrid algorithm produced solutions with improved

quality of 5% and additional savings in time compared with the traditional hybrid genetic

algorithm. Espinoza et al. (2001) conducted a set of experiments to find the optimal local

43

Chapter 2 Literature review

search frequency of two two-dimensional continuous test functions and they found that the

optimal frequency of local search for these test functions was 3.

The optimal frequency of local search is function dependent and varies with time because

the optimal time that should be spent on local and global search algorithm depends on the

distribution of individuals in the population. Syrjakow and Szczerbicka (1995) studied the

optimal switch point between the genetic algorithm and local search to fine-tune the

solution found by the pre-optimiser genetic algorithm. They studied three criteria: the

number of function evaluations, the convergence speed of the genetic algorithm, and the

regional accumulation of search points indicating the convergence toward a specific region

in the search space so as to determine the optimal switch point. The convergence speed

criterion produced the highest efficiency in their experiment. Lobo and Goldberg (1997)

address the problem of deciding between global search and local search in order to make

the most out of either technique. They tried to answer the question; when should the local

search be used and when should the global genetic algorithm be used to achieve the

maximum possible efficiency? They viewed the problem as a two armed bandit problem

where the payoff of each bandit is unknown and changes with time. They presented a

model for efficient hybridising based on the concept of probability matching. This model

can be viewed as an adaptive technique that adjusts the frequency of local search depending

on the efficiency of both genetic and local techniques as the search progresses. Tuson and

Ross (1996) used a similar model to adapt the operator probability in their Cost Based

Operator Rate adaptation. They used their model to select the use of a mutation or

crossover operation in a pure genetic algorithm. The same technique has been used to solve

the 3MP (Magyar et al. 2000), where an adaptive hybrid algorithm select one operator from

eight recombination and local search operators based on their current and past benefit-cost

ratio.

Espinoza et al. (2001) used the change in coefficient of variation of the fitness function to

determine whether the genetic algorithm is exploring new regions of the search space or

exploiting the already visited regions. Based on that, the algorithm selects to perform either

a genetic or a local iteration. The algorithm relies on the local search role to improve the

sampling of the new regions that are being explored in the case of any increase in that

coefficient. Once the search has branched to a local search, the fitness improvement-cost

ratio of both the last genetic and the local iterations, and the maximum number of local

iterations are used to decide on continuing the local search or going to the global search.

The experiments showed that the algorithm is more efficient than a pure genetic algorithm

44

Chapter 2 Literature review

and is stable against a greater range of parameter settings than the standard staged hybrid

genetic algorithm.

Hacker et al. (2002) proposed an approach that switches between global genetic and local

search, based on the local topology of the search space. The basic idea of this approach

ignores the role of local search in improving the sampling ability of the genetic algorithm.

It concentrates on the efficiency of local search, i.e. at finding the optimal once the global

genetic algorithm has defined its basin of attraction. The utilisation of the relative

homogeneity of the population and regression analysis to determine whether the search is

exploring a single basin or multiple basins was investigated. The coefficient of variance of

both the fitness and phenotype was used to quantify the relative homogeneity of the

population. A decrease in the values of the coefficient of variance indicates that the genetic

algorithm has converged to a small area of the search space and the search process can

therefore be made more efficient by switching to a local search. Whereas, an increase in its

value indicates a new region of the search space is being explored indicating that there is

less need to use a local search. Regression analysis has also been used to determine when to

switch between global and local techniques. The value of the error of fitting the population

of solutions to a second-order surface can indicate as to whether the genetic algorithm is

exploring multiple basins or a single basin in the search space. Depending on the value of

that error the algorithm decides to switch to a local search or continue the global search.

They concluded that utilising local search could be helpful for small size search spaces in

the early stages of search due to their role in helping the genetic algorithm to define the

most promising regions of the search space. However, for large size and complicated search

spaces, their role is limited to accelerating finding of the global optimum once the genetic

algorithm isolates the most promising region and can be helpful in later stages of the

search.

2.5.2 Duration of local search

Local search duration influences the balance between the global exploration genetic

algorithm, and local refinement of neighbourhood search method, in hybrid genetic

algorithms (Hart et al. 2000) (Ishibuchi et al. 2003). A hybrid with long local search

duration will execute fewer generations of the genetic algorithm than a hybrid with shorter

local duration, if both terminate after the same number of function evaluations.

On combinatorial domains, a local search can be performed until a solution converges to a

local optimum. However, on continuous domains, the local search is typically truncated

before reaching a local optimum when its step length becomes too small. Performing local

45

Chapter 2 Literature review

search until a solution converges to a local optimum, which is referred to as complete local

search, may lead to the loss of population diversity (Whitley et al. 1994) depending on the

learning strategy used. Hybrid genetic algorithms that adopt the pure Lamarckian approach

are prone to loss of diversity more than others which utilise other learning techniques.

Applying a complete local search on costly function evaluations can also be expensive.

However, there is a certain class of problems, decomposable fitness problems (Radcliffe

and Surry 1994), where calculating the fitness of a solution given the fitness of its

neighbour, is significantly less computationally expensive than computing its fitness from

scratch. TSP is an example of this group of problems where computing the length of a tour

that shares most of its edges with another tour, whose length is already known, is much

cheaper than computing the length of a general tour. Radcliffe and Surry (1994) argued that

hybrids are more suitable for problems exhibiting this property.

A few studies have been conducted which investigate the optimal duration of local search.

Hart (1994) found that using a short duration of local search produced the best results for

the Griewank functions (Griewank 1981), whereas a long duration produced better results

for the Rastrigin functions (Torn and Zilinskas 1989). Rosin et al. (1997) experimented

with very short and very long local search durations in a hybrid to optimise the drug-

docking configuration. Both durations were found to yield similar performance. Hart et al.

(2000) concluded that duration of local search is an important factor and hybrid genetic

algorithms with long local searches will be most effective for nontrivial problems.

The high cost of complete local search on expensive function evaluations makes any

improper use of the local search difficult to recover from. However, the recovering from

any misuse of partial local search is still possible. Partial local search is more suitable for

hybrids that decide on a global or local approach depending on the current state of search

and the previous performance of both methods. In this case, where there is a possibility of

misjudgement in some circumstances, the use of partial local search gives the hybrid more

chance to recover from such errors than using complete local search.

2.5.3 Probability of local search and local search selection

In any hybrid algorithm, a local search can be applied to either every individual in

the population or only few individuals. In traditional hybrid genetic algorithms, a local

search is applied to every individual in the population. However, applying a local search to

every individual in the population on costly function evaluations can waste resources

without providing any more useful information. In this case, the local search can be applied

46

Chapter 2 Literature review

to individuals that fall in the same basin of attraction of the search space, whereby

producing the same local optimum. Applying a local search to a large fraction of the

population can limit exploration of the search space by allowing the genetic algorithm to

evolve for a small number of generations. The possibility of applying local search on more

than one individual from the same basin can be reduced by performing local search on only

a small fraction of the population. This also lowers the chances of applying an unnecessary

local search on individuals that fall in non-promising regions of the search space. Deciding

upon the optimal fraction of population which should perform local search, and the basis on

which these individuals are chosen, has a great impact on the performance of a hybrid.

Hart (1994) investigated the impact of the fraction of population that undergo local search

on the performance of real-coded genetic algorithm. He found that a relation exists between

this fraction, the population size and the performance of the hybrid. He also found that

performing local search on small fraction could be more efficient when using larger

populations and those large fractions can help to reflect the search space characteristics

when using small populations. He concluded that a more selective use of local search could

improve the efficiency of hybrids. Hart and Belew (1996) studied the impact of local search

probability on the efficiency of hybrids. Their studies indicate that the probability of local

search should be kept low in the initial stages and incremented in later generations. The

population diversity in the initial stages of genetic algorithm enables good sampling of the

search space. However, as the diversity diminishes in the later stages, the sampling ability

of the genetic algorithm requires additional help from the local search.

Different techniques, such as tuning, distribution-based (Hart 1994), fitness-based (Hart

1994) techniques and local search potential (Land 1998), have been proposed to decide on

the optimal fraction of population that should perform a local search. These techniques aim

to reduce unnecessary local searches. However, they differ in the way they select

individuals that perform the local search.

2.5.3.1 Tuning technique

In the tuning technique, a primary experiment is conducted in order to find the

optimal fraction of the population that should perform local search. This fraction is usually

referred to as the probability of local search. This value is then used to run the real

experiment and remains fixed during the run. Typically, the individuals that undergo local

search are chosen uniformly at random. Rosin et al. (1997) apply local search to 7% of the

population in each generation in their hybrid to solve the docking problem. In Land et al.

(1997), only 5% of randomly selected individuals of the population perform a Marquardt-

47

Chapter 2 Literature review

Levenberg local search in their hybrid to determine the basic parameters that describe the

structure of a semiconductor wafer. Hart et al. (2000) and Morris et al. (1998) apply local

search to 6% of the population. Espinoza et al. (2001) found applying local search on 10%

of the population produces the best efficiency for both their adaptive hybrid algorithm and

the standard staged hybrid algorithm. In their adaptive hybrid genetic algorithm, this value

is used as an initial value for the probability of local search, which is reduced by a specific

value after applying local search. In a hybrid to solve the TSP, Krasnogor and Smith (2000)

applied their adaptive local search method with a probability of 1.0 to each individual in the

population, except the one with the best fitness.

2.S.3.2 Distribution-based technique

Distribution-based techniques modify the probability of local search based on the

distribution of individuals in the population. The motivation for these techniques is to

ensure that only one individual from each basin of attraction in the search space can

undergo local search. These techniques can improve the sampling ability of the hybrid by

preventing bad representatives of good regions from misguide the global genetic algorithm.

Hart (1994) used F statistic as a measure of distance over the space of genotypes to adapt

the probability of local search. Joines and Kay (2002) combined evolutionary algorithms

with random linkage and borrowed the concept of short memory from tabu search to avoid

performing unnecessary local search on non-promising regions of the search space. The

authors defined tabu hyperspheres around the offspring of the genetic algorithm to reduce

the amount of wasted function evaluations owing to the rediscovery of the same local

optimum. The probability of local search of each offspring depends on the distance to the

nearest tabu region. By decreasing the size of these tabu hyperpheres as the search progress,

the algorithm can intensively search the most promising regions of the search space. This,

in turn, can help to find the exact local optimum of the region which also represents the

global optimum of the search space. The authors compared their hybrid using the

Lamarckian leaning approach with a pure genetic algorithm, and the standard hybrid

genetic algorithm where each offspring perform local search using two different learning

strategies. They reported that their hybrid outperformed other algorithms in terms of both

solution quality and computation effort. Martinez-Estudillo et al. (2004) selected

individuals for local search using clustering techniques to optimise the structure and the

weights of product-unit based neural networks. The results showed that the clustering

approach was able to perform better than similar algorithms that do not use clustering

analysis.

48

Chapter 2 Literature review

2.5.3.3 Fitness-based technique

A fitness-based technique adaptively calculates probability with which local search

is applied. This technique uses the fitness information in the population to bias the local

search toward individuals that have better fitness. The local search probability of each

individual is modified based on the relationship of its fitness to the fitness of other

individuals. These methods assume that individuals with better fitness are more likely to be

in the basins of attraction of the most promising regions. This assumption ignores the

dynamic of genetic algorithms and the cumulative effect of applying local search on

successive generations which can aggravate the sampling ability of the global genetic

algorithm and can misguide the search. For example, if a promising region of the search

space is represented badly by an individual with under average fitness and, in the same

population, a non-promising region is represented by individual with over average fitness,

the representative of the non-promising region will have more chance to perform local

search and improve its chances of survive.

Hart (1994) found no statistical differences between the results obtained by applying

fitness-based selection and the results of fixed probability of local search. Espinoza et al.

(2003b) used a clustering technique that is tailored to the three different stages the authors

have defined for constrained problems to adapt the probability of local search. In the first

stage, where all the solutions are infeasible, and last stage, where all the solutions are

feasible, the authors experimented with clustering the individuals depending on their

fitness. The selection was performed by means of Latin-Hypercube sampling from clusters

which had formed. In the second stage where a few individuals are feasible, the probability

of local search is proportional to the number of feasible solutions in the population. The

results showed that the algorithm, which is based on a fitness clustering technique, is more

reliably faster than the adaptive hybrid genetic algorithm with fixed starting local search

probability. Lozano et al. (2004) proposed a simple adaptive scheme which sets the

probability of local search of each individual to either 1.0 or 0.0625 depending on the

individuals fitness compared to the fitness of the current worst individual in the population.

The authors concluded that this adaptation mechanism allows the balance between the

global genetic search and the local search to be adjusted according to the particularities of

the search space, thus allowing significant improve in the performance for problems with

different difficulties.

2.5.3.4 Local search potential technique

The local search potential selection (LS potential) mechanism has been proposed

by Land (1998) to decide which individuals should perform a local search. Land suggested

Chapter 2 Literature review

that biasing the local search toward individuals that can be most efficiently improved by

local method makes the most effective use of local search. The least easily improved

solutions are likely to be those at or near to the local optimum and it is inappropriate to

expend effort on fine refinement, as long as there are large differences in the population’s

fitness. In this way, the scheme biases the hybrid toward more exploration. As the

population gets closer to the optima, this mechanism allows local search to progress to the

next level of refinement. In his algorithm, he used the past local search effectiveness as a

measure to estimate future effectiveness.

Different techniques have been used to control the different parameters of the local search

in order for it to strike a balance with the global genetic methods. Most of the controlling

techniques which are described by Eiben et al. (1999) for controlling the parameters of

evolutionary algorithm have been investigated and applied to control parameters of local

search methods in a hybrid. Although, self-adaptation mechanisms have been successfully

used to adapt different parameters of evolutionary algorithms, for details on this subject the

reader can refer to Eiben et al. (1999). To the author’s best knowledge, it has not been

applied in order to achieve a balance between local and global searches. The self-adaptation

techniques are reported to be successfully used to decide between different local search

methods in solving the OneMax problem, NK-Landscapes, and TSP (Krasnogor and Simth

2001).

This chapter aimed to shed some light on the effectiveness and efficiency of hybridising

genetic algorithms with various techniques. In order to fulfil this aim different search

techniques have been reviewed in addition to some of the wide variety of hybrid genetic

approaches. These approaches show that hybridising is one possible way to build a

competent genetic algorithm (Goldberg 1999) that solves hard problems quickly, reliably

and accurately without the need for any forms of human intervention. Hybridisation has

been utilised to construct competent genetic algorithms that belong to two of the three main

approaches for building competent genetic algorithms, which are perturbation, linkage

adaptation and probabilistic model building techniques (Chen and Goldberg 2005). The

collective learning genetic algorithm is an example of a competent genetic algorithm that

employs specifically designed representation and operators for adapting genetic linkage

along with the evolutionary process. Other search and optimisation methods can also be

used to adapt genetic linkage. Probabilistic Model-Building Genetic Algorithms (PMBGA)

are examples of probabilistic model builders which learn genetic linkage via building

models based on the current population.

50

Chapter 2 Literature review

Hybridisation is also one of the four main techniques for efficiency enhancement of genetic

algorithms. Hybridisation can also be used as a tool to achieve evaluation relaxation, which

in turn is another main technique for efficiency enhancement.

The ability of a genetic-local hybrid to solve hard problems quickly depends on the way of

utilising local search information and the mechanism of balancing genetic and local search.

By reviewing the different hybrid approaches, some of the important factors that affect the

hybrid performance were presented. This review shows that there is a trend to adapt some

of the hybrid design choices through adapting the control parameters associated with these

choices while the search is progressing. Different adaptation techniques have been used to

adapt the selection of a local search method among the available methods, the selection of

individuals for a local search and other design aspects.

Chapter 3 Extent of local search

Local search algorithms usually take a considerable number of function evaluations

before reaching a local optimum (see section 2.2). When combining a local search

algorithm within a genetic algorithm, the duration of local search (expressed as a number of

local search steps between two genetic algorithm generations) significantly affects the

hybrid performance, due to its influence on the balance between exploration and

exploitation (Hart et al. 2000). The optimal duration of local search depends on the problem

to be solved (Hart 1994) (Radcliffe and Surry 1994) (Hart et al. 2000). For this reason, the

duration of local search is a design choice faced by the hybrid practitioners while solving

real-world problems. The hybrid practitioners can decide either to perform a complete local

search (Rosin et al. 1997) (also referred to as exhaustive search), where local search steps

are performed until a local optimum is reached, or to go for a partial local search, where a

specific number of local iterations are performed before returning to the global genetic

algorithm.

In this chapter, the influence of the complete and the partial local search on the

performance of hybrid genetic algorithms is investigated. Their interactions with the

learning strategy and their combined effect on the optimisation process are studied.

However, before describing the methodology that has been followed in this investigation,

the effects of the duration of local search on its role in a hybrid are analysed. The analysis

helps to provide insight into the expected behaviour of a hybrid, depending on the duration

of its local search. The discussion of expected behaviour is followed by results of

experiments that have been conducted to support such behaviour.

3.1 Duration of local search and hybrid performance

The duration of local search has a great impact on the hybrid’s performance.

Through controlling the duration of the local search, the algorithm can strike a balance

between the local search algorithm and the global genetic algorithm. The duration can

affect the ability of a hybrid to explore the search space, to recover from sampling errors

and to combat the consequences of the hindering effect.

3.1.1 The exploration ability

The duration of local search influences the exploring power of the global genetic

algorithm. The global genetic algorithm, as an exploring tool, and the local search

algorithm, as an exploitation tool, share a common budget of hybrid’s resources. The heavy

52

Chapter 3 Local search extent

use of these resources by any of these tools reduces the efficiency of the other. Excluding

the decomposable fitness problems, the local search algorithm usually requires a heavy use

of the hybrid’s time when compared to the genetic algorithm which requires one function

evaluation per solution. Heavy use of the algorithm’s time by the local search algorithm can

reduce the time budget specified for exploration by the global genetic algorithm.

Performing a complete local search, which usually requires a considerable number of

function evaluations, in a hybrid can hinder its exploring abilities. It can waste algorithm

resources without providing new information. It may also consume the algorithm’s time by

re-sampling already visited points instead of exploring new areas.

Employing a partial local search, on the other hand, usually consumes fewer function

evaluations. This can reduce the possibility of wasting the algorithm’s resources and gives

the global genetic algorithm more chances to explore the search space effectively.

0.6

0.4

o 200 600 800 1000400 1200 1400 1600
Search Space

Figure 3.1: The Combined Effect of the Pure Lamarckian Learning Strategy and the

Complete Local Search on Problem Search Space.

In addition to the above mentioned effect of the duration of local search on the hybrid’s

exploring capability, the exploring ability can be affected in another form involving the

population diversity. This effect is usually associated with the pure Lamarckian learning

53

Chapter 3 Local search extent

strategy. It is easily perceived in embedded hybrid algorithms where a local search is

performed by every individual of each generation. In such algorithms, the population

diversity is significantly influenced by the duration of local search.

3000

2500

2000
 I

V)<n
c 1500
iE _I

1000

500

-* < -

0 200 400 1000600 800 1200 1400 1600
Search Space

Figure 3.2: The Combined Effect of the Pure Lamarckian Approach and the Duration

of Local Search.

Through the complete local search, the whole population is mapped to the local optima of

the optimisation problem. For example, in the fitness landscape shown in figure 3.1,

incorporating a complete local search maps the points from regions A, B and C to the local

optima a, b and c, respectively. This can accelerate locating the global optimum c, once the

hybrid guides the search to its basin of attraction (region C). However, if the algorithm fails

to sample a point in the most promising region, C, in the initial stages of the search, the

process of steering the search into the direction of the global optimum, c, can face some

difficulties using a population of local optima only (points a and b in this example). Owing

to a lack of population diversity, the possibilities of generating offspring in region C and as

a result locating the global optimum, c, are significantly reduced. These possibilities are

further decreased if the basins of attraction of local optima are clustered together in the

search space away from the global optimum (figure 3.2). For example, if the population

54

Chapter 3 Local search extent

consists of samples of regions A and B, a complete local search will transform them to

points a and b. The individuals of the next generation will appear more likely around these

two local optima (in regions A and B) and a complete local search will map them again to

the same points. This iterative cycle can lead the search to a local instead of global

optimum.

• M R N H M I N M H I
•MM! I HIM

0.6

0.4

0.2

0 200 400 800600 1000 1200 1400 1600
Search Space

Figure 3.3: The Combined Effect of the Pure Lamarckian Strategy and the Partial

Local Search on Problem Search Space.

On the other hand, the possibility of exploring limitations due to diversity loss is reduced

by involving a partial local search. The partial local search maps points in the same basin of

attraction to new positions in the basin. Figure 3.3 shows the effect of a partial local search

on the search space of global genetic algorithms and the fitness landscape. The problem

search space is mapped to the shaded parts and the fitness value is mapped to the dotted

curve shown in figure 3.3. The diversity loss is limited compared with that of the complete

local search (figure 3.1). By comparing the effect of using a partial local search with small

durations on the search space, as depicted in figure 3.3, and that of a complete local search

as shown in figure 3.1, it is clear that population diversity suffers in proportion to the local

search duration. In figure 3.1, where the duration of local search is at its maximum value,

55

Chapter 3 Local search extent

the complete search space is mapped to three local optima { a ,b ,c }. In contrast, where the

duration is small, the search space is mapped to a subset that consists of about 50% of the

original search space (figure 3.3). In the first case, there is a considerable possibility of

driving the search towards a local instead of global optimum, whereas in the second case,

this possibility is reduced. Consequently, the possibility of leading the search to a point

near and not the exact optimum still exists, and the speed of generating such a solution is

slow compared to that generated by the complete search.

3.1.2 The ability of recovering from sampling errors

The duration of local search can influence the ability of a hybrid to recover from

sampling errors. The global genetic algorithm can sample bad representatives of good

regions and as a result lead the search towards a local instead of global optimum. For

example, in figure 3.2, the global genetic algorithm can sample points a , b and c as

representatives of regions A, B and C, respectively, which can misguide the search by

directing it towards the non-promising region A and its local optimum. Incorporating a

local search can help to recover from such sampling errors depending on its duration.

A complete local search enables fair representation of search areas in view of the fact that

each area is represented by its local optimum. In figure 3.2, utilising a complete local

search can help to recover from the above mentioned sampling error. Instead of using the

fitness values of c i , b and c as representatives of the regions’ fitness, the algorithm uses

the fitness values of a, b and c (the regions’ local optima) to direct the search towards the

global optimum.

Contrary to the complete local search, the partial local search may not improve the

sampling ability of the global genetic algorithm. For example, in figure 3.2, the use of a

partial local search can map the points a ,b and c , which are bad representatives of regions

A, B and C (figure 3.2), to points a ,b tm d c , respectively, and still guide the search in the

wrong direction.

3.1.3 The ability to combat the hindering effect

In order to gain some insight into the impact of the duration of local search on the hindering

effect associated with the pure Baldwinian learning strategy, the combined effect of this

learning strategy and the duration of local search on the fitness landscape needs to be

illustrated. Figure 3.4 demonstrates this effect. In this graph, Ps represents a partial local

search with short durations and PI stands for partial local search with long durations. Due to

the smoothing effect of the pure Baldwinian strategy, the local search changes the fitness

56

Chapter 3 Local search extent

landscape function into flat regions around the basin of attraction. The size of the flat

landscape depends on the size of the basin of attraction and the duration of the local search.

A complete local search, which represents the maximum duration, produces flat landscapes

with sizes equal to that of the basins of attraction. On the other hand, a pure genetic

algorithm, which represents a local search with minimum duration (zero), produces flat

landscapes with sizes equal to that of the local optima. It is clear from the graph that the

size of the introduced flat landscapes can be controlled by adjusting the duration of the

local search. A local search with small durations (Ps in figure 3.4) generates small flat

areas, while long durations (complete and PI) produce larger areas.

 Actual Fitness
 Partial Local (Ps)
 Partial Local (PI)
- — Complete Local

mm<b
c

U.

0.6

0.4

0.2

400 1000 16000 200 600 800 1200 1400
x

Figure 3.4: The Effect of the Partial and the Complete Local Search on Fitness

Landscape.

The effect of combining the pure Baldwinian strategy and a complete local search on the

fitness landscape increase the possibility of exposing the search to the drift stall. This effect

is common in embedded hybrid algorithms. In early stages of the search performed by these

algorithms, employing a complete local search can accelerate discrimination against

solutions that are in non-promising regions of search space. In figures 3.1 and 3.2, the

algorithm can easily favour samples from region C against samples from regions A and B

57

Chapter 3 Local search extent

based on the fitness value of the regions’ local optima. However, when the population

converges at the most promising region of search space, region C, the use of the pure

Baldwinian strategy and the individuals’ acquired fitnesses (global optimum fitnesses) are

not enough to guide the search to the global optimum. This demonstrates that the use of

fitness alone cannot help to favour solutions with innate fitness against others with learned

or acquired fitness. The absence of selection pressure, due to the hindering effect, can lead

the search toward any point in the global optimum basin of attraction instead of the global

optimum itself. The hindering effect increases the possibility of driving the search to the

drift stall.

The utilisation of a partial local search with the pure Baldwinian learning strategy may not

help in discrimination against samples from non-promising regions in the early stages of

optimisation. For this reason, hybrids may take longer periods of time before converging at

the most promising region of the search. The partial local search, however, can help to

alleviate the hindering effect once the algorithm guides the search to the most promising

area. The use of a partial local search can limit the search to only a small area around the

global optimum depending on its duration and not the whole basin of attraction as in the

case when using a complete search. The utilisation of a partial local search with small

durations can lead the algorithm to converge at a solution very near the global optimum.

In addition to the main effects mentioned before, the duration of local search can affect the

adaptation ability of the adaptive hybrids and the prediction of a suitable local step size for

the local search. The low cost associated with a partial local search makes it suitable for

adaptive hybrids, which decide on a global or local approach depending on the current state

of search and the previous performance of both methods. In this case, the use of a partial

local search gives the hybrid a higher chance to recover from misjudgement errors than

using a complete local search.

In contrast to a complete local search, where a local search algorithm makes use of the

information gathered during the previous local iterations to predict the next optimal local

step length, the discontinuity of a partial search makes such prediction difficult.

3,2 Experiments

A set of experiments has been conducted to investigate the impact of the duration

of the local search on the search process and hybrids performance. The aim of these

experiments was to gain insight into how local optima were sampled by the global genetic

algorithm throughout the search process. They also aimed to improve the understanding of

58

Chapter 3 Local search extent

the effect of the duration of local search on the sampling process and its consequences on

the hybrid's performance.

The first test function (Goldberg and Vosser 1999) (Espinoza et al. 2001) used in these

experiments was:

maximum is 5.0 and is located at (7 .0 ,4 .0). Figure 3.5 shows the fitness landscape of this

function. This function, which will be referred to as FI, has conical basins of attraction.

The radiuses of these basins were set to the same value to eliminate the influence of the

radius on the sampling process.

3.<

2 .1

1 A

I I !

I

Figure 3.5: The Landscape of the Test Function Used.

The first experiment, which is referred to as experiment 3.1, was conducted by allowing an

embedded hybrid algorithm, where every individual in the population performs a local

search iteration (local search probability of 1.0) at each generation (local search frequency

of 1), to run for a specific period of time. The number of times that each local optimum was

sampled was also recorded. The frequency at which the global genetic algorithm visited

each local optimum in the search space was counted. The counting was carried out during

the evaluation process before selecting the mating pool. This enables the study of the

(3.1)
0 otherwise

where x = x - c x j , y = y - c y i , r 2 = x 2 + y 2,and c,={(2.0, 8.0), (3.0, 4.0), (5.0, 7.0),

(7.0, 8.5), (7.0 ,4.0)}, r,={1.0, 1.0, 1.0, 1.0, 1.0} and/*, ={1.0, 2.0, 3.0. 4.0, 5.0}. The global

1 0

0 o

59

Chapter 3 Local search extent

influence of the duration of local search and the learning strategy on the sampling process

of the global genetic algorithm.

The interactions between duration of local search and the learning strategy were studied

through conducting a set of experiments using the pure Lamarckian, 50% partial

Lamarckian and the pure Baldwinian learning strategies.

The partial and the complete local search were simulated in these experiments. In the

complete simulated local search, the algorithm mapped points in the basin of attraction to

the local optimum in a single iteration and was assumed to consume x function evaluations.

However, the partial local search transferred points to new positions in the basin of

attraction depending on their location in the basin. Points that were in the upper third of the

basin were transferred to the local optimum. Points that fell below that would be shifted up

by hi/3 in a single iteration. The cost of each transformation was assumed to be x/3 function

evaluations.

The algorithms were intended to maximise the fitness of the test function and therefore

were allowed to run 100 times. The results were compared with that of the pure genetic

algorithm as a baseline to qualify the improvement in the sampling ability.

The hybrids and the pure genetic algorithm were elitist with binary tournament selection,

two-point crossover. For all experiments, the crossover rate was 0.7 and the probability of

mutation was 0.05. Each variable was represented by a 16-bit gray coded string with a total

of 32 bits for each chromosome. The number of individuals of the population was 10. The

termination criterion for all the experiments was a maximum number of function

evaluations of 20,000. The algorithms sampled the local optimum as if its fitness was in the

boundaries of ±0.1 of the local optimum’s fitness regardless of whether it was the innate or

acquired fitness. The expected sampling frequencies of each of the local optima according

to this counting procedure in the case of being sampled randomly are 0.0158%, 0.0198%,

0.0264%, 0.0398% and 0.0806% respectively, starting from the global optimum.

For each algorithm, a histogram was computed to show how often the five local optima

were visited during the genetic global search. Each of the bars in the histograms was

normalized by dividing by 20,000 (maximum number of function evaluations) so that the

plots indicate the proportion of samples occurring at a specific optimum rather than a raw

count.

60

Pr
op

or
tio

n
of

Ti
m

e
Sp

en
t

At

Lo
ca

l
O

pt
im

a

Chapter 3 Local search extent

10%

9%

8 %

7%

6%

5%

4%

3%

2 %

1%

0%

Figure 3.6: Comparing the Sampling Ability of SGA and HGA with a Partial and a

Complete Local Search in Experiment 3.1.

The results of experiment 3.1 are shown in figure 3.6. The graph compares the histograms

of the proportion of time the global genetic algorithm spent at each local optimum for each

method. The histograms illustrate that the algorithms tend to sample some optima more

heavily than others. They sampled the high fitness local optima much more frequently than

optima with lower fitness. The graph also shows that the pure genetic algorithm sampled

the search space in a more biased fashion, towards the fittest local optimum, than both

hybrids. The proportion of the fitness landscape for which local search is useless is

(loo-
 i=l x 100 - 84.29% .

100

SGA B-PLS

■ H Global (5)
§ § 3 Local (4)
HH? Local (3)
m u Local (2)
1 7 7 1 Local (1)

lilh .JsHuD _ liBrnPl
50%L-CLS L-CLS50% L-PLS L-PLS B-CLS

(B=Baldwinian, L=Lamarckian, PLS= Partial Local Search,C LS=C om plete Local Search)

6 1

Chapter 3 Local search extent

The nature o f the fitness landscape and the high cost o f the local search compared to the global

genetic algorithm can explain the decline in the sam pling ability o f both hybrids. The fact that a

considerable number o f function evaluations were carried out during the local search process, to

improve the sampling ability o f the global genetic search, was not counted as a sam pling o f the

search space. This fact contributed to the differences between the pure genetic algorithm and both

hybrids.

8 14%

S- c/3

TS 6 %

4%

SGA B-PLS 50%L-PLS L-PLS B-CLS

■ I Global (5)
Local (4)

■ » Local (3)
inn Local (2)
I-' . 'I Local (1)

50%L-CLS L-CLS

(B=Baldwinian, L=Lamarckian, PLS= Partial Local Search,C LS=C om plete Local Search)

Figure 3.7: The Effect of Duration of Local Search on the Sampling Ability of the

Global Genetic Algorithm (Experiment 3.1).

In figure 3.7, the previous histograms of experiment 3.1 are redrawn with the bars

normalized by dividing them by the number of points that were sampled by the global

genetic algorithm only. The number of points sampled by the global genetic algorithm is

equal to the total number of function evaluations, minus the number of function evaluations

consumed in the local search. This graph shows how the sampling process can be improved

by a local search, if the cost associated with the local search can be ignored. It demonstrates

that a local search can considerably improve the sampling ability of the global genetic

algorithm for certain classes of functions, where the cost of local search is significantly less

computationally expensive than computing its fitness from scratch.

62

Chapter 3 Local search extent

The high cost of the complete local search compared to the partial local search explains the

differences in sampling between both local search methods. The histograms in both figures

also show that the three algorithms visited the third highest local optimum more frequently

than the second highest optimum. This can be explained based on the nature of the

landscape. The position of the third highest, in the middle of the other four basins, means it

has more chances to be sampled than the second highest which is located on an edge. An

experiment has been conducted that confirmed that the basin in the middle has more

chances to be visited than the one on an edge. In this experiment, the heights of the third

and fourth local optimum have been swapped and the frequency of visiting each optimum

by a pure genetic algorithm has been counted. This experiment showed that the optimum at

the middle was visited more frequently than the one on the edge regardless of the

differences in their heights.

The figure demonstrates that the pure Lamarckian learning strategy, in both hybrids,

sampled the local optima more frequently than the other two strategies. In the complete

local search, the pure Lamarckian strategy maps both the genetic structure and the fitness

value to the local optimum, while the pure Baldwinian maps only the fitness. Through the

pure Baldwinian, the individuals improve their chances to survive according to their local

optimum’s fitness. Their structures, however, are not modified, increasing the risk that

offspring of an individual located at an edge will fall outside the basin. In contrast to this,

the pure Lamarckian, which maps the genetic structure as well, shifts points to the centre of

the basin resulting in an increased chance of their offspring remaining in the basin.

Whereas, the pure Lamarckian generates the same effect for the partial local search, where

it shifts the points towards the centre of the basin, the pure Baldwinian improves their

chances to survive only.

A new experiment has been conducted, which will be referred to as experiment 3.2. The

radiuses of all basins except the global basin of the test function have been increased by

50% in experiment 3.2 compared to experiment 3.1. This is designed to make the local

optima more reachable to local search algorithms. The proportion of time spent by the

global genetic algorithm of each method at each local optimum is shown in figure 3.8. This

graph demonstrates that the pure genetic algorithm sampled the local optima more often

than both hybrids. It also shows that combining the complete local search with either the

pure Baldwinian or 50% Lamarckian led to sampling the second highest local optimum

more heavily than the global one. When considering the pure Lamarckian, differences in

the portion of time spent on sampling the global optimum and the second highest local

optimum are not significant. However, only the combination of the partial local search with

63

Chapter 3 Local search extent

the 50% Lamarckian sampled the second highest local optimum more often than the global

one. In general, the sampling ability of hybrids that use a partial local search is better than

that of complete local search. The differences between the pure Lamarckian of both hybrids

can be used as a base to explain the differences in other learning strategies. Since the use of

a complete local search would map points in the boundaries of the basin of attraction to the

centre of that basin and that basins of the local optima are clustered on one side relative to

the global optimum, hybrids tend to shift the population away from the global optimum.

This reduces the possibility of sampling a solution in the basin of attraction of the global

optimum. On the other hand, the use of a partial local search, in spite of shifting the

population towards the centres, does not shift it to the centre and solutions still exist not far

from the basin boundaries. The possibility of producing solutions in the basin of attraction

of the global optimum, in this case, is more than that of the complete local search.

G lobal (5)
fXSM Local (4)

Local (3)
i n Local (2)
□ Local (1)

■ L ._ _ IfcHn- ISfiri-
SGA BPS1.0 50LPS1.0 LPS1.0 BCS1 0 50LCS1.0 LCS1.0 BPSO 1 50LPS0.1 LPS0.1 BCS0.1 SOLCSb 1 LCSl

S G A = S tan d a rd G e n e tic A lgorithm, B =B aldw in ianIL = L am arck ian ,P S = P artia l Local S e a rc h , C S = C o m p lete Local S e a rc h , x x =Probability of Local S e a rc h

Figure 3.8: The Effect of Local Search Duration on Sampling Local Optima in

Experiments 3.2 and 3.3.

Since the use of local search can improve the fitness of a sampled solution in about 31.4%

of the search space of the previous test function, the same experiment has been repeated

using a probability of local search of less than 0.314. The results of the previous experiment

are compared with results of this new experiment, which will be referred to as experiment

64

Pe
rc

en
ta

ge

C
on

ve
rg

ed

to
G

lo
ba

l
O

pt
im

um

Chapter 3 Local search extent

3.3, where only 10% of the population was performing a local search in figure 3.8. The

graph shows that reducing the probability of local search can improve the sampling ability

of both hybrids using different learning strategies. Reducing the probability of local search,

in this case, can lead to a reduction in algorithm resource wastage. It is clear from figure 3.8

that hybrids which use partial local search sampled the global optimum more frequently

than those using a complete local search and the possibility of misguide the search

according to the sampling frequency is less.

100%

Baldwinian
5\^si 50%Lamarckian
4+H Lamarckian

SGA PS-PL=0.1 PS-PL=1.0 CS-PL=0.1 CS-PL=1.0
(PS=Partial Search,PL=Local S earch Probability,CS=Complete S earch)

Figure 3.9: The Ability to Find the Global Optimum (Experiments 3.2 and 3.2).

Figure 3.9 compares the percentage of finding the global optimum of each algorithm in the

two previous experiments (experiments 3.2 and 3.3). The graph shows that combining the

complete local search with the Baldwinian learning strategy and a local search probability

of 1.0 generated the worst performance. This combination can aggravate the hindering

effect, which makes reliance of the selection operator on the acquired fitness alone

insufficient in directing the search to the global optimum. As shown in the figure,

performing the complete search on small parts of the population can alleviate this problem

by improving the possibility of distinguishing between innate and acquired fitness. When

the probability of local search is small, the probability of applying a local search on the

65

Chapter 3 Local search extent

same solution in consecutive local iterations is significantly small, giving the algorithm a

better chance to distinguish between innate and acquired fitness. It also provides the global

genetic algorithm with more chances to use the algorithm resources to explore the search

space effectively. The graph also shows that the pure Lamarckian strategy can find the

global optimum more frequently than the other learning strategies when only small

fractions of the population are applied to local search. Applying a local search on a small

fraction of the population combined with the pure Lamarckian can solve the problem

without causing diversity loss since the local search modifies the genetic structure of this

fraction only. The use of partial search can alleviate the diversity loss problem further since

it maps the points of the same basin to different points in contrast to the complete search,

which maps them to the basin’s local optimum. The figure demonstrates that the partial

local search outperformed the complete local search when adopting the pure Lamarckian

approach. The use of a partial local search can alleviate the hindering effect problem

associated with the pure Baldwinian by limiting it to a small area of the global basin of

attraction. The large difference between the acquired and actual fitness due to the

Baldwinian strategy is an obstruction in directing the search towards the global optimum.

The complete local search can produce an individual with a high acquired fitness compared

to its innate fitness. However, the difference between them is less when utilising a partial

local search. Figure 3.10 shows the differences in average innate fitness and the acquired

fitness. It illustrates that these differences are proportional to the duration of the local

search. These differences can be further reduced using a partial local search with small

durations. In this graph the dashed line represents the average fitness after applying a local

search (acquired fitness), whereas the solid represents the population average fitness after

applying the genetic operations (offspring innate fitness). The population average acquired

fitness and the offspring innate average fitness of the pure Lamarckian algorithm are also

drawn to visualise the destructive element in the genetic operators on the local search’s

solutions. This should be taken into account when comparing the innate and the acquired

fitness of the pure Baldwinian.

Po
pu

la
tio

n
A

ve
ra

ge

Fi
tn

es
s

Chapter 3 Local search extent

A Hybrid with a Partial Local S earch
a n d B aldw inian Learning

A Hybrid with a C om ple te Local S earch A Hybrid with a C om ple te Local Search
an d B aldw inian Learning an d Lam arckian Learning

Innate F itness
L earned F itness

2 .5

0 .5

50 100
No. G en era tio n s

——■ Innate F itness
L earned Fitness

2.5

0 .5

50 100
No. G en era tio n s

2.5

1.5

0.5

— Innate F itness
 L earned F itness

/^ y v A v y-/'

50 100
No. G en era tio n s

Figure 3.10: The Effect of Local Search Duration on Innate and Acquired Fitness.

67

Chapter 4 Local search and hybrid performance

Genetic algorithms and local search methods can be viewed as complementary search

tools that can be hybridised together to find high quality solutions for an optimisation

problem using minimum resources. The ability of genetic algorithms to capture a global

view of the search space, when combined carefully with the fast convergence of local

search methods (Turney 1996), can often produce an algorithm that outperforms either one

alone (Lobo and Goldberg 1997). Hybridising a local search method provides the global

genetic search algorithm with some local knowledge that can guide and may accelerate the

search to the global optimum (Hart 1994).

The motivation for hybridising a genetic algorithm with a problem-specific method is to

enhance the search capabilities. This enhancement can be in terms of effectiveness (Reeves

1994) (Whitely et al. 1994) and/or efficiency (Goldberg and Vosser 1999). The

enhancement in the search effectiveness can be expressed as an improvement in the

solution quality. Since incorporating a local search introduces an explicit refinement

operator (Rosin et al. 1997), the sampling ability of the global genetic algorithm (chapter 3)

and the solutions quality can be improved. On the other hand, the efficiency improvement

can be expressed as an increase in the convergence speed and/or a reduction in the

population size required to attain a solution of desired quality (Espinoza et al. 2003a). The

reduction in the population size required reduces the size of the memory needed to process

the population in the case of serial genetic algorithms. Hybridisation can be used to speed

up a genetic search (Goldberg 2003) through reducing the time needed to reach a global

solution. Hybridisation also influences the minimum population size required for a genetic

algorithm. Through its effect on the population size, it can increase the convergence speed

of parallel genetic algorithms.

The ability of achieving a balance between global and local search is an essential factor that

influences the performance of any hybrid. This balance depends on many factors, such as

the criteria used to decide between global and local knowledge (Lobo and Goldberg 1997)

and the mechanism for striking a balance between the cost and value of local knowledge

(Hart 1994).

Trade-off between the cost and the value of local knowledge can be controlled through

deciding on the fraction of the population that undergoes a local search and the criteria for

choosing its members. The cost of local knowledge can be measured by the number of

function evaluations performed by a local search method to gain that knowledge. Its value,

6 8

Chapter 4 Local search and hybrid’s performance

however, can be measured by its effect on improving the convergence speed and/or solution

quality. A local search can be applied either to every individual in the population or to only

few individuals. However, a more selective use of local search can improve the

effectiveness and the efficiency of hybrids (Hart 1994). The different techniques that have

been used to decide on the optimal fraction of the population that should perform local

search and the basis on which these individuals are chosen were reviewed in chapter 2.

Tuning is the most commonly used technique to decide on the optimal fraction of the

population that should perform a local search. This fraction is usually referred to as the

probability of local search. Hart (1994) referred to this fraction as the frequency of local

search. This term will be used here to refer to the number of the consecutive genetic

iterations before performing a local search (Espinoza et al. 2001). The members of this

fraction are usually chosen randomly. The probability of local search, in addition to its

effect on the solution quality produced and the convergence rate, can affect the minimum

population size of the hybrid. The population size, in turn, can affect the convergence speed

of the algorithm. The effect on the population size should not be ignored when evaluating

the hybrid performance.

A main factor that determines the success of a hybrid is how successfully local knowledge

is utilised by the global genetic algorithm (Whitley et al. 1994). The way of using the

information gained during local search by the global algorithm is one of the important

issues of hybrid genetic algorithms. Either the Lamarckian or the Baldwinian approach can

be used. The Baldwin Effect differs from Lamarckian only in the directness of the

mechanism by which phenotypic adaptations are converted into genotypic adaptation

(Turney 1996). Utilising either form of learning is more effective than the standard genetic

algorithm approach without a local improvement procedure (Whitley et al. 1994). The

effectiveness of pure Lamarckian, pure Baldwinian or any mixture of them (Orvosh and

Davis 1993) is affected by the fitness landscape, the representations, and local search

method used (Whitley et al. 1994) (Houck et al. 1997) (Michalewicz and Nazhiyath 1995).

For more details on this subject the reader can refer to section 2.5.

The efficiency and effectiveness of any hybrid can be measured by comparing its

performance with that of the global genetic algorithm alone. The performance can be

measured in terms of convergence speed, the quality of solutions produced and the

minimum population size required. Espinoza et al. (2001) have proposed an adaptive hybrid

algorithm that can increase the convergence speed to the global optimum. The same authors

also showed the effect of a local search method on reducing the population size of the

69

Chapter 4 Local search and hybrid’s performance

algorithm compared with the population size of the standard genetic algorithm (Espinoza et

al. 2003a).

In this chapter, the effects of the learning strategy and probability of local search on the

performance of two hybrids with different mechanisms for deciding between global and

local search are investigated. The way that both the learning strategy and the probability of

local search interact with each other and their combined effect on the hybrid performance

are analysed. The effect of both these factors on the population size requirements,

convergence speed, and solution quality has been investigated.

This chapter starts by a literature review of population size requirements for a genetic

algorithm. In this review, a brief description of the different facet-wise models (Goldberg

1999) used to estimate the genetic algorithm’s minimum population size is given. Then, the

relation of computation complexity of a genetic algorithm and the population requirement

is reviewed. After the literature review, the effect of incorporating local search on the

population size requirement is analysed. This includes the influence of the interactions

between the local search probability and the learning strategy on the population size. This

chapter ends by discussing the results of the experiments that have been conducted.

4.1 Population size and local search

Deciding on the optimal population size is an important task in the design of

genetic algorithms due to its influence on their performance. Through the population size,

the diversity can be controlled and an adequate supply of building-blocks can be ensured

which is an essential step in designing a successful genetic algorithm (Goldberg et al.

1992). An appropriate population size is even more critical to the success of the

Probabilistic Model-Building Genetic Algorithms (PMBGA) (Pelikan et al. 1999a) (Pelikan

et al. 1999b) which have become an area of interest recently (Gao 2003).

Increasing the population size of a genetic algorithm improves the quality of its solutions.

The greater the population size, the greater the chance that all the building-blocks of the

optimal solution are represented in its initial population. However, increasing the

population size can slow the speed of convergence since more time may be needed to

discriminate the good and bad building-blocks. In the case of limited computational

resources, the larger population may preclude convergence at all. Efficient population

sizing is critical for getting the most out of a fixed budget of function evaluations.

70

Chapter 4 Local search and hybrid’s performance

In the practice of designing efficient genetic algorithms, there has been strong empirical

evidence showing that population size is one of the most important parameters that plays a

significant role in the performance of the genetic algorithms (Back et al. 2000).

4.1.1 Population sizing models

The issue of population sizing has been widely dealt with theoretically. The facet-

wise composition approach (Goldberg 1999), which was proposed to obtain insight into

genetic algorithms’ behaviour, has been used to estimate the population size required.

According to this approach, the behaviour of the genetic algorithm can be modelled through

combining simple models and blending their effects. Different facet-wise models have been

developed to address the genetic algorithm’s population sizing issue. The theoretical work

done can be categorised into two main groups, namely the population sizing based on initial

supply of building-blocks and population sizing based on good decision making between

competing building-blocks. Both issues are combined together in the gambler’s ruin model

(Harik et al. 1999).

The importance of building-blocks and their role in the genetic algorithm’s search

mechanism have long been recognised (Holland 1975) (Goldberg 1989a). One of the

essential steps towards successful design of a genetic algorithm is making sure that the

genetic algorithm is well supplied with a sufficient number of the building-blocks required

to solve a given problem. The spatial approach (Goldberg et al. 2001), which estimates the

population size required to ensure diversity and the existence of sufficient building-blocks

in the initial population, can be used to address the building-blocks supply problem

(Goldberg 1989b) (Reeves 1993).

Recently, Goldberg et al. (2001) have developed a facet-wise model to estimate the

minimum population size that ensures the presence of all building-blocks. This model was

used to derive the following formula, which has been experimentally verified.
N = %k(k \ o g ^+ lo g m) (4.1)

where k is the order of the building-blocks, which represents the minimum number of digits

that have physical significance to the solution of the problem, m is the maximum number of

building-blocks within a single string, and j is the alphabet cardinality.

In addition to adequate supply of building-blocks, accurate decision making of selecting the

schema belonging to the global optima, when partial solutions are compared with each

other, is very important for genetic algorithm success. Goldberg et al. (1992) have

developed a model to estimate the population size required to make the correct decision

71

Chapter 4 Local search and hybrid’s performance

between the best building-block and its closest competitor in a partition, in the presence of

collateral noise coming from other partitions. In their conservative model, they assume that

the selection of the correct building-blocks in the first generation is essential and can

guarantee the convergence to the global optimum. They used statistical decision making to

derive the following population size equation for binary alphabet:
2

N = 2 c (a)2 k (m - 1) % (4.2)
d

where c(a',) is the square of the ordinate of a unit normal distribution where the probability

equals oc,cif is the probability of failure, k is the order of the building-blocks, (J2bb is the

fitness variance of the partition that is being considered, and cl is the fitness differences

between the best and the second best building-blocks. This equation ignores the external

sources of noise.

Harik et al. (1999) extended the population model by integrating the gambler’s ruin model

and the previous two facet-models to estimate the population size of genetic algorithms.

The initial supply of building-blocks and the selection of the best building-blocks over their

competitors over a run are combined with the gambler’s ruin model. The model views the

search process as a propagation of building-blocks through the population, assuming

mixing is adequate.

Saluiation Absorbing

slateslate

Figure 4.1: The Gambler Starts with a Capital of a Building-Blocks and Ends with

either 0 or N Building-blocks.

The gambler’s ruin model views the genetic algorithm search, in a single partition, as a

series of competitions which progresses until either all the individuals in the population

match the building-blocks, or none do. The model is one-dimensional random walk

between the absorbing state, corresponding with the loss of the building-blocks, and the

saturation state, corresponding with the existence of the building-blocks in all the

individuals (figure 4.1). The walk starts from a , the number of building-blocks in the initial

population, which is calculated by incorporating the initial supply model:

72

Chapter 4 Local search and hybrid’s performance

N
2k

« = - r (4.3)

Whereas, the decision making model is incorporated by taking into account the probability

of making the right choice between the best building-block and the second best building-

block in a single trial:

p = $(... -=l■■■ ■ ■) (4.4)
^2 {m -\)< J bb

where O is the cumulative distribution function of the standard normal distribution.

Random-walk literature was utilised to determine the probability that the gambler

eventually reaches the saturation state using a population of size N. This probability was,

then, used to derive the following equation which relates the population size with the

required solution quality and several domain-dependent parameters:

N = - 2 k~l I n — (4.5)
cl

The term - 1) represents the noise interference between competing building-blocks.

According to Reed et al. (2000), the term crbb-y]7r(m-1) can be approximated using the

fitness function standard deviation, <yff. The previous relation can be simplified to the

following equation (Espinoza et al. 2003a):

N = - 2 k~{\ n (a) ^ - (4.6)
cl

where cl' represents the signal difference between the best and second best solution. The

parameters (7 /r and cl' can be estimated using a large random initial population.

4.1.2 Computation complexity and population size

The computational complexity of a genetic algorithm can be measured as the

number of function evaluations that are required to attain an optimal solution. The number

of function evaluations can be calculated by multiplying the population size, N, by the

number of generations required for convergence, t, which is primarily determined by the

selection intensity of the selection scheme (Dijk et al. 2004).

The number of generations required is strongly affected by the relative rates at which genes

within the population converge. The relative rate of the convergence of building-blocks

depends on the problem to be optimised. All the building-blocks of uniformly scaled

problems, such as the OneMax problem, converge at a fixed rate. On the other hand, the

building-blocks of exponentially scaled problems, such as the Binlnt problem (Thierens et

al. 1998), converge at variable rates. The convergence time of problems of uniformly scaled

73

Chapter 4 Local search and hybrid’s performance

fitness functions, is in the order of 0 (VO for selection schemes with constant selection

intensity and of order 0 (/V /) for proportionate selection (Thierens and Goldberg 1994).

Studies (Thierens et al. 1998) (Lobo et al 2000) show that the convergence time of

exponential scaled functions is linear with respect to the string length (t = 0(1)) for %

constant selection intensity schemes, and exponential 0 (2 l) for proportionate selection. -f

These relations assume binary representation of the solutions.

The building-blocks of most engineering problems converge at variable rates within the

population (Reed et al. 2000). In these problems, the convergence rate of the most

important building-blocks is rather fast, while the least important ones only start to

converge when the more important ones are almost fully converged. This phenomenon is

known as “domino convergence”. Thierens et al. (1998) studied the Binlnt problem as a

prototypical example of the upper boundary case of non-uniformly scaled problems. They

derived the following formula for the expected number of generations, t, required under

domino convergence for all locations to be converged:
- I n 2 ,

1 JI (Al)
ln[l — f=\ C4,/;

V3

where / represents the selection intensity. The expected number of generations for domino

convergence depends on the selection intensity and the number of the building-blocks

within a string, which is equal to the string length in the case of the Binlnt problem

(Thierens et al. 1998).

The selection intensity depends on the selection scheme used. The selection intensity is

constant in rank-based, truncation and tournament selection schemes and variable in

proportionate selection scheme (Goldberg and Sastry 2001).

'iIn the case of tournament selection with a tournament size of two, the selection intensity is

I = (V ^ T 1 (Thierens et al. 1998). The expected number of generation for the entire string f

to converge is
**»*. = 1.76/ » 2 1 (4.8) *

Another phenomenon that is closely related to domino convergence is “genetic drift” (Asoh

and Miihlenbein 1994). This phenomenon is the random fluctuation of genes frequencies

from generation to generation due to the stochastic sampling errors in a finite-sized

population. The random accumulation of the copies of a particular allele in each gene can

cause the population to converge to non-optimal value in the absence of selection pressure.

74

Chapter 4 Local search and hybrid’s performance

Although the less salient building-blocks of the optimal solution (i.e. the genes with

reduced relevance to the solution) experience reduced selection pressure, they may

converge to non-optimal values under the crossover and mutation operations.

Asoh and Miihlenbein (1994) showed that the expected time for a gene to converge, as a

result of genetic drift, is proportional to the population size. They used random sampling

with replacement to derive the following formula:
t„m =cN (4-9)

where the value of constant c depends on the initial allele proportion. They also showed

that the mean drift time, in the case of uniform crossover, is proportional to the population

size N and to the logarithm of the number of building-blocks within the string which was

equal to the string length in their work:

where the values of constants a and b depend on the initial allele proportion. For a gene

with two alleles with initial proportion equal to 0.5, the values of these constants are c=1.4,

a=0.5 and b = l.l.

The drift time of a single trial can show a significantly different value from the expected

drift time since the variance in the drift process is quite large and increases rapidly with

population size (Asoh and Miihlenbein 1994).

In uniformly scaled fitness functions, the genetic drift can make very small populations

converge prematurely. This effect is called “drift stall”. However, the exponentially scaled

fitness functions are more prone to the drift stall. Due to the domino convergence behaviour

associated with these functions, the less salient building-blocks of the optimal solution have

a high probability of being lost, as a result of the genetic drift, by the time selection and

recombination can process them. The only hope to bring these building-blocks back is the

mutation operator, which is a slow serial process compared with the rapid implicit parallel

processing power of selection and crossover (Thierens et al. 1998). In order to prevent the

drift stall effect, the convergence to the optimal solution should be faster than the genetic

drift. The following relation needs to be satisfied:

tdrift ~ CN (a In m + 1.0)h (4.10)

tconvergence (4.11)

Chapter 4 Local search and hybrid’s performance

For binary represented problems with non-uniformly scaled fitness functions that use

binary tournament selection, relation 4.11 can be rewritten in terms of population size and

string length, ignoring the effect of number of the building-blocks on the genetic drift, as:
N >1.431 (4.12)

This condition sets the lower bound of population size in order to avoid the drift stall.

4.2 Local search and population size requirements

The details of incorporating local search and the learning strategy influence the

population size requirements through affecting the population diversity and the fitness

diversity. By modifying the population diversity, they affect the genetic drift and the

convergence speed. They influence the signal difference between the best and second best

solution and the standard deviation of the population fitness through their effect on the

fitness diversity. The details of the local search algorithm can affect the population size

requirements through influencing the hindering effect linked with the Baldwinian learning

strategy.

Genetic drift is one of the issues that need to be considered when deciding on the optimal

population size of a genetic algorithm. The population size should be chosen so that it

enables the search process to converge to the global optimum before the genetic drift can

guide it to the drift stall. Incorporating a local search algorithm within a genetic algorithm

influences both the convergence rate and the genetic drift rate. Local search can help to

fight genetic drift and protect the population from reaching the drift stall in the early stages

of the search. Local search can accelerate the rate of convergence and can be an obstruction

in the way of genetic drift by resisting its effect in directing the search towards a local

optimum. However, a heavy use of local search can reduce the population diversity and that

can lead to the fitness-convergence-state. The population, in this state, is composed of

individuals with different genetic structures but with the same fitness. Once the fitness-

convergence-state reached, the selection strategy faces difficulties in choosing the mating

pool and that subject the search process to genetic drift.

Carefully utilised local search algorithm within a genetic algorithm usually accelerates the

population convergence. Well designed hybrids have the ability of converging faster than

the pure genetic algorithm in terms of number of generations. An increase in the

convergence speed can ensure that the convergence to the global optimum occurs before the

genetic drift leads the search to the drift stall.

76

Chapter 4 Local search and hybrid’s performance

The improvement in the convergence speed, due to local search, affects the population size

requirement of a hybrid. Since the pure genetic algorithm convergences slower than the

hybrid genetic algorithms in terms of number of generations and assuming the number of

generations needed for a hybrid to converge is hybrid, then the ratio rhyblid / fSgu is less than 1.0.

The exact value of this ratio depends on the local search details. An intensive use of local

search can reduce this ratio. However, it can cause a premature convergence. The way to

guarantee the convergence to the global optimum with an improvement in the convergence

speed is through the proper use of local search. Managing to improve the convergence rate

towards the global optimum reduces the convergence time of a hybrid to less than 21 (the

convergence rate of non-uniformly fitness functions using the pure genetic algorithm).This

modifies the condition imposed on the population size to avoid the stall drift to the

following relation:

2/ v™L< L4Ar (413)
tsga

This relation shows that incorporating a local search reduces the lower bound of population

size below the 1.431 limit depending on the improvement in the convergence speed

introduced by the local search. This enables the hybrid to converge to the global optimum

using population sizes of less than that of the pure genetic algorithm.

Through modifying the genetic structure, a local search can fight the genetic drift. It can

change the genetic structure of an individual to reflect the genetic structure of the local

optimum of the individual’s region. This can drift the genetic structure of the population

towards the structure of the local optimum of the basin with the biggest area of attraction in

the search space. In addition to the selection process, wise use of local search can bias the

drift in the direction of the global optimum. Incorporating local search can help to oppose

the forces of the genetic drift to drive the population towards a local optimum. It can help to

restore some of the building-blocks that may be lost as a result of the genetic drift. It also

can introduce some diversity in the population and counterbalance the reduction in the

diversity due to the genetic drift.

However, improper use of local search can expose the hybrid’s population to the genetic

drift in the late stages of the search. The local search can cause the disappearance of the

some building-blocks which may not be restored. The disappearance of these building-

blocks can produce individuals that have an equal fitness values and different structures

which make the convergence of the whole population is governed by the genetic drift.

Chapter 4 Local search and hybrid’s performance

The state of fitness-convergence can also occur as a result of the hindering effect associated

with the Baldwinian strategy. The pure Baldwinian strategy combined with the complete

local search can prone the genetic search to the genetic drift. Such utilisation can accelerate

reaching the fitness-convergence-state. The hindering effect does not enable the selection

strategy to choose between individuals with the same fitness but with different genetic

structures. As a result, the selection process degraded to a random process. The population

convergence, in this case, is subject only to the genetic drift. By controlling the duration of

the local search, the genetic drift can be delayed until an acceptable solution or a solution

very near the global optimum is attained (chapter 3). The situation of fitness-convergence

can be avoided by adjusting the probability of local search and/or its frequency in order to

enable the selection process to distinguish different structures. The decrease in local search

probability reduces the probability that a local operation is performed on the same

individual on two consecutive iterations and that enables the algorithm to discriminate

among the different structures and reduce the hindering effect. The increase in the

frequency of local search helps the hybrid to choose depending on innate fitness which

reflects the structure and not the acquired fitness.

The influence of the local search method on the population diversity depends on the

learning strategy used. However, it impacts the population fitness diversity regardless of the

learning strategy. It can reduce the standard deviation of the fitness of the population

depending on the local search method used and its duration. The reduction in the standard

deviation of the population fitness is proportional to the local search duration (Espinoza et

al. 2003a). It can, also, be affected by the probability and the frequency of local search.

According to the population size equation 4.6, the decrease in the standard deviation of

population can lead to a decrease in the minimum size of population required to optimise a

given problem. The local search details affect the population size requirement of a hybrid

through affecting the population fitness variance.

Local search can affect the signal difference between the best solution and the second best

solution. For the purpose of illustrating the effect on the signal difference, the discussion is

restricted to the complete local search (chapter 3). In the early stages of the search, the

signal difference between the best solution and the second best solution is equal to the

difference between the fitness of the best sampled local optimum with the second best

sampled local optimum. This can improve the ability of selection process to direct the

search to the most promising region of the search. The samples from the best region have a

high probability to win the competition against the second best region even with small

population size. However, in the late stages of the search after the convergence at the most

78

Chapter 4 Local search and hybrid’s performance

promising region, the value of the signal difference depends on the learning strategy

adopted. In the case of the pure Lamarckian approach, the signal difference is equal to the

difference between the global optimum and the second best solution. This difference

eventually reaches zero when the whole population converges to the global optimum. On

the other hand, the hindering effect associated with the pure Baldwinian strategy can reduce

this difference to zero when the population converges to the most promising region.

According to equation 4.6, an infinite number of individuals is needed in order for a

population to converges under these circumstances. By influencing the hindering effect, the

probability and the frequency of local search can modify the signal difference in the pure

Baldwinian strategy.

The local search probability can also affect the signal difference in both learning strategy

depending on whether either the best two solutions or only one of them are selected for a

local search. The difference can be increased if the best solution is selected and the second

best solution is not and vice versa. If both are selected, the chance of affecting the signal

difference is decreased. The probability of selecting either the best two solutions or one of

them is affected by the probability of local search. Increasing the probability of local search

increases the probability of performing a local search on the best two solutions and vice

versa.

4.3 Algorithms and test functions

Two hybrids with different mechanisms for deciding between global and local

search were used to gain some insight into the effect of learning strategy and probability of

local search on the performance of hybrids. The standard staged hybrid genetic (SSH)

algorithm (Mathias and Whitley 1994) and the adaptive staged hybrid genetic (ASH)

algorithm (Espinoza et al. 2001) have been tested using two multimodal test functions.

In the standard staged hybrid genetic (SSH) algorithm, the local search step is defined by

three basic parameters. These parameters are frequency of local search, probability of local

search and number of local iterations. The local search frequency measures how frequently

local search is performed. The probability of the local search represents the fraction of

individuals in the population that undergo local search at each local search iteration. The

number of local search iterations represents the number of local search iterations performed

at each local search process. The interference between the local search algorithm and the

global genetic algorithm can be reduced through increasing the frequency of the search. By

adjusting these parameters, the performance of this type of hybrids can be optimised. The

SSH does not apply any selection mechanism for performing local search.

79

Chapter 4 Local search and hybrid’s performance

The adaptive staged hybrid genetic (ASH) algorithm uses feedback from the current state of

the search process to direct the algorithm to decide between global and local methods

(Espinoza et al. 2001). The algorithm works with the same operators as SSH. It performs

local search only if new regions of search space are being discovered, and local knowledge

can help to guide the search. The probability of the local search is controlled by a

deterministic rule that keeps this probability less than a specific value and decreases with

each consecutive local iteration. When local search no longer improves the average fitness

more than the most recent global search iteration or the maximum number of local

iterations has been exceeded, the search returns to the global search. The algorithm focuses

on the role of local search in providing the global genetic algorithm with good

representatives of new discovered regions. However, the individuals are selected randomly

to perform a local search. This algorithm can be criticized for the absence of any selection

mechanism to guarantee the use of local search to provide good representatives of the new

explored areas.

Two multimodal test functions, with multiple basins of attraction, have been used in the

current work. The first function, F I, has conical basins of attraction. Its global maximum is

4 and is located at (7.0, 8.5) (Goldberg and Vosser 1999) (Espinoza et al. 2001). The

second function, F2, has elliptical basins of attraction. This function has a global optimum

of 4 located at (7.0, 8.5) (Espinoza et al. 2001). Figure 4.2 shows the fitness landscapes of

FI and F2.

The steepest descent method (Press et al. 1993) was used as a local search algorithm. The

steepest descent algorithm uses the derivatives of the fitness function to estimate the best

step size to climb to the local optimum from the current position in the basin of attraction.

4.4 Experiments and discussion

In order to evaluate the effect of learning strategy and local search probability on

the hybrids’ performance, a set of experiments was performed. Both hybrids use the simple

elitist genetic algorithm with binary tournament selection, single-point crossover, and

simple mutation. For all experiments, the probability crossover was 0.4 and the probability

of mutation was l/N where N is the population size (Reed et al. 2000). In the SSH

algorithm, the frequency of local search was set to 3 and the number of local iterations was

set to 3. For the ASH algorithm, the maximum number of local iterations was 3, e was 0.2,

and the local threshold value was 0.6. Each variable was represented by 30-bit string with a

total of 60 bits for each chromosome. The stopping criterion for all experiments was that

80% of the population had converged to the solution.

80

Chapter 4 Local search and hybrid's performance

4

x 2
u.

0
10

y

4

(N
U-

0
10

y

Figure 4.2: Fitness Landscapes for the Test Functions

4.4.1 Effects on convergence speed

In experiment 4.1, which aimed to evaluate the effect of learning strategy on

convergence speed of hybrid algorithms, both the adaptive and standard staged algorithms

used a probability of local search of 0.1, and population sizes of 800 and 1200 for FI and

F2, respectively (Espinoza 2001). The stopping criterion was that 80% of the population

converged within a 0.000001 boundary of the best ever found fitness.

The results show, as expected, that increasing the fraction of the population that evolves

according to the Lamarckian approach leads to an increase in the convergence speed. This

increase is not linear. For example, when applying ASH algorithm to maximise F2, the

speed of convergence increases sharply as the learning approach changes from pure

Baldwinian (100% Baldwinian) to a mixture of 80% Baldwinian and 20% Lamarckian. In

this interval the number of function evaluations decreases from 85,000 to about 37,000,

while it decreases to 25,000 evaluations for the pure Lamarckian approach. Figure 4.3

shows the effect of learning strategy on the convergence speed of the adaptive staged

81

Chapter 4 Local search and hybrid’s performance

hybrid. The effect of learning strategy on the convergence speed of standard staged hybrid

and the adaptive staged hybrid are similar for both test functions.
L earning S tra teg y Effec t on C o n v e rg e n ce S p e e d o f ASH

9

8

7

6

5

4

3

2'0 10 20 30 40 50 60 70 80 90 100

Figure 4.3: Effect of Learning Strategy on Convergence Speed (Experiment 4.1).

4.4.2 Effects on solution quality

The results of previous experiments show no clear relation between learning

strategy and solution quality. This led us to consider how the local search probability

interacts with the learning strategy and how this interaction affects the quality of solutions.

An experiment, which will be referred to as 4.2, was carried out to consider the effect of

local search probability on the solution quality for different population sizes (100, 400, 800,

and 1200). The results of the experiments that optimising F2 using ASH algorithm show

that as probability of local search increases, the effect of learning strategy on the solution

quality becomes apparent (figure 4.4). The graphs in figure 4.5 show that, when the

probability of the local search is kept small, the quality of the solution is insignificantly

affected by the learning strategy. As this probability increases, the quality of the solutions

degrades with an increasing Lamarckian percentage in the learning process. This means

using small local search probabilities for both algorithms, even with pure Lamarckian, can

produce high quality solutions because the disruption to schema processing caused by these

small probabilities is neglected and has no effect on the global search process.

Chapter 4 Local search and hybrid’s performance

ASH with Pure Baldwinian Learning Strategy

3.9

 1200
 800
— • 400
- - - 100

^ 3.7

3.6 -

0.1 10.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Po of Local Search

ASH with Pure Lamarckian Learning Strategy

3.9

 1200
— 800
— - 400
- - - 100

^ 3.7

3.6 -

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Po of Local Search

Figure 4.4: Effect of Learning Strategy and Search Probability on Solution Quality

Using Different Population Sizes (Experiment 4.2).

The results in Figure 4.5 show that a mixture of 20% Lamarckian and 80% Baldwinian

produces the most stable solution quality for F2, regardless of the probability of the local

search. A mixture of 75% Baldwinian and 25% Lamarckian produces the most stable

solution quality for FI (Figure 4.6). The results from both hybrid algorithms show that a

pure Baldwinian approach does not always produce the optimal solution quality and that

the optimal learning strategy depends on the probability of local search. The use of small

probabilities of local search produced the best quality of the pure Baldwinian approach due

to its role in alleviating the hindering effect.

A
ve

ra
ge

Fi

tn
es

s
A

ve
ra

ge

Fi
tn

es
s

Chapter 4 Local search and hybrid’s performance

The Effect of Learning Strategy on Solution Quality of F2

3.9

- t - 100% E
20% L

-A - 60% L
80% L -0- 100% L

3.85
0.2 0.3 0.4 0.5 0.6

Probability o f Local Search

0.7

Figure 4.5: Solution Qualities for F2 (Experiment 4.2).

Figure 4.6: Solution Qualities for FI (Experiment 4.2).

H — 100% B
20% L

- i - 25% L
-A- 50% L
- g - 75% L

100% L

The Effect of Learning Strategy on Solution Quality of F1

T------------------------- 1--------------------------1------------------------- 1 '" " '....... 1------------------------- 1------------------------- 1------

.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability o f Local Search

84

Chapter 4 Local search and hybrid’s performance

4.4.3 Effect on required population size

The aim of experiment 4.3 was to show how the probability of local search and

learning strategy affect the minimum size requirements for both the adaptive staged hybrid

and the standard staged hybrid. The results were obtained by using the bisection method.

Starting with a population size of 10, the population size is doubled until the population

converges to the desired solution quality. After the solution quality is attained, the

population size is set midway between the current size and the last unsuccessful population

size. This process is repeated until the difference between population sizes is less than or

equal to 10. The stopping criterion was that 80% of the population converged within a

0.000001 boundary of the global optimum fitness. The fitness convergence was tested at

the end of the global genetic search (the outer loop of the search) in order to ensure the

convergence of both the population and its fitness and not the fitness only. The settings of

other parameters were as in the previous experiments.

The results of SSH and ASH on the second test function are similar. Figure 4.7 shows that

as the probability of local search increases, the population size decreases for a pure

Lamarckian approach. On the other hand, with the pure Baldwinian strategy, the population

size increases as the probability of local search increases. The hindering effect can explain

the increase in the population size required for the pure Baldwinian strategy. The decrease

in the probability of local search can reduce the hindering effect and that enables the

algorithm to discriminate against non-optimal solutions and reduces the probability of

genetic drift. For a pure Baldwinian strategy with local search probability of more than 0.4,

the population size exceeds that of a pure genetic algorithm (minimum population

size=640).

85

Chapter 4 Local search and hybrid’s performance

The Effect of Learning S trategy and P o on the Population S iz e of F2

- t - Po=0.1
- e - P o=0.2

Po=0.9
- A P o= 1 .0

w
to
co
3
Q .O

CL

100

Lamarckian Percen tage

Figure 4.7: Effect of Learning Strategy and Search Probability on Population Size

(Experiment 4.3).

The results also show that the relationship between the local search probability and the

change in the population size depends on the learning strategy used. For example, using a

partial Lamarckian approach of 50% or more, an increase in the local search probability

results in a decrease in population size. With a partial Lamarckian approach of less than

50%, an increase in the local search probability leads to an increase in the population size.

The increase in the percentage of partial Lamarckian approach reduces the probability of

the genetic drift through reducing the percentage of the population that may experience the

hindering effect. The increase in local search probability while increasing the partial

Lamarckian increases the probability of mapping the second best individual to the global

optimum and the signal difference becomes equal to the difference between the global

optimum and the next non-converged best solution whose probability to convergence, in

turn, increases by increasing the probability of local search and so on. The hindering effect

is aggravated by either moving towards the pure Baldwinian or increasing the local search

probability. For both hybrids, a decrease in population size leads to an increase in the

convergence speed. In general, increasing the Lamarckian percentage decreases the

population size and increases the convergence speed. The experiments also show that the

solution quality of the pure Baldwinian approach is the optimal one and the solution quality

is degraded as both the Lamarckian percentage and the probability of local search increase.

86

Chapter 4 Local search and hybrid’s performance

The solution quality for impure Baldwinian strategies, as shown in Figure 4.8, seems to be

more dependent on the probability of local search than on the learning strategy.

The Effect of Learning Strategy and Po on the Average Fitness of F2

- t - Po=0.1
- © - Po=0.2
- * • P o=0.9
- A - Po=1.0

3.95

— * -

u.<DS’
3.85<D

><

10 20 30 40 500 60 70 80 90 100
Lamarckian Percentage

Figure 4.8: Effect of Lamarckian Proportion and Search Probability on Solution

Quality (Experiment 4.3).

The local search can decrease both the standard deviation of the population and the signal

difference between the best and second-best solutions, since the population size depends

directly on the standard deviation of the population and the signal difference. A decrease in

the former decreases the population size and a decrease in the latter increases the

population size.

In addition to the hindering effect, the ability of keeping the decrease in the ratio of

standard deviation to signal difference in the early stages of the search can explain the

increase in the population size requirements for the pure Baldwinian approach. In a pure

Baldwinian, the local search needs some help from evolution process to keep decreasing

this ratio. The pure Baldwinian can reduce this ratio at the end of the local search.

However, in the next global iteration, if the value of local knowledge is insufficient to keep

the global genetic algorithm reducing this ratio, the algorithm will lose some of its

resources (i.e. local function evaluations) without reducing that ratio. In this case, a high

87

Chapter 4 Local search and hybrid’s performance

probability of local search cannot lead to any reduction in the population size since it

increases the probability of wasting the algorithm’s resources. However, a low local search

probability reduces the probability of wasting these resources while increasing the

probability of maintaining the reduction in the above-mentioned ratio by the global genetic

algorithm. In addition to the probability of local search, the effectiveness of pure

Baldwinian in reducing the population size depends on the value of local knowledge and

this depends on the method of local search and the fitness landscape.

On the other hand, the opportunity to keep the gained reduction in this ratio is improved by

using a partial Lamarckian strategy. As the percentage of Lamarckian increases, the

probability of keeping this reduction increases. An increase in the probability of local

search increases the probability of reducing the ratio and reducing the population size.

Figure 4.9 shows the results of running the same experiment on the first test function. For a

Lamarckian percentage of 65% or more, an increase in the probability of local search

results in a reduction in the population size. For other percentages, an increase in this

probability leads to an increase in the population size requirements. The convergence speed

depends on the population size. As the population size decreases, the convergence speed

increases. Comparison of Figures 4.7 and 4.9 shows that the switch point on the

Lamarckian axis between increasing and reducing the population size is shifted from about

50% for F2 to about 65% for FI. This is due to the differences in the fitness landscape of

both functions. While the local search can provide more significant local knowledge in FI

than in F2, an impure Lamarckian approach requires a more partial Lamarckian to

accelerate the genetic assimilation process.

The local search method can provide more significant local knowledge from the landscape

of FI than F2. This is why the reduction in the population size requirements of F I, using a

pure Lamarckian approach, is greater than that of F2. This also makes the genetic

assimilation process more difficult for FI using a pure Baldwin effect compared with F2.

The genetic assimilation process is possible as a result of using a local search frequency of

3 in the SSH algorithm and the adaptive nature of the ASH algorithm. The use of small

probabilities of local search can alleviate the hindering effect and enable the hybrid to

converge to the global optimum even with small populations. The use of a local search

probability of 0.1 enabled the algorithm to converge to the global optimum of FI with a

population size of about half of that needed by the pure genetic algorithm. The use of a

partial Lamarckian can accelerate the genetic assimilation process and that can help to

88

Chapter 4 Local search and hybrid’s performance

reduce the population size required. The exact value of the switch point depends on the

value of the local knowledge and the nature of the fitness landscape.

The convergence to the global optimum occurred with a population size of less than the

1.43/ limit that is imposed on the non-uniform scaled fitness functions to protect the search

from the genetic drift. The hybrid managed to converge to the global optimum using a

population of 60 and 80 for the first and the second test functions respectively.

o 10 20 30 40 50 60 70 80 90 100
Lamarckian Percentage

Figure 4.9: Effect of Learning Strategy and Local Search Probability on Population

Size of FI (Experiment 4.3).

Chapter 5 Improving Lamarckian Search

The power of genetic algorithms comes from their ability to combine both

exploration and exploitation in an optimal way (Beasley et al. 1993a). The exploration and

the exploitation abilities of a genetic algorithm can be enhanced by incorporating a local

search method. A local search method can improve the ability of the genetic algorithm to

explore the search space to isolate its most promising region through fair representation of

the search regions (section 2.3). The refinement ability of a local search method can also

enhance the quality of the solutions produced by a hybrid (Rosin et al. 1997). The

combination can accelerate the search towards the most promising region and then towards

the global optimum. This constructive form of cooperation between a genetic algorithm and

a local search can produce an effective and efficient search algorithm.

However, there are other forms of interactions between the two search methods in addition

to the one described above. The interference between the two methods can be somehow

destructive. Because of its myopic nature, a local search method, when combined with the

pure Lamarckian learning strategy, can disrupt the schema processing of the global genetic

algorithm causing a premature convergence problem. This may force the hybrid

practitioners to sacrifice the fast convergence speed associated with the pure Lamarckian

strategy for high quality solutions associated with other learning strategies. The genetic

operators can also destroy good local solutions that consumed a considerable amount of the

algorithm’s time to be constructed. Mathias et al. (1994) proposed the staged hybrid genetic

algorithm to separate the global genetic algorithm and the local search method into distinct

phases in order to decrease any form of destructive interactions between them. Other

researchers (Rosin et al. 1997) (Land 1998) suggested choosing the control parameter

values of the genetic operators consistent with their role in a hybrid in order to avoid any

destructive effect of these operators on local search solutions.

A pure genetic algorithm utilises the selection operator and the standard genetic

modification operators to exploit the available information in the current and previous

solutions in order to direct the search towards a global optimum. The use of genetic

modification operators as a technique to utilise the search information was replaced by

other techniques to overcome some of the difficulties that face the pure genetic algorithms

in solving real-world problems. The PMBGA algorithms (Pelikan et al. 1999b) use the

search information to iteratively build a probabilistic model to learn the structure of a

problem. Quantum-inspired genetic algorithms (Han and Kim 2002) utilise the search

90

Chapter 5 Improving Lamarckian search

information through using quantum bits and quantum gates. These algorithms were

proposed as alternatives to the pure genetic algorithm. However, they have showed that the

available search information can be utilised in different ways to achieve the same goal.

The pure genetic algorithm is making use of only a small part of the huge amount of search

information that is available in genetic populations. Researchers have recognised the value

of the genetic search information and tried to employ it in an optimal way. For example, it

has been utilised to adapt the control parameters of genetic algorithms to improve their

search performance (Eiben et al. 1999). The control parameters adaptation techniques are

based on the fact that useful information can be extracted from search information. This

information can be used to adapt the genetic search to the problem at hand while the genetic

algorithm is seeking the global optimum. Search information has also been used to decide

on performing a global genetic search or a local search in some hybrids (Lobo and

Goldberg 1997) (Espinoza et al. 2001). It also has been used to decide on the optimal

fraction of individuals that should perform a local search (Hart 1994) (Land 1998).

However, this valuable genetic search information is rarely used by the local search method

incorporated in a genetic-local hybrid algorithm when solving real-world problems. In most

cases, the global genetic algorithm provides the secondary search method with a starting

solution that needs to be improved. The secondary method manipulates this solution and

returns the improved solution to the genetic algorithm. Depending on the learning strategy

adopted the global genetic algorithm decides either to replace the initial solution with the

improved one or to assign its fitness score to the initial solution. Neither of the algorithms

uses the information that is available to the other algorithm despite of its accessibility.

Advanced local search methods usually need other local information in addition to the

initial solution to accelerate the search (section 2.2). Due to the lack of positional

information in the genetic search information, local search methods are unable to use it as

additional local information. Clustering techniques can be used to provide relative

positional information. However, since the advanced forms of local search methods usually

work on the phenotype space and not on the genotype space, the cost of such clustering

technique can be high and is dependent on the problem to be optimised.

In addition to the difficulties of using the available search information, advanced local

search methods usually consume a considerable number of function evaluations (section

2.2). This can aggravate the hybrid algorithm’s loss caused by any destructive interference

between the local and the genetic algorithm.

91

Chapter 5 Improving Lamarckian search

To sum up, some of the good features of a search method that can enable it to be

incorporated in a genetic algorithm in an effective and efficient way are:

• The ability to avoid any disruption to the genetic algorithm schema processing in

order to avoid the premature convergence problem when utilised within a hybrid

that adopt the pure Lamarckian strategy to improve the algorithm’s efficiency.

• The ability to use the available genetic search information to improve the

solution quality and/or the search efficiency.

• The cost of the search should be small to reduce the loss caused by any

destructive interference.

In this chapter, a simple probabilistic search method is proposed as a secondary search

method within a hybrid genetic algorithm based on the features described above. This

search method was evaluated as a secondary method in a hybrid and as a stand-alone

optimisation algorithm. The basic idea of this search method is reviewed in the following

section with an illustrative example to explain its search mechanism. Then, the

methodology used to assess the performance with the experiments that have been

conducted are described. This chapter ends by a review of the experiments and a discussion

of the results.

5.1 The proposed search algorithm

The proposed algorithm is a probabilistic method that works on the genotype space

by making use of a group of the current population of solutions to estimate the structure of

the improved solution. In this way, it aims to make use of some of the valuable genetic

search information. It also aims to avoid disrupting the genetic schema processing by

improving the solution in accordance with the global genetic search. The modification of

the initial solution based on a group of solutions of the genetic population can provide the

secondary search method with a partial global view of the problem at hand. Based on this

view, the search method can produce a solution in the context of global view captured by

the genetic algorithm. This form of search can minimise any conflict with the global genetic

search. The partial global aspect of the search method can be controlled by the group size

and the mechanism of selecting the group members.

This method is also characterised by its low costs. Its costs are equal to the costs of

evolving a solution for a single iteration of the genetic search (i.e. one function evaluation

per solution). This can help to minimise the loss of the hybrid’s time in the case of any

undesirable interference between the two search methods.

92

Chapter 5 Improving Lamarckian search

The algorithm assumes that each gene contributes uniformly to the fitness of the solution.

Based on this assumption, the search method compares the genetic structure and the fitness

of the solution to be improved with the structures and the fitness of a group of solutions

selected from the current genetic population. Depending on the differences in both the

structure and the fitness between this solution and the group members, the solution

structure is modified in the direction of improving its fitness score. The new solution is

evaluated and then, regardless of its new fitness, inserted back into the population.

5.1.1 The search mechanism

The algorithm starts with an initial solution and a randomly selected group of

solutions from the current genetic population.

The algorithm assumes that the value of each gene in the initial solution represents the

probability of that gene to have the value of one. It also assumes that the produced set of

probabilities represents the initial probabilities of having the value of one in each gene of

the optimal solution’s structure.

This set of initial probabilities is modified according to the differences in the genetic

structure and the fitness between the initial solution and the group members in order to

estimate the optimal solution structure. An increase in the fitness score of a group member

compared to the initial solution accompanied by a change in gene value from ‘0’ in the

initial solution to ‘1’ in the group member means increasing the probability associated with

that gene. The probability is increased by a value that is proportional to the increase in

fitness score in order to bias the initial solution toward a better structure. However, if that

increase in the fitness is accompanied with change from ‘1’ to ‘O’, the associated

probability is decreased by the same value. A decrease in the fitness score in the previous

cases will result in decreasing the probability in the first case and increasing it in the second

by a value that is proportional to the absolute value of the difference in fitness score

between the group member and the initial solution.

The algorithm compares every member of the group with the initial solution, in turn, and

adjusts the genes probabilities in the way described above. The resulting set of genes’

probabilities is compared against a set of randomly generated numbers over the range [0,

I]. If the gene probability is less than or equal to the random number generated, the value of

that gene is set to one otherwise is set to zero. Then, the new structure is evaluated and

returned as the new improved solution.

93

Chapter 5 Improving Lamarckian search

5.1.2 An illustrative example

The aim of this illustrative example is to provide insights into the basic idea and the

mechanism of the proposed algorithm.

Suppose the algorithm is solving the MaxOne problem which aims to maximise the number

of ones in a string of m binary digits. The fitn ess/o f a solution to the MaxOne problem is

the number of ones in its genetic code. Let the length of string to be optimised equals 6 (i.e.

m=6).

Assume that an initial solution S0 and a group of four members {Si, S2, S3, S4} were

selected to perform a search iteration. The genetic structures and fitness scores of these

solutions are as given in figure 5.1.

The first step is to extract the initial probabilities of the optimal solution’s structure from

the initial solution. The initial solution’s structure can be translated to {0.0, 0.0, 1.0, 1.0,

0.0, 1.0} of initial probabilities of the optimal solution’s structure. The items represent the

probability of each gene to have the value of ‘1’.

The second step is to calculate the fitness effect of each group member. This can be done

by taking the absolute value of the difference between its fitness score and the initial

solution fitness. This value is then normalised by dividing it by the sum of the absolute

difference of each member from the initial solution. The calculation of the fitness effect of

the group members are shown in figure 5.1. Each member of the group can affect the initial

probability of the optimal solution in proportion to its fitness effect.

The third step is to calculate the effect of each group member on the initial probabilities of

the optimal solution. The effect on the initial probability of each gene can be calculated by

comparing the value of that gene in both the initial solution and the group member in turn.

For example, by comparing the initial solution S0 and S[there is an increase in the fitness

score and the gene values of both solutions are identical, except the second gene. The value

of that gene is ‘0’ in S0 and ‘1’ in Sj. Since the increase in the fitness score is in favour of

S], the initial probability should be modified to bias that gene towards the value of that in

Si. This can be done by increasing the probability of that gene by the fitness effect of that

member. The probabilities of other genes are not modified since these genes are identical in

both solutions. The effect of each group member on the initial probabilities of the optimal

solution’s structure is shown as the change in probabilities in figure 5.1.

94

Chapter 5 Improving Lamarckian search

{0.67,0.43,0.44,0.00,0.91,0.10J

{0 .0 ,0 .0 , 1.0 , 1.0 ,0 .0 , 1.0}

S , 0 0 1 1 0 *
r

Si 0 1 1 i 0

s2 0 0 1 1 0 0

Sj 0 1 1 1 l •
r

S* 0 0 1 l l

0 1 1 1 0 □
{0.0,0.6, 1.0, 1.0,0.6, 1.0}

* {0.0,+D.2,0.0,0.0,0.0,0.0}

(0.0,0.0,0.0 ,0.0,0 .0,+0 .2}

{0.0,-Hl.4,0.0,0.0,40.4,0.0}

{0.0,0.0,0.0,0.0,40.2.0.0)

^Change in Prohahilitfesj F itness Effect Genetic Structure Fitness

Initial Probabilities ^M odified Probabilities^

Figure 5.1: An Illustrative Example.

The change in probabilities induced by the group members are added to the initial

probabilities to produce a new set of probabilities (Modified probabilities in figure 5.1) in

the range of [0, 1]. These modified probabilities are compared with a set of random

numbers to estimate the structure of the new solution. Assuming that the random number

generator produced the following set of random numbers {0.69942, 0.433203, 0.440405,

0.000532, 0.910986, 0.18213}, the structure of the new solution will be {0, 1, 1, 1, 0. 1}.

The fitness score of the new solution is four which shows an improvement in the fitness

compared with the initial solution.

The change in probabilities induced by each member can be multiplied by some factor in

the range (0, 1] to control the group strength effect. In this chapter, this factor will be

referred to as the probability factor. In the previous example, the probability factor was set

to 1.0. A value of 1.0 for this factor means that the group has the most possible effect. The

algorithm can produce a completely different solution from the initial one. The new

solution's structure will be more likely dependent on the structures of the group members.

However, a small value of this factor can produce a solution with a structure that is likely to

95

Chapter 5 Improving Lamarckian search

be more similar to the initial solution and at the same time it is biased by the fitness and

structures of the group members.

5.2 Empirical methodology used

In order to evaluate the performance of the proposed search method within a global

genetic algorithm, a set of experiments has been conducted. In these experiments, the

performance of a hybrid genetic algorithm that utilise the proposed search method was

compared with the performance of the pure genetic algorithm. To maximise the interference

between the two search methods, a local search iteration was performed after each global

genetic iteration in the hybrid genetic algorithm. In order to assess the amount of disruption

that this algorithm can cause on the schema processing, the algorithm was applied to every

individual of the genetic population and the pure Lamarckian learning strategy was used.

The decrease in the number of experiments that converge to the global optimum together

with the convergence speed compared to the pure genetic algorithm was used as a measure

of the disruption to the schema processing.

The optimisation problems were chosen to evaluate the basic assumption of the proposed

method on the hybrid performance. Since the proposed method assumes that each gene of

the solution contributes uniformly to the solution fitness, problems with different marginal

fitness contribution of their genes were used. The selected problems include a lower

boundary case with a uniformly scaled fitness function, an upper boundary case with an

exponentially scaled fitness function and a case in between.

In these experiments, two empirical methodologies were followed. The classical

methodology, which uses a set of known test functions to evaluate the performance of an

algorithm, was used. The other methodology, which employs a problem generator (De Jong

et al. 1997) (Kennedy and Spears 1998) to study the behaviour of evolutionary algorithms,

has also been used to evaluate the proposed algorithm.

Following the classical methodology, three test functions were used to assess the

performance of both the hybrid and the proposed search algorithm. Three functions with

different marginal fitness contribution of their genes were used to evaluate the effect of the

proposed search basic assumption. The first one is a uniformly scaled fitness function,

which is the MaxOne problem, and the second is the Binlnt problem (Thierens et al. 1998),

which has an exponentially scaled fitness structure. The third test function is the Schwefel

function (Muhlenbein et al. 1991), which is a non-linear multimodal function.

96

Chapter 5 Improving Lamarckian search

The fitness function of the MaxOne problem is defined as:
i

f (x) = X X x i e {1,0} (5.1)
i= i

where I is the string length and x, the alleles. The genes of the solution contribute uniformly

to its fitness.

The fitness of the Binlnt problem is defined as:

/ (*) = £ * , 2M x, 6(1,0} (5.2)
1 = 1

In contrast to the MaxOne problem, genes contribute exponentially to the fitness function.

The contribution of one particular gene of the string is higher than the combined marginal

fitness contribution of all the following genes.

The fitness of the Schwefel function is defined as:

f (x) - 418.982/2 + y ' — x i sin(A/[xJ) - 500 < xt < 500 (5.3)
i= i

The Schwefel function is a multimodal function. It is characterised by a second-best

minimum which is far away from the global optimum. The fitness function is non-

uniformly scaled.

In addition to the classical empirical methodology, the problem generator methodology has

been used. A problem generator is an abstract model capable of producing randomly

generated problems on demand. The use of problem generators allows experimenting over a

randomly generated set of problems rather than on a few hand-chosen examples. This can

increase the predictive power of the results for a problem class as a whole.

The multimodal problem generator (De Jong et al. 1997) has been slightly modified and

used. It generates O random Z-bit strings, which represent the location of the O local optima

(peaks in the original multimodal problem generator) in the space. The evaluation of a

solution is carried out by locating the nearest local optimum in Hamming space. Then, the

number of bits that the solution has in common with the nearest local optimum is divided

by the string length. The result is multiplied by the amplitude of that optimum (the peaks

have identical amplitudes in the original problem generator) and assigned as the fitness of

the solution:
f (x) ~ A() m a x ^ (Z - H am m in g ^ , Optimum i)) (5.4)

where A0 represents the amplitude of the nearest local optimum which is Optimum^ The

global optimum is the optimum with the highest A„.

97

Chapter 5 Improving Lamarckian search

A multimodal exponential problem generator has been proposed and used. The multimodal

exponential problem generator is similar to the multimodal generator. The multimodal

exponential generator also generates O local optima. The evaluation of a solution is carried

out, first, by locating the nearest local optimum in Hamming space. Then, the nearest local

optimum is used to generate a Hamming distance string of the current solution. The

produced Hamming string is inverted and evaluated using the following fitness function:

where Af0 is an amplitude factor associated with each local optimum and xt represents the

value in the inverted Hamming distance string. The value of the amplitude factor is from

the range (0, 1]. The value of this factor for the global optimum is 1.0.

The previous problem generators are efficient in terms of memory storage. Only the local

optima and their amplitudes or amplitude factors need to be stored. The computation effort

of fitness evaluations becomes very large as the number of local optima increases.

5.3 Experiments

The experiments that have been conducted aimed to evaluate the performance of

the proposed algorithm within a hybrid. The performance is measured by investigating the

search method’s effect on the population size and the population convergence speed. The

algorithm is also evaluated by studying its effect on the schema processing of the global

genetic algorithm. In the last set of experiments, the search algorithm is evaluated as a

stand-alone algorithm by comparing its performance to the pure genetic algorithm and a

hybrid combining them.

5.3.1 Minimum population size

The first set of experiments was conducted to investigate the effect on the

population size requirements by hybridising the proposed algorithm. The experiments used

the bisection method, as described in chapter 4, to find the minimum population size

required.

The hybrid used the simple elitist genetic algorithm with binary tournament selection,

uniform crossover, and no mutation as the global search method. The crossover rate was set

to 1.0. The proposed algorithm was used as an embedded search method that is performed

by each individual of the population after each global genetic iteration. The experiments

have been conducted using different group sizes. The group sizes tested were {0, 2, 4, 8,

(5.5)

98

Chapter 5 Improving Lamarckian search

16, 32}. A hybrid with a group size of 0 is identical to the pure genetic algorithm. In these

experiments, two values of probability factors (0.5 and 1.0) were tested.

Figure 5.2 shows the results of experiment 5.1 which aimed to find the minimum

population required for solving the MaxOne problem with a string length of 120 bit. The

minimum population size is displayed as a function of the group size and the probability

factor. Each point in this graph represents the average of 50 experiments. The figure also

displays the convergence speed of the population to the global optimum. The graph shows

that using a probability factor of 0.5 significantly reduces the minimum population size

required for all the group sizes tested except the group size of 2. This reduction in the

population size for the same set of group sizes is accompanied by a decrease in the

convergence speed. However, using the statistical t-test shows that the decrease in the

convergence speed is insignificant and the decrease in the population size is significant.

For a probability factor of 1.0 and for the same set of group sizes, the experiments show, as

displayed in figure 5.2, that there is a significant increase in the convergence speed with

insignificant increase in the population size.

The experiments show that the pure genetic algorithm (a hybrid with a group size of 0)

outperformed the hybrid with a group size of 2. This can be explained in the terms of the

partial view provided by the group size. The partial global view provided by that group size

is very narrow and not enough to avoid a destructive interference between the two search

methods especially when using a probability factor of 1.0, where the improved solution is

more dependent on the partial view gained than the initial solution structure.

99

Chapter 5 Improving Lamarckian search

MaxOne Problem
140

—t— Probability Factor 0.5
Probability Factor 1.00)N

<0 120
c
o

Group Size

4500
-H— Probability Factor 0.5
-© - Probability Factor 1.0^ 4000a><D

CL

3500
o
C -

s? 3000
C
o
° 2500 —Q -O

2000
32

Group Size

Figure 5.2: The Effect of Group Size and the Probability Factor on the Hybrid's

Minimum Population Size and Convergence Speed of the MaxOne Problem

(Experiment 5.1).

The results of experiment 5.2, which aimed to find the minimum population size required to

solve the Binlnt problem with a string length of 30, are shown in figure 5.3. Experiment 5.2

used the same control parameters as in the previous experiments. The graphs in this figure

and the previous figure show similar trends for a probability factor of 0.5. The plots in

figure 5.3 show a significant reduction in the population size with insignificant decrease in

the convergence speed for a probability factor of 0.5. However, a probability factor of 1.0

shows a significant increase in the convergence speed with a considerable decrease in the

population size. The graphs also show that a group size of two with a probability factor of

0.5 improves the performance of the hybrid in terms of population size required without a

significant increase in the cost in terms of convergence speed.

Chapter 5 Improving Lamarckian search

130
—+ - Probability Factor 0.5
- © - Probability Factor 1.0g 120

CO

8 110

E3
E
c

■̂€>_ _

805

3600

3400
■§
a . 320$(O
<d

S 3000
CDO)
CD

£
o

2800

-+ - Probability Factor 0.5 t-
■©- Probability Factor 1.0 i

2600

2400

Group Size

Figure 5.3: The Effect of Group Size and the Probability Factor on the Hybrid's

Minimum Population Size and Convergence Speed of the Binlnt Problem

(Experiment 5.2).

The results show that utilising the proposed search algorithm within a genetic algorithm

using a suitable group size can improve the genetic performance in terms of the population

size, the convergence speed or both of them.

5.3.2 Effect on schema processing

The aim of this set of experiments was to assess the disruption to the schema

processing caused by utilising the new algorithm. This can be accomplished by comparing

the number of times each algorithm converges to the global optimum with that of the pure

genetic algorithm as a first step. A decrease in this number indicates that a disruption was

induced that misguides the overall search. However, an increase in that number indicates no

disruption regardless of the convergence speed. In the case of no improvement in number of

times a hybrid converged to the global optimum, a second step of evaluation is needed. In

the second step, the convergence speeds are compared. In the case of a decrease in the

convergence speed of a hybrid, the algorithm caused a disruption. However, any

improvement in convergence speed indicates no disruption.

101

Chapter 5 Improving Lamarckian search

Experiment 5.3 was conducted on the Binlnt problem with a string length of 30. The

algorithm used the same control parameters that were used in the previous experiments.

The algorithm used a population size of 150. The stopping criterion was satisfied if 97% of

the population were identical or a maximum number of function evaluations was exceeded.

The maximum number of function evaluations was set to 30,000.

Binlnt Problem

■g

100

80

60

40

20

0

■ i Probability Factor 0.5
I | Probability Factor 1.0

16

Group Size

32

7000

~ 6500

2
<u '75 6000
CL 3

g l5 5500
c r*m h o>.2
a) o 5000
c 3

° 4500 —t— Probability Factor 0.5
- © - Probability Factor 1.0

4000

Group Size

Figure 5.4: Effect on the Schema Processing when Solving the Binlnt Problem

(Experiment 5.3).

The results of experiment 5.3 are shown in figure 5.4. The graph shows that all the tested

group sizes and probability factors, except the combination of a group size of two and a

probability factor of 1.0, show no decrease in the number of experiments that converged to

the global optimum. This means no disruption for the schema processing was induced by

incorporating the proposed search method with the specified group sizes and probability

factors. The graph also shows that using a probability factor of 1.0 increased the

convergence speed of the population to the global optimum for all group sizes tested. The

diagram also shows that a probability factor of 1.0 is more suitable for large group sizes,

whereas a value of 0.5 seems more suitable for small sizes. This ability of a large group size

to capture a wide view of the search space when combined with a strong effect on the initial

solution can direct it in the right direction. However, using the same strong effect with a

102

Chapter 5 Improving Lamarckian search

small group size which provides a very narrow view of the search space can misguide the

search.

In experiment 5.4, the algorithms were used to optimise the Schwefel function with ten

variables. The chromosome length of each variable was 16 bit. The algorithm used a global

simple elitist genetic algorithm with binary tournament selection and two-point crossover.

The crossover rate was 0.6 and the mutation rate was 0.000001. The population size was

300. The stopping criterion was a maximum number of function evaluations. The value of

this parameter was set to 300,000.

Schwefel Function (d=10)
1 1

n

n

---------- - - - - ----- ---------------

---------------------------------- ----

■ ■ Probability Factor 0.5
I j Probability Factor 1.0

0 2 4 8 16 32

Group Size

x 105
2.9

—t— Probability Factor 0.5
- © - Probability Factor 1.02.8

2.7

2.5

2.4
-5 0 2 4 8 16 32

Group Size

Figure 5.5: Solving the Schwefel Function (Experiment 5.4)

The results of this experiment are shown in figure 5.5. The graph shows that with a

probability factor of 0.5 and for a group size greater than or equal to four, there is always an

increase in the number of times of finding the global optimum. However, for a probability

factor of 1.0, the increase occurred with population sizes of 16 and 32. The figure also

shows that this improvement in the number of times of reaching the global optimum is

always accompanied by an improvement in the convergence speed. The graphs also show

that a larger group size is needed to capture a good partial view of the search space

103

Chapter 5 Improving Lamarckian search

compared to the sizes needed in the previous experiments. This is due to the nature of the

fitness landscape which is more complicated than the previous problem.

The multimodal exponential problem generator was used to evaluate the performance of the

proposed algorithm as a secondary search method in a hybrid. The experiment, which will

be referred to as experiment 5.5, was carried out using five and ten randomly generated

local optima with amplitude factors of {0.2, 0.4, 0.6, 0.8, 1.0} and {0.1, 0.2, 0.3, 0.4, 0.5,

0.6, 0.7, 0.8, 0.9, 1.0}, respectively. The chromosome length was set to 30. An elitist

generational genetic algorithm with binary tournament selection and uniform crossover was

used as the global search algorithm. The population size was set to 100. The crossover rate

was 1.0 and the mutation probability was 0.000333 (pm=1.0/(lxN)). Experiments were run

for a complete convergence of the population or a maximum of 10,000 function

evaluations.

100

80

60

40

20

5-Modal Binlnt Problem

■ I Probability Factor 0.5
I | Probability Factor 1.0

J E L
0 2 4 16

Group S ize

32

(D
CLW

o

4500

wc 4000

15
_3

>
LU
Co
o
c

3500

3000
— Probabi l i ty Factor 0.5

Probability Factor 1.0
2500

0 2 4 8 16 32

Group S ize

Figure 5.6: The Results of the Five-modal Exponential Problem (Experiment 5.5).

The graphs in figure 5.6 and 5.7 show the results of this experiment. These plots are similar

to that shown in figure 5.4 for solving the Binlnt problem. The increase in the convergence

speed of the pure genetic algorithm can be a result of the use of the mutation operator in

104

Chapter 5 Improving Lamarckian search

this experiment in contrast to the Binlnt problem where no mutation was used. In general,

the two figures show the trends that have been described before.

10-modal B inlnt Problem

O

16

Group S ize

■ ■ Probability Factor 0.5
I | P robability Factor 1.0

32

4500

4000

3500

3000
—f— Probability Factor 0.5
- © - Probability Factor 1.0

2500

Group S ize

Figure 5.7: The Ten-modal Exponential Problem (Experiment 5.5).

5.3.3 The search method as a stand-alone algorithm

The proposed algorithm was tested as a stand-alone algorithm to optimise three

multimodal functions. It has been used to optimise the Schwefel function with ten

variables, the multimodal problem and the multimodal exponential problem. The algorithm

used a population size equal to that used by the pure genetic algorithm and the hybrid. The

performance of the algorithm was compared with that of the pure genetic algorithm and a

hybrid combined them.

The results of experiment 5.6, which aimed to employ the proposed search algorithm to

solve the Schwefel problem, demonstrated that the pure genetic algorithm outperformed the

proposed algorithm using different group sizes and probability factors. Figure 5.8 shows the

average fitness of the population as a function of the number of function evaluations for the

algorithm as a stand-alone and a secondary algorithm compared to that of the pure genetic

algorithm. The algorithm shown in this figure used a group size of 8 and a probability

105

Chapter 5 Improving Lamarckian search

factor of 0.5. The graphs demonstrate that despite the poor performance of the proposed

algorithm as a stand-alone algorithm compared to the pure genetic algorithm, their

combination outperformed either of them. The graphs depict the convergence of 50

experiments of each algorithm.
Local Search (Group S ize 8)

-2000

-4000

-6000

CO
COa>
c

0 t i i
Ll
CD -2000
CD
><
C
.9
jrg3
ClO

CL

-4000

-6000

0

-2000

-4000

-6000

No. Function Evaluations

Figure 5.8: The Convergence Details of the Schwefel Function (Experiment 5.6).

A multimodal exponential problem generator with five local optima was used to evaluate

the performance of the proposed algorithm as a stand-alone algorithm in experiment 5.7.

The amplitude factors were set to {0.2, 0.4, 0.6, 0.8, 1.0}. The experiment demonstrated

that the search algorithm, in most cases, performed worse than the pure genetic algorithm.

In few cases however, the proposed algorithm outperformed the pure genetic algorithm in

terms of the number of experiments that converged to the global optimum. It also

outperformed the hybrid in terms of the convergence speed. The convergence of the

population for the three algorithms as a function of the number of function evaluations is

depicted in figure 5.9. The group size used was 16 and the probability factor was set to 1.0.

Chapter 5 Improving Lamarckian search

Local Search (Group S ize 16)

500 1000
x 10

1500
SGA

2000 2500 3000

15

10

5

0
1500 2000 2500 3000500 1000

X 10 Hybrid
15

10

5

0
1500 2000 2500 3000500 1000

No. Function Evaluations

Figure 5.9: Comparing the Convergence of the Proposed Algorithm with the GA and

the Hybrid on 5-modal Exponential Problem (Experiment 5.7).

In experiment 5.8, the multimodal problem generator with number of local optima of five

has been used to evaluate the search method performance. The string length of solutions

and the population size were set to 100. The amplitude factors were set to (5.0, 4.0, 3.0,

2 .0 , 1.0 }.

An elitist generational genetic algorithm with binary tournament selection and two-point

crossover was used as the global search algorithm. The crossover rate was 0.6 and the

mutation probability was 0.0001. The experiment was run for a complete convergence of

the population or a maximum of 100,000 function evaluations.

The results of experiment 5.8 were encouraging. They show that the proposed algorithm

outperformed the pure genetic algorithm using different population sizes when combined

with a probability factor of 0.5. The algorithm converged faster to the global optimum than

the pure genetic algorithm. It also outperformed a hybrid that combined it with the genetic

algorithms using a group size of 2 and 4 (figure 5.10). However, the stand-alone algorithm

107

Chapter 5 Improving Lamarckian search

showed poor performance when using a probability factor of 1.0. The algorithm with a

probability factor of 1.0 can guide the search to non-optimal solutions. The probability of

guiding the search towards non-optimal solution increases as the group size decreases.

However, a hybrid with a probability factor of 1.0 outperformed the pure genetic algorithm,

and both the stand-alone algorithm and the hybrid with a probability factor of 0.5 for group

sizes of 8, 16 and 32.

v in 4 5-modal Problem

 SGA
-4 ~ Hybrid (PF=1.0)
••O ’ Hybrid (PF=0.5)

Stand alone (PF=0.5)
3.5

0.5

Group Size

Figure 5.10: The Convergence Speed of the Proposed Algorithm as a Stand-Alone

Algorithm (Experiment 5.8).

Figure 5.11 compares the performance of the algorithm using different group sizes and

probability factors. The graph demonstrates the fast convergence speed associated with a

probability factor of 1.0. The graph also shows that this convergence can be towards non-

optimal solutions. There is a decrease in the number of experiments that converged to non-

optimal solution accompanied with an improvement in the convergence speed as the group

size increases. In contrast to the probability factor of 1.0, the probability factor of 0.5 shows

a decrease in convergence speed as the group size changes from 2 to 32 with the ability to

find the exact global optimum in all cases.

108

Chapter 5 Improving Lamarckian search

Group S ize 2 & P robaility Factor=1.0

<1)

5

2

1
500 1000 1500 2000 2500

No. F u n ctio n E v a lu a tio n s

Group S ize 32 & P roba ility Factor=1.0
5

4

3

1
500 1000 1500 2000 2500

No. F u n ctio n E v a lu a tio n s

Group S ize 2 & P roba ility Factor=0.5
5

4

3

1
4000 60002000 8000

No. F u n c tio n E v a lu a tio n s

Group S ize 32 & P roba ility Factor=0.5
5

4

2

2000 4000 6000 8000
No F u n c tio n E v a lu a tio n s

Figure 5.11: Comparing the Effect of the Probability Factor and the Group Size on

Algorithm Performance (Experiment 5.8).

Figure 5.12 compares the population convergence speed of the algorithm as a stand-alone

optimisation technique with that of the pure genetic algorithm and a hybridisation of them.

This graph compares an algorithm with a probability factor of 1.0 and a group size of 32.

The graphs show that a hybridisation can get the best out of the two search methods. It

produced an algorithm that was able to find the global optimum in all the experiments, in

contrast to the stand-alone algorithm which can miss that optimum some times. The hybrid

was able to employ the ability of the pure genetic algorithm to reach the global optimum in

all experiments and utilise the fast convergence speed of the secondary method to produce

an effective and efficient algorithm.

The basic assumption of the proposed algorithm, which states that each gene contributes

uniformly to the fitness of the solution, can explain the good performance of the algorithm,

as a stand-alone optimisation technique, on the multimodal generator problem compared to

the poor performance on the other two problems.

109

Chapter 5 Improving Lamarckian search

Local S earch

SG A

LL
CD A
S’cdo
£ 3 w
g 2

CL 1OCL 2 41 3 5 6
Hybrid

No. of Function E va lu a tio n s

x 10

Figure 5.12: Comparing the Convergence of the Proposed Algorithm with the Pure
GA and the Hybrid on 5-modal Problem (Experiment 5.8).

However, the encouraging performance of the algorithm as a secondary search method,

even when applied to non-uniformly scaled fitness functions, can be explained as follows:

The genes of non-uniformly scaled fitness functions converge at different rates (Thierens et

al. 1998). The most important genes converge towards their optimal value before the less

important genes. The proposed algorithm concentrates on the differences in the population

structure and fitness to modify the non-identical genes. The algorithm does not modify the

identical genes. These non-identical genes in the non-uniformly scaled problems are the

genes that converge at a slower rate than the identical genes which has been converged to

their optimal value as a result of the genetic search. The algorithm uses a sample of the

genetic population to determine the genes that have not been converged yet. This sample

involves the initial solution and a selected group of solutions. The accuracy of the

algorithm in determining the converged genes increases as the sample size increases. This

ability of determining the already converged genes in the population reduces the possibility

of disrupting the genetic schema processing. This, in turn, can reduce the probability of

facing premature convergence problems and can accelerate the search towards the global

optimum. This can explain the good performance of the hybrid that uses large group sizes.

110

Chapter 5 Improving Lamarckian search

One of the possible ways of improving the performance of the proposed algorithm is to use

a variable group size for each iteration. It is also possible to set the values of the probability

factor depending on the group size used. This can be done in accordance with the findings

of the experiments of this chapter. These experiments show that high probability factors are

suitable for large groups and low factors are more suitable to small groups. The probability

factor can be made adaptable to the group size in that way.

Chapter 6 Evolution to adapt the duration of local search

The success of a genetic algorithm in solving a given problem efficiently depends

on its success in achieving a balance between exploration and exploitation. The correct

balance depends mainly upon the fitness landscape of the problem to be solved in addition

to the genetic algorithm setup. The genetic search can adapt to a variety of fitness

landscapes through adapting the control parameters associated with the genetic operators

(Beyer and Deb 2001).

The problem of striking a balance between the global and local search tools in a hybrid, in

order to adapt the algorithm to a given problem, can be viewed as a problem of finding

optimal local search control parameter settings. Evolutionary self-adaptation is one possible

way to adapt the local search control parameters within a hybrid and implicitly optimise the

hybrid performance to a given problem.

This chapter aims to investigate the advantages and disadvantages of applying evolution to

self-adapt the control parameters associated with the utilisation of the local search within a

hybrid genetic algorithm. It targets studying the effect of this form of adaptation on the

hybrid’s performance on different classes of test functions. The aim is also to gain some

insight into the influence of the interactions between learning strategy and local search

method on the self-adaptation behaviour. The possible ways to improve this form of

adaptation were also studied.

This chapter starts with a brief review of adaptation in genetic algorithms. Then, it reviews

adapting the local search control parameters as way of optimising the utilisation the

hybrid's time. The effect of the implicit use of the productivity metric as a measure to

decide on local search control parameter values on the self-adaptive hybrid’s performance

is analysed in that section. This chapter is drawn to an end by presenting the results of the

experiments that have been conducted to support this analysis.

6.1 Adaptation in genetic algorithms

Different mechanisms for selecting the most appropriate control parameter values

have been used to adapt a genetic algorithm to a specific problem. The simplest mechanism

is the tuning technique (static adaptation) where a control parameter has a constant value

throughout the search. A control parameter is tuned through external control by

experimenting different values to choose the most appropriate one. De Jong (1975)

determined experimentally recommended values for the rate of single-point crossover and

112

Chapter 6 Evolution to adapt the duration of local search

bit mutation. Grefensette (1986) optimised some of the control parameters using a genetic

algorithm as a meta-algorithm.

The control parameters interact with others in a nonlinear manner (Ochoa et al. 1999). For

this reason, finding the correct control parameter values is a time-consuming task (Eiben et

al. 1999), and it is difficult to formulate general rules about their values (Tuson and Ross

1998). The use of constant control parameters, despite of being recommended by Ochoa et

al., is in contradiction to the evolutionary spirit of genetic algorithms (Eiben et al. 1999).

There is theoretical and empirical evidence that shows the most effective control parameter

settings vary during the genetic search (Spear 1995) (Smith and Fogarty 1997) (Tuson and

Ross 1998).

In order to eliminate the need for tuning the control parameters by external means, and to

increase the search efficiency (Toussaint and Igel 2002), these control parameters can be

adapted through the execution of a genetic algorithm. The adaptation process can be

achieved by involving some modification mechanism that adjusts a control parameter

without external control.

A deterministic update rule can be used to update the control parameter value without using

any feedback from the current state of search (Hesser and Manner 1991 cited in Hinterding

et al. 1997) (Back and Schtitz 1996) (Michalewicz 1996). However, formulating a

deterministic update rule can be harder than finding a good set of control parameter values

(Tuson and Ross 1998). It may be advantageous, therefore, to employ adaptive learning

rules, where some feedback from the search is utilised to modify the control parameters.

These adaptive algorithms have been gaining popularity in the recent past due to their

flexibility in adapting to different fitness landscapes (Beyer and Deb 2001).

Different learning rules have been involved to adapt the genetic algorithm control

parameters. Davis (1989) proposed a learning-rule technique that required a lot of

bookkeeping to adjust the probability of the reproduction operator according to its success

at producing good offspring. He used this technique to drive a non-adaptive time varying

schedule of reproduction operators. Arabas et al. (1994) proposed a Genetic Algorithm with

a Varying Population Size (GAVaPS) to adapt the population size using a rule that assigns

each individual a relative life-time, at the time of creation, in proportion to the average

fitness of individuals within the population. Julstrom (1995) used a scheme similar to that

proposed by Davis but which requires less bookkeeping to adapt the operator probabilities

based on their recent contributions to the algorithm performance. Tuson and Ross (1996)

113

Chapter 6 Evolution to adapt the duration of local search

proposed the Cost Based Operator Rate Adaptation (CBORA) approach, where the

algorithm collects information on operators’ performance to adjust their probabilities.

The idea of evolution, which is modelled through genetic algorithms, can be used to

optimise the performance of a genetic algorithm on a particular problem in order to solve it

efficiently (Eiben et al. 1999). The idea can be implemented by encoding the control

parameters into the chromosome(s) of the individual and undergo genetic operations. This

approach uses the productivity metric (De Jong and Spears 1992) in an implicit fashion to

select the most appropriate control parameter values. Good control parameter values will

lead to good individuals and these will probably have more chances to survive and

propagate the encoded control parameter values.

Algorithms that use this form of adaptation are usually referred to as evolutionary self-

adaptive algorithms (Back et al. 1997). Evolutionary algorithms benefits from

implementing this method in solving a wide range of real-world problems (Toussaint and

Igel 2002). Evolutionary self-adaptation is commonly regarded as a speciality of evolution

strategies (Back et al. 1997). However, it has been successfully extended to genetic

algorithms. An early example of this was the punctuated cossover operator (Schaffer and

Morishima 1987). This method was offered for adapting both the number and position of

crossover points for a multipoint crossover operator in genetic algorithms. Extra bits were

added to the representation of a solution to encode crossover points and were allowed to

evolve over time. Other approaches incorporate the mutation rate into the representation of

individuals (Back 1992) (Smith and Fogarty 1996). The evolutionary self-adaptation

technique was also used to decide between two-point and uniform crossover operator

(Spears 1995), to adapt the mutation and crossover probability in a genetic algorithm with a

varying population size (GAVaPS) (Back et al. 2000), and to adapt the mutation and

crossover rate of a Co-operative Co-evolutionary Genetic Algorithm (CCGA) (Potter and

De Jong 1994) (Iorio and Li 2002).

The term self-adaptive is usually used to describe algorithms that adopt the evolutionary

self-adaptation technique (Angeline 1995) (Eiben et al. 1999) (Smith and Fogarty 1997)

(Toussaint and Igel 2002). However, this term has also been used to describe algorithms

that use adaptation techniques that do not encode the adapted control parameter onto the

chromosome (Beyer and Deb 2001) (Espinoza et al. 2001). Algorithms that utilise the

evolutionary metaphor for adapting the control parameters but using a subpopulation or

more for the control parameters, in addition to the subpopulation of the problem variables,

are referred to as a co-evolutionary self-adaptive algorithms (Tuson and Ross 1998) (Eiben

114

Chapter 6 Evolution to adapt the duration of local search

1999). An algorithm can be described as a co-evolutionary self-adaptive algorithm even in

the case where the control parameters and the problem variables are encoded together in a

single chromosome, but using different operators or operators’ parameters for each set

(Tuson and Ross 1998). In this dissertation, the term self-adaptive will be used to describe

evolutionary self-adaptive algorithms in accordance with Eiben et al. (1999) (see above),

who provided a comprehensive classification of adaptation in evolutionary algorithms.

The control parameters to adapt can be parameters associated with a specific genetic

operator such as the mutation rate (Back 1992), the number and the location of the

crossover points (Schaffer and Morishima 1987), and the number of genes that group

mutation will rebuild in a cutting stock problem (Hinterding 1997). They can also be

probabilities of using alternative operators (Davis 1989) (Julstorm 1995) (Spears 1995)

(Hinterding 1997) (Tuson and Ross 1998).

Tuson and Ross (1998) imposed three conditions for efficient adaptation of the probabilities

of using alternative operators. These conditions include the use of suitable metric to

evaluate operator performance. They also insisted upon the importance of a clear link

between the values of the genetic settings being adapted and the search’s performance.

According to Back and Schiitz (1996), the limited success of the self-adaptive crossover

operator (Schaffer and Morishima 1987) is due the weak impact of a particular crossover

operator on the fitness of an individual. The third imposed condition is that the benefits by

the adaptation process should outweigh its cost.

6.2 Adaptation in hybrid algorithms

The distribution of the genetic-local hybrid’s time between the global search

method and the local search method influences the efficiency and the effectiveness of the

search process. Finding an optimal division of an algorithm’s time is one of the difficult

tasks that the designers of hybrid genetic algorithms face. Different techniques have been

proposed to use the hybrid’s time efficiently, as mentioned in chapter 2. These techniques

aimed to attain an optimal utilisation of hybrid’s time through controlling the local search

control parameters. The problem of striking a balance between a global genetic algorithm

and a local search method can be viewed as a problem of finding optimal control

parameters of a local search within a hybrid. The different control parameters adaptation

techniques, mentioned in the previous section, can be used to adapt the parameters of a

local search.

115

Chapter 6 Evolution to adapt the duration of local search

Lobo and Goldberg (1997) viewed the problem of deciding between the global genetic tool

and the local search tool as a two bandit problem where the payoff of each bandit is

unknown and changes with time. They suggested that a probability matching approach,

which has been used to adapt the operators probabilities based on their recent performance,

can be used to decide on the proper tool at any time. In their experiments, an elitist selecto-

recombinative genetic algorithm was combined with a hill-climb method to solve the

oneMax problem. They concluded that their adaptation mechanism led to performance

slightly inferior to that obtained by carefully tuned control parameters. Magyar et al. (2000)

used the operator productivity technique to select an operator from eight recombination and

local search operators. Espinoza et al. (2001) proposed a hybrid algorithm uses the

coefficient of variation of the fitness function as a feedback from the search process to

decide whether it is appropriate to utilise a local search to improve the sampling ability or

not. The algorithm uses a deterministic rule to decrease the probability of local search after

performing a local iteration. The fitness improvement-cost ratio was also used to decide on

continuing the local search or returning to the global search. In their adaptive algorithm,

Hacker et al. (2002) used the coefficient of variance of both the fitness and phenotype,

which measures the relative homogeneity of the population, as a feedback to decide on

switching between global genetic and local search.

Different adaptation mechanisms have been used to adapt the probability of local search in

a hybrid. By adjusting the local search probability of each individual of the population,

these adaptation techniques also decide on the individuals that should perform a local

search. Distribution-based adaptation techniques (Hart 1994) (Joines and Kay 2002)

(Martinez-Estudillo et al. 2004) modify the probability of local search based on the

distribution of individuals in the population to ensure that only one individual from each

basin of attraction in the search space undergoes a local search. However, in fitness-based

adaptation mechanisms (Hart 1994) (Espinoza et al. 2003b) (Lozano et al. 2004), the local

search probability of each individual is modified based on the relationship of its fitness to

the fitness of other individuals in order to bias the local search toward individuals with

better fitness. In contrast, the local search potential (LS potential) selection mechanism

(Land 1998) adapts the local search probability of each individual based on its ability to use

a local search most effectively. The self-adaptation technique, despite of being reported that

has been successfully used to decide between different local search methods (Krasnogor

and Simth 2001), it has not been used to adapt the local search parameters in hybrids.

Based on the role of a local search method as a complementary tool for the genetic search

to enhance its performance, the adaptation of the duration of a local search can achieve a

116

Chapter 6 Evolution to adapt the duration of local search

balance between exploration and exploitation. The evolutionary self-adaptation is one

possible mechanism to strike that balance. This can be done by incorporating the duration

of local search into the representation of individuals and allowing it to evolve. In addition

to the genetic search cooperation with a local search method to find an optimal solution for

a problem at hand, the genetic algorithm alone is responsible for finding an optimal

duration of a local search in order to optimise the hybrid search for that problem.

Implementing the metaphor of the evolution of the local search parameters to adapt the

search in this simple way is partially in accordance with the third assumption laid by Tuson

and Ross (1998). The implementation cost is low compared with other adaptation

techniques.

In order to investigate the evolutionary self-adaptation mechanism and the possible ways of

improving the hybrid adaptation ability, the capability of the productivity metric to produce

an efficient and effective search is discussed in the next section. The factors that may affect

this ability will also be examined. The question of whether this form provides a suitable

metric to evaluate local search operator performance in the context of the hybrid

performance will be addressed.

6.2.1 Duration of local search and self-adaptation

The ability of genetic search to find favourable parameter settings for pure genetic

algorithms has been proven (Eiben et al. 1999). However, the ability of the global genetic

algorithm to self-adapt the control parameters of a hybrid, especially those related to

incorporating a local search method, may require further investigation. In this section, the

influence of simultaneously exploring both the problem search space and the control space

of local search duration on the hybrid’s performance is analysed. This analysis can help to

gain some insight into the consequences of the self-adaptation on optimising the division of

the search time between global and local search and on the implicit adaptation of the hybrid

to the fitness function topology.

The duration of a local search is defined as the number of the consecutive local search

iterations that are performed on a solution before terminating a local search procedure and

returning to the global genetic algorithm. The duration of a local search has a clear impact

on the solution fitness improvement. The fitness of a solution is improved in proportion to

the duration of the local search method applied. However, if that duration is more than that

needed to reach a local optimum, a part of the search time is wasted. The influence of the

duration of a local search on the individual’s fitness depends on the solution’s location in

the fitness landscape which depends on the previous search iterations. Even in the case of

117

Chapter 6 Evolution to adapt the duration of local search

improving the solution fitness, the use of long durations can waste the algorithm’s time.

This can occur if a local search method is applied on a solution which is in the basin of

attraction of a local optimum and not the global one.

There is a link between the duration of the local search and the individual’s fitness. This

link depends on the fitness function topology, the details of the local search method and the

genetic algorithm’s setup. By allowing the duration of the local search parameter to evolve

by means of genetic operations just like the input variables do, the link between favourable

duration of the local search and the individual’s fitness can be exploited. Genetic operations

can adaptively control the duration of the local search method in order to optimise the

individuals’ fitness. In this way, it can define the link between the control parameter and the

individual’s fitness.

However, the ability of defining a link between the duration of local search and the

individual fitness can face some difficulties when combined with the pure Baldwinian

learning strategy. The acquired fitness of an individual is the sum of the improvements

introduced by applying a local search method for the encoded duration and the innate

fitness. The hindering effect associated with this learning approach can direct the search

towards individuals with long durations of local search and a small innate fitness. The

search process, in this case, is degraded from optimising the fitness function to optimising a

single control parameter. The possibility of leading the search to this direction increases as

the number of variables of the fitness function increases since it may be easier for the

algorithm to optimise a single control parameter than optimising a large number of function

variables. In addition to the possibility of guiding the search in the wrong direction, the

hindering effect can waste the algorithm’s time as it can direct the individuals to perform

useless local search iterations with long durations. The use of the acquired fitness as a

metric to assess the quality of solutions when combined with the pure Baldwinian learning

strategy can produce an algorithm with poor performance in terms of solutions quality and

convergence speed.

The hindering effect can be aggravated using long durations of a local search (chapter 3).

However, the use of a local search with very short durations and/or small probabilities can

help to alleviate this problem. In the case of encoding the duration of the local search for

self-adaptation, the use of very short durations as a unit of the duration of local search, and

restricting the values of the number of local iterations parameter to very small numbers, can

help to combat the hindering effect. In this way, the problem’s consequences on the ability

of the global genetic algorithm to define a link between the duration of local search

118

Chapter 6 Evolution to adapt the duration of local search

parameter and the individual fitness in the direction of optimising the fitness function can

be alleviated.

However, the ultimate solution for the hindering effect problem is to rely on innate fitness

and not acquired fitness to decide between solutions of equal acquired fitness values. One

possible way to do this is to employ the number of local function evaluations, used to

acquire the current fitness starting from the innate fitness, in addition to the acquired

fitness. Since the number of local iterations parameter, which is a good indication of the

number of function evaluations consumed in a local search, is already encoded into the

individual, it can be used together with the acquired fitness to direct the search towards

solutions of high quality.

Assuming that the global genetic algorithm is able to define a link between the control

parameter values and an individual’s fitness in the direction of optimising the solution

quality, the question becomes is defining this link enough to improve the hybrid search’s

performance and if so in which way the performance can be enhanced? Reviewing the

impact of the duration of the local search on the search’s time utilisation together with a

brief comparison between self-adaptation in the pure genetic algorithms and the hybrid

genetic algorithm may help to answer this question.

As shown in chapter 3, the duration of local search can influence the division of the search

time between a global and a local search. The interactions between local search duration,

the learning strategy, the fitness topology and other genetic components have a great impact

on search time utilisation (Hart et al. 2000) (Rosin et al. 1997). Allocating more time for a

local search through using long local search durations can improve the performance when

combined with specific learning strategies on specific classes of fitness functions. On the

other hand, allocating more time for the global genetic algorithm through using short

durations of local search can improve the performance if combined with other learning

strategies or used to solve other classes of problems. Assigning the task of finding an

optimal duration of local search to the global genetic algorithm means allowing the

evolution process to decide on the optimal utilisation of the search time. In the rest of this

section, the appropriateness of the individuals’ fitnesses as a metric for selecting

individuals and its ability to optimise the utilisation of the hybrid’s time are discussed.

The evolutionary self-adaptive algorithms encode the control parameters into the

chromosomes and use the individual fitness as feedback to assess the suitability of their

values for solving a given problem in an effective and efficient way. Good control

119

Chapter 6 Evolution to adapt the duration of local search

parameter values will probably help individuals to produce superior offspring and these will

probably have more chances to survive and to propagate.

The genetic algorithms use the fitness as a metric to assess the quality of solutions and the

speed of reaching that quality. Since all individuals in the pure genetic algorithm consume

an equal number of function evaluations to achieve their fitness, the fittest individual is also

the fastest one in achieving that fitness. The use of this metric is fair to assess the quality

and speed of the solutions at the same time. For this reason, relying on the individual fitness

is enough to choose efficient and effective solutions. Control parameter values that lead to

high quality solutions also produce these solutions in an efficient way. The propagation of

good encoded control parameters that help to produce high quality solution can help to

produce an efficient search algorithm at the same time.

A selective use of a local search method within a hybrid means that solution can consume

different numbers of function evaluations. Applying a local search method with different

local search durations or different local search probabilities for each solution, as in the case

of self-adapting the duration or the probability of local search control parameters, are

examples of this selective use of local search. Self-adapting such control parameters has a

clear impact on the number of function evaluations consumed by each individual.

Consequently, selecting individuals based on their fitness only in these algorithms can bias

the search towards an effective algorithm and cannot guarantee its efficiency. On the other

hand, selecting solutions based on the speed of convergence can lead the search towards a

local optimum instead of the global one. However, since the global optimisation’s priority

is the effectiveness of an algorithm, hybrid genetic algorithms are discriminating on fitness

basis rather than speed basis.

In non-adaptive hybrid algorithms, to reduce the possibility of producing inefficient

algorithm, the hybrid’s practitioners usually prefer to reduce the cost of the incorporating

the local search method through using either small local search probabilities (Hart 1994)

(Rosin et al. 1997) (Land et al. 1997) (Morris et al. 1998) (Hart et al. 2000) (Espinoza et al.

2001), small local search durations (Hart 1994) (Rosin et al. 1997), or local search methods

with low cost compared to a genetic search iteration (Radcliffe and Surry 1994). The same

direction can also be followed in the self-adaptive hybrids. Through employing a low cost

local search method, or using very short durations as a unit of the duration of local search

and restricting the values of the number of local iterations parameter to very small numbers,

this efficiency problem can be combated.

120

Chapter 6 Evolution to adapt the duration of local search

6.3 The Algorithm

In the proposed hybrid algorithm, the number of local search iterations is

incorporated into the representation of an individual. Through this parameter, the duration

of a local search is controlled. It defines the number of local iterations that should be

performed by the associated individual. The global genetic algorithm evolves the number of

local search iterations while the hybrid is using that control parameter to optimise the

fitness function variables. Through adopting the evolutionary self-adaptation metaphor, the

algorithm allows the global genetic algorithm to dynamically decide on the individuals that

should perform a local search. It also decides on the duration of the local search method

through modifying the number of local iterations as it cooperates with the local search to

solve a given problem. This can facilitate the adaptation of number of local search

iteration’s control parameter without exogenous control.

In general, the control parameters in the evolutionary self-adaptive algorithm can be

adapted either at the individual level (i.e. local level) or at the population level (i.e. global

level). In the local adaptation, the control parameter is applied to the associated solution

only. In contrast, the control parameter in the global adaptation is tied to the population as a

whole, and not to a particular solution. The number of local iterations of an individual is

computed by talcing the average of the number of local iterations of the individuals of the

whole population. Local adaptation is used in the proposed algorithm because it is

reasonable to assume that different individuals are following different paths through the

search space. It is also proven that local adaptation outperforms global adaptation (Spears

1995).

In the proposed self-adaptive hybrid algorithm, after performing a genetic iteration, the

number of local iterations associated with each solution is extracted from the

chromosome’s structure. Depending on the value of that parameter, a number of local

search iterations are performed on that solution. If the value of that parameter is zero, no

local search iteration will be performed. Otherwise the specified number of local iterations

will be performed consecutively. Using the learning strategy specified by the algorithm, the

resulting solution is mapped back to the mating pool. Pseudo code for the Self-Adaptive

local-search-Duration Hybrid (SADH) algorithm is shown in Figure 6.1.

The maximum value of the number of local iterations in this algorithm was set to three. The

first reason for selecting this value is the expected benefits of using small durations of local

search as illustrated in the previous section. The second reason is to allow comparing the

121

Chapter 6 Evolution to adapt the duration of local search

adaptive ability of this algorithm with the adaptive staged hybrid (ASH) algorithm, which

was proposed by Espinoza et al. (2001) and uses a maximum of three local iterations.

B e g i n

t = 0

i n i t i a l i s e (P o p u l a t i o n (t))

e v a l u a t e (P o p u l a t i o n (t))

w h i l e t e r m i n a t i o n c r i t e r i a n o t s a t i s f i e d

B e g i n

t = t + 1

M a t e P o o l (t) = s e l e c t (P o p u l a t i o n (t - 1))

M a t e P o o l (t) = c r o s s o v e r (M a t e P o o l (t))

M a t e P o o l (t) = m u t a t e (M a t e P o o l (t))

e v a l u a t e (M a t e P o o l (t))

F o r e a c h C h r o m o s o m e (i) o f M a t e P o o l (t)

B e g i n

L o c a l I t e r a t i o n s = g e t N u m b e r I t e r a t i o n s (C h r o m o s o m e { i))

i f L o c a l I t e r a t i o n s > 0 t h e n

S o l u t i o n (i) = m a p T o P h e n o t y p e (C h r o m o s o m e (i))

f o r k = l t o L o c a l l t e r a t i o n s

B e g i n

S o l u t i o n (i) = p e r f o r m L o c a l S e a r c h l t e r a t i o n (S o l u t i o n (i))

E n d

C h r o m o s o m e (i) = m a p T o C h r o m o s o m e (S o l u t i o n (i) , L e a r n i n g S t r a t e g y)

E n d

E n d

P o p u l a t i o n (t) = m e r g e (M a t e P o o l (t) , P o p u l a t i o n (t - l))

E n d

E n d

Figure 6.1: The Self-Adaptive local-search-Duration Hybrid (SADH) Algorithm.

The algorithm also makes use of the number of local iteration’s control parameter, which

already exists within the chromosome, to discriminate between innate and acquired fitness.

In a case of an equal fitness, the algorithm chooses the individual with the smaller value of

local search iterations since its acquired fitness is closer to the innate one. This can help to

alleviate the consequences of the hindering effect associated with the Baldwinian approach.

6.4 Test functions

In order to evaluate the capability of the proposed SADH algorithm for finding

high quality solutions for difficult optimisation problems in a general way, a set of test

functions has been selected. The test functions have also been used to evaluate some of the

assumptions that have been made regarding the behaviour of the SADH algorithm and the

possible ways of improving its performance.

122

Chapter 6 Evolution to adapt the duration of local search

The members of the selected set of test functions have been designed by several authors for

analysing and comparing different optimisation algorithms. Most of the test functions have

especially been designed to detect weak points of the different optimisation algorithms.

These functions have a number of features that are known to be hard for optimisation and

believed to be present in many real-world problems. Among these features is that the

degree of difficulty of these functions can by scaled up by increasing the dimension of the

search space due to the increasing number of local optima. According to Whitley et al.

(1995), the presence of scalable functions is essential in any evolutionary test suite. Whitley

et al. also insisted on that the test suite should contain non-linear and tion-separable test

functions. These types of functions are also represented in the test functions set. The test

functions suite includes the ellipsoidal (Deb et. al 2002), the Rastrigin (Torn and Zilinskas

1989), the Schwefel (Mtihlenbein et. al 1991), the Griewank (Muhlenbein et. al 1991) and

the Rosenbrock (De Jong 1975) test functions.

The n-dimensional inverted ellipsoidal function (Deb et. al 2002) is defined as

f i x) = For 100 < x (< 100 (6.1)
/=1

The ellipsoidal function has a unique global optimum of zero which is located at *=(0, 0,

...). The ellipsoidal is a uni-modal function with different weights for each variable. This

can serve to test a badly scaled fitness functions (Ballester and Carte 2004).

The n-dimensional inverted Rastrigin function (Torn and Zilinskas 1989) (Muhlenbein et

al. 1991) is defined as
n

f (x) = 10/t + 'Y'.x? - 10cos(2fl%,-) For - 5.12 < x,. < 5.12 (6.2)
i=i

The global optimum of the inverted Rastrigin function is zero at jc=(0, 0,...). This function

is characterised by the existence of many local optima whose values are proportional to

their distance from the global optimum. The local optima are located at a rectangular grid

with a size of one. Grid points with jcf =0 except one coordinate, where jq=l, give the

second best optimum with f(x)~-\. With increasing distance from the global optimum the

fitness values of local optima become smaller. There is no correlation between the variables

of the Rastrigin function.

The definition of the n-dimensional inverted Schwefel function (Muhlenbein et. al 1991) is

f (x) = 418.98288/1 + - x (s i n (^ f) for - 500 < x, < 500 (6.3)
/=i

123

Chapter 6 Evolution to adapt the duration of local search

The global optimum of zero is at the point x=(420.9687, 420.9687, ...). The interesting

characteristic of this function is that the second best optimum is located far away from the

global optimum. This can trap the optimisation algorithm on a local optimum. In this

function, there is no correlation between the variables.

The inverted Griewank function (Muhlenbein et. al 1991) can be defined as
n x 2 x

f (x) = 1 + Y — *------ n L c o s R O for - 30.0 < x < 30.0 (6.4)
7 4000 '- 1 \ T i

The global optimum of zero is located at the point x=(0, 0, ...). There are many local

optima in the landscape of this function. The product term introduces a correlation between

the function variables “epistasis”. This can disrupt optimisation techniques that work on

one function’s variable at a time. The increase in the number of variables decreases the

number of local optima since it makes the function surface flat.

The n-dimensional inverted Rosenbrock function (De Jong 1975), also known as banana

function, is defined as

/ M = -X [1 0 0 (* w - * ,2)2 + (1 - * ,) 2] fOT - 2 .0 4 8 < .v ,< 2.048 (6.5)
(= 1

The unique global optimum of the inverted Rosenbrock function is zero which is located at

jc=(1, 1, ...). There is only one peak in the landscape of the two dimension function. The

global optimum of this function is inside along, narrow, parabolic shaped flat valley. This

extremely flat region around the global optimum makes it difficult for search algorithms to

locate the global optimum. There is evidence showing that the landscape of this function

with a dimension of more than three contains several optima. Deb et al. (2002) identified

three local optima with fitness values 0, 3.98662 and 65.025362 for 20-dimensional

function. This shows that the difficulty of this function can by scaled up by increasing its

dimension. There is also a correlation between its variables, which makes it a non-separable

function.

6.5 Experiments

The SADH algorithm and the ASH algorithm were used to solve the set of test

functions in order to evaluate the performance of the proposed algorithm and gain some

insight into its self-adaptation behaviour. Some members of the test function set were

selected to evaluate some ideas to improve the search performance.

Chapter 6 Evolution to adapt the duration of local search

6.5.1 Evaluating the performance of the self-adaptive hybrid algorithm

For the purpose of evaluating the SADH algorithm, its performance was compared

with the pure genetic algorithm and the ASH algorithm on a selected set of test functions.

The quality of the solutions produced by each algorithm was used as a main measure of the

algorithm’s performance. The percentage of experiments that converged to the global

optimum was used as an indication of the ability of these algorithms to produce high

quality solutions. The performance was compared using different population sizes and

different learning strategies in order to evaluate the ability of these algorithms to adapt to

different search environments.

The results of optimising the test functions using the proposed SADH algorithm were

evaluated against the results obtained by the ASH with initial local search probabilities of

0.0, 0.1, 0.2, and 0.99. The ASH algorithm with an initial local search probability of 0.0 is

identical to the pure genetic algorithm. An initial local search probability of 0.1 was

selected because Espinoza et al. claimed that using this value produces the best hybrid

performance. This can be true for simple test functions using large population sizes, as in

the case of the fitness functions they reported on, but for more complicated test functions,

using other values can produce better results. The same values of the other meta-parameters

suggested by Espinoza et al. were used in these experiments.

The set of algorithms has been used to optimise the test functions suite for dimensions of 2,

10 and 20 and for different population sizes. For 2-dimensional test functions, the

population sizes tested were 20, 40, 60, 80 and 100. The 10-dimensional functions tested

with population sizes of 50, 100, 150, 200 and 250. However, population sizes of 100, 200,

300, 400 and 500 were used to optimise the test functions with 20 variables. Each of these

variables was represented by a string of 16 bits.

The hybrid algorithms were tested using different learning strategies. In addition to the pure

Baldwinian and the pure Lamarckian approaches, the 25% partial Lamarckian (i.e. 75%

partial Baldwinian), the 50% partial Lamarckian (i.e. 50% partial Baldwinian), and 75%

partial Lamarckian (i.e. 25% partial Baldwinian) approaches were used in these

experiments.

The hybrids use the simple elitist genetic algorithm with binary tournament selection, two-

point crossover, and simple mutation. For all experiments, the probability of crossover was

set to 0.7 and the probability of mutation was UN where N is the population size. In the

125

Chapter 6 Evolution to adapt the duration of local search

adaptive ASH algorithm, the maximum number of local iterations was 3, e was 0.2, and the

local threshold value was 0.6.

The stopping criterion for all experiments was a maximum number of function evaluations.

The value of this parameter was set to 1000 times the population size for the functions of

two and ten variables for partial or the pure Lamarckian learning approaches. However, for

the test functions of 20 variables, this value was set to 5000 times the population size for

partial or the pure Lamarckian approaches. For the pure Baldwinian approach, the

maximum number of function evaluations was doubled because this type of search is slow

and the priority in these experiments is to evaluate the effectiveness of these algorithms.

This stopping rule was applied for all the test functions except the ellipsoidal function,

where the maximum number of function evaluations was set to 500 times the population

size, due to its simplicity. Each experiment was repeated 50 times.

A local search method, which combines the steepest descent method and Brent’s method

(Press et al. 1993) to estimate the best step size to climb to the local optimum from the

current position in the basin of attraction, was used. The steepest descent algorithm uses the

derivatives of the fitness function to estimate the best step size to climb to the local

optimum from the current position in the basin of attraction. Brent’s method fits a parabola

to three initial solutions and uses the maximum of the parabola as the next potential

solution of the overall function (chapter 2).

The percentage of times each hybrid algorithm found the global optimum using different

learning strategies was used as a metric to compare the performance of the hybrids on the

different test function used. The number of times each hybrid found the global optimum

using the different learning strategies were added together and then divided by the total

number of experiments conducted. The resulting percentage of each hybrid was compared

with other hybrids and with the percentage of times the pure genetic algorithm found the

global optimum.

In experiment 6.1, the pure genetic, the SADH and the ASH algorithms were used to

optimise the ellipsoidal function and the percentages times of finding the global optimum

were compared. The results of comparing these percentages when solving the 2-

dimensional ellipsoidal function show that the pure genetic algorithm performed better than

the hybrid algorithms. Actually, the difference in the percentages between the pure genetic

algorithm and the two hybrids is due the poor performance of both hybrids when utilising

the pure Baldwinian approach. This bad performance is related to the hindering effect,

126

Chapter 6 Evolution to adapt the duration of local search

which leads the search to converge to a point near the global optimum. The closeness of

this point to the global optimum depends on the local search method, its duration, and the

size of the basin of attraction of the global optimum (chapter 3). The use of small

probability of local search helps to alleviate this problem to some extent. The results show

that using a small probability of local search with the ASH gives the best performance of

the hybrids for all the population sizes used. The nature of fitness landscape and the nature

of the local search method, where a small number of local iteration may be enough to map

any point in the basin of attraction to the global optimum, explain of the bad performance

of the hybrids combined with the pure Baldwinian approach.

The hybrid algorithms that adopted the pure Baldwinian learning strategy were not able to

find the global optimum of the ellipsoidal function with ten variables, as shown in figure

6.2. However, in general, the ASH algorithm that used small probabilities of local search

outperformed the pure genetic algorithm using a small population sizes in terms of

percentage of experiments that converged to the global optimum, and vice versa for large

population sizes. The diversity introduced as a result of using local search methods enables

small population sizes to evolve to reach the global optimum. The performance of the

SADH algorithm on this function is still better than the performance of the ASH algorithm

with a local search probability of 0.99. The behaviour of the SADH algorithm when

combined with the pure Baldwinian approach was expected since the hindering effect may

lead the search towards long durations of local search and bad quality solutions.

Chapter 6 Evolution to adapt the duration of local search

Population s ize 50

I
P u re B aldw inian
2 5 % L am arck ian
5 0 % L am arck ian

| 1 7 5 % L am a rck ian
| | P u re L am arck ian

A SH (P=01) A SH (P=02) ASH(P=0 SADH

Population s ize 150

a) «

Population s ize 100

AH(P=0 1) AH(P=0.2) A H (P=0 99) SAH

SGA ASH(P=0,1) A SH (P=0.2) A SH (P=099) SADH

Population s ize 200

SGA A S H (P = 0 1) A SH (P=0 2) A SH (P=0 99) SADH

Figure 6.2: Results of Optimising the Ellipsoidal Function with 10 Variables

(Experiment 6.1).

Figure 6.3 shows the changes in the number of local iterations of the population over

generations for the 10-dimensional ellipsoidal function, when combined with the pure

Baldwinian approach, for population sizes of 50 and 150. The graph shows that for a

population size of 50, the values of local iterations of 1 and 2 were dominating at the end of

search. At the start, the population moves towards a longer local durations. Then, when

long durations are not improving the fitness any more, the search moves towards shorter

durations. At the end of the search, short durations are dominated in order to distinguish

innate from acquired fitness. However, even with these short durations of local search and

because of the disappearance of the value of zero of this parameter, the algorithm was

unable to guide the search to the exact global optimum. The graphs show a similar trend for

a population size of 150 where the search moved toward longer durations.

Chapter 6 Evolution to adapt the duration of local search

o

-2
03 -4O)03
C

£ -6
0303m -8

-10

-12

x 10 P opula tion S ize 150

0 5 10
No. Function Evaluations

15

x 10

cc 40
8

IT
EE3
□

lte r= 0
lter=1
lter= 2
lter= 3

50
I

100 150

03
03
03
C

Ll

03
03CO

-10 1 2 30
No. Function Evaluations

100

80

(/)
o

60
5
a>

"05 40
8_i

20

0

G enerations

Lu_
50 100

G enerations

x 10

150

Figure 6.3: Optimising the Ellipsoidal Function Using the Baldwinian Approach

(Experiment 6.1).

In figure 6.4, the changes in the number of local iterations and the best fitness over time are

shown for the 50% partial Lamarckian approach. The graphs show that, for a population

size of 50, a greater part of the population was using two local iterations and that part was

fixed until the end of the search. However, with a population size of 150, a greater part of

the population was using three iterations. This part increased while the individuals that

were using a single local iteration decreased as the search progressed.

Popula tion S ize 50

129

Chapter 6 Evolution to adapt the duration of local search

Population S ize 50
- 10'

COcr
CD
C

LL

(/)
CD

CD

No. Function Evaluations 4
x 10

■ ■ iter=0
■ B lter=1
[i i l l lter=2
I | lter=3

to 40

G enerations

P opula tion S ize 150
-10

m -10

No. Function Evaluations x 10

80

= 60

to 40

20 40 60
G enerations

80

Figure 6.4: Optimising the Ellipsoidal Function Using the 50% Lamarckian

Approach (Experiment 6.1).

By comparing the two previous graphs with figure 6.5, which shows the percentage of

population that using the available local search iteration for the pure Lamarckian, it is clear

that as the search moves towards more partial Lamarckian and larger population sizes, the

population moves toward adopting longer durations of local search.

An experiment was conducted to illustrate the impact of the local search method on the

performance of hybrids when used to solve the ellipsoidal function. The simple binary hill-

climbing algorithm, where a randomly selected bit is flipped, was used as a local search

method in the hybrids to solve the 2-dimensional and 10-dimensional ellipsoidal function.

The results of experiments demonstrated, not shown here, that the performance of all the

hybrids that adopt the pure Baldwinian approach is significantly improved using this local

search method. For example, 58%, 86%, 100%, 96% and 100% were the percentages of the

experiments that found the exact global optimum incorporating the simple binary hill-

climbing method within the proposed algorithm to solve the 2-dimensional ellipsoidal

130

Chapter 6 Evolution to adapt the duration of local search

function compared with zero percentages when utilising the steepest descent method for

population sizes of 20, 40, 60, 80 and 100, respectively.

-10

-10

P opulation S ize 50

1 2
No. Function Evaluations

Popula tion S ize 150
- 10 '

-5

,0
co -10

,5
- 10 ' 0 2 4 6

x 10 No. Function Evaluations
x 10

lter=0
lter=1

H ~1 lter=2
f ~ ~ l lter=3

co 40

20 40 60
G enerations

80

100

60
o

8_i

20

40
Generations

60

Figure 6.5: Optimising the Ellipsoidal Function Using the Lamarckian Approach

(Experiment 6.1).

The results obtained in experiment 6.2, which evaluated the ability of the different

algorithms to solve the Rastrigin function with 2, 10 and 20 variables, illustrated that the

self-adaptive algorithm produced the third best performance for 2 variables function, the

first or the second best for 10 variables function, and the best performance for 20 variables

function (figure 6.6). The good performance of the proposed algorithm for 20-dimensional

function is expected since the cost of optimising a single control parameter can be

neglected compared to the cost of optimising 20 variables, whereas this cost cannot be

neglected when optimising a function of 2 variables. The experiments also show that the

proposed algorithm faced some difficulties when combined with the pure Baldwinian

approach.

131

Chapter 6 Evolution to adapt the duration of local search

E
I 50
I "
O 3 5
O
0 3 0

P opu la tion s iz e 100 P o p u la tion s iz e 300

■ ■ P u re B a ld w in ia n
2 5 % L a m a rc k ia n

I] 5 0 % L a m a rc k ia n
I I 7 0 % L a m a c k ia n
| | P u re L am a rc k ia n

A SH (P=0.1) A SH (P=0,2) A SH (P=0.99) SADH SG A A S H (P = 0 .1) A S H (P = 0 2) A SH (P=0.99) SADH

E8̂0

§ 70
.Q 6 0O

O20
S3 10

P opu la tion s iz e 400 P op u la tion s iz e 500

SG A A SH (P=0.1) A SH (P=0.2) A SH (P=0.99) SADH SG A A SH (P=0-1) A SH (P=0.2) A SH (P=0.99) SADH

Figure 6.6: The Results of Solving the 20-dimensional Rastrigin Problem (Experiment

6.2).

The change in the percentage of the number of the local search iterations over generations,

and the change in the best fitness as a function of the number of function evaluations, for

the 10-dimensional Rastrigin function for different learning strategies are shown in figures

6.7, 6.8 and 6.9. These graphs, as the previous graphs, show the disappearance of the 0

value of the control parameter. The effect of this disappearance cannot help algorithms that

are biased toward the Baldwinian approach to produce high quality solutions. They also

show that increasing the population size can help to combat this problem. These plots show

that, as the part of the population that use the Lamarckian approach increases, the trend to

use long durations of local search increases.

Chapter 6 Evolution to adapt the duration of local search

Population Size 50 Population S ize 150

« -50

m -100

-150

100

80
03

£ 60030)
75 40
8

_ j

20

0

5 10
No. Function Evaluations

15

x 10

m -100

-150

No. Function Evaluations 5
x 10'

■ ■ ter=0
H H lter=1
fT ~ l lter=2
I | lter=3

100

80

60

« 40
8

L
50 100

Generations
150

20

ol Llli_
50 100

Generations

J
150

Figure 6.7: Optimising the Rastrigin Function using the Pure Baldwinian Approach

(Experiment 6.2).

Population Size 50 Population S ize 150

w -50
COO)c

LL

-150

No. Function Evaluations 4
x 10

Ll

<n
Q)

CD -100

-150

No. Function Evaluations
15

x 10*

100

■2 60
£5S
« 40

5
20

0I. I i
■ ■ lter=0

EE!! Iter=2
I I lter=3

20 40 60

os 40

20 40 60
Generations

80
Generations

Figure 6.8: Optimising the Rastrigin Function Using 50% Lamarckian approach

(Experiment 6.2).

133

Chapter 6 Evolution to adapt the duration of local search

P opulation S ize 50 Popula tion S ize 150

m -100

-150 0 1 2 3 4 5

co -100

-150 0 105
No. Function Evaluations x 10 No. Function Evaluations

15
4

x 10

lter=0
lter=1
lter=2

I | lter= 3

5 40

20 40
Generations

100

cn c
o

60
CD

o
—I

0 20 40 60
G enerations

Figure 6.9: Optimising the Rastrigin Function Using the Lamarckian Approach

(Experiment 6.2).

The results for solving the 2-dimensional Schwefel function using the ASH algorithm in

experiment 6.3 show that the optimal probability of local search depends on the population

size. The results also showed that the SADH algorithm produced the second or the third

best performance. They also showed that the SADH algorithm performs poorly with the

pure Baldwinian approach.

When the algorithms were used to solve the 10-dimensional Schwefel function, the

percentage of times that each algorithm managed to find the global optimum is depicted in

figure 6.10. The graphs show that the SADH algorithm and the ASH algorithm with a local

probability of 0.99 produced the best performance. However, both algorithms produced the

worst performance when utilising the pure Baldwinian learning strategy.

Chapter 6 Evolution to adapt the duration of local search

P opu la tion S ize 50

Pure Baldw inian
25% Lamarckian
50% Lamarckian

! J 75% Lamarckian
] Pure Lamarckian

P opu la tion S iz e 100

A S H (P = 0 .1) A S H (P=0 2) A S H (P=0 99) SADH SG A A S H (P = 0 1) A SH (P=0.2) A SH (P=0.99) SADH

E

r
§ 7 0

P op u la tion S iz e 150 P op u la tion S iz e 200

A SH (P=0.1) A SH (P=0.2) A SH (P=0 SG A A S H (P = 0 1) A SM (P=0 2) A SH (P=0 99) SADH

Figure 6.10: The Results of Optimising the Schwefel Function with 10 variables

(Experiment 6.3).

When used to solve the 20-dimensional Schwefel function, the SADH algorithm produced

the best or the second best performance when combined with a partial or the pure

Lamarckian approach. However, as in the previous experiments, it produced the worst

performance when combined with the pure Baldwinian learning strategy.

Figures 6.11, 6.12 and 6.13 show how the number of local iterations parameter evolves

during optimising the 10-dimensional Schwefel function for population sizes of 50 and 150.

The hindering effect problem makes the algorithm unable to decide on an optimal duration

of local search. At the start of the search, using a local search of any duration helps

individuals to improve their fitness. This accelerated the disappearance of the zero value of

the number of local search iterations control parameter. Since the probability of mutating

the control parameter is very small, the chance of restoring that value is very small too. The

effect of the disappearance of that value is less significant on the algorithm performance

when adopting other learning strategies.

135

Chapter 6 Evolution to adapt the duration of local search

-3000

0 5 10 15
No. Function Evaluations x

Population S ize 150
0

Population Size 50

-1000
to
CO<u
£ -2000
t o<D00

-3000

-4000 0 1 2 3 4
No. Function Evaluations x 1Q5

40 60
Generations

40 60
Generations

Figure 6.11: The Baldwinian Search and the Schwefel Function (Experiment 6.3).

Population S ize 50 Population S ize 150

-1000

£ -2000

-3000

-4000

No. Function Evaluations 4
x 10

-1000

i f - 2 0 0 0

-3000

-4000 0 0.5 1 1.5
No. Function Evaluations

x 10

Generations Generations

Figure 6.12: Optimising the Schwefel Function Using the 50% Lamarckian approach

(Experiment 6.3).

136

Chapter 6 Evolution to adapt the duration of local search

Population Size 50 Population Size 150

■4000'-------

= 60

10 20 30 40 50

Generations

7 -2000

100

80
C0
1 60
Cl)

5 40O
o

20

0.5 1 1.5

No. Function Evaluations

L

x 10

0 10 20 30 40 50

Generations

Figure 6.13: Optimising the Schwefel Function Using the Lamarckian Approach

(Experiment 6.3).

The results of applying the different algorithms to optimise the 2-dimesnional Griewank

function in experiment 6.4 showed that the SADH algorithm produced the best

performance for a population size of 100. However, it comes second using a population size

of 80 and third using population sizes of 60 and 20. The results also confirmed the bad

performance of the proposed algorithm using the pure Baldwinian approach.

All the hybrids showed a similar performance when used to solve the Griewank problem

with 10 and 20 variables. Figure 6.14 shows the results of applying the algorithms to the

10-dimensional Griewank function. The hybrids significantly outperform the pure genetic

algorithm. However, they showed poor performance when combined with the pure

Baldwinian learning strategy.

137

Chapter 6 Evolution to adapt the duration of local search

P opu la tion S ize 50

Pune Baldwinian
25% Lamarckian
50% Lamarckian

I I 75% Lamarckian
^ 1 Pure Lamarckian

A S H (P = 01) A SH (P=0.2) A SH (P=0

P opu la tion S ize 100

SG A A SH (P=0.1) A SH (P=0.2) A SH (P=0.99) SADH

Popula tion S ize 150 P opu la tion S ize 200

JO 80 O
70

SG A A S H (P = 01) A SH (P=0 2) A SH (P=0 99) SADH SG A A S H (P=0 1) A S H (P=0 2) A SH (P=0 99) SADH

Figure 6.14: The Results of Solving the Griewank Problem with 10 Variables

(Experiment 6.4).

Figures 6.15, 6.16, and 6.17 depict how the number of local iterations control parameter

evolves with time while solving the 10-dimensional Griewank problem. In figure 6.15, the

algorithm discovered that it is beneficial to use long durations of local search at the first

generations. This leads the algorithm to favour long durations and after a number of

generations, long duration values dominate other values. The values of one and zero

disappeared very quickly making the chances of restoring these values, when needed, very

small. These graphs show that as the search progressed, the largest part of the population

was using the largest available number of local iterations.

138

Chapter 6 Evolution to adapt the duration of local search

Population S ize 50 Population S ize 150

-50

£ -100

-150

-200

No. Function Evaluations ,4
x 10

£ -100

-150

-200 1 2
No. Function Evaluations

x 10

ctj 40

■ ■ Ite r=0
IB M lter= 1
f ~ ~ l lter=2
I | lter= 3

20 40
Generations

60 80

ro 40

20 40
G enerations

60 80

Figure 6.15: Optimising the Griewank Function Using the Baldwinian Approach

(Experiment 6.4).

The other two graphs show that the value of 1 for the control parameter propagated until the

end of the search. This can be explained by the fact that partial or the pure Lamarckian

approaches enable the algorithm to distinguish between individuals on the basis of their

genetic structure which is reflected through their fitness. The use of the number of local

iterations to discriminate between individuals with an equal fitness helped to establish this

in the case of a partial Lamarckian approach. Keeping diversity in the number of local

search iteration is useful as it improves the probability of restoring good values that were

not useful at previous stages.

139

Lo
ca

l
Ite

ra
tio

ns

Chapter 6 Evolution to adapt the duration of local search

-10'

8£ o £ -10

-10
0.5 1 1.5
No. Function E q u a tio n s x 10

Population S ize 150
-10'

- 10 '

No. Function Evaluations x 10

■ ■ lter=0

m lter=2
I 1 lter=3

8 40

20 40 60
Generations

03 40
8

20 40 60
Generations

Figure 6.16: Optimising the Griewank Function Using the 50% Lamarckian

Approach (Experiment 6.4).

Population Size 50
-10‘

£ -10

-10'
0.5 1 1.5
No. Function Evaluations 4

x 10

Population Size 150
-10'

£ -10

-10' 0 0.5 1 1.5
No. Function Evaluations x 10

lter=0

F I lter=2
i] lter=3

20 40 60
Generations Generations

J
100

Figure 6.17: Optimising the Griewank Function Using the Lamarckian Approach

(Experiment 6.4).

Population Size 50

140

4

Chapter 6 Evolution to adapt the duration of local search

The results of optimising the 2-dimesional Rosenbrock function using the two hybrids in

experiment 6.5 demonstrate that the proposed SADH algorithm outperformed the other

algorithms for the different population sizes used. However, the performance of the SADH

hybrid utilising the pure Baldwinian approach is poor compared with the pure genetic

algorithm and the ASH algorithm with small probabilities of local search for most of the

population sizes used.

The results for optimising the Rosenbrock function of 10 variables show the supremacy of

the SADH algorithm over other algorithms, as shown in figure 6.18. The experiments

illustrated that the SADH algorithm with most of its population adopted the Lamarckian

approach can find the global optimum more frequently than others with most their

population adopted the Baldwinian approach.

E

r
(§ 3 0

025
O

P op u la tion s iz e 50

H Pure Baldwinian
25% Lamarckian

HU!] 50% Lamarckian
I I 75% Lamarckian
| 1 Pure Lamarckian

P op u la tion s iz e 100

A S H (P = 0 1) A S H (P = 0 2) A S H (P = 0S A S H (P = 0 1) A S H (P = 0 2) A SH (P = 0S

o 20O

P opu la tion s iz e 150 P o p u la tion s iz e 200

SG A A S H (P = 0 .1) A SH (P=0.2) A S H (P=0 99) SADH SG A A S H (P = 0 1) A S H (P = 0 2) ASH(P=

Figure 6.18: The Results of Optimising the Rosenbrock Function with 10 Variables

(Experiment 6.5).

The graphs of figure 6.19 show the changes in the percentage of the number of local

iterations over generations for the 10-dimensional Rosenbrock function using the pure

Baldwinian approach. This figure shows that the values of 0 and 1 of the local search

141

Chapter 6 Evolution to adapt the duration of local search

iterations disappeared quickly. The whole population used either two or three local

iterations. The use of the same mutation rate for the fitness function variables and the

number of local iterations control parameter reduces the chances of restoring good gene

values of the control parameter. The quick disappearance of short durations of local search

and the use of the same mutation rate can explain the bad performance of the proposed

algorithm when most of its population is using the Baldwinian approach.

Population S ize 50 P opula tion S ize 150

-500

LI-1000
CO0)CD
-1500

-2000
2 4

No. Function Evaluations

-200

m -800

-1000

-1200
0 0.5 1 1.5

x 10
No. Function Evaluations

x 10

15 40

lter= 0
■ 1 lter=1

Iter—2
| lter= 3

20 40
G enerations

J __
60

x10

« 60

20 40
G enerations

60
x10

Figure 6.19: Optimising the Rosenbrock Function Using the Baldwinian Approach

(Experiment 6.5).

Figure 6.20 shows the results for the optimisation of the same function using the 50%

partial Lamarckian. The plots show that small durations of local search disappeared quicker

than in the case of the pure Baldwinian as the algorithm discovered that the use of long

duration can be beneficial with this learning strategy. Local iterations of a value of two

dominate other values.

142

Chapter 6 Evolution to adapt the duration of local search

Population S ize 50
-10

0
C/5 -10

2
gd - 10‘

4
-10 1

No. Function Evaluations
20

x 10

Population S ize 150
-10

-10'

£ -10

-10

-10
No. Function Evaluations 5

x 10

co 40

lter=0

F T l lte r-2

1 LU
100 150

Eo 40

50 100
Generations

150
Generations

Figure 6.20: Optimising the Rosenbrock Function using the 50% Lamarckian

Approach (Experiment 6.5).

In figure 6.21, which shows the change in the number of local iterations control parameter

for the pure Lamarckian approach, the value of two dominates the local search values. This

trend becomes apparent in a population size of 150.

143

Chapter 6 Evolution to adapt the duration of local search

Population S ize 50 Population S ize 150
-10 r

10 -10

m -10

-10 1 20
No. Function Evaluations

-10

in -10in
ID

„ 2
CD -10

-10

x 10

2 4 6
No. Function Evaluations x 10

Generations G enerations

Figure 6.21: Optimising the Rosenbrock Function Using the Lamarckian Approach

(Experiment 6.5).

In the previous experiments, the convergence rate of the SADH algorithm was as slow as

the ASH hybrid that uses a local search probability of 0.99. This was expected since the

fitness is used as a metric for selecting solutions with different costs. The idea of selecting a

part of the individuals based on their fitness and the other part based on their speed has

been tested. The results of the conducted experiments show that selecting a part of the

solutions based on their speed can help to improve the speed of the convergence of the

SADH algorithm. However, a fine tuning of this percentage is needed in order to get an

efficient and effective search.

6.5.2 Evolutionary self-adaptation versus co-evolutionarv self-adaptation

The use of two different mutation rates for the fitness function’s variables and the

control parameter as a way to help restoring useful genes in the number of local search

iterations parameter has also been tested. In other words, the idea of self-adaptation through

co-evolutionary was implemented and the performance of the produced algorithm was

compared with the evolutionary self-adaptive algorithm.

144

Chapter 6 Evolution to adapt the duration of local search

A set of experiments was conducted on the 10-dimensional Schwefel and the 10-

dimensional Rastrigin function for population sizes of 50 and 150 and using the pure

Baldwinian, the pure Lamarckian and the 50% partial Lamarckian.

The mutation rate for the number of local iterations control parameter was set so that the

chance of mutating the control parameter was equal to the chance of mutating any variable

of the fitness function.

The use of the modified mutation rate improved the performance of the self-adaptive

algorithm when used to optimise the two test functions, especially when combined with the

pure Baldwinian approach. The use of a different mutation rate for the control parameters

can help to restore useful control parameter genes and through that it helps to keep diversity

in the values of that parameter. The diversity improves the performance of the algorithm

using the pure Baldwinian approach.

For example, the co-evolutionary self-adaptive algorithm outperform the evolutionary self-

adaptive algorithm when used to optimise the 10-dimensional Rastrigin function in

experiment 6.6 using the pure Baldwinian learning strategy as shown in figure 6.22. It

maintained the values of 0 and I, which are not of great impact on the fitness in the first

generations. However, these values have a considerable impact on the discriminating

between acquired and innate as the search approaches fitness-convergence state. This can

explain the improvement in the search performance compared to the one that used a single

value for a mutation rate.

Chapter 6 Evolution to adapt the duration of local search

Population S ize 50

</> -50i/ia)

m -100

-150
2 4 6

No. Function Evaluations

-150
1 2 3

No. Function Evaluations ^ 5

g 100 <D I I I I I I I I IT T I '

■ ■ lter=0
1 lter=1
CZ3 lter=2
I I lter=3

mi
20 30

Generations
40

15 100

10 20 30
G enerations

40

Figure 6.22: The Effect of Modifying the Mutation Rate on the Baldwinian Search

(Experiment 6.6).

The results for using the 50% partial Lamarckian and the pure Lamarckian approaches are

shown in figure 6.23 and figure 6.24. The graphs show that the algorithm biased the

population to use long durations of local search in the first generations. Then, it directed the

search to lower the duration value as it approached an optimum. In the case of 50% partial

Lamarckian approach, this can help to distinguish between acquired and innate fitness. The

use of a co-evolutionary self-adaptive algorithm, as shown in figure 6.23 and 6.24, enables

the control parameter to adapt according to the current state of the search, whereas the use

of a single mutation rate hinders the ability to adapt since it does not enable the algorithm

to restore useful genes. This is reflected in the hybrid performance, which improved using

these two learning approaches.

Population S ize 150
0

146

Chapter 6 Evolution to adapt the duration of local search

Population Size 50 Population Size 150

tS -100

-150

No. Function Evaluations x 10

m -100

-150

No. Function Evaluations
15

x 104

13 100

z 40

° 20
S)

lter=0
lter= 1

E B lter=2
I 1 lter=3

13 100

Generations
10 20 30 40

Generations

Figure 6.23: The Combined Effect of Modifying the Mutation Rate and the 50%

Baldwinian approach (Experiment 6.6).

Population Size 50 Population Size 150
0

-50

-100

-1500 2 4 6
No. Function Evaluations x 10

Ll
u>0)m -100

-150

No. Function Evaluations
15

x 104

lter=0

■ lter=1
I f o r — O173-31

1 1
uer=z
lter=3

ro 40

40

ro 40

Generations
10 20 30

Generations

Figure 6.24: The Effect of Modifying the Mutation Rate on the Lamarckian Search

(Experiment 6.6).

147

Chapter 6 Evolution to adapt the duration of local search

Optimising the 10-dimensional Schwefel functions in experiment 6.7 showed similar trends

where the need for using large number of local iterations reduces as the algorithm

approaches an optimum. For this reason, the number of individuals that use no local search

increases as the search approaches an optimum. The consequence of this is an improvement

in the search performance. The use of a mutation rate for the control parameter that ensures

mutating the control parameter at the same rate of the function variables can help to restore

useful genes when needed as in this case.

Another set of experiments was conducted in order to compare the performance of the

evolutionary self-adaptive and the co-evolutionary self-adaptive hybrids. The algorithm

was modified to ensure that a proper mixing of genes representing the number of local

iterations control parameter. This can be done by ensuring that a single-point crossover

with a specific rate is applied so that the crossover point is within the control parameter

representation.

The modified algorithm was able to improve the performance of the self-adaptive algorithm

when used to solve the two test function used in the previous experiment.

Figure 6.25 shows the results of experiment 6.8, which used the modified algorithm to

solve the 10-dimensional Schwefel function, when combined with the pure Baldwinian

approach. The graphs show that ensuring mixing the genes of the control parameter

enhanced the performance of the algorithm further. For example, when using a population

size of 50, the algorithm can direct the search towards better solutions even in the case of

reaching a local optimum. The lower lines of the 50 population size in the graph show that

the algorithm was able to improve the quality of these best solutions after reaching a local

optimum. The adaptation behaviour of the number of local iterations control parameter

becomes clear in these graphs.

Chapter 6 Evolution to adapt the duration of local search

Population S ize 50 Popula tion S ize 150

-1000

E -2000

-3000

-4000

2 100 n

o 20
<X>

o5 0

5 10
No. Function Evaluations x 10

lter=0
Hi lter= 1

lter=2

1 1 lter=3

10 20 30
G enerations

50

-1000

E -2000

-3000

-4 0 0 0 ‘
1 2 3

No. Function Evaluations
x 10

2 100

■

40

50
No. Function Evaluations

Figure 6.25: The Co-evolutionary Self-adaptive Baldwinian Search with the Schwefel

Function (Experiment 6.8).

The results of running the algorithm on the Schwefel function using the 50% partial and the

pure Lamarckian approaches showed that the modified algorithm slightly improved the

performance of the algorithm for these two learning strategies.

The results of applying the modified algorithm on the 10-dimensional Rastrigin function in

experiment 6.9 using the pure Baldwinian approach are shown in figure 6.26. By

comparing the graphs of this figure with figure 6.22, it can be seen that the performance of

the algorithm using the pure Baldwinian approaches is better than the previous co-

evolutionary self-adaptive hybrid.

149

Chapter 6 Evolution to adapt the duration of local search

Population S ize 50

co -100

-150

tn -50
</3aj

<D
co -100

5 10
No. Function Evaluations

15

x 10

G enerations

lter=0
lter=1
lter=2

d lter=3

-150

o
£? 100 o>
nj
8 80

1 2 3
No. Function Evaluations x 10

IIIIIlH
40 50

M il Ml
10 20 30

No. Function Evaluations
40

Figure 6.26: The Co-evolutionary Self-adaptive Baldwinian Search with the Rastrigin

Function (Experiment 6.9).

6.5.3 Variation or Adaptation

Another set of experiments were conducted to test whether the improvement in

solution quality produced was a result of the control parameter adaptation or a result of the

variation in its values. In these experiments, instead of using the number of local iterations

encoded into each individual to specify the duration of a local search, each individual is

allowed to perform a random number of local search iterations in the range of [0, 3].

The 10-dimensional Schwefel and Rastrigin functions were optimised using this hybrid in

experiments 6.10 and 6.11 respectively. The results illustrate that the use of random number

of local iterations combined with the pure Baldwinian approach produces solutions with a

quality higher than that produced by any of the proposed self-adaptive hybrids (figure

6.27).

Popula tion S ize 150

150

Chapter 6 Evolution to adapt the duration of local search

S ize 50 150

-1000

£ -2000

-3000

-4000
5 10

No. Function Evaluations
15

x 10

-4000 0

-100

1 2 3
No. Function Evaluations x 10

10-d Rastrig in Popula tion S ize=150

-2000

-3000

10-d Schwefel Population

-1000

10-d Schwefel P opula tion S ize

10-d R astrig in P opulation S ize= 50
0

5 10
No. o f Function Evaluations

Figure 6.27: Using a Random Number of Local Iterations with a Baldwinian Hybrid

(Experiments 6.10 and 6.11).

However, utilising other learning strategies can improve the search speed at the expense of

the solution quality. In other words, the solutions quality of the tested self-adaptive hybrids

was better than that produced using random values of the control parameters.

The experiments presented in this chapter demonstrate that the criteria used to discriminate

between solutions may be suitable to efficiently and effectively adapt the control

parameters of the pure genetic algorithms and specific class of hybrids. This class includes

hybrids, whose individuals' fitnesses cost an equal number of function evaluations, in

addition to hybrids that utilise a low cost local search method. However, the use of the

evolutionary self-adaptive metaphor to adapt the control parameters of other classes of

hybrids, where the individuals consumed different numbers of function evaluations, can

produce effective hybrid algorithms when utilising the pure or partial Lamarckian learning

strategies. These experiments also showed that the SADH algorithm performed poorly

when combined with the pure Baldwinian approach due to the hindering effect problem.

151

Chapter 6 Evolution to adapt the duration of local search

The performance of this combination can be improved by combating the hindering effect

through using local search methods with very short durations.

These experiments also demonstrated that the improvement in performance of the non-pure

Baldwinian approaches becomes more significant as the dimension of the fitness function

increases. This can be explained in terms of the cost of the adaptation process. The cost of

adapting a single control parameter becomes less significant as the number of variables of

the function to be optimised increases.

The experiments also illustrate that the co-evolutionary self-adaptive hybrid algorithm

outperforms the evolutionary self-adaptive hybrid algorithm. Ensuring that the control

parameter is subjected to the mutation and the crossover operations at the same rate of other

search variables significantly improves the self-adaptive hybrid performance using the pure

Baldwinian approach. It also improves the performance of hybrids that adopted other

learning strategies. The co-evolutionary self-adaptive algorithm accelerates the rate of

adaptation of the control parameter and maintains diversity in its values.

Chapter 7 Self-adaptive learning approach

The way of utilising gained information through local search within a hybrid

genetic algorithm has a great impact on the performance of the search process (Whitley et

al. 1994). Due to the similarities in the role of the local search within the genetic search and

the role of learning within the evolution process, the local search is usually viewed as a

learning process. For this reason, hybrid genetic algorithms use local search information

utilisation approaches that are inspired by biological learning models. These approaches are

the Lamarckian and the Baldwinian (Hinton and Nolan 1987) learning strategies. In

addition to these basic models of learning, a third model, which is referred to as partial

Lamarckianism (Orvosh and Davis 1993) (Houck et al. 1997) (Joines et al. 2000b)

(Espinoza et al. 2001) (Ishibuchi et al. 2003) and Baldwinian-Lamarckian hybrid (Sung-

Soon and Byung-Ro 2005), has been widely used. This model is a hybrid of the

Lamarckian and the Baldwinian strategies in order to get the best out of both.

The effectiveness of using the Lamarckian approach, the Baldwinian approach, or a mixture

of them in a hybrid genetic algorithm is affected by the fitness landscape, the genetic

algorithm setup (Michalewicz and Nazhiyath 1995) (Ishibuchi et al. 2005), the percentage

of population performing local search (see chapter 4), the duration of local search (see

chapter 3), and the local search method used (Ku and Mak 1997). With the restricted

amount of theory currently available for choosing the learning strategy that best matches a

given black box problem in a hybrid search, it is reasonable to ask whether the effects of

this choice on performance might be reduced via some intelligent means while the search is

progressing. Houck et al. (1997) suggested that applying different mixtures of the

Lamarckian and the Baldwinian approaches over the course of the genetic run can be more

beneficial than applying a single basic learning model or a fixed mixture of learning models

during the entire run.

The aim of this chapter is to investigate the use of an adaptive approach to decide on the

learning mechanism. Assigning different learning strategies for the population’s individuals

over the course of the run via some intelligent means is investigated through applying

evolution to self-adapt the learning mechanism within a hybrid genetic algorithm. This

chapter examines the effect of this form of adaptation on the hybrid’s performance in order

to get some insight into its advantages and disadvantages. It also investigates the

interactions between this form of adaptive learning and the Self-Adaptive local-search-

153

Chapter 7 Self-adaptive learning approach

Duration Hybrid (SADH) (chapter 6) and the Adaptive Staged Hybrid (ASH) (Espinoza et

al. 2001) algorithms.

This chapter starts with a very brief review of the learning approaches used in hybrid

genetic algorithms. Then, it goes on to describe the proposed adaptation mechanism and the

way it works. This chapter concludes by presenting and discussing the results of the

experiments that have been conducted using the Self-Adaptive local-search-Duration

Hybrid (SADH) and the Adaptive Staged Hybrid (ASH) algorithms on a selected set of test

functions.

7.1 Utilising local search information

Local search methods are incorporated into genetic algorithms in order to improve

the algorithm’s performance through learning. The utilisation of local knowledge of a

sampled solution through learning can improve the chances of good building-blocks to

propagate into the next generation even in the case of being sampled by solutions of under

average fitness. Learning can also refine sampled solutions in order to build better building-

blocks. The way by which gained information is utilised within a hybrid genetic algorithm

influences the performance of the search process. Using an appropriate learning mechanism

can accelerate the search towards the global optimum. On the other hand, employing an

inappropriate mechanism can either cause a premature convergence problem or decelerate

the search towards the global optimum.

Two basic learning models, which are the Lamarckian and the Baldwinian approaches,

have been used to utilise local information. In the former approach, both the genetic

structure and its fitness merit are changed to reflect the improvement in individual traits as

a result of performing local search. In the Baldwinian approach, only the fitness is changed

to reflect this improvement. A third approach, which is known as partial Lamarckian, has

also been used widely. In this approach, the structures of only a part of the individuals that

performed a local search are updated. The reader can refer to section 2.4 for more details on

these learning models.

The adoption of any form of learning in a hybrid genetic algorithm has a great impact on its

performance. Several researchers have investigated how these different leaning strategies

affect the performance of hybrid genetic algorithms by comparing them with pure genetic

algorithms. Gruau and Whitley (1993) compared Lamarckian, Baldwinian and pure genetic

algorithms in evolving the architecture and the weights of neural networks that learn

Boolean functions. They conclude that using either form of leaning is better than using a

154

Chapter 7 Self-adaptive learning approach

pure genetic algorithm. Orvosh and Davis (1993) found that 5% partial Lamarckian is the

optimal learning strategy to solve the survival network design problem and the graph

colouring problem. Michalewicz and Nazhiyath (1995) replaced 20% of the repaired

solutions in their hybrid algorithm to solve numerical optimisation problems with nonlinear

constraints. Bala et al. (1996) showed how the Baldwin effect can improve the performance

of a genetic algorithm when integrated with a decision tree in order to evolve useful subsets

of discriminatory features for recognizing complex visual concepts. However, Ku and Mak

(1997) found that only using Lamarckian evolution improved the performance of genetic

algorithm in evolving recurrent neural networks. They also concluded that effective

hybridisation depends on the local search method used and learning frequency. Houck et al.

(1997) used seven problems to compare the performance of different learning strategies.

Their investigation concluded that neither the pure Lamarckian nor pure Baldwinian

strategy was found to be consistently effective. It was discovered that the 20% and 40%

partial Lamarckian search strategies yielded the best mixture of solution quality and

computational efficiency based on a minmax criterion (i.e. minimising the worst case

performance across all test problems instance). Sasaki and Tolcoro (1997) found that

adaptation by Lamarckian evolution was much faster for neural networks than Darwinian

evolution in a static environment. But when the environment changed from generation to

generation, the Darwinian evolution was superior. Julstrom (1999) reported that Baldwinian

strategies are performing poor in solving the 4-Cycle problem compared to a pure genetic

algorithm and their effectiveness deteriorating with an increasing use of learning in contrast

to Lamarckian strategies He also found that leaning all the individuals using Lamarckian

strategy produced the most effective results. Joines et al. (2000b) found that using the pure

Lamarckian approach (100% Lamarckian) produced the best convergence speed to the best

known solution when solving the cell formation problem. Espinoza et al. (2001) used 75%

partial Lamarckian as the optimal learning strategy in their hybrid to optimise two simple

continuous functions. Ishibushi et al. (2005) found that the 5% partial Lamarckian worked

well on the multi-objective 0/1 knapsack problem using a single population model,

however, the 50% partial Lamarckian was the optimal choice using the island model.

7.2 The evolutionary self-adaptation of learning approach

It is almost impossible to know which learning strategy is most suitable for a

problem when there is only limited knowledge of the fitness landscape available. With the

restricted amount of theory currently available for choosing the learning strategy that best

matches a problem with no knowledge of its fitness topology in a hybrid search, the use of

155

Chapter 7 Self-adaptive learning approach

an effective adaptive technique to decide on learning strategy while the search is processing

would clearly be of benefit.

The idea behind the adaptive strategies is that, as the search progresses, the effectiveness of

each learning strategy in dealing with the current problem can be learnt. Knowledge about

the current population of solutions and each learning strategy can be built dynamically

online, so identifying the strengths and weaknesses of the learning approach for the

problem currently being worked on, given its current state.

The use of evolution to self-adapt the learning mechanism can help to discover the

effectiveness of each learning approach in dealing with a given problem online. This

adaptation can improve the hybrid’s chances to find good solutions by enabling the

different learning approaches to compete and cooperate with each other. By encoding the

learning strategy used by an individual into its chromosome, the global genetic algorithm

can promote competition among the different learning strategies based on its ability to

improve the fitness of its associated solution. A good learning strategy will lead to good

individuals and these will probably have more chances to survive and propagate the

encoded learning approach. Applying the evolutionary self-adaptation metaphor to decide

on the learning strategy can also promote cooperation between the two basic learning

models in order to improve the search’s performance. The use of a suitable learning

approach depending on the genetic structure of an individual, and the current search state,

may lead to a search algorithm that makes use of the available learning strategies to

improve the whole population’s performance. By ensuring the participation of the two basic

learning models in the problem search, the strategy promotes joint operation and hence

cooperation between learning models.

7.2.1 The algorithm

The evolutionary self-adaptive learning mechanism was incorporated into the

SADH and the ASH algorithms. An additional bit was appended to the end of an

individual’s chromosome. The association of the learning strategy with a solution through

binding them into the same chromosome can help to associate the success or the failure of a

learning technique to a specific solution or solutions of similar genetic structures.

In the case of the SADH algorithm, the bit that represents the learning strategy is located

after the genes that represent the number of local search iterations. However, for the ASH

algorithm, the learning strategy bit is located after the genes that represent the function

variables. After performing a local search operation and before returning to the global

156

Chapter 7 Self-adaptive learning approach

genetic algorithm, the algorithm reads the value of the learning strategy bit to decide

whether to change the genetic structure and the fitness score of the initial solution to match

that of the improved solution 01* keep its genetic structure unchanged and modify the fitness

score only. In these algorithms, the value of 1 was used to represent the Lamarckian

approach, while the Baldwinian learning was represented by the value of 0. Depending on

the value of the learning strategy gene, the hybrid decides on the learning strategy to use in

order to utilise local search information of a given solution.

7.3 Experiments

For the purpose of evaluating the proposed learning adaptation mechanism, it was

incorporated within the two adaptive hybrid algorithms. The performance of the resulting

algorithms was compared with the performance of the two hybrids using fixed percentages

of partial Lamarckian. The quality of the solutions produced by each algorithm and the

speed of convergence were used to assess the algorithm’s performance. The percentage of

experiments that converged to the global optimum was used as an indication of the ability

of the proposed adaptive learning mechanism to produce high quality solutions. The

performance was compared using different population sizes in order to evaluate the ability

of the proposed mechanism to adapt to different search environments. The speed of finding

the global optimum was also used to evaluate the performance of the self-adaptive learning

strategy.

A set of test functions has been chosen to evaluate the use of evolution to self-adapt the

learning strategy. Four test functions have been used to evaluate the ability of this form of

adaption to improve the search performance compared to that of the pure Lamarckian, the

pure Baldwinian and fixed partial Lamarckian approaches.

The test functions suite includes the 10-dimensional ellipsoidal (Deb et. al 2002), the 10-

dimensional Rastrigin (Torn and Zilinskas 1989), the 10-dimensional Schwefel

(Miihlenbein et. al 1991), and the 10-dimensional Griewank (Miihlenbein et. al 1991) test

functions. The reader can refer to chapter 6 for more details on these functions.

The results of optimising the test functions using the self-adaptive learning mechanism

were evaluated against the results obtained by using fixed learning strategies. The fixed

learning strategies tested were the pure Baldwinian (0% partial Lamarckian), the 25%

partial Lamarckian, the 50% partial Lamarckian, the 75% partial Lamarckian and the pure

Lamarckian (100% partial Lamarckian).

157

Chapter 7 Self-adaptive learning approach

The hybrids use the simple elitist genetic algorithm with binary tournament selection, two-

point crossover, and simple mutation. For all experiments, the probability of crossover was

set to 0.7 and the probability of mutation was l/N where N is the population size. For the

ASH algorithm, the maximum number of local iterations was 3, e was 0.2, and the local

threshold value was 0.6. The ASH algorithm tested using different values of initial local

search probability, which are of 0.1, 0.2, and 0.99. For the SADH algorithm, the maximum

number of local search iterations was set to 3.

The stopping criterion for all experiments was a maximum number of function evaluations.

The value of this parameter was set to 2000 times the population size for the Rastrigin, the

Schwefel, and the Griewank test functions, and to 500 times the population size for the

ellipsoidal test function due to its simplicity. Each experiment was repeated 50 times.

A local search method, which combines the steepest descent method and Brent’s method

(Press et al. 1993) to estimate the best step size to climb to the local optimum from the

current position in the basin of attraction, was used. The steepest descent algorithm uses the

derivatives of the fitness function to estimate the best step size to climb to the local

optimum from the current position in the basin of attraction. Brent’s method fits a parabola

to three initial solutions and uses the maximum of the parabola as the next potential

solution of the overall function (chapter 2).

In these experiments, the self-adaptive learning strategy mechanism was evaluated in terms

of quality of the solutions produced, convergence speed and in terms of its ability to adapt

to different fitness landscapes.

7.3.1 Search effectiveness

The percentage of times a hybrid algorithm found a global optimum using the

proposed adaptation mechanism is compared with that of using fixed learning strategies.

These percentages were used to evaluate the effectiveness of the proposed adaptive learning

mechanism when combined with different hybrids in solving the test problems.

In experiment 7.1, the proposed adaptation mechanism and fixed learning strategies were

utilised within the two hybrids to find the global optimum of the ellipsoidal test function.

Figure 7.1 compares the percentage of times that the different hybrids found this optimum.

The graphs show that combining the adaptive learning technique with the ASH algorithm

produced better performance than that produced by combining it with the pure Baldwinian

approach for different initial probabilities of local search and different population sizes.

158

Chapter 7 Self-adaptive learning approach

The combination produced a performance that is similar to that produced using the 25%

partial Lamarckian. The graphs of the SADH algorithm illustrate that the adaptive learning

mechanism produced the best performance for population sizes of 150, 200 and 250

compared with that produced by using different fixed learning strategies.

A S H (Po=0.1

| Pure Baldwinian
| 25% Lam arckian
| 50% Lam arckian
3 75% Lam arckian

I | Pure Lam arckian
| A daptive

E3
E 1 0 0

O
CD
sz

3 0
•O<D
0)100
CD

150
A SH (P o=0 .2)

A SH (P o=0 .99)

H
SADH

150
Population S ize

Figure 7.1: Percentages Converged to the Global Optimum of the Ellipsoidal Function

(Experiment 7.1).

The results of the experiment 7.2, which evaluated the effect of the self-adaptive learning

mechanism on the search effectiveness on the 10-dimesional Griewank test function, are

shown in figure 7.2. The plots illustrate that the performance of the ASH algorithm was

improved when combined with the self-adaptive learning compared to that when combined

with fixed learning techniques for most of the tested population sizes and probabilities of

local search. The results of applying the adaptive learning mechanism to the SADH

algorithm show that this mechanism outperformed the pure Baldwinian and the 25%

Lamarckian approaches for all the tested population sizes.

159

Chapter 7 Self-adaptive learning approach

A SH (Po= 0.1)

Pure Baldwinian
25% Lamarckian
50% Lamarckian
75% Lamarckian

I r ~ | Pure Lam arckian
[~ ~ l Adaptive

o
150 200

A SH (P o=0 .2)
■3 100

150 200
A S H (P o=0 .99)

SADH
0 -1 0 0

150 200
Population S ize

Figure 7.2: Percentages Converged to the Global Optimum of the Griewank Function

(Experiment 7.2).

The self-adaptive learning mechanism was used to optimise the 10-diemsional Rastrigin

function using the two hybrids in experiment 7.3. The proposed mechanism produced a

similar performance using the two hybrids in terms of the number of experiments that

found the function’s global optimum as shown in figure 7.3. The two hybrids when

combined with the self-adaptive learning produced a performance that is similar to that is

produced by the partial 25%, 50%, 75% and 100% Lamarckian approaches, which

produced the best performance for most of the tested population sizes.

160

Chapter 7 Self-adaptive learning approach

A SH (Po=0.1)

■ ■ Pure Baldwinian
■ ■ 25% Lamarckian
W 50% Lamarckian
I I 75% Lamarckian
| | Pure Lamarckian
I | Adaptive

SADH

50 100 150 200 250
Population S ize

Figure 7.3: Percentages Converged to the Global Optimum of the Rastrigin Function

(Experiment 7.3).

The self-adaptive learning technique outperformed the pure Baldwinian approach in terms

of solution quality when applied to solve the 10-dimensional Schwefel problem using the

different adaptive hybrid algorithms in experiment 7.4 as depicted in figure 7.4. The self-

adaptive mechanism when combined with the ASH algorithm outperformed the partial 25%

Lamarckian approach in all experiments except the one which combined a population size

of 200 with a local search probability of 0.1. The graphs for the ASH algorithm show that

there is no significant difference between the performance of this adaptation mechanism

and the best found fixed learning strategy in about half of the tested combinations of

population sizes and local search probabilities.

The plots of the SADH algorithm show that the adaptive learning strategy technique

outperformed the pure Baldwinian learning strategy, which produced the worst

performance in these experiments. This can be explained based on the fact that allowing a

small fraction of the population to evolve according to the Lamarckian learning can help to

alleviate the hindering effect which, in turn, improves the possibility of finding the global

optimum.

161

Chapter 7 Self-adaptive learning approach

A SH (P o=0.1)

^10 0
H Pure Baldwinian
■ ■ 25% Lamarckian
1 50% Lamarckian
O S 75% Lamarckian
| | Pure Lamarckian
| | A daptive

SA DH

50 100 150 200 250
P opu la tion S ize

Figure 7.4: Percentages Converged to the Global Optimum of the Schwefel Function
(Experiment 7.4).

7.3.2 Search efficiency

The number of function evaluations needed by a hybrid algorithm to find the global

optimum of a specific function was used to measure the effect of the self-adaptive learning

mechanism on the search efficiency. The convergence speed of the hybrids that use the

adaptive learning technique was compared with those using fixed learning strategies.

The convergence speed of different hybrids in finding the global optimum of the different

test functions in the previous experiments are shown in figures 7.5-7.8. The graphs compare

the speed of the self-adaptive learning technique with the selected set of fixed learning

strategies. However, the graphs of the pure Baldwinian learning strategy were excluded

from these figures since in most of the cases it failed to find the global optimum.

Figure 7.5 shows the results of comparing the convergence speed of the two hybrids in

finding the global optimum of the ellipsoidal function using the proposed mechanism with

that of using fixed learning strategies. The graphs for the ASH algorithm show that the

adaptive learning technique found the global optimum of the ellipsoidal function faster than

162

Chapter 7 Self-adaptive learning approach

those using fixed learning strategies. The difference in the convergence speed becomes

apparent as the population size increases. However, the self-adaptive learning technique,

when combined with the SADH algorithm, produced the worst performance compared with

the fixed learning techniques excluding the pure Baldwinian approach.

A SH (Po=0.1)

H — 2 5 % L am a rck ian
—if— 5 0 % L am a rck ian
- A 7 5 % L am a rck ian
- 0 • P u re L am a rck ian
— Ad a p t i v e

wl

100 150

A SH (Po= 0.2)

5 0 200 2 5 0

x 10

C/5
<U CP--------
g 5 0 <U .
S’ *104

100 1 5 0

SADH

200 2 5 0

0 4

n -”-gP —

5 0 100 1 50 200 2 5 0
Population S ize

Figure 7.5: Convergence Speed of the Ellipsoidal Function (Experiment 7.1).

The results of comparing the convergence speed of the adaptive learning with the fixed

learning approaches on the Griewank function in experiment 7.2 are shown in figure 7.6.

These graphs show no significant difference between the adaptive and the fixed learning

strategies when combined with the ASH algorithm regardless of the local search

probability. However, the adaptive learning technique produced the worst performance

when combined with the SADH algorithm compared with the fixed learning strategies

excluding the pure Baldwinian approach.

Chapter 7 Self-adaptive learning approach

A S H (P o=0.1)

—(— 25% Lamarckian
—1*— 50% Lamarckian
- A 75% Lamarckian
- □ ■ Pure Lamarckian
—• — Adaptive

2.5

100 150

A S H (P o=0 .2)

200 2503 50

o4

O0L
<2 50 100 150

S A D H

200 250

_10050 150 200 250
P opu la tion S ize

Figure 7.6: Convergence Speed of the Griewank Function (Experiment 7.2). 1

The graphs in figure 7.7 show the speed of finding the global optimum of the Rastrigin

function in experiment 7.3. It can be seen that the adaptive learning strategy is the second

fastest learning mechanism when combined with the ASH algorithm using a local search £

probability of 0.2. However, it is the second slowest when used with a local search ^

probability of 0.99. The curves also illustrate that the self-adaptive learning mechanism <

produced the worst performance when combined with the SADH algorithm. *

4

164

Chapter 7 Self-adaptive learning approach

A S H (P o=0.2)

—I— 25% Lamarckian
—Jk— 50% Lamarcki an
- A 75% Lamarckian
- □ ■ Pure Lamarckian
—• — Adaptive

1B=100 150 200 250

A S H (P o=0 .99)

150 200 250

SA D H

100 150 200 250
P opula tion S ize

Figure 7.7: Convergence Speed of the Rastrigin Function (Experiment 7.3).

The results of experiment 7.4 showed that the adaptive learning mechanism was almost the

fastest in finding the global optimum of the Schwefel function when combined with the two

adaptive hybrid algorithms and using different population sizes, as illustrated in figure 7.8.

These graphs also show that the proposed learning mechanism was the fastest when

combined with the ASH algorithm regardless of the probability of local search used.

165

Chapter 7 Self-adaptive learning approach

A S H (P o=0 .1)

—(— 25% Lamarckian
—H®— 50% Lamarckian
- A 75% Lamarckian
- □ • Pure Lamarckian
— Adaptive

wc:o

150

A S H (P o= 0,2)

200 250100
>

o

4

Oc

o2:
~o<D _____0) 2~---
£
<u o ------
“ 50
K, 4S ’ X 10
§ 1 6 |----------c
oO

100 150

SA D H

200 250

50 100 150 200 250
P opu la tion S ize

Figure 7.8: Convergence Speed of the Schwefel Function (Experiment 7.4).

7.3.3 Evolution of learning strategy

The ability of the self-adaptive learning strategy to adapt to different fitness

landscapes and population sizes was evaluated through monitoring the changes in the

learning strategy over time. The graphs of the evolution of the learning strategy and the best

fitness for two test functions and using two population sizes are presented and discussed in

this section. The changes in the percentages of the population that used the different local

search iterations over generations are also presented in the case of the self-adaptive hybrid

algorithm. Each graph shows the results of 50 experiments.

Figure 7.9 shows the evolution of the best fitness, the learning strategy and the duration of

local search of the SADH algorithm when used to solve the ellipsoidal problem in

experiment 7.1. The graphs illustrate that, at the early stages of search, the fraction of the

population that evolved using the Baldwinian learning increased slightly. After that, the

percentage of the population that used Lamarckian learning increased as the search

progressed until the whole population became using the Lamarckian approach. The figure

166

Chapter 7 Self-adaptive learning approach

clearly shows that the increase in the number of individuals that using the Lamarckian

approach is accompanied by an increase in using long durations of local search.

x 10 Population S ize 100

100

£ 50

1 2 3 4
No. Function Evaluations x 10

1 2 3 4
No. Function Evaluations

x 10

lter=0
H lter= 1

□ lter=2
Iter=3

1 2 3 4 5 6 7 8 9 1011
Generations

x 10

100

~ 50

Population S ize 200

0 2 4 6 8 10
No. Function Evaluations x

1 2 3 4 5 6 7 8 9 10 11
G enerations

Figure 7.9: The Evolution of Learning Strategy when Solving the Ellipsoidal Problem

(Experiment 7.1).

The graphs of the Rastrigin function in figure 7.10 show a similar trend to that found in

figure 7.9. They show that the fraction of population that evolved using the Lamarckian

search increased as the search progressed. The graphs in figure 7.10 also show that there is

a trend to use short durations of local search accompanied with the use of the Baldwinian

search. This trend is apparent at the final stages of the search using a population size of 100,

where individuals tended to use short durations of local search to overcome the hindering

effect problem associated with the Baldwinian strategy. This clearly shows the ability of the

self-adaptation mechanism to discover the relations between different control parameters

such as the relations between the learning strategy and the duration of local search. The

difference in the number of function evaluations consumed at each local search process

caused the algorithm to evolve to different number of genetic generations. For example, the

graphs for the population size of 100 in figure 7.10 show that most the experiments

consumed their budget of function evaluations by the 11th generation. The graphs also

167

Chapter 7 Self-adaptive learning approach

illustrate that the evolution trajectory of the learning strategy in the Rastrigin function is

more complicated than that of the ellipsoidal function.
100 Population S ize 200

-50rPopulation S ize

0.5 1 1.5
No. Function Evaluations

0.5 1 1.5
No. Function Evaluations

Generations

1 2 3
No. Function Evaluations

1 2 3 4 5 6 7 8 9 10 11 12
G enerations

Figure 7.10: The Evolution of Learning Strategy when Solving the Rastrigin Function

(Experiment 7.3).

Figure 7.11 shows how the learning strategy evolved over time when combined with the

ASH algorithm to solve the ellipsoidal function using a population size of 100 in

experiment 7.1. The figure shows the same trend that the figures of the SADH algorithm

show. As the search progressed, the number of solutions that evolved according to the

Lamarckian learning increased. The plots show that, for a local search probability of 0.1,

the percentage of the population that evolved using the Lamarckian approach was in the

range between 70 and 100. However, for a local search probability of 0.99, this percentage

approached 100, as the search progressed. This can be explained based on that using a small

probability of local search can help to fight the hindering effect which, in turn, enables the

algorithm to find the global optimum even when combined with the Baldwinian approach.

On the other hand, the probability of finding the global optimum increases with the increase

in the partial Lamarckian approach for high probabilities of local search once the algorithm

guided the search to the global optimum’s basin of attraction. These graphs also

168

Chapter 7 Self-adaptive learning approach

demonstrate that the hybrid that used a local search probability of 0.1 was faster than the

one using a probability of 0.99 in optimising the learning strategy control parameter since it

has more chances to evolve in the first case than in the latter one. This is due to the

differences in the number of function evaluations consumed at each local search process.

x -| p o p u la t io n S ize 100 w ith P o = 0 .1 00

-2

</)
IS -4
c
£
75 -60) a co

r
-10

2 4
No. Fu n c tio n E va lua tions

x -| p o p u la t io n S iz e 100 w ith P o = 0 .9 99

x 10

1 2 3 4
No. F u n c tio n E va lua tions x 10

0 1 2 3 4 5
No. F u n c tio n E va lua tions x ^

2 4 6
No. F u n c tio n E va lua tions x 10

Figure 7.11: The Evolution of Learning in the ASH Algorithm Solving the Ellipsoidal

Function (Experiment 7.1).

The figure 7.12 shows the results of optimising the Rastrigin function using a population

size of 200 in experiment 7.3. The fitness landscape of this function is more complicated

than that of the ellipsoidal function. This, in turn, makes the evolution path of the learning

strategy more complicated. The graphs also show that as the local search probability

increases, the trend towards using more Lamarckian increases.

7.4 Conclusions

The experiments conducted illustrate that the use of the self-adaptive learning

strategy can be beneficial. It can improve the search ability of finding solutions of high

quality and can accelerate the search. They also show that this mechanism was able to adapt

with different environments. That was illustrated by testing this mechanism on a set of

169

Chapter 7 Self-adaptive learning approach

different test functions using two different adaptive hybrid algorithms with different control

parameters.

These experiments demonstrate that combing the self-adaptive with the ASH algorithm

produced an algorithm that is faster than the tested fixed learning strategies on most of the

tested functions. However, combining the SADH algorithm with this mechanism produced

a slow search algorithm. The combination of both was able to find the global optimum of

the whole set of test function more often and faster than that of the fixed pure Baldwinian

approach.

Population S ize 200 w ith Po=0.100 Population S ize 200 w ith Po=0.999

8 -50<uc
Ll

M0)
m -100

-150

No. Function Evaluations 5
x 10'

% -50oc
il
</30)
m -100

-150 0 21 3 4
No. Function Evaluations x 10

1 2 3 4
No. Function Evaluations

x 10

70

C
.032*OOJ
| | 50

3
03

5 40
Q.

No. Function Evaluations ,5
X 1 0 '

Figure 7.12: The Evolution of Learning in ASH Algorithm Solving the Rastrigin

Function (Experiment 7.3).

170

Chapter 8 An ant-based algorithm to self-adapt genetic-local

hybrids

The pheromone trail metaphor (Dorigo et al. 1991) is a simple and effective way to

accumulate the experience of the past solutions in solving a given problem. Ant-based

optimisation algorithms (Dorigo and Di Caro 1999) have successfully employed this

metaphor to solve a large number of hard optimisation problems.

The problem of achieving an optimal utilisation of a hybrid’s search time can be viewed as

a problem of finding an optimal set of control parameters for that hybrid. In chapter 6, the

use of evolution to self-adapt the duration of local search, as a way to strike a balance

between exploration and exploitation, was investigated. The results of the experiments

showed that evolutionary self-adaptation can produce an effective search algorithm but not

necessarily an efficient one. They also showed that the impact of the hindering effect on

obscuring genetic differences can obstruct the Baldwinian search’s self-adapting ability. In

chapter 7, the evolution metaphor was applied to self-adapt the learning strategy in a hybrid

and tested using the self-adaptive hybrid algorithm of chapter 6 and the adaptive staged

hybrid (ASH) algorithm. The results of the experiments showed that self-adapting the

learning strategy can be beneficial. It can improve the search ability of finding solutions of

high quality and can accelerate the search.

In this chapter, a novel form of hybridisation between an ant-based algorithm and a genetic-

local hybrid algorithm is proposed. In this hybrid, an ant colony optimisation algorithm is

used to monitor the behaviour of a genetic-local hybrid algorithm in order to dynamically

adjust the probabilities of using the genetic operators, the local search operator, its duration,

and the learning strategies to adapt the hybrid’s performance to a given problem.

This chapter starts by introducing ant colony optimisation. Then, the different combinations

of ant-based optimisation techniques and genetic algorithms are reviewed. The basic idea

of the proposed hybrid is explained in the section that follows. That section also explains

how the pheromone trail metaphor can be applied to adapt the control parameters of a

genetic-local hybrid algorithm in order to strike a balance between exploitation and

exploration based on the nature of a given problem. This chapter ends by presenting and

discussing the results of a set of experiments that compare the ant-based and the

evolutionary self-adapting techniques.

171

Chapter 8 An ant-based algorithm to self-adapt genetic-local hybrids

8.1 Ant colony optimisation

Ant-based optimisation algorithms are bio-inspired population-based optimisation

techniques that have been applied successfully to solve a large number of hard optimisation

problems. These search techniques simulate the collective behaviour of ants, which

exchange information using a simple form of indirect communication mediated by

pheromone formation, known as stigmergy (Dorigo et al. 1999). This form of stigmergtic

communication plays a crucial role in ant foraging behaviour. This behaviour is a kind of

distributed optimisation mechanism in which each single ant contributes to the finding of

the shortest path to food sources. Although a single ant is capable of finding a path between

nest and food source, it is the ant colony which finds the shortest path. The stigmergtic

communication also explains the ant’s ability to adapt to changes in the environment, such

as new obstacles interrupting the currently shortest path.

The first ant-based optimisation algorithm was the ant system (Dorigo et al. 1991), which is

a model of positive feedback, distributed computations, and a constructive greedy heuristic,

to solve combinatorial problems. The ant colony system (Dorigo and Gambardella 1997) is

an improvement to the ant system, where the level of exploration undertaken by the ants

can be controlled. These variations on the original ant system led to the development of the

Ant Colony Optimisation meta-heuristic (ACO) (Dorigo and Di Caro 1999), which

describes a class of ant-inspired optimisation algorithms.

Ant colony optimisation algorithms are very effective in solving discrete optimisation

problems such as the travelling salesperson problem (TSP) (Dorigo et al. 1991) (Dorigo and

Di Caro 1999), the quadratic assignment problem (Maniezzo et al. 2004), vehicle routing

(Maniezzo et al. 2004) (Dorigo et al. 1999), sequential ordering (Maniezzo et al. 2004),

graph colouring (Shawe-Taylor and Zerovnik 2001), E-learning presentation problem

(Semet et al. 2003) and routing in communications networks (Di Caro and Dorigo 1998)

(Dorigo and Di Caro 1999). They have also been used to solve rea 1-parameter optimisation

problems. Bilchev and Parmee (1995) proposed an ant-based model for continuous space

optimisation problems. The continuous neighbourhood was represented by a finite number

of directions as a set of vectors starting from a base point. The vectors were evolving

according to the ants’ fitness. Different algorithms have been proposed as extensions of

ACO for continuous search spaces to overcome the difficulties of directly applying the

pheromone trail metaphor for continuous spaces. The Pachycondyla apicalis (API)

algorithm (Monmarche et al 2000) and the Continuous Interacting Ant Colony (CIAC)

(Dr’eo and Siarry 2002) used some form of direct communication that does not exist in

172

Chapter 8 An ant-based algorithm to self-adapt genetic-local hybrids

regular ACO algorithms to optimise continuous functions. Socha (2004) used a normal

distribution function, whose centre was updated according the solution of the best fitness

value, to represent the pheromone density to solve reai-parameters problems. In the

Aggregation Pheromone System (APS) (Tsutsui 2004), the pheromone trail was replaced

by aggregation pheromone, whose density was represented by a mixture of multivariate

normal distributions.

8.2 Ant colony optimisation and genetic algorithms

Genetic algorithms and ant colony optimisation algorithms can be combined to

improve the combination’s performance in different ways. However, most of the proposed

hybrids use only three different ways of hybridisation. The first set of hybrids is based on

viewing the genetic algorithm as a global search method and the ant colony algorithm as a

local search method. The second set is based on the ability of the genetic algorithms to

adapt the control parameters of other techniques. In the last form of intergeneration, some

genetic concepts and operators are incorporated into ant colony optimisation algorithms.

Incorporating an ant colony optimisation algorithm as a local search method within a

genetic algorithm can improve the search performance. Bilchev and Parmee (1995) used

their ant colony model for continuous search spaces to improve the quality of the solutions

produced by a genetic algorithm in order to solve a heavily constrained real-world

engineering design problem. Chen and Lu (2005) combined a genetic algorithm and an ant

colony algorithm to solve the TSP. The hybrid starts with the ACO algorithm and switches

to the genetic algorithm using the n optimal results from the ACO algorithm, as an initial

population in the case of a decrease in the convergence speed and the diversity of the

solutions of the ant algorithm. This decrease indicates that the ACO algorithm reaches a

local optimum and utilising a genetic algorithm can help to avoid being trapped in a local

optimum. The optimal result of a genetic iteration is used to update the pheromone trail of

the ACO algorithm in order to improve the diversity of the solutions of the ACO algorithm.

The hybrid switches back to the ACO algorithm if the diversity of the population falls

below a specific threshold, where the use of the ACO algorithm can be more effective. The

hybrid keeps a list of the n best found solutions and updates its contents at each search

iteration.

Since genetic algorithms are in practice a very effective optimisation technique, it has been

incorporated within ant colony optimisation algorithms to optimise their control

parameters, which are characterised by being highly problem specific and dependent on the

required solution accuracy (Caertner and Clark 2005). A genetic algorithm can be applied

173

Chapter 8 An ant-based algorithm to self-adapt genetic-local hybrids

to optimise the control parameters of ant colony optimisation algorithms in a variety of

ways. The ASGA algorithm (White et al. 1998) was the first algorithm that used a genetic

algorithm to evolve the control parameters of an ant-based algorithm. The parameters

controlling the sensitivity to the pheromone concentration, and the sensitivity to the cost of

a network link, were evolved to solve three path finding problems in networks. Botee and

Bonabeau (1998) used a genetic algorithm as a meta-algorithm to find the best set of 11

control parameters of an ant colony optimisation algorithm to solve the TSP. Pilat and

White (2002) used a genetic algorithm to evolve the control parameters of an ant colony

optimisation algorithm to solve TSP at two different levels. A genetic algorithm was used

as a meta-algorithm to evolve the control parameters of the ant colony system algorithm at

a global level. The genetic algorithm was also used to evolve a population of genetically

modified ants with their own control parameters encoded into their chromosomes. The

encoded control parameters were used at an ant level. In their algorithm to plan a path for

unmanned robotic vehicle in combat mission, Sauter et al. (2002) used genetic algorithms

for automatically tuning the behaviour of the pheromone equation. Caertner and Clark

(2005) also proposed a hybrid algorithm, where genetic algorithms were used to evolve ants

with their encoded control parameters, in order to find optimal values of these parameters

based on the state of ant search to solve the TSP.

Genetic models and operators can incorporated in many ways into ant colony optimisation

algorithms to improve their performance. Different selection mechanisms that are used in

genetic algorithms were implemented and tested with an ant colony optimisation algorithm

to dynamically optimise the structure of an online teaching website based on the

recommended structure, the collective experience of students, and the particularities of each

student (Semet et al. 2003). Fitness ranking together with the steady state evolutionary

model was incorporated into the aggregation pheromone system (APS) to solve a set of

continuous uni-modal and multimodal problems (Tsutsui et al. 2005).

8.3 Ant optimisation and qenetic-local hybrid self-adaptation

The success of a hybrid algorithm in solving a given problem efficiently depends

on its success in achieving a balance between exploration and exploitation (see chapter 2
and 6). The appropriate balance of exploration and exploitation required for good

performance depends on the amount of diversity in the population, the details of the genetic

and the local operators, the learning strategies and the problem to be optimised. This

balance is usually achieved by finding an optimal set of the hybrid’s control parameters for

a given problem. The use of a mechanism to dynamically identify the effectiveness of

174

Chapter 8 An ant-based algorithm to self-adapt genetic-local hybrids

different genetic and local operators and learning strategies for the problem currently being

worked on can help to improve the hybrid’s performance. Knowledge about previous and

current solutions, the operators, and the learning strategies used to produce them, can be

utilised as a base to identify the strengths and the weakness of these operators and

strategies.

The basic idea of the proposed hybrid is that, as the search progresses, the effectiveness of

the genetic operators, the local search method, the duration of local search, and the learning

strategies, on the performance of a hybrid genetic algorithm in dealing with the current

problem can be learnt by using an ant-based algorithm as a reinforcement learning

approach. The pheromone trail metaphor can be used to accumulate the experience of the

past solutions on the efficiency and the effectiveness of using different operators to find a

solution of the current problem.

Pheromone trail behaviour can be applied to solve the problem of dynamically adjusting the

probabilities of using the different genetic and local operators and learning strategies.

A population or a colony of ants collectively searches for a sequence of genetic operations,

local search operator with a suitable duration, and a learning strategy, that produces an

effective and efficient solutions to the problem under consideration. The search space and

the neighbourhood notion of the problem of adapting the performance of a genetic-local

hybrid to a given problem can be viewed as shown in figure 8.1. Each ant performs a

sequence of local moves between the different states of its search task in order to find a

sequence of operations that improves the solutions in efficient way. Each state of the

problem’s search space has a complementary state. For example, the complementary state

of the “crossover” state is the “no crossover” state, while the complementary of the

“Lamarckian” state is the “Baldwinian” state.

An ant moves through adjacent states starting from the selection state, which is the only

state without a complementary state, and ending its tour with either the “Lamarckian” or the

“Baldwinian” state. Each movement of an ant is accompanied by performing one of the two

alternatives on a solution. The path that is followed by an ant defines the sequence of

genetic operations, local operation, its duration, and the learning strategy that are applied on

a solution. This path is assigned a merit score, which is equal to the fitness improvement in

the solution as a result of performing this sequence of operations. At the end of the ant’s

tour, it releases an amount of pheromone on the edges of the path it used to build a solution

based on the merit score of the tour. The density of pheromone on the paths that lead to

175

Chapter 8 An ant-based algorithm to self-adapt genetic-local hybrids

high improvements in solutions’ fitness will be higher than the others which lead to less or

no improvement. This will probably encourage other ants to follow the paths with a high

density of pheromone. This means that the sequence of genetic and local operators and

learning strategies that lead to solution improvements will be preferred by most of the new

candidate solutions. These preferred sequences of operations will be dynamically built

based on the fitness landscape of a given problem. This can promote competition amongst

the different operators and learning strategies based on its ability to improve the fitness. It

can also promote cooperation between the different operators and learning strategies in

order to discover more effective sequences of operations. This technique can produce a

hybrid genetic algorithm that able to adapt itself to a given problem without the need for

external control.

Figure 8.1: The Search Space and the Neighbourhood Notion.

An ant selects the next state from its adjacent states using a probabilistic decision policy.

An ant decides to move from its current state to one of the available next two states, which

176

Chapter 8 An ant-based algorithm to self-adapt genetic-local hybrids

will be referred to as the Next Do state or the Next Alternative state. The decision policy, as

given in equation 8.1, is based on the density of pheromone on the two branches that

connect the current state to these states.

P _ TC-NDo________
r C-NDo ~

C—NDo C-NAlter (8.1)

P = 1 - P1 C-NAlter 1 1 C-NDo

where Pc_NDo is the probability of moving from the current state to the Next Do state,

Pc-NMter ls probability of moving from the current state to the Next Alterative state,

t c- nd,> is the trail density on the edge connecting the current state to the Next Do state, and

^ c- nAlter ^ie h'ail density on the edge connecting the current state to the Next Alterative

state. For example, if an ant is at the “crossover” state, the probability of moving to the

“mutation” state is given by equation 8.2.

p = ^ - Ejf z — <8-2>TX-M ~t~TX-NM

where PX_M is the probability of moving from the “crossover” state to the “mutation” state,

Tx_m is the trail density on the edge connecting the “crossover” state to the “mutation”

state, and TX_NM is the trail density on the edge connecting the “crossover” state to the “no

mutation” state.

Initially all the edges of the possible operations paths are assigned an equal trail density.

Therefore, all the adjacent states have an equal opportunity to be visited. All the ants start

from the selection state. After the genetic algorithm performs the selection operation, each

ant is randomly assigned an individual of the mating pool. That ant will decide on the

sequence of operations that individual should perform. The decision is taken locally based

on the current ant’s state and using the decision policy given in equation 8.1. The ant’s tour

ends by choosing one of the available learning strategies. At the end of that tour, the ant

deposits an amount of pheromone on the edges of the path it followed. The amount of

pheromone deposited is made equal to the improvement in the fitness of the associated

solution. This can induce the ants towards promising search regions of effective sequences

of operators. The change in trail density on each edge of the followed path is given by

equation 8.3.
fAfitness,- i f Afitness > 0

^ t u,c- n) ~] n , . (8-3)[U otherwise

where AT{iC_N) is the change in the trail density of the edge connecting state C to state N

as a result of following the path constructed by ant i. The aim of rewarding sequences of

177

Chapter 8 An ant-based algorithm to self-adapt genetic-local hybrids

operations that produce an improvement in fitness and not penalising paths that reduces the

performance is to encourage exploring the search space.

The algorithm updates the pheromone at the end of the ant colony iteration (i.e. after every

member of the colony has completed its tour), which is known as offline updating, to bias

the search from a global perspective. The amount of pheromone on the edge connecting the

C state with the N state after updating it according to the results of the ant tour is given by

equation 8.4.

^"(I+I.C-AO = T(i , C - N) + ^ (i , C - N) (8-4)

8.4 Experiments

For the purpose of evaluating the proposed Ant-based Self-Adaptive Hybrid

Genetic (AntSAHG) algorithm, its performance was compared with an Evolutionary Self-

Adaptive Hybrid Genetic (ESAHG) algorithm, which uses evolution to select the genetic

operators, the local operator, its duration and the learning strategy that should be performed

on each individual. For each operation (strategy), a digital bit is encoded into the

individual’s genetic structure which determines whether to perform that operation (use that

strategy) or its alternative (see figure 8.1). The duration of local search is represented by

two bits that specify the number of local iterations (chapter 6).

The quality of the solutions produced by each algorithm was used as the main measure of

the algorithm’s performance. The percentage of experiments that converged to the global

optimum was used as an indication of the ability of the algorithms to produce high quality

solutions. The performance was compared using different population sizes in order to

evaluate the ability of these algorithms to adapt to different search environments. The

performance of the two algorithms is compared in terms of the speed of finding a global

optimum. These algorithms were also evaluated in terms of their ability to adapt to different

fitness landscapes and population sizes.

A set of test functions has been chosen to evaluate the performance of the two self-adaptive

algorithms. Five test functions have been used as a test suite. This test functions suite

includes the 20-dimensional ellipsoidal (Deb et. al 2002), the 20-diinensional Rastrigin

(Torn and Zilinskas 1989), the 20-dimensional Schwefel (Mtihlenbein et. al 1991), the 20-

dimensional Griewank (Mtihlenbein et. al 1991), and the 20-dimensional ridge (Deb et. al

2002) test functions. The reader can refer to chapter 6 for more details on the first four

functions.

178

Chapter 8 An ant-based algorithm to self-adapt genetic-local hybrids

However, the n-dimensional inverted ridge function (Deb et al. 2002) is defined as

The ridge function is a unimodal function, but it has an epistasis among its variables.

The hybrids use the simple elitist genetic algorithm with binary tournament selection, two-

point crossover operator, and a mutation operator with a probability of 0.01. The hybrids

use a local search operator, which combines the steepest descent method and Brent’s

method to estimate the best step size to climb to the local optimum from the current

position in the basin of attraction (Press et al. 1993). In addition to that, an adaptive initial

step size based on the changes in the standard deviation of the population fitness was used.

The use of such an adaptive step size can add an exploring role to the local search method

at the early stages of search. This adaptive initial step size can improve the Baldwinian

search since it can improve the genetic sampling ability at the early stages and can combat

the hindering effect as the search approaches the fitness-convergence-state.

Population sizes of 100, 150, 200, 250 and 300 were used to optimise the test functions

using the two self-adaptive hybrids. Each variable was represented by a string of 10 bits.

The stopping criterion for all experiments was a maximum number of function evaluations.

The value of this parameter was set to 5000 times the population size. Each experiment was

repeated 50 times.

In the AntSAHG algorithm, the number of ants was set equal to the number of individuals

of the genetic population. The amount of pheromone released was made equal to the fitness

improvement, as given in equation 8.4, in order to ensure fair comparison with the

evolutionary self-adaptive technique, which uses the individual’s fitness to assess the

effectiveness of a control parameter in solving a given problem (see chapter 6). However,

the ant algorithm divides the whole tour into two stages. The first one is the genetic stage,

where the ants decide on the genetic operators to apply on its associated solution. The

second one is the learning stage, where the ants decide on the local operator, its duration,

and the learning strategy. In order to evaluate these stages fairly, each stage is evaluated

separately due to the big differences in the number of function evaluations used at these

stages.

Instead of the evaporation mechanism, the AntSAHG algorithm adaptively modifies the

trail density of all the possible paths to ensure that the probability of each of the alternative

operations or strategies does not exceed a specific threshold. In the case of exceeding this

For - 64 < x, < 64 (B..5)

179

Chapter 8 An ant-based algorithm to self-adapt genetic-local hybrids

threshold an equal amount of pheromone is added to all the possible paths. The value of the

threshold probability was set to 0.999 and the amount of pheromone added in the case of

exceeding this threshold was set 0.01 of the current highest trail density.

Initially all the edges of the possible operations paths are assigned an equal trail density,

which was set to the absolute value of the average fitness of the initial genetic population.

8.4.1 Search effectiveness and efficiency

The percentages of times each hybrid algorithm found a global optimum using

different population sizes were compared. These percentages were used to evaluate the

effectiveness of the two self-adaptive mechanisms in solving the test problems.

The two adaptive hybrids have been used to optimise the ellipsoidal and the Griewank test

functions in experiments 8.1 and 8.2, respectively. The results of these experiments, not

shown here, showed that both the self-adaptive techniques were able to find the exact

global optimum of each function in every experiment. This clearly shows the effectiveness

of both algorithms in solving these types of problems, which can obstruct the self-adaptive

ability of the Baldwinian search (chapter 6). The combination of the adaptive initial step

size of local search and adaptive ability of the two hybrids can explain the improvement in

the hybrids’ performance.

However, the results of comparing the speed of finding the global optimum of the

ellipsoidal function, as shown in figure 8.2, show that the AntSAHG algorithm was slightly

faster than the ESAHG algorithm. The graphs for the results of comparing the convergence

speed to the global optimum of the Griewank function of both adapting techniques are

shown in figure 8.3. The plots show that the AntSAHG algorithm was much faster than the

ESAHG algorithm. The difference in convergence speed can be explained based on the fact

that the genetic algorithm as a global search method needs a number of genetic iterations to

evolve the control parameters in order to find the optimal ones. However, the ant-based

algorithm needs a number of ant iterations to find these values. Each genetic iteration

consumes a number of function evaluations which is equal to the population size times the

number of function evaluation consumed in a single ant iteration.

180

Chapter 8 An ant-based algorithm to self-adapt genetic-local hybrids

E llipso idal F u n ctio n

— e — E SA H G
— E) - - A ntSA H G

Q-coQ)U c
<Bg>
<1)
>coO

100 150 200 250 300
P o p u la tio n S iz e

Figure 8.2: The Speed of Finding the Global Optimum of the Ellipsoidal Problem

(Experiment 8.1).

x i q 4 G riew ank Function

— O — E SA H G

- - E h - A ntSA H G
-©2.5

T3
<ua)a.
CO
a)o

0.5

100 150 200 250 300
Po p u la tio n S iz e

Figure 8.3: The Speed of Finding the Global Optimum of the Griewank Function

(Experiment 8.2).

Figure 8.4 compares the percentage of times that the two self-adaptive hybrid algorithms

found the global optimum of the Schwefel function in experiment 8.3. The graphs show

that the AntSAHG hybrid algorithm was able to find the global optimum of the Schwefel

function more often than the ESAHG hybrid algorithm. This can be explained by the fact

that the ESAHG hybrid algorithm uses the fitness of an individual for evaluating both the

quality of solutions and effectiveness of different operators and learning strategies in

producing these solutions. On the other hand, the AntSAHG uses the improvements in

fitness to judge the effectiveness of operators and strategies and at the same time the

181

Chapter 8 An ant-based algorithm to self-adapt genetic-local hybrids

genetic algorithm uses the fitness to evaluate the solution's quality. The AntSAHG hybrid

algorithm can easily discriminate between sequences of operators that improve the

performance and sequences that do not improve it, whereas, the ESAHG algorithm cannot

distinguish between them.
Schwefel Function

AntSAHG

8 o
¥ 60

50

S3 40

100 150 200 250
Population Size

300

Figure 8.4: The Ability to Find the Global Optimum of the Schwefel Function

(Experiment 8.3).

Figure 8.5 compares the convergence speed to the global optimum of the Schwefel function

of both self-adaptive algorithms. These graphs show that the ESAHG algorithm was much

faster than the AntSAHG algorithm in finding the global optimum of this function.

However, the AntSAHG was able to find that optimum more frequently than the ESAHG

algorithm.

182

^

Chapter 8 An ant-based algorithm to self-adapt genetic-local hybrids

x -jo5 S chew fel F unction

- - O - - E SA H G

— Eh— A ntSA H G

*o
00
CL<A) <D Oc
0O)
0
>coO

200150 250 300
Po p u la tio n S iz e

Figure 8.5: The Speed of Finding the Global Optimum of the Schwefel Function

(Experiment 8.3).

The results of experiment 8.4, which aimed to optimise the Rastrigin function, showed that

the AntSAHG algorithm outperformed the ESAHG algorithm in terms of the percentage

that converged to the global optimum using different population sizes, as depicted in figure

8.6. The ESAHG was unable to find the global of the Rastrigin function of most of the

experiments in contrast to the AntSAHG algorithm. This difference can be explained based

on the fact the evolutionary self-adaptive behaviour can lead to the disappearance of useful

genes of some of the control parameters and can face some difficulties in restoring them

(see chapter 6). However, by ensuring that the probability of selecting one of the two

alternatives does not exceed a threshold value in the AntSAHG algorithm, there is always a

chance to select operations that did not improve the solutions’ fitness in the past search

iterations. This enables the AntSAHG to escape local optima and improves its ability to

recover from premature convergence. The nature of the fitness landscape of the Rastrigin

function, where the optima are close to each other, makes the AntSAHG algorithm able to

recover from premature convergence. However, such a recovery is more difficult in the

case of the Schwefel function, where the second best optimum is far from the global

optimum, once the whole population has converged to a non-global optimum.

Chapter 8 An ant-based algorithm to self-adapt genetic-local hybrids

100

90

80

T, 70 <D O)
£ 60
c

« 50
CD OJ
I 40o 0)

30

20

10

0

Figure 8.6: The Ability to Find the Global Optimum of the Rastrigin Function

(Experiment 8.4).

Rastrigin Function

ESAHG
AntSAHG

100 150 200 250 300
Population Size

The results of applying the two self-adaptive techniques to optimise the ridge function in

experiment 8.5 are shown in figure 8.7. Here, it is also clear that the ant-based self-adaptive

technique outperforms the evolutionary self-adaptive technique. The correlation between

the fitness function variables, epistasis, makes the ridge function difficult to be solved using

the genetic algorithm. The use of evolutionary self-adaptive mechanism can aggravate this

problem due to the introduced correlation between the different control parameters and the

fitness function variables. The use of an ant-based algorithm, on the other hand, does not

add any correlation to the genetic algorithm.

The ESAHG algorithm was able to find the global optimum of the Griewank function in all

the conducted experiments despite of being characterised by having a correlation between

its variables. This correlation is a result of the product term (chapter 6) which decreases as

the number of variables increases. The increase in the number of variables makes the

function surface flat and easy to be solved.

184

Chapter 8 An ant-based algorithm to self-adapt genetic-local hybrids

70

60

50

40

Ridge Function

a
£ 30

20

10

■ ESAHG
■ AntSAHG

II 0. 0
100 150 200 250 300

Population Size

Figure 8.7: The Ability to Find the Global Optimum of the Ridge Function

(Experiment 8.5).

The differences in the number times between the AntSAHG and the ESAHG algorithms in

finding the global optimum for both the ridge and the Rastrigin functions eliminate the need

for comparing their convergence speed.

8.4.2 The ability of the AntSAHG algorithm to adapt to different
environments

The previous experiments clearly show that the AntSAHG was able to adapt to

different problems using different population sizes. However, this ability was also

evaluated through monitoring the changes in the probabilities of using different operators

and strategies over time. The graphs of the changes in these probabilities for the five test

functions are presented and discussed in this section. The ability of the AntSAHG

algorithm to adapt to different population sizes is evaluated through monitoring the changes

in the operators’ probabilities when used to solve the ridge function using different

population sizes. Each graph in the following figures represents the average of 50

experiments.

Figure 8.8 shows the changes in the probabilities of using the crossover operator, the

mutation operator, the local search operator for the first iteration and the Baldwinian

learning strategy, when used to solve the ridge function using population sizes of 100, 200
and 300. These graphs in general show that these probabilities followed different

trajectories depending on the population size used. The graphs of the probability of

185

Chapter 8 An ant-based algorithm to self-adapt genetic-local hybrids

crossover show that in the early stages of search, its value dramatically increased. The

maximum value of this increase is a function of the population size. The diversity in large

population sizes makes the use the crossover operator beneficial. This can explain the trend

of the increase in the probability of the crossover operator as the population size increases.

The graphs of the probability of the first local iteration and the probability of using the

Baldwinian approach show clearly the relation between these two control parameters. The

increase in the probability of the first local search iteration is accompanied with a decrease

in the probability of using the Baldwinian approach. This is expected since the use of small

probabilities of local search can help to combat the hindering effect associated with the

Baldwinian learning approach (see chapter 4).

The graphs of the mutation operator probabilities show that these probabilities increase as

the population size increases. This is in contrast to the expected behaviour which is based

on the fact that for small population sizes the use of high mutation rate in the pure genetic

algorithms is more beneficial. However, since the relationship between control parameter

values and search performance is complex, not completely understood, and problem

dependent (Eiben et al. 1999), the interactions between these parameters can make such a

trend beneficial as they were able to produce good performance.

-------- ----------

---------PopSize 100
-------- PopSize 200 •

Popoizs 300

0 10 20 30 40 50
Generations

0.65

£ 0.55

0.5

Generations

0.7

0.65

0.6

0.55

0 10 20 30 40 50 60 70 80
Generations

0.51

IS 0-5o
Q_
Cm
I 0 .49
32ram

0.48
50 80

Generations

Figure 8.8: The Ability to Adapt to Different Population Sizes (Experiment 8.5).

The plots in figure 8.9 show the changes in the different operators’ probabilities over time

for different test functions using a population size of 150. These graphs clearly show that

the operators’ probabilities follow different paths depending on the fitness landscape of the

186

Chapter 8 An ant-based algorithm to self-adapt genetic-local hybrids

solved problem. The graphs of the Schwefel and the Rastrigin functions are similar. On the

other hand, there are similarities in the graphs of the ellipsoidal and the Griewank

functions. This is due to the similarities in each group of these functions. The Schwefel and

the Rastrigin are both multimodal functions. However, the 20-dimensional Griewank

function is similar to the 20-dimensional ellipsoidal function. These graphs also show that

there is always a chance to choose any of the hybrid’s operators and strategies since none of

these probabilities reaches 1 or zero. This can make the AntSAHG algorithm suitable for

optimising problems whose fitness changes with time.

0.9

Ig
Q_
o
>o
CO

— Schwefel
— Rastrigin
— - Griewank
- Ellipsoidal

2O
0.5

20) 40
Generations

6030 70 80

0.65

* 0.55

0.5

0.4
20 30 70

Generations

" '"0 10 20 30 40 50 60 70 80
Generations

30 40 50
Generations

Figure 8.9: The Ability to Adapt to Different Optimisation Problems (Experiments

8.1, 8.2, 8.3 and 8.4).

The experiments conducted clearly show that the use of the pheromone trail metaphor to

utilise the experience of the past solutions for online learning of the effectiveness of the

different combinations of operators and learning strategies in solving a given problem is

effective. The ant-based self-adaptive mechanism was able find high quality solutions for

the test problems. It outperformed the evolutionary self-adaptive algorithm in terms of the

solution quality and the convergence speed. The experiments suggested the suitability of

the AntSAHG algorithm for dynamic environments.

Chapter 9 Conclusions and further work

Hybrid genetic algorithms have received significant interest in recent years and are

being increasingly used to solve real-world problems. A genetic algorithm is able to

incorporate other techniques within its framework to produce a hybrid that reaps the best

from the combination. Incorporating a local search method within a genetic algorithm can

improve the search performance on the condition that their roles cooperate to achieve the

optimisation goal. There is an opportunity in hybrid optimisation to capture the best of both

schemes. This opportunity depends on the design details of the hybrid genetic algorithm.

There are several issues that need to be taken into consideration when designing a hybrid

genetic algorithm.

The main aim of this thesis is to investigate these design issues. The approach followed was

that through designing, developing and testing hybrid genetic algorithms based on the

available knowledge of these hybrid issues, new key features and relations can be

discovered. The discovered relations and features can be used to develop better hybrids

which, in turn, can uncover new relations and features. The goal was to develop a hybrid

genetic algorithm that employs learning to direct its search operations and to adapt its

control parameters to find high quality solutions for a wide range of optimisation problems

efficiently through evolving the hybrid’s design based on the analysis of the search’s

behaviour.

In this chapter, a summary of the research findings is given and the main contributions of

the thesis are evaluated in some depth. This will also include the evaluation of this thesis

and suggestions for experiments that are needed and further development of some methods.

Finally, a section on further work describes key directions of interesting further study to the

research in the thesis.

9.1 Research findings and contributions

The research presented in this thesis has contributed towards an improved

understanding of hybrid genetic algorithm design issues and their effect on the hybrid’s

performance. This research demonstrated the direct and indirect influences of the design

choices on the utilisation of the search time. It has shed some light on the relations between

the design choices and their effect on improving the hybrid’s performance in terms of

solutions quality, convergence speed, and population size requirements.

Chapter 9 Conclusions and further work

This research also suggested and developed many solutions to improve the effectiveness

and the efficiency of the hybrid search. Those solutions are based on the richness of the

genetic information, which can be utilised to improve the hybrid’s performance. The first

approach was to develop a search method that can utilise some of the genetic information in

order to gain the efficiency of the Lamarckian search with minimum interference with the

genetic schema processing. The second approach was to utilise the genetic information to

optimise the hybrid search time through adapting the duration of the local search method

while the hybrid seeks the global optimum. The third approach was to make use of the

genetic information in order to enable the hybrid to learn the effectiveness of the different

learning strategies in dealing with the current problem online. The evolution metaphor was

applied as a mechanism to utilise the genetic information in the second and the third

approach. The forth solution was to apply the pheromone trail metaphor as a mechanism to

utilise the genetic information in order to produce an effective, efficient and control

parameter-less hybrid genetic algorithm.

The results of the investigations and the contributions of this research are discussed in the

following subsections. These subsections will also evaluate the conducted investigations in

terms of achieving their goals, the need for more experiments, and point to areas where

more investigations are required.

9.1.1 Duration, probability of local search, learning strategy and hybrid’s

performance

The in-dept review of hybrid genetic algorithms, the analysis, and the experiments

conducted in the third and the fourth chapters, help to reveal some relations between the

duration of local search, its probability, the learning strategy used, and the hybrid’s

performance. They emphasise the effect of incorporating a local search method within a

genetic algorithm on overcoming some of the obstacles that arise as a result of using finite

population sizes. This has been illustrated through investigating the combined effect of the

probability of local search and the learning strategy used on the population size

requirements of hybrid genetic algorithms. The investigation demonstrates that the

minimum population size required for a pure genetic algorithm can be reduced by

incorporating a local search method, which influences both the standard deviation of the

population and the signal difference between the best and second-best solutions.

The investigations conducted in chapters 3 and 4 show that the two main drawbacks of the

basic learning models can be combated through controlling the duration and the probability

of local search. The hindering effect associated with the Baldwinian learning approach can

189

Chapter 9 Conclusions and further work

be alleviated by controlling the duration and the probability of local search. The diversity

limitation associated with the Lamarckian learning model can also be combated through

using appropriate durations and probabilities of local search.

The combination of high probabilities of local search and long durations can aggravate the

hindering effect, which makes reliance of the selection operator on the acquired fitness

alone insufficient in directing the search towards the global optimum. However, moving

into the other direction of using short durations or small probabilities can help to alleviate

this problem. When the probability of local search is small, the probability of applying a

local search on the same solution in consecutive local iterations is significantly small,

giving the algorithm a better chance to distinguish between innate and acquired fitness. The

use of short durations of local search can delay the fitness-convergence state. This enables

the algorithm to find a solution very near the global optimum.

However, the use of short durations may not improve the sampling ability of the global

genetic algorithms, in contrast to long durations, which can improve it. This means that the

use of a local search method with short durations cannot help the genetic algorithm to

recover from sampling errors and as a result can face premature convergence. The solution

to this problem can be the use of an adaptive duration of local search since long durations

can cause problems only at the fitness-convergence state and they can improve the genetic

algorithm’s sampling ability before reaching this state. The adaptive mechanism should

enable the Baldwinian search to use long durations at the early stages of the search in order

to direct the search towards the most promising search regions. It should also enable the

search to use very short durations of local search as the population converged to the basin

of attraction of the global optimum in order to find a solution very near the global optimum.

A simple adaptive rule for the duration of local search is to make the duration of local

search proportional to the variation in the population fitness so that the algorithm uses the

shortest duration as the population reaches the fitness-convergence state while it uses the

longest duration at the start of the genetic search.

The investigation into the hybrid design issues helps to uncover the relation between the

Lamarckian learning approach, the duration, and the probability of local search. The

investigation shows that the diversity loss due to the use of the Lamarckian approach can be

significantly reduced by using a very short durations and small probabilities of local search.

The use of a complete (i.e. exhaustive) local search can map the whole population to local

optima of the search space which can badly affect the population diversity in the case that

the basin of attraction of the global optimum is not represented in the population. In this

190

Chapter 9 Conclusions and further work

case, the diversity limitation can significantly reduce the chances of redirecting the search

towards the global optimum. However, the diversity loss as a result of using short durations

is limited compared with that of the complete local search since using short durations maps

the population to new points and not to the local optima.

Using a small probability of local search also can help to solve problems without causing

diversity loss since the local search will modify the genetic structure of a small fraction of

the population only. In contrast, the use of high probabilities can affect the genetic structure

of a large number of individuals in the population, which can disrupt the genetic schema

processing, and, hence, might result in premature convergence.

In contrast to the Baldwinian search, the use of short durations at the early stages and long

durations at the latter stages of the Lamarckian search can be beneficial. Any technique to

adapt the duration of local search should take into account the learning strategy used.

In addition to the influence of the interactions between the duration, probability of local

search and the learning strategy on the hybrid’s performance, the duration and probability

of local search have a direct effect on the exploring ability of the hybrid. The use of short

durations and small probabilities of local search increases the chances of the global genetic

algorithm effectively exploring the search space.

The investigations also showed that using a frequency of local search, i.e. the number of

uninterrupted genetic iterations before performing a local iteration (Espinoza et al. 2001),

with a value of more than 1 can alleviate the hindering effect since that enables the

algorithm to discriminate between acquired and innate fitness.

These findings guided the research to investigate three different possible ways that can

improve the hybrid’s performance. The first way is to utilise the genetic search information

to benefit from the efficiency of Lamarckian learning approach without sacrificing the

solution’s quality. This can be achieved by minimising the conflict between the genetic

schema processing and the utilisation of local knowledge. The second possible way is to

find a mechanism that adapts the durations and/or the probabilities of the local search

method according to current state of the search and the learning strategy used. The third

way is to utilise the search information to change the learning strategy while the search

progresses as a mechanism to strike a balance between exploration and exploitation.

Chapter 9 Conclusions and further work

9.1.2 Avoiding interference with the genetic search

The richness of the genetic information can be utilised to improve the solution

quality in accordance with genetic schema processing and using minimum resources. A

search method was proposed as an example of a genetic information utilisation mechanism.

The proposed search method is a probabilistic method that works on the genotype space by

making use of a group of the current population of solutions to estimate the structure of the

improved solution. In this way, it aims to make use of some of the valuable genetic search

information, which is inherently available in the gene pool. It also aims to avoid disrupting

the genetic schema processing by improving the solution in accordance with the global

genetic search. The modification of the initial solution based on a sub-group of solutions of

the genetic population can provide the secondary search method with a partial global view

of the problem at hand. Based on this view the search method can produce a solution in the

context of the global view captured by the genetic algorithm. The partial global aspect of

the search method can be controlled by the sub-group size, the mechanism of selecting the

group members, and their effect on the initial solution (i.e. the probability effect). This

method is also characterised by its low costs. Its costs are equal to the costs of evolving a

solution for a single iteration of the genetic search (i.e. one function evaluation per

solution). This can help to minimise the loss of the hybrid’s time in the case of any

undesirable interference between the two search methods.

The result of evaluating the search method as a secondary method on a set of test functions

with different marginal fitness contribution of their genes shows that the proposed method,

when used with suitable group size and probability effect, could improve the genetic

performance in terms of the population size required, convergence speed, or both, to

produce high quality solutions. This improvement in the performance was as a result of the

ability of the proposed method to integrate the global genetic search with minimum

conflicts. By concentrating on the differences in the population’s structures and fitnesses to

modify the non-identical genes, the proposed algorithm was able to complement the genetic

search even in the case of non-uniformly scaled problems, where the genes converge at

different rates. In such problems, the proposed algorithm modifies the genes that converge

at a slower rate while the genetic algorithm modifies the others.

The proposed algorithm also showed good performance on uniformly scaled problems as a

stand-alone search algorithm. This is in accordance with its basic assumption, which states

that each gene in the chromosome contributes uniformly to the fitness of the solution.

192

Chapter 9 Conclusions and further work

The ability of the proposed algorithm to reduce the probability of disrupting the genetic

schema processing depends on the chosen samples of the genetic population. Each sample

involves the initial solution to be optimised and a selected sub-group of solutions. This

sample is used to determine the genes that have not converged yet and, hence, can be

modified without any conflicts with the genetic search. Modifying them can also accelerate

the search towards the global optimum.

The sizes of these samples and the way of selecting their members have a great impact on

the hybrid’s performance in terms of the solution quality and the convergence speed.

Increasing the sample’s size increases its accuracy, however it can also reduce its speed as

it improves the search from a global perspective. The size of the sample and its members

should be chosen in such a way to provide a partial view of the search space around the

initial solution in accordance with the global genetic view. The experiments conducted in

chapter 5 showed that the size of the sample and the probability factor depend on the fitness

landscape. More investigations are required on the possible ways of deciding on optimal

group size and probability factor in order to improve the effectiveness and the efficiency of

the search.

9.1.3 Adapting the duration of local search

The investigations show, as mentioned above, that the interactions between the

duration, the probability of the local search method, and the learning strategy, have a great

impact on the hybrid’s performance. The duration and the probability of a local search

method have a direct influence on the exploration and exploitation trade-off. However, the

learning strategy has an indirect impact on this trade-off through its interactions with these

two factors.

Finding a mechanism to adapt either the duration or the probability of local search can help

to find an optimal utilisation of the search time. Adapting the duration of the local search,

and allowing that control parameter to have the value of 0, will implicitly adapt the

probability of local search. The decision was taken to investigate the use of evolution to

self-adapt the duration of local search in order to find an optimal utilisation of search time

for a given problem. The first reason for choosing the evolution metaphor to self-adapt the

duration of local search is to gain insight into the ability of this mechanism, which has

successfully applied to self-adapt pure genetic algorithms, to adapt the control parameters

related to incorporating a local search method. The second reason is the association of the

control parameter with a solution through binding them into the same chromosome, which

can help to associate the success or the failure of a control parameter value to a specific

193

Chapter 9 Conclusions and further work

solution or solutions of similar genetic structures. The third reason is the simplicity of this

mechanism and its implementation cost, which is low compared to other adaptation

techniques.

Applying this adaptation mechanism to optimise the performance of a hybrid genetic

algorithm to different search environments has demonstrated its ability to produce an

effective search. This mechanism uses the individual’s fitness as a metric to evaluate the

suitability of the encoded duration of local search for solving a given problem. Selecting

individuals based on their fitnesses only can bias the search towards an effective algorithm

and cannot guarantee its efficiency since these individuals can consume different numbers

of function evaluations to achieve their fitnesses.

In addition to that, the hindering effect can obstruct the ability of Baldwinian search to self-

adapt the duration-of-local-search control parameter. The possibility of obstructing this

ability increases as the dimensionality of the fitness function increases as it may be easier

for the algorithm to optimise a single control parameter than optimising a large number of

function variables. The use of a local search method with very small durations can help to

alleviate the hindering effect and hence improve the performance of the Baldwinian search

in terms of solution quality and convergence speed. The performance of the Baldwinian

search can be further improved when the local search duration, which is already encoded

into the chromosome, is used alongside the acquired fitness to discriminate between

effective solutions.

The co-evolutionary mechanism, where the control parameters and function parameters are

treated as two subpopulations, improved the self-adapting ability of the hybrid which was

reflected as an improvement in its performance. The co-evolutionary mechanism can

accelerate the evolution process of the control parameter compared with the evolutionary

mechanism where the chance to modify the genetic structure of the control parameter

depends on the ratio of the length of its representation to the length of the whole

chromosome.

When the decision was taken to self-adapt the duration of local search as a mechanism to

strike a balance between the global genetic and the local search methods, it was expected

that the frequency of the local search method could be adapted implicitly though adapting

its duration. However, adapting the frequency of local search requires switching from the

state where duration of local search for all the individuals of the population has a value of 0

194

Chapter 9 Conclusions and further work

and back to that state. Since the experiments showed that reaching that state was not

possible, adapting the duration is not a practical way to adapt the frequency of local search.

9.1.4 Adapting the learning strategy

The learning strategy interacts with the duration and the probability of local search

and their interaction influences the hybrid’s exploration and exploitation trade-off. A

mechanism that can dynamically define the strengths and weaknesses of different learning

strategies in dealing with a given problem and its environment based on the past solutions

experience in using them can help to improve the hybrid’s performance. Such a mechanism

can strike a balance between exploitation and exploration through dynamically deciding on

the learning strategy which has indirect influence on this balance through its interaction

with the duration and the probability of local search.

Based on the richness of the genetic information and for the same reasons of selecting

evolution to self-adapt the duration of local search, the evolution metaphor was chosen as a

mechanism to make use of the past solutions’ experience with learning strategies to decide

online on the learning strategy to use to solve a given problem. The aim was to gain some

insight into the effectiveness and efficiency of self-adapting the learning strategy. It was

intended to explore the effect of using evolution to self-adapt both the learning strategy and

the duration of local search on the hybrid’s performance.

The experiments conducted illustrate that the use of the self-adaptive learning strategy can

be beneficial. It can improve the search ability of finding solutions of high quality and can

accelerate the search. The experiments also show that this mechanism was able to adapt to

different environments. That was illustrated by testing this mechanism on a set of different

test functions using two different adaptive hybrid algorithms and different population sizes.

The evolutionary self-adaptive mechanism can promote competition and cooperation

between the basic learning models in the direction of improving the search performance.

Combining the evolutionary self-adaptive learning mechanism with the adaptive staged

hybrid algorithm produced an algorithm that is faster than the tested fixed learning

strategies on most of the tested functions. However, combining the evolutionary self-

adaptive local-search-duration with this mechanism produced a slow search algorithm. The

combination was able to find the global optimum of the whole set of test functions more

often and faster than that of the fixed pure Baldwinian approach.

Chapter 9 Conclusions and further work

The slow convergence speed of the algorithm that uses evolution to self-adapt both the

learning strategy and the duration of local search can be explained based on the fact that the

evolutionary mechanism introduces a strong correlation between genes, i.e. epistasis.

Encoding the control parameters into the chromosome means that the fitness of a solution is

defined based on the interactions between the genes of the control parameters and the

fitness function variables’ genes. As the number of the encoded control parameters

increases, the complexity of the interactions between their genes and the genes of the

fitness variables increases. According to the building block hypothesis, one of the basic

requirements for a genetic algorithm to be successful is that there is low epistasis (Beasley

et al. 1993b). The existence of a strong correlation can affect the ability of the global

genetic algorithm to simultaneously explore both the problem search space and the control

space.

9.1.5 Ant-based algorithm to self-adapt the hvbrid‘s control parameters

Based on the findings of the previous investigations and to achieve the goal of this

thesis in developing a hybrid algorithm that learns form the available search information to

utilise its operators in an effective and efficient way without the need for any forms of

human intervention, the research has been redirected to find a mechanism that is able to use

the available search information without complicating the task of the genetic search.

The simplicity and the effectiveness of the pheromone trail metaphor as a way to

accumulate the experience of the past solutions in solving a given problem, and being

applied successfully to solve a large number of hard optimisation problems, make it a

strong candidate to be applied to achieve an optimal utilisation of the hybrid’s search time.

A simple search space with the neighbourhood notion of the problem of adapting the

performance of a genetic-local hybrid to a given problem has been defined (figure 8.1).

Based on the defined search space, an ant-based optimisation method was used to find an

optimal sequence of genetic operators, a local search operator with a suitable duration, and

a learning strategy to solve a given problem.

The results of evaluating the performance of the ant-based self-adaptive and the

evolutionary self-adaptive techniques showed the superiority of the ant-based self-adaptive

mechanism over the evolutionary self-adaptive mechanism in terms of the solution quality

and the convergence speed. The experiments conducted clearly showed the effectiveness of

using this mechanism to adapt the hybrid’s performance to a given problem. The ant-based

mechanism was able to adapt the probabilities of selecting the different operators and

196

Chapter 9 Conclusions and further work

strategies according to the relations between these operators, strategies and their

environment. The ant-based self-adaptive mechanism was able find high quality solutions

for the test problems in an efficient way. The experiments also suggested the suitability of

the ant-based self-adaptive algorithm for dynamic environments as there is always a chance

to select any operator or strategy.

9.2 Future Directions

The empirical investigations in this thesis suggest many possible directions for

future research.

9.2.1 Avoiding interference with the genetic search

The aim of the proposed algorithm in chapter 5 was to utilise the richness of the

genetic information from which local information can be simply extracted in order to

enhance the genetic search. The proposed algorithm shed some light on the need for more

cooperation between the global genetic algorithm and the local search method in

exchanging the available information to produce effective and efficient algorithms.

Through such cooperation, the proposed search method was able to utilise the efficiency of

the Lamarckian search to find high quality solutions.

The main difficulty of applying the proposed algorithm to solve a problem is how to choose

the sub-group size, its members, and the probability factor, that produce the best

performance. Chapter 5 suggested the use of a variable group size and setting the values of

the probability factor based on that size in accordance with the findings of the experiments

of that chapter. Further work is required on finding a mechanism to decide on the members

of the sub-group, its size, and the probability factor.

There are other search techniques that may be used as a secondary method to achieve such

cooperation and can be more effective and efficient than the proposed method. For

example, an ant colony optimisation algorithm can be incorporated as a secondary method

using a group of the genetic population to improve the quality of an initial solution. Further

work could investigate the effectiveness of incorporating such techniques to avoid the

genetic schema processing.

9.2.2 Optimal utilisation of search time

The aim of self-adapting the duration of local search within a hybrid was to adapt

the duration, the probability, and frequency of local search, in order to achieve optimal

utilisation of the search’s time. However, as mentioned above, the experiments showed the

197

Chapter 9 Conclusions and further work

difficulty of adapting the frequency of local search following that mechanism. Due to the

great impact of the frequency of local search on the balance between exploration and

exploitation, and on minimising the interference between local and global search, future

work can begin by finding a mechanism to adapt the frequency of local search based on the

available genetic information. Then, the possibilities of combining this mechanism with the

effectiveness of the co-evolutionary self-adaptive local-search-duration algorithm in order

to produce an efficient algorithm can be investigated.

9.2.3 Ant-based algorithm as a self-adaptive mechanism

There are different possible ways to improve the success of the ant-based algorithm

in sell-adapting the performance of the genetic-local hybrid to a given problem. The

efficiency of this mechanism can be further improved by explicitly introducing the cost of

the operators into the criteria for selecting the next operation or strategy. The mechanism’s

effectiveness can be further improved by hybridising it with the co-evolutionary self-

adaptive mechanism. The mechanism can be also extended to decide between different sets

of genetic operations and different local search methods to solve a given problem. It can

also be applied to solve problems that change with time.

9.2.3.1 Improving the effectiveness and the efficiency

Although the experiments showed the effectiveness and the efficiency of the

proposed Ant-based Self-Adaptive Hybrid Genetic (AntSAHG) algorithm to self-adapt the

genetic-local hybrids, its performance can be improved in different ways. There is a

possibility of improving the AntSAHG algorithm by using an explicit evaluation of the cost

of its operations instead of the implicit evaluation. It also can be improved by using the

genetically evolved probabilities of the operations in addition to the pheromone density to

decide on an optimal sequence of operations.

In the AntSAHG algorithm proposed in chapter 8, the cost of operations was evaluated

implicitly through dividing the ant’s tour into two stages. These stages are the genetic stage,

which consumes a maximum of one function evaluation, and the learning stage, which

usually consumes a large number of function evaluations depending on the local search

method and its duration. By making the ant deposit an amount of pheromone in proportion

to the fitness improvement at the end of each stage, the algorithm implicitly evaluates the

relative cost of the operations.

However, the cost of the operations can be explicitly evaluated through including it in the

pheromone released equation. The amount of pheromone deposited by an ant can be made

198

Chapter 9 Conclusions and further work

proportional to the improvement in the fitness of its associated solution, and inversely

proportional to the number of function evaluations used to produce this improvement. This

can induce the ants towards operations sequences that do not only improve the fitness but

improve it in an efficient way. This can improve the efficiency of the AntSAHG algorithm.

According to this, the change in trail density on each edge of the followed path is modified

as given in equation 9.1.

(C O S tiY (9 - 1)

A TC_N — 0 Otherwise

where AT(iC_N) is the change in trail density of the edge connecting state C with state N as

a result of following the path constructed by ant i. a Is a parameter that controls the relative

influence of fitness improvement on the trail density. costt is the number of function

evaluations consumed through this path. [3is a parameter that controls the relative influence

of the cost of the fitness improvement on the trail density. Through adjusting a and /?, the

effectiveness and the efficiency of the search can be controlled.

An investigation in the effectives and the efficiency of introducing the operation’s cost in

the pheromone equation of the AntSAHG algorithm is required. The stability of that

algorithm against the changes in the values of the control parameters introduced also

requires exploring.

The other direction that can improve the AntSAHG algorithm is to combine it with the

Evolutionary Self-Adaptive Hybrid Genetic (ESAHG) (see chapter 8) algorithm. Instead of

relying on the pheromone density only to decide on the next operation to perform, the

algorithm can use the evolved genetic probability of that operation in addition to

pheromone density. This can mix the global perspective of the genetic evolved probabilities

with the local perspective of the ant algorithm. The decision policy, as given in equation

9.2, will be based on the density of pheromone on the two branches that connect the current

state to these states and the global genetic evolved probability.

(\ 5
C-NDo

(9.2)

p1 C-NDo
_______ * C-NDo

V 7 C -N D o ^ C -N A lte r J

P = 1 - P1 C-NAlter X 1 C-NDo

where Pc_NDo is the probability of moving from the current state to the Next Do

state, Pc_NMter is the probability of moving from the current state to the Next Alterative

state, Tc_NDo is the trail density on the edge connecting the current state with the Next Do

199

Chapter 9 Conclusions and further work

state, and Tc_NAlter is the trail density on the edge connecting the current state with the Next

Alterative state. P g c - N D o is the global evolved genetic probability of moving from the

current state to the Next Do state, <5is the influence of pheromone density on the probability

of selection, and e is the influence of global genetic probability on the probability of

selection.

The global genetic probability is the evolved encoded probability of that operation at the

population level. This probability can be calculated by dividing the number of individuals

whose encoded bit indicates performing this operation by the number of individuals in the

population.

Researches on in the effectiveness and the efficiency of combining the evolutionary and the

ant-based self-adaptive techniques are required. The influence of the 8 and e control

parameters on the hybrid’s performance also needs investigations. The impact of explicit

use of the cost of operations on the search’s behaviour also requires more analysis and

study.

9.2.3.2 Deciding on local search methods

Due to the effect of the choice of the local search method on the genetic-local

hybrid performance, some hybrid genetic algorithms have relied on the use of a variety of

different search methods as local search methods (Magyar et al. 2000) (Krasnogor and

Simth 2001) (Ong and Kean 2004). The AntSAHG algorithm can be extended and applied

to decide, at run time, on the search local method that can used to locally improve the

current solution. This can reduce the probability of employing inappropriate local search

methods in a hybrid algorithm and can yield robust and improved search performance.

Figure 9.1 depicts a possible search space for an ant-based algorithm to solve the problem

of funding an optimal sequence of genetic operations, local operations and strategies.

200

Chapter 9 Conclusions and further work

9.2.3.3 Searching in changing environments

There are many applications in which the fitness function may change over time

(Grefenstette 1992). The ability of a hybrid genetic algorithm to respond to a changing

fitness function depends on the diversity in its population and the ability of the mechanism

that decides on its operators to adjust itself to the changes in its environment. The

experiments in chapter 8 showed that there is always a chance to choose any of the hybrid’s

operators and strategies in the AntSAHG algorithm and suggested the suitability of the ant-

based self-adaptive mechanism for dynamic environments. It would be interesting to

explore the applicability of the AntSAHG algorithm to such non-stationary environments.

selection

Crossover Opr Crossover Op2Crossover Op, Crossover Opi

Local Op, Local Op, Local Opi Mutation Op

LamarckianBaldwinian

Figure 9.1: Search Space for the Problem of Finding an Optimal Combination of

Operators and Strategies

9.3 Summary

The richness of the genetic search information can be utilised in different ways to

improve the performance of genetic algorithms. The ability of the genetic algorithm to

incorporate different search mechanisms within its framework promotes its cooperation

201

Chapter 9 Conclusions and further work

with different search techniques to make use of the genetic information in order to enhance

the search performance. The research of this thesis helps to gain some insight into some of

the possible ways of utilising the genetic information effectively and efficiently. It also

sheds some light on the key directions of future work that can further improve the hybrid’s

performance.

The research demonstrated that through adjusting the durations and/or the probability of

local search, the hindering effect associated with the pure Baldwinian search, and the

problem of disrupting the schema processing of the Lamarckian search, can be alleviated. It

also presented an effective model for utilising the genetic information to improve the

solution’s quality of the Lamarckian search. More investigations are required into the

possibilities of using population-based search techniques to improve the effectiveness of

the Lamarckian search.

The research also showed the effectiveness of the co-evolutionary self-adaptive local-

search-duration mechanism in achieving a balance between exploration and exploitation. It

also analysed the difficulties of utilising this technique to produce an efficient search, and

the influence of the hindering effect on the self-adaptive ability of the Baldwinian search.

Possible ways of improving the self-adaptive ability of the Baldwinian search were

suggested and tested. Further work is required to explore the possibility of using other

techniques to adapt the frequency of local search and combine it with the evolutionary self-

adaptive local-search-duration algorithm in order to improve its efficiency.

The efficiency of the evolutionary self-adaptive learning strategy mechanism in finding

high quality solutions is also demonstrated. The increase in the chances of introducing a

strong correlation between the control parameters and the variables of the fitness function

as the number of the encoded control parameters increases explains the slow convergence

speed of the algorithms that self-adapt more than one control parameter.

The ability of the ant-based algorithms to adapt the probabilities of using different

operators and strategies of the hybrid algorithm in producing an efficient and effective

search was demonstrated. This ability can be enhanced further by introducing the cost of

the operations explicitly into the mechanism and combining it with the effective

evolutionary self-adaptive mechanism. This mechanism may be applied to decide between

different genetic and local search operators. It can also be applied to solve problems in real-

world environments that exhibit dynamic and unpredictable characteristics. These ways of

Chapter 9 Conclusions and further work

enhancing and extending the success of the ant-based algorithms to solve similar problems

require more exploring and investigations.

Bibliography

Abela, J., Abramson, D., Krishnamoorthy, M., Selva, A. D., and Mills, G. (1993):

Computing Optimal Schedules for Landing Aircraft, pp. 71-90: the 12th

Conference o f the Australian Society fo r Operations Research, Adelaide.

Affenzeller, M. (2001): A New Approach to Evolutionary Computation: Segregative

Genetic Algorithms (SEGA)", pp. 594-601: Connectionist Models o f Neurons,

Learning Procasses, and Artificial Intelligence, Springer-Verlag.

Anderson, R. W., Fogel, D. B., and Schutz, M. (1997): Other Operators, pp. C3.4:l-

C3.4:15. In T. Back, D. B. Fogel, and Z. Michalewicz (Eds): Handbook o f

Evolutionary Computation, IOP Publising Ltd and Oxford University Press.

Andre, J., Siarry, P., and Dognon, T. (2000): An Improvement of the Standard Genetic

Algorithm Fighting Premature Convergence in Continuous Optimization. Advances

in Engineering Software 32, 49 -60.

Angeline, P. J. (1995): Adaptive and Self-adaptive Evolutionary Computations, pp. 152-

163. In M. Palaniswami, and Y. Attikiouze (Eds): Computational Intelligence: A

Dynamic Systems Perspective, IEEE press.

Ankenbrandt, C. A., Buckles, B., Petry, F. E., and Lybanon, M. (1989): Ocean Feature

Recognition Using Genetic Algorithms with Fuzzy Fitness Functions, pp. 679-685:

the Third Annual Workshop on Space Operations, Automation and. Robotics,

Houston, USA.

Annunziato, M., I., I. B., Elisei, G., Pannicelli, A., and Pizzuti, S. (2002): Adaptive

Parameterization of Evolutionary Algorithms Driven by Reproduction and

Competition. Advances in Computational Intelligence and Learning, 17-134.

Arabas, J., Michalewicz, Z., and Mulawka., J. (1994): GAVaPS - a Genetic Algorithm with

Varying Population Size, pp. 306-311: the First IEEE Conference on Evolutionary

Computation, IEEE, Orlando, USA.

Areibi, S., Moussa, M., and Abdullah, H. (2001): A Comparison Of Genetic/memetic

Algorithms And Other Heuristic Search Techniques, pp. 660-666: International

Conference on Artificial Intelligence, Las Vegas, USA.

Areibi, S., and Vannelli, A. (1994): Advanced Search Techniques for Circuit Partitioning,

pp. 77-98. In P. Pardalos, and H. Wolkowicz (Eds): Quadratic Assignment and

Related Problems.

204

Bibliography

Areibi, S., and Yang, Z. (2004): Effective Memetic Algorithms for VLSI Design = Genetic

Algorithms + Local Search + Multi-Level Clustering. Evolutionary Computation

12, 327 -353

Arena, P., Caponetto, R., Fortuna, I., and Xibilia, M. G. (1993): MLP Optimal Topology

via Genetic Algorithms, pp. 670-674. In A. Dobnikar, N. Steele, D. Pearson, and R.

F. Albrecht (Eds): the International Conference on Artificial Neural Nets and

Genetic Algorithms, Springer-Verlag, Portoroz, Slovenia.

Asoh, H., and Miihlenbein, H. (1994): On the Mean Convergence Time of Evolutionary

Algorithms Without Selection and Mutation, pp. 88-~97. In Y. Davidor, H.-P.

Schwefel, and R. Manner (Eds): Parallel Problem Solving from Nature, PPSN III,

Springer-Verlag, Berlin, Germany.

Back, T. (1992): The Interaction of Mutation Rate, Selection, And Self-Adaptation Within

a Genetic Algorithm., pp. 85-94. In R. Manner, and B. Manderick (Eds): Parallel

Problem Solving from Nature II, Elsevier Science, Brussels, Belgium.

Back, T., Eiben, A. E., and Vaart, N. L. v. d. (2000): An Empirical Study on GAs without

Parameters, pp. 315-324. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E.

Lutton, J. Merelo, and H.-P. Schwefel (Eds): Parallel Problem Solving from Nature

PPSN V, Springer, Amsterdam, The Netherlands.

Back, T., Fogel, D. B., and Michalewicz, Z. (1997): Handbook o f Evolutionary

Computation. IOP Publishing and Oxford University Press.

Back, T., Hammel, U., and Schwefel, H.-P. (1997): Evolutionary Computation: Comments

on the History and Current state. IEEE Transactions on Evolutionary Computation

1, 3-17.

Back, T., Heisternmann, J., Kappler, C., and Zamparelli., M. (1996): Evolutionary

Algorithms: Support Refueling of Pressurized Water Reactors., pp. 104-108: the

Third IEEE Conference on Evolutionary Computation, IEEE, Nagoya, Japan.

Back, T., and Hoffmeister (1991): Extended Selection Mechanisms in Genetic Algorithms,

pp. 92-99: the Fourth International Conference on Genetic Algorithms and their

Application, Morgan Kaufman, San Mateo, USA.

Back, T., Hoffmeister, F., and Schewefel, H. (1991): A Survey of Evolution Strategies, pp.

2-9. In K. Belew, and L. B. Booke (Eds): the Fourth International Conference on

Genetic Algorithms, Morgan Kaufman, San Mateo, USA.

Back, T., and Schiitz., M. (1996): Intelligent Mutation Rate Control in Canonical Genetic

205

Bibliography

Algorithms., pp. 158-167. In W. Ras, and M. Michalewicz (Eds): In ninth

International Syposium on Methodologies for Intelligent Systems, Springer,

Zakopane, Poland.

Baker, J. E. (1985): Adaptive Selection Methods for Genetic Algorithms, pp. 101-111. In J.

J. Grefenstette (Ed.): the First International Conference on Genetic Algorithms and

their Applications, Lawrence Erlbaum Associates, Hillsdale, USA.

Bala, J., De Jong, K. A., Huang, J., Vafaie, H., and Wechsler, H. (1996): Using Learning

To Facilitate The Evolution Of Features For Recognizing Visual Concepts.

Evolutionary Computation 4, 297-311.

Baldwin, J. (1896): A New Factor In Evolution. The American Naturalist 30, 41-451.

Ballester, P., and Carter, J. (2004): An Effective Real-Parameter Genetic Algorithm for

Multimodal Optimization, pp. 359-364. In V. I. C. Parmee (Ed.): Adaptive

Computing in Design and Manufacture, Springer, Bristol, UK.

Baluja, S. (1994): Population-Based Incremental Learning: A Method for Integrating

Genetic Search Based Function Optimization and Competitive Learning: Technical

Report: CS-94-163, Carnegie Mellon University.

Barr, R. S., Golden, B. L., Kelly, J. P., Resende, M. G. C., and Stewart, W. R. (1995):

Designing and Reporting On Computational Experiments With Heuristic Methods.

Journal o f Heuristics 1, 9-32.

Beasley, D., Bull, D. R., R, and Martin, R. (1993a): An Overview Of Genetic Algorithms :

Part 1, Fundamentals. University Computing 15, 58-69.

Beasley, D., Bull, D. R., R, and Martin, R. (1993b): An Overview Of Genetic Algorithms :

Part 2, Research Topics. University Computing 15, 170-181.

Belew, R. K. (1989): When Both Individuals and Populations Search: Adding Simple

Learning To The Genetic Algorithm, pp. 34-41. In H. Schaffer (Ed.): the Third

International Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo,

USA.

Belew, R. K., Mclnerney, J., and Schraudolph, N. N. (1991): Evolving Networks: Using the

Genetic Algorithm with Connectionist Learning, pp. 511-547: Artificial Life II,

Addison-Wesley, New York, USA.

Besnard, E., Cordier-Lallouet, N., Schmitz, A., Kural, O., and Chen, H. P. (1999):

Design/Optimization with Advanced Simulated Annealing: AIAA Paper No. 99-

0186, American Insitute of Aeronautic and Astronautics.

206

Bibliography

Beyer, H.-G., and Deb, K. (2001): On Self-adaptive Features in Real-Parameter

Evolutionary Algorithms. IEEE Transactions on Evolutionaiy Computation 5, 250-

270.

Bilchev, G., and Parmee, I. C. (1995): The Ant Colony Metaphor for Searching Continuous

Design Spaces, pp. 25-39. In T. C. Fogarty (Ed.): AISB Workshop on Evolutionaiy

Computing, Springer Verlag, Sheffield, UK.

Bommel, P. v., and Weide, T. P. v. d. (1992): Towards Database Optimization by

Evolution, pp. 273-287. In A. K. Mammdar, and N. Prakash (Eds): the

International Conference on Information Systems and Management o f Data,

Bangalore, India.

Booker, L. (1987): Improving Search in Genetic Algorithms, pp. 61-73: Genetic Algorithms

and Simulated Annealing, Pitman.

Botee, H. M., and Bonabeau, E. (1998): Evolving Ant Colony Optimization. Advanced

Complex Systems 1, 149-159.

Bridges, C. L., and Goldberg, D. E. (1987): An Analysis of Reproduction and Crossover in

a Binary-Coded Genetic Algorithm, pp. 9-13. In J. J. Grefenstette (Ed.): the Second

International Conference on Genetic Algorithms, Lawrence Erlbaum Associates,

Hillsdale, USA.

Buckham, B. J., and Lambert, C. Simulated annealing applications. Retrieved September

2003 from the World Wide Web:

http://www. me. uvic. cci/~zdong/courses/mech620/SA_App. PDF.

Burdsall, B., and Giraud-Carrier, C. (1997 b): GA-RBF: A Self-Optimising RBF Network,

pp. 348-351. In G. Smith, N. Steele, and R. Albrecht (Eds): the Third International

Conference on Artificial Neural Networks and Genetic Algorithms, Springer-

Verlag, Vienna, Austria.

Burdsall, B., and Giraud-Carrier, C. (1997a): Evolving Fuzzy Prototypes for Efficient Data

Clustering, pp. 217-223: Second International ICSC Symposium on Fuzzy Logic

and Applications, Zurich, Switzerland.

Burke, E. K., Elliman, D. G., and Weare, R. F. (1995): A Hybrid Genetic Algorithm for

Highly Constrained Timetabling Problems, pp. 605-610. In L. J. Eshelman (Ed.):

the sixth International Conference on Genetic Algorithms, Morgan Kaufmann

Pittsburgh, USA

Cantu-Paz, E. (1998): A Survey of Parallel Genetic Algorithms. Calculateurs Parallele,

207

http://www

Bibliography

Reseaux et Systems Repartis 10, 141-171.

Ceroni, A., Pelikan, M., and Goldberg, D. E. (2001): Convergence-Time Models for the

Simple Genetic Algorithm with Finite Population: IlliGAL technical report

2001028.

Chaiyaratana, N., and Zalzala, A. M. (2000): Hybridisation of Neural Networks and a

Genetic Algorithm for Friction Compensation, pp. 22-29: The 2000 Congress on

Evolutionary Computation, San Diego, USA.

Chalmers, D. (1990): The Evolution of Learning: An Experiment in Genetic

Connectionism, pp. 81-90. In D. Touretzky, J. Elman, T. Sejnowski, and G. Hinton

(Eds): Connectionist Models, 1990 Summer School, Morgan Kaufmann, San Diego,

USA.

Chen, M., and Lu, Q. (2005): A Hybrid Model Based on Genetic Algorithm and Ant

Colony Algorithm. Journal o f Information & Computational Science 2, 647-653.

Chen, Y., and Goldberg, D. (2005): Convergence Time for the Linkage Learning Genetic

Algorithms. Evolutionary computation 13, 279-302.

Como, F., Reorda, M. S., and Squillero, G. (1998): The Selfish Gene Algorithm: A New

Evolutionary Optimization Strategy, pp. 349-355 the 1998 ACM symposium on

Applied Computing, ACM, Atlanta, USA.

Davidor, Y. (1991): Genetic Algorithms and Robotics: A Heuristic Strategy for

Optimization. World Scientific Publishing.

Davis, L. (1989): Adapting Operator Probabilities in Genetic Algorithms, pp. 61-69: the

Third International Conference on Genetic Algorithms, Morgan Kaufmann,

Fairfax, USA.

Davis, L., and Steenstrup, M. (1987): Genetic Algorithms and Simulated Annealing: An

Overview, pp. 1-11: Genetic Algorithms and Simulated Annealing, Pitman.

Deb, K. (1997): Limitations of Evolutionary Computation Methods, pp. B2.9. In T. Back,

D. B. Fogel, and Z. Michalewicz (Eds): Handbook o f Evolutionary Computation,

IOP Publishing and Oxford University Press.

Deb, K. (1999): Evolutionary Algorithms for Multi-Criterion Optimization in Engineering

Design, pp. 135-161. In K. Miettinen, P. Neittaanmaki, M. M. Malcela, and J.

Periaux (Eds): Evolutionary Algorithms in Engineering and Computer Science

(EUROGEN-99), Wiley, Finland.

Deb, K., Anand, A., and Joshi, D. (2002): A Computationally Efficient Evolutionary

208

Bibliography

Algorithm for Real-Parameter Optimization. Evolutionary Computation 10, 371-

395.

Deb, K., and Goel, T. (2001): A Hybrid Multi-Objective Evolutionary Approach to

Engineering Shape Design, pp. 385 -399. In E. Zitzler, K. Deb, L. Thiele, C.

Coello, and D. Corne (Eds): the First International Conference on Evolutionary

Multi-Criterion Optimization, Zurich, Switzerland.

De Jong, K. A., and Jayshree, S. (1992): Generation Gaps Revisited, pp. 19-28. In L. D.

Whitley (Ed.): Foundations o f Genetic Algorithms 2, Morgan Kaufmann, San

Mateo, USA.

De Jong, K. A., Potter, M. A., and Spears, W. (1997): Using Problem Generators to

Explore the Effects of Epistasis, pp. 338-345. In T. Back (Ed.): the Seventh

International Conference on Genetic Algorithms (ICGA97), East Lansing, USA.

De Jong, K. A., and Spears, W. M. (1992): A Formal Analysis of the Role of Multi-Point

Crossover in Genetic Algorithms. Annals o f Mathematics and Artificial Intelligence

5, Jan-26.

De Jong, K. (1975): An Analysis of the Behavior of a Class of Genetic Adaptive Systems:

Computer and Communication Sciences, The University of Michigan, Ann Arbor.

De Jong, K. (2005): Genetic algorithms: A 30 year perspective. In L. Booker, S. Forrest, M.

Mitchell, and R. Riolo (Eds): Perspectives on Adaptation in Natural and Artificial

Systems, Oxford University Press.

De Jong, K., and Spears, W. (1993): On The State of Evolutionary Computation, pp. 618-

623: the Fifth International Conference on Genetic Algorithms, Urbana-

Champaign, USA.

Di Caro, G., and Dorigo, M. (1998): AntNet: Distributed Stigmergetic Control for

Communications Networks. Journal o f Artificial Intelligence Research 9, 317-365.

Digalakis, J. G., and Margaritis, K. G. (2002): An Experimental Study Of Benchmarking

Functions For Genetic Algorithms. International Journal o f Computer

Mathematics 79, 403-416.

Dijk, S. v., Thierens, D., and Berg, M. d. (2004): On the Design and Analysis of Competent

Selecto-Recombinative GAs. Evolutionary Compution. 12, 243-67.

Dorigo, M., and De Caro, G. (1999): The Ant Colony Optimization Meta-Heuristic, pp. 11-

32. In D. Corne, M. Dorigo, and F. Glover (Eds): New Ideas in Optimization,

McGraw-Hill.

209

Bibliography

Dorigo, M., De Caro, G., and Gambardella, L. M. (1999): Ant Algorithms for Discrete

Optimization. Artificial Life 5, 137-172.

Dorigo, M., and Gambardella, L. (1997): Ant Colony System: A Cooperative Learning

Approach to the Traveling Salesman Problem. IEEE Transactions on Evolutionary

Computation 1, 53-66.

Dorigo, M., Maniezzo, V., and Colorni, A. (1991): Positive Feedback as a Search Strategy:

Technical Report No 91-016, Politecnico di Milano.

Dorigo, M., Maniezzo, V., and Colorni, A. (1996): The Ant System: Optimization by a

Colony of Cooperating Agents. IEEE Transaction on Systems, Man, and

Cybernetics-Part B 26, 1-13.

Dr'eo, J., and Siarry, P. (2002): A New Ant Colony Algorithm Using the Heterarchical

Concept aimed at optimization of multiminima continuous functions, pp. 216-221:

Third International Workshop on Ant Algorithms (ANTS 2002), Springer Verlag,

Brussels, Belgium.

Eiben, A. E., EQnterding, R., and Michalewicz, Z. (1999): Parameter Control In

Evolutionary Algorithms. IEEE Transactions on Evolutionary Computation 3, 24-

141.

Eshelman, J., Caruana, R., and Schaffer, J. (1989): Biases In the Crossover Landscape, pp.

10 -19 In H. Schaffer (Ed.): the third International Conference on Genetic

Algorithms, Morgan Kaufmann, San Mateo, USA.

Eshelman, L. J. (1991): The CHC Adaptive Search Algorithm : to have safe search when

engaging in nontraditional genetic recombination, pp. 265-283. In G. J. E. Rawlins

(Ed.): the First Workshop on Foundations o f Genetic Algorithms, Morgan

Kaufmann, Bloomington Campus, USA.

Eshelman, L. J. (1997): Genetic Algorithms, pp. B1.2. In T. Back, D. B. Fogel, and Z.

Michalewicz (Eds): Handbook o f Evolutionary Computation, IOP Publising Ltd

and Oxford University Press.

Espinoza, F., Minsker, B. S., and Goldberg, D. (2003b): Local Search Issues for the

Appliction of a Self-Adaptive Hybrid Genetic Algorithm in Groundwater

Remediation Design: American Society o f Civil Engineers (ASCE) Environmental

& Water Resources Institute (EWRI) World Water & Environmental Resources

Congress 2003 & Related Symposia, Philadelphia, USA.

Espinoza, F. B., Minsker, B., and Goldberg, D. (2001): A Self Adaptive Hybrid Genetic

210

Bibliography

Algorithm, pp. 759: the Genetic and Evolutionary Computation Conference

(GECCO 2001), Morgan Kaufmann Publishers, San Francisco, USA.

Espinoza, F. B., Minsker, B., and Goldberg, D. (2003a): Performance Evaluation And

Population Size Reduction For Self Adaptive Hybrid Genetic Algorithm (SAHGA),

pp. 922-933: the Genetic and Evolutionary Computation Conference, Springer, San

Francisco, USA.

Fogel, D. (1997): Why Evolutionary Computation?, pp. A l.l. In T. Back, D. B. Fogel, and

Z. Michalewicz (Eds): Handbook o f Evolutionary Computation, IOP Publising Ltd

and Oxford University Press.

Fontanari, J., and Meir, R. (1991): Evolving a Learning Algorithm for the Binary

Perceptron. Network 2, 353-359.

Freisleben, B., and Merz, P. (1996): New Genetic Local Search Operators for the Travaling

Salesman Problem, pp. 890-899. In H.-M. Voigt, W. Ebeling, I. Rechenberg, and

H.-P. Schwefel (Eds): the Fourth Conference on Parallel Problem Solving from

Nature Springer-Verlag, Berlin, Germany.

Gaertner, D., and Clark, K. L. (2005): On Optimal Parameters for Ant Colony Optimization

Algorithms, pp. 83-89: the 2005 International Conference on Artificial

Intelligence, 1CAI2005, Las Vegas, USA.

Gao, Y. (2003): Population Size and Sampling Complexity in Genetic Algorithms, pp. 178-

181. In A. M. Barry (Ed.): Proceedings o f the Bird o f a Feather Workshops,

Genetic and Evolutionary Computation Conference, AAAI, Chigaco, USA.

Gendreau, M. (2003): An Introduction to Tabu Search, pp. 37-54. In F. Glover, and G. A.

Kochenberger (Eds): Metaheuristic Handbook, Kluwer Academic Publishers.

Giraud-Moreau, L., and Lafon, P. (2002): A Comparison of Evolutionary Algorithms for

Mechanical Design Components. Engineering Optimization 34, 307-322.

Glover, F. (1989): Tabu Search- part I. ORSA Journal on Computing 1, 190-260.

Glover, F. (1990): Tabu Search: A Tutorial. Interfaces 20, 74-94.

Goldberg, D. E. (1987): Simple Genetic Algorithms and the Minimal, Deceptive Problem,

pp. 74-88: Genetic algorithms and simulated annealing, Pitman.

Goldberg, D. E. (1989a): Genetic Algorithms in Search, Optimization, and Machine

Learning. Addison-Wesley.

Goldberg, D. E. (1989b): Sizing Population for Serial and Parallel Genetic Algorithms, pp.

211

Bibliography

70-79. In J. D. Schaffer (Ed.): the Third International Conference on Genetic

Algorithms, Morgan Kaufmann, San Mateo, USA.

Goldberg, D. E. (1999): Using Time Efficiently: Genetic-Evolutionary Algorithms and the

Continuation Problem, pp. 212-219: the Genetic and Evolutionary Computation

Conference, Orlando, USA.

Goldberg, D. E. (2003): Foreward. EURASIP Journal on Applied Signal Processing 8, 731-

732.

Goldberg, D. E., and Deb, K. (1991): A Comparative Analysis of Selection Scheme Used in

Genetic Algorithms, pp. 69-93: Foundations o f Genetic Algorithms, Morgan

Kaufmann, San Mateo, USA.

Goldberg, D. E., Deb, K., and Clark, J. H. (1992): Genetic Algorithms, Noise, and the

Sizing of Populations. Complex Systems 6, 333-362.

Goldberg, D. E., and K.Sastry (2001): A Practical Schema Theorem For Genetic Algorithm

Design And Tuning, pp. 328-348: the Genetic and Evolutionary Computation

Conference (GECCO 2001), Morgan Kaufmann, San Francisco, USA.

Goldberg, D. E., and Lingle, R. (1985): Alleles, Loci, and the Traveling Salesman Problem,

pp. 154-159: the International Conference on Genetic Algorithms and their

Applications, Lawrence Erlbaum, Flillsdale, USA.

Goldberg, D. E., Sastry, K., and Latoza, T. (2001): On the Supply of Building Blocks, pp.

336-342: the Genetic and Evolutionary Computation Conference (GECCO 2001),

Morgan Kaufmann, San Francisco, USA.

Goldberg, D. E., and Voessner, S. (1999): Optimizing Global-Local Search Hybrids, pp.

222-228: the Genetic and Evolutionary Computation Conference (GECCO 1999),

Morgan Kaufmann, Orlando, USA.

Grefenstette, J. (1992): Genetic Algorithms for Changing Environments, pp. 139-146. In R.

Manner, and B. Manderick (Eds): Parallel Problem Solving from Nature II,

Brussels, Belgium.

Grefenstette, J. J. (1986): Optimization of Control Parameters for Genetic Algorithms.

IEEE Transactions on Systems, Man and Cybernetics 16, 122-128.

Grefenstette, J. J. (1987): Incorporating Problem Specific Knowledge into Genetic

Algorithm, pp. 42-60: Genetic Algorithms and Simulated Annealing, Pitman.

Grefenstette, J. J. (1997): Rank-Based Selection, pp. c2.5:l-4. In T. Back, D. B. Fogel, and

Z. Michalewicz (Eds): Handbook o f Evolutionary Computation, IOP Publishing

212

Bibliography

and Oxford University Press.

Grefenstette, J. J., Gopal, R., Rosmaita, B., and Gucht, D. v. (1985): Genetic Algorithms

for the Traveling Salesman Problem, pp. 160-165. In J. J. Grefenstette (Ed.): the

First International Conference on Genetic Algorithms ancl Their Applications,

Lawrence Erlbaum, Pittsburgh, USA.

Griewanlc, A. O. (1981): Generalized Descent for Global Optimization. Journal o f

Optimization Theory and Applications 34, 11—39.

Gruau, F., and Whitley, D. (1993): Adding Learning To The Cellular Development Of

Neural Network: Evolution And Baldwin Effect. Evolutionary Computation 1, 213-

233.

Hacker, K. A., Eddy, J., and Lewis, K. E. (2002): Efficient Global Optimization Using

Hybrid Genetic Algorithms. 9th AIAA/ISSMO Symposium on Multidisciplinary

Analysis and Optimization, pp. AIAA 2002-5429.

Hagema, J. A., Wehren, R., Sprang, H. A. v., and Buydens, L. M. C. (2003): Hybrid

Genetic Algorithm-Tabu Search Approach For Optimizing Multilayer Optical

Coating. Analytica Chimica Acta 490, 211-222.

Han, K.-H., and Kim, J.-H. (2002): Quantum-Inspired Evolutionary Algorithm For A Class

Of Combinatorial Optimization. IEEE Transactions On Evolutionary Computation

6, 580- 593.

Han, K.-H., and Kim, J.-H. (2004): Quantum-Inspired Evolutionary Algorithm With A

New Termination Criterion, He Gate, And Two-Phase Scheme. IEEE Transactions

On Evolutionary Computation 8, 156-169.

ITarik, G., Cantu-Paz, E., Goldberg, D. E., and Miller, B. 1. (1999): The Gambler's Ruin

Problem, Genetic Algorithms, and the Sizing of Populations. Evolutionary>

Computation 7, 231 - 253.

Hart, W. E. (1994): Adaptive Global Optimization With Local Search: Computer Science &

Engineering, University of California San Diego

Hart, W. E., and Belew, R. K. (1996): Optimization with Genetic Algorithm Hybrids that

Use Local Search, pp. 483-496. In R. Belew, and M. Mitchell (Eds): Adaptive

individuals in evolving populations: Models and algorithms, Addison-Wesley.

Hart, W. E., Kammeyer, T. E., and Belew, R. K. (1995): The Role of Development in

Genetic Algorithms, the Third Workshop on Foundations of Genetic Algorithms,

pp. 315-332.

213

Bibliography

Hart, W. E., Rosin, C. R., Belew, R. K., and Morris, G. M. (2000): Improved Evolutionary

Hybrids for Flexible Ligand Docking in AutoDock, pp. 209-230. In C. A. Floudas,

and P. M. Pardalos (Eds): Optimization in Computational Chemistry and Molecular

Biology, Springer

Hedar, A., and Fukushima, M. (2003): Simplex Coding Genetic Algorithm For The Global

Optimization Of Nonlinear Functions, pp. 135-140. In T. Tanino, T. Tanaka, and

M. Inuiguchi (Eds): Multi-Objective Programming and Goal Programming,

S pringer-V erlag.

Plerrera, F., and Lozano, M. (1996): Heuristic Crossovers for Real-Coded Genetic

Algorithms Based on Fuzzy Connectives, pp. 336 - 345: the 4th International

Conference on Parallel Problem Solving from Nature, Springer-Verlag Berlin,

Germany.

Herrera, F., and Lozano, M. (2001): Adaptive Genetic Operators Based on Coevolution

with Fuzzy Behaviors. IEEE TRANSACTIONS ON EVOLUTIONARY

COMPUTATION 5, 149-165.

Hertz, A., Taillard, E., and Werra, D. d. (1995): A Tutorial on Tabu Search, pp. 13-24:

Giornate di Lavoro AIRO'95 (Enterprise Systems: Management o f Technological

and Organizational Changes), Italy.

Hesser, J., and Manner, R. (991): Towards an Optimal Mutation Probability for Genetic

Algorithms pp. 23-32. In H. P. S. a. R. M"anner (Ed.): Parallel Problem Solving

from Nature - Proceedings o f 1st Workshop, PPSN 1, Springer-Verlag, Dortmund,

Germany.

Hinterding, R. (1997): Self-Adaptation Using Multi-Chromosomes, pp. 87-91: IEEE

International Conference on Evolutionary Computation, IEEE, Indianapolis, USA.

Hinterding, R., Michalewicz, Z., and Eiben, A. E. (1997): Adaptation in Evolutionary

Computation: A Survey. IEEE International Conference on Evolutionary

Computation, pp. 65-69.

Hinterding, R., Michalewicz, Z., and Peachey, T. C. (1996): Self-Adaptive Genetic

Algorithm for Numeric Functions, pp. 420-429: the Fourth International

Conference on Parallel Problem Solving from Nature, Springer-Verlag, Berlin,

Germany.

Hinton, G., and Nowlan, S. J. (1987): How Learning Can Guide Evolution. Complex

Systems 1, 495-502.

214

Bibliography

Holland, J. (1975): Adaptation in natural and artificial systems. The University of

Michigan.

Holland, J. H. (1992): Genetic Algorithms. Scientific American 261, 66-72.

Homaifar, A., Guan, S., and Liepins, G. E. (1992): Schema Analysis of the Traveling

Salesman Problem using Genetic Algorithms. Complex Systems 6, 533-552

Hopgood, A. A. (2001): Intelligent Systems fo r Engineers and Scientists. CRC Press.

Horst, R., and Pardalos, P. M. (1995): Preface: Handbook o f Global Optimization, Kluwer

Academic.

Houck, C., Joines, J., Kay, M., and Wilson, J. (1997): Empirical Investigation of The

Benefits Of Partial Lamarckianism. Evolutionary Computation 5, 31- 60.

Houck, C. R., Joines, J. A., and Kay, M. G. (1996): Comparison of Genetic Algorithms,

Random Restart and Two-Opt Switching for Solving Large location-Allocation

Problems. Computers and Operations Research 23, 587 - 596.

Ibaraki, T. (1997): Combinations with Other Optimization Methods, pp. D3:l-. In T. Back,

D. B. Fogel, and Z. Michalewicz (Eds): Handbook o f Evolutionary Computation,

IOP Publishing and Oxford University Press.

Iorio, A., and Li, X. (2002): Parameter Control within a Co-operative Co-evolutionary

Genetic Algorithm, pp. 247-256 the Seventh International Conference on Parallel

Problem Solving from Nature, Springer-Verlag Granada, Spain.

Ishibuchi, H., Kaige, S., and Narukawa, K. (2005): Comparison Between Lamarckian and

Baldwinian Repair on Multi objective 0/1 Knapsack Problems, pp. 370-385. In

Carlos A. Coello Coello, A. H. Aguirre, and E. Zitzler (Eds): Evolutionary Multi-

Criterion Optimization, Guanajuato, Mexico.

Ishibuchi, H., Yoshida, T., and Murata, T. (2003): Balance between genetic search and

local search in memetic algorithms for multi objective permutation flowshop

scheduling. IEEE Transactions on Evolutionaiy Computation, 1, 204- 223.

Jain, B. J., Pohlheim, H., and Wegener, J. (2001): On Termination Criteria of Evolutionary

Algorithms, pp. 768: the Genetic and Evolutionary Computation Conference

(GECCO 1), Morgan Kaufmann Publishers, San Francisco, USA.

Jin, Y. (2005): A Comprehensive Survey Of Fitness Approximation In Evolutionary

Computation. Soft Computing 9, 3-12.

Jin, Y., and Sendhoff, B. (2004): Reducing Fitness Evaluations Using Clustering

215

Bibliography

Techniques And Neural Network Ensembles, pp. 688-699: Genetic and

Evolutionary Computation Conference (GECCO 2004), Springer, Seattle, USA.

Joborn, M., Crainic, T. G., Gendreau, M., Holmberg, K., and Lundgren, J. T. (2004):

Economies of Scale in Empty Freight Car Distribution in Scheduled Railways.

Transportation Science 38, 121-134.

Jog, P., Suh, J. Y., and Gucht, D. V. (1991): Parallel Genetic Algorithms Applied to the

Traveling Salesman Problem. SIAM Journal o f Optimization 1, 515-529

Joines, J. A., Houck, C. R., and Kay, M. G. (2000a): Characterizing Search Spaces for Tabu

Search and Including Adaptive Memory into a Genetic Algorithm. Journal o f the

Chinesse Institute o f Industrial Engineers 17, 527-536.

Joines, J. A., and Kay, M. G. (2002): Hybrid Genetic Algorithms and Random Linkage, pp.

1733-1738: the 2002 Congress on Evolutionary Computation, IEEE, Honolulu,

USA.

Joines, J. A., Kay, M. G., King, R., and Culbreth, C. (2000b): A Hybrid Genetic Algorithm

for Manufacturing Cell Design. Journal o f the Chinese Institute o f Industrial

Engineers 17, 549-564.

Julstrom, B. (1995): What Have You Done for Me Lately? Adapting Operator Probabilities

in a Steady-State Genetic Algorithm, pp. 81-87: the sixth International Conference

on Genetic Algorithms, Pittsburgh, USA.

Julstrom, B. (1999): Comparing Darwinian, Baldwinian, And Lamarckian Search In A

Genetic Algorithm For The 4-Cycle Problem, pp. 134-138. In S. Brave, and A. S.

Wu (Eds): the 1999 Genetic and Evolutionary Computation Conference, Late

Breaking Papers, Orlando, USA.

Karr, C. L. (1991): Design of an adaptive Fuzzy Logic Controller Using a Genetic

Algorithm, pp. 450-457: the Fourth International Conference on Genetic

Algorithms, Morgan Kaufmann, San Diego, USA.

Karr, C. L., and Gentry, E. J. (1993): Fuzzy Control of pH using genetic Algorithms. IEEE

Transaction on Fuzzy Systems 1, 46-53.

Kennedy, J., and Spears, W. M. (1998): Matching Algorithms to Problems: An

Experimental Test of the Particle Swarm and Some Genetic Algorithms on the

Multimodal Problem Generator, pp. 78-83. In J. Kennedy (Ed.): the IEEE

International Conference on Evolutionary Computation, IEEE press, Piscataway,

USA.

216

Bibliography

Kim, Y., and Week, O. d. (2004): Variable Chromosome Length Genetic Algorithm for

Structural Topology Design Optimization. Structural ancl Multidisciplinary

Optimization 29, 445 - 456

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983): Optimization by Simulated

Annealing. Science 220, 671-680.

Konak, A., and Smith, A. E. (1999): A Hybrid Genetic Algorithm Approach for Backbone

Design of Communication Networks, pp. 1817-1823: the 1999 Congress on

Evolutionary Computation, IEEE, Washington D.C, USA.

Koza, J. R., and Rice, J. P. (1991): Genetic Generation of Both the Weights and

Architecture for a Neural Network, pp. 397-404: Joint Conference on Neural

Netw>orks, Seattle, USA.

Krasnogor, N. (1999): Coevolution of Genes and Memes in Memetic Algorithms, pp. 371.

In A. Wu (Ed.): the Genetic and Evolutionary Computation Conference Workshop

Program, Orlando, USA.

Krasnogor, N., and Simth, J. (2001): Emergence Of Profitable Search Strategies Based On

A Simple Inheritance Mechanism, pp. 432-439: the Genetic and Evolutionary

Computation Conference, Morgan Kaufmann, San Francisco, USA.

Krasnogor, N., and Smith, J. (2000): A Memetic Algorithm with Self-Adaptive Local

Search: TSP as A Case Study, pp. 987-994: the Genetic and Evolutionary

Computation Conference, Morgan Kaufmann, Las Vegas, USA

Krasnogor, N., and Smith, J. (2005): A Tutorial for Competent Memetic Algorithms:

Model, Taxonomy and Design Issues. IEEE Transactions on Evolutionary>

Computation 9, 474-488.

Ku, K. W., and Male, M. W. (1997): Exploring the Effects of Lamarckian and Baldwinian

Learning in Evolving Neural Networks, pp. 617-622: International Conference on

Evolutionary Computation, Indianapolis, USA.

Land, M., SIDorowich, J. J., and Belew, R. K. (1997): Using Genetic Algorithms with

Local Search for Thin Film Metrology, pp. 537-544: the Seventh International

Conference on Genetic Algorithms, Morgan Kaufmann, East Lansing, USA.

Land., M. (1998): Evolutionary Algorithms with Local Search for Combinatorial

Optimization: Computer Science and Engrinerring University of California

San Diego.

Lawrence, S., Tsoi, A. C., and Back, A. D. (1996): Function Approximation with Neural

217

Bibliography

Networks and Local Methods: Bias, Variance and Smoothness, pp. 16-21:

Australian Conference on Neural NetM>orks,, Canberra.

Leng, L. T. (1999): Guided Genetic Algorithm: Department o f Computer Science,,

University of Essex.

Levine, D. (1994): A Parallel Genetic Algorithm for the Set Partitioning Problem: Argonne

National Laboratory’.

Liang, H., Lin, Z., and McCallum, R. W. (2000): Application of Combined Genetic

Algorithms with Cascade Correlation to Diagnosis of Delayed Gastric Emptying

from Electrogastrograms. Medical Engineering & Physics 22, 229-234.

Liang, K., Yao, X., and Newton, C. (1999): Combining Landscape Approximation and

Local Search In Global Optimization, pp. 1514-1520: the Congress on

Evolutionary Computation, IEEE Press, Washington DC, USA.

Lin, B., and Miller, D. C. (2004a): Tabu Search Algorithm for Chemical Process

Optimization. Computers & Chemical Engineering 28, 2287-2306.

Lin, B., and Miller, D. C. (2004b): Solving Heat Exchanger Network Synthesis Problems

with Tabu Search. Computers & Chemical Engineering 28, 1451-1464.

Lin, F. T., Kao, C. Y., and Hsu., C. C. (1991): Incorporating genetic algorithms into

simulated annealing, pp. 290-297: the Fourth International Symposium on

Artificial Intelligence, Cancun, Mexico.

Lobo, F. G., D, Goldberg, E., and Pelikan, M. (2000): Time complexity of genetic

algorithms on exponentially scaled problems, pp. 151-158: The genetic ncl

evolutionary computation conference, Morgan-Kaufmann, Las Vegas, USA

Lobo, F. G., and Goldberg, D. E. (1997): Decision Making in a Hybrid Genetic Algorithm,

pp. 122-125: IEEE International Conference on evolutionaiy Computation, IEEE

Press, Piscataway, USA.

Lozano, M., Herrera, F., Krasnogor, N., and Molina, D. (2004): Real-Coded Memetic

Algorithms With Crossover Hill-Climbing. Evolutionary computation 12, 273 -

302

Magyar, G., Johnsson, M., and Nevalainen, O. (2000): An adaptive Hybrid Genetic

Algorithm for the Three-Matching Problem. IEEE Transaction on Evolutionaiy

Computation 4, 135-146.

Mahfoud, S., and Goldberg, D. (1995): Parallel Recombinative Simulated Annealing: A

genetic algorithm. Parallel Computing 21, 11-28.

218

Bibliography

Mahfoud, S. W. (1997): Bltzmann Selection, pp. C2.5:l-4. In T. Back, D. B. Fogel, and Z.

Michalewicz (Eds): Handbook o f Evolutionary Computation, IOP Publising Ltd

and Oxford University Press.

Maniezzo, V., Gambardella, L. M., and F. de Luigi. (2004): Ant colony optimization, pp.

101-117. In G. C. Onwubolu, and B. V. Babu (Eds): New Optimization Techniques

in Engineering, Springer-Verlag.

Martinez-Estudillo, A., Hervas-Martnez, C., Martnez-Estudillo, F., and Garca-Pedrajas, N.

(2004): Hybrid Method Based on Clustering for Evolutionary Algorithms with

Local Search. IEEE Transactions on Systems, Man and Cybernetics.

Mathias, K., and Whitley, D. (1992): Genetic Operators, the Fitness Landscape and the

Traveling Salesman Problem, pp. 219-228: Parallel Problem Solving from Nature-

PPSN 2, North Holland-Elsevier, Brussels, Belguim.

Mathias, K., Whitley, L., Stock, C., and Kusuma, T. (1994): Staged Hybrid Genetic Search

For Seismic Data Imaging, pp. 356-361: International Conference on Evolutionary

Computation, Orlando, USA.

Mayley, G. (1996): Landscapes, Learning Costs and Genetic Assimilation. Evolutionary

Computation 4, 213 - 234.

De la Maza, M., and Yure, D. (1995): Seeing Clearly: Medical Imaging Now and

Tomorrow: Future Health: Computers and Medicine in the 21st Century, St.

Martin's Press.

Michalewicz, Z. (1996): Genetic Algorithms + Data Structures = Evolution Programs

Springer-Verlag.

Michalewicz, Z., and Fogel, D. B. (2000): How to Solve It: Modern Heuristics. Springer-

Verlag.

Michalewicz, Z., Hinterding, R., and Michalewicz, M. (1997): Evolutionary Algorithms,

pp. chapter 2. In W. Pedrycz (Ed.): Fuzzy Evolutionary Computation, Kluwer

Academic.

Michalewicz, Z., and Nazhiyath, G. (1995): Genocop HI: A Co-Evolutionary Algorithm

For Numerical Optimization Problems With Nonlinear Constraints, pp. 647-651:

2nd IEEE International Conference on Evolutionary Computation, IEEE, Perth,

Australia

Michel, R., and Middendorf, M. (1998): An Island Model Based Ant System with

Lookahead for the Shortest Supersequence Problem, pp. 692-701: the Fifth

219

Bibliography

International Conference on Parallel Problem Solving from Nature, Springer-

Verlag, Amsterdam, The Netherlands.

Miller, G. F., Todd, P. M., and Hegde, S. U. (1989): Designing neural networks using

genetic algorithms, pp. 379-384. In J. D. Schaffer (Ed.): the Third International

Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, USA.

Miller, J. A., Potter, W. D., Gandham, R. V., and Lapena, C. N. (1993): An Evaluation Of

Local Improvement Operators For Genetic Algorithms. IEEE Transactions o f

Systems, Man and Cybernetics, 23, 1340-1351.

Mitchell, M., Holland, J. H., and Forrest, S. (1993): When Will A Genetic Algorithm

Outperform Hill Climbing? Advances in Neural Information Processing Systems 6,

51-58.

Monmarch'e, N., Venturini, G., and Slimane, M. (2000): On How Pachycondyla Apicalis

Ants Suggest a New Search Algorithm. Future Generation Computer Systems 16,

937-946.

Montana, D. J. (1995): Neural Network Weight Selection Using Genetic Algorithms, pp.

85-104: Intelligent Hybrid Systems, John Wiley & Sons.

Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., and

Olson, A. J. (1998): Automated Docking Using a Lamarckian Genetic Algorithm

and an Empirical Binding Free Energy Function. Journal o f Computational

Chemistry 19, 1639-1662.

Moscato, P. (1989): On Evolution, Search, Optimization, Genetic Algorithms and Martial

Arts: Towards Memetic Algorithms: Tech. Rep. Caltech Concurrent Computation

Program, Report. 826, California Institute of Technology.

Mtihlenbein, H., and Schlierkamp-Voosen, D. (1993): Predictive Models for the Breeder

Genetic Algorithm. Evolutionaiy Computation 1, 25-49.

Mtihlenbein, H., Schomisch, M., and Born, J. (1991): The Parallel Genetic Algorithm as

Function Optimizer. Parallel Computing 17, 619-632.

Nolle, L., Armstrong, A., and Lee, S. (2000): On a Class of Non-Linear Rank Based

Genetic Algorithms, pp. 101-106: 5th International Conference on Soft Computing:

MENDEL 2000, Brno, Czech Republic.

Ochoa, G., Harvey, I., and Buxton, H. (1999): On Recombination and Optimal Mutation

Rates, pp. 13-17: Genetic and Evolutionaiy Computation Conference, Orlando,

USA.

220

Bibliography

Oliver, I. M., Smith, D. J., and Holland, J. R. C. (1987): A Study of Permutation Crossover

Operators on the Traveling Salesman Problem, pp. 224 - 230: the Second

International Conference on Genetic Algorithms on Genetic algorithms ancl their

application, Hillsdale, USA.

Ong, Y.-S., and Keane, A. J. (2004): Meta-Lamarckian learning in memetic algorithms.

IEEE Transactions on Evolutionary Computation 8, 99-110.

Orvosh, D., and Davis, L. (1993): Shall We Repair? Genetic Algorithms, Combinatorial

Optimization, and Feasibility Constraints, pp. 650: the Fifth International

Conference on Genetic Algorithms, Morgan Kaufmann, Urbana-Champaign, USA.

Pearce, R., and Cowley, P. H. (1996): Use of Fuzzy Logic to Describe Constraints Derived

from Engineering Judgment in Genetic Algorithms. IEEE Transactions on

Industrial Electronics 43, 535-540.

Pelikan, M., Goldberg, D. E., and Cantu-Paz, E. (1999a): BOA: The Bayesian Optimization

Algorithm, pp. 525-532: the Genetic and Evolutionary Computation Conference,

Morgan Kaufmann, Orlando, USA.

Pelikan, M., Goldberg, D. E., and Lobo, F. (1999b): A Survey of Optimization by Building

and Using Probabilistic Models: Technical Report 99018, IlliGAL.

Pilat, M. L., and White, T. (2002): Using Genetic Algorithms to Optimize ACS-TSP, pp.

282 - 287: the Third International Workshop on Ant Algorithms, Springer-Verlag,

Berlin, Germany.

Potter, M., and De Jong, K. (1994): A Cooperative Coevolutionary Approach to Function

Optimization, pp. 249-257: Third Parallel Problem Solving From nature, Springer-

Verlag, Jerusalem.

Press, W., Teukolsky, S., Vetterling, W., and Flannery, B. (1993): Numerical Recipes In C.

Cambridge University Press.

Preux, P., and Talbi, E.-G. (1999): Towards Hybrid Evolutionary Algorithms. International

Transactions in Operational Research 6, 557-570.

Radcliffe, N. J., and Surry, P. D. (1994): Formal Memetic Algorithms, pp. 1-16:

Evolutionary Computing: AISB Workshop, Springer-Verlag, Brighton, UK.

Rana, S. (1999): The Distributional Biases Of Crossover Operators, pp. 549-556: the

Genetic and Evolutionary Computation Conference, Morgan Kaufmann, Orlando,

USA.

Reed, P., Minsker, B. S., and Goldberg, D. E. (2000): Designing A Competent Simple

221

Bibliography

Genetic Algorithm For Search And Optimization. Water Resources Research 36,

3731-3741.

Reeves, C. (1993): Using Genetic Algorithms With Small Populations, pp. 92-99: the Fifth

International Conference on Genetic Algorithms, Morgan Kaufman, Urbana-

Champaign, USA.

Reeves, C. (1994): Genetic Algorithms and Neighbourhood Search, pp. 115-130. In T. C.

Fogarty (Ed.): Evolutionaiy Computing, AISB Workshop, Springer-Verlag, Leeds,

UK.

Richter, J. N., and Peak, D. (2002): Fuzzy Evolutionary Cellular Automata, pp. 185-191:

International Conference on Artificial Neural Networks In Engineering, Saint

Louis, USA.

Riopka, T. P., and Bock, P. (2000): Intelligent Recombination Using Individual Learning in

a Collective Learning Genetic Algorithm, pp. 104-111. In D. Whitley, D. Goldberg,

E. Cantu-Paz, L. Spector, I. Parmee, and H.-G. Beyer (Eds): the Genetic and

Evolutionary Computation Conference (GECCO-2000), Morgan Kaufmann, Las

Vegas, USA.

Rogers, A., and Priigel-Bennett, A. (1999): Genetic Drift in Genetic Algorithm Selection

Schemes. IEEE Transactions on Evolutionaiy Computation 3, 298-303.

Rolland, E. (1997): A Tabu Search Method for Constrained Real Number Search:

Applications to Portfolio Selection: Technical Report, Dept, of Accounting and

Management Information Systems. Ohio State University, Columbus. U.S.A.

Rosin, C. D., Halliday, R. S., Hart, W. E., and Belew, R. K. (1997): A Comparison of

Global and Local Search Methods in Drug Docking, pp. 221-228. In T. Back (Ed.):

the Seventh International Conference on Genetic Algorithms, Morgan Kaufmann,

Michigan, USA.

Rothlauf, F. (2002): Binary Representations of Integers and the Performance Of

Selectorecombinative Genetic Algorithms, pp. 99 - 110 In J. J. Merelo, P.

Adamidis, and H.-G. Beyer (Eds): the seventh International Conference on Parallel

Problem Solving from Nature, Springer-Verlag, Granada, Spain.

Rudolph, G. (1994): An Evolutionary Algorithm for Integer Programming, pp. 139-148. In

Y. Davidor (Ed.): Parallel Problem Solving from Nature III, Jerusalem.

Sasaki, T., and Tolcoro, M. (1997): Adaptation toward Changing Environments: Why

Darwinian in Nature?, pp. 145-153. In P. Husbands, and I. Harvey (Eds): Fourth

222

Bibliography

European Conference on Artificial Life, MIT press, Brighton, UK.

Sauter, J. A., Matthews, R. S., Parunak, H. V. D., and :, S. B. (2002): Evolving adaptive

pheromone path planning mechanisms, pp. 434-440. In C. Castelfranchi, and W.

Johnson (Eds): First International Joint Conference on Autonomous Agents and

Multi-Agent Systems, ACM Press, Bologna, Italy.

Schaffer, J. D., and Morishima, A. (1987): An Adaptive Crossover Distribution Mechanism

for Genetic Algorithms, pp. 36-40. In J. J. Grefenstette (Ed.): the Second

International Conference on Genetic Algorithms, Lawrence Erlbaum, Hillsdale,

USA.

Schraudolph, N. N., and Belew, R. K. (1992): Dynamic Parameter Encoding For Genetic

Algorithms. Machine Learning Journal 9, 9-22.

Schwefel, H.-P. (1995): Evolution and Optimum Seeking. Wiley. New York.

Schwefel, H.-P. (1997): Advantages (and Disadvantages) of Evolutionary Computation

Over Other Approaches, pp. A1.3. In T. Back, D. B. Fogel, and Z. Michalewicz

(Eds): Handbook o f Evolutionary Computation, IOP Publishing and Oxford

University Press.

Semet, Y., Lutton, E., and Collet., P. (2003): Ant Colony Optimisation for E-Learning:

Observing the Emergence of Pedagogic Suggestions, pp. 46- 52: IEEE Swarm

Intelligence Symposium, IEEE press, Indianapolis, USA

Shawe-Taylor, J., and Zerovnik, J. v. (2001): Ants and Graph Coloring, pp. 276-279. In V.

Kurkova, N. C. Steele, R. Neruda, and M. Karny (Eds): the International

Conference on Artificial Neural Nets and Genetic Algorithms, Springer-Verlag,

Portoroz, Slovenia.

Shmygelska, A., and Hoos, H. H. (2005): An Ant Colony Optimisation Algorithm for the

2D and 3D Hydrophobic Polar Protein Folding Problem. BMC Bioinformatics 6, 6-

30.

Sinha, A., and Goldberg, D. E. (2001): Verification And Extension Of The Theory Of

Global-Local Hybrids, pp. 592-598: the Genetic and Evolutionaiy Computation

Conference, Morgan Kaufmann, Sanfrancisco, USA.

Smith, J. E., and Fogarty, T. C. (1996): Self Adaptation of Mutation Rates in a Steady State

Genetic Algorithm, pp. 318 - 323: IEEE International Conference on Evolutionaiy

Computing, IEEE press, Nagoya, Japan.

Smith, J. E., and Fogarty, T. C. (1997): Operator and Parameter Adaptation in Genetic

223

Bibliography

Algorithms. Soft Computing, 81-87.

Socha, K. (2004): ACO for Continuous and Mixed-Variable Optimization, pp. 25-36: the

Fourth International Workshop on Ant Colony Optimization and Swarm

Intelligence (ANTS 2004), Brussels, Belgium.

Soils, F., and Wets, R. (1981): Minimization by Random Search Techniques. Mathematical

Operations Research 30, 19-30.

Spears, W. M. (1992): Crossover or Mutation?, pp. 221-237: Foundations o f Genetic

Algorithms Workshop Vail, USA.

Spears, W. M. (1995): Adapting Crossover in a Genetic Algorithm, pp. 367-384: the Fifth

Conference on Evolutionaiy Programming, MIT press, San Diego, USA.

Spitzer, F. (2000): Principles o f random walk. Springer.

Striz, and Sobieszczanski-Sobiesld (1996): Displacement Based Multilevel Structural

Optimization: AIAA-CP-4098, American Institute of Aeronautics and Astronautics,

Inc.

Sung-Soon, C., and Byung-Ro, M. A Graph-Based Lamarckian-Baldwinian Hybrid for the

Sorting Network Problem IEEE Transactions on Evolutionaiy Computation 9, 105-

114.

Syrjakow, M., and Szczerbicka, H. (1995): Combination of Direct Global and Local

Optimization Methods, pp. 326-333: IEEE Conference on Evolutionaiy

Computation, IEEE, Perth, Western Australia.

Syswerda, G. (1989): Uniform Crossover in Genetic Algorithms, pp. 2 - 9 the third

international conference on Genetic algorithms, Morgan Kaufmann, Fairfax, USA.

Talbi, E. (2002): A Taxonomy of Hybrid Metaheuristics. Journal o f Heuristics 8, 541-564.

Talbi, H., Draa, A., and Batouche, M. (2004): A New Quantum-Inspired Genetic Algorithm

for Solving the travelling Salesman Problem: 14th International Conference on

Computer Theory and Applications, Alexandria, Egypt

Tan, K. C., Li, Y., Murray-Smith, D. J., and Sharman, K. C. (1995): System Identification

and Linearisation using Genetic Algorithms with Simulated Annealing. First

IEE/IEEE Int. Conf. on GA in Eng. Syst.: Innovations and Appl., pp. 164-69.

Thierens, D. (1997): Selection Schemes, Elitist Recombination, and Selection Intensity, pp.

152-159: International Conference on Genetic Algorithms, Morgan kaufmann, East

Lansing, USA.

224

Bibliography

Thierens, D., Goldberg, D., and Guimaraes, P. (1998): Domino Convergence, Drift, and

The Temporal-Salience Structure Of Problems, pp. 535-540: 1998 IEEE

International Conference on Evolutionaiy Computation IEEE, Anchorage, USA.

Thierens, D., and Goldberg, D. E. (1994): Convergence Models of Genetic Algorithm

Selection Schemes, pp. 119-129: the parallel problem solving from nature III,

Springer-Verlag, Jerusalem.

Torn, A., and Zilinskas, A. (1989): Global Optimization, pp. 350: Lecture Notes in

Computer Science, Springer-Verlag.

Toussaint, M., and Igel, C. (2002): Neutrality: A Necessity For Self-Adaptation, pp. 1354-

1359.: the IEEE Congress on Evolutionaiy Computation (CEC 2002), Morgan

Kaufmann, Honolulu, USA.

Tsang, E. P., and Voudouris, C. (1997): Fast Local Search and Guided Local Search and

their application to British Telecom’s Workforce Scheduling Problem. In

Operations Research Letters 20, 119-127.

Tsutsui, S. (2004): Ant Colony Optimisation for Continuous Domains with Aggregation

Pheromones Metaphor, pp. 207-212: the 5th International Conference on Recent

Advances in Soft Computing (RASC-04), Nottingham, UK.

Tsutsui, S., Pelikan, M., and Ghosh, A. (2005): Performance of Aggregation Phermone

System on Unimodal and Multimodal Problems, pp. 880-887: The 2005 IEEE

Congress on Evolutionary Computation, IEEE, Edinburgh, UK.

Turney, P. (1996): Myths And Legends Of The Baldwin Effect, pp. 135-142: Proceedings

Workshop on Evolutionaiy Computation and Machine Learning at the 13th

International Conference on Machine Learning, Bari, Italy.

Turney, P. (1999): Increasing Evolvability Considered As A Large-Scale Trend In

Evolution, pp. 43-46: the 1999 Genetic and Evolutionary Computation Conference

(GECCO-99), Workshop on Evolvability Morgan Kaufmann, Orlando, Florida,

USA

Turney, P., Whitley, D., and Anderson, R. (1996): Evolution, Learning, And Instinct: 100

Years Of The Baldwin Effect. Evolutionaiy Computation 4, iv-viii.

Tuson, A., and Ross, P. (1998): Adapting Operator Settings in Genetic Algorithms.

Evolutionary Computation 6, 161-184

Tuson, A. L., and Ross, P. (1996): Cost Based Operator Rate Adaptation: An Investigation,

pp. 461-469: the Fourth International Conference on Parallel Problem Solving

225

Bibliography

From Nature (PPSNIV), , Springer Verlag, Berlin, Germany.

Valenzuela-Rendon, M. (1991): The Fuzzy Classifier System: Motivations and First

tresults, pp. 338-342: the International Workshop Parallel Problem, Springer,

Dortmund, Germany.

Vekaria, K., and Clack, C. (1999): Biases Introduced by Adaptive Recombination

Operators, pp. 670-677: the Genetic ancl Evolutionary Computation Conference,

Morgan Kaufmann, Orlando, USA.

Voudouris, C. (1998): Guided Local Search - An illustrative example in function

optimisation. BT Technology Journal 16, 46-50.

Voudouris, C., and Tsang, E. (1995): Function Optimization Using Guided Local Search:

Technical Report CSM-249, Department of computer science, University of Essex.

Wang, Q., Spronck, P., and Tracht, R. (2003): An Overview of Genetic Algorithms Applied

to Control Engineering Problems, pp. 1651 - 1656: International Conference on

Machine Learning ancl Cybernetics, IEEE, Xi-an, China.

White, T., Pagurek, B., and Oppacher, F. (1998): ASGA: Improving the Ant System by

Integration with Genetic Algorithms, pp. 610-617: the third Conference on Genetic

Programming (GP/SGA'98), Madison, USA.

Whitley, D. (1989): The GEN1TOR Algorithm and Selection Pressure: Why Rank-Based

Allocation of Reproductive Trials is Best, pp. 116-121: the Third International

Conference on Genetic Algorithms, Morgan Kaufmann, Fairfax, USA.

Whitley, D., Das, R., and Crabb, C. (1992): Tracking Primary Hyperplane Competitors

During Genetic Search. Annals o f Mathematics and Artificial Intelligence 12, 367-

388.

Whitley, D., Gordon, S., and Mathias, K. (1994): Lamarckian Evolution, The Baldwin

Effect And Function Optimization, pp. 6-15. In Y. Davidor, H.-P. Schwefel, and R.

Manner (Eds): Parallel Problem Solving from Nature - PPSN III Springer-Verlag,

Jerusalem.

Whitley, D., Mathias, K., Rana, S., and Dzubera, J. (1995): Building Better Test Functions,

pp. 239-246. In Eshelman (Ed.): International Conference on Genetic Algorithms

Morgan Kaufmann, Pittsburgh, USA.

Whitley, D., Starkweather, T., and Fuquay, D. A. (1989): Scheduling Problems and

Traveling Salesman: The Genetic Edge Recombination Operator, the Third

International Conference on Genetic Algorithms, pp. 133 - 140.

226

Bibliography

Willmes, L., Back, T., Jin, Y., and Sendhoff., B. (2003): Comparing Neural Networks and

Kriging for Fitness Approximation in Evolutionary Optimization, pp. 663-670:

IEEE Congress on Evolutionaiy Computation, Canberra, Australia.

Wroblewski, J. (1996): Theoretical Foundations of Order-Based Genetic Algorithms.

Fundamenta Informaticae., 423-430.

Yamada, T., and Nakano, R. (1995): A Genetic Algorithm with Multi-Step Crossover for

Job-Shop Scheduling Problems, pp. 146-151: First IEE/IEEE International

Conference on Genetic ALgorithms in Engineering Systems Innovations and

Applications (GALESIA ’95), Sheffield, UK.

Yamada, T., and Reeves, C. (1998): Solving the Csum Permutation Flowshop Scheduling

Problem by Genetic Local Search, pp. 230-234: International Confrenence on

Evolutionaiy Computation, Anchorage, USA.

Yao, X. (1999): Evolving artificial neural networks. Proceedings o f the IEEE 87, 1423-

1447.

Yen, J., Liao, J. C., Lee, B., and Randolph, D. (1998): A Hybrid Approach To Modeling

Metabolic Systems Using Genetic Algorithms And Simplex Method. IEEE

Transactions on Systems, Man, and Cybernetics 28, 173-191.

Yuret, D. (1994): From Genetic Algorithms To Efficient Optimization, Technical Report

1569, MIT AI Laboratory.

Yuret, D., and De la Maza, M. (1993): Dynamic Hill Climbing: Overcoming The

Limitations Of Optimization Techniques, pp. 254-260: The Second Turkish

Symposium on Artificial Intelligence and Neural Networks, Istanbul, Turkey.

Zhang, B.-T., and Kim, J.-J. (2000): Comparison of Selection Methods for Evolutionary

Optimization. Evolutionary Optimization 2, 55-70.

Performance of Hybrid Genetic Algorithms Incorporating Local Search

T. Elmihoub, A. A. Hopgood, L. N olle and A. Battersby
The Nottingham Trent University, School o f Computing and Technology,

Burton Street, Nottingham NGI 4BU, United Kingdom
{tarekelmihoub, adrian.hopgood, lars.nolle, alan.battersby}@ntu.ac.uk

ABSTRACT
This paper investigates the effects o f learning strategy

and probability o f local search on the performance o f
hybrid genetic algorithms. It compares the performance o f
two genetic-local hybrids using different learning
strategies and different probabilities o f local search. Two
test functions are used for the comparisons. The results
show that the solution quality o f hybrids is not only
affected by the Lamarckian or Baldwinian learning
strategy, but also by the probability o f local search. This
probability, together with the learning strategy, has a great
impact on population size requirements. These
requirements are also affected by the local search method,
and the fitness landscape. Reducing the population size
can lead to an increase in the algorithm convergence
speed.

INTRODUCTION
The ability o f genetic algorithms to capture a global

view o f the search space, when combined carefully with
the fast convergence o f local search methods (Turney
1996), can often produce an algorithm that outperforms
either one alone (Bobo and Goldberg 1997). Hybridizing a
local search method provides the global genetic search
algorithm with some local knowledge that can guide and
may accelerate the search to the global optimum (Hart
1994).

The usual motivation for hybridization in optimization
practice is the achievement o f increased efficiency
(Goldberg and Vosser 1999). The efficiency o f any hybrid
depends on many factors, e.g. how the hybrid decides
between global and local knowledge (Bobo and Goldberg
1997), how it strikes a balance between the cost and value
o f local knowledge (Hart 1994), and how successfully
local knowledge are utilized by the global genetic
algorithm (W hitley et al. 1994). The efficiency o f any
hybrid can be measured by comparing its performance
with that o f the global genetic algorithm alone. Espinoza
et al. (2001) have proposed an adaptive hybrid algorithm
that can increase convergence speed to the global
optimum. The same authors also show the effect o f a local
search method on reducing the population size o f the
algorithm compared with the population size o f the
standard genetic algorithm (Espinoza et al. 2003).

In this paper, a further step is taken in this direction by
investigating the effect o f the learning strategy and
probability o f local search on the performance on both the
adaptive hybrid algorithm and the standard staged hybrid.
The effect o f both these factors on the population size
requirements, convergence speed and solution quality has
been studied.

LAMARCKIAN EVOLUTION AND BALDWIN
EFFECT

One o f the important issues o f hybrid genetic
algorithms is how the information gained during local
search is used by the global algorithm. Either the
Lamarckian or the Baldwinian approach can be used. In
the Lamarckian approach the traits acquired during the
learning process are passed from parents to their
offspring. This means that both the genetic structure o f an
individual and its associated fitness value are modified to
reflect the changes in phenotype structure as a result o f
performing local search (W hitley et al. 1994). The
Baldwin Effect is somewhat Lamarckian in its results but
using different mechanisms (Turney 1996) In the
Baldwinian approach the learning process can help the
individual to adapt to its environment and as a result to
survive and gain more chance to pass on its traits to the
next generation. In this case, only the improved fitness
value is modified to reflect the effect o f performing local
search, thereby allowing individuals with the ability to
learn to proliferate in the population.

Although Lamarckian evolution has been universally
rejected as a viable theory o f genetic evolution in nature,
using it as learning strategy in genetic algorithms can
improve their convergence speed (W hitley et al. 1994).
The Lamarckian strategy can disrupt schema processing
o f genetic algorithms in staged hybrid algorithms and in
some cases this may lead to the premature convergence
problem (W hitley et al. 1994). In many real-world
applications, it is not possible to use the Lamarckian
approach because the inverse mapping from phenotype to
genotype is computationally intractable (Turney 1996).
The Baldwinian approach, in spite o f being characterized
by slow convergence speed compared with that o f
Lamarckian (Whitley et al. 1994), has a smoothing effect
on the search landscape and does not disrupt the global
genetic search (Gruau and Whitley 1993).

Utilizing either form o f learning is more effective than
the standard genetic algorithm approach without a local

Proceedings 18th European Simulation Multiconference
Graham Horton (c) SCS Europe, 2004
ISBN 3-936150-35-4 (book) / ISBN 3-936150-36-2 (CD)

improvement procedure (W hitley et al. 1994). The
effectiveness o f pure Lamarckian, pure Baldwinian or any
mixture o f them is affected by the fitness landscape, the
representations, and local search method used (W hitley et
al. 1994; Houck et al. 1997;M ichalewicz and Nazhiyath
1995).

BALANCE BETWEEN COST AND VALUE OF
LOCAL KNOWLEDGE

In any hybrid algorithm, a local search can be applied
either to every individual in the population or only few
individuals. Applying a local search to every individual in
the population can waste resources without providing any
more useful information than applying it to only a small
fraction o f the population. The use o f a large fraction o f
the population can limit exploring the search space by
allowing the genetic algorithm to evolve for a small
number o f generations. A more selective use o f local
search can improve the efficiency o f hybrids (Hart 1994).
Deciding on the optimal fraction o f the population that
should perform local search, and the basis on which these
individuals are chosen, has been investigated by Hart
(1994). The cost o f local knowledge is measured by the
number o f function evaluations performed by a local
search method to gain that knowledge and its value is
measured by its effect on increasing the convergence
speed and/or solution quality o f the algorithm. The
probability o f local search can affect the minimum
population size o f the hybrid which, in turn, can affect the
convergence speed o f the algorithm. This effect should
not be ignored when deciding between different local
search probabilities.

POPULATION SIZE REQUIREMENTS
Efficient Population sizing is critical in genetic

algorithms for getting the most out o f a fixed budget o f
function evaluations. In (Harik et al. 1997) two factors
that influence convergence quality are considered to
estimate the population size o f genetic algorithms. These
factors are the initial supply o f building blocks and the
selection o f the best building blocks over their
competitors. The gambler ruin model is used to derive the
follow ing relation for population size o f genetic
algorithms

xr - 2 k~l ln(a)ahhy]n(m-l)
d

where k is the building-block order, which represents the
minimum number o f binary digits that have physical
significance to the solution o f the problem, a is the
probability o f failure, ahh is the standard deviation o f the
building blocks, d is the signal difference between the best
and second-best building blocks, and m is the maximum
number o f building-blocks within a single string. The term

y n (m - l) represents the noise interference between

competing building-blocks. This term can be
approximated using the fitness function standard
deviation, ar„„esx (Reed et al 2000).

The computational complexity o f a genetic algorithm
is measured as the number o f function evaluations that are
required to attain an optimal solution. The number o f
function evaluations can be calculated by multiplying the
population size (N) by the number o f generations required
for convergence (t). The number o f generation required is
strongly affected by the relative rates at which genes
within the population converge. The lower and upper
bounds for the convergence rates for genetic algorithms
applications are functions o f 0(V /) and 0(1) for
tournament selections, where I is the string length
(Thierens et al. 1998). The building blocks o f most
engineering problems converge at variable rates within the
population (Reed 2000). This phenomenon is known as
domino convergence. The expected number o f generations
(t) required under domino convergence for all locations to
be converged is given by the follow ing equation.

t as 211 (/amino

Another phenomenon that is closely related to domino
convergence is “genetic drift” (Thierens et al. 1998). This
phenomenon occurs in a population when crossover and
mutation cause genes to fluctuate and converge to non-
optimal values in the absence o f selection pressure.
Although the genes with reduced relevance to the solution
experience reduced selection pressure, they may converge
to non-optimal values under the crossover and mutation
operations. The expected number o f generations for genes
to converge in the absence o f selection within a randomly
generated initial population is given by the follow ing
equation (Thierens et al. 1998):

Domino convergence to optimal solution should occur
before genetic drift can occur. The follow ing inequality
needs to be satisfied:

ftom m ii < tjtffi

or, in terms o f population size and string length,

N > 1.43/

Since carefully designed hybrid genetic algorithms
often converge faster than standard genetic algorithms,
their convergence to the global optimum can occur even i f
population size is not greater than 1.43/. The population
size for hybrid algorithm should satisfy the follow ing
relation

2 / /,/omin° < 1.43N
^ t in f t

where thybrid is the number o f generations required to for a
hybrid to converge.

The local search method affects the signal difference
between the best individual and the second best, and this
can either increase or decrease the population size. It can
also decrease the standard deviation o f the population and
this leads to a decrease in the population size.

ALGORITHMS AND TEST FUNCTIONS
Two hybrids with different mechanisms for deciding

between global and local search were used to gain some
insight into the effect o f learning strategy and probability
o f local search on the performance o f hybrids. The
standard staged hybrid genetic algorithm (SSH) (Mathias
and Whitley 1994) and the adaptive staged hybrid genetic
algorithm (ASH) (Espinoza et al. 2001) have been tested
using two multimodal test functions.

» 2 ~

1

Figure 1: Fitness Landscapes for the Test Functions

In the standard staged hybrid genetic algorithm (SSH).
the local search step is defined by three basic parameters:
frequency o f local search, probability o f local search and
number o f local iterations. The local search frequency
measures how frequently local search is performed; the
probability o f the local search represents the fraction o f
individuals in the population that undergo local search at
each local search iteration; and the number o f local search
iterations represents the number o f local search iterations
performed at each local search process.

The adaptive staged hybrid genetic algorithm (ASH),
uses feedback from the current state o f the search process

to direct the algorithm to decide between global and local
methods (Espinoza et al. 2001). The algorithm works with
the same operators as SSH. It performs local search only
if new regions o f search space are being discovered, and
local knowledge can help to guide the search. The
probability o f the local search is controlled by a
deterministic rule that keeps this probability less than a
specific value. When local search no longer improves the
average fitness more than the most recent global search
iteration, the search goes back to the global search.

Two multimodal test functions, with multiple basins o f
attraction, have been used in the current work. The first
function, FI, has conical basins o f attraction. Its global
maximum is 4 and is located at (7.0.8.5) (Goldberg and
Vosser 1999; Espinoza et al. 2001). The second function.
F2, has elliptical basins o f attraction. This function has a
global optimum o f 4 located at (7.0, 8.5) (Espinoza et al.
2001). Figure 1 shows the fitness landscapes o f FI and F2.

The steepest descent method (Press et al. 1993) was
used as a local searcher. The steepest descent algorithm
uses the derivatives o f the function to estimate the best
step size to climb to the local optimum from the current
position in the basin o f attraction.

SIMULATIONS AND DISCUSSION
In order to evaluate the effect o f learning strategy and

local search probability on the hybrids’ performance, a set
o f experiments was performed. Both hybrids use the
simple elitist genetic algorithm with binary tournament
selection, single-point crossover, and simple mutation. For
all experiments, the probability o f local search was 0.4
and the probability o f mutation was 1/A where N is the
population size (Reed et al. 2000). For SSH, the frequency
o f local search was 3 and the number o f local iterations
was 3. For ASH, the maximum number o f local iterations
was 3, e was 0.2, and the local threshold value was 0.6.
Each variable was represented by 30-bit string with a total
o f 60 bits for each chromosome. The stopping criterion for
all experiments was that 80% o f the population had
converged to the solution.

Effects on Convergence Speed
In the experiment to evaluate the effect o f learning

strategy on convergence speed o f hybrid algorithms, both
the adaptive and standard staged algorithms used a
probability o f local search o f 0.1, and population sizes o f
800 and 1200 for FI and F2 (Espinoza 2001).The stopping
criterion was that 80% o f the population converged within
0.000001 boundaries o f the best ever found solution.

The results show, as expected, that increasing the
fraction o f the population that evolves according to the
Lamarckian approach leads to an increase in the
convergence speed. This increase is not linear. For

example, when applying ASH on F2, the speed o f
convergence increases sharply as the learning approach
changes from pure Baldwinian (100% Baldwinian) to a
mixture o f 80% Baldwinian and 20% Lamarckian. In this
interval the number o f function evaluations decreases
from 85,000 to about 37,000, while it decreases to 25,000
evaluations for the pure Lamarckian approach. Figure 2
shows the effect o f learning strategy on the convergence
speed o f the adaptive staged hybrid. The effect o f learning
strategy on the convergence speed o f standard staged
hybrid and the adaptive staged hybrid are similar for both
test functions.

Learning Strategy Effect on Convergence Speed of ASH

Figure 2: Effect o f Learning Strategy on Convergence
Speed

Effects on Solution Quality
The results o f previous experiments show no clear

relation between learning strategy and solution quality.
This led us to consider how the local search probability
interacts with the learning strategy and how this
interaction affects the quality o f solutions. An experiment
was carried out to consider the effect o f local probability
on the solution quality for different population sizes (100,
400, 800, and 1200). The results o f these experiments
show that as probability o f local search increases, the
effect o f learning strategy becomes apparent (figure 3).
The graphs in figure 4 show that, when the probability o f
the local search is kept small, the quality o f the solution is
insignificantly affected by the learning strategy. A s this
probability increases, the quality o f the solutions degrades
with an increasing Lamarckian percentage in the learning
process. This means using small local search probabilities
for both algorithms, even with pure Lamarckian, can
produce high quality solutions because the disruption to
schema processing caused by these small probabilities is
neglected and has no effect on global search process.

The results in Figure 4 show that a mixture o f 20%
Lamarckian and 80% Baldwinian produces the most
stable solution quality for F2, regardless o f the probability
o f the local search. A mixture o f 75% Baldwinian and

25% Lamarckian produces the m ost stable solution quality
for FI (Figure 5) .The results from both hybrid algorithms
show that a pure Baldwinian approach does not always
produce the optimal solution quality and that the optimal
learning strategy depends on the probability o f local
search.

A S H w ith P u re B a ld w in ia n L e a rn in g S t ra te g y

w 3.9
8
| 3.8
? 3.7

3.6

— 1200
 800
— 400
- - 100

0.2
Po of Local Search

A SH w ith P u re L a m a rc k ia n L e a rn in g S tra t e g y

 1200
 800
— 400
- - 100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Po of Local Search

Figure 3: Effect o f Learning Strategy and Search
Probability on Solution Quality

Hie Effect of Learning Strategy on Solution Quality of F2

Probability of Local Search

Figure 4: Solution Qualities for F2

Effect 011 Population Size
The aim o f this experiment was to show how the

probability o f local search and learning strategy affect the
minimum size requirements for both hybrids. The results
were obtained by using bisection method. Starting with a
population size o f 10, the population size is doubled until
the population converges to the desired solution quality.
After the solution quality is attained, the population size is
set midway between the current size and the last
unsuccessful population size. This process is repeated
until the difference between population sizes is less than
or equal to 10. The stopping criterion was that 80% o f the
population converged within 0.000001 boundaries o f the

global optimum. The settings of other parameters were as
in the previous experiments.

The Effect of Learning Strategy on Solution Quality of F1

I

Figure 5: Solution Qualities for FI

Thti Effect of Learning Strategy and Po on tho Population Size of F2

10JS

|
to13

10”

Figure 6: Effect of Learning Strategy and Search
Probability on Population Size

The results of SSH and ASH on the second test
function are similar. Figure 6 shows that, as the
probability of local search increases, the population size
decreases for a pure Lamarckian approach. On the other
hand, with a pure Baldwinian strategy, the population size
increases as the probability of local search increases. For a
pure Baldwinian strategy with local search probability of
more than 0.4, the population size exceeds that of a pure
genetic algorithm (minimum population size=640). The
results also show that the relationship between the local
search probability and the change in the population size
depends on the learning strategy used. For example, using
a partial Lamarckian of 50% or more, an increase in the
local search probability results in a decrease in population
size. With a partial Lamarckian of less than 50%, an
increase in the local search probability leads to an increase
in the population size. For both hybrids, a decrease in
population size leads to an increase in the convergence

speed. In general, increasing the Lamarckian percentage
decreases the population size and increases the
convergence speed. The experiments also show that the
solution quality of the pure Baldwinian approach is the
optimal and the solution quality is degraded as both the
Lamarckian percentage and the probability of local search
increase. The solution quality for impure Baldwinian
strategies, as shown in Figure 7, seems to be more
dependent on the probability of local search than on the
learning strategy.

The local search can decrease both the standard
deviation of the population and the signal difference
between the best and second-best solutions, since the
population size depends directly on the standard deviation
of the population and the signal difference. A decrease in
the former decreases the population size and a decrease in
the latter increases the population size.

Tlio Effect of Looming Strotogy and Po on tho Average Fitness of F2

2
&G

Figure 7: Effect of Lamarkian Proportion and Search
Probability 011 Solution Quality

The increase in the population size requirements for
the pure Baldwinian approach can be explained as
follows. In a pure Baldwinian, the local search needs
some help from evolution process to keep decreasing the
ratio of standard deviation to signal difference. Pure
Baldwinian can reduce this ratio at the end of the local
search. However, in the next global iteration, if the value
of local knowledge is insufficient to keep the global
genetic algorithm reducing this ratio, the algorithm will
lose some of its resources (i.e. local function evaluations)
without reducing that ratio. In this case, a high probability
of local search cannot lead to any reduction in the
population size since it increases the probability of losing
the algorithm’s resources. Flowever, a low local search
probability reduces the probability of lost resources while
increasing the probability of maintaining the reduction in

the above-mentioned ratio by the global genetic algorithm.
In addition to the probability of local search, the
effectiveness of pure Baldwinian in reducing the
population size depends on the value of local knowledge
and this depends on the method of local search and fitness
landscape.

On the other hand, the opportunity to keep the gained
reduction in this ratio is improved by using a partial
Lamarckian strategy. As the percentage of Lamarckian
increases, the probability of keeping this reduction
increases. An increase in the probability of local search
increases the probability of reducing the ratio and
reducing the population size.

Figure 8: Effect of Learning Strategy and Search
Probability on Population Size of FI

Figure 8 shows the results of running the same
experiment on the first test function. For a Lamarckian
percentage of 65% or more, an increase in the probability
of local search results in a reduction in the population
size. For other percentages, an increase in this probability
leads to an increase in the population size requirements.
The convergence speed depends on the population size; as
the population size decreases the convergence speed
increases. Comparison of Figures 6 and 8 shows that the
switch point on the Lamarckian axis between increasing
and reducing the population size is shifted from about
50% for F2 to about 65% for FI. This is due to the
differences in the fitness landscape of both functions.
While the local search can provide more significant local
knowledge in FI than in F2, an impure Lamarckian
approach requires a more partial Lamarckian to accelerate
the genetic assimilation process.

Additionally, the effect of the local search method on
FI is to enable any solution in a basin of attraction to
climb to the exact local optimum in a single step.
Consequently, increasing the probability of local search
does not necessitate decreasing the signal difference

between the best and second-best solutions. It also makes
the selection process more difficult as the search process
progresses when using a pure Baldwinian approach. In
contrast, in F2 the local search method sends any point in
the basin of attraction to a point near local optima and not
to the local optimum itself.

The local search method can provide more significant
local knowledge from the landscape of FI than F2. This is
why the reduction in the population size requirements of
FI, using a pure Lamarckian approach, is greater than that
of F2. This also makes the genetic assimilation process
more difficult for FI using a pure Baldwin effect
compared with F2. The use of a partial Lamarckian can
accelerate the genetic assimilation process. The exact
value of the switch point depends on the value of the local
knowledge.

CONCLUSIONS AND FUTURE WORK
The simulations show that using a low probability of

local search and using a pure Lamarckian learning
strategy can improve the convergence speed of the
algorithm without disrupting the schema processing of the
global genetic algorithms. They also show that, depending
on the learning strategy used, increasing the probability of
local search can decrease or increase the population size.
As a result, the convergence speed is affected by the
probability of local search. The results show that there is a
relation between the probability of local search and the
population size.

These experiments have attempted to provide an
insight into how the probability of local search and
learning strategy affect the population size requirements.
We now plan to study how the population size can affect
the optimal local search probability by developing a self-
adaptive hybrid algorithm that encodes the number of
local iterations within the chromosomes themselves and to
study how their values propagate during the evolution
process.

REFERENCES
B obo, F. and Goldberg, D . 1997. ’’D ecision M aking in a Hybrid

Genetic Algorithm ”, In T. B ack (Ed.) Proc. the 1997 IEEE
International Conference on Evolutionary Computation, pp.
121-125. IEEE Press

Espinoza, F., B; Minsker, B. and Goldberg, D. 2001. “A S e lf
Adaptive Hybrid Genetic A lgorithm ”. L. Spector, E.
Goodm an, A. W u, W .B. Langdon, H .-M . V oigt, M. Gen, S.
Sen, M. Dorigo, S. Pezeshk, M. Garzon, and E. Burke,
editors. Proceedings o f the G enetic and Evolutionary
Computation Conference, GECCO'2001. San Francisco,
Morgan Kaufmann Publishers.

Espinoza, F.; Minsker, B. and Goldberg, D . 2003. “Performance
Evaluation and Population S ize reduction for S e lf Adaptive
Hybrid Genetic Algorithm (SA H G A) Proc. the G enetic and

Evolutionary Computation Conference, 2723, 922-933,
Morgan Kaufmann

Goldberg, D. and Vosser, S. 1999. “Optim izing Global-Local
Search Hybrids” Proc. the G enetic and Evolutionary
Computation Conference, pp 220 -228 ,M organ Kaufmann.

Gruau, F. and W hitley, D. 1993.”A dding Learning to the
Cellular D evelopm ent o f Neural network: Evolution and
Baldwin E ffect”, Evolutionary Computation, 1(3),213

Harik, G.; Cantu-Paz, E; Glodberg, D., and Miller, B. 1997. ”
The G am bler’s Ruin Problem, Genetic algorithms, and the
Sizing o f Populations”, In T. Back (Ed.) Proc. the 1997 IEEE
International Conference on Evolutionary Computation, pp.
121-125.

Houck, C.; Joines, J.; Kay, M; and W ilson, J. 1997. "Empirical
investigation o f the benefits o f partial Lamarckianism",
Evolutionary Computation, v.5, n .l , 31- 60.

Hart, W. E. 1994 .“Adaptive Global Optimization with Local
Search” . Doctoral Dissertation, University o f California, San
D iego, CA

Mathias, K.; W hitley, D. ; Stork, C. and Kusuma, T. 1994.
’’Staged Hybrid G enetic Search for Seism ic Data Im aging”
, 1 9 9 4 ,International Conference on Evolutionary
Computation

M ichalew icz, Z. and Nazhiyath, G., 1995. “G enocop III: A Co-
evolutionary Algorithm for Numerical Optimization
Problem s with Nonlinear Constraints” , Proc. o f the 2nd IEEE
International Conference on Evolutionary Computation,
V ol.2, 647-651

Press, W.; Teukolsky, S.; Vetterling, W. and Flannery, B. 1993.
"Numerical R ecipes in C ", Cambridge University Press

Reed, P.; Minsker, B. and Glodberg D. 2000. “D esign ing a
Com petent Sim ple Genetic algorithm for Search and
O ptim ization” . Water Resource Research, 36(12),3757-3761

Thierens, D ., Goldberg, D. and Guimaraes P. 1998.:” A. D om ino
C onvergence, Drift, and the Tem poral-Salience Structure o f
Problems. In The 1998 IEEE International Conference on
Evolutionary Computation Proceedings, pp. 535-540, IEEE
Press, N ew York, N Y

Turney, P. 1996 ’’M yths and Legends o f the Baldwin E ffect”
,Poc. The ICML (13 th International Conference on M achine
Learning), 135-142.

W hitley, D.G ordon, V. and M athias, K. 1994. “Lamarckian
Evolution, the Baldw in Effect and Function O ptim ization”,
Parallel Problem Solving from Nature-PPSN III, 6-15.

BIOGRAPHIES

TAREK EL MIHOUB is a PhD student at
the Nottingham Trent University. He
obtained his MSc in Engineering Multimedia
in 2002 from Nottingham Trent University.
He worked as a teaching assistant in Al-
Fatah University in Libya and as a manager

of IT department in the Libyan Environment general
authority. His current research is in the field of
optimization, genetic algorithms, and artificial
intelligence.

ADRIAN HOPGOOD is professor of
computing and head of the School of

Computing and Technology at the Nottingham Trent
University, UK. He is also a visiting professor at the Open
University. His main research interests are in intelligent
systems and their practical applications. He graduated
with a BSc (Hons) in physics from the University of
Bristol in 1981 and obtained a PhD from the University of
Oxford in 1984. He is a member of the British Computer
Society and a committee member for its specialist group
on artificial intelligence.

LARS NOLLE graduated from the
University of Applied Science and Arts in
Hanover in 1995 with a degree in Computer
Science and Electronics. After receiving his
PhD in Applied Computational Intelligence

from The Open University, he worked as a System
Engineer for EDS. He returned to The Open University as
a Research Fellow in 2000. He joined The Nottingham
Trent University as a Senior Lecturer in Computing in
February 2002. His research interests include: applied
computational intelligence, distributed systems, expert
systems, optimisation and control of technical processes.

ALAN BATTERSBY obtained an MSc in
Computer Science from Hatfield Polytechnic
in 1977. Prior to joining the Computing
department at Nottingham Trent University,
Alan was a Computing Development Officer

for Bedfordshire Education Authority. His research
interests include: Fuzzy Logic applied to Robotics,
wavelets, compression and the Internet.

Hybrid Genetic Algorithms: A Review
Tarek A. El-Mihoub, Adrian A. Hopgood, Lars Nolle, Alan Battersby

Abstract—Hybrid genetic algorithms have received significant
interest in recent years and are being increasingly used to solve
real-world problems. A genetic algorithm is able to incorporate
other techniques within its framework to produce a hybrid that
reaps the best from the combination.

In this paper, different forms of integration between genetic
algorithms and other search and optimization techniques are
reviewed. This paper also aims to examine several issues that
need to be taken into consideration when designing a hybrid
genetic algorithm that uses another search method as a local
search tool. These issues include the different approaches for
employing local search information and various mechanisms for
achieving a balance between a global genetic algorithm and a
local search method.

Index Terms—Genetic algorithms, evolutionary computation,
hybrid genetic algorithms, genetic-local hybrid algorithms,
meinctic algorithms, Lamarckian search, Baldwinian search.

I. In t r o d u c t i o n

A genetic algorithm is a population-based search and
optimization method that mimics the process of natural
evolution. The two main concepts of natural evolution, which
are natural selection and genetic dynamics, inspired the
development of this method. The basic principles of this
technique were first laid down by Holland [1] and are well
described, for example, in [2],[3].

The performance of a genetic algorithm, like any global
optimization algorithm, depends on the mechanism for
balancing the two conflicting objectives, which are exploiting
the best solutions found so far and at the same time exploring
the search space for promising solutions. The power of genetic
algorithms comes from their ability to combine both
exploration and exploitation in an optimal way [1]. However,
although this optimal utilization may be theoretically true for a
genetic algorithm, there are problems in practice. These arise
because Holland assumed that the population size is infinite,
that the fitness function accurately reflects the suitability of a
solution, and that the interactions between genes are very
small [4].

In practice, the population size is finite, which influences
the sampling ability of a genetic algorithm and as a result
affects its performance. Incorporating a local search method

Manuscript received February 3, 2006.
T. A. El-Mihoub, A. A. Hopgood, Lars Nolle, and A. Battersby are with

School o f Computing & Informatics, Nottingham Trent University.
Nottingham, N G 11 8NS, UK (phone: +44 (0)870 127 8429; fax: +44 (0)115
848 8365; e-mail: tarek.elmihoub, adrian.hopgood, lars.nolle, and alan.
Battersby @ntu.ac.uk).

within a genetic algorithm can help to overcome most of the
obstacles that arise as a result of finite population sizes.

Incorporating a local search method can introduce new
genes which can help to combat the genetic drift problem [5],
[6] caused by the accumulation of stochastic errors due to
finite populations. It can also accelerate the search towards the
global optimum [7] which in turn can guarantee that the
convergence rate is large enough to obstruct any genetic drift.

The Parallel Recombinative Simulated Annealing (PRSA)
algorithm [8] fights the genetic drift problem in another way
by combining the concept of the cooling schedule of simulated
annealing [9], Boltzmann tournament selection [10], and
standard genetic operators.

Due to its limited population size, a genetic algorithm may
also sample bad representatives of good search regions and
good representatives of bad regions. A local search method
can ensure fair representation of the different search areas by
sampling their local optima [11] which in turn can reduce the
possibility of premature convergence.

In addition, a finite population can cause a genetic
algorithm to produce solutions of low quality compared with
the quality of solution that can be produced using local search
methods. The difficulty of finding the best solution in the best
found region accounts for the genetic algorithm operator’s
inability to make small moves in the neighborhood of current
solutions [12]. Utilizing a local search method within a genetic
algorithm can improve the exploiting ability of the search
algorithm without limiting its exploring ability [7]. If the right
balance between global exploration and local exploitation
capabilities can be achieved, the algorithm can easily produce
solutions with high accuracy [13].

Although genetic algorithms can rapidly locate the region in
which the global optimum exists, they take a relatively long
time to locate the exact local optimum in the region of
convergence [14], [15]. A combination of a genetic algorithm
and a local search method can speed up the search to locate
the exact global optimum. In such a hybrid, applying a local
search to the solutions that are guided by a genetic algorithm
to the most promising region can accelerate convergence to
the global optimum. The time needed to reach the global
optimum can be further reduced if local search methods and
local knowledge are used to accelerate locating the most
promising search region in addition to locating the global
optimum starting within its basin of attraction.

The improper choice of control parameters is another source
of the limitation of genetic algorithms in solving real-world
problems [16] due to its detrimental influence on the trade-off
between exploitation and exploration. Depending on these
parameters the algorithm can either succeed in finding a near­

optimum solution in an efficient way or fail. Choosing the
correct parameter values is a time-consuming task. In addition,
the use of rigid, constant control parameters is in contradiction
to the evolutionary spirit of genetic algorithms [17]. For this
reason, other search techniques can be utilized to set the
values of these parameters whilst the search is progressing.

In this paper, hybrid genetic algorithms are reviewed
through presenting the different ways in which the roles of a
search method and a genetic algorithm can be integrated. The
aim of this presentation is not to classify hybrid genetic
algorithms, but to shed light on the possible ways of
combining a search method within the framework of a genetic
algorithm. However, the reader can refer to [18] for an
architectural taxonomy of combinatorial memetic algorithms
(MA) [19] and to [20], where meta-heuristics are classified
based on the design space and implantation space aspects.

This paper also aims to gain an insight into some of the
design issues of hybrid genetic algorithms through reviewing
the different mechanisms of utilizing local search information
within genetic search and the various techniques to achieve a
balance between exploration and exploitation.

II. A Comp lementary V iew
Hybrid genetic algorithms, as any hybrid system, are based

on the complementary view of search methods [21 p.223].
Genetic and other search methods can be seen as
complementary tools that can be brought together to achieve
an optimization goal. In these hybrids, a genetic algorithm
incorporates one or more methods to improve the performance
of the genetic search. There are several ways in which a search
or optimization technique can complement the genetic search.

A. Capability Enhancement
A technique can be utilized within a genetic algorithm to

enhance search capabilities. A genetic algorithm is normally
viewed as a global search method that can capture the global
view of a problem domain. Different techniques can be
incorporated within a genetic algorithm to improve its
performance in different ways. When a genetic algorithm as a
global search method is combined with a problem-specific
method as a local method, the overall search capability can be
enhanced. The enhancement can be in terms of solution
quality and/or efficiency. This performance can also be
improved by ensuring production of feasible solutions in the
case of highly constrained problems. This paper focuses on the
global local complementary view of genetic hybrids which
have been variously referred to as memetic algorithms (MA)
[19], genetic-local search methods [22], Lamarckian genetic
algorithms [23], Lamarckian search, and Baldwinian search
[24].

Function approximation techniques can also be incorporated
in a genetic search to speed up the search. It is also possible to
utilize other techniques to replace one or more of the genetic
operators in order to overcome some of the problems that face
genetic search.

1) Improving Solution Quality
Local search methods and genetic algorithms are usually

viewed as two complementary tools. A local search
algorithm’s ability to locate local optima with high accuracy
complements the ability of genetic algorithms to capture a
global view of the search space. Holland [1], cited in [25],
suggested that the genetic algorithm should be used as a pre­
processor for performing the initial search, before invoking a
local search method to optimize the final population. Bilchev
and Parmee [26], for example, used their ant colony
optimization [27] model for continuous search spaces as local
search method to improve the quality of the solutions
produced by a genetic algorithm in order to solve a real-world,
heavily constrained, engineering design problem.

Performing local search on a genetic algorithm’s population
can introduce diversity and help to resist the genetic drift. It
enables fair representation of different search areas in order to
fight premature convergence. Incorporating a local search
algorithm also introduces an explicit refinement operator
which can produce high quality solutions.

2) Improving Efficiency
The efficiency of a local search in reaching a local optimum

integrates the efficiency of a genetic algorithm in isolating the
most promising basins of the search space. Therefore,
incorporating a local search into a genetic algorithm can result
in an efficient algorithm. The efficiency of the search can be
enhanced in terms of the time needed to reach the global
solution, and/or the memory needed to process the population.

a) Convergence Speed
A major concern in genetic algorithm design is efficiency

in terms of the time needed to reach a solution of desired
quality. In real-world problems, function evaluations are the
most time-consuming part of the algorithm. For example, the
designers of today’s complex engineering systems usually rely
on expensive computer analysis and simulation programs,
where the execution time for a single function evaluation can
be of the order of hours or days [28]. Finite element analysis
(FEA), computational fluid dynamics (CFD), heat transfer and
vehicle dynamic simulations are examples of such programs.
Hybridization in addition to parallelization [29], time
utilization [30], and evaluation relaxation (function
approximation) can be used to speed up a genetic search [31].

Genetic algorithms often show significant improvements in
search speed when combined with local search methods
utilizing domain-specific knowledge [20], [32], There is an
opportunity in hybrid optimization to capture the best of both
schemes [13]. This is the reason why genetic hybrids are being
increasingly used to solve real-world problems. Different
search methods have been mixed with genetic algorithms in
real-world applications [15], [22], [33-37].

b) Population Size
Population size is crucial in a genetic algorithm. It

determines the memory size and the convergence speed in
serial genetic algorithms and affects the speed of search in the
case of parallel genetic algorithms. Efficient population sizing

is critical for getting the most out of a fixed budget of function
evaluations. The gambler’s ruin model [38] was used to
estimate the population size of genetic algorithms. This model
was used to show that population size depends on two
parameters, which can be affected by incorporating local
search. The two parameters represent the standard deviation of
the population and the signal difference between the best and
second best building blocks. If a local search method is
incorporated in such a way as to reduce the standard deviation
of the population and to increase the signal difference between
the best and the second best chromosome, the resulting hybrid
can be efficient even with small population sizes. Espinoza et
al. [39] showed the effect of a local search method on
reducing the population size, compared to a pure genetic
algorithm. El-Mihoub et al. [40] demonstrated the combined
effect of probability of local search and learning strategy on
the population size requirements of a hybrid.

3) Guarantee Feasible Solutions
In highly constrained optimization problems, the crossover

and mutation operators generally produce illegal or infeasible
solutions and hence waste search time. This problem can be
solved by incorporating problem-specific knowledge.
Problem-specific knowledge can be used either to prevent the
genetic operators from producing infeasible solutions or to
repair them.

The partial matched crossover (PMX) [41] was proposed
for use in order-based problems to avoid the generation of
infeasible solutions. Grefenstette et al. [42] suggested a
heuristic crossover operator that could perform a degree of
local search for the traveling salesman problem (TSP).
Davidor [43] designed “analogous crossover” where local
information is used to decide which crossover sites can
produce unfit solutions. Heuristic crossover operators were
used to solve a timetabling problem in order to ensure that the
most fundamental constraints are never violated [44].
Freisleben and Merz [45] proposed the distance preserving
crossover (DPX) to produce feasible solutions to solve TSP
without losing diversity. They used the non- sequential 4-
change [46] as a mutation operator for the same reason. Cycle
crossover (CX) [47], order crossover (OX) [47], matrix
crossover (MX) [48], modified order crossover (MOX) [49],
edge recombination crossover (ERX) [50], 2-opt operator [51],
3-opt operator [51] and or-opt operators [51] are examples of
crossover and mutation operators which have been developed
for TSP. A special edge recombination crossover [52] has
been constructed for the three-matching problem (3MP). The
crossover operator has been replaced with the gene-pooling
operator to produce feasible solutions when optimizing the
number and positions of fuzzy prototypes for efficient data
clustering [53].

A problem-specific knowledge search method can be used
to recover the feasibility of solutions generated by the standard
genetic operators. Repairing such solutions can help the
genetic search to avoid the danger of premature convergence,
which occurs when all or most solutions are infeasible [54],
[55]. The force feasible heuristic operator [56] was used to
solve the problem of scheduling aircraft landing times. Konak

and Smith [57] combined a genetic algorithm with a cut-
saturation algorithm for the backbone design of
communication networks. They use a uniform crossover
operator with a K-node-connectivity repair algorithm to repair
infeasible offspring. Areibi and Yang [58] used repair
heuristics in their proposed approach to solve VLSI circuit
layout. The approach combines a hierarchical design
technique, genetic algorithms, constructive techniques, and
advanced local search. They also used the OX operator to
avoid infeasible solutions in solving VLSI design problems.

4) Fitness Function Estimation
If the fitness function is excessively slow or complex to

evaluate, approximation function evaluation techniques can be
utilized to accelerate the search without disrupting search
effectiveness. This is because genetic algorithms are robust
enough to achieve convergence in the face of noise produced
by the approximation process. Fitness approximation schemes
replace high-cost accurate fitness evaluation with a low-cost
approximate fitness assignment procedure. This can be
achieved either by evolutionary approximation, where the
fitness of a chromosome is estimated from its parents’ fitness,
or function approximation, where the fitness function is
replaced by an alternate simpler model. Jin [59] provides a
comprehensive survey on fitness approximation techniques.

The selection of an appropriate approximation model to
replace the real function is an important step in ensuring that
the optimization problem is solved efficiently. Neural network
[21 ch. 8] models have widely been used for function
approximation [60], Willmes et al. [61] compared neural
networks and the Kriging method for constructing fitness
approximation models in evolutionary algorithms. Jin and
Sendhoff [62] combined the k-nearest-neighbor clustering
method and a neural network ensemble to estimate a solutions’
fitness. Burdsall and Giraud-Carrier [53] used an
approximation of the network’s execution to evaluate
solutions fitness instead of constructing a radial basis function
network (RBF) to optimize the topology of a neural network.
The approximation is based on an extension of the nearest-
neighbor classification algorithm to fuzzy prototypes.
Ankenbrandt et al. [63] implemented a system of fuzzy fitness
functions, to grade the quality of chromosomes, representing a
semantic net. The system is used to assist in recognizing
oceanic features from partially processed satellite images.
Pearce and Cowley [64] presented a study of the use of fuzzy
systems to characterize engineering judgment and its use with
genetic algorithms. They demonstrated an industrial design
application where a system of problem-specific engineering
heuristics and hard requirements are combined to form a
fitness function.

5) Operation Substitution
Genetic algorithms present a methodological framework

that is easy to understand and handle. This framework is open
to the incorporation of other techniques [65]. It is possible to
utilize other techniques to perform one or more of the genetic
algorithm operations. These incorporated techniques can be
used to replace either the crossover operator, mutation
operator or both.

In probabilistic model-building genetic algorithms
(PMBGA) or estimation of distribution algorithms (EDA)
[66], a probabilistic model is utilized to learn the structure of a
problem on the fly. This model is used instead of the standard
genetic operators to ensure a proper mixing and growth of
building blocks. These algorithms replace the standard
crossover and mutation operators of genetic algorithms, by
building a probabilistic model that estimates the true
distribution of promising solutions. New potential solutions
are then generated by sampling this model. Population based
incremental learning (PBIL) [67], univariate marginal
distribution algorithm (UMDA), compact genetic algorithm
(CGA), bivariate marginal distribution algorithms (BMDA),
factorized distribution algorithms (FDA) and the Bayesian
optimisation algorithm (BOA) [68] are all examples of
PMBGA that are reported to have a better search ability, than
that of the simple genetic algorithm, in solving a broad class
of problems [66]. Tsutsui et al. [69] proposed the aggregation
pheromone system (APS), which introduced the concept of
pheromone trail of the ant colony optimization [27] into the
PMBGAs, to solve real-valued optimization problems.

Leng [70] proposed the guided genetic algorithm (GGA)
which is a hybrid genetic system that borrows the concept of
feature and penalties from the guided local search (GLS) [71],
The GGA modifies the fitness function by means of penalties
to escape local optima. Two specialized crossover and
mutation operators, which are biased by the penalties to
change genes that are involved in more penalties, are used in
order to explore the search space.

When a problem-specific representation is used in a genetic
algorithm, the standard genetic variation operators are usually
replaced with problem-specific operators. Hedar and
Fukushima [72] replaced the ordinary crossover with a
simplex crossover that produces a simplex offspring from
mating simplex parents (is the dimension of the problem to
be solved). In this hybrid, a mutation operator, which is more
suitable for simplex representation, was used. Quantum-
inspired genetic algorithms [73]-[75] borrow the concepts of
quantum-bits and -states superposition from quantum
computing. In these algorithms, the individuals are represented
as a string of quantum-bits. Quantum-gates are then used to
modify these individuals instead of crossover and mutation
operators. The power of these algorithms comes from the great
diversity they provide by using quantum coding. Each single
quantum individual in reality represents multiple classical
individuals. The results reported from using this hybridization
to solve combinatorial and continuous optimization problems
are promising.

Tan et al. [76] replaced the standard mutation operator by
simulated annealing [9] to solve system identification and
linearization problems. The results showed a more accurate
search and faster convergence when compared with a pure
genetic algorithm. The multi-step crossover (MSX) [77] was
proposed to solve combinatorial optimization problems.
Riopka and Bock proposed a collective learning genetic
algorithm [78], in which an intelligent recombination based on
the exchange of knowledge between chromosomes, is used to

effectively find high quality solutions to combinatorial
optimization problems. Magyar et al. [52] introduce several
heuristic crossover and local hill-climbing operators to solve
the tlnee-matching problem. Fundamental to the technique
here is the adaptation of the selected operator. Two fuzzy
connective-base (FCB) crossover operators types (dynamic
and heuristic) have been proposed in [79] for real-coded
genetic algorithms to fight premature convergence problems.

B. Optimizing the Control Parameters
The setting of genetic algorithm control parameters is a key

factor in the determination of the exploitation versus
exploitation trade-off. Other techniques can be used to monitor
the behavior of a genetic algorithm in order to adapt its control
parameters to improve the search performance. The ability of
fuzzy logic to represent knowledge in imprecise and non­
specific ways enables it to be used to reason on knowledge
that is not clearly defined or completely understood. This
ability makes fuzzy logic a suitable choice for adapting the
control parameters of a genetic algorithm. Fuzzy logic has
allowed a small group of researchers to devise ways of
optimizing performance and solution quality of genetic
algorithms [80]. It is used to incorporate the many heuristics
and techniques of experienced genetic algorithm researchers
into fuzzy logic systems in order to adapt the control
parameters. The goal of such a system is generally to avoid
undesirable behaviors such as premature convergence and to
speed up the convergence of the genetic algorithm [81].

It is also possible to incorporate a genetic algorithm within
another technique to optimize control parameters, since
genetic algorithms are in practice very effective optimization
techniques. A genetic algorithm can be applied to the
optimization of a neural network in a variety of ways. It can be
utilized to adjust the neural network weights [82]-[84] their
topology [85]-[88] and learning rules [89], [90]. For a
comprehensive review of evolving neural networks the reader
can refer to [91]. Karr [92] described an application to the
cart-pole balancing system and used a genetic algorithm to
evolve the membership functions of a fuzzy controller. The
resulting, optimized fuzzy logic controller performed better
than the controller based on membership functions designed
by a human expert. These promising results have been
confirmed by an application of the method for online control
of a laboratory pH system with drastically changing system
characteristics [93]. Genetic algorithms can also be used to
automate the learning of fuzzy control rules [94]. They have
also been used to optimize the control parameters of ant
colony optimization algorithms [95]-[97].

III. H y b r id D e s ig n Is s u e s

Incorporating a search method within a genetic algorithm
can improve the search performance on the condition that their
roles cooperate to achieve the optimization goal. There is an
opportunity in hybrid optimization to capture the best of both
schemes [13]. This opportunity depends on the design details
of the hybrid genetic algorithm. There are several issues that

need to be taken into consideration when designing a hybrid
genetic algorithm. Some of the design choices faced by hybrid
practitioners while solving real-world problems are discussed
here.

Due to their major impact 011 hybrid genetic performance,
the discussion is concentrated on the strategies of utilizing
local search information within a hybrid, and mechanisms that
can be used to achieve a balance between exploration and
exploitation. First, the relation between local search and
learning, and its different models, are presented. Then,
different techniques that can be used to achieve the optimal
division of labor between the global genetic algorithm and the
local search method are reviewed.

A. Local Search and Learning
Local search methods use local knowledge to improve a

solution’s chances to propagate its characteristics into the next
generations. Due to the similarities in the role of the local
search within the genetic search and the role of learning within
the evolution process, the local search is usually viewed as a
learning process.

The way by which gained information through local search
is utilized within a hybrid genetic algorithm has a great impact
on the performance of the search process. Two basic
approaches based on biological learning models have been
adopted to utilize local information; the Lamarckian approach
and the Baldwinian approach [98]. There is also a third model,
which is a mixture of the basic models and its effectiveness
has been proven in solving real-world problems [55], [99]-
[10 1].

1) Lamarckian Learning
The Lamarckian approach is based on the inheritance of

acquired characteristics obtained through learning. This
approach forces the genetic structure to reflect the result of the
local search. The genetic structure of an individual and its
fitness are changed to match the solution found by a local
search method. In the Lamarckian approach, the local search
method is used as a refinement genetic operator that modifies
the genetic structure of an individual and places it back in the
genetic population.

Lamarckian evolution, in spite of being recognized as never
occurring in biological systems due to the lack of a
mechanism to accomplish it, can be simulated in a computer in
order to shed light on issues of general evolvability.
Lamarckian evolution can accelerate the search process of
genetic algorithms [102]. On the other hand, by changing the
genetic structure of individuals, it can disrupt schema
processing which can badly affect the exploring abilities of
genetic algorithms. This may lead to premature convergence
[102]. When a Lamarckian approach is adopted, inverse
mapping from phenotype to genotype is required. The inverse
mapping may be computable in many simple applications.
However, for real-world problem solving, the computation
will typically be intractable [103]. Most of hybrid genetic
algorithms that repair chromosomes to satisfy constrains are
Lamarckian and the technique has been particularly effective
in solving TSP [24].

2) Baldwinian Learning
The Baldwin learning allows an individual’s fitness to be

improved by applying a local search, whereas the genotype
remains unchanged. In this way, it improves the solution’s
chances to propagate its structure to the next generations. Like
natural evolution, learning does not change an individual’s
genetic structure, however it increases its chances of survival.
The Baldwinian approach, in contrast to the Lamarckian one,
does not allow parents to pass their learned or acquired
characteristics to their offspring. Instead, only the fitness after
learning is retained. A local search method in the Baldwinian
approach is usually used as a part of the individual’s
evaluation process. The local search method uses local
knowledge to produce a new fitness score that can be used by
the global genetic algorithm to evaluate the individual’s ability
to be improved.

The Baldwin effect is somewhat Lamarckian in its results
although it uses different mechanisms [103]. It explains
interactions between learning and evolution by paying
attention to balances between benefit and cost of learning. The
Baldwin effect consists of the following two steps [104]. In
the first step, learning gives individuals the chance to change
their phenotypes to improve their fitness. Individuals, who
found learning useful and help their fitness to improve, will
spread in the next population. In the second step, if the
environment is sufficiently stable, the cost associated with
learning results in selection favoring individuals that have the
traits, which are acquired by others through learning, already
coded into their genotype. Through this mechanism, called
genetic assimilation, learning can accelerate the genetic
acquisition of learned traits indirectly. A critical precondition
for genetic assimilation appears to be a strong correlation
between genotype and phenotype space so that nearness in the
phenotype space implies nearness in the genotype space [105].
Otherwise, the acquired traits have little chance of eventually
becoming encoded in the genome via chance through genetic
operations.

Hinton and Nolan [98] illustrated how the Baldwin effect
can transform the fitness landscape of a difficult optimization
problem into a less difficult one, and how the genetic search is
attracted toward the solution found by learning. Gruau and
Whitley [11] showed how local search can change the
landscape of fitness function into flat landscapes around the
basin of attraction. This change in fitness landscape is known
as the smoothing effect. They demonstrated the impact of the
smoothing effect on the search process. This learning strategy
could be more effective but slower than the Lamarckian
approach, since it does not disrupt schema processing of
genetic algorithms [102]. Baldwinian search can also have the
effect of obscuring genetic differences and, thus, hindering the
evolution process [105]. This is known as the hindering effect.
Essentially, this occurs as a result of different genotypes
mapping to the same or similar phenotypes (as a result of the
smoothing effect) with equivalent fitness scores being
produced. The genotypes cannot be effectively discriminated
according to their fitness values without considering the
learning cost and the evolution of effective solutions is

hindered. The hindering effect can also obstruct the ability of
the Baldwinian search to self-adapt the local-search-duration
control parameter [106]. The Baldwinian effect can aggravate
the problem of multiple genotype to phenotype mappings [24],
[99]. This problem can also waste the resources of hybrids that
use clustering techniques in the genotype domain to reduce
unnecessary local search, in contrast to the Lamarckian
approach which has been shown to help alleviate this problem
[107].

Hart et al. [108] pointed to the importance of considering
the cost of learning, which has been ignored by most
researchers when studying the impact of the Baldwinian
strategy on the hybrid search by analyzing its performance
based on the number of generations of the genetic algorithm
only. Learning can introduce a computational cost which
overweighs its benefits in search.

3) Hybrid Lamarckian-Baldwinian Models
Hybrid Lamarckian-Baldwinian models are created with a

view towards combing the advantages of both forms of
learning models [55]. The combination of the Baldwinian and
the Lamarckian approaches can be done at two different
levels. Hybridization can be used at the individual-level,
where some individuals evolve using the Lamarckian
approach while the other individuals evolve using the
Baldwinian approach [99], [100]. Houck et al. [99] found that
this form of partial Lamarckian approach outperformed both
the pure Lamarckian and the pure Baldwinian approaches on a
selected set of test problems. The other level is the gene-level,
where a number of genes evolve using the Lamarckian
strategy and the remaining genes evolve using the Baldwinian
approach [101]. This approach was used to solve the sorting
network problem. It can reduce the problem search space and
help to produce an efficient search [101].

The adoption of any form of learning in a hybrid genetic
algorithm has a great impact on its performance. Several
researchers have investigated how these different leaning
strategies affect the performance of hybrid genetic algorithms
by comparing them with pure genetic algorithms. Gruau and
Whitley [11] compared Lamarckian, Baldwinian and pure
genetic algorithms in evolving the architecture and the weights
of neural networks that learn Boolean functions. They
conclude that using either form of leaning is better than using
a pure genetic algorithm. Orvosh and Davis [55] found that
5% partial Lamarckian is the optimal learning strategy to solve
the survival network design problem and the graph coloring
problem. Michalewicz and Nazhiyath [109] replaced 20% of
the repaired solutions in their hybrid algorithm to solve
numerical optimization problems with nonlinear constraints.
Bala et al. [110] showed how the Baldwin effect can improve
the performance of a genetic algorithm when integrated with a
decision tree in order to evolve useful subsets of
discriminatory features for recognizing complex visual
concepts. However, Ku and Mak [111] found that only using
Lamarckian evolution improved the performance of genetic
algorithm in evolving recurrent neural networks. They also
concluded that effective hybridization depends on the local
search method used and the learning frequency. Houck et al.

[99] used seven problems to compare the performance of
different learning strategies. Their investigation concluded that
neither the pure Lamarckian nor pure Baldwinian strategy was
found to be consistently effective. It was discovered that the
20% and 40% partial Lamarckian search strategies yielded the
best mixture of solution quality and computational efficiency
based on a minmax criterion (i.e. minimizing the worst case
perfonnance across all test problems instance). Sasaki and
Tokoro [112] found that adaptation by Lamarckian evolution
was much faster for neural networks than Darwinian evolution
in a static environment. However, when the environment
changed from generation to generation, the Darwinian
evolution was superior. Julstrom [24] reported that Baldwinian
strategies perform poorly in solving the 4-cycle problem
compared to a pure genetic algorithm and their effectiveness
deteriorates with an increasing use of learning in contrast to
Lamarckian strategies. He also found that applying
Lamarckian leaning to all the individuals produced the most
effective results. Joines et al. [100] found that using the pure
Lamarckian approach (100% Lamarckian) produced the best
convergence speed to the best known solution when solving
the cell formation problem. Espinoza et al. [112] used 75%
partial Lamarckian as the optimal leaning strategy in their
hybrid to optimize two continuous functions. El-Mihoub et al.
[40] investigated the combined effect of probability of local
search and leaning strategy on the hybrid performance and
found that combing a low probability of local search with the
pure Lamarckian learning strategy can improve the
convergence speed without disrupting the schema processing.
Ishibushi et al. [114] found that the 5% partial Lamarckian
worked well on the multi-objective 0/1 knapsack problem
using a single population model, however, the 50% partial
Lamarckian was the optimal choice using the island model.

The effectiveness of adopting the pure Lamarckian
approach, the pure Baldwinian approach, or any mixture of
them in a hybrid is affected by the fitness landscape, the
representations, the percentage of population performs local
search and local search method used [40], [99], [100], [103],
[109], [114],

B. Balance between Global and Local Search
The hybrid algorithm should strike a balance between

exploration and exploitation, in order to be able to solve global
optimization problems. According to the hybrid theory [115],
solving an optimization problem and reaching a solution of
desired quality can be attained in one of two ways. Either the
global search method alone reaches the solution or the global
search method guides the search to the basin of attraction from
where the local search method can continue to lead to the
desired solution. In the genetic-local hybrid, the main role of
the genetic algorithm is to explore the search space in order to
either isolate the most promising regions of the search space,
or, to hit the global optimum. However, the main role of the
local search method is to exploit the information gathered by
the global genetic algorithm. The division of the hybrid’s time
between the two methods influences the efficiency and the
effectiveness of the search process. The optimal division of

the algorithm’s time is an important issue that is faced the
designers of hybrid genetic algorithms.

Although the aim of combining a global genetic algorithm
and a local search method is to get the best out of the
exploring ability of the former, and the efficiency of the latter
in reaching local optima, the two methods can interact in a
more complicated way than the one described above. Rosin et
al. [116] argued that the mutation operator in a hybrid plays a
different role than it does in a pure genetic algorithm. The
local refinement requirement of the mutation operator
becomes unnecessary in the existence of an explicit local
operator allowing the mutation operator to take a more
exploratory role. Land [117] suggested using larger mutations,
at least large enough to move from one basin to another, in
cases where each individual of the population is completely
locally optimized. He went further, when he argued that local
search obviates the need for crossover in solving the graph
bisection problem, because local search is able to build the
very same building blocks that the crossover would otherwise
combine.

The exploring ability of the genetic algorithm can be further
improved by utilizing local search to ensure fair representation
of different regions of a search. This can improve the ability of
the genetic algorithm to direct the search to the most
promising regions of the search space. Once the algorithm has
guided the search to the basin of attraction of the global
optimum, utilizing local search can further improve the search
to produce an effective optimization algorithm. The first goal
of the hybridization, which is the effectiveness of search, can
be satisfied if a genetic algorithm and a local search method
cooperate in the manner mentioned above. However, there are
other more destructive forms of interaction. For example, the
mutation and crossover operators can disrupt good and
complete local solutions which may waste algorithm resources
and produce an inefficient search. The Lamarckian local
search can disrupt the schema processing of the genetic
algorithm which may lead to premature convergence and
produce an ineffective search.

In addition to the role of genetic operators in systemically
exploring the search space, they perform some form of local
search with relative low cost compared to the more accurate
local search methods. The improper use of the expensive local
search in a hybrid can waste algorithm resources. The
algorithm should be able to decide wisely 011 both methods,
especially when both can achieve the desired task, taking into
account the benefits and costs of their utilization. The
condition of an appropriate use of both methods in addition to
the condition of interacting in a cooperative way should be
satisfied in order to produce an effective and efficient search
algorithm.

Researchers have proposed different techniques to enable
the hybrid to mix both methods wisely or at least to reduce the
consequences of the improper use of the expensive local
search. These techniques are based on modifying the different
parameters of a local search method within a hybrid.
Modifying the parameters of the local search, such as the
frequency of local search, the duration of local search, and the

probability of local search can help the hybrid to strike the
balance between the two search methods.

1) Frequency o f Local Search
The number of continuous uninterrupted generations that a

genetic algorithm performs before applying local search is
usually referred to as the frequency of local search. In the
traditional hybrid genetic algorithm, the frequency of local
search is 1, for example. The staged hybrid genetic algorithm
[118], [119] was designed to separate the two search methods
into two distinct stages by increasing the frequency of the
local search in order to minimize the interference between the
two search methods. Mathias and Whitely [118] used a local
search frequency of 2 to solve the TSP. However, in a hybrid
algorithm to solve the static correction problem [119], the
genetic search algorithm was allowed to continue
uninterrupted for ten generations before applying a single
iteration of waveform steepest ascent iteration to each
individual in the population. This hybrid algorithm produced
solutions with improved quality of 5% and additional savings
in time compared with the traditional hybrid genetic
algorithm. Espinoza et al. [113] conducted a set of
experiments to find the optimal local search frequency for two
two-dimensional continuous test functions and they found that
the optimal frequency of local search for these test functions
was 3.

The optimal frequency of local search is function dependent
and varies with time because the optimal time that should be
spent on local and global search algorithms depends on the
distribution of individuals in the population. Syrjakow and
Szczerbicka [120] studied the optimal switch point between
the genetic algorithm and local search to fine-tune the solution
found by the pre-optimizer genetic algorithm. They studied
three criteria: the number of function evaluations, the
convergence speed of the genetic algorithm, and the regional
accumulation of search points indicating the convergence
toward a specific region in the search space so as to determine
the optimal switch point. The convergence speed criterion
produced the highest efficiency in their experiment. Lobo and
Goldberg [13] addressed the problem of deciding between
global search and local search in order to make the most out of
either technique. They tried to answer the question, “when
should the local search be used and when should the global
genetic algorithm be used to achieve the maximum possible
efficiency?” They viewed the problem as a two armed bandit
problem where the payoff of each bandit is unknown and
changes with time. They presented a model for efficient
hybridizing based on the concept of probability matching. This
model can be viewed as an adaptive technique that adjusts the
frequency of local search depending on the efficiency of both
genetic and local techniques as the search progresses. Tuson
and Ross [121] used a similar model to adapt the operator
probability in their cost based operator rate adaptation. They
used their model to select the use of a mutation or crossover
operation in a pure genetic algorithm. The same technique has
been used to solve the three-matching problem [52], where an
adaptive hybrid algorithm selects one operator from eight
recombination and local search operators based 011 their

current and past benefit-cost ratio.
Espinoza et al. [113] used the change in coefficient of

variation of the fitness function to determine whether the
genetic algorithm is exploring new regions of the search space
or exploiting the already visited regions. Based on that, the
algorithm selects to perform either a genetic or a local
iteration. The algorithm relies on the local search role to
improve the sampling of the new regions that are being
explored in the case of any increase in that coefficient. Once
the search has branched to a local search, the fitness
improvement-cost ratio of both the last genetic and the local
iterations and the maximum number of local iterations are
used to decide on continuing the local search or going to the
global search. Their experiments showed that the algorithm is
more efficient than a pure genetic algorithm and is stable
against a greater range of parameter settings than the standard
staged hybrid genetic algorithm.

Hacker et al. [28] proposed an approach that switches
between global genetic and local search, based on the local
topology of the search space. The basic idea of this approach
ignores the role of local search in improving the sampling
ability of the genetic algorithm. It concentrates on the
efficiency of local search, i.e. finding the optimum once the
global genetic algorithm has defined its basin of attraction.
The utilization of the relative homogeneity of the population
and regression analysis to determine whether the search is
exploring a single basin or multiple basins was investigated.
The coefficient of variance of both the fitness and phenotype
is used to quantify the relative homogeneity of the population.
A decrease in the values of the coefficient of variance
indicates that the genetic algorithm has converged to a small
area of the seai'ch space and the search process can therefore
be made more efficient by switching to a local search. In
contrast, an increase in its value indicates that a new region of
the search space is being explored and hence there is less need
to use a local search. Regression analysis has also been used to
determine when to switch between global and local
techniques. The value of the error of fitting the population of
solutions to a second-order surface can indicate whether the
genetic algorithm is exploring multiple basins or a single basin
in the search space. Depending on the value of that error, the
algorithm decides to switch to a local search or continue the
global search. They concluded that utilizing local search could
be helpful for small search spaces in the early stages of search
due to their role in helping the genetic algorithm to define the
most promising regions of the search space. However, for
large and complicated search spaces, their role is limited to
accelerating finding of the global optimum once the genetic
algorithm isolates the most promising region and can be
helpful in later stages of the search.

2) Duration o f Local Search
Local search duration influences the balance between the

global exploration of genetic algorithms and local refinement
of the neighborhood search method in hybrid genetic
algorithms [122], [123]. A hybrid with long local search
duration will execute fewer generations of the genetic
algorithm than a hybrid with shorter local duration, if both

terminate after the same number of function evaluations.
On combinatorial domains, a local search can be performed

until a solution converges to a local optimum. However, on
continuous domains, the local search is typically truncated
before reaching a local optimum when its step length becomes
too small. Performing local search until a solution converges
to a local optimum, which is referred to as complete local
search, may lead to the loss of population diversity [102]
depending on the learning strategy used. Hybrid genetic
algorithms that adopt the pure Lamarckian approach are more
prone to loss of diversity than others which utilize other
learning techniques.

Applying a complete local search on costly function
evaluations can also be expensive. However, there is a certain
class of problems, decomposable fitness problems [124],
where calculating the fitness of a solution given the fitness of
its neighbor, is significantly less computationally expensive
than computing its fitness from scratch. TSP is an example of
this group of problems where computing the length of a tour
that shares most of its edges with another tour, whose length is
already known, is much cheaper than computing the length of
a complete tour. Radcliffe and Surry [124] argued that hybrids
are more suitable for problems exhibiting this property.

A few studies have been conducted which investigate the
optimal duration of local search. Hart [7] found that using a
short duration of local search produced the best results for the
Griewank functions [125], whereas a long duration produced
better results for the Rastrigin functions [126]. Rosin et al.
[116] experimented with very short and very long local search
durations in a hybrid to optimize the drug-docking
configuration. Both durations were found to yield similar
performance. Hart et al. [122] concluded that duration of local
search is an important factor and hybrid genetic algorithms
with long local searches will be most effective for nontrivial
problems.

The high cost of a complete local search on expensive
function evaluations makes any improper use of the local
search difficult to recover from. However, the recovering from
any misuse of partial local search is still possible. Partial local
search is more suitable for hybrids that decide on a global or a
local approach depending on the current state of the search
and the previous performance of both methods. In this case,
where there is a possibility of misjudgment in some
circumstances, the use of partial local search gives the hybrid
a higher chance to recover from such errors than using a
complete local search.

3) Probability and Selection o f Local Search
In any hybrid algorithm, a local search can be applied to

either every individual in the population or only few
individuals. In traditional hybrid genetic algorithms, a local
search is applied to every individual in the population.
However, applying a local search to every individual in the
population on costly function evaluations can waste resources
without providing any more useful information. In this case,
the local search can be applied to individuals that fall in the
same basin of attraction of the search space, whereby
producing the same local optimum. Applying a local search to

a large fraction of the population can limit exploration of the
search space by allowing the genetic algorithm to evolve for a
small number of generations. The possibility of applying local
search on more than one individual from the same basin can
be reduced by performing local search on only a small fraction
of the population. This also lowers the chances of applying an
unnecessary local search on individuals that fall in non­
promising regions of the search space. Deciding upon the
optimal fraction of the population which should perform local
search, and the basis on which these individuals are chosen,
has a great impact 011 the performance of a hybrid.

Hart [7] investigated the impact of the fraction of the
population that undergo local search on the performance of
real-coded genetic algorithms. He found that a relation exists
between this fraction, the population size and the performance
of the hybrid. He also found that performing local search on
small fractions could be more efficient when using larger
populations and those large fractions can help to reflect the
search space characteristics when using small populations. He
concluded that a more selective use of local search could
improve the efficiency of hybrids. Hart and Belew [127]
studied the impact of the local search probability on the
efficiency of hybrids. Their studies indicate that the
probability of local search should be kept low in the initial
stages and incremented in later generations. The population
diversity in the initial stages of genetic algorithm enables good
sampling of the search space. However, as the diversity
diminishes in the later stages, the sampling ability of the
genetic algorithm requires additional help from the local
search.

Different techniques, such as tuning, distribution-based [7],
fitness-based [7] techniques, and local search potential [117],
have been proposed to decide on the optimal fraction of the
population that should perform a local search. These
techniques aim to reduce unnecessary local searches.
However, they differ in the way they select individuals that
perform the local search.

a) Tuning Technique
In the tuning technique, a primary experiment is conducted

in order to find the optimal fraction of the population that
should perform local search. This fraction is usually referred
to as the probability of local search. This value is then used to
run the real experiment and remains fixed during the run.
Typically, the individuals that undergo local search are chosen
uniformly at random. Rosin et al. [116] applied local search to
7% of the population in each generation in their hybrid to
solve the docking problem. In Land et al. [128], only 5% of
randomly selected individuals of the population perform a
Marquardt-Levenberg local search in their hybrid to determine
the basic parameters that describe the structure of a
semiconductor wafer. Hart et al. [122] and Morris et al. [17]
applied local search to 6% of the population. Espinoza et al.
[113] found applying local search on 10% of the population
produces the best efficiency for both their adaptive hybrid
algorithm and the standard staged hybrid algorithm. In their
adaptive hybrid genetic algorithm, this value is used as an

initial value for the probability of local search, which is
reduced by a specific value after applying local search. In a
hybrid to solve TSP, Krasnogor and Smith [32] applied their
adaptive local search method with a probability of 1.0 to each
individual in the population, except the one with the best
fitness.

b) Distribution-based Technique
Distribution-based techniques modify the probability of

local search based on the distribution of individuals in the
population. The motivation for these techniques is to ensure
that only one individual from each basin of attraction in the
search space can undergo local search. These techniques can
improve the sampling ability of the hybrid by preventing bad
representatives of good regions from misguiding the global
genetic algorithm.

Hart [7] used the F statistic as a measure of distance over
the space of genotypes to adapt the probability of local search.
Joines and Kay [107] combined evolutionary algorithms with
random linkage and borrowed the concept of short memory
from tabu search [129] to avoid performing unnecessary local
search on non-promising regions of the search space. The
authors defined tabu hyperspheres around the offspring of the
genetic algorithm to reduce the number of wasted function
evaluations owing to the rediscovery of the same local
optimum. The probability of local search of each offspring
depends on the distance to the nearest tabu region. By
decreasing the size of these tabu hyperpheres as the search
progress, the algorithm can intensively search the most
promising regions of the search space. This in turn can help to
find the exact local optimum of the region which also
represents the global optimum of the search space. The
authors compared their hybrid using the Lamarckian learning
approach with a pure genetic algorithm, and the standard
hybrid genetic algorithm where each offspring perform local
search using two different learning strategies. They reported
that their hybrid outperformed other algorithms in terms of
both solution quality and computation effort. Martinez-
Estudillo et al. [130] selected individuals for local search
using clustering techniques to optimize the structure and the
weights of product-unit based neural networks. The results
showed that the clustering approach was able to perform better
than similar algorithms that do not use clustering analysis.

c) Fitness-based Technique
A fitness-based technique adaptively calculates the

probability with which local search is applied. This technique
uses the fitness information in the population to bias the local
search towards individuals that have a better fitness. The local
search probability of each individual is modified based on the
relationship of its fitness to the fitness of other individuals.
These methods assume that individuals with better fitnesses
are more likely to be in the basins of attraction of the most
promising regions. This assumption ignores the dynamic of
genetic algorithms and the cumulative effect of applying local
search on successive generations which can aggravate the
sampling ability of the global genetic algorithm and can

misguide the search. For example, if a promising region of the
search space is represented poorly by an individual with
under-average fitness and, in the same population, a non­
promising region is represented by individuals with over­
average fitness, the representative of the non-promising region
will have more chance to perform local search and improve its
chances of survive.

Hart [7] found no statistical differences between the results
obtained by applying fitness-based selection and the results of
fixed probability of local search. Espinoza et al. [131] used a
clustering technique that is tailored to the three different stages
the authors have defined for constrained problems to adapt the
probability of local search. In the first stage, where all the
solutions are infeasible, and the last stage, where all the
solutions are feasible, the authors experimented with
clustering the individuals depending on their fitness. The
selection was performed by means of Latin-hypercube
sampling from clusters which had formed. In the second stage,
where a few individuals are feasible, the probability of local
search is proportional to the number of feasible solutions in
the population. The results showed that the algorithm, which is
based on a fitness clustering technique, is more reliably faster
than the adaptive hybrid genetic algorithm with fixed starting
local search probability. Lozano et al. [132] proposed a simple
adaptive scheme which sets the probability of local search of
each individual to either 1.0 or 0.0625 depending on the
individuals fitness compared to the fitness of the current worst
individual in the population. The authors concluded that this
adaptation mechanism allows the balance between the global
genetic search and the local search to be adjusted according to
the particularities of the search space, thus allowing significant
improvements in the performance for different classes of
problems.

d) Local Search Potential Technique
The local search (LS potential) potential selection

mechanism has been proposed by Land [117] to decide which
individuals should perform the local search. Land suggested
that biasing the local search towards individuals that can be
most efficiently improved by local methods makes the most
effective use of local search. The least easily improved
solutions are likely to be those at or near to the local optimum
and it is inappropriate to expend effort on fine refinement, as
long as there are large differences in the population’s fitness.
In this way, the scheme biases the hybrid towards more
exploration. As the population gets closer to the optima, this
mechanism allows local search to progress to the next level of
refinement. In his algorithm, he used the past local search
effectiveness as a measure to estimate future effectiveness.

Different techniques have been used to control the different
parameters of the local search in order to strike a balance with
the global genetic methods. Most of the controlling techniques
which are described by Eiben et al. [17] for controlling the
parameters of evolutionary algorithms have been applied to
the local search control parameters in a hybrid.

The self-adaptation techniques are reported to be
successfully used to decide between different local search

methods in solving the OneMax problem, NIC-Landscapes,
and TSP [134]. The self-adaptation technique has also been
used to adapt the duration of local search in a hybrid through
encoding the number of local iterations into chromosomes
[106]. In this way, the global genetic algorithm decides on the
individuals that should perform a local search and on its
duration.

iv . S u m m a r y

In this paper, we have tried to shed some light on the
effectiveness and efficiency of hybridizing genetic algorithms
with various techniques through reviewing some of the wide
variety of hybrid genetic approaches. These approaches show
that hybridizing is one possible way to build a competent
genetic algorithm [135] that solves hard problems quickly,
reliably and accurately without the need for any forms of
human intervention. Hybridization has been utilized to
construct competent genetic algorithms that belong to two of
the three main approaches for building competent genetic
algorithms, i.e., perturbation, linkage adaptation, and
probabilistic model-building [136], The collective learning
genetic algorithm is an example of a competent genetic
algorithm that employs specifically designed representation
and operators for adapting genetic linkage along with the
evolutionary process. Other search and optimization methods
can also be used to adapt genetic linkage. Probabilistic Model-
Building Genetic Algorithms (PMBGA) are examples of
probabilistic model builders which leam genetic linkage via
building models based on the current population.

Hybridization is also one of the four main techniques for
efficiency enhancement of genetic algorithms. Hybridization
can also be used as a tool to achieve evaluation relaxation,
which in turn is another main technique for efficiency
enhancement.

The ability of a genetic-local hybrid to solve hard problems
quickly depends on the way of utilizing local search
information and the mechanism of balancing genetic and local
search. By reviewing the different hybrid approaches, some of
the important factors that affect the hybrid performance have
been presented. This review shows that there is a trend
towards adapting some of the hybrid design choices through
adapting the control parameters associated with these choices
while the search is progressing. Different adaptation
techniques have been used to adapt the selection of a local
search method, the selection of individuals for a local search,
the duration of local search, the learning strategy, and otlier
design aspects.

R e f e r e n c e s

[1] J. Holland, Adaptation in Natural and Artificial Systems: The University
ofM ichigan, 1975.

[2] K. De Jong, "An analysis o f the behavior o f a class o f genetic adaptive
systems," Doctoral Dissertation. Ann Arbor: The University o f
Michigan, 1975.

[3] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning: Addison-Wesley, 1989.

[4] D. Beasley, D. R. Bull, R, and R. Martin, "An overview o f genetic
algorithms: part 1, fundamentals," University Computing, vol. 15, pp.
58-69, 1993.

[5] II. Asoh and H. Miihlenbein, "On the mean convergence time o f
evolutionary algorithms without selection and mutation," in Parallel
Problem Solving from Nature, PPSN III, Y. Davidor, H.-P. Schwefel,
and R. Manner, Eds. Berlin, Germany: Springer-Verlag, 1994, pp. 8 8 -
97.

[6] D. Thierens, D. Goldberg, and P. Guimaraes, "Domino convergence,
drift, and the temporal-salience structure o f problems," in 1998 IEEE
International Conference on Evolutionary Computation Anchorage,
USA: IEEE, 1998, pp. 535-540.

[7] W. E. Hart, "Adaptive global optimization with local search," Doctoral
Dissertation. San Diego: University o f California 1994.

[8] S. Mahfoud and D. Goldberg, "Parallel recombinative simulated
annealing: a genetic algorithm," Parallel Computing, vol. 21, pp. 11-28,
1995.

[9] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by
simulated annealing," Science, vol. 220, pp. 671-680, 1983.

[10] S. W. Mahfoud, "Boltzmann selection," in Handbook o f Evolutionary
Computation, T. Back, D. B. Fogel, and Z. Michalewicz, Eds.: IOP
Publising Ltd and Oxford University Press, 1997, pp. C 2.5:l-4.

[11] F. Gruau and D. Whitley, "Adding learning to the cellular development
o f neural network: evolution and Baldwin effect," Evolutionary
Computation, vol. 1, pp. 213-233, 1993.

[12] C. Reeves, "Genetic algorithms and neighbourhood search," in
Evolutionary Computing, AISB Workshop, vol. 865 Lecture Notes in
Computer Science, T. C. Fogarty, Ed. Leeds, UK: Springer-Verlag,
1994, pp. 115-130.

[13] F. G. Lobo and D. E. Goldberg, "Decision making in a hybrid genetic
algorithm," in IEEE International Conference on evolutionary
Computation. Piscataway, USA: IEEE Press, 1997, pp. 122-125.

[14] K. De Jong, "Genetic algorithms: a 30 year perspective," in Perspectives
on Adaptation in Natural and Artificial Systems, L. Booker, S. Foirest,
M. Mitchell, and R. Riolo, Eds.: Oxford University Press, 2005.

[15] P. Preux and E.-G. Talbi, "Towards hybrid evolutionary algorithms,"
International Transactions in Operational Research, vol. 6, pp. 557-570,
1999.

[16] K. Deb, "Limitations o f evolutionary computation methods," in
Handbook o f Evolutionary Computation, T. Back, D. B. Fogel, and Z.
Michalewicz, Eds.: IOP Publishing and Oxford University Press, 1997,
pp. B2.9.

[17] A. E. Eiben, R. Hinterding, and Z. Michalewicz, "Parameter control in
evolutionary algorithms," IEEE Transactions on Evolutionary
Computation, vol. 3, pp. 124-141, 1999.

[18] N. ICrasnogor and J. Smith, "A tutorial for competent memetic
algorithms: model, taxonomy and design issues," IEEE Transactions on
Evolutionary Computation, vol. 9, pp. 474-488, 2005.

[19] P. Moscato, "On evolution, search, optimization, genetic algorithms and
martial arts: towards memetic algorithms," California Institute o f
Technology 1989.

[20] E. Talbi, "A Taxonomy o f hybrid metaheuristics," Journal o f Heuristics,
vol. 8, pp. 541 -5 6 4 ,2 0 0 2 .

[211 A. A. I-Iopgood, Intelligent Systems for Engineers and Scientists, 2nd
ed: CRC Press, 2001.

[22] T. Yamada and C. Reeves, "Solving the C.., . permutation flowshop
scheduling problem by genetic local search," in International
Confrenence on Evolutionary Computation. Anchorage, USA, 1998, pp.
230-234.

[23] G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K.
Belew, and A. J. Olson, "Automated docking using a Lamarckian
genetic algorithm and an empirical binding free energy function,"
Journal o f Computational Chemistry, vol. 19, pp. 1639-1662, 1998.

[24] B. Julstrom, "Comparing Darwinian, Baldwinian, and Lamarckian
search in a genetic algorithm for the 4-cycle problem," in the 1999
Genetic and Evolutionary Computation Conference, Late Breaking
Papers, S. Brave and A. S. Wu, Eds. Orlando, USA, 1999, pp. 134-138.

[25] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs third ed: Springer-Verlag, 1996.

[26] G. Bilchev and I. C. Parmee, "The ant colony metaphor for searching
continuous design spaces," in AISB Workshop on Evolutionary
Computing, vol. 993, Lecture Notes In Computer Science, T. C. Fogarty,
Ed. Sheffield, UK: Springer Verlag, 1995, pp. 25-39.

[27] M. Dorigo, V. M aniezzo, and A. Colorni, "Positive feedback as a search
strategy," Politecnico di Milano, Milan 1991.

[28] K. A. Hacker, J. Eddy, and K. E. Lewis, "Efficient global optimization
using hybrid genetic algorithms," presented at 9th AIAA/ISSMO

Symposium on Multidisciplinary Analysis and Optimization, Atlanta,
USA, 2002.

[29] E. Cantu-Paz, "A survey o f parallel genetic algorithms," Calculateurs
Parallele, Reseaux et Systems Repartis, vol. 10, pp. 141-171, 1998.

[30] D. E. Goldberg, "Using time efficiently: genetic-evolutionary algorithms
and the continuation problem," in the Genetic and Evolutionary
Computation Conference. Orlando, USA, 1999, pp. 212-219.

[31] D. E. Goldberg, "Foreward," EURASIP Journal on Applied Signal
Processing, vol. 8, pp. 731-732,2003.

[32] N. Krasnogor and J. Smith, "A memetic algorithm with self-adaptive
local search: TSP as a case study," in the Genetic and Evolutionary
Computation Conference. Las Vegas, USA Morgan Kaufmann, 2000,
pp. 987-994.

[33] S. Areibi and A. Vannelli, "Advanced search techniques for circuit
partitioning," in Quadratic Assignment and Related Problems, vol. 16,
DIMACS series in Discrtete Mathematics and Theoretical Computer
Science, P. Pardalos and H. W olkowicz, Eds., 1994, pp. 77-98.

[34] E. Besnard, N. Cordier-Lallouet, A. Schmitz, O. Kural, and H. P. Chen,
"Design/optimization with advanced simulated annealing," American
Insitute o f Aeronautic and Astronautics 1999.

[35] K. Liang, X. Yao, and C. Newton, "Combining landscape approximation
and local search in global optimization," in the Congress on
Evolutionary Computation, vol. 2. Washington DC, USA: IEEE Press,
1999, pp. 1514-1520.

[36] J. Yen, J. C. Liao, B. Lee, and D. Randolph, "A Hybrid approach to
modeling metabolic systems using genetic algorithms and simplex
method," IEEE Transactions on Systems, Man, and Cybernetics, vol. 28,
pp. 173-191, 1998.

[37] M. Chen and Q. Lu, "A hybrid model based on genetic algorithm and ant
colony algorithm," Journal o f Information & Computational Science,
vol. 2, pp. 647-653, 2005.

[38] G. Harik, E. Cantu-Paz, D. E. Goldberg, and B. 1. Miller, "The gambler's
ruin problem, genetic algorithms, and the sizing o f populations,"
Evolutionary Computation, vol. 7, pp. 231 - 253, 1999.

[39] F. B. Espinoza, B. Minsker, and D. Goldberg, "Performance evaluation
and population size reduction for se lf adaptive hybrid genetic algorithm
(SAI-IGA)," in the Genetic and Evolutionary Computation Conference,
vol. 2723, Lecture Notes in Computer Science San Francisco, USA:
Springer, 2003, pp. 922-933.

[40] T. El-Mihoub, A. Hopgood, L. Nolle, and A. Battersby, "Performance o f
hybrid genetic algorithms incorporating local search," in 18th European
Simulation Multiconference (ESM 2004), G. Horton, Ed. Magdeburg,
Germany, 2004, pp. 154-160.

[41] D. E. Goldberg and R. Lingle, "Alleles, loci, and the traveling salesman
problem," in the International Conference on Genetic Algorithms and
their Applications. Hillsdale, USA: Lawrence Erlbaum, 1985, pp. 154-
159.

[42] J. J. Grefenstette, R. Gopal, B. Rosmaita, and D. van Gucht, "Genetic
algorithms for the traveling salesman problem," in the First International
Conference on Genetic Algorithms and Their Applications, J, J.
Grefenstette, Ed. Pittsburgh, USA: Lawrence Erlbaum, 1985, pp. 160-
165.

[43] Y. Davidor, Genetic Algorithms and Robotics: A Heuristic Strategy for
Optimization: World Scientific Publishing, 1991.

[44] E. K. Burke, D. G. Elliman, and R. F. Weare, "A hybrid genetic
algorithm for highly constrained timetabling problems," in the sixth
International Conference on Genetic Algorithms, L. J. Eshelman, Ed.
Pittsburgh, USA Morgan Kaufmann 1995, pp. 605-610.

[45] B. Freisleben and P. Merz, "New genetic local search operators for the
travaling salesman problem," in the Fourth Conference on Parallel
Problem Solving from Nature vol. 1141, Lectures Notes in Computer
Science, H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel,
Eds. Berlin, Germany: Springer-Verlag, 1996, pp. 890-899.

[46] S. Lin and B. ICernighan, "An effective heuristic algorithm for the
traveling salesman problem," Operations Research, vol. 21, pp. 498-516,
1973.

[47] I. M. Oliver, D. J. Smith, and J. R. C. Holland, "A study o f permutation
crossover operators on the traveling salesman problem," in the Second
International Conference on Genetic Algorithms on Genetic algorithms
and their application. Hillsdale, USA, 1987, pp. 224 - 230.

[48] A. Homaifar, S. Guan, and G. E. Liepins, "Schema analysis o f the
traveling salesman problem using genetic algorithms," Complex
Systems, vol. 6, pp. 533-552 1992.

[49] J. Wroblewski, "Theoretical foundations o f order-based genetic
algorithms," Fundamenta Informaticae, pp. 423-430, 1996.

[50] D. Whitley, T. Starkweather, and D. A. Fuquay, "Scheduling problems
and traveling salesman: the genetic edge recombination operator," in the
Third International Conference on Genetic Algorithms. Fairfax, USA,
1989, pp. 133 - 140.

[51] P. Jog, J. Y. Suh, and D. Van Gucht, "Parallel genetic algorithms applied
to the traveling salesman problem," SIAM Journal o f Optimization, vol.
l ,p p . 515-529, 1991.

[52] G. Magyar, M. Johnsson, and O. Nevalainen, "An adaptive hybrid
genetic algorithm for the three-matching problem," IEEE Transaction on
Evolutionary Computation, vol. 4, pp. 135-146, 2000.

[53] B. Burdsall and C. Giraud-Carrier, "Evolving fuzzy prototypes for
efficient data clustering," in Second International ICSC Symposium on
Fuzzy Logic and Applications. Zurich, Switzerland, 1997, pp. 217-223.

[54] T. Ibaraki, "Combinations with other optimization methods," in
Handbook o f Evolutionary Computation, T. Back, D. B. Fogel, and Z.
Michalewicz, Eds.: IOP Publishing and Oxford University Press, 1997,
pp. D 3:l.

[55] D, Orvosh and L. Davis, "Shall we repair? genetic algorithms,
combinatorial optimization, and feasibility constraints," in the Fifth
International Conference on Genetic Algorithms. Urbana-Champaign,
USA: Morgan Kaufmann, 1993, pp. 650.

[56] J. Abela, D. Abramson, M. Krishnamoorthy, A. D. Selva, and G. Mills,
"Computing optimal schedules for landing aircraft," in the 12th
Conference o f the Australian Society for Operations Research. Adelaide,
1993, pp. 71-90.

[57] A. Konak and A. E. Smith, "A hybrid genetic algorithm approach for
backbone design o f communication networks," in the 1999 Congress on
Evolutionary Computation. Washington D.C, USA: IEEE, 1999, pp.
1817-1823.

[58] S. Areibi and Z. Yang, "Effective memetic algorithms for VLSI design =
genetic algorithms + local search + multi-level clustering," Evolutionary
Computation, vol. 12, pp. 327 -353 2004.

[59] Y. Jin, "A comprehensive survey o f fitness approximation in
evolutionary computation," Soft Computing, vol. 9, pp. 3-12 ,2005 .

[60] S. Lawrence, A. C. Tsoi, and A. D. Back, "Function approximation with
neural networks and local methods: bias, variance and smoothness," in
Australian Conference on Neural Networks. Canberra, 1996, pp. 16-21.

[61] L. W illmes, T. Back, Y. Jin, and B. SendhofF., "Comparing neural
networks and kriging for fitness approximation in evolutionary
optimization," in IEEE Congress on Evolutionary Computation.
Canberra, Australia, 2003, pp. 663-670.

[62] Y. Jin and B. Sendhoff, "Reducing fitness evaluations using clustering
techniques and neural network ensembles," in Genetic and Evolutionary
Computation Conference (GECCO 2004), vol. 3102 Lecture Notes in
Computer Science. Seattle, USA: Springer, 2004, pp. 688-699.

[63] C. A. Ankenbrandt, B. Buckles, F. E. Petry, and M. Lybanon, "Ocean
feature recognition using genetic algorithms with fuzzy fitness
functions," in the Third Annual Workshop on Space Operations,
Automation and Robotics. Houston, USA, 1989, pp. 679-685.

[64] R. Pearce and P. H. Cowley, "Use o f fuzzy logic to describe constraints
derived from engineering judgment in genetic algorithms," IEEE
Transactions on Industrial Electronics, vol. 43, pp. 535-540, 1996.

[65] H.-P. Schwefel, "Advantages (and disadvantages) o f evolutionary
computation over other approaches," in Handbook o f Evolutionary
Computation, T. Back, D. B. Fogel, and Z. Michalewicz, Eds.: IOP
Publishing and Oxford University Press, 1997, pp. A1.3.

[66] M. Pelikan, D. E. Goldberg, and F. Lobo, "A survey o f optimization by
building and using probabilistic models," IlliGAL 1999.

[67] S. Baluja, "Population-based incremental learning: a method for
integrating genetic search based function optimization and competitive
learning," Carnegie Mellon University 1994.

[68] M. Pelikan, D. E. Goldberg, and E. Cantu-Paz, "BOA: the Bayesian
optimization algorithm," in the Genetic and Evolutionary Computation
Conference. Orlando, USA: Morgan Kaufmann, 1999, pp. 525-532.

[69] S. Tsutsui, M. Pelikan, and A. Ghosh, "Performance o f aggregation
phermone system on unimodal and multimodal problems," in The 2005
IEEE Congress on Evolutionary Computation, vol. 1. Edinburgh, UK:
IEEE, 2005, pp. 880-887.

[70] L. T. Leng, "Guided genetic algorithm," Doctoral Dissertation.
University o f Essex, 1999.

[71] E. P. Tsang and C. Voudouris, "Fast local search and guided local search
and their application to British telecom's workforce scheduling
problem," In Operations Research Letters, vol. 20, pp. 119-127, 1997.

[72] A. Hedar and M. Fukushima, "Simplex coding genetic algorithm for the
global optimization o f nonlinear functions," in Multi-Objective

Programming and Goal Programming, Advances in Soft Computing, T.
Tanino, T. Tanaka, and M. Inuiguchi, Eds.: Springer-Verlag, 2003, pp.
135-140.

[73] K.-H. Han and J.-H. Kim, "Quantum-inspired evolutionary algorithm for
a class o f combinatorial optimization," IEEE Transactions On
Evolutionary Computation, vol. 6, pp. 580- 593, 2002.

[74] K.-H. Han and J.-I-I. Kim, "Quantum-inspired evolutionary algorithm
with a new termination criterion, Hc gate, and two-phase scheme," IEEE
Transactions on Evolutionary Computation, vol. 8, pp. 156-169,2004.

[75] H. Talbi, A. Draa, and M. Batouche, "A new quantum-inspired genetic
algorithm for solving the travelling salesman problem," in 14th
International Conference on Computer Theory and Applications.
Alexandria, Egypt 2004.

[76] K. C. Tan, Y. Li, D. J. Munay-Smith, and K. C. Sharman, "System
identification and linearisation using genetic algorithms with simulated
annealing," in First IEE/IEEE Int. Conf. on GA in Eng. Syst.:
Innovations and Appl. Sheffield, UK, 1995, pp. 164-69.

[77] T. Yamada and R. Nakano, "A genetic algorithm with multi-step
crossover for job-shop scheduling problems," in First IEE/IEEE
International Conference on Genetic ALgorithms in Engineering
Systems Innovations and Applications (GALESIA ’95): Sheffield, UK,
1995, pp. 146-151.

[78] T. P. Riopka and P. Bock, "Intelligent recombination using individual
learning in a collective learning genetic algorithm," in the Genetic and
Evolutionary Computation Conference (GECCO-2000), D . Whitley, D.
Goldberg, E. Cantu-Paz, L. Spector, I. Parmee, and FI.-G. Beyer, Eds.
Las Vegas, USA: Morgan Kaufmann, 2000, pp. 104-111.

[79] F. Herrera and M. Lozano, "Heuristic crossovers for real-coded genetic
algorithms based on fuzzy connectives," in the 4th International
Conference on Parallel Problem Solving from Nature, vol. 1141, Lecture
Notes In Computer Science. Berlin, Germany: Springer-Verlag 1996,
pp. 3 3 6 -3 4 5 .

[80] J. N. Richter and D. Peak, "Fuzzy evolutionary cellular automata," in
International Conference on Artificial Neural Networks in Engineering,
vol. 12. Saint Louis, USA, 2002, pp. 185-191.

[81] F. Herrera and M. Lozano, "Adaptive genetic operators based on co­
evolution with fuzzy behaviors," IEEE Transactions on Evolutionary
Computation, vol. 5, pp. 149-165,2001.

[82] R. K. Belew, J. M clnemey, and N. N. Schraudolph, "Evolving networks:
using the genetic algorithm with connectionist learning," in Artificial
Life II. New York, USA: Addison-W esley, 1991, pp. 511-547.

[83] H. Liang, Z. Lin, and R. W. McCallum, "Application o f combined
genetic algorithms with cascade conelation to diagnosis o f delayed
gastric emptying from electrogastrograms," Medical Engineering &
Physics, vol. 22, pp. 2 2 9 -2 34 ,2000 .

[84] D. J. Montana, "Neural network weight selection using genetic
algorithms," in Intelligent Hybrid Systems: John W iley & Sons, 1995,
pp. 85-104.

[85] P. Arena, R. Caponetto, I. Fortuna, and M. G. Xibilia, "MLP optimal
topology via genetic algorithms," in the International Conference on
Artificial Neural Nets and Genetic Algorithms, A. Dobnikar, N. Steele,
D. Pearson, and R. F. Albrecht, Eds. Portoroz, Slovenia: Springer-
Verlag, 1993, pp. 670-674.

[86] N. Chaiyaratana and A. M. Zalzala, "Hybridisation o f neural networks
and a genetic algorithm for friction compensation," in The 2000
Congress on Evolutionary Computation, vol. 1. San Diego, USA, 2000,
pp. 22-29.

[87] J. R. Koza and J. P. Rice, "Genetic generation o f both the weights and
architecture for a neural network," in Joint Conference on Neural
Networks, vol. 2. Seattle, USA, 1991, pp. 397-404.

[88] G. F. Miller, P. M. Todd, and S. U. Hegde, "Designing neural networks
using genetic algorithms," in the Third International Conference on
Genetic Algorithms, J. D. Schaffer, Ed. San Mateo, USA: Morgan
Kaufmann, 1989, pp. 379-384.

[89] D. Chalmers, "The evolution o f learning: an experiment in genetic
connectionism," in Connectionist M odels,1990 Summer School, D.
Touretzky, J. Elman, T. Sejnowski, and G. Hinton, Eds. San Diego,
USA: Morgan Kaufmann, 1990, pp. 81-90.

[90] J. Fontanari and R. Meir, "Evolving a learning algorithm for the binary
perception," Network, vol. 2, pp. 353-359, 1991.

[91] X. Yao, "Evolving artificial neural networks," Proceedings o f the IEEE,
vol. 87, pp. 1423-1447, 1999.

[92] C. L. Karr, "Design o f an adaptive fuzzy logic controller using a genetic
algorithm," in the Fourth International Conference on Genetic
Algorithms. San Diego, USA: Morgan Kaufmann, 1991, pp. 450-457.

[93] C. L. Karr and E. J. Gentry, "Fuzzy control o f pH using genetic
algorithms," IEEE Transaction on Fuzzy Systems, vol. 1, pp. 46-53,
1993.

[94] M. Valenzuela-Rendon, "The fuzzy classifier system: motivations and
first results," in the International Workshop Parallel Problem, vol. 496,
Lecture Notes in Computer Science. Dortmund, Germany: Springer,
1991, pp. 338-342.

[95] T. White, B. Pagurek, and F. Oppacher, " ASGA: improving the ant
system by integration with genetic algorithms," in the third Conference
on Genetic Programming (GP/SGA'98). Madison, USA, 1998, pp. 610-
617.

[96] H. M. Botee and E. Bonabeau, "Evolving ant colony optimization,"
Advanced Complex Systems, vol. 1, pp. 149-159, 1998.

[97] M. L. Pilat and T. White, "Using genetic algorithms to optimize ACS-
TSP," in the Third International Workshop on Ant Algorithms, vol.
Lecture Notes In Computer Science 2463. Berlin, Germany: Springer-
Verlag, 2002, p p .282 - 287.

[98] G. Hinton and S. J. Nowlan, "How learning can guide evolution,"
Complex Systems, vol. 1, pp. 495-502., 1987.

[99] C. Houck, J. Joines, M. Kay, and J. Wilson, "Empirical investigation o f
the benefits o f partial Lamarckianism," Evolutionary Computation, vol.
5, pp. 3 1 -6 0 , 1997.

[100]J. A. Joines, M. G. Kay, R. King, and C. Culbreth, "A hybrid genetic
algorithm for manufacturing cell design," Journal o f the Chinese
Institute o f Industrial Engineers, vol. 17, pp. 549-564, 2000.

[101]C. Sung-Soon and M. Byung-Ro, "A graph-based Lamarckian-
Baldwinian hybrid for the sorting network problem" IEEE Transactions
on Evolutionary Computation, vol. 9, pp. 105- 114,2005.

[102]D. Whitley, S. Gordon, and K. Mathias, "Lamarckian Evolution, the
Baldwin effect and function optimization," in Parallel Problem Solving
from Nature - PPSN III vol. 866, Lecture Notes in Computer Science, Y.
Davidor, II.-P. Schwefel, and R. Manner, Eds. Jerusalem: Springer-
Verlag, 1994, pp. 6-15.

[103]P. Turney, "Myths and legends o f the Baldwin effect," in Workshop on
Evolutionary Computation and Machine Learning at the 13th
International Conference on Machine Learning. Bari, Italy, 1996, pp.
135-142.

[104]P. Turney, D. Whitley, and R. Anderson, "Evolution, learning, and
instinct: 100 years o f the Baldwin effect," Evolutionary Computation,
vol. 4, pp. iv-viii, 1996.

[105]G. M ayley, "Landscapes, learning costs and genetic assimilation,"
Evolutionary Computation, vol. 4, pp. 213 - 234, 1996.

[106]T. El-Mihoub, A. Hopgood, L. Nolle, and A. Battersby, "A self-adaptive
Baldwinian search in hybrid genetic algorithms," in the 6th Fuzzy Days
International Conference on Computational Intelligence. Dortmund,
Germany: Springer, 2006, to be published.

[107]J. A. Joines and M. G. Kay, "Hybrid genetic algorithms and random
linkage," in the 2002 Congress on Evolutionary Computation. Honolulu,
USA: IEEE, 2002, pp. 1733-1738.

[108]W . E. Hart, T. E. Kammeyer, and R. K. Belew, "The role o f
development in genetic algorithms," in the Third Workshop on
Foundations o f Genetic Algorithms. San Fransico, USA, 1995, pp. 315-
332.

[109]Z. M ichalewicz and G. Nazhiyath, "Genocop III: a co-evolutionary
algorithm for numerical optimization problems with nonlinear
constraints," in 2nd IEEE International Conference on Evolutionary
Computation, vol. 2. Perth, Australia IEEE, 1995, pp. 647-651.

[110]J. Bala, K. A. D. Jong, J. Huang, H. Vafaie, and H. Wechsler, "Using
learning to facilitate the evolution o f features for recognizing visual
concepts," Evolutionary Computation, vol. 4, pp. 297-311, 1996.

[111]K. W. Ku and M. W. Mak, "Exploring the effects o f Lamarckian and
Baldwinian learning in evolving neural networks," in International
Conference on Evolutionary Computation. Indianapolis, USA, 1997, pp.
617-622.

[112]T. Sasaki and M. Tokoro, "Adaptation toward changing environments:
why Darwinian in nature?," in Fourth European Conference on Artificial
Life, , Complex Adaptive Systems Series P. Husbands and I. Harvey,
Eds. Brighton, UK: MIT press, 1997, pp. 145-153.

[113]F. B. Espinoza, B. Minslcer, and D. Goldberg, "A se lf adaptive hybrid
genetic algorithm," in the Genetic and Evolutionary Computation
Conference (GECCO 2001). San Francisco, USA: Morgan Kaufmann
Publishers, 2001, pp. 759.

[114]H. Ishibuchi, S. Kaige, and K. Narukawa, "Comparison between
Lamarckian and Baldwinian repair on multiobjective 0/1 knapsack
problems," in Evolutionary Multi-Criterion Optimization, Carlos A.

Coello Coello, A. II. Aguirre, and E. Zilzler, Eds. Guanajuato, M exico,
2005, pp. 370-385.

[115]D. E. Goldberg and S. Voessner, "Optimizing global-local search
hybrids," in the Genetic and Evolutionary Computation Conference
(GECCO 1999). Orlando, USA: Morgan Kaufmann, 1999, pp. 222-228.

[1 16]C. D. Rosin, R. S. Halliday, W. E. Hart, and R. K. Belew, "A
comparison o f global and local search methods in drug docking," in the
Seventh International Conference on Genetic Algorithms, T. Back, Ed.
Michigan, USA: Morgan Kaufmann, 1997, pp. 221-228.

[117]M . Land, "Evolutionary algorithms with local search for combinatorial
optimization," Doctoral Dissertation. San Diego: University o f
California 1998.

[118] K. Mathias and D. Whitley, "Genetic operators, the fitness landscape
and the traveling salesman problem," in Parallel Problem Solving from
Nature-PPSN 2. Brussels, Belguim: North Holland-Elsevier, 1992, pp.
219-228.

[119]IC. Mathias, L. Whitley, C. Stock, and T. Kusuma, "Staged hybrid
genetic search for seismic data imaging," in International Conference on
Evolutionary Computation. Orlando, USA, 1994, pp. 356-361.

[120]M . Syrjakow and H. Szczerbicka, "Combination o f direct global and
local optimization methods," in IEEE Conference on Evolutionary
Computation. Perth, Western Australia: IEEE, 1995, pp. 326-333.

[121]A. L. Tuson and P. Ross, "Cost based operator rate adaptation: an
investigation," in the Fourth International Conference on Parallel
Problem Solving From Nature (PPSN IV), Lecture Notes in Computer
Science. Berlin, Germany: Springer Verlag, 1996, pp. 461-469.

[122]W . E. Hart, C. R. Rosin, R. K. Belew, and G. M. Morris, "Improved
evolutionary hybrids for flexible ligand docking in AutoDock," in
Optimization in Computational Chemistry and Molecular B iology, C. A.
Floudas and P. M. Pardalos, Eds.: Springer 2000, pp. 209-230.

[123] El. Ishibuchi, T. Yoshida, and T. Murata, "Balance between genetic
search and local search in memetic algorithms for multiobjective
permutation flowshop scheduling," IEEE Transactions on Evolutionary
Computation,, vol. 7, pp. 204- 223 ,2003 .

[124]N. J. Radcliffe and P. D. Surry, "Formal memetic algorithms," in
Evolutionary Computing: AISB Workshop. Brighton, UK: Springer-
Verlag, 1994, pp. 1-16.

[125] A. O. Griewank, "Generalized descent for global optimization," Journal
o f Optimization Theory and Applications, vol. 34, pp. 11-39, 1981.

[126]A. Torn and A. Zilinskas, "Global optimization," in Lecture Notes in
Computer Science, vol. 350: Springer-Verlag, 1989.

[127]W . E. Hart and R. K. Belew, "Optimization with genetic algorithm
hybrids that use local search," in Adaptive individuals in evolving
populations: Models and algorithms, vol. 26, R. Belew and M. Mitchell,
Eds.: Addison-Wesley, 1996, pp. 483-496.

[128]M . Land, J. J. SIDorowich, and R. K. Belew, "Using genetic algorithms
with local search for thin film metrology," in the Seventh International
Conference on Genetic Algorithms. East Lansing, USA: Morgan
Kaufmann, 1997, pp. 537-544.

[129]F. Glover, "Tabu search- part I," ORSA Journal on Computing, vol. 1,
pp. 190-260, 1989.

[130] A. Martinez-Estudillo, C. Hervas-Martnez, F. Martnez-Estudillo, and N.
Garca-Pedrajas, "Hybrid method based on clustering for evolutionary
algorithms with local search," IEEE Transactions on Systems, Man and
Cybernetics, 2004.

[131]F. Espinoza, B. S. Minsker, and D. Goldberg, "Local search issues for
the appliction o f a self-adaptive hybrid genetic algorithm in groundwater
remediation design," in American Society o f Civil Engineers (ASCE)
Environmental & Water Resources Institute (EWRI) World Water &
Environmental Resources Congress 2003 & Related Symposia.
Philadelphia, USA, 2003.

[132]M . Lozano, F. Herrera, N. Krasnogor, and D. Molina, "Real-coded
memetic algorithms with crossover hill-climbing," Evolutionary
computation, vol. 12, pp. 273 - 302 2004.

[133]F. T. Lin, C. Y. Kao, and C. C. Hsu., " Incorporating genetic algorithms
into simulated annealing," in the Fourth International Symposium on
Artificial Intelligence. Cancun, M exico, 1991, pp. 290-297.

[134]N. Krasnogor and J. Simth, "Emergence o f profitable search strategies
based on a simple inheritance mechanism," in the Genetic and
Evolutionary Computation Conference. San Francisco, USA: Morgan
Kaufmann, 2001, pp. 432-439.

[135]D. Goldberg, "The race, the hurdle, and the sweet spot: Lessons from
genetic algorithms for the automation o f design innovation and
creativity," in Evolutionary Design by Computers: Morgan Kaufmann,
1999, pp. 105-118.

[136] Y. Chen and D. Goldberg, "Convergence time for the linkage learning
genetic algorithms," Evolutionary computation, vol. 13, pp. 279-302,
2005.

Tarek A. E l-M ihoub graduated with a BSc in computer
engineering from Al-Fateh Uinversity, Tripoli, Libya in
1993 and obtained his MSc in engineering multimedia
from Nottingham Trent University in UK by the end o f
2002 .

He is currently a PhD Student at Nottingham
Trent University. He worked as a Teaching Assistant at
Al-Fatah University in Libya and as a Manager o f
computer department o f the Libyan environment general

authority. His current research is in the field o f optimization, genetic
algorithms, and artificial intelligence.

Adrian A. H opgood graduated with a BSc (Hons) in
physics from the University o f Bristol in 1981 and
obtained a PhD from the University o f Oxford in 1984.

He is professor o f Computing and Dean o f the
School o f Computing & Informatics at Nottingham Trent
University, UK. He is also a visiting professor at the Open
University. His main research interests are in intelligent
systems and their practical applications.

Prof. Hopgood is a fellow o f the British
Computer Society and a committee member for its

specialist group on artificial intelligence.

Lars Nolle graduated from the University o f Applied
Science and Arts in Hanover in 1995 with a degree in
Computer Science and Electronics. After receiving his
PhD in Applied Computational Intelligence from The
Open University, he worked as a System Engineer for
EDS.

He returned to The Open University as a
Research Fellow in 2000. He joined The Nottingham
Trent University as a Senior Lecturer in Computing in

February 2002. His research interests include: applied computational
intelligence, distributed systems, expert systems, optimization and control o f
technical processes.

Alan Battersby obtained an MSc in Computer Science
from Hatfield Polytechnic, UK in 1977.

Prior to joining the School o f Computing and
Informatics at Nottingham Trent University, UK, he was
a Computing Development Officer for Bedfordshire
Education Authority. His research interests include:
Fuzzy Logic applied to Robotics, wavelets, compression
and the Internet.

S e lf-ad ap tiv e B a ld w in ian S earch in H y b rid
G e n e tic A lg o rith m s

T. El-Mihoub, A. A. Hopgood, L. Nolle and A. Battersby

School of C om puting and Inform atics, N ottingham Trent University
Clifton Lane, N ottingham , NG11 8NS, UK
t a r e k . e l m i h o u b , a d r i a n . h o p g o o d , l a r s . N o l l e , a l a n . b a t t e r s b y @ n t u . a c . u k

S u m m a ry . T he problem of proper u tilization of the search tim e to adap t a hybrid
to a given problem can be viewed as a problem of finding optim al control param eter
settings. T he algorithm ’s tim e utilization can be optim ized through adap ting the
local search duration. Evolving th is control param eter via genetic operations is one
possible way to achieve th is adap tation . However, the hindering effect can obstruct
the self-adaptive ability of th e Baldwinian search. Local search m ethods w ith narrow
steps and the use of the local search duration to discrim inate between solutions can
help to alleviate th is problem.

K e y w o rd s : Self-adaptaion, Hybrid genetic algorithms, Baldwinian search, Hin­
dering effect

1 Introduction

A genetic, algorithm is usually combined with a domain-specific method to
solve a real-world problem [8] . The success of such a hybrid algorithm in
solving a given problem efficiently depends on its success in achieving a bal­
ance between exploration and exploitation [4, 8, 3], Among the factors that
affect this balance is the duration of local search [5], which is defined as the
number of the consecutive local search iterations that is performed on a solu­
tion before terminating a local search procedure. This control parameter can
be used to adapt the hybrid on-line to a. specific problem.
The interactions between local search duration, learning strategy, fitness
topology, and other genetic components have a great impact on search time
utilization [4, 5]. The idea of evolutionary self-adaptation [6] can be applied
to adapt the local search duration in order to optimise the performance of a
hybrid on a particular problem without the need for external control.
The impact of the hindering effect [6] on obscuring genetic differences can
obstruct the Baldwinian[7] search’s self-adapting ability to a given problem.
The genotypes cannot be effectively discriminated according to their fitness

mailto:alan.battersby@ntu.ac.uk

2 El-M ihoub et al.

without considering the learning cost and hence the evolution of effective so­
lutions can be hindered.
The ability of genetic search to find favourable parameter settings for pure
genetic algorithms has been proven [6]. However, its ability within a hybrid
to self-adapt the control parameters, especially those related to incorporating
a local method, may require further investigation. In this paper, we analyse
the influence on the behaviour of the Baldwinian hybrid of simultaneously
exploring both the problem search space and the control space of local search
duration. This analysis can help to gain some insight into the factors that
may affect the search performance in order to find ways to improve it.

2 E volutionary Self-adaptation and D uration of Local
Search

In evolutionary self-adaptive algorithms, the fitness of the individual asso­
ciated with a specific control parameter value is used as feedback to assess
the suitability of the control parameter values for solving a given problem.
The link between the duration-of-local-search control parameter and the in­
dividual’s fitness depends on the fitness function topology, the details of the
local search method and the genetic algorithm’s setup. By allowing the du­
ration of the local search to evolve by means of genetic operations, the link
between favourable duration of the local search and the fitness can be ex­
ploited. Genetic operations can adaptively control the duration of the local
search method to optimise the individuals fitnesses. In this way, this link can
be defined, which is essential for the adaptation of control parameters [11],
However, it may be difficult to define this link when the genetic algorithm
is combined with Baldwinian search. The acquired fitness is the sum of the
improvements introduced by applying a local search method for the encoded
duration and the innate fitness. The hindering effect can direct the search to­
wards individuals with long durations and a small innate fitness. The search
process, in this case, is degraded from optimising the fitness function to opti­
mising a single control parameter. The possibility of leading the search in this
direction increases as the dimension of the fitness function increases, since it
may be easier for the algorithm to optimise a single control parameter than
to optimise a large number of variables. It can also waste its resources as it
can direct the individuals towards performing useless local search iterations.
The use of the acquired fitness as a metric to assess the quality of solutions
in the Baldwinian search can produce an algorithm with poor performance.
The use of a local search method, which takes narrow steps in the search
space while restricting the values of the duration of local search to very small
numbers, can help to combat the hindering effect problem. In this way, the
problems consequences on the ability of the algorithm to define a link between
this control parameter and the fitness in the direction of optimising solutions
quality can be alleviated.

Self-adaptive Baldwinian Search in Hybrid Genetic Algorithm s 3

However, the ultimate solution for the hindering effect problem is to rely on
innate fitness to decide between solutions of equal acquired fitness values.
Since the number of local iterations, which is a good indication of the cost of
learning, is already encoded into the individual, it can be used together with
the acquired fitness to direct the search towards solutions of high quality.
It may be beneficial to allow the local search method to cooperate with the
global genetic algorithm to explore the search space in the early stages of
the search by allowing wide local steps. However, as the Baldwinian search
reaches the fitness-convergenc.e-state, taking narrow local steps can be more
helpful. By adapting the local step size according to the standard deviation
of the population fitness, the search performance rnay be improved.

3 E xperim ents

A set of experiments was conducted to gain some insight into the evolutionary
self-adaptive behaviour of the Baldwinian search using three different hybrids.
Hybrid-A, which uses a local search method with a predefined maximum lo­
cal step size and discriminates between solutions based on the acquired fitness
only, was used to study the effect of local search step size on the performance.
Hybrid-B, which is identical to Hybrid-A except that it uses local search iter­
ations to discriminate between solutions of an equal acquired fitness, was used
to investigate the effectiveness of using the local search duration to discrimi­
nate between solutions. The possibility of improving the hybrid performance
by employing an adaptive local step was examined through Hybrid-C, which
uses an adaptive local step size and utilizes the local search duration to dis­
criminate between effective solutions.
In these hybrids, the number of local search iterations that should be per­
formed by an individual was encoded into its chromosome. At each iteration,
the local search method tries to find the smallest possible step in the allowed
range of a randomly selected variable space that improves the fitness. Starting
from the least significant bit of a randomly chosen variable and moving to­
wards its most significant bit, the local search method keeps flipping the bits
until an improvement in the fitness produced or a specified number of bits are
flipped. In the case of no improvement in the fitness, the process is repeated
for another randomly chosen variable until an improvement is produced. By
controlling the maximum number of bits that can be scanned for fitness im­
provement of each variable before randomly selecting another variable, the
algorithm controls the size of the local search step.
The generalized Ellipsoidal [2], Ackley [1], Schwefel [10], Rastrigin [10], and
Griewanlc [10] functions were selected as a test suite. The hybrids used the
simple elitist genetic algorithm with binary tournament selection, two-point
crossover, and simple mutation. The values of the duration of local search
parameter were restricted to very small values in the range 03. For all ex­
periments, the rate of crossover and mutation were set to 0.7 and (popula­

4 El-M ihoub et al.

tion size)-1 , respectively. The population sizes for the 2- and 10-dimensional
functions were set to 50 and 100, respectively. Each variable was represented
by a 10-bit string. The stopping criterion for all experiments was a maximum
number of function evaluations. The number of bits that were exposed to
modification was limited to a specific percentage of the length of the variables
string. Each experiment was repeated 100 times.

4 D iscussion

The results of the first two hybrids clearly show that as the size of the local
search step decreases, the ability of the evolutionary self-adaptive Baldwinian
hybrid to find a global optimum increases. This is depicted in Fig. 1 for the
10-dimensional Ellipsoidal, Ackley, and Schwefel functions. The algorithms
were unable to find the global optimum for the 10-dimensional Griewanlc and
Rastrigin functions. However, the curves of the best fitness of these functions
show a similar trend. The curves of the percentage of experiments that found
a global optimum of the 10-dimensional functions, as expected, have a steeper
slope than the 2-dimensional functions. As shown in Fig. 1, Hybrid-B outper­
formed Hybrid-A in terms of the percentage that converged.
The experiments also show that using small local steps improves the speed of

—o—-Ackley (Hybrid-B)
—O* - Ackley (Hybrid-A)

«*«©•••Ackley (Hyhrid-C)
Ellipsoidal (Hybrid-B)

—■t- - Ellipsoidal (Hybrid-A)
— I— Ellipsoidal (Hybrid-C)
— 6— Schwefel (Hybrid-B)
-e--Schwefe l (Hybrid-A)

• ■ ■ 0- • • • Schwefel (Hybrid-C)

70%

O 60%

10% n -

40% 50% 60%
L o c a l S e a r c h L im it

F ig . 1 . T he effect on convergence ability

the algorithms in finding the global optimum (Fig. 2). Fig. 2 also illustrates
that Hybrid-B significantly outperforms Hybrid-A in terms of the search speed
of the 10-dimensional Ackley and Schwefel functions.

Self-aclaptivc Baldwinian Search in Hybrid Genetic Algorithm s 5

Hybrid-C produced a near optimal performance in terms of the percentages
that converged and an optimal performance in terms of convergence speed
for the 10-dimensional Schwefel and Ellipsoidal functions, as illustrated by
the doffed lines in Fig. 1 and Fig. 2. Hybrid-C also improved the best fitness
and the search speed of the Rastrigin and Griewank functions. However, the
algorithm produced a poor performance for the Ackley function.

5 C onclusions

The hindering effect can obstruct the ability of Baldwinian search to self-adapt
the duration-of-local-search control parameter. The possibility of obstructing
this ability increases as the dimension of the fitness function increases. The
results presented in this paper also show that the use of a local search method
with narrow steps in the search space can help to alleviate this problem and
hence improve the performance of the Baldwinian search in terms of solution
quality and convergence speed. The performance of the Baldwinian search
can be further improved when the local search duration is used alongside
the acquired fitness to discriminate between effective solutions. The use of
an adaptive local search step can improve the performance of the Baldwinian
search on some of the tested problems.

— 0— Ackley (Hybrid-B)
-© -A c k le y (Hybrid-A)

•■■©•••Ackley (Hybrid-C)
— I— Ellipsoidal (Hybrid-B)
— I— Ellipsoidal (Hybrid-A)
— I— Ellipsoidal (Hybrid-C)
— 9— Schwefel (Hybrid-B)

- Schwefel (Hybrid-A)
•••© — Schwefel (Hybrid-C)

n.

10% 2 0 % 30% 40%
Local Search Limit

F ig . 2. The effect on convergence speed

6 El-M ihoub et al.

R eferences

1. Baeck T , Schwefel H-P (1993) An overview of evolutionary algorithm s for pa­
ram eter optim ization. Evolutionary C om putation. The M IT press. 1:1-23

2. Deb K, Anancl A, Joslii D (2002) A com putationally efficient evolutionary al­
gorithm for real-param eter optim ization. Evolutionary C om putation. T he M IT
press. 371395

3. Goldberg D, Voessner S (1999) O ptim izing global-local search hybrids. In:
B anzhaf W , D aida J, E iben A, Garzon M, Honavar V, Jakiela M, Sm ith R
(Eds.) th e genetic and evolutionary com putation conference. M organ Kauf­
m ann. 222-228

4. H art E (1994) A daptive global optim ization w ith local search. PhD Thesis,
University of California, San Diego

5. H art E, Rosin C, Belew R, M orris G (1997) Im proved evolutionary hybrids for
flexible ligand docking in AutoDock. In Inti conf of optim ization in com puta­
tional chem istry and molecular biology. 209-230

6. H interding R, Michalewicz Z, E iben E (1997) A daptation in evolutionary com­
putation : A survey. In: th e 4 th IE E E international conference on evolutionary
com putation. IEEE. 65-69

7. H inton G, Nowlan J (1989) How learning can guide evolution. Complex Sys­
tem s. 1:495-502

8. Lobo F, Goldberg D (1997) Decision m aking in a hybrid genetic algorithm ,
in: IE EE in ternational conference on evolutionary com putation. IE E E Press.
121-125

9. Maylcy G (1996) Landscapes, learning costs and genetic assim ilation, in: Tur­
ney P, W hitley D, Anderson R (eds) Evolution, learning, and instinct: 100
years of th e Baldwin effect, special issue of Evolutionary C om putation. T he
M IT press.4: 213-234

10. M uehlenbein H, Schomisch M, Born J (1991) T he parallel genetic algorithm as
function optim izer. Parallel C om puting. 17: 619-632

11. Tuson A, Ross P (1998) A dapting operator settings in genetic algorithms. Evo­
lu tionary C om putation. T he M IT press. 6:161-184

A Self-Adaptive Hybrid Genetic Algorithm for Color Clustering

Tarek El-Mihoub, Lars Nolle, Gerald Schaefer, Tomoharu Nakashima and Adrian Hopgood

Abstract — C o lor p a lettes arc in h eren t to co lor qu antized
im ages and rep resen t th e range o f p ossib le co lors in such im ages.
W hen con vertin g fu ll tru e co lor im ages to palletized
cou n terp arts, th e co lor p alette shou ld be ch osen so as to
m in im ize the resu ltin g d istortion com pared to th e orig inal. In
th is pap er, w e sh ow th at in con trast to p revious app roaches on
co lor qu an tiza tion , w h ich rely on c ith er heuristics or c lustering
tech n iq u es, a gen eric op tim ization a lgorith m snch as a
self-ad ap tive hyb rid gen etic a lgorith m can be em ployed to
gen era te a p a lette o f h igh qu ality . E xp erim en ts on a set o f
s tan d ard test im ages using a novel self-ad ap tive hybrid genetic
algorith m show th at th is app roach is cap ab le o f ou tp erform in g
severa l con ven tion a l co lor q u antization a lgorith m s and provide
su p erior im age qu ality .

I. In t r o d u c t io n

True color images typically use 24 bits per pixel which
results in an overall gamut o f 224 i.e. more than 16.8 million
different colors. W hile nowadays most images are captured
and stored in that format, in certain applications (for example
display o f images on limited hardware such as mobile devices
and for compression and retrieval o f images [1]) it is
advantageous to limit the range o f possible colors to fewer
entries whose ensemble are known as a color palette. Color
quantization is the process o f generating a suitable palette
(usually o f size between 8 and 256) where suitable is often
defined as introducing as little distortion as possible, or
equivalently, as maintaining the best possible image quality.

In this paper w e apply a self-adaptive hybrid genetic
algorithm (SAHG A) as a standard black-box optimization
approach to the color quantization problem. The main
advantage o f black-box optimization algorithms is that they
do not require any domain specific knowledge yet are able to
provide a near optimal solution. We evaluate the
effectiveness o f our approach by comparing its performance
to the results obtained by several purpose built color
quantization algorithms [2-4]. The results obtained show that
even without any domain specific knowledge our SAHGA
based algorithm is able to outperform standard quantization
algorithms and hence to provide palletized images with
superior image quality.

The rest o f the paper is organized as follows. The next
section provides a formal definition o f the color quantization
problem. Section III provides the background for
optimization based on self-adaptive hybrid genetic algorithm.

Tarek El-Mihoub, Lars Nolle, Gerald Schaefer, and Adrian Hopgood are
with the School o f Computing and Informatics, Nottingham Trent University,
Nottingham, UK.

Tomoharu Nakashima is with the College o f Engineering, Osaka
Prefecture University, Osaka, Japan.

Section IV explains our application o f SAHGA, a modified
HGA algorithm, to the color quantization problem. Section V
presents experimental results based on a set o f standard test
images while Section VI concludes the paper.

II. C o l o r Q u a n t iz a t io n

Color quantization produces a color palette that contains
only a small number o f colors (usually between 8 and 256);
pixel data are then stored as indices to this palette. Clearly,
the choice o f colors that make up the palette has a crucial
influence on the image quality o f the quantized image.
Formally, given an image quality metric which assigns
d(Ii(x,y)J2{x,y)) as the distance (or difference) between two
pixels at location (x,jp) in images It and I2, an n x m original
imag e 0 = {oi={Ri,Gj,Bi}, i= 1 ... n x m } , a palette o f size N,P
= {pj — {R j,G j ,B j}J - 1 . . . T V) , P is optimal iff

-3 P = { p k = {Rk ,G j ,B k) , k = \ . . .N)

so that D(0,q(0,P)) < E(0,q(O,P))

with E (the error between two images) defined as

n m

E (h J i) = X J / ^ , ^) ’72̂)) (2)
x=l y =1

and q (the result o f the quantization process)

q(0,P) = {qr - px, r = !...«• m/d(or, ps)<d(o, . ,pt)V I * s) (3)

However, the selection o f the optimal color palette is
known to be an np-hard problem [4]. In the image processing
literature many different algorithms have been introduced
that aim to find a palette that allows for good image quality o f
the quantized image. In general these can be divided into
heuristic techniques such as the popularity algorithm [4] and
clustering-based algorithms such as the median cut approach
[4].

III. H y b r id G e n e t ic A l g o r it h m

Genetic algorithms [5] and other search methods can be
seen as complementary tools that can be brought together to
achieve an optimization goal. In these hybrids, a genetic
algorithm incorporates one or more methods to improve the
performance o f the genetic search. There are several ways in
which a search or optimization technique can complement the
genetic search [6-10].

I f a genetic algorithm is combined with a fast converging
local search methods [11] the resulting hybrid can often
outperform the algorithms [12], Hybridizing a local search
method provides the global genetic search algorithm with

some local knowledge that can guide and may accelerate the
search to the global optimum [13]. Figure 1 shows a
flowchart o f the basic hybrid genetic algorithm. As it can be
seen from the figure, after the genetic operators are applied in
order to generate a new generation, each o f the individuals in
the new generation undergo optimization using a local search
method.

(START
\

pa ra m e te rs

s to p c riteria

yes

se le c t p a re n ts from
cu rren t gen ep o o l an d

c re a te o ffspring

apply m uta tion to
offspring a n d in sert

them into n ew genepoo l
individual in g enepoo l

Im prove e a c h offspring
in ne w g enera tion using

applying c ro sso v e r

print b e s t solu tion

STOP

Figure 1 - Flowchart o f hybrid Genetic Algorithm.

In this research, a new self-adaptive hybrid genetic
algorithm (SA H G A) has been used, which employs a novel
local search method, which is described in the follow ing
section.

A. Local Search Method used

The new local search algorithm used in this research is a
probabilistic method that works on the genotype space by
using a sub-group o f the current population o f solutions to
optimize the structures o f each solution present in the
genepool. In this way, it aims to make use o f som e o f the
valuable genetic search information. It also aims to avoid
disrupting the genetic schema processing by improving the
solution in accordance with the global genetic search.

The modification o f the initial solution based on a group o f
solutions o f the genetic population can provide the local
search method with a partial global view o f the problem at
hand. Based on this view, the search method can produce a
solution in the context o f global view captured by the genetic
algorithm. This form o f search can minimize any conflict

with the global genetic search. The partial global aspect o f the
search method can be controlled by the group size and the
mechanism o f selecting the group members. This method is
also characterized by its low costs. Its costs are equal to the
costs o f evolving a solution for a single iteration o f the
genetic search (i.e. one function evaluation per solution). This
can help to minimize the loss o f the hybrid’s time in the case
o f any undesirable interference between the two search
methods. Figure 2 provides pseudo code for the algorithm.

Procedure L o c a l S e a r c h
Begin

For e a c h i n d i v i d u a l s O i n g e n e p o o l
Begin

S e l e c t r a n d o m l y g r o u p o f i n d i v i d u a l s
s i , s 2 , s 3 , s 4 ;
For e a c h g e n e g i n sO
Begin

If g = 1
S e t p r o b a b i l i t y p (g) t o 1 . 0 ;

E l s e
S e t p r o b a b i l i t y p (g) t o 0 . 0 ;

End
For e a c h i n d i v i d u a l s i n g r o u p
Begin

C a l c u l a t e p r o b a b i l i t y v a l u e v a s t h e a b s o l u t e
f i t n e s s d i f f e r e n c e b e t w e e n sO a n d s,
n o r m a l i z e d b y d i v i d i n g i t b y t h e su m
o f d i f f e r e n c e s b e t w e e n e a c h g r o u p m e m b e r
a n d sO;
For e a c h a l l e l e a i n s
Begin

If a e q u a l t o c o r r e s p o n d i n g a l l e l e i n sO
S e t c o r r e s p o n d i n g p r o b a b i l i t y i n
p r o b a b i l i t y v e c t o r f o r s t o 0 . 0 ;

Else if a l e s s t h a n a l l e l e i n sO
S e t p r o b a b i l i t y v e c t o r f o r s t o + v ;

Else
S e t p r o b a b i l i t y v e c t o r f o r s t o ~v;

End
End
A d d a l l p r o b a b i l i t y v e c t o r s f o r s O , s i , s 2 , s 3 , s 4 ;
G e n e r a t e r a n d o m v e c t o r r ;
For e a c h e l e m e n t i n r a n d o m v e c t o r
Begin

I f p r o b a b i l i t y v e c t o r > r a n d o m e l e m e n t
S e t c o r r e s p o n d i n g g e n e i n n e w s o l u t i o n t o
1 ;

Else
S e t c o r r e s p o n d i n g g e n e i n n e w s o l u t i o n t o
0 ;

E n d
E v a l u a t e new s o l u t i o n ;
I f f i t n e s s o f n ew s o l u t i o n > f i t n e s s o f sO

R e p l a c e sO w i t h n e w s o l u t i o n ;
End L o c a l S e a r c h

Figure 2 - Pseudo code o f local search method.

The algorithm assumes that each gene contributes uniformly
to the fitness o f the solution. Based on this assumption, the
search method compares the genetic structure and the fitness
o f the solution to be improved with the structures and the
fitness o f a group o f solutions selected from the current
genetic population. Depending on the differences in both the
structure and the fitness between this solution and the group
members, the solution structure is modified in the direction o f
improving its fitness score. The new solution is evaluated and
then inserted back into the population if it shows an
improvement in its fitness.

B. The Self-Adaptive H ybrid Genetic Algorithm (SAHGA)

The success o f such a hybrid algorithm in solving a given
problem efficiently depends on its success in achieving a
balance between exploration and exploitation [12, 13].
Am ong the factors that affect this balance is the duration o f
local search [14], which is defined as the number o f the
consecutive local search iterations that is performed on a
solution before terminating a local search procedure. This
control parameter can be used to adapt the hybrid on-line to a
specific problem.

In the proposed hybrid algorithm, the number o f local
search iterations is incorporated into the representation o f an
individual. Through this parameter, the duration o f a local
search is controlled. It defines the number o f local iterations
that should be performed by the associated individual. The
global genetic algorithm evolves the number o f local search
iterations parameter while the hybrid is using that control
parameter to optimize the fitness function variables. Through
adopting the evolutionary self-adaptation metaphor, the
algorithm allows the global genetic algorithm to dynamically
decide on the individuals that should perform a local search.
It also decides on the duration o f the local search method
through m odifying the number o f local iterations as it
co-operates with the local search to solve a given problem.
This can facilitate the adaptation o f number o f local search
iterations control parameter without exogenous control.

In general, the control parameters in the evolutionary
self-adaptive algorithm can be adapted either at the individual
level (i.e. local level) or at the population level (i.e. global
level). In the local adaptation, the control parameter is applied
to the associated solution only. In contrast, the control
parameter in the global adaptation is tied to the population as
a whole and not to a particular solution. The number o f local
iterations o f an individual is computed by taking the average
o f the number o f local iterations o f the individuals o f the
whole population. Local adaptation is used in the proposed
algorithm because it is reasonable to assume that different
individuals are follow ing different paths through the search
space. It is also proven that local adaptation outperforms
global adaptation [15],

In the proposed self-adaptive hybrid algorithm, after
performing a genetic iteration, the number o f local iterations
associated with each solution is extracted from the
chrom osom e’s structure. Depending on the value o f that
parameter, a number o f local search iterations are performed
on that solution. I f the value o f that parameter is zero, no local
search iteration will be performed. Otherwise the specified
number o f local iterations will be performed consecutively.
Using the learning strategy specified by the algorithm, the
resulting solution is mapped back to the mating pool.

The maximum value o f the number o f local iterations was
set to three. The reason for selecting this value is the expected
benefits o f using small durations o f local search to fight the
hindering effect problem. The algorithm also makes use o f
the number o f local iteration control parameter, which already
exists within the chromosome, to discriminate between innate
and acquired fitness. In a case o f an equal fitness, the

algorithm chooses the individual with the smaller value o f
local search iterations since its acquired fitness is closer to the
innate one. This can help to alleviate the consequences o f the
hindering effect problem [11] associated with the Baldwinian
approach.

IV. SAHGA FOR COLOR QUANTIZATION

In this paper we apply the SAHGA algorithm described
above as a black box optimization algorithm to the color
quantization problem. For color quantization the objective is
to minimize the total error introduced through the application
o f a color palette. The color palette P for an image O, a
codebook o f N color vectors, should then be chosen so as to
minimize the error function E

k ' j

E (P ,0)

L jJ j

with

c (P ,0)
k

2>-
;= l

1 i f I, — 0

0 otherwise

(4)

(5)

where /, is the number o f pixels Oj represented by color P,
o f the palette, ||.|| is the Euclidean distance in RGB space, and
5 is a constant (<5=10 in our experiments). The objective
function E(P, O) used is hence a combination o f the mean
Euclidean distance and a penalty function. The penalty
function c(P.O) is integrated in order to avoid unused palette
colors by adding a constant penalty value to the error for each
entry in the codebook that is not used in the resulting picture.
As can be seen from Equation 4 the objective function is
highly non-linear, i.e. it has a high degree o f epistasis [16].

For our color quantization algorithm w e em ploy the
SAHGA algorithm with a population size o f 100. For ail
experiments, binary tournament selection, single-point
crossover, and simple mutation were used with a crossover
probability o f 0.6 and a mutation probability o f 0.01. Each
experiment was repeated 19 times and the codebook with the
median error was used for comparison.

V . E x p e r im e n t a l R e s u l t s

In order to evaluate our new method for color quantization,
w e have taken a set o f three standard images com monly used
in the color quantization literature, Lenna, Pool, and Airplane,
and applied our optimization schem e to generate quantized
images with a palette o f 16 colors.

To put the results w e obtain into context, w e have also
implemented four popular color quantization algorithms to
generate corresponding quantized images with palette size 16.
The algorithms we have tested were:

• Popularity algorithm [4]: Following a uniform
quantisation to 5 bits per channel the n colours that are
represented most often form the colour palette.

• Median cut quantisation [4]: This algorithm starts by
computing the box that encompasses all colours
present in the image. The box is then split (orthogonal to
the colour axis) at the median value into two sub-cubes.

The larger remaining sub- cube is then again divided at
its median point and this process is repeated until n
colour boxes have been found.

• Octree quantisation [3]: The colour space is represented
as an octree where the root node corresponds to the
whole colour space, the nodes at the next level the
eight sub-cubes that are obtained by dividing each

colour axis into two equal halves, and so on. In a first
pass the sub-tree that represents the colours present in
the image is built and in a second pass, starting at the

bottom o f the tree, nodes are successively merged until
a tree o f n colours is reached.

• Neuquant [2]: A one-dimensional self-organising
Kohonen neural network is trained to generate the
colour map. The Kohonen network defines a mapping
from the colour values in the image to an index
representing the palette entries. The weights o f the
network are updated based on the image data to ensure an
optimal palette with good image quality.

For all algorithms, pixels in the quantised images were
assigned to their nearest neighbours in the colour palette to
provide the best possible image quality.

The results are listed in Tables 1 and 2, expressed in
terms o f mean-squared-error (MSE) and
peak-signal-to-noise-ratio (PSNR) defined as

M SE (/„/2) - j) f +
3 mn (6)

(G ,(U) - G2{ i , j) f + (B fiJ) - B2(iJ))2}

and

25 5 2
P S N R (/„ /2) = I01oglo . . (7)

MSE(/i, / 2)

where R(iJ), G(iJ), and B(iJ) are the red, green, and blue
pixel values at location (ij) and n and m are the dimensions o f
the images.

As MSE and PSNR are not necessarily the best quality
indicators, the results are also provided in terms o f
S-CIELAB [17]. This is an image quality metric based on
uniform colour spaces but it also takes into account the spatial
interaction between neighbouring pixels based on a blurring
effect derived from psychophysical experiments.
S-CIELAB results, expressed in terms o f AE differences
between original and quantised images are provided in Table
3.

Popalg M edct Octree Neuqu. SA H G A

Lenna 388.1 271.4 117.0 107.4 93.4

Pool 669.9 226.9 74.9 127.2 60.3

Airplane 1668.1 240.7 86.5 97.6 72.8

all 908.7 246.3 92.8 110.7 75.5

T ab le 1. Quantization results, g iven in terms o f M SE.

Popalg M edct Octree Neuqu. SA H G A

Lenna 22.24 23 .79 27.45 27.82 28 .43

Pool 15.91 24.32 28.77 28.24 30 .53

Airplane 19.87 24.57 29.39 27.08 29.51

all 19.34 24.23 28 .54 27.71 29.45

T ab le 2. Quantization results, g iven in tenns o f PSN R [dB].

Popalg M edct Octree Neuqu. SA H G A

Lenna 11.92 21.81 20.54 41.03 9 .3 1

Pool 10.34 8.89 10.66 10.10 7 .7 3

Airplane 7.20 7.92 9.36 6.66 4 .8 5

all 19.34 24.23 28.54 27.71 29.45

T ab le 3. Quantization results, given in tenns o f S-CIELAB AE.

From Tables 1 to 3 we can see our self-adaptive hybrid
genetic algorithm approach to colour quantisation obtains
clearly the best results for all three images. Overall a mean
PSNR (MSE) o f 29.45 dB (75.5) is achieved which is
significantly better than the 28.54 dB (92.8) and 27.71 dB
(110.7) obtained by Octree and Neuquant, the two next best
algorithms.

In terms o f S-CIELAB, the hybrid algorithm provides
image quality that is more than 2 AE units lower than the next
best approaches. Considering that a difference o f 1 AE unit is
perceptually visible this indeed indicates a significant
improvement.

An example o f the performance o f the different algorithms
is provided in Figure 3, which shows the Pool image together
with the quantization results from all algorithms. Figure 4
provides error images o f the quantised images from Figure 1
compared to the original.

It is clear that the popularity algorithm performs poorly on
this image and assigns virtually all o f the colors in the palette
to green and achromatic colors. Median cut is better but still
provides fairly poor color reproduction; most o f the colors in
the quantized image are fairly different from the original. The
same holds true for the images produced by Neuquant. Here
the most obvious artifact is the absence o f an appropriate red
color in the color palette. A far better result is achieved by the
Octree algorithm, although here also the red is not very
accurate and the color o f the cue is greenish instead o f brown.

F igure 3 - R esults o f colour quantisation algorithms applied to Pool im age (top left) after applying (from left to right, top to bottom)
Popularity, M edian cut, Octree, Neuquant, and SAH G A algorithms.

F igure 3 - Error im ages o f the quantised im ages from Figure 1 for (from left to right, top to bottom) Popularity, M edian cut, Octree,
Neuquant, and SAH G A algorithms compared to the original.

Clearly the best image quality is maintained by applying our
self-adaptive hybrid technique. Although the color palette has
only 16 entries all colors o f the original image are accurately
presented including the red ball and the color o f the billiard
cue.

V I. C o n c l u s io n

In this work we have applied a novel self-adaptive hybrid
genetic algorithm as a generic optimization algorithm to the
color quantization problem. Experimental results obtained on

a set o f standard test images have demonstrated that this type
o f optimization techniques cannot only be effectively
employed but is even able to outperform standard purpose
built color quantization algorithms.

R e f e r e n c e s

[1] G. Schaefer, G. Qiu. and G. Finlayson, "Retrieval o f
palettised colour images," in SPIE, vol. 3972 (Storage
and Retrieval for Image and Video Databases VIII), 2000,
pp. 483-493.

[2] A. I-I. Dekker, "Kohonen neural networks for optimal Symposium Technical Digest, vol. 27, 1996, pp.
colour quantization," Network: Computation in Neural 731-735.
Systems, vol. 5, pp. 351-367, 1994.

[3] M. Gervautz and W. Purgathofer, "A simple Method for
Color Quantization: Octree Quantization," in Graphics
Gems, A. S. Glassner, Ed. San Diego, CA: Academic
Press, 1998.

[4] P. S. Heckbert, "Color image quantization for frame
buffer display," ACM Computer Graphics (ACM
SIGGRAPH ‘82 Proceedings), vol. 16, pp. 297-307,
1982.

[5] J. Holland, Adaptation in Natural and Artificial Systems:
The University o f M ichigan Press, 1975.

[6] D. E. Goldberg and R. Lingle, "Alleles, loci, and the
traveling salesman problem," in the International
Conference on Genetic Algorithms and their
Applications. Hillsdale, USA: Lawrence Erlbaum, 1985,
pp. 154-159.

[7] Y. Jin, "A comprehensive survey o f fitness
approximation in evolutionary computation," Soft
Computing, vol. 9, pp. 3-12, 2005.

[8] M. Pelikan, D. E. Goldberg, and E. Cantu-Paz, "BOA:
the Bayesian optimization algorithm," in the Genetic and
Evolutionary Computation Conference. Orlando, USA:
Morgan Kaufmann, 1999, pp. 525-532.

[9] X. Yao, "Evolving artificial neural networks,"
Proceedings o f the IEEE, vol. 87, pp. 1423-1447, 1999.

[10] T. White, B. Pagurek, and F. Oppacher, " ASGA:
improving the ant system by integration with genetic
algorithms," in the third Conference on Genetic
Programming (GP/SGA'98). Madison, USA, 1998, pp.
610-617.

[1 1]P. Turney, "Myths and legends o f the Baldwin effect," in
Workshop on Evolutionary Computation and Machine
Learning at the 13th International Conference on
M achine Learning. Bari, Italy, 1996, pp. 135-142.

[12] F. G. Lobo and D. E. Goldberg, "Decision making in a
hybrid genetic algorithm," in IEEE International
Conference on evolutionary Computation. Piscataway,
USA: IEEE Press, 1997, pp. 122-125.

[13] W. E. Hart, "Adaptive global optimization with local
search," Doctoral Dissertation. San Diego: University o f
California 1994.

[14] W. E. Hart, C. R. Rosin, R. K. Belew, and G. M. Morris,
"Improved evolutionary hybrids for flexible ligand
docking in AutoDock," in Optimization in
Computational Chemistry and M olecular Biology, C. A.
Floudas and P. M. Pardalos, Eds.: Springer 2000, pp.
209-230.

[15] W. M. Spears, "Adapting crossover in a genetic
algorithm," in the Fifth Conference on Evolutionary
Programming. San Diego, USA: MIT press, 1995, pp.
367-384.

[16] Y. Davidor, "Epistasis variance: suitability o f a
representation to genetic algorithms," Complex Systems,
vol. 4, pp. 369-383, 1990.

[17] X. Zhang and B. A. Wandell, "A spatial extension o f
CIELAB for digital color image reproduction," in SID

