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Abstract

A genetic algorithm is a computational optimisation algorithm that is inspired by the 

principles of natural selection and genetic dynamics. Hybridising other optimisation 

techniques within the genetic algorithm framework can enhance the search performance. 

The chances of improving the performance of a hybrid depend on the details of its design.

This thesis aims to employ learning to utilise the genetic information that is readily 

available to maximise the effectiveness and the efficiency of a hybrid. Learning can be 

incorporated in different ways to achieve this goal. It can utilise solution-specific 

knowledge to improve its contribution in the search process. It can also utilise the direct 

and indirect influence of the design choices on the exploration-exploitation trade-off to 

adapt the search control parameters to a problem without external control.

This thesis examines the different hybrid design issues and their effect on the hybrid’s 

performance. It contributes towards discovering the nature of the relations between the 

hybrid design choices and the hybrid’s performance. The research demonstrates that the 

two main drawbacks of the basic learning models, which are the hindering effect and the 

diversity limitation, can be alleviated through adjusting the duration and the probability of 

local search. Some of the search method’s features that enable it to be incorporated within a 

genetic search to accelerate finding high quality solutions are defined. They empower the 

search method to learn the nature of the search space through using the genetic information. 

An effective model with such features is also presented.

This thesis also investigates different ways of achieving a balance between exploration and 

exploitation. Utilising learning to make use of the direct influence of the details of the local 

method on this balance can help to find an optimal setup for this method. The investigation 

demonstrates the effectiveness of applying co-evolution for such utilisation. It also analyses 

the effect of using the fitness as productivity metric on the search’s behaviour. It also 

illustrates the impact of the hindering effect on this mechanism and the possible ways to 

combat it. The research shows the effectiveness and the efficiency of employing evolution 

to use the indirect influence of the learning model on the utilisation of the search time for 

online learning of the effectiveness of the different learning strategies. It also explains the 

slow convergence of the evolutionary self-adaptive algorithms that adjust more than one 

control parameter based on the probabilities of introducing epistasis.

A novel form of hybridisation between ant-based and genetic-local hybrid algorithms is 

proposed. This work has demonstrated the ability of ant-based algorithms for reinforcement



Abstract

learning. They have been shown to be capable of finding, without any form of human 

intervention, an optimal setup for a genetic-local hybrid algorithm that can effectively and 

efficiently solve a given problem.
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Chapter 1 Introduction

This dissertation investigates the degree to which learning can extend the 

effectiveness and efficiency of hybrid genetic search algorithms. It describes a set of 

experiments that provide detailed insight into the effect of design choices for the hybrid on 

the search’s behaviour and how they relate to each other. It proposes a probabilistic local 

search method as a solution to the problem of interference between genetic schema 

processing and the use of local knowledge. It also describes and evaluates hybrid genetic 

algorithm solutions that can adapt to a wide range of optimisation problems.

A genetic algorithm is a population-based search and optimisation technique that mimics 

the process of natural evolution. The two main concepts of natural evolution, which are 

natural selection and genetic dynamics, inspired the development of this method. The basic 

principles of this technique were first laid down by Holland (Holland 1975) and are well 

described, for example, in (De Jong 1975) (Goldberg 1989a).

1.1 Hybrid genetic algorithms

A genetic algorithm evolves a set of candidate solutions through examining their 

fitness to select the most promising ones, and manipulating those using genetic operators in 

order to find optimal solutions. Genetic algorithms are able to find acceptable solutions to a 

wide verity of problems (De Jong 2005). However, they are likely to be outperformed by 

problem-specific techniques in both speed and accuracy of the final result (Areibi et al. 

2001). Genetic algorithms are not well suited to fine-tune the solutions quality (Reeves

1994), but on the other hand they are effective at exploring the search space (Ibaraki 1997).

The incorporation of a local search method or a problem-specific technique into a genetic 

algorithm is essential if an effective and efficient algorithm is desired (Areibi et al. 2001). 

Combining global and local search is a strategy used by many successful global 

optimisation approaches (Talbi 2002), and hybrid genetic algorithms have in fact been 

recognised as a powerful algorithmic paradigm for evolutionary computing. In particular, 

the relative advantage of hybrid genetic algorithms over genetic algorithms is quite 

consistent on complex search spaces (Lobo and Goldberg 1997).

The idea of improving the performance of a genetic algorithm by combining it with local 

search methods for solving complicated optimisation problems has been investigated 

extensively during the past decade, and different forms of hybridisation have been proposed 

(Preux and Talbi 1999). A genetic algorithm can be used to capture a global view of the

1
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entire search space of the optimisation problem while the local search method can be 

utilised to incorporate some of the domain knowledge by performing local exploitation 

(Lobo and Goldberg 1997). Because of the complementary properties of genetic algorithms 

and local search methods, the hybrid approach often outperforms either method when they 

are used individually (Goldberg and Vosser 1999).

The two common approaches for combining a genetic algorithm with a local search method 

are Lamarckian evolution (the active form) and the Baldwin effect (the passive form) 

(Anderson et al. 1997). Both forms use the metaphor that an individual learns during its 

lifetime. In Lamarckian evolution, direct learning passes the improved characteristics of 

each individual from one generation to another. This means both the change in the 

genotypic information and the improved phenotypic fitness are passed to the next 

generation as genotypic information at the end of the learning process. On the other hand, 

in the Baldwin effect, only the improved phenotypic fitness is passed at the end of learning 

process (Hinton and Nowlan 1987). Lamarckian is discredited in nature, but useful as an 

algorithm. Although the Baldwin search strategy is slower than the Lamarckian strategy, it 

is better at avoiding premature convergence by maintaining diversity (Whitley et al. 1994).

Search algorithms need to balance exploration across the search space with exploitation of 

the optimum region. As local search in a hybrid genetic algorithm enhances exploitation, 

the balance needs to be redressed to achieve optimal performance. Achieving this balance is 

strongly dependent on the settings of a hybrid genetic algorithm’s control parameters, 

which have significant impact on its performance (Hart 1994). Choosing suitable values for 

these parameters is one of the main difficulties when building a practical pure or hybrid 

genetic algorithm (Deb 1997).

In addition to parameter adjustment, there are several issues that need to be taken into 

consideration when designing a hybrid search algorithm. These issues include decision­

making between global and local search to maximise effectiveness and efficiency based on 

their cost, reliability and ability to use knowledge of problem domain (Lobo and Goldberg 

1997). Incorporating some knowledge of the problem domain and some knowledge of the 

strengths and weakness of the search methods can guide hybrid genetic algorithms to make 

these decisions effectively. The way of utilising local information, i.e. the learning 

approach, within a hybrid algorithm is also an important issue that faces the designers of 

hybrid genetic algorithms due its effect on its performance.
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1.2 Research Perspective

The focus of this dissertation is on gaining an understanding of the hybrid genetic 

algorithm’s design issues and their influence on the hybrid’s performance. Hybrid design 

choices related to the incorporation of a local search method are analysed to uncover key 

features and relations that make a hybrid’s search effective and efficient without the need of 

choosing the settings for the control parameters manually. The proposal, here, is to 

investigate these design issues by designing, developing and testing hybrid genetic 

algorithms that employ learning to direct their operations, and to adapt their control 

parameters to find high quality solutions to a wide range of optimisation problems 

efficiently. This investigation will focus on a decision-making problem and learning 

strategies in order to get the most out of the genetic algorithm, as a global search method, 

and the problem-specific technique, as a local search method. It will also examine possible 

methods of controlling the hybrid genetic algorithm’s vast parameter space to make the 

algorithm’s performance more effective without the need for any forms of human 

intervention. The question this research seeks to address is “to what extent can the 

incorporation of learning help a hybrid genetic algorithm search a solution space more 

efficiently?”

The existing theoretical models of genetic algorithms are limited in use and applicability. 

Therefore, the majority of theoretical work has been derived from experimentation. The 

approach taken in this thesis is also based on the careful design, collection and analysis of 

experimental results.

1.3 Dissertation Overview

This dissertation is divided into 9 chapters, beginning with this introduction. A 

literature review of global optimisation, which is concentrated on genetic algorithms and 

their hybrids, follows in chapter 2. Chapter 3 investigates the impact of the duration of local 

search on the hybrid’s performance, whereas chapter 4 studies the effect of the probability 

of local search and learning strategies on the hybrid’s performance. A probabilistic search 

method is proposed in chapter 5 as a solution to reduce interference between genetic 

schema processing and utilising local knowledge within a hybrid. Applying evolution to 

self-adapt the duration of local search as a way to optimise the utilisation of hybrid’s time is 

explored in chapter 6. The use of an adaptive technique to decide on the learning strategy is 

investigated in chapter 7. Chapter 8 studies the use of ant colony optimisation to fully self- 

adapt genetic-local hybrids. Chapter 9 draws the thesis to an end by providing a discussion 

and recommendations.

3
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In the following, the content of each of these chapters is outlined in greater detail.

Chapter 2 introduces single-point and population-based optimisation techniques. It 

discusses the difficulties they face when used to solve global optimisation problems. An in- 

depth examination of genetic algorithms and the different ways of hybridising them with 

other search and optimisation methods follows in order to shed some light on the 

effectiveness and efficiency of hybridising genetic algorithms. Two major genetic-local 

hybrid design’s issues are then discussed. These issues include the different approaches for 

employing local search information and various mechanisms for achieving a balance 

between a global genetic algorithm and a local search method. This chapter emphasises on 

the importance of combining genetic algorithms with other techniques to build competent 

genetic algorithms that solve hard problems quickly, reliably and accurately without the 

need for any forms of human intervention.

The third chapter investigates the influence of the duration of local search on the 

performance of hybrid genetic algorithms. Its interactions with the learning strategy and 

their combined effect on the sampling ability of the global genetic algorithm are studied. It, 

then, analyses the effects of the duration of local search on its role in a hybrid to provide 

insight into the expected behaviour of a hybrid depending on the duration of its local 

search. The results shed some light on the combined effect of the duration of local search 

and the learning strategy on the hybrid’s performance.

In the fourth chapter, the effects of the learning strategy and the probability of local search 

on the performance of two hybrids with different mechanisms for deciding between global 

and local search are explored. The way that both the learning strategy and the probability of 

local search interact with each other and their combined effect on the hybrid’s performance 

is analysed. The effect of both these factors on the population size requirements, 

convergence speed, and solution quality is investigated. The results emphasise the 

importance of the relation between the probability of local search and the learning strategy 

on the hybrid’s performance.

A simple probabilistic search method is developed in the fifth chapter as a secondary search 

method within a hybrid genetic algorithm. The developed method aims to make use of 

some of the available genetic information to reduce any conflict with the genetic algorithm 

schema processing in order to utilise the efficiency of the Lamarckian learning approach to 

produce an effective search. This chapter evaluates this method as a secondary method in a 

hybrid and as a stand-alone optimisation algorithm using three test functions with different
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marginal fitness contribution of their genes. The results of the evaluation illustrate the 

ability of the developed method to reduce disrupting the genetic schema processing.

The advantages and disadvantages of applying evolution to self-adapt the control 

parameters associated with the utilisation of the local search within a hybrid genetic 

algorithm are explored in the sixth chapter. The effect of this form of adaptation on the 

hybrid’s performance on different test functions is studied. The impact of the implicit use 

of the productivity metric as a measure to decide on local search control parameter values 

on the self-adaptive hybrid’s performance is also analysed. The influence of the interactions 

between learning strategy and local search method on the self-adaptation behaviour and the 

possible ways to improve this form of adaptation are also studied. The performance of the 

developed algorithm is compared with another adaptive algorithm.

The aim of the seventh chapter is to investigate the use of an adaptive approach to decide 

on the learning mechanism. Assigning different learning strategies for the population’s 

individuals over the course of the run via some intelligent means is investigated through 

applying evolution to self-adapt the learning mechanism within a hybrid genetic algorithm. 

This chapter examines the effect of this form of adaptation on the hybrid’s performance in 

order to get some insight into its advantages and disadvantages. It also investigates the 

interactions between this form of adaptive learning and two different adaptive hybrid 

genetic algorithms.

In chapter 8, a novel form of hybridisation between an ant-based algorithm and a genetic- 

local hybrid algorithm is proposed. An ant colony optimisation algorithm is used to monitor 

the behaviour of a genetic-local hybrid algorithm in order to dynamically adjust the 

probabilities of using the genetic operators, the local search operator, its duration, and the 

learning strategies to adapt the hybrid’s performance to a given problem. The effectiveness 

of using ant-based algorithm as a reinforcement learning approach is compared with the 

effectiveness genetic algorithms in self-adapting hybrid genetic algorithms.

This thesis is drawn to an end by chapter 9, where a summary of the research findings is 

given and the main contributions of the thesis are evaluated in some depth. Next, this thesis 

is evaluated, suggesting where some more experiments are needed and where some 

methods need further development. Finally, a section on further work describes key 

directions of interesting further study to the research in the thesis.



Chapter 2 Literature Review

Optimisation is concerned with the computation and characterisation of the 

minimum or maximum of mathematical functions (Hopgood 2001 pp. 164). Optimisation 

problems are widespread in the mathematical modelling of real life systems for a very 

broad range of applications (Horst and Pardalos 1995). Such applications include 

economies of scale (Joborn et al. 2004), allocation and location problems (Houck et al. 

1996) (Joines and Kay 2002), operation research (Tsang and Voudouris 1997), structural 

optimisation (Striz and Sobieszczanski-Sobieski 1996) (Kim and de Week 2004), 

engineering design (Deb 1999), network and transportation problems (Dorigo et al. 1999), 

chip design (Areibi and Yang 2004), database problems (Bommel and der Weide 1992),

nuclear (Back et al. 1996 cited in Back et al. 1997) and mechanical design (Giraud-Moreau

and Lafon 2002) (Deb and Goel 2001), chemical engineering design (Lin and Miller 

2004a) and control (Wang et al. 2003), and molecular biology (Morris et al. 1998) 

(Shmygelska and Hoos 2005). These applications include also a number of other 

combinatorial optimisation problems such as integer programming (Rudolph 1994) and 

related graph problems (Grefenstette et al. 1985) (Julstrom 1999).

Researchers in different fields have suggested a huge number of optimisation techniques.

Unlimited refinements have made these techniques work on specific types of applications.

All these procedures are based on some common ideas and are furthermore characterised by

a few additional specific features. This chapter reviews some of these optimisation methods

and concentrates on solving the following general global optimisation problem ( f )

m a x / (x) : x e  S  (2.1)

where f(x )  is a continuous function on S (S  here refers to the search space or the set of

all possible solutions), and S  C  91r/ is a compact body. Some of the methods that will be

described require additional assumptions on the objective function f( x )  or the feasible 

region S  . They will be noted whenever necessary. The optimal global solution value

/*  = max *=*/<%> (2.2)

is assumed to exist and is attained, i.e. the set
S ’ =  { * e  S : / ( * )  =  /* }  (2.3)

is not empty. It is also assumed one or more local optimum values can exist with

flocal =  m ax,e, / ( * )  ^ f  (2-4)

where s C lS .
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This chapter starts with an overview of single point search methods, the difficulties they 

face when used to solve global optimisation problems, and the different techniques used to 

improve their efficiency and effectiveness. Then, ant algorithms and genetic algorithms, as 

population-based search methods, are reviewed. After that, the difficulties genetic 

algorithms face when globally optimising problems and a brief description of the 

techniques to overcome these difficulties are given. The hybridisation of single-point search 

methods and the genetic algorithms, as choice to overcome the obstacles of global 

optimisation, is discussed. Some issues that affect the hybrid performance and design are 

reviewed.

2,1 Sinqle-point search and local search methods

The simplest form of search is single-point search. Its procedure can be 

summarised in the following four steps:

Step I: Choose a potential solution from the search space and evaluate its merit or 

fitness. Define it as the current solution.

Step 2: Modify the current solution to generate a new solution and evaluate the new 

solution merit or fitness.

Step 3: If the new solution is better than the current solution, then exchange it with 

the current solution; otherwise discard the new solution.

Step 4: Repeat the two previous steps until no modification can improve the current 

solution.

The effectiveness of the single-point search depends on the modification applied to the 

current solution. If the modification operator returns a potential solution from the search 

space selected uniformly at random, the search becomes an essentially exhaustive search 

(Michalewicz and Fogel 2000 pp.58) with a probability of re-sampling the same solution 

more than once. However, if the modification operator uses neighbourhood information to 

generate a new potential solution, the algorithm will be biased by the current solution. The 

search for an optimum will be concentrated around the current solution and can be easily 

trapped in a local optimum. This form of search is known as local search method or 

neighbourhood search.

From the previous description of the local search algorithm, it is clear that any local search 

has the following three basic components:
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Neighbourhood: represents the subset of potential solutions that are immediately 

reachable from a potential solution. If the size of this set is small then the 

neighbourhood can be searched very quickly, but the search algorithm can be easily 

trapped at a local optimum. In contrast, if the size of the neighbourhood is very large 

there is less chance of being trapped, but the efficiency may suffer (Michalewicz and 

Fogel 2000 pp.58).

Modification operator: represents the way of generating the next potential solution 

from the current potential solution and determines the size of the neighbourhood 

(Michalewicz and Fogel 2000 pp.58).

Accept function: represents the policy used for accepting moves suggested by the 

modification operator.

The simplest form of local search is the random walk method, where the modification 

operator chooses randomly a solution in the neighbourhood of the current potential 

solution. The new solution then becomes the current solution regardless of the difference 

between the merits of both solutions. The algorithm locates the optimum by keeping the 

overall best solution encountered during the random walk. This algorithm, as many other 

algorithms, does not have a well defined stopping criterion.

The hill-climbing search differs from the random walk method in the accept function, 

where the current solution is replaced by the new solution only if it is better than the current 

solution. Searching large neighbourhoods for an improving potential solution can be very 

time consuming. This problem faces optimising continuous functions where the number of 

members of the neighbourhood is infinite. Probabilistic sampling from the neighbourhood 

is usually used to solve this problem. Soils and Wet (1981 cited in Hart 1994) proposed a 

random local search for continuous functions. They used a normal distribution with zero 

mean to modify every dimension of the current solution and depending on the rate at which 

better solutions are found, the variance of the normal distribution is modified. The 

algorithm is halted after a fixed number of function evaluations or when the step size 

becomes smaller than a given threshold.

2.1.1 Improving efficiency of local search

More advanced forms of local search methods have been used to improve the 

efficiency of local search in finding the local optimum. These advanced forms make use of 

additional local information to accelerate the search. These methods include bracketing 

search methods (Press et al. 1993 pp. 397), gradient methods (Press et al. 1993 pp. 405), 

and Fast Local Search (FLS) (Tsang and Voudouris 1997).
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2.1.1.1 Bracketing search methods

Bracketing search methods use the relative merits of additional potential solutions 

compared to the current potential solution in order to produce a better solution and to 

reduce the number of function evaluations needed to reach the local optimum. Among the 

efficient bracketing methods are the golden section method, and Brent’s method.

— -  parabola through © © ©
  parabola through 6 )  6 )

Figure 2.1: Convergence to a Maximum by Brent’s Method.

The golden section method is similar to the bisection method. It starts with two solutions 

that bracket the local optimum. This method selects the next potential solution so that it is 

within a distance of 0.38917 from one solution and 0.61803 from the other (Press et al. 

1993 pp.399) in order to minimise the worst-case possibility. After evaluating the merit of 

the new produced solution, the two best potential solutions are selected as the new 

bracketing solution. The process is repeated until the best solution converges at the 

optimum.

On the other hand, Brent’s method starts with three potential solutions. The method fits a 

parabola to those solutions. It then uses the maximum of the parabola as the next potential

9
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solution of the overall function. The method iteratively narrows the bracket based on the 

position of the new solution relative to the others (figure 2.1).

2.1.1.2 Gradient methods

These methods use the gradient of the objective function at the potential solution, 

to direct the search towards an improved solution in order to speed the convergence. There 

are many methods that rely on the gradient and for detailed information on variants of these 

methods the reader can refer to (Press et al. 1993).

If the objective function is sufficiently smooth at the current potential solution, the 

algorithm can use the directional derivative to proceed in the direction of the steepest ascent 

in order to reach the optimum. This can be achieved through finding the angle around the 

potential solution for which the magnitude of the derivative of the objective function with 

respect to some step size is maximised. The maximum occurs in the direction of the 

gradient — Y f(x). The steepest ascent method can generate a new potential solution from the 

current one using the following formula:

Xk+\ ~ Xk "*■ °^k^ f (Xk ) (2-5)

where k  > 0 , V f(xk ) is the gradient at x k and ak is the step size.

The right step size is critical to guarantee the best rate of increase in the objective value of 

potential solutions over several iterations. The Newton method incorporates second-order 

derivative information into the above formula to find the optimum of a quadratic basin in a 

single step. The following formula is used in the Newton method to generate new solutions. 

•**+i = x it + ( V 2/ ( * jk) r IV /(* jk) (2.6)

where V 2 f(x k ) is the Hessian matrix

v7c**)

d f 2 d f 2 d f 2
d x f dxxdx2 dxld x i

d f 2 d f 2 d f 2
dxzd x , d x \ dx2dxl

d f 2 d f 2 d f 2
dxndxl dxnd x2 dxn

(2.7)

The Newton method requires calculation of the inverse Hessian matrix, which is a time 

consuming task. Quasi-Newton methods estimate the inverse Hessian instead of calculating 

it using different techniques. The Newton-Gauss method, for example, uses Gaussian 

elimination to generate the inverse Hessian.

10
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2.1.1.3 Fast local search

Tsang and Voudouris (1997) proposed the Fast Local Search (FLS) algorithm as a 

refinement of a local search that adapts its neighbourhood. It can speeds up the search by 

shadowing less promising parts of the neighbourhood. The neighbourhood is divided into a 

number of smaller sub-neighbours, which can be either active or inactive. Initially all sub­

neighbourhoods are active. FLS visits the active sub-neighbourhoods in some order. If a 

sub-neighbourhood is examined and does not contain any improving solution, it becomes 

inactive. Otherwise, it remains active and the improving solution is accepted. This may 

cause some sub-neighbourhoods to be reactivated, if they are thought to contain improving 

solutions because of the change in the current potential solution. As the potential solution 

improves, more and more sub-neighbours become inactive, and when all sub­

neighbourhoods have become inactive, the best solution found is the local optimum.

2.1.2 Avoiding the trap in a local optimum

The probability of being trapped in a local optimum is high for search methods that 

use a neighbourhood information as a basis for its search. This probability can be increased 

further by utilising speed up techniques that use additional local information. Variants of 

the model of local search have been proposed which reduce this probability. Variations can 

happen at different phases of the search. It can happen during neighbourhood generation, in 

the course of formulating the rule of accepting for new potential solutions or the stopping 

criterion.

The simplest variant of local search is multi-start where the search is repeated from a new 

starting potential solution. By choosing a new starting potential, the search algorithm is 

allowed to continue and locate a potentially different local optimum. The result of this 

algorithm is the best local optimum encountered over all runs of the algorithm, which can 

be the global optimum. Dynamic Hill Climbing (DHC) (Yuret and de la Maza 1993) is a 

multi-start local search, which uses a diversity-based distance metric to ensure locating a 

new local optimum.

Simulated Annealing (SA) (Kirkpatrick 1983), Tabu Search (TS) (Glover 1989) and 

Guided Local Search (GLS) (Tsang and Voudouris 1997) utilise different techniques to 

escape local optima. These search methods, which can be considered as neighbourhood 

search methods, aim to avoid local optima by using heuristic methods that allow non­

improving moves to be made. When examining the neighbourhood around the current 

potential solution, the next candidate potential solution is not necessarily the neighbour 

with a better fitness value.

11
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The basic ingredients of these variants are described in brief in the following subsections.

2.1.3 Dynamic hill climbing

Dynamic Hill Climbing (DHC) algorithm (Yuret and de la Maza 1993) is a multi­

start local search that is designed to force the local search method to explore the search 

space uniformly. The algorithm chooses the starting points of the local search 

independently and as far as possible from the points that are already evaluated to maintain 

the diversity of the search to avoid local optima. The local search in a DHC method tries to 

find a local optimum in the neighbourhood of the starting point. The direction of the move 

is selected randomly with a pre-selected step length. If the move improves the current 

solution then the step length is doubled and the move is pursued in the same direction. On 

the other hand, the step length is halved in cases where the move worsens the current 

solution. The next longest step is then tried in the same direction. The reduction in step size 

increases the accuracy of the optimum when the search approaches a local optimum. The 

process iterates until no further improvement in the current solution is possible. The DHC 

continually seeds the local search with new points to start from. The process is repeated 

until the stopping criteria are satisfied.

DHC algorithm has found practical applications ranging from medical imaging (De la Maza 

and Yure 1995) to the energy minimisation problem for determining the shape of organic 

molecules, the travelling salesman problem, and the problem of assessing the structure of 

sedimentary deposits using seismic data (Yuret 1994).

2.1.4 Guided local search

Guided Local Search (GLS) algorithm (Tsang and Voudouris 1997) extends local 

search methods with the concept of features, i.e. a set of attributes, which characterise a 

solution to the problem. It assumes that any solution can be described by a set of features 

owned by a specific solution. Each feature is assigned a cost value. Features should be 

defined so that the presence of a feature in a solution affects the value of the objective 

function through the feature’s cost. A feature with a high cost is not attractive. Initially, all 

the features have a zero feature cost. Whenever the search method reaches a local optimum, 

the GLS modifies the cost of all the features owned by the local optimum in order to induce 

the search to explore other regions which do not exhibit costly features. A GLS has been 

successfully applied to a number of hard combinatorial optimisation problems, and real 

world problems. They have also been applied to difficult continuous optimisation problems 

(Voudouris and Tsang 1995) (Voudouris 1998).

12
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2.1.5 Tabu search

Building upon his previous work, Glover proposed in 1989 a new heuristic search 

method, which he called Tabu Search (TS). Glover described it as a meta-heuristic 

optimisation method whose role is to guide and orient the search of another heuristic 

specially tailored to the problem at hand. Many computational experiments have shown that 

the tabu search has become an established optimisation technique, which can compete with 

most known techniques (Glover 1990).

The basic principle of TS is to pursue the search even when it encounters a local optimum 

by accepting non-improving solutions. At the same time, the systematic use of memory 

helps to avoid cycling back to already sampled solutions in the neighbourhood of current 

potential solution. This short-term memory, called tabu lists, records the recent history of 

the search. The use of short-term memory helps TS to perform extensive exploration. It also 

makes the structure of the neighbourhood dependant on the current state of search. For this 

reason TS can be described as a dynamic neighbourhood search technique (Hertz et al.

1995)

The TS in its basic form, is a combination of a local search method with short-term 

memory. The elements of the memory are called tabus (disallowed moves). Tabus, as 

mentioned above, are stored in the tabu list. Usually, only a limited quantity of 

neighbourhood information is recorded. Unfortunately, a large memory, which is 

computationally expensive to search, is required to store all solutions, therefore it is seldom 

used. The most commonly used tabus involve recording the last few modifications 

performed on the current solution. The probabilistic TS can significantly reduce the tabus 

list length and the computational cost of checking, however excellent solutions maybe 

missed (Hertz et al. 1995).

Tabu lists are usually implemented as circular lists of fixed length (Gendreau 2003). Some 

authors, however, have proposed varying the tabu list length during the search (Glover 

1989) (Joines et al. 2000a).

When there is no danger of cycling, aspiration criteria that allow revoking tabus are used to 

guarantee that a tabu list is not prohibiting attractive moves. The most commonly used 

aspiration criterion is one that allows a move regardless of being in the tabu list, if that 

move can produce a solution better than the current best solution. More complicated 

aspiration criteria have been used (Lin and Miller 2004a).

13
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The TS may use intermediate-term memory to gather information about promising regions 

of the search space. In the case that the TS discovers such an area, normal search halts and 

an intensive search is performed to find the best solutions in the current region. On the 

other hand, a TS algorithm may use long-term memory to record the total number of 

iterations that various solution components have been involved in. The aim is to prevent the 

search from spending most of its time in a restricted portion of the search space and guide it 

to more interesting parts of the search space. When unexplored parts are noticed, the TS 

algorithm uses a diversification mechanism, such as restart and continuous diversification, 

to force the search into these areas. The TS integrates intensification and diversification to 

explore the search space efficiently.

TS are well adapted to discrete optimisation for which a finite set of moves can be used to 

reach any solution from any other solution in a finite number of moves. The TS can be 

straightforwardly applied to continuous functions by choosing a discrete encoding of the 

problem. It can also be modified to suit continuous problems without the need for discrete 

encoding. Instead of forbidding already visited solutions, the algorithm prevents visiting 

solutions that are close to already visited ones (Rolland 1997) (Lin and Miller 2004b).

2.1.6 Simulated annealing

Simulated Annealing (SA) (Kirkpatrick et al. 1983) is a stochastic optimisation 

method that avoids the trap in a local optimum by accepting non-improved solution based 

on principles of condensed matter physics. This technique has been successfully applied to 

different optimisation problems.

The concept of SA is based on the manner in which liquids freeze or metals re-crystallize 

during the process of annealing. In an annealing process, a melt, initially at high 

temperature and disordered, is carefully and slowly cooled so that the system at any time is 

approximately in thermodynamic equilibrium. As cooling proceeds, the system becomes 

more ordered and approaches a frozen ground state at T=0. Hence, the process can be 

though as an adiabatic approach to the lowest energy state.

Two conditions are essential for the system to attain the ground state. The initial 

temperature must not be very low and it must be decreased at a sufficient slow rate. The 

annealing time must be long enough to allow any necessary transformations to take place 

and prevent the system from forming defects or freezing out in meta-stable states (trapped 

in a local minimum energy state).
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In any heated metal sample and at temperature T, the probability of a cluster of atoms to 

exist at configuration i, which is defined by a set of atomic positions { r j  and an energy 

state E{rJ, is defined by the Boltzmann probability factor:
E{r,}

P(E{ri} ) ^ e  k *T (2>8)

where k B is Boltzmann’s constant. Cooling the metal slowly makes atoms move between 

relatively higher and lower energy levels and allows them to equilibrate at each temperature 

T. The material will reach the ground state (global optimum), a highly ordered form in 

which the probability of the existence of a high energy state throughout the material is very 

little.

The slow movement towards an ordered ground state of the physical system is similar to

progression to a global optimum in a system where the energy function is replaced by the

objective function, f (x )  to be optimised. To simulate the annealing behaviour, a control

parameter T  that determines the stability of a potential solution must be specified and the

criteria of accepting a new potential solution in the standard iterative local search method

should be modified. If there is no improvement in the merit or the fitness of the current

generated solution, x, , compared to the current potential solution, x  , the probability of

accepting it as a potential solution is determined by the Boltzmann probability distribution

as given in equation 2.9.
f ( x t ) ~  f ( x lp )

P(x, )=  e T  (2-9)

This probability is compared against a randomly generated number over the range [0, I]. If 

this probability is greater than the generated number, the current generated solution is 

accepted as the current potential solution. Repeating this iterative improvement many times 

at each value of the control parameter T, the methodical thermal rearrangement of atoms 

within a metal at temperature T is simulated. The value of the control parameter T  is 

initially set high and is periodically reduced according to a cooling schedule.

One of the difficulties in using simulated annealing is that it is very difficult to choose the 

rates of cooling and the initial temperatures (Davis and Steenstrup 1987). The selection of 

these parameters depends on heuristics and varies with the function to be optimised. In 

addition, the number of function evaluations required to slightly improve the current 

solution dramatically increases near the global optimum and as the temperature becomes 

low (Davis and Steenstrup 1987).
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2.2 Population-based search methods

In contrast to single-point search methods, which keep refining a single solution 4

until no further improvement can be achieved, population-based algorithms maintain a |

population of candidate solutions. Using a population of candidate solutions helps search 

algorithms to avoid being trapped in a local optimum and consequently can often find f

global optimal solutions. They are also well fitted for multi-objective problems.

Two of the most successful and widely recognised population-based optimisation methods |

are reviewed. Ant Colony Optimisation (ACO) and Genetic Algorithms (GA) are discussed :]i

in the following sections. 5

2.2.1 Ant colony optimisation J

Real ants are capable of finding the shortest path from their nest to a food source 4

without visual sensing. Ants deposit a substance called pheromone while walking, forming 4
a pheromone trail. Ants can smell pheromone and when choosing a route, they 

probabilistically tend to follow paths which are rich in pheromone. The pheromone trail r|

allows the ants to find their way back to the food source or to the nest. It can also be used 

by ants to find the location of food sources found by their nest mates. \

The pheromone trail following behaviour enables the ants to discover the shortest paths.

The ants that happen to pick the shorter path will create a strong trail of pheromone faster |

than the ones choosing a longer path. This stimulates successive ants to choose the shorter

path until eventually all ants have found the shortest path. The pheromone trail following a

behaviour also explains the ants’ ability to adapt to changes in the environment, such as

new obstacles interrupting the currently shortest path. -?}.

Ant colony members exchange information using a simple form of indirect communication

mediated by pheromone formation, known as stigmergy (Dorigo et al. 1999). This form of J

stigmergtic communication plays a crucial role in ant foraging behaviour. The combined <<

effect of an autocatalytic (positive feedback) mechanism (Dorigo et al. 1991) and implicit »

solution evaluation complements the stigmergtic communication role in the emergent of

shortest path-finding behaviour. Implicit solution evaluation is based on the fact that shorter
|

paths will be completed earlier than longer ones and therefore they will receive pheromone
Ireinforcement more quickly. Implicit solution evaluation together with an autocatalytic 

mechanism can be very effective (Dorigo et al. 1996). The shorter the path, the sooner the 

pheromone is released resulting in more ants using the shortest path. I
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Ant foraging behaviour is a kind of distributed optimisation mechanism in which each 

single ant contributes to find the shortest path to food sources. Although a single ant is 

capable of finding a path between nest and food source, it is the ant colony which finds the 

shortest path.

Dorigo et al. (1991) proposed that stigmergtic communication can be applied to solve 

difficult optimisation problems. Based on this, they proposed the Ant System (AS) to solve 

the Travelling Salesman Problem (TSP). Several improvements have also been applied to 

this algorithm (Dorigo and Di Caro 1999). These improved versions of the AS can be 

described as population-based optimisation algorithms that are inspired by the behaviour of 

natural ant colonies, in the sense that they solve their problems by population cooperation 

using indirect communication through modifications in the environment.

Ant algorithms were first proposed as a multi-agent approach to difficult optimisation 

problems such as the TSP (Dorigo et al. 1991) (Dorigo and Di Caro 1999) and the quadratic 

assignment problem (Maniezzo et al. 2004). There is currently much ongoing activity to 

extend and apply ant-based algorithms to many different discrete optimisation problems 

(Dorigo et al. 1999). Recent applications include problems such as vehicle routing 

(Maniezzo et al. 2004) (Dorigo et al. 1999), sequential ordering (Maniezzo et al. 2004), 

graph colouring (Shawe-Taylor and Zerovnik 2001) and routing in communications 

networks (Di Caro and Dorigo 1998) (Dorigo and Di Caro 1999). A variety of other 

applications also exist.

2.2.1.1 Ant colony optimisation approach

Ant foraging behaviour can be easily applied to solve discrete optimisation 

problems by simulating behaviour through artificial means. In addition to being an 

abstraction of real ants, artificial ants can be enriched with some additional capabilities in 

order to make them more effective and efficient.

A population or a colony of artificial ants collectively searches for good solutions to the 

optimisation problem under consideration. According to the assigned notion of 

neighbourhood, each artificial ant performs a sequence of local moves in order to build a 

solution. It starts from an initial state selected according to some problem dependent 

criteria. It then continues to move through adjacent states until a solution is build.

An ant selects the next state from its adjacent states using a probabilistic decision policy. 

This policy makes use of local information, which can include in addition to the amount of
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pheromone laid on the paths connecting adjacent states, problem specific knowledge and 

the ant past actions. Usually, the decision policy does not look ahead to predict future 

states.

Pheromone variables associated to problem states are used to represent the laid pheromone. 

These variables are used to store numeric information that represents the colony’s current 

and past performance. This information is only available for ants that are accessing the 

state.

An artificial ant keeps an internal state which stores its past actions (local moves). The 

internal state can also store useful information to compute the quality of the global solution 

or the contribution of each executed move. Moreover, it can play a fundamental role in 

managing the feasibility of the solutions.

Initially, there is no pheromone on all solutions paths. Therefore, the probability of visiting 

adjacent states depends entirely on the ant’s internal state and problem specific knowledge. 

An ant walks through adjacent states using the decision policy until it builds a solution.

The algorithm simulates pheromone trail formation by modifying numeric information 

stored in the pheromone variables of the path followed. In this way, the artificial ants 

modify their environment to reflect the past history of the whole ant colony. This form of 

stigmergetic communication plays a major role in the utilisation of collective knowledge. It 

changes the problem landscape according to past history of the ant colony.

Artificial ants can use online step-by-step, online delayed or a combination of both to 

release pheromone. In online step-by-step, ants release pheromone while they are building 

the solution. However, in online delayed, they deposit pheromone after building a solution 

by moving back to all visited states. The decision about which strategy should be used to 

release pheromone is problem dependent.

In general, the amount of pheromone deposited is made proportional to the quality of 

solution an ant has built (or is building) in order to induce the ants toward promising search 

regions. In this way, if a move contributes to the generation of a high quality solution, the 

amount of pheromone deposited will be proportional to its contribution. Ant algorithms can 

also use implicit solution evaluation to stimulate successive artificial ants into follow 

shorter paths.
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As with any population-based optimisation algorithm, using autocatalysis can lead the ant 

colony search to premature convergence (Dorigo et al. 1999). For this reason, pheromone 

trail evaporation and stochastic state transition are usually employed within the 

optimisation process. An evaporation mechanism modifies pheromone information over 

time allowing the ant colony to slowly forget its past history, directing the search into new 

regions of the search space.

Once an ant has accomplished its task, which includes building a solution and depositing 

pheromone information, the ant dies. It contributes to the ant colony search by modifying 

the problem landscape according to the quality of the solution it found.

The search continues by creating a new ant which, in turn, builds a new solution and 

modifies the problem representation accordingly. This process continues until a termination 

condition is satisfied.

In addition to online updating of pheromone, ant algorithms can update offline. The 

algorithm can use global information, to deposit additional pheromone information, at the 

end of the algorithm iteration in order to bias the search from a global perspective. It can 

allow a “daemon” to observe the ant’s behaviour in order to collect global information. It 

can also apply problem specific local optimisation methods, to deposit additional 

pheromone offline, based on the observation of all solutions generated by the ants.

It is possible to enrich ant algorithms with extra capabilities such as look ahead (Michel and 

Middendorf 1998) and backtracking (Di Caro and Dorigo 1998) in order to improve 

efficiency. Ants can also be hybridised with local search methods (Dorigo and Di Caro 

1999) (Shmygelska and Hoos 2005).

Ant colony optimisation algorithms, as a consequence of their concurrent and adaptive 

nature, are particularly suitable for distributed stochastic problems where the presence of 

exogenous sources determines a non-stationary in the problem representation in terms of 

costs and/or environment.

2.2.2 Genetic algorithms

In nature, individuals, who have “good” genetic structures, have better chances of 

winning limited resources than their rivals. As a result, they have more chances to mate. 

The genetic structures of produced offspring are mixtures of the genetic structures of their 

parents. These structures are usually as good as that of their parents and can sometimes be 

better since there is a possibility of combining the parents’ structures to produce new good
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structures. The result of these operations and other genetic operations is the propagation of 

good genetic structures in the following generations and the gradual death of less successful 

structures. The goodness of a genetic structure depends on the features controlled by it. If 

these features are enabling an individual to survive in its environment, the related structure 

can be described as good structure; otherwise it is regarded as being less successful.

Natural evolution is an optimisation process (Fogel 1997) in which the quality of the 

species is maximised. It is, however, an open-ended dynamic process in which the quality 

of an individual can only be defined in relation to the environment in which it exists. 

Natural evolution optimises the functionality of individuals.

From an information science point of view, natural evolution can be regarded as a huge 

information processing system. Each individual carries its genetic information, which is 

referred to as the genotype. The interactions between the individual’s genotype and its 

environment cause development of its character, which constitutes the phenotype, while an 

individual grows up. The genetic information is eventually passed on to the next generation 

if the individual shows traits that enable it to reproduce before it dies. The individual can be 

regarded as the mortal survival machines of potentially immortal genetic information 

(Corno et al. 1998).

The two main concepts of natural evolution, which are natural selection and genetic 

dynamics, have inspired the development of a population based search and optimisation 

technique. This method is known as a genetic algorithm. The basic principles of this 

technique were first laid down by Holland (Holland 1975) and are well described, for 

example in (De Jong 1975) (Goldberg 1989a).

2.2.2.1 Genetic algorithm basics and some variations

Genetic algorithms start with an initial population of individual structures or 

chromosomes. Each of these chromosomes represents a potential solution to a given 

optimisation problem. Each individual is assigned a fitness score based on its observed 

performance in solving a given problem. A high fitness score reflects a good characteristic 

that a specific solution exhibits. Individuals with a high fitness have more opportunity to 

become part of the mating pool, where some of the individuals are probabilistically selected 

for reproduction based on their fitness. Next, the genetic operators (usually mutation and 

crossover) are applied to the individuals in the mating pool producing offspring. The rates 

at which these operators are applied are an implementation decisions. If the rates are low 

enough, it is more likely that some of the offspring produced will be identical to their
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parents. The two populations of children and parents are then merged to create a new 

generation. The result of applying a set of genetic operations that mimics natural selection 

and genetic dynamics is a new generation of individuals, which contain a higher proportion 

of good characteristics than the previous generation. Over many generations, good 

characteristics are spread though the population. They are mixed and exchanged with other 

favourable characteristics as the search progresses. The population will eventually converge 

to an optimal solution, if the genetic algorithm is well-designed (Beasley et al. 1993a).

‘ftPseudo code for a genetic algorithm is shown in figure 2.2.

The first step involves the generation of an initial population of chromosomes which 

represent the potential solutions to the optimisation problem. The chromosomes represent 

genotypes that are manipulated by the genetic algorithm. Each chromosome consists of 

several genes and every gene or group of genes has some phonotypical meaning such as a 

parameter in the problem search space. The genes of each chromosome control the location |

of an associated solution in the problem search space. Normally, the initial population of 

chromosomes is generated randomly, although problem-specific knowledge can be used to 

influence its generation (Reeves 1993). In the canonical genetic algorithm, the potential 

solutions were encoded as binary strings, each gene consists of a group of bits and each 

gene represents a parameter in the problem search space. The initial population of the 

canonical algorithm is generated randomly.

In the evaluation part of a genetic algorithm, each individual is assigned a fitness score that 

reflects how far that individual is from the optimum compared to other individuals. The 

fitness assignment is performed by mapping the genetic structure to a point in the 

phenotype domain and then evaluating this point using the function to be optimised.

The selection mechanism probabilistically selects the fittest chromosomes from the 

population to survive and mate. These individuals represent near-optimal solutions. A 

variety of selection schemes has been used. Holland proposed a fitness proportional 

selection mechanism, where the probability of selecting any chromosome for mating is 

calculated by dividing the chromosome fitness by the total fitness assigned to all the 

chromosomes in the population.
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Begin
t = 0
initialise(Population(t)) 
evaluate(Population(t ))
while termination criteria not satisfied 
Begin

t = t + 1
MatePool(t) =select(Population(t-1))
MatePool(t) =crossover (matePool(t))
MatePool(t) =mutate(matePool(t)) 
evaluate( MatePool(t) )
Population(t)=merge (MatePool(t),Population(t-1))

End

Fitness scaling, fitness ranking (Baker 1985) (Whitley 1989), and tournament selection 

(Goldberg and Deb 1991) techniques have been proposed as alternatives to the proportional 

selection mechanism in order to overcome associated problems (Beasley et al. 1993a) 

(Hopgood 2001 pp. 180). The first problem is that the selection pressure of this technique 

becomes very weak as the population converges upon a narrow range of values. Fitness 

scaling techniques have been proposed to avoid this problem where the relative fitness of 

the individual is used in calculating the selection probability instead of the absolute fitness. 

Fitness scaling, however, can aggravate another problem associated with a fitness 

proportional selection mechanism. The selection pressure of the fitness proportional 

selection mechanism with the existence of a highly fit individual (but not the optimal) in 

the population can make that individual rapidly take over the population and lead to 

premature convergence (Beasley et al. 1993a). Rank-based selection, where the 

chromosomes in the population are ranked and the probability of selection is a function of 

rank rather than fitness, was proposed to solve this problem. If the selection probability of a 

chromosome is proportional to its rank, the rank is referred to as linear, otherwise it is 

nonlinear. Nolle et al. (2000) proposed a nonlinear rank strategy with the ability of adapting 

its selection pressure online through controlling a specific control parameter. Tournament 

selection is another proposed scheme, where a small set of chromosomes is chosen at 

random and the best chromosome is selected for mating. This technique is less susceptible 

to premature convergence and its selection pressure can be adjusted by controlling the size 

of the set. Ranking and tournament selections are the natural choices for problems in which

End

Figure 2.2: Pseudo Code of a Genetic Algorithm.
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it is difficult to precisely specify a fitness function (Grefenstette 1997). Boltzmann 

selection mechanisms (Mahfoud 1997) control the selection pressure of the genetic 

algorithm based on principles from simulated annealing to indefinitely prolong the search 

in order to locate better final solutions.

Elitist strategy is a scheme to bias the selection, where the best chromosome in the parent 

population is chosen and all but one of the children’s population (Eshelman 1997). It biases 

the search to exploit the genetic information of the best chromosome found so far.

Due to the selection mechanism’s important role in guiding the genetic search and 

maintaining a high genotype diversity (Back and Hoffmeister 1991), several researchers 

have studied how different selection schemes affect the algorithm’s performance (Goldberg 

and Deb 1991) (Back and Hoffmeister 1991) (Zhang and Kim 2000)(Goldberg and Sastry

2001).

The aim of a crossover operator is to recombine the good features, which are scattered 

through the mating population, into better chromosomes (Eshelman 1997). There is no 

guarantee that crossover will always produce better chromosomes, however the existence of 

the selection operator eventually discards children with less favourable features. The 

crossover is probabilistically applied to randomly selected pairs from the parent mating 

pool. Crossover is not usually applied to all chromosomes of the mate pool. However, a 

high fraction of them undergo crossover. Holland originally proposed the one-point 

crossover, where a randomly selected point is picked in the genetic structure and new 

children are generated by swapping the segment at that point between the two parents. 

Other crossover operators have been devised, often involving more than just one point. 

Using a two-point crossover operator can improve the performance of the genetic algorithm 

compared to a single point operation. More than two, however, can reduce the performance 

(De Jong 1975 cited in Goldberg 1989a). Multi-point crossover can disrupt the building- 

blocks and at the same time can explore the search space more thoroughly. Uniform 

crossover is another type of crossover where each gene is created by copying the 

corresponding gene from a parent according to a randomly generated crossover mask. 

Uniform crossover has the advantage that the ordering of genes is entirely irrelevant 

(Syswerda 1989).

Eshelman et al. (1989) investigated the effect of the different crossover operators on the 

genetic algorithm performance theoretically, in terms of positional and distributional bias, 

and empirically, using several problems. They found no overall winner. Reduced surrogate
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crossover (Booker 1987) was introduced to increase the crossover productivity as the 

population converges. The productivity of uniform crossover makes it more suitable for 

small populations (De Jong and Spears 1992). However, reduced surrogate two-point 

crossover is more suitable for large populations.

Mutation is another genetic operator, which is applied to each of the offspring 

independently. In contrast to crossover, a mutation operator alters one or more genes of the 

chromosome to produce a new chromosome. This operator is typically applied with a low 

probability.

The mutation operator has a great influence on the genetic algorithm search. Mutation 

guarantees that no point in the search space has a zero probability of being visited. It helps 

to prevent the permanent loss of useful gene values that may be accidentally lost during the 

search. In addition, the mutation plays an important role in making small refining moves 

that are not efficiently made using crossover and selection alone (Rosin et al. 1997). 

Mutation can be very effective in solving many optimisation problems even when used 

without crossover (Eshelman 1997).

The order of genes within a chromosome is critical in order for the building-block 

hypothesis (Goldberg 1989a) to work effectively. An inversion operator (Holland 1975), 

which works by reversing the order of genes between two randomly chosen positions 

within a chromosome, was suggested in attempts to find gene orderings which have better 

evolutionary potential (Goldberg 1989a p i66). The reorder process expands the search 

space. In addition to the genetic algorithm search for good sets of gene values, it is 

simultaneously optimising the gene ordering too (Beasley et al. 1993b). The use of uniform 

crossover can eliminate the need for reordering (Syswerda 1989).

After new offspring have been created, the genetic algorithm uses a replacement 

mechanism to merge both parents and children populations in order to produce the next 

generation. The most commonly used replacement techniques are generational and steady 

state. In generational genetic algorithms, the population of parents is completely replaced 

by the children population to produce the new generation. If this mechanism is used 

without elitist strategy there is a risk of losing good building blocks for ever. In the steady 

state mechanism, only one mating per cycle is allowed to replace a pair of parents. This 

gives the genetic structures of the parents the chance to compete and mate with that of their 

children. Steady state genetic algorithms suffer a higher gene loss than do their generational 

counterparts (De Jong and Jayshree 1992). The parent selection and replacement strategies
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must complement each other in terms of the overall effect they have on the exploration- 

exploitation balance (De Jong and Spears 1993). The replacement technique can be biased 

toward the fittest chromosomes and can lead to premature convergence if combined with 

biased reproduction. An unbiased version can protect the search from being trapped in local 

optima (Eshelman 1997). Other merge biased techniques have been borrowed from 

evolution strategies (Back et al. 1991). For example, Eshelman (1991) combined the 

(jU + A) replacement selection technique with unbiased reproductive selection, to select the 

best individuals from both parents and children populations. Muhlenbein and Schlierkamp- 

Voosen (1993) used {jLL,A) in their breeder genetic algorithm to produce /(offspring 

(A > jU )  and the best JU offspring are chosen to replace the parents population.

2.2.2,2 Schema theorem, implicit parallelism and building blocks hypothesis

While each genetic operator is simple to understand independently, the resulting 

behaviour of the genetic algorithm can be quite complex. The notion of schema processing 

is used to explain the behaviour of genetic algorithms and to justify their ability to search.

A schema is a pattern of gene values which may be represented (in binary code) by a string 

of characters in the alphabet (0, 1, #}. A particular chromosome is said to contain a 

particular schema if it matches that schemata, with the ‘# ’ symbol matching anything. So 

for example, the chromosome ‘1101’ contains among others, the schemata 

’l # # r , ’# l # i y  l l # r , ’110#’. The order of a schema is the number of ‘O’ and ‘1’ symbols it 

contains (2, 2, 3, 3 respectively in the example). The defining length of schema is the 

distance between the outermost non-# symbols (4, 3, 4, and 3 respectively in the example).

The notion of schema processing is used to illustrate the property of implicit parallelism 

where a large quantity of schemata is being processed simultaneously while processing a 

relatively small quantity of chromosomes. The property can be explained as follows. Since 

each chromosome contains many different schemata ( 2 L where L: chromosome length), 

the processing of a single chromosome is, in fact, a processing of all the schemata that are 

contained in that chromosome.

Assuming that an individual’s high fitness is due to the fact that it contains good schemata, 

the power of a genetic algorithm can be explained according to the schema theory. This 

theory states that a particular schema receives trails according to the ratio of schema fitness 

to population average fitness as long as the schema is not disrupted by crossover or 

mutation. As a consequence short, low-order, above average schemata receives

k
3
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exponentially increasing trials in subsequent generations of a genetic algorithm. Such 

schemata are called building blocks.

Goldberg (1989a) believes that the primary source of the genetic algorithms search power is 

their ability to find good building blocks that when combined together can produce high- 

order schemata with better fitness. The previous hypothesis is known as the building block 

hypothesis. Goldberg imposed two conditions on a genetic algorithm in order to be 

effective as predicted by schema theory. The related genes should be close together in a 

chromosome and the interactions between genes should be little. These two conditions are 

known as the recommendation of the building block hypothesis.

The schema theorem provides good bounding advice on how to assure the growth of good 

schema and how growth can be sustain to takeover the population (Goldberg and Sastry 

2001). Bridges and Goldberg (1987) tried to derive an exact formula for schemata 

propagation under specific assumption by extending an exact formula for the expected 

propagation of chromosomes in genetic algorithm, under selection and crossover. Attempts 

have been done to derive a generalised schema theorem (Goldberg 1987) (Goldberg and 

Deb 1991) (Whitley et al. 1992). Goldberg and Sastry (2001) show that the schema theorem 

works with different selection schemes and genetic operators. They explore its ramification 

for the choice of selection operator and parameterisation of the algorithm.

2.2.2.3 Performance of genetic algorithms

The performance of a pure genetic algorithm as any global optimisation algorithm 

depends on the mechanism for balancing the two conflicting objectives, which are 

exploiting the best solutions found so far and at the same time exploring the search space 

for promising solutions. The power of genetic algorithms comes from their ability to 

combine both exploration and exploitation in an optimal way. Holland (Goldberg 1989a, 

pp.36) draws an analogy between the behaviour of genetic algorithms and a k-armed bandit 

problem with unknown payoff distribution. The similarity then was used to show that the 

exponential allocation of trials according to observed performance offers genetic algorithms 

with near-optimal sampling.

However, although this optimal utilisation may be theoretically true for a genetic algorithm, 

there are problems in practice. These arise because Holland assumed that the population 

size is infinite, the fitness function accurately reflects the suitability of a solution, and the 

interactions between genes are very low (Beasley et al. 1993a).
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In practice, the population size is finite, which influences the sampling ability of a genetic 

algorithm and as a result affects its performance. The consequences of using limited 

population sizes on the performance of genetic algorithms, the problems associated with it 

and the impact of hybridising a genetic algorithm with other search techniques to 

alleviating these problems are discussed in this section.

Stochastic sampling is used to alleviate the consequences of finite population size. As a 

result, the performance of a genetic algorithm will be subject to stochastic errors. The 

accumulation of stochastic errors causes the population to converge at a single point in the 

search space, even in the absence of selection pressure. This problem is known as genetic 

drift (Thierens et al. 1998). The rate of genetic drift provides a lower-bound on the rate at 

which a genetic algorithm can converge towards the optimal solution. The rate of 

convergence of the genetic algorithm must be sufficiently large to counteract any genetic 

drift. The genetic drift can be slowed down by increasing the mutation rate which also can 

slow down the convergence to the global optimum. The solution to resist the genetic drift is 

to find a way to maintain diversity in the population without decelerating the search.

Incorporating a local search method within the global genetic algorithm can be a solution 

for combating the effect of the genetic drift. Applying a local search method to a solution 

can introduce new genes into the population without decelerating the search. The proper 

use of a local search method can also accelerate the search towards the global optimum 

(Hart 1994). This, in turn, can guarantee that the convergence rate is large enough to 

obstruct any genetic drift.
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Figure 2.3: Samples Can Misguide the Genetic Search.

Limited population size can affect the sampling ability of a genetic algorithm in other ways. 

It can affect exploitation of information which is gathered by the algorithm to guide the 

search to the most promising regions. A genetic algorithm may sample bad representatives 

of good search regions and at the same time good representatives of bad regions. In figure 

2.3, for example point ci is a good representative of region A, while points b and c are 

bad representatives of regions B and C, respectively. Based on the samples, a genetic 

algorithm can direct the search to a local instead of a global optimum. In other words, the 

sampling error caused by a genetic algorithm with limited population size can cause 

premature convergence. The solution to avoid such problems is to ensure that each region is 

represented by a solution that reflects the region’s fitness. If a genetic algorithm is forced to 

sample only the local optimum of each basin of attraction (points a , b and c in figure 

2.3), its sampling ability can be improved which in turn reduces the possibility of premature 

convergence. This means mapping all the points of the search space to their local optima. In 

which case, the role of the genetic algorithm becomes limited in guiding the search toward 

the global optimum among local optima.
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Mapping the current solutions of the genetic algorithm to local optima can be accomplished 

by applying a local search method to the solutions. Regardless of mapping details, the 

mapping can ensure fair representation of the different search areas and help to fight 

premature convergence.

A finite population size can cause a genetic algorithm to produce solutions of low quality 

compared with the quality of solution that can be produced using local search methods. The 

difficulty of finding the best solution in the best found region accounts for the genetic 

algorithm operator’s inability to make small moves in the neighbourhood of currents 

solutions (Reeves 1994). The use of the blind mutation operator with a high rate in order to 

introduce diversity into population can lead the search to re-explore already visited regions. 

Michalewicz (1996 pp.108) proposed a non-uniform mutation operator that explores the 

search space during early stages of the genetic algorithm and refines the solutions in latter 

stages.

Utilising a local search method within a genetic algorithm can improve the exploiting 

ability of the search algorithm on the condition that it does not limit the exploring ability of 

the genetic algorithm (Hart 1994). If the right balance between global exploration and local 

exploitation capabilities can be achieved, the algorithm can easily produce solutions with 

high accuracy (Lobo and Goldberg 1997).

Although the rate of convergence is fast during the early stages of the genetic algorithm, a 

drastic reduction in convergence rate in latter generations is often encountered before the 

genetic algorithm provides an accurate solution. The reason for the change in convergence 

rate is that genetic algorithms can rapidly locate the region in which a global optimum 

exists, and take a relatively long time to locate the exact local optimum in a region of 

convergence (De Jong 2005). A combination of a genetic algorithm and a local search 

method can speed up the search to locate the exact global optimum. In such hybridisation, 

applying a local search to the solutions that are guided by a genetic algorithm to the most 

promising region can accelerate convergence to the global optimum. The time needed to 

reach the global optimum can be further reduced if the local search methods and local 

knowledge are used effectively (Hart 1994). A local search method can provide a genetic 

algorithm with good representatives of the different regions of the search space (Gruau and 

Whitley 1993) and accelerate locating the global optimum starting within its basin of 

attraction.
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In a pure genetic algorithm, the appropriate balance of exploration and exploitation required 

for good performance depends on the amount of diversity in the population, the details of 

the genetic operators and the problem to be optimised. This balance is usually achieved by 

selecting suitable values of the genetic algorithm’s control parameters such as population 

size and crossover, as well as mutation probabilities and selection pressure. The 

relationship between control parameter values and search performance is complex, not 

completely understood, and problem dependent (Eiben et al. 1999).

A large population size induces the search to perform more exploration which means slow 

convergence. On the other hand, populations of a small size can converge with a faster rate 

but its associated limited diversity can cause premature convergence. The optimal 

population size depends on the complexity of the search domain (Harik et al. 1999).

A high selection pressure can push the search toward fast exploitation of the information 

gathered and expose the search to premature convergence problems. A low selection 

pressure pushes towards the other side of the equilibrium equation. The choice of selection 

scheme can control the rate of genetic drift which affects the convergence rate (Rogers and 

Priigel-Bennett 1999). The chances of premature convergence increase when a high 

selection pressure is combined with a small population size.

Standard mutation and crossover operators are simply two forms of more general 

exploration operators that can perturb genes based on any available information (Spears 

1992). In addition, both operators have an exploitation role. The mutation operator exploits 

the neighbourhood of current solutions to construct new longer building blocks. The 

crossover operator exploits the genetic structure of the current solutions to combine good 

building block into longer structures. The trend of both operators in performing either 

exploration or exploitation depends on the gathered information, the details of both 

operators, and the details of the genetic algorithm itself. The correct mix of these two 

operators is essential for the genetic search.

The limitation of genetic algorithms comes mainly from the improper choice of control 

parameters (Deb 1997). These methods are not expected to work on an arbitrary problem 

with any arbitrary control parameter setting. Depending on these parameters the algorithm 

can either succeed in finding a near-optimum solution in an efficient way or fail. Choosing 

the correct parameter values is a time-consuming task. In addition, the use of rigid, constant 

control parameters is in contradiction to the evolutionary spirit of genetic algorithm (Eiben 

et al. 1999).
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Other search techniques can be utilised to set the values of these parameters while the 

search is progressing. The ability of fuzzy logic to represent knowledge in imprecise and 

non-specific ways enables it to be used to reason on knowledge that is not clearly defined 

or completely understood. This ability makes fuzzy logic a suitable choice for adapting the 

control parameters of a genetic algorithm. Fuzzy logic has allowed a group of researchers to 

devise ways of optimising performance and solution quality of genetic algorithms (Richter 

and Peak 2002). It is used to incorporate the many heuristics and techniques of experienced 

genetic algorithm researchers into fuzzy logic system in order to adapt the control 

parameters. The goal of such systems is generally to speed up the convergence of the 

genetic algorithm and/or obtain better quality solutions (Herrera and Lozano 2001).

Incorporating other search methods within the framework of a genetic algorithm can help to 

overcome most of the obstacles that arises when optimising problems as a result of finite 

population size. Hybridisation as a solution for some of the problems that face genetic 

algorithms when used to solve real world problems is the main topic of the following 

sections.

2.3 Hybrid genetic algorithms

Hybrid optimisation methods, as any hybrid system, are based on the 

complementary view of search methods (Hopgood 2001 pp.223). Different search methods 

can be seen as complementary tools that can be brought together to achieve an optimisation 

goal. The ultimate goal of any optimisation algorithm is to find the exact global optimum 

using minimum resources.

Hybrid genetic algorithms are genetic algorithms that incorporate one method or more to 

improve the performance of the genetic search. There are several ways in which a technique 

can complement the genetic search.

2.3.1 Capability enhancement

A technique can be utilised within a genetic algorithm to enhance search 

capabilities. A genetic algorithm is normally viewed as a global search method that can 

capture the global view of a problem domain. Different techniques can be incorporated 

within a genetic algorithm to improve its performance in different ways. When a genetic 

algorithm as a global search method is combined with a problem-specific method as a local 

search method, the overall search capability can be enhanced. The enhancement can be in 

terms of solution quality and/or efficiency. This performance can also be improved by 

ensuring production of feasible solutions in the case of highly constrained problems. This
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thesis focuses on the global-local complementary view of genetic hybrids which have been 

variously referred to as memetic algorithms (Moscato 1989), genetic-local search methods 

(Yamada and Reeves 1998), Lamarckian genetic algorithms (Morris et al. 1998), 

Lamarckian search, and Baldwinian search (Julstrom 1999). How to improve the 

performance of this class of hybrids in optimising continuous functions is the subject of this 

research.

Function approximation techniques can also be incorporated in a genetic search to speed up 

the search. It is also possible to utilise other techniques to replace one or more of the 

genetic operators in order to overcome some of the problems that face genetic search.

2.3.1.1 Improving solution quality

Local search methods and genetic algorithms are usually viewed as two 

complementary tools. A local search algorithm's ability to locate local optima with high 

accuracy complements the ability of genetic algorithms to capture a global view of the 

search space. Holland (1975 cited in (Michalewicz 1996 pp.107)) suggested that the genetic 

algorithm should be used as a pre-processor for performing the initial search, before 

invoking a local search method to optimise the final population. Bilchev and Parmee 

(1995), for example, used their ant colony model for continuous search spaces as local 

search method to improve the quality of the solutions produced by a genetic algorithm in 

order to solve a heavily constrained real-world engineering design problem.

Performing local search on a genetic algorithm’s population, as mentioned before, can 

introduce diversity and help to overcome the nemesis of drift stall. It enables fair 

representation of different search areas in order to fight premature convergence. 

Incorporating a local search algorithm also introduces an explicit refinement operator which 

can produce high quality solutions.

2.3.1.2 improving efficiency

The efficiency of a local search in reaching a local optimum integrates the 

efficiency of a genetic algorithm, in isolating the most promising basins of the search space. 

Therefore, incorporating a local search into a genetic algorithm can result in an efficient 

algorithm. The efficiency of the search can be enhanced in terms of the time needed to 

reach the global solution, and/or the memory needed to process the population.

Efficiency in terms of the time needed to reach a solution of desired quality is a major 

concern in genetic algorithm design. In real-world problems, function evaluations are the 

most time consuming part of the algorithm. For example, the designer of today’s complex
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engineering systems usually relay on expensive computer analysis and simulation 

programs, where the execution time for a single function evaluation can be of the order of 

hours or days (Hacker et al. 2002). Finite element analysis (FEA), computational fluid 

dynamics (CFD), heat transfer and vehicle dynamic simulations are examples of such 

programs. For this reason, time is often measured as the number of fitness function 

evaluations. Hybridisation in addition to parallelisation (Cantu-Paz 1998), time utilisation 

(Goldberg 1999), and evaluation relaxation (function approximation) can be used to speed 

up a genetic search (Goldberg 2003).

Genetic algorithms often show significant improvement in search speed when combined 

with local search methods utilising domain or specific knowledge. There is an opportunity 

in hybrid optimisation to capture the best of both schemes (Lobo and Goldberg 1997). This 

is the reason why genetic hybrids are being increasingly used to solve real-world problems. 

Most of the local search methods reviewed in this chapter have been mixed with genetic 

algorithms in real-world applications (Yen et al. 1998) (Besnard et al. 1999) (Liang et al. 

1999) (Preux and Talbi 1999).

Population size is crucial in a genetic algorithm. It determines the memory size and the 

convergence speed in serial genetic algorithms and affects the speed of search in the case of 

parallel genetic algorithms. Efficient population sizing is critical for getting the most out of 

a fixed budget of function evaluations. The gambler ruin’s model (Harik et al. 1999) was 

used to estimate the population size of genetic algorithms. This model was used to show 

that population size depends on two parameters, which can be affected by incorporating 

local search. The two parameters represent the standard deviation of the population and 

signal difference between the best and second best building blocks. If a local search method 

is incorporated in such a way as to reduce the standard deviation of the population and to 

increase the signal difference between the best and the second best chromosome, the 

resulting hybrid can be efficient even with small population sizes. Espinoza et al. (2003a) 

showed the effect of incorporating a local search method on reducing the population size, 

compared with a pure genetic algorithm.

2.3.1.3 Guarantee feasible solutions

In highly constrained optimisation problems, the crossover and mutation operators 

generally produce illegal or infeasible solutions and hence waste search time. This problem 

can be solved by incorporating problem-specific knowledge. Problem-specific knowledge 

can be used either to prevent the genetic operators from producing infeasible solutions or to 

repair them.
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The Partial Matched crossover (PMX) (Goldberg and Lingle 1985) was proposed for use in 

order-based problems to avoid the generation of infeasible solutions. Grefenstette et al. 

(1985) suggested a heuristic crossover operator that could perform a degree of local search 

for the Travelling Salesman Problem (TSP). Davidor (1991) designed “analogous 

crossover” where local information is used to decide which crossover sites can produce 

unfit solutions. Heuristic crossover operators were used to solve a timetabling problem in 

order to ensure that the most fundamental constraints are never violated (Burke et al. 1995). 

Freisleben and Merz (1996) proposed the Distance Preserving crossover (DPX) to produce 

feasible solutions to solve TSP without losing diversity. They used a non sequential 4- 

change as a mutation operator for the same reason. Cycle crossover (CX) (Oliver et al. 

1987), Order crossover (OX) (Oliver et al. 1987), Matrix crossover (MX) (Homaifar et al. 

1992), Modified Order crossover (MOX) (Wroblewski 1996), Edge Recombination 

crossover (ERX) (Whitley et al. 1989), 2-opt operator (Jog et al. 1991), 3-opt operator (Jog 

et al. 1991) and Or-opt operators (Jog et al. 1991) are examples of crossover and mutation 

operators which have been developed for the TSP. A special edge recombination crossover 

(Magyar et al. 2000) has been constructed for the three Matching Problem (3MP). The 

crossover operator has been replaced with the gene-pooling operator to produce feasible 

solutions when optimising the number and positions of fuzzy prototypes for efficient data 

clustering (Burdsall and Giraud-Carries 1997a).

A problem-specific knowledge search method can be used to recover the feasibility of 

solutions generated by the standard genetic operators. Repairing such solutions can help the 

genetic search to avoid the danger of premature convergence, which occurs when all or 

most solutions are infeasible (Orvosh and Davis 1993) (Ibaraki 1997). Konak and Smith 

(1999) combined a genetic algorithm with a cut-saturation algorithm for the backbone 

design of communication networks. They use a uniform crossover operator with a K-node- 

connectivity repair algorithm to repair infeasible offspring. Areibi and Yang (2004) used 

repair heuristics in their proposed approach to solve VLSI circuit layout. The approach 

combines a hierarchical design technique, genetic algorithms, constructive techniques, and 

advanced local search. They also used the OX operator to avoid infeasible solutions in 

solving VLSI design problems.

2.3.1.4 Fitness function estimation

If the fitness function is excessively slow or complex to evaluate, approximation 

function evaluation techniques can be utilised to accelerate the search without disrupting 

search effectiveness. This is because genetic algorithms are robust enough to achieve 

convergence in the face of noise produced by the approximation process. Fitness
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approximation schemes, replace high-cost accurate fitness evaluation, with a low-cost 

approximate fitness assignment procedure. This can be achieved either by evolutionary 

approximation, where the fitness of a chromosome is estimated from its parents’ fitness, or 

function approximation, where the fitness function is replaced by an alternate simpler 

model. Jin (2005) provides a comprehensive survey on fitness approximation techniques.

The selection of an appropriate approximation model to replace the real function is an 

important step in ensuring that the optimisation problem is solved efficiently. Neural 

network models have widely been used for function approximation (Lawrence et al. 1996). 

Willmes et al. (2003) compared neural networks and the Kriging method for constructing 

fitness approximation models in evolutionary algorithms. Jin and Sendhoff (2004) 

combined the k-nearest-neighbour clustering method and a neural network ensemble to 

estimate the solutions’ fitness. Burdsall and Giraud-Carrier (1997b) used an approximation 

of the network’s execution to evaluate solutions fitness instead of constructing a radial 

basis function network (RBF) to optmise the topology of a neural network. The 

approximation is based on an extension of the nearest-neighbour classification algorithm to 

fuzzy prototypes. Ankenbrandt et al. (1989) implemented a system of fuzzy fitness 

functions, to grade the quality of chromosomes, representing a semantic net. The system is 

used to assist in recognizing oceanic features from partially processed satellite images. 

Pearce and Cowley (1996) presented a study of the use of fuzzy systems to characterise 

engineering judgment and its use with genetic algorithms. They demonstrated an industrial 

design application where a system of problem-specific engineering heuristics and hard 

requirements are combined to form a fitness function.

2.3.1.5 Operation substitution

Genetic algorithms present a methodological framework that is easy to understand 

and handle. This framework is open to the incorporation of other techniques (Schwefel 

1997). It is possible to utilise other techniques to perform one or more of the genetic 

algorithm operations. These incorporated techniques can be used to replace either the 

crossover operator, mutation operator or both.

In Probabilistic Model-Building Genetic Algorithms (PMBGA) or Estimation of 

Distribution Algorithms (EDA) (Pelikan et al. 1999b), a probabilistic model is utilised to 

learn the structure of a problem on the fly. This model is used instead of the standard 

genetic operators to ensure a proper mixing and growth of building blocks. These 

algorithms replace the standard crossover and mutation operators of genetic algorithms, by 

building a probabilistic model that estimates the true distribution of promising solutions.
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New potential solutions are then generated by sampling this model. Population Based 

Incremental Learning (PBIL) (Baluja 1994), Univariate Marginal Distribution Algorithm 

(UMDA), Compact Genetic Algorithm (CGA), Bivariate Marginal Distribution Algorithms 

(BMDA), Factorized Distribution Algorithms (FDA) and the Bayesian Optimisation 

Algorithm (BOA) (Pelikan et al. 1999a) are all examples of PMBGA that are reported to 

have a better search ability, than that of the simple genetic algorithm, in solving a broad 

class of problems (Pelikan et al. 1999b). Tsutsui et al. (2005) proposed the Aggregation 

Pheromone System (APS), which introduced the concept of pheromone trail of the ant 

colony optmisation into the PMBGAs, to solve real-valued optimisation problems.

Leng (1999) proposed the Guided Genetic Algorithm (GGA), which is a hybrid genetic 

system that borrows the concept of feature and penalties from the Guided Local Search 

(GLS). The GGA modifies the fitness function by means of penalties to escape local 

optima. Two specialised crossover and mutation operators, which are biased by the 

penalties to change genes that are involved in more penalties, are used in order to explore 

the search space.

When a problem-specific representation is used in a genetic algorithm, the standard genetic 

variation operators are usually replaced with problem-specific operators. Hedar and 

Fukushima (2003) replaced the ordinary crossover with a simplex crossover that produces a 

simplex offspring from mating n + l simplex parents ( n is the dimension of the problem to 

be solved). They also used a mutation operator that was more suitable. Quantum-inspired 

genetic algorithms (Han and Kim 2002) (Han and Kim 2004) (Talbi et al. 2004) borrow the 

concepts of quantum bit and states superposition from quantum computing. In these 

algorithms, the individuals are represented as a string of quantum-bits. Quantum-gates are, 

then, used to modify these individuals instead of crossover and mutation operators. The 

power of these algorithms comes from the great diversity they provide by using quantum 

coding. Each single quantum individual in reality represents multiple classical individuals. 

The results reported from using this hybridisation to solve combinatorial and continuous 

optimisation problems are promising.

Tan et al. (1995) replaced the standard mutation operator by simulated annealing to solve 

system identification and linearization problems. The results showed a more accurate 

search and faster convergence when compared with a pure genetic algorithm. Riopka and 

Bock (2000) proposed a collective learning genetic algorithm, in which an intelligent 

recombination based on the exchange of knowledge between chromosomes, is used to 

effectively find high quality solutions to combinatorial optimisation problems. Magyar et
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al. (2000) introduced several heuristic crossover and local hill-climbing operators to solve 

the 3MP. Fundamental to the technique is adaptation of operator selection. Two fuzzy 

connective-base (FCB) crossover operators types (dynamic and heuristic) have been 

proposed in (Herrera and Lozano 1996) for real-coded genetic algorithms to fight 

premature convergence problems.

2.3.2 Optimising the control parameters

The setting of genetic algorithm control parameters is a key factor in the 

determination of the exploitation versus exploitation trade-off. Other techniques can used to 

monitor the behaviour of a genetic algorithm in order to adapt its control parameters to 

improve search performance. A collection of fuzzy rules and routines can be used for 

dynamically adjusting the control parameters of genetic algorithms. A fuzzy logic 

controller uses feedback from the current state of search to improve performance and avoid 

undesirable behaviours such as premature convergence.

It is also possible to incorporate a genetic algorithm within another technique to optimise 

control parameters, since genetic algorithms are in practice very effective optimisation 

techniques. A genetic algorithm can be applied to optimise a neural network in a variety of 

ways. It can be utilised to adjust the neural network weights (Belew et al. 1991) (Montana 

1995) (Liang et al. 2000) their topology (Miller et al. 1989) (Koza and Rice 1991) (Arena et 

al. 1993) (Chaiyaratana and Zalzala 2000) and learning rules (Chalmers 1990) (Fontanari 

and Meir 1991). For a comprehensive review of evolving neural networks the reader can 

refer to (Yao 1999). Karr (1991) described an application to the cart-pole balancing system 

and used a genetic algorithm to evolve the membership functions of a fuzzy controller. The 

resulting, optimised fuzzy logic controller performed better than the controller based on 

membership functions designed by a human expert. These promising results have been 

confirmed by an application of the method for online control of a laboratory pH system 

with drastically changing system characteristics (Karr and Gentry 1993). Genetic 

algorithms can also be used to automate the learning of fuzzy control rules (Valenzuela- 

Rendon 1991). They have also been used to optimise the control parameters of ant colony 

optimisation algorithms (White et al. 1998) (Botee and Bonabeau 1998) (Pilat and White 

2002).

Some of design choices faced by a hybrid genetic algorithm designer while solving real 

world problems are discussed in the following sections. Due to their major impact on 

hybrid genetic performance, the discussion concentrates on different learning strategies and 

mechanisms that can be used to achieve a balance between exploration and exploitation.
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First, the relation between genetic/local search and evolution/learning is presented. Then, 

different techniques that can be used to achieve the optimal division of labour between 

global genetic algorithm and local search method are reviewed.

2.4 Learning and local search

Organisms in different biological systems try to learn about themselves and their 

environments to acquire new skills and improve their innate characteristics in order to adapt 

to their environment and improve their chances of survival and reproduction. In this way, 

learning can increase an organism’s chances at being selected to evolve. Performing a local 

search on a solution has a similar effect in hybrid genetic algorithms. A local search method 

uses local knowledge about a specific solution and its surrounding to improve its chances to 

be selected by the genetic algorithm to propagate its characteristics into the next 

generations. Since the genetic algorithm in itself is a model of the evolution process, the 

local search is usually viewed as learning process.

Evolution is concerned with the change in genetic structure of the population as a result of 

natural selection and genetic operators. Modification operators of genetic algorithms also 

work on the genotype or the genetic structure of the individual. However, the selection 

operator works on phenotype or the merit of traits that an individual shows in its 

environment. For this reason some kind of mapping from genotype to phenotype is 

embedded in genetic algorithms. In contrast to evolution and genetic algorithms, both 

leaning and local search methods work on phenotype. The other difference between 

evolution and learning is the time scale in which they occur.

Two basic biological learning models have been proposed to explain the way by which 

learning affect evolution. According to the Lamarckian model, learning can affect evolution 

directly through passing acquired traits as a result of learning from parents to their 

offspring. This model, which is known as Lamarckian evolution, was rejected by the 

Darwinian school of thought. This school believes that learning has indirect effect on 

evolution. Learning can guide evolution through an indirect mechanism, known as the 

Baldwin effect (Baldwin 1896). Learning can accelerate the genetic acquisition of learned 

traits without the Lamarckian mechanism. Through learning, individuals can improve their 

traits or their ability to adapt to their environment and this can increase their chances of 

survival and the passing of their genetic structures to next generations. The next generations 

will not be dominated only by individuals who have good genetic structures but also by 

individuals with the ability to learn and improve their fitness. This gives good genetic 

structures more chance to survive even when they are represented in the population by
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individuals with under average fitness. Learning and evolution should aim to fulfil common 

goals in order for the Baldwin effect to occur. This condition is already satisfied in 

optimisation problems where the common task of local and genetic algorithm search is to 

optimise the same function.

The way of utilising gained information through local search within a hybrid genetic 

algorithm has a great impact on the performance of search process. Two basic approaches 

based on biological learning models have been adopted to utilise these information; the 

Lamarckian approach and the Baldwinian approach (Hinton and Nolan 1987). There is also 

a third model, which is a mixture of the basic models and its effectiveness has been proven 

in solving real-world problems (Orvosh and Davis 1993) (Houck et al. 1997) (Joines et al. 

2000b) (Sung-Soon and Byung-Ro 2005).

2.4.1 Lamarckian learning

Lamarckian approach is based on the inheritance of acquired characteristics 

obtained through learning. This approach forces the genetic structure to reflect the result of 

the local search. The genetic structure of an individual and its fitness are changed to match 

the solution found by a local search method. In the Lamarckian approach, the local search 

method is used as a refinement genetic operator that modifies the genetic structure of an 

individual and places it back in the genetic population.

Lamarckian evolution, in spite of being recognised as never occurring in biological systems 

due to the lack of a mechanism to accomplish it, can be simulated in a computer in order to 

shed light on issues of general evolvability. Lamarckian evolution can accelerate the search 

process of genetic algorithms (Whitley et al. 1994). On the other hand, by changing the 

genetic structure of individuals, Lamarckian can disrupt schema processing which can 

badly affect the exploring abilities of genetic algorithms. This may lead to premature 

convergence (Whitley et al. 1994). When a Lamarckian approach is adopted, inverse 

mapping from phenotype to genotype is required. The inverse mapping may be computable 

in many simple applications. However, the computation will typically be intractable, for 

real-world problem solving (Tunery 1996). Most of hybrid genetic algorithms that repair 

chromosomes to satisfy constrains are Lamarckian and the technique has been particularly 

effective in solving TSP (Julstrom 1999).

2.4.2 Baldwin learning

The Baldwin learning allows an individual’s fitness to be improved by applying a 

local search, whereas the genotype remains unchanged. In this way, it improves the
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solution’s chances to propagate its structure to the next generations. Like natural evolution, 

learning does not change the individual’s genetic structure, however it increases its chances 

of survival. The Baldwinian approach, in contrast to the Lamarckian one, does not allow 

parents to pass their learned or acquired characteristics to its offspring. Instead, only the 

fitness after learning is retained. A local search method in the Baldwinian approach is 

usually used as a part of the individual’s evaluation process. The local search method uses 

local knowledge to produce a new fitness score that can be used by the global genetic 

algorithm to evaluate the individual’s ability to be improved.

The Baldwin effect is somewhat Lamarckian in its results although it uses different 

mechanisms (Turney 1996). It explains interactions between learning and evolution by 

paying attention to balances between benefit and cost of learning. The Baldwin effect 

consists of the following two steps (Turney et al. 1996). In the first step, learning gives 

individuals the chance to change their phenotypes to improve their fitness. Individuals, who 

found learning useful and help their fitness to improve, will spread in the next population. 

In the second step, if the environment is sufficiently stable, the cost associated with 

learning results in selection favouring individuals that have the traits, which are acquired by 

others through learning, already coded into their genotype. Through this mechanism, called 

genetic assimilation, learning can accelerate the genetic acquisition of learned traits 

indirectly. A critical precondition for genetic assimilation appears to be a strong correlation 

between genotype and phenotype space so that nearness in the phenotype space implies 

nearness in the genotype space (Mayley 1996). Otherwise, the acquired traits have little 

chance of eventually becoming encoded in the genome via chance through genetic 

operations.

Hinton and Nolan (1987) illustrated how the Baldwin effect can transform the fitness 

landscape of a difficult optimisation problem into a less difficult one, and how the genetic 

search is attracted toward the solution found by learning. Gruau and Whitley (1993) 

showed how local search can change the landscape of fitness function into flat landscapes 

around the basin of attraction. This change in fitness landscape is known as the smoothing 

effect. They demonstrated the impact of the smoothing effect on the search process. This 

learning strategy could be more effective but slower than Lamarckian, since it does not 

disrupt schema processing of genetic algorithms (Whitley et al. 1994). Baldwinian search 

can also have the effect of obscuring genetic differences and, thus, hindering the evolution 

process (Mayley 1996). This is known as the hindering effect. Essentially this occurs as a 

result of different genotypes mapping to the same or similar phenotypes (as a result of the 

smoothing effect) with equivalent fitness scores being produced. The genotypes cannot be
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effectively discriminated according to their fitness values without considering the learning 

cost and the evolution of effective solutions is hindered. The Baldwinian effect can 

aggravate the problem of multiple genotype to phenotype mappings (Houck et al. 1997) 

(Julstrom 1999). This problem can also waste the resources of hybrids that use clustering 

techniques in the genotype domain to reduce unnecessary local search, in contrast to the 

Lamarckian approach which has been shown to help alleviate this problem (Joines and Kay

2002).

Hart et al. (1995) pointed to the importance of considering the cost of learning, which has 

been ignored by most researchers when studying the impact of the Baldwinian strategy on 

the hybrid search by analysing its performance based on the number of generations of the 

genetic algorithm only. Learning can introduce a computational cost which overweighs its 

benefits in search.

2.4.3 Hybrid Lamarckian-Baldwinian models

Hybrid Lamarckian-Baldwinian models are created with a view towards combing 

the advantages of both forms of learning models (Orvosh and Davis 1993). The 

combination of the Baldwinian and the Lamarckian approaches can be done at two different 

levels. Hybridisation can be used at the individual-level, where some individuals evolve 

using the Lamarckian approach while the other individuals evolve using the Baldwinian 

approach (Houck et al. 1997) (Joines et al. 2000b). Houck et al. (1997) found that this form 

of partial Lamarckian approach outperformed both the pure Lamarckian and the pure 

Baldwinian approaches on a selected set of test problems.

The other level is the gene-level, where a number of genes evolve using the Lamarckian 

strategy and the remaining genes evolve using the Baldwinian approach (Sung-Soon and 

Byung-Ro 2005). This approach was used to solve the sorting network problem. It can 

reduce the problem search space and help to produce an efficient search (Sung-Soon and 

Byung-Ro 2005).

The effectiveness of adopting the pure Lamarckian approach, the pure Baldwinian 

approach, or any mixture of them in a hybrid is affected by the fitness landscape, the 

representations, the percentage of population performs local search and local search method 

used (Michalewicz and Nazhiyath 1995) (Turney 1996) (Houck et al. 1997) (Joines et al 

2000b) (Ishibuchi et al. 2003)
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2.5 Balance between local and global Search

The hybrid algorithm should strike a balance between the two contrasting 

objectives, which are exploration and exploitation, in order to be able to solve global 

optimisation problems. According to the hybrid theory (Goldberg and Voessner 1999), 

solving an optimisation problem and reaching a solution of desired quality can be attained 

in one of two ways. Either the global search method alone reaches the solution or the global 

searcher guides the search to the basin of attraction from where the local search method can 

continue to lead to the desired solution. In the genetic-local hybrid, the main role of the 

genetic algorithm is to explore the search space in order to isolate the most promising 

regions of the search space or hitting the global optimum. However, the main role of the 

local search method is to exploit the information gathered by the global genetic algorithm. 

The division of the hybrid’s time between the two methods influences the efficiency and 

the effectiveness of the search process. The optimal division of algorithm’s time is an 

important issue that faces the designers of hybrid genetic algorithms.

Although the aim of combining a global genetic algorithm and a local search method is to 

reap the best out of the exploring ability of the former, and the efficiency of the latter in 

reaching local optima, the two methods can interact in a more complicated way than the 

one described above. Rosin et al. (1997) argued that the mutation operator in a hybrid plays 

a different role than it does in a pure genetic algorithm. The local refinement requirement of 

the mutation operator becomes unnecessary in the existence of an explicit local search 

method allowing the mutation operator to take a more exploratory role. Land (1998) 

suggested using larger mutations, at least large enough to move from one basin to another, 

in cases where each individual of the population is completely locally optimised. He went 

further, when he argued that local search obviates the need for crossover in solving the 

graph bisection problem, because local search is able to build the very same building blocks 

that the crossover would otherwise combine.

The exploring ability of the genetic algorithm can be further improved by utilising local 

search to ensure fair representation of different regions of a search. This can improve the 

ability of the genetic algorithm to direct the search to the most promising regions of the 

search space. Once the algorithm has guided the search to the basin of attraction of the 

global optimum, utilising local search can further improve the search to produce an 

effective optimisation algorithm. The first goal of the hybridisation, which is the 

effectiveness of search, can be satisfied if a genetic algorithm and a local search method 

cooperate in the manner mentioned above. However, there are other forms of interaction,
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destructive forms of interactions. For example, the mutation and crossover operators can 

disrupt good and complete local solutions which may waste algorithm resources and 

produce an inefficient search. The Lamarckian local search can disrupt the schema 

processing of the genetic algorithm which may lead to premature convergence and produce 

an ineffective search.

In addition to the role of genetic operators of systemically exploring the search space, they 

perform some form of local search with relative low cost compared to the more accurate 

local search methods. The improper use of the expensive local search in a hybrid can waste 

algorithm resources. The algorithm should be able to decide wisely on both methods, 

especially when both can achieve the desired task, taking into account the benefits and costs 

of their utilisation. The condition of an appropriate use of both methods in addition to the 

condition of interacting in a cooperative way should be satisfied in order to produce an 

effective and efficient search algorithm.

Researchers have proposed different techniques to enable the hybrid to mix both methods 

wisely or at least to reduce the consequences of the improper use of the expensive local 

search. These techniques are based on modifying the different parameters of a local search 

method within a hybrid. Modifying the parameters of the local search, such as the 

frequency of local search, the duration of local search, and the probability of local search 

can help the hybrid to strike a balance between the two search methods.

2.5.1 Frequency of local search

The number of continuous uninterrupted generations that a genetic algorithm 

performs before applying local search is usually referred to as the frequency of local search. 

In the traditional hybrid genetic algorithm, the frequency of local search is one for example. 

The staged hybrid genetic algorithm (Mathias and Whitley 1992) (Mathias et al. 1994) was 

designed to separate the two search methods into two distinct stages by increasing the 

frequency of the local search in order to minimise the interference between the two search 

methods. Mathias and Whitely (1992) used a local search frequency of two to solve the 

TSP. However, in a hybrid algorithm to solve the static correction problem (Mathias et al. 

1994), the genetic search algorithm was allowed to continue uninterrupted for ten 

generations before applying a single iteration of waveform steepest ascent iteration to each 

individual in the population. This hybrid algorithm produced solutions with improved 

quality of 5% and additional savings in time compared with the traditional hybrid genetic 

algorithm. Espinoza et al. (2001) conducted a set of experiments to find the optimal local
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search frequency of two two-dimensional continuous test functions and they found that the 

optimal frequency of local search for these test functions was 3.

The optimal frequency of local search is function dependent and varies with time because 

the optimal time that should be spent on local and global search algorithm depends on the 

distribution of individuals in the population. Syrjakow and Szczerbicka (1995) studied the 

optimal switch point between the genetic algorithm and local search to fine-tune the 

solution found by the pre-optimiser genetic algorithm. They studied three criteria: the 

number of function evaluations, the convergence speed of the genetic algorithm, and the 

regional accumulation of search points indicating the convergence toward a specific region 

in the search space so as to determine the optimal switch point. The convergence speed 

criterion produced the highest efficiency in their experiment. Lobo and Goldberg (1997) 

address the problem of deciding between global search and local search in order to make 

the most out of either technique. They tried to answer the question; when should the local 

search be used and when should the global genetic algorithm be used to achieve the 

maximum possible efficiency? They viewed the problem as a two armed bandit problem 

where the payoff of each bandit is unknown and changes with time. They presented a 

model for efficient hybridising based on the concept of probability matching. This model 

can be viewed as an adaptive technique that adjusts the frequency of local search depending 

on the efficiency of both genetic and local techniques as the search progresses. Tuson and 

Ross (1996) used a similar model to adapt the operator probability in their Cost Based 

Operator Rate adaptation. They used their model to select the use of a mutation or 

crossover operation in a pure genetic algorithm. The same technique has been used to solve 

the 3MP (Magyar et al. 2000), where an adaptive hybrid algorithm select one operator from 

eight recombination and local search operators based on their current and past benefit-cost 

ratio.

Espinoza et al. (2001) used the change in coefficient of variation of the fitness function to 

determine whether the genetic algorithm is exploring new regions of the search space or 

exploiting the already visited regions. Based on that, the algorithm selects to perform either 

a genetic or a local iteration. The algorithm relies on the local search role to improve the 

sampling of the new regions that are being explored in the case of any increase in that 

coefficient. Once the search has branched to a local search, the fitness improvement-cost 

ratio of both the last genetic and the local iterations, and the maximum number of local 

iterations are used to decide on continuing the local search or going to the global search. 

The experiments showed that the algorithm is more efficient than a pure genetic algorithm
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and is stable against a greater range of parameter settings than the standard staged hybrid 

genetic algorithm.

Hacker et al. (2002) proposed an approach that switches between global genetic and local 

search, based on the local topology of the search space. The basic idea of this approach 

ignores the role of local search in improving the sampling ability of the genetic algorithm. 

It concentrates on the efficiency of local search, i.e. at finding the optimal once the global 

genetic algorithm has defined its basin of attraction. The utilisation of the relative 

homogeneity of the population and regression analysis to determine whether the search is 

exploring a single basin or multiple basins was investigated. The coefficient of variance of 

both the fitness and phenotype was used to quantify the relative homogeneity of the 

population. A decrease in the values of the coefficient of variance indicates that the genetic 

algorithm has converged to a small area of the search space and the search process can 

therefore be made more efficient by switching to a local search. Whereas, an increase in its 

value indicates a new region of the search space is being explored indicating that there is 

less need to use a local search. Regression analysis has also been used to determine when to 

switch between global and local techniques. The value of the error of fitting the population 

of solutions to a second-order surface can indicate as to whether the genetic algorithm is 

exploring multiple basins or a single basin in the search space. Depending on the value of 

that error the algorithm decides to switch to a local search or continue the global search. 

They concluded that utilising local search could be helpful for small size search spaces in 

the early stages of search due to their role in helping the genetic algorithm to define the 

most promising regions of the search space. However, for large size and complicated search 

spaces, their role is limited to accelerating finding of the global optimum once the genetic 

algorithm isolates the most promising region and can be helpful in later stages of the 

search.

2.5.2 Duration of local search

Local search duration influences the balance between the global exploration genetic 

algorithm, and local refinement of neighbourhood search method, in hybrid genetic 

algorithms (Hart et al. 2000) (Ishibuchi et al. 2003). A hybrid with long local search 

duration will execute fewer generations of the genetic algorithm than a hybrid with shorter 

local duration, if both terminate after the same number of function evaluations.

On combinatorial domains, a local search can be performed until a solution converges to a 

local optimum. However, on continuous domains, the local search is typically truncated 

before reaching a local optimum when its step length becomes too small. Performing local
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search until a solution converges to a local optimum, which is referred to as complete local 

search, may lead to the loss of population diversity (Whitley et al. 1994) depending on the 

learning strategy used. Hybrid genetic algorithms that adopt the pure Lamarckian approach 

are prone to loss of diversity more than others which utilise other learning techniques.

Applying a complete local search on costly function evaluations can also be expensive. 

However, there is a certain class of problems, decomposable fitness problems (Radcliffe 

and Surry 1994), where calculating the fitness of a solution given the fitness of its 

neighbour, is significantly less computationally expensive than computing its fitness from 

scratch. TSP is an example of this group of problems where computing the length of a tour 

that shares most of its edges with another tour, whose length is already known, is much 

cheaper than computing the length of a general tour. Radcliffe and Surry (1994) argued that 

hybrids are more suitable for problems exhibiting this property.

A few studies have been conducted which investigate the optimal duration of local search. 

Hart (1994) found that using a short duration of local search produced the best results for 

the Griewank functions (Griewank 1981), whereas a long duration produced better results 

for the Rastrigin functions (Torn and Zilinskas 1989). Rosin et al. (1997) experimented 

with very short and very long local search durations in a hybrid to optimise the drug- 

docking configuration. Both durations were found to yield similar performance. Hart et al. 

(2000) concluded that duration of local search is an important factor and hybrid genetic 

algorithms with long local searches will be most effective for nontrivial problems.

The high cost of complete local search on expensive function evaluations makes any 

improper use of the local search difficult to recover from. However, the recovering from 

any misuse of partial local search is still possible. Partial local search is more suitable for 

hybrids that decide on a global or local approach depending on the current state of search 

and the previous performance of both methods. In this case, where there is a possibility of 

misjudgement in some circumstances, the use of partial local search gives the hybrid more 

chance to recover from such errors than using complete local search.

2.5.3 Probability of local search and local search selection

In any hybrid algorithm, a local search can be applied to either every individual in 

the population or only few individuals. In traditional hybrid genetic algorithms, a local 

search is applied to every individual in the population. However, applying a local search to 

every individual in the population on costly function evaluations can waste resources 

without providing any more useful information. In this case, the local search can be applied
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to individuals that fall in the same basin of attraction of the search space, whereby 

producing the same local optimum. Applying a local search to a large fraction of the 

population can limit exploration of the search space by allowing the genetic algorithm to 

evolve for a small number of generations. The possibility of applying local search on more 

than one individual from the same basin can be reduced by performing local search on only 

a small fraction of the population. This also lowers the chances of applying an unnecessary 

local search on individuals that fall in non-promising regions of the search space. Deciding 

upon the optimal fraction of population which should perform local search, and the basis on 

which these individuals are chosen, has a great impact on the performance of a hybrid.

Hart (1994) investigated the impact of the fraction of population that undergo local search 

on the performance of real-coded genetic algorithm. He found that a relation exists between 

this fraction, the population size and the performance of the hybrid. He also found that 

performing local search on small fraction could be more efficient when using larger 

populations and those large fractions can help to reflect the search space characteristics 

when using small populations. He concluded that a more selective use of local search could 

improve the efficiency of hybrids. Hart and Belew (1996) studied the impact of local search 

probability on the efficiency of hybrids. Their studies indicate that the probability of local 

search should be kept low in the initial stages and incremented in later generations. The 

population diversity in the initial stages of genetic algorithm enables good sampling of the 

search space. However, as the diversity diminishes in the later stages, the sampling ability 

of the genetic algorithm requires additional help from the local search.

Different techniques, such as tuning, distribution-based (Hart 1994), fitness-based (Hart 

1994) techniques and local search potential (Land 1998), have been proposed to decide on 

the optimal fraction of population that should perform a local search. These techniques aim 

to reduce unnecessary local searches. However, they differ in the way they select 

individuals that perform the local search.

2.5.3.1 Tuning technique

In the tuning technique, a primary experiment is conducted in order to find the 

optimal fraction of the population that should perform local search. This fraction is usually 

referred to as the probability of local search. This value is then used to run the real 

experiment and remains fixed during the run. Typically, the individuals that undergo local 

search are chosen uniformly at random. Rosin et al. (1997) apply local search to 7% of the 

population in each generation in their hybrid to solve the docking problem. In Land et al. 

(1997), only 5% of randomly selected individuals of the population perform a Marquardt-
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Levenberg local search in their hybrid to determine the basic parameters that describe the 

structure of a semiconductor wafer. Hart et al. (2000) and Morris et al. (1998) apply local 

search to 6% of the population. Espinoza et al. (2001) found applying local search on 10% 

of the population produces the best efficiency for both their adaptive hybrid algorithm and 

the standard staged hybrid algorithm. In their adaptive hybrid genetic algorithm, this value 

is used as an initial value for the probability of local search, which is reduced by a specific 

value after applying local search. In a hybrid to solve the TSP, Krasnogor and Smith (2000) 

applied their adaptive local search method with a probability of 1.0 to each individual in the 

population, except the one with the best fitness.

2.S.3.2 Distribution-based technique

Distribution-based techniques modify the probability of local search based on the 

distribution of individuals in the population. The motivation for these techniques is to 

ensure that only one individual from each basin of attraction in the search space can 

undergo local search. These techniques can improve the sampling ability of the hybrid by 

preventing bad representatives of good regions from misguide the global genetic algorithm.

Hart (1994) used F statistic as a measure of distance over the space of genotypes to adapt 

the probability of local search. Joines and Kay (2002) combined evolutionary algorithms 

with random linkage and borrowed the concept of short memory from tabu search to avoid 

performing unnecessary local search on non-promising regions of the search space. The 

authors defined tabu hyperspheres around the offspring of the genetic algorithm to reduce 

the amount of wasted function evaluations owing to the rediscovery of the same local 

optimum. The probability of local search of each offspring depends on the distance to the 

nearest tabu region. By decreasing the size of these tabu hyperpheres as the search progress, 

the algorithm can intensively search the most promising regions of the search space. This, 

in turn, can help to find the exact local optimum of the region which also represents the 

global optimum of the search space. The authors compared their hybrid using the 

Lamarckian leaning approach with a pure genetic algorithm, and the standard hybrid 

genetic algorithm where each offspring perform local search using two different learning 

strategies. They reported that their hybrid outperformed other algorithms in terms of both 

solution quality and computation effort. Martinez-Estudillo et al. (2004) selected 

individuals for local search using clustering techniques to optimise the structure and the 

weights of product-unit based neural networks. The results showed that the clustering 

approach was able to perform better than similar algorithms that do not use clustering 

analysis.
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2.5.3.3 Fitness-based technique

A fitness-based technique adaptively calculates probability with which local search 

is applied. This technique uses the fitness information in the population to bias the local 

search toward individuals that have better fitness. The local search probability of each 

individual is modified based on the relationship of its fitness to the fitness of other 

individuals. These methods assume that individuals with better fitness are more likely to be 

in the basins of attraction of the most promising regions. This assumption ignores the 

dynamic of genetic algorithms and the cumulative effect of applying local search on 

successive generations which can aggravate the sampling ability of the global genetic 

algorithm and can misguide the search. For example, if a promising region of the search 

space is represented badly by an individual with under average fitness and, in the same 

population, a non-promising region is represented by individual with over average fitness, 

the representative of the non-promising region will have more chance to perform local 

search and improve its chances of survive.

Hart (1994) found no statistical differences between the results obtained by applying 

fitness-based selection and the results of fixed probability of local search. Espinoza et al. 

(2003b) used a clustering technique that is tailored to the three different stages the authors 

have defined for constrained problems to adapt the probability of local search. In the first 

stage, where all the solutions are infeasible, and last stage, where all the solutions are 

feasible, the authors experimented with clustering the individuals depending on their 

fitness. The selection was performed by means of Latin-Hypercube sampling from clusters 

which had formed. In the second stage where a few individuals are feasible, the probability 

of local search is proportional to the number of feasible solutions in the population. The 

results showed that the algorithm, which is based on a fitness clustering technique, is more 

reliably faster than the adaptive hybrid genetic algorithm with fixed starting local search 

probability. Lozano et al. (2004) proposed a simple adaptive scheme which sets the 

probability of local search of each individual to either 1.0 or 0.0625 depending on the 

individuals fitness compared to the fitness of the current worst individual in the population. 

The authors concluded that this adaptation mechanism allows the balance between the 

global genetic search and the local search to be adjusted according to the particularities of 

the search space, thus allowing significant improve in the performance for problems with 

different difficulties.

2.5.3.4 Local search potential technique

The local search potential selection (LS potential) mechanism has been proposed 

by Land (1998) to decide which individuals should perform a local search. Land suggested
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that biasing the local search toward individuals that can be most efficiently improved by 

local method makes the most effective use of local search. The least easily improved 

solutions are likely to be those at or near to the local optimum and it is inappropriate to 

expend effort on fine refinement, as long as there are large differences in the population’s 

fitness. In this way, the scheme biases the hybrid toward more exploration. As the 

population gets closer to the optima, this mechanism allows local search to progress to the 

next level of refinement. In his algorithm, he used the past local search effectiveness as a 

measure to estimate future effectiveness.

Different techniques have been used to control the different parameters of the local search 

in order for it to strike a balance with the global genetic methods. Most of the controlling 

techniques which are described by Eiben et al. (1999) for controlling the parameters of 

evolutionary algorithm have been investigated and applied to control parameters of local 

search methods in a hybrid. Although, self-adaptation mechanisms have been successfully 

used to adapt different parameters of evolutionary algorithms, for details on this subject the 

reader can refer to Eiben et al. (1999). To the author’s best knowledge, it has not been 

applied in order to achieve a balance between local and global searches. The self-adaptation 

techniques are reported to be successfully used to decide between different local search 

methods in solving the OneMax problem, NK-Landscapes, and TSP (Krasnogor and Simth 

2001).

This chapter aimed to shed some light on the effectiveness and efficiency of hybridising 

genetic algorithms with various techniques. In order to fulfil this aim different search 

techniques have been reviewed in addition to some of the wide variety of hybrid genetic 

approaches. These approaches show that hybridising is one possible way to build a 

competent genetic algorithm (Goldberg 1999) that solves hard problems quickly, reliably 

and accurately without the need for any forms of human intervention. Hybridisation has 

been utilised to construct competent genetic algorithms that belong to two of the three main 

approaches for building competent genetic algorithms, which are perturbation, linkage 

adaptation and probabilistic model building techniques (Chen and Goldberg 2005). The 

collective learning genetic algorithm is an example of a competent genetic algorithm that 

employs specifically designed representation and operators for adapting genetic linkage 

along with the evolutionary process. Other search and optimisation methods can also be 

used to adapt genetic linkage. Probabilistic Model-Building Genetic Algorithms (PMBGA) 

are examples of probabilistic model builders which learn genetic linkage via building 

models based on the current population.
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Hybridisation is also one of the four main techniques for efficiency enhancement of genetic 

algorithms. Hybridisation can also be used as a tool to achieve evaluation relaxation, which 

in turn is another main technique for efficiency enhancement.

The ability of a genetic-local hybrid to solve hard problems quickly depends on the way of 

utilising local search information and the mechanism of balancing genetic and local search. 

By reviewing the different hybrid approaches, some of the important factors that affect the 

hybrid performance were presented. This review shows that there is a trend to adapt some 

of the hybrid design choices through adapting the control parameters associated with these 

choices while the search is progressing. Different adaptation techniques have been used to 

adapt the selection of a local search method among the available methods, the selection of 

individuals for a local search and other design aspects.
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Local search algorithms usually take a considerable number of function evaluations 

before reaching a local optimum (see section 2.2). When combining a local search 

algorithm within a genetic algorithm, the duration of local search (expressed as a number of 

local search steps between two genetic algorithm generations) significantly affects the 

hybrid performance, due to its influence on the balance between exploration and 

exploitation (Hart et al. 2000). The optimal duration of local search depends on the problem 

to be solved (Hart 1994) (Radcliffe and Surry 1994) (Hart et al. 2000). For this reason, the 

duration of local search is a design choice faced by the hybrid practitioners while solving 

real-world problems. The hybrid practitioners can decide either to perform a complete local 

search (Rosin et al. 1997) (also referred to as exhaustive search), where local search steps 

are performed until a local optimum is reached, or to go for a partial local search, where a 

specific number of local iterations are performed before returning to the global genetic 

algorithm.

In this chapter, the influence of the complete and the partial local search on the 

performance of hybrid genetic algorithms is investigated. Their interactions with the 

learning strategy and their combined effect on the optimisation process are studied. 

However, before describing the methodology that has been followed in this investigation, 

the effects of the duration of local search on its role in a hybrid are analysed. The analysis 

helps to provide insight into the expected behaviour of a hybrid, depending on the duration 

of its local search. The discussion of expected behaviour is followed by results of 

experiments that have been conducted to support such behaviour.

3.1 Duration of local search and hybrid performance

The duration of local search has a great impact on the hybrid’s performance. 

Through controlling the duration of the local search, the algorithm can strike a balance 

between the local search algorithm and the global genetic algorithm. The duration can 

affect the ability of a hybrid to explore the search space, to recover from sampling errors 

and to combat the consequences of the hindering effect.

3.1.1 The exploration ability

The duration of local search influences the exploring power of the global genetic 

algorithm. The global genetic algorithm, as an exploring tool, and the local search 

algorithm, as an exploitation tool, share a common budget of hybrid’s resources. The heavy
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use of these resources by any of these tools reduces the efficiency of the other. Excluding 

the decomposable fitness problems, the local search algorithm usually requires a heavy use 

of the hybrid’s time when compared to the genetic algorithm which requires one function 

evaluation per solution. Heavy use of the algorithm’s time by the local search algorithm can 

reduce the time budget specified for exploration by the global genetic algorithm.

Performing a complete local search, which usually requires a considerable number of 

function evaluations, in a hybrid can hinder its exploring abilities. It can waste algorithm 

resources without providing new information. It may also consume the algorithm’s time by 

re-sampling already visited points instead of exploring new areas.

Employing a partial local search, on the other hand, usually consumes fewer function 

evaluations. This can reduce the possibility of wasting the algorithm’s resources and gives 

the global genetic algorithm more chances to explore the search space effectively.
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Figure 3.1: The Combined Effect of the Pure Lamarckian Learning Strategy and the 

Complete Local Search on Problem Search Space.

In addition to the above mentioned effect of the duration of local search on the hybrid’s 

exploring capability, the exploring ability can be affected in another form involving the 

population diversity. This effect is usually associated with the pure Lamarckian learning
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strategy. It is easily perceived in embedded hybrid algorithms where a local search is 

performed by every individual of each generation. In such algorithms, the population 

diversity is significantly influenced by the duration of local search.
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Figure 3.2: The Combined Effect of the Pure Lamarckian Approach and the Duration

of Local Search.

Through the complete local search, the whole population is mapped to the local optima of 

the optimisation problem. For example, in the fitness landscape shown in figure 3.1, 

incorporating a complete local search maps the points from regions A, B and C to the local 

optima a, b and c, respectively. This can accelerate locating the global optimum c, once the 

hybrid guides the search to its basin of attraction (region C). However, if the algorithm fails 

to sample a point in the most promising region, C, in the initial stages of the search, the 

process of steering the search into the direction of the global optimum, c, can face some 

difficulties using a population of local optima only (points a and b in this example). Owing 

to a lack of population diversity, the possibilities of generating offspring in region C and as 

a result locating the global optimum, c, are significantly reduced. These possibilities are 

further decreased if the basins of attraction of local optima are clustered together in the 

search space away from the global optimum (figure 3.2). For example, if the population
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consists of samples of regions A and B, a complete local search will transform them to 

points a and b. The individuals of the next generation will appear more likely around these 

two local optima (in regions A and B) and a complete local search will map them again to 

the same points. This iterative cycle can lead the search to a local instead of global 

optimum.
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Figure 3.3: The Combined Effect of the Pure Lamarckian Strategy and the Partial 

Local Search on Problem Search Space.

On the other hand, the possibility of exploring limitations due to diversity loss is reduced 

by involving a partial local search. The partial local search maps points in the same basin of 

attraction to new positions in the basin. Figure 3.3 shows the effect of a partial local search 

on the search space of global genetic algorithms and the fitness landscape. The problem 

search space is mapped to the shaded parts and the fitness value is mapped to the dotted 

curve shown in figure 3.3. The diversity loss is limited compared with that of the complete 

local search (figure 3.1). By comparing the effect of using a partial local search with small 

durations on the search space, as depicted in figure 3.3, and that of a complete local search 

as shown in figure 3.1, it is clear that population diversity suffers in proportion to the local 

search duration. In figure 3.1, where the duration of local search is at its maximum value,
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the complete search space is mapped to three local optima { a ,b ,c }. In contrast, where the 

duration is small, the search space is mapped to a subset that consists of about 50% of the 

original search space (figure 3.3). In the first case, there is a considerable possibility of 

driving the search towards a local instead of global optimum, whereas in the second case, 

this possibility is reduced. Consequently, the possibility of leading the search to a point 

near and not the exact optimum still exists, and the speed of generating such a solution is 

slow compared to that generated by the complete search.

3.1.2 The ability of recovering from sampling errors

The duration of local search can influence the ability of a hybrid to recover from 

sampling errors. The global genetic algorithm can sample bad representatives of good 

regions and as a result lead the search towards a local instead of global optimum. For 

example, in figure 3.2, the global genetic algorithm can sample points a , b and c as 

representatives of regions A, B and C, respectively, which can misguide the search by 

directing it towards the non-promising region A and its local optimum. Incorporating a 

local search can help to recover from such sampling errors depending on its duration.

A complete local search enables fair representation of search areas in view of the fact that 

each area is represented by its local optimum. In figure 3.2, utilising a complete local 

search can help to recover from the above mentioned sampling error. Instead of using the 

fitness values of c i , b and c as representatives of the regions’ fitness, the algorithm uses 

the fitness values of a, b and c (the regions’ local optima) to direct the search towards the 

global optimum.

Contrary to the complete local search, the partial local search may not improve the 

sampling ability of the global genetic algorithm. For example, in figure 3.2, the use of a 

partial local search can map the points a ,b  and c , which are bad representatives of regions 

A, B and C (figure 3.2), to points a ,b tm d c , respectively, and still guide the search in the 

wrong direction.

3.1.3 The ability to combat the hindering effect

In order to gain some insight into the impact of the duration of local search on the hindering 

effect associated with the pure Baldwinian learning strategy, the combined effect of this 

learning strategy and the duration of local search on the fitness landscape needs to be 

illustrated. Figure 3.4 demonstrates this effect. In this graph, Ps represents a partial local 

search with short durations and PI stands for partial local search with long durations. Due to 

the smoothing effect of the pure Baldwinian strategy, the local search changes the fitness
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landscape function into flat regions around the basin of attraction. The size of the flat 

landscape depends on the size of the basin of attraction and the duration of the local search. 

A complete local search, which represents the maximum duration, produces flat landscapes 

with sizes equal to that of the basins of attraction. On the other hand, a pure genetic 

algorithm, which represents a local search with minimum duration (zero), produces flat 

landscapes with sizes equal to that of the local optima. It is clear from the graph that the 

size of the introduced flat landscapes can be controlled by adjusting the duration of the 

local search. A local search with small durations (Ps in figure 3.4) generates small flat 

areas, while long durations (complete and PI) produce larger areas.
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Figure 3.4: The Effect of the Partial and the Complete Local Search on Fitness

Landscape.

The effect of combining the pure Baldwinian strategy and a complete local search on the 

fitness landscape increase the possibility of exposing the search to the drift stall. This effect 

is common in embedded hybrid algorithms. In early stages of the search performed by these 

algorithms, employing a complete local search can accelerate discrimination against 

solutions that are in non-promising regions of search space. In figures 3.1 and 3.2, the 

algorithm can easily favour samples from region C against samples from regions A and B
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based on the fitness value of the regions’ local optima. However, when the population 

converges at the most promising region of search space, region C, the use of the pure 

Baldwinian strategy and the individuals’ acquired fitnesses (global optimum fitnesses) are 

not enough to guide the search to the global optimum. This demonstrates that the use of 

fitness alone cannot help to favour solutions with innate fitness against others with learned 

or acquired fitness. The absence of selection pressure, due to the hindering effect, can lead 

the search toward any point in the global optimum basin of attraction instead of the global 

optimum itself. The hindering effect increases the possibility of driving the search to the 

drift stall.

The utilisation of a partial local search with the pure Baldwinian learning strategy may not 

help in discrimination against samples from non-promising regions in the early stages of 

optimisation. For this reason, hybrids may take longer periods of time before converging at 

the most promising region of the search. The partial local search, however, can help to 

alleviate the hindering effect once the algorithm guides the search to the most promising 

area. The use of a partial local search can limit the search to only a small area around the 

global optimum depending on its duration and not the whole basin of attraction as in the 

case when using a complete search. The utilisation of a partial local search with small 

durations can lead the algorithm to converge at a solution very near the global optimum.

In addition to the main effects mentioned before, the duration of local search can affect the 

adaptation ability of the adaptive hybrids and the prediction of a suitable local step size for 

the local search. The low cost associated with a partial local search makes it suitable for 

adaptive hybrids, which decide on a global or local approach depending on the current state 

of search and the previous performance of both methods. In this case, the use of a partial 

local search gives the hybrid a higher chance to recover from misjudgement errors than 

using a complete local search.

In contrast to a complete local search, where a local search algorithm makes use of the 

information gathered during the previous local iterations to predict the next optimal local 

step length, the discontinuity of a partial search makes such prediction difficult.

3,2 Experiments

A set of experiments has been conducted to investigate the impact of the duration 

of the local search on the search process and hybrids performance. The aim of these 

experiments was to gain insight into how local optima were sampled by the global genetic 

algorithm throughout the search process. They also aimed to improve the understanding of
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the effect of the duration of local search on the sampling process and its consequences on 

the hybrid's performance.

The first test function (Goldberg and Vosser 1999) (Espinoza et al. 2001) used in these 

experiments was:

maximum is 5.0 and is located at (7 .0 ,4 .0). Figure 3.5 shows the fitness landscape of this 

function. This function, which will be referred to as FI, has conical basins of attraction. 

The radiuses of these basins were set to the same value to eliminate the influence of the 

radius on the sampling process.

3.< 
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Figure 3.5: The Landscape of the Test Function Used.

The first experiment, which is referred to as experiment 3.1, was conducted by allowing an 

embedded hybrid algorithm, where every individual in the population performs a local 

search iteration (local search probability of 1.0) at each generation (local search frequency 

of 1), to run for a specific period of time. The number of times that each local optimum was 

sampled was also recorded. The frequency at which the global genetic algorithm visited 

each local optimum in the search space was counted. The counting was carried out during 

the evaluation process before selecting the mating pool. This enables the study of the

(3.1)
0 otherwise

where x  = x - c x j , y = y - c y i , r 2 = x 2 + y 2,and c,={(2.0, 8.0), (3.0, 4.0), (5.0, 7.0), 

(7.0, 8.5), (7.0 ,4.0)}, r,={1.0, 1.0, 1.0, 1.0, 1.0} and/*, ={1.0, 2.0, 3.0. 4.0, 5.0}. The global

1 0

0 o
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influence of the duration of local search and the learning strategy on the sampling process 

of the global genetic algorithm.

The interactions between duration of local search and the learning strategy were studied 

through conducting a set of experiments using the pure Lamarckian, 50% partial 

Lamarckian and the pure Baldwinian learning strategies.

The partial and the complete local search were simulated in these experiments. In the 

complete simulated local search, the algorithm mapped points in the basin of attraction to 

the local optimum in a single iteration and was assumed to consume x  function evaluations. 

However, the partial local search transferred points to new positions in the basin of 

attraction depending on their location in the basin. Points that were in the upper third of the 

basin were transferred to the local optimum. Points that fell below that would be shifted up 

by hi/3 in a single iteration. The cost of each transformation was assumed to be x/3 function 

evaluations.

The algorithms were intended to maximise the fitness of the test function and therefore 

were allowed to run 100 times. The results were compared with that of the pure genetic 

algorithm as a baseline to qualify the improvement in the sampling ability.

The hybrids and the pure genetic algorithm were elitist with binary tournament selection, 

two-point crossover. For all experiments, the crossover rate was 0.7 and the probability of 

mutation was 0.05. Each variable was represented by a 16-bit gray coded string with a total 

of 32 bits for each chromosome. The number of individuals of the population was 10. The 

termination criterion for all the experiments was a maximum number of function 

evaluations of 20,000. The algorithms sampled the local optimum as if its fitness was in the 

boundaries of ±0.1 of the local optimum’s fitness regardless of whether it was the innate or 

acquired fitness. The expected sampling frequencies of each of the local optima according 

to this counting procedure in the case of being sampled randomly are 0.0158%, 0.0198%, 

0.0264%, 0.0398% and 0.0806% respectively, starting from the global optimum.

For each algorithm, a histogram was computed to show how often the five local optima 

were visited during the genetic global search. Each of the bars in the histograms was 

normalized by dividing by 20,000 (maximum number of function evaluations) so that the 

plots indicate the proportion of samples occurring at a specific optimum rather than a raw 

count.
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Figure 3.6: Comparing the Sampling Ability of SGA and HGA with a Partial and a 

Complete Local Search in Experiment 3.1.

The results of experiment 3.1 are shown in figure 3.6. The graph compares the histograms 

of the proportion of time the global genetic algorithm spent at each local optimum for each 

method. The histograms illustrate that the algorithms tend to sample some optima more 

heavily than others. They sampled the high fitness local optima much more frequently than 

optima with lower fitness. The graph also shows that the pure genetic algorithm sampled 

the search space in a more biased fashion, towards the fittest local optimum, than both 

hybrids. The proportion of the fitness landscape for which local search is useless is

(loo-
 i=l x 100 -  84.29% .
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The nature o f  the fitness landscape and the high cost o f  the local search compared to the global 

genetic algorithm can explain the decline in the sam pling ability o f  both hybrids. The fact that a 

considerable number o f  function evaluations were carried out during the local search process, to 

improve the sampling ability o f  the global genetic search, was not counted as a sam pling o f  the 

search space. This fact contributed to the differences between the pure genetic algorithm and both 

hybrids.
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Figure 3.7: The Effect of Duration of Local Search on the Sampling Ability of the 

Global Genetic Algorithm (Experiment 3.1).

In figure 3.7, the previous histograms of experiment 3.1 are redrawn with the bars 

normalized by dividing them by the number of points that were sampled by the global 

genetic algorithm only. The number of points sampled by the global genetic algorithm is 

equal to the total number of function evaluations, minus the number of function evaluations 

consumed in the local search. This graph shows how the sampling process can be improved 

by a local search, if the cost associated with the local search can be ignored. It demonstrates 

that a local search can considerably improve the sampling ability of the global genetic 

algorithm for certain classes of functions, where the cost of local search is significantly less 

computationally expensive than computing its fitness from scratch.
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The high cost of the complete local search compared to the partial local search explains the 

differences in sampling between both local search methods. The histograms in both figures 

also show that the three algorithms visited the third highest local optimum more frequently 

than the second highest optimum. This can be explained based on the nature of the 

landscape. The position of the third highest, in the middle of the other four basins, means it 

has more chances to be sampled than the second highest which is located on an edge. An 

experiment has been conducted that confirmed that the basin in the middle has more 

chances to be visited than the one on an edge. In this experiment, the heights of the third 

and fourth local optimum have been swapped and the frequency of visiting each optimum 

by a pure genetic algorithm has been counted. This experiment showed that the optimum at 

the middle was visited more frequently than the one on the edge regardless of the 

differences in their heights.

The figure demonstrates that the pure Lamarckian learning strategy, in both hybrids, 

sampled the local optima more frequently than the other two strategies. In the complete 

local search, the pure Lamarckian strategy maps both the genetic structure and the fitness 

value to the local optimum, while the pure Baldwinian maps only the fitness. Through the 

pure Baldwinian, the individuals improve their chances to survive according to their local 

optimum’s fitness. Their structures, however, are not modified, increasing the risk that 

offspring of an individual located at an edge will fall outside the basin. In contrast to this, 

the pure Lamarckian, which maps the genetic structure as well, shifts points to the centre of 

the basin resulting in an increased chance of their offspring remaining in the basin. 

Whereas, the pure Lamarckian generates the same effect for the partial local search, where 

it shifts the points towards the centre of the basin, the pure Baldwinian improves their 

chances to survive only.

A new experiment has been conducted, which will be referred to as experiment 3.2. The 

radiuses of all basins except the global basin of the test function have been increased by 

50% in experiment 3.2 compared to experiment 3.1. This is designed to make the local 

optima more reachable to local search algorithms. The proportion of time spent by the 

global genetic algorithm of each method at each local optimum is shown in figure 3.8. This 

graph demonstrates that the pure genetic algorithm sampled the local optima more often 

than both hybrids. It also shows that combining the complete local search with either the 

pure Baldwinian or 50% Lamarckian led to sampling the second highest local optimum 

more heavily than the global one. When considering the pure Lamarckian, differences in 

the portion of time spent on sampling the global optimum and the second highest local 

optimum are not significant. However, only the combination of the partial local search with
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the 50% Lamarckian sampled the second highest local optimum more often than the global 

one. In general, the sampling ability of hybrids that use a partial local search is better than 

that of complete local search. The differences between the pure Lamarckian of both hybrids 

can be used as a base to explain the differences in other learning strategies. Since the use of 

a complete local search would map points in the boundaries of the basin of attraction to the 

centre of that basin and that basins of the local optima are clustered on one side relative to 

the global optimum, hybrids tend to shift the population away from the global optimum. 

This reduces the possibility of sampling a solution in the basin of attraction of the global 

optimum. On the other hand, the use of a partial local search, in spite of shifting the 

population towards the centres, does not shift it to the centre and solutions still exist not far 

from the basin boundaries. The possibility of producing solutions in the basin of attraction 

of the global optimum, in this case, is more than that of the complete local search.

G lobal (5) 
fXSM Local (4) 

Local (3) 
i n  Local (2) 
□  Local (1)

■ L ._ _ IfcHn- ISfiri-
SGA BPS1.0 50LPS1.0 LPS1.0 BCS1 0 50LCS1.0 LCS1.0 BPSO 1 50LPS0.1 LPS0.1 BCS0.1 SOLCSb 1 LCSl

S G A = S tan d a rd  G e n e tic  A lgorithm, B =B aldw in ianIL = L am arck ian ,P S = P artia l Local S e a rc h , C S = C o m p lete  Local S e a rc h , x x =Probability  of Local S e a rc h

Figure 3.8: The Effect of Local Search Duration on Sampling Local Optima in

Experiments 3.2 and 3.3.

Since the use of local search can improve the fitness of a sampled solution in about 31.4% 

of the search space of the previous test function, the same experiment has been repeated 

using a probability of local search of less than 0.314. The results of the previous experiment 

are compared with results of this new experiment, which will be referred to as experiment
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Chapter 3 Local search extent

3.3, where only 10% of the population was performing a local search in figure 3.8. The 

graph shows that reducing the probability of local search can improve the sampling ability 

of both hybrids using different learning strategies. Reducing the probability of local search, 

in this case, can lead to a reduction in algorithm resource wastage. It is clear from figure 3.8 

that hybrids which use partial local search sampled the global optimum more frequently 

than those using a complete local search and the possibility of misguide the search 

according to the sampling frequency is less.

100%

Baldwinian 
5\^si 50%Lamarckian 
4+H Lamarckian

SGA PS-PL=0.1 PS-PL=1.0 CS-PL=0.1 CS-PL=1.0
(PS=Partial Search,PL=Local S earch  Probability,CS=Complete S earch)

Figure 3.9: The Ability to Find the Global Optimum (Experiments 3.2 and 3.2).

Figure 3.9 compares the percentage of finding the global optimum of each algorithm in the 

two previous experiments (experiments 3.2 and 3.3). The graph shows that combining the 

complete local search with the Baldwinian learning strategy and a local search probability 

of 1.0 generated the worst performance. This combination can aggravate the hindering 

effect, which makes reliance of the selection operator on the acquired fitness alone 

insufficient in directing the search to the global optimum. As shown in the figure, 

performing the complete search on small parts of the population can alleviate this problem 

by improving the possibility of distinguishing between innate and acquired fitness. When 

the probability of local search is small, the probability of applying a local search on the
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same solution in consecutive local iterations is significantly small, giving the algorithm a 

better chance to distinguish between innate and acquired fitness. It also provides the global 

genetic algorithm with more chances to use the algorithm resources to explore the search 

space effectively. The graph also shows that the pure Lamarckian strategy can find the 

global optimum more frequently than the other learning strategies when only small 

fractions of the population are applied to local search. Applying a local search on a small 

fraction of the population combined with the pure Lamarckian can solve the problem 

without causing diversity loss since the local search modifies the genetic structure of this 

fraction only. The use of partial search can alleviate the diversity loss problem further since 

it maps the points of the same basin to different points in contrast to the complete search, 

which maps them to the basin’s local optimum. The figure demonstrates that the partial 

local search outperformed the complete local search when adopting the pure Lamarckian 

approach. The use of a partial local search can alleviate the hindering effect problem 

associated with the pure Baldwinian by limiting it to a small area of the global basin of 

attraction. The large difference between the acquired and actual fitness due to the 

Baldwinian strategy is an obstruction in directing the search towards the global optimum. 

The complete local search can produce an individual with a high acquired fitness compared 

to its innate fitness. However, the difference between them is less when utilising a partial 

local search. Figure 3.10 shows the differences in average innate fitness and the acquired 

fitness. It illustrates that these differences are proportional to the duration of the local 

search. These differences can be further reduced using a partial local search with small 

durations. In this graph the dashed line represents the average fitness after applying a local 

search (acquired fitness), whereas the solid represents the population average fitness after 

applying the genetic operations (offspring innate fitness). The population average acquired 

fitness and the offspring innate average fitness of the pure Lamarckian algorithm are also 

drawn to visualise the destructive element in the genetic operators on the local search’s 

solutions. This should be taken into account when comparing the innate and the acquired 

fitness of the pure Baldwinian.
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A Hybrid with a  Partial Local S earch  
a n d  B aldw inian Learning
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Figure 3.10: The Effect of Local Search Duration on Innate and Acquired Fitness.
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Chapter 4 Local search and hybrid performance

Genetic algorithms and local search methods can be viewed as complementary search 

tools that can be hybridised together to find high quality solutions for an optimisation 

problem using minimum resources. The ability of genetic algorithms to capture a global 

view of the search space, when combined carefully with the fast convergence of local 

search methods (Turney 1996), can often produce an algorithm that outperforms either one 

alone (Lobo and Goldberg 1997). Hybridising a local search method provides the global 

genetic search algorithm with some local knowledge that can guide and may accelerate the 

search to the global optimum (Hart 1994).

The motivation for hybridising a genetic algorithm with a problem-specific method is to 

enhance the search capabilities. This enhancement can be in terms of effectiveness (Reeves 

1994) (Whitely et al. 1994) and/or efficiency (Goldberg and Vosser 1999). The 

enhancement in the search effectiveness can be expressed as an improvement in the 

solution quality. Since incorporating a local search introduces an explicit refinement 

operator (Rosin et al. 1997), the sampling ability of the global genetic algorithm (chapter 3) 

and the solutions quality can be improved. On the other hand, the efficiency improvement 

can be expressed as an increase in the convergence speed and/or a reduction in the 

population size required to attain a solution of desired quality (Espinoza et al. 2003a). The 

reduction in the population size required reduces the size of the memory needed to process 

the population in the case of serial genetic algorithms. Hybridisation can be used to speed 

up a genetic search (Goldberg 2003) through reducing the time needed to reach a global 

solution. Hybridisation also influences the minimum population size required for a genetic 

algorithm. Through its effect on the population size, it can increase the convergence speed 

of parallel genetic algorithms.

The ability of achieving a balance between global and local search is an essential factor that 

influences the performance of any hybrid. This balance depends on many factors, such as 

the criteria used to decide between global and local knowledge (Lobo and Goldberg 1997) 

and the mechanism for striking a balance between the cost and value of local knowledge 

(Hart 1994).

Trade-off between the cost and the value of local knowledge can be controlled through 

deciding on the fraction of the population that undergoes a local search and the criteria for 

choosing its members. The cost of local knowledge can be measured by the number of 

function evaluations performed by a local search method to gain that knowledge. Its value,
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however, can be measured by its effect on improving the convergence speed and/or solution 

quality. A local search can be applied either to every individual in the population or to only 

few individuals. However, a more selective use of local search can improve the 

effectiveness and the efficiency of hybrids (Hart 1994). The different techniques that have 

been used to decide on the optimal fraction of the population that should perform local 

search and the basis on which these individuals are chosen were reviewed in chapter 2.

Tuning is the most commonly used technique to decide on the optimal fraction of the 

population that should perform a local search. This fraction is usually referred to as the 

probability of local search. Hart (1994) referred to this fraction as the frequency of local 

search. This term will be used here to refer to the number of the consecutive genetic 

iterations before performing a local search (Espinoza et al. 2001). The members of this 

fraction are usually chosen randomly. The probability of local search, in addition to its 

effect on the solution quality produced and the convergence rate, can affect the minimum 

population size of the hybrid. The population size, in turn, can affect the convergence speed 

of the algorithm. The effect on the population size should not be ignored when evaluating 

the hybrid performance.

A main factor that determines the success of a hybrid is how successfully local knowledge 

is utilised by the global genetic algorithm (Whitley et al. 1994). The way of using the 

information gained during local search by the global algorithm is one of the important 

issues of hybrid genetic algorithms. Either the Lamarckian or the Baldwinian approach can 

be used. The Baldwin Effect differs from Lamarckian only in the directness of the 

mechanism by which phenotypic adaptations are converted into genotypic adaptation 

(Turney 1996). Utilising either form of learning is more effective than the standard genetic 

algorithm approach without a local improvement procedure (Whitley et al. 1994). The 

effectiveness of pure Lamarckian, pure Baldwinian or any mixture of them (Orvosh and 

Davis 1993) is affected by the fitness landscape, the representations, and local search 

method used (Whitley et al. 1994) (Houck et al. 1997) (Michalewicz and Nazhiyath 1995). 

For more details on this subject the reader can refer to section 2.5.

The efficiency and effectiveness of any hybrid can be measured by comparing its 

performance with that of the global genetic algorithm alone. The performance can be 

measured in terms of convergence speed, the quality of solutions produced and the 

minimum population size required. Espinoza et al. (2001) have proposed an adaptive hybrid 

algorithm that can increase the convergence speed to the global optimum. The same authors 

also showed the effect of a local search method on reducing the population size of the
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algorithm compared with the population size of the standard genetic algorithm (Espinoza et 

al. 2003a).

In this chapter, the effects of the learning strategy and probability of local search on the 

performance of two hybrids with different mechanisms for deciding between global and 

local search are investigated. The way that both the learning strategy and the probability of 

local search interact with each other and their combined effect on the hybrid performance 

are analysed. The effect of both these factors on the population size requirements, 

convergence speed, and solution quality has been investigated.

This chapter starts by a literature review of population size requirements for a genetic 

algorithm. In this review, a brief description of the different facet-wise models (Goldberg 

1999) used to estimate the genetic algorithm’s minimum population size is given. Then, the 

relation of computation complexity of a genetic algorithm and the population requirement 

is reviewed. After the literature review, the effect of incorporating local search on the 

population size requirement is analysed. This includes the influence of the interactions 

between the local search probability and the learning strategy on the population size. This 

chapter ends by discussing the results of the experiments that have been conducted.

4.1 Population size and local search

Deciding on the optimal population size is an important task in the design of 

genetic algorithms due to its influence on their performance. Through the population size, 

the diversity can be controlled and an adequate supply of building-blocks can be ensured 

which is an essential step in designing a successful genetic algorithm (Goldberg et al. 

1992). An appropriate population size is even more critical to the success of the 

Probabilistic Model-Building Genetic Algorithms (PMBGA) (Pelikan et al. 1999a) (Pelikan 

et al. 1999b) which have become an area of interest recently (Gao 2003).

Increasing the population size of a genetic algorithm improves the quality of its solutions. 

The greater the population size, the greater the chance that all the building-blocks of the 

optimal solution are represented in its initial population. However, increasing the 

population size can slow the speed of convergence since more time may be needed to 

discriminate the good and bad building-blocks. In the case of limited computational 

resources, the larger population may preclude convergence at all. Efficient population 

sizing is critical for getting the most out of a fixed budget of function evaluations.
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In the practice of designing efficient genetic algorithms, there has been strong empirical 

evidence showing that population size is one of the most important parameters that plays a 

significant role in the performance of the genetic algorithms (Back et al. 2000).

4.1.1 Population sizing models

The issue of population sizing has been widely dealt with theoretically. The facet- 

wise composition approach (Goldberg 1999), which was proposed to obtain insight into 

genetic algorithms’ behaviour, has been used to estimate the population size required. 

According to this approach, the behaviour of the genetic algorithm can be modelled through 

combining simple models and blending their effects. Different facet-wise models have been 

developed to address the genetic algorithm’s population sizing issue. The theoretical work 

done can be categorised into two main groups, namely the population sizing based on initial 

supply of building-blocks and population sizing based on good decision making between 

competing building-blocks. Both issues are combined together in the gambler’s ruin model 

(Harik et al. 1999).

The importance of building-blocks and their role in the genetic algorithm’s search 

mechanism have long been recognised (Holland 1975) (Goldberg 1989a). One of the 

essential steps towards successful design of a genetic algorithm is making sure that the 

genetic algorithm is well supplied with a sufficient number of the building-blocks required 

to solve a given problem. The spatial approach (Goldberg et al. 2001), which estimates the 

population size required to ensure diversity and the existence of sufficient building-blocks 

in the initial population, can be used to address the building-blocks supply problem 

(Goldberg 1989b) (Reeves 1993).

Recently, Goldberg et al. (2001) have developed a facet-wise model to estimate the

minimum population size that ensures the presence of all building-blocks. This model was

used to derive the following formula, which has been experimentally verified.
N = %k(k \ o g ^+ lo g m ) (4.1)

where k is the order of the building-blocks, which represents the minimum number of digits 

that have physical significance to the solution of the problem, m is the maximum number of 

building-blocks within a single string, and j  is the alphabet cardinality.

In addition to adequate supply of building-blocks, accurate decision making of selecting the 

schema belonging to the global optima, when partial solutions are compared with each 

other, is very important for genetic algorithm success. Goldberg et al. (1992) have 

developed a model to estimate the population size required to make the correct decision
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between the best building-block and its closest competitor in a partition, in the presence of 

collateral noise coming from other partitions. In their conservative model, they assume that 

the selection of the correct building-blocks in the first generation is essential and can 

guarantee the convergence to the global optimum. They used statistical decision making to

derive the following population size equation for binary alphabet:
2

N  =  2 c (a )2 k (m - 1 ) %  (4.2)
d

where c(a',) is the square of the ordinate of a unit normal distribution where the probability 

equals oc,cif is the probability of failure, k is the order of the building-blocks, (J2bb is the 

fitness variance of the partition that is being considered, and cl is the fitness differences 

between the best and the second best building-blocks. This equation ignores the external 

sources of noise.

Harik et al. (1999) extended the population model by integrating the gambler’s ruin model 

and the previous two facet-models to estimate the population size of genetic algorithms. 

The initial supply of building-blocks and the selection of the best building-blocks over their 

competitors over a run are combined with the gambler’s ruin model. The model views the 

search process as a propagation of building-blocks through the population, assuming 

mixing is adequate.

Saluiation Absorbing

slateslate

Figure 4.1: The Gambler Starts with a Capital of a Building-Blocks and Ends with

either 0 or N  Building-blocks.

The gambler’s ruin model views the genetic algorithm search, in a single partition, as a 

series of competitions which progresses until either all the individuals in the population 

match the building-blocks, or none do. The model is one-dimensional random walk 

between the absorbing state, corresponding with the loss of the building-blocks, and the 

saturation state, corresponding with the existence of the building-blocks in all the 

individuals (figure 4.1). The walk starts from a , the number of building-blocks in the initial 

population, which is calculated by incorporating the initial supply model:
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N
2k

« = - r  (4.3)

Whereas, the decision making model is incorporated by taking into account the probability 

of making the right choice between the best building-block and the second best building- 

block in a single trial:

p  = $(... -=l■■■ ■ ■) (4.4)
^2 {m -\)< J bb

where O is the cumulative distribution function of the standard normal distribution.

Random-walk literature was utilised to determine the probability that the gambler

eventually reaches the saturation state using a population of size N. This probability was, 

then, used to derive the following equation which relates the population size with the 

required solution quality and several domain-dependent parameters:

N = - 2 k~l I n —  (4.5)
cl

The term - 1) represents the noise interference between competing building-blocks. 

According to Reed et al. (2000), the term crbb-y]7r(m-1) can be approximated using the 

fitness function standard deviation, <yff. The previous relation can be simplified to the 

following equation (Espinoza et al. 2003a):

N = - 2 k~{\ n ( a ) ^ -  (4.6)
cl

where cl' represents the signal difference between the best and second best solution. The 

parameters (7 /r and cl' can be estimated using a large random initial population.

4.1.2 Computation complexity and population size

The computational complexity of a genetic algorithm can be measured as the 

number of function evaluations that are required to attain an optimal solution. The number 

of function evaluations can be calculated by multiplying the population size, N, by the 

number of generations required for convergence, t, which is primarily determined by the 

selection intensity of the selection scheme (Dijk et al. 2004).

The number of generations required is strongly affected by the relative rates at which genes 

within the population converge. The relative rate of the convergence of building-blocks 

depends on the problem to be optimised. All the building-blocks of uniformly scaled 

problems, such as the OneMax problem, converge at a fixed rate. On the other hand, the 

building-blocks of exponentially scaled problems, such as the Binlnt problem (Thierens et 

al. 1998), converge at variable rates. The convergence time of problems of uniformly scaled
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fitness functions, is in the order of 0 (VO for selection schemes with constant selection 

intensity and of order 0 ( /V /)  for proportionate selection (Thierens and Goldberg 1994).

Studies (Thierens et al. 1998) (Lobo et al 2000) show that the convergence time of 

exponential scaled functions is linear with respect to the string length ( t  = 0(1) )  for %

constant selection intensity schemes, and exponential 0 ( 2 l ) for proportionate selection. -f

These relations assume binary representation of the solutions.

The building-blocks of most engineering problems converge at variable rates within the

population (Reed et al. 2000). In these problems, the convergence rate of the most

important building-blocks is rather fast, while the least important ones only start to

converge when the more important ones are almost fully converged. This phenomenon is

known as “domino convergence”. Thierens et al. (1998) studied the Binlnt problem as a

prototypical example of the upper boundary case of non-uniformly scaled problems. They

derived the following formula for the expected number of generations, t, required under

domino convergence for all locations to be converged:
- I n  2 ,

1 JI  (Al )
ln[l — f=\ C4,/;

V3

where /  represents the selection intensity. The expected number of generations for domino 

convergence depends on the selection intensity and the number of the building-blocks 

within a string, which is equal to the string length in the case of the Binlnt problem 

(Thierens et al. 1998).

The selection intensity depends on the selection scheme used. The selection intensity is 

constant in rank-based, truncation and tournament selection schemes and variable in 

proportionate selection scheme (Goldberg and Sastry 2001).

'iIn the case of tournament selection with a tournament size of two, the selection intensity is 

I  = (V ^ T 1 (Thierens et al. 1998). The expected number of generation for the entire string f

to converge is
**»*. =  1.76/ » 2 1  (4.8) *

Another phenomenon that is closely related to domino convergence is “genetic drift” (Asoh 

and Miihlenbein 1994). This phenomenon is the random fluctuation of genes frequencies 

from generation to generation due to the stochastic sampling errors in a finite-sized 

population. The random accumulation of the copies of a particular allele in each gene can 

cause the population to converge to non-optimal value in the absence of selection pressure.
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Although the less salient building-blocks of the optimal solution (i.e. the genes with 

reduced relevance to the solution) experience reduced selection pressure, they may 

converge to non-optimal values under the crossover and mutation operations.

Asoh and Miihlenbein (1994) showed that the expected time for a gene to converge, as a 

result of genetic drift, is proportional to the population size. They used random sampling 

with replacement to derive the following formula:
t„m =cN (4-9)

where the value of constant c depends on the initial allele proportion. They also showed 

that the mean drift time, in the case of uniform crossover, is proportional to the population 

size N  and to the logarithm of the number of building-blocks within the string which was 

equal to the string length in their work:

where the values of constants a and b depend on the initial allele proportion. For a gene 

with two alleles with initial proportion equal to 0.5, the values of these constants are c=1.4, 

a=0.5 and b = l.l.

The drift time of a single trial can show a significantly different value from the expected 

drift time since the variance in the drift process is quite large and increases rapidly with 

population size (Asoh and Miihlenbein 1994).

In uniformly scaled fitness functions, the genetic drift can make very small populations 

converge prematurely. This effect is called “drift stall”. However, the exponentially scaled 

fitness functions are more prone to the drift stall. Due to the domino convergence behaviour 

associated with these functions, the less salient building-blocks of the optimal solution have 

a high probability of being lost, as a result of the genetic drift, by the time selection and 

recombination can process them. The only hope to bring these building-blocks back is the 

mutation operator, which is a slow serial process compared with the rapid implicit parallel 

processing power of selection and crossover (Thierens et al. 1998). In order to prevent the 

drift stall effect, the convergence to the optimal solution should be faster than the genetic 

drift. The following relation needs to be satisfied:

tdrift ~  CN ( a  In m  + 1.0 )h (4.10)

tconvergence (4.11)
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For binary represented problems with non-uniformly scaled fitness functions that use

binary tournament selection, relation 4.11 can be rewritten in terms of population size and

string length, ignoring the effect of number of the building-blocks on the genetic drift, as:
N  >1.431 (4.12)

This condition sets the lower bound of population size in order to avoid the drift stall.

4.2 Local search and population size requirements

The details of incorporating local search and the learning strategy influence the 

population size requirements through affecting the population diversity and the fitness 

diversity. By modifying the population diversity, they affect the genetic drift and the 

convergence speed. They influence the signal difference between the best and second best 

solution and the standard deviation of the population fitness through their effect on the 

fitness diversity. The details of the local search algorithm can affect the population size 

requirements through influencing the hindering effect linked with the Baldwinian learning 

strategy.

Genetic drift is one of the issues that need to be considered when deciding on the optimal 

population size of a genetic algorithm. The population size should be chosen so that it 

enables the search process to converge to the global optimum before the genetic drift can 

guide it to the drift stall. Incorporating a local search algorithm within a genetic algorithm 

influences both the convergence rate and the genetic drift rate. Local search can help to 

fight genetic drift and protect the population from reaching the drift stall in the early stages 

of the search. Local search can accelerate the rate of convergence and can be an obstruction 

in the way of genetic drift by resisting its effect in directing the search towards a local 

optimum. However, a heavy use of local search can reduce the population diversity and that 

can lead to the fitness-convergence-state. The population, in this state, is composed of 

individuals with different genetic structures but with the same fitness. Once the fitness- 

convergence-state reached, the selection strategy faces difficulties in choosing the mating 

pool and that subject the search process to genetic drift.

Carefully utilised local search algorithm within a genetic algorithm usually accelerates the 

population convergence. Well designed hybrids have the ability of converging faster than 

the pure genetic algorithm in terms of number of generations. An increase in the 

convergence speed can ensure that the convergence to the global optimum occurs before the 

genetic drift leads the search to the drift stall.
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The improvement in the convergence speed, due to local search, affects the population size 

requirement of a hybrid. Since the pure genetic algorithm convergences slower than the 

hybrid genetic algorithms in terms of number of generations and assuming the number of 

generations needed for a hybrid to converge is hybrid, then the ratio rhyblid / fSgu is less than 1.0. 

The exact value of this ratio depends on the local search details. An intensive use of local 

search can reduce this ratio. However, it can cause a premature convergence. The way to 

guarantee the convergence to the global optimum with an improvement in the convergence 

speed is through the proper use of local search. Managing to improve the convergence rate 

towards the global optimum reduces the convergence time of a hybrid to less than 21 (the 

convergence rate of non-uniformly fitness functions using the pure genetic algorithm).This 

modifies the condition imposed on the population size to avoid the stall drift to the 

following relation:

2/ v™L< L4Ar (413)
tsga

This relation shows that incorporating a local search reduces the lower bound of population 

size below the 1.431 limit depending on the improvement in the convergence speed 

introduced by the local search. This enables the hybrid to converge to the global optimum 

using population sizes of less than that of the pure genetic algorithm.

Through modifying the genetic structure, a local search can fight the genetic drift. It can 

change the genetic structure of an individual to reflect the genetic structure of the local 

optimum of the individual’s region. This can drift the genetic structure of the population 

towards the structure of the local optimum of the basin with the biggest area of attraction in 

the search space. In addition to the selection process, wise use of local search can bias the 

drift in the direction of the global optimum. Incorporating local search can help to oppose 

the forces of the genetic drift to drive the population towards a local optimum. It can help to 

restore some of the building-blocks that may be lost as a result of the genetic drift. It also 

can introduce some diversity in the population and counterbalance the reduction in the 

diversity due to the genetic drift.

However, improper use of local search can expose the hybrid’s population to the genetic 

drift in the late stages of the search. The local search can cause the disappearance of the 

some building-blocks which may not be restored. The disappearance of these building- 

blocks can produce individuals that have an equal fitness values and different structures 

which make the convergence of the whole population is governed by the genetic drift.
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The state of fitness-convergence can also occur as a result of the hindering effect associated 

with the Baldwinian strategy. The pure Baldwinian strategy combined with the complete 

local search can prone the genetic search to the genetic drift. Such utilisation can accelerate 

reaching the fitness-convergence-state. The hindering effect does not enable the selection 

strategy to choose between individuals with the same fitness but with different genetic 

structures. As a result, the selection process degraded to a random process. The population 

convergence, in this case, is subject only to the genetic drift. By controlling the duration of 

the local search, the genetic drift can be delayed until an acceptable solution or a solution 

very near the global optimum is attained (chapter 3). The situation of fitness-convergence 

can be avoided by adjusting the probability of local search and/or its frequency in order to 

enable the selection process to distinguish different structures. The decrease in local search 

probability reduces the probability that a local operation is performed on the same 

individual on two consecutive iterations and that enables the algorithm to discriminate 

among the different structures and reduce the hindering effect. The increase in the 

frequency of local search helps the hybrid to choose depending on innate fitness which 

reflects the structure and not the acquired fitness.

The influence of the local search method on the population diversity depends on the 

learning strategy used. However, it impacts the population fitness diversity regardless of the 

learning strategy. It can reduce the standard deviation of the fitness of the population 

depending on the local search method used and its duration. The reduction in the standard 

deviation of the population fitness is proportional to the local search duration (Espinoza et 

al. 2003a). It can, also, be affected by the probability and the frequency of local search. 

According to the population size equation 4.6, the decrease in the standard deviation of 

population can lead to a decrease in the minimum size of population required to optimise a 

given problem. The local search details affect the population size requirement of a hybrid 

through affecting the population fitness variance.

Local search can affect the signal difference between the best solution and the second best 

solution. For the purpose of illustrating the effect on the signal difference, the discussion is 

restricted to the complete local search (chapter 3). In the early stages of the search, the 

signal difference between the best solution and the second best solution is equal to the 

difference between the fitness of the best sampled local optimum with the second best 

sampled local optimum. This can improve the ability of selection process to direct the 

search to the most promising region of the search. The samples from the best region have a 

high probability to win the competition against the second best region even with small 

population size. However, in the late stages of the search after the convergence at the most
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promising region, the value of the signal difference depends on the learning strategy 

adopted. In the case of the pure Lamarckian approach, the signal difference is equal to the 

difference between the global optimum and the second best solution. This difference 

eventually reaches zero when the whole population converges to the global optimum. On 

the other hand, the hindering effect associated with the pure Baldwinian strategy can reduce 

this difference to zero when the population converges to the most promising region. 

According to equation 4.6, an infinite number of individuals is needed in order for a 

population to converges under these circumstances. By influencing the hindering effect, the 

probability and the frequency of local search can modify the signal difference in the pure 

Baldwinian strategy.

The local search probability can also affect the signal difference in both learning strategy 

depending on whether either the best two solutions or only one of them are selected for a 

local search. The difference can be increased if the best solution is selected and the second 

best solution is not and vice versa. If both are selected, the chance of affecting the signal 

difference is decreased. The probability of selecting either the best two solutions or one of 

them is affected by the probability of local search. Increasing the probability of local search 

increases the probability of performing a local search on the best two solutions and vice 

versa.

4.3 Algorithms and test functions

Two hybrids with different mechanisms for deciding between global and local 

search were used to gain some insight into the effect of learning strategy and probability of 

local search on the performance of hybrids. The standard staged hybrid genetic (SSH) 

algorithm (Mathias and Whitley 1994) and the adaptive staged hybrid genetic (ASH) 

algorithm (Espinoza et al. 2001) have been tested using two multimodal test functions.

In the standard staged hybrid genetic (SSH) algorithm, the local search step is defined by 

three basic parameters. These parameters are frequency of local search, probability of local 

search and number of local iterations. The local search frequency measures how frequently 

local search is performed. The probability of the local search represents the fraction of 

individuals in the population that undergo local search at each local search iteration. The 

number of local search iterations represents the number of local search iterations performed 

at each local search process. The interference between the local search algorithm and the 

global genetic algorithm can be reduced through increasing the frequency of the search. By 

adjusting these parameters, the performance of this type of hybrids can be optimised. The 

SSH does not apply any selection mechanism for performing local search.
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The adaptive staged hybrid genetic (ASH) algorithm uses feedback from the current state of 

the search process to direct the algorithm to decide between global and local methods 

(Espinoza et al. 2001). The algorithm works with the same operators as SSH. It performs 

local search only if new regions of search space are being discovered, and local knowledge 

can help to guide the search. The probability of the local search is controlled by a 

deterministic rule that keeps this probability less than a specific value and decreases with 

each consecutive local iteration. When local search no longer improves the average fitness 

more than the most recent global search iteration or the maximum number of local 

iterations has been exceeded, the search returns to the global search. The algorithm focuses 

on the role of local search in providing the global genetic algorithm with good 

representatives of new discovered regions. However, the individuals are selected randomly 

to perform a local search. This algorithm can be criticized for the absence of any selection 

mechanism to guarantee the use of local search to provide good representatives of the new 

explored areas.

Two multimodal test functions, with multiple basins of attraction, have been used in the 

current work. The first function, F I, has conical basins of attraction. Its global maximum is 

4 and is located at (7.0, 8.5) (Goldberg and Vosser 1999) (Espinoza et al. 2001). The 

second function, F2, has elliptical basins of attraction. This function has a global optimum 

of 4 located at (7.0, 8.5) (Espinoza et al. 2001). Figure 4.2 shows the fitness landscapes of 

FI and F2.

The steepest descent method (Press et al. 1993) was used as a local search algorithm. The 

steepest descent algorithm uses the derivatives of the fitness function to estimate the best 

step size to climb to the local optimum from the current position in the basin of attraction.

4.4 Experiments and discussion

In order to evaluate the effect of learning strategy and local search probability on 

the hybrids’ performance, a set of experiments was performed. Both hybrids use the simple 

elitist genetic algorithm with binary tournament selection, single-point crossover, and 

simple mutation. For all experiments, the probability crossover was 0.4 and the probability 

of mutation was l/N  where N  is the population size (Reed et al. 2000). In the SSH 

algorithm, the frequency of local search was set to 3 and the number of local iterations was 

set to 3. For the ASH algorithm, the maximum number of local iterations was 3, e was 0.2, 

and the local threshold value was 0.6. Each variable was represented by 30-bit string with a 

total of 60 bits for each chromosome. The stopping criterion for all experiments was that 

80% of the population had converged to the solution.
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Figure 4.2: Fitness Landscapes for the Test Functions 

4.4.1 Effects on convergence speed

In experiment 4.1, which aimed to evaluate the effect of learning strategy on 

convergence speed of hybrid algorithms, both the adaptive and standard staged algorithms 

used a probability of local search of 0.1, and population sizes of 800 and 1200 for FI and 

F2, respectively (Espinoza 2001). The stopping criterion was that 80% of the population 

converged within a 0.000001 boundary of the best ever found fitness.

The results show, as expected, that increasing the fraction of the population that evolves 

according to the Lamarckian approach leads to an increase in the convergence speed. This 

increase is not linear. For example, when applying ASH algorithm to maximise F2, the 

speed of convergence increases sharply as the learning approach changes from pure 

Baldwinian (100% Baldwinian) to a mixture of 80% Baldwinian and 20% Lamarckian. In 

this interval the number of function evaluations decreases from 85,000 to about 37,000, 

while it decreases to 25,000 evaluations for the pure Lamarckian approach. Figure 4.3 

shows the effect of learning strategy on the convergence speed of the adaptive staged
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hybrid. The effect of learning strategy on the convergence speed of standard staged hybrid 

and the adaptive staged hybrid are similar for both test functions.
L earning  S tra teg y  Effec t on C o n v e rg e n ce  S p e e d  o f ASH
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Figure 4.3: Effect of Learning Strategy on Convergence Speed (Experiment 4.1). 

4.4.2 Effects on solution quality

The results of previous experiments show no clear relation between learning 

strategy and solution quality. This led us to consider how the local search probability 

interacts with the learning strategy and how this interaction affects the quality of solutions. 

An experiment, which will be referred to as 4.2, was carried out to consider the effect of 

local search probability on the solution quality for different population sizes (100, 400, 800, 

and 1200). The results of the experiments that optimising F2 using ASH algorithm show 

that as probability of local search increases, the effect of learning strategy on the solution 

quality becomes apparent (figure 4.4). The graphs in figure 4.5 show that, when the 

probability of the local search is kept small, the quality of the solution is insignificantly 

affected by the learning strategy. As this probability increases, the quality of the solutions 

degrades with an increasing Lamarckian percentage in the learning process. This means 

using small local search probabilities for both algorithms, even with pure Lamarckian, can 

produce high quality solutions because the disruption to schema processing caused by these 

small probabilities is neglected and has no effect on the global search process.
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ASH with Pure Baldwinian Learning Strategy
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Figure 4.4: Effect of Learning Strategy and Search Probability on Solution Quality 

Using Different Population Sizes (Experiment 4.2).

The results in Figure 4.5 show that a mixture of 20% Lamarckian and 80% Baldwinian 

produces the most stable solution quality for F2, regardless of the probability of the local 

search. A mixture of 75% Baldwinian and 25% Lamarckian produces the most stable 

solution quality for FI (Figure 4.6). The results from both hybrid algorithms show that a 

pure Baldwinian approach does not always produce the optimal solution quality and that 

the optimal learning strategy depends on the probability of local search. The use of small 

probabilities of local search produced the best quality of the pure Baldwinian approach due 

to its role in alleviating the hindering effect.
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The Effect of Learning Strategy on Solution Quality of F2
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Figure 4.5: Solution Qualities for F2 (Experiment 4.2).

Figure 4.6: Solution Qualities for FI (Experiment 4.2).
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4.4.3 Effect on required population size

The aim of experiment 4.3 was to show how the probability of local search and 

learning strategy affect the minimum size requirements for both the adaptive staged hybrid 

and the standard staged hybrid. The results were obtained by using the bisection method. 

Starting with a population size of 10, the population size is doubled until the population 

converges to the desired solution quality. After the solution quality is attained, the 

population size is set midway between the current size and the last unsuccessful population 

size. This process is repeated until the difference between population sizes is less than or 

equal to 10. The stopping criterion was that 80% of the population converged within a 

0.000001 boundary of the global optimum fitness. The fitness convergence was tested at 

the end of the global genetic search (the outer loop of the search) in order to ensure the 

convergence of both the population and its fitness and not the fitness only. The settings of 

other parameters were as in the previous experiments.

The results of SSH and ASH on the second test function are similar. Figure 4.7 shows that 

as the probability of local search increases, the population size decreases for a pure 

Lamarckian approach. On the other hand, with the pure Baldwinian strategy, the population 

size increases as the probability of local search increases. The hindering effect can explain 

the increase in the population size required for the pure Baldwinian strategy. The decrease 

in the probability of local search can reduce the hindering effect and that enables the 

algorithm to discriminate against non-optimal solutions and reduces the probability of 

genetic drift. For a pure Baldwinian strategy with local search probability of more than 0.4, 

the population size exceeds that of a pure genetic algorithm (minimum population 

size=640).
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Figure 4.7: Effect of Learning Strategy and Search Probability on Population Size

(Experiment 4.3).

The results also show that the relationship between the local search probability and the 

change in the population size depends on the learning strategy used. For example, using a 

partial Lamarckian approach of 50% or more, an increase in the local search probability 

results in a decrease in population size. With a partial Lamarckian approach of less than 

50%, an increase in the local search probability leads to an increase in the population size. 

The increase in the percentage of partial Lamarckian approach reduces the probability of 

the genetic drift through reducing the percentage of the population that may experience the 

hindering effect. The increase in local search probability while increasing the partial 

Lamarckian increases the probability of mapping the second best individual to the global 

optimum and the signal difference becomes equal to the difference between the global 

optimum and the next non-converged best solution whose probability to convergence, in 

turn, increases by increasing the probability of local search and so on. The hindering effect 

is aggravated by either moving towards the pure Baldwinian or increasing the local search 

probability. For both hybrids, a decrease in population size leads to an increase in the 

convergence speed. In general, increasing the Lamarckian percentage decreases the 

population size and increases the convergence speed. The experiments also show that the 

solution quality of the pure Baldwinian approach is the optimal one and the solution quality 

is degraded as both the Lamarckian percentage and the probability of local search increase.
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The solution quality for impure Baldwinian strategies, as shown in Figure 4.8, seems to be 

more dependent on the probability of local search than on the learning strategy.
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Figure 4.8: Effect of Lamarckian Proportion and Search Probability on Solution

Quality (Experiment 4.3).

The local search can decrease both the standard deviation of the population and the signal 

difference between the best and second-best solutions, since the population size depends 

directly on the standard deviation of the population and the signal difference. A decrease in 

the former decreases the population size and a decrease in the latter increases the 

population size.

In addition to the hindering effect, the ability of keeping the decrease in the ratio of 

standard deviation to signal difference in the early stages of the search can explain the 

increase in the population size requirements for the pure Baldwinian approach. In a pure 

Baldwinian, the local search needs some help from evolution process to keep decreasing 

this ratio. The pure Baldwinian can reduce this ratio at the end of the local search. 

However, in the next global iteration, if the value of local knowledge is insufficient to keep 

the global genetic algorithm reducing this ratio, the algorithm will lose some of its 

resources (i.e. local function evaluations) without reducing that ratio. In this case, a high
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probability of local search cannot lead to any reduction in the population size since it 

increases the probability of wasting the algorithm’s resources. However, a low local search 

probability reduces the probability of wasting these resources while increasing the 

probability of maintaining the reduction in the above-mentioned ratio by the global genetic 

algorithm. In addition to the probability of local search, the effectiveness of pure 

Baldwinian in reducing the population size depends on the value of local knowledge and 

this depends on the method of local search and the fitness landscape.

On the other hand, the opportunity to keep the gained reduction in this ratio is improved by 

using a partial Lamarckian strategy. As the percentage of Lamarckian increases, the 

probability of keeping this reduction increases. An increase in the probability of local 

search increases the probability of reducing the ratio and reducing the population size.

Figure 4.9 shows the results of running the same experiment on the first test function. For a 

Lamarckian percentage of 65% or more, an increase in the probability of local search 

results in a reduction in the population size. For other percentages, an increase in this 

probability leads to an increase in the population size requirements. The convergence speed 

depends on the population size. As the population size decreases, the convergence speed 

increases. Comparison of Figures 4.7 and 4.9 shows that the switch point on the 

Lamarckian axis between increasing and reducing the population size is shifted from about 

50% for F2 to about 65% for FI. This is due to the differences in the fitness landscape of 

both functions. While the local search can provide more significant local knowledge in FI 

than in F2, an impure Lamarckian approach requires a more partial Lamarckian to 

accelerate the genetic assimilation process.

The local search method can provide more significant local knowledge from the landscape 

of FI than F2. This is why the reduction in the population size requirements of F I, using a 

pure Lamarckian approach, is greater than that of F2. This also makes the genetic 

assimilation process more difficult for FI using a pure Baldwin effect compared with F2. 

The genetic assimilation process is possible as a result of using a local search frequency of 

3 in the SSH algorithm and the adaptive nature of the ASH algorithm. The use of small 

probabilities of local search can alleviate the hindering effect and enable the hybrid to 

converge to the global optimum even with small populations. The use of a local search 

probability of 0.1 enabled the algorithm to converge to the global optimum of FI with a 

population size of about half of that needed by the pure genetic algorithm. The use of a 

partial Lamarckian can accelerate the genetic assimilation process and that can help to
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reduce the population size required. The exact value of the switch point depends on the 

value of the local knowledge and the nature of the fitness landscape.

The convergence to the global optimum occurred with a population size of less than the 

1.43/ limit that is imposed on the non-uniform scaled fitness functions to protect the search 

from the genetic drift. The hybrid managed to converge to the global optimum using a 

population of 60 and 80 for the first and the second test functions respectively.

o 10 20 30 40 50 60 70 80 90 100
Lamarckian Percentage

Figure 4.9: Effect of Learning Strategy and Local Search Probability on Population

Size of FI (Experiment 4.3).
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The power of genetic algorithms comes from their ability to combine both 

exploration and exploitation in an optimal way (Beasley et al. 1993a). The exploration and 

the exploitation abilities of a genetic algorithm can be enhanced by incorporating a local 

search method. A local search method can improve the ability of the genetic algorithm to 

explore the search space to isolate its most promising region through fair representation of 

the search regions (section 2.3). The refinement ability of a local search method can also 

enhance the quality of the solutions produced by a hybrid (Rosin et al. 1997). The 

combination can accelerate the search towards the most promising region and then towards 

the global optimum. This constructive form of cooperation between a genetic algorithm and 

a local search can produce an effective and efficient search algorithm.

However, there are other forms of interactions between the two search methods in addition 

to the one described above. The interference between the two methods can be somehow 

destructive. Because of its myopic nature, a local search method, when combined with the 

pure Lamarckian learning strategy, can disrupt the schema processing of the global genetic 

algorithm causing a premature convergence problem. This may force the hybrid 

practitioners to sacrifice the fast convergence speed associated with the pure Lamarckian 

strategy for high quality solutions associated with other learning strategies. The genetic 

operators can also destroy good local solutions that consumed a considerable amount of the 

algorithm’s time to be constructed. Mathias et al. (1994) proposed the staged hybrid genetic 

algorithm to separate the global genetic algorithm and the local search method into distinct 

phases in order to decrease any form of destructive interactions between them. Other 

researchers (Rosin et al. 1997) (Land 1998) suggested choosing the control parameter 

values of the genetic operators consistent with their role in a hybrid in order to avoid any 

destructive effect of these operators on local search solutions.

A pure genetic algorithm utilises the selection operator and the standard genetic 

modification operators to exploit the available information in the current and previous 

solutions in order to direct the search towards a global optimum. The use of genetic 

modification operators as a technique to utilise the search information was replaced by 

other techniques to overcome some of the difficulties that face the pure genetic algorithms 

in solving real-world problems. The PMBGA algorithms (Pelikan et al. 1999b) use the 

search information to iteratively build a probabilistic model to learn the structure of a 

problem. Quantum-inspired genetic algorithms (Han and Kim 2002) utilise the search
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information through using quantum bits and quantum gates. These algorithms were 

proposed as alternatives to the pure genetic algorithm. However, they have showed that the 

available search information can be utilised in different ways to achieve the same goal.

The pure genetic algorithm is making use of only a small part of the huge amount of search 

information that is available in genetic populations. Researchers have recognised the value 

of the genetic search information and tried to employ it in an optimal way. For example, it 

has been utilised to adapt the control parameters of genetic algorithms to improve their 

search performance (Eiben et al. 1999). The control parameters adaptation techniques are 

based on the fact that useful information can be extracted from search information. This 

information can be used to adapt the genetic search to the problem at hand while the genetic 

algorithm is seeking the global optimum. Search information has also been used to decide 

on performing a global genetic search or a local search in some hybrids (Lobo and 

Goldberg 1997) (Espinoza et al. 2001). It also has been used to decide on the optimal 

fraction of individuals that should perform a local search (Hart 1994) (Land 1998).

However, this valuable genetic search information is rarely used by the local search method 

incorporated in a genetic-local hybrid algorithm when solving real-world problems. In most 

cases, the global genetic algorithm provides the secondary search method with a starting 

solution that needs to be improved. The secondary method manipulates this solution and 

returns the improved solution to the genetic algorithm. Depending on the learning strategy 

adopted the global genetic algorithm decides either to replace the initial solution with the 

improved one or to assign its fitness score to the initial solution. Neither of the algorithms 

uses the information that is available to the other algorithm despite of its accessibility. 

Advanced local search methods usually need other local information in addition to the 

initial solution to accelerate the search (section 2.2). Due to the lack of positional 

information in the genetic search information, local search methods are unable to use it as 

additional local information. Clustering techniques can be used to provide relative 

positional information. However, since the advanced forms of local search methods usually 

work on the phenotype space and not on the genotype space, the cost of such clustering 

technique can be high and is dependent on the problem to be optimised.

In addition to the difficulties of using the available search information, advanced local 

search methods usually consume a considerable number of function evaluations (section 

2.2). This can aggravate the hybrid algorithm’s loss caused by any destructive interference 

between the local and the genetic algorithm.
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To sum up, some of the good features of a search method that can enable it to be 

incorporated in a genetic algorithm in an effective and efficient way are:

• The ability to avoid any disruption to the genetic algorithm schema processing in 

order to avoid the premature convergence problem when utilised within a hybrid 

that adopt the pure Lamarckian strategy to improve the algorithm’s efficiency.

• The ability to use the available genetic search information to improve the 

solution quality and/or the search efficiency.

• The cost of the search should be small to reduce the loss caused by any 

destructive interference.

In this chapter, a simple probabilistic search method is proposed as a secondary search 

method within a hybrid genetic algorithm based on the features described above. This 

search method was evaluated as a secondary method in a hybrid and as a stand-alone 

optimisation algorithm. The basic idea of this search method is reviewed in the following 

section with an illustrative example to explain its search mechanism. Then, the 

methodology used to assess the performance with the experiments that have been 

conducted are described. This chapter ends by a review of the experiments and a discussion 

of the results.

5.1 The proposed search algorithm

The proposed algorithm is a probabilistic method that works on the genotype space 

by making use of a group of the current population of solutions to estimate the structure of 

the improved solution. In this way, it aims to make use of some of the valuable genetic 

search information. It also aims to avoid disrupting the genetic schema processing by 

improving the solution in accordance with the global genetic search. The modification of 

the initial solution based on a group of solutions of the genetic population can provide the 

secondary search method with a partial global view of the problem at hand. Based on this 

view, the search method can produce a solution in the context of global view captured by 

the genetic algorithm. This form of search can minimise any conflict with the global genetic 

search. The partial global aspect of the search method can be controlled by the group size 

and the mechanism of selecting the group members.

This method is also characterised by its low costs. Its costs are equal to the costs of 

evolving a solution for a single iteration of the genetic search (i.e. one function evaluation 

per solution). This can help to minimise the loss of the hybrid’s time in the case of any 

undesirable interference between the two search methods.
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The algorithm assumes that each gene contributes uniformly to the fitness of the solution. 

Based on this assumption, the search method compares the genetic structure and the fitness 

of the solution to be improved with the structures and the fitness of a group of solutions 

selected from the current genetic population. Depending on the differences in both the 

structure and the fitness between this solution and the group members, the solution 

structure is modified in the direction of improving its fitness score. The new solution is 

evaluated and then, regardless of its new fitness, inserted back into the population.

5.1.1 The search mechanism

The algorithm starts with an initial solution and a randomly selected group of 

solutions from the current genetic population.

The algorithm assumes that the value of each gene in the initial solution represents the 

probability of that gene to have the value of one. It also assumes that the produced set of 

probabilities represents the initial probabilities of having the value of one in each gene of 

the optimal solution’s structure.

This set of initial probabilities is modified according to the differences in the genetic 

structure and the fitness between the initial solution and the group members in order to 

estimate the optimal solution structure. An increase in the fitness score of a group member 

compared to the initial solution accompanied by a change in gene value from ‘0’ in the 

initial solution to ‘1’ in the group member means increasing the probability associated with 

that gene. The probability is increased by a value that is proportional to the increase in 

fitness score in order to bias the initial solution toward a better structure. However, if that 

increase in the fitness is accompanied with change from ‘1’ to ‘O’, the associated 

probability is decreased by the same value. A decrease in the fitness score in the previous 

cases will result in decreasing the probability in the first case and increasing it in the second 

by a value that is proportional to the absolute value of the difference in fitness score 

between the group member and the initial solution.

The algorithm compares every member of the group with the initial solution, in turn, and 

adjusts the genes probabilities in the way described above. The resulting set of genes’ 

probabilities is compared against a set of randomly generated numbers over the range [0, 

I]. If the gene probability is less than or equal to the random number generated, the value of 

that gene is set to one otherwise is set to zero. Then, the new structure is evaluated and 

returned as the new improved solution.
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5.1.2 An illustrative example

The aim of this illustrative example is to provide insights into the basic idea and the 

mechanism of the proposed algorithm.

Suppose the algorithm is solving the MaxOne problem which aims to maximise the number 

of ones in a string of m  binary digits. The fitn ess/o f a solution to the MaxOne problem is 

the number of ones in its genetic code. Let the length of string to be optimised equals 6 (i.e. 

m=6).

Assume that an initial solution S0 and a group of four members {Si, S2, S3, S4} were 

selected to perform a search iteration. The genetic structures and fitness scores of these 

solutions are as given in figure 5.1.

The first step is to extract the initial probabilities of the optimal solution’s structure from 

the initial solution. The initial solution’s structure can be translated to {0.0, 0.0, 1.0, 1.0, 

0.0, 1.0} of initial probabilities of the optimal solution’s structure. The items represent the 

probability of each gene to have the value of ‘1’.

The second step is to calculate the fitness effect of each group member. This can be done 

by taking the absolute value of the difference between its fitness score and the initial 

solution fitness. This value is then normalised by dividing it by the sum of the absolute 

difference of each member from the initial solution. The calculation of the fitness effect of 

the group members are shown in figure 5.1. Each member of the group can affect the initial 

probability of the optimal solution in proportion to its fitness effect.

The third step is to calculate the effect of each group member on the initial probabilities of 

the optimal solution. The effect on the initial probability of each gene can be calculated by 

comparing the value of that gene in both the initial solution and the group member in turn. 

For example, by comparing the initial solution S0 and S[ there is an increase in the fitness 

score and the gene values of both solutions are identical, except the second gene. The value 

of that gene is ‘0’ in S0 and ‘1’ in Sj. Since the increase in the fitness score is in favour of 

S], the initial probability should be modified to bias that gene towards the value of that in 

Si. This can be done by increasing the probability of that gene by the fitness effect of that 

member. The probabilities of other genes are not modified since these genes are identical in 

both solutions. The effect of each group member on the initial probabilities of the optimal 

solution’s structure is shown as the change in probabilities in figure 5.1.
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Figure 5.1: An Illustrative Example.

The change in probabilities induced by the group members are added to the initial 

probabilities to produce a new set of probabilities (Modified probabilities in figure 5.1) in 

the range of [0, 1]. These modified probabilities are compared with a set of random 

numbers to estimate the structure of the new solution. Assuming that the random number 

generator produced the following set of random numbers {0.69942, 0.433203, 0.440405, 

0.000532, 0.910986, 0.18213}, the structure of the new solution will be {0, 1, 1, 1, 0. 1}. 

The fitness score of the new solution is four which shows an improvement in the fitness 

compared with the initial solution.

The change in probabilities induced by each member can be multiplied by some factor in 

the range (0, 1] to control the group strength effect. In this chapter, this factor will be 

referred to as the probability factor. In the previous example, the probability factor was set 

to 1.0. A value of 1.0 for this factor means that the group has the most possible effect. The 

algorithm can produce a completely different solution from the initial one. The new 

solution's structure will be more likely dependent on the structures of the group members. 

However, a small value of this factor can produce a solution with a structure that is likely to
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be more similar to the initial solution and at the same time it is biased by the fitness and 

structures of the group members.

5.2 Empirical methodology used

In order to evaluate the performance of the proposed search method within a global 

genetic algorithm, a set of experiments has been conducted. In these experiments, the 

performance of a hybrid genetic algorithm that utilise the proposed search method was 

compared with the performance of the pure genetic algorithm. To maximise the interference 

between the two search methods, a local search iteration was performed after each global 

genetic iteration in the hybrid genetic algorithm. In order to assess the amount of disruption 

that this algorithm can cause on the schema processing, the algorithm was applied to every 

individual of the genetic population and the pure Lamarckian learning strategy was used. 

The decrease in the number of experiments that converge to the global optimum together 

with the convergence speed compared to the pure genetic algorithm was used as a measure 

of the disruption to the schema processing.

The optimisation problems were chosen to evaluate the basic assumption of the proposed 

method on the hybrid performance. Since the proposed method assumes that each gene of 

the solution contributes uniformly to the solution fitness, problems with different marginal 

fitness contribution of their genes were used. The selected problems include a lower 

boundary case with a uniformly scaled fitness function, an upper boundary case with an 

exponentially scaled fitness function and a case in between.

In these experiments, two empirical methodologies were followed. The classical 

methodology, which uses a set of known test functions to evaluate the performance of an 

algorithm, was used. The other methodology, which employs a problem generator (De Jong 

et al. 1997) (Kennedy and Spears 1998) to study the behaviour of evolutionary algorithms, 

has also been used to evaluate the proposed algorithm.

Following the classical methodology, three test functions were used to assess the 

performance of both the hybrid and the proposed search algorithm. Three functions with 

different marginal fitness contribution of their genes were used to evaluate the effect of the 

proposed search basic assumption. The first one is a uniformly scaled fitness function, 

which is the MaxOne problem, and the second is the Binlnt problem (Thierens et al. 1998), 

which has an exponentially scaled fitness structure. The third test function is the Schwefel 

function (Muhlenbein et al. 1991), which is a non-linear multimodal function.
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The fitness function of the MaxOne problem is defined as:
i

f ( x ) = X X  x i e  {1,0} (5.1)
i= i

where I is the string length and x, the alleles. The genes of the solution contribute uniformly 

to its fitness.

The fitness of the Binlnt problem is defined as:

/ ( * )  = £ * ,  2M x, 6(1,0} (5.2)
1 = 1

In contrast to the MaxOne problem, genes contribute exponentially to the fitness function. 

The contribution of one particular gene of the string is higher than the combined marginal 

fitness contribution of all the following genes.

The fitness of the Schwefel function is defined as:

f ( x )  -  418.982/2 + y '  — x i sin(A/[xJ) -  500 < xt < 500 (5.3)
i= i

The Schwefel function is a multimodal function. It is characterised by a second-best 

minimum which is far away from the global optimum. The fitness function is non- 

uniformly scaled.

In addition to the classical empirical methodology, the problem generator methodology has 

been used. A problem generator is an abstract model capable of producing randomly 

generated problems on demand. The use of problem generators allows experimenting over a 

randomly generated set of problems rather than on a few hand-chosen examples. This can 

increase the predictive power of the results for a problem class as a whole.

The multimodal problem generator (De Jong et al. 1997) has been slightly modified and 

used. It generates O random Z-bit strings, which represent the location of the O local optima 

(peaks in the original multimodal problem generator) in the space. The evaluation of a 

solution is carried out by locating the nearest local optimum in Hamming space. Then, the 

number of bits that the solution has in common with the nearest local optimum is divided 

by the string length. The result is multiplied by the amplitude of that optimum (the peaks 

have identical amplitudes in the original problem generator) and assigned as the fitness of 

the solution:
f ( x )  ~  A() m a x ^  (Z -  H am m in g ^ , Optimum i )) (5.4)

where A0 represents the amplitude of the nearest local optimum which is Optimum^ The 

global optimum is the optimum with the highest A„.
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A multimodal exponential problem generator has been proposed and used. The multimodal 

exponential problem generator is similar to the multimodal generator. The multimodal 

exponential generator also generates O local optima. The evaluation of a solution is carried 

out, first, by locating the nearest local optimum in Hamming space. Then, the nearest local 

optimum is used to generate a Hamming distance string of the current solution. The 

produced Hamming string is inverted and evaluated using the following fitness function:

where Af0 is an amplitude factor associated with each local optimum and xt represents the 

value in the inverted Hamming distance string. The value of the amplitude factor is from 

the range (0, 1]. The value of this factor for the global optimum is 1.0.

The previous problem generators are efficient in terms of memory storage. Only the local 

optima and their amplitudes or amplitude factors need to be stored. The computation effort 

of fitness evaluations becomes very large as the number of local optima increases.

5.3 Experiments

The experiments that have been conducted aimed to evaluate the performance of 

the proposed algorithm within a hybrid. The performance is measured by investigating the 

search method’s effect on the population size and the population convergence speed. The 

algorithm is also evaluated by studying its effect on the schema processing of the global 

genetic algorithm. In the last set of experiments, the search algorithm is evaluated as a 

stand-alone algorithm by comparing its performance to the pure genetic algorithm and a 

hybrid combining them.

5.3.1 Minimum population size

The first set of experiments was conducted to investigate the effect on the 

population size requirements by hybridising the proposed algorithm. The experiments used 

the bisection method, as described in chapter 4, to find the minimum population size 

required.

The hybrid used the simple elitist genetic algorithm with binary tournament selection, 

uniform crossover, and no mutation as the global search method. The crossover rate was set 

to 1.0. The proposed algorithm was used as an embedded search method that is performed 

by each individual of the population after each global genetic iteration. The experiments 

have been conducted using different group sizes. The group sizes tested were {0, 2, 4, 8,

(5.5)
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16, 32}. A hybrid with a group size of 0 is identical to the pure genetic algorithm. In these 

experiments, two values of probability factors (0.5 and 1.0) were tested.

Figure 5.2 shows the results of experiment 5.1 which aimed to find the minimum 

population required for solving the MaxOne problem with a string length of 120 bit. The 

minimum population size is displayed as a function of the group size and the probability 

factor. Each point in this graph represents the average of 50 experiments. The figure also 

displays the convergence speed of the population to the global optimum. The graph shows 

that using a probability factor of 0.5 significantly reduces the minimum population size 

required for all the group sizes tested except the group size of 2. This reduction in the 

population size for the same set of group sizes is accompanied by a decrease in the 

convergence speed. However, using the statistical t-test shows that the decrease in the 

convergence speed is insignificant and the decrease in the population size is significant.

For a probability factor of 1.0 and for the same set of group sizes, the experiments show, as 

displayed in figure 5.2, that there is a significant increase in the convergence speed with 

insignificant increase in the population size.

The experiments show that the pure genetic algorithm (a hybrid with a group size of 0) 

outperformed the hybrid with a group size of 2. This can be explained in the terms of the 

partial view provided by the group size. The partial global view provided by that group size 

is very narrow and not enough to avoid a destructive interference between the two search 

methods especially when using a probability factor of 1.0, where the improved solution is 

more dependent on the partial view gained than the initial solution structure.
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Figure 5.2: The Effect of Group Size and the Probability Factor on the Hybrid's 

Minimum Population Size and Convergence Speed of the MaxOne Problem

(Experiment 5.1).

The results of experiment 5.2, which aimed to find the minimum population size required to 

solve the Binlnt problem with a string length of 30, are shown in figure 5.3. Experiment 5.2 

used the same control parameters as in the previous experiments. The graphs in this figure 

and the previous figure show similar trends for a probability factor of 0.5. The plots in 

figure 5.3 show a significant reduction in the population size with insignificant decrease in 

the convergence speed for a probability factor of 0.5. However, a probability factor of 1.0 

shows a significant increase in the convergence speed with a considerable decrease in the 

population size. The graphs also show that a group size of two with a probability factor of 

0.5 improves the performance of the hybrid in terms of population size required without a 

significant increase in the cost in terms of convergence speed.
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Figure 5.3: The Effect of Group Size and the Probability Factor on the Hybrid's 

Minimum Population Size and Convergence Speed of the Binlnt Problem

(Experiment 5.2).

The results show that utilising the proposed search algorithm within a genetic algorithm 

using a suitable group size can improve the genetic performance in terms of the population 

size, the convergence speed or both of them.

5.3.2 Effect on schema processing

The aim of this set of experiments was to assess the disruption to the schema 

processing caused by utilising the new algorithm. This can be accomplished by comparing 

the number of times each algorithm converges to the global optimum with that of the pure 

genetic algorithm as a first step. A decrease in this number indicates that a disruption was 

induced that misguides the overall search. However, an increase in that number indicates no 

disruption regardless of the convergence speed. In the case of no improvement in number of 

times a hybrid converged to the global optimum, a second step of evaluation is needed. In 

the second step, the convergence speeds are compared. In the case of a decrease in the 

convergence speed of a hybrid, the algorithm caused a disruption. However, any 

improvement in convergence speed indicates no disruption.
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Experiment 5.3 was conducted on the Binlnt problem with a string length of 30. The 

algorithm used the same control parameters that were used in the previous experiments. 

The algorithm used a population size of 150. The stopping criterion was satisfied if 97% of 

the population were identical or a maximum number of function evaluations was exceeded. 

The maximum number of function evaluations was set to 30,000.
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Figure 5.4: Effect on the Schema Processing when Solving the Binlnt Problem

(Experiment 5.3).

The results of experiment 5.3 are shown in figure 5.4. The graph shows that all the tested 

group sizes and probability factors, except the combination of a group size of two and a 

probability factor of 1.0, show no decrease in the number of experiments that converged to 

the global optimum. This means no disruption for the schema processing was induced by 

incorporating the proposed search method with the specified group sizes and probability 

factors. The graph also shows that using a probability factor of 1.0 increased the 

convergence speed of the population to the global optimum for all group sizes tested. The 

diagram also shows that a probability factor of 1.0 is more suitable for large group sizes, 

whereas a value of 0.5 seems more suitable for small sizes. This ability of a large group size 

to capture a wide view of the search space when combined with a strong effect on the initial 

solution can direct it in the right direction. However, using the same strong effect with a
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small group size which provides a very narrow view of the search space can misguide the 

search.

In experiment 5.4, the algorithms were used to optimise the Schwefel function with ten 

variables. The chromosome length of each variable was 16 bit. The algorithm used a global 

simple elitist genetic algorithm with binary tournament selection and two-point crossover. 

The crossover rate was 0.6 and the mutation rate was 0.000001. The population size was 

300. The stopping criterion was a maximum number of function evaluations. The value of 

this parameter was set to 300,000.
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Figure 5.5: Solving the Schwefel Function (Experiment 5.4)

The results of this experiment are shown in figure 5.5. The graph shows that with a 

probability factor of 0.5 and for a group size greater than or equal to four, there is always an 

increase in the number of times of finding the global optimum. However, for a probability 

factor of 1.0, the increase occurred with population sizes of 16 and 32. The figure also 

shows that this improvement in the number of times of reaching the global optimum is 

always accompanied by an improvement in the convergence speed. The graphs also show 

that a larger group size is needed to capture a good partial view of the search space
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compared to the sizes needed in the previous experiments. This is due to the nature of the 

fitness landscape which is more complicated than the previous problem.

The multimodal exponential problem generator was used to evaluate the performance of the 

proposed algorithm as a secondary search method in a hybrid. The experiment, which will 

be referred to as experiment 5.5, was carried out using five and ten randomly generated 

local optima with amplitude factors of {0.2, 0.4, 0.6, 0.8, 1.0} and {0.1, 0.2, 0.3, 0.4, 0.5, 

0.6, 0.7, 0.8, 0.9, 1.0}, respectively. The chromosome length was set to 30. An elitist 

generational genetic algorithm with binary tournament selection and uniform crossover was 

used as the global search algorithm. The population size was set to 100. The crossover rate 

was 1.0 and the mutation probability was 0.000333 (pm=1.0/(lxN)). Experiments were run 

for a complete convergence of the population or a maximum of 10,000 function 

evaluations.
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Figure 5.6: The Results of the Five-modal Exponential Problem (Experiment 5.5).

The graphs in figure 5.6 and 5.7 show the results of this experiment. These plots are similar 

to that shown in figure 5.4 for solving the Binlnt problem. The increase in the convergence 

speed of the pure genetic algorithm can be a result of the use of the mutation operator in
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this experiment in contrast to the Binlnt problem where no mutation was used. In general, 

the two figures show the trends that have been described before.
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Figure 5.7: The Ten-modal Exponential Problem (Experiment 5.5).

5.3.3 The search method as a stand-alone algorithm

The proposed algorithm was tested as a stand-alone algorithm to optimise three 

multimodal functions. It has been used to optimise the Schwefel function with ten 

variables, the multimodal problem and the multimodal exponential problem. The algorithm 

used a population size equal to that used by the pure genetic algorithm and the hybrid. The 

performance of the algorithm was compared with that of the pure genetic algorithm and a 

hybrid combined them.

The results of experiment 5.6, which aimed to employ the proposed search algorithm to 

solve the Schwefel problem, demonstrated that the pure genetic algorithm outperformed the 

proposed algorithm using different group sizes and probability factors. Figure 5.8 shows the 

average fitness of the population as a function of the number of function evaluations for the 

algorithm as a stand-alone and a secondary algorithm compared to that of the pure genetic 

algorithm. The algorithm shown in this figure used a group size of 8 and a probability
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factor of 0.5. The graphs demonstrate that despite the poor performance of the proposed 

algorithm as a stand-alone algorithm compared to the pure genetic algorithm, their 

combination outperformed either of them. The graphs depict the convergence of 50 

experiments of each algorithm.
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Figure 5.8: The Convergence Details of the Schwefel Function (Experiment 5.6).

A multimodal exponential problem generator with five local optima was used to evaluate 

the performance of the proposed algorithm as a stand-alone algorithm in experiment 5.7. 

The amplitude factors were set to {0.2, 0.4, 0.6, 0.8, 1.0}. The experiment demonstrated 

that the search algorithm, in most cases, performed worse than the pure genetic algorithm. 

In few cases however, the proposed algorithm outperformed the pure genetic algorithm in 

terms of the number of experiments that converged to the global optimum. It also 

outperformed the hybrid in terms of the convergence speed. The convergence of the 

population for the three algorithms as a function of the number of function evaluations is 

depicted in figure 5.9. The group size used was 16 and the probability factor was set to 1.0.
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Figure 5.9: Comparing the Convergence of the Proposed Algorithm with the GA and 

the Hybrid on 5-modal Exponential Problem (Experiment 5.7).

In experiment 5.8, the multimodal problem generator with number of local optima of five 

has been used to evaluate the search method performance. The string length of solutions 

and the population size were set to 100. The amplitude factors were set to (5.0, 4.0, 3.0, 

2 .0 , 1.0 }.

An elitist generational genetic algorithm with binary tournament selection and two-point 

crossover was used as the global search algorithm. The crossover rate was 0.6 and the 

mutation probability was 0.0001. The experiment was run for a complete convergence of 

the population or a maximum of 100,000 function evaluations.

The results of experiment 5.8 were encouraging. They show that the proposed algorithm 

outperformed the pure genetic algorithm using different population sizes when combined 

with a probability factor of 0.5. The algorithm converged faster to the global optimum than 

the pure genetic algorithm. It also outperformed a hybrid that combined it with the genetic 

algorithms using a group size of 2 and 4 (figure 5.10). However, the stand-alone algorithm
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showed poor performance when using a probability factor of 1.0. The algorithm with a 

probability factor of 1.0 can guide the search to non-optimal solutions. The probability of 

guiding the search towards non-optimal solution increases as the group size decreases. 

However, a hybrid with a probability factor of 1.0 outperformed the pure genetic algorithm, 

and both the stand-alone algorithm and the hybrid with a probability factor of 0.5 for group 

sizes of 8, 16 and 32.
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Figure 5.10: The Convergence Speed of the Proposed Algorithm as a Stand-Alone

Algorithm (Experiment 5.8).

Figure 5.11 compares the performance of the algorithm using different group sizes and 

probability factors. The graph demonstrates the fast convergence speed associated with a 

probability factor of 1.0. The graph also shows that this convergence can be towards non- 

optimal solutions. There is a decrease in the number of experiments that converged to non- 

optimal solution accompanied with an improvement in the convergence speed as the group 

size increases. In contrast to the probability factor of 1.0, the probability factor of 0.5 shows 

a decrease in convergence speed as the group size changes from 2 to 32 with the ability to 

find the exact global optimum in all cases.
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Figure 5.11: Comparing the Effect of the Probability Factor and the Group Size on 

Algorithm Performance (Experiment 5.8).

Figure 5.12 compares the population convergence speed of the algorithm as a stand-alone 

optimisation technique with that of the pure genetic algorithm and a hybridisation of them. 

This graph compares an algorithm with a probability factor of 1.0 and a group size of 32. 

The graphs show that a hybridisation can get the best out of the two search methods. It 

produced an algorithm that was able to find the global optimum in all the experiments, in 

contrast to the stand-alone algorithm which can miss that optimum some times. The hybrid 

was able to employ the ability of the pure genetic algorithm to reach the global optimum in 

all experiments and utilise the fast convergence speed of the secondary method to produce 

an effective and efficient algorithm.

The basic assumption of the proposed algorithm, which states that each gene contributes 

uniformly to the fitness of the solution, can explain the good performance of the algorithm, 

as a stand-alone optimisation technique, on the multimodal generator problem compared to 

the poor performance on the other two problems.
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Figure 5.12: Comparing the Convergence of the Proposed Algorithm with the Pure 
GA and the Hybrid on 5-modal Problem (Experiment 5.8).

However, the encouraging performance of the algorithm as a secondary search method, 

even when applied to non-uniformly scaled fitness functions, can be explained as follows: 

The genes of non-uniformly scaled fitness functions converge at different rates (Thierens et 

al. 1998). The most important genes converge towards their optimal value before the less 

important genes. The proposed algorithm concentrates on the differences in the population 

structure and fitness to modify the non-identical genes. The algorithm does not modify the 

identical genes. These non-identical genes in the non-uniformly scaled problems are the 

genes that converge at a slower rate than the identical genes which has been converged to 

their optimal value as a result of the genetic search. The algorithm uses a sample of the 

genetic population to determine the genes that have not been converged yet. This sample 

involves the initial solution and a selected group of solutions. The accuracy of the 

algorithm in determining the converged genes increases as the sample size increases. This 

ability of determining the already converged genes in the population reduces the possibility 

of disrupting the genetic schema processing. This, in turn, can reduce the probability of 

facing premature convergence problems and can accelerate the search towards the global 

optimum. This can explain the good performance of the hybrid that uses large group sizes.
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One of the possible ways of improving the performance of the proposed algorithm is to use 

a variable group size for each iteration. It is also possible to set the values of the probability 

factor depending on the group size used. This can be done in accordance with the findings 

of the experiments of this chapter. These experiments show that high probability factors are 

suitable for large groups and low factors are more suitable to small groups. The probability 

factor can be made adaptable to the group size in that way.



Chapter 6 Evolution to adapt the duration of local search

The success of a genetic algorithm in solving a given problem efficiently depends 

on its success in achieving a balance between exploration and exploitation. The correct 

balance depends mainly upon the fitness landscape of the problem to be solved in addition 

to the genetic algorithm setup. The genetic search can adapt to a variety of fitness 

landscapes through adapting the control parameters associated with the genetic operators 

(Beyer and Deb 2001).

The problem of striking a balance between the global and local search tools in a hybrid, in 

order to adapt the algorithm to a given problem, can be viewed as a problem of finding 

optimal local search control parameter settings. Evolutionary self-adaptation is one possible 

way to adapt the local search control parameters within a hybrid and implicitly optimise the 

hybrid performance to a given problem.

This chapter aims to investigate the advantages and disadvantages of applying evolution to 

self-adapt the control parameters associated with the utilisation of the local search within a 

hybrid genetic algorithm. It targets studying the effect of this form of adaptation on the 

hybrid’s performance on different classes of test functions. The aim is also to gain some 

insight into the influence of the interactions between learning strategy and local search 

method on the self-adaptation behaviour. The possible ways to improve this form of 

adaptation were also studied.

This chapter starts with a brief review of adaptation in genetic algorithms. Then, it reviews 

adapting the local search control parameters as way of optimising the utilisation the 

hybrid's time. The effect of the implicit use of the productivity metric as a measure to 

decide on local search control parameter values on the self-adaptive hybrid’s performance 

is analysed in that section. This chapter is drawn to an end by presenting the results of the 

experiments that have been conducted to support this analysis.

6.1 Adaptation in genetic algorithms

Different mechanisms for selecting the most appropriate control parameter values 

have been used to adapt a genetic algorithm to a specific problem. The simplest mechanism 

is the tuning technique (static adaptation) where a control parameter has a constant value 

throughout the search. A control parameter is tuned through external control by 

experimenting different values to choose the most appropriate one. De Jong (1975) 

determined experimentally recommended values for the rate of single-point crossover and
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bit mutation. Grefensette (1986) optimised some of the control parameters using a genetic 

algorithm as a meta-algorithm.

The control parameters interact with others in a nonlinear manner (Ochoa et al. 1999). For 

this reason, finding the correct control parameter values is a time-consuming task (Eiben et 

al. 1999), and it is difficult to formulate general rules about their values (Tuson and Ross

1998). The use of constant control parameters, despite of being recommended by Ochoa et 

al., is in contradiction to the evolutionary spirit of genetic algorithms (Eiben et al. 1999). 

There is theoretical and empirical evidence that shows the most effective control parameter 

settings vary during the genetic search (Spear 1995) (Smith and Fogarty 1997) (Tuson and 

Ross 1998).

In order to eliminate the need for tuning the control parameters by external means, and to 

increase the search efficiency (Toussaint and Igel 2002), these control parameters can be 

adapted through the execution of a genetic algorithm. The adaptation process can be 

achieved by involving some modification mechanism that adjusts a control parameter 

without external control.

A deterministic update rule can be used to update the control parameter value without using 

any feedback from the current state of search (Hesser and Manner 1991 cited in Hinterding 

et al. 1997) (Back and Schtitz 1996) (Michalewicz 1996). However, formulating a 

deterministic update rule can be harder than finding a good set of control parameter values 

(Tuson and Ross 1998). It may be advantageous, therefore, to employ adaptive learning 

rules, where some feedback from the search is utilised to modify the control parameters. 

These adaptive algorithms have been gaining popularity in the recent past due to their 

flexibility in adapting to different fitness landscapes (Beyer and Deb 2001).

Different learning rules have been involved to adapt the genetic algorithm control 

parameters. Davis (1989) proposed a learning-rule technique that required a lot of 

bookkeeping to adjust the probability of the reproduction operator according to its success 

at producing good offspring. He used this technique to drive a non-adaptive time varying 

schedule of reproduction operators. Arabas et al. (1994) proposed a Genetic Algorithm with 

a Varying Population Size (GAVaPS) to adapt the population size using a rule that assigns 

each individual a relative life-time, at the time of creation, in proportion to the average 

fitness of individuals within the population. Julstrom (1995) used a scheme similar to that 

proposed by Davis but which requires less bookkeeping to adapt the operator probabilities 

based on their recent contributions to the algorithm performance. Tuson and Ross (1996)
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proposed the Cost Based Operator Rate Adaptation (CBORA) approach, where the 

algorithm collects information on operators’ performance to adjust their probabilities.

The idea of evolution, which is modelled through genetic algorithms, can be used to 

optimise the performance of a genetic algorithm on a particular problem in order to solve it 

efficiently (Eiben et al. 1999). The idea can be implemented by encoding the control 

parameters into the chromosome(s) of the individual and undergo genetic operations. This 

approach uses the productivity metric (De Jong and Spears 1992) in an implicit fashion to 

select the most appropriate control parameter values. Good control parameter values will 

lead to good individuals and these will probably have more chances to survive and 

propagate the encoded control parameter values.

Algorithms that use this form of adaptation are usually referred to as evolutionary self- 

adaptive algorithms (Back et al. 1997). Evolutionary algorithms benefits from 

implementing this method in solving a wide range of real-world problems (Toussaint and 

Igel 2002). Evolutionary self-adaptation is commonly regarded as a speciality of evolution 

strategies (Back et al. 1997). However, it has been successfully extended to genetic 

algorithms. An early example of this was the punctuated cossover operator (Schaffer and 

Morishima 1987). This method was offered for adapting both the number and position of 

crossover points for a multipoint crossover operator in genetic algorithms. Extra bits were 

added to the representation of a solution to encode crossover points and were allowed to 

evolve over time. Other approaches incorporate the mutation rate into the representation of 

individuals (Back 1992) (Smith and Fogarty 1996). The evolutionary self-adaptation 

technique was also used to decide between two-point and uniform crossover operator 

(Spears 1995), to adapt the mutation and crossover probability in a genetic algorithm with a 

varying population size (GAVaPS) (Back et al. 2000), and to adapt the mutation and 

crossover rate of a Co-operative Co-evolutionary Genetic Algorithm (CCGA) (Potter and 

De Jong 1994) (Iorio and Li 2002).

The term self-adaptive is usually used to describe algorithms that adopt the evolutionary 

self-adaptation technique (Angeline 1995) (Eiben et al. 1999) (Smith and Fogarty 1997) 

(Toussaint and Igel 2002). However, this term has also been used to describe algorithms 

that use adaptation techniques that do not encode the adapted control parameter onto the 

chromosome (Beyer and Deb 2001) (Espinoza et al. 2001). Algorithms that utilise the 

evolutionary metaphor for adapting the control parameters but using a subpopulation or 

more for the control parameters, in addition to the subpopulation of the problem variables, 

are referred to as a co-evolutionary self-adaptive algorithms (Tuson and Ross 1998) (Eiben
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1999). An algorithm can be described as a co-evolutionary self-adaptive algorithm even in 

the case where the control parameters and the problem variables are encoded together in a 

single chromosome, but using different operators or operators’ parameters for each set 

(Tuson and Ross 1998). In this dissertation, the term self-adaptive will be used to describe 

evolutionary self-adaptive algorithms in accordance with Eiben et al. (1999) (see above), 

who provided a comprehensive classification of adaptation in evolutionary algorithms.

The control parameters to adapt can be parameters associated with a specific genetic 

operator such as the mutation rate (Back 1992), the number and the location of the 

crossover points (Schaffer and Morishima 1987), and the number of genes that group 

mutation will rebuild in a cutting stock problem (Hinterding 1997). They can also be 

probabilities of using alternative operators (Davis 1989) (Julstorm 1995) (Spears 1995) 

(Hinterding 1997) (Tuson and Ross 1998).

Tuson and Ross (1998) imposed three conditions for efficient adaptation of the probabilities 

of using alternative operators. These conditions include the use of suitable metric to 

evaluate operator performance. They also insisted upon the importance of a clear link 

between the values of the genetic settings being adapted and the search’s performance. 

According to Back and Schiitz (1996), the limited success of the self-adaptive crossover 

operator (Schaffer and Morishima 1987) is due the weak impact of a particular crossover 

operator on the fitness of an individual. The third imposed condition is that the benefits by 

the adaptation process should outweigh its cost.

6.2 Adaptation in hybrid algorithms

The distribution of the genetic-local hybrid’s time between the global search 

method and the local search method influences the efficiency and the effectiveness of the 

search process. Finding an optimal division of an algorithm’s time is one of the difficult 

tasks that the designers of hybrid genetic algorithms face. Different techniques have been 

proposed to use the hybrid’s time efficiently, as mentioned in chapter 2. These techniques 

aimed to attain an optimal utilisation of hybrid’s time through controlling the local search 

control parameters. The problem of striking a balance between a global genetic algorithm 

and a local search method can be viewed as a problem of finding optimal control 

parameters of a local search within a hybrid. The different control parameters adaptation 

techniques, mentioned in the previous section, can be used to adapt the parameters of a 

local search.
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Lobo and Goldberg (1997) viewed the problem of deciding between the global genetic tool 

and the local search tool as a two bandit problem where the payoff of each bandit is 

unknown and changes with time. They suggested that a probability matching approach, 

which has been used to adapt the operators probabilities based on their recent performance, 

can be used to decide on the proper tool at any time. In their experiments, an elitist selecto- 

recombinative genetic algorithm was combined with a hill-climb method to solve the 

oneMax problem. They concluded that their adaptation mechanism led to performance 

slightly inferior to that obtained by carefully tuned control parameters. Magyar et al. (2000) 

used the operator productivity technique to select an operator from eight recombination and 

local search operators. Espinoza et al. (2001) proposed a hybrid algorithm uses the 

coefficient of variation of the fitness function as a feedback from the search process to 

decide whether it is appropriate to utilise a local search to improve the sampling ability or 

not. The algorithm uses a deterministic rule to decrease the probability of local search after 

performing a local iteration. The fitness improvement-cost ratio was also used to decide on 

continuing the local search or returning to the global search. In their adaptive algorithm, 

Hacker et al. (2002) used the coefficient of variance of both the fitness and phenotype, 

which measures the relative homogeneity of the population, as a feedback to decide on 

switching between global genetic and local search.

Different adaptation mechanisms have been used to adapt the probability of local search in 

a hybrid. By adjusting the local search probability of each individual of the population, 

these adaptation techniques also decide on the individuals that should perform a local 

search. Distribution-based adaptation techniques (Hart 1994) (Joines and Kay 2002) 

(Martinez-Estudillo et al. 2004) modify the probability of local search based on the 

distribution of individuals in the population to ensure that only one individual from each 

basin of attraction in the search space undergoes a local search. However, in fitness-based 

adaptation mechanisms (Hart 1994) (Espinoza et al. 2003b) (Lozano et al. 2004), the local 

search probability of each individual is modified based on the relationship of its fitness to 

the fitness of other individuals in order to bias the local search toward individuals with 

better fitness. In contrast, the local search potential (LS potential) selection mechanism 

(Land 1998) adapts the local search probability of each individual based on its ability to use 

a local search most effectively. The self-adaptation technique, despite of being reported that 

has been successfully used to decide between different local search methods (Krasnogor 

and Simth 2001), it has not been used to adapt the local search parameters in hybrids.

Based on the role of a local search method as a complementary tool for the genetic search 

to enhance its performance, the adaptation of the duration of a local search can achieve a
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balance between exploration and exploitation. The evolutionary self-adaptation is one 

possible mechanism to strike that balance. This can be done by incorporating the duration 

of local search into the representation of individuals and allowing it to evolve. In addition 

to the genetic search cooperation with a local search method to find an optimal solution for 

a problem at hand, the genetic algorithm alone is responsible for finding an optimal 

duration of a local search in order to optimise the hybrid search for that problem. 

Implementing the metaphor of the evolution of the local search parameters to adapt the 

search in this simple way is partially in accordance with the third assumption laid by Tuson 

and Ross (1998). The implementation cost is low compared with other adaptation 

techniques.

In order to investigate the evolutionary self-adaptation mechanism and the possible ways of 

improving the hybrid adaptation ability, the capability of the productivity metric to produce 

an efficient and effective search is discussed in the next section. The factors that may affect 

this ability will also be examined. The question of whether this form provides a suitable 

metric to evaluate local search operator performance in the context of the hybrid 

performance will be addressed.

6.2.1 Duration of local search and self-adaptation

The ability of genetic search to find favourable parameter settings for pure genetic 

algorithms has been proven (Eiben et al. 1999). However, the ability of the global genetic 

algorithm to self-adapt the control parameters of a hybrid, especially those related to 

incorporating a local search method, may require further investigation. In this section, the 

influence of simultaneously exploring both the problem search space and the control space 

of local search duration on the hybrid’s performance is analysed. This analysis can help to 

gain some insight into the consequences of the self-adaptation on optimising the division of 

the search time between global and local search and on the implicit adaptation of the hybrid 

to the fitness function topology.

The duration of a local search is defined as the number of the consecutive local search 

iterations that are performed on a solution before terminating a local search procedure and 

returning to the global genetic algorithm. The duration of a local search has a clear impact 

on the solution fitness improvement. The fitness of a solution is improved in proportion to 

the duration of the local search method applied. However, if that duration is more than that 

needed to reach a local optimum, a part of the search time is wasted. The influence of the 

duration of a local search on the individual’s fitness depends on the solution’s location in 

the fitness landscape which depends on the previous search iterations. Even in the case of
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improving the solution fitness, the use of long durations can waste the algorithm’s time. 

This can occur if a local search method is applied on a solution which is in the basin of 

attraction of a local optimum and not the global one.

There is a link between the duration of the local search and the individual’s fitness. This 

link depends on the fitness function topology, the details of the local search method and the 

genetic algorithm’s setup. By allowing the duration of the local search parameter to evolve 

by means of genetic operations just like the input variables do, the link between favourable 

duration of the local search and the individual’s fitness can be exploited. Genetic operations 

can adaptively control the duration of the local search method in order to optimise the 

individuals’ fitness. In this way, it can define the link between the control parameter and the 

individual’s fitness.

However, the ability of defining a link between the duration of local search and the 

individual fitness can face some difficulties when combined with the pure Baldwinian 

learning strategy. The acquired fitness of an individual is the sum of the improvements 

introduced by applying a local search method for the encoded duration and the innate 

fitness. The hindering effect associated with this learning approach can direct the search 

towards individuals with long durations of local search and a small innate fitness. The 

search process, in this case, is degraded from optimising the fitness function to optimising a 

single control parameter. The possibility of leading the search to this direction increases as 

the number of variables of the fitness function increases since it may be easier for the 

algorithm to optimise a single control parameter than optimising a large number of function 

variables. In addition to the possibility of guiding the search in the wrong direction, the 

hindering effect can waste the algorithm’s time as it can direct the individuals to perform 

useless local search iterations with long durations. The use of the acquired fitness as a 

metric to assess the quality of solutions when combined with the pure Baldwinian learning 

strategy can produce an algorithm with poor performance in terms of solutions quality and 

convergence speed.

The hindering effect can be aggravated using long durations of a local search (chapter 3). 

However, the use of a local search with very short durations and/or small probabilities can 

help to alleviate this problem. In the case of encoding the duration of the local search for 

self-adaptation, the use of very short durations as a unit of the duration of local search, and 

restricting the values of the number of local iterations parameter to very small numbers, can 

help to combat the hindering effect. In this way, the problem’s consequences on the ability 

of the global genetic algorithm to define a link between the duration of local search
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parameter and the individual fitness in the direction of optimising the fitness function can 

be alleviated.

However, the ultimate solution for the hindering effect problem is to rely on innate fitness 

and not acquired fitness to decide between solutions of equal acquired fitness values. One 

possible way to do this is to employ the number of local function evaluations, used to 

acquire the current fitness starting from the innate fitness, in addition to the acquired 

fitness. Since the number of local iterations parameter, which is a good indication of the 

number of function evaluations consumed in a local search, is already encoded into the 

individual, it can be used together with the acquired fitness to direct the search towards 

solutions of high quality.

Assuming that the global genetic algorithm is able to define a link between the control 

parameter values and an individual’s fitness in the direction of optimising the solution 

quality, the question becomes is defining this link enough to improve the hybrid search’s 

performance and if so in which way the performance can be enhanced? Reviewing the 

impact of the duration of the local search on the search’s time utilisation together with a 

brief comparison between self-adaptation in the pure genetic algorithms and the hybrid 

genetic algorithm may help to answer this question.

As shown in chapter 3, the duration of local search can influence the division of the search 

time between a global and a local search. The interactions between local search duration, 

the learning strategy, the fitness topology and other genetic components have a great impact 

on search time utilisation (Hart et al. 2000) (Rosin et al. 1997). Allocating more time for a 

local search through using long local search durations can improve the performance when 

combined with specific learning strategies on specific classes of fitness functions. On the 

other hand, allocating more time for the global genetic algorithm through using short 

durations of local search can improve the performance if combined with other learning 

strategies or used to solve other classes of problems. Assigning the task of finding an 

optimal duration of local search to the global genetic algorithm means allowing the 

evolution process to decide on the optimal utilisation of the search time. In the rest of this 

section, the appropriateness of the individuals’ fitnesses as a metric for selecting 

individuals and its ability to optimise the utilisation of the hybrid’s time are discussed.

The evolutionary self-adaptive algorithms encode the control parameters into the 

chromosomes and use the individual fitness as feedback to assess the suitability of their 

values for solving a given problem in an effective and efficient way. Good control
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parameter values will probably help individuals to produce superior offspring and these will 

probably have more chances to survive and to propagate.

The genetic algorithms use the fitness as a metric to assess the quality of solutions and the 

speed of reaching that quality. Since all individuals in the pure genetic algorithm consume 

an equal number of function evaluations to achieve their fitness, the fittest individual is also 

the fastest one in achieving that fitness. The use of this metric is fair to assess the quality 

and speed of the solutions at the same time. For this reason, relying on the individual fitness 

is enough to choose efficient and effective solutions. Control parameter values that lead to 

high quality solutions also produce these solutions in an efficient way. The propagation of 

good encoded control parameters that help to produce high quality solution can help to 

produce an efficient search algorithm at the same time.

A selective use of a local search method within a hybrid means that solution can consume 

different numbers of function evaluations. Applying a local search method with different 

local search durations or different local search probabilities for each solution, as in the case 

of self-adapting the duration or the probability of local search control parameters, are 

examples of this selective use of local search. Self-adapting such control parameters has a 

clear impact on the number of function evaluations consumed by each individual. 

Consequently, selecting individuals based on their fitness only in these algorithms can bias 

the search towards an effective algorithm and cannot guarantee its efficiency. On the other 

hand, selecting solutions based on the speed of convergence can lead the search towards a 

local optimum instead of the global one. However, since the global optimisation’s priority 

is the effectiveness of an algorithm, hybrid genetic algorithms are discriminating on fitness 

basis rather than speed basis.

In non-adaptive hybrid algorithms, to reduce the possibility of producing inefficient 

algorithm, the hybrid’s practitioners usually prefer to reduce the cost of the incorporating 

the local search method through using either small local search probabilities (Hart 1994) 

(Rosin et al. 1997) (Land et al. 1997) (Morris et al. 1998) (Hart et al. 2000) (Espinoza et al. 

2001), small local search durations (Hart 1994) (Rosin et al. 1997), or local search methods 

with low cost compared to a genetic search iteration (Radcliffe and Surry 1994). The same 

direction can also be followed in the self-adaptive hybrids. Through employing a low cost 

local search method, or using very short durations as a unit of the duration of local search 

and restricting the values of the number of local iterations parameter to very small numbers, 

this efficiency problem can be combated.
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6.3 The Algorithm

In the proposed hybrid algorithm, the number of local search iterations is 

incorporated into the representation of an individual. Through this parameter, the duration 

of a local search is controlled. It defines the number of local iterations that should be 

performed by the associated individual. The global genetic algorithm evolves the number of 

local search iterations while the hybrid is using that control parameter to optimise the 

fitness function variables. Through adopting the evolutionary self-adaptation metaphor, the 

algorithm allows the global genetic algorithm to dynamically decide on the individuals that 

should perform a local search. It also decides on the duration of the local search method 

through modifying the number of local iterations as it cooperates with the local search to 

solve a given problem. This can facilitate the adaptation of number of local search 

iteration’s control parameter without exogenous control.

In general, the control parameters in the evolutionary self-adaptive algorithm can be 

adapted either at the individual level (i.e. local level) or at the population level (i.e. global 

level). In the local adaptation, the control parameter is applied to the associated solution 

only. In contrast, the control parameter in the global adaptation is tied to the population as a 

whole, and not to a particular solution. The number of local iterations of an individual is 

computed by talcing the average of the number of local iterations of the individuals of the 

whole population. Local adaptation is used in the proposed algorithm because it is 

reasonable to assume that different individuals are following different paths through the 

search space. It is also proven that local adaptation outperforms global adaptation (Spears 

1995).

In the proposed self-adaptive hybrid algorithm, after performing a genetic iteration, the 

number of local iterations associated with each solution is extracted from the 

chromosome’s structure. Depending on the value of that parameter, a number of local 

search iterations are performed on that solution. If the value of that parameter is zero, no 

local search iteration will be performed. Otherwise the specified number of local iterations 

will be performed consecutively. Using the learning strategy specified by the algorithm, the 

resulting solution is mapped back to the mating pool. Pseudo code for the Self-Adaptive 

local-search-Duration Hybrid (SADH) algorithm is shown in Figure 6.1.

The maximum value of the number of local iterations in this algorithm was set to three. The 

first reason for selecting this value is the expected benefits of using small durations of local 

search as illustrated in the previous section. The second reason is to allow comparing the
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adaptive ability of this algorithm with the adaptive staged hybrid (ASH) algorithm, which 

was proposed by Espinoza et al. (2001) and uses a maximum of three local iterations.
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Figure 6.1: The Self-Adaptive local-search-Duration Hybrid (SADH) Algorithm.

The algorithm also makes use of the number of local iteration’s control parameter, which 

already exists within the chromosome, to discriminate between innate and acquired fitness. 

In a case of an equal fitness, the algorithm chooses the individual with the smaller value of 

local search iterations since its acquired fitness is closer to the innate one. This can help to 

alleviate the consequences of the hindering effect associated with the Baldwinian approach.

6.4 Test functions

In order to evaluate the capability of the proposed SADH algorithm for finding 

high quality solutions for difficult optimisation problems in a general way, a set of test 

functions has been selected. The test functions have also been used to evaluate some of the 

assumptions that have been made regarding the behaviour of the SADH algorithm and the 

possible ways of improving its performance.
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The members of the selected set of test functions have been designed by several authors for 

analysing and comparing different optimisation algorithms. Most of the test functions have 

especially been designed to detect weak points of the different optimisation algorithms. 

These functions have a number of features that are known to be hard for optimisation and 

believed to be present in many real-world problems. Among these features is that the 

degree of difficulty of these functions can by scaled up by increasing the dimension of the 

search space due to the increasing number of local optima. According to Whitley et al. 

(1995), the presence of scalable functions is essential in any evolutionary test suite. Whitley 

et al. also insisted on that the test suite should contain non-linear and tion-separable test 

functions. These types of functions are also represented in the test functions set. The test 

functions suite includes the ellipsoidal (Deb et. al 2002), the Rastrigin (Torn and Zilinskas 

1989), the Schwefel (Mtihlenbein et. al 1991), the Griewank (Muhlenbein et. al 1991) and 

the Rosenbrock (De Jong 1975) test functions.

The n-dimensional inverted ellipsoidal function (Deb et. al 2002) is defined as

f i x )  = For 100 < x ( < 100 (6.1)
/=1

The ellipsoidal function has a unique global optimum of zero which is located at *=(0, 0, 

...). The ellipsoidal is a uni-modal function with different weights for each variable. This 

can serve to test a badly scaled fitness functions (Ballester and Carte 2004).

The n-dimensional inverted Rastrigin function (Torn and Zilinskas 1989) (Muhlenbein et 

al. 1991) is defined as
n

f ( x ) = 10/t + 'Y'.x? -  10cos(2fl%,-) For -  5.12 < x,. < 5.12 (6.2)
i=i

The global optimum of the inverted Rastrigin function is zero at jc=(0, 0,...). This function 

is characterised by the existence of many local optima whose values are proportional to 

their distance from the global optimum. The local optima are located at a rectangular grid 

with a size of one. Grid points with jcf =0 except one coordinate, where jq=l, give the 

second best optimum with f(x)~-\. With increasing distance from the global optimum the 

fitness values of local optima become smaller. There is no correlation between the variables 

of the Rastrigin function.

The definition of the n-dimensional inverted Schwefel function (Muhlenbein et. al 1991) is 

f ( x )  = 418.98288/1 + -  x ( s i n ( ^ f )  for -  500 < x, < 500 (6.3)
/=i
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The global optimum of zero is at the point x=(420.9687, 420.9687, ...). The interesting 

characteristic of this function is that the second best optimum is located far away from the 

global optimum. This can trap the optimisation algorithm on a local optimum. In this 

function, there is no correlation between the variables.

The inverted Griewank function (Muhlenbein et. al 1991) can be defined as
n x 2 x

f ( x )  = 1 + Y — *------ n L c o s R O  for -  30.0 < x < 30.0 (6.4)
7 4000 '- 1 \ T i

The global optimum of zero is located at the point x=(0, 0, ...). There are many local 

optima in the landscape of this function. The product term introduces a correlation between 

the function variables “epistasis”. This can disrupt optimisation techniques that work on 

one function’s variable at a time. The increase in the number of variables decreases the 

number of local optima since it makes the function surface flat.

The n-dimensional inverted Rosenbrock function (De Jong 1975), also known as banana 

function, is defined as

/ M  = -X [1 0 0 (* w - * ,2)2 + ( 1 - * ,) 2] fOT - 2 .0 4 8 < .v ,<  2.048 (6.5)
( =  1

The unique global optimum of the inverted Rosenbrock function is zero which is located at 

jc=(1, 1, ...). There is only one peak in the landscape of the two dimension function. The 

global optimum of this function is inside along, narrow, parabolic shaped flat valley. This 

extremely flat region around the global optimum makes it difficult for search algorithms to 

locate the global optimum. There is evidence showing that the landscape of this function 

with a dimension of more than three contains several optima. Deb et al. (2002) identified 

three local optima with fitness values 0, 3.98662 and 65.025362 for 20-dimensional 

function. This shows that the difficulty of this function can by scaled up by increasing its 

dimension. There is also a correlation between its variables, which makes it a non-separable 

function.

6.5 Experiments

The SADH algorithm and the ASH algorithm were used to solve the set of test 

functions in order to evaluate the performance of the proposed algorithm and gain some 

insight into its self-adaptation behaviour. Some members of the test function set were 

selected to evaluate some ideas to improve the search performance.
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6.5.1 Evaluating the performance of the self-adaptive hybrid algorithm

For the purpose of evaluating the SADH algorithm, its performance was compared 

with the pure genetic algorithm and the ASH algorithm on a selected set of test functions. 

The quality of the solutions produced by each algorithm was used as a main measure of the 

algorithm’s performance. The percentage of experiments that converged to the global 

optimum was used as an indication of the ability of these algorithms to produce high 

quality solutions. The performance was compared using different population sizes and 

different learning strategies in order to evaluate the ability of these algorithms to adapt to 

different search environments.

The results of optimising the test functions using the proposed SADH algorithm were 

evaluated against the results obtained by the ASH with initial local search probabilities of 

0.0, 0.1, 0.2, and 0.99. The ASH algorithm with an initial local search probability of 0.0 is 

identical to the pure genetic algorithm. An initial local search probability of 0.1 was 

selected because Espinoza et al. claimed that using this value produces the best hybrid 

performance. This can be true for simple test functions using large population sizes, as in 

the case of the fitness functions they reported on, but for more complicated test functions, 

using other values can produce better results. The same values of the other meta-parameters 

suggested by Espinoza et al. were used in these experiments.

The set of algorithms has been used to optimise the test functions suite for dimensions of 2, 

10 and 20 and for different population sizes. For 2-dimensional test functions, the 

population sizes tested were 20, 40, 60, 80 and 100. The 10-dimensional functions tested 

with population sizes of 50, 100, 150, 200 and 250. However, population sizes of 100, 200, 

300, 400 and 500 were used to optimise the test functions with 20 variables. Each of these 

variables was represented by a string of 16 bits.

The hybrid algorithms were tested using different learning strategies. In addition to the pure 

Baldwinian and the pure Lamarckian approaches, the 25% partial Lamarckian (i.e. 75% 

partial Baldwinian), the 50% partial Lamarckian (i.e. 50% partial Baldwinian), and 75% 

partial Lamarckian (i.e. 25% partial Baldwinian) approaches were used in these 

experiments.

The hybrids use the simple elitist genetic algorithm with binary tournament selection, two- 

point crossover, and simple mutation. For all experiments, the probability of crossover was 

set to 0.7 and the probability of mutation was UN where N  is the population size. In the
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adaptive ASH algorithm, the maximum number of local iterations was 3, e was 0.2, and the 

local threshold value was 0.6.

The stopping criterion for all experiments was a maximum number of function evaluations. 

The value of this parameter was set to 1000 times the population size for the functions of 

two and ten variables for partial or the pure Lamarckian learning approaches. However, for 

the test functions of 20 variables, this value was set to 5000 times the population size for 

partial or the pure Lamarckian approaches. For the pure Baldwinian approach, the 

maximum number of function evaluations was doubled because this type of search is slow 

and the priority in these experiments is to evaluate the effectiveness of these algorithms. 

This stopping rule was applied for all the test functions except the ellipsoidal function, 

where the maximum number of function evaluations was set to 500 times the population 

size, due to its simplicity. Each experiment was repeated 50 times.

A local search method, which combines the steepest descent method and Brent’s method 

(Press et al. 1993) to estimate the best step size to climb to the local optimum from the 

current position in the basin of attraction, was used. The steepest descent algorithm uses the 

derivatives of the fitness function to estimate the best step size to climb to the local 

optimum from the current position in the basin of attraction. Brent’s method fits a parabola 

to three initial solutions and uses the maximum of the parabola as the next potential 

solution of the overall function (chapter 2).

The percentage of times each hybrid algorithm found the global optimum using different 

learning strategies was used as a metric to compare the performance of the hybrids on the 

different test function used. The number of times each hybrid found the global optimum 

using the different learning strategies were added together and then divided by the total 

number of experiments conducted. The resulting percentage of each hybrid was compared 

with other hybrids and with the percentage of times the pure genetic algorithm found the 

global optimum.

In experiment 6.1, the pure genetic, the SADH and the ASH algorithms were used to 

optimise the ellipsoidal function and the percentages times of finding the global optimum 

were compared. The results of comparing these percentages when solving the 2- 

dimensional ellipsoidal function show that the pure genetic algorithm performed better than 

the hybrid algorithms. Actually, the difference in the percentages between the pure genetic 

algorithm and the two hybrids is due the poor performance of both hybrids when utilising 

the pure Baldwinian approach. This bad performance is related to the hindering effect,
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which leads the search to converge to a point near the global optimum. The closeness of 

this point to the global optimum depends on the local search method, its duration, and the 

size of the basin of attraction of the global optimum (chapter 3). The use of small 

probability of local search helps to alleviate this problem to some extent. The results show 

that using a small probability of local search with the ASH gives the best performance of 

the hybrids for all the population sizes used. The nature of fitness landscape and the nature 

of the local search method, where a small number of local iteration may be enough to map 

any point in the basin of attraction to the global optimum, explain of the bad performance 

of the hybrids combined with the pure Baldwinian approach.

The hybrid algorithms that adopted the pure Baldwinian learning strategy were not able to 

find the global optimum of the ellipsoidal function with ten variables, as shown in figure 

6.2. However, in general, the ASH algorithm that used small probabilities of local search 

outperformed the pure genetic algorithm using a small population sizes in terms of 

percentage of experiments that converged to the global optimum, and vice versa for large 

population sizes. The diversity introduced as a result of using local search methods enables 

small population sizes to evolve to reach the global optimum. The performance of the 

SADH algorithm on this function is still better than the performance of the ASH algorithm 

with a local search probability of 0.99. The behaviour of the SADH algorithm when 

combined with the pure Baldwinian approach was expected since the hindering effect may 

lead the search towards long durations of local search and bad quality solutions.
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Figure 6.2: Results of Optimising the Ellipsoidal Function with 10 Variables

(Experiment 6.1).

Figure 6.3 shows the changes in the number of local iterations of the population over 

generations for the 10-dimensional ellipsoidal function, when combined with the pure 

Baldwinian approach, for population sizes of 50 and 150. The graph shows that for a 

population size of 50, the values of local iterations of 1 and 2 were dominating at the end of 

search. At the start, the population moves towards a longer local durations. Then, when 

long durations are not improving the fitness any more, the search moves towards shorter 

durations. At the end of the search, short durations are dominated in order to distinguish 

innate from acquired fitness. However, even with these short durations of local search and 

because of the disappearance of the value of zero of this parameter, the algorithm was 

unable to guide the search to the exact global optimum. The graphs show a similar trend for 

a population size of 150 where the search moved toward longer durations.
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Figure 6.3: Optimising the Ellipsoidal Function Using the Baldwinian Approach

(Experiment 6.1).

In figure 6.4, the changes in the number of local iterations and the best fitness over time are 

shown for the 50% partial Lamarckian approach. The graphs show that, for a population 

size of 50, a greater part of the population was using two local iterations and that part was 

fixed until the end of the search. However, with a population size of 150, a greater part of 

the population was using three iterations. This part increased while the individuals that 

were using a single local iteration decreased as the search progressed.

Popula tion  S ize  50
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Figure 6.4: Optimising the Ellipsoidal Function Using the 50% Lamarckian 

Approach (Experiment 6.1).

By comparing the two previous graphs with figure 6.5, which shows the percentage of 

population that using the available local search iteration for the pure Lamarckian, it is clear 

that as the search moves towards more partial Lamarckian and larger population sizes, the 

population moves toward adopting longer durations of local search.

An experiment was conducted to illustrate the impact of the local search method on the 

performance of hybrids when used to solve the ellipsoidal function. The simple binary hill- 

climbing algorithm, where a randomly selected bit is flipped, was used as a local search 

method in the hybrids to solve the 2-dimensional and 10-dimensional ellipsoidal function. 

The results of experiments demonstrated, not shown here, that the performance of all the 

hybrids that adopt the pure Baldwinian approach is significantly improved using this local 

search method. For example, 58%, 86%, 100%, 96% and 100% were the percentages of the 

experiments that found the exact global optimum incorporating the simple binary hill- 

climbing method within the proposed algorithm to solve the 2-dimensional ellipsoidal
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function compared with zero percentages when utilising the steepest descent method for 

population sizes of 20, 40, 60, 80 and 100, respectively.
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Figure 6.5: Optimising the Ellipsoidal Function Using the Lamarckian Approach

(Experiment 6.1).

The results obtained in experiment 6.2, which evaluated the ability of the different 

algorithms to solve the Rastrigin function with 2, 10 and 20 variables, illustrated that the 

self-adaptive algorithm produced the third best performance for 2 variables function, the 

first or the second best for 10 variables function, and the best performance for 20 variables 

function (figure 6.6). The good performance of the proposed algorithm for 20-dimensional 

function is expected since the cost of optimising a single control parameter can be 

neglected compared to the cost of optimising 20 variables, whereas this cost cannot be 

neglected when optimising a function of 2 variables. The experiments also show that the 

proposed algorithm faced some difficulties when combined with the pure Baldwinian 

approach.
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Figure 6.6: The Results of Solving the 20-dimensional Rastrigin Problem (Experiment

6.2).

The change in the percentage of the number of the local search iterations over generations, 

and the change in the best fitness as a function of the number of function evaluations, for 

the 10-dimensional Rastrigin function for different learning strategies are shown in figures 

6.7, 6.8 and 6.9. These graphs, as the previous graphs, show the disappearance of the 0 

value of the control parameter. The effect of this disappearance cannot help algorithms that 

are biased toward the Baldwinian approach to produce high quality solutions. They also 

show that increasing the population size can help to combat this problem. These plots show 

that, as the part of the population that use the Lamarckian approach increases, the trend to 

use long durations of local search increases.
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(Experiment 6.2).
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Figure 6.9: Optimising the Rastrigin Function Using the Lamarckian Approach

(Experiment 6.2).

The results for solving the 2-dimensional Schwefel function using the ASH algorithm in 

experiment 6.3 show that the optimal probability of local search depends on the population 

size. The results also showed that the SADH algorithm produced the second or the third 

best performance. They also showed that the SADH algorithm performs poorly with the 

pure Baldwinian approach.

When the algorithms were used to solve the 10-dimensional Schwefel function, the 

percentage of times that each algorithm managed to find the global optimum is depicted in 

figure 6.10. The graphs show that the SADH algorithm and the ASH algorithm with a local 

probability of 0.99 produced the best performance. However, both algorithms produced the 

worst performance when utilising the pure Baldwinian learning strategy.
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Figure 6.10: The Results of Optimising the Schwefel Function with 10 variables

(Experiment 6.3).

When used to solve the 20-dimensional Schwefel function, the SADH algorithm produced 

the best or the second best performance when combined with a partial or the pure 

Lamarckian approach. However, as in the previous experiments, it produced the worst 

performance when combined with the pure Baldwinian learning strategy.

Figures 6.11, 6.12 and 6.13 show how the number of local iterations parameter evolves 

during optimising the 10-dimensional Schwefel function for population sizes of 50 and 150. 

The hindering effect problem makes the algorithm unable to decide on an optimal duration 

of local search. At the start of the search, using a local search of any duration helps 

individuals to improve their fitness. This accelerated the disappearance of the zero value of 

the number of local search iterations control parameter. Since the probability of mutating 

the control parameter is very small, the chance of restoring that value is very small too. The 

effect of the disappearance of that value is less significant on the algorithm performance 

when adopting other learning strategies.
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Figure 6.11: The Baldwinian Search and the Schwefel Function (Experiment 6.3).
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Figure 6.13: Optimising the Schwefel Function Using the Lamarckian Approach

(Experiment 6.3).

The results of applying the different algorithms to optimise the 2-dimesnional Griewank 

function in experiment 6.4 showed that the SADH algorithm produced the best 

performance for a population size of 100. However, it comes second using a population size 

of 80 and third using population sizes of 60 and 20. The results also confirmed the bad 

performance of the proposed algorithm using the pure Baldwinian approach.

All the hybrids showed a similar performance when used to solve the Griewank problem 

with 10 and 20 variables. Figure 6.14 shows the results of applying the algorithms to the 

10-dimensional Griewank function. The hybrids significantly outperform the pure genetic 

algorithm. However, they showed poor performance when combined with the pure 

Baldwinian learning strategy.
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Figure 6.14: The Results of Solving the Griewank Problem with 10 Variables

(Experiment 6.4).

Figures 6.15, 6.16, and 6.17 depict how the number of local iterations control parameter 

evolves with time while solving the 10-dimensional Griewank problem. In figure 6.15, the 

algorithm discovered that it is beneficial to use long durations of local search at the first 

generations. This leads the algorithm to favour long durations and after a number of 

generations, long duration values dominate other values. The values of one and zero 

disappeared very quickly making the chances of restoring these values, when needed, very 

small. These graphs show that as the search progressed, the largest part of the population 

was using the largest available number of local iterations.
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Figure 6.15: Optimising the Griewank Function Using the Baldwinian Approach

(Experiment 6.4).

The other two graphs show that the value of 1 for the control parameter propagated until the 

end of the search. This can be explained by the fact that partial or the pure Lamarckian 

approaches enable the algorithm to distinguish between individuals on the basis of their 

genetic structure which is reflected through their fitness. The use of the number of local 

iterations to discriminate between individuals with an equal fitness helped to establish this 

in the case of a partial Lamarckian approach. Keeping diversity in the number of local 

search iteration is useful as it improves the probability of restoring good values that were 

not useful at previous stages.
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The results of optimising the 2-dimesional Rosenbrock function using the two hybrids in 

experiment 6.5 demonstrate that the proposed SADH algorithm outperformed the other 

algorithms for the different population sizes used. However, the performance of the SADH 

hybrid utilising the pure Baldwinian approach is poor compared with the pure genetic 

algorithm and the ASH algorithm with small probabilities of local search for most of the 

population sizes used.

The results for optimising the Rosenbrock function of 10 variables show the supremacy of 

the SADH algorithm over other algorithms, as shown in figure 6.18. The experiments 

illustrated that the SADH algorithm with most of its population adopted the Lamarckian 

approach can find the global optimum more frequently than others with most their 

population adopted the Baldwinian approach.
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Figure 6.18: The Results of Optimising the Rosenbrock Function with 10 Variables

(Experiment 6.5).

The graphs of figure 6.19 show the changes in the percentage of the number of local 

iterations over generations for the 10-dimensional Rosenbrock function using the pure 

Baldwinian approach. This figure shows that the values of 0 and 1 of the local search
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iterations disappeared quickly. The whole population used either two or three local 

iterations. The use of the same mutation rate for the fitness function variables and the 

number of local iterations control parameter reduces the chances of restoring good gene 

values of the control parameter. The quick disappearance of short durations of local search 

and the use of the same mutation rate can explain the bad performance of the proposed 

algorithm when most of its population is using the Baldwinian approach.
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Figure 6.19: Optimising the Rosenbrock Function Using the Baldwinian Approach

(Experiment 6.5).

Figure 6.20 shows the results for the optimisation of the same function using the 50% 

partial Lamarckian. The plots show that small durations of local search disappeared quicker 

than in the case of the pure Baldwinian as the algorithm discovered that the use of long 

duration can be beneficial with this learning strategy. Local iterations of a value of two 

dominate other values.
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Figure 6.20: Optimising the Rosenbrock Function using the 50% Lamarckian 

Approach (Experiment 6.5).

In figure 6.21, which shows the change in the number of local iterations control parameter 

for the pure Lamarckian approach, the value of two dominates the local search values. This 

trend becomes apparent in a population size of 150.
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Figure 6.21: Optimising the Rosenbrock Function Using the Lamarckian Approach

(Experiment 6.5).

In the previous experiments, the convergence rate of the SADH algorithm was as slow as 

the ASH hybrid that uses a local search probability of 0.99. This was expected since the 

fitness is used as a metric for selecting solutions with different costs. The idea of selecting a 

part of the individuals based on their fitness and the other part based on their speed has 

been tested. The results of the conducted experiments show that selecting a part of the 

solutions based on their speed can help to improve the speed of the convergence of the 

SADH algorithm. However, a fine tuning of this percentage is needed in order to get an 

efficient and effective search.

6.5.2 Evolutionary self-adaptation versus co-evolutionarv self-adaptation

The use of two different mutation rates for the fitness function’s variables and the 

control parameter as a way to help restoring useful genes in the number of local search 

iterations parameter has also been tested. In other words, the idea of self-adaptation through 

co-evolutionary was implemented and the performance of the produced algorithm was 

compared with the evolutionary self-adaptive algorithm.
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Chapter 6 Evolution to adapt the duration of local search

A set of experiments was conducted on the 10-dimensional Schwefel and the 10- 

dimensional Rastrigin function for population sizes of 50 and 150 and using the pure 

Baldwinian, the pure Lamarckian and the 50% partial Lamarckian.

The mutation rate for the number of local iterations control parameter was set so that the 

chance of mutating the control parameter was equal to the chance of mutating any variable 

of the fitness function.

The use of the modified mutation rate improved the performance of the self-adaptive 

algorithm when used to optimise the two test functions, especially when combined with the 

pure Baldwinian approach. The use of a different mutation rate for the control parameters 

can help to restore useful control parameter genes and through that it helps to keep diversity 

in the values of that parameter. The diversity improves the performance of the algorithm 

using the pure Baldwinian approach.

For example, the co-evolutionary self-adaptive algorithm outperform the evolutionary self- 

adaptive algorithm when used to optimise the 10-dimensional Rastrigin function in 

experiment 6.6 using the pure Baldwinian learning strategy as shown in figure 6.22. It 

maintained the values of 0 and I, which are not of great impact on the fitness in the first 

generations. However, these values have a considerable impact on the discriminating 

between acquired and innate as the search approaches fitness-convergence state. This can 

explain the improvement in the search performance compared to the one that used a single 

value for a mutation rate.
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Figure 6.22: The Effect of Modifying the Mutation Rate on the Baldwinian Search

(Experiment 6.6).

The results for using the 50% partial Lamarckian and the pure Lamarckian approaches are 

shown in figure 6.23 and figure 6.24. The graphs show that the algorithm biased the 

population to use long durations of local search in the first generations. Then, it directed the 

search to lower the duration value as it approached an optimum. In the case of 50% partial 

Lamarckian approach, this can help to distinguish between acquired and innate fitness. The 

use of a co-evolutionary self-adaptive algorithm, as shown in figure 6.23 and 6.24, enables 

the control parameter to adapt according to the current state of the search, whereas the use 

of a single mutation rate hinders the ability to adapt since it does not enable the algorithm 

to restore useful genes. This is reflected in the hybrid performance, which improved using 

these two learning approaches.
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Figure 6.23: The Combined Effect of Modifying the Mutation Rate and the 50% 

Baldwinian approach (Experiment 6.6).
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Optimising the 10-dimensional Schwefel functions in experiment 6.7 showed similar trends 

where the need for using large number of local iterations reduces as the algorithm 

approaches an optimum. For this reason, the number of individuals that use no local search 

increases as the search approaches an optimum. The consequence of this is an improvement 

in the search performance. The use of a mutation rate for the control parameter that ensures 

mutating the control parameter at the same rate of the function variables can help to restore 

useful genes when needed as in this case.

Another set of experiments was conducted in order to compare the performance of the 

evolutionary self-adaptive and the co-evolutionary self-adaptive hybrids. The algorithm 

was modified to ensure that a proper mixing of genes representing the number of local 

iterations control parameter. This can be done by ensuring that a single-point crossover 

with a specific rate is applied so that the crossover point is within the control parameter 

representation.

The modified algorithm was able to improve the performance of the self-adaptive algorithm 

when used to solve the two test function used in the previous experiment.

Figure 6.25 shows the results of experiment 6.8, which used the modified algorithm to 

solve the 10-dimensional Schwefel function, when combined with the pure Baldwinian 

approach. The graphs show that ensuring mixing the genes of the control parameter 

enhanced the performance of the algorithm further. For example, when using a population 

size of 50, the algorithm can direct the search towards better solutions even in the case of 

reaching a local optimum. The lower lines of the 50 population size in the graph show that 

the algorithm was able to improve the quality of these best solutions after reaching a local 

optimum. The adaptation behaviour of the number of local iterations control parameter 

becomes clear in these graphs.
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Figure 6.25: The Co-evolutionary Self-adaptive Baldwinian Search with the Schwefel

Function (Experiment 6.8).

The results of running the algorithm on the Schwefel function using the 50% partial and the 

pure Lamarckian approaches showed that the modified algorithm slightly improved the 

performance of the algorithm for these two learning strategies.

The results of applying the modified algorithm on the 10-dimensional Rastrigin function in 

experiment 6.9 using the pure Baldwinian approach are shown in figure 6.26. By 

comparing the graphs of this figure with figure 6.22, it can be seen that the performance of 

the algorithm using the pure Baldwinian approaches is better than the previous co- 

evolutionary self-adaptive hybrid.
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Figure 6.26: The Co-evolutionary Self-adaptive Baldwinian Search with the Rastrigin

Function (Experiment 6.9).

6.5.3 Variation or Adaptation

Another set of experiments were conducted to test whether the improvement in 

solution quality produced was a result of the control parameter adaptation or a result of the 

variation in its values. In these experiments, instead of using the number of local iterations 

encoded into each individual to specify the duration of a local search, each individual is 

allowed to perform a random number of local search iterations in the range of [0, 3].

The 10-dimensional Schwefel and Rastrigin functions were optimised using this hybrid in 

experiments 6.10 and 6.11 respectively. The results illustrate that the use of random number 

of local iterations combined with the pure Baldwinian approach produces solutions with a 

quality higher than that produced by any of the proposed self-adaptive hybrids (figure 

6.27).
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Figure 6.27: Using a Random Number of Local Iterations with a Baldwinian Hybrid

(Experiments 6.10 and 6.11).

However, utilising other learning strategies can improve the search speed at the expense of 

the solution quality. In other words, the solutions quality of the tested self-adaptive hybrids 

was better than that produced using random values of the control parameters.

The experiments presented in this chapter demonstrate that the criteria used to discriminate 

between solutions may be suitable to efficiently and effectively adapt the control 

parameters of the pure genetic algorithms and specific class of hybrids. This class includes 

hybrids, whose individuals' fitnesses cost an equal number of function evaluations, in 

addition to hybrids that utilise a low cost local search method. However, the use of the 

evolutionary self-adaptive metaphor to adapt the control parameters of other classes of 

hybrids, where the individuals consumed different numbers of function evaluations, can 

produce effective hybrid algorithms when utilising the pure or partial Lamarckian learning 

strategies. These experiments also showed that the SADH algorithm performed poorly 

when combined with the pure Baldwinian approach due to the hindering effect problem.
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The performance of this combination can be improved by combating the hindering effect 

through using local search methods with very short durations.

These experiments also demonstrated that the improvement in performance of the non-pure 

Baldwinian approaches becomes more significant as the dimension of the fitness function 

increases. This can be explained in terms of the cost of the adaptation process. The cost of 

adapting a single control parameter becomes less significant as the number of variables of 

the function to be optimised increases.

The experiments also illustrate that the co-evolutionary self-adaptive hybrid algorithm 

outperforms the evolutionary self-adaptive hybrid algorithm. Ensuring that the control 

parameter is subjected to the mutation and the crossover operations at the same rate of other 

search variables significantly improves the self-adaptive hybrid performance using the pure 

Baldwinian approach. It also improves the performance of hybrids that adopted other 

learning strategies. The co-evolutionary self-adaptive algorithm accelerates the rate of 

adaptation of the control parameter and maintains diversity in its values.
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The way of utilising gained information through local search within a hybrid 

genetic algorithm has a great impact on the performance of the search process (Whitley et 

al. 1994). Due to the similarities in the role of the local search within the genetic search and 

the role of learning within the evolution process, the local search is usually viewed as a 

learning process. For this reason, hybrid genetic algorithms use local search information 

utilisation approaches that are inspired by biological learning models. These approaches are 

the Lamarckian and the Baldwinian (Hinton and Nolan 1987) learning strategies. In 

addition to these basic models of learning, a third model, which is referred to as partial 

Lamarckianism (Orvosh and Davis 1993) (Houck et al. 1997) (Joines et al. 2000b) 

(Espinoza et al. 2001) (Ishibuchi et al. 2003) and Baldwinian-Lamarckian hybrid (Sung- 

Soon and Byung-Ro 2005), has been widely used. This model is a hybrid of the 

Lamarckian and the Baldwinian strategies in order to get the best out of both.

The effectiveness of using the Lamarckian approach, the Baldwinian approach, or a mixture 

of them in a hybrid genetic algorithm is affected by the fitness landscape, the genetic 

algorithm setup (Michalewicz and Nazhiyath 1995) (Ishibuchi et al. 2005), the percentage 

of population performing local search (see chapter 4), the duration of local search (see 

chapter 3), and the local search method used (Ku and Mak 1997). With the restricted 

amount of theory currently available for choosing the learning strategy that best matches a 

given black box problem in a hybrid search, it is reasonable to ask whether the effects of 

this choice on performance might be reduced via some intelligent means while the search is 

progressing. Houck et al. (1997) suggested that applying different mixtures of the 

Lamarckian and the Baldwinian approaches over the course of the genetic run can be more 

beneficial than applying a single basic learning model or a fixed mixture of learning models 

during the entire run.

The aim of this chapter is to investigate the use of an adaptive approach to decide on the 

learning mechanism. Assigning different learning strategies for the population’s individuals 

over the course of the run via some intelligent means is investigated through applying 

evolution to self-adapt the learning mechanism within a hybrid genetic algorithm. This 

chapter examines the effect of this form of adaptation on the hybrid’s performance in order 

to get some insight into its advantages and disadvantages. It also investigates the 

interactions between this form of adaptive learning and the Self-Adaptive local-search-
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Duration Hybrid (SADH) (chapter 6) and the Adaptive Staged Hybrid (ASH) (Espinoza et 

al. 2001) algorithms.

This chapter starts with a very brief review of the learning approaches used in hybrid 

genetic algorithms. Then, it goes on to describe the proposed adaptation mechanism and the 

way it works. This chapter concludes by presenting and discussing the results of the 

experiments that have been conducted using the Self-Adaptive local-search-Duration 

Hybrid (SADH) and the Adaptive Staged Hybrid (ASH) algorithms on a selected set of test 

functions.

7.1 Utilising local search information

Local search methods are incorporated into genetic algorithms in order to improve 

the algorithm’s performance through learning. The utilisation of local knowledge of a 

sampled solution through learning can improve the chances of good building-blocks to 

propagate into the next generation even in the case of being sampled by solutions of under 

average fitness. Learning can also refine sampled solutions in order to build better building- 

blocks. The way by which gained information is utilised within a hybrid genetic algorithm 

influences the performance of the search process. Using an appropriate learning mechanism 

can accelerate the search towards the global optimum. On the other hand, employing an 

inappropriate mechanism can either cause a premature convergence problem or decelerate 

the search towards the global optimum.

Two basic learning models, which are the Lamarckian and the Baldwinian approaches, 

have been used to utilise local information. In the former approach, both the genetic 

structure and its fitness merit are changed to reflect the improvement in individual traits as 

a result of performing local search. In the Baldwinian approach, only the fitness is changed 

to reflect this improvement. A third approach, which is known as partial Lamarckian, has 

also been used widely. In this approach, the structures of only a part of the individuals that 

performed a local search are updated. The reader can refer to section 2.4 for more details on 

these learning models.

The adoption of any form of learning in a hybrid genetic algorithm has a great impact on its 

performance. Several researchers have investigated how these different leaning strategies 

affect the performance of hybrid genetic algorithms by comparing them with pure genetic 

algorithms. Gruau and Whitley (1993) compared Lamarckian, Baldwinian and pure genetic 

algorithms in evolving the architecture and the weights of neural networks that learn 

Boolean functions. They conclude that using either form of leaning is better than using a
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pure genetic algorithm. Orvosh and Davis (1993) found that 5% partial Lamarckian is the 

optimal learning strategy to solve the survival network design problem and the graph 

colouring problem. Michalewicz and Nazhiyath (1995) replaced 20% of the repaired 

solutions in their hybrid algorithm to solve numerical optimisation problems with nonlinear 

constraints. Bala et al. (1996) showed how the Baldwin effect can improve the performance 

of a genetic algorithm when integrated with a decision tree in order to evolve useful subsets 

of discriminatory features for recognizing complex visual concepts. However, Ku and Mak 

(1997) found that only using Lamarckian evolution improved the performance of genetic 

algorithm in evolving recurrent neural networks. They also concluded that effective 

hybridisation depends on the local search method used and learning frequency. Houck et al. 

(1997) used seven problems to compare the performance of different learning strategies. 

Their investigation concluded that neither the pure Lamarckian nor pure Baldwinian 

strategy was found to be consistently effective. It was discovered that the 20% and 40% 

partial Lamarckian search strategies yielded the best mixture of solution quality and 

computational efficiency based on a minmax criterion (i.e. minimising the worst case 

performance across all test problems instance). Sasaki and Tolcoro (1997) found that 

adaptation by Lamarckian evolution was much faster for neural networks than Darwinian 

evolution in a static environment. But when the environment changed from generation to 

generation, the Darwinian evolution was superior. Julstrom (1999) reported that Baldwinian 

strategies are performing poor in solving the 4-Cycle problem compared to a pure genetic 

algorithm and their effectiveness deteriorating with an increasing use of learning in contrast 

to Lamarckian strategies He also found that leaning all the individuals using Lamarckian 

strategy produced the most effective results. Joines et al. (2000b) found that using the pure 

Lamarckian approach (100% Lamarckian) produced the best convergence speed to the best 

known solution when solving the cell formation problem. Espinoza et al. (2001) used 75% 

partial Lamarckian as the optimal learning strategy in their hybrid to optimise two simple 

continuous functions. Ishibushi et al. (2005) found that the 5% partial Lamarckian worked 

well on the multi-objective 0/1 knapsack problem using a single population model, 

however, the 50% partial Lamarckian was the optimal choice using the island model.

7.2 The evolutionary self-adaptation of learning approach

It is almost impossible to know which learning strategy is most suitable for a 

problem when there is only limited knowledge of the fitness landscape available. With the 

restricted amount of theory currently available for choosing the learning strategy that best 

matches a problem with no knowledge of its fitness topology in a hybrid search, the use of
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an effective adaptive technique to decide on learning strategy while the search is processing 

would clearly be of benefit.

The idea behind the adaptive strategies is that, as the search progresses, the effectiveness of 

each learning strategy in dealing with the current problem can be learnt. Knowledge about 

the current population of solutions and each learning strategy can be built dynamically 

online, so identifying the strengths and weaknesses of the learning approach for the 

problem currently being worked on, given its current state.

The use of evolution to self-adapt the learning mechanism can help to discover the 

effectiveness of each learning approach in dealing with a given problem online. This 

adaptation can improve the hybrid’s chances to find good solutions by enabling the 

different learning approaches to compete and cooperate with each other. By encoding the 

learning strategy used by an individual into its chromosome, the global genetic algorithm 

can promote competition among the different learning strategies based on its ability to 

improve the fitness of its associated solution. A good learning strategy will lead to good 

individuals and these will probably have more chances to survive and propagate the 

encoded learning approach. Applying the evolutionary self-adaptation metaphor to decide 

on the learning strategy can also promote cooperation between the two basic learning 

models in order to improve the search’s performance. The use of a suitable learning 

approach depending on the genetic structure of an individual, and the current search state, 

may lead to a search algorithm that makes use of the available learning strategies to 

improve the whole population’s performance. By ensuring the participation of the two basic 

learning models in the problem search, the strategy promotes joint operation and hence 

cooperation between learning models.

7.2.1 The algorithm

The evolutionary self-adaptive learning mechanism was incorporated into the 

SADH and the ASH algorithms. An additional bit was appended to the end of an 

individual’s chromosome. The association of the learning strategy with a solution through 

binding them into the same chromosome can help to associate the success or the failure of a 

learning technique to a specific solution or solutions of similar genetic structures.

In the case of the SADH algorithm, the bit that represents the learning strategy is located 

after the genes that represent the number of local search iterations. However, for the ASH 

algorithm, the learning strategy bit is located after the genes that represent the function 

variables. After performing a local search operation and before returning to the global
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genetic algorithm, the algorithm reads the value of the learning strategy bit to decide 

whether to change the genetic structure and the fitness score of the initial solution to match 

that of the improved solution 01* keep its genetic structure unchanged and modify the fitness 

score only. In these algorithms, the value of 1 was used to represent the Lamarckian 

approach, while the Baldwinian learning was represented by the value of 0. Depending on 

the value of the learning strategy gene, the hybrid decides on the learning strategy to use in 

order to utilise local search information of a given solution.

7.3 Experiments

For the purpose of evaluating the proposed learning adaptation mechanism, it was 

incorporated within the two adaptive hybrid algorithms. The performance of the resulting 

algorithms was compared with the performance of the two hybrids using fixed percentages 

of partial Lamarckian. The quality of the solutions produced by each algorithm and the 

speed of convergence were used to assess the algorithm’s performance. The percentage of 

experiments that converged to the global optimum was used as an indication of the ability 

of the proposed adaptive learning mechanism to produce high quality solutions. The 

performance was compared using different population sizes in order to evaluate the ability 

of the proposed mechanism to adapt to different search environments. The speed of finding 

the global optimum was also used to evaluate the performance of the self-adaptive learning 

strategy.

A set of test functions has been chosen to evaluate the use of evolution to self-adapt the 

learning strategy. Four test functions have been used to evaluate the ability of this form of 

adaption to improve the search performance compared to that of the pure Lamarckian, the 

pure Baldwinian and fixed partial Lamarckian approaches.

The test functions suite includes the 10-dimensional ellipsoidal (Deb et. al 2002), the 10- 

dimensional Rastrigin (Torn and Zilinskas 1989), the 10-dimensional Schwefel 

(Miihlenbein et. al 1991), and the 10-dimensional Griewank (Miihlenbein et. al 1991) test 

functions. The reader can refer to chapter 6 for more details on these functions.

The results of optimising the test functions using the self-adaptive learning mechanism 

were evaluated against the results obtained by using fixed learning strategies. The fixed 

learning strategies tested were the pure Baldwinian (0% partial Lamarckian), the 25% 

partial Lamarckian, the 50% partial Lamarckian, the 75% partial Lamarckian and the pure 

Lamarckian (100% partial Lamarckian).
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The hybrids use the simple elitist genetic algorithm with binary tournament selection, two- 

point crossover, and simple mutation. For all experiments, the probability of crossover was 

set to 0.7 and the probability of mutation was l/N  where N  is the population size. For the 

ASH algorithm, the maximum number of local iterations was 3, e was 0.2, and the local 

threshold value was 0.6. The ASH algorithm tested using different values of initial local 

search probability, which are of 0.1, 0.2, and 0.99. For the SADH algorithm, the maximum 

number of local search iterations was set to 3.

The stopping criterion for all experiments was a maximum number of function evaluations. 

The value of this parameter was set to 2000 times the population size for the Rastrigin, the 

Schwefel, and the Griewank test functions, and to 500 times the population size for the 

ellipsoidal test function due to its simplicity. Each experiment was repeated 50 times.

A local search method, which combines the steepest descent method and Brent’s method 

(Press et al. 1993) to estimate the best step size to climb to the local optimum from the 

current position in the basin of attraction, was used. The steepest descent algorithm uses the 

derivatives of the fitness function to estimate the best step size to climb to the local 

optimum from the current position in the basin of attraction. Brent’s method fits a parabola 

to three initial solutions and uses the maximum of the parabola as the next potential 

solution of the overall function (chapter 2).

In these experiments, the self-adaptive learning strategy mechanism was evaluated in terms 

of quality of the solutions produced, convergence speed and in terms of its ability to adapt 

to different fitness landscapes.

7.3.1 Search effectiveness

The percentage of times a hybrid algorithm found a global optimum using the 

proposed adaptation mechanism is compared with that of using fixed learning strategies. 

These percentages were used to evaluate the effectiveness of the proposed adaptive learning 

mechanism when combined with different hybrids in solving the test problems.

In experiment 7.1, the proposed adaptation mechanism and fixed learning strategies were 

utilised within the two hybrids to find the global optimum of the ellipsoidal test function. 

Figure 7.1 compares the percentage of times that the different hybrids found this optimum. 

The graphs show that combining the adaptive learning technique with the ASH algorithm 

produced better performance than that produced by combining it with the pure Baldwinian 

approach for different initial probabilities of local search and different population sizes.
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The combination produced a performance that is similar to that produced using the 25% 

partial Lamarckian. The graphs of the SADH algorithm illustrate that the adaptive learning 

mechanism produced the best performance for population sizes of 150, 200 and 250 

compared with that produced by using different fixed learning strategies.
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Figure 7.1: Percentages Converged to the Global Optimum of the Ellipsoidal Function

(Experiment 7.1).

The results of the experiment 7.2, which evaluated the effect of the self-adaptive learning 

mechanism on the search effectiveness on the 10-dimesional Griewank test function, are 

shown in figure 7.2. The plots illustrate that the performance of the ASH algorithm was 

improved when combined with the self-adaptive learning compared to that when combined 

with fixed learning techniques for most of the tested population sizes and probabilities of 

local search. The results of applying the adaptive learning mechanism to the SADH 

algorithm show that this mechanism outperformed the pure Baldwinian and the 25% 

Lamarckian approaches for all the tested population sizes.

159



Chapter 7 Self-adaptive learning approach

A SH  (Po= 0.1)

Pure Baldwinian 
25%  Lamarckian 
50% Lamarckian 
75% Lamarckian 

I r ~ |  Pure Lam arckian 
[~ ~ l Adaptive

o
150 200

A SH  (P o=0 .2 )
■3 100

150 200
A S H  (P o=0 .99)

SADH
0 -1 0 0

150 200
Population S ize

Figure 7.2: Percentages Converged to the Global Optimum of the Griewank Function

(Experiment 7.2).

The self-adaptive learning mechanism was used to optimise the 10-diemsional Rastrigin 

function using the two hybrids in experiment 7.3. The proposed mechanism produced a 

similar performance using the two hybrids in terms of the number of experiments that 

found the function’s global optimum as shown in figure 7.3. The two hybrids when 

combined with the self-adaptive learning produced a performance that is similar to that is 

produced by the partial 25%, 50%, 75% and 100% Lamarckian approaches, which 

produced the best performance for most of the tested population sizes.
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Figure 7.3: Percentages Converged to the Global Optimum of the Rastrigin Function

(Experiment 7.3).

The self-adaptive learning technique outperformed the pure Baldwinian approach in terms 

of solution quality when applied to solve the 10-dimensional Schwefel problem using the 

different adaptive hybrid algorithms in experiment 7.4 as depicted in figure 7.4. The self- 

adaptive mechanism when combined with the ASH algorithm outperformed the partial 25% 

Lamarckian approach in all experiments except the one which combined a population size 

of 200 with a local search probability of 0.1. The graphs for the ASH algorithm show that 

there is no significant difference between the performance of this adaptation mechanism 

and the best found fixed learning strategy in about half of the tested combinations of 

population sizes and local search probabilities.

The plots of the SADH algorithm show that the adaptive learning strategy technique 

outperformed the pure Baldwinian learning strategy, which produced the worst 

performance in these experiments. This can be explained based on the fact that allowing a 

small fraction of the population to evolve according to the Lamarckian learning can help to 

alleviate the hindering effect which, in turn, improves the possibility of finding the global 

optimum.
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Figure 7.4: Percentages Converged to the Global Optimum of the Schwefel Function
(Experiment 7.4).

7.3.2 Search efficiency

The number of function evaluations needed by a hybrid algorithm to find the global 

optimum of a specific function was used to measure the effect of the self-adaptive learning 

mechanism on the search efficiency. The convergence speed of the hybrids that use the 

adaptive learning technique was compared with those using fixed learning strategies.

The convergence speed of different hybrids in finding the global optimum of the different 

test functions in the previous experiments are shown in figures 7.5-7.8. The graphs compare 

the speed of the self-adaptive learning technique with the selected set of fixed learning 

strategies. However, the graphs of the pure Baldwinian learning strategy were excluded 

from these figures since in most of the cases it failed to find the global optimum.

Figure 7.5 shows the results of comparing the convergence speed of the two hybrids in 

finding the global optimum of the ellipsoidal function using the proposed mechanism with 

that of using fixed learning strategies. The graphs for the ASH algorithm show that the 

adaptive learning technique found the global optimum of the ellipsoidal function faster than
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those using fixed learning strategies. The difference in the convergence speed becomes 

apparent as the population size increases. However, the self-adaptive learning technique, 

when combined with the SADH algorithm, produced the worst performance compared with 

the fixed learning techniques excluding the pure Baldwinian approach.
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Figure 7.5: Convergence Speed of the Ellipsoidal Function (Experiment 7.1).

The results of comparing the convergence speed of the adaptive learning with the fixed 

learning approaches on the Griewank function in experiment 7.2 are shown in figure 7.6. 

These graphs show no significant difference between the adaptive and the fixed learning 

strategies when combined with the ASH algorithm regardless of the local search 

probability. However, the adaptive learning technique produced the worst performance 

when combined with the SADH algorithm compared with the fixed learning strategies 

excluding the pure Baldwinian approach.
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Figure 7.6: Convergence Speed of the Griewank Function (Experiment 7.2). 1

The graphs in figure 7.7 show the speed of finding the global optimum of the Rastrigin

function in experiment 7.3. It can be seen that the adaptive learning strategy is the second

fastest learning mechanism when combined with the ASH algorithm using a local search £

probability of 0.2. However, it is the second slowest when used with a local search ^

probability of 0.99. The curves also illustrate that the self-adaptive learning mechanism <

produced the worst performance when combined with the SADH algorithm. *

4
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Figure 7.7: Convergence Speed of the Rastrigin Function (Experiment 7.3).

The results of experiment 7.4 showed that the adaptive learning mechanism was almost the 

fastest in finding the global optimum of the Schwefel function when combined with the two 

adaptive hybrid algorithms and using different population sizes, as illustrated in figure 7.8. 

These graphs also show that the proposed learning mechanism was the fastest when 

combined with the ASH algorithm regardless of the probability of local search used.
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Figure 7.8: Convergence Speed of the Schwefel Function (Experiment 7.4).

7.3.3 Evolution of learning strategy

The ability of the self-adaptive learning strategy to adapt to different fitness 

landscapes and population sizes was evaluated through monitoring the changes in the 

learning strategy over time. The graphs of the evolution of the learning strategy and the best 

fitness for two test functions and using two population sizes are presented and discussed in 

this section. The changes in the percentages of the population that used the different local 

search iterations over generations are also presented in the case of the self-adaptive hybrid 

algorithm. Each graph shows the results of 50 experiments.

Figure 7.9 shows the evolution of the best fitness, the learning strategy and the duration of 

local search of the SADH algorithm when used to solve the ellipsoidal problem in 

experiment 7.1. The graphs illustrate that, at the early stages of search, the fraction of the 

population that evolved using the Baldwinian learning increased slightly. After that, the 

percentage of the population that used Lamarckian learning increased as the search 

progressed until the whole population became using the Lamarckian approach. The figure

166



Chapter 7 Self-adaptive learning approach

clearly shows that the increase in the number of individuals that using the Lamarckian 

approach is accompanied by an increase in using long durations of local search.
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Figure 7.9: The Evolution of Learning Strategy when Solving the Ellipsoidal Problem

(Experiment 7.1).

The graphs of the Rastrigin function in figure 7.10 show a similar trend to that found in 

figure 7.9. They show that the fraction of population that evolved using the Lamarckian 

search increased as the search progressed. The graphs in figure 7.10 also show that there is 

a trend to use short durations of local search accompanied with the use of the Baldwinian 

search. This trend is apparent at the final stages of the search using a population size of 100, 

where individuals tended to use short durations of local search to overcome the hindering 

effect problem associated with the Baldwinian strategy. This clearly shows the ability of the 

self-adaptation mechanism to discover the relations between different control parameters 

such as the relations between the learning strategy and the duration of local search. The 

difference in the number of function evaluations consumed at each local search process 

caused the algorithm to evolve to different number of genetic generations. For example, the 

graphs for the population size of 100 in figure 7.10 show that most the experiments 

consumed their budget of function evaluations by the 11th generation. The graphs also
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illustrate that the evolution trajectory of the learning strategy in the Rastrigin function is 

more complicated than that of the ellipsoidal function.
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Figure 7.10: The Evolution of Learning Strategy when Solving the Rastrigin Function

(Experiment 7.3).

Figure 7.11 shows how the learning strategy evolved over time when combined with the 

ASH algorithm to solve the ellipsoidal function using a population size of 100 in 

experiment 7.1. The figure shows the same trend that the figures of the SADH algorithm 

show. As the search progressed, the number of solutions that evolved according to the 

Lamarckian learning increased. The plots show that, for a local search probability of 0.1, 

the percentage of the population that evolved using the Lamarckian approach was in the 

range between 70 and 100. However, for a local search probability of 0.99, this percentage 

approached 100, as the search progressed. This can be explained based on that using a small 

probability of local search can help to fight the hindering effect which, in turn, enables the 

algorithm to find the global optimum even when combined with the Baldwinian approach. 

On the other hand, the probability of finding the global optimum increases with the increase 

in the partial Lamarckian approach for high probabilities of local search once the algorithm 

guided the search to the global optimum’s basin of attraction. These graphs also
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demonstrate that the hybrid that used a local search probability of 0.1 was faster than the 

one using a probability of 0.99 in optimising the learning strategy control parameter since it 

has more chances to evolve in the first case than in the latter one. This is due to the 

differences in the number of function evaluations consumed at each local search process.
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Figure 7.11: The Evolution of Learning in the ASH Algorithm Solving the Ellipsoidal

Function (Experiment 7.1).

The figure 7.12 shows the results of optimising the Rastrigin function using a population 

size of 200 in experiment 7.3. The fitness landscape of this function is more complicated 

than that of the ellipsoidal function. This, in turn, makes the evolution path of the learning 

strategy more complicated. The graphs also show that as the local search probability 

increases, the trend towards using more Lamarckian increases.

7.4 Conclusions

The experiments conducted illustrate that the use of the self-adaptive learning 

strategy can be beneficial. It can improve the search ability of finding solutions of high 

quality and can accelerate the search. They also show that this mechanism was able to adapt 

with different environments. That was illustrated by testing this mechanism on a set of
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different test functions using two different adaptive hybrid algorithms with different control 

parameters.

These experiments demonstrate that combing the self-adaptive with the ASH algorithm 

produced an algorithm that is faster than the tested fixed learning strategies on most of the 

tested functions. However, combining the SADH algorithm with this mechanism produced 

a slow search algorithm. The combination of both was able to find the global optimum of 

the whole set of test function more often and faster than that of the fixed pure Baldwinian 

approach.
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hybrids

The pheromone trail metaphor (Dorigo et al. 1991) is a simple and effective way to 

accumulate the experience of the past solutions in solving a given problem. Ant-based 

optimisation algorithms (Dorigo and Di Caro 1999) have successfully employed this 

metaphor to solve a large number of hard optimisation problems.

The problem of achieving an optimal utilisation of a hybrid’s search time can be viewed as 

a problem of finding an optimal set of control parameters for that hybrid. In chapter 6, the 

use of evolution to self-adapt the duration of local search, as a way to strike a balance 

between exploration and exploitation, was investigated. The results of the experiments 

showed that evolutionary self-adaptation can produce an effective search algorithm but not 

necessarily an efficient one. They also showed that the impact of the hindering effect on 

obscuring genetic differences can obstruct the Baldwinian search’s self-adapting ability. In 

chapter 7, the evolution metaphor was applied to self-adapt the learning strategy in a hybrid 

and tested using the self-adaptive hybrid algorithm of chapter 6 and the adaptive staged 

hybrid (ASH) algorithm. The results of the experiments showed that self-adapting the 

learning strategy can be beneficial. It can improve the search ability of finding solutions of 

high quality and can accelerate the search.

In this chapter, a novel form of hybridisation between an ant-based algorithm and a genetic- 

local hybrid algorithm is proposed. In this hybrid, an ant colony optimisation algorithm is 

used to monitor the behaviour of a genetic-local hybrid algorithm in order to dynamically 

adjust the probabilities of using the genetic operators, the local search operator, its duration, 

and the learning strategies to adapt the hybrid’s performance to a given problem.

This chapter starts by introducing ant colony optimisation. Then, the different combinations 

of ant-based optimisation techniques and genetic algorithms are reviewed. The basic idea 

of the proposed hybrid is explained in the section that follows. That section also explains 

how the pheromone trail metaphor can be applied to adapt the control parameters of a 

genetic-local hybrid algorithm in order to strike a balance between exploitation and 

exploration based on the nature of a given problem. This chapter ends by presenting and 

discussing the results of a set of experiments that compare the ant-based and the 

evolutionary self-adapting techniques.
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8.1 Ant colony optimisation

Ant-based optimisation algorithms are bio-inspired population-based optimisation 

techniques that have been applied successfully to solve a large number of hard optimisation 

problems. These search techniques simulate the collective behaviour of ants, which 

exchange information using a simple form of indirect communication mediated by 

pheromone formation, known as stigmergy (Dorigo et al. 1999). This form of stigmergtic 

communication plays a crucial role in ant foraging behaviour. This behaviour is a kind of 

distributed optimisation mechanism in which each single ant contributes to the finding of 

the shortest path to food sources. Although a single ant is capable of finding a path between 

nest and food source, it is the ant colony which finds the shortest path. The stigmergtic 

communication also explains the ant’s ability to adapt to changes in the environment, such 

as new obstacles interrupting the currently shortest path.

The first ant-based optimisation algorithm was the ant system (Dorigo et al. 1991), which is 

a model of positive feedback, distributed computations, and a constructive greedy heuristic, 

to solve combinatorial problems. The ant colony system (Dorigo and Gambardella 1997) is 

an improvement to the ant system, where the level of exploration undertaken by the ants 

can be controlled. These variations on the original ant system led to the development of the 

Ant Colony Optimisation meta-heuristic (ACO) (Dorigo and Di Caro 1999), which 

describes a class of ant-inspired optimisation algorithms.

Ant colony optimisation algorithms are very effective in solving discrete optimisation 

problems such as the travelling salesperson problem (TSP) (Dorigo et al. 1991) (Dorigo and 

Di Caro 1999), the quadratic assignment problem (Maniezzo et al. 2004), vehicle routing 

(Maniezzo et al. 2004) (Dorigo et al. 1999), sequential ordering (Maniezzo et al. 2004), 

graph colouring (Shawe-Taylor and Zerovnik 2001), E-learning presentation problem 

(Semet et al. 2003) and routing in communications networks (Di Caro and Dorigo 1998) 

(Dorigo and Di Caro 1999). They have also been used to solve rea 1-parameter optimisation 

problems. Bilchev and Parmee (1995) proposed an ant-based model for continuous space 

optimisation problems. The continuous neighbourhood was represented by a finite number 

of directions as a set of vectors starting from a base point. The vectors were evolving 

according to the ants’ fitness. Different algorithms have been proposed as extensions of 

ACO for continuous search spaces to overcome the difficulties of directly applying the 

pheromone trail metaphor for continuous spaces. The Pachycondyla apicalis (API) 

algorithm (Monmarche et al 2000) and the Continuous Interacting Ant Colony (CIAC) 

(Dr’eo and Siarry 2002) used some form of direct communication that does not exist in
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regular ACO algorithms to optimise continuous functions. Socha (2004) used a normal 

distribution function, whose centre was updated according the solution of the best fitness 

value, to represent the pheromone density to solve reai-parameters problems. In the 

Aggregation Pheromone System (APS) (Tsutsui 2004), the pheromone trail was replaced 

by aggregation pheromone, whose density was represented by a mixture of multivariate 

normal distributions.

8.2 Ant colony optimisation and genetic algorithms

Genetic algorithms and ant colony optimisation algorithms can be combined to 

improve the combination’s performance in different ways. However, most of the proposed 

hybrids use only three different ways of hybridisation. The first set of hybrids is based on 

viewing the genetic algorithm as a global search method and the ant colony algorithm as a 

local search method. The second set is based on the ability of the genetic algorithms to 

adapt the control parameters of other techniques. In the last form of intergeneration, some 

genetic concepts and operators are incorporated into ant colony optimisation algorithms.

Incorporating an ant colony optimisation algorithm as a local search method within a 

genetic algorithm can improve the search performance. Bilchev and Parmee (1995) used 

their ant colony model for continuous search spaces to improve the quality of the solutions 

produced by a genetic algorithm in order to solve a heavily constrained real-world 

engineering design problem. Chen and Lu (2005) combined a genetic algorithm and an ant 

colony algorithm to solve the TSP. The hybrid starts with the ACO algorithm and switches 

to the genetic algorithm using the n optimal results from the ACO algorithm, as an initial 

population in the case of a decrease in the convergence speed and the diversity of the 

solutions of the ant algorithm. This decrease indicates that the ACO algorithm reaches a 

local optimum and utilising a genetic algorithm can help to avoid being trapped in a local 

optimum. The optimal result of a genetic iteration is used to update the pheromone trail of 

the ACO algorithm in order to improve the diversity of the solutions of the ACO algorithm. 

The hybrid switches back to the ACO algorithm if the diversity of the population falls 

below a specific threshold, where the use of the ACO algorithm can be more effective. The 

hybrid keeps a list of the n best found solutions and updates its contents at each search 

iteration.

Since genetic algorithms are in practice a very effective optimisation technique, it has been 

incorporated within ant colony optimisation algorithms to optimise their control 

parameters, which are characterised by being highly problem specific and dependent on the 

required solution accuracy (Caertner and Clark 2005). A genetic algorithm can be applied
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to optimise the control parameters of ant colony optimisation algorithms in a variety of 

ways. The ASGA algorithm (White et al. 1998) was the first algorithm that used a genetic 

algorithm to evolve the control parameters of an ant-based algorithm. The parameters 

controlling the sensitivity to the pheromone concentration, and the sensitivity to the cost of 

a network link, were evolved to solve three path finding problems in networks. Botee and 

Bonabeau (1998) used a genetic algorithm as a meta-algorithm to find the best set of 11 

control parameters of an ant colony optimisation algorithm to solve the TSP. Pilat and 

White (2002) used a genetic algorithm to evolve the control parameters of an ant colony 

optimisation algorithm to solve TSP at two different levels. A genetic algorithm was used 

as a meta-algorithm to evolve the control parameters of the ant colony system algorithm at 

a global level. The genetic algorithm was also used to evolve a population of genetically 

modified ants with their own control parameters encoded into their chromosomes. The 

encoded control parameters were used at an ant level. In their algorithm to plan a path for 

unmanned robotic vehicle in combat mission, Sauter et al. (2002) used genetic algorithms 

for automatically tuning the behaviour of the pheromone equation. Caertner and Clark 

(2005) also proposed a hybrid algorithm, where genetic algorithms were used to evolve ants 

with their encoded control parameters, in order to find optimal values of these parameters 

based on the state of ant search to solve the TSP.

Genetic models and operators can incorporated in many ways into ant colony optimisation 

algorithms to improve their performance. Different selection mechanisms that are used in 

genetic algorithms were implemented and tested with an ant colony optimisation algorithm 

to dynamically optimise the structure of an online teaching website based on the 

recommended structure, the collective experience of students, and the particularities of each 

student (Semet et al. 2003). Fitness ranking together with the steady state evolutionary 

model was incorporated into the aggregation pheromone system (APS) to solve a set of 

continuous uni-modal and multimodal problems (Tsutsui et al. 2005).

8.3 Ant optimisation and qenetic-local hybrid self-adaptation

The success of a hybrid algorithm in solving a given problem efficiently depends 

on its success in achieving a balance between exploration and exploitation (see chapter 2 
and 6). The appropriate balance of exploration and exploitation required for good 

performance depends on the amount of diversity in the population, the details of the genetic 

and the local operators, the learning strategies and the problem to be optimised. This 

balance is usually achieved by finding an optimal set of the hybrid’s control parameters for 

a given problem. The use of a mechanism to dynamically identify the effectiveness of
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different genetic and local operators and learning strategies for the problem currently being 

worked on can help to improve the hybrid’s performance. Knowledge about previous and 

current solutions, the operators, and the learning strategies used to produce them, can be 

utilised as a base to identify the strengths and the weakness of these operators and 

strategies.

The basic idea of the proposed hybrid is that, as the search progresses, the effectiveness of 

the genetic operators, the local search method, the duration of local search, and the learning 

strategies, on the performance of a hybrid genetic algorithm in dealing with the current 

problem can be learnt by using an ant-based algorithm as a reinforcement learning 

approach. The pheromone trail metaphor can be used to accumulate the experience of the 

past solutions on the efficiency and the effectiveness of using different operators to find a 

solution of the current problem.

Pheromone trail behaviour can be applied to solve the problem of dynamically adjusting the 

probabilities of using the different genetic and local operators and learning strategies.

A population or a colony of ants collectively searches for a sequence of genetic operations, 

local search operator with a suitable duration, and a learning strategy, that produces an 

effective and efficient solutions to the problem under consideration. The search space and 

the neighbourhood notion of the problem of adapting the performance of a genetic-local 

hybrid to a given problem can be viewed as shown in figure 8.1. Each ant performs a 

sequence of local moves between the different states of its search task in order to find a 

sequence of operations that improves the solutions in efficient way. Each state of the 

problem’s search space has a complementary state. For example, the complementary state 

of the “crossover” state is the “no crossover” state, while the complementary of the 

“Lamarckian” state is the “Baldwinian” state.

An ant moves through adjacent states starting from the selection state, which is the only 

state without a complementary state, and ending its tour with either the “Lamarckian” or the 

“Baldwinian” state. Each movement of an ant is accompanied by performing one of the two 

alternatives on a solution. The path that is followed by an ant defines the sequence of 

genetic operations, local operation, its duration, and the learning strategy that are applied on 

a solution. This path is assigned a merit score, which is equal to the fitness improvement in 

the solution as a result of performing this sequence of operations. At the end of the ant’s 

tour, it releases an amount of pheromone on the edges of the path it used to build a solution 

based on the merit score of the tour. The density of pheromone on the paths that lead to
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high improvements in solutions’ fitness will be higher than the others which lead to less or 

no improvement. This will probably encourage other ants to follow the paths with a high 

density of pheromone. This means that the sequence of genetic and local operators and 

learning strategies that lead to solution improvements will be preferred by most of the new 

candidate solutions. These preferred sequences of operations will be dynamically built 

based on the fitness landscape of a given problem. This can promote competition amongst 

the different operators and learning strategies based on its ability to improve the fitness. It 

can also promote cooperation between the different operators and learning strategies in 

order to discover more effective sequences of operations. This technique can produce a 

hybrid genetic algorithm that able to adapt itself to a given problem without the need for 

external control.

Figure 8.1: The Search Space and the Neighbourhood Notion.

An ant selects the next state from its adjacent states using a probabilistic decision policy. 

An ant decides to move from its current state to one of the available next two states, which
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will be referred to as the Next Do state or the Next Alternative state. The decision policy, as 

given in equation 8.1, is based on the density of pheromone on the two branches that 

connect the current state to these states.

P  _ TC-NDo________
r C-NDo ~

C—NDo C-NAlter (8.1)

P  =  1 -  P1 C-NAlter 1 1 C-NDo

where Pc_NDo is the probability of moving from the current state to the Next Do state, 

Pc-NMter ls probability of moving from the current state to the Next Alterative state, 

t c- nd,> is the trail density on the edge connecting the current state to the Next Do state, and 

^ c- nAlter ^ie h'ail density on the edge connecting the current state to the Next Alterative 

state. For example, if an ant is at the “crossover” state, the probability of moving to the 

“mutation” state is given by equation 8.2.

p = ^ - Ejf z —  <8-2>TX-M ~t~TX-NM

where PX_M is the probability of moving from the “crossover” state to the “mutation” state, 

Tx_m is the trail density on the edge connecting the “crossover” state to the “mutation” 

state, and TX_NM is the trail density on the edge connecting the “crossover” state to the “no 

mutation” state.

Initially all the edges of the possible operations paths are assigned an equal trail density. 

Therefore, all the adjacent states have an equal opportunity to be visited. All the ants start 

from the selection state. After the genetic algorithm performs the selection operation, each 

ant is randomly assigned an individual of the mating pool. That ant will decide on the 

sequence of operations that individual should perform. The decision is taken locally based 

on the current ant’s state and using the decision policy given in equation 8.1. The ant’s tour 

ends by choosing one of the available learning strategies. At the end of that tour, the ant 

deposits an amount of pheromone on the edges of the path it followed. The amount of 

pheromone deposited is made equal to the improvement in the fitness of the associated 

solution. This can induce the ants towards promising search regions of effective sequences 

of operators. The change in trail density on each edge of the followed path is given by 

equation 8.3.
fAfitness,- i f  Afitness > 0

^ t u,c- n) ~  ] n  , . (8-3)[ U otherwise

where AT{iC_N) is the change in the trail density of the edge connecting state C to state N  

as a result of following the path constructed by ant i. The aim of rewarding sequences of
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operations that produce an improvement in fitness and not penalising paths that reduces the 

performance is to encourage exploring the search space.

The algorithm updates the pheromone at the end of the ant colony iteration (i.e. after every 

member of the colony has completed its tour), which is known as offline updating, to bias 

the search from a global perspective. The amount of pheromone on the edge connecting the 

C state with the N  state after updating it according to the results of the ant tour is given by 

equation 8.4.

^"(I+I.C-AO =  T( i , C - N )  +  ^ ( i , C - N )  (8-4)

8.4 Experiments

For the purpose of evaluating the proposed Ant-based Self-Adaptive Hybrid 

Genetic (AntSAHG) algorithm, its performance was compared with an Evolutionary Self- 

Adaptive Hybrid Genetic (ESAHG) algorithm, which uses evolution to select the genetic 

operators, the local operator, its duration and the learning strategy that should be performed 

on each individual. For each operation (strategy), a digital bit is encoded into the 

individual’s genetic structure which determines whether to perform that operation (use that 

strategy) or its alternative (see figure 8.1). The duration of local search is represented by 

two bits that specify the number of local iterations (chapter 6).

The quality of the solutions produced by each algorithm was used as the main measure of 

the algorithm’s performance. The percentage of experiments that converged to the global 

optimum was used as an indication of the ability of the algorithms to produce high quality 

solutions. The performance was compared using different population sizes in order to 

evaluate the ability of these algorithms to adapt to different search environments. The 

performance of the two algorithms is compared in terms of the speed of finding a global 

optimum. These algorithms were also evaluated in terms of their ability to adapt to different 

fitness landscapes and population sizes.

A set of test functions has been chosen to evaluate the performance of the two self-adaptive 

algorithms. Five test functions have been used as a test suite. This test functions suite 

includes the 20-dimensional ellipsoidal (Deb et. al 2002), the 20-diinensional Rastrigin 

(Torn and Zilinskas 1989), the 20-dimensional Schwefel (Mtihlenbein et. al 1991), the 20- 

dimensional Griewank (Mtihlenbein et. al 1991), and the 20-dimensional ridge (Deb et. al 

2002) test functions. The reader can refer to chapter 6 for more details on the first four 

functions.
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However, the n-dimensional inverted ridge function (Deb et al. 2002) is defined as

The ridge function is a unimodal function, but it has an epistasis among its variables.

The hybrids use the simple elitist genetic algorithm with binary tournament selection, two- 

point crossover operator, and a mutation operator with a probability of 0.01. The hybrids 

use a local search operator, which combines the steepest descent method and Brent’s 

method to estimate the best step size to climb to the local optimum from the current 

position in the basin of attraction (Press et al. 1993). In addition to that, an adaptive initial 

step size based on the changes in the standard deviation of the population fitness was used. 

The use of such an adaptive step size can add an exploring role to the local search method 

at the early stages of search. This adaptive initial step size can improve the Baldwinian 

search since it can improve the genetic sampling ability at the early stages and can combat 

the hindering effect as the search approaches the fitness-convergence-state.

Population sizes of 100, 150, 200, 250 and 300 were used to optimise the test functions 

using the two self-adaptive hybrids. Each variable was represented by a string of 10 bits. 

The stopping criterion for all experiments was a maximum number of function evaluations. 

The value of this parameter was set to 5000 times the population size. Each experiment was 

repeated 50 times.

In the AntSAHG algorithm, the number of ants was set equal to the number of individuals 

of the genetic population. The amount of pheromone released was made equal to the fitness 

improvement, as given in equation 8.4, in order to ensure fair comparison with the 

evolutionary self-adaptive technique, which uses the individual’s fitness to assess the 

effectiveness of a control parameter in solving a given problem (see chapter 6). However, 

the ant algorithm divides the whole tour into two stages. The first one is the genetic stage, 

where the ants decide on the genetic operators to apply on its associated solution. The 

second one is the learning stage, where the ants decide on the local operator, its duration, 

and the learning strategy. In order to evaluate these stages fairly, each stage is evaluated 

separately due to the big differences in the number of function evaluations used at these 

stages.

Instead of the evaporation mechanism, the AntSAHG algorithm adaptively modifies the 

trail density of all the possible paths to ensure that the probability of each of the alternative 

operations or strategies does not exceed a specific threshold. In the case of exceeding this

For -  64 < x, < 64 (B..5)
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threshold an equal amount of pheromone is added to all the possible paths. The value of the 

threshold probability was set to 0.999 and the amount of pheromone added in the case of 

exceeding this threshold was set 0.01 of the current highest trail density.

Initially all the edges of the possible operations paths are assigned an equal trail density, 

which was set to the absolute value of the average fitness of the initial genetic population.

8.4.1 Search effectiveness and efficiency

The percentages of times each hybrid algorithm found a global optimum using 

different population sizes were compared. These percentages were used to evaluate the 

effectiveness of the two self-adaptive mechanisms in solving the test problems.

The two adaptive hybrids have been used to optimise the ellipsoidal and the Griewank test 

functions in experiments 8.1 and 8.2, respectively. The results of these experiments, not 

shown here, showed that both the self-adaptive techniques were able to find the exact 

global optimum of each function in every experiment. This clearly shows the effectiveness 

of both algorithms in solving these types of problems, which can obstruct the self-adaptive 

ability of the Baldwinian search (chapter 6). The combination of the adaptive initial step 

size of local search and adaptive ability of the two hybrids can explain the improvement in 

the hybrids’ performance.

However, the results of comparing the speed of finding the global optimum of the 

ellipsoidal function, as shown in figure 8.2, show that the AntSAHG algorithm was slightly 

faster than the ESAHG algorithm. The graphs for the results of comparing the convergence 

speed to the global optimum of the Griewank function of both adapting techniques are 

shown in figure 8.3. The plots show that the AntSAHG algorithm was much faster than the 

ESAHG algorithm. The difference in convergence speed can be explained based on the fact 

that the genetic algorithm as a global search method needs a number of genetic iterations to 

evolve the control parameters in order to find the optimal ones. However, the ant-based 

algorithm needs a number of ant iterations to find these values. Each genetic iteration 

consumes a number of function evaluations which is equal to the population size times the 

number of function evaluation consumed in a single ant iteration.
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Figure 8.2: The Speed of Finding the Global Optimum of the Ellipsoidal Problem

(Experiment 8.1).
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Figure 8.3: The Speed of Finding the Global Optimum of the Griewank Function

(Experiment 8.2).

Figure 8.4 compares the percentage of times that the two self-adaptive hybrid algorithms 

found the global optimum of the Schwefel function in experiment 8.3. The graphs show 

that the AntSAHG hybrid algorithm was able to find the global optimum of the Schwefel 

function more often than the ESAHG hybrid algorithm. This can be explained by the fact 

that the ESAHG hybrid algorithm uses the fitness of an individual for evaluating both the 

quality of solutions and effectiveness of different operators and learning strategies in 

producing these solutions. On the other hand, the AntSAHG uses the improvements in 

fitness to judge the effectiveness of operators and strategies and at the same time the
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genetic algorithm uses the fitness to evaluate the solution's quality. The AntSAHG hybrid 

algorithm can easily discriminate between sequences of operators that improve the 

performance and sequences that do not improve it, whereas, the ESAHG algorithm cannot 

distinguish between them.
Schwefel Function
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Figure 8.4: The Ability to Find the Global Optimum of the Schwefel Function

(Experiment 8.3).

Figure 8.5 compares the convergence speed to the global optimum of the Schwefel function 

of both self-adaptive algorithms. These graphs show that the ESAHG algorithm was much 

faster than the AntSAHG algorithm in finding the global optimum of this function. 

However, the AntSAHG was able to find that optimum more frequently than the ESAHG 

algorithm.
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Figure 8.5: The Speed of Finding the Global Optimum of the Schwefel Function

(Experiment 8.3).

The results of experiment 8.4, which aimed to optimise the Rastrigin function, showed that 

the AntSAHG algorithm outperformed the ESAHG algorithm in terms of the percentage 

that converged to the global optimum using different population sizes, as depicted in figure 

8.6. The ESAHG was unable to find the global of the Rastrigin function of most of the 

experiments in contrast to the AntSAHG algorithm. This difference can be explained based 

on the fact the evolutionary self-adaptive behaviour can lead to the disappearance of useful 

genes of some of the control parameters and can face some difficulties in restoring them 

(see chapter 6). However, by ensuring that the probability of selecting one of the two 

alternatives does not exceed a threshold value in the AntSAHG algorithm, there is always a 

chance to select operations that did not improve the solutions’ fitness in the past search 

iterations. This enables the AntSAHG to escape local optima and improves its ability to 

recover from premature convergence. The nature of the fitness landscape of the Rastrigin 

function, where the optima are close to each other, makes the AntSAHG algorithm able to 

recover from premature convergence. However, such a recovery is more difficult in the 

case of the Schwefel function, where the second best optimum is far from the global 

optimum, once the whole population has converged to a non-global optimum.
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Figure 8.6: The Ability to Find the Global Optimum of the Rastrigin Function

(Experiment 8.4).
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The results of applying the two self-adaptive techniques to optimise the ridge function in 

experiment 8.5 are shown in figure 8.7. Here, it is also clear that the ant-based self-adaptive 

technique outperforms the evolutionary self-adaptive technique. The correlation between 

the fitness function variables, epistasis, makes the ridge function difficult to be solved using 

the genetic algorithm. The use of evolutionary self-adaptive mechanism can aggravate this 

problem due to the introduced correlation between the different control parameters and the 

fitness function variables. The use of an ant-based algorithm, on the other hand, does not 

add any correlation to the genetic algorithm.

The ESAHG algorithm was able to find the global optimum of the Griewank function in all 

the conducted experiments despite of being characterised by having a correlation between 

its variables. This correlation is a result of the product term (chapter 6) which decreases as 

the number of variables increases. The increase in the number of variables makes the 

function surface flat and easy to be solved.
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Figure 8.7: The Ability to Find the Global Optimum of the Ridge Function

(Experiment 8.5).

The differences in the number times between the AntSAHG and the ESAHG algorithms in 

finding the global optimum for both the ridge and the Rastrigin functions eliminate the need 

for comparing their convergence speed.

8.4.2 The ability of the AntSAHG algorithm to adapt to different 
environments

The previous experiments clearly show that the AntSAHG was able to adapt to 

different problems using different population sizes. However, this ability was also 

evaluated through monitoring the changes in the probabilities of using different operators 

and strategies over time. The graphs of the changes in these probabilities for the five test 

functions are presented and discussed in this section. The ability of the AntSAHG 

algorithm to adapt to different population sizes is evaluated through monitoring the changes 

in the operators’ probabilities when used to solve the ridge function using different 

population sizes. Each graph in the following figures represents the average of 50 

experiments.

Figure 8.8 shows the changes in the probabilities of using the crossover operator, the 

mutation operator, the local search operator for the first iteration and the Baldwinian 

learning strategy, when used to solve the ridge function using population sizes of 100, 200 
and 300. These graphs in general show that these probabilities followed different 

trajectories depending on the population size used. The graphs of the probability of
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crossover show that in the early stages of search, its value dramatically increased. The 

maximum value of this increase is a function of the population size. The diversity in large 

population sizes makes the use the crossover operator beneficial. This can explain the trend 

of the increase in the probability of the crossover operator as the population size increases. 

The graphs of the probability of the first local iteration and the probability of using the 

Baldwinian approach show clearly the relation between these two control parameters. The 

increase in the probability of the first local search iteration is accompanied with a decrease 

in the probability of using the Baldwinian approach. This is expected since the use of small 

probabilities of local search can help to combat the hindering effect associated with the 

Baldwinian learning approach (see chapter 4).

The graphs of the mutation operator probabilities show that these probabilities increase as 

the population size increases. This is in contrast to the expected behaviour which is based 

on the fact that for small population sizes the use of high mutation rate in the pure genetic 

algorithms is more beneficial. However, since the relationship between control parameter 

values and search performance is complex, not completely understood, and problem 

dependent (Eiben et al. 1999), the interactions between these parameters can make such a 

trend beneficial as they were able to produce good performance.
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Figure 8.8: The Ability to Adapt to Different Population Sizes (Experiment 8.5).

The plots in figure 8.9 show the changes in the different operators’ probabilities over time 

for different test functions using a population size of 150. These graphs clearly show that 

the operators’ probabilities follow different paths depending on the fitness landscape of the
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solved problem. The graphs of the Schwefel and the Rastrigin functions are similar. On the 

other hand, there are similarities in the graphs of the ellipsoidal and the Griewank 

functions. This is due to the similarities in each group of these functions. The Schwefel and 

the Rastrigin are both multimodal functions. However, the 20-dimensional Griewank 

function is similar to the 20-dimensional ellipsoidal function. These graphs also show that 

there is always a chance to choose any of the hybrid’s operators and strategies since none of 

these probabilities reaches 1 or zero. This can make the AntSAHG algorithm suitable for 

optimising problems whose fitness changes with time.
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Figure 8.9: The Ability to Adapt to Different Optimisation Problems (Experiments

8.1, 8.2, 8.3 and 8.4).

The experiments conducted clearly show that the use of the pheromone trail metaphor to 

utilise the experience of the past solutions for online learning of the effectiveness of the 

different combinations of operators and learning strategies in solving a given problem is 

effective. The ant-based self-adaptive mechanism was able find high quality solutions for 

the test problems. It outperformed the evolutionary self-adaptive algorithm in terms of the 

solution quality and the convergence speed. The experiments suggested the suitability of 

the AntSAHG algorithm for dynamic environments.
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Hybrid genetic algorithms have received significant interest in recent years and are 

being increasingly used to solve real-world problems. A genetic algorithm is able to 

incorporate other techniques within its framework to produce a hybrid that reaps the best 

from the combination. Incorporating a local search method within a genetic algorithm can 

improve the search performance on the condition that their roles cooperate to achieve the 

optimisation goal. There is an opportunity in hybrid optimisation to capture the best of both 

schemes. This opportunity depends on the design details of the hybrid genetic algorithm. 

There are several issues that need to be taken into consideration when designing a hybrid 

genetic algorithm.

The main aim of this thesis is to investigate these design issues. The approach followed was 

that through designing, developing and testing hybrid genetic algorithms based on the 

available knowledge of these hybrid issues, new key features and relations can be 

discovered. The discovered relations and features can be used to develop better hybrids 

which, in turn, can uncover new relations and features. The goal was to develop a hybrid 

genetic algorithm that employs learning to direct its search operations and to adapt its 

control parameters to find high quality solutions for a wide range of optimisation problems 

efficiently through evolving the hybrid’s design based on the analysis of the search’s 

behaviour.

In this chapter, a summary of the research findings is given and the main contributions of 

the thesis are evaluated in some depth. This will also include the evaluation of this thesis 

and suggestions for experiments that are needed and further development of some methods. 

Finally, a section on further work describes key directions of interesting further study to the 

research in the thesis.

9.1 Research findings and contributions

The research presented in this thesis has contributed towards an improved 

understanding of hybrid genetic algorithm design issues and their effect on the hybrid’s 

performance. This research demonstrated the direct and indirect influences of the design 

choices on the utilisation of the search time. It has shed some light on the relations between 

the design choices and their effect on improving the hybrid’s performance in terms of 

solutions quality, convergence speed, and population size requirements.
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This research also suggested and developed many solutions to improve the effectiveness 

and the efficiency of the hybrid search. Those solutions are based on the richness of the 

genetic information, which can be utilised to improve the hybrid’s performance. The first 

approach was to develop a search method that can utilise some of the genetic information in 

order to gain the efficiency of the Lamarckian search with minimum interference with the 

genetic schema processing. The second approach was to utilise the genetic information to 

optimise the hybrid search time through adapting the duration of the local search method 

while the hybrid seeks the global optimum. The third approach was to make use of the 

genetic information in order to enable the hybrid to learn the effectiveness of the different 

learning strategies in dealing with the current problem online. The evolution metaphor was 

applied as a mechanism to utilise the genetic information in the second and the third 

approach. The forth solution was to apply the pheromone trail metaphor as a mechanism to 

utilise the genetic information in order to produce an effective, efficient and control 

parameter-less hybrid genetic algorithm.

The results of the investigations and the contributions of this research are discussed in the 

following subsections. These subsections will also evaluate the conducted investigations in 

terms of achieving their goals, the need for more experiments, and point to areas where 

more investigations are required.

9.1.1 Duration, probability of local search, learning strategy and hybrid’s 

performance

The in-dept review of hybrid genetic algorithms, the analysis, and the experiments 

conducted in the third and the fourth chapters, help to reveal some relations between the 

duration of local search, its probability, the learning strategy used, and the hybrid’s 

performance. They emphasise the effect of incorporating a local search method within a 

genetic algorithm on overcoming some of the obstacles that arise as a result of using finite 

population sizes. This has been illustrated through investigating the combined effect of the 

probability of local search and the learning strategy used on the population size 

requirements of hybrid genetic algorithms. The investigation demonstrates that the 

minimum population size required for a pure genetic algorithm can be reduced by 

incorporating a local search method, which influences both the standard deviation of the 

population and the signal difference between the best and second-best solutions.

The investigations conducted in chapters 3 and 4 show that the two main drawbacks of the 

basic learning models can be combated through controlling the duration and the probability 

of local search. The hindering effect associated with the Baldwinian learning approach can
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be alleviated by controlling the duration and the probability of local search. The diversity 

limitation associated with the Lamarckian learning model can also be combated through 

using appropriate durations and probabilities of local search.

The combination of high probabilities of local search and long durations can aggravate the 

hindering effect, which makes reliance of the selection operator on the acquired fitness 

alone insufficient in directing the search towards the global optimum. However, moving 

into the other direction of using short durations or small probabilities can help to alleviate 

this problem. When the probability of local search is small, the probability of applying a 

local search on the same solution in consecutive local iterations is significantly small, 

giving the algorithm a better chance to distinguish between innate and acquired fitness. The 

use of short durations of local search can delay the fitness-convergence state. This enables 

the algorithm to find a solution very near the global optimum.

However, the use of short durations may not improve the sampling ability of the global 

genetic algorithms, in contrast to long durations, which can improve it. This means that the 

use of a local search method with short durations cannot help the genetic algorithm to 

recover from sampling errors and as a result can face premature convergence. The solution 

to this problem can be the use of an adaptive duration of local search since long durations 

can cause problems only at the fitness-convergence state and they can improve the genetic 

algorithm’s sampling ability before reaching this state. The adaptive mechanism should 

enable the Baldwinian search to use long durations at the early stages of the search in order 

to direct the search towards the most promising search regions. It should also enable the 

search to use very short durations of local search as the population converged to the basin 

of attraction of the global optimum in order to find a solution very near the global optimum. 

A simple adaptive rule for the duration of local search is to make the duration of local 

search proportional to the variation in the population fitness so that the algorithm uses the 

shortest duration as the population reaches the fitness-convergence state while it uses the 

longest duration at the start of the genetic search.

The investigation into the hybrid design issues helps to uncover the relation between the 

Lamarckian learning approach, the duration, and the probability of local search. The 

investigation shows that the diversity loss due to the use of the Lamarckian approach can be 

significantly reduced by using a very short durations and small probabilities of local search. 

The use of a complete (i.e. exhaustive) local search can map the whole population to local 

optima of the search space which can badly affect the population diversity in the case that 

the basin of attraction of the global optimum is not represented in the population. In this
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case, the diversity limitation can significantly reduce the chances of redirecting the search 

towards the global optimum. However, the diversity loss as a result of using short durations 

is limited compared with that of the complete local search since using short durations maps 

the population to new points and not to the local optima.

Using a small probability of local search also can help to solve problems without causing 

diversity loss since the local search will modify the genetic structure of a small fraction of 

the population only. In contrast, the use of high probabilities can affect the genetic structure 

of a large number of individuals in the population, which can disrupt the genetic schema 

processing, and, hence, might result in premature convergence.

In contrast to the Baldwinian search, the use of short durations at the early stages and long 

durations at the latter stages of the Lamarckian search can be beneficial. Any technique to 

adapt the duration of local search should take into account the learning strategy used.

In addition to the influence of the interactions between the duration, probability of local 

search and the learning strategy on the hybrid’s performance, the duration and probability 

of local search have a direct effect on the exploring ability of the hybrid. The use of short 

durations and small probabilities of local search increases the chances of the global genetic 

algorithm effectively exploring the search space.

The investigations also showed that using a frequency of local search, i.e. the number of 

uninterrupted genetic iterations before performing a local iteration (Espinoza et al. 2001), 

with a value of more than 1 can alleviate the hindering effect since that enables the 

algorithm to discriminate between acquired and innate fitness.

These findings guided the research to investigate three different possible ways that can 

improve the hybrid’s performance. The first way is to utilise the genetic search information 

to benefit from the efficiency of Lamarckian learning approach without sacrificing the 

solution’s quality. This can be achieved by minimising the conflict between the genetic 

schema processing and the utilisation of local knowledge. The second possible way is to 

find a mechanism that adapts the durations and/or the probabilities of the local search 

method according to current state of the search and the learning strategy used. The third 

way is to utilise the search information to change the learning strategy while the search 

progresses as a mechanism to strike a balance between exploration and exploitation.
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9.1.2 Avoiding interference with the genetic search

The richness of the genetic information can be utilised to improve the solution 

quality in accordance with genetic schema processing and using minimum resources. A 

search method was proposed as an example of a genetic information utilisation mechanism. 

The proposed search method is a probabilistic method that works on the genotype space by 

making use of a group of the current population of solutions to estimate the structure of the 

improved solution. In this way, it aims to make use of some of the valuable genetic search 

information, which is inherently available in the gene pool. It also aims to avoid disrupting 

the genetic schema processing by improving the solution in accordance with the global 

genetic search. The modification of the initial solution based on a sub-group of solutions of 

the genetic population can provide the secondary search method with a partial global view 

of the problem at hand. Based on this view the search method can produce a solution in the 

context of the global view captured by the genetic algorithm. The partial global aspect of 

the search method can be controlled by the sub-group size, the mechanism of selecting the 

group members, and their effect on the initial solution (i.e. the probability effect). This 

method is also characterised by its low costs. Its costs are equal to the costs of evolving a 

solution for a single iteration of the genetic search (i.e. one function evaluation per 

solution). This can help to minimise the loss of the hybrid’s time in the case of any 

undesirable interference between the two search methods.

The result of evaluating the search method as a secondary method on a set of test functions 

with different marginal fitness contribution of their genes shows that the proposed method, 

when used with suitable group size and probability effect, could improve the genetic 

performance in terms of the population size required, convergence speed, or both, to 

produce high quality solutions. This improvement in the performance was as a result of the 

ability of the proposed method to integrate the global genetic search with minimum 

conflicts. By concentrating on the differences in the population’s structures and fitnesses to 

modify the non-identical genes, the proposed algorithm was able to complement the genetic 

search even in the case of non-uniformly scaled problems, where the genes converge at 

different rates. In such problems, the proposed algorithm modifies the genes that converge 

at a slower rate while the genetic algorithm modifies the others.

The proposed algorithm also showed good performance on uniformly scaled problems as a 

stand-alone search algorithm. This is in accordance with its basic assumption, which states 

that each gene in the chromosome contributes uniformly to the fitness of the solution.
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The ability of the proposed algorithm to reduce the probability of disrupting the genetic 

schema processing depends on the chosen samples of the genetic population. Each sample 

involves the initial solution to be optimised and a selected sub-group of solutions. This 

sample is used to determine the genes that have not converged yet and, hence, can be 

modified without any conflicts with the genetic search. Modifying them can also accelerate 

the search towards the global optimum.

The sizes of these samples and the way of selecting their members have a great impact on 

the hybrid’s performance in terms of the solution quality and the convergence speed. 

Increasing the sample’s size increases its accuracy, however it can also reduce its speed as 

it improves the search from a global perspective. The size of the sample and its members 

should be chosen in such a way to provide a partial view of the search space around the 

initial solution in accordance with the global genetic view. The experiments conducted in 

chapter 5 showed that the size of the sample and the probability factor depend on the fitness 

landscape. More investigations are required on the possible ways of deciding on optimal 

group size and probability factor in order to improve the effectiveness and the efficiency of 

the search.

9.1.3 Adapting the duration of local search

The investigations show, as mentioned above, that the interactions between the 

duration, the probability of the local search method, and the learning strategy, have a great 

impact on the hybrid’s performance. The duration and the probability of a local search 

method have a direct influence on the exploration and exploitation trade-off. However, the 

learning strategy has an indirect impact on this trade-off through its interactions with these 

two factors.

Finding a mechanism to adapt either the duration or the probability of local search can help 

to find an optimal utilisation of the search time. Adapting the duration of the local search, 

and allowing that control parameter to have the value of 0, will implicitly adapt the 

probability of local search. The decision was taken to investigate the use of evolution to 

self-adapt the duration of local search in order to find an optimal utilisation of search time 

for a given problem. The first reason for choosing the evolution metaphor to self-adapt the 

duration of local search is to gain insight into the ability of this mechanism, which has 

successfully applied to self-adapt pure genetic algorithms, to adapt the control parameters 

related to incorporating a local search method. The second reason is the association of the 

control parameter with a solution through binding them into the same chromosome, which 

can help to associate the success or the failure of a control parameter value to a specific
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solution or solutions of similar genetic structures. The third reason is the simplicity of this 

mechanism and its implementation cost, which is low compared to other adaptation 

techniques.

Applying this adaptation mechanism to optimise the performance of a hybrid genetic 

algorithm to different search environments has demonstrated its ability to produce an 

effective search. This mechanism uses the individual’s fitness as a metric to evaluate the 

suitability of the encoded duration of local search for solving a given problem. Selecting 

individuals based on their fitnesses only can bias the search towards an effective algorithm 

and cannot guarantee its efficiency since these individuals can consume different numbers 

of function evaluations to achieve their fitnesses.

In addition to that, the hindering effect can obstruct the ability of Baldwinian search to self- 

adapt the duration-of-local-search control parameter. The possibility of obstructing this 

ability increases as the dimensionality of the fitness function increases as it may be easier 

for the algorithm to optimise a single control parameter than optimising a large number of 

function variables. The use of a local search method with very small durations can help to 

alleviate the hindering effect and hence improve the performance of the Baldwinian search 

in terms of solution quality and convergence speed. The performance of the Baldwinian 

search can be further improved when the local search duration, which is already encoded 

into the chromosome, is used alongside the acquired fitness to discriminate between 

effective solutions.

The co-evolutionary mechanism, where the control parameters and function parameters are 

treated as two subpopulations, improved the self-adapting ability of the hybrid which was 

reflected as an improvement in its performance. The co-evolutionary mechanism can 

accelerate the evolution process of the control parameter compared with the evolutionary 

mechanism where the chance to modify the genetic structure of the control parameter 

depends on the ratio of the length of its representation to the length of the whole 

chromosome.

When the decision was taken to self-adapt the duration of local search as a mechanism to 

strike a balance between the global genetic and the local search methods, it was expected 

that the frequency of the local search method could be adapted implicitly though adapting 

its duration. However, adapting the frequency of local search requires switching from the 

state where duration of local search for all the individuals of the population has a value of 0
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and back to that state. Since the experiments showed that reaching that state was not 

possible, adapting the duration is not a practical way to adapt the frequency of local search.

9.1.4 Adapting the learning strategy

The learning strategy interacts with the duration and the probability of local search 

and their interaction influences the hybrid’s exploration and exploitation trade-off. A 

mechanism that can dynamically define the strengths and weaknesses of different learning 

strategies in dealing with a given problem and its environment based on the past solutions 

experience in using them can help to improve the hybrid’s performance. Such a mechanism 

can strike a balance between exploitation and exploration through dynamically deciding on 

the learning strategy which has indirect influence on this balance through its interaction 

with the duration and the probability of local search.

Based on the richness of the genetic information and for the same reasons of selecting 

evolution to self-adapt the duration of local search, the evolution metaphor was chosen as a 

mechanism to make use of the past solutions’ experience with learning strategies to decide 

online on the learning strategy to use to solve a given problem. The aim was to gain some 

insight into the effectiveness and efficiency of self-adapting the learning strategy. It was 

intended to explore the effect of using evolution to self-adapt both the learning strategy and 

the duration of local search on the hybrid’s performance.

The experiments conducted illustrate that the use of the self-adaptive learning strategy can 

be beneficial. It can improve the search ability of finding solutions of high quality and can 

accelerate the search. The experiments also show that this mechanism was able to adapt to 

different environments. That was illustrated by testing this mechanism on a set of different 

test functions using two different adaptive hybrid algorithms and different population sizes. 

The evolutionary self-adaptive mechanism can promote competition and cooperation 

between the basic learning models in the direction of improving the search performance.

Combining the evolutionary self-adaptive learning mechanism with the adaptive staged 

hybrid algorithm produced an algorithm that is faster than the tested fixed learning 

strategies on most of the tested functions. However, combining the evolutionary self- 

adaptive local-search-duration with this mechanism produced a slow search algorithm. The 

combination was able to find the global optimum of the whole set of test functions more 

often and faster than that of the fixed pure Baldwinian approach.
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The slow convergence speed of the algorithm that uses evolution to self-adapt both the 

learning strategy and the duration of local search can be explained based on the fact that the 

evolutionary mechanism introduces a strong correlation between genes, i.e. epistasis. 

Encoding the control parameters into the chromosome means that the fitness of a solution is 

defined based on the interactions between the genes of the control parameters and the 

fitness function variables’ genes. As the number of the encoded control parameters 

increases, the complexity of the interactions between their genes and the genes of the 

fitness variables increases. According to the building block hypothesis, one of the basic 

requirements for a genetic algorithm to be successful is that there is low epistasis (Beasley 

et al. 1993b). The existence of a strong correlation can affect the ability of the global 

genetic algorithm to simultaneously explore both the problem search space and the control 

space.

9.1.5 Ant-based algorithm to self-adapt the hvbrid‘s control parameters

Based on the findings of the previous investigations and to achieve the goal of this 

thesis in developing a hybrid algorithm that learns form the available search information to 

utilise its operators in an effective and efficient way without the need for any forms of 

human intervention, the research has been redirected to find a mechanism that is able to use 

the available search information without complicating the task of the genetic search.

The simplicity and the effectiveness of the pheromone trail metaphor as a way to 

accumulate the experience of the past solutions in solving a given problem, and being 

applied successfully to solve a large number of hard optimisation problems, make it a 

strong candidate to be applied to achieve an optimal utilisation of the hybrid’s search time.

A simple search space with the neighbourhood notion of the problem of adapting the 

performance of a genetic-local hybrid to a given problem has been defined (figure 8.1). 

Based on the defined search space, an ant-based optimisation method was used to find an 

optimal sequence of genetic operators, a local search operator with a suitable duration, and 

a learning strategy to solve a given problem.

The results of evaluating the performance of the ant-based self-adaptive and the 

evolutionary self-adaptive techniques showed the superiority of the ant-based self-adaptive 

mechanism over the evolutionary self-adaptive mechanism in terms of the solution quality 

and the convergence speed. The experiments conducted clearly showed the effectiveness of 

using this mechanism to adapt the hybrid’s performance to a given problem. The ant-based 

mechanism was able to adapt the probabilities of selecting the different operators and
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strategies according to the relations between these operators, strategies and their 

environment. The ant-based self-adaptive mechanism was able find high quality solutions 

for the test problems in an efficient way. The experiments also suggested the suitability of 

the ant-based self-adaptive algorithm for dynamic environments as there is always a chance 

to select any operator or strategy.

9.2 Future Directions

The empirical investigations in this thesis suggest many possible directions for 

future research.

9.2.1 Avoiding interference with the genetic search

The aim of the proposed algorithm in chapter 5 was to utilise the richness of the 

genetic information from which local information can be simply extracted in order to 

enhance the genetic search. The proposed algorithm shed some light on the need for more 

cooperation between the global genetic algorithm and the local search method in 

exchanging the available information to produce effective and efficient algorithms. 

Through such cooperation, the proposed search method was able to utilise the efficiency of 

the Lamarckian search to find high quality solutions.

The main difficulty of applying the proposed algorithm to solve a problem is how to choose 

the sub-group size, its members, and the probability factor, that produce the best 

performance. Chapter 5 suggested the use of a variable group size and setting the values of 

the probability factor based on that size in accordance with the findings of the experiments 

of that chapter. Further work is required on finding a mechanism to decide on the members 

of the sub-group, its size, and the probability factor.

There are other search techniques that may be used as a secondary method to achieve such 

cooperation and can be more effective and efficient than the proposed method. For 

example, an ant colony optimisation algorithm can be incorporated as a secondary method 

using a group of the genetic population to improve the quality of an initial solution. Further 

work could investigate the effectiveness of incorporating such techniques to avoid the 

genetic schema processing.

9.2.2 Optimal utilisation of search time

The aim of self-adapting the duration of local search within a hybrid was to adapt 

the duration, the probability, and frequency of local search, in order to achieve optimal 

utilisation of the search’s time. However, as mentioned above, the experiments showed the
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difficulty of adapting the frequency of local search following that mechanism. Due to the 

great impact of the frequency of local search on the balance between exploration and 

exploitation, and on minimising the interference between local and global search, future 

work can begin by finding a mechanism to adapt the frequency of local search based on the 

available genetic information. Then, the possibilities of combining this mechanism with the 

effectiveness of the co-evolutionary self-adaptive local-search-duration algorithm in order 

to produce an efficient algorithm can be investigated.

9.2.3 Ant-based algorithm as a self-adaptive mechanism

There are different possible ways to improve the success of the ant-based algorithm 

in sell-adapting the performance of the genetic-local hybrid to a given problem. The 

efficiency of this mechanism can be further improved by explicitly introducing the cost of 

the operators into the criteria for selecting the next operation or strategy. The mechanism’s 

effectiveness can be further improved by hybridising it with the co-evolutionary self- 

adaptive mechanism. The mechanism can be also extended to decide between different sets 

of genetic operations and different local search methods to solve a given problem. It can 

also be applied to solve problems that change with time.

9.2.3.1 Improving the effectiveness and the efficiency

Although the experiments showed the effectiveness and the efficiency of the 

proposed Ant-based Self-Adaptive Hybrid Genetic (AntSAHG) algorithm to self-adapt the 

genetic-local hybrids, its performance can be improved in different ways. There is a 

possibility of improving the AntSAHG algorithm by using an explicit evaluation of the cost 

of its operations instead of the implicit evaluation. It also can be improved by using the 

genetically evolved probabilities of the operations in addition to the pheromone density to 

decide on an optimal sequence of operations.

In the AntSAHG algorithm proposed in chapter 8, the cost of operations was evaluated 

implicitly through dividing the ant’s tour into two stages. These stages are the genetic stage, 

which consumes a maximum of one function evaluation, and the learning stage, which 

usually consumes a large number of function evaluations depending on the local search 

method and its duration. By making the ant deposit an amount of pheromone in proportion 

to the fitness improvement at the end of each stage, the algorithm implicitly evaluates the 

relative cost of the operations.

However, the cost of the operations can be explicitly evaluated through including it in the 

pheromone released equation. The amount of pheromone deposited by an ant can be made
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proportional to the improvement in the fitness of its associated solution, and inversely 

proportional to the number of function evaluations used to produce this improvement. This 

can induce the ants towards operations sequences that do not only improve the fitness but 

improve it in an efficient way. This can improve the efficiency of the AntSAHG algorithm. 

According to this, the change in trail density on each edge of the followed path is modified 

as given in equation 9.1.

(C O S tiY  ( 9 - 1 )

A TC_N — 0 Otherwise

where AT(iC_N) is the change in trail density of the edge connecting state C with state N  as 

a result of following the path constructed by ant i. a  Is a parameter that controls the relative 

influence of fitness improvement on the trail density. costt is the number of function 

evaluations consumed through this path. [3is a parameter that controls the relative influence 

of the cost of the fitness improvement on the trail density. Through adjusting a  and /?, the 

effectiveness and the efficiency of the search can be controlled.

An investigation in the effectives and the efficiency of introducing the operation’s cost in 

the pheromone equation of the AntSAHG algorithm is required. The stability of that 

algorithm against the changes in the values of the control parameters introduced also 

requires exploring.

The other direction that can improve the AntSAHG algorithm is to combine it with the 

Evolutionary Self-Adaptive Hybrid Genetic (ESAHG) (see chapter 8) algorithm. Instead of 

relying on the pheromone density only to decide on the next operation to perform, the 

algorithm can use the evolved genetic probability of that operation in addition to 

pheromone density. This can mix the global perspective of the genetic evolved probabilities 

with the local perspective of the ant algorithm. The decision policy, as given in equation 

9.2, will be based on the density of pheromone on the two branches that connect the current 

state to these states and the global genetic evolved probability.

(  \ 5
C-NDo

(9.2)

p1 C-NDo
_______ * C-NDo

V 7 C -N D o  ^ C -N A lte r  J

P = 1 -  P1 C-NAlter X 1 C-NDo

where Pc_NDo is the probability of moving from the current state to the Next Do 

state, Pc_NMter is the probability of moving from the current state to the Next Alterative 

state, Tc_NDo is the trail density on the edge connecting the current state with the Next Do
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state, and Tc_NAlter is the trail density on the edge connecting the current state with the Next 

Alterative state. P g c - N D o  is the global evolved genetic probability of moving from the 

current state to the Next Do state, <5is the influence of pheromone density on the probability 

of selection, and e is the influence of global genetic probability on the probability of 

selection.

The global genetic probability is the evolved encoded probability of that operation at the 

population level. This probability can be calculated by dividing the number of individuals 

whose encoded bit indicates performing this operation by the number of individuals in the 

population.

Researches on in the effectiveness and the efficiency of combining the evolutionary and the 

ant-based self-adaptive techniques are required. The influence of the 8  and e  control 

parameters on the hybrid’s performance also needs investigations. The impact of explicit 

use of the cost of operations on the search’s behaviour also requires more analysis and 

study.

9.2.3.2 Deciding on local search methods

Due to the effect of the choice of the local search method on the genetic-local 

hybrid performance, some hybrid genetic algorithms have relied on the use of a variety of 

different search methods as local search methods (Magyar et al. 2000) (Krasnogor and 

Simth 2001) (Ong and Kean 2004). The AntSAHG algorithm can be extended and applied 

to decide, at run time, on the search local method that can used to locally improve the 

current solution. This can reduce the probability of employing inappropriate local search 

methods in a hybrid algorithm and can yield robust and improved search performance.

Figure 9.1 depicts a possible search space for an ant-based algorithm to solve the problem 

of funding an optimal sequence of genetic operations, local operations and strategies.
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9.2.3.3 Searching in changing environments

There are many applications in which the fitness function may change over time 

(Grefenstette 1992). The ability of a hybrid genetic algorithm to respond to a changing 

fitness function depends on the diversity in its population and the ability of the mechanism 

that decides on its operators to adjust itself to the changes in its environment. The 

experiments in chapter 8 showed that there is always a chance to choose any of the hybrid’s 

operators and strategies in the AntSAHG algorithm and suggested the suitability of the ant- 

based self-adaptive mechanism for dynamic environments. It would be interesting to 

explore the applicability of the AntSAHG algorithm to such non-stationary environments.

selection

Crossover Opr Crossover Op2Crossover Op, Crossover Opi

Local Op, Local Op, Local Opi Mutation Op

LamarckianBaldwinian

Figure 9.1: Search Space for the Problem of Finding an Optimal Combination of

Operators and Strategies

9.3 Summary

The richness of the genetic search information can be utilised in different ways to 

improve the performance of genetic algorithms. The ability of the genetic algorithm to 

incorporate different search mechanisms within its framework promotes its cooperation
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with different search techniques to make use of the genetic information in order to enhance 

the search performance. The research of this thesis helps to gain some insight into some of 

the possible ways of utilising the genetic information effectively and efficiently. It also 

sheds some light on the key directions of future work that can further improve the hybrid’s 

performance.

The research demonstrated that through adjusting the durations and/or the probability of 

local search, the hindering effect associated with the pure Baldwinian search, and the 

problem of disrupting the schema processing of the Lamarckian search, can be alleviated. It 

also presented an effective model for utilising the genetic information to improve the 

solution’s quality of the Lamarckian search. More investigations are required into the 

possibilities of using population-based search techniques to improve the effectiveness of 

the Lamarckian search.

The research also showed the effectiveness of the co-evolutionary self-adaptive local- 

search-duration mechanism in achieving a balance between exploration and exploitation. It 

also analysed the difficulties of utilising this technique to produce an efficient search, and 

the influence of the hindering effect on the self-adaptive ability of the Baldwinian search. 

Possible ways of improving the self-adaptive ability of the Baldwinian search were 

suggested and tested. Further work is required to explore the possibility of using other 

techniques to adapt the frequency of local search and combine it with the evolutionary self- 

adaptive local-search-duration algorithm in order to improve its efficiency.

The efficiency of the evolutionary self-adaptive learning strategy mechanism in finding 

high quality solutions is also demonstrated. The increase in the chances of introducing a 

strong correlation between the control parameters and the variables of the fitness function 

as the number of the encoded control parameters increases explains the slow convergence 

speed of the algorithms that self-adapt more than one control parameter.

The ability of the ant-based algorithms to adapt the probabilities of using different 

operators and strategies of the hybrid algorithm in producing an efficient and effective 

search was demonstrated. This ability can be enhanced further by introducing the cost of 

the operations explicitly into the mechanism and combining it with the effective 

evolutionary self-adaptive mechanism. This mechanism may be applied to decide between 

different genetic and local search operators. It can also be applied to solve problems in real- 

world environments that exhibit dynamic and unpredictable characteristics. These ways of
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enhancing and extending the success of the ant-based algorithms to solve similar problems 

require more exploring and investigations.
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ABSTRACT
This paper investigates the effects o f  learning strategy 

and probability o f  local search on the performance o f  
hybrid genetic algorithms. It compares the performance o f  
two genetic-local hybrids using different learning 
strategies and different probabilities o f  local search. Two 
test functions are used for the comparisons. The results 
show that the solution quality o f  hybrids is not only 
affected by the Lamarckian or Baldwinian learning 
strategy, but also by the probability o f  local search. This 
probability, together with the learning strategy, has a great 
impact on population size requirements. These 
requirements are also affected by the local search method, 
and the fitness landscape. Reducing the population size 
can lead to an increase in the algorithm convergence 
speed.

INTRODUCTION
The ability o f  genetic algorithms to capture a global 

view  o f  the search space, when combined carefully with 
the fast convergence o f  local search methods (Turney
1996), can often produce an algorithm that outperforms 
either one alone (Bobo and Goldberg 1997). Hybridizing a 
local search method provides the global genetic search 
algorithm with some local knowledge that can guide and 
may accelerate the search to the global optimum (Hart
1994).

The usual motivation for hybridization in optimization 
practice is the achievement o f  increased efficiency  
(Goldberg and Vosser 1999). The efficiency o f  any hybrid 
depends on many factors, e.g. how the hybrid decides 
between global and local knowledge (Bobo and Goldberg
1997), how it strikes a balance between the cost and value 
o f  local knowledge (Hart 1994), and how successfully  
local knowledge are utilized by the global genetic 
algorithm (W hitley et al. 1994). The efficiency o f  any 
hybrid can be measured by comparing its performance 
with that o f  the global genetic algorithm alone. Espinoza 
et al. (2001) have proposed an adaptive hybrid algorithm 
that can increase convergence speed to the global 
optimum. The same authors also show the effect o f  a local 
search method on reducing the population size o f  the 
algorithm compared with the population size o f  the 
standard genetic algorithm (Espinoza et al. 2003).

In this paper, a further step is taken in this direction by 
investigating the effect o f  the learning strategy and 
probability o f  local search on the performance on both the 
adaptive hybrid algorithm and the standard staged hybrid. 
The effect o f  both these factors on the population size  
requirements, convergence speed and solution quality has 
been studied.

LAMARCKIAN EVOLUTION AND BALDWIN 
EFFECT

One o f  the important issues o f  hybrid genetic 
algorithms is how the information gained during local 
search is used by the global algorithm. Either the 
Lamarckian or the Baldwinian approach can be used. In 
the Lamarckian approach the traits acquired during the 
learning process are passed from parents to their 
offspring. This means that both the genetic structure o f  an 
individual and its associated fitness value are modified to 
reflect the changes in phenotype structure as a result o f  
performing local search (W hitley et al. 1994). The 
Baldwin Effect is somewhat Lamarckian in its results but 
using different mechanisms (Turney 1996) In the 
Baldwinian approach the learning process can help the 
individual to adapt to its environment and as a result to 
survive and gain more chance to pass on its traits to the 
next generation. In this case, only the improved fitness 
value is modified to reflect the effect o f  performing local 
search, thereby allowing individuals with the ability to 
learn to proliferate in the population.

Although Lamarckian evolution has been universally 
rejected as a viable theory o f  genetic evolution in nature, 
using it as learning strategy in genetic algorithms can 
improve their convergence speed (W hitley et al. 1994). 
The Lamarckian strategy can disrupt schema processing 
o f  genetic algorithms in staged hybrid algorithms and in 
some cases this may lead to the premature convergence  
problem (W hitley et al. 1994). In many real-world 
applications, it is not possible to use the Lamarckian 
approach because the inverse mapping from phenotype to 
genotype is computationally intractable (Turney 1996). 
The Baldwinian approach, in spite o f  being characterized 
by slow convergence speed compared with that o f  
Lamarckian (Whitley et al. 1994), has a smoothing effect 
on the search landscape and does not disrupt the global 
genetic search (Gruau and Whitley 1993).

Utilizing either form o f  learning is more effective than 
the standard genetic algorithm approach without a local
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improvement procedure (W hitley et al. 1994). The 
effectiveness o f  pure Lamarckian, pure Baldwinian or any 
mixture o f  them is affected by the fitness landscape, the 
representations, and local search method used (W hitley et 
al. 1994; Houck et al. 1997;M ichalewicz and Nazhiyath
1995).

BALANCE BETWEEN COST AND VALUE OF 
LOCAL KNOWLEDGE

In any hybrid algorithm, a local search can be applied 
either to every individual in the population or only few  
individuals. Applying a local search to every individual in 
the population can waste resources without providing any 
more useful information than applying it to only a small 
fraction o f  the population. The use o f  a large fraction o f  
the population can limit exploring the search space by 
allowing the genetic algorithm to evolve for a small 
number o f  generations. A  more selective use o f  local 
search can improve the efficiency o f  hybrids (Hart 1994). 
Deciding on the optimal fraction o f  the population that 
should perform local search, and the basis on which these 
individuals are chosen, has been investigated by Hart 
(1994). The cost o f  local knowledge is measured by the 
number o f  function evaluations performed by a local 
search method to gain that knowledge and its value is 
measured by its effect on increasing the convergence 
speed and/or solution quality o f  the algorithm. The 
probability o f  local search can affect the minimum  
population size o f  the hybrid which, in turn, can affect the 
convergence speed o f  the algorithm. This effect should 
not be ignored when deciding between different local 
search probabilities.

POPULATION SIZE REQUIREMENTS
Efficient Population sizing is critical in genetic 

algorithms for getting the most out o f  a fixed budget o f  
function evaluations. In (Harik et al. 1997) two factors 
that influence convergence quality are considered to 
estimate the population size o f  genetic algorithms. These 
factors are the initial supply o f  building blocks and the 
selection o f  the best building blocks over their 
competitors. The gambler ruin model is used to derive the 
follow ing relation for population size o f  genetic 
algorithms

xr - 2 k~l ln(a)ahhy]n(m-l) 
d

where k is the building-block order, which represents the 
minimum number o f  binary digits that have physical 
significance to the solution o f  the problem, a is the 
probability o f  failure, ahh is the standard deviation o f  the 
building blocks, d  is the signal difference between the best 
and second-best building blocks, and m is the maximum  
number o f  building-blocks within a single string. The term

y n ( m - l )  represents the noise interference between 

competing building-blocks. This term can be 
approximated using the fitness function standard 
deviation, ar„„esx (Reed et al 2000).

The computational complexity o f  a genetic algorithm 
is measured as the number o f  function evaluations that are 
required to attain an optimal solution. The number o f  
function evaluations can be calculated by multiplying the 
population size (N) by the number o f  generations required 
for convergence (t). The number o f  generation required is 
strongly affected by the relative rates at which genes 
within the population converge. The lower and upper 
bounds for the convergence rates for genetic algorithms 
applications are functions o f  0(V /) and 0(1) for 
tournament selections, where I is the string length 
(Thierens et al. 1998). The building blocks o f  most 
engineering problems converge at variable rates within the 
population (Reed 2000). This phenomenon is known as 
domino convergence. The expected number o f  generations 
(t) required under domino convergence for all locations to 
be converged is given by the follow ing equation.

t as 211 (/amino

Another phenomenon that is closely related to domino 
convergence is “genetic drift” (Thierens et al. 1998). This 
phenomenon occurs in a population when crossover and 
mutation cause genes to fluctuate and converge to non- 
optimal values in the absence o f  selection pressure. 
Although the genes with reduced relevance to the solution 
experience reduced selection pressure, they may converge 
to non-optimal values under the crossover and mutation 
operations. The expected number o f  generations for genes 
to converge in the absence o f  selection within a randomly 
generated initial population is given by the follow ing  
equation (Thierens et al. 1998):

Domino convergence to optimal solution should occur 
before genetic drift can occur. The follow ing inequality 
needs to be satisfied:

ftom m ii <  tjtffi

or, in terms o f  population size and string length,

N > 1.43/

Since carefully designed hybrid genetic algorithms 
often converge faster than standard genetic algorithms, 
their convergence to the global optimum can occur even i f  
population size is not greater than 1.43/. The population 
size for hybrid algorithm should satisfy the follow ing  
relation



2 / /,/omin° < 1.43N
^  t in  f t

where thybrid is the number o f  generations required to for a 
hybrid to converge.

The local search method affects the signal difference 
between the best individual and the second best, and this 
can either increase or decrease the population size. It can 
also decrease the standard deviation o f  the population and 
this leads to a decrease in the population size.

ALGORITHMS AND TEST FUNCTIONS
Two hybrids with different mechanisms for deciding 

between global and local search were used to gain some 
insight into the effect o f  learning strategy and probability 
o f  local search on the performance o f  hybrids. The 
standard staged hybrid genetic algorithm (SSH) (Mathias 
and Whitley 1994) and the adaptive staged hybrid genetic 
algorithm (ASH) (Espinoza et al. 2001) have been tested 
using two multimodal test functions.

» 2 ~

1

Figure 1: Fitness Landscapes for the Test Functions

In the standard staged hybrid genetic algorithm (SSH). 
the local search step is defined by three basic parameters: 
frequency o f  local search, probability o f  local search and 
number o f  local iterations. The local search frequency 
measures how frequently local search is performed; the 
probability o f  the local search represents the fraction o f  
individuals in the population that undergo local search at 
each local search iteration; and the number o f  local search 
iterations represents the number o f  local search iterations 
performed at each local search process.

The adaptive staged hybrid genetic algorithm (ASH), 
uses feedback from the current state o f  the search process

to direct the algorithm to decide between global and local 
methods (Espinoza et al. 2001). The algorithm works with 
the same operators as SSH. It performs local search only 
if  new regions o f  search space are being discovered, and 
local knowledge can help to guide the search. The 
probability o f  the local search is controlled by a 
deterministic rule that keeps this probability less than a 
specific value. When local search no longer improves the 
average fitness more than the most recent global search 
iteration, the search goes back to the global search.

Two multimodal test functions, with multiple basins o f  
attraction, have been used in the current work. The first 
function, FI, has conical basins o f  attraction. Its global 
maximum is 4 and is located at (7.0.8.5) (Goldberg and 
Vosser 1999; Espinoza et al. 2001). The second function. 
F2, has elliptical basins o f  attraction. This function has a 
global optimum o f  4 located at (7.0, 8.5) (Espinoza et al. 
2001). Figure 1 shows the fitness landscapes o f  FI and F2.

The steepest descent method (Press et al. 1993) was 
used as a local searcher. The steepest descent algorithm 
uses the derivatives o f  the function to estimate the best 
step size to climb to the local optimum from the current 
position in the basin o f  attraction.

SIMULATIONS AND DISCUSSION
In order to evaluate the effect o f  learning strategy and 

local search probability on the hybrids’ performance, a set 
o f  experiments was performed. Both hybrids use the 
simple elitist genetic algorithm with binary tournament 
selection, single-point crossover, and simple mutation. For 
all experiments, the probability o f  local search was 0.4 
and the probability o f  mutation was 1/A where N  is the 
population size (Reed et al. 2000). For SSH, the frequency 
o f  local search was 3 and the number o f  local iterations 
was 3. For ASH, the maximum number o f  local iterations 
was 3, e was 0.2, and the local threshold value was 0.6. 
Each variable was represented by 30-bit string with a total 
o f  60 bits for each chromosome. The stopping criterion for 
all experiments was that 80% o f  the population had 
converged to the solution.

Effects on Convergence Speed
In the experiment to evaluate the effect o f  learning 

strategy on convergence speed o f  hybrid algorithms, both 
the adaptive and standard staged algorithms used a 
probability o f  local search o f  0.1, and population sizes o f  
800 and 1200 for FI and F2 (Espinoza 2001).The stopping 
criterion was that 80% o f  the population converged within 
0.000001 boundaries o f  the best ever found solution.

The results show, as expected, that increasing the 
fraction o f  the population that evolves according to the 
Lamarckian approach leads to an increase in the 
convergence speed. This increase is not linear. For



example, when applying ASH  on F2, the speed o f  
convergence increases sharply as the learning approach 
changes from pure Baldwinian (100% Baldwinian) to a 
mixture o f  80% Baldwinian and 20% Lamarckian. In this 
interval the number o f  function evaluations decreases 
from 85,000 to about 37,000, while it decreases to 25,000  
evaluations for the pure Lamarckian approach. Figure 2 
shows the effect o f  learning strategy on the convergence 
speed o f  the adaptive staged hybrid. The effect o f  learning 
strategy on the convergence speed o f  standard staged 
hybrid and the adaptive staged hybrid are similar for both 
test functions.

Learning Strategy Effect on Convergence Speed of ASH

Figure 2: Effect o f  Learning Strategy on Convergence 
Speed

Effects on Solution Quality
The results o f  previous experiments show no clear 

relation between learning strategy and solution quality. 
This led us to consider how the local search probability 
interacts with the learning strategy and how this 
interaction affects the quality o f  solutions. An experiment 
was carried out to consider the effect o f  local probability 
on the solution quality for different population sizes (100, 
400, 800, and 1200). The results o f  these experiments 
show that as probability o f  local search increases, the 
effect o f  learning strategy becomes apparent (figure 3). 
The graphs in figure 4 show that, when the probability o f  
the local search is kept small, the quality o f  the solution is 
insignificantly affected by the learning strategy. A s this 
probability increases, the quality o f  the solutions degrades 
with an increasing Lamarckian percentage in the learning 
process. This means using small local search probabilities 
for both algorithms, even with pure Lamarckian, can 
produce high quality solutions because the disruption to 
schema processing caused by these small probabilities is 
neglected and has no effect on global search process.

The results in Figure 4 show that a mixture o f  20%  
Lamarckian and 80% Baldwinian produces the most 
stable solution quality for F2, regardless o f  the probability 
o f  the local search. A  mixture o f  75% Baldwinian and

25% Lamarckian produces the m ost stable solution quality 
for FI (Figure 5) .The results from both hybrid algorithms 
show that a pure Baldwinian approach does not always 
produce the optimal solution quality and that the optimal 
learning strategy depends on the probability o f  local 
search.
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Figure 3: Effect o f  Learning Strategy and Search 
Probability on Solution Quality

Hie Effect of Learning Strategy on Solution Quality of F2

Probability of Local Search

Figure 4: Solution Qualities for F2

Effect 011 Population Size
The aim o f  this experiment was to show how the 

probability o f  local search and learning strategy affect the 
minimum size requirements for both hybrids. The results 
were obtained by using bisection method. Starting with a 
population size o f  10, the population size is doubled until 
the population converges to the desired solution quality. 
After the solution quality is attained, the population size is 
set midway between the current size and the last 
unsuccessful population size. This process is repeated 
until the difference between population sizes is less than 
or equal to 10. The stopping criterion was that 80% o f  the 
population converged within 0.000001 boundaries o f  the



global optimum. The settings of other parameters were as 
in the previous experiments.

The Effect of Learning Strategy on Solution Quality of F1
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Figure 6: Effect of Learning Strategy and Search 
Probability on Population Size

The results of SSH and ASH on the second test 
function are similar. Figure 6 shows that, as the 
probability of local search increases, the population size 
decreases for a pure Lamarckian approach. On the other 
hand, with a pure Baldwinian strategy, the population size 
increases as the probability of local search increases. For a 
pure Baldwinian strategy with local search probability of 
more than 0.4, the population size exceeds that of a pure 
genetic algorithm (minimum population size=640). The 
results also show that the relationship between the local 
search probability and the change in the population size 
depends on the learning strategy used. For example, using 
a partial Lamarckian of 50% or more, an increase in the 
local search probability results in a decrease in population 
size. With a partial Lamarckian of less than 50%, an 
increase in the local search probability leads to an increase 
in the population size. For both hybrids, a decrease in 
population size leads to an increase in the convergence

speed. In general, increasing the Lamarckian percentage 
decreases the population size and increases the 
convergence speed. The experiments also show that the 
solution quality of the pure Baldwinian approach is the 
optimal and the solution quality is degraded as both the 
Lamarckian percentage and the probability of local search 
increase. The solution quality for impure Baldwinian 
strategies, as shown in Figure 7, seems to be more 
dependent on the probability of local search than on the 
learning strategy.

The local search can decrease both the standard 
deviation of the population and the signal difference 
between the best and second-best solutions, since the 
population size depends directly on the standard deviation 
of the population and the signal difference. A decrease in 
the former decreases the population size and a decrease in 
the latter increases the population size.

Tlio Effect of Looming Strotogy and Po on tho Average Fitness of F2
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Figure 7: Effect of Lamarkian Proportion and Search 
Probability 011 Solution Quality

The increase in the population size requirements for 
the pure Baldwinian approach can be explained as 
follows. In a pure Baldwinian, the local search needs 
some help from evolution process to keep decreasing the 
ratio of standard deviation to signal difference. Pure 
Baldwinian can reduce this ratio at the end of the local 
search. However, in the next global iteration, if the value 
of local knowledge is insufficient to keep the global 
genetic algorithm reducing this ratio, the algorithm will 
lose some of its resources (i.e. local function evaluations) 
without reducing that ratio. In this case, a high probability 
of local search cannot lead to any reduction in the 
population size since it increases the probability of losing 
the algorithm’s resources. Flowever, a low local search 
probability reduces the probability of lost resources while 
increasing the probability of maintaining the reduction in



the above-mentioned ratio by the global genetic algorithm. 
In addition to the probability of local search, the 
effectiveness of pure Baldwinian in reducing the 
population size depends on the value of local knowledge 
and this depends on the method of local search and fitness 
landscape.

On the other hand, the opportunity to keep the gained 
reduction in this ratio is improved by using a partial 
Lamarckian strategy. As the percentage of Lamarckian 
increases, the probability of keeping this reduction 
increases. An increase in the probability of local search 
increases the probability of reducing the ratio and 
reducing the population size.

Figure 8: Effect of Learning Strategy and Search 
Probability on Population Size of FI

Figure 8 shows the results of running the same 
experiment on the first test function. For a Lamarckian 
percentage of 65% or more, an increase in the probability 
of local search results in a reduction in the population 
size. For other percentages, an increase in this probability 
leads to an increase in the population size requirements. 
The convergence speed depends on the population size; as 
the population size decreases the convergence speed 
increases. Comparison of Figures 6 and 8 shows that the 
switch point on the Lamarckian axis between increasing 
and reducing the population size is shifted from about 
50% for F2 to about 65% for FI. This is due to the 
differences in the fitness landscape of both functions. 
While the local search can provide more significant local 
knowledge in FI than in F2, an impure Lamarckian 
approach requires a more partial Lamarckian to accelerate 
the genetic assimilation process.

Additionally, the effect of the local search method on 
FI is to enable any solution in a basin of attraction to 
climb to the exact local optimum in a single step. 
Consequently, increasing the probability of local search 
does not necessitate decreasing the signal difference

between the best and second-best solutions. It also makes 
the selection process more difficult as the search process 
progresses when using a pure Baldwinian approach. In 
contrast, in F2 the local search method sends any point in 
the basin of attraction to a point near local optima and not 
to the local optimum itself.

The local search method can provide more significant 
local knowledge from the landscape of FI than F2. This is 
why the reduction in the population size requirements of 
FI, using a pure Lamarckian approach, is greater than that 
of F2. This also makes the genetic assimilation process 
more difficult for FI using a pure Baldwin effect 
compared with F2. The use of a partial Lamarckian can 
accelerate the genetic assimilation process. The exact 
value of the switch point depends on the value of the local 
knowledge.

CONCLUSIONS AND FUTURE WORK
The simulations show that using a low probability of 

local search and using a pure Lamarckian learning 
strategy can improve the convergence speed of the 
algorithm without disrupting the schema processing of the 
global genetic algorithms. They also show that, depending 
on the learning strategy used, increasing the probability of 
local search can decrease or increase the population size. 
As a result, the convergence speed is affected by the 
probability of local search. The results show that there is a 
relation between the probability of local search and the 
population size.

These experiments have attempted to provide an 
insight into how the probability of local search and 
learning strategy affect the population size requirements. 
We now plan to study how the population size can affect 
the optimal local search probability by developing a self- 
adaptive hybrid algorithm that encodes the number of 
local iterations within the chromosomes themselves and to 
study how their values propagate during the evolution 
process.
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Hybrid Genetic Algorithms: A Review
Tarek A. El-Mihoub, Adrian A. Hopgood, Lars Nolle, Alan Battersby

Abstract—Hybrid genetic algorithms have received significant 
interest in recent years and are being increasingly used to solve 
real-world problems. A genetic algorithm is able to incorporate 
other techniques within its framework to produce a hybrid that 
reaps the best from the combination.

In this paper, different forms of integration between genetic 
algorithms and other search and optimization techniques are 
reviewed. This paper also aims to examine several issues that 
need to be taken into consideration when designing a hybrid 
genetic algorithm that uses another search method as a local 
search tool. These issues include the different approaches for 
employing local search information and various mechanisms for 
achieving a balance between a global genetic algorithm and a 
local search method.

Index Terms—Genetic algorithms, evolutionary computation, 
hybrid genetic algorithms, genetic-local hybrid algorithms, 
meinctic algorithms, Lamarckian search, Baldwinian search.

I. In t r o d u c t i o n

A genetic algorithm is a population-based search and 
optimization method that mimics the process of natural 
evolution. The two main concepts of natural evolution, which 
are natural selection and genetic dynamics, inspired the 
development of this method. The basic principles of this 
technique were first laid down by Holland [1] and are well 
described, for example, in [2],[3].

The performance of a genetic algorithm, like any global 
optimization algorithm, depends on the mechanism for 
balancing the two conflicting objectives, which are exploiting 
the best solutions found so far and at the same time exploring 
the search space for promising solutions. The power of genetic 
algorithms comes from their ability to combine both 
exploration and exploitation in an optimal way [1]. However, 
although this optimal utilization may be theoretically true for a 
genetic algorithm, there are problems in practice. These arise 
because Holland assumed that the population size is infinite, 
that the fitness function accurately reflects the suitability of a 
solution, and that the interactions between genes are very 
small [4].

In practice, the population size is finite, which influences 
the sampling ability of a genetic algorithm and as a result 
affects its performance. Incorporating a local search method
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within a genetic algorithm can help to overcome most of the 
obstacles that arise as a result of finite population sizes.

Incorporating a local search method can introduce new 
genes which can help to combat the genetic drift problem [5], 
[6] caused by the accumulation of stochastic errors due to 
finite populations. It can also accelerate the search towards the 
global optimum [7] which in turn can guarantee that the 
convergence rate is large enough to obstruct any genetic drift.

The Parallel Recombinative Simulated Annealing (PRSA) 
algorithm [8] fights the genetic drift problem in another way 
by combining the concept of the cooling schedule of simulated 
annealing [9], Boltzmann tournament selection [10], and 
standard genetic operators.

Due to its limited population size, a genetic algorithm may 
also sample bad representatives of good search regions and 
good representatives of bad regions. A local search method 
can ensure fair representation of the different search areas by 
sampling their local optima [11] which in turn can reduce the 
possibility of premature convergence.

In addition, a finite population can cause a genetic 
algorithm to produce solutions of low quality compared with 
the quality of solution that can be produced using local search 
methods. The difficulty of finding the best solution in the best 
found region accounts for the genetic algorithm operator’s 
inability to make small moves in the neighborhood of current 
solutions [12]. Utilizing a local search method within a genetic 
algorithm can improve the exploiting ability of the search 
algorithm without limiting its exploring ability [7]. If the right 
balance between global exploration and local exploitation 
capabilities can be achieved, the algorithm can easily produce 
solutions with high accuracy [13].

Although genetic algorithms can rapidly locate the region in 
which the global optimum exists, they take a relatively long 
time to locate the exact local optimum in the region of 
convergence [14], [15]. A combination of a genetic algorithm 
and a local search method can speed up the search to locate 
the exact global optimum. In such a hybrid, applying a local 
search to the solutions that are guided by a genetic algorithm 
to the most promising region can accelerate convergence to 
the global optimum. The time needed to reach the global 
optimum can be further reduced if local search methods and 
local knowledge are used to accelerate locating the most 
promising search region in addition to locating the global 
optimum starting within its basin of attraction.

The improper choice of control parameters is another source 
of the limitation of genetic algorithms in solving real-world 
problems [16] due to its detrimental influence on the trade-off 
between exploitation and exploration. Depending on these 
parameters the algorithm can either succeed in finding a near­



optimum solution in an efficient way or fail. Choosing the 
correct parameter values is a time-consuming task. In addition, 
the use of rigid, constant control parameters is in contradiction 
to the evolutionary spirit of genetic algorithms [17]. For this 
reason, other search techniques can be utilized to set the 
values of these parameters whilst the search is progressing.

In this paper, hybrid genetic algorithms are reviewed 
through presenting the different ways in which the roles of a 
search method and a genetic algorithm can be integrated. The 
aim of this presentation is not to classify hybrid genetic 
algorithms, but to shed light on the possible ways of 
combining a search method within the framework of a genetic 
algorithm. However, the reader can refer to [18] for an 
architectural taxonomy of combinatorial memetic algorithms 
(MA) [19] and to [20], where meta-heuristics are classified 
based on the design space and implantation space aspects.

This paper also aims to gain an insight into some of the 
design issues of hybrid genetic algorithms through reviewing 
the different mechanisms of utilizing local search information 
within genetic search and the various techniques to achieve a 
balance between exploration and exploitation.

II. A  Comp lementary V iew
Hybrid genetic algorithms, as any hybrid system, are based 

on the complementary view of search methods [21 p.223]. 
Genetic and other search methods can be seen as 
complementary tools that can be brought together to achieve 
an optimization goal. In these hybrids, a genetic algorithm 
incorporates one or more methods to improve the performance 
of the genetic search. There are several ways in which a search 
or optimization technique can complement the genetic search.

A. Capability Enhancement
A technique can be utilized within a genetic algorithm to 

enhance search capabilities. A genetic algorithm is normally 
viewed as a global search method that can capture the global 
view of a problem domain. Different techniques can be 
incorporated within a genetic algorithm to improve its 
performance in different ways. When a genetic algorithm as a 
global search method is combined with a problem-specific 
method as a local method, the overall search capability can be 
enhanced. The enhancement can be in terms of solution 
quality and/or efficiency. This performance can also be 
improved by ensuring production of feasible solutions in the 
case of highly constrained problems. This paper focuses on the 
global local complementary view of genetic hybrids which 
have been variously referred to as memetic algorithms (MA) 
[19], genetic-local search methods [22], Lamarckian genetic 
algorithms [23], Lamarckian search, and Baldwinian search 
[24].

Function approximation techniques can also be incorporated 
in a genetic search to speed up the search. It is also possible to 
utilize other techniques to replace one or more of the genetic 
operators in order to overcome some of the problems that face 
genetic search.

1) Improving Solution Quality
Local search methods and genetic algorithms are usually 

viewed as two complementary tools. A local search 
algorithm’s ability to locate local optima with high accuracy 
complements the ability of genetic algorithms to capture a 
global view of the search space. Holland [1], cited in [25], 
suggested that the genetic algorithm should be used as a pre­
processor for performing the initial search, before invoking a 
local search method to optimize the final population. Bilchev 
and Parmee [26], for example, used their ant colony 
optimization [27] model for continuous search spaces as local 
search method to improve the quality of the solutions 
produced by a genetic algorithm in order to solve a real-world, 
heavily constrained, engineering design problem.

Performing local search on a genetic algorithm’s population 
can introduce diversity and help to resist the genetic drift. It 
enables fair representation of different search areas in order to 
fight premature convergence. Incorporating a local search 
algorithm also introduces an explicit refinement operator 
which can produce high quality solutions.

2) Improving Efficiency
The efficiency of a local search in reaching a local optimum 

integrates the efficiency of a genetic algorithm in isolating the 
most promising basins of the search space. Therefore, 
incorporating a local search into a genetic algorithm can result 
in an efficient algorithm. The efficiency of the search can be 
enhanced in terms of the time needed to reach the global 
solution, and/or the memory needed to process the population.

a) Convergence Speed
A major concern in genetic algorithm design is efficiency 

in terms of the time needed to reach a solution of desired 
quality. In real-world problems, function evaluations are the 
most time-consuming part of the algorithm. For example, the 
designers of today’s complex engineering systems usually rely 
on expensive computer analysis and simulation programs, 
where the execution time for a single function evaluation can 
be of the order of hours or days [28]. Finite element analysis 
(FEA), computational fluid dynamics (CFD), heat transfer and 
vehicle dynamic simulations are examples of such programs. 
Hybridization in addition to parallelization [29], time 
utilization [30], and evaluation relaxation (function 
approximation) can be used to speed up a genetic search [31].

Genetic algorithms often show significant improvements in 
search speed when combined with local search methods 
utilizing domain-specific knowledge [20], [32], There is an 
opportunity in hybrid optimization to capture the best of both 
schemes [13]. This is the reason why genetic hybrids are being 
increasingly used to solve real-world problems. Different 
search methods have been mixed with genetic algorithms in 
real-world applications [15], [22], [33-37].

b) Population Size
Population size is crucial in a genetic algorithm. It 

determines the memory size and the convergence speed in 
serial genetic algorithms and affects the speed of search in the 
case of parallel genetic algorithms. Efficient population sizing



is critical for getting the most out of a fixed budget of function 
evaluations. The gambler’s ruin model [38] was used to 
estimate the population size of genetic algorithms. This model 
was used to show that population size depends on two 
parameters, which can be affected by incorporating local 
search. The two parameters represent the standard deviation of 
the population and the signal difference between the best and 
second best building blocks. If a local search method is 
incorporated in such a way as to reduce the standard deviation 
of the population and to increase the signal difference between 
the best and the second best chromosome, the resulting hybrid 
can be efficient even with small population sizes. Espinoza et 
al. [39] showed the effect of a local search method on 
reducing the population size, compared to a pure genetic 
algorithm. El-Mihoub et al. [40] demonstrated the combined 
effect of probability of local search and learning strategy on 
the population size requirements of a hybrid.

3) Guarantee Feasible Solutions
In highly constrained optimization problems, the crossover 

and mutation operators generally produce illegal or infeasible 
solutions and hence waste search time. This problem can be 
solved by incorporating problem-specific knowledge. 
Problem-specific knowledge can be used either to prevent the 
genetic operators from producing infeasible solutions or to 
repair them.

The partial matched crossover (PMX) [41] was proposed 
for use in order-based problems to avoid the generation of 
infeasible solutions. Grefenstette et al. [42] suggested a 
heuristic crossover operator that could perform a degree of 
local search for the traveling salesman problem (TSP). 
Davidor [43] designed “analogous crossover” where local 
information is used to decide which crossover sites can 
produce unfit solutions. Heuristic crossover operators were 
used to solve a timetabling problem in order to ensure that the 
most fundamental constraints are never violated [44]. 
Freisleben and Merz [45] proposed the distance preserving 
crossover (DPX) to produce feasible solutions to solve TSP 
without losing diversity. They used the non- sequential 4- 
change [46] as a mutation operator for the same reason. Cycle 
crossover (CX) [47], order crossover (OX) [47], matrix 
crossover (MX) [48], modified order crossover (MOX) [49], 
edge recombination crossover (ERX) [50], 2-opt operator [51], 
3-opt operator [51] and or-opt operators [51] are examples of 
crossover and mutation operators which have been developed 
for TSP. A special edge recombination crossover [52] has 
been constructed for the three-matching problem (3MP). The 
crossover operator has been replaced with the gene-pooling 
operator to produce feasible solutions when optimizing the 
number and positions of fuzzy prototypes for efficient data 
clustering [53].

A problem-specific knowledge search method can be used 
to recover the feasibility of solutions generated by the standard 
genetic operators. Repairing such solutions can help the 
genetic search to avoid the danger of premature convergence, 
which occurs when all or most solutions are infeasible [54], 
[55]. The force feasible heuristic operator [56] was used to 
solve the problem of scheduling aircraft landing times. Konak

and Smith [57] combined a genetic algorithm with a cut- 
saturation algorithm for the backbone design of 
communication networks. They use a uniform crossover 
operator with a K-node-connectivity repair algorithm to repair 
infeasible offspring. Areibi and Yang [58] used repair 
heuristics in their proposed approach to solve VLSI circuit 
layout. The approach combines a hierarchical design 
technique, genetic algorithms, constructive techniques, and 
advanced local search. They also used the OX operator to 
avoid infeasible solutions in solving VLSI design problems.

4) Fitness Function Estimation
If the fitness function is excessively slow or complex to 

evaluate, approximation function evaluation techniques can be 
utilized to accelerate the search without disrupting search 
effectiveness. This is because genetic algorithms are robust 
enough to achieve convergence in the face of noise produced 
by the approximation process. Fitness approximation schemes 
replace high-cost accurate fitness evaluation with a low-cost 
approximate fitness assignment procedure. This can be 
achieved either by evolutionary approximation, where the 
fitness of a chromosome is estimated from its parents’ fitness, 
or function approximation, where the fitness function is 
replaced by an alternate simpler model. Jin [59] provides a 
comprehensive survey on fitness approximation techniques.

The selection of an appropriate approximation model to 
replace the real function is an important step in ensuring that 
the optimization problem is solved efficiently. Neural network 
[21 ch. 8] models have widely been used for function 
approximation [60], Willmes et al. [61] compared neural 
networks and the Kriging method for constructing fitness 
approximation models in evolutionary algorithms. Jin and 
Sendhoff [62] combined the k-nearest-neighbor clustering 
method and a neural network ensemble to estimate a solutions’ 
fitness. Burdsall and Giraud-Carrier [53] used an 
approximation of the network’s execution to evaluate 
solutions fitness instead of constructing a radial basis function 
network (RBF) to optimize the topology of a neural network. 
The approximation is based on an extension of the nearest- 
neighbor classification algorithm to fuzzy prototypes. 
Ankenbrandt et al. [63] implemented a system of fuzzy fitness 
functions, to grade the quality of chromosomes, representing a 
semantic net. The system is used to assist in recognizing 
oceanic features from partially processed satellite images. 
Pearce and Cowley [64] presented a study of the use of fuzzy 
systems to characterize engineering judgment and its use with 
genetic algorithms. They demonstrated an industrial design 
application where a system of problem-specific engineering 
heuristics and hard requirements are combined to form a 
fitness function.

5) Operation Substitution
Genetic algorithms present a methodological framework 

that is easy to understand and handle. This framework is open 
to the incorporation of other techniques [65]. It is possible to 
utilize other techniques to perform one or more of the genetic 
algorithm operations. These incorporated techniques can be 
used to replace either the crossover operator, mutation 
operator or both.



In probabilistic model-building genetic algorithms 
(PMBGA) or estimation of distribution algorithms (EDA) 
[66], a probabilistic model is utilized to learn the structure of a 
problem on the fly. This model is used instead of the standard 
genetic operators to ensure a proper mixing and growth of 
building blocks. These algorithms replace the standard 
crossover and mutation operators of genetic algorithms, by 
building a probabilistic model that estimates the true 
distribution of promising solutions. New potential solutions 
are then generated by sampling this model. Population based 
incremental learning (PBIL) [67], univariate marginal 
distribution algorithm (UMDA), compact genetic algorithm 
(CGA), bivariate marginal distribution algorithms (BMDA), 
factorized distribution algorithms (FDA) and the Bayesian 
optimisation algorithm (BOA) [68] are all examples of 
PMBGA that are reported to have a better search ability, than 
that of the simple genetic algorithm, in solving a broad class 
of problems [66]. Tsutsui et al. [69] proposed the aggregation 
pheromone system (APS), which introduced the concept of 
pheromone trail of the ant colony optimization [27] into the 
PMBGAs, to solve real-valued optimization problems.

Leng [70] proposed the guided genetic algorithm (GGA) 
which is a hybrid genetic system that borrows the concept of 
feature and penalties from the guided local search (GLS) [71], 
The GGA modifies the fitness function by means of penalties 
to escape local optima. Two specialized crossover and 
mutation operators, which are biased by the penalties to 
change genes that are involved in more penalties, are used in 
order to explore the search space.

When a problem-specific representation is used in a genetic 
algorithm, the standard genetic variation operators are usually 
replaced with problem-specific operators. Hedar and 
Fukushima [72] replaced the ordinary crossover with a 
simplex crossover that produces a simplex offspring from 
mating simplex parents (is the dimension of the problem to 
be solved). In this hybrid, a mutation operator, which is more 
suitable for simplex representation, was used. Quantum- 
inspired genetic algorithms [73]-[75] borrow the concepts of 
quantum-bits and -states superposition from quantum 
computing. In these algorithms, the individuals are represented 
as a string of quantum-bits. Quantum-gates are then used to 
modify these individuals instead of crossover and mutation 
operators. The power of these algorithms comes from the great 
diversity they provide by using quantum coding. Each single 
quantum individual in reality represents multiple classical 
individuals. The results reported from using this hybridization 
to solve combinatorial and continuous optimization problems 
are promising.

Tan et al. [76] replaced the standard mutation operator by 
simulated annealing [9] to solve system identification and 
linearization problems. The results showed a more accurate 
search and faster convergence when compared with a pure 
genetic algorithm. The multi-step crossover (MSX) [77] was 
proposed to solve combinatorial optimization problems. 
Riopka and Bock proposed a collective learning genetic 
algorithm [78], in which an intelligent recombination based on 
the exchange of knowledge between chromosomes, is used to

effectively find high quality solutions to combinatorial 
optimization problems. Magyar et al. [52] introduce several 
heuristic crossover and local hill-climbing operators to solve 
the tlnee-matching problem. Fundamental to the technique 
here is the adaptation of the selected operator. Two fuzzy 
connective-base (FCB) crossover operators types (dynamic 
and heuristic) have been proposed in [79] for real-coded 
genetic algorithms to fight premature convergence problems.

B. Optimizing the Control Parameters
The setting of genetic algorithm control parameters is a key 

factor in the determination of the exploitation versus 
exploitation trade-off. Other techniques can be used to monitor 
the behavior of a genetic algorithm in order to adapt its control 
parameters to improve the search performance. The ability of 
fuzzy logic to represent knowledge in imprecise and non­
specific ways enables it to be used to reason on knowledge 
that is not clearly defined or completely understood. This 
ability makes fuzzy logic a suitable choice for adapting the 
control parameters of a genetic algorithm. Fuzzy logic has 
allowed a small group of researchers to devise ways of 
optimizing performance and solution quality of genetic 
algorithms [80]. It is used to incorporate the many heuristics 
and techniques of experienced genetic algorithm researchers 
into fuzzy logic systems in order to adapt the control 
parameters. The goal of such a system is generally to avoid 
undesirable behaviors such as premature convergence and to 
speed up the convergence of the genetic algorithm [81].

It is also possible to incorporate a genetic algorithm within 
another technique to optimize control parameters, since 
genetic algorithms are in practice very effective optimization 
techniques. A genetic algorithm can be applied to the 
optimization of a neural network in a variety of ways. It can be 
utilized to adjust the neural network weights [82]-[84] their 
topology [85]-[88] and learning rules [89], [90]. For a 
comprehensive review of evolving neural networks the reader 
can refer to [91]. Karr [92] described an application to the 
cart-pole balancing system and used a genetic algorithm to 
evolve the membership functions of a fuzzy controller. The 
resulting, optimized fuzzy logic controller performed better 
than the controller based on membership functions designed 
by a human expert. These promising results have been 
confirmed by an application of the method for online control 
of a laboratory pH system with drastically changing system 
characteristics [93]. Genetic algorithms can also be used to 
automate the learning of fuzzy control rules [94]. They have 
also been used to optimize the control parameters of ant 
colony optimization algorithms [95]-[97].

III. H y b r id  D e s ig n  Is s u e s  

Incorporating a search method within a genetic algorithm 
can improve the search performance on the condition that their 
roles cooperate to achieve the optimization goal. There is an 
opportunity in hybrid optimization to capture the best of both 
schemes [13]. This opportunity depends on the design details 
of the hybrid genetic algorithm. There are several issues that



need to be taken into consideration when designing a hybrid 
genetic algorithm. Some of the design choices faced by hybrid 
practitioners while solving real-world problems are discussed 
here.

Due to their major impact 011 hybrid genetic performance, 
the discussion is concentrated on the strategies of utilizing 
local search information within a hybrid, and mechanisms that 
can be used to achieve a balance between exploration and 
exploitation. First, the relation between local search and 
learning, and its different models, are presented. Then, 
different techniques that can be used to achieve the optimal 
division of labor between the global genetic algorithm and the 
local search method are reviewed.

A. Local Search and Learning
Local search methods use local knowledge to improve a 

solution’s chances to propagate its characteristics into the next 
generations. Due to the similarities in the role of the local 
search within the genetic search and the role of learning within 
the evolution process, the local search is usually viewed as a 
learning process.

The way by which gained information through local search 
is utilized within a hybrid genetic algorithm has a great impact 
on the performance of the search process. Two basic 
approaches based on biological learning models have been 
adopted to utilize local information; the Lamarckian approach 
and the Baldwinian approach [98]. There is also a third model, 
which is a mixture of the basic models and its effectiveness 
has been proven in solving real-world problems [55], [99]- 
[10 1].

1) Lamarckian Learning
The Lamarckian approach is based on the inheritance of 

acquired characteristics obtained through learning. This 
approach forces the genetic structure to reflect the result of the 
local search. The genetic structure of an individual and its 
fitness are changed to match the solution found by a local 
search method. In the Lamarckian approach, the local search 
method is used as a refinement genetic operator that modifies 
the genetic structure of an individual and places it back in the 
genetic population.

Lamarckian evolution, in spite of being recognized as never 
occurring in biological systems due to the lack of a 
mechanism to accomplish it, can be simulated in a computer in 
order to shed light on issues of general evolvability. 
Lamarckian evolution can accelerate the search process of 
genetic algorithms [102]. On the other hand, by changing the 
genetic structure of individuals, it can disrupt schema 
processing which can badly affect the exploring abilities of 
genetic algorithms. This may lead to premature convergence 
[102]. When a Lamarckian approach is adopted, inverse 
mapping from phenotype to genotype is required. The inverse 
mapping may be computable in many simple applications. 
However, for real-world problem solving, the computation 
will typically be intractable [103]. Most of hybrid genetic 
algorithms that repair chromosomes to satisfy constrains are 
Lamarckian and the technique has been particularly effective 
in solving TSP [24].

2) Baldwinian Learning
The Baldwin learning allows an individual’s fitness to be 

improved by applying a local search, whereas the genotype 
remains unchanged. In this way, it improves the solution’s 
chances to propagate its structure to the next generations. Like 
natural evolution, learning does not change an individual’s 
genetic structure, however it increases its chances of survival. 
The Baldwinian approach, in contrast to the Lamarckian one, 
does not allow parents to pass their learned or acquired 
characteristics to their offspring. Instead, only the fitness after 
learning is retained. A local search method in the Baldwinian 
approach is usually used as a part of the individual’s 
evaluation process. The local search method uses local 
knowledge to produce a new fitness score that can be used by 
the global genetic algorithm to evaluate the individual’s ability 
to be improved.

The Baldwin effect is somewhat Lamarckian in its results 
although it uses different mechanisms [103]. It explains 
interactions between learning and evolution by paying 
attention to balances between benefit and cost of learning. The 
Baldwin effect consists of the following two steps [104]. In 
the first step, learning gives individuals the chance to change 
their phenotypes to improve their fitness. Individuals, who 
found learning useful and help their fitness to improve, will 
spread in the next population. In the second step, if the 
environment is sufficiently stable, the cost associated with 
learning results in selection favoring individuals that have the 
traits, which are acquired by others through learning, already 
coded into their genotype. Through this mechanism, called 
genetic assimilation, learning can accelerate the genetic 
acquisition of learned traits indirectly. A critical precondition 
for genetic assimilation appears to be a strong correlation 
between genotype and phenotype space so that nearness in the 
phenotype space implies nearness in the genotype space [105]. 
Otherwise, the acquired traits have little chance of eventually 
becoming encoded in the genome via chance through genetic 
operations.

Hinton and Nolan [98] illustrated how the Baldwin effect 
can transform the fitness landscape of a difficult optimization 
problem into a less difficult one, and how the genetic search is 
attracted toward the solution found by learning. Gruau and 
Whitley [11] showed how local search can change the 
landscape of fitness function into flat landscapes around the 
basin of attraction. This change in fitness landscape is known 
as the smoothing effect. They demonstrated the impact of the 
smoothing effect on the search process. This learning strategy 
could be more effective but slower than the Lamarckian 
approach, since it does not disrupt schema processing of 
genetic algorithms [102]. Baldwinian search can also have the 
effect of obscuring genetic differences and, thus, hindering the 
evolution process [105]. This is known as the hindering effect. 
Essentially, this occurs as a result of different genotypes 
mapping to the same or similar phenotypes (as a result of the 
smoothing effect) with equivalent fitness scores being 
produced. The genotypes cannot be effectively discriminated 
according to their fitness values without considering the 
learning cost and the evolution of effective solutions is



hindered. The hindering effect can also obstruct the ability of 
the Baldwinian search to self-adapt the local-search-duration 
control parameter [106]. The Baldwinian effect can aggravate 
the problem of multiple genotype to phenotype mappings [24], 
[99]. This problem can also waste the resources of hybrids that 
use clustering techniques in the genotype domain to reduce 
unnecessary local search, in contrast to the Lamarckian 
approach which has been shown to help alleviate this problem 
[107].

Hart et al. [108] pointed to the importance of considering 
the cost of learning, which has been ignored by most 
researchers when studying the impact of the Baldwinian 
strategy on the hybrid search by analyzing its performance 
based on the number of generations of the genetic algorithm 
only. Learning can introduce a computational cost which 
overweighs its benefits in search.

3) Hybrid Lamarckian-Baldwinian Models
Hybrid Lamarckian-Baldwinian models are created with a 

view towards combing the advantages of both forms of 
learning models [55]. The combination of the Baldwinian and 
the Lamarckian approaches can be done at two different 
levels. Hybridization can be used at the individual-level, 
where some individuals evolve using the Lamarckian 
approach while the other individuals evolve using the 
Baldwinian approach [99], [100]. Houck et al. [99] found that 
this form of partial Lamarckian approach outperformed both 
the pure Lamarckian and the pure Baldwinian approaches on a 
selected set of test problems. The other level is the gene-level, 
where a number of genes evolve using the Lamarckian 
strategy and the remaining genes evolve using the Baldwinian 
approach [101]. This approach was used to solve the sorting 
network problem. It can reduce the problem search space and 
help to produce an efficient search [101].

The adoption of any form of learning in a hybrid genetic 
algorithm has a great impact on its performance. Several 
researchers have investigated how these different leaning 
strategies affect the performance of hybrid genetic algorithms 
by comparing them with pure genetic algorithms. Gruau and 
Whitley [11] compared Lamarckian, Baldwinian and pure 
genetic algorithms in evolving the architecture and the weights 
of neural networks that learn Boolean functions. They 
conclude that using either form of leaning is better than using 
a pure genetic algorithm. Orvosh and Davis [55] found that 
5% partial Lamarckian is the optimal learning strategy to solve 
the survival network design problem and the graph coloring 
problem. Michalewicz and Nazhiyath [109] replaced 20% of 
the repaired solutions in their hybrid algorithm to solve 
numerical optimization problems with nonlinear constraints. 
Bala et al. [110] showed how the Baldwin effect can improve 
the performance of a genetic algorithm when integrated with a 
decision tree in order to evolve useful subsets of 
discriminatory features for recognizing complex visual 
concepts. However, Ku and Mak [111] found that only using 
Lamarckian evolution improved the performance of genetic 
algorithm in evolving recurrent neural networks. They also 
concluded that effective hybridization depends on the local 
search method used and the learning frequency. Houck et al.

[99] used seven problems to compare the performance of 
different learning strategies. Their investigation concluded that 
neither the pure Lamarckian nor pure Baldwinian strategy was 
found to be consistently effective. It was discovered that the 
20% and 40% partial Lamarckian search strategies yielded the 
best mixture of solution quality and computational efficiency 
based on a minmax criterion (i.e. minimizing the worst case 
perfonnance across all test problems instance). Sasaki and 
Tokoro [112] found that adaptation by Lamarckian evolution 
was much faster for neural networks than Darwinian evolution 
in a static environment. However, when the environment 
changed from generation to generation, the Darwinian 
evolution was superior. Julstrom [24] reported that Baldwinian 
strategies perform poorly in solving the 4-cycle problem 
compared to a pure genetic algorithm and their effectiveness 
deteriorates with an increasing use of learning in contrast to 
Lamarckian strategies. He also found that applying 
Lamarckian leaning to all the individuals produced the most 
effective results. Joines et al. [100] found that using the pure 
Lamarckian approach (100% Lamarckian) produced the best 
convergence speed to the best known solution when solving 
the cell formation problem. Espinoza et al. [112] used 75% 
partial Lamarckian as the optimal leaning strategy in their 
hybrid to optimize two continuous functions. El-Mihoub et al. 
[40] investigated the combined effect of probability of local 
search and leaning strategy on the hybrid performance and 
found that combing a low probability of local search with the 
pure Lamarckian learning strategy can improve the 
convergence speed without disrupting the schema processing. 
Ishibushi et al. [114] found that the 5% partial Lamarckian 
worked well on the multi-objective 0/1 knapsack problem 
using a single population model, however, the 50% partial 
Lamarckian was the optimal choice using the island model.

The effectiveness of adopting the pure Lamarckian 
approach, the pure Baldwinian approach, or any mixture of 
them in a hybrid is affected by the fitness landscape, the 
representations, the percentage of population performs local 
search and local search method used [40], [99], [100], [103], 
[109], [114],

B. Balance between Global and Local Search
The hybrid algorithm should strike a balance between 

exploration and exploitation, in order to be able to solve global 
optimization problems. According to the hybrid theory [115], 
solving an optimization problem and reaching a solution of 
desired quality can be attained in one of two ways. Either the 
global search method alone reaches the solution or the global 
search method guides the search to the basin of attraction from 
where the local search method can continue to lead to the 
desired solution. In the genetic-local hybrid, the main role of 
the genetic algorithm is to explore the search space in order to 
either isolate the most promising regions of the search space, 
or, to hit the global optimum. However, the main role of the 
local search method is to exploit the information gathered by 
the global genetic algorithm. The division of the hybrid’s time 
between the two methods influences the efficiency and the 
effectiveness of the search process. The optimal division of



the algorithm’s time is an important issue that is faced the 
designers of hybrid genetic algorithms.

Although the aim of combining a global genetic algorithm 
and a local search method is to get the best out of the 
exploring ability of the former, and the efficiency of the latter 
in reaching local optima, the two methods can interact in a 
more complicated way than the one described above. Rosin et 
al. [116] argued that the mutation operator in a hybrid plays a 
different role than it does in a pure genetic algorithm. The 
local refinement requirement of the mutation operator 
becomes unnecessary in the existence of an explicit local 
operator allowing the mutation operator to take a more 
exploratory role. Land [117] suggested using larger mutations, 
at least large enough to move from one basin to another, in 
cases where each individual of the population is completely 
locally optimized. He went further, when he argued that local 
search obviates the need for crossover in solving the graph 
bisection problem, because local search is able to build the 
very same building blocks that the crossover would otherwise 
combine.

The exploring ability of the genetic algorithm can be further 
improved by utilizing local search to ensure fair representation 
of different regions of a search. This can improve the ability of 
the genetic algorithm to direct the search to the most 
promising regions of the search space. Once the algorithm has 
guided the search to the basin of attraction of the global 
optimum, utilizing local search can further improve the search 
to produce an effective optimization algorithm. The first goal 
of the hybridization, which is the effectiveness of search, can 
be satisfied if a genetic algorithm and a local search method 
cooperate in the manner mentioned above. However, there are 
other more destructive forms of interaction. For example, the 
mutation and crossover operators can disrupt good and 
complete local solutions which may waste algorithm resources 
and produce an inefficient search. The Lamarckian local 
search can disrupt the schema processing of the genetic 
algorithm which may lead to premature convergence and 
produce an ineffective search.

In addition to the role of genetic operators in systemically 
exploring the search space, they perform some form of local 
search with relative low cost compared to the more accurate 
local search methods. The improper use of the expensive local 
search in a hybrid can waste algorithm resources. The 
algorithm should be able to decide wisely 011 both methods, 
especially when both can achieve the desired task, taking into 
account the benefits and costs of their utilization. The 
condition of an appropriate use of both methods in addition to 
the condition of interacting in a cooperative way should be 
satisfied in order to produce an effective and efficient search 
algorithm.

Researchers have proposed different techniques to enable 
the hybrid to mix both methods wisely or at least to reduce the 
consequences of the improper use of the expensive local 
search. These techniques are based on modifying the different 
parameters of a local search method within a hybrid. 
Modifying the parameters of the local search, such as the 
frequency of local search, the duration of local search, and the

probability of local search can help the hybrid to strike the 
balance between the two search methods.

1) Frequency o f Local Search
The number of continuous uninterrupted generations that a 

genetic algorithm performs before applying local search is 
usually referred to as the frequency of local search. In the 
traditional hybrid genetic algorithm, the frequency of local 
search is 1, for example. The staged hybrid genetic algorithm 
[118], [119] was designed to separate the two search methods 
into two distinct stages by increasing the frequency of the 
local search in order to minimize the interference between the 
two search methods. Mathias and Whitely [118] used a local 
search frequency of 2 to solve the TSP. However, in a hybrid 
algorithm to solve the static correction problem [119], the 
genetic search algorithm was allowed to continue 
uninterrupted for ten generations before applying a single 
iteration of waveform steepest ascent iteration to each 
individual in the population. This hybrid algorithm produced 
solutions with improved quality of 5% and additional savings 
in time compared with the traditional hybrid genetic 
algorithm. Espinoza et al. [113] conducted a set of 
experiments to find the optimal local search frequency for two 
two-dimensional continuous test functions and they found that 
the optimal frequency of local search for these test functions 
was 3.

The optimal frequency of local search is function dependent 
and varies with time because the optimal time that should be 
spent on local and global search algorithms depends on the 
distribution of individuals in the population. Syrjakow and 
Szczerbicka [120] studied the optimal switch point between 
the genetic algorithm and local search to fine-tune the solution 
found by the pre-optimizer genetic algorithm. They studied 
three criteria: the number of function evaluations, the 
convergence speed of the genetic algorithm, and the regional 
accumulation of search points indicating the convergence 
toward a specific region in the search space so as to determine 
the optimal switch point. The convergence speed criterion 
produced the highest efficiency in their experiment. Lobo and 
Goldberg [13] addressed the problem of deciding between 
global search and local search in order to make the most out of 
either technique. They tried to answer the question, “when 
should the local search be used and when should the global 
genetic algorithm be used to achieve the maximum possible 
efficiency?” They viewed the problem as a two armed bandit 
problem where the payoff of each bandit is unknown and 
changes with time. They presented a model for efficient 
hybridizing based on the concept of probability matching. This 
model can be viewed as an adaptive technique that adjusts the 
frequency of local search depending on the efficiency of both 
genetic and local techniques as the search progresses. Tuson 
and Ross [121] used a similar model to adapt the operator 
probability in their cost based operator rate adaptation. They 
used their model to select the use of a mutation or crossover 
operation in a pure genetic algorithm. The same technique has 
been used to solve the three-matching problem [52], where an 
adaptive hybrid algorithm selects one operator from eight 
recombination and local search operators based 011 their



current and past benefit-cost ratio.
Espinoza et al. [113] used the change in coefficient of 

variation of the fitness function to determine whether the 
genetic algorithm is exploring new regions of the search space 
or exploiting the already visited regions. Based on that, the 
algorithm selects to perform either a genetic or a local 
iteration. The algorithm relies on the local search role to 
improve the sampling of the new regions that are being 
explored in the case of any increase in that coefficient. Once 
the search has branched to a local search, the fitness 
improvement-cost ratio of both the last genetic and the local 
iterations and the maximum number of local iterations are 
used to decide on continuing the local search or going to the 
global search. Their experiments showed that the algorithm is 
more efficient than a pure genetic algorithm and is stable 
against a greater range of parameter settings than the standard 
staged hybrid genetic algorithm.

Hacker et al. [28] proposed an approach that switches 
between global genetic and local search, based on the local 
topology of the search space. The basic idea of this approach 
ignores the role of local search in improving the sampling 
ability of the genetic algorithm. It concentrates on the 
efficiency of local search, i.e. finding the optimum once the 
global genetic algorithm has defined its basin of attraction. 
The utilization of the relative homogeneity of the population 
and regression analysis to determine whether the search is 
exploring a single basin or multiple basins was investigated. 
The coefficient of variance of both the fitness and phenotype 
is used to quantify the relative homogeneity of the population. 
A decrease in the values of the coefficient of variance 
indicates that the genetic algorithm has converged to a small 
area of the seai'ch space and the search process can therefore 
be made more efficient by switching to a local search. In 
contrast, an increase in its value indicates that a new region of 
the search space is being explored and hence there is less need 
to use a local search. Regression analysis has also been used to 
determine when to switch between global and local 
techniques. The value of the error of fitting the population of 
solutions to a second-order surface can indicate whether the 
genetic algorithm is exploring multiple basins or a single basin 
in the search space. Depending on the value of that error, the 
algorithm decides to switch to a local search or continue the 
global search. They concluded that utilizing local search could 
be helpful for small search spaces in the early stages of search 
due to their role in helping the genetic algorithm to define the 
most promising regions of the search space. However, for 
large and complicated search spaces, their role is limited to 
accelerating finding of the global optimum once the genetic 
algorithm isolates the most promising region and can be 
helpful in later stages of the search.

2) Duration o f Local Search
Local search duration influences the balance between the 

global exploration of genetic algorithms and local refinement 
of the neighborhood search method in hybrid genetic 
algorithms [122], [123]. A hybrid with long local search 
duration will execute fewer generations of the genetic 
algorithm than a hybrid with shorter local duration, if both

terminate after the same number of function evaluations.
On combinatorial domains, a local search can be performed 

until a solution converges to a local optimum. However, on 
continuous domains, the local search is typically truncated 
before reaching a local optimum when its step length becomes 
too small. Performing local search until a solution converges 
to a local optimum, which is referred to as complete local 
search, may lead to the loss of population diversity [102] 
depending on the learning strategy used. Hybrid genetic 
algorithms that adopt the pure Lamarckian approach are more 
prone to loss of diversity than others which utilize other 
learning techniques.

Applying a complete local search on costly function 
evaluations can also be expensive. However, there is a certain 
class of problems, decomposable fitness problems [124], 
where calculating the fitness of a solution given the fitness of 
its neighbor, is significantly less computationally expensive 
than computing its fitness from scratch. TSP is an example of 
this group of problems where computing the length of a tour 
that shares most of its edges with another tour, whose length is 
already known, is much cheaper than computing the length of 
a complete tour. Radcliffe and Surry [124] argued that hybrids 
are more suitable for problems exhibiting this property.

A few studies have been conducted which investigate the 
optimal duration of local search. Hart [7] found that using a 
short duration of local search produced the best results for the 
Griewank functions [125], whereas a long duration produced 
better results for the Rastrigin functions [126]. Rosin et al. 
[116] experimented with very short and very long local search 
durations in a hybrid to optimize the drug-docking 
configuration. Both durations were found to yield similar 
performance. Hart et al. [122] concluded that duration of local 
search is an important factor and hybrid genetic algorithms 
with long local searches will be most effective for nontrivial 
problems.

The high cost of a complete local search on expensive 
function evaluations makes any improper use of the local 
search difficult to recover from. However, the recovering from 
any misuse of partial local search is still possible. Partial local 
search is more suitable for hybrids that decide on a global or a 
local approach depending on the current state of the search 
and the previous performance of both methods. In this case, 
where there is a possibility of misjudgment in some 
circumstances, the use of partial local search gives the hybrid 
a higher chance to recover from such errors than using a 
complete local search.

3) Probability and Selection o f Local Search
In any hybrid algorithm, a local search can be applied to 

either every individual in the population or only few 
individuals. In traditional hybrid genetic algorithms, a local 
search is applied to every individual in the population. 
However, applying a local search to every individual in the 
population on costly function evaluations can waste resources 
without providing any more useful information. In this case, 
the local search can be applied to individuals that fall in the 
same basin of attraction of the search space, whereby 
producing the same local optimum. Applying a local search to



a large fraction of the population can limit exploration of the 
search space by allowing the genetic algorithm to evolve for a 
small number of generations. The possibility of applying local 
search on more than one individual from the same basin can 
be reduced by performing local search on only a small fraction 
of the population. This also lowers the chances of applying an 
unnecessary local search on individuals that fall in non­
promising regions of the search space. Deciding upon the 
optimal fraction of the population which should perform local 
search, and the basis on which these individuals are chosen, 
has a great impact 011 the performance of a hybrid.

Hart [7] investigated the impact of the fraction of the 
population that undergo local search on the performance of 
real-coded genetic algorithms. He found that a relation exists 
between this fraction, the population size and the performance 
of the hybrid. He also found that performing local search on 
small fractions could be more efficient when using larger 
populations and those large fractions can help to reflect the 
search space characteristics when using small populations. He 
concluded that a more selective use of local search could 
improve the efficiency of hybrids. Hart and Belew [127] 
studied the impact of the local search probability on the 
efficiency of hybrids. Their studies indicate that the 
probability of local search should be kept low in the initial 
stages and incremented in later generations. The population 
diversity in the initial stages of genetic algorithm enables good 
sampling of the search space. However, as the diversity 
diminishes in the later stages, the sampling ability of the 
genetic algorithm requires additional help from the local 
search.

Different techniques, such as tuning, distribution-based [7], 
fitness-based [7] techniques, and local search potential [117], 
have been proposed to decide on the optimal fraction of the 
population that should perform a local search. These 
techniques aim to reduce unnecessary local searches. 
However, they differ in the way they select individuals that 
perform the local search.

a) Tuning Technique
In the tuning technique, a primary experiment is conducted 

in order to find the optimal fraction of the population that 
should perform local search. This fraction is usually referred 
to as the probability of local search. This value is then used to 
run the real experiment and remains fixed during the run. 
Typically, the individuals that undergo local search are chosen 
uniformly at random. Rosin et al. [116] applied local search to 
7% of the population in each generation in their hybrid to 
solve the docking problem. In Land et al. [128], only 5% of 
randomly selected individuals of the population perform a 
Marquardt-Levenberg local search in their hybrid to determine 
the basic parameters that describe the structure of a 
semiconductor wafer. Hart et al. [122] and Morris et al. [17] 
applied local search to 6% of the population. Espinoza et al. 
[113] found applying local search on 10% of the population 
produces the best efficiency for both their adaptive hybrid 
algorithm and the standard staged hybrid algorithm. In their 
adaptive hybrid genetic algorithm, this value is used as an

initial value for the probability of local search, which is 
reduced by a specific value after applying local search. In a 
hybrid to solve TSP, Krasnogor and Smith [32] applied their 
adaptive local search method with a probability of 1.0 to each 
individual in the population, except the one with the best 
fitness.

b) Distribution-based Technique
Distribution-based techniques modify the probability of

local search based on the distribution of individuals in the 
population. The motivation for these techniques is to ensure 
that only one individual from each basin of attraction in the 
search space can undergo local search. These techniques can 
improve the sampling ability of the hybrid by preventing bad 
representatives of good regions from misguiding the global 
genetic algorithm.

Hart [7] used the F statistic as a measure of distance over 
the space of genotypes to adapt the probability of local search. 
Joines and Kay [107] combined evolutionary algorithms with 
random linkage and borrowed the concept of short memory 
from tabu search [129] to avoid performing unnecessary local 
search on non-promising regions of the search space. The 
authors defined tabu hyperspheres around the offspring of the 
genetic algorithm to reduce the number of wasted function 
evaluations owing to the rediscovery of the same local 
optimum. The probability of local search of each offspring 
depends on the distance to the nearest tabu region. By 
decreasing the size of these tabu hyperpheres as the search 
progress, the algorithm can intensively search the most 
promising regions of the search space. This in turn can help to 
find the exact local optimum of the region which also 
represents the global optimum of the search space. The 
authors compared their hybrid using the Lamarckian learning 
approach with a pure genetic algorithm, and the standard 
hybrid genetic algorithm where each offspring perform local 
search using two different learning strategies. They reported 
that their hybrid outperformed other algorithms in terms of 
both solution quality and computation effort. Martinez- 
Estudillo et al. [130] selected individuals for local search 
using clustering techniques to optimize the structure and the 
weights of product-unit based neural networks. The results 
showed that the clustering approach was able to perform better 
than similar algorithms that do not use clustering analysis.

c) Fitness-based Technique
A fitness-based technique adaptively calculates the 

probability with which local search is applied. This technique 
uses the fitness information in the population to bias the local 
search towards individuals that have a better fitness. The local 
search probability of each individual is modified based on the 
relationship of its fitness to the fitness of other individuals. 
These methods assume that individuals with better fitnesses 
are more likely to be in the basins of attraction of the most 
promising regions. This assumption ignores the dynamic of 
genetic algorithms and the cumulative effect of applying local 
search on successive generations which can aggravate the 
sampling ability of the global genetic algorithm and can



misguide the search. For example, if a promising region of the 
search space is represented poorly by an individual with 
under-average fitness and, in the same population, a non­
promising region is represented by individuals with over­
average fitness, the representative of the non-promising region 
will have more chance to perform local search and improve its 
chances of survive.

Hart [7] found no statistical differences between the results 
obtained by applying fitness-based selection and the results of 
fixed probability of local search. Espinoza et al. [131] used a 
clustering technique that is tailored to the three different stages 
the authors have defined for constrained problems to adapt the 
probability of local search. In the first stage, where all the 
solutions are infeasible, and the last stage, where all the 
solutions are feasible, the authors experimented with 
clustering the individuals depending on their fitness. The 
selection was performed by means of Latin-hypercube 
sampling from clusters which had formed. In the second stage, 
where a few individuals are feasible, the probability of local 
search is proportional to the number of feasible solutions in 
the population. The results showed that the algorithm, which is 
based on a fitness clustering technique, is more reliably faster 
than the adaptive hybrid genetic algorithm with fixed starting 
local search probability. Lozano et al. [132] proposed a simple 
adaptive scheme which sets the probability of local search of 
each individual to either 1.0 or 0.0625 depending on the 
individuals fitness compared to the fitness of the current worst 
individual in the population. The authors concluded that this 
adaptation mechanism allows the balance between the global 
genetic search and the local search to be adjusted according to 
the particularities of the search space, thus allowing significant 
improvements in the performance for different classes of 
problems.

d) Local Search Potential Technique
The local search (LS potential) potential selection 

mechanism has been proposed by Land [117] to decide which 
individuals should perform the local search. Land suggested 
that biasing the local search towards individuals that can be 
most efficiently improved by local methods makes the most 
effective use of local search. The least easily improved 
solutions are likely to be those at or near to the local optimum 
and it is inappropriate to expend effort on fine refinement, as 
long as there are large differences in the population’s fitness. 
In this way, the scheme biases the hybrid towards more 
exploration. As the population gets closer to the optima, this 
mechanism allows local search to progress to the next level of 
refinement. In his algorithm, he used the past local search 
effectiveness as a measure to estimate future effectiveness.

Different techniques have been used to control the different 
parameters of the local search in order to strike a balance with 
the global genetic methods. Most of the controlling techniques 
which are described by Eiben et al. [17] for controlling the 
parameters of evolutionary algorithms have been applied to 
the local search control parameters in a hybrid.

The self-adaptation techniques are reported to be 
successfully used to decide between different local search

methods in solving the OneMax problem, NIC-Landscapes, 
and TSP [134]. The self-adaptation technique has also been 
used to adapt the duration of local search in a hybrid through 
encoding the number of local iterations into chromosomes 
[106]. In this way, the global genetic algorithm decides on the 
individuals that should perform a local search and on its 
duration.

iv . S u m m a r y

In this paper, we have tried to shed some light on the 
effectiveness and efficiency of hybridizing genetic algorithms 
with various techniques through reviewing some of the wide 
variety of hybrid genetic approaches. These approaches show 
that hybridizing is one possible way to build a competent 
genetic algorithm [135] that solves hard problems quickly, 
reliably and accurately without the need for any forms of 
human intervention. Hybridization has been utilized to 
construct competent genetic algorithms that belong to two of 
the three main approaches for building competent genetic 
algorithms, i.e., perturbation, linkage adaptation, and 
probabilistic model-building [136], The collective learning 
genetic algorithm is an example of a competent genetic 
algorithm that employs specifically designed representation 
and operators for adapting genetic linkage along with the 
evolutionary process. Other search and optimization methods 
can also be used to adapt genetic linkage. Probabilistic Model- 
Building Genetic Algorithms (PMBGA) are examples of 
probabilistic model builders which leam genetic linkage via 
building models based on the current population.

Hybridization is also one of the four main techniques for 
efficiency enhancement of genetic algorithms. Hybridization 
can also be used as a tool to achieve evaluation relaxation, 
which in turn is another main technique for efficiency 
enhancement.

The ability of a genetic-local hybrid to solve hard problems 
quickly depends on the way of utilizing local search 
information and the mechanism of balancing genetic and local 
search. By reviewing the different hybrid approaches, some of 
the important factors that affect the hybrid performance have 
been presented. This review shows that there is a trend 
towards adapting some of the hybrid design choices through 
adapting the control parameters associated with these choices 
while the search is progressing. Different adaptation 
techniques have been used to adapt the selection of a local 
search method, the selection of individuals for a local search, 
the duration of local search, the learning strategy, and otlier 
design aspects.
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S u m m a ry . T he problem  of proper u tilization of the  search tim e to  adap t a hybrid 
to  a  given problem  can be viewed as a problem  of finding optim al control param eter 
settings. T he algorithm ’s tim e utilization can be optim ized through adap ting  the  
local search duration. Evolving th is control param eter via genetic operations is one 
possible way to  achieve th is adap tation . However, the  hindering effect can obstruct 
the self-adaptive ability of th e  Baldwinian search. Local search m ethods w ith narrow 
steps and the use of the local search duration  to  discrim inate between solutions can 
help to  alleviate th is problem.

K e y  w o rd s : Self-adaptaion, Hybrid genetic algorithms, Baldwinian search, Hin­
dering effect

1 Introduction

A genetic, algorithm is usually combined with a domain-specific method to 
solve a real-world problem [8] . The success of such a hybrid algorithm in 
solving a given problem efficiently depends on its success in achieving a bal­
ance between exploration and exploitation [4, 8, 3], Among the factors that 
affect this balance is the duration of local search [5], which is defined as the 
number of the consecutive local search iterations that is performed on a solu­
tion before terminating a local search procedure. This control parameter can 
be used to adapt the hybrid on-line to a. specific problem.
The interactions between local search duration, learning strategy, fitness 
topology, and other genetic components have a great impact on search time 
utilization [4, 5]. The idea of evolutionary self-adaptation [6] can be applied 
to adapt the local search duration in order to optimise the performance of a 
hybrid on a particular problem without the need for external control.
The impact of the hindering effect [6] on obscuring genetic differences can 
obstruct the Baldwinian[7] search’s self-adapting ability to a given problem. 
The genotypes cannot be effectively discriminated according to their fitness
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without considering the learning cost and hence the evolution of effective so­
lutions can be hindered.
The ability of genetic search to find favourable parameter settings for pure 
genetic algorithms has been proven [6]. However, its ability within a hybrid 
to self-adapt the control parameters, especially those related to incorporating 
a local method, may require further investigation. In this paper, we analyse 
the influence on the behaviour of the Baldwinian hybrid of simultaneously 
exploring both the problem search space and the control space of local search 
duration. This analysis can help to gain some insight into the factors that 
may affect the search performance in order to find ways to improve it.

2 E volutionary Self-adaptation  and D uration  of Local 
Search

In evolutionary self-adaptive algorithms, the fitness of the individual asso­
ciated with a specific control parameter value is used as feedback to assess 
the suitability of the control parameter values for solving a given problem. 
The link between the duration-of-local-search control parameter and the in­
dividual’s fitness depends on the fitness function topology, the details of the 
local search method and the genetic algorithm’s setup. By allowing the du­
ration of the local search to evolve by means of genetic operations, the link 
between favourable duration of the local search and the fitness can be ex­
ploited. Genetic operations can adaptively control the duration of the local 
search method to optimise the individuals fitnesses. In this way, this link can 
be defined, which is essential for the adaptation of control parameters [11], 
However, it may be difficult to define this link when the genetic algorithm 
is combined with Baldwinian search. The acquired fitness is the sum of the 
improvements introduced by applying a local search method for the encoded 
duration and the innate fitness. The hindering effect can direct the search to­
wards individuals with long durations and a small innate fitness. The search 
process, in this case, is degraded from optimising the fitness function to opti­
mising a single control parameter. The possibility of leading the search in this 
direction increases as the dimension of the fitness function increases, since it 
may be easier for the algorithm to optimise a single control parameter than 
to optimise a large number of variables. It can also waste its resources as it 
can direct the individuals towards performing useless local search iterations. 
The use of the acquired fitness as a metric to assess the quality of solutions 
in the Baldwinian search can produce an algorithm with poor performance. 
The use of a local search method, which takes narrow steps in the search 
space while restricting the values of the duration of local search to very small 
numbers, can help to combat the hindering effect problem. In this way, the 
problems consequences on the ability of the algorithm to define a link between 
this control parameter and the fitness in the direction of optimising solutions 
quality can be alleviated.
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However, the ultimate solution for the hindering effect problem is to rely on 
innate fitness to decide between solutions of equal acquired fitness values. 
Since the number of local iterations, which is a good indication of the cost of 
learning, is already encoded into the individual, it can be used together with 
the acquired fitness to direct the search towards solutions of high quality.
It may be beneficial to allow the local search method to cooperate with the 
global genetic algorithm to explore the search space in the early stages of 
the search by allowing wide local steps. However, as the Baldwinian search 
reaches the fitness-convergenc.e-state, taking narrow local steps can be more 
helpful. By adapting the local step size according to the standard deviation 
of the population fitness, the search performance rnay be improved.

3 E xperim ents

A set of experiments was conducted to gain some insight into the evolutionary 
self-adaptive behaviour of the Baldwinian search using three different hybrids. 
Hybrid-A, which uses a local search method with a predefined maximum lo­
cal step size and discriminates between solutions based on the acquired fitness 
only, was used to study the effect of local search step size on the performance. 
Hybrid-B, which is identical to Hybrid-A except that it uses local search iter­
ations to discriminate between solutions of an equal acquired fitness, was used 
to investigate the effectiveness of using the local search duration to discrimi­
nate between solutions. The possibility of improving the hybrid performance 
by employing an adaptive local step was examined through Hybrid-C, which 
uses an adaptive local step size and utilizes the local search duration to dis­
criminate between effective solutions.
In these hybrids, the number of local search iterations that should be per­
formed by an individual was encoded into its chromosome. At each iteration, 
the local search method tries to find the smallest possible step in the allowed 
range of a randomly selected variable space that improves the fitness. Starting 
from the least significant bit of a randomly chosen variable and moving to­
wards its most significant bit, the local search method keeps flipping the bits 
until an improvement in the fitness produced or a specified number of bits are 
flipped. In the case of no improvement in the fitness, the process is repeated 
for another randomly chosen variable until an improvement is produced. By 
controlling the maximum number of bits that can be scanned for fitness im­
provement of each variable before randomly selecting another variable, the 
algorithm controls the size of the local search step.
The generalized Ellipsoidal [2], Ackley [1], Schwefel [10], Rastrigin [10], and 
Griewanlc [10] functions were selected as a test suite. The hybrids used the 
simple elitist genetic algorithm with binary tournament selection, two-point 
crossover, and simple mutation. The values of the duration of local search 
parameter were restricted to very small values in the range 03. For all ex­
periments, the rate of crossover and mutation were set to 0.7 and (popula­
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tion size)-1 , respectively. The population sizes for the 2- and 10-dimensional 
functions were set to 50 and 100, respectively. Each variable was represented 
by a 10-bit string. The stopping criterion for all experiments was a maximum 
number of function evaluations. The number of bits that were exposed to 
modification was limited to a specific percentage of the length of the variables 
string. Each experiment was repeated 100 times.

4 D iscussion

The results of the first two hybrids clearly show that as the size of the local 
search step decreases, the ability of the evolutionary self-adaptive Baldwinian 
hybrid to find a global optimum increases. This is depicted in Fig. 1 for the 
10-dimensional Ellipsoidal, Ackley, and Schwefel functions. The algorithms 
were unable to find the global optimum for the 10-dimensional Griewanlc and 
Rastrigin functions. However, the curves of the best fitness of these functions 
show a similar trend. The curves of the percentage of experiments that found 
a global optimum of the 10-dimensional functions, as expected, have a steeper 
slope than the 2-dimensional functions. As shown in Fig. 1, Hybrid-B outper­
formed Hybrid-A in terms of the percentage that converged.
The experiments also show that using small local steps improves the speed of

—o—-Ackley (Hybrid-B)
—O* -  Ackley (Hybrid-A) 

«*«©•••Ackley (Hyhrid-C)
Ellipsoidal (Hybrid-B) 

—■t- -  Ellipsoidal (Hybrid-A) 
— I— Ellipsoidal (Hybrid-C) 
— 6— Schwefel (Hybrid-B) 
-e--Schwefe l (Hybrid-A)

• ■ ■ 0- • • • Schwefel (Hybrid-C)

70%

O 60%

10% n -

40% 50% 60%
L o c a l  S e a r c h  L im it

F ig . 1 . T he effect on convergence ability

the algorithms in finding the global optimum (Fig. 2). Fig. 2 also illustrates 
that Hybrid-B significantly outperforms Hybrid-A in terms of the search speed 
of the 10-dimensional Ackley and Schwefel functions.
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Hybrid-C produced a near optimal performance in terms of the percentages 
that converged and an optimal performance in terms of convergence speed 
for the 10-dimensional Schwefel and Ellipsoidal functions, as illustrated by 
the doffed lines in Fig. 1 and Fig. 2. Hybrid-C also improved the best fitness 
and the search speed of the Rastrigin and Griewank functions. However, the 
algorithm produced a poor performance for the Ackley function.

5 C onclusions

The hindering effect can obstruct the ability of Baldwinian search to self-adapt 
the duration-of-local-search control parameter. The possibility of obstructing 
this ability increases as the dimension of the fitness function increases. The 
results presented in this paper also show that the use of a local search method 
with narrow steps in the search space can help to alleviate this problem and 
hence improve the performance of the Baldwinian search in terms of solution 
quality and convergence speed. The performance of the Baldwinian search 
can be further improved when the local search duration is used alongside 
the acquired fitness to discriminate between effective solutions. The use of 
an adaptive local search step can improve the performance of the Baldwinian 
search on some of the tested problems.

— 0—  Ackley (Hybrid-B) 
-© -A c k le y  (Hybrid-A) 

•■■©•••Ackley (Hybrid-C) 
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n.
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A Self-Adaptive Hybrid Genetic Algorithm for Color Clustering

Tarek El-Mihoub, Lars Nolle, Gerald Schaefer, Tomoharu Nakashima and Adrian Hopgood

Abstract —  C o lor  p a lettes arc in h eren t to co lor qu antized  
im ages and rep resen t th e range o f  p ossib le  co lors in such im ages. 
W hen con vertin g  fu ll tru e co lor  im ages to palletized  
cou n terp arts, th e co lor  p alette shou ld  be ch osen  so as to  
m in im ize the resu ltin g  d istortion  com pared  to th e orig inal. In  
th is pap er, w e sh ow  th at in con trast to  p revious app roaches on  
co lor  qu an tiza tion , w h ich  rely on c ith er  heuristics  or c lustering  
tech n iq u es, a gen eric  op tim ization  a lgorith m  snch as a 
self-ad ap tive  hyb rid  gen etic  a lgorith m  can be em ployed  to  
gen era te  a p a lette  o f  h igh  qu ality . E xp erim en ts on a set o f 
s tan d ard  test im ages using a novel self-ad ap tive  hybrid  genetic  
algorith m  show  th at th is app roach  is cap ab le  o f  ou tp erform in g  
severa l con ven tion a l co lor  q u antization  a lgorith m s and provide  
su p erior  im age  qu ality .

I. In t r o d u c t io n

True color images typically use 24 bits per pixel which 
results in an overall gamut o f  224 i.e. more than 16.8 million 
different colors. W hile nowadays most images are captured 
and stored in that format, in certain applications (for example 
display o f  images on limited hardware such as mobile devices 
and for compression and retrieval o f  images [1]) it is 
advantageous to limit the range o f  possible colors to fewer 
entries whose ensemble are known as a color palette. Color 
quantization is the process o f  generating a suitable palette 
(usually o f  size between 8 and 256) where suitable is often 
defined as introducing as little distortion as possible, or 
equivalently, as maintaining the best possible image quality.

In this paper w e apply a self-adaptive hybrid genetic 
algorithm (SAHG A) as a standard black-box optimization 
approach to the color quantization problem. The main 
advantage o f  black-box optimization algorithms is that they 
do not require any domain specific knowledge yet are able to 
provide a near optimal solution. We evaluate the 
effectiveness o f  our approach by comparing its performance 
to the results obtained by several purpose built color 
quantization algorithms [2-4]. The results obtained show that 
even without any domain specific knowledge our SAHGA  
based algorithm is able to outperform standard quantization 
algorithms and hence to provide palletized images with 
superior image quality.

The rest o f  the paper is organized as follows. The next 
section provides a formal definition o f  the color quantization 
problem. Section III provides the background for 
optimization based on self-adaptive hybrid genetic algorithm.

Tarek El-Mihoub, Lars Nolle, Gerald Schaefer, and Adrian Hopgood are 
with the School o f Computing and Informatics, Nottingham Trent University, 
Nottingham, UK.

Tomoharu Nakashima is with the College o f Engineering, Osaka 
Prefecture University, Osaka, Japan.

Section IV explains our application o f  SAHGA, a modified 
HGA algorithm, to the color quantization problem. Section V 
presents experimental results based on a set o f  standard test 
images while Section VI concludes the paper.

II. C o l o r  Q u a n t iz a t io n

Color quantization produces a color palette that contains 
only a small number o f  colors (usually between 8 and 256); 
pixel data are then stored as indices to this palette. Clearly, 
the choice o f  colors that make up the palette has a crucial 
influence on the image quality o f  the quantized image. 
Formally, given an image quality metric which assigns 
d(Ii(x,y)J2{x,y)) as the distance (or difference) between two 
pixels at location (x,jp) in images It and I2, an n x m original 
imag e 0 =  {oi={Ri,Gj,Bi}, i=  1 ... n x m } ,  a palette o f  size N,P  
=  {pj — {R j,G j ,B j}J -  1 . . . T V ) ,  P  is optimal iff

-3 P = { p k =  {Rk ,G j ,B k) , k  =  \ . . .N )  

so that D(0,q(0,P)) < E(0,q(O,P))

with E (the error between two images) defined as

n m

E (h J i)  = X J / ^ , ^ ) ’72̂ ) )  (2)
x=l y =1

and q (the result o f  the quantization process)

q(0,P)  = {qr -  px, r = !...«• m/d(or, ps )<d(o, . ,pt )V I *  s) (3 )

However, the selection o f  the optimal color palette is 
known to be an np-hard problem [4]. In the image processing 
literature many different algorithms have been introduced 
that aim to find a palette that allows for good image quality o f  
the quantized image. In general these can be divided into 
heuristic techniques such as the popularity algorithm [4] and 
clustering-based algorithms such as the median cut approach
[4].

III. H y b r id  G e n e t ic  A l g o r it h m

Genetic algorithms [5] and other search methods can be 
seen as complementary tools that can be brought together to 
achieve an optimization goal. In these hybrids, a genetic 
algorithm incorporates one or more methods to improve the 
performance o f  the genetic search. There are several ways in 
which a search or optimization technique can complement the 
genetic search [6-10].

I f a genetic algorithm is combined with a fast converging 
local search methods [11] the resulting hybrid can often 
outperform the algorithms [12], Hybridizing a local search 
method provides the global genetic search algorithm with



some local knowledge that can guide and may accelerate the 
search to the global optimum [13]. Figure 1 shows a 
flowchart o f  the basic hybrid genetic algorithm. As it can be 
seen from the figure, after the genetic operators are applied in 
order to generate a new generation, each o f  the individuals in 
the new generation undergo optimization using a local search 
method.

(  START
\

pa ra m e te rs

s to p  c riteria

yes

se le c t p a re n ts  from 
cu rren t gen ep o o l an d  

c re a te  o ffspring

apply  m uta tion  to  
offspring a n d  in sert 

them  into n ew  genepoo l
individual in g enepoo l

Im prove e a c h  offspring 
in ne w  g enera tion  using

applying c ro sso v e r

print b e s t solu tion

STOP

Figure 1 -  Flowchart o f  hybrid Genetic Algorithm.

In this research, a new self-adaptive hybrid genetic 
algorithm (SA H G A) has been used, which employs a novel 
local search method, which is described in the follow ing  
section.

A. Local Search Method used

The new local search algorithm used in this research is a 
probabilistic method that works on the genotype space by 
using a sub-group o f  the current population o f  solutions to 
optimize the structures o f  each solution present in the 
genepool. In this way, it aims to make use o f  som e o f  the 
valuable genetic search information. It also aims to avoid 
disrupting the genetic schema processing by improving the 
solution in accordance with the global genetic search.

The modification o f  the initial solution based on a group o f  
solutions o f  the genetic population can provide the local 
search method with a partial global view  o f  the problem at 
hand. Based on this view, the search method can produce a 
solution in the context o f  global view captured by the genetic 
algorithm. This form o f  search can minimize any conflict

with the global genetic search. The partial global aspect o f  the 
search method can be controlled by the group size and the 
mechanism o f  selecting the group members. This method is 
also characterized by its low costs. Its costs are equal to the 
costs o f  evolving a solution for a single iteration o f  the 
genetic search (i.e. one function evaluation per solution). This 
can help to minimize the loss o f  the hybrid’s time in the case 
o f  any undesirable interference between the two search 
methods. Figure 2 provides pseudo code for the algorithm.

Procedure L o c a l S e a r c h  
Begin

For e a c h  i n d i v i d u a l  s O  i n  g e n e p o o l
Begin

S e l e c t  r a n d o m l y  g r o u p  o f  i n d i v i d u a l s
s i ,  s 2 ,  s 3 ,  s 4 ;
For e a c h  g e n e  g  i n  sO
Begin

If g  = 1
S e t  p r o b a b i l i t y  p ( g )  t o  1 . 0 ;

E l s e
S e t  p r o b a b i l i t y  p ( g )  t o  0 . 0 ;

End
For e a c h  i n d i v i d u a l  s i n  g r o u p
Begin

C a l c u l a t e  p r o b a b i l i t y  v a l u e  v  a s  t h e  a b s o l u t e  
f i t n e s s  d i f f e r e n c e  b e t w e e n  sO a n d  s, 
n o r m a l i z e d  b y  d i v i d i n g  i t  b y  t h e  su m  
o f  d i f f e r e n c e s  b e t w e e n  e a c h  g r o u p  m e m b e r  
a n d  sO;
For e a c h  a l l e l e  a  i n  s  
Begin

If a  e q u a l  t o  c o r r e s p o n d i n g  a l l e l e  i n  sO 
S e t  c o r r e s p o n d i n g  p r o b a b i l i t y  i n  
p r o b a b i l i t y  v e c t o r  f o r  s  t o  0 . 0 ;

Else if a  l e s s  t h a n  a l l e l e  i n  sO 
S e t  p r o b a b i l i t y  v e c t o r  f o r  s  t o  + v ;

Else
S e t  p r o b a b i l i t y  v e c t o r  f o r  s t o  ~v;

End
End
A d d  a l l  p r o b a b i l i t y  v e c t o r s  f o r  s O , s i , s 2 ,  s 3 ,  s 4 ;
G e n e r a t e  r a n d o m  v e c t o r  r ;
For e a c h  e l e m e n t  i n  r a n d o m  v e c t o r
Begin

I f  p r o b a b i l i t y  v e c t o r  > r a n d o m  e l e m e n t
S e t  c o r r e s p o n d i n g  g e n e  i n  n e w  s o l u t i o n  t o  
1 ;

Else
S e t  c o r r e s p o n d i n g  g e n e  i n  n e w  s o l u t i o n  t o  
0 ;

E n d
E v a l u a t e  new  s o l u t i o n ;
I f  f i t n e s s  o f  n ew  s o l u t i o n  > f i t n e s s  o f  sO 

R e p l a c e  sO w i t h  n e w  s o l u t i o n ;
End L o c a l S e a r c h

Figure 2 -  Pseudo code o f  local search method.

The algorithm assumes that each gene contributes uniformly 
to the fitness o f  the solution. Based on this assumption, the 
search method compares the genetic structure and the fitness 
o f  the solution to be improved with the structures and the 
fitness o f  a group o f  solutions selected from the current 
genetic population. Depending on the differences in both the 
structure and the fitness between this solution and the group 
members, the solution structure is modified in the direction o f  
improving its fitness score. The new solution is evaluated and 
then inserted back into the population if  it shows an 
improvement in its fitness.



B. The Self-Adaptive H ybrid Genetic Algorithm (SAHGA)

The success o f  such a hybrid algorithm in solving a given  
problem efficiently depends on its success in achieving a 
balance between exploration and exploitation [12, 13]. 
Am ong the factors that affect this balance is the duration o f  
local search [14], which is defined as the number o f  the 
consecutive local search iterations that is performed on a 
solution before terminating a local search procedure. This 
control parameter can be used to adapt the hybrid on-line to a 
specific problem.

In the proposed hybrid algorithm, the number o f  local 
search iterations is incorporated into the representation o f  an 
individual. Through this parameter, the duration o f  a local 
search is controlled. It defines the number o f  local iterations 
that should be performed by the associated individual. The 
global genetic algorithm evolves the number o f  local search 
iterations parameter while the hybrid is using that control 
parameter to optimize the fitness function variables. Through 
adopting the evolutionary self-adaptation metaphor, the 
algorithm allows the global genetic algorithm to dynamically 
decide on the individuals that should perform a local search. 
It also decides on the duration o f  the local search method 
through m odifying the number o f  local iterations as it 
co-operates with the local search to solve a given problem. 
This can facilitate the adaptation o f  number o f  local search 
iterations control parameter without exogenous control.

In general, the control parameters in the evolutionary 
self-adaptive algorithm can be adapted either at the individual 
level (i.e. local level) or at the population level (i.e. global 
level). In the local adaptation, the control parameter is applied 
to the associated solution only. In contrast, the control 
parameter in the global adaptation is tied to the population as 
a whole and not to a particular solution. The number o f  local 
iterations o f  an individual is computed by taking the average 
o f  the number o f  local iterations o f  the individuals o f  the 
whole population. Local adaptation is used in the proposed 
algorithm because it is reasonable to assume that different 
individuals are follow ing different paths through the search 
space. It is also proven that local adaptation outperforms 
global adaptation [15],

In the proposed self-adaptive hybrid algorithm, after 
performing a genetic iteration, the number o f  local iterations 
associated with each solution is extracted from the 
chrom osom e’s structure. Depending on the value o f  that 
parameter, a number o f  local search iterations are performed 
on that solution. I f  the value o f  that parameter is zero, no local 
search iteration will be performed. Otherwise the specified  
number o f  local iterations will be performed consecutively. 
Using the learning strategy specified by the algorithm, the 
resulting solution is mapped back to the mating pool.

The maximum value o f  the number o f  local iterations was 
set to three. The reason for selecting this value is the expected 
benefits o f  using small durations o f  local search to fight the 
hindering effect problem. The algorithm also makes use o f  
the number o f  local iteration control parameter, which already 
exists within the chromosome, to discriminate between innate 
and acquired fitness. In a case o f  an equal fitness, the

algorithm chooses the individual with the smaller value o f  
local search iterations since its acquired fitness is closer to the 
innate one. This can help to alleviate the consequences o f  the 
hindering effect problem [11] associated with the Baldwinian 
approach.

IV. SAHGA FOR COLOR QUANTIZATION

In this paper we apply the SAHGA algorithm described 
above as a black box optimization algorithm to the color 
quantization problem. For color quantization the objective is 
to minimize the total error introduced through the application 
o f  a color palette. The color palette P for an image O, a 
codebook o f  N  color vectors, should then be chosen so as to 
minimize the error function E

k  ' j

E ( P ,0 )

L jJ j

with

c (P ,0 )
k

2>-
;= l

1 i f  I, — 0 

0 otherwise

(4)

(5)

where /, is the number o f  pixels Oj represented by color P, 
o f  the palette, ||.|| is the Euclidean distance in RGB space, and 
5 is a constant (<5=10 in our experiments). The objective 
function E(P, O) used is hence a combination o f  the mean 
Euclidean distance and a penalty function. The penalty 
function c(P.O) is integrated in order to avoid unused palette 
colors by adding a constant penalty value to the error for each 
entry in the codebook that is not used in the resulting picture. 
As can be seen from Equation 4 the objective function is 
highly non-linear, i.e. it has a high degree o f  epistasis [16].

For our color quantization algorithm w e em ploy the 
SAHGA algorithm with a population size o f  100. For ail 
experiments, binary tournament selection, single-point 
crossover, and simple mutation were used with a crossover 
probability o f  0.6 and a mutation probability o f  0.01. Each 
experiment was repeated 19 times and the codebook with the 
median error was used for comparison.

V . E x p e r im e n t a l  R e s u l t s

In order to evaluate our new method for color quantization, 
w e have taken a set o f  three standard images com monly used 
in the color quantization literature, Lenna, Pool, and Airplane, 
and applied our optimization schem e to generate quantized 
images with a palette o f  16 colors.

To put the results w e obtain into context, w e have also 
implemented four popular color quantization algorithms to 
generate corresponding quantized images with palette size 16. 
The algorithms we have tested were:

•  Popularity algorithm [4]: Following a uniform
quantisation to 5 bits per channel the n colours that are 
represented most often form the colour palette.



•  Median cut quantisation [4]: This algorithm starts by 
computing the box that encompasses all colours 
present in the image. The box is then split (orthogonal to 
the colour axis) at the median value into two sub-cubes. 

The larger remaining sub- cube is then again divided at 
its median point and this process is repeated until n 
colour boxes have been found.

•  Octree quantisation [3]: The colour space is represented 
as an octree where the root node corresponds to the 
whole colour space, the nodes at the next level the 
eight sub-cubes that are obtained by dividing each 

colour axis into two equal halves, and so on. In a first 
pass the sub-tree that represents the colours present in 
the image is built and in a second pass, starting at the 

bottom o f  the tree, nodes are successively merged until 
a tree o f  n colours is reached.

•  Neuquant [2]: A  one-dimensional self-organising 
Kohonen neural network is trained to generate the 
colour map. The Kohonen network defines a mapping 
from the colour values in the image to an index 
representing the palette entries. The weights o f  the 
network are updated based on the image data to ensure an 
optimal palette with good image quality.

For all algorithms, pixels in the quantised images were 
assigned to their nearest neighbours in the colour palette to 
provide the best possible image quality.

The results are listed in Tables 1 and 2, expressed in 
terms o f  mean-squared-error (MSE) and 
peak-signal-to-noise-ratio (PSNR) defined as

M SE (/„/2) -  j ) f  +
3 mn (6)

(G ,(U ) -  G2{ i , j ) f  + (B fiJ )  -  B2(iJ))2}

and

25 5 2
P S N R ( /„ /2) =  I01oglo . .  (7 )

MSE(/i, / 2)

where R(iJ), G(iJ), and B(iJ) are the red, green, and blue 
pixel values at location (ij)  and n and m are the dimensions o f  
the images.

As MSE and PSNR are not necessarily the best quality 
indicators, the results are also provided in terms o f  
S-CIELAB [17]. This is an image quality metric based on 
uniform colour spaces but it also takes into account the spatial 
interaction between neighbouring pixels based on a blurring 
effect derived from psychophysical experiments. 
S-CIELAB results, expressed in terms o f  AE differences 
between original and quantised images are provided in Table 
3.

Popalg M edct Octree Neuqu. SA H G A

Lenna 388.1 271.4 117.0 107.4 93.4

Pool 669.9 226.9 74.9 127.2 60.3

Airplane 1668.1 240.7 86.5 97.6 72.8

all 908.7 246.3 92.8 110.7 75.5

T ab le  1. Quantization results, g iven  in terms o f  M SE.

Popalg M edct Octree Neuqu. SA H G A

Lenna 22.24 23 .79 27.45 27.82 28 .43

Pool 15.91 24.32 28.77 28.24 30 .53

Airplane 19.87 24.57 29.39 27.08 29.51

all 19.34 24.23 28 .54 27.71 29.45

T ab le  2. Quantization results, g iven  in tenns o f  PSN R  [dB].

Popalg M edct Octree Neuqu. SA H G A

Lenna 11.92 21.81 20.54 41.03 9 .3 1

Pool 10.34 8.89 10.66 10.10 7 .7 3

Airplane 7.20 7.92 9.36 6.66 4 .8 5

all 19.34 24.23 28.54 27.71 29.45

T ab le  3. Quantization results, given  in tenns o f  S-CIELAB AE.

From Tables 1 to 3 we can see our self-adaptive hybrid 
genetic algorithm approach to colour quantisation obtains 
clearly the best results for all three images. Overall a mean 
PSNR (MSE) o f  29.45 dB (75.5) is achieved which is 
significantly better than the 28.54 dB (92.8) and 27.71 dB 
(110.7) obtained by Octree and Neuquant, the two next best 
algorithms.

In terms o f  S-CIELAB, the hybrid algorithm provides 
image quality that is more than 2 AE units lower than the next 
best approaches. Considering that a difference o f  1 AE unit is 
perceptually visible this indeed indicates a significant 
improvement.

An example o f  the performance o f  the different algorithms 
is provided in Figure 3, which shows the Pool image together 
with the quantization results from all algorithms. Figure 4 
provides error images o f  the quantised images from Figure 1 
compared to the original.

It is clear that the popularity algorithm performs poorly on 
this image and assigns virtually all o f  the colors in the palette 
to green and achromatic colors. Median cut is better but still 
provides fairly poor color reproduction; most o f  the colors in 
the quantized image are fairly different from the original. The 
same holds true for the images produced by Neuquant. Here 
the most obvious artifact is the absence o f  an appropriate red 
color in the color palette. A  far better result is achieved by the 
Octree algorithm, although here also the red is not very 
accurate and the color o f  the cue is greenish instead o f  brown.



F igure 3  - R esults o f  colour quantisation algorithms applied to Pool im age (top left) after applying (from left to right, top to bottom) 
Popularity, M edian cut, Octree, Neuquant, and SAH G A algorithms.

F igure 3 - Error im ages o f  the quantised im ages from Figure 1 for (from left to right, top to bottom) Popularity, M edian cut, Octree,
Neuquant, and SAH G A algorithms compared to the original.

Clearly the best image quality is maintained by applying our 
self-adaptive hybrid technique. Although the color palette has 
only 16 entries all colors o f  the original image are accurately 
presented including the red ball and the color o f  the billiard 
cue.

V I. C o n c l u s io n  

In this work we have applied a novel self-adaptive hybrid 
genetic algorithm as a generic optimization algorithm to the 
color quantization problem. Experimental results obtained on

a set o f  standard test images have demonstrated that this type 
o f  optimization techniques cannot only be effectively  
employed but is even able to outperform standard purpose 
built color quantization algorithms.
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