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Abstract

An Automated Approach To Astrogeodetic Levelling

Mark Breach

Height determined using the Global Positioning System (GPS) is height above the 
World Geodetic System 1984 ellipsoid, a mathematical model of the earth.
Surveyors and engineers require orthometric height, normally realised as height 
above sea level. Therefore knowledge of “separation” between height systems is 
essential when using GPS for the precise determination of orthometric height.
One method of finding separation is by “Astrogeodetic Levelling”

Astronomic position may be determined by "Position Line" observations to stars and 
geodetic position by GPS. The difference between astronomic and geodetic 
positions, "deviation of the vertical', is the same as the rate of change of separation.

In this research a least squares approach to Position Lines was developed, in 
which refraction, vertical collimation and their rates of change are modelled as 
unknowns. Equations to correct for the effect on the observed vertical angle of an 
error in horizontal pointing were developed. Observing and computing strategies 
were considered. Star catalogues were constructed and tested. The effect of 
lunar gravitation and barycentric centrifugal force on deviation of the vertical was 
examined and new theory was developed to correct for this source of error.
Several possible solutions to the evaluation of a personal equation were examined. 
A simple method to determine the topographic-isostatic effect using wedges 
across a longitudinal section on the line of greatest slope through a point was 
developed.

Video-based methods for detecting the instant of passage of a star across 
theodolite crosshairs and for linking GPS and video time by exposure of a GPS 
timed flash were developed. Analysis of the Astrogeodetic Geoid Model using 
ideas based on Kaula’s “rule of thumb” was made and the geoid was modelled by 
polynomial coefficients and by interpolation of deviations. This leads to the 
application of “progressive nodes” as a means of avoiding a full least squares 
solution.

A practical determination of astronomical position was made giving position to 
about 0” .15 (5 metres) with less than an hour’s worth of observations. This 
suggests that astronomically derived deviation is an economical data source for 
the determination of a local precise geoid model. The process may find a practical 
application where precise height is required from GPS, such as in large 
engineering projects, especially where a precise relative local geoid model is only 
required in the area of the works. In this case, an astrogeodetic geoid will be much 
easier to construct than a gravimetrically derived one because it will require fewer 
observations.

Keywords. Astrogeodetic. Barycentric Centrifugal Force. Deviation of the Vertical. 
Geoid. GPS. Lunar Gravitation. Position Line. Topographic-isostatic. Video.
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Chapter 1 Introduction

Chapter 1 

Introduction

1.1 Background

The Global Positioning System (GPS) is a real time navigation system developed by the 

United States Department of Defense (DoD) and is used primarily for military purposes. 

GPS consists of a constellation of earth orbiting satellites that enable navigators on or near 

the surface of the earth to determine, in real time, their absolute positions and velocities 

to a few metres and decimetres per second respectively. The system is known both as 

NAVSTAR (for NAVigation System using Timing And Ranging) and more simply as GPS.

The system is funded and controlled by the US DoD but is partially available for civilian 

and foreign users. The accuracy that may be obtained from the system depends on the 

degree of access available to the user, the sophistication of the receiver hardware and 

data processing software, and the degree of mobility during signal reception.

Originally, the system was designed for twenty-four satellites, now more, placed four in 

each of six orbital planes, which in turn are evenly spaced around the equator. Each 

orbital plane is inclined to the equator by an angle of 55° and within each orbital plane, the 

four satellites were to be evenly spaced in almost circular orbits. The nominal radius of the 

orbit is to be 26,000 km or about 4 times the radius of the earth.

GPS is also used by surveyors to find position on the surface of the earth and can be used 

to find height. See, for example, Wells (1986), Leick (1990), Hofmann-Wellenhof et al 

(1992), Ackrody & Lorimer (1989). The height determined by GPS is height above the 

World Geodetic System 1984 (WGS84) ellipsoid, a mathematical model of the earth. 

Surveyors and engineers require orthometric height, which is height above the geoid, an 

equipotential surface very close to mean sea level. Defense Mapping Agency (1991) and, 

more recently, NIMA (2001) give details of the WGS84. The difference between these two 

height datums is termed separation and, although substantially constant in time, varies 

with location. Further data is required if separation is to be computed.

1
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t o p o g r a p h y

Figure 1.1 Orthometric height (H), Ellipsoidal height (h) and separation (N).

Knowledge of separation is essential for using GPS for the precise determination of 

orthometric height. The precise determination of separation over the area of a large 

project is a complex and costly operation. Technical solutions to this problem include:

Precise levelling coupled with GPS. Levelling is a very slow, land-based and labour- 

intensive operation, even with modern precise levels. The accuracy of such an 

approach is limited by the combined inaccuracies of GPS and levelling. Therefore 

such an approach is unlikely to ever be able to provide a geoid model of sufficient 

precision to be able to be used with GPS observations when precise orthometric 

height is required

Gravity observations. This requires theoretically world-wide, but practically nation-wide, 

gravity observations for the determination of separation at a single point. This has 

been done by the Ordnance Survey / Nottingham University. The theoretical basis 

for this work may be found in several texts such as Heiskanen & Moritz (1979), 

Vanicek & Krakiwsky (1982), Bomford (1980), Cross et al (1981), in order of 

theoretical rigor. The product is available from the Ordnance Survey, on a point- 

by-point basis, through their web site at Ordnance Survey (2001). A relative 2 -5  

cm geoid model, for distances up to 30 km is understood to be available for the 

whole of UK. However, GPS height differences, derived from baseline 

measurements may have standard errors in the order of 1 cm.

Gravity Satellite Missions. There have been a number of recent gravity satellite missions 

and more are planned. The GRACE mission with satellites launched in March 

2002 consists of a pair of satellites about 220 km apart with nominal altitudes of 

500 km. The satellite absolute and relative positions are found using on board 

GPS receivers and inter-satellite ranging. As the satellites pass through 

irregularities in the earth’s gravity field. The distance between the satellites will 

vary and so by studying the changes in distance the form of the potential field and
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hence the geoid may be found. A gravity model will be generated every 30 days.

A 180 degree and order spherical harmonic expansion of the earth’s potential field 

smoothed to 160 degree and order will be computed. More details are at the 

GRACE website (GRACE, 2002)

The GOCE programme (GOCE, 2002) with a launch programmed in 2005 is 

planned to determine the rate of change of gravity between pairs of 

accelerometers with a sensitivity of about 4 milliEotvbs in each of three axes. The 

unit of the Eotvos is the rate of change of gravity with distance. One Eotvos is 

defined as 10"5(m/s2)/10km which is =1CT9s'2 (Units, 2002). It is hoped to 

determine the geoid to an accuracy of one centimetre.

Astrogeodetic levelling. Astronomic position is defined by the local gravity vector and may 

be determined by "Position Line" observations to the stars. Details of the method 

and the theoretical basis may be found in most geodesy textbooks such as 

Vanicek & Krakiwsky (1982), Bomford (1980), but in greatest detail in Robbins 

(1976). Geodetic position in WGS84, or more precisely in Europe, in ETRS89, 

may be found from GPS. The European Terrestrial Reference Frame 1989, 

ETRF89, is a reference frame that moves with the tectonic plate that Europe is on. 

ETRF89 is realised as the European Terrestrial Reference System 1989, ETRS89, 

through specific stations with defined co-ordinates. As such, the co-ordinates of all 

stations in ETRS89 do not change substantially. The difference between 

astronomic and geodetic position is termed the "deviation of the vertical" and is the 

same as the rate of change of separation in the direction in which deviation is 

stated. If the separation can be determined at a single point, such as by using 

GPS at a bench mark of known height, then the change in separation between the 

known point and the next point can be found by astrogeodetic levelling and so give 

the separation at the next point. In principle then, an astrogeodetic geoid model 

can be formed from the known separation at one point and deviation of the vertical 

at the same point and many others.

A relative astrogeodetic geoid may be produced at any chosen level of precision by 

increasing the number of points at which astronomic observations are carried out 

within a given area and by increasing the number of stars observed at each point.

In short, to meet a range of specifications in terms of precision, relative 

astrogeodetic geoid models could be created. It is unlikely that the precision of the 

Ordnance Survey’s gravimetric geoid can be improved without extensive further 

gravity observations and computations using height and density models.
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A gravimetric geoid requires, theoretically, world-wide gravity data but practically, 

countrywide gravity data. Alternative, less extensive date will be required if a global 

spherical harmonic model of the earth’s potential field is used to create a smoothed gravity 

model. The remove-restore technique can then be used to provide the fine detail in the 

local area for the geoid model. A relative astrogeodetic geoid only requires data within the 

area of interest and so is much easier and cheaper to develop if the astronomical 

observations can be reasonably cheaply obtained. At present that is doubtful and 

therefore it is a challenge for this research to find a more cost-effective way of doing so.

The UK’s Ordnance Survey has recently stated new policy with respect to its use of 

reference frames and surfaces (Ordnance Survey, 2002). The Ordnance Datum Newlyn 

(ODN) is a height system realised by tidal observations at the South Pier at Newlyn in 

Cornwall and a Terrestrial Reference Frame (TRF) created by precise levelling between 

about 200 fundamental bench marks over mainland Britain and densified by over half a 

million lower-order bench marks.

The Ordnance Survey (OS) has a national GPS network that is designed to provide a 

three dimensional TRF to bring together ODN and the horizontal datum, OSGB36 by a 

transformation model. By using the National GPS Network points, GPS users will get 

co-ordinates of new points in the European Terrestrial Reference System 1989 

(ETRS89) which can then be converted into OSGB36 co-ordinates and ODN heights

The Principal Triangulation of Britain was carried out between 1783 and 1853. Only one 

distance measure, the Houndslow baseline, was observed. The resulting network of 

primary control stations therefore had significant distortions, especially in scale at points 

some distant from the Houndslow baseline. The retriangulation associated with 

OSGB36 used the average of 11 of the original Principal Triangulation control stations in 

the definition of the new datum.

In the new definition of the OSGB36 TRF, the primary triangulation stations were taken 

as error free but the real distortions of OSGB36 are recognised in the ETRS89-OSGB36 

transformation model. Within OSGB36, the standard error of horizontal position varies 

from nothing, by definition, for Primary control stations to 0.05m at 7km for “third order” 

control stations.

Height data published by the OS is orthometric height relative to ODN. A network of 

precise levelling lines was used to find orthometric height at other points across Britain. 

The OS states (Ordnance Survey, 2002) that “the accuracy of the precise levelling 

technique is rivalled by the combination of GPS ellipsoid heighting with a precise 

gravimetric Geoid model, which allows the ellipsoid height difference between two points 

to be easily converted to an orthometric height difference".
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There is a vast resource of height data in Britain, about half a million bench marks. 

However many have not been levelled since the 1950s and especially in areas where 

mining has caused subsidence, such as around Nottingham, errors of several metres are 

known to exist.

In the ODN TRF, as with horizontal control, the “first order height control points” the 

fundamental bench marks, are considered error free. ODN orthometric heights are 

related to the to the GPS ellipsoid GRS80 through the OS National Geoid Model. Within 

the ODN TRF the standard error of height varies from nothing, by definition, for 

Fundamental bench marks to ±12mm for “third order” bench marks.

The OS plans to retain OSGB36 and ODN for mapping purposes but these will be 

available through co-ordinate transformations from ETRS89 to OSGB36 and ODN 

provided by the OS. The transformations are the National Grid Transformation OSTN97 

and the National Geoid Model OSGM91. An advantage of this process is that height 

relative to ODN will be continuously accessible rather than just at discrete OS 

benchmarks.

The system of benchmarks in Britain has now been largely abandoned. In practice, 

surveyors will get height in the local area of interest by using GPS to transfer height from 

one or more of the OS active of passive GPS stations. For this to be successful the 

heights of those stations, especially the passive stations must be maintained with more 

rigour than was applied to the former system of benchmark. If not then the same kinds 

of subsidence and disturbance errors could affect the new system of passive GPS 

stations.

Soon, by definition the National Grid will become a transformation of ETRS89 and so 

can be directly related to the International Reference System, ITRS, and therefore to 

many other national geodetic datums. The OS state that “a real-time precise positioning 

service offering five-centimetre accuracy in ETRS89, OSGB36 and ODN co-ordinate 

systems is likely to become available from Ordnance Survey in the next few years”.

It must be hoped that height solutions will be rather better than the “five-centimetre 

accuracy” suggested in the previous paragraph. It is understood that OSGM91 has 

relative uncertainty of 0.01m up to 30km and rather more beyond. Clearly, error in 

height computed from GPS and the OSGM91 will reflect the errors in both the GPS 

derived co-ordinates and the geoid model used. The precision of height solutions from 

GPS will improve with advances in technology, software and the availability of future 

signals, especially the new L2C code and the third frequency, L5, due for implementation

5



Chapter 1 Introduction

on new GPS satellites from 2003 and 2005 respectively. The approval and funding for 

the development phase Galileo (Galileo 2002) given on 26 March 2002 indicates that by 

2008 there will be about 60 satellites, not counting Space Based Augmentation Systems 

or the Russian GLONASS, available for positioning. Receivers that can maximise the 

use of all available signals are likely to be able to compute position and height faster and 

more accurately than is available today. A geoid model capable of enabling height 

determination by satellite means, with the accuracy that may soon be achieved, will be 

required to support high precision engineering and scientific projects.

1.2 Aims of the investigation

The original aims of this investigation were:

a. To develop a method for the rapid determination of astronomical latitude 

and longitude including investigation of methods for optimising the 

selection of observational data and development of field procedures to 

minimise the time for the collection of observational data.

b. To investigate the application of rigorous statistical techniques to the 

precise determination of astronomical latitude and longitude.

c. To investigate the deviation of the vertical by astronomical observations at 

a chosen site.

d. To develop the application of mathematical techniques for the 

determination of a geoid model from astronomical deviation of the vertical 

data of a chosen area.

1.3 Structure of the Thesis

In Chapter 2 the context of the proposed work is reviewed and the methodology is stated 

in Chapter 3. Existing “ Position Lines” theory is reviewed and developed in Chapter 4 in 

a “least squares” context to take account of several previously un-modelled small errors. 

Observing and computing strategies are considered. Original contributions are made in 

terms of the development of the least squares approach to position lines in which 

refraction, vertical collimation and their rates of change are modelled as unknowns. 

Several possible solutions to the evaluation of a personal equation are examined and 

equations to correct for the effect on the observed vertical angle of an error in horizontal 

pointing are developed.
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Chapter 5 concerns the construction and testing of suitable catalogues of stars and 

updating of co-ordinates to the time of observation.

In Chapter 6 observing and computing processes are examined in some detail to find a 

method that will give a good solution under the specific conditions of a particular set of 

astronomical observations. There is analysis of a method for detecting the instant of 

passage of a star across theodolite crosshairs using a photodiode. A method for linking 

GPS and video time by exposure of a GPS timed flash was developed and this lead to a 

video based method for detecting the instant of passage of a star across theodolite 

crosshairs.

The effect of lunar gravitation and barycentric centrifugal force on deviation of the 

vertical is examined in Chapter 7 and original formulae for the correction of observations 

of the vertical are derived.

The usual method of determining the topographic-isostatic effect is reviewed and a new 

simpler method that does not require a local terrain model is developed in Chapter 8.

The model uses wedges across a longitudinal section on the line of greatest slope 

through the point under investigation.

Some theoretical and practical aspects are considered in Chapter 9. There is analysis of 

the Astrogeodetic Geoid Model using ideas based on Kaula’s rule of thumb and 

modelling the geoid by polynomial coefficients and by the interpolation of deviations.

This leads to the application of “progressive nodes" as a means of avoiding the need for 

a full least squares solution.

A practical determination astronomical position is described in Chapter 10.

In the next Chapter, the relationship between the geoid and an ellipsoid is reviewed. 

Methods for the determination of the shape of the geoid are stated and compared. 

Historical progress in the determination of the geoid is reviewed, suggestions as to the 

future utility of the astrogeodetic geoid are made, and the place of astronomy in the 

determination of the geoid is reviewed.
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Chapter 2 

Contextual Review

2.1 Introduction

In this chapter, the relationship between the geoid and an ellipsoid is reviewed and 

methods for the determination of the shape of the geoid are stated and compared. 

Historical progress in the determination of the geoid is reviewed and suggestions are 

made as to the future utility of the astrogeodetic geoid.

2.2 Geoid Determination

t o p o g r a p h y

Figure 2.1 Relationship between geoid and ellipsoid.

The surveyor and engineer usually require height to be the height above the geoid or 

height above Mean Sea Level. Heights from GPS are found with respect to the 

ellipsoid. To be able to convert heights above the ellipsoid (h) to heights above the 

geoid (H) it is necessary to know the separation (N) between the ellipsoid and the 

geoid. See Figure 2.1, above. The height above the ellipsoid is measured along the 

normal to the ellipsoid. The height above the geoid, orthometric height, is measured 

along the plumb line from the point in question to the geoid. The two lines are not 

coincident but are very close to one another such that the approximation:

h -  H + N 

is normally without significant error.
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The geoid and an ellipsoid may be considered as reference surfaces. An ellipsoid is 

defined mathematically. Placing it with respect to the real earth is a problem of 

datum definition. The geoid is a physical surface and may be defined as that 

equipotential surface that most closely approximates to mean sea level in the open 

oceans.

To find the form of the geoid using measurements of gravity it is necessary to make 

assumptions about the density of the earth between the topography and the geoid. 

Density does vary but is very difficult to measure. To avoid the problem Molodensky 

suggested an alternative approach. In Molodensky's model, the distance between 

the ellipsoid and the topography, h, is made up of two parts, the normal height from 

the ellipsoid to the telluroid, HN, and the height anomaly from the telluroid to the 

topography, See Figure 2.2, below.

topography
£ height anomaly

telluroid

ellipsoid

Figure 2.2 Relationship between telluroid and ellipsoid.

Therefore the relationship is: 

h = Hw+C 

where HN the normal height from the ellipsoid to the telluroid,

Compare this with the relationship of the geoid to the orthometric height on the 

previous page.

A new surface may now be plotted that is the distance of the height anomaly above 

the ellipsoid. This surface, the quasigeoid, is identical with the geoid in the open 

oceans and very close to it elsewhere, see Figure 2.3, below.
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t o p o g r  a p h y

q u a s i g e o i

Figure 2.3 Relationship between geoid and quasigeoid.

However, it is not a level surface and so has neither geometrical nor physical 

meaning. It is merely a convenient surface that is relatively easy to define and to 

compute and is close to the geoid. However, the quasigeoid and normal heights are 

used extensively in Eastern Europe and are becoming more used in Western Europe 

as well.

2.3 Geoid Methods

There are four general methods using terrestrial observations by which a geoid may 

be determined. They are GPS with levelling, classical gravity methods, remove- 

restore gravity methods and astrogeodetic levelling. The methods involve quite 

different observational techniques, data processing routines, theoretical 

approximations, compromises and quality of output. A fifth method involves the study 

of satellite orbits to determine the potential field of the earth from which a smoothed, 

world best fitting, geoid may be derived. Such studies lead to best absolute geoids, 

but because of excessive smoothing, relative precision is less good.

2.4 GPS and levelling

The use of GPS with precise levelling is probably the easiest way to establish a local 

relative geoid. As with many observations in surveying and geodesy, it is much 

easier to be precise, relatively, than absolutely. If height above the ellipsoid, h, can 

be found from GPS and height above Mean Sea Level or the geoid, H, (or the
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quasigeoid) can be found from levelling and gravity observations, through 

geopotential numbers, then the separation is simply given by

N = h -H

If the separation is found at a suitable number of points in the area of interest, then a 

model of the separation may be formed. However, from GPS what we really get is 

relative height above the ellipsoid, and from levelling difference in orthometric height. 

Therefore, the following equation better reflects the situation:

N ! - N 2= ^  - h2 - (H-i - H2)

where the subscripts refer to the points at the end of the GPS baseline, hi - h2 comes 

from GPS, Hi - H2 comes from levelling and therefore to find N2 we must first know or 

assume a value for N1f that is, at the origin of the survey the separation must be 

defined. Therefore, all subsequent values for separation are relative to the origin. 

Similarly, ail values of orthometric height, derived from GPS observations and geoid 

model heights, will lead to orthometric heights relative to the assumed orthometric 

height of the origin.

If GPS is to be used to find orthometric (or normal) heights to the best available 

precision then a GPS and levelling derived geoid is unlikely to be sufficiently precise. 

A numerical example illustrates the problem. If difference in height between two 

points by levelling/gravity may be found to ± 0.01 m and difference in height above 

the ellipsoid may be found by GPS to ± 0.015m then the difference in separation may 

be found to

oaN = (0.012 + 0.0152f m  = 0.018m

if this value is now used to find the orthometric height of a point with a different set of 

GPS observations then the formula becomes

H1- H 2= hi - h2 - (Ni - N2)

and the precision of the orthometric height difference is

oAH = (0.0152 + 0.01 82f m  = 0.023m

Thus the orthometric height solution using GPS and a derived geoid model, in this 

example, is worse by a factor of 2.3 compared with a straightforward levelling 

solution, and by a factor of ° '023/o.oi5 = 1 -5 compared with the difference of 

ellipsoidal height found from GPS.
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To avoid the problem of an orthometric difference height solution which is 

significantly worse than the quality of the GPS value for ellipsoidal difference in 

height, it is necessary to use a relative geoid model that is significantly better than 

the quality of the observed/computed GPS difference heights. This of course cannot 

be obtained from GPS and levelling.

2.5 Classical Gravity Methods

There are two approaches to the problem of creating a geoid from observed gravity 

data, those of Stokes (Stokes, 1849) and Molodensky (Molodensky et al, 1962). The 

derivation of the formulae for the Stokes solution is complex and may be found in 

Heiskanen & Moritz (1979) and Vanicek & Krakiwsky (1982) among others. Stokes' 

Formula leads to the determination of the geoid, while that of Molodensky leads to 

the quasigeoid.

2.6 Stokes' Formula

Stokes Formula is derived from a consideration of a solution to the geodetic 

boundary value problem, that is, the determination of the figure of the earth. From 

gravity measured on the surface of the earth the separation of the geoid and the 

ellipsoid can be derived, if a number of quite significant assumptions can be 

accepted. Simply stated, Stokes' Formula is:

N R_ Ik  S(\|/) Ag da
47TYm

where

R (a2.b)1'3 radius of sphere of equal volume to the

ellipsoid, a and b are the semi-major and 

semi-minor axes of ellipsoid.

Ym = mean gravity of the ellipsoid

Ag = free air anomaly at angular distance \|/

S(\j/) = cosec(1/2\j/) - 6sin(1/2\j/) + 1 - 5cos\i/- 3cos\|/loge(sin(1/2\|/)+

sin2(1/2\jr)) (Stokes’ Function)

da

the angular separation of the observation and computation 

points at the centre of the erath 

coscj) dA, d(J), a surface element

The free air anomaly is defined as:
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Ag = g 4- F - y

where g, the magnitude of the gravity vector, is measured on the surface; y is

computed on the ellipsoid; and the free air reduction, F, is

F = -8g h « -Sy h ~ 0.3086 h mGal ( h is in metres)
5h 5h

The free air reduction assumes that there are no masses external to the geoid. The 

masses to be removed are assumed to be all below the observation point. In 

practice, there will be nearby mountains or hills higher than the observation point and 

valleys below the observation point. Both reduce the magnitude of the local gravity 

vector. The correction for this terrain or “orological” effect is further described in 

Bomford (1980) and Heiskanen and Moritz (1979). World-wide gravity therefore 

requires a world-wide terrain model. In fact, if all external masses were removed to 

infinity that would change the mass of the earth and move the geoid.

As a result Stokes’ Formula does not find the geoid but more strictly the separation of 

the co-geoid, N1, from the earth mass centred ellipsoid used in the computation of the 

normal gravity, y.

The Stokes' Formula above requires integration over the surface of the earth.

Gravity observations are made at discrete points and so the formula needs to be 

adapted for a practical solution, as a summation rather than integration process. The 

practical application of formula is:

jx/2 2jt
N' = R S 2  Ag S(V) cos<|> dX d(j>

47rym ^  0

In practice, the earth is divided into a number of blocks. The nearer the block is to 

the computation point for N1, the smaller it is made because errors in the computed 

value of N1 are more sensitive to errors in gravity anomalies nearest to the point of 

computation. The values of N' are with respect to the earth mass centred reference 

ellipsoid as used in the standard gravity formula which was used to calculate the 

gravity anomalies. The reference ellipsoid must have the same rate of rotation and 

same mass as the earth or a "zero-order" undulation will occur.

Global gravity observations are required. Global gravity data of sufficient precision 

does not exist and therefore there will be systematic errors in any gravimetric geoid. 

However, the absence of a complete block of data on one side of the world will have 

a near constant effect over a block on the other side. In practice, dense gravity data 

is required over the area (country) of interest and some distance beyond. For the 

UK, this will require significant amounts of marine gravity.
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Systematic errors in the block mean anomaly can occur at higher altitudes. The free 

air reduction is 0.3086 mGal/m. This means that it is necessary to measure height 

each time gravity is measured. If levelling data of sufficient accuracy already exists 

then there should not be a problem. If height data does not exist and height transfer 

is made with GPS over long ranges, of say 100km, then an error of up to 4m in the 

relative assumed orthometric height could occur. This would lead to an error of over 

1 mGal in the computed block mean anomaly.

The method is based upon a "spherical earth", therefore there are approximations 

relating to the earth's flattening, i.e. of the order of 0.0033. This is systematic over a 

small area and will not exceed 0.3m.

One point requires global gravity coverage, in theory at least. Once global gravity 

coverage has been obtained then it can be used to create a global geoid.

Stokes' Formula can give the detailed shape of the geoid in a local area but will 

contain major systematic errors. Astronomy, see Section 2.9, below, can give 

precise values of the slope of the geoid without significant systematic error. 

Therefore a combination of astronomical and gravity data can lead to a precise local 

relative geoid.

2.7 Molodensky's Solution

For the reduction of measured gravity on the surface, it is necessary to assume the 

density of the masses below the point, as in the free air reduction in Stokes Formula. 

Molodensky's solution for "geoid" determination avoids this problem. The geometric 

height is expressed as

hp -  Hwp + £p

so

Cp -  h p  -  HNp

hP - hQ

where P and Q are as defined in Figure 2.4. The gravity anomaly is now defined as 

Ag = gp-yo
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t  o p o g r a p  h y

W - W o

U - W o

Figure 2.4 The relationship between geopotential at ground surface and spheropotential 

at telluroid.

This is quite a difference in definition. Note in particular that there is no assumption 

about density involved in this. The gravity anomaly is now the difference between 

observed gravity on the ground and computed normal gravity on the telluroid. This 

can be found from a free air reduction applied upwards to normal gravity on the 

ellipsoid. A direct formula for computing yQ is given in Heiskanen & Moritz (1979):

Y o  =  Y o  {1 - 2(1 + f + m - 2fsin2<|>)Ĥ  + m"2}
a 1?

The solution for £P is similar to that of Stokes; in fact, the Stokes’ Formula forms the 

first part of the Molodensky solution. Bomford (1980) quotes the following as the 

Molodensky Formula.

Cp = Co + Ci = _R_ If. S(i|/) Ag da + R Jf„ S(w) G, do
4 7 T y m  4 7 C Y m

where Ag has been defined on the previous page and Gi is given by

Gi = B ! JL (hA - hP) (Ag + 3ym£o) da
2ti r3 2R

where

hA is the height of the observed anomaly point or, more practically, the

block centre.

hP is the height of the point where the height anomaly is to be computed.
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r is the distance between the observation and computation points.

The full Molodensky Formula has further terms but they are very small and have 

been neglected.

Both the geoid from Stokes and the quasigeoid from Molodensky are correlated with 

the topography but the numerical value of the quasigeoid is in general greater than 

that of the geoid. At sea, of course, the geoid is coincident with the quasigeoid. The 

difference between the geoid and the quasigeoid may be expressed as

£ - N = H - Hn

C -C
g y

Y jif l H 
Y

where g and y take their mean values along their respective lines. An approximate 

formula from Heiskanen & Moritz (1979) is:

C~N « 10‘7HH metres

where

H is the mean height of the area in metres

H is the height of the point in metres

Some examples of approximate values are in Table 2.1, below.

Table 2.1 The difference between £ and N at four sample points.

Feature height 
of point

mean height 
of area

C -N

Mt. Everest, Nepal 

Mt. Blanc, Switzerland 

Ben Nevis, Scotland 

Brown Willy, Cornwall, England

8848 m 

4807 m 

1344 m 

419 m

5000 m 

3000 m 

800 m 

100 m

4.4 m

1.4 m 

0.11 m 

0.004 m

2.8 The Astrogeodetic Geoid

The slope of the geoid is the same as the deviation of the vertical at a given point in a 

given direction. The deviation of the vertical may be found from a comparison of
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astronomical and geodetic latitude and longitude. There are a number of ways in 

which astronomical position may be found; of these “Position Lines” , as described by 

Robbins (Robbins, 1976), is the most efficient field survey method because both 

astronomical latitude and longitude are found at the same time. Geodetic position 

may be found by conventional survey means or by GPS.

The astrogeodetic geoid may be found by observing deviations at a series of 

stations. Deviation is the slope of the geoid and, if separation is known at least at 

one point, then it may be estimated at all other points within the area of the observing 

stations. It can take most of a single night to complete the astronomical observations 

for a precise determination of deviation of the vertical by conventional means at one 

point.

There are methods other than Position Lines, but no single other method determines 

both components of position simultaneously. The minimum necessary observations 

for Position Lines are those of precise zenith angle, and precise time. The 

determination of the astrogeodetic geoid is described in detail in Chapter 9.

2.9 Remove-Restore Gravity Methods

A more recent approach to the problem involves using the “remove-restore” 

technique with least squares collocation. The basis of the approach is to use Stokes’ 

integral applied to gravity data but as it may not be practical to use apply the 

integration over the whole of the earth the long and short wavelength components of 

the geoid are computed separately using a "remove-restore" approach.

Gravity anomalies are computed from the long wavelength component from a global 

geopotential model such as EGM96 (EGM96, 1996). The gravity anomalies are then 

subtracted from the raw gravity data. The remaining gravity anomalies are then used 

to compute the short wavelength component of the geoid height. The long 

wavelength component of the geoid height computed from the global geopotential 

model is then restored and finally the total geoid height is computed as the sum of 

the short and long wavelength components.

In computing the short wavelength component of the geoid from local gravity data 

least squares collocation may be used. The quality of local solution is highly 

dependant upon the quality of the local gravity data used which is why a good digital 

elevation model (DEM) for the computation of the terrain correction is important.
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2.10 Space Based Methods

There have been a number of campaigns to determine the geoid using satellite- 

derived data.

Direct measurements of the lake and sea surface may be made by satellite altimetry. 

If the position of the satellite is known, e.g. from onboard GPS then a comparison of 

the satellite height above the ellipsoid, derived indirectly from GPS, coupled with 

altimetry data can, in principle, lead to a measure of the height of the sea surface. 

With knowledge of the disturbances of the sea surface such as wind, tides currents, 

temperature and density sea surface height can be related to the geoid. Such 

methods do not work well over land where knowledge of the geoid is more often 

needed. Programmes have included ERS-1, launched by the European Space 

Agency in July 1991 and the current TOPEX/Poseidon satellite being replaced now 

by Jason-1 (JPL, 2002).

Alternatively, the study of satellite orbital perturbations leads to knowledge of the 

gravity field. For the best results, the satellite needs to be close orbiting to be subject 

to the greatest effect of the irregularities in the earth’s gravity field. However any 

satellite with an altitude of less than about 300km will suffer excessive atmospheric 

drag and its orbit will soon decay. A number of other disturbing forces such as 

Electromagnetic force perturbation, solar radiation, tidal perturbations and relativistic 

effects will also need to be taken into account (Vanicek and Krakiwsky, 1982). An 

analysis of orbital perturbations leads to the determination of spherical harmonic 

coefficients of the earth’s gravitational potential field. Satellite laser ranging is a 

method of direct measurement to a space vehicle. It has been used with a number of 

satellites with corner cube prisms such as Lageos, the laser geodynamic satellite 

launched by NASA in 1976, the French satellite, Starlette the Japanese satellite 

Ajisai and the Russian satellites Etalon I and II. (SLR, 2002).

A third approach is to measure the motion of one space vehicle relative to another. 

With two space vehicles in the same orbit, but with different arguments of perigee, 

the distance between then will be affected by local gravity variations. Again, the 

same difficulties with minimum desirable and minimum practical altitude will apply. 

The new GRACE mission (GRACE, 2002) uses this approach.

A further development will be to use a gravity gradiometer and this is the main 

component of the future GOCE mission (GOCE, 2002).
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2.11 Comparison of methods

The methods described above have their advantages and disadvantages and 

therefore their specific applications.

Space based methods are able to give global data and therefor a global geoid model. 

In all cases, except satellite altimetry the geoid model lacks short wavelength 

resolution because the satellites must orbit the earth at several hundred kilometres, 

any less and their orbits will decay rapidly. With satellite laser ranging the limitation 

is that the technique works well over water but less well over land. In all cases, there 

are enormous amounts of data to manage especially where the measurements are to 

be used to compute spherical harmonic coefficients.

GPS with levelling is the simplest method but does rely upon good existing 

orthometric height information. If there are significant errors in the height data then 

the geoid model will reflect those errors. Even with good height data, the geoid 

model will reflect the combined errors of GPS and height data.

The application of GPS with levelling for geoid model determination will be where:

• Significant orthometric height data already exists.

• A geoid of limited accuracy is acceptable.

A gravimetric geoid model requires, theoretically, worldwide gravity and height 

observations. In practice, gravity measured over a limited area but in extent well 

beyond the area of the proposed geoid model is required. For islands, this will 

involve the observation of significant amounts of marine gravity. Gravity 

observations require specialist equipment, i.e. gravimeters. Gravity magnitude 

values on land are easy to observe and require no more than a short stay at each 

point with a gravimeter. The height information does not have to be as precise as 

that for GPS with levelling but interpolation of map contours is unlikely to be 

acceptable. Although data capture is simple, processing the data to derive a 

gravimetric geoid is rather more complex, especially where the data is sparse. A 

gravimetric geoid derived with limited gravity data, especially near or in the area of 

the gravimetric geoid model, will contain significant biases and systematic errors.

The application of gravity for geoid model determination will be where:

• The geoid model is required for a large area, eg 100s of km square.

• A national or world geoid model is required.
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• Significant amounts of gravity data already exist and computing facilities are 

available.

An astrogeodetic geoid model requires time-consuming astronomical observations, 

which can only be carried out on relatively cloud-free nights. Geodetic position is 

required, ideally to better precision than that obtained by astronomy and this may 

easily be found with GPS. The computing process to derive deviation from 

astronomical observations is moderately tedious. Deviation is the same as geoid 

slope and therefore needs further processing to derive geoid height. Precise 

orthometric height information is not required. The only requirements for height are 

for the reduction of latitude for plumb line curvature for which contour interpolation 

will normally be acceptable and for topographic-isostatic reductions for which a local 

elevation model would normally be required.

The application of astronomy for geoid model determination will be where:

• The geoid model is required for a limited area and,

• Significant systematic errors in the model are not acceptable and,

• Astronomical observations for position already exist or may be observed and,

• A precise solution is required.

In practice, geoid models of large areas are obtained using a combination of all 

available data, including satellite orbit and altimetry data.

2.12 Progress in the determination of the geoid

The quality of geoid and related solutions has improved significantly over the past 20 

years.

Torge & Denker (1998) reviewed that Wolf in 1948 calculated an astrogeodetic geoid 

for Central Europe based upon 100 deflections of the vertical and achieved an 

accuracy of several metres. Tani in 1949 achieved a similar precision with 100 

gravity anomalies. In both cases, the quality of solution reflects the sparseness of 

the data.

An unpublished Polish astrogeodetic geoid of 1961 is reported by Lyszkowicz (1991) 

as having a contour interval of 0.5 m and an estimated relative accuracy of ±0.15 m 

over 100 km.
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In Australia, an early, 1967, astrogeodetic geoid using 600 astrogeodetic 

observations probably had an accuracy of ±6 m, Kearsley & Govind (1991). 

Subsequently an astrogravimetric geoid with contour interval of 1 m, Fryer (1972), 

with 1200 astrogeodetic and some gravity observations had an uncertainty of ±3 m.

Monka et al (1978) contains three short papers on, (1) a gravimetric geoid for the 

North Sea, (2) a GEOS-3 altimeter geoid of the German Bay and (3) an 

astrogeodetic geoid around the North Sea. (1) is on land and sea, (2) is at sea and 

(3) on land. Agreement between (1) and (2) is ±0.2 m RMS. Agreement between (1) 

and (3) varies from ±0.5 m RMS to ±1.4 m RMS. Astrogeodetic data is limited, in (3) 

but data is very dense in parts, in particular 2 groups of sites in Germany where 

stations are less than 5km apart. Stations in Norway are up to 120 km apart. There 

is little more than a single line of stations in UK.

Torge & Denker (1998) review that Levallois & Monge in 1978 had improved the 

Central European Astrogeodetic geoid to an accuracy of 1 to 3 metres with about 

1000 deflections of the vertical.

In Poland (Lyszkowicz 1991) the 1983 situation, based upon astrogravimetric data, is 

little improved at ±0.10 to ±0.15 m per 100 km. However, Torge & Denker (1998) 

report that The European Astrogravimetric geoid EAGG1 (Brenecke et al 1983) with 

about 5000 vertical deflections had an absolute accuracy of ±0.9 m and relative 

accuracies ranging from ±0.3 m per 100 km to ±1.1 m per 1000 km.

Tziavos & Arabelos (1991) show that surface gravity with the OSU86F geopotential 

model gives absolute geoid heights at ±0.5 m and 2-3 ppm for relative heights in 

North America. Agreement with deviation data in Greece is better than ±2”. After 

removal of geopotential model and terrain model effects, the standard deviation of a 

gravity anomaly set is ±32 mGal with point accuracy of 2 to 5 mGal. Astronomical 

deflections (A£, Ar|) after removal of geopotential model effects are ±5” .5.

The local quasigeoid for Hungary, based on OSU86F geopotential coefficients and 

gravity anomaly data, Adam & Denker (1991), has 0.2 m contour intervals.

Rapp & Nikolaos (1991) report that the OSU89A/B potential coefficient models of 

degree 360 have absolute agreement of ±0.59 m with the GEOSAT implied 

undulation and ±1.60 m with Doppler results. Relative agreement with a precise 

European traverse is 0.25 m ±3.5 ppm.

A gravimetric quasigeoid of Scandinavia and Finland, (Forsberg, 1991), uses a DTM 

with 0.5 km to 1 km resolution for terrain corrections and the OSU89B geopotential
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model. Agreement with a 2000 km GPS levelling traverse is ±0.10 m RMS with local 

relative agreement at ±0.03 m to ±0.05 m RMS over approximately 20 km (~ 1.5 to 

2.5 ppm).

Comparison of the German 1989 quasigeoid, derived from 440000 blocks of gravity 

data, with GPS levelling (Denker, 1991) shows RMS differences of ±0.01 m to ±0.06 

m at distances of 10 to 800 km.

Fukuda & Segawa (1991) report on a Japanese geoid based on satellite altimeter 

and surface land and ship gravity data, with 0.2 m contour intervals.

A geoid for Italy derived from surface gravity and the lfE88E2 geopotential model, 

Benciolini et al (1991), has agreement of ±0.1 m to ±0.3 m with GPS and levelling.

The UNB ’90 geoid uses 266000 land and 323000 sea gravity values with the GEM- 

T1 geopotential model up to degree 20. Accuracy is estimated by Vanicek et al 

(1991) to be ±1 ppm.

Burki and Marti (1991) report on three geoid models for a Swiss geoid, which agree 

to ±0.1 m to ± 0 .3 m . They are gravimetric, astrogeodetic and astrogravimetric. The 

Ivrea zone of Switzerland shows anomalies of the order of 170 mGal and deviations 

of 35” . A plot of an astrogeodetic geoid has 0.2 contour intervals but geoid height 

accuracy is claimed to be ±0.03 m. GPS results, with the Bernese software, show 

agreement to ±0.1 m to ±0.15 m over all of Switzerland.

Kearsley & Govind (1991), report on an Australian gravimetric geoid constructed from 

430000 land and offshore gravity points for which limited tests show a comparison 

with GPS/levelling of ±1.7 ppm.

Torge & Denker (1991) suggest possible improvements in the existing European 

geoid/quasigeoid. All the methods involve improved geopotential models, global 

topographic-isostatic models, regional DTMs, satellite altimetry, sea surface 

topography models, GPS and levelling. There is no mention of astronomy 

presumably because of the assumed slow rate of data capture.

By 1996, astronomy as a data source appears to have been abandoned. In the 

whole of Segawa et al (1997) there appears to be not one mention of it. All efforts for 

geoid determination are based on world geopotential models, gravity, altimetry and 

GPS with levelling, in spite of the respective limitations of the individual methods.

Jiang (1997) reports on the geoid for France. A gravimetric geoid was adjusted to fit 

1081 GPS/levelling points. The accuracy of the geoid is estimated to be 2-3cm in 

plane areas and 4-7 cm in mountainous areas with a relative accuracy of 2ppm over
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20km, 0.2ppm over 300 km and 0.06ppm over 1000km. This latter statistic suggests 

a relative accuracy of 6cm over 1000km. In Belgium, Paquet (1997) reports that the 

BG96 Belgian geoid has an absolute accuracy of 3-4cm and a relative accuracy of 1- 

2ppm up to 50km and 0.3-0.5ppm up to 300km. Similar levels of accuracy are also 

claimed by Denker et al (1997) for the whole of Europe for the European Gravimetric 

Quasigeoid EGG96. The accuracies are ±1-5cm over 10 to a few 100km and ±5- 

20cm over a few 1000km when compared with independent GPS/levelling data. In 

the Nordic and Baltic region of Europe, Forsberg et al (1997) report a fit of their geoid 

to ±10cm across the region but with a fit at the 1cm level in Denmark where the 

topography is relatively flat and the gravity coverage is particularly good. In Latvia, 

Kaminskis (1997) reports that there is an ±8cm agreement between the gravimetric 

geoid and GPS/levelling. In all the cases in this paragraph, terrain models, altimetry, 

tide-gauge readings, geopotential models and GPS/levelling have been taken into 

account.

The need for high-resolution terrain models is emphasised by Kuhtreiber (1997) if 

geoid accuracy is to be obtained at the ±1cm level in mountainous regions.

In Australia, Zhang & Featherstone (1997) investigate the effect of the terrain 

correction as it affects the AUSGEIOD93 free air co-geoid. They conclude that the 

application of the terrain correction only reduces the RMS discrepancy from ±0.428m 

to ±0.410m even though the terrain effects affect the geoid by up to 0.69m. It is clear 

that there must be other sources of systematic error yet to be accounted for. 

Featherstone et al (1997) discuss the tasks for improving the Australian geoid, 

including considerations with respect to terrestrial gravity and terrain data, geodetic 

datums, geopotential models and GPS/levelling on the Australian Height Datum.

In Canada, the gravimetric geoid GSD95, as reported by Veronneau (1997), has a 

precision of ±5-10cm over 10s of kilometres when compared with GPS/levelling. A 

geoid with a precision of ±2.5cm is planned for the year 2000.

The Japanese Geoid, JGEOID 93, as reported by Fukada et al (1997) shows an 

RMS difference between the gravimetric and GPS/levelling geoid of ±7cm. Takana

(1997) determines a local geoid with GPS and conventional but unspecified survey in 

the region of a volcano in Japan but only to ± 10 cm.

Marson et al (1997), working in the Ross Sea Antarctica, show a relative geoid plot 

with 0.25m contours based upon marine gravity, a topographic model and the 

remove-restore technique applied to the OSU91 geopotential model.
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By contrast, in South America, Blitzkow et al (1997), report that the gravimetric geoid 

of South America when compared with Doppler and GPS/levelling points shows a 

mismatch with geoids derived from OSU91 and WGS84 of the order of ±2m.

Similarly, there is a poor absolute geoid in Indonesia, a country of 16000 islands. 

There is a shortage of marine gravity and the uncertainty is still at the 0.7m level.

With the exception of the centre of the Western Europe, there is as yet, in 1998, no 

geoid that can match the relative accuracy of GPS ellipsoidal heighting.

By 1998, the EGG97 quasi-geoid model for Europe (EGG97, 1997) had been 

published and much of Vermeer and Adam (1998) is concerned with its evaluation. 

The EGG97 was computed from 2.7 106 gravity measurements and 7 108 heights. 

Even so there are areas of insufficient data at sea, Torge & Denker (1998). Several 

of the papers are concerned with testing the EGG97 with GPS and levelling. Some 

incompatibility in terms of significant amounts of bias and tilt are reported. Bias is of 

no consequence when the geoid model is used for relative GPS heighting, but tilt is 

of concern. Denker (1998) reports an RMS discrepancy in Lower Saxony of ±0.038m 

with bias and ±0.013m with bias and tilt over 300 km, an RMS discrepancy in France 

of ±0.128m with bias and ±0.080m with bias and tilt over 1000 km and an RMS 

discrepancy through Europe of ±0.294m with bias and ±0.175m with bias and tilt over 

3000 km. Since most GPS work is undertaken over short ranges this is approaching 

acceptable values. However, when GPS height differences can be routinely 

computed at the ±0.005 m level then this quasi-geoid will need to be improved.

In Hungary, Kenyeres & Virag (1998) find, after bias and tilt is removed, a fit of 

±0.063 m between GPS and levelling and the EGG97.

In Denmark, a relatively flat country, a 1-cm geoid for most of the country is reported 

by Forsberg (1998). In Finland, also relatively flat, Ollikainen (1998) reports a fit of 

the FIN95 geoid to GPS/levelling of ±0.060 m, but a worse fit with other geoid 

models.

In Australia AUSGEOID93 is reported by Zhang et al (1998) to achieve a national fit 

of ±0.33m and a local fit of ±0.04 m to ±0.18 m with GPS/levelling. The national fit is 

a significant improvement upon that reported by Zhang & Featherstone (1997) for the 

AUSGEOID93 co-geoid.

In Israel, Sharni (1998) reports on a pilot project for a geoid model of a small area of 

570 km2. When compared with GPS/levelling the result has a standard error of
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±0.040 m. The project has been hampered by insufficient gravity coverage, 

especially off the western coast of the project area.

Overall, in Torge & Denker (1998) astronomy has a higher profile than in Segawa et 

al (1997). “The Recomputation of the Austrian Astrogeodetic Geoid” , Heiland et al

(1998), is a refinement of previous work and incorporates a denser DTM of 50 x 50 m 

compared with the previous 350 x 350 m. The improved DTM model leads to 

changes of over 0”.5 in some vertical deflections. The Austrian astrogeodetic geoid 

is seen not as a product in its own right but as a by-product of the process to produce 

the “Austrian Geoid 2000” which will use the 50 x 50 m DTM, 30 000 gravity 

observations and 700 deflections of the vertical. The accuracy of the Austrian 

astrogeodetic geoid is not stated.

In describing a 1-centimetre local geoid in Croatia, Colic et al (1998) used 18 vertical 

deflections observed with a Zeiss Ni2 astrolabe, with GPS and precise levelling. The 

Airy-Heiskanen model for isostasy (p135 of Heiskanen & Moritz (1979)) has been 

used with fixed values for Ap and the depth of the Mohorovicic discontinuity. The 

quality of vertical deflections is ±0”.5 to ±0”.75 and ±0.020 m for GPS/levelling and it 

is claimed that this leads to a geoid model of ±0.015 m but over a limited area of less 

than 1000 km2. The limitation of the knowledge of variation in surface density is 

acknowledged.

For Switzerland, Marti (1998) describes the CHGE097 geoid model that has been 

derived from 600 vertical deflections, 70 GPS/levelling stations and a 25 m DTM. 

20000 available gravity observations were not used because they did not improve the 

quality of the solution, probably because of insufficient rock density data. The result 

has uncertainty of ±0.03 m to ±0.05 m depending upon the flatness of the terrain.

The CHGE097 quasigeoid was compared with the EGG96 quasigeoid and the fit 

varied from ±0.05 m to ±0.15 m for flat and extreme mountainous areas respectively. 

Updated figures for the CHGE098 geoid model are given in Marti (2000).

Ming (1999) reported on recent advances in the geoid determination by airborne 

gravimetry but current technology is limited to 5 cm local geoids.

Blitzkow et al (1999) describe the current state of progress towards a South 

American geoid that currently is at the decimetre level. Clearly, development across 

the entire world is not consistent and there are areas where considerable work is still 

required.
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In South East Asia a regional gravimetric co-geoid is reported by Majid et al (1999) 

where limited sets of gravity data are used to produce a co-geoid of 0.4 metre RMS 

fit to GPS/levelling. The solution is claimed to be better than the Earth Gravity Model 

1996 (EGM96) and OSU91A geoids in the 409 latitude by 50s longitude window 

under investigation.

In the UK (lliffe 2000), evaluation of the OSGM91 geoid in a limited area suggests 

that relative geoid model heights are of the order of 0.013 to 0.026 m for distances 

between 1 and 10 km. This is now approaching the level of precision that is 

desirable for use with GPS.

It was recognised by Featherstone in Western Australia that a gravimetric geoid 

model does not allow the accurate transformation of Global Positioning System 

(GPS) ellipsoidal heights to Australian Height Datum (AHD) because of the effect of 

local geological structures, the availability and quality of gravimetric data, and the 

possibility of distortions in the AHD (Featherstone 2000). A solution combining GPS 

and AHD heights was used to adjust the gravimetric geoid so that it provided a model 

of the separation between the AHD and the GRS80 reference ellipsoid. An improved 

model of the AHD-GRS80 separation was found at the ±8 mm level in comparison to 

the gravimetric geoid fit of ±128 mm.

Smith (Smith et al 2000) describe problems associated with the determination of a 

geoid for Florida USA. They find airborne gravity data unreliable and marine gravity 

introduces tilts and biases to the gravimetric geoid. The test of the geoid is against 

GPS/levelling data but there is no overall quality statement relating to the Florida 

geoid model.

In the determination of a gravimetric geoid for Hong Kong, Yang and Chen (Yang 

and Chen 2001) use the EGM96 geopotential model with the remove-restore 

technique, a limited data set of 600 gravity points and a 500 metre DTM to create a 

gravimetric geoid. 31 checkpoints from GPS/levelling show agreement to ±20 mm.

The US National Imagary and Mapping Ageny (NIMA) and NASA’s EGM96 is now 

considered by many as the current definitive model for practical applications. It is 

available as a spherical harmonic coefficient file and a correction coefficient file to 

calculate point geoid undulations (EGM96, 1996). The Geoid Height File consists of 

a 15 minute grid of point values. The EGM96 Geopotential Model to degree and 

order 360 has been used. The WGS 84 defined constants of ellipsoid semi-major 

axis and eccentricity were used to define the reference ellipsoid. In constructing the 

EGM96, surface gravity data was used to give detail where satellite information was
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insensitive, that is where degree is greater than 40. Satellite to satellite tracking data 

from Topex/Poseidon, EP/EUVE, and GPS/MET was used. Altimeter data from 

GEOSAT, TOPEX/POSEIDON, and ERS1 was used to provide detail where degree 

is greater than 70. Conventional tracking data included observations by SLR to 

Lageos2, Stella and GFZ-1 and from TRANET (Doppler) HILAT and RADCAL 

tracked satellites (EGM96, 2001).

The UCL Geomatics Engineering Research page states the absolute value of the 

WGS84 geoid height computation using EGM96 as better than metre world-wide 

(UCL, 2002). Relative values will of course be better.

As the area over which the geoid is to be determined decreases, problems 

associated with a lack of gravity data become more apparent. Although local 

precision becomes greater, tilts and biases in the model, due to an absence of 

gravity outside the immediate area of interest, become more problematic.

By way of illustration, Figure 2.5 shows a part of the geoid model currently available 

for UK. It is associated with the ETRS89. Figure 2.5, below, was constructed on a 

10km by 10km grid at 100 metre intervals, 10000 points, using the “co-ordinate 

converter” at Ordnance Survey (2001) which in turn uses OSGM91. The area is 

centred on the village of Ravenshead in Nottinghamshire. The “contour interval” is 

0.05 metres. The smooth contours probably reflect a lack of resolution in the original 

data set used to construct the geoid model.

27



Chapter 2 Contextual Review

Geoid model of Ravenshead (ETRS89)

Height of geoid 
above ETRS 

ellinsoid in metres

450000E,350000N 
(OSGB36)

Figure 2.5 A geoid model for Ravenshead

2.13 Data Compression

Barthelmes & Dietrich (1991) describe the use of point masses for the approximation 

of a gravity field. This is a form of data compression where 3568 Bouguer anomalies 

are represented by 200 “buried masses”. The quality of the gravity model reduces 

from an RMS of ±2 mGal to ±2.6 mGal. The compression is of 3568, 3D points (2D 

position plus Bouguer value), to 200, 4D points (3D position plus mass size), and so 

represents a data compression ratio of 1:13.4 with quality loss ratio of 1:1.7 (=

1:2.62/2.2). The overall gain is therefore 1:7.9.

2.14 Astrogeodetic data capture

Rowe et al (1985) describe a star sensor developed by the US Defense Mapping 

Agency and Ball Aerospace Systems in 1984 that uses a temperature controlled, 256 

x 256 pixel, charge injection device (CID). A substantial amount of observational
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data is required because each pixel has a 7”.7 field of view. Observing time is 2 to 3 

hours and position solutions for q> and X of ±0” .15 and ±0”.15sec9 are claimed.

Burki and Marti (Burki and Marti 1991) report on Swiss geoid models, including an 

astrogeodetic one. The astronomy was observed with a “Hannover-type” zenith 

camera. Vertically was controlled with 2 Talyvel III levels; there is no statement of 

the quality of the astronomic positions.

Eissfeller & Hein (1994) report another study of the potential use of a charge-coupled 

device (CCD) camera system. The theoretical study considers the use of a 2048 

pixel square chip mounted in a zenithal Cassegrain reflecting telescope with a focal 

length of 1.5 m and a 0.14 m aperture. As with all CCD approaches, there is a 

problem of relating the azimuth and altitude of the principal axis of the telescope to 

the azimuth and altitude corresponding to an individual pixel. Their system appears 

to need a cooling system to ensure electronic stability of the sensor chip. In spite of 

the size and complexity of the technology, for portable field use their expected 

accuracy is still no more than ± 0”.3 in position, a result achievable by manual 

means.

Buerki (1998) in a private communication describes work over a 15-year period 

leading towards an automated position line capture system using a transportable 

zenith camera system. He believes that the resulting accuracy of the geoid over the 

Alps is within 1 to 3 cm for most of Switzerland. He asserts that the results clearly 

indicate that deflections of the vertical are very well suited to determination of the 

geoid in mountainous regions. In the Geodesy and Geodynamics Laboratory at the 

Institute of Geodesy and Photogrammetry in the Swiss Federal Institute of 

Technology, they operate a zenith camera and electronic theodolites with a software 

package that enables on-line observation and computation of position. The hardware 

includes a time digitising unit, 1 pps input from a time signal or GPS-receiver, 

providing epochs defined by a manual stop switch with a resolution of a few 

milliseconds and a “steering Notebook-PC” . The software uses precise computations 

of apparent places of stars in the FK5. The estimation of position does not appear to 

use least squares but the method is claimed to produce results within one hour, 

although the precision is not stated.

Wei (1999) describes the adjustment of an astrogeodetic and GPS network of China 

that includes 48519 astrogeodetic points. This indicates that there is an 

extraordinary amount of astronomical data in existence in China. Whether that is just 

from Laplace stations, or whether there is a similar amount of positional data, is
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unknown but, if there is, then it could be used for the computation of a Chinese 

astrogeodetic geoid.

Hui et al (1999) describe how an earthquake affected the local plumbline in Yunnan, 

China in 1995.

2.15 Data quality comparison

Comparing the utility of gravity and astronomic data is not a simple task. The quality 

of a geoid derived from a single data type will depend upon:

• Quality of the observations.

• Available observation density or cost of new data capture.

• Reduction of the observations.

• Theoretical assumptions in the use of the reduced observations to

create the geoid.

2.14.1 Quality of the observations

Gravity and astronomy use measurements of the magnitude and direction of 

the gravity vector respectively. The full range of possible gravity 

measurements at sea level is approximately 5000 mGals. A semi-circle 

above the horizon is 64800”. If the two can be compared, then 1 ppm of the 

full observational range is both 5 pGals and 0”.65. Current instrumentation is 

of the order of both precisions, though single observations in the field are 

unlikely to be this good.

2.14.2 Available observation density or cost o f new data capture

There is currently much more gravity data available than astronomical data. 

New gravity data is observed in traverses and several points per operator 

may be observed in a day. The previous limitation on astronomical data 

capture has been the observing time required at a point, which has been of 

the order of several hours. With an electronic theodolite and the method 

described in Chapter 6 of this thesis the point data capture time could 

approach that of gravity.

As a questioner at the IUGG99 conference at Birmingham in July 1999 noted, 

deflections of the vertical are sensitive to local gravity variations but these can
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be filtered by terrain modelling to reduce the sensitive astronomic 

determinations to smoothed gravity based determinations. Gerstbach (1999) 

supports the view that fewer plumb line deflections than gravity observations 

are required to compute a geoid of equal precision. He quotes the need for 

astronomical points every 5-10 km or gravity observations every 1 -3 km to 

obtain a 1 -cm geoid in Austria. He does not state the basis for these figures.

If correct, they imply that over a given area between 11 and 25 times more 

gravity than astronomical observations are required. The time taken to collect 

data consists of travel time to and from site and observation time on site.

This indicates that even with longer on-site data collection time, astronomy 

could be significantly more economical.

2.14.3 Reduction o f the observations

Correction of gravity observations requires position for earth tide corrections, 

correction for drift, and a one-dimensional network adjustment for best 

internal fit. Reduction of gravity observations to gravity anomalies requires 

precise knowledge or observations of height. The approximate reduction of 

0.3086 mGal/m means that a height uncertainty of ±0.01 m leads to a further 

±3 pGal uncertainty. For large or national networks, this can be very 

demanding. The factor 0.3086 mGal/m depends upon the assumed value of 

density of the underlying masses being known to the same precision as the 

height. Height data will be required for the calculation of the terrain model 

used for the orological correction.

Correction of astronomical observations requires knowledge of earth rotation 

parameters for polar motion and approximate height for the downward 

continuation of the vertical for the correction for latitude. A DTM of the 

surrounding area will be required for a topographic-isostatic reduction where 

there is significant altitude variation in the surrounding area. Systematic 

errors in the star almanac can lead to systematic errors in astronomical 

position. A zenith instrument observes a limited range of stars for which the 

declinations are approximately the same as the latitude of the point under 

investigation. An instrument/system that observes stars away from the zenith 

will be less vulnerable to star almanac systematic errors but must properly 

account for the effects of zenith distance related refraction. Both systems will 

be vulnerable to the small amounts of systematic refraction that may exist in 

the zenith at the time of the observations, especially if the observations are 

taken over a short period.
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2.14.4 Theoretical assumptions in the use of the reduced observations to create the 

geoid

Stokes’ and Molodensky’s Formulae are integrals and are replaced in 

practical work by summations over meaned blocks of gravity anomalies. As 

free air anomalies are correlated with height, then a representative anomaly 

at the mean block height must be found. Block sizes must be small near the 

computation point or there will smoothing of the computed geoid. If any 

theoretically worldwide data is missing, there will be errors in the computed 

geoid especially in points near the missing data. These effects are reduced, 

but not eliminated, by using geopotential models and “remove and restore” 

techniques such as were used in the construction of many of the geoid 

models reported in Rapp and Sanso (1991) and Vermeer and Adam (1998).

Astronomical deviations give the slope of the geoid, not the geoid height itself. 

The geoid must either be modelled as a series expansion or by conventional 

astrogeodetic levelling carried out to determine the geoid height at points 

other than at the origin of the network.

Astronomy gives a much more direct measure of the geoid than gravity. For 

a relative geoid over a moderately flat and limited area of interest, for 

example the UK, an astrogeodetic geoid will be much easier to determine 

than a gravimetric one.

2.15 Plumb Line Variations

It is generally believed that there are significant and detectable non-tidal variations in 

the plumb line. Barlik et al (1999) report that non-tidal variations of up to 0”.1 have 

been detected by astrometric and gravimetric means at sites in Poland and China. In 

one Chinese case, the variation has been associated with an earthquake where 

variations of up 0” .1 were detected before the event. This suggests that the 

detection of non-tidal plumb line variations might be used as a tool for earthquake 

prediction. In such a case, the non-tidal variation in the plumb line could be because 

there has been some form of change in the earth, as suggested by Barlik et al

(1999). In that case, the astrometric and gravimetric results should agree. If 

however the surface has moved without significant changes below the surface, then 

astrometry would show a difference before and after the event but gravimetry would 

not. In the Chinese case mentioned above, there was significant, but not complete, 

correlation.
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2.17 The Problem with Astronomy

Astrogeodetic levelling has been used in the past for the geodetic control of national 

mapping. It is little used today because the astronomy part is labour intensive. The 

collection of papers edited by Rapp and Sanso (1991) which, although entitled 

“Determination of the Geoid Present and Future”, is concerned only with gravity and 

GPS, and makes no mention at all of astrogeodetic techniques. The author of this 

thesis notes that the problems associated with practical astrogeodetic levelling are 

many. For example, with a Wild T2000 theodolite and tripod, short wave radio, stop 

watch, thermometer and barometer and an appropriate almanac such as the Star 

Almanac for Land Surveyors (SALS), (HMSO 1995), or Apparent Places of 

Fundamental Stars (APFS), Astronomisches Rechen-lnstitute (1995) and a 

calculator, a solution with a standard error of 3" of latitude and the equivalent in 

longitude (100 m) can be found. The method is very slow: it may involve two full 

nights’ observations with a party of two per station. The author notes from his 

experience of astronomy that it has the following drawbacks:

• There is a danger of accidentally stopping the stopwatch by pressing the 

wrong button in the dark.

• Nights are cold and antisocial when standing still in the same place all night.

• The stopwatch must be calibrated against a time signal such as RWM 

Moscow.

• Each observer will have a different personal equation, i.e. un-calibrated 

individual reaction time between observing the star and pressing the 

stopwatch.

• The precision of operating the stopwatch is limited to about 0.2 - 0.4 seconds.

• The time taken to find suitable stars is long.

• Stars must be balanced in azimuth and altitude.

• There is no guarantee that the star seen will be in the SALS or APFS.

• Computations for one night’s observations will take one day (if they work out!)

• Final solution is a graphical one, so expert interpretation is required to identify 

the correct solution. There is no statistical determination of the quality of the 

solution and therefore it is difficult to estimate the precision of the computed 

position.
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In summary, there may be two nights of observations and one day of computations 

per station, leading to a position solution of ±3" (Robbins, 1976). Therefore, with so 

much effort for so little result, there is now little use for the process. Time was not a 

significant consideration before computers were readily available because other 

surveying and geodetic operations also took significant amounts of time.

The solution to the problem is to automate the data capture and the data processing.

Recent preliminary work in this area has been completed in the form of several BEng 

(Hons) Engineering Surveying final year projects at Nottingham Trent University, 

based upon ideas by, and under the supervision of, the author. The students’ 

understanding and the time available have limited the projects. The approach by 

Brookes (1994) and Greenfield (1994) was to make observations without preparation, 

discover which stars had been observed and use a simplified least squares solution, 

that is by observation equations, to find position. This represented a first attempt at 

Nottingham Trent to bring positional astronomy into the computer age. Davidson 

(1995) and Hayward (1995) took the project a little further in that they collected 

observations at several sites and, with a revised version of Brooks and Greenfield’s 

suite of spreadsheets, made some (now shown to be erroneous) determinations of 

the deviation of the vertical. However, they managed to improve productivity to 3 

hours of observations and 2 hours of computation per station. The solution would 

still only have been good, theoretically, to ±3" if the errors in the suite of 

spreadsheets had been corrected.

In the summer of 1995, the author conducted feasibility trials with a Wild T2000 

electronic theodolite and his own Hi8 video camera for recording the image of a 

moving star against the theodolite graticule. The RWM Moscow radio time signal 

was recorded on the sound track with voice recording of the theodolite readings.

RWM Moscow was used because it codes the difference between earth rotation time 

and Universal Time (DUT1) to 0.02s.

Internal camera time code was recorded on the picture. The time was correct to 1 

video frame, that is 0.04 of a second. There was no “personal equation” , that is 

systematic human bias in timing, because the observer was not recording the time.

A spreadsheet with limited data was used to predict star positions and therefore there 

was no requirement to search for stars. The achieved data capture rate was five 

minutes per star with a single observer. Most of the five minutes was taken up with 

manually lining-up the camera with the theodolite telescope since both instruments 

were on different tripods. It is probable that this data rate could be improved to four
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minutes per star with an assistant, and therefore 80 minutes per station for 20 stars 

should be achievable.

2.18 The “Position Lines” Method

“Position Lines” is an astronomical method for simultaneously determining latitude 

and longitude. The method is documented in published literature such as Robbins 

(1976) and in Breach (1997) from which the early sections of Chapter 4 have been 

adapted. Other astronomical methods for determining latitude require knowledge of 

longitude and, likewise, other methods for determining astronomical longitude require 

knowledge of latitude. There is also the requirement, that stars must be well 

balanced to mitigate against imperfect knowledge of latitude or longitude, as 

appropriate. The observations for position lines are those of precise altitude, time 

and an approximate azimuth to the star if the computation is to include a graphical 

plot. Approximate values of latitude and longitude are also required, as provisional 

values. Observations are usually made to balanced pairs of stars at opposite 

azimuths and at altitudes normally greater than 35°.

Correct star co-ordinates are required for the time of observation. The positions of 

stars are published in various astronomical catalogues each at a specific epoch, 

usually “J2000” . J2000 is defined as the 12 hours (midday) on 1 January 2000 in 

Barycentric Dynamical Time (TDB) (Seidelmann, 1992). The star’s positions are 

required at the time of observation.

For an observing programme to be efficient, stars need to be selected so that they 

are balanced to minimise the effect of errors in the computed value of the refraction 

coefficient, collimation, latitude and longitude. See Robbins (1976).

Some small corrections need to be made to compute astronomical position. Two 

need further development for this thesis. One relates to the gravitational attraction of 

the moon as the earth and moon orbit around their own barycentre. The other relates 

to the determination of the topographic-isostatic effect. Although theory and formulae 

have been developed for this effect, the formulae are cumbersome in the extreme 

and a more “user-friendly” approach is required.
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By 1996, astronomy as a data source was in significant decline (Segawa et al, 1997) 

and most efforts for geoid determination were based on world geopotential models, 

gravity, altimetry and GPS with levelling. One exception was in Austria, (Heiland et 

al, 1998) where the topography limited the availability of gravity data.

For geoid models of centimetre or less accuracy, both high-resolution terrain models 

(Kuhtreiber, 1997) and a detailed knowledge of subsurface density (Colic et al, 1998 

and Featherstone, 2000) are required.

Although centimetre level geoid models are now becoming available we appear to be 

some way from millimetre level geoid models. If relative geoid models are to be used 

in conjunction with relative heights from GPS to find relative orthometric height, then 

it is desirable that the errors in the geoid models do not add significantly to the overall 

error budget. If relative heighting from GPS or its successors improves beyond 

current levels then a near millimetre relative geoid will become an urgent goal of 

geodesy. The rest of this thesis suggests one possible way forward.

2.19 Summary

In this chapter on geoid determination, the available methods of Space based 

systems, GPS and levelling, gravity and astronomy were compared. Historical 

progress in the determination of the geoid was reviewed and it was noted that 

astronomy had largely gone out of fashion because of the difficulty of original data 

capture. However if local high precision models are required then astronomy, using 

a method such as that described in Chapter 6, may be the best answer. 

Astrogeodetic data capture techniques were reviewed and an attempt to compare the 

differing quality of different data types was made. In the next chapter, the 

methodology of such an approach is detailed.
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Chapter 3 

Methodology

3.1 Introduction

In the previous chapter the “Position Lines” method for the determination of 

astronomical position and progress in the determination of the geoid were briefly 

described. The overall methodology of this thesis is to develop appropriate theory 

relating to various aspects of the determination of astronomical position, to develop 

practical procedures to enable the determination of astronomical position and to 

investigate methods for using astronomical position to create an astrogeodetic geoid 

model.

3.2 Theory of various aspects of the determination of astronomical position

The theory relating to the determination of position by the technique of “Position 

Lines” needs to be developed. The classical graphical approach is to be reviewed 

and least squares based solutions considered. The least squares solutions may 

include: refraction effects and their rates of change; theodolite vertical collimation and 

its rate of change also latitude and longitude as unknowns to be solved for.

Equations are derived.

Investigations of the direction of balance based on error in computed refraction 

coefficient and on error in computed collimation are required.

The nature, effect and evaluation of non-random errors in time are to be considered. 

An equation for the effect on the observed vertical angle of an error in horizontal 

pointing must be found. Observing and computing strategies are to be considered 

including; consideration of the observing parameters of star elevation and azimuth 

limits; start time of observations; the number of stars to be observed; the overall 

balance of stars in azimuth and altitude and the number of observations per star 

against number of stars. A simple formula to model refraction will be required.

The earth and moon orbit around their own barycentre. The barycentre is within the 

earth. Because of this orbit, there is a centrifugal effect that varies with time and
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place. It is anticipated that it will have a variable effect upon the local direction of the 

vertical.

The effect of the moon’s gravitational attraction, and the effect of centrifugal 

acceleration of the observation point around the barycentric rotation axis, upon the 

deviation of the vertical need to be evaluated. To achieve this the relationship 

between the Geocentric, Orbital and Topocentric Co-ordinate systems must be 

established.

The variations of Lunar Right Ascension and Declination must be reviewed so that 

lunar co-ordinates may be used to determine the magnitude and direction of the lunar 

deviation of the vertical.

Variations in the Earth’s mass distribution will have an effect upon the direction of the 

local vertical. If observations could be made at the geoid then deviation of the vertical 

measured at the geoid would truly represent the slope of the geoid. However 

observations are made on the surface and must be reduced to the geoid by the 

application of a correction for curvature of the plumb line in the meridian (Robbins, 

1976) and for the topographic-isostatic effect (Nagy, 1966). In the latter case it is 

necessary to compute the difference between the sideways attraction at the point of 

observation on the ground and at the point of computation at the geoid. For a fully 

rigorous correction to be applied then variations in the density of the topography must 

also be taken into account. Since the topographic-isostatic effect can be of the order 

of several arc seconds in mountainous terrain then variations in overall density with 

direction may also be significant. Since the practical approach to computing the 

topographic-isostatic effect involves dividing the terrain into blocks and computing the 

sideways force then it will be necessary to find the mean density for each block by 

other means. Such data may not always be available.

Earth tides, due to the attraction of the sun and moon will have a small effect upon 

measured astronomical position. Vanicek and Krakiwsky (Vanicek, Krakiwsky 1982) 

state that the effect is less than 0” .05, and is therefore negligible.

Ocean loading might also have a small effect in some places. It is understood that 

the West of Cornwall rises and falls by about 5cm with the tide. If the West Country 

may be considered as hinged about a meridian through Bristol then the 21/2cm 

variation from the mid tide value over the distance from Bristol to Land’s End, 220km 

gives a maximum discrepancy of 0” .024 and therefore probably negligible.
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3.3 Practical procedures to enable the determination of astronomical 

position

The productivity associated with a number of possible observing strategies is to be 

investigated. Methods of automating the observing process need to be examined 

and a practical process developed. Applicable methods worthy of investigation 

include using a photodiode for precise timing of star observations, detection of star 

passage over the theodolite crosshair and the determination of time of star passage 

over the theodolite crosshair.

Alternatively a method using a video camera may be appropriate and this will require 

consideration of issues relating to precise linkage of time to a video frame, the 

determination of the motion of the image of the star, the determination of the 

theodolite horizontal crosshair in the video image and the determination of the time of 

star image passing the horizontal crosshair image to be considered.

A practical method for the determination of precise observing time is essential. Time 

may be obtained from radio time signals or from GPS. With GPS and video 

recording of the star passage across the crosshairs, the problem to be solved is that 

of linking the video frames to the GPS time signal.

Updated values of star co-ordinates must be found before an observing programme 

or computations to find position can be made. The process necessary is to create a 

suitable catalogue of star data at a reference date, J2000, and to compute updated 

values of the co-ordinates at the epoch of interest. J2000 is the reference date for all 

modern catalogues.

Observing and computing processes need to be examined in some detail to find a 

method that will give a good solution under the specific conditions of observation. 

Stars must be selected in an observing programme so that they are balanced to 

minimise the effect of errors in the computed value of the refraction coefficient, 

collimation, latitude and longitude. The “productivity” of various technology 

combinations needs to be considered to find a process that delivers economical 

solutions. Automation of the observing process using a photodiode or a video 

camera, with or without a video capture board must be considered. Relating time to 

the observation will be a major issue. Theory, formulae and computational method 

must be considered for each case.

Astronomical position is observed on the ground surface but the slope of the geoid is 

computed at the geoid. The reduction of observed astronomical position includes a
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component to account for the different attractions of the surrounding topography on 

the ground surface compared with that at the geoid. The usual method of 

determining this topographic-isostatic effect on the m agnitude  of gravity 

observations needs to be adapted and developed for the effect on the direction  of 

gravity observations. If a simpler method that does not require a local terrain model 

could be developed it would reduce the computational effort required to compute the 

topographic-isostatic effect.

To demonstrate the application of theory and processes developed, a practical 

determination of astronomical position, and hence slope of the geoid, will be 

required.

3.4 From astronomical position to astrogeodetic geoid model

The relationship between the geoid and an ellipsoid was reviewed in Chapter 2. 

Methods for the determination of the shape of the geoid by GPS with precise 

levelling, by gravity observations and by astrogeodetic methods were compared. 

Historical progress in the determination of the geoid is reviewed and suggestions as 

to the future utility of the astrogeodetic geoid are put forward. Previous methods of 

astrogeodetic data capture were reviewed and an attempt was made to compare the 

usefulness of gravity and astronomical data.

In Chapter 9 the classical method for the determination of the Astrogeodetic Geoid is 

reviewed. The density of observations needed for an astrogeodetic geoid model is 

considered in terms of Kaula’s rule of thumb. An alternative consideration is 

developed by finding the effect of a hemispherical mountain on the deviation of the 

vertical and using this to create three test models of simulated topography of 

“Mountains”, “Hills” , “Lowlands” and a “Plain” . Geoid models are then developed and 

examined using “Polynomial Coefficients” deduced from observations by least 

squares. A similar investigation is made using “ Interpolation of Deviations” . Finally a 

scheme for the development of a geoid model by “Progressive Nodes” is proposed.

The first stage, now, is to develop “Position Lines" theory to make it applicable for 

practical applications using least squares methods and this is the subject of the next 

chapter.
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Chapter 4 

Position Lines Theory

4.1 Introduction

In the last chapter it was established that practical procedures to enable the 

determination of astronomical position were required and that the theory relating 

to the determination of position by the technique of “Position Lines” needed to 

be developed for application by least squares methods. To achieve this the 

classical graphical approach will be reviewed and least squares based solutions 

considered. A least squares solution may include: the refraction effect and its 

rate of change; theodolite vertical collimation and its rate of change as well as 

latitude and longitude as unknowns to be solved for. The nature, effect and 

evaluation of non-random errors in time must also be considered, as must the 

effect on the observed vertical angle of an error in horizontal pointing.

To optimise the process observing and computing strategies need to be 

considered including; consideration of the observing parameters of star 

elevation and azimuth limits; start time of observations; the number of stars to 

be observed; the overall balance of stars in azimuth and altitude and the 

number of observations per star against number of stars.

4.2 The Theory of Position Lines

The sub-stellar point of a star (Figure 4.1) is defined as the point where the star is at the 

observer's zenith. In other words:

(|) = § and

LST = a

Where is the latitude of the point

8 is the Declination of the star

LST is Local Sidereal Time

a  is the Right Ascension of the star
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Therefore, the observer's longitude can be given by the formula:

X = LST - GST

a - GST

a  -UTi - Ft ± 12h 

where X is the longitude of the point

GST is Greenwich Sidereal Time

UT1 is Universal Time corrected for earth rotation 

R is the Right Ascension of the Mean Sun

In all the above, the units must consistently be those of angle or time.

If the observer observes another star, then it will 

be in the zenith of a sub-stellar point, point B, 

where:

(|>b = 52 and

Xq — oc2 - UT1 - R

z is the zenith distance to a star, so 

z = 90° - h 

where h is the vertical angle to the star.

If an observer observes the star, then the

observer’s zenith will be on a small circle of the 

celestial sphere, centred on the star and with an 

angular radius of z. The observer’s position on the 

earth will be somewhere on the sub-stellar locus 

line of that small circle (see Figure 4.1). With a second star at a different azimuth, there 

is a second sub-stellar locus line, crossing the first at the observer's position (see Figure 

4.2).

Zenith
Star

Observed 
zenith angle

sub-stellar 
locus line

sub-stellar 
point B

Figure 4.1 The Position Circle.

4.2.1 Position line

In the region of the observer, the sub-stellar locus 

lines will be almost straight, unless z is very small. 

Each straight line will have a direction at right 

angles to the azimuth to the star. The observed 

zenith distance to the second star represents the 

spherical angular distance from the sub-stellar 

point of the second star to the observer's position.

Zenith
I Star 1

Star 2

Intersection of 1
locus lines /

Figure 4.2 Two Position Circles.
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If the observer moves towards the sub-stellar point of the second star, the observed 

zenith distance will decrease. If the observer moves away from the sub-stellar point of 

the second star, the observed zenith distance will increase.

The observer observes the zenith distance from his or her actual position. The observer 

can also calculate the zenith distance at any other point to the same star, at the same 

time. The difference between the observed zenith distance and the computed zenith 

distance therefore represents the angular distance (at the centre of a spherical earth) of 

the component of the angular separation between the actual and assumed positions, in 

the direction of the star.

The position solution may be derived either graphically or by least squares:

4.2.2 Computations

In the graphical method it is necessary to define a provisional value for computation of 

the observed position in terms of latitude and longitude <J>P and Xp. The hour angle of the 

star at the provisional position at the observed time is given by:

tp = LSTp - a

= UT-i + R + Xp - a

The computed altitude from the provisional position is given by: 

sin hp = sin (j)p sin 8 + cos <J)P cos 8 cos tp

where

For plotting purposes, the azimuth to the star may be taken as the observed azimuth to a 

sufficient level of precision.

4.2.3 Plotting

The observer must be nearer the star from his provisional position, by an angular 

amount (h0 - hp) where h0 is the observed altitude and hp is the altitude computed from 

the provisional position (see Figures 4.3 and 4.4, below).
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azimuth 
of star. latitude

positioi 
line i origin((pD) Xd)

longitude

latitude scale

Figure 4.3 Plotting a Position Line.

a z i m u t h  t o  s t a r  4
p r o v i s i o n a l  
f p o s i t i o n

a z i m u t h  t o  s t a r  1
f i n a l  v . 

p o s i t i o np o s i t i o n  l i n e  f o r  s t a r  4 p o s i t i o n  l i n e  f o r  s t a r  1

p o s i t i o n  l i n e  f o r  s t a r  2p o s i t i o n  l i n e  f o r  s t a r  3 ' c o l l i m a t i o n /  
e r r o r  /

a z i m u t h  t o  s t a r  2
a z i m u t h  t o  s t a r  3

Figure 4.4 Four Position Lines surrounding the final position.

4.2.4 Accuracy

Systematic refraction and collimation errors are eliminated with four balanced stars. A 

systematic error in timing will give an equal error in longitude, but will give no error in 

latitude. With the following specification, the precision of computed position should have 

a standard error in the order of 3" in latitude and 3"sec <|> in longitude (Robbins 1976).
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4.2.5 Specification

For a conventional solution, 3 sets of 6 stars may be observed. Altitudes should be 

greater than 40°. A one-second theodolite or better should be used. There should be 6 

pointings to each star. The stars in each set should be approximately at azimuths of 

45°, 135°, 225°, 315°, 90°, and 270°, each to ±10°. Altitudes should be balanced to ±5°. 

All observations of one set should be on the same face. The next set should be 

observed on the other face.

An observing programme is not necessary. In the northern hemisphere the northern star 

of a balanced pair should be observed first because there will usually be a star in the 

south, which may easily be found to balance the northern one. Because of the slower 

apparent movement of stars near the elevated pole, the opposite will not normally be the 

case.

4.2.6 Observations

The horizontal circle may be set to 0° at north by observations to Polaris. Six timed 

altitudes may be taken, on one face, to each star. All the readings should be made close 

to the centre of the horizontal cross-hair. A horizontal circle reading to the star should be 

made after the last vertical angle has been observed. This is for plotting and 

misidentification purposes. Temperature and pressure readings should be taken to 

enable computation of a refraction correction to the observed altitude. One set of 

observations may be defined as observations to 6 stars with the specification above. For 

the second set, the face should be changed. The stars should be observed set-by-set 

and not grouped by azimuth. This will ensure that all the stars of one set are more likely 

to be subject to the same refraction conditions.

The conventional graphical solution to position lines, described above, is suited to a 

solution based upon few observations. When many stars are observed, the solution can 

become confused if there are gross errors in the observations. Figure 4.5, below, shows 

a solution based on the observation of approximately 45 stars and with no gross errors in 

the observations. Note how the plot forms a circle around the best estimate of the 

solution. The circle’s radius is approximately the vertical collimation of the instrument 

plus the average error in the refraction model. In this case, it is about 20”, which is 600 

m on the ground. The least squares solution described below, with the same data, leads 

to an error ellipse of semi-major axis of 10 metres. It is unlikely that it would not have 

been possible to identify a solution by graphical means with such precision. The 

graphical solution, of a position computed by Position Lines, shown in Figure 4.5, below, 

has had all information, other than the position lines, removed.
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Figure 4.5 Position Line solution based on observations to 45 stars.

4.3 Least squares approach to position lines

By applying the spherical cosine formula to the astronomical triangle and taking account 

of the formulae in section 4.2 the observation equation may be written as:

sin(h - k coth + c ) = sin<|> s in8 + cos<|) cos8 cos(UTi + R + X - a)

where

k is a refraction constant to be solved for and assumes that the effect of 

refraction is proportional to cot h 

c is the vertical collimation of the instrument

The solution to the generalised least squares problem 

Ax + Bv = b

is

x = ( At( B W 1 BT)'1 A)'1 At ( B W'1 Bt)'1 b

and

<T(x) = (At(BW‘1Bt)-1A)-1
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In this problem:

5k
5c
S(j>
5X

and the units of all angular quantities are most easily expressed as radians. The 

equation at the beginning of this section may be rearranged as:

f sin(h - k cot h + c) - [ sin $ sin 5 + cos <|> cos 5 cos (U + R + X - a) ] 

0

Note the change of notation where U is the observed value of time UTi.

r i
afi afi l i Mi
ak ac a<j) dX

afs af2 af2 af2
ak ac a<f> ax

The observations are those of vertical angle and of time, so:

B afi
dh

0 0 afi
au

o o

o df2
dh

0 &
au

o

which may be partitioned into two diagonal matrices:

B Bi B5

The weight matrix may be divided as follows:

r i
w Wi 0

0 w2
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where \N  ̂ refers to the observations of vertical angle (h) and

W2 refers to the observations of time (U)

Provided that all the observations and the corrected model are uncorrelated with each 

other then Wi and W2 will both be diagonal matrices.

b = sin (h0 - kp cot h0 + cp) - [sin c)>p sin 8 + cos (j>p cos 5 cos (U + R + Xp - a)]

The partial differentials are:

at + cos (h - k cot h + c) (1 + k )
ah sin2h

at + cos <|) cos 8 sin (U + R + X - a)
au

at - cot h cos (h - k cot h + c)
ak

at + cos (h - k cot h + c)
ac

at - cos <|> sin 8 + sin § cos 8 cos (U + R + X - a)
a<|)

at + cos c|> cos 8 sin (U + R + X - a)
dX

BW B-1d T B1

Bi, B2 and W are diagonal matrices.

r
I
L

1 q T

B;
i  r
I

j
WT1 0
0

BW B

Wc

BtW T^i + B2W21B2

■ I___ Bi
'

b2

and so the ith element on the leading diagonal of (BW'1BT)'1 is:

(Bui2 206265'2 ah2 + B2ii2 137512 au2)'1

where ah is in seconds of arc and 

au is in seconds of time

and all the non-diagonal elements are 0.

The only matrix inversion is now that of (AT(BW‘1BT)'1A) which has 4 rows and columns. 

Provisional values of cj) and X should be as good as possible (and will be in radians, 

given the units above). The provisional values of c and k may be taken as 0° and 0°.016
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respectively. Note that in the computation of the error ellipse of the computed position, 

the scales of <j) and X are not the same. It would first be best to convert the units of a / ,  

ax2 and all to metres before computing the error ellipse.

If observations are taken over a protracted period there is likely to be a change in 

meteorological conditions. A change of temperature may affect the theodolite vertical 

compensation mechanism. The change of refraction conditions may also affect the 

value of k in the observation equation. To accommodate linear changes of these 

parameters with time, and so avoid taking meteorological observations, the observation 

equation could be modified to:

sin(h - (k + 1 p) coth + c + 1 q ) = sin(J> s in8 + coscj> cos8 cos(UTi + R + X - a)

where p and q are coefficients and t is the time from the first observation, c and k 

therefore are now the refraction and collimation values at the first observation. There are 

now two further parameters to solve for and the x vector becomes:

5k
5c
Sp
5q
5<j>
SX

The A matrix becomes:

tq ) - [ sin c}>sin 5 + C O S  <]) cos 5 cos (U +

Mi 3fi Mi
3k 3c 3p 3q 3(|) dx

af2 3f2 3fg af2 3fg af2
ak 3c 3p 3q 3cJ> dX

The B2 sub-matrix and W matrix are unchanged. The b vector becomes: 

b = sin (h0 - (kp + 1 pp) cot h0 + cp + 1 qp) - [sin <|>p sin 5 + cos <f>p cos 5 cos(U + R + Xp - a)]
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The partial differentials are:

3f = + cosfh - (k + 1 d) coth + c + 1 aW1 + (k + 1 d) )
3h sin2h

3f =: + cos <j) cos 5 sin (U + R + X - a)
au

df — - cot h cos (h - (k + t p) cot h + c + 1 q)
3k

3f + cos (h - (k + 1 p) cot h + c + 1 q)
3c

df = - 1 cot h cos (h - (k + 1 p) cot h + c + 1 q)
3p

df = + 1 cos (h - (k + 1 p) cot h + c + 1 q)
dq

3f = - cos <|) sin 5 + sin (j) cos 5 cos (U + R + X - a)
3(J)

3f = + cos <|) cos 5 sin (U + R + X - a)
dX

The provisional values of p and q may both be taken as 0°/hour.

The observations are those of time and vertical angle. Observations are imperfect and 

subject to random and systematic errors. Systematic errors due to error in the time 

signal and error due to the personal equation will need to be corrected for.

4.4 Non-random errors in time

Non-random errors in time include error in the time signal and errors due to the personal 

equation.

4.4.1 Error in the time signal

Error in the time signal will have a systematic effect on the determination of astronomic 

longitude at a site because all time observations will be affected by the same amount. 

RWM Moscow broadcasts DUT1 to 0S.02. On the assumption that this is correct, then 

UT1 can be determined to not worse than 0S.01, and the average error is therefore 

0s.005. The longitude equivalent to this is 0”.075, or at UK latitudes, 1.5 m.

Alternatively, DUT1 can be found on the Internet in the International Earth Rotation 

Service’s Bulletins at IERS (1998).
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4.4.2 Errors due to the personal equation

The personal equation relates to the systematic error in all time observations and at all 

sites for an individual observer. It is caused by human interaction with the timing 

process. In conventional observations, the stopwatch is calibrated against a radio time 

signal, but real observations are of time as the stars cross the theodolite horizontal cross 

hair. The personal equation is therefore the difference in reaction time to the auditory 

stimulus of a radio time signal compared with that of the visual stimulus of a star 

crossing a theodolite crosshair. Such a relationship is hard to determine with any degree 

of certainty although experiments have been devised.

One such experiment undertaken by this author was to compare the calibration of a 

stopwatch using time from RWM Moscow with a calibration using time from the display 

of a Leica System 200 GPS receiver. If the DUT1 and dUT1 corrections are not applied 

to the RWM Moscow signal then both signals should give UTC. RWM broadcasts from 

10 to 20 minutes past each hour and from 10 to 20 minutes to each hour. To avoid any 

possibility of stopwatch drift corrupting the results, the following observations were taken:

Table 4.1 Radio and GPS observations for stopwatch calibration.

Calibration with Date 26/4/96 
Period

Number of i 
observations

RWM Moscow 13h 40m - 13h 50m 54

GPS 13h 50m - 14h 10m 108

RWM Moscow 14h 10m - 14h 20m 55
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Ignoring the minutes and integer seconds, which were the same, the results were: 

Table 4.2 The difference between Radio and GPS stopwatch calibrations.

RWM
Moscow

GPS Difference

mean 0S.2308 0 s.4784

difference of the means 0 s.2476

standard error of the sample 0 s.0375 0 s.0542

standard error of the mean 0 S.0035 0 s.0051

standard error of the difference of the means 0 S.0062

There is a difference of 0S.25. Part of this could be explained as the difference in 

personal equations relating to auditory and visual stimuli but it seems excessive. From a 

conversation with the manufacturer’s representative it is now understood that the 

difference is a function of the GPS processing time, which in turn is a function of the 

number of satellites, and will therefore vary with time. If the experiment were to be 

repeated using the “GPS flasher”, described below, then it is likely that the results from 

GPS and the RWM Moscow would be more compatible.

The solution to the personal equation problem depends upon the method by which time 

is observed. The best solution is one where the observations do not depend upon 

human reaction or interpretation, that is, both time signal and star passage across the 

cross hair are recorded in the same medium, such as on the same videotape. Where 

human interaction with the observations cannot be avoided then systematic error will 

occur. There are several possible solutions to the evaluation of a personal equation.

4.4.2.1 Evaluation of the systematic error in the east-west component of the deviation of 

the vertical by astronomical and GPS observations.

Error in the computation of east-west deviation of the vertical relates to error in 

astronomical longitude which in turn relates to error in time. The east-west deviation of 

the vertical may be found from consideration of the Laplace equation:

Aq = Aa - (Xa - taOsinq)

where

Ag and Aa are geodetic and astronomical azimuth respectively
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XA and Xg are geodetic and astronomical longitude respectively

Which, when rearranged, becomes:

Xa = (Aa " Ac)/sincp + Xg

If the astronomical azimuth, Aa, is found by the “azimuth by altitude” method then there 

are no observations of time and therefore there is no personal equation. The geodetic 

quantities, azimuth and longitude, are found by GPS.

The relationship between the uncertainties of the above parameters is:

o * * A  =  a L V A A +  a L 2o 2AG +  M - 2a \ G

3Aa 3Ag 9Xg

(sincp)'2a 2AA +  (sintp)'2cj2AG +  o \ G

If XG is found by GPS the uncertainty will be negligibly small. AG is found from GPS and, 

with a relative GPS positional uncertainty of 0.005m and 1ppm of baseline length, the 

geodetic azimuth’s uncertainty will be approximately:

(0.005m ± d10'6)/d radians

where d is the length of the line in metres.

The uncertainty of Aa will depend upon the number of observations that are taken to 

determine it. If the latitude is 53°, as it is in Nottingham, and Aa and AG are each to 

make an equal contribution to gXa, which is to be 0”.5 say, then cjAa and oAg must each 

be 0”.28. This implies that the length of the GPS base line will be 14 km.

Although sufficient azimuth by altitude observations could be taken to meet a similar 

criterion for the astronomic azimuth, there is always the real danger of systematic 

horizontal refraction putting significant systematic error back into the final determination 

of the personal equation.

The personal equation will be the difference between the Xa found from the position lines 

solution and the XA found from above. If both are found with uncertainty of 0”.5 then the 

personal equation still has an uncertainty of 0S.05 and this is considerably greater than 

the uncertainty of the time signal from RWM Moscow.

4A.2.2 Evaluation o f the systematic error in the east-west component of the deviation of 

the vertical by precise levelling and GPS observations.

If the personal equation is ignored then a geoid model formed by astrogeodetic levelling 

will have a systematic east-west slope with a gradient equal to the personal equation. If
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points on the east and west sides of the area, for which an astrogeodetic geoid with 

systematic east-west slope has been determined, are connected by GPS heighting and 

also by precise levelling then, in principle, the systematic slope error of the geoid can be 

found. If the east-west distance is 20 km and if a GPS reference station is set up at the 

centre of the area of interest and roving receivers are at the east and west extremities of 

the area, then from consideration of propagation of error formulae, the ellipsoidal height 

difference may be found with a precision of:

V2 (0.01 m ± 10'610000m) = 0.02 m.

Likewise, 20 km of double-run precise levelling may give an orthometric height difference 

of:

a h = 0.002 V20 m
0.009 m

These statistics combine to give an uncertainty of a difference in the geoid model of 

0.022 m. Over the 20 km east-west distance across the area, this is equivalent to an 

uncertainty of 0” .23 in the slope of the astrogeodetic geoid model.

4A.2.3 Evaluation of personal equation by misclosure of an astrogeodetic levelling loop.

Imagine an astrogeodetic levelling loop that started at a point on the equator and 

continued eastwards until the loop closed back at the start point, i.e. the loop went 

around the earth at the equator. Then in the absence of error, there would be no 

misclosure. If there were an error in the personal equation then the misclosure would be 

the personal equation times the circumference of the earth. Such a method would 

produce a precise solution for the personal equation but the experiment is clearly 

impractical.

An alternative, which reduces the length of the astrogeodetic levelling loop but still 

involves a full 360° circumnavigation of the globe, would be to make the levelling loop 

follow a high parallel of latitude, say 89° 50’. Although the route would be on land and 

only 120 km long, the location would be difficult to get to. At the poles, each star is at a 

near constant altitude. Therefore, the uncertainty of the times of the vertical angles 

would be such that the derived east-west deviation of the vertical would be almost 

meaningless.

A rather more practical approach to the problem would be to examine the misclosure of 

an astrogeodetic levelling loop at mid-latitudes.
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Figure 4.6 An astrogeodetic levelling loop at mid-latitudes.

In Figure 4.6, above, A and D are at the same latitude, and so are C and B. A and B are 

on the same meridian, and so are C and D. N is at the centre of the figure and has 

latitude <pN. The latitudes of A and B are, respectively, (cpN + 8cp) and (<pN - S(p). The 

longitude difference between A and D is X. If R is the radius of the earth, assumed 

spherical for computational simplicity, with all angular terms in radians, the lengths of the 

sides of the figure are:

AB = 2 5tp R

BC = X c o s (< p n  - 5cp) R

CD = 2 8(p R

DA = X cos(tpN + Sep) R

The distance, L, around the figure is the sum of the lengths of the sides:

L = R (4 8cp + 2 X cos(pN cosScp)

which can be rearranged as

X = (L - 4 R 8cp)(2 R coscpN cos8<p)'1

The distance difference west and east, over which the personal equation will have effect 

is:

d = BC - DA

= 2 X R sin<pN sin8(p

If the misclosure is solely due to the personal equation, p, then the misclosure will be 

m = 2 p X R sin<pN sin8(p

= 2 p (L - 4 R S(p)(2 R cos(pN cos8(p)‘1Rsin(pN sinScp

= p (L - 4 R S(p) tancpN tanScp
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To ensure that the personal equation is found with greatest precision the figure must be 

optimised to maximise m for a given L. This will be achieved when:

3m 0
38cp

3m = p (- 4 R tan(pN tanScp + (L - 4 R 8(p)tan<pN cos'28(p)
38cp

Therefore:

L - 4 R 5(p = 4 R  sin8(p cosStp

This equation requires an iterative solution. However, an approximate solution will suffice 

so, if Sep is small, the above may be rewritten as

L - 4 R 5<p = 4 R 5<p

Therefore:

5cp = L
8R

and from substitution:

X = L (4 R cos(pN)'1

m = p L2 tancPN
16 R

It is next necessary to find a value for L such that the personal equation can be 

significantly detected. To be at least 95% certain that p exists,

m > 1.96 am

If a deviation of the vertical with a standard error of 0”.5 is determined every 500 m then:

am = 500 0.5 n V(L/5001
648000

VL 5.4 10'5

Therefore from above:

p L2 tanoM > 1.96 Vl_ 5.4 10'5
16 R

So, to be significant:

p > 1.96 IT372 5.4 10‘516 R (tan<pN)'1

> 10800 L‘3/2 (tantpN)'1
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At the latitude of 53° this becomes:

p > 8138 L‘3/2

Minimum significantly detectable values of p for various values of L are listed in Table 

4.3, below.

Table 4.3 Lengths of astrogeodetic levelling loops required to find the magnitude of a
personal equation.

p L

1s.O 232 km

0s. 1 1078 km

0S.01 5003 km

The conclusion must be that for the value of p to be meaningfully determined and 

applied, the length of the astrogeodetic levelling loop would have to be of such a size 

that it would not fit in England.

There might possibly be an application for this method if a large number of independent 

routes similar to the one described in Figure 4.6 could be found. For example, 100 

routes each of 1078 km could lead to the determination of p to 0S.01.

4A.2.4 Evaluation o f personal equation by video means

if the simultaneous sounds and sights of events are recorded on videotape then timed 

reaction to a series of sounds followed by timed reaction to a series of sights, and vice 

versa, could be used as the basis of an experiment. For example, a regular short sound, 

like the normal second time signal from RWM Moscow, is synchronised with a video 

recording of a star crossing the graticule. If there is no personal equation then the mean 

time of a number of consecutive audio events will be an integer number of seconds 

different from the mean time of the same number of consecutive visual events.

A suitable videotape might contain two minutes of audible signals and 30 simulated star 

crossings. Four seconds between simulated star crossings should be enough to ensure 

that the rhythm of visual repetition could not be used. In such an experiment, the 

observer times the audible signals every four seconds for the first minute and times the 

visual signals for the second minute. The personal equation is then the difference of the
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mean time of the audible events and the mean time of the visual events less the nearest 

integer number of seconds. In such an experiment, the observer must have the sound 

switched off when observing visual signals and face away from the screen when timing 

the audible observations.

The last solution is probably the most practical because it could be conducted in a 

laboratory.

4.5 The effect on the observed vertical angle of an error in horizontal pointing

In Figure 4.7, below:

O is the observer

C is the projection of the theodolite cross hairs onto the celestial sphere

S star

OAB local horizon plane

dA angular departure of the star from the cross hairs along the horizontal hair

h true vertical angle to the star

h0 observed vertical angle to the star

Figure 4.7 The effect on the observed vertical angle of an error in horizontal pointing.
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If OB has unit length then:

SB = tan h

OS = sec h

OC = sec h cos dA

AC = sec h cos dA sin hQ

Therefore since AC = SB:

sec h cos dA sin h0 = tan h

cos dA sin h0 = sin h

If h = h0 - 8h

where 5h is the error in the observation

8h = h0 - sin'1 (cos dA sin h0)

dA may be taken as 2’ 30”, because it is a sensible minimum for the Wild T2000 

theodolite. 2’ 30” it is 21/2 times the distance from the centre of the crosshairs to the main 

part of the horizontal hair. Table 4.4, below lists 8h against h0.

Table 4.4 The error in the observation of vertical angle at various vertical angles when the

pointing is 2’ 30” from the crosshairs.

h0 5h

45° 0” .05

oOCO 0” .09

0oI"- 0”.15

CO o o 0”.31

CO Ol o 0”.62

oCO00 1” .56

ooCO 3” . 12

89° 30’ 6”.24

89° 50’ 18” .47
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If the altitude is greater than about 80°, it is apparent that there will be a significant 

systematic error in all observed vertical angles. The correction:

8h = h0 - sin'1 (cos dA sin h0)

will need to be subtracted from all observed vertical angles. However, if it is difficult to be 

consistent about the 2’ 30” offset, then it will be best to avoid altitudes greater than 85°.

4.6 Investigation of a “Position Lines by Least Squares” observing and 

computing strategy

Before any field observations were undertaken, a computer-based study was carried out 

to confirm that a proposed observing and computing strategy would be workable. A 

prediction spreadsheet was used to create simulated observations where the 

observations were at the regular rate of one star every two minutes. Two minutes were 

chosen as that is the rate at which most observers, including the author, can observe. 

Changing the rate will have no significant effect upon the quality of any result, except for 

the amount of simulated time that is needed to achieve the result. Stars were selected 

so that they progressively increased in azimuth. In the field this would speed the 

observing process. A set of 50 stars may take about three circuits of the horizontal 

circle. All data sets were based upon a site near Nottingham. The maximum zenith 

angle was 52° with lesser values up to a zenith angle of 8°. 50 observations led to an 

error ellipse with a major axis of 14.5 m. The standard errors of the simulated 

observations were:

vertical angle 0” .5 and

time 0S.15 cos h / (cos 8 cos cp sin ( UT1 + R + X - a))

The later is a fixed value, 0s. 15, times an expression that describes the vertical velocity 

of the star. The value of 0s. 15 relates to the author’s precision of reaction to a visual 

stimulus, a personal statistic evaluated during an investigation of alternative methods of 

gyrotheodolite measurements (Breach, 1985). The assumption is that a fast rising star, 

e.g. a star at elongation near the prime vertical, will be easier to time precisely than a 

star near the pole at transit which will not appear to move much in elevation.

There are two observations associated with the Position Lines method, zenith angle and 

time. The numerical values stated above are based upon The Wild T2000 and a hand 

held stopwatch. Improvement in the quality of the observations will lead to a smaller 

error ellipse for position, however improvement of only one observation type may have
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limited effect. Table 4.5 shows the relationship between the un-scaled error ellipse 

semi-major axis in metres, that is the figures in the shaded area, and observation quality 

for the particular data set. It is reasonable to suppose that a similar pattern of results 

would be obtained for any data set.

Table 4.5 The relationship between the un-scaled error ellipse semi-major axis in metres 
(figures in the shaded area), and zenith angle and time observation quality.

Zenith angle standard error in arc seconds

5 2 1 0.5 0.2 0.1 0.05

Time 1 99.5 95.2 94.6 94.4 94.4 94.4 94.4

0.5 56.7 48.3 47.6 47.3 47.2 47.2 47.2

standard 0.2 36.7 22.7 19.9 19.1 19.1 18.9 18.9

error in 0.1 32.9 15.7 11.3 9.9 9.5 9.5 9.4

arc 0.05 31.8 13.4 7.9 5.7 4.9 4.8 4.7

seconds 0.02 31.5 12.6 3.7 2.3 1.9 1.9

0.01 31.5 12.6 6.4 ^ CO 1.5 1.1 1.0

Table 4.5, above, suggests that if time and zenith angle precision fall in the lighter 

shaded area then improvement in time quality will have more effect than improvement in 

zenith angle quality. If time and zenith angle precision fall in the darker shaded area 

then improvement in zenith angle quality will have more effect than improvement in time 

quality. The border between the light and dark shaded areas lies approximately where 

the ratio of zenith angle to time is 1 : 15, which is the numerical ratio of time and angle 

as circular measure i.e. 24h: 360°.

4.7 Options for Programmed Observations

Given a chosen site, latitude and longitude, there are a number of parameters that need 

to be specified to create an observing programme. They are:

Star elevation and azimuth limits 

Start time

Number of stars to be observed

Overall balance of stars in azimuth and altitude

Observations per star against number of stars
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A programme could be devised so that stars are observed at regular intervals. The 

observing process could be speeded up if the changes in altitude and azimuth between 

stars are minimised. A continuous clockwise rotation, i.e., successively increasing 

azimuth, would at least minimise horizontal circle movements. An example of part of 

such a programme, based upon stars of magnitude 3.5 or greater for observation with 

stopwatch and T2000 theodolite, is shown in tables 4.6 and 4.7, below.

Table 4.6 Parameters for a specimen observing programme.

Position line programme

Approx latitude 51° 01’ 30”

Approx longitude i o a o cn q

Date 16 April 1996

In Table 4.7, below, the zenith angle has been corrected for standard temperature and 

pressure. The azimuth is such that the star will appear 2’ 30” from the central cross of 

the crosshairs.
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Table 4.7 A specimen observing programme.

SALS Right
Ascension

Declination Time
GMT

Zenith Az

No Mag hh.mmss dd.mmss hh.mm dd.mmss dd.mmss

Polaris 2.2651 89.1450 0.00 39.4140 359.4730

440 2.9 16.2359 61.3120 0.02 25.0730 49.0710

494 2.4 17.5629 51.2922 0.04 39.1310 63.0640

449 3.0 16.4107 31.3637 0.06 38.2850 102.3020

442 2.8 16.2959 21.3005 0.08 44.0510 116.0220

410 2.3 15.3430 26.4339 0.10 32.1120 128.2750

416 2.7 15.4360 6.2634 0.12 50.5630 140.3820

344 2.9 12.5546 38.2053 0.14 15.3310 220.3250

316 2.2 11.4847 14.3610 0.16 43.4140 224.3530

301 2.6 11.1349 20.3314 0.18 43.1220 240.0260

280 2.6 10.1946 19.5129 0.20 51.5030 253.3350

280 2.6 10.1946 19.5129 0.22 52.0840 254.0120

300 3.1 11.0921 44.3142 0.24 28.2910 273.3150

281 3.2 10.2200 41.3138 0.26 37.4520 277.1720

257 3.3 9.2043 34.2458 0.28 51.5620 280.0400

318 2.5 11.5333 53.4331 0.30 19.4540 290.3850

245 3.1 8.5850 48.0349 0.32 47.2640 298.0920

263 3.3 9.3229 51.4210 0.34 41.1240 298.5540

297 2.4 11.0131 56.2443 0.36 27.4100 299.4510

342 1.7 12.5347 55.5923 0.38 12.2720 301.0930

352 2.4 13.2342 54.5714 0.40 8.2300 303.0010

298 1.9 11.0324 61.4651 0.42 27.4910 311.2050

The formulae associated with such a programme are stated below. 

Given the following parameters:

The site in terms of latitude, and longitude

The star, in terms of its right ascension and declination

The date and time

Find: the azimuth and altitude of the star

63



Chapter 4 Position Lines Theory

UT1 leads to R (by computation or from tables such as SALS) 

t = U T 1 + R  + ^ -  a

h = sin'1 (cos t cos 8 cos tp + sin 5 sin (p)

z = 90° - h - r0

A = tan'1 (sin t (sin (p cos t - cos cp tan 5)"1)

where r0 is the effect of refraction.

If the altitude were to be kept constant, and therefore movement were only in azimuth, 

then the programme would predict when and where stars would enter or leave the small 

circle on the celestial sphere of given angular radius about the observer’s zenith. In this 

case the refraction correction would be the same for all stars and could not be separated 

from the collimation error in the least squares solution. Therefore there could only be 

three unknowns to solve for at a given time and site. Observations would be irregular in 

time and appear randomly in azimuth.

Since stars move approximately east to west near the observer’s zenith then the 

azimuths of the stars as they cut the small circle on the celestial sphere tend to group 

towards the east and the west and therefore away from the north and the south. Since 

error in the determined longitude is sensitive to error in time, then an east and west 

predominance of stars is desirable. The major decision required would be to allocate a 

value to the radius of the small circle. If the radius is small then the refraction and 

collimation factor will be small and can be well determined. However, there will only be a 

small number of stars that pass in and out of the small circle. In addition, the correctness 

of the horizontal pointing would become more important. An example of such a 

programme for observation with stopwatch and T2000 theodolite is in Tables 4.8 and 

4.9, below.

Table 4.8 Parameters for a specimen observing programme for equal altitude
observations.

Position line programme

Approx latitude 51° 01’ 30”

Approx longitude -1° 10’ 50”

Date 16 April 1996
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Once again, in Table 4.9, the zenith angle has been corrected for standard temperature 

and pressure. The azimuth is such that the star will appear 2’ 30” from the central cross 

of the crosshairs.

Table 4.9 A specimen observing programme for equal altitude observations.

SALS Right
Ascension

Declination Time
GMT

Zenith Azimuth

No Mag hh.mmss dd.mmss hh.mmss dd.mmss dd.mmss

298 1.9 11.0324 61.4651 19.0313 19.5939 45.4111

300 3.1 11.0921 44.3142 19.2000 19.5939 97.5634

318 2.5 11.5333 53.4331 19.4636 19.5939 69.3156

257 3.3 9.2043 34.2458 20.2614 19.5939 219.5347

342 1.7 12.5347 55.5923 20.4557 19.5939 62.5405

245 3.1 8.5850 48.0349 21.0534 19.5939 273.4048

352 2.4 13.2342 54.5714 21.1555 19.5939 65.5550

344 2.9 12.5546 38.2053 21.3133 19.5939 120.5419

263 3.3 9.3229 51.4210 21.4522 19.5939 284.4402

358 1.9 13.4719 49.2026 21.4538 19.5939 82.3737

281 3.2 10.2200 41.3138 22.0831 19.5939 251.4905

300 3.1 11.0921 44.3142 23.0625 19.5939 262.1802

377 3.0 14.3151 38.1956 23.0728 19.5939 120.5821

298 1.9 11.0324 61.4651 23.1119 19.5939 314.3325

297 2.4 11.0131 56.2443 23.1644 19.5939 298.3437

318 2.5 11.5333 53.4331 24.0758 19.5939 290.4241

440 2.9 16.2359 61.3120 24.2214 19.5939 46.2850

344 2.9 12.5546 38.2053 24.2706 19.5939 239.2018

342 1.7 12.5347 55.5923 25.0845 19.5939 297.2032

352 2.4 13.2342 54.5714 25.3828 19.5939 294.1847

494 2.4 17.5629 51.2922 25.5044 19.5939 76.0843

358 1.9 13.4719 49.2026 25.5551 19.5939 277.3659

377 3.0 14.3151 38.1956 26.0250 19.5939 239.1616

The formulae associated with such a programme are below. 

Given the following parameters:

The site in terms of latitude, and longitude
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The star, in terms of its right ascension and declination 

The date 

The altitude

Find: The azimuth of the star and

East and west cross times of the small circle

h 90° - z - r0

A cos'1((sin8 - sin(p sinh)(cos(p cosh)-1)

t cos'1((sinh - sincp sin8)(cos(p cosS)'1)

GST = t - X + a

UT1 = GST - R

Problems with the computation of this programme will occur when the star path does not 

cross the small circle because the declination is too great or too small. The problem can 

be avoided if the declination range for a given altitude and latitude are first computed.

The range will be:

Maximum 8 = 90° + <p - h

Minimum 8 = h + q> - 90°

If the above computation gives a value of greater than 90° for the maximum 8 in the 

northern hemisphere, or less than -90° in the southern hemisphere, then that implies that 

some stars may be at lower transit. Therefore, the numerical values of maximum and 

minimum 8 should be taken as +90° and -90° respectively.

4.8 Polar Motion

The earth’s spin axis is not fixed with respect to the earth’s surface and wanders in an 

approximately circular motion. The movement of this axis of maximum moment of inertia 

cannot be predicted precisely but values of the change of the instantaneous pole with 

respect to the Conventional International Origin (CIO) are made available on the Internet 

at IERS (1998). The corrections, x and y, are in arc seconds and are, respectively, x in 

the direction of 0° longitude and y in the direction of 90° west longitude. Robbins (1976) 

quotes the corrections as:

A<j> = y sin X - x cos X

AX = - (x sin X + y cos X) tan $

The values of x and y do not normally exceed 0” .3.
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4.9 The effect of height above the geoid upon latitude

The downward vertical at a point curves slightly away from the equator because the 

equipotential surfaces are divergent towards the equator. Details are given in Robbins 

(1976), where a correction to the observed latitude is quoted:

A<J) = - 0”.00017 H sin 2<j)

where H is the orthometric height

The correction is small as it amounts to only 0” .17 at 45° latitude and 1000 m height.

4.10 Vertical refraction

A widely accepted model for atmospheric refraction is that of Saastamionen (1973a and 

1973b). His formula is:

Az0” = 16”.271 tan z [ 1 + 0.0000394 tan2z (p-0.156e) ] (p-0.156e) - 0”.0000749 p (tan3z - tan z)
T T

Where Az0” vertical angle correction

z apparent zenith distance

p total pressure (in mb)

e partial pressure of water vapour (in mb)

T temperature (°K)

With arbitrary but realistic values for p, e and T the formula could be approximated to:

Az0” « k tan z - 0” .075 c tan3z

where k is a function of p, e and T and is approximately 58” and c, also a function of p, e 

and T and is very close to 1.

The contribution of the second term can be seen in table 4.10, below.

67



C h a p t e r  4  P o s i t i o n  L i n e s  T h e o r y  

Table 4.10 The contribution of 0”.075 c tan3z to vertical refraction.

Zenith angle 2nd term

0° 0” .0

10° 0” .0004

ro o 0 0”.004

oOCO 0” .014

35° 0”.026

oO''T 0” .044

If the theodolite is direct reading to 0” .1 then there is no significant systematic error 

created by ignoring the second term for zenith angles less than 35°. Therefore a 

refraction correction model of:

Az0” ~ k tan z

may safely be used for zenith angles of less than 35°.

4.11 Summary

In this chapter the theory of the determination of astronomical position by the 

technique of “Position Lines” was adapted and developed for least squares.

Within the least squares solution, the effect of refraction and theodolite vertical 

collimation and their rates of change as well as latitude and longitude were 

solved for. A simple formula to model refraction has been found. Non-random 

errors in time were considered. The effect of an error in horizontal pointing on 

the observed vertical angle has been corrected for. The observing parameters 

of star elevation, azimuth limits, start time of observations, the number of stars 

to be observed, the overall balance of stars in azimuth have been considered.

This influences the practical observing strategies to be discussed in Chapter 6 

but any practical process will require accurate star data for the time of 

observation, and this is the subject of the next chapter.
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Chapter 5 

Star Positions

5.1 Introduction

For the theory developed in Chapter 4 to be applied, it is necessary to find updated 

values of star co-ordinates so that an observing programme and later computations 

to find position, can be made. The process is to create a suitable catalogue of star 

data at a reference date, J2000, and to compute updated values of the co-ordinates 

to the epoch of interest.

5.2 J2000 Catalogue Construction

Several different catalogues were investigated for their usefulness. The Fifth 

Fundamental Catalogue (Fricke, 1988) was downloaded via the Internet from the US 

Naval Observatory at USNO (1997a). The advantage of using the Internet version of 

the FK5 over the printed FK5 was that there was no human error during data entry 

and the Internet file contains more stars with values for parallax and radial velocity. 

Parallax is the apparent movement of a star because of the motion of the earth 

around the sun and radial velocity is the rate of change of distance of the star from 

the earth and sun barycentre. However, the introduction to the printed FK5 contains 

useful formulae for the determination of precession and incorporating the effects of 

parallax and radial velocity.

Precession is the angular motion of the earth's polar axis around the ecliptic pole plus 

the absolute motion of the ecliptic pole. General precession is the combined motion 

and its effect on the position of the vernal equinox. Nutation is the predictable short

term deviation of the earth's axis from its long-term precession.

The Internet file contains the full FK5 whereas the printed version is in 2 publications, 

Pt I and Pt II. Pt II contains mostly the less bright stars.

The Internet FK5 file was edited in an Excel spreadsheet to remove all data except 

J2000 Right Ascension, Declination, their rates of change, star number, parallax and 

radial velocity. All stars less bright than those with a magnitude of 4, at J2000, were 

also removed. The resulting file contained 429 stars.
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The FK5 is not a “bright star” catalogue. The contents of the resulting spreadsheet 

were compared with the Star Almanac for Land Surveyors (SALS) 1996 (HMSO,

1995) to identify which stars brighter than magnitude 4 were missing. The US Navy

Observatory has several other much larger catalogues, but none of these could be

downloaded because of the excessively slow load times, on readily available 

computers in the Department of Civil and Structural Engineering at the time of 

investigation (1996).

The missing stars identified in SALS 1996 were found in the printed (Yale) Bright Star 

Catalogue (YBSC) (Hoffleit, 1982) and for these the J2000 Right Ascensions, 

Declinations, their rates of change, parallax and radial velocity were manually 

abstracted. The rates of change of Right Ascension and Declination in the FK5 are 

in time seconds and arc seconds per century respectively. In the YBSC they are 

both in arc seconds per year. The YBSC values of rates of change were made 

compatible with the FK5 equivalents by transforming as follows:

cx'fks = 0.15 ct’y bs c  sec8

8’ fk 5 =  0.01 8’ybsc

where a  is Right Ascension 

5 is Declination

Since large catalogues from the US Naval Observatory could not be downloaded and 

edited, Right Ascensions and Declinations with more significant figures were found, 

one star at a time from VizieR (1997). The data set is the Smithsonian Astrophysical 

Observatory (SAO) catalogue. Values from the YBSC and use of the “minimum 

search area” setting ensured that on most occasions only the target star was found. 

The final result was that all stars were listed in the spreadsheet to at least 0S.01 in 

Right Ascension and 0".1 in Declination.

The distribution of stars by magnitude and catalogue is shown in Table 5.1 below.

Table 5.1 Star Magnitudes in the FK5 catalogue with additional stars from the 

YBSC/SAO catalogue.

Magnitude Catalogue

.

FK5 YBSC/SAO Total

>0 4 0 4
>0.5 10 0 10 |
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>1.0 16 0
1 6 1

>1.5 23 0 23

>2.0 48 2 50

>2.5 86 5 91

| >3.0 157 14 171

> 3.5 258 27 285

> 3.99 429 51 480 |

A second larger catalogue was created to give more flexibility in the selection of stars 

for different investigations. This catalogue only used data from sets available on the 

Internet. The two selected data sets were the Bright Star Catalogue (BSC), (NASA, 

1997a) and the Positions and Proper Motions Catalogue (PPM), (NASA, 1997b) 

which between them contain a, 5, a ‘, 8‘, parallax and radial velocity at J2000 to 

respective places of decimal of 0S.001, 0” .01, 0s.0001/yr, 0” .001/yr, 0” .001 and 1km/s. 

However, neither catalogue contains all the data to the required level. Before 

selecting data from the two catalogues, it was first necessary to select only those 

stars that were unambiguously common to both catalogues. The selection routine 

was as follows:

1. Remove all stars with a magnitude less bright than 7.1 from both

catalogues. This reduced both catalogues to a size that could be 

handled in an Excel spreadsheet.

2. Remove all stars within 5 arc minutes of each other. This was to avoid

ambiguous solutions in future work.

3. Remove all stars from the BSC that did not appear in the PPM, based

upon agreement in a and 8, at the 0s.1sec5 and 1” levels respectively.

4. Remove all stars from the PPM that did not appear in the BSC, based

upon agreement in a and 8, at the OMsecS and 1” levels respectively.

5. Remove all stars from the BSC that did not appear in the PPM, based

upon agreement in SAO number.

6. Remove all stars from the PPM that did not appear in the BSC, based

upon agreement in SAO number.

7. Remove all stars from both catalogues where the SAO and HD (Henry

Draper) numbers were not the same in both catalogues.
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8. Select the star number as the SAO number. Select a, 5, a ‘ and 8‘ 

from the PPM. Select parallax and radial velocity from the BSC.

This composite catalogue was termed MCBJ2000. The distribution of stars by 

magnitude is in Table 5.2, below.

Table 5.2 Star Magnitudes in the MCBJ2000 catalogue.

Magnitude No of stars

>0 5

>0.5 10

>1.0 16

>1.5 22

>2.0 42

>2.5 85

>3.0 170

>3.5 286

>4.0 478

>4.5 844

>5.0 1419

>5.5 2386

>6.0 3886

>6.5 6053

>6.6 6694

In 1998 a single catalogue containing all the necessary parameters, i.e. a, 5, a ‘, 8‘, 
parallax and radial velocity was published at NASA (1997c and 1997d). The former 

is in 24 files, one for each hour of Right Ascension and the latter as a single 32Mb zip 

file that expands to a text file of 152Mb. The SKY2000 Master Star Catalog is 

reported on by Myers et al (1997).

SKY2000 contains 299,485 stars, some with as faint a magnitude as 11.5. SKY2000 

contains a, 5, a ‘, 8‘, parallax and radial velocity at J2000 to respective places of 

decimal of 0S.0001, 0” .001, 0s.00001/yr, 0”.0001/yr, 0” .00001 and 0.1km/s. This 

represents an order of improvement in all statistics, and 2 orders for parallax, 

compared with the composite catalogue, MCBJ2000, described above.
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Compared with the PPM catalogue, where position uncertainties were globally 

quoted as 0”.22, there are individual uncertainties for a and 5 at J2000. The first 

31000 stars in SKY2000 were investigated to see if there was a relationship between 

magnitude and position uncertainty. The results expressed graphically are in Figure

5.1, below.

S c a t t e  r G r a p h

a r c s  ec

Figure 5.1 Star Magnitude and Position uncertainty for SKY2000 Master Star Catalog.

The graph gives an impression of a greater spread of uncertainties than actually 

exists. A better indication of the relationship between magnitude and position 

uncertainty can be shown from Figures 5.2, below, where the star set is divided into 

magnitude bands, 2.0 to 2.4999, 2.5 to 3.999 etc. A graph of the number of stars in 

each band against the mean magnitude of the band is on the left. The relationship 

between RMS position uncertainty and mean magnitude of the band is on the right. 

The large “spike” in Figure 5.2b for the 3.0 to 3.499 magnitude band is due to a 

single star with a very large position uncertainty. If that star is removed from the set 

then the graph becomes very much smoother. The offending star has been removed 

from the final sub-set of SKY2000 that is to be used for practical observations. The 

graphs do indicate that the RMS of position uncertainty of all stars brighter than 

magnitude 7.0 is better than 0”.02.
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Sample Statistics
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Figure 5.2a Star Magnitude and Figure 5.2b Star Magnitude and
sample size for the SKY2000 catalogue. Mean Position Uncertainty for the

SKY2000 catalogue.

A useful set of suitable stars from the SKY2000 catalogue was required for practical 

observations. The criteria for acceptance of a star were that:

There is no “distance to the nearest neighboring master catalog star no more 

than two magnitudes fainter than this star” listed, i.e. no close stars of 

similar brightness, OR

There is no “magnitude difference of brightest and second brightest 

components” listed, i.e. no bright double stars, OR

The magnitude of the duller component is numerically greater than 7, i.e. a 

double star can be accepted if the duller star is very faint, OR

The magnitude difference between the brightest and second brightest

component is greater than 3, i.e. close stars can be accepted provided 

that there is a big difference in magnitude between them, OR

The distance to the nearest star more than 2 magnitudes fainter is less than 

0e.00011 away, i.e. a pair of stars of sufficiently unequal magnitudes 

are so close that the visual centre of gravity of the pair will be 

negligibly far from the brighter star of the pair, OR

The distance to the nearest star greater than 2 magnitudes fainter is greater 

than 6’, i.e. a pair of stars of sufficiently unequal magnitudes are so far 

apart there will be no ambiguity as to which star is being observed.
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Since the SKY2000 catalogue appears to be at least an order of magnitude better 

than the composite MCBJ2000 catalogue compiled earlier, then it might be expected 

that the RMS difference between star positions in SKY2000 and MCBJ2000 would be 

of the order of the uncertainties of the MCBJ2000 catalogue, i.e. 0”.2.

An arbitrary set of 1700 stars that appear in both SKY2000 and MCBJ2000 were 

selected and the differences in a and 5 and their RMS at J2000 were found. The 

results are in Table 5.3, below.

Table 5.3 Co-ordinate differences between the SKY2000 and MCBJ2000 catalogues.

Mean Difference 

Arc seconds

RMS difference 

Arc seconds

Right Ascension * cos(Declination), a*cos(8) -0.00404 0.026836

Declination, 5 0.002063 0.027242

The results indicate that the worst mean difference, i.e. in Right Ascension would 

lead to an East-West tilt of any computed geoid of less than 2mm in 100km (1.8mm 

subtends 0”.004 at 100km). The RMS differences are well below the precision of any 

theodolite currently on the market. Therefore, it can be concluded that it will make no 

practical difference whether the SKY2000 or the MCBJ2000 catalogue is used. The 

above also shows that either the MCBJ2000 catalogue was more precise than the 

0”.22 suggested by the PPM catalogue or that SKY2000 is not as precise as its 

authors’ claim.

5.3 Ephemeris Update

J2000 Right Ascension and Declination values for stars need to be updated to the 

epoch of interest. Since a set observations with a T2000 theodolite takes about 1 Vi 

hours then the Right Ascensions and Declinations in the middle of the set of 

observations will still be precise enough for the beginning and the end of the 

observations. The systematic errors associated with such an assumption will be 

largely a function of the change in short-term nutation. An estimate of the maximum 

systematic effect upon Right Ascension and Declination can be found as follows.
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5.3.1 Error in Right Ascension 

If 5 = 0

Aa = cos23°.5 A\|/

where Ay is the nutation component in longitude

From Table I of APFS 1996 (Astronomisches Rechen-lnstitute, 1995) the maximum 

one day change in Ay appears to be 0".127 (18-19 January) and therefore the 

maximum error in Right Ascension in 1/2 of 11/2 hours is:

Aa = cos23°.5 0".127 0.75/24

0".004

An error in Right Ascension translates directly as an error in longitude and when 5 = 

0 the error in longitude will be 0.12 m.

5.3.2 Error in Declination 

If a  = 6h

A8 = Ae

where As is the nutation component in obliquity.

in Table I of APFS 1996 the maximum one day change in Ae appears to be 0".045 

(21-22 January) and therefore the maximum error in Declination in 1/2 of 11/2 hours is:

A8 = 0".045 0.75/24

0".001

Both systematic errors are negligible.

In converting J2000 values to the epoch of interest, account needs to be taken of 

precession, long and short periods and planetary elements of nutation, proper 

motion, radial velocity, annual parallax, annual aberration, diurnal aberration, polar 

motion and gravitational light deflection.

5.3.3 Diurnal Aberration

Diurnal aberration depends, among other things, upon latitude and hour angle and is 

therefore best applied as a final correction to Right Ascension and Declination in the 

"position line" computation.
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5.3.4 Gravitational light deflection

Gravitational light deflection by the sun is small but significant only if the star is near 

the sun. In practical terms, a worst case might be that if the star and sun are on the 

same observer's azimuth with the star at a zenith angle of 50° and the sun is 10° 

below the horizon. In this case the gravitational light deflection is less than 0".01.

This can be verified by applying formula 3.261-1 of Seidelmann (1992).

5.3.5 Polar motion

Although polar motion is unpredictable and can only be included in computations 

processed after the observations have been taken, estimates of its value for a recent 

epoch can be found on the Internet. Alternatively, it can be ignored, and if all 

observations are taken within a period of a few days its effects upon position and 

hence geoid slope will be constant.

With the last three corrections omitted, at least at this stage, the remaining 

corrections listed above are applied as follows:

5.3.6 Precession and Space Motion

A description of precession is given in Section 3.21 of Seidelmann (1992). The 

precession angles £, z and © are quoted from Lieske (1979) in both Seidelmann 

(1992) and Fricke (1988). The formulae can be simplified as follows:

C = 2306".2181t + 0".30188t2 + 0".017998t3 

z = 2306".21811 + 1 ",09468t2 + 0".018203t3 

© = 2004".3109t - 0".42665t2 - 0".041833t3

where t is the period in Julian centuries since J2000. In the above simplification, it is 

assumed that the "initial equinox” and J2000 are the same. The determination of the 

updated Right Ascension and Declination can be computed by means of a unit vector 

of direction cosines, u, and a precession matrix, P.

P  =  R z ( - z )  R y ( 0 )  R z( -C)  

and from formula 3.21-8 of Seidelmann (1992)

P

r
cosz cos® cos£ - sinz sin£ -cosz cos© sin£ - sinz cos£ 
sinz cos© cos£ + cosz sin£ -sinz cos© sin£ + cosz cos£ 
sin© cosC -sin® sinC

1
-cosz sin©
-sinz sin® 
cos©
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In Fricke (1988), u and its derivatives are:

r
cos8 cosa 
cosS sina 
sinS

-cos8 sina 
cos8 cosa 
0

u

du
da

du
dS

At the epoch of intere

r =

where du0
dt

where po is the

p'o is the

is the

Vo is the

Right Ascension and

a =

8 =

-sin8 cosa 
-sinS sina 
cosS

P(u0 + duo At) 
dt

da d8

tan'1( r2 ) 
n

tan~1( ra ) 
(ri2 + t z f *

5.3.7 Nutation

A description of nutation is given in Section 3.22 of Seidelmann (1992) where the 

International Astronomical Union (IAU) nutation series and set of fundamental 

arguments (Van Flandern 1981) are used with updates to some terms from Herring
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(1987). Planetary effects upon nutation have been included even though they are 

very small, in the order of 0".0001 to 0".00001. The contents of the main nutation 

table of 530 argument multiples and 106 coefficients, each for longitude and obliquity 

have all been included (Table 3.222.1 from Seidelmann (1992)). The coefficients 

and arguments of multiples were confirmed by comparing with those on Internet page 

at USNO (1997b). The planetary terms are listed on pages 117-119, equations 

3.224-3 and Table 3.224-2 of Seidelmann (1992).

The fundamental arguments listed at Table 3.222.2 in Seidelmann (1992), have also 

been used in this research. Initial computations produced Right Ascensions and 

Declinations that were significantly at variance with APFS 1996 (Wielen, 1994).

Some "trial and error" and deductive reasoning led to the conclusion that there was 

an error in the formula for &, “the longitude of the mean ascending node of lunar orbit 

on the ecliptic measured from the mean equinox of date” . The formula quoted in 

Seidelmann (1992), can be condensed to:

Q = 135° 2' 40".280 - 1934° 8' 10".539t + 7".455t2 + 0".0008t3

where t is the time since J2000 in Julian centuries.

If the first term is revised to 125° 2' 40".280 then there is agreement between the 

output of this author’s spreadsheet and Table II of APFS 1996 (Wielen, 1994) in the 

determination of Ay and hence in the computation of both the long and short period 

terms of the equation of the equinox. The value of 125a was verified by comparing 

with the value of Q computed from 1900 to J2000 using the formulae on page 544 of 

Anon (1976) and is also implicit in the Fortran code at IERS (2001) which is a 

published sub-routine of the International Earth Rotation Service (IERS), Central 

Bureau (IERS/CB).

The mean obliquity from equation 3.222-1 on page 114 of Seidelmann (1992) is 

given by:

e0 = 23° 26' 21 ".448 - 46".8150t - 0".00059t2 + 0".001813t3

and the obliquity of date is

e = 80 + As

and so the nutation matrix is

N = Rx(-e) Rz(-Ay) Rx(e0)
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which is:

N

r i
cosA\|r - sinA\|/ coss0 - sinAxj; sine0
sinAxj/ coss cosA\j/ cose coss0 + sine sine0 cosAxj/ cose sine0 - sine cose0
sinAxj/ sine cosAxj/ sine cose0 - cose sine0 cosA\|r sine sine0 + cose cose0

The terms A\j/ and Ae, the nutation components in longitude and obliquity, are derived 

from:

n n

A\j/ = ESi sinAj Ae = ECj cosAj
i = 1 i = 1

where Si and Cj are coefficients and Aj are the sums of the arguments and multiples. 

The nutation matrix is applied as: 

r a Nr0

where r0 is the r vector corrected for precession above and therefore precession and 

nutation corrections are applied in the new r.

5.3.8 Parallax

Diurnal parallax is negligibly small. Annual parallax for closer stars is significant. 

Seidelmann (1992) quotes as the corrections from barycentric to geocentric place as:

Aa = tco (Xsina - Ycosa)/(15 cos8)

AS = 7to (XcosasinS + YsinasinS - ZcosS)

where no is the parallax in arc seconds and X, Y and Z are the earth's barycentric co

ordinates in astronomic units.

If the earth's orbit around the sun is assumed to be circular and the effect of the 

obliquity of the ecliptic is assumed to be negligible, then:

X = - cos©

Y = - sin®

Z = 0

where © is the longitude of the sun.

Robbins (1976) gives more useabie and precise formulae for parallax. They may be 

reduced to:
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Aa = tto (sin® cosa cose - cos® sina) secS

AS = 7i0 (sin® (sine cosS - cose sina sinS) - cos® cosa sinS)

5.3.9 Application of Gravitational Light Deflection

Although the effect of gravitational light deflection is small, a correction has been 

applied for completeness. The formulae used are those quoted or adapted from 

pages 484-5 of Seidelmann (1992) and Breach (1997) for approximate Right 

Ascension and Declination of the sun.

L = 280°.460 + 36000°.771

G = 357°.528 + 35999°.050 t

X = L + 1 °.915 sinG + 0°.020 sin2G

6 = 23°.4393 - 0°.01300 t

E = -1 °.915 sinG - 0°.020 sin2G + 2°.466 sin2?i - 0°.053 s\n4X

a0 = G A S T - U T i -E + 1 2 h

5@ = sin'1 (sine sin^.)

where L is the mean longitude corrected for aberration

G is the mean anomaly

X is the ecliptic longitude 

e is the obliquity of the ecliptic

E is the equation of time

a 0 and 50 refer to the sun

Although the formulae are approximate, they are more than good enough for the 

purpose of determining a0 and 50 for the correction for the gravitational light 

deflection.

Anon (1983), on page S20, gives formulae for the determination of corrections to a 

and 8 for gravitational light deflection from which the following are derived.

cosD = sin50 sinS - cos80 cos8 cos(a - a0)

Aa = 0”.Q0407 cos80 cos(a - a 0)
(1-cosD)cos8

A5 = 0”.0Q407 (sinS cos80 cos(a - a0) - sin8 cos8 )
(1 -“cosD) “

81



Chapter 5 Star Positions

where:

D is the geocentric angular separation of the star from the sun.

The above formulae lead to small corrections for a  and 8. Values for a  and S for a 

selection of FK5 stars on various dates in 1996 were computed using a spreadsheet. 

The results were compared with the values listed in Wielen (1994). Short term and 

planetary nutation terms were not applied. The results are given in Table 5.4 below. 

Only seconds of time or arc are shown.

Table 5.4 Comparison of star co-ordinates between the FK5 catalogue and this
author’s spreadsheet.

At date 
and time -  

Upper 
Transit on

FK5
Star
No

a  from 
APFS

time
s

8 from 
APFS

arc
s

a  from 
spread
sheet 
time 

s

8 from 
spread 
-sheet 

arc 
secs

8

dd.mm

15 Aa cos8 

arc secs

AS 

arc secs

8-Jan-96 1 11.282 16.66 11.2819 16.662 29.04 0.001 -0.002

28-Mar-96 20 6.770 19.49 6.7701 19.469 30.50 -0.001 0.021

17-May-96 42 31.122 52.42 31.1225 52.412 35.35 -0.006 0.008

25-Aug-96 99 28.716 38.77 28.7155 38.747 55.52 0.004 0.023

3-Dec-96 1134 41.814 15.26 41.8139 15.259 6.57 0.001 0.001

23-Dec-96 215 34.044 -43.64 34.0437 -43.634 -34.04 0.004 -0.006

19-Jan-96 263 52.761 -50.88 52.7587 -50.883 -50.36 0.022 0.003

8-Mar-96 294 14.275 16.79 14.2742 16.797 24.24 0.011 -0.007

27-Apr-96 336 58.866 -17.19 58.8664 -17.205 -60.37 -0.003 0.015

6-Jun-96 365 57.266 25.85 57.2651 25.850 9.54 0.013 0.000

5-Aug-96 423 2.744 58.41 2.7426 58.409 15.26 0.020 0.001

24-Sep-96 481 30.345 -12.85 30.3433 -12.849 -59.39 0.013 -0.001

3-Nov-96 545 52.372 -28.50 52.3713 -28.470 -5.38 0.010 -0.030

23-Dec-96 585 26.690 -7.61 26.6890 -7.602 -3.24 0.015 -0.008

9-Jan-96 633 28.010 55.14 28.0106 55.137 9.22 -0.009 0.003

28-Feb-96 674 36.675 46.27 36.6747 46.272 29.14 0.004 -0.002

8-Apr-96 720 32.832 -39.20 32.8335 -39.194 -7.56 -0.022 -0.006

17-Jun-96 780 5.698 24.49 5.6986 24.493 33.57 -0.007 -0.003

5-Sep-96 859 24.068 4.44 24.0685 4.442 23.32 -0.007 -0.002

23-Nov-96 890 26.047 46.43 26.0478 46.435 46.26 -0.008 -0.005

RMS 0.011 0.011
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The RMS values indicate that star positions are in agreement with Wielen (1994) to 

0” .013. Better agreement could probably have been achieved with more precise 

formulae for ©, the true geometric longitude of the sun. However, since the precision 

of the spreadsheet will lead to systematic errors of astronomic position in the order of 

only 0.3 m, then there is no need to pursue the matter further.

The output of this author’s spreadsheet with short term and planetary nutation terms 

applied was tested against the output of MICA (1998). The FK5 catalogue in MICA 

was computed for 5 separate dates, 200 days apart and starting at 0h 1 January 

1999. The apparent co-ordinates of 547 arbitrarily chosen stars that were common to 

this author’s spreadsheet and the FK5 in MICA for each of the 5 epochs were 

compared. The RMS of Aa cosS and A8 were respectively, 0”.012 and 0”.009 with an 

overall RMS of 0” .010. These values are indication of the correctness of the formulae 

applied in this author’s spreadsheet. A similar test was applied using selected stars 

from the SKY2000 Master Star Catalog (NASA, 1997d). The RMS of Aa cos5 and A8 

were respectively, 0”.102 and 0” .126 with an overall RMS of 0” .115.

These values indicate the changes that have taken place in the J2000 values of the 

star co-ordinates and other parameters, from the various catalogues used in the 

construction of the MCBJ2000 catalogue, to those of the SKY2000 Master Star 

Catalog. It appears to indicate that, although MICA was published in 1998, it does 

not use the most precise data available at the date of its own publication.

5.3.10 Aberration

The movements of the observer and of the star through space cause an apparent 

displacement of the star as seen by the observer. This aberration has three 

components, secular, annual and diurnal aberration. Secular aberration is caused by 

the proper motion of the earth and of the star. It is very small, different for each star 

and therefore ignored. Annual aberration is caused by the earth's orbit around the 

sun.

Annual Aberration

Seidelmann (1992) quotes the following formulae for corrections to be applied to the 

geometric Right Ascension and Declination to get the apparent Right Ascension and 

Declination.

Aa = -(Ksin© + k  e sinri) sina secS

- ( k  cos© cose + k  e cosn cose) cosa sec8
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AS = -(k sin© + Ke sinn) cosasinS

-  ( k  cos© cose + k  e cosn cose)(tane cosS - sina sin5)

where k is the constant of aberration

© is the true geometric longitude of the sun

e is the eccentricity of the solar orbit

n  is the longitude of perigee of the solar orbit

e is the mean obliquity of the ecliptic

k , the constant of aberration for the standard epoch, is given in Seidelmann (1992) 

as 20".49552. e, the eccentricity of the solar orbit, is 0.016708617. FI is given as:

n  = 282° 4' 49".951 + 6190".67(t-t0) + 1 u.65(t-t0)2 + 0".012(t-t0)3

No formulae are quoted for © in the part of Seidelmann (1992) that deals with 

aberration. However, Yallop and Hohenkerk in a later chapter (p484) of Seidelmann 

(1992) give the following formulae that lead to the “ecliptic longitude”.

L = 280°.460 + 36000°.770t

G = 357°.528 + 35999°.050t

X = L + 1 °.915 sinG + 0°.020 sin2G

where t is the number of centuries since J2000

L is the mean longitude corrected for aberration

G is the mean anomaly

X is the ecliptic longitude

It is assumed that, at least to an acceptable approximation, ©, the true geometric 

longitude of the sun may be replaced by X. The other terms have already been 

described.

Diurnal aberration

Diurnal aberration results from the observer being on a rotating earth. Seidelmann 

(1992) quotes the following formulae for corrections to be applied to the mean Right 

Ascension and Declination to get the apparent Right Ascension and Declination.

Aa = 0s.02133P/a cos<|)' cost sec8

A5 = 0"3200 P/a costt)' sint sin8

where p is the geocentric distance
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0’ is the geocentric latitude

t hour angle

a equatorial radius

t may be found from:

t = a - G M T - R - A ,

Since pcos0' is the distance of the station from the earth's rotation axis, that is the 

radius of the small circle of latitude, then the equations may be rewritten as:

Aa = 0S.02133 v/a cos0 cost secS

A5 = 0"3200v/a cos<|> sint sinS

where v, the radius of curvature in the transverse, plane is given by:

v = a(1 - e2sin20)",/2

and e in this formula is the eccentricity of the earth ellipsoid model. With negligible 

loss of accuracy geodetic values may be used in place of astronomic values for this 

purpose.

5.4 Star Catalogues

In the Table below is a summary of the star catalogues used during this investigation.

Table 5.5 Star catalogues used during this investigation.

Catalogue Source or 
Publisher

Format Useful data Significant
figures

Remarks

Star Almanac 
for Land 
Surveyors

(SALS)

HMSO Book a at 12 epochs 
8 at 12 epochs 
magnitude

0s. 1
1”
0.1

a and 8 insufficiently 
precise. This is a 
bright star catalogue 
so it can be used to 
identify all bright stars 
in other catalogues. 
695 stars

Fifth
Fundamental 
Catalogue 
Part 1

(FK5 Pt1)

Astronomisc 
hes Rechen- 
Institut

Book a J2000 
8 J2000 
a‘ J2000 
8‘ J2000 
magnitude
* parallax
* radial 
velocity

0S.001 
0”.01 
0s.001/cy 
0”.01/cy 
0.01 
0”.001 
0.1 km/sec

Precise catalogue.
This is an astronomical 
catalogue with an even 
spread of stars but 
does not contain all 
the bright stars. 1535 
stars.
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Fifth
Fundamental 
Catalogue 
Parts 1 and 2

(FK5)

Internet

USNO,
(1997a)

electronic a J2000 
6 J2000 
a‘ J2000 
8‘ J2000 
magnitude

0S.001
0”.01
0s.001/cy
0”.01/cy
0.01

Precise catalogue.
This is an astronomical 
catalogue with an even 
spread of stars but 
does not contain all 
bright stars.

Apparent 
Places of 
Fundamental 
Stars

(APFS)

Astronomisc 
hes Rechen- 
Institut

Book a 36
epoch/year 
8 36
epoch/year
magnitude

0S.001
0”.01

Precise catalogue 
based upon FK5 Pt1. 
This is an astronomical 
catalogue with an even 
spread of stars but 
does not contain all 
bright stars. Long 
period nutation is 
included. Corrections 
for short period 
nutation calculated. 
Tables for Apparent 
and Mean Sidereal 
Time to 0S.001 and 
short period terms of 
nutation to 0”.001. 
Useful to verify stars 
reduced from J2000 to 
epoch of date. 1535 
stars.

(Yale) Bright 
Star
Catalogue, 5th 
revised edition
(BSC)

Internet

NASA,
(1997a)

electronic a J2000 
8 J2000 
a‘ J2000 
8‘ J2000 
magnitude 
parallax 
radial velocity 
SAO number 
Henry Draper 
(HD) number

0M
1”
OM/cy
0”.1/cy

0.01 
0".001 
1 km/sec

a and 8 insufficiently 
precise. This is a 
bright star catalogue 
so it can be used to 
complete parallax and 
radial velocity data. 
Contains about 9000 
stars

(Yale) Bright 
Star
Catalogue

Yale
University
Observatory

Book a J2000 
8 J2000 
a* J2000 
8‘ J2000 
magnitude 
parallax 
radial velocity

0s. 1 
1”
OM/cy 
0”.1/cy 
0.01 
0”.001 
1 km/sec

a and 8 insufficiently 
precise. This is a 
bright star catalogue 
so it can be used to 
complete parallax and 
radial velocity data. 
Less easy to use than 
SALS to identify 
brightest stars.

Smithsonian
Astrophysical
Observatory

(SAO)

Internet

VizieR,
(1997)

electronic a J2000 
8 J2000

0S.01
0.1”

a and 8 found 1 at a 
time through internet 
address.
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Positions and Internet electronic a J2000 0S.001 Comes in 3 parts PPM
Proper NASA, 5 J2000 0”.01 North, South and
Motions (1997b) a‘ J2000 0s.0001/yr Supplementary,
(PPM) for PPM 8‘ J2000 0”.001/yr containing

north magnitude 
SAO number 
Henry Draper

0.1 approximately 180000, 
180000 and 90000 
stars respectively with

(HD) number magnitudes to less
than 10 though PPM 
Supplementary 
contains no stars of 
magnitude brighter 
than 7.4. Data used in 
conjunction with BSC.

* some stars only

5.5 Summary

in this chapter the process of creating a suitable catalogue of star data at the 

reference date, J2000, was reviewed. The star data needs to be updated to the 

epoch of interest taking account of Aberration, Gravitational light deflection, Polar 

motion, Precession and Space Motion, Nutation and Parallax. Spreadsheets have 

been created to produce updated values of Right Ascension and Declination for 

stars. These updated values then form a database that can be used to create star 

observing programmes and to compute position as described in Chapters 6 and 10.
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Chapter 6 

Observing and Computing Processes

6.1 Introduction

A suitable observing and computing process is required. Such a process must lead to 

precise and reliable results delivered in an economical manner. Precision is a measure 

of the numerical uncertainty of the solution assessed with reference to the internal 

quality of the observations and reliability is a measure of the degree of redundancy in the 

computation of the solution. The key to making observations efficiently is preparation, 

and that in turn requires that observing programmes are prepared.

6.2 Optimising the observing programme for balanced stars

Many parameters can be varied when creating an observing programme. Location is 

fixed by the needs of the task. Stars are selected for brightness and availability near the 

zenith of the observer. The observing programme, described elsewhere, was 

constructed to minimise the theodolite telescope movement from star to star to speed 

the observing process. The observing rate is dictated by the ability of the observer and 

the time of start of observations depends upon the time of arrival on site. Choice of 

azimuth of the first star is therefore arbitrary.

The traditional approach to Position Lines determination requires that the stars be 

balanced about the zenith to mitigate against the effects of uncertain refraction and 

collimation. Although the solution for position in this programme of work is by least 

squares, it is apparent that if the stars are balanced then the effect of errors in the 

computed values of vertical collimation and in the refraction coefficient will have less 

effect upon the solution. Star balance can be viewed in a number of ways. In the 

following, a specific star set, is used for illustrative purposes. It was prepared for a site 

near Nottingham for early evening on 28 December 1997 using this author’s prediction 

programme spreadsheet.
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6.2.1 Investigate direction of balance based on error in computed refraction coefficient

The effect of refraction is a function of zenith angle and the prevailing meteorological

conditions. Imbalance of stars in a given azimuth, [3, can be given by:

I r P = tan'1(L(tan z cos(a - (3))/n)

where z zenith angle

a azimuth of each star

n number of stars

lRp is therefore an angular measure of the “centre of gravity” of the star set in the 

direction of (3 relative to the zenith. This statistic can be computed for a full circle range 

of (3. The value of |3 that gives the lowest value of lRp indicates the best balance. An 

example of the variation of lRp with azimuth is in Figure 6.1, below.

zenith balance for refraction coefficient

6

4
2

0
2

co

4
6

Azimuth in degrees/10

Figure 6.1 Zenith balance for refraction coefficient.

6.2.2 Investigate direction of balance based on error in computed collimation

The effect of collimation in a given azimuth, 3, is a function of the error in the computed 

value of collimation and the numerical imbalance of stars in that azimuth. Imbalance of 

stars in a given azimuth, (3, can therefore be given by:

lcp = £(cos(a - (3))/n

where a and n are as above. Icp is therefore a unitless measure of the “centre of gravity” 

of the star set in the direction of (3 relative to the zenith. For perfect balance, lcp should 

be zero. For the worst imbalance, i.e. where all the stars are at an azimuth of (3 from the 

observer, lcp = 1 - Again, this statistic can be computed for a full circle range of p. The
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value of (3 that gives the lowest value of lcp indicates the best balance. See Figure 6.2, 

below.

zenith balance for collimation coefficient

0.3
0.2

a>oc
3  o

1 -°-1 
- 0.2

-0.3

h- o

Azimuth in degrees/10

Figure 6.2 Zenith balance for collimation coefficient.

For a given star set, location, start time, etc the maximum values of lRp and lCp 

can be investigated for different first azimuths. This author’s prediction 

spreadsheet creates an observing programme based upon selecting a 

convenient series of stars. The series will depend upon the time and azimuth for 

the first star to be selected. Therefore, the maximum values of lRp and lCp will not 

follow a sine wave, as in the Figures 6.1 and 6.2, above. The following shows 

maximum values of lRp and lCp for different first star azimuths of a specimen star 

programme prediction.

star imbalance

25

20

first star azimuth /1 0

Figure 6.3 Zenith balance for maximum values of IRp and ICp for different first star 

azimuths.
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In Figure 6.3, the upper, purple, line relates to lCp and the lower, blue, line to lRp. The y- 

axis is % for lCp and degrees (°) for lRp.

The distribution of stars for a given prediction is shown on a scatter graph in Figure 6.4, 

below.

star scatter graph
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azimuth (degrees)

400

Figure 6.4 Star Scatter Graph for a specimen prediction programme.

This may be examined for any obvious anomalies, in this case a lack of stars in the 

range 180° to 260°. The star imbalance in latitude, N/S and longitude, E/W may be 

calculated as:

l N / s  = £(z cosa)/n

Ie/w  = £(z sina)/n

The units of lN/s and Ie/w will be those of z. A value of 0 indicates perfect balance. 

The other variable of significant interest is the semi-major axis, amax, of the positional 

error ellipse. A minimum value is desired. A graph of N/S and E/W imbalance is at 

Figure 6.5, below.
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N/S and E/W imbalance

first azim uth degrees/10

Figure 6.5 Zenith balance in the North-South and East-West directions for a specimen 

prediction programme.

In Figure 6.5 In /s  is the blue line and Ie /w  is the purple line.

A summary of all the quality statistics is at Figure 6.6, below.

balance statistics
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20 

15 

10 

5 

0 

-5

Figure 6.6 Summary of Zenith balance statistics for a specimen prediction programme.

The minimum value of all the quality statistics is most unlikely to fall at the same “first 

azimuth” as can be seen above. A decision criterion for selecting the best first azimuth 

must be made taking all the quality statistics, lRp, lcp, lN/s, Ie /w , a max into account. If

azimuth degrees/10

In/s (degrees) 

Ie/w (degrees) 

IrP (degrees) 

lcp (degrees) 

CJmax (metres)
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absolute values of the statistics are used then their weights will depend upon their units 

unless some scaling is applied. It was noted that changing the “first azimuth” has little 

effect upon amax. The range of amax is usually less than 10% of its absolute value. 

Therefore, a single decision statistic that is insensitive to amax will have little effect upon 

the absolute value of omax. The chosen “first azimuth” was the one associated with the 

minimum value of:

|R B  +  I C B  +  a b s ( l N / s )  +  a b s ( l E / w )  +  a m a x
i R P ( m a x )  I C B ( m a x )  a b s ( l N / s ) ( m a x )  a b s ( l E / w ) ( m a x )  O m a x ( m a x )

A graph showing the decision statistic to find the optimal ‘first azimuth” is at Figure 6.7, 

below.

■

optimal 1 st azimuth

1 4 7 10 13 16 19 22 25 28 31 34

degree/10

Figure 6.7 Optimal first azimuth for a specimen prediction programme.

In this case, the minimum value is at a first azimuth of 100°.

6.3 Productivity

The productivity associated with a number of possible combinations of technology is 

summarised below. The statistics are based upon the following assumptions concerned 

with the time for the various activities.

Set horizontal and vertical pointing to find a star, manual 80 secs

Set horizontal and vertical pointing to find a star, motorised 5 secs

Adjust for a subsequent observation of the same star, manual 15 secs

Adjust for a subsequent observation of the same star, motorised 5 secs

Manually record time 15 secs
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Manually record vertical angle 15 secs

Automatically record time 3 secs

Automatically record vertical angle 3 secs

Set up theodolite and orient with Polaris 20 mins

Set up vertical angle data logger 5 mins

Set up time data logger 5 mins

Download automatically recorded time 5 mins

Download automatically recorded vertical angles 5 mins

Download manually recorded time 15 mins

Download manually recorded vertical angles 15 mins

Compute astronomical position 5 mins

Vertical angles are not recorded with a motorised theodolite: they are “set out” . Table

6.1, below shows the “productivity” based upon estimated output, that is size of position 

error ellipse, and time taken on site for a number of different instruments and data 

recording scenarios.
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Table 6.1 Productivity for different instruments and data recording scenarios.

instrument time
recording

angle
recording

No of 
stars, 

obs. per 
star

Error ellipse 
major axis

Omax
metres

Observing, set 
up and 

processing 
time

t mins

Productivity
factor

= 10000
t 0*max

TM3000 data log motorised 50 1 10 32 3.13

TM3000 data log motorised 10 5 10 32 3.13

TM3000 manual motorised 50 1 10 47 2.13

TM3000 manual motorised 10 5 10 47 2.13 |

T2000 data log data log 10 5 10 63 1.59

T2000 manual data log 10 5 10 78 1.28

T2000 data log manual 10 5 10 78 1.28

T2000 manual manual 10 5 10 93 1.08

T2000 data log data log 50 1 10 107 0.93

T2000 manual data log 50 1 10 122 0.82

T2000 data log manual 50 1 10 122 0.82

TM1800 data log motorised 50 1 20 32 0.78

TM1800 data log motorised 10 5 20 32 0.78

T2000 manual manual 50 1 10 137 0.73

TM1800 manual motorised 50 1 20 47 0.53

TM1800 manual motorised 10 5 20 47 0.53

T1600 data log data log 10 5 30 63 0.18

T1600 manual data log 10 5 30 78 0.14

T1600 data log data log 50 1 30 107 0.1

T1600 manual data log 50 1 30 122 0.09

As would be expected, the greater the degree of automation, the greater the productivity, 

but only to a point. A TM3000 theodolite with automated time data logging, is only about 

four times better than a T2000 theodolite with automatic time, data logging and manual 

vertical angle recording, the technology available to the author.

6.4 Automating the observing and computing process

The observations may be automated in two ways, digital data capture and servo-driven 

theodolite pointings. Two separate processes for time data capture were considered. 

One involved a sensitive photodiode and the other, a video camera.
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6.5 Photodiode method

In the photodiode method the passage of a star is to be detected by a single sensitive 

photodiode. The issues associated with the photodiode method are:

• Precise timing of star observations

• Detection of star passage over the theodolite crosshair

• Determination of time of star passage over the theodolite crosshair

6.5.1 Precise timing of star observations

A one-millisecond systematic error in absolute time is equivalent to an error of 

approximately 0.3 metres in longitude at mid-latitudes, e.g. Nottingham. The level of 

acceptable systematic error in position and time will depend upon the specification for 

the determination of the geoid model.

A number of time transfer software packages for PCs are listed at Uber (2001). Most of 

the products are designed to update a PC clock through the Internet or with a modem. 

As a result, the accuracies that can be achieved are limited. This is especially true with 

a modem because of the uncertain time delays in the telephone networks. For example 

BBC (2001) can give a 500ms solution with a 25 second telephone call. Better results 

are claimed with longer, and therefore more expensive calls. None of the PC solutions 

could work with a laptop in the field unless a modem and mobile phone were also 

available.

The most accessible sources of absolute time are the Global Positioning System (GPS) 

and radio time signals. The most precise solution would come from GPS where time 

transfer can be achieved in theory to a few nanoseconds and in practice to much better 

than 1 microsecond. The disadvantage of GPS is that additional hardware would be 

required.

Radio time signals can be received on a simple short-wave radio. HMSO (1995) lists a 

number of time signals that can be received worldwide. This investigation concentrates 

on the time signals from RWM Moscow. This station has been chosen because the 

signals can be received throughout much of Europe, Asia and North Africa although the 

signal quality can be poor at times. Therefore, if absolute time of acceptable quality can 

be achieved with this station other stations with better more reliable signal quality could 

also be used with results at least equally as good. The signals are broadcast on the 

4.996, 9.996 and 14.996 MHz frequencies from 10m - 20m and 40m - 50m past each hour.
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Second markers are 100ms long and minute markers are 500ms long. Some second 

markers are doubled to encode DUT1.

Initial investigations used a Roberts 801 short-wave radio and an oscilloscope to display 

the signal output. It was found that even with a noisy audible signal the presence of the 

second markers was identifiable on the oscilloscope as a faint DC voltage pulse. DC 

voltage output at the earphone socket was recorded on a Schlumberger data logger. The 

mean DC voltage at 1/80 second epochs gave little clue as to the location of the one 

second pulse. A graph of typical vales is at Figure 6.8, below.

0.08
0.06

g, 0.04
s  0.02
> 0
ra -0.02 
a>
E -0.04 

-0.06 
-0.08

SW radio voltage

full scale = 1.0 s

Figure 6.8 Short-wave radio mean voltage at the earphone socket for 80 successive 1/80- 

second periods. Time and date 0811-0820 on 27/1/98 at frequency 14.995MHz.

In Figure 6.8, the means of the same segment of each 1-second period over the 

interval 08:11 to 08:20 on 27 January 1998 are shown. The time signal is from 

RWM Moscow on 14.995 MHz.

However, the one-second pulse could be extracted from the data by investigating 

the mean squared DC voltage at 78o-second epochs. A graph of typical values is 

in Figure 6.9, below.
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SW radio voltage squared
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Figure 6.9 Short-wave radio mean voltage at the earphone socket, squared, for 80 

successive 1/80-second periods. Time and date 0811-0820 on 27/1/98 at frequency 

14.995MHz.

The proof that the peak at 64/80 of a second, in Figure 6.9, represents the second marker 

may be seen from the results of repetitions of the experiment carried out several times 

during the same day. The results are in Figure 6.10, below.
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Figure 6.10 Short-wave radio mean voltage at the earphone socket, squared, for 80 

successive 1/80-second periods at six different times on the same day. Time as shown, date 

27/1/98, frequency 14.995MHz.

The graph of the times of the peaks, within the second, against time during the 

day, in Figure 6.11 below, shows that there is a near linear drift in the data logger 

clock.
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Data logger clock drift

Peak 
voltage 60 
drift in 5Q 
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of a 40 

second 30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time of recording - 1 division = 30 mins

Figure 6.11 Variation of peak voltage during a day.

6.5.1.1 Radio time signal delays

There is a time delay between transmission of the time signal and receipt at the data 

logger. The delay is made up of 2 parts. The radio waves travel at a finite speed from 

transmitter to receiver. The receiving radio takes time to process the signals. The time 

delay from transmitter to receiver, assuming a spherical earth, is given by:

delay = R cos'1 (sin sin <j>r + cos fa cos tjv cos AX) c'1

where c is the speed of radio waves (speed of light)

R is the radius of the earth

is the latitude of transmitter

<t>r is the latitude of receiver

AX is the difference in longitude between transmitter and receiver.

The propagation delay for time signals from RWM Moscow, received at Nottingham, for 

example, is 0.0083 seconds.

To investigate the delay in a short wave radio an RF signal generator producing signals 

on a frequency near that of one of the RWM Moscow signals was connected to the aerial 

of a Roberts 801 radio. A storage oscilloscope was connected to both aerial and 

earphone socket. The signal delay was scaled off the display and estimated to be 

0.0002 seconds with an uncertainty of 0.00002 seconds. Therefore, it was concluded 

that the electronic delays in the short-wave radio could be considered as negligible.
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6.5.2 Detection of star passage over the theodolite crosshair

The chosen mechanism for detecting the passage of a star over the theodolite crosshair 

was continuously to measure the total amount of light collected by the telescope. When 

a star goes behind a crosshair, the total amount of light will be reduced because the star 

is obscured. Therefore, a momentary minimum light level will indicate the instant that 

the star is fully hidden by the crosshair or that the crosshair straddles the star. However, 

it may be that another star appears or disappears from the field of view or that cloud 

cover interferes with the light levels. In that case, there may be errors in the detection of 

the time of star transit.

The total amount of light collected by the telescope was to be measured by a single, very 

sensitive photodiode. The light was to be focused on the crosshair in the normal way. 

The sensitivity of the required photodiode is computed as follows.

Total power emitted by the sun (Rees, 1994) = 4tcR2ctTs4

where R is the radius of the sun (m)

a is the Stefan-Boltzman constant, (5.671 10'8 W m'2 K'4)

Ts is the sun’s effective temperature, (5800 °K)

At distance D from the sun the power per unit area is:

4jcB V T s4 = RfgTs4
4jcD2 D2

If the radius of the theodolite objective lens is r then the total power entering the lens is 

given by:

Total power = 27tr2R2aTq4
D2

A mean value for R/D is 16’ (HMSO 1995), or 0.0046 radians. Therefore the total power 

entering the lens is 8500r2 W. If the objective lens has a radius of 2 cm, the total power 

is 3.4 W. The magnitude of the sun, in astronomical terms, is -26. A star with a 

magnitude of 4 is 2.51'30 ( ~ 10'12 ) less bright than the sun and therefore will radiate 

10'12 as much power onto the objective lens. For an objective lens with a radius of 2 cm 

that will be 3.4 10‘12 W. This assumes that all radiant flux leaving the sun is detected by 

the photodiode: in particular that all radiant flux impacting upon the objective lens finds 

its way to the photodiode. Clearly there will be losses within the telescope optics and 

therefore a more realistic amount of light arriving on the photodiode for a star of 

magnitude 4 will be very approximately 2 10‘12 W. A table of magnitudes and radiant flux 

has been constructed using this assumption, Table 6.2.
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Table 6.2 The radiant flux, in watts, through a 2 cm theodolite telescope from 

stars of different magnitudes.

Star
magnitude

Radiant flux 
W

0 5 10‘11

1 2.5 10'11

2 1 10*11

3 5 10‘12
4 2 10*12
5

COo00

6 3.2 1 O'13

7 1.3 1 O'13 j

A catalogue of photodiodes, Hamamatsu (1996), indicated that most photodiodes 

had an undefined response to a radiant flux of less than 10'12W. Advice received 

by the author, from the company, was to use a S5590 Si photodiode with preamp 

integrated with feedback resistance and capacitance. This photodiode has a 

photosensitivity of 0.5 V/nW for light of wavelength 960 nm and of 0.1 V/nW for 

light of wavelength 200 nm. Therefore, the anticipated output voltage for a star of 

magnitude 4 would be of the order of 100-1000 pV.

A photodiode holder to replace the eyepiece of a number of Leica and 

Geodimeter theodolites was constructed, partly from a dismantled Wild T2 

theodolite eyepiece. A sketch of the inner part of the eyepiece with mountings for 

the photodiode is at Figure 6.12, below.
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plastic plugs

diode

Figure 6.12 Theodolite eyepiece modified for a photodiode.

6.5.3 Determination of time of star passage over the theodolite crosshair

In the absence of atmospheric scintillation, the passage of star over a crosshair could be 

represented diagrammatically as in Figure 6.13, below.

Figure 6.13 Diagrammatic representation of the passage of star over a crosshair.
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The radiant flux would then be of the form of Figure 6.14, below.

theoretical star

time

Figure 6.14 The form of the radiant flux as a star passes over a crosshair.

With atmospheric scintillation and other background fainter stars, the real situation is 

more like that in the diagram in Figure 6.15, below. Therefore the true form of the 

radiant flux as a star passes over a crosshair is more likely to be as shown in Figure 

6.16.

Figure 6.15 Diagrammatic representation of the passage of a star over a crosshair, with 

scintillation.
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hypothetical star

time

Figure 6.16 The form of the radiant flux as a star passes over a crosshair, with 

scintillation.

The time of the passage of the star is determined by application of a form of auto

correlation function combined with a least squares fit of a “theoretical star” . Figure 6.17, 

below, shows two stars passing a horizontal crosshair. Star A is smaller than the width 

of the crosshair. Star B is larger. The stars are descending in line with a positive rate of 

change of zenith angle.

V (t -  tp)

v (t - tp)

Figure 6.17 The geometry of two stars passing a crosshair.
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In the following:

tp is the time of passage of the star

r is the radius of the star

d is thickness of the crosshair

v is the velocity of the star perpendicular to the crosshair

F is the radiant flux of the star when the star is not obscured

The radiant flux, f, will be as follows:

with respect to a star in position A in Figure 6.17

f = F if v(t - tp) < - (r + 1/2d)

f = F(20 - 1/2Sin20)7i'1

if - (r + 1/2d) < v(t - tp) < (r - 1/2d)

with respect to a star in position B in Figure 6.17

f =  0 if (1/2 d - r) > v(t - tp) > - (1/ 2d - r) and if r < 1/ 2d

f = F(20 + 2a  - 1/2Sin20 - 1/2Sin2a)7r‘1

if - (1/2d - r) > v(t - tp) > (1/2d - r) and if r > 1/2d

and when a star emerges below the crosshair 

f = F(20 - 1/2Sin20)7t'1

if - (r + 1/2d) > v(t - tp) > (r - Vfed) 

f = F if v(t - tp) > - (r + 1/2d)

and 0 and a are given by:

0 = cos‘1((1/2d + v(t - tp))r '1) i f ( t - t p) > 0

= cos'1((1/2d - v(t - tp))r '1) if (t - tp) < 0

a  = cos'1((1/2d - v(t - tp))r ’1) if (t - tp) > 0

= cos'1((1/2d + v(t - tp))r‘1) if (t - tp) < 0

In the above, the scale of the distance units of r, d and v are undefined. They can be 

defined in terms of d, where for simplicity, d takes the value of 2. The above equations 

therefore simplify as in Table 6.3, below.
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Table 6.3 Summary of radiant flux equations as a star passes a crosshair.

No Equation Conditions for application

1 0 = f o -  F - B all r v(t-tp) <  -(r+1)

2a 0 = f0 - F(20 - 1/2Sin20)7i‘1 - B r < 1 -(r+1) < v(t-tp) < r-1

2b 0 = f0 - F(20 - 1/2sin20)7t1 - B r> 1  -(r+1) < v(t-tp) < 1-r

3a

CQ1oIIO

r < 1  r-1 < v(t-tp) <1-r

3b 0 = f0 - F{20 + 2a - 1/2sin20 - 1/2sin2a)7i'1 - B r >  1 1 -r <  v(t-tp) <  r-1

4a 0 =  f0 -  F(20 -  1/2sin20)7i'1 -  B r< 1  1-r <  v(t-tp) < -(1+r)

4b 0 =  f0 -  F(20 -  1/2sin20)7i‘1 -  B r> 1  r-1 <  v(t-tp) < -(1+r)

5

COiLLIoli

o

all r v(t-tp) < -(1+r)

0 = cos'1((1 + v(t - tp))r '1) if (t - tp) > 0

cos 1((1 - v(t - tp))r '1) if (t - tp) < 0

a  = cos 1((1 - v(t - tp))r‘1) if (t - tp) > 0

cos"1((1 + v(t - tp) ) r 1) if (t - tp) < 0

where f0 is the observed radiant flux

B is the background radiant flux

If r < 1, then for a star crossing the crosshairs, equations 1, 2a, 3a, 4a and 5, in order will 

apply. If r > 1 then for a star crossing the crosshairs, equations 1, 2b, 3b, 4b and 5, in 

order will apply. Each observation must be examined, based on provisional values of r, 

v and tp, to determine which of the above observation equations applies.

The photodiode is very sensitive to temperature changes and therefore a term, A(t - tp), 

will also be required to account for a constant rate of change of voltage with time in the 

absence of signal. A describes the slope and t0 is an arbitrary start time such as the time 

of the first observation. For each of the above observation equations the linearised form 

of each observation equations is below.
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8r
Sv
8tp
8F
8B
8A

and the units are r 2d

v 2d second'1

t second

F, B and A arbitrary units of data logger output

Mo
3r

Mo
3v

Mo
3tn

Mo
3F

Mo
3B

Mo
3A

A template for A is as follows:

J 0 0 0 -1 -1 (M o )

2 a & 2 b - 2 F (1  - v ( t - tp))(1  -( (1  -v { t - tp) ) r -1)2) W 2 - 2 F ( t - tp) (1 - ( (1  -v ( t - tp) ) r * 1)2) 14rc'1 r -1 2 F v ( 1 - ( ( 1 - v ( t - t p) ) r ‘1) 2) V r ' 1 - ( 0 -1/2 sir»20)Tt'1 -1 (t-tp)

2a  & 2b - 2 F ( 1 + v ( t - t p ) ) (1 - ( ( 1 + v ( t - t p) ) r ' 1)2) !4j i ' 1r ’2 2 F ( t - t p)(1  -( (1  + v ( t - tp) ) r - 1)2) 14n ' r * 1 -2 F v (1  -( (1  + v ( t - tp) ) r  ' 1)2) H Tc'1r _1 - { 0 -1/2 s in 2 0 )rc '1 -1 (t-tp)

3a 0  0 0 0 -1 (t-tp )

3b ■ 2 F { (1 -v ( t - tp ) ) (1 . ( (1 -v ( t - tp) ) r ' , ) ¥  - 2 F ( M p) { ( 1 - ( ( 1 - v ( t - t p ) ) r - 1) 2)14 
+ (1  + v ( t - t p))(1  -((1  + v ( t - tp) ) r * 1) 2) }Jt'1 r 2 -(1  -( (1  + v ( M p) ) r * 1) 2)1fcJ rc 'V -1

2 F v { ( 1 - ( { 1 - v ( t - t p) ) r ' 1) 2)H
- d - l d + v O - t p H r - y f ^ r - 1

* (0 + a -’/2 s in 2 0  -1 
s in 2 a )n ; '1

( t - tP)

4a  & 4b -2 F (1  - v ( t - tp))(1  -( (1  - v ( t - tp) ) r ' 1) 2) l47t*1r 2 - 2 F ( t - t p) ( 1 . ( ( 1 - v ( t - i p) ) r  Y )  V r ' 1 2 F v ( 1 - ( ( l - v ( t - t p ) ) r '1) 2) !47 i'1r ‘1 - (0 - !^ s in 2 0 )7 i ‘1 -1 (t-tp)

4a & 4b ■ 2 F (1 + v { t - lp ) } (1 - ( (1 + v ( t - ip ) ) r '1)2) l47t'1r ' 2 2 F ( t - t p) ( 1 - ( ( 1 +v ( t - t p) ) r ' 1 - 2 F v ( 1 - ( ( 1 + v ( t - t p) ) r ' 1) 2) i47c'1r ' 1 - ( 0 - 1/2 sin20)7c*1 -1 (t-tp)

5 0  0 0 -1 -1 (t-tp )

where 2a & 2b and 4a & 4b apply if (t - tp) < 0 

2a <S 2b and 4a & 4b apply if (t - tp) > 0

Much effort was expended into trying to get this method to work. Although the 

photodiode was capable of detecting the light from distant street lamps, no recognisable 

signals were received from stars. It seems that thermal noise in the photodiode may the 

have been well in excess of the signal from the star. The only solution would have been
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to employ some form of cooling around the diode. Although liquid nitrogen may have 

achieved the desired effect, there would have been significant danger to personnel if it 

had been used in the field. This approach was abandoned.

6.6 Video camera method

In the video camera method, the passage of the star is to be detected using a video 

camera. A Pulnix black and white camera was mounted on the telescope of a Wild 

T2000 electronic theodolite as in Figure 6.18 below.

Figure 6.18 T2000 with video camera.

The camera sees exactly what the conventional observer would see except that the 

video image is only of the central portion of the theodolite crosshairs. The video camera 

is set to maximum aperture and focused at infinity. Theodolite crosshairs, and then 

theodolite telescope, are focused in the normal way except that the observer’s view is on 

a TV screen. Data is captured using a video capture board controlled by a LABVIEW 

"virtual instrument". The data is then analysed in a spreadsheet.
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The issues associated with the use of a video camera method are:

• Precise linkage of time to a video frame

• Determination of the motion of the image of the star

• Determination of the theodolite horizontal crosshair in the video image

• Determination of the time of star image passing the horizontal crosshair 

image

6.6.1 Precise linkage of time to a video frame

For this method, time was taken from GPS because that was the most precise and 

practical solution available. Impersonal absolute timing has always been an issue with 

geodetic positional astronomy. Where the observational data is recorded on videotape 

or analysed electronically the element of personal judgement is, at least, largely 

removed. The method of determining absolute time chosen for this project was to create 

a small light flash every 10 seconds of GPS time. A small electronic circuit was 

designed and manufactured for this author. The input trigger was taken from the timing 

output, a negative spike, of a Leica System 300 GPS receiver. The circuit was designed 

so that the flash of an LED started at the spike and could be set to last for 10ms to 

100ms in increments of 10ms, i.e. 10 possible settings.

Figure 6.19 The LED (red object at bottom right of photo) connected to the “GPS flasher” 

circuit.

If a flash of 40ms were chosen, then either part of two video frames or one whole video 

frame would be exposed. In the former case, timing could be determined exactly but in 

the latter, the general case, there would be some ambiguity.
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Within each 40ms cycle of the video camera there is a period of exposure and a period 

of non-exposure. A flash, depending upon its length could fall:

♦ Entirely within the period of non-exposure

♦ Entirely within a single period of exposure

♦ Partly in a period of exposure, in the whole of the following period of non-exposure 

and partly in the following period of exposure

♦ Partly in a period of non-exposure, in the whole of the following period of exposure 

and partly in the following period of non-exposure.

The time of interest is the epoch at the mid-point of exposure of a frame. A theoretical 

solution for finding this epoch is described. See Figure 6.20, below.

xpose

un-expose

i r

time

T T
I I 
I I 
I I 
I I 
I 
I flash

c

a delay of flash after midpoint of exposure 
b period of partial exposure 
c period of flash

Figure 6.20 Diagrammatic relationship of video frame exposure and GPS flash.

The period of flash is adjusted until there is equal exposure of two frames separated by a 

frame of equal or greater exposure. In this situation, the middle of the flash is at the 

middle of the second exposure. In this case:

a = 40ms -  c/2

If the exposure of the first two frames is equal then it indicates that the start of the flash 

lies somewhere in the unexposed part of the video cycle and the above method will not 

work. In this case, the maximum flash period for no exposure and minimum period for 

full exposure are found, as in Figure 6.21, below.
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un-expose

i i  i  i  i  i  r  i
I I 
I i

1shortest 1 1
flash

Ci 1 
I

! longest flash L
c2

c period of flash.....aammmmmmmm̂
time

Figure 6.21 Diagrammatic relationship of video frame exposure and GPS flash to find 

maximum flash period for no exposure and minimum period for full exposure.

In this case the delay of the midpoint of exposure is given by:

delay = 1/2(c-i + c2)

A flash rate of once every 10 seconds was chosen as a comfortable rate at which the 

resolution of integer ambiguity could be assured. If there was an error of identification of 

the correct 10 second epoch it would reflect as a 150” error in computed longitude and 

hence in deviation in the prime vertical. Therefore, there is no need to record which 10- 

second epoch the system is calibrated with; only the right epoch will give a sensible 

answer.

6.6.2 Determination of the motion of the image of the star

A LABVIEW "virtual instrument" programme was written to collect suitable data via a 

video capture board and output to a file that could be read into a spreadsheet. For each 

video frame, the row average of the pixel values for each row is read to file. The 

average is more sensitive to the presence of a star if the row is short. The file size is 

proportional to the number of rows and the number of frames. The image size also 

affects the maximum possible frame rate. The chosen frame size was reduced to 60 

pixels square. That represents, approximately a 60 arc second square. The wiring 

diagram of the "virtual instrument" (.vi file) and the control interface are shown in Figure 

6.22, below.
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Figure 6.22 Annotated wiring diagram of the LABVIEW "virtual instrument" (.vi file) 

used for video frame data capture.
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HL Giab in IMAQ Vision display MB's version 2.vi

File £dit Operate project Windows Help
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Figure 6.23 User interface for the "virtual instrument" (.vi file) used for video data 

capture.

In Figure 6.23, above, the interface is set to collect data for 50 stars at 2-minute intervals 

at 8 frames/second (a limitation of the computer used) for 15 seconds for each star.

The 60 pixel square window is centred on a gap in the horizontal crosshairs as in Figure 

6.24, below.

Figure 6.24 The 60 pixel square window is centred on a gap in the horizontal crosshairs.
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Figure 6.25 Screen shot of 60 pixel square window.

In Figure 6.25, above, the ends of the horizontal crosshair on either side of the gap can 

be seen. The background is light because the crosshairs are being illuminated. When 

waiting for a star to appear the whole image is black.

Ifp.inixi iraLinlxi1i1in in
Figure 6.26 Screen shots of Polaris.

Figure 6.26, above, shows eight screen shots of Polaris. The shots are about 10 

seconds of time apart, although the time intervals between shots are not equal. Figure 

6.27 shows a blow-up of the star from each shot in Figure 6.26. The blow-ups show the 

variable effects of scintillation on the received image of the star. Note that the stars look 

flat. This is because the video is “non-interlaced”. Interlacing is a technique of scanning 

alternate odd numbered lines followed by a scan of even numbered lines. When the 

video is “non-interlaced” only alternate lines are scanned.
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Figure 6.27 Blow-up of Screen shots of Polaris.

As one would expect, brighter stars have bigger images. Figure 6.28, below, shows 

screen shots for stars of variable magnitude. Although the 3.4 magnitude barely 

appears on the screen, it is still detectable in the processing.

HRI3 n n * iE f 'i> PR 13

Figure 6.28 Screen shots for stars of magnitude, in order, 0.1,1.2,1.9, 2.1, 2.7 and 3.4.

The file created by this data capture process is copied into a spreadsheet and the 

parameters of the motion of the star are determined by least squares. An example of a 

set of data for one star is in Figure 6.29, below.

1 -  CO 1— CO T -  <o
CM CM CO 00 T f  t*

row numbers

Row Mean 
Pixel Values

□ 156-159

■ 153-156

□ 150-153

□ 147-150

■ 144-147

■ 141-144

Figure 6.29 Graphical representation of data from the passage of one star.

The row mean pixel values from top row to bottom row of one 60 by 60 pixel frame are 

shown from left to right in a row of Figure 6.29, above. There are eight rows per second 

so Figure 6.29 represents just over 5 seconds worth of data. Time progresses down the 

page, i.e. the top row appears first. The path of the star is clearly visible as the higher 

valued squares in Figure 6.29.
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Two 3D representations of the same data are in Figure 6.30, below.

159

Figure 6.30 3D Graphical representation of data from the passage of one star

Initially an “equation of motion” of the star was assumed to be:

y
A e(-(x-B-Ct)2/D) +  E e (-(x-B-Ct)4/D) + p

In the above equation y is the height of the point on column x, the row number, at time t 

in frame numbers, in Figure 6.29.

A and E give the magnitude of the ridge,

F is the height of the floor and 

D describes the spread of the ridge.

B is the column value of the centre of the ridge at time t = 0 and 

C is proportional to the rate of change of zenith angle.

This is purely a convenient formula, which gives a reasonable representation of the data. 

It is used because it fits the data and the function contains few variables. There is no 

theoretical basis for the equation. The ridge in the Figure 6.30 is assumed to have a 

normal distribution form of cross-section. However, it is accepted that this may not be 

fully representative so a kurtosis-like element is also introduced.

Partial differentials for the A matrix in the least squares solution are:

ay
3A

e(-(x-B-Ct)2/D)

2AQ(-(x-B-Ct)2/D) (x-B-Ct)/D + 4Ee
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3B

0y = 2AteHx' B‘Ct)2/D) (x-B-Ct)/D + 4Ete(' (x' B'Ct)4/D) (x-B-Ct)3/D2
ac

a y  =  A e ( - ( x - B - c t ) 2 / D )  ( x . B . C t ) 2/ D 2 +  2 E e ( - ( x - B - C t ) 4 / D )  ( x . B . C t ) 4/ D 3

aD

3 y  =  e ( - ( X - B - C t ) 4 / D 2 )

aE

ay = 1
aF

If the signal from the star is weak then the least squares adjustment is unstable and is 

divergent. To achieve convergence in these conditions it is necessary to have good 

initial estimates for the parameters and heavily damp the iterative process. The initial 

estimates used were:

F = average of all row pixel averages (2400 values)

A = %  of maximum row pixel average - F

C = 15 f cos d) cos 8 sin (UT+R+X-RAI
1000 sinz

where f is the camera frame rate in milliseconds 

z is the zenith angle of the star

B = 30 - Ct/2

where 30 is half the row length

t is the number of frames in the data set

D = 8

E = 0

The damping function (k) used in the parameter solution 

Xi = x0 + k 5x

was:

k = minimum of 1 or _________ a________

(S 8x 2/ ( x o 2 + 0.1))O S

where a is the minimum of (1 - maximum ( r ) ) and (1 + minimum ( r ) ) 

and r is the coefficient of correlation between and two parameters and is derived from 

the covariance matrix of parameters.

In practice, it was found that the “equation of motion” above was unstable and, in spite of 

the damping process described above, the adjustment either failed to converge or took 

an excessive amount of time. In the final version of the spreadsheet it was simplified to:
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y = Ae(-<*-B-C,)2/D> + F

In spite of earlier reservations this converged successfully.

6.6.3 Determination of the theodolite horizontal crosshair in the video image

When the instrument and camera are set up, great care is taken to ensure that the 

image of the horizontal crosshairs is truly horizontal in the video frame. Before, during 

and after each set of star observations the crosshairs are illuminated with a light emitting 

diode placed in front of the telescope objective lens on the telescope axis. The image is 

then analysed in a similar way to that described above. In this case, C should be zero 

and B should be unchanged during the star observations.

6.6.4 Determination of the time of star image passing the horizontal crosshair image

The row of the horizontal crosshairs is found from Section 6.6.3 above. Once B and C 

have been determined, as in Section 6.6.2 above, the time may be found when the star 

is at a particular row, that is the row equivalent of the theodolite crosshairs.

6.7 Practical determination of precise observing time

To link the video frames to GPS time, the “GPS flasher” was set “on” for 60 ms every 1 

second and the video frame period set to a nominal 124 ms. 124 ms was chosen 

because it was a rate that the computer could accommodate without apparent error and 

was a period close to a simple fraction of 1 second, i.e. 1/8 of a second. If 125 ms had 

been chosen then it would not have been possible to find “video time” to better than 1/8 of 

a second. However, with a slightly different rate the following will apply.

Figure 6.31, below, shows the exposure of a series of video frames and the state of the 

GPS flasher.

GPS flasher n

Video frame 
“exposure” fU U lJ U l^ ^

Figure 6.31 Exposure of a series of video frames and state of the GPS flasher.
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In Figure 6.31, a video exposure takes place during a GPS flash, but it is not possible to 

say precisely when, as the pattern repeats exactly every second. However, if the frame 

rate is changed very slightly, then the GPS flash will occur at different times relative to 

the video exposure. There will be occasions when the GPS flash will start or stop during 

a video exposure. This will be reflected by reduced average frame pixel values 

compared with a full exposure. The figure below shows frame average pixel values, 

scaled 0 -1 , with a 60 ms GPS flash for a 40 ms video exposure every 124.75 ms. 

Figure 6.32, below, has been constructed with theoretically perfect data.

1.2

-  0.8 CD
•s 0 .6

k te 0.2

co
CD 00

00
frame number

Figure 6.32 Expected frame average pixel values with a 60 ms GPS flash for a 40 ms video 

exposure every 124.75 ms.

The outline of the waveform shows four distinct parts in every cycle.

A floor where the average pixel value is 0

A ramp up

A ceiling where the average pixel value is 1 

A ramp down of equal length to the ramp up

The floor and ceiling are not the same length. If the time between video exposures is 

just less than a simple fraction of a second then the end of the ceiling is where the start 

of a GPS flash is coincident with the start of a video exposure.

If the video exposure time is less than the GPS flash time, the video exposure time is 

given by:

ve — fp (1 — r/c)

If the video exposure time is greater than the GPS flash time, the GPS flash time is given 

by:

G, = fp (1 -  r/c)
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where ve is the video exposure time

Gf is the GPS flash time

fp is the frame period (124.75 ms in the example above)

r is the length of one ramp

c is the length of a cycle

Therefore, it will be necessary to ensure that the video exposure time is less than the 

GPS flash time. This is easily done as a normal camera, capable of 25 frames per 

second, could not have an exposure of greater than 40 ms and the GPS flasher can be 

set for flashes up to 100 ms.

The cycle length and period is given by:

c = 125 (125 - fp)'1 frames

and therefore:

fc 125(1 - c '1) ms

The length of a cycle can be found by observing frame exposures for a long period and 

fitting a square wave to the output so that the square wave includes all full and partial 

exposures and excludes all non-exposures. In an experiment under semi-laboratory 

conditions, over an hour of data was captured with a nominal video frame period of 

124 ms and GPS flash of nominal 60 ms.

The frame average pixel values followed the format predicted above with approximate 

floor values at about 150 and ceiling values of 250. The length of a cycle was 

determined by manually fitting a square wave to a set of frame average pixel values to 

minimise the number of outliers. Three sample graphs for frame numbers 5000 -  6000, 

15000 -  16000 and 25000 -  26000 respectively are shown in Figures 6.33 to 6.35.

2 5 0

200

150

101 201 301 601401 501 701 801 901 100

Figure 6.33 Fit of a square wave to frames numbered 5000 -  6000 in a set of frame average 

pixel values.
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1 101 201 301 401 501 601 701 801 901 100

Figure 6.34 Fit of a square wave to frames numbered 15000 -  16000 in a set of frame 

average pixel values.

2 5 0

200

150

101 201 301 401 501 601 701 801 901 100

Figure 6.35 Fit of a square wave to frames numbered 25000 -  26000 in a set of frame 

average pixel values.

It will be noted that the square wave contains all the GPS 1-second flashes but also 

contains many blanks when a signal would have been expected. The GPS flasher will 

flash only at the desired multiples of one second as set into the Leica 399 GPS controller 

but does not always flash. A cut-off of a pixel row average of 170 was set to remove 

noise in the floor data. The best fit for a cycle length was 120.453 video frames with an 

estimated variation of ± 0.002 video frames. Note that there is no suggestion of 

standard error as the fit was not by rigorous means. Using the formula above, this leads 

to an actual frame period of 123.9623 ms with an estimated variation of ± 0.00002 ms.

Examination of the row average pixel values for a frame shows that there is occasionally 

a jump in the row averages during a frame. This occurs only in the region of a ramp and 

is taken to reflect the situation when the GPS flash starts or stops during a video frame 

exposure. For example, a new flash will only affect that part of a video frame exposure 

not already captured. The graph in Figure 6.36 shows the average row pixel values for 

such an occasion.
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Figure 6.36 The jump in row pixel values when a GPS flash starts during a video frame 

exposure.

In one frame exposure, the number of pixel rows that have full value will depend upon 

the degree of overlap between the video exposure and the GPS flash. Figure 6.37 

illustrates the situation.

GPS flasher

Video frame 
“exposure”

no overlap part overlap full overlap

Figure 6.37 Overlap between GPS flash and video frame exposure.

The jump in average row pixel values can only take place during a part overlap of GPS 

flash and video frame exposure. Such an event is identified by counting the number of 

average row values in a frame that are above a threshold value, such as 200 in the 

example in Figure 6.36. The element of a frame used for observational purposes has 

been chosen as a 60-pixel square so the number of average row values in a frame 

above the threshold value must take an integer value from 0 to 60. If the period of a 

video frame exposure can be determined then precise timing of the start of a video frame 

can be achieved.

average row pixel values

row number
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To find the period of a video frame exposure the following experiment was carried out. A 

vertical line was created on the display of an oscilloscope. The vertical line was made to 

move horizontally across the oscilloscope’s display at a suitable rate and the video 

camera was pointed at the display. Since the camera’s scanning process takes a finite 

time then it would be expected that the video image of the oscilloscope’s vertical line 

would have a slope and the degree of slope would indicate the delay between top and 

bottom line scans.

The oscilloscope’s horizontal rate was set to be 5 ms/division and the camera window 

was 100 pixels square. Some sample screen outputs are shown in Figure 6.38, below.

Explorin... fcUjtel S31 Explorin xplorin... Hi PI 13 xplorin... h m - j o  Explorin...

C h a n n e l  0 :  p a l C h a n n e l  0 :  p a l C h a n n e l  0 :  p a l C h a n n e l  0 :  p a l C h a n n e l  0 :  p a l

4 contents of Channe Contents of 'Channe c Contents of 'ChanneContents of 'ChanneContents of

Figure 6.38 Five sample video screen outputs for a vertical line moving horizontally across 

an oscilloscope display.

The white parts of the separate displays are part of the vertical line. The square 

superimposed over the first display is approximately the size of a division on the 

oscilloscope. Although the edges of the vertical lines in the display are not precisely 

defined, it appears that the time for 60 lines of scan is significantly less than 1 ms. 

Assuming this to be the case, it implies that the time for the start/end of a video exposure 

which overlaps the start of a GPS flash can be determined at the sub-millisecond level.

Using the computed frame period above, the video times of all occurrences of a jump in 

the row averages during a frame were found. The scatter plot in Figure 6.39, below, 

shows the results. The lower band represents the start of a GPS flash in video time and 

the upper band the end of a GPS flash. The mean start and stop times have population 

standard deviations of 0.0064 and 0.0061 s respectively.
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start/stop GPS flash times
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Figure 6.39 Video times of occurrences of a jump in the row averages during a frame.

Several different hypothetical scan rates were applied to the data to see if a significant 

improvement could be made to the population standard deviations for the start and end 

of a GPS flash in video time. The results in the graph of Figure 6.40, below suggest that 

the optimum scan rate is between 0.05 and 0.1 ms/row.

Standard deviation of data set, against scan rate 
in ms/row, applied at start and end of GPS flash

8CQ

£ ° ~o c c o
3  *3w ro 

> v
T3

0.007

Stop

0.006

start

0.005
0 0.05 0.150.1 0.2

scan rate in ms/row

Figure 6.40 Standard deviation of data set, against assumed scan rate in ms/row, applied at 

the start and the end of a GPS flash

An alternative view is to consider the number frames with a jump in row averages as a 

proportion of the total number of frames.

During a 1-second period there will be one GPS flash, provided that is the rate that has 

been set. Each flash will have 2 ends, a start and a stop. The proportion (p) of 

individual frames that overlap with an end of a GPS flash will be:
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p = 0.002 sc r f 1

where sc is the scan rate in ms/row

r is the number of rows to be scanned 

f is the number of seconds between GPS flashes

and therefore

sc = 500 p f r "1

In this experiment, p was 0.0063, f was 1, and r was 60. However only about half of the 

GPS flashes were successful, so a more realistic value for f would be 2. In that case 

sc ~ 0.1 ms/row. This result is compatible with the above graph relating to starts of GPS 

flashes. On this basis, 60 rows will take about 6 ms to scan.

The above study leads to the following method for the determination of the mid-time of a 

video frame exposure.

• Data is to be collected at a nominal frame period of 124 ms. The GPS flasher may be 

set to 5 seconds and the flash period to a nominal 60 ms. The standard video frame 

is set at 60 pixels square.

• Open the video data, row average pixel values for each video frame, in a 

spreadsheet. The number of columns in the spreadsheet equals the number of pixel 

rows in the video frame (60). The number of rows in the spreadsheet equals the 

number of video frames. 2 hours of data gives approximately 58000 rows. Add a 

frame count column to the spreadsheet

• In the Excel spreadsheet, identify the rows where there is a jump in values in the row 

as in the “average row pixel values” graph above where the value in cell “An“ is 

greater than the value in “BHn“ by at least half the difference between the floor and 

ceiling values, n is the row number.

• Count the number of cells after the jump. The time at the middle of the exposure of 

that frame is given by:

te = tGRs -  0.0001 (c + 30)

where te is the time at the middle of the frame exposure 

tGps is the GPS time of the start of the GPS flash 

0.0001 is the rate of scan in seconds per row 

c is the number of cells after the jump

30 is half the number of rows
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6.8 System Architecture

Below, in Figure 6.41, is a graphic showing the configuration of the field equipment for a 

low cost practical application.

video
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theodolite

right angle  
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GPS controller
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Figure 6.41 Field system architecture
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6.9 Practical preparation, observing and processing routines

This section outlines the preparation, observing and processing routines for collection

and processing of astronomical data leading to position lines solutions using a T2000

electronic theodolite with video camera and GPS. This section was used as an on-site

checklist.

T2000 and camera/GPS time recording

a. Predictions

• Estimate WGS84 position with handheld GPS.

• In UK only, find slope of the geoid from Grid InQuest, (2001)

• Apply slope to WGS84 position to find an estimate of the astronomical position.

• Select start date and time for observations.

• Use spreadsheets:

“MCBJ2000.xls” to update star data and find a suitable star set.

“PREDICT.xls” to identify Polaris, orient horizontal circle, prepare and print 

observing programme.

b. Prepare T2000 and data recording system

• Set up Leica System 300 GPS receiver. Set T2000 on tripod, connect battery, attach

video camera, right angle eyepiece, GPS flasher, external crosshair illumination and 

level instrument. (The position of the GPS flasher is critical. If it is pointing into the 

camera lens there is too much light and the .vi fails. Set at right angles to the camera 

axis but close to the prism).

• Connect video camera output to computer with video capture board.

• Adjust the right angle eyepiece and video camera for a good picture on the TV 

monitor.

• Set the IMAQ video capture board:

• Obtain a good picture of the apparent left gap in the horizontal hair with the ends of 

the horizontal hair equally visible at the centre of the left and right edges of the 

captured picture, Figure 6.26.

• On the video capture board select “Channel 0 : Pal” . Set:

Camera Description 

Camera Type 

Interlace

Generic PAL 

PAL

Non-Interlaced

Acquisition Window

Width 60 Height 60
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Left and Right as required

Chroma Filter PAL

Scale None

Reference Level (Volt)

White 0.15 Black 0.10

• Set LABVIEW "virtual instrument" "HL Grab in IMAQ Vision display MB's version 

2.vi" to ensure continuous recording as follows:

Time between stars in seconds 10000

Number of stars 1

Frame speed in ms 124

Number of frames per star 65000

• Switch on external cross hair illumination

• Point to Polaris and set horizontal circle [s e t ] [Hzo] 1.2345 [r u n ]

• Ensure GPS flasher is flashing (5 s rate at 60 ms flash)

c. Collect data

• Start LABVIEW "virtual instrument" at GPS flash. Record GPS time.

• After 20 seconds switch off external cross hair illumination.

• Point to first star. Record actual vertical circle reading.

• After passage point to next star etc.

• After 10 stars switch on external cross hair illumination for 20 seconds.

• Point to next star. Record actual vertical circle reading.

• After passage point to next star etc.

• After 10 stars switch on external cross hair illumination for 20 seconds.

• Etc.

• Stop LABVIEW "virtual instrument" and save data.

d. Compute data

• Open saved file as a spreadsheet in Excel

• Copy data to spreadsheet “Convert video time to GPS time” . Follow on screen 

instructions. Output is a set of parameters to convert frame number to GPS time.

• Select data when external cross hair illumination is “on” and import to spreadsheet

“equation of motion of star on screen 5 parameter.xls” . Output is picture row value

for the crosshair. Compute for all similar data sets.
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• Select data for star crossing and import to spreadsheet “equation of motion of star on 

screen 5 parameter.xls” . Output is time, as frame number, for star crossing of 

horizontal hair.

• Use computed parameters to find GPS time for each star crossing.

• Input star co-ordinates (copy from prediction spreadsheet), observed zenith angles & 

GPS time for all stars into spreadsheet “POSNSOLN with changing refraction and 

collimation.xls”

• Set “S/W correction” as offset between UT and GPS (currently 13 s) + 5n* secs + 

(UT1R-UTC)**

• Input polar motion** and station height.

* This assumes that the GPS flash rate is 5 seconds, n is the integer that leads 

to the only realistic solution for the computed longitude of the station.

** (UT1 R-UTC) & polar motion from GIBS (2001)

• Find and remove gross errors, iterate to convergence for astronomical position.

• Open spreadsheets “POSNSOLN.xls” and “PREDICT.xls - Predict ” .

• Copy star co-ordinates from “PREDICT.xls” to “POSNSOLN.xls” .

e. Position line solution

• Iterate and edit input data.

• Apply topographic-isostatic and lunar corrections as appropriate.

6.10 Spreadsheets

A series of spreadsheets in Excel was written to accommodate all the computations up

to and including the determination of astronomical latitude and longitude. There are

summarised in Table 6.4, below:
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Table 6.4 Spreadsheets used for the determination of astronomical latitude and longitude.

Workbook Mb Spreadshee
t

Remarks

FK5_1_2.xls 0.1 A spreadsheet to collect and edit bright star data, not 
only FK5 but also YBSC and SAO.

FK5J2000.xls 0.8 FK5 FK5_1_2.xls reformatted for use in ...

FK5 J2000 
to target

Input is time and date of proposed or actual 

observations. Output is a and 8 at target epoch. 

Output is input to ...

First
selection

Selects 95 starts. Input is also station latitude, max 
zenith angle and star magnitude range. Output is star 
data for selected stars for input to PREDICT.xls

MCBJ2000.xls 11.7 MCB MCB data set of 6694 stars.

MCB 2000 Input is time & date of observations. Output is a and 8 

at target epoch. Output is input to ...

First
selection

Selects 95 starts. Input is also station latitude, max 
zenith angle and star magnitude range. Output is star 

data for selected stars for input to PREDICT.xls ...

PREDICT.xls 3.9 Other input is latitude, longitude, date, max zenith 

angle, range of E & W azimuth, GMT at start, time 
between stars, approx azimuth of first star, horizontal 
offset from star to crosshair, expected time and zenith 
angle observation standard errors. Output is an 
observing programme of 50 stars in order of time such 
that input criteria are satisfied and the stars increase 
progressively in azimuth. Spreadsheet output lists 

azimuth, zenith angle, and time to precisions of 1", 1" 
and 0s. 1. Assumed standard errors in input data and 
standard errors in the assumption of standard refraction 
conditions give position error ellipse data and a diagram 
based upon the least squares design.
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Predict
Polaris

Input data are provisional values of position, date, R at 
0h on 1 January of year of observations, GMT of start 

and time interval between determinations and a and 5 
of Polaris. Output data are a listing of azimuths and 
zenith angles.

POSNSOLN.xls 0.2 Input data are;
1. Provisional values of position, collimation, 

refraction coefficient, observation quality.
2. Date of first observation, horizontal offset, 

stopwatch correction.
3. Star data may be copied from PREDICT.xls.
4. Observations of stopwatch and zenith angles.
Least squares iteration is by macro. Output is;
1. Adjusted position, collimation and refraction 

coefficient.
2. Position error ellipse data and diagram.

3. Worst standard residual.
4. Adjusted observation quality.
5. Conventional position lines graphic.

Convert video 
time to GPS 
time.xls

14.5 Input data is approx GPS start time of data (to nearest 
second) and frame period in ms.

Output is time for each video frame.

Equation of 
motion of star 
on screen 5 
parameter.xls

3.5 Input data is selected section of saved video row mean 
pixel values, row of theodolite horizontal crosshair, 

provisional value of C. Output is frame time star crosses 
horizontal crosshair.

6.11 Summary

Using the theory developed in Chapter 4 and the updated star data from Chapter 5, 

observing and computing processes have been developed in this chapter. The balance of 

stars has been considered in terms of the direction of balance based on errors in 

computed refraction coefficient and errors in computed collimation. The productivity of 

various observing and technology combinations was reviewed and approaches to 

automating the observing and computing process identified.
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In the photodiode method, which turned out to be unsuccessful because of the instability 

of the sensitive diode selected, the issues of precise timing of star observations, radio time 

signal delays, the detection of star passage over the theodolite crosshair and the 

determination of time of star passage over the theodolite crosshair were considered. 

Theory is now in place should it ever become more practical to use a sensitive photodiode.

In the video camera method, the method finally selected because it worked, the issues of 

precise linkage of time to a video frame, determination of the motion of the image of the 

star, determination of the theodolite horizontal crosshair in the video image and 

determination of the time of star image passing the horizontal crosshair image were 

considered.

The methods developed in this chapter will be applied in the practical determination of an 

astronomical position and described in Chapter 10.

One correction, not described in any of the foregoing, is that associated with the effect of 

lunar gravitation and barycentric centrifugal force on deviation of the vertical and that is 

discussed in the next chapter. To correct observed astronomical position on the earth’s 

surface, as described in this chapter, to that which would have been observed on the 

geoid, it is necessary to apply a topographic-isostatic correction and a simple method for 

computing this correction. That topic is examined in Chapter 8.
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Chapter 7 

The Effect of Lunar Gravitation and Barycentric Centrifugal Force on 
Deviation of the Vertical

7.1 introduction

The earth and moon orbit around their own barycentre. The barycentre is within the 

earth. Because of this orbit, there is a centrifugal effect that varies with time and place. It 

has a variable effect upon the local direction of the vertical. This barycentric effect is 

evaluated to a first order and formulae for the correction of observations of the vertical 

are derived.

Although the moon appears to orbit around the earth, in fact, moon and earth orbit 

around their own barycentre. Assuming circular orbits and a homogeneous spherical 

earth then, at the earth’s centre, the gravitational attraction of the moon is exactly 

balanced by the centrifugal acceleration of the earth’s mass centre around the 

barycentre.

X

Figure 7.1 The balance of Earth-Lunar gravitation and centrifugal force.

The plane of the earth and moon’s orbit passes through the mass centre of both and 

their barycentre. In Figure 7.1 point X is on the earth’s surface and is also on the normal 

to the plane of the earth and moon’s orbit that passes through the earth’s centre.

The effect of the moon’s gravitational attraction upon the deviation of the vertical is given 

by:

%mg = tan (Fnr/Fe)

where Fe is the gravitational attraction of the earth and
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Fm is the gravitational attraction of the moon 

Newton’s Law gives:

Fe = GMe/R2 and Fm = G M JD2

where Me and Mm are the masses of the earth and moon respectively 

R is radius of the earth 

D is distance between the mass centres 

Therefore

3Cmg = tan'1( MmR2 )
Me D 2

With values from Seidelmann (1992) of 

Me/Mm = 0.012300034’1

D = 384400000 metres,

and assuming

R = 6369000 metres,

this gives

Xmg = 0”.696 towards the moon.

The effect of the centrifugal acceleration of the earth’s mass centre around the earth- 

moon barycentre is given by:

Xca = tan'1(Bcom2/g)

where B is the distance from earth mass centre to barycentre

com is the sidereal mean motion

With values from Seidelmann (1992) of

B = 4671000 metres

com = 2.6617 10'6 rads s*1,

and taking a mean value of g = 9.81 m s'2,

this gives

%ca = 0”.696 away from the moon.

Therefore at point X, defined in Figure 7.1 above, the gravitational attraction of the moon 

is in balance with the centrifugal force due to the orbit around the barycentre.
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At any other point on the earth, the forces will not be in balance and therefore the 

components of correction to the deviation must be computed separately.

7.2 The effect of the moon’s gravitational attraction upon the deviation of the 

vertical

From above, the maximum value of Xmg is 0”.696 and will occur when the moon is on the 

observer’s horizon. When the moon is at an elevation of hm, the deviation in the direction 

of the moon will be:

Xmg = 0”.696 cos hm

and the deviation at right angles to the line, Cmg, will be zero.

If the azimuth of the moon from the observer is Am, since

%mg = -(^mgCOsAm + rimgSinAm) and

Cmg — (^mgSin Am - T|mgCOS Am) = 0

then

rimg = -XmgSinAm = - 0” .696 cos hm sin Am and

£mg = “ XmgCOSAm = - 0”.696 COS hm COS Am

The azimuth of the moon, Am, can be found from spherical trigonometry:

cot Am = (sin <t>P cos tm - cos <J>P tan 8m) cosec tm

where tm, the hour angle of the moon is given by: 

tm = GAST + Xp ~ RAm

Find the elevation of the moon, hm, from:

sin hm = cos 8m cos <j)P cos tm + sin 8m sin <t>P

The topocentric right ascension and declination of the moon may be found at the US Naval 

Observatory’s ‘Web Version of MICA” -  the Multiyear Interactive Computer Almanac at 

USNO (1997c) or on the CD version of MICA 1990 -  2005 (MICA, 1998)

If the moon is to the south of the observer, then the correction to the observed 

astronomical latitude will be numerically negative. If the moon is to the east of the 

observer, then the correction to the observed astronomical longitude will be numerically 

positive.
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7.3 The Effect of Centrifugal Acceleration of the Observation Point around the 

Barycentric Rotation Axis upon the Deviation of the Vertical

By redefining the term B in the formula for Xca in section 7.1 an equivalent formula for the 

effect of centrifugal acceleration of the observation point around the barycentric rotation 

axis upon the deviation of the vertical is:

%ca = ± tan'1 (Bcom2 cos hb /g)

where

B is now the shortest distance between the barycentric rotation axis and the 

observation point

hb is the elevation of the line describing the shortest distance between the 

barycentric rotation axis and the observation point

com and g are respectively 2.6617 10'6 rads s'1 and 9.81 m s'2.

See Figure 7.2, below.

barycentric 
rotation axis

observation
points

Figure 7.2 Shortest distance between the barycentric rotation axis and the observation 

point, line B, and the elevation of the extension of that line, hB, for two points on the surface 
of the earth.

It is useful to describe the following co-ordinate systems, see Figure 7.3, below.
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Topocentric

The origin is at the observation point. X is up, Y is east, Z is north.

Geocentric

The geocentric Cartesian co-ordinates of the observation point <j>P, XP are given 

by:

XgP f  XgP 1 T (vp + hp) cos <J)p cos Xp
! YgP | = | (vp + hp) cos cj)P sin Xp I
L ZgP J L (vp (1 - e2) + hp) sin <J)P J

where

vp = _____ a
(1 - e ^ in 2̂ ) ^

Orbital

The earth mass centre is the origin of this system. The positive, X0, axis passes 

through the barycentre and the moon. The Z0 axis is parallel to the barycentric 

rotation axis such that the Z0 co-ordinate of the earth’s North Pole is positive. 

The Y0 axis lies in the lunar orbital plane making a right-handed co-ordinate 

system.

From Seidelmann (1992), therefore, the orbital co-ordinates of the barycentre 

are:

X0B r x 0B i  r B 1 r 4671000 metres 1
YoB I — I 0 I = I 0 metres j

L Zqb J L 0 J L 0 metres J
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Point 0p A,p

moon at maximum 
declination

Barycentre

Barycentric rotation axis

of max declination of moon

X of moon

Figure 7.3 The spatial relationship between Earth and Moon (not to scale)
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7.4 The Relationship between the Geocentric, Orbital and Topocentric Co

ordinate Systems

The relationship between the Geocentric and Orbital Co-ordinate systems may be found 

by first considering the spherical triangle with corners at the North Celestial Pole (NCP), 

the moon at the time of observation, when its declination is Sm, and the moon at its 

maximum declination (8max). See Figure 7.4, below.

NCP

ARA

90° - 8,Tnax

90° - 8,

moon at 8,

moon at time of observation

Figure 7.4 The spatial relationship between the Earth and the Moon in the astronomical 
triangle.

From application of the spherical sine rule: 

sin L0 = cos Sm sin ARA

Where ARA = RA@gmax “ RAm ( =: A,rnax “ A,m )

and RA@5max is the right ascension of the moon when it is at its maximum declination 

RAm is the right ascension of the moon

Xmax is the longitude of the moon when it is at its maximum declination

Xm is the longitude of the moon

L0 is the angular passage of the moon with respect to the earth’s mass centre in the 

orbital plane. It will also be the angular passage of the moon with respect to the 

barycentre in the orbital plane since the earth’s centre, the barycentre and the moon 

always form a straight line in the orbital plane.

Since both the geocentric and the orbital co-ordinate systems have their origins at the 

mass centre of the earth then only rotations are required to convert from one system to 

the other. Therefore for a point, P:

Xqp = Rz(-Lo) Ry(-8 max )Rz(A, max ) XgR
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X o P  — Rz(-U) Ry("5max) Rz(RA@gmax " GAST) X g p

If, for the sake of brevity, RA@5max - GAST is written as d, then

fX0pl = TcosLo-sinL0 0 1 rcos8max 0 sin5max ]  Tcosd sind 0 1 f~XgP1
I Y 0p I I sinL0 cosL0 0 I 10 1 0 I I -sind cosd 0 I I YgP |
lZoPJ LO 0 1 J L-sin8max 0 cos8maxJ Lo 0 1 J [ZgPJ

fX oPl =  rcosL0cos8maxcosd + sinL0sind cosL0cos8maxsind - sinL0cosd cosL0 sin8maxl rx gPl
I Yop I I sinL0 cosSmax cosd - cosL0sind sinL0 cosSmaxsind + cosL0cosd sinL0 sinSmax I ! YgP I
LzoPJ L-sinSmax cosd -sin8max sind cos8max J |_ZgPJ

and in reverse

X g p  =  R z ( G A S T  -  RA @ 5m ax) R y(S m ax) Rz(L-o) X Qp

TXgp] = rcosL0cos8maxcosd + sinL0sind sinL0 cos8max cosd - cosL0sind -sinSmax cosd] fX oPl
I YgP I I cosL0cosSmaxsind - sinL0cosd sinL0 cosSmaxsind + cosL0cosd -sin8max sind I I YopI
LZgpJ LcOSLq Sin8max SinL0 sinSmax cos8max J LzoPJ

The length and vector components of the observation point to the nearest point, N, on 

the barycentric rotation axis is most easily found in the orbital co-ordinate system. 

Therefore N0 is given by:

x0N = r x0n i  = r b i
I y oN i I o I
L z 0n J L z oP J

The distance PN is therefore

Dpn = ((Xon - XoP)2 + (YoN - YoP)2)yz

((B - XoP)2 + YoP2)yz 

The vector PN in the orbital co-ordinate system is

v0pn = r x0N - xop i  = r b - X0P i
I Y0n " YoP | | "YoP I
L Z0N ■ Z0P J L o J

The same vector in the geocentric co-ordinate system will be:

VgpN = RZ(GAST - RAmax) Ry(Smax) Rz(L-o) VoPN

And in the topocentric system

VtPN = Ry(-<1>) Rz(A.p) vgPN

rXvtPNl = fcos(j)p 0 sin<j>P 1 Tcos^p sinXP 0 ]  [  XvgPN ]
IYvtPN I I 0 1 O i l  -sinXp cosXp 0 I I YvgPN I
LZvtpM J L-sin([)p 0 cos<|>p J Lo 0 1 J L z vgPN J
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fXvtPNl =  Tcos^p cosAp cos(()p sinA,p sin(J)p "1 f  X vgpN~]
I YytPN I I -sinXp cosXp 0 I I YvgpN I
LZvtPN J L -sin^p cosXp -sin(()p sinA,P cos<|)p J L ZV9pn J

The azimuth of PN is given by:

tan(AtPN) = Y  (vtPN)/Z(vtpN)

The elevation of PN is given by:

tan(htpN) = X(Vipn)
(Y(VtPN) + Z(VtPN) ) 2 

The centrifugal acceleration gives a deviation effect in the horizontal plane of 

%ca = tan'1 (cos htPN D PN com2/ g)

The component parts in the north-south and east-west directions are:

Tica = "XcaSinAtPN and

£ca =  " Xca COS AtPN

If N is to the south of the observer then the correction to the observed astronomical 

latitude will be numerically positive. If N is to the east of the observer then the correction to 

the observed astronomical longitude will be numerically negative.

7.5 The variation of Lunar Right Ascension and Declination

Approximate values of R A @ Smax, 5 max, R A m, and 5 m can be found from analysis of data 

available at USNO (1997c) using “apparent co-ordinates: geocentric R A  & Dec wrt 

equator of date” or on the C D  version at M IC A  (1998).

An example of the variation of the right ascension and declination of the moon for a 

period of 33 days is in Figure 7.5, below. The near sine curve is declination and the near 

straight line is right ascension. Where right ascension returns to 0h, an increment of 24h 

has been added to preserve continuity.
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Geocentric lunar RA & dec, April 1999

</>k.3
O.C
c
<
0c

</>o>0)k_
O)
0)■o
c
o
V■O *260— 0*2 4-0

■90

days from J2000

Figure 7.5 G eocentric R ight A scension and D eclination o f the M oon in April 1999.
The upper near straight line is R ight A scension; the low er sinusoidal line is D eclination.

A spreadsheet was written to find RA@5max, 5 max, RAm, and 5m from a set of 99 date/times, 

right ascensions and declinations. 99 epochs is the largest data set that can be 

recovered from the Internet site. In each case the data was modelled to:

(RA or 5) - M d - C - A cos (W(d - B)) - E cos (F(d - G)) = 0

d is the date in days from J2000

M overall slope

C offset from 0

A amplitude of the main harmonic

W frequency of the main harmonic

B phase of the main harmonic

E amplitude of the second harmonic

F frequency of the second harmonic

G amplitude of the second harmonic

A best fit was achieved by least squares.
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Typical examples of some of the values were:

RA 6

M 0.88 hours/day 0.0079 deg/day

A 0.45 hours 19.77 deg

W 0.2362 rads/day 0.2321 rads/day

E 0.09 hours 1.09 deg

F 0.4658 rads/day 0.4852 rads/day

The last equation does not fully model the changes of right ascension and declination. 

However, with RMS values for the residuals of the order of 30s and 200” respectively, it 

is an indication that the spreadsheet is sufficient for extracting values of right ascension 

and declination for the calculation of the effect of lunar gravitation upon astronomical 

position.

7.6 Magnitude and Direction of Lunar Deviation

Figure 7.6, below, shows the Geocentric Right Ascension and Declination of the Moon in 

April 1999. On the following pages in Figures 7.7 to 7.10, show respectively the values 

of the distance from the observation point to the barycentric rotation axis, deviation due 

to lunar gravitation, deviation due to centrifugal acceleration about the barycentric axis 

and total deviation.

April 1999 - Right Ascension & Declination

5 5 2  2 a

f i  o.
-20a
-40

hours since 1 April 1999

Figure 7.6 Geocentric Right Ascension and Declination of the Moon in April 1999 with 
time shown in hours from the start of the month.
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Figure 7.7 Distance from point to barycentric rotation axis.
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Figure 7.8 Deviation due to lunar gravitation.
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Figure 7.9 Deviation due to centrifugal acceleration about barycentric rotation axis. The 
x-axis is in hours from 1 April 1999.
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Figure 7.10 Total lunar deviation. The x-axis is in hours from 1 April 1999.

It is clear from the above that the mean of a month’s worth of r| is zero. That applies to r\ 

due to lunar gravitation and r|, due to lunar centrifugal effects. In addition, the mean of a
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month’s worth of £ due to lunar gravitation is also zero. However, the mean of a month’s 

worth of £ due to lunar centrifugal effects is not zero. Mean values for a lunar cycle’s 

worth of 4 due to lunar centrifugal effects starting on 1 April 1999 were computed for 

different values of latitude. The graph of results is at Figure 7.11, below.

mean xi for April 1999 lunar month
n c

arc
 

se
co

nd
s

i )0

N—UrO~ 
/  p

/  q\
'  ■ i 0  i

00 -50 0 1 ) \  50 /  1
___ 0  p

-A O
J l l
_n p;

latitude

Figure 7.11 Mean £ for April 1999.

If separation is computed from the above deviations then, as Figure 7.12, shows, almost 

12 metres of the earth’s equatorial bulge are due to the mean lunar centrifugal effect.

separation due to mean lunar xi effect

Q .

_2 5) 50

latitude

1|)0

Figure 7.12 Separation due to the mean lunar £ effect.

This would suggest that a correction based on the graph of mean £, Figure 7.11 above, 

should be applied to all lunar \  reductions to remove the permanent lunar £ effect.
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However, the data above is only based upon the maximum declination of the moon in 

April and the maximum declination varies.

According to Walker (2001), the orbit of the moon has an inclination of 5°. 145 with 

respect to the ecliptic. Therefore, the maximum declination of the moon in any one 

particular orbit will lie within the range of the obliquity of the ecliptic plus or minus the 

inclination of the moon’s orbit with respect to the ecliptic. This range of maximum 

declination in practice is 18°. 15 to 28°.72 (King, 1999).

The data above relates to an arbitrary period where the maximum declination is close to 

the lower limit. It is therefore appropriate to find the mean values for a lunar cycle’s worth 

of \  due to lunar centrifugal effects for several representative periods within the full range 

of declination during the 18.6 years when the ascending node of the orbit of the moon 

precesses through a full circle. The effect can be seen in the graph of lunar declination 

for the 16 years for which MICA (1998) is valid. See Figure 7.13, below.

Lunar declination 1990-2005

days since J2000

Figure 7.13 Lunar Declination for 1990 to 2005.

Using MICA (1998), the mean values of £, due to lunar centrifugal effects were computed 

for 10s increments of latitude for the lunar months starting, respectively, on the following 

arbitrarily chosen dates:

1 February 1990 = -3621.5 days after J2000

1 May 1992 -2801.5

1 May 1997 -975.5

1 August 2001 577.5

1 November 2005 2130.5

The results, graphically displayed, were all very similar. See Figure 7.14, below.
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mean £ for February 1990 lunar month
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Figure 7.14 Mean £ for five arbitrary lunar months between February 1990 and November 

2005.

There is a slight lack of north-south symmetry in the above data. This is most probably 

due to the approximate nature of the modelled lunar orbit. However, a least squares fit 

of the mean of the above data to the sine curve:

m̂ean = M Sin(2({))

gives M = 0X357 ± 0” .002

149



Chapter 7 The Effect of Barycentric Lunar Gravitation on Deviation of the Vertical

However, again because of the approximate nature of the modelled lunar orbit, a more 

reasonable value for M and its uncertainty might be 0”.36 ± 0”.02.

£mean is to be taken as the permanent lunar % effect and should be applied to all 

computed values of the lunar £ correction.

7.7 Summary

In this chapter the effect of the moon’s gravitational attraction upon the deviation of the 

vertical was considered with particular reference to the effect of centrifugal acceleration 

of the observation point around the barycentric rotation axis upon the deviation of the 

vertical. The geocentric, orbital and topocentric co-ordinate systems and their 

relationships were reviewed and formulae that describe the effect of the moon’s 

gravitational attraction upon the deviation of the vertical were developed. The variations 

of actual Lunar Right Ascension and Declination were examined and this lead to the 

numerical evaluation of the magnitude and direction of the Lunar Deviation effect. 

Although this effect is at the sub-arc second level, it will have a systematic effect on all 

astronomical observations taken over a short period such as the 1 -2 hours used in the 

method described in Chapter 6 because the moon will be in substantially the same part 

of the sky.
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Chapter 8 

The Topographic-isostatic Effect

8.1 Introduction

Astronomical position is observed on the ground surface but slope of the geoid is 

computed at the geoid. The reduction of observed astronomical position includes a 

component to account for the different attractions of the surrounding topography on 

the ground surface compared with that at the geoid. In this chapter, the usual method 

of determining this topographic-isostatic effect is reviewed and a new simpler method 

is developed that avoids the need for a complete local terrain model.

8.2 The Topographic-isostatic Effect Upon Astronomical Position

The observation of astronomical position is made on the surface of the ground. The 

computation of separation is undertaken by considering the slope of the geoid, at the 

geoid. Reduction of the observed astronomical position involves computation of the 

downward continuation of the vertical. This has two components: that due to the 

divergence of equipotential surfaces away from the poles and that due to different 

values of the horizontal attraction of the topography at the observation and 

computation points. The latter is the subject of this chapter.

8.3 The Topography as Right Rectangular Prisms

The topography may be considered as a series of right rectangular prisms that have 

defined density and axes parallel to, or at right angles to, the vertical at the 

observation point. The densities of topography, sea/lakes and mantle are quite 

different. If the boundaries between these can be estimated, and values ascribed to 

the densities between the boundaries, then a single right rectangular prism can be 

treated as the sum of its component parts where the parts form a vertical stack of 

individual right rectangular prisms. The practical boundaries of such a stack would be 

the highest point of the topography and the lowest point of the Mohorovicic 

discontinuity or Moho, the boundary surface that separates the Earth's crust from the 

underlying mantle. Above and below, there will be horizontal symmetry. Figure 8.1,
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below, shows the horizontal components of attraction of a right rectangular prism at 

an observation point and at a computation point.

horizontal component of attraction of right 
rectangular prism at observation point observation point

surface
computation point

geoidhorizontal component of 
attraction of right 
rectangular prism at 
computation point

right
rectangular

prism

Moho

Lowest point 
of Moho

Figure 8.1 Horizontal components of attraction of a right rectangular prism at an 

observation point and a computation point.

According to Volcano (2001) the Moho is at a depth of 5-10 km beneath the ocean 

floor and about 35 km below the continents although down to 60 km below 

mountains.

However, this simple model may not be quite so useful for the representation of the 

Moho. There is now some doubt concerning the form of the Moho as a smooth 

surface. Mooney and Meissner (1992) proposed that the Moho consisted of a 

laminiferous transition zone 3-5 km wide. Brittain (Brittain et al 1996) elaborates 

further upon this idea where discontinuities or steps in the Moho are also considered.

Tziavos & Andritsanos (1998) quote Nagy (1966) and Tsoulis (1997) for the formula 

for the attraction of a right rectangular prism as:

Tz(P) = Gp x ln(y+r) + y ln(x+r) -  ztan '1 (xy)
zr

x2 I y2 I z2 

xi ly i I z-,

where TZ(P) is the attraction of a right rectangular prism in the direction z at point P, 

the origin of the x,y,z right-handed co-ordinate system defined by the 

user.
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G is the universal gravitational constant (Georgia 2001) 6.672 10'8 cm3 g"1 s'2 

p is the density of the right rectangular prism, assumed constant.

X! ... z2 describe the extent of the right rectangular prism 

r is the distance of P from a unit element of the right rectangular prism.

When (x2 + y2 + z2)/2 is substituted for r into the equation above:

x2 I y2 I z2
Tz(P) = Gp x ln(y+(x2+y2+z2)1/2) + y ln(x+(x2+y2+z2)%) - z tan'1 ( xv )

z(x2+y2+z2)yz U i |y i I z-.

Nagy (1966) derives a similar formula except that the tan'1(..) term is replaced by a 

different sin'1(..) term. However, whereas the tan"1(..) term above is interchangeable 

in x and y, Nagy’s sin‘1(..) term is not, and the formula must therefore be considered 

doubtful even though Nagy declares that both formulae are identical, that is, his 

formula is identical to a formula quoted from Haaz (1953) and similar to the one 

above.

The formula above is for the vertical component of attraction. What is required here 

are eastward and northward components. These may be derived from the above 

formula by interchanging axes so that the formulae for the eastward and northward 

attractions are respectively:

TX(P) = Gp

Ty(P) = Gp

y ln(z+(x2+y2+z2)V2) + z ln(y+(x2+y2+z2)’/z) - x tan'1 (  vz )
x(x2+y2+z2)'/2

z ln(x+(x2+y2+z2)1/2) + x ln(z+(x2+y2+z2)’/2) ~vtan'1( zx )
y(x2+y2+z2)%

y 2 

yi 

z2 

Z1

Z2 jx 2 

Z1 |x i

x2 J y2

xi iy i

In all cases x-i and x2, yi and y2, ẑ  and z2, must be on the same side of their 

respective axes. If they are not then the prism must be split into 2 prisms, on the 

positive and negative sides of the axis.

Expanding the expression for TX(P) above leads to:

TX(P) = Gp y2 ln(z+(x2+y22+z2)'/a) + z ln(y2+(x2+y22+z2),/2) - x tan '1( y^z )
x(x2+y22+z2)1/2

yi ln(z+(x2+yi2+z2)y2) - z ln(yi+(x2+yi2+z2)1/2) + x tan '1(. yiz )
x(x2+yi2+z2)ya

z2

Z1

X2

Xi
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=  Gp y2 ln(z2+(x2+y22+ z22)y2) +  z2 ln(y2+(x2+y22+ z22)1/z) - x ta n '1 ( yPzP )
x(x2+y22+ z22)yz

- y-i ln(z2+(x2+ y i2+ z22)1/2) - z2 ln (y i+ (x2+y12+ z22)1/2) +  x tan'1(_ V i Z2 )
x(x2+ y i + z 22)Vz

- y2 In (zi + (x2+y22+Z i2)Vz) - Zi ln(y2+(x2+y22+ z 12)l/2) +  x tan*1 ( VpZi )
x(x2+ y g + z iT

lX2
+ y1 ln(z1+(x2+y12+ z 12)1/2) + Z i ln(y1+(x2+ y i2+ z 12)yz) -x ta n '1( Y1Z1 ) |

x(x2+y12+ z 12)l/z | Xi

=  Gp {  y2ln(z2+(x22+y22+ z22)1/z) +  z2ln(y2+(x22+y22+ z22),/z) - x2tan '1 ( y2z2 )
x2(x22+y22+ z22)yz

- y iln (z2+(x22+ y i2+ z22)yz) - z2ln (y i+ (x22+ y i2+ z22)'/z) +  x2tan '1(  ViZ2 )
x2(x22+ y i+ z 22)yz

-y 2ln(Z i+(x22+y22+Z i2)y2) -Z iln (y 2+(x22+y22+Z i2)yz) +  x2tan '1( v?Zi )
x2(x22+y22+Zi )1/z

+ y iln (z i+ (x 22+ y i2+ z i2)yz) + z iln (y i+ (x 22+ y i2+ z 12)yz) - x 2tan '1(____  v iZ i_____J

-  y2ln(z2+(X i2+y22+ z22)yz) - z2ln(y2+ (x i2+y22+ z22)yz) + X jtan 'V  y2z2 )
Xi(Xi +y2 + z2 )yz

+ yiln(z2+ (x i2+yi2+z22)yz) + z 2ln(yi+(xi2+yi2+z22)yz) - Xitan'1(  Viz? )

+ y2ln(zi+(xi2+y22+ z i2)yz) + Ziln(y2+(xi2+y22+Zi2),/z) - Xjtan'1( y2Zi )

-y iln (z i+ (x i2+yi2+zi2)yz)-z iln (y i+ (x i2+yi2+z12)yz) + x1tan'1( yiZi \ }
Xi(Xi2+yi2+Zi2)yz

and similarly T y(P) may be found by exchanging x, y and z.

Ty(P) = Gp {  z2ln(x2+(y22+z22+x22)yz) + x2ln(z2+(y22+z22+x22)yz) -y 2tan'1( z2x2 )
y2(y22+z22+x22)yz

- Ziln(x2+(y22+Zi2+x22)yz) -x2ln(zi+(y22+zi2+x22)yz) + y2tan"1( _____)
y2(y22+ z i2+x22)yz

- z2ln(xi+(y22+z22+xi2)1/z) - Xiln(z2+(y22+z22+Xi2)yz) + y2tan'1( z2Xi_ )

+ Zi ln(Xi+(y22+Zi 2+Xi 2)yz) + Xiln(zi+(y22+Zi2+Xi2)yz) - y2tan'1( ZjXi )
y2(y22+A 2W f
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- z2ln(X2+(yi2+z22+X22)yz) - x2ln(z2+(yi2+z22+X22)y2) + yitan '1(____ z2x2 )
y i(y i2+z7

+ z1ln(x2+(yi2+z12+x22)yz) + x2ln(Zi+(yi2+Zi2+x22)/2) - Vitan~1( Zix? )

+ z2ln(xi+(y12+z22+xi2)y2) + x1ln(z2+(yi2+z22+x12)y2) - v-ttan'V z?Xi  )
y i( y i W + l ^

- Ziln(x1+(yi2+Zi2+x12)y2) -X iln(zi+(yi2+z12+Xi2)y2) +y-itan'1(____ ZiXi_____ \ }
y i(y i2+zi2+xi2)y2

If only the topography above the geoid is to be considered, then formulae for 

computation of TX(P) and Ty(P) depend upon whether the point of computation P is 

above (Case I) or below (Case II) the top of the right rectangular prism. In Figure 8.2, 

below, zP is the height of point P and zM is the height of the right rectangular prism. 

When zP < zM the attraction of the prism must be considered as the sum of the part 

above zP and the part below it as far as the attraction at the point is concerned.

Z1 = Zm - Zp & z2 = - Zp ^
Zi = Zm - Zp & z2 = 0

|  prist

P
prism 

prism

P plus 
z-i = 0 & z2 = - zP

Zi = 0 & z2 = zM geoid ■  zi = 0 & z2 = zM
PH...........    ....H I......... ...........................

Case I Case II

Figure 8.2 The attraction of a right rectangular prism at the geoid and at the 
computation point.

In Case I, the differences between the attraction at the geoid and at the point are:

T x ( P )  =  G p  {  y 2 l n ( ( x 2 2 + y 2 2 ) ,/2)  - yiin((x22+yi2)’/2) - y2ln((xi2+y22f )  + yiln«xi2+yi2),/a)

- y2ln(zM+(x22+y22+zM2)1/a) - ZMln(y2+(x22+y22+ZM2),/a) + x2 tan’1 ( v?zm _ )
x2(x2 +y2 +zm)V4

+ yiln(zM+(x22+yi2+ZM2)v4) + ZMln(yi+(x22+yi2+ZM2)1/2) - X2 tan‘1(____yiZM_  )
x2(x22+yi+zM 2f

+ y2ln(zM+(xi2+y22+ZM2)%) + zMln(y2+(xi2+y22+ZM2)ya) - xitan'1(____ v2zm )
xi{xi +y22+ZM)/a
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- yiln(zM+(xi2+yi2+zM2)7*) • zMln(yi+(xi2+yi2+zM2)yi!) + xitan'1< yizM 1 }
x i ( x i 2 + y i 2 + Z M 2 ) 7'

-  G p  {  y 2l n ( - z p + ( x 22 + y 22 + z P2 ) ’/2)  -  z p l n ( y 2 + ( X 22 + y 22 + z p 2 ) % )  +  X 2t a n ‘ 1 (  y 2 z P \
X 2 (x 2 2 + y 2 2 + z p 2 ) ys

-  y i l n ( - z p + ( x 22 + y i 2 + z P2 ) 1/2)  +  z p l n ( y n - ( x 22 + y i 2 + z p 2 ) 1/i!)  -  X2 t a n 1 (  y i z p  )
x 2 ( x 2 + y i 2 + z P2 ) y2

- y2ln{zM-zp+(x22+y22+(zM-zp)2)y2) - (zM-zp)ln(y2+(x22+y22+(zM-zp)2)y2) + X2 tan'1( v?(zm-zp) )
X2(X22+y22+(ZM-Zp)i;)y2

+  y i l n ( z M - z p + ( x 22 + y i 2 + ( Z M -zpff) + ( z M - z p ) i n ( y i + ( x 22 + y i 2 + ( z M -  z P ) 2 ) y2)  -  x 2 t a n ' 1 (  y i f z M - z P )  )
X 2( X 2 + y i i i+ ( Z M  -  z p  f t

- y2ln(-zp+(xi2+y22+zp2)1/2) + zpln(y2+(xi2+y22+zp2)yz) - xitan'V v?zp )
x i ( x i 2 + y ? + z p Y 2

+  y i l n ( - z P + ( x i 2 + y i 2 + z p 2 ) y2)  - z P l n ( y i + ( x i 2 + y i 2 + z P2 ) y2) +  x i t a n ' 1 (  v i z p  )
x i ( x i 2 + y i 2 + z p ^ ) y2

+  y 2 ln (z M -z p + (x i2+y22+ (z M -z p )2)y2)+ (z M -z p ) ln (y 2 + (x i2+ y 2 2+ (z M -z p )2)y2) - x i t a n '1( V2(zm -zp ) _ _ _ }
x i ( x i + y 2 + ( z M - z p ) 2 ) ,/2

- y i l n ( z M - z p + ( x i 2 + y i 2 + ( z M - z p ) 2 ) y2) - ( z M - z p ) l n ( y i + ( x i 2 + y , 2 + ( z M - z p ) 2 ) y2) + x i t a n ' 1 ( _ _ _ _ _ y i ( z M - z P ) _ _ _ _ l }
xi(x i2+yi2+(zM-zp)2)y3

Ty(P ) =  G p  {  X2ln((y22+X22)’/2) - ZMln(X2+(y22+ZM2+X22)V2) - X2ln(zM+(y22+ZM2+X22)’/2) +  y2 tan '1(______ zmX2______ I

y 2 ( y 2W + X 2 2 ) y2

- xiln((y22+ x i2),/a) + z Mln(xi+ (y22+ZM2+ x i2)v4) + xiln(zM+(y22+ zM2+ x i2)yi!) - y2ta n '1( zmxi )

y 2(y 22+ZM  + xi ) 2

-X2ln((yi2+X22)1/2) + zMln(x2+(yi2+ZM2+x22)y2) +X2ln(zM+(yi2+ZM2+X22),/!!) - yitan'1(  zmx? )
W ^ z m W T

+ X iln ((y i2+X i2),/2) - z Mln (x i+ {y i2+ZM2+ x i2)y2) - x iln (z M+ (y i2+ zM2+ x i2)y2) + y ita n '1( z Mx i l }

y i ( y iW + x i2f

- G p  { -zpln(x2+{y22+zp2+X22)y2) +  X2ln(-zp+(y22+zp2+X22)y2) +  y2tan' 1 (_______ zpX2_______1
y 2 ( y 2 2 + z p 2 + X 2 2 ) ya

- (zM-zp)ln(x2+(y22+(zM-zP)2+X22)y2) - X2ln(zM-zp+(y22+(zM-zp)2+X22)Va) +  v?tan~1f (zm-zp^xp )

y 2 ( y 2 li+ ( Z M - z p r + % T

+ zp ln (x i+ (y22+zp2+ x i2)y2) - x iln (-zp + (y22+zp2+ x i2)'/2) - y2 tan '1(______ zpXi )
y2(y22+ z P + x i ) 2

+  ( z M - z p ) l n ( x n - ( v 22 + ( z M - z p ) 2 + x i 2 ) y2) + x i l n ( Z M - z p + ( v 22 + ( z M - z p ) 2 + x i 2 ) y2) - v ? t a n ' 1(  ( z m - z p ) x i  1
y 2 ( y 2 2 + ( f M - z p ) " + x i 2 ) ,/2

+ zpln(x2+ (y i2+ zP2+X22)y2) - x2ln(-zp+(yi2+zp2+X22)y2) - y ita n _1(______ zpx? )
y i ( y i  W W ) V2

+  ( z M - z p ) l n ( x 2+ ( y i 2 + ( z M - z p ) 2 + X 22 ) 1/2) + X 2l n ( z M - z p + ( v i 2 + ( Z M - z p ) 2 + X 22 V/2T v i t a n ' 1 (  (zm-zp)x? )
y i ( y i 2 + ( z ^ z p j 2 + X 2 ;i) ,/z

- z p ln (x i+ (y i2+ zP2+ x i2)yz) + x iln ( -z p + {y i2+zp2+ x i2)y2) +  v ita n 'V  ZpXi )
y i ( y i W + x i  Y

- (zM -zp)ln (xn-(v i2+ (zM-zp)2+ x i2)y2)-x iln (zM -zp+ (v i2+(zM-zp)2+ x iY 2)+ v ita n 'V  (zm-zp)xi f }
y i ( y i 2 + ( Z M - z p ) 2+ x i 2 ) ’ 2
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In Case II the differences between the attraction at the geoid and at the point are:

TX(P) = Gp {  y2ln((x22+y22)'/2) - yiln((x22+yi2)ya) - y2ln((xi2+y22)ya) + yiln({xi2+yi2)H)

- y2ln(zM+(x22+y22+ZM2)’/2) - zMln(y2+(x22+y22+ZM2)y2) + X2 tan-1( V2Zm )
X2(xa +y2 +zM ) 2

+ yiln(zM+(x22+yi2+ZM2)y2) + zMin{yi+(x22+yi2+zM2)y2) - x2 tan'1( yizM )
X2(X2 +yi +zm )

+ y2ln(zM+(xi2+y22+ZM2),/2) + zMln(y2+(xi2+y22+ZM2)y2) - xitan'1( V2ZM )
xi(xi +y2 +zm ) 2

- yiln(ZM+(xi2+yi2+ZM2)’/2) -z Mln(yi+(xi2+yi2+ZM2),/2) + xitan‘1{_____ yizM_____ \  }
xi(xi2+ y iW ) ,/2

- Gp {  y2ln((x22+y22)y2) - yiln((x22+yi2)y2) - y2ln((xi2+y22)y2) + yiln((xi2+yi2)ya)

- y2ln(zM-zp+(x22+y22+(ZM-zp)2)y2)-(zM-zp)ln(y2+(x22+y22+(zM-zp)2)y2) + X2 tan'1( Y2(zm-zp) )
X2(X22+y2+(̂ M-Zp)2)y2

+ yiln(zM-zp+(x22+yi2+(ZM-zp)2)y2)+{zM-zp)ln(yi+(x22+yi2+(zM - zp)2)Va)-X2 tan'1 ( v  ̂(zm - zP) )
X2(x2 +y72+(zM - zp)2)"2

+ y2ln(zM-zp+(xi2+y22+(zM-zp)2)y2) + (zM-zp)ln(y2+{xi2+y22+(zM-zp)2)ya) - xitan'1(____ V2(zm-zp) )
xi (xi2+y2 +{zm-zp) )

- yiln(zM-zp+(xi2+yi2+(zM-zp)2)y2) - (zM-zp)ln(yi+(xi2+yi2+(zM-zP)2)ya) + xitan'1(____yi(zM-zP)____ l}
xi(xi2+yi2+(zM-zp)2)ya

- Gp {  y2ln(-zp+(x22+y22+zp2)y2) - zpln(y2+(x22+y22+zp2)'/2) + X2tan'1 (_____ yazp_____ \
vr /v/ 2 2 2\VzX2(X2 +y2 +Zp )

- yiln(-zp+(x22+yi2+zp2)'/2) + zpin(yi+(x22+y-i2+zp2)ya) - X2 tan‘1(_____vizp )

-y2ln((x22+y22)y2) + yiln((x22+yi2)1/a) + y2ln((xi2+y22)y4) - yiln((xi2+yi2)ya)

- y2ln(-zp+(xi2+y22+zp2),/2) + zpln(y2+(xi2+y22+zp2)’/2) - x ita n 1( y2zP )
xifxi^+yji+zp)

+ yiln(-zp+(xi2+yi2+zP2)ya) -zpln(yi+(xi2+yi2+zp2)ya) + xitan'1(_____ yizP_____ } }
/ 2 2 2\Vzxi(xi +yi +zp )

Ty(P) = Gp { x 2ln((y22+X22)ya)-ZMln(x2+(y22+ZM2+x22)y2)-X2ln(zM+(y22+ZM2+X22)y2)+y2tan'1( zmX2 1
y2(y22+ZM2+X22)Va

- xiln((y22+xi2)ya) + ZMln(xi+(y22+ZM2+xi2)ya) + xiln(ZM+(y22+ZM2+xi2)ya) - y2tan'1(  zmxi )
y2(y22+ZM +xi2)’/2

- X2ln((yi2+X22)ya) + zMln(x2+(yi2+ZM2+X22)ya) + X2ln(zM+(yi2+zM2+X22)ya) - yitan'1( zMX2 )
yi(yi +zm +X22)

+ xiln((yi2+xi2)1/a) - ZMln(xi+(yi2+ZM2+xi2)y2) - xiln(zM+(yi2+ZM2+xi2)ya) + yitan'1( zMxi_____ l}
yi(yi2+ZM2+xi2),/a

- Gp {  X2ln((y22+X22f )  -xiln((y22+xi2f t  -X2ln((yi2+X22f )  +xiln((yi2+xi2)ya)

- (zM-zp)ln(x2+(V22+(zM-zP)2+X22)y2)-X2ln(zM-zp+(v22H-(zM-zp)2-<-X22)y2)+V2tan'1 ( (zm-zp)x2 _ )
y2(y2 +lzirzp) +X2 )
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+ (zM-zp)ln(xi+(v22+(zM-zp)2+xiy2)+xiln(zM-zp+(v22+(zM-zp)2+xi2),/a)-V2tan~1( (zm-zp)xi )
y 2 ( y 2 + ( z ^ i p f + x i T

+ (zM-zP)ln(x2+(vi2+(zM-zp)2+X22),/2)+X2ln(zM-zp+(vi2+(zM-zp)2+X22)1/a)-vitan'1( (zu-zpW )
yi (yi+(zm-zp)^px22)ya

- (ZM-zp)ln(xi+(vi2+(zM-zp)2+xiYa)-xiln(zM-zp+(vi2+(zM-zp)2+xi2f 2)+vitan'1( (zm-zp)xi )}
yi(yi2+(zM-zP) +xi2)ya

- Gp { -zpln(x2+(y22+zp2+X22)y2) + X2ln(-zp+(y22+zp2+X22)’/2) + y2tan'1 (_____ zpX2____ 1
y 2 ( y 22 + z p 2 + X 22 ) ,/2

+ zpln(xi+(y22+zp2+xi2)y2) - xiln(-zp+(y22+zp2+xi2)’/2) - y2tan‘1(  zpXi )
y2(y2+zp+xi2)/2

+ zpln(x2+(yi2+zp2+X22)V2) - X2ln(-zP+(yi2+zp2+x22)y2) - yitan"1(  zpXp )
y i ( y i 2 + z p + X 2 Y 2

- z p l n ( x i + ( y i 2 + z P2 + x i 2 ) y2)  +  x i l n ( - z P+ ( y i 2 + z p 2 + x i 2 ) 1/2)  +  v i t a n ' V  z p x i )
y i ( y i 2 + z 7 + x i  2 ) ’/2

- X2ln((y22+X22)y2) + xiln((y22+xi2)1/2) + X2ln((yi2+X22),/2) - xiln((yi2+xi2)%)}

Case II simplifies slightly to:

T X( P )  =  G p  {  - y 2 l n ( z M+ ( x 22 + y 22 + Z M 2 ) y2) - z M l n ( y 2+ ( x 22 + y 2 2 + Z M 2 ) y2)  +  x 2 t a n ' 1{ _ _ _ y 2Z M_ _ _ _ _ \
X2(X22+y22+ zM2)y2

+ y iln (z M+(x22+ y i2+ZM2)y2) + z Mln (y i+ (x22+ y i2+ZM2)V2) - x z ta n  V  v iz m )
X2(x22+ y iV z Ma)y r

+  y 2ln (z M + (x i2+ y 2 2+ZM 2)’/2) +  Z M ln (y 2 + (x i2+ y 2 2+ZM 2) ’/2) -  xitan'V v?zm )
x i( x i2+y? + z J f

- y iln (zM + (x i2+ y i2+ZM2)’/2) - z Mln (y i+ (x i2+ y i2+ZM2)y2) + x ita n ' 1 ( y iz M \  }
/ 2 2 2\Vzx i( x i + y i + zm  )

- G p  { -y2ln(ZM-zp+(x22+y22+(zM-zp)2),/2)-(zM-zp)ln(y2+(x22+y22+(zM-zp)2)y2)

+x2 ta n '1i(________ M M l2e)__ _ 1
X2 (X2 +y2 + (z m -z p) ) 2

+ yiln(ZM-zp+(X22+ y i2+(zM-zP)2)y2) + (zM-zp )ln (y i+ (x22+ y i2+(zM - z P)2)y2)

- *2 ta n '1(________ v ijU m jlZ p )___ )
X2(X2 + y i + (z M - z p ) ) 2

+  y2ln(zM -zp+(xi2+ y22+ (zM-zp)2)y2) +  (zM -zp)ln(y2+(xi2+y22+ (z M-zp)2)y2)

- x ita n '1( v 2(z m - z p ) )
x i( x i +y2 + ( z m *z p ) ) 2

- yiln(zM-zp+(xi2+yi2+(zM-zp)2)’/2) - (zM-zP)ln(yi+(xi2+yi2+(zM-zp)2)y2)

+ x ita n '1( y i( z M-z P) ) }
x i ( x i2+ y i2+ (zM-zp)2)y2

- G p  {  y2ln(-zp+(X22+y22+zp2)y2) - z Pln(y2+(x22+y22+zp2)y2) +  X2tan"1 ( y2ZP )
X2(x22+y22+ zP2),/2
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- y iln ( -z P+(x22+ y i2+zp2)%) + z Pln (y i+ (x22+ y i2+zp2)ya) - X 2 tan '1(______ v iz p )
l i ( x ? + y i

-y2 ln ((x22+y22)1/2) + y iln ( (x 22+ y i2)'/2) +  y2 ln ((x i2+y22)ya) - y i ln ( ( x i2+ y i2)1/a)

- y2 ln (-zp+ (x i2+y22+zp2),/a) + zp ln (y2+ (x i2+y22+zp2)1/a) - x itan~1( y2zp )
x i( x i+ y 2  +zp T

+ y iln (-z p + (x i2+ y i2+ zP2)ya) -z p ln (y i+ (x i2+ y i2+zp2)y:!) + x ita n '1(______ y izp ______ i }
. /  2 2  2\Yz

x i( x i + y i + z p  )

Ty(P) = Gp {  - ZMln(x2+(y22+ZM2+X22)’/a) - X2ln(zM+(y22+ZM2+X22)ya) + y2tan'1 (____ zmX2 1
y 2(y 22+ZM 2+ x 2 2)ya

+ ZMln(xn-(y22+ZM2+xt2)’/a) + xiln(zM+(y22+ZM2+xi2)1/a) - y2tan‘1{ zmxi )
y2(y2 + zm  + x i  j

+ zMln(x2+(yi2+ZM2+X22)y2) + X2ln(zM+(yi2+ZM2+X22)ya) - vitan1( zmX2 _ )
yi(yi+zM+X22)/s

- zMln(xi+(yi2+zM2+xi2)ya) - xiln(zM+(yi2+ZM2+xi2)1/a) + yitan‘1( zMxi I  }
A»  ̂i ■» 2 w 2\Yzyi(yi +xi )

- Gp {  - (zM-zp)ln(x2+(y22+(zM-zp)2+X22)ya) - x2ln(zM-zp+(y22+(zM-zp)2+X22)ya)

+ Y2tan'1(  (zm-zp)x2 „v)
yz{)/2  + (ZM -Z p) +X2 ) a

+  ( z M -z p ) ln (x i+ (y 2 2+ {z M -z p )2+ x i2)1/a) +  x i ln ( z M -z p + (y 22+ (Z M -z p )2+ x i 2)ya)

"yatan'1 (____  (zm̂ p)xi.. ....
y2(y2 +(zm-zp) +xi ) 2

+  ( z M-z p ) ln ( x 2+ ( y i 2+ (Z M -z p )2+ X 22)ya) +  X2 ln ( z M -z p + (y i2+ (z M -z P)2+X 22) ya)

- yitan'1(___ _jzM ^p)x2 ),
yi(yi +(zm-zp) +X2 ) 2

-  ( z M - z p ) ln ( x i+ ( y i2+ (z M -z p )2+ x i2)1/a) - x i ln ( z M- z p + ( y i2+ (z M -z P)2+ x i 2) ya)

+ vitan'1( (zm-zp)xi )}
yi(yi2+(ZM-zP) +xi2)ya

- Gp { -zpln(x2+(y22+zp2+X22)’/a) + X2ln(-zp+(y22+zp2+X22)y2) +y2tan'1( zpX2 )
y2 (y2 2+ z p 2+X22) ,/a

+ zpln(xn-(y22+zp2+xi2)1/a) - xiln(-zp+(y22+zp2+xi2)’/a) - y2tan‘1{ zpxi )
y2(y22+zp +xi2)

+ zPln(X2+(yi2+zp2+X22)ya) - X2ln(-zp+(yi2+zp2+X22)ya) - yitan'1( zpx? )
W + zpW T

-zpln(xi+(yi2+zP2+xi2)ya) + xiln(-zp+(yi2+zp2+xi2),/a) + Vitan'V zpxi )
yi(yi2+zp+xi2)ya

- X2ln((y22+X22)ya) + xiln((y22+xi2)ya) + X2ln((yi2+X22)ya) - xiln((yi2+xi2)Va) }

Therefore the formulae for Case I and Case II are identical.
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Because of the attraction of the prism at P, the astronomical latitude determined at P 

will be less than the astronomical latitude that would be determined at the equivalent 

point on the geoid, see Figure 8.3, below. Therefore, if there is a positive mass 

imbalance to the north, i.e. P is on a southward-facing slope, then the topographic- 

isostatic deviation correction to be applied to the astronomical latitude observed at P, 

will be positive.

vertical at 
the geoid

vertical 
at P

North

prism

Figure 8.3 The sign o f the topographic-isostatic deviation correction .

Similarly, if the mass imbalance is to the east, i.e. P is on a westward-facing slope, 

then the topographic-isostatic deviation correction to be applied to the astronomical 

longitude observed at P will be positive. The graphics at Annex A show topographic- 

isostatic deviation effects.

8.4 Calculation of the components of the topographic-isostatic effect using 

right rectangular blocks

To calculate the components of the topographic-isostatic effect upon astronomical 

position, the area needs to be divided up into blocks where each block is assumed to 

have constant height. The greater effects will be nearer the point of investigation and 

therefore the blocks should be smallest nearest to the point of investigation. In 

addition, the block boundaries must not cross the x or y axes through the point of 

investigation. One, but not the only, solution to this problem would be to divide the 

area under consideration according to Figure 8.4, below.
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Figure 8.4 Block divisions for the computation of topographic-isostatic effect.

Each successive outer ring of blocks adds 12 blocks but quadruples the area.

Such an approach needs a Digital Elevation Model (DEM). One DEM in the public 

domain is the “Global Land One-km Base Elevation (GLOBE)” which may be found at 

GLOBE (2001). This is referred to as a 1 km model but elevations are available on a 

grid of 30 arc seconds of latitude and longitude, which is, for example, every 930 

metres of latitude and 560 metres of longitude at the latitude of Nottingham. The 

DEM is relative to mean sea level vertically and WGS84 horizontally. The quoted 

precision of the DEM is variable. Hastings & Dunbar (1998) report on reviews of the 

work of others that, in test areas in Australia and Japan, 6m RMS error has been 

achieved while, for more remote areas RMS, errors rise to 100 metres with a worst 

case of a 300 metres error in Antarctica. It is believed that the overall design 

objective of 18 metres RMS has been met. Berry (1999) reports similar errors and
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indicates that some of the errors are related to the terrain because satellite altimeters, 

which were used to collect the observational data, are designed to work well over ice 

and water but not over rugged terrain. Altimeter failure may occur where there is a 

high terrain variation. In areas where there is a rapid change of height, the computed 

DEM may lack sufficient high frequency information to fully reflect the roughness of 

the terrain.

8.5 Numerical Investigation of the Topographic-isostatic Effect Using Right 

Rectangular Blocks

Three test areas were investigated. They were a low elevation area of gently 

undulating topography (Nottingham), a more rugged area (Aviemore, Scotland), and 

an extreme mountainous area, at least in European terms (Mt Blanc). With reference 

to Figure 8.4, the contributions of the inner four squares (squares 6, 7 ,10  & 11), the 

first ring (squares 1-5, 8, 9, 12-16) and those of the second ring (squares 17-28) were 

considered. In each case, the sample size exceeded 12500 computation points. The 

results, in Table 8.1, for east-west deviation corrections were obtained.
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Table 8.1 Deviations for the topographic-isostatic effect for three sample areas.

Nottingham Aviemore Mt Blanc

Latitude range (degrees) 52.5 to 53.5 56.5 to 57.5 45.0 to 46.0
Longitude range (degrees) -1.5 to -0.5 -4.0 to -3.0 6.5 to 7.5
Highest point (metres) 277 1292 4570
Lowest point (metres) 7 26 296
Mean terrain height 78 420 2018
Roughness(1> (metres) 37 201 718

Inner 4 Sauares fare seconds) 

East-west deviation
Highest 0.651 3.044 7.260
Lowest -0.783 -3.190 -6.672
RMS 0.110 0.576 2.203

North-south deviation
Highest 0.818 3.311 8.292
Lowest -0.833 -4.379 -8.421
RMS 0.145 0.950 3.295

First rina (arc seconds)

East-west deviation
Highest 0.023 0.952 4.524
Lowest -0.027 -1.089 -4.321
RMS 0.002 0.134 1.298

North-south deviation
Highest 0.013 0.532 4.707
Lowest -0.014 -0.845 -4.749
RMS 0.001 0.097 1.426

Second rina fare seconds) 

East-west deviation
Highest 0.006 0.428 4.398
Lowest -0.009 -0.444 -4.374
RMS 0.002 0.074 1.159

North-south deviation
Highest 0.005 0.246 4.890
Lowest -0.005 -0.290 -4.397
RMS 0.001 0.048 1.134

Sauares 1 -28 fare seconds) 

East-west deviation
Highest 0.656 4.202 14.045
Lowest -0.817 -4.599 -14.247
RMS 0.110 0.774 4.425

North-south deviation
Highest 0.833 3.979 16.984
Lowest -0.845 -5.461 -16.220
RMS 0.146 1.081 5.645

(1) Roughness is defined as the RMS of (point height -  sample mean height)
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The three blocks of Nottingham, Aviemore and Mt Blanc are in order of increasing 

terrain height and roughness. In the undulating, low terrain, Nottingham Block, only 

the inner four squares have significant effect. In the medium topography of the 

Aviemore Block, the inner 4 squares and first and second ring have significant effect 

although it is doubtful if the third ring would also be significant. In the high rough 

terrain of the Mt Blanc Block, all the computed elements are significant. Since the 

RMS of the first and second rings are significant then it is more than likely that further 

rings would also be significant. The RMS of blocks 1 -28 is close to the sum of the 

separate RMS of the inner four squares, the first ring and the second ring. This 

indicates that there are significant systematic effects in the data and therefore the 

DEM is not sufficiently dense and the number of blocks inadequate as far as the Mt 

Blanc Block is concerned.

The data suggests that the density of the GLOBE DEM model is sufficient for the 

Nottingham Block and just sufficient for the Aviemore Block. On that basis, it would 

appear that the GLOBE DEM is adequate for the computation of astronomical 

topographic-isostatic deviation corrections at the 0”.1 level for the whole of the UK. 

The last sentence cannot be considered conclusive and further work is required to 

evaluate the effect of a denser DEM especially in rough terrain. However, other 

conclusions below suggest that the GLOBE DEM model may not be sufficient in 

rough terrain.

Research is reported at Landmap (2000) for the production of a 30m DEM for the UK 

but the product was not expected to be available until later in 2001.

Clearly there will be a correlation between slope and the magnitude of the 

topographic-isostatic deviation. The six graphs in Figure 8.5 below were derived from 

east-west and north-south subsets of the data in the three blocks described above. 

The east-west slope was computed as the difference in height between the points 

east and west of the point under investigation divided by the distance between them, 

and similarly for the north-south slope. All the graphs show that there is a strong 

correlation between slope and topographic-isostatic deviation. The correlation 

appears strongest in the Nottingham block and weakest in the Mt Blanc block.

Superficially, it would appear that an estimate of topographic-isostatic deviation could 

be found from the general slope of the ground at the point of observation.

Examination of the graphs suggests that such an estimate would have a standard 

error of the order of better than ±25% of its true value ±0”.05 for the Nottingham block
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and better than ±25% of its true value ±0”.1 for the Mt Blanc block. No consideration 

of the height of the point under investigation has been made in this investigation.

Aviemore Block - East-West Aviemore Block - North-South

o c
•? I

slope slope

Nottingham Block - North-South

o _(A 5 
■T . 2a ts

-0:02-0.2 0;D6

slope

Mt Blanc Block - East-West

a<0O c
I  

I ?  
2 -8

Mt Blanc Block - North-South

i f  
I  -8o>O

Nottingham Block - East-West

slope

slope

Figure 8.5 Six graphs showing the relationship between ground slope and topographic- 

isostatic deviation.

8.6 The topographic-isostatic effect from the slope of the ground

An alternative approach to determining the topographic-isostatic correction could be 

developed by considering only the slope of the ground in the region of observation
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point. Such an approach would be more sensitive to the local form of the topography 

but would take virtually no notice of distant topographic features. It would also 

assume that the topography at right angles to the line of greatest slope is linear and 

consistent, e.g. there are no bends in the hills, see Figures 8.6 and 8.7, below.

The force of attraction of a mass at one point to a unit mass at another, as stated in 

Bomford (1980), is:

F = G J J J p cose r 2 dv

where F is the force of attraction

p is the density of the material

0 is the angle between the axis of the force and the direction to the

element dv

r is the distance from the unit mass to the elemental mass dv

In Figure 8.6, below, the attraction to a unit mass at point P of a rod of linear density 

a, along the line normal to the rod is considered.

,S*
' a < \  l \  \
I '  x

\  S
1 \ s 'i s r/\  \  'cosaI \  s
I '  N

'  S 
! \  v

81

Figure 8.6 The attraction of a rod to a point.

The above formula may be rewritten as:

F = G a f cosa (r cos'1 a) '2 dl

= G a J cosa (r cos'1 a) '2 r (cosa) 2 da

= G o r ' 1f cosa da

= G a r '1 [sina2 - sinai]

where ai and a2 are at the angles subtended at the ends of the rod. If the rod is long 

compared with r:
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F *  2 G a r ' 1

Now consider a part of a wall made up of rods.

Figure 8.7 The attraction of a wall of rods to a point.

The direction of interest for the computation of attraction makes an angle of a  with the 

normal to the wall.

The component of attraction, at P, in the direction of interest of one rod is:

F = 2 G o  cos(0 - a) (r cosa sec0) '1

where a is now the area density.

The component of attraction in the direction of interest of a wall made up of a series 

of rods is:

F = 2 G o J cos(0 - a) (r cosa sec0) '1 dh

= 2 G a J cos(0 - a) (r cosa sec0) '1 r cosa sec20 d0

= 2 G a J cos(0 - a) sec0 d0

= 2 G a J (cos0 cosa + sin0 sina)) sec0 d0

= 2 G a J (cosa + tan0 sina) d0

= 2 G a [ (02 - 01) cosa + (In(sec02) - In^ec©!)) sina ]

Finally consider a solid, infinitely long, wedge made up of parallel walls each at 

variable distance t from point P:

F = 2 G p J[ (02 - 00 cosa + (In(sec02) - In(sec0!)) sina ] dt

= 2 G p t [ (02 - 01) cosa + (In(sec02) - In(secOi)) sina ]
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where p is the volumetric density.

Figure 8.8, below, represents a cross-section of a hill through a point P. The 

maximum slope is in the plane of the page. The topography is approximated by a 

series of infinitely long wedges perpendicular to the plane of the page.

Figure 8.8 Topography approximated by wedges.

The heights of a number of points along the line of greatest slope are found. The 

points are at multiples of a chosen horizontal distance, d.

The horizontal attractions at P (FP) and at O (F0) of the wedge ABKL are the sums of 

the attraction of triangular wedges as follows:

F p  =  FpAB +  F pbl  -  F pak

F o  =  F o a b  +  F o bl  ■ F o ak  ■ F o kl

In Figure 8.8, above, a and b are the horizontal distances of A and B from P or O. hP 

is the height of P above O etc. In Table 8.2, below, a, 0i and 02 are as in Figure 8.7, 

above.

The topographic-isostatic correction is therefore a function of the difference between 

FP and F0.
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Table 8.2 Parameters for the computation of topographic-isostatic correction by
wedges.

wedge a 01 02 t

PAB tan"1((b-a)/(hA-hB)) a  - tan'1((hA-hP)/a) a  - tan‘1((hB-hP)/b) b cos02/cos(a-e2)

PBL 0 -tan"1((hB-hP)/b) 0 b

PAK 0 -tan‘1((hA-hP)/a) 0 a

OAB tan'1((b-a)/(hA-hB)) a  - tan‘1(hA/a) a  - tan'1(h[3/b) b cos02/cos(a-02) 
+ hP cosa

OBL 0 -tan"1(hs/b) -tan‘1(hP/b) b

OAK 0 -tan'^IWa) -tan'1(hP/a) a

OKL V2TZ tan’1(a/hP) tan‘1(b/hP) hP

In Table 8.2, above, a, 01t 02 and t are as defined in the equation for a solid, infinitely f

long, wedge made up of parallel walls each at variable distance t from point P, above. i

Masses close to the observation point will have more effect than masses at a 

distance. However, it is necessary to determine when distant masses have negligible i

effect. In Figure 8.9, below, several non-symmetrical simple longitudinal profiles are 

examined. Symmetrical longitudinal profiles will have zero topographic-isostatic >

correction. I
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Figure 8.9 Topographic-isostatic deviations associated with symmetrical simple 

longitudinal profiles.
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In Figure 8.9 above, the observation point is at different positions relative to a steep 

slope rising from near sea level to almost 1000 m. In all cases, 95% of the 

topographic-isostatic deviation, derived from consideration of the topography out to 4 

km from the point, may be found by considering the longitudinal section only out to 2 

km from the point. The graphs in Figure 8.9, above, suggest that the topographic- 

isostatic deviation is almost fully computed at 4 km. The greatest topographic- 

isostatic deviation is about a quarter of the way from the top of the slope.

The tentative conclusion and an approximate “rule of thumb” that arises from this 

simulation study is that it is prudent to create a longitudinal section along the line of 

greatest slope with a length equal to at least twice the height of the highest point on 

the section.

8.7 Investigation of the topographic-isostatic effect of simple topographical 

features

Hills are not normally straight sided but have slopes that change relatively smoothly 

with distance. In the following, the topographic-isostatic deviation at the foot of a 

sinusoidal straight ridge running perpendicular to the direction of interest is computed 

using only the topography out to a given distance.

-SKXXH} BBOQO

long itud ina l section to p o g ra p h ic -iso s ta tic  d e v ia tio n  fo r lim ited  w edges

-4000 -2000 0 2000 4000
d istance  from  obse rva tio n  p o in t m e tres

Figure 8.10 Topographic-isostatic deviation relative to position on a sinusoidal ridge.

In Figure 8.10 above, the position of investigation is 1000 metre horizontally from the 

top of the ridge. The deviation is computed on the basis of taking account of 

topography out to a given distance. Figure 8.11 shows the full (with consideration out 

to 4km) topographic-isostatic deviation computed for observation points across the 

ridge.
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topographic-isostatic deviation of “sine” ridge

</>o0)</>
oL.

■O

4000to -4Q00 2000-2000

horizontal distance of observation point from  
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Figure 8.11 Topographic-isostatic deviation computed for observation points across a 

sinusoidal ridge.

From the graph in Figure 8.11, it is apparent that the greatest values of topographic- 

isostatic deviation may be found just less than halfway up either side of the ridge. 

However, these are also the points where the rates of change of topographic-isostatic 

deviation are the least. This implies that to minimise errors in the computed value of 

topographic-isostatic deviation the best observing points are where there is an even 

slope, i.e. zero rate of change and this will occur on the steepest part of the ridge.

This conclusion was reviewed by studying the topographic-isostatic effect of a ridge in 

the shape of an embankment.

From Figures 8.12 and 8.13 below, it is apparent that the greatest values of 

topographic-isostatic deviation may be found about halfway up either side of the 

ridge. However the greatest rate of change of topographic-isostatic deviation is near 

the ends of the slopes, i.e. where the change of slope is greatest. This confirms the 

earlier conclusion that the best observing points are well away from a rapidly 

changing slope.
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Figure 8.12 Topographic-isostatic deviation relative to position on an embankment type 

ridge.
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Figure 8.13 Topographic-isostatic deviation computed for observation points across an 

embankment-type ridge.

8.8 Graphical evaluation

These simple conclusions were further examined by computing the topographic- 

isostatic corrections at six points in the Preseli Mountains in Wales. See Figure 8.14, 

below. Three of the sites, Mirianog Ganot, Waunlwyd Farm and Trehenry were 

chosen because they were on steep, but reasonably even, slopes where the infinitely 

long wedge assumption would be reasonably valid. The other three sites, Dinas 

Head, Island Farm and Dinas Cross, are where deviation of the vertical had been 

observed as part of a student field course but topographic-isostatic corrections had 

not yet been applied. The flat parts of the longitudinal section in two of the latter three 

are over the sea where no submarine height information is available.
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Figure 8.14 Topographic-isostatic corrections for six sites in the Preseli Mountains in 

Wales.
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In each pair of graphs in Figure 8.14, the left of the pair shows the longitudinal profile 

along the line of greatest slope. The right hand graph shows the topographic-isostatic 

correction computed based on wedges, limited in distance from the observation point. 

In each case, the width of each wedge is 100 metres.

Examination of the graphs in Figure 8.14 suggests that it is prudent to create a 

longitudinal section along the line of greatest slope in length at least four times the 

height of the highest point along that section. However, in this context it is worth 

returning to the underlying assumption that infinitely long wedges can represent the 

topography. While this is reasonably valid near the point of computation, it becomes 

less valid with increasing distance along the longitudinal section. In Section 8.6 it was 

shown that for a rod the attraction was:

F = G o r ' 1 [sina2 - sinai]

To simplify the formulae, a2 and ai were taken to be +90s and -90e respectively. On 

moving out along the longitudinal section on a convex slope, e.g. on a spur, the 

values of a  will decrease in magnitude and so the distant wedges will have a smaller 

contribution than that assumed. Therefore, distant topography will make less 

contribution than assumed and the 95% contribution cut-off point, described above, 

will be achieved sooner. In a valley the situation will be reversed. Therefore, there is 

little to be gained by using a longitudinal section of more than four times the greatest 

height for the calculation of topographic-isostatic deviation.

The accuracy of this method of determining the topographic-isostatic correction 

depends upon the validity of the assumption that infinitely long wedges, perpendicular 

to the line of greatest slope, can represent the topography. Overall, it is tentatively 

estimated that the method will give a solution to ± 10% ± Q”.1 of its true value in 

topography similar to that found in the UK. Further investigation is required to confirm 

this value. There has been no comparison with solutions found from a DEM using as 

none of sufficient density was available at the time of writing.

8.9 Summary

In this chapter the topographic-isostatic effect upon astronomical position was 

reviewed, in particular with the topography represented as right rectangular prisms, 

and these were used to calculate the components of the topographic-isostatic effect.

A numerical investigation of the topographic-isostatic effect using right rectangular 

blocks was undertaken and, although results were obtained, the amount of
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computation required was large if more than a few blocks around each point were to 

be used. An alternative approach was examined, namely that of finding the 

topographic-isostatic effect from the slope of the ground, and this was reviewed by 

evaluating it for topographical features and actual ground profiles. With astronomical 

position able to be computed as the sub-arc second level, as in Chapter 6 then, if that 

position is to be used to determine the geoid this effect must be accounted for.
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Chapter 9 

The Astrogeodetic Geoid Model

9.1 The Astrogeodetic Geoid

In previous chapters methods for the determination of astronomical position have been 

developed and discussed. It is now appropriate to consider how astronomical position, 

and hence deviation of the vertical, derived at a number of points can be used to create 

a geoid model.

The concept of astrogeodetic levelling for geoid determination is extremely simple. At 

any point, and in a given direction, the slope of the gpoid is the same as the deviations 

of the vertical. The deviation of the vertical may be fpund as:

north-south deviation % -  (<j>A - (t>G)

east-west deviation r| = (XA - XG) cos <|>

where 0 and X are latitude and longitude respectively and subscripts A and G refer to 

astronomical and geodetic quantities respectively. In practice it does not matter 

whether the latitude in the cos<|) term is astronomical or geodetic; the effect of the 

difference is negligibly small.

Astronomical position may be found by various methods of which “Position Lines” is the 

most efficient field survey method because both components £ and are found at the 

same time. The true value of an astronomical position is effectively unique, as long as 

all necessary corrections are applied to reduce observations to a common reference 

frame, and tectonic plate movements and deep earth subsurface mass movements are 

negligibly small.

Geodetic position is only realised through a datum definition, with satellite and/or 

terrestrial observations adjusted in geodetic networks. This is covered in any textbook 

of geodesy or advanced surveying such as Bomford (1980), Cooper (1987) or Vanicek 

and Krakiwsky (1982) or in Breach (1997).

If a new and extensive astrogeodetic geoid is to be observed, then it is likely that 

geodetic values from terrestrial or satellite observations will already exist or that new 

values will be observed by GPS.
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If GPS is to be used then it is likely that position relative to a control survey station, 

possibly at the origin of a local GPS or pseudo WGS 84 datum, may be found to ±0.01 

m (with post processing) while the astronomical observations are taking place.

The classical approach to determining an astrogeodetic geoid by astrogeodetic 

levelling (as explained in Bomford (1980), Vanicek and Krakiwsky (1982) or Robbins 

(1976)) is to observe deviation of the vertical at a series of sites spread approximately 

equally between two nodal points. A diagram of an astrogeodetic network appears 

similar to that of a conventional levelling network. The reason for this form of network 

is that observations, at a single station, by non-automated methods take most of a 

night. It is therefore necessary to minimise the number of stations in a network.

The difference in geoid height between two successive stations, A and B, is found as:

5N = 1/ 2 ( % a  +  % b ) L

where

Xa etc, is the deviation of the vertical in the direction of the line at station A in 

radians

L is the length of the line,

and xa = -(£cos a  + rjsin a) 

where a  is the azimuth of line.

Such an approach does not make use of the deviation at right angles to the line and so 

half the observational data is not used. A better approach is to observe deviations at 

stations in, as near to, a regular grid as possible over the whole of the area of 

investigation and estimate the deviation at sufficient intermediate points by least 

squares collocation. Then it is possible to use any route through the network to find the 

difference in geoid height at any chosen point relative to an origin in the network. With 

points well distributed over an area, a digital terrain style model of the geoid (a DGM) 

could be formed, from which a contour plot could be produced.

9.2 Analysis of the Astrogeodetic Geoid Model

9.2.1 Density of observations

In this section, the required density of astronomical observations is considered. 

The fewer observations that are required the more productive and the more 

economically viable the system becomes. The main considerations are the
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precision of individual deviations of the vertical and the way deviation of the 

vertical changes with position. Two quite different approaches to the problem 

are considered below.

9.2.2 Kaula’s rule of thumb

Vanicek and Krakiwsky (1972) report that Kaula (1966) found an empirical 

relationship between wavelengths and amplitudes of elements of geoid models. 

For a geoid profile expressed as a trigonometric Fourier series, on average, the 

relationship between the wavelength and amplitude is given by:

An s R n'2 10'5

where An is the amplitude of the nth Fourier coefficient

R is the radius of the earth

n an integer, is the number of waves in a complete circumference

If a mean value of R is taken as 6370000 metres then:

An = 63.7 n’2 metres (n>1)

Brown et al (1972) showed this to be true for features longer than about 500 

km. That implies it holds for values for n up to about 40. Assuming this is true 

for all values of n then the maximum amplitude would be

ZAn s 63.7 En'2 metres

But since Zn'2 = 71 /q if n takes all integer values from 1 to <*>, then

EAn = 63.7 (n2Iq- 1) metres

~ 41.08 metres

This is less than the maximum separation of 105m of the geoid from a best 

fitting ellipsoid stated by Vanicek and Krakiwsky (1982).

If the form of the nth undulation is

y = 63.7 n'2 sin( xn )
R

so

dy = 63.7 n'1 R‘1 cos( xn )
dx R

So, 9n> the maximum slope of the waveform n, will be:
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0n = 63.7 n'1 R'1 radians

and therefore the maximum slope with all the waveforms included will be

Z0n = 10'5 Z n'1 radians s  2” .06 Z n'1

But Z n'1 is oo and therefore it is clear that Kaula’s rule of thumb will 

overestimate the slope and therefore, probably, also the separation. However, 

since Kaula’s rule of thumb appears valid for longer wavelengths, then the 

upper elements of Table 9.1, below, derived from the above formula, will be 

appropriate.

Table 9.1 Deviation by Kaula’s rule of thumb.

n W avelength in 
kilom etres

20n”

4 10000 4.3

40 1000 8.8

400 100 13.5

4 000 10 18.3

40 000 1 23.0

400 000 0.1 27.7

4 000 000 0.01 32.5

However, since the maximum value of deviation of the vertical is understood to 

occur in the Himalayas and does not exceed about 60” then Kaula’s rule 

appears to be applicable well beyond the limit suggested by Brown et al (1972).

The maximum rate of change of slope for waveform n is given by:

dfy = -63.7  R'2sin( xn )
dx2 R

So, 0n’, the maximum rate of change of slope of the waveform n, will be:

0n’ ~ - 0.000323 7km

For n terms, the total maximum rate of change of slope will be 

n 0.000323 7km. Table 9.2, below, shows the maximum rate of change of slope
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that could be found worldwide based upon n waveforms. If large values of n 

are valid, the effect of the maximum rate of change of slope will only apply over 

very short distances and will therefore not cause any serious irregularities in the 

geoid.

Table 9.2 Rate of change of deviation by Kaula’s rule of thumb.

n wavelength in 
kilometres

0n “/km

4 1 0 0 0 0 0 . 0 0 1 3

4 0 1 0 0 0 0 . 0 1 3

4 0 0 1 0 0 0 . 1 3

4  0 0 0 1 0 1 .3

4 0  0 0 0 1 1 3

4 0 0  0 0 0 0 .1 1 3 0

4  0 0 0  0 0 0 0 .0 1 1 3 0 0

9.3 The effect of a hemispherical mountain on the deviation of the vertical

In the following, the gravitational effects of a simple hemispherical mountain are 

considered; that is, as they affect changes in deviation of the vertical. The 

hemispherical mountain as in Figure 9.1, below, may be considered as a simple model 

representing an isolated topographical feature.

Figure 9.1 A hemispherical mountain.

Assume that the gravitational attraction at any point is made up of two parts, a 

downward attraction due to the gravitational attraction of the earth and a sideways 

attraction due to a spherical mountain. The centre of the sphere is in the local horizon
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plane. The downward acceleration will be g = 9.8 m s'2. From Bomford (1980), the 

sideways acceleration will be;

F = G M d '2 towards the centre.

where G is the universal gravitational constant, is 6.672 10'11 kg'1 m3 s'2

M is the mass of the mountain

d is the distance from the point to the centre of the sphere

but M = 4 n r3 p
3

where r is the radius of the sphere

p is the density of the sphere

therefore

F = 4 G 7i r3 p d'2
3

The deviation of the vertical, in radians will be:

x  =  f g'1
= 4 G 71 r3 p d'2 g'1

3

The rate of change of deviation of the vertical towards the centre of the sphere will be:

dx = - 8 G n r3 p d'3 g 1
dd 3

The rate of change of deviation of the vertical towards the centre of the sphere will be a 

maximum at the surface of the sphere, i.e. where d = r. At this point:

dx = - 8 G n p g'1
dd 3

If p is taken as 2670 kg m'3, a reasonably representative value, then numerical 

evaluation leads to

dx = - 8 n 6.672 10'11 kcT1 m3 s'2 2670 ka m'3 m'1 s2
dd 3 9.8

= 1.52 10'7 radians m'1 (ignoring the sign)

0 ” .0 3 1  r r f 1

31” km"1
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If a mountain were to exist in this form then the underground half of the sphere would 

represent a doubling of the underground density. If the underground half of the sphere 

is now removed that will reduce the sideways acceleration by half but would also create 

a small upward component of acceleration. However, the upward component would be 

negligibly small compared with g and therefore would have no significant effect upon 

the computed deviation of the vertical or its rate of change. Therefore the deviation of 

the vertical and its maximum rate of change, which is at the surface of the hemisphere, 

become half their previously determined values and are:

X = 2 G n r3 p d'2 g'1
3

dx = - 4 G 7i p g'1
dd 3

and upon evaluation the maximum value of the latter is 16” km'1

If the point of investigation is moved towards the centre of the mountain then the point 

may be considered to be either in a horizontal tunnel or travelling over the surface of 

the mountain. If the point is in a horizontal tunnel then the external portion of the 

mountain, treated as a series of hemispherical shells, will have no gravitational 

attraction because the gravitational potential inside a spherical shell is constant 

(Heiskanen and Moritz, 1979). Therefore the deviation of the vertical in the tunnel at a 

distance d from the centre of the sphere will be:

X = 4 G 71 p d g‘1
3

and its rate of change will be

dx = 4 G 7i p g'1
dd 3

which, with the numerical values above, is 16” km'1, but because the mountain is a 

hemisphere, halves to 8” km 1.

Over the surface of the spherical mountain, the attraction towards the centre of the 

mountain has the same value but the attraction is always directed towards the centre. 

On the surface the gravitational attraction is:

F = 4 G n r p
3

In this case the deviation of the vertical is:

X = F d g '1
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r

= 4 G n p d g*1
3

and its rate of change is:

dx = 4 G 7i p g'1
dd 3

which is the same result as that obtained by treating the point as if it was in a tunnel. 

Therefore, since the mountain is hemispherical, and not spherical, the deviation of the 

vertical and the rate of change of deviation of the vertical become:

X = 2 G n p d g'1
3

dx = 2 G n p g'1
dd 3

The greatest rate of change of deviation of the vertical, from the above, is at the foot of 

the mountain, that is, where the distance of the station from the centre of the mountain 

is the same as the radius of the mountain. At this point the value is 16” km'1 

irrespective of the radius of the mountain. For the geoid to be concave, the rate of 

change of deviation of the vertical would have to exceed, approximately, 32” km'1 in the 

opposite sense to that of the curvature of the ellipsoid. Since, even with a reasonable 

variation in the assumed value of p, the rate of change of deviation of the vertical will 

not approach the earth’s curvature, the geoid can only be convex when viewed from 

above.

A sparse set of astrogeodetic observations in the region of a large topographical 

feature will lead to errors in the computed geoid model for that area, even with 

errorless observations. Considering only geoid sections from astrogeodetic levelling, 

Table 9.3, below, was constructed to show the effect of increasing the spacing between 

observation sites in the region of a hemispherical mountain. Mountains of radii ranging 

from 100 to 2000 metres were used. In Table 9.3 the geoid height at the top of the 

mountain is relative to the geoid height at a point 5000 metres from the centre of the 

mountain. The results below relate only to the errors due to the spacing of the stations 

in conjunction with the conventional approach to geoid sections and do not include 

considerations of uncertainty in the individual observations.
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Table 9.3 Errors in geoid sections by astrogeodetic levelling with sparse data.

radius of 
mountain

2000 1000 500 200 100

metres

At top of mountain

inter
station

distance

stations geoid
height

max
error

geoid
height

max
error

geoid
height

max
error

geoid
height

max
error

geoid
height

max
error

metres per km mm mm mm mm mm mm mm mm mm mm

1000 1 173.18 5.67 54.96 5.47 6.87 -6.45 0.44 -1.78 0.05 -0.51

500 2 168.98 1.47 51.00 1.51 14.70 1.38 0.94 -1.28 0.12 -0.45

333 3 168.17 0.66 50.18 0.68 12.49 -0.84 1.44 -0.78 0.18 -0.38

250 4 167.88 0.37 49.88 0.39 13.70 0.38 1.94 -0.28 0.24 -0.32

200 5 167.75 0.24 49.74 0.25 13.01 -0.31 2.44 0.22 0.31 -0.26

100 10 167.57 0.06 49.56 0.06 13.39 0.06 2.28 0.06 0.62 0.06

25 40 167.52 0.00 49.50 0.00 13.33 0.00 2.23 0.00 0.57 0.00

10 100 167.52 0.00 49.49 0.00 13.33 0.00 2.22 0.00 0.56 0.00

2.5 400 167.51 0.00 49.49 0.00 13.33 0.00 2.22 0.00 0.56 0.00

1 1000 167.51 0.00 49.49 0.00 13.33 0.00 2.22 0.00 0.56 0.00

The results indicate that, at the 0.01 mm level, there is no advantage in reducing the 

inter-station distance below 25 m. The results for the 2000 m and 1000 m mountains 

are almost identical and suggest that error is not a function of the size of the feature but 

only of the inter-station distance. Negative values of the error only occur where there is 

no observation at the foot of the mountain. In fact, for all mountains where the inter

station distance is 100 m, i.e. where there is an observation at the foot of the mountain, 

the error is 0.06 mm. It would therefore appear that proximity of at least one 

observation near the foot of the mountain would make a significant difference to the 

value of the error in the final geoid height of the mountain top.

In the following, the effect of taking the whole set of observations a few metres closer 

or further away from the centre of the mountain was investigated. In all cases, the 

radius of the mountain was 1000 m and the inter-station distance was 100 m. The first 

observation is at 5000 m from the centre of the mountain and the next at (5000 - x)
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metres. Therefore, the nearest observation outside the mountain is (1100 - x) m. The 

final observation is at the top/centre of the mountain.

Table 9.4 The effect of taking a set of observations a few metres closer or further away 

from the centre of a mountain.

radius of mountain 1000 metres

inter-station distance 100 metres

At top of mountain

X geoid height max error

metres mm mm

0 49.556 0.063

10 49.506 0.013

20 49.466 -0.026

30 49.438 -0.055

40 49.420 -0.073

50 49.413 -0.080

60 49.418 -0.075

70 49.434 -0.059

80 49.463 -0.030

90 49.503 0.010

100 49.556 0.063

inter-station distance 49.493

= 1 metre

From Table 9.4 it would appear possible to reduce the error in the geoid height at the 

top of the mountain by setting the offset x to about 13 metres. In practice, of course 

this would be quite impossible because mountains are neither symmetrical nor 

hemispherical. What can be concluded is that errors appear to be bounded to 

approximately ± the error in the geoid height when an observation is taken at the foot of 

the mountain.
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9.3.1 The rate of change of the deviation o f the vertical

The second rate of change of the deviation of the vertical will be:

d2y = 4 G 71 r3 p d'4 g'1
dd2

outside a hemispherical mountain. Again this will be a maximum for a minimum 

value of d, i.e. d = r, in which case:

d2y = 4 G n p r'1 g'1
dcr

which, with the values above, becomes 0.047 r'1 “m'2 if r is in metres.

Rice (1962), as reported in Robbins (1976), found a value of 0.016“ km'2 over average 

lines of 22 km. With the formula above, a similar value would be found 7.5 km from the 

centre of a hemispherical mountain of 1000 m radius. Dean (1980) found a value of 

0.008” km'2 for work in the UK. The UK has few mountains of 1000 m. However, the 

value of 0.008 ” km'2 would also be found 1.5 km from the centre of a hemispherical hill 

of 100 m radius.

9.4 Geoid Model Simulation

From the foregoing it is apparent that the inter-station distance affects the errors in the 

geoid height, considered only from the point of view of mathematical approximations in 

the formulae for geoid sections.

Geoid models were constructed from defined topographic models. This enabled the 

computation of as extensive and detailed a set of deviations as would be required.

Such a detailed set of “errorless” deviations would not have been possible from a DEM 

of real topography because, in the analysis below, the topography is defined by simple 

geometric shapes for which exact values of attraction and hence deviation can be 

computed.

In the following, the effects of uncertainty in the observations are also included.

A topographic model, 10 km by 10 km, was defined by up to 70 hemispherical 

mountains/hills. The roughness of the model is greater than most realistic topography 

of similar height ranges but the purpose of the topographic model is merely to generate 

a geoid model with easily definable deviations. Four models were used.
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The algorithm for the deviation at a point inside and outside a hemispherical hill, due to 

the hill has already been developed. Each deviation has east-west and north-south 

components. The deviation at a point, due to up to 70 such hills is the sum of the 

individual deviations.

The geoid and deviation models were formed at a regular grid of 100 m, i.e. for 10201 

points in each model. The 100 m spacing can lead to errors of up to 0.00006 m at the 

top of each mountain or hill due to mathematical errors in the geoid sections formulae 

as shown above. With up to 70 hills and mountains in the model, the errors will be 

greater.

The geoid model was formed from the deviations, by successive geoid sections from 

the southwest corner of the model going north and then east. A second computation 

starts at the southwest corner and goes east and then north. The difference in the 

computed values for the same point gives a check upon the validity of the 

computational method. The mean value from both the computations was accepted. 

Full data sets for geoid heights and deviations throughout each model were created.

Brief details of the models are in Table 9.5. Diagrammatic representations of the 

topography are in Figures 9.2 to 9.4. Each hemispherical hill is shown by its circular 

base. Figures 9.5 to 9.7 show the geoid associated with a topography model.

Table 9.5 Parameters of topography and geoid models.

Model 1 2 3 4

Mountains Hills Lowlands Plain

Max geoid height 0.26405 m 0.05069 m 0.00096 m 0 m

Difference between 
E-then-N and N-then-E 
computation. See 
above

0.00042 m 0.00030 m 0.00017 m 0 m |

No of hills 19 70 70 0

height/radius of hills , 1 x 2000 m 

3 x 1500 m 

6 x 1000 m 

9 x 500 m

6 x 500 m 

21 x 375 m 

43 x 250 m

7 x 100 m 

63 x 60 m
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Figure 9.2 Diagrammatic representation of the topography model “Mountains”
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Figure 9.3 Diagrammatic representation of the topography model “Hills’
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Figure 9.4 Diagrammatic representation of the topography model “Lowlands”
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Figure 9.5 The geoid associated with the topography model “Mountains”.

Figure 9.6 The geoid associated with the topography model “Hills”.
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Figure 9.7 The geoid associated with the topography model “Lowlands”.

The data sets for the deviations were edited to leave a subset of observations in a 

regular grid. This reduced set of deviations represents a set of “true” values of 

simulated observations. Adding random errors to the “true” observations created an 

“observed” set of simulated observations.

Two simulation studies were undertaken to investigate the relation between RMS error 

in geoid model, quality of deviation observations, inter-station distance and roughness 

of the terrain.

• The first study involved modelling the geoid by finding the coefficients of various 

polynomial expressions to describe (fit) the computed geoid.

• The second study involved developing and using an interpolation algorithm to 

provide sufficient computed values of deviation to form a geoid by conventional 

astrogeodetic levelling.

8 a
$ metres
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9.5 Geoid Model by Polynomial Coefficients

The geoid could be modelled by any suitable 2 dimensional series such as a series 

based upon:

i=k j=i

X E a j j e ^ n 1 = a 10e + ann + a2oe2 + a2ien + a22n2 + a30e3 + ... + aki<nk
i=1 j=0

e and n are the easting and northing of the point. The co-ordinates of the southwest 

corner of the block are (0,0).

The number of terms in the model depends on how far the series is taken. If the 

maximum values of i and j are k then there are k2-1 terms. The “-1” removes the 

singular term, a0o, and equivalent to the datum defect of a 1 dimensional network. It 

will be impossible to find a00 from slope information alone. The original geoid model 

contains 10201 heights, i.e. 101 rows and columns. The selected “observed” 

observations will be one of those in Table 9.6, below.

Table 9.6 Numbers of “observations” of r\ and £ in the cut down sets of “true” values.

Selected fraction of total 
number of rows and 

columns

f

No of rows and columns 

r = 101 x f  

(rounded up)

No of tj and B, 
“observations”

2r2

1/2 51 5202

1/3 34 2312

1/4 26 1352

1/5 21 882

1/6 17 578

1/8 13 338

1/10 11 242

1/12 9 162

; 1/15 7 98

1/20 6 72

1/25 5 50

1/33 4 32

1/50 3 18
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For a good fit, k should be large but less than r. If k is too small, there will be excessive 

smoothing and little can be concluded about the relationships between the quality of 

the fit, inter-station distance and quality of the observations.

The object of the next part of this investigation is to reconstruct the geoid model from 

the computed polynomial coefficients and compare the reconstructed geoid model with 

the original geoid model in terms of the root mean square (RMS) differences between 

them at a 100-metre spacing.

When the observation equations can be expressed in the form:

Ax = b + v

The least squares solution for the parameters is:

x = (A V A C 'A V b

where x is the vector of corrections to provisional values of the parameters.

A is a matrix of the observation equations partially differentiated with

respect to the parameters.

b is a vector of “observed minus computed” observations.

crbb *s the covariance matrix of the observations.

The dimensions of the matrices, e.g. M, in the form no of rows M no of columns, are:

Vfekfk+S) X 1 , 2 r* A 1/z k (k + 3 ) , 2 ^  b 1 , 2 r* a b b Sr2.

The matrices are defined as follows:

x is the vector of corrections to the deviation model coefficients

x — [ 5a-|0 8an 8a2o 8a2i 8a22 ••• 8akk]T

The observations are of deviation, therefore in terms of the geoid model, defined 

above:

6 = dH n = dH
dn de

where r \  and £  are in radians 

H, n, and e are in metres

dH = H’n 
dn
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X X  j ay e(4) n^'1*i=i j=i

= an + a2ie + 2a22n + a3ie2 + 2a32en + 3a33n2 + a4ie3 + 2a42e2n

+ 3a43en2 + 4a44n3 + ... + kakkn{k‘1)

dH = H’e
de

i=kj=(M)
X X (i-j) ay e(H’1) n]i=1 j=0

= aio + 2a20e + a2in + 3a30e2 + 2a3ien + a32n2 + 4a40e3 + 3a4ie2n

+ 2a42ert2 + a43n3 ... + ak{k.i)n(k"1)

A = [ A ^ A , ] t

Therefore a row of is given by:

= [ 0 1 0 e 2n 0 e2 2en 3n2 0 e3 2e2n 3en2 4n3 ... kn(k‘1) J

and a row of A,, is given by:

A,, = [ 1 0 2e n 0 3e2 2en n2 0 4e3 3e2n 2en2 n3 ... n(k'1) 0 J

b = T o$i - I
I 0^2 - C£2 j

I Ct|1 “ Cn1 I
I Or]2 “ C^2 |
L ... J

In this study, c bb is assumed to be an identity matrix. This ignores any difference in 

quality of the observations. If all observations are of the same quality and only the 

parameters, but not their quality, are to be computed then abb is not required.

The relationship was investigated between the topography as defined by the four 

models, density of the observations, number of terms in the polynomial approximation 

of the model and fit of the model derived from the computed values of the polynomial 

coefficients with the errorless model. The RMS heights of the geoid models, where 

height is with respect to the southwest corner of the model, are in Table 9.7 below:
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Table 9.7 RMS heights of the geoid models.

Model RMS height

mountains

hills

lowlands

plain

0.163097 m 

0.022843 m 

0.000219 m 

0.0 m I

In each case in the original models, geoid heights were computed at 100 m spacing. 

“Observations” to construct an estimated model were taken at spacings of 500 m,

700 m, 1000 m, 1500 m and 2500 m.

The random errors applied to the “true observations” to obtain the “observed 

observations” were 0” , 0” .1, 0” .3, 1” and 3”. To minimise the complexity of the “random 

error” algorithm for the application of errors to the true “observations” in the Excel 

spreadsheet, the error was applied as:

± k * (RAND() -0.5)

where k is the range for maximum error

RAND() takes any value between 0 and 1 with equal probability.

This distribution is of course not normally distributed but the standard error of the 

observations will be 0.288 k. In the study, specific values of k are used. Table 9.8, 

below, shows k with its equivalent standard errors.

Table 9.8 k factor and equivalent standard error.

k standard
error

0” 0”

0”.1 0”.03

0”.3 0”.09
1” 0”.29

3” 0”.86
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Polynomials of powers of the easting and northing and their products up to 12 were 

investigated. The relationship between the maximum power and the number of terms 

in the polynomial expression is in Table 9.9, below.

T able 9.9 P ow er, num ber o f  term s and polynom ial coefficients for a geoid  m odel.

Maximum
power

Number 
of terms

Polynomial expression, coefficients o f ...

0 0

1 2 e n

2 5 e n e2 en n2

3 9 e n e2 en n2 e3 e2n en2 n3

4 14 e n e2 en n2 e3 e2n en2 n3 e4 e3n e2n2 en3 n4

5 2 0 e n e2 en n2 e3 e2n en2 n3 e4 e3n e2n2 en3 n4 e5 e4n e3n2 ... n5

6 2 7 e n e2 en n2 e3 e2n en2 n3 e4 e3n 2 2 e n en3 n4 e5 e4n e3n2 ...n 6 :

7 35 e n e2 en n2 e3 2e n en2 n3 e4 e3n 2 2 e n en3 n4 e5 e4n e3n2 .. .n 7

8 44 e n e2 en n2 e3 e2n en2 n3 e4 e3n e2n2 en3 n4 e5 e4n e3n2 .. .n 8

9 54 e n e2 en n2 e3 e2n en2 n3 e4 e3n e2n2 en3 n4 e5 e4n e3n2 .. .n 9

10 65 e n e2 en n2 e3 e2n en2 n3 e4 e3n 2 2 e n en3 n4 e5 e4n e3n2 .. .n 10

11 7 7 e n e2 en n2 e3 e2n en2 n3 e4 e3n 2 2 en3 n4 e5 e4n e3n2 .. . n11

12 90 e n e2 en n2 e3 e2n en2 n3 e4 e3n 2 2 e n en3 n4 e5 e4n e3n2 .. .n 12

The relationship between the maximum power, p, and the number of terms in the 

polynomial expression, n, is

n = (p + 1 )*(p + 2)12 -1

Superficially, there would appear to be 1200 possible combinations to test, i.e. powers 

to 12, 5 different spacings, 4 different models and 5 values for k. Of those, only 751 

combinations were tested. Where conclusions could be drawn, further data was not 

derived. At the time of the investigation, observations and computations had been 

made to determine deviation to ± 0” .3 (latitude) and therefore this study was aimed at 

finding the quality of geoid that could be determined with this precision of observation 

and what could be achieved if realistic improvements could be made to the precision of 

observations. The full set of numerical results is at Annex B, RMS Solutions For Tests 

Of Polynomial Geoid Models.
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The numerical values of the polynomial coefficients were derived from least squares 

estimations. Since up to 90 coefficients were estimated, the matrix inversion routines 

of Excel, limited to matrices of dimensions of 50 could not be used. Solutions for the x 

vector of coefficients were attempted initially by the method of Jacobi, for 

computational simplicity. The method failed because the terms on the leading diagonal 

of the normal equations matrix were not dominant. Solutions by Gauss-Seidel were 

possible, but only when the number of coefficients was very small. For computations of 

coefficients involving powers greater than 3, the convergence was unacceptably slow 

and the method had to be abandoned. The final working solution was by Choleski’s 

method. Choleski was the most complex solution to programme in a spreadsheet. A 

check upon the correctness of the programming was to take the output of a 90- 

parameter Choleski solution as the input to a Gauss-Seidel solution. The Gauss-Seidel 

solution did not diverge or change the solution.

The author’s conclusions from this part of the study were as follows.

• There is a practical limit to the number of coefficients that can be computed 

using a soreadsheet. Accumulated rounding errors in the Choleski solution 

meant that in the 90-parameter solution the last term in the lower triangular 

matrix, L, was the square root of a small negative number. This was arbitrarily 

changed to make it the square root of a small positive number. The power of 

12, or 90-parameter solution, must therefore be treated with caution, as must 

other high power solutions.

• The observations are not of the property to be derived, that is the observations 

are of the slope of the geoid. The property to be derived is the geoid height.

The following simple example in two dimensions illustrates the problem.
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Figure 9.8 An illustration of a geoid model based upon observations of slope or height.

In Figure 9.8, the geoid is the curved line and is symmetrical about the centre of 

the figure. The model of the geoid is to be a straight line constrained to fit the 

geoid at the point A. Because the geoid is symmetrical, a least squares 

solution based upon observations of slope at A and B would compute the geoid 

as the line AB. By contrast, if the observations had been of geoid height, the 

least squares fit would lead to a geoid model of line AC. In three dimensions, 

with a more complex geoid and with more parameters in the solution, the effect 

is more difficult to analyse. This may account for the fact that adding more 

terms to the polynomial geoid model does not always improve the RMS 

solution. Many of the graphs at Annex B show anomalous peaks at individual 

“maximum powers of polynomial” and this phenomena is probably the cause.

• With the mountains model and 500 m inter-station distance (mountains at 500 

m), the graphs at Annex B show that there is little to be gained with terms in the 

polynomial expression of powers beyond 6. If the observation error range is 

increased to 10” , only then does the least squares solution become significantly 

affected by the errors in the observations beyond a power of 5. A 1 ” error range 

produces a solution very similar to that of errorless observations. The best 

RMS solution, at about 0.0065 m, is about 4.0% of the geoid model RMS.

• With the hills model and 500 m inter-station distance (hills at 500 m), more 

coefficients produce a better model up to powers of 10. This is possibly 

because the topography is still rugged but more complex: 70 features in the hills 

model compared with 19 in the mountains model. The 0” .3 solutions are 

substantially the same as the observationally errorless, 0” error range, solutions 

and only marginally better than the 1” error range solutions. The best RMS 

solution, at about 0.0010 m, is about 4.4% of the geoid model RMS.
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• With the lowlands model and 500 m inter-station distance (lowlands at 500 m), 

more terms in the polynomial model are justified only if the observations are of 

the highest quality. The maximum useful power of polynomial coefficients / 

error range cut off is in Table 9.10, below. The assessment is very subjective.

Table 9.10 The maximum useful power for observations of a given quality in the 

’’Lowlands” model.

error
range

maximum 
useful power

0” 12

0”.1 9

0” .3 4

1” 2

The reason for the change of maximum useful power with error range is that 

with such a small and irregular model, in terms of feature size to inter-station 

distance, observational errors dominate over the underlying geoid slope signal. 

The best RMS solution, at about 0.00006 m, is about 27% of the geoid model 

RMS. With a 1” error range there is barely any improvement over no model at 

all.

• With all the plain models, the RMS statistics are only functions of the effects of 

errors in the observations. Generally throughout the study, the more terms in 

the polynomial expression the worse the solution in RMS terms since the least 

squares solution, by definition, gives a best fit to the data provided. In very 

approximate terms the RMS is related to the maximum power of the polynomial, 

the error range, and the inter-station distance by the following expression.

RMS « p * e * d  
4 M O6

where p is the maximum power of a term in the polynomial expression,

e is the standard error of slope observations in arc seconds,

d is the inter-station distance in metres.
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• In the mountains with inter-station distance of 700 m, the RMS solutions are 

only marginally worse than the mountains with inter-station distance of 500 m 

RMS solutions. The mountains with inter-station distances of 1000 m, 1500 m 

and 2500 m RMS solutions, although similar, are significantly worse than the 

mountains with inter-station distance of 700 m RMS solutions. This indicates 

that about 700 m is the optimum spacing for this topography. Throughout there 

is nothing to be gained by improving the quality of observations from the 1” 

error range.

• With the hills model, a more realistic rugged topography representative of some 

mountainous parts of England and Wales, there appears to be a limit to the 

usefulness of improved observations, that is dependant upon the inter-station 

distance, as in Table 9.11, below.

Table 9.11 The optimisation of inter-station distance and quality of observations 

associated with the “hills” model.

inter-station
distance

approximate 
best RMS

minimum useful 
error range

500 m 0.001 m 0”.3

700 m 0.002 m 1”

1000 m 0.003 m 1”

1500 m 0.004 m 1”

With the hills model, the maximum useful power in the polynomial terms 

depends upon the inter-station distance as in Table 9.12, below.
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Table 9.12 The optimisation of inter-station distance and maximum useful power in the 

polynomial expansion associated with the ‘‘hills” model.

inter-station
distance

maximum 
useful power

500 m 10

700 m 8

1000 m 7

1500 m 6

This is because there are fewer observations if the inter-station distance is 

greater and also because a polynomial with too many terms will model the 

noise rather than the signal.

• The lowlands model has very short wavelength features. Therefore, only a high 

density of observations can adequately model the geoid. All the lowlands 

solutions are dominated by noise. If the inter-station distance is 1000 m or 

greater, then the polynomial model gives RMS values greater than if there had 

been no model at all. At 700 m inter-station distance the maximum error range 

above which observations become pointless is 0” .1 and the maximum error 

range for a 500 m inter-station distance is 0” .3. However, these solutions have 

RMS agreement with the geoid better than 0.00015 m. Although there appears 

to very little to be gained by observing geoid slope when the geoid is so 

smooth, it must be remarked that these models do not reflect the long 

wavelength slope that will apply to most parts of the real geoid.

• Overall the quality of RMS agreement depends upon the quality of 

observations, the inter-station distance, the nature of the topography and hence 

the geoid and the number of terms in the polynomial expansion of the geoid. 

This study suggests that a sub-millimetric geoid can easily be achieved in 

moderate topography such as that found in most of England with inter-station 

distances up to 700 m and observations equivalent to an error range of 0”.3, i.e. 

a standard error of 0” .1. With an error range of 1” , equivalent to a standard error 

of 0” .3, a geoid at the 0.002 m level is achievable.

At the other extreme, in mountainous country, with an inter-station distance of 

up to 700 m and with an error range of 1” , equivalent to a standard error of 0” .3, 

the quality of geoid that can be achieved is, in RMS terms, about 4-5% of the 

difference in geoid height from the origin of the survey.
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All these conclusions relate to an area of investigation of 10 kilometres square. 

To extend these conclusions to larger areas would require re-examination of the 

parameters of this study.

9.6 Geoid Model by Interpolation of deviations

In this study, a full block of 101 by 101 deviation values for both north-south and east- 

west directions was developed from the available "observations". The algorithm 

chosen was such that intermediate values of deviation were determined as a weighted 

average of all "observed" deviation values in the block. The weight, w, applied for each 

"observed" value was defined by:

w = (I {1 + g i(l/92)g3'1})'1

where I is the distance between the "observation" and the interpolation point and is 

given by:

I2 = (E, - E„)2 + (N, - N0)2

where the subscripts refer to the "observed" and the interpolated points.

The constants g^ g2and g3 may be selected for convenience.

This weight algorithm was chosen because:

It gives smooth and continuous values for deviation and hence the geoid, 

throughout the model.

Weighting is near inverse linear with distance in the local region of the

interpolation point but the weights of points only a little beyond a critical 

value, g2, soon become very small.

If g2 is too large, there will be excessive smoothing. If g2 is too small then interpolated 

points will tend to take the value of the nearest "observed" point and a plot of 

interpolated deviations would appear as a checkerboard of steps rather than a smooth 

but undulating surface.

The chosen values of gi and g3 were 100 and 1000 respectively. g2 was chosen to be 

0.6s where s is the approximate average distance between "observations". For a grid 

arrangement, s was taken as the distance between adjacent points in the grid. The 

coefficient of I, {1 + g i(l/92)g3‘1}, therefore varies with the distance I as in Table 9.13 and 

Figures 9.9 and 9.10, below.
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Table 9.13 1 and its coefficient in the weight function.

1 coeffic ient

{1 + g i(l/92)g3'1} '1

0.0s 0.99900

0.2s 0.99538

0.4s 0.97891

0.6s 0.90909

0.8s 0.68298

1.0s 0.31701

1.2s 0.09091

1.4s 0.02109

1.6s 0.00462

1.8s 0.00100

2.0s 0.00021

1

0.8 

0.6
coefficient Q 4

0.2 

0
0.0s 0.4s 0.8s 1.2s 1.6s 2.0s

I

Figure 9.9 1 and its coefficient in the weight function.
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Figure 9.10 1 and the weight function.

g2 was optimised to be 0.6s because that was the value that gave a best fit for the 

mountains model with a spacing of 500 m between observations and with 0".0 random 

error applied to the "observations".

Once again, the variables to be investigated were:

Inter-observation distance - 500 m 700 m 1000 m 1500 m 2500 m.

Size of random "error" in the observations - 0" 0".1 0".3 1" 3".

Topographic model, i.e. mountains, hills, lowlands and plain, as defined earlier.

The total number of solutions was therefore 100. RMS values of the difference 

between the geoid derived from the full set of 10201 “true” observations and the set of 

10201 “observations” reconstructed by interpolation from the subset implied by the 

inter-station distance. The RMS results are in Table 9.14, below.

206



Chapter 9 The Astrogeodetic Geoid Model

Table 9.14 RMS difference between the geoid derived from a full set of “true” 

observations and a set of 10201 interpolated “observations”.

1 RMS values are in metres

Mountains

distance error 0" 0.1" 0.3" 1" 3"

500m 0.001137 0.001148 0.001212 0.003005 0.006290

700m 0.002656 0.002495 0.002733 0.006471 0.005688

1000m 0.003375 0.003343 0.003476 0.004332 0.007127

1500m 0.006779 0.006809 0.006499 0.007162 0.009155

2500m 0.030270 0.030389 0.029893 0.034240 0.045467

Hills

distance error 0" 0.1" 0.3" 1" 3”

500m 0.000459 0.000486 0.000664 0.001582 0.004750

700m 0.001798 0.001808 0.001758 0.002120 0.008012

1000m 0.001227 0.001231 0.001563 0.002353 0.006973

1500m 0.002357 0.002456 0.002545 0.003707 0.008251

2500m 0.004568 0.004483 0.005076 0.004712 0.010067

Lowlands

distance error 0" 0.1" 0.3" 1" 3"

500m 0.000104 0.000239 0.000508 0.002742 0.004806

700m 0.000139 0.000318 0.000696 0.00146 0.004375

1000m 0.000265 0.000321 0.000702 0.001617 0.006973

1500m 0.000446 0.000548 0.000927 0.003566 0.009210
2500m 0.000215 0.000643 0.000963 0.003542 0.015912

Plain

distance error 0" 0.1" 0.3" 1" 3"

500m 0.0 0.000126 0.000407 0.001199 0.003514

700m 0.0 0.000169 0.000445 0.001831 0.008974

1000m 0.0 0.000229 0.001157 0.001821 0.006133

1500m 0.0 0.000250 0.000789 0.003569 0.015089

2500m 0.0 0.000308 0.000818 0.003562 0.005505
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From these results it would appear that the RMS value of the difference between the 

“true” and computed geoid is a function of the 3 variables: inter-observation distance, 

size of random "error" in the observations, and size of the topographic model. The 

problem is to find the relationship so that the numerical quality of a computed geoid 

may be found given the values of the variables and so the quality of output may be 

determined before observations are taken. With such a relationship known it would be 

possible to select values for inter-observation distance and quality of observation given 

knowledge of the terrain for a desired quality of geoid model. Inter-observation 

distance and size of random "error" in the observations may easily be expressed 

numerically. Finding a single numerical value to describe the terrain is more difficult. 

For this part of the investigation, it is taken as the simple statistic, the difference in 

height between the highest and lowest point in the topographic model.

The form of the function is not clear from the above data. A function of the form:

RMS2 = a tx ky fz

where a is a constant

t is the terrain height 

k is the observation “error” 

f is the inter-observation distance

cannot be possible because if any of t, k or f are 0 then the RMS must be 0 and that 

does not fit the above data. Similarly a function of the form:

RMS2 = a tx + b ky + c fz

where a, b and c are constants

also cannot be possible because unless t, k and\ are 0, then the RMS cannot be 0 and 

that also does not fit the data associated with the plain model.

The function: RMS2 = a tu kv + b tw fx + c ky fz

where a, b, c, u, v, w, x, y and z are constants

was investigated with a view to finding which of the terms are applicable and finding 

their values. To avoid large and small terms in the various least squares solutions 

below, the units of t and f are taken as kilometres, k as seconds of arc and the RMS is 

in millimetres. The 100 RMS values above lead to 100 observation equations to solve 

for up to 9 unknowns. The model is well over-determined. The least squares solution 

for the above model is in Table 9.15, below. Significant statistics are in bold type.
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Table 9.15 Least squares determination of the parameters in the model 

atu kv + b tw f  + cky f®- RMS2 = 0.

x vector values

a 0.03839
b 0.02975

c 1.59614
u 5.90211

v 1.42173
w 2.78161
X 6.76521

y 1.53668
z 1.00305

coefficients of correlation

b c u v w X y z

-0.05747 -0.10839 -1.00000 -0.00015 0.23835 0.00921 -0.03623 0.26974 a

-0.05027 0.05585 0.27579 -0.20542 -0.97915 0.05813 -0.04445 b

0.10761 0.15176 0.15352 0.01903 -0.93848 -0.24688 c

-0.00473 -0.23855 -0.00754 0.03697 -0.26954 u

0.03585 -0.28530 -0.16024 -0.01423 V

0.00305 -0.19513 0.18502 w

-0.01812 0.00545 X

-0.03889 y
(a ta )'1

a b c u V w X y z

22.24031 -0.00676 -0.10569 -835.587 -0.00038 0.27538 0.03879 -0.01970 0.07138
0.00062 -0.00026 0.24677 0.00380 -0.00125 -0.02181 0.00017 -0.00006

0.04275 3.94245 0.01734 0.00778 0.00351 -0.02237 -0.00286
31394.4 -0.46275 -10.3547 -1.19329 0.75531 -2.67992

0.30543 0.00485 -0.14084 -0.01021 -0.00044
0.06002 0.00067 -0.00551 0.00254

0.79791 -0.00187 0.00027

0.01329 -0.00025
sym m etrical 0.00315

The solution became unstable as convergence approached and a solution was only 

achieved with increasing values of under-relaxation. The reason is that as 

convergence approached the coefficient of correlation between a and u tended towards
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1.0 exactly. This implies that there is not a unique solution for a and u and either could 

be fixed at any value and convergence still achieved. The value of u is unexpectedly 

large and the variances of a and u are out of sympathy with the variances of the other 

parameters. If there is a functional relationship between the RMS and the variables t, k 

and f, then a cannot be fixed. Therefore, in the next model (Table 9.16 below) u is 

arbitrarily set to 2 and a remains free.

Table 9.16 Least squares determination of the parameters in the model 

at2kv + btwfx + ckyf  - RMS2 = 0.

x vector values

a 3.35131

b 1.42E-06
c 4.33055
V 1.87770
w 10.32924

x 13.91542

y 2.07967

z 1.10917

coefficients of correlation

v w
-0.00435 -0.20562

-0.16587

-0.99167 0.00292

0.00222 - 1.00000 

0.20469 0.16588

-0.00093

0.26401 0.20178 0.03795

-0.02210 0.17001 -0.11673

0.00092 -0.98185 -0.13758

-0.23768 -0.20688 -0.01772

0.01669 -0.17002 0.11667

-0.00253 0.01300

-0.02296

w

(ATA)-’
W

0.12693 -2.00E-06 -0.0144 -0.03400 1.37092 0.50765 0.00295 0.00015
1.69E-06 -4.2E-05 2.77E-07 -1.71260 -0.00015 9.06E-06 -1.7E-06

0.03866 0.00387 42.99935 0.00098 -0.00792 -0.00030
0.00926 -0.11793 -0.12346 -0.00082 -1.9E-05

1738080 118.747 -9.19613 1.70208
29.1268 -0.00056 0.00077

0.00168 -1.0E-05
symmetrical 0.00012
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Again, the convergence is unstable, and this time it is because of the -1.0 coefficient of 

correlation between b and w. Again, the value and variance of w are unreasonably 

large. Again, b cannot be fixed if the functional relationship is to be found. Therefore, 

in the next model, Table 9.17, w is arbitrarily set to 2 and b remains free.

Table 9.17 Least squares determination of the parameters in the model 

at2kv + bt2fx + ckyf* - RMS2 = 0.

x vector values

a

b

c
V

x

y
z

5.23738

1.09E-05

2.62721

1.78656

18.6132

2.84053

1.03932

coefficients of correlation

b c V x y z

-0.27001 -0.20221 -0.98979 0.27000 0.20105 0.03186 a

-0.00800 0.24100 -1.00000 0.00774 -0.00794 b

0.20333 0.00800 -0.99687 -0.06089 c
-0.24100 -0.20493 -0.01003 V

-0.00774 0.00793 x

-0.00470 y
(At A)-1

a b c V x y z

0.12620 -3.2E-05 -0.01459 -0.02160 3.21780 0.00502 8.96E-05

1.12E-07 -5.4E-07 4.95E-06 -0.01122 1.82E-07 -2.10E-08

0.04128 0.00254 0.05451 -0.01424 -9.80E-05

0.00378 -0.49649 -0.00089 -4.90E-06

1125.04 -0.01826 0.002107

0.00494 -2.60E-06

sym m etrical 6.27E-05

Yet again, the convergence is unstable, and this time it is because of the -1.0 

coefficient of correlation between b and x. Again, the value and variance of x are 

unreasonably large, b cannot be fixed if the functional relationship is to be found.
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Therefore, in the next model, Table 9.18, below, x is arbitrarily set to 2 and b remains 

free.

Table 9.18 Least squares determination of the parameters in the model 

a t2kv + b t2f  + ckyf  - RMS2 = 0.

x vector values

a

b

c
V

y
z

0.00179 

2.40715 

0.99631 
6.41904 

1.44545 
1.05737

coefficients of correlation

b c V ....y z

-0.29772 -0.18316 -1.00000 0.17245 0.05702 a

-0.07227 0.29746 0.09658 -0.10104 b

0.18316 -0.92865 -0.30006 c

-0.17253 -0.05688 V

-0.01020 _ y
<AtA ) \

a b c V y z

0.12764 -0.00589 -0.01289 -64.7185 0.01078 0.00193
0.00306 -0.00079 2.98264 0.00093 -0.00053

0.03881 6.53636 -0.03201 -0.00560
32814.6 -5.46894 -0.97555

0.03062 -0.00017

symmetrical 0.00896

The convergence is still unstable, this time it is because of the -1.0 coefficient of 

correlation between a and v. Again the value and variance of v are unreasonably 

large, a cannot be fixed if the functional relationship is to be found. Therefore, in the 

next model, Table 9.19, below, v is arbitrarily set to 2 and a remains free.
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Table 9.19 Least squares determination of the parameters in the model 

at?k2 + bt2f* + ckyr -R M S  =0.

x vector values

a
b

c

y
z

1.07096

39.4333
0.94267

3.73133

1.14774

coefficients of correlation

b c y z

-0.33066 0.01020 -0.01843 0.16586 a

-0.11694 0.11859 -0.08447 b

-0.99945 -0.02159 c

-0.00680 y
<at a )-1

a b c y z

0.00163 -0.00071 
0.00282

symmetrical

7.80E-05

-0.00115

0.03443

-0.00013
0.00113

-0.03322

0.03209

5.53E-05
-3.70E-05

-3.30E-05
-1.00E-05

6.8E-05

Although convergence is no longer unstable, the coefficient of correlation between c 

and y is very close to -1.0. Although the values and variances of c and y are not 

unreasonably large, the value of y is unlikely because an integer value would be 

expected if there were a truly functional relationship, c cannot be fixed if the functional 

relationship is to be found. Therefore, in the next model (Table 9.20 below) y is 

arbitrarily set to 2 and c remains free.
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Table 9.20 Least squares determination of the parameters in the model 

at2k2 + b t2f* + ck2f* - RMS2 = 0.

x vector values o g-q
a 1.12976 1.97460 48.8733

b 39.2367 2.57943
c 6.19348 1.99911
z 1.16071 0.40835

coefficients of correlation

b c z

-0.32908 -0.24237 0.16812 a

0.04498 -0.08704 b

-0.86195 c

(At A)'1

a b c z

0.00163 -0.00070

0.00279

-0.00040 

9.71 E-05 

0.00167

5.68E-05

-3.80E-05

-0.00029
symmetrical 6.98E-05

Now, of the original 9 parameters only a, b, c and z are still free. This time 

convergence is achieved and there are no excessively large coefficients of correlation 

or unreasonably large variances. However the coefficients a, b and c are significantly 

different in size and it is worth comparing them with their own standard errors, b and c 

are at least 3 times the size of their standard errors, a is less than its own standard 

error and therefore there is little evidence that a exists at all. In the next model (Table 

9.21 below) a is set to zero.
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Table 9.21 Least squares determination of the parameters in the model 

bt2f2 + ck2f  -RMS2 = 0.

x vector values a a0
b 39.7217 2.43575 

c 6.45624 1.93053 

z 1.12585 0.38697

48.7037

coefficients of correlation

c z

-0.03840 -0.03582 

-0.84990

b

c

(At A)-1

b c z

0.002484 -7.6E-05 -1.4E-05 

0.00156 -0.00027 
symmetrical 6.27E-05

Again, convergence is achieved without any anomalies. <j0 improves slightly indicating 

that the removal of the term containing a has not had a detrimental effect upon the 

solution. The standard errors of b and c remain much the same. The value of z could 

reasonably be expected to be an integer and if so, given the values above will have a 

value of 1. The final model, Table 9.22, below, assumes this and solves for the 

coefficients b and c.
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Table 9.22 Least squares determination of the parameters in the model 

bt2f  + ck2f-R M S2 = 0.

x vector values o CTo
b 39.8409 2.42361 
c 6.68700 1.57051

48.5039

coefficient of correlation

c

-0.09213 b

(At  A)"1

c b

0.00246 -0.00015 
-0.00015 0.00103

This time the coefficient of correlation shows that b and c are substantially un

correlated. The standard errors of b and c are much smaller than the values of b and c 

indicating that it is reasonable to assume that the terms do indeed exist. However the 

standard errors of b and c are sufficiently large to cast doubt upon the values of b and c 

much beyond 1 significant figure. It is therefore concluded that the functional 

relationship is:

RMS2 = 40( t2f2 + k f j)
6

This must be viewed as an empirical non-analytieal relationship because of the 

assumptions that u, v, w, x and y take the values of 2. Given that k is the “random 

error" defined earlier then if k is to be defined in terms of standard error then the 

relationship becomes:

RMS2 = 40 t2 f2 + 75 e2 f

where e is the standard error of an observation of deviation of the vertical.
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9.7 Geoid Model - from deviations to geoid heights

Earlier, it was stated that geoid models were constructed from the model deviation data 

by, either computing east then north, or north then east from the origin, the southwest 

corner. Such an approach relies heavily upon an absence of errors in the deviation 

observations along the southern and western edges of the block. A better approach 

might be to compute the geoid height of any point as the mean of:

The geoid height of the point to the south and the mean of the north-south 

deviations at that and the new point, times distance, and ...

The geoid height of the point to the west and the mean of the east-west 

deviations at that and the new point, times distance.

In Figure 9.11, below, letters stand for geoid heights and numbers for computed 

difference heights.

J N s V
1 9 26 3 E

1 E r  18
r I  “ n  2 ^ R U

i l 1 7 E4 30
6

c  10
1 6

t i i  88H
P  c

L q T
5 9 1 5 22 28

E
A 4 D

O CD

D 14 G 21 K 27 P
i 3 7 1 3 20

Figure 9.11 Progressive Nodes diagram.

In this progressive nodes  approach, for example:

H = 1/2(E + 9 + D + 8)

Developing the first few heights from the southwest corner: 

B = A+1

C = A+2

D = B+3
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A+1+3

E = 1/2(B+4+C+5)

= 1/2(A+1 +4+A+2+5)

= A+1/2(1+2+4+5)

F = A+2+6

G = A+1+3+7

H = 1/2(D+8+E+9)

= 1/2(A+1+3+8+A+1/2(1+2+4+5)+9)

= A+1/2(1+3+8+9+1/2(1+2+4+5)) etc.

However, this does not reflect the expected symmetry of the situation. Considering the 

only two possible routes from A to H it would be expected that the following difference 

geoid heights would have equal weight in the solution; 1 and 9, 3 and 5, 2 and 8. This 

clearly is not the case. The east-then-north-and-north-then-east approach would give 

equal weight to the difference geoid heights 1, 2, 3, 5, 8 and 9 but would ignore 4. If 

the argument is developed further it can be shown that R in the progressive nodes 

approach is:

R = A+(1 +1/2(2+3+7+14+15+16+17+23+24

+1/2(1 +3+4+5+8+9+1/2(1 +2+3+6+8+9+10+11)))) 

but in the east-then-north-and-north-then-east approach:

R — A+1/2(1 +2+3+6+7+11 +14+17+23+24)

The relative weights of all the difference geoid heights involved in the determination of 

R for the different approaches are in Table 9.23, below.
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Table 9.23 Relative weights of difference geoid heights in the determination of R.

difference 
geoid heights

weight in
"progressive nodes"

weight in "east-then-north- 
and-north-then-east"

1 0.1719 0.1

2 0.0781 0.1

3 0.1094 0.1

4 0.0313 0

5 0.0313 0

6 0.0156 0.1

7 0.0625 0.1

8 0.0469 0

9 0.0469 0

10 0.0156 0

11 0.0156 0.1

14 0.0625 0.1

15 0.0625 0

16 0.0625 0

17 0.0625 0.1

23 0.0625 0.1

24 0.0625 0.1

In the case of the computed geoid height of R, it can be seen that a greater number of 

interpolated difference geoid heights, each with lesser weight, are involved with the 

progressive nodes approach. The significant drawback is that one of the difference 

geoid heights, 1, has a much greater weight, negating the desired effect. The above is 

sufficient to illustrate the possibilities. Analysis of points further from the southwest 

corner would also be possible.

A third approach would be to use the computed geoid difference heights in a least 

squares adjustment to find the geoid heights of all the points. Such an approach would 

be tedious in the computations and the statistical output would be of dubious value 

because the "observations" are not true observations but are derived from interpolated 

values and would have high coefficients of correlation between them. The variances 

and covariances and hence coefficients of correlation would be complex to determine.
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A more practical approach, of intermediate rigor, would be to modify the "progressive 

nodes" method above by taking the variances of the computed geoid heights and the 

difference geoid heights into account. The following derives the relationships for 

computing the geoid height Z, given previously computed statistics for W, X and Y.

rye Y  h y z  Hze Z
............... - 2 ^ ’..

o n I  r yn I  r zn

hwv Q X -< h x z

^  h wx rxe X

Ow2

I I I

~Q
„

l

I  r xn

Figure 9.12 Diagram to show finding geoid height given other geoid heights, difference 

geoid heights and their uncertainties in a Progressive Nodes form.

In Figure 9.12:

hWY etc. is the geoid height difference based upon the interpolated

deviation values.

ryn etc. is the proportion of (W + hWy ) used to compute Y.

(In the progressive nodes method ryn = Vfe). ryn + rye = 1.

ow2 etc. is the computed variance of W.

oxy is the computed covariance between X and Y.
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cjh2 etc. is the variance of all geoid height differences between adjacent

points based upon interpolated deviation values.

The following are all derived from simple propagation of error formulae for variances 

and covariances. If Z was computed from Y + hYz, then the variance of Z would be 

given by:

2 2 2 
CFZ  =  O y  +  O h

Similarly if Z was computed from X + hXz, then the variance of Z would be given by:

_ 2 ^ 2 , 2Oz = Ox + Oh

Therefore the different computed values for Z must be combined in a weighted mean 

solution based upon the variances of the solutions where:

r ze =  Qy2 +  Oh2

Ox2 + Ov2 + 20h2

rZn =  Q y 2 +  Oh2

Ox2 + Oy2 + 20h2

and so the geoid height Z is:

Z = rze(Y + hyZ) + rzn(X + hxz)

Similarly X and Y will have already been found from:

X = rxe(W + hWx) + ...

Y = ryn(W + hWv) + ...

and so:

2
ox y =  rynrXeOw

The variance of Z may be derived as follows.

Oz2 = rze2ay2 + rzn2ox2 + (rze2 + rzn2)oh2 + 2rzerznoXY

rze2oY2 + rzn2ox2 + (rze2 + rzn2)oh2 + 2rzerznrynrxeow2

If the geoid heights and their variances are computed in a northeast direction starting 

from the southwest corner, then all terms required for a particular geoid height have 

already been computed. The statistical limitation of the method is that the computed 

geoid heights depend only upon the computed geoid height differences to the south
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and to the west of the point under investigation. In a least squares solution, a 

computed geoid height is affected at least to some extent by all "observations".

Providing that stations I, J, and K are consecutive stations east-west or north-south 

then hy and hJK share a common deviation observation at J. Therefore there will be a 

covariance between hy and hJK. di (etc) is the deviation at I with a variance of <7/ ,  and 

the geoid height differences hy and hJK are:

hy = 1/2S(di + dj) and

hJK = 1/2s(dj + dK)

where s is the distance between I and J.

The variances of hy and hJK and covariance between them are:

Ohu2 =  O hjK2 =  1/2 S 2a d2

CThlhJ =  14S 2CFcl2 =  1/2<7hlJ2

The above formulae when revised to take account of the covariance between 

computed geoid height differences are below.

az2 = cjy2 + 1/2S2Od2

oz2 = ax2 + 1/2S2ad2

rze = ox2 + 1/2S2ovr
2 2 £  2<jx + a Y + s o d

rzn =  Q y2 +  1/ 2 S2CTdg
2 2 2 2ax + ay + s ad

Z = rze(Y + 1/2s(dYe + dZe)) + rzn(X + 1/2s(dxn + dZn))

where dYe is the deviation at Y in the east-west direction, etc.

In Figure 9.13, below, if the point of U is to the west of Y and the point of V is south of 

X, then X and Y will have already been found from:

X = rxe(W + 1/2s(dWe + dXe)) + rxn(V + 1/2S(dVn + dXn))

Y = rye(U + 1/2S(dUe + dYe)) + ryn(W + 1/2 S(dWn + dYn))

so:

2
<7xy = ryf1rxeavv

ignoring covariance terms, and similarly

2
cjuw = rwnrUe<7s
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2
CTWV — fvnl"we^T

The covariance a u v ,  which is more complex to calculate will be smaller and for the 

purpose of this computation is assumed 0.

zY

Figure 9.13 Diagram to show stations leading to Z in a Progressive Nodes form.

S and T are the geoid heights west and south of W respectively. Substituting for X and 

Y into Z gives:

z  = rze(rye(U + 1/£s(due + dye)) + ryn(W + 1/&S(dwn + dyn)) + 1/£s(dye + dze))

+ rzn(rXe(W + 1/^s(dwe + dxe)) + rxn(V + 1/£s(dvn + dxn)) + 1/^S(dxn + dzn))

— rzeryeU + (rzeryn + rznrxe)W + rZnrXnV

+ 1/2s{rze[ryedue + (1 + rye)dYe + ryn(dWn + dYn) + dZe]

+ rzn[rxe(dWe + dXe) + rxndVn + (1 + rxn)dXn + dZn]}

The now more complete variance of Z may be derived as follows.

2 „ 2r  2 . /„ „ \2 _ 2 . r  2„ 2^  2 
<Tz — >ze >ye o t i +  ( rzeryn +  rznrXe) a w  +  rzn rXn a v

+ 1/2S2{rze2[rye2 + 1 + rye + 2ryn2] + rzn2[rxn2 + 1 + rxn + 2rxe2]}ad2 

+ 2(rzeryn + rznrXe)(rzeryerwnruecrs + rzrTxrTvr/weGT ) + (0)
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The (0) term represents terms that have been ignored and are assumed zero. In fact, 

they contain covariances between S and T etc. and are likely to be positive. Therefore, 

the value of az2, but not Z will be underestimated. To compensate, the numerical 

coefficient of the penultimate term in the above equation is changed from 2 to 3 for the 

practical work as described below.

The east-then-north-and-north-then-east method of geoid determination was 

numerically compared with the progressive nodes approach to determine how much 

better a solution could be obtained from the progressive nodes model.

In the following, eight different estimates of geoid height were derived; four based on 

east-then-north-and-north-then-east models and four based upon progressive nodes 

models. Each determination was based on the same 300 pairs of deviation data sets 

derived from original 101 by 101 grids of north-south and east-west deviations of the 

mountains model with 500 metre inter-station distances and with a 3” “ random error”

East-then-north-and-north-then-east models

1 East then north.

The geoid height of the northeast corner is derived from a 

conventional line of astrogeodetic levelling from the southwest 

corner of the block to the southeast corner then to the northeast 

corner.

2 North then east.

As model 1 but via the northwest corner.

3 Mean of southwest to centre.

The geoid height of the centre of the block is derived from the 

mean of two lines of astrogeodetic levelling, both starting at the 

south-west corner and ending at the centre of the block, co

ordinates (5000, 5000) metres, similar to the routes 1 and 2 

above. One goes east then north, the other, north then east.

4 Mean of southwest to northeast to centre.

The mean geoid height of the northeast corner from 1 and 2 

above is accepted. Then from the north-east corner two lines of 

astrogeodetic levelling, both ending at the centre of the block, 

co-ordinates (5000, 5000) metres, run respectively via points
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(10000, 5000) and (5000, 10000). The mean geoid height is 

taken.

mode mode modem  o

Figure 9.14 Diagram to show astrogeodetic models 1 to 4.

Progressive nodes models

5 Southwest to northeast.

The geoid height of the northeast corner is computed from the 

southwest corner.

6 Northeast to southwest.

The geoid height of the southwest corner is computed from the 

northeast corner.

7 Southwest to centre.

The geoid height of the centre (5000, 5000) is computed from the 

southwest corner.

8 Southwest to northeast to centre.

The geoid height of the centre (5000, 5000) is computed from the 

northeast corner. The geoid height of the northeast corner is taken from 

model 5 above.
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mode mode mode mode

Figure 9.15 Diagram to show astrogeodetic models 5 to 8.

The results are in Table 9.24 below. All units are metres.

Table 9.24 Comparison of the east-then-north-and-north-then-east method with the 

progressive nodes method of geoid determination.

model 1 2 3 4 5 6 7 8

Mean geoid 
height

0.083828 0.083893 0.237670 0.237831 0.083348 0.083307 0.237492 0.237477

a 0.005915 0.005669 0.002811 0.004264 0.001334 0.001299 0.001102 0.001111

a of mean 0.000339 0.000325 0.000161 0.000245 0.000077 0.000075 0.000063 0.000064

The statistics relating to appropriate differences in the models are in Table 9.25 below. 

Table 9.25 Statistics relating to the differences in the models in Table 9.24.

model 1 -2 ■CO 5 -6 -nJ > CO

mean -0.000066 -0.000160 0.000041 0.000016

a 0.008099 0.004291 0.001021 0.000921

a of mean 0.000464 0.000246 0.000059 0.000053

In the following section, statistics taken from the above two tables are quoted as 

printed. This is to aid reference to the tables and does not indicate that the statistics 

concerned are valid to the number of places of decimal quoted.

From the above it is clear that models 1 and 2 should produce the same answer. In 

both models the geoid height of the north-east corner depends upon an astrogeodetic
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levelling line of 200 legs each of 100 metres with standard errors of 0”.86. Thus the 

expected difference of geoid height from the two routes would be:

0.86 206265'1 200* 100 2* = 0.00834 metres

This is similar to the differences of the models 1 and 2 value, 0.008099 metres in the 

table above and suggests that the spreadsheets involved have been written correctly.

Models 3 and 4 are alternative routes to the centre of the block. The standard error of 

the difference of the routes, at 0.004291 metres, indicates that if the mean of the two 

results is taken then its own standard error will be 0.0030 metres.

Models 5 and 6 give relative geoid heights of opposite corners by working through the 

block from opposite corners. As such, they should give the same results. If the geoid 

heights had been derived from a least squares adjustment of the whole data set then 

there would be no difference between the solutions. The actual difference between the 

solutions therefore indicates the limitations of the progressive nodes approach. The 

standard error of the difference of the solutions at 0.001021 metres indicates that if the 

mean of the two results is taken then its own standard error will be 0.00072 metres. 

This is approximately a fourfold improvement over the equivalent models 1 and 2 

solution. The equivalent least squares solution would contain 10200 unknowns and 

20402 observation equations. As such it would be well beyond the capability of the 

major commercial least squares survey package Star*Net. See Annex E of the 

Star*Net manual (Star*Net, 1991).

Models 7 and 8 are alternative processes for finding the geoid height of the centre of 

the block. The standard error of the difference processes, at 0.000921 metres, 

indicates that if the mean of the two results is taken then its own standard error will be 

0.00065 metres. If this process may be considered as equivalent to the models 3 and 

4 approach then this process also shows a better than fourfold improvement over the 

conventional computation of astrogeodetic levelling.

9.8 Summary

Astrogeodetic deviations as described in theoretical terms in Chapter 4 with the 

practical procedures of Chapter 6 and small corrections described in Chapters 7 and 8 

may now be used to find the form of the geoid. In this chapter the astrogeodetic geoid 

model was reviewed in terms of the density of observations and Kaula’s rule of thumb. 

Starting with a consideration of the effect of a hemispherical mountain on the deviation 

of the vertical, a geoid model simulation was constructed with four different models.
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The route from deviation data to geoid model was considered in terms of polynomial 

coefficients, interpolation of deviations and progressive nodes. The overall conclusion 

is that although polynomial coefficients, derived from a least squares treatment of 

deviation observations, should theoretically produce the most rigorous solution for the 

form of the geoid, a more practical solution may be to use the technique of progressive 

nodes described in this chapter. This is because least squares solutions for the 

solution of large sets of polynomial coefficients are vulnerable to the accumulation of 

rounding errors and a tendency for “noise” to be modelled as “signal” .

In the next chapter a practical exercise is described to show how a determination of 

astronomical position can be made.
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Chapter 10

A Practical Determination of Astronomical Position

10.1 Introduction

To show that the process described in earlier chapters, especially Chapter 6, would 

produce useful results, a determination of the deviation of the vertical at a site in 

Nottinghamshire was undertaken; the date for this was 20 July 2000. The video camera 

method, described in Section 6.6, was used with a Pulnix black and white camera 

mounted on the telescope of a Wild T2000 electronic theodolite. The intermediate 

results, described in Section 10.2 below, are presented according to the aide memoire of 

Section 6.9.1. The elements from the aide memoire are in red.

10.2 Intermediate results - preparation

a. Predictions

Estimate WGS84 position with handheld GPS.

Latitude: N 53° 4’ 46”.0 Longitude: W 1° 10’ 15” .9

In UK only, find slope of the geoid from Grid InQuest, (2001)

-2”.2 17”.5

Apply slope to WGS84 position to find an estimate of the astronomical position.

Latitude: N 53° 4’ 44” Longitude: W 1° 9’ 58”

Select start date and time for observations.

GMT 20:45 

Use spreadsheets:

“MCBJ2000.xls” to update star data and find a suitable star set. 

“PREDICT.xls” to identify Polaris, orient horizontal circle, prepare and 

print observing programme.
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Time GMT Zenith Az
HH.MMSS DD.MMSS DD.MMSS

20.4500 37.3241 0.3733
20.4800 37.3223 0.3822
20.5100 37.3205 0.3911
20.5400 37.3146 0.4000
20.5700 37.3127 0.4048
21.0000 37.3108 0.4135
21.0300 37.3048 0.4223
21.0600 37.3028 0.4310
21.0900 37.3007 0.4356
21.1200 37.2946 0.4442
21.1500 37.2925 0.4528
21.1800 37.2903 0.4613
21.2100 37.2841 0.4658
21.2400 37.2819 0.4742
21.2700 37.2756 0.4826
21.3000 37.2733 0.4909
21.3300 37.2709 0.4952
21.3600 37.2646 0.5034
21.3900 37.2622 0.5116
21.4200 37.2557 0.5157
21.4500 37.2532 0.5238
21.4800 37.2507 0.5318
21.5100 37.2442 0.5357
21.5400 37.2416 0.5437
21.5700 37.2350 0.5515
22.0000 37.2324 0.5553
22.0300 37.2258 0.5631
22.0600 37.2231 0.5708
22.0900 37.2203 0.5744
22.1200 37.2136 0.5820
22.1500 37.2108 0.5855
22.1800 37.2040 0.5930
22.2100 37.2012 1.0004
22.2400 37.1944 1.0037
22.2700 37.1915 1.0110
22.3000 37.1846 1.0142
22.3300 37.1816 1.0213
22.3600 37.1747 1.0244
22.3900 37.1717 1.0315
22.4200 37.1647 1.0344
22.4500 37.1617 1.0413
22.4800 37.1546 1.0442
22.5100 37.1516 1.0509
22.5400 37.1445 1.0536
22.5700 37.1414 1.0603
23.0000 37.1342 1.0629

Figure 10.1 Polaris prediction programme for 20 July 2000.
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Star/mag RA Declination Time GMT Zenith Az star passage
No HH.MMSSs DD.MMSS HH.MMSSs DD.MMSS DD.MMSS across screen

1432001403.0 14.3205455 38.1843217 21.0600 28.5147 253.5931 1.05
1347010101.9 13.4732772 49.1902433 21.0800 29.4010 282.2427 1.08
1524016203.3 15.2456903 58.5815125 21.1000 14.3351 303.2654 0.90
1404005803.7 14.0423525 64.2250135 21.1200 25.0547 314.1524 0.79
1623015602.7 16.2401246 61.3108049 21.1400 10.0427 330.5930 0.50
1520012103.0 15.2044863 71.5020650 21.1600 22.0045 338.1124 0.40
1948004803.8 19.4814540 70.1611702 21.1800 24.4226 31.0827 -0.59
2118012402.5 21.1838179 62.3509627 21.2000 32.5023 48.2935 -0.85
1917002203.8 19.1708839 53.2216383 21.2200 18.2424 76.3908 -1.12
2041009501.3 20.4128440 45.1655022 21.2400 33.4844 82.0308 -1.12
1944020902.9 19.4500952 45.0759670 21.2600 25.0812 93.2402 -1.14
1756012702.2 17.5638602 51.2933502 21.2800 5.5618 101.5412 -1.20
1858022903.3 18.5858780 32.4133053 21.3200 26.3755 130.2438 -0.88
1823013003.9 18.2343894 21.4621676 21.3400 33.1418 154.4141 -0.51
1630002802.8 16.3014752 21.2933380 21.3600 33.2428 204.3504 0.43
1642013703.5 16.4255404 38.5534074 21.3800 16.1332 213.5953 0.58
1542009903.8 15.4245852 26.1755819 21.4000 33.3124 227.4332 0.80
1527013603.7 15.2750918 29.0632599 21.4200 33.0851 236.1315 0.91
1515007203.5 15.1531270 33.1906221 21.4400 31.4207 245.3321 0.99
1501014003.5 15.0157744 40.2340299 21.4600 28.5956 259.5526 1.08
1524016203.3 15.2456903 58.5815125 21.4800 19.2516 301.0357 0.94
1404005803.7 14.0423525 64.2250135 21.5000 29.1235 314.0559 0.79
1520012103.0 15.2044863 71.5020650 21.5200 24.1356 333.4744 0.48
1912012403.1 19.1236936 67.3951233 21.5400 17.5558 27.2250 -0.53
2128012203.2 21.2843967 70.3338404 21.5600 29.4913 33.2612 -0.62
2118012402.5 21.1838179 62.3509627 21.5800 28.3037 49.4813 -0.86
1917002203.8 19.1708839 53.2216383 22.0000 12.4816 80.0923 -1.15
1929016503.8 19.2945002 51.4356519 22.0200 14.4204 85.3642 -1.16
2022005902.2 20.2216099 40.1531291 22.0400 27.5159 102.2810 -1.11
1858022903.3 18.5858780 32.4133053 22.0800 23.0118 146.2403 -0.66
1836020600.0 18.3658512 38.4713053 22.1000 15.3254 153.1609 -0.56
1715000503.1 17.1503669 24.5032579 22.1200 29.3909 202.3340 0.40
1739009503.8 17.3929913 46.0036497 22.1400 8.1222 213.1507 0.53
1641004802.9 16.4118744 31.3622852 22.1600 26.2906 224.2630 0.75
1642013703.5 16.4255404 38.5534074 22.1800 20.2805 235.0008 0.88
1730008502.8 17.3028054 52.1819428 22.2000 6.1353 267.0630 0.99
1524016203.3 15.2456903 58.5815125 22.2200 23.4836 301.1205 0.94
1623015602.7 16.2401246 61.3108049 22.2400 17.0246 310.3949 0.82
1753012503.7 17.5334113 56.5235392 22.2600 5.0554 320.3938 0.60
1520012103.0 15.2044863 71.5020650 22.2800 26.4532 330.5604 0.54
1948004803.8 19.4814540 70.1611702 22.3000 19.4711 21.4213 -0.43
2128012203.2 21.2843967 70.3338404 22.3200 26.5241 32.1230 -0.60
2249009903.5 22.4944230 66.1156180 22.3400 33.5511 41.2412 -0.74
2118012402.5 21.1838179 62.3509627 22.3600 24.0749 49.5809 -0.87
2210015903.3 22.1054224 58.1203142 22.3800 30.4512 58.0036 -0.96
1917002203.8 19.1708839 53.2216383 22.4000 6.5049 83.0723 -1.20
1929016503.8 19.2945002 51.4356519 22.4200 8.4105 93.2246 -1.19
2114015003.7 21.1449829 38.0248417 22.4400 31.0815 102.3929 -1.11
2022005902.2 20.2216099 40.1531291 22.4600 21.5300 115.1843 -1.04

Figure 10.2 Star prediction observing programme for 20 July 2000.
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Intermediate results -  data collection

Prepare T2000 and data recording system 

Collect data

Time GMT Observed Zenith
HH.MMSS DD.MMSSs

21.0600 start
21.0800
21.1000 14.33551
21.1200 25.05470
21.1400 10.04261
21.1600 22.00473
21.1800 24.42242
21.2000 32.50264
21.2200 18.24276
21.2400 33.49014
21.2600 25.08178
21.2800 5.56174
21.3000 light on
21.3200 26.37583
21.3400 33.14171
21.3600 33.24377
21.3800 16.13318
21.4000 33.31240
21.4200 33.08519
21.4400 31.42052
21.4600 28.59570
21.4800 19.25133
21.5000 29.12378
21.5200 24.13568
21.5400 17.55563
21.5600 29.49116
21.5800 28.30384
22.0000 12.48170
22.0200 14.42082
22.0400 27,51588
22.0600 light on
22.0800 23.01172
22.1000 15.32520
22.1200 29.39074
22.1400 8.12231

: 22.1600 26.29080
22.1800 20.28033
22.2000 6.13563
22.2200 23.48382
22.2400 17.02447
22.2600 5.05568
22.2800 26.45338
22.3000 19.47120
22.3200 26.52418
22.3400 33.55133
22.3600 24.07470
22.3800 30.45118
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2 2 . 4 0 0 0 6 . 5 0 4 2 9
2 2 . 4 2 0 0 8 . 4 1 0 6 8
2 2 . 4 4 0 0 3 1 . 0 8 1 7 0
2 2 . 4 6 0 0 2 1 . 5 3 0 1 0
2 2 . 4 8 0 0 l i g h t  o n

Figure 10.3 O bserved zenith angles. 20 July 2000.

10.4 Intermediate results -  data processing

d. Compute data

Open saved file as a spreadsheet in Excel

Figures 10.4 to 10.7 illustrate fragments of the data.

H H H I ■ ■ ■ ■ ■ ■ I ^ K I a I x ]

Ed* View Insert Fermat Tools Q>ata IFinancial Manager Window tjelp

D C S B h *  i [ i o  1 1 B  /  U m  m  m  H : ® > &  _  ^  * a  .  ?

A1 r j______ ■ | 236 317
A I B i1  c !f t  D |IE E I1  F 1 G I H I 1 !] f t  j  h i K L —

236.317 [ 234.883 228 15 235 867 234.233 227.467 230.483 223! 234.917 228 033; 238.25 234 ritZ
2 229.683 227.767 220 917 235.533 222.1 230.017 226.067 232.717 231.583 235.7 224 033 229 11
3 229.75 224.067 221 533 224 217| 214 433 220.517 230.517 222.667 231.217 231.367 226.8 226
4 226.15 221.333 223.517 217.5 225.75 220.2 230.933 225.417 229.7 225.367 230.05 227.45
5 232.467 235.817 225.1 224 85 221.083; 232.267 229.217 235.133| 224.417 229 95 231 232.7
6 230.833 226 083 227 217 226 133 227.35 223.5 226.667 231.267; 226.567 236.25 231.817 227. BE

229.317 230 367 229 95; 229.667 226 383 231 183 228.3 229 033; 233.383 224.1 228.333 232
225.4 230.917 225.05 227.833 222.35 225.467 222.1 220.867 222.133 228.7 228.867 235.11

229 183 232 267 229.033 220 417 227 417 219 567 224.033 224 767 225 033 223 383 227 333 223 26
218.967 231 583 222.65 231 283 229 183 228.9 224 383 223.75 224 133 234.533 225 083 234 33

223.6 228 767 230.283 227 45 220.3 230.517 223.8’ 233 033 227.45 225.367 223.9 232.66
225.1 225.317 226.833 222.233 228.067 218.217 234 783 231.5 222.833 229.8 223.233 228.62

226.583 233 733 227 433 219 767 225 783 220 883 220.567 223 85 222.533 235.6 227 45 225
224.15 218.2 229.1 221.7 225.517 232 367 230.317 232 75 229.033 225.9; 224 283 227

220.967 218 967 225.95 227.933 234.583 234 167 229 75 223 367 228.867 229.2 226 333; 232 52
16 217.383 219.433 215.95 225.467 216.75 223.25 229.117 230.367 229.233 227.45 220.8 230.86
17 213.8 224.217 21795 222.3 221.683 223.933 221 267 230.7 225.817 226 733 227 633 234 1
18 219.017 222 967 237.383 225.417 225 567 229 133 230.9 224 883 235.767 227 533 229 234 12
19 227 767 223.833 216333 224 967 216.033 222.55 219.783: 231 367 227 233.567 233 617 226 46
20 228.933 230.633 228.917 226.95 214.85 226.667 231.483 232.467 219.967 230.833 230.3 230. C
21 235.333 228.017 221 117 230.817 226.5 233 783 219.95; 223 417 227.767 227.6 225.85 229 62
22 222.933 226 083 I 230.767 226 833 225 267 230.4 231.517; 231.067 226.633 228.767 230.983 231
23 225.433 224.45 221.05 221.317 223 967 228 95 232.41 228 417 225 533 228 583 232 467 231.41
24 218.683 223.133 221.067 226.15 218.567 230.6 225.167 233.967 223.85 232.183 223.3 228.52
26 230.2 224 225.333 216.833 225.1 225.733 227 467; 227.95 233.2 236.2 231 967 232 16 (
-K- •no -HT non r o •“in'-! n nn a a nn npp * _nrn 14*7 no-7 n non n

IM i  I ► i H \ Video out 20 July 2000 5 sec G /  & JIvl
j non rm i _ y  ̂J J*

Ready IPlPlfl ! r "f~  ' ^ -f— iNUMr ^ r ^ r  n

Figure 10.4 Screen plot o f  segm ent o f video data, LED for crosshair illum ination. 20 July  

2000.
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H B H H
[ | g j »  Edit Sew Insert Fermat Iools Bata Financial Kanaoet Vtfndow tielp -  la l  x i

|| D  &  Q | m p j . .  j | B /  U m  m  m  m
*

A11484 111.767

s ~ l B 1 c I  D E F G H !f  < i  J K m
11079 68.333 67.533 82.017 70 45 79.417 71.083 62.85 71.783 74 867 74.9 69.633 81'
11080 71.15 73.817 79.917 77.033 79.133 83.083 87 72.383 73.217 73.2 76.967

222.567 219.2 222.867 230.867 222.183 216.433 216.967 217.483 214.817 217.733 223.817 215
75.433 79.883 79.083 79.067 75.25 69.15 75.967 76.683 68.383 74.35 74 7 71

11083
IM M N 3

76.183 78.483 73.667
n  a 7 n n

75 78.283
"TO a r

84.467
i n  n

69.05
n o  t o o

72.583 76.417
7 n  o o o

68.717
"TO a r

66.933
o r*  o r

64

Figure 10.5 Partial Screen plot of segment of video data with a GPS flash at row 11081, 

LED for crosshair illumination off. 20 July 2000.

E3 Microsoft Fxcel Video out ?0 July 20(10 5 sec GPS

File £dit View Insert Fermat loots Bata Financial Manager Window tjelp
F in n
n r r

□ a? H

K Z
79.783

AF 
74.167 

759 
|75.167i 
84.833 
|71.9171 
(74.533 
81.417 
78.017 
76 933 
79.333 
80.517 
74.817 

785

Al
169 1831 
81.8.17

76.85
72.967

79.95
77.433

72.26776.717
78.067
78.783

76.067 72.01 
78

72.91 
73.

77.25.
76767 70.017
72.333 78.217

79.933
72.183

67.067 
75.217 
79.083 
74.433 

75.7 
68 633 
84.867

75.85
76.117
72.383
75.25

80.983
79.45

75.917
77.6
74.6

78.883 72.533 78.483 76.483
72.783 70.417 71 4

79.7
74.983
78.183
79.233
80.717
75.583!
70.933

78,833 72.433 77.3 72. 
75.05 76.91

79.917 74.41
67.933
79.633

69.433
69.867

76.633
79.667 77. 

79.183 
79.033 
81

79.983
71.483 79.95

75.983
74.633

73.4
68 583

75.167
74.717

74.25
75.767
75.633

77 167 75.583 76.233
78.31767617

75.867 
81 217
80.667
78.383!
73.667
66.617 
69 983

T.
68 217 75.96;

71.633
77.35

77.217
74.117

77.883
73.35 

78.017
- - - -  79.2171 

83.983 69.851

76.917 76.2 T,
75.233 75.83: 
79.033 79.18: 

76.1 74.41
76.8 66 66 , 

79.25 79

85.717
79.617

70817 77 667
75.917 72917

72.167 76 067 81.4
75.433

70.217 74.233 78.7
78.41784.133 81.417 

82.617 85.117
70.667 69.483 78.633

81.567
77.467 
74.967 
77 617 
81.483
78.467 
73.417n-i

73.383 81.183
79.483 8Q.7B384.017

75.733
73.75

81,067
71.467
72.133
78.367

87.717
78.567 72.117 77.467

78.017 73.567 75.85 74.983 72.767
7 6 .3 5 1 9 H M I  79.3 74 13

78.167 71.833 70.45
77.483 79.65 72
77.767 72.583 68 483 76.68:

73.467 84.517
72.767 75 583 77.6

79.433
75.5

76.183
77.667
79.083

76.583 75.267
81.233 70.233

Video out 20 July 2000 5 sec

Figure 10.6 Screen plot of typical video data with shading to highlight values. 20 July 

2000.
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Figure 10.7 Graphical plot of the video data on and surrounding Figure 10.6 with 41 

frames (along vertical axis) by 60 rows (along horizontal axis) with video row mean pixel 

values in the range 60-80 and 80-100. 20 July 2000.

Copy data to spreadsheet “Convert video time to GPS time” . Follow on-screen 

instructions. Output is a set of parameters to convert frame number to 

GPS time.
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M ic ro s o ft I x r.fil - C n n v m l v id r n  lim e  lo  l i l ’ S fim o  e rtn  /  fm  1st se ss io n  711 J u ly  S r

J U  t *  Ipsart Format lo o k  Financial Manager £indov« b^P

g  *r j A . .0 .  B Q mm ? i t  ; fc i till

BN £ BP ■feru r1 5 sec count count v

I k
0

60
0

start +--- - *2

4 0 0 60 0
5 0 0 60 0
6 0 0 60 Q
7 0 0 60 0

9
0 0 60 0
0 0 60 0

10 0 0 60 G

■«

0
0
0!

0
0
0

60
60
60

0
0
0

14 0 0 60 0
16 0 0 60 0

17
0
0

0
0

60
60

0
0

18 0 0 60 0
19 0 0 60 0
20 0 0 60 0
21: g 0 60 0
22 0 0 60 0
23 0 0 60 0
24 0 0 60 0

2 0 0 60 0
D 0 60 0

5 0 0 60 0
0 □ 60 029 0 0 60 0
0 0 60 0

31 1 0 60 0
32 1 0 60 0
33 1 0 60 G
34 1 0 60 0
35 1 0 60 0

§§! ■nr uu I— Ov
GPS lime of video floor 
mid-exposure ceiling 

75961.53355 mid point 
75961 65751 range 
75961 78147 cut point set to
75961 90543 GPS start time 

75962.0294 OPS epoch rate
75962.15336 sum flash coun
75962 27732 
75962 40128 a 
75962.52525 b 
75962 64921 
75962 77317 
75962 89713

76.92860914 
233 917 

155.4228046 
156 9883909

140"'
21 06shh mmss UT 

5 secs 
105606 ms

SI w ~ — ~ i azq;

75963 14506 
75963 26902 
75963 39298 
75963 51694 
75963 64091
75963 76407 
75963.88883
75964 01279 
75964 13676 
75964 26072 
75964 38468 
75964 50864

75964.6326
75964 75657 
75964.88053
75965 00449 
75965 12845 
75965 25242 
7596537630 
75965 50034

VVIdeo pu t 124 fps 60m * GPSJ seJ

d 1.53(1547747 
1 530547247

RMS 0 004425237
| < 187 4841292

0.062 GPS flash width 
0.006 video capture in secs

button 1 to list 60s cell numbers in column CD 
j  remove spare 0s from bottom of CD 
jbullon 2 lo reorder whal is left 
'copy column CD 10 CE 
butlon 3 to select rows 

75960 secs GPS icopy column CF values to itself
activate cell CE1 etc or. command line 
button 4 to list non-0 cell numbers in column CT 

[remove spare Os from bottom of CT • 
button 5 to reorder wha! is left

CA T

1 F

35150.2987

[copy column CD to CE 
0 00000001 ihuimn 6 for rows

jcopv column CU values to itself 
0.06683168 activate cell CU3 etc on command line 

0 034 button 7 to create stats 
-0.133906______________________________

£ 5> 5 £ £

Enter data at A3
Select value in BU13 so that values of 60 in BP appear at first value of new epoch in BN
Follow instiuctions at BY1 to BY15
Obtain value 0 in BW15
Minimize BUr keeping BW15 = 0

............... . ...........

i

m — r m sm .

Figure 10.8 Detail of the spreadsheet “Convert video time to GPS time” showing elements 

of operating instruction. 20 July 2000.

In Figure 10.8, video data has been entered and occupies the block A3:BH29436. The 

parameters in pink are adjusted until there are no spikes in the graph. Instructions at cell 

BU27 and below are followed. Instructions at cell BY1 and below, including the seven 

macros activated by the buttons in column CA, are followed. Then the time of video 

frame exposure, excluding those frames when the crosshair illumination is on, are 

displayed near the top of the columns CN and CV. Column CN lists the row numbers 

and column CV lists the associated GPS times of the video exposure. A detail of the 

relevant part of the spreadsheet is shown in Figure 10.9 below.
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Window tM>EJe £dlt View Insert Format Took £at« Financial

CU2

R«dy

CK i nil* (HP DeskJet 600 (Color)) ft CO CP CO CR CS " C T  CU T ..CV
B5

CV i
MJ in column BJ Row number GPS time a

of GPS flash I Jof video exposure
60 956 118508 76078.51 24 0 60 0 0 76080.042 0.041516
60 1077 133.5074 76093.51 27 0 60 0 0 76095.041 0.040955
60 1198 148.5068 76108.51 30 0 60 0 0 76110 04 0.040395
60 1440 1785057 76138 51 36 0 50 0 0 76140 039 0 039274
60 1561 193.5052 76153.51 39 0 60 0 0 76155.039 0.038713
60 1602 208.5046 76166.5 42 0 60 0 0 76170.038 0.038153
60 1803 223.504 76183.5 45 0 60 0 0 76185.038 0.037592
60 1924 238.5035 761985 48 0 60 0 0 76200.037 0.037032
60 2166 268.5024 76228.5 54 0 60 0 0 76230.036 0.035911
60 2287 283 5018 76243 5 57 0 60 0 0 76245 035 0 03535
60 2650 328 5001 76288 5 66 0 60 0 0 76290 034 0 033669
60 2771 343.4996 76303.5 69 0 60 0 0 76305.033 0.033100
60 2092 358.499 76318.5 72 0 60 0 0 76320.033 0.032540
60 3255 403.4973 76363.5 81 0 60 0 0 76365.031 0.030866
60 3376 418.4968 76378.5 84 0 60 0 0 76380 03 0.030306
60 3497 433.4962 76393.5 87 0 60 0 0 76395 03 0.029745
60 3618 448 4956 76408 5 90 0 60 0 0 76410 029 0 029185
60 3860 478 4945 76438 49 96 0 50 0 0 76440 028 0 028064
60 4344 538.4923 76490.49 108 0 60 0 0 76500.026 0.025822

7 4909 606.531 76568.53 122 0 0 34.72963 768 9323 76570.065 0.064527
60 5070 628.4889 76588.49 126 0 60 0 0 76590.022 0022459
6 5151 6385299 76598.53 128 0 0 46.93943 1595.158 76600.063 0.063406
7 5272 653 5293 76613.53 131 0 0 51 54433 1984.197 76615.063 0.062646

60 5312 658 4878 76618 49 132 0 60 -a 0 76620 021 0 021338
60 5433 673 4872 76633 49 135 0 60 0 0 76635 021 0 020777
60 5554 688.4867 76640,49 138 0 60 0 0 76650 02 0.020217
60 5796 7184855 76678.49 144 0 60 0 0 76680.019 0.019096 LM l
49 5877 7285265 76688.53 146 0 0 79 56883 934 4533 76690 06 0.060043
60 5917 733.485 76693.48 147 0 50 0 0 76695.019 0.018536
29 5998 743.5259 76703.53 149 0 0 85.17373 3155.488 76705.069 0.059483
60 6038 748 4844 76708 48 150 0 60 0 0 76710 018 0 017975
24 6119 750.5254 76718.53 152 0 0 90.77063 4459.305 76720.059 0.058922

i» H Wld.
60 6159 763.4039 76723.40 153 0 60 0 0 76725.017 0.017415 m

to  out 124 fps 60ms GPS 1 s e / JiiIB H n H M R H H an B
c 1 M 11 — J ±JF

Figure 10.9 Detail of the spreadsheet “Convert video time to GPS time” showing output 

results . 20 July 2000.

Select data when external cross hair illumination is “on” and import to

spreadsheet “equation of motion of star on screen 5 parameter.xls” . 

Output is picture row value for the crosshair. Compute for all similar data 

sets.
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Figure 10.10 Detail of the spreadsheet “equation of motion of star on screen 5 parameter” 

showing output results . 20 July 2000.

In Figure 10.10, a block of data, 41 rows by 60 columns, is entered at cell C10. The 

spreadsheet suggests provisional values for the parameters to be solved for in cells B2- 

F2, less cell D2 that represents the slope of star across the screen, and is taken from the 

prediction spreadsheet. When using this spreadsheet to find the position of the 

crosshair as in Figure 10.10, D2 is close to zero. There are macros to calculate 

provisional values, perform iterations of the least squares solution and to remove 

suspect observations. Suspect observations are selected on the basis of absolute 

magnitude divided by the reference variance. In the data shown in Figure 10.10, the 

centre of the crosshair is at row 34.44. A graphical plot of the input data relating to the 

solution in Figure 10.10 and a graphical plot showing the locations of the removed data 

are in Figures 10.11 and 10.12 respectively.
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Figure 10.11 A graphical plot of the input data relating to the solution in Figure 10.9. 

20 July 2000.
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Figure 10.12 A graphical plot showing the locations of the removed data relating to the 

solution in Figure 10.10. 20 July 2000.

The position of the crosshairs is computed for each occasion that the crosshair 

illumination is switched on, which is about every half-hour.

□ 237-240
□ 234-237
□ 231-234
□ 228-231
□ 225-228
□ 222-225
□ 219-222
□ 216-219 
H 213-216
□ 210-213 
M 207-210 
m 204-207
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As an aid to finding each set of 40 or so rows when a star was passing the crosshair, a 

graph of the maximum pixel value of each frame can be obtained. An example is shown 

in Figure 10.13.

row maximum
O 300 -

i - w n ^ m ( O N c o o ) O r - w c o ^ i n t D N o o( D w o o ' t o c o w o o ^ T - N n o j i O T - s n o )r - C O T f ( D O ! ) 0 ) i - W ^ ( O S O ) O W r t i n N O O
y- y- y- y- y- y- C \ J C \ 1 C \ 1 C \ J C \ J C \ I

row number

Figure 10.13 Graph maximum pixel value of each frame for 30000 frames. 20 July 2000.

Three periods when the crosshair illumination was switched on can be seen at the 

beginning, at around row 12000 and almost at the end. The GPS flashes appear as the 

spikes. However to find the star passages it is necessary to look at the detail of the floor 

of the data. A section of the data is shown in Figure 10.14, below.
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Figure 10.14 Expanded detail from Figure 10.13 showing the passage of 5 stars.

20 July 2000.

In Figure 10.14, the red arrows show the passage of five stars. Three are quite obvious, 

one, the fourth, barely discernible and another, the second, must be inferred from the 

positions of the others.
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A series of solutions are shown in Figure 10.15. It will be noted that an average solution 

is obtained for each period that the crosshair illumination is switched on. The graph in 

Figure 10.16 shows that there is a small drift in the crosshair position during 

observations. The actual position of the crosshair for a particular star is interpolated 

from this data.

X  Miciosofl Excel predict piugramme lor 20 July 2000.xls

| y ]  file Edit ^lew Insert Format Iools Qata window tfelp

| D  & H a  a ? -BBaBaBBHI *m m \ -  - n £ * § £  A  i i  11 jfio5°/o
|»«al »T l0  i | B /  u  | E  S  1 H  | ®  *̂ 8 • H

AB AC I f  AD I t  A E  ] |  AF £  AG 3 |  AH 3 f Al AJ J
1 Crosshair values at t im e  at video row numbers
2 21.06 21.3 22.06 22.48
3 599 34.56 11999 35.58 28224 35.91 47736 36.29

4 756 34 7 12099 35 53 28264 35 9 47782 36 25

5 800 34.7 12199 35.55 28868 36.22 47833 36.33

6 850 34 7 12048 35 58 28966 36 18 47380 36 28

7 900 34 73 12250 35 53 29072 36 23 47978 36 32

8

9 std dev 0.067231 0.0251 0.168137 0.032094

10 mean 34.678 35.554 36.088 36.294

11

Figure 10.15 Spreadsheet detail showing collected solutions for the video row position of 

the crosshairs. 20 July 2000.

apparent crosshair variation

36.5

> -c
5 $ 35.5

5 1

34.5
21 21.5 22 22.5 23

t i m e  i n  h o u r s

Figure 10.16 Graph showing the drift in position of the crosshairs. 20 July 2000.
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Select data for star crossing and import to spreadsheet “equation of motion of

star on screen 5 parameter.xls”. Output is time, as frame number, for star 

crossing of horizontal hair.

When using the spreadsheet “equation of motion of star on screen 5 parameter” to find 

the time that a star crosses the crosshair (see Figure 10.10), the crosshair position 

interpolated from the data of Figure 10.15 is inserted in cell H3 of the spreadsheet 

“equation of motion of star on screen 5 parameter” . The time in video row numbers, 

cells A10 to A50, is shown in cell H4 (see Figure 10.10).

Use computed parameters to find GPS time for each star crossing.

20-Ju1-2000

Star/mag Observed video row frame of transit time of transit at

No Zenith of crosshair at crosshair crosshair at crosshair

ss.sss
1432001403.0 start 34.678
1347010101.9 34.751
1524016203.3 14.33551 34.824 1916.466 76199.103 21.0959103
1404005803.7 25.05470 34.897 2877.294 76318.210 21.1158210
1623015602.7 10.04261 34.970 3845.393 76438.217 21.1358217
1520012103.0 22.00473 35.043 4819.897 76559.019 21.1559019
1948004803.8 24.42242 35.116 5781.748 76678.252 21.1758252
2118012402.5 32.50264 35.189 6744.460 76797.592 21.1957592
1917002203.8 18.24276 35.262 7711.703 76917.494 21.2157494
2041009501.3 33.49014 35.335 8667.115 77035.929 21.2355929
1944020902.9 25.08178 35.408 9645.304 77157.188 21.2557188
1756012702.2 5.56174 35.481 10617.973 77277.762 21.2757762
3860036406.2 light on 35.554
1858022903.3 26.37583 35.584 12548.070 77517.021 21.3157021
1823013003.9 33.14171 35.613 13521.756 77637.722 21.3357722
1630002802.8 33.24377 35.643 14521.031 77761.594 21.3601594
1642013703.5 16.13318 35.673
1542009903.8 33.31240 35.702
1527013603.7 33.08519 35.732
1515007203.5 31.42052 35.762 18364.907 78238.090 21.4358090
1501014003.5 28.59570 35.791 19330.774 78357.821 21.4557821
1524016203.3 19.25133 35.821 20298.740 78477.812 21.4757812
1404005803.7 29.12378 35.851
1520012103.0 24.13568 35.880 22235.793 78717.934 21.5157934
1912012403.1 17.55563 35.910 23205.359 78838.123 21.5358123
2128012203.2 29.49116 35.940 24176.995 78958.570 21.5558570
2118012402.5 28.30384 35.969 25138.698 79077.785 21.5757785
1917002203.8 12.48170 35.999 26105.170 79197.591 21.5957591
1929016503.8 14.42082 36.029
2022005902.2 27.51588 36.058 28042.716 79437.773 22.0357773

Figure 10.17 Listing of star data for the time of transit at the crosshair. 20 July 2000.
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In Figure 10.17, there are fewer stars than listed in the prediction. The sky was clear at 

the start of observations but became hazy after the first few stars. Initially some of the 

less bright stars were lost and eventually the sky clouded over.

Input star co-ordinates (copy from prediction spreadsheet), observed zenith 

angles & GPS time for all stars into spreadsheet “POSNSOLN with 

changing refraction and collimation.xls”

Set “SA/V correction” as offset between UT and GPS (currently 13 s) + 5n* secs + 

(UT1R-UTC)**

Input polar motion** and station height.

* This assumes that the GPS flash rate is 5 seconds, n is the integer that leads 

to the only realistic solution for the computed longitude of the station.

** (UT 1 R-UTC) and polar motion from GIBS (2001)

0  M icrosoft Excol ?0 ju ly  0(1 1 st session POSNSOLN w ith  changing rcfi.ichon onrl co llim o linn

File Edit View Insert Format Tools Data Financial Manager Window Ijelp

+BP70

Position Lines by Least Squares - R e g u l a r  t i m e  
~  I input | adjusted 11=OR~

Latitude 53 0445351 53.044535} 1 m etresddmmss
Longitude 1 09594; 11.09594dd.mmss s ignilioanc semi-max

5 collimation c Q.0QQ452; -0.000452!dd.mmss
Refraction k 0 0052747{ 0 0052747/ 1 az of maxdd.mmss

collimation rate q dd.mmss/hr

Refraction rate p correlation matrixdd.mmss/hr
0 6454081 {' 

0.032621 {
s.e zenith angle arc secs 0 6454081
s.e. stopwatch time secs 0032621

20/07/2000 0.0045 + &gap ddm m ss  
22 41 time power scale| 0~9|

dd/mm/yyyy
hh.mmss 0 0002203

0.0002203hh.mmss
Polar Motion x" adjusted with Polar Motion &  ht
Polar Motion f 53.044522 Latitude
Station height 1.095976 Longitudemetres

most significant |____
[standard residual \|/

Position Lines Iterate
Observations
Star/mag Stop Watch Zenith Angle |no o fo q  22

hh.mmss dd.mmss hh.mmss dd.mmss
15.24569 21.09591

22 1 404E+09 14.04235 64.22501 21 11582 25.0547 0.6 0.098  1_
23 1.623E+09 16.24012 61.3108 2113582  10 04261 0.6 0.139  1_
2 4 “ 1.52E + 09 15 20449 71.50206 ~ 0 6 0177
25 1.948E-09 19.48145 70.16117 21.17583 24 42242 0.6 0.132
26 2.118E*09l 21.183821 62.350961 21.19576 32 50264I 0.6 033941 1

H 4 ► ►! \P o s n  Line - regular tim e /  Sheet5 /  S|ieet6 /  5heet7 /  5heet8 /  5heet9

Select destination and press ENTER or choose Paste

Figure 10.18 Position Line solution with all observations. 20 July 2000.
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In Figure 10.18 all observations are used with the following results.

Latitude 53° 04’ 45”.22 ± 0” .35

Longitude -1°09 ’ 59”.76 ± 0”.77

However, the graph of residuals, Figure 10.19, shows that there is at least one 

observation with a residual significantly larger than the others.

zenith residuals
0  £ 1 0 0 0 1 2  

0 . 00001  

0 . 0 0 0 0 0 8  

0 £ 1 0 0 0 0 6  

0 J 0 0 0 0 0 4  
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Figure 10.19 Zenith residuals in radians for a Position Line solution with all observations. 

20 July 2000.

Cell H19 in Figure 10.18 indicates that the most significant residual is 5.1 times its own 

standard error and therefore is an outlier that should be rejected. When the adjustment is 

re-run the results are as follows.

Latitude 53° 04’ 44” .93 ± 0” .21

Longitude -1 ° 10’ 00”.71 ± 0” .49

Find and remove gross errors. Iterate to convergence for astronomical position.

However, the graph of residuals, Figure 10.20, still shows that there is at least one 

observation with a residual significantly larger than the others.
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Figure 10.20 Zenith residuals in radians for a Position Line solution with one observation 

rejected. 20 July 2000.

Cell H19 now indicates that the most significant residual is 4.0 times its own standard 

error and therefore is an outlier that should be rejected.

10.5 Results

When the adjustment is re-run the results are as follows.

Latitude 53° 04’ 44” .96 ± 0” .16

Longitude -1°10 ’ 00”.44 ± 0” .24

A detail of the spreadsheet “Position Line Solution” is below at Figure 10.21.
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rrr[jvj Microsoft Excel - ?0 july 00 1 st session PDSNSOI N with changing lefiar.tion *rnrl collim<tlion

j l j jp  £Ib Edit tfew insort Format loots Bata Financial Manager ftlndow balp
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BQ40

Position Lines by Least Squares - Regular time
adjusted

53.04451 53.0445099 metresLatitude dd.mmss
1 100008 •1.10000796Longitude dd.mmss sign ilican c

6.6
semi-max

•0 000337 0 00033688collimation c dd.mmss
Refraction k 0 0054936 0.00549359 az of maxdd.mmss

sigma 0collimation rate q dd.mmss/hr

Refraction rate p 0.000463 •0 00046269 correlation matrixdd.mmss/hr
0.2934463s.e zenith angle arc secs 0.2934463

s.e stopwatch time secs
20/07/2000 ♦ &gap dd.mmss 

time power scale| 0 9|
dd/mm/yyyy

0 0002203hh.mmss
0 0002203hh.mmss

adjusted with Polar Motion & fitPolar Motion >f'
Polar Motion y" 53.0444962 Latitude
Station height 1.10004413 Longitudemetres

most significant [ 
standard residual

Position Lines Iterate
Observations

Zenith AngleStar/mag Stop Watch
dd.mmss hh.mmss dd.mmsshh.mmss

15.24569' 21 09591
64.225011 4 0 4235

lU 0426 I
71.502061.52E+09 15.20449 22.00473

1 948E+09 24 42242
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Figure 10.21 Position Line solution with two observations rejected. 20 July 2000.

The graph of residuals in Figure 10.21 indicates that there are no significant residuals 

and the most significant residual is only 3.05 times its own standard error and therefore 

the data is accepted as being error free. The position error ellipse in Figure 10.21 has a 

semi-major axis of 5.25 m which is approximately 0”.17 of a latitude arc second.

In this solution, only 22 observations were available and 2 were rejected as outliers.

With 20 observations there are 14 degrees of freedom and 6 parameters to solve for. If 

a full set of 50 good observations were available then the solution semi-major axis would 

have been of the order of 3.0 m or 0” .10 of a latitude arc second.

Once the equipment was all set up the actual solution took less than an hour to observe, 

however computing time was somewhat greater. 50 good observations would have 

taken one hour and forty minutes to observe.

In this practical exercise it was noted that the computed standard error of the time that 

the star crossed the crosshair was related to the magnitude of the star. The brighter the 

star the better was the solution. A possible future improvement would be to apply weight 

to the observations in the final Position Line solution according to either the computed 

standard error of the time that the star crossed the crosshair or, the magnitude of the 

star.
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Finally, apply the topographic-isostatic correction, from Chapter 6, and the correction for 

lunar gravitation and barycentric centrifugal force, from Chapter 7.

The longitudinal cross-section along the line of steepest slope through the observation 

point is in Figure 10.22, below. This was derived from the interpolation of contours on a 

1:50000 Ordnance Survey map.

longitudinal section

Am

-1000 -500 0 500 1000
distance from observation point metres

Figure 10.22 Longitudinal cross-section along the line of steepest slope through the 

observation point.

The computed topographic-isostatic latitude and longitude corrections are respectively 

+0".01 and +0”.11.

At the mean time of observations, the lunar Right Ascension and Declination were 

23h.62 and -9°.53 respectively. These lead to combined corrections to latitude and 

longitude for lunar gravitation and barycentric centrifugal force of +0”.25 and -0”.26 

respectively. The final astronomical position is shown in Table 10.1, below.

Table 10.1 Corrected Position Line Solution

latitude longitude

Position Line Solution 53° 04’ 44”.96 -1° 10’ 00”.44

Topographic-isostatic correction +0” .01 +0”.11

Lunar gravitation & barycentric centrifugal force 

correction

+0” .25 -0” .26

Corrected Position Line Solution 53° 04’ 45” .22 -1° 10’ 00”.59
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The GPS position in WGS84 has also been found from just over 115 hours of 

observations at an epoch rate of 60s, 6908 epochs in all. The final deviation 

computation is in Table 10.2 below.

Table 10.2 Final Deviation Computation

latitude longitude

Corrected Position Line Solution - Astronomical 53° 04’ 45” .22 -1° 10’ Q0”.59

GPS WGS84 position - Geodetic 53° 04’ 46” .46 -1° 10’ 15”.40

6" T|

Deviation of the vertical -1” .24 +8” .90

This compares with the approximate values of deviation of the vertical, derived from data 

at Ordnance Survey (2001), of -0” .7 in latitude and +10” .5 in longitude. These are based 

upon a computation of the average slope of the geoid between points 10” North and 

South, and points 15” East and West of the observation point. In each case, the 

distance over which the slope is calculated is approximately 600 metres. A 0.001 m 

rounding error in one of the points would affect the slope of the geoid and hence 

deviation of the vertical by 0”.35. The difference between the values just described and 

the author’s value of deviation in the meridian is 0”.54 and therefore agrees well within 

the bounds of the combined observational error of the author’s observations and the 

Ordnance Survey’s geoid model. The difference in values of deviation in the prime 

vertical, 1” .60, does not agree so well but it is not clear whether that reflects errors in the 

author’s observations and/or method, or errors in the Ordnance Survey’s geoid model. 

The author, although not-unbiased, inclines to the latter.

This exercise shows that the theory and processes developed in earlier chapters can be 

applied to obtain practical results that could be taken forward with similar observations at 

other nearby points to compute a local astrogeodetic geoid model.
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Chapter 11 

Conclusions

11.1 Review of the original aims

The original aims of this study were stated in Chapter 1. As the study developed, so 

did its direction and therefore not all of the original aims have been addressed.

At the outset it was anticipated that it would be necessary to develop a prediction 

spreadsheet or software programme for manual video data capture, that is, with the 

video on a separate mount from the theodolite. Techniques for data capture by video 

methods would need to be developed. A database of star information that could easily 

be updated would need to be constructed.

Depending upon the quality of video images, it was anticipated that it would be 

appropriate to investigate methods for timing to better than 0.04s using characteristics 

of star-set/star-rise behind the theodolite graticule. Moreover a general least squares 

analysis would need to be used because the equation that connects the observations 

of time and the observations of the theodolite circle reading with the unknowns of 

latitude, longitude, parameters of the refraction model and theodolite vertical 

collimation contains two inseparable observations. Such a least squares solution 

would contain a full set of error statistics including the computation of residuals and 

their standard errors for the determination of outliers and for the true size of the 

position error ellipse. These are the statistical applications of quality assurance and 

quality assessment respectively. It was anticipated that such a solution would 

probably, subject to investigation, have a standard error of the order of ±0".5 -1

It was expected that the process would require one hour for observations and two 

hours for computation per station, leading to a solution better than ±1". Most of the two 

hours needed for data processing would be involved with abstracting time information 

from approximately 80 minutes of videotape.

With a video camera mounted on the theodolite, this would eliminate the need for lining 

up the camera with the theodolite for each star. In turn, it was expected that this would 

reduce the time per star to about 2 minutes, or 20 stars in 40 minutes.
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It was anticipated that a motorised theodolite with video mount, driven by a laptop 

computer and software, would reduce the acquisition time per star to approximately 6 

to 10 seconds per star or 20 stars in 3 minutes plus 15 minutes set up time. This 

would now be the same time requirement as that for the GPS data capture, a 

concurrent activity, and possibly similar to the travel time from point to point. Data 

processing time would also be reduced to about 1 hour per station because there 

would only be 3 minutes of videotape from which to extract time information.

Neither of these technologies were essential for this investigation but, had they been 

available, would have dramatically improved the numerical results of the investigation.

The original plan of work included:

a. Design a computer based method for the prediction of star positions 

for any site and observation start time and hence create a site specific 

optimised observing programme.

b. Use simulated observations, computed for the observing programme 

above, to investigate general least squares solutions for the 

determination of astronomical latitude and longitude.

c. Conduct a short field campaign for the collection of observations, 

using the observing programme above. Compute astronomical 

latitudes and longitudes and review the quality and blunder detection 

statistics of the general least squares solution with a view to system 

improvement.

d. Compare the solution derived by conventional graphical techniques 

with the least squares solution.

e. Investigate how on-site solutions, rather than those which are post

processed, may be used to give integrity and quality indicators and to 

minimise on-site data capture time.

f. Investigate the use of automation in the collection and processing of 

astronomical data. Technologies and techniques that, at the outset, 

that may have been available for investigation included:

Video for recording of star crossings.

Abstracting time information from video.

Time tagged theodolite data logging.

Servo/Robotic theodolites for rapid pointing.
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g. Investigate and select appropriate statistical methods for the

determination of a geoid model from the deviation of the vertical 

information.

As work progressed, it became apparent that capturing images onto videotape was 

cumbersome and so an alternative method with a sensitive photodiode and with a 

video frame capture board was assessed.

In Chapter 1, the aim “to develop a method for the rapid determination of 

astronomical latitude and longitude including investigation of methods for optimising 

the selection of observational data and development of field procedures to minimise 

the time for the collection of observational data” has partly been met. The current 

version of the method developed by this author involves about two hours of data 

collection but rather more time spent on data processing per station. This is a 

significant improvement on traditional techniques that may involve one or two nights 

of observations and a day of computations. The major improvement is in the order of 

precision that can be achieved, improving from ±3” to ±0.2” in position. However, 

there is considerable scope for further improvement in the system, see Section 11.4.

The aim “to investigate the application of rigorous statistical techniques to the precise 

determination of astronomical latitude and longitude” has been reasonably 

successful. Least squares analysis by observation equations has been applied for 

the determination of lunar position, the determination of the time, in video frames, 

when a star crosses a crosshair and in the construction of geoid models. General 

least squares has been applied to find position with refraction, vertical collimation and 

their rates of change included in the parameters to be solved for.

The aim “to develop the application of mathematical techniques for the determination 

of a geoid model from astronomical deviation of the vertical data of a chosen area” 

has been attempted. Although several approaches to this problem were developed, 

which have application to a limited data set over a small area, there is insufficient 

rigour to justify application to substantial projects, such as those of a national scale.

11.2 Summary of Conclusions

Below is a summary of the main achievements and conclusions from each of the 

chapters.

In Chapter 4, Position Lines Theory, the least squares approach to position lines (in 

which refraction, vertical collimation and their rates of change are modelled as
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unknowns) was developed and used in a spreadsheet to find astronomical position. 

Such an approach means that it not necessary to observe meteorological conditions 

on the ground and make the assumption that observations at one point can be used 

to model curvature of the optical path from ground to star.

The development of several possible solutions to the evaluation of a personal 

equation have been considered but it was discovered that the best solution is where 

estimation of the time that a star passes a crosshair is made without human 

judgement.

An equation to correct for the effect of an error in horizontal pointing on the observed 

vertical angle was developed so that an observed near zenith vertical angle could be 

corrected for the small but systematic error induced by not observing with the star on 

the theodolite crosshairs.

In Chapter 5, Star Positions, suitable star catalogues were constructed so that the 

possibility of ambiguity between close stars was avoided and a spreadsheet to 

update star co-ordinates to the date and time of observations was written to ensure 

that star data truly referred to the epoch of observation.

A method for detecting the instant of passage of a star across theodolite crosshairs 

using a photodiode was developed in Chapter 6, Observing and computing 

processes. Unfortunately, the method could not be tested in practice because the 

photodiode used was unstable at operating temperatures but the method is now 

available should, either a more stable diode become available or, a practical means 

of cooling a diode in the field be developed.

A method for linking GPS and video time by exposure of a GPS timed flash was 

developed so that there was no "personal equation” effect upon the determination of 

the timing of star passage over the theodolite crosshairs.

A video based method for detecting the instant of passage of a star across the 

theodolite crosshairs was developed and implemented in a spreadsheet. This enabled 

the determination of passage at a sub-video frame epoch level.

The prediction programme was optimised for star balance using a combination of 

various parameters so that any systematic effect of errors inherent in an unbalanced 

data set would be minimised.

Productivity with varying levels of automation was considered. It was concluded that 

the best possible productivity would be that obtainable where theodolite angle data is

252



Chapter 11 Conclusions

captured with a data logger and the theodolite is motorised and programmed to point to 

stars on command.

Video time was precisely linked to GPS time by using a data capture rate of one frame 

nominally every 124 ms, that is a data rate slightly different from 8 frames per second. 

Therefore a precise but practical method to find the instant that a star crosses a 

theodolite crosshair using a video camera mounted on a theodolite with GPS time input 

has been developed.

A practical observing and computing aide memoire was written for use in the “field” so 

that the fairly complex procedure can be completed in the field without omission.

Theory to describe the effect of barycentric lunar gravitation on deviation of the vertical 

was developed in Chapter 7, The Effect of Lunar Gravitation and Barycentric 

Centrifugal Force on Deviation of the Vertical. Formulae for the computation of a 

correction have been derived so that this source of systematic error can now be 

corrected for. Where astronomical data has been used in the past, derived values of 

position may need to be corrected.

In Chapter 8, The Topographic-isostatic Effect, the application of the topographic- 

isostatic effect on astronomical position was investigated. Formulae for use with a 

digital elevation model were derived but were of such complexity that application in a 

simple spreadsheet was not possible.

An approximate “rule of thumb” is that it is prudent to create a longitudinal section 

along the line of greatest slope in length at least four times the height of the highest 

point along that section was deduced. It is tentatively suggested that this should give a 

topographic-isostatic correction to ± 10% ± 0” .1 of its true value in topography similar to 

that found in the UK. Therefore, at this level of precision, the computation load is 

significantly reduced and the need for raw DEM data is now reduced to that “along the 

line of greatest slope in length at least four times the height of the highest point along 

that section”.

It was found that, to minimise errors in the computed value of topographic-isostatic 

deviation, the best observing points are where there is an even slope, i.e. zero rate of 

change of slope.

The application and formulae developed here, using wedges across the local line of 

greatest slope, although not as rigorous as the DEM approach was much simpler and 

will give results that are of sufficient precision in non-mountainous areas such as most 

of UK.
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Kaula’s rule of thumb was related to the Astrogeodetic Geoid Model in Chapter 9, 

The Astrogeodetic Geoid Model. The determination of geoid models using 

polynomial coefficients and “progressive nodes” was examined. It was concluded 

that the former is the more rigorous approach but computationally much more 

complex. The latter is likely to produce results that are almost as good, but it was 

found that the determination of quality statistics is more difficult.

In the practical determination of astronomical position described in Chapter 10, a 

position solution with a standard error ellipse major axis of ± 0”.17 was obtained with 

20 observations and it was deduced that 50 good observations, taking 100 minutes 

to observe with manual pointing of the theodolite, should lead to a solution at the 0” .1 

level. With the aid of a motorised theodolite, the time of observations would also be 

significantly reduced. However, local temporal systematic refraction effects might 

then become more significant.

11.3 Practical Implications

The practical implications of this study are as follows.

• Astronomical position can now be determined to about 0” .15 (5 metres) with 

less than 2 hours worth of observations or, potentially, less than half an hour 

of observations using a motorised electronic theodolite.

• In turn, this can lead to astronomically derived deviation as an economic data 

source for the determination of a local precise geoid. This may find a 

practical application where precise height is required from GPS such as in 

large engineering projects, for example bridge or tunnel river crossings. 

Where the engineering project is long and linear, such as with pipeline, canal 

or river works, the local geoid model is only required in and near the area of 

the works. In this case, an astrogeodetic geoid will be much easier to 

construct than a gravitationally derived one because it will require fewer 

observations.

• How much the process can aid the determination of national or continental 

geoid models would require further study. However, since precise 

astronomical position can now be determined with relatively little effort, then 

astronomy would lend itself more to the provision of a control framework for 

gravitationally derived geoid models, local independent checks upon 

gravitationally derived geoid models or the inclusion of astronomical
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observations in astro-gravitational geoid models and geoid models derived 

from mixed observations.

• The system could also have application where change is expected over time 

in the direction of the vertical at a point, such as in tectonic and volcanic 

studies. In such cases, astronomical data would give information about 

change independent from other data sources such as precise levelling, 

gravity or geophysical measurements.

• There are significant improvements to the usefulness of the system that can 

be made and they are described in Section 11.4 below.

11.4 Further studies

If a geoid model is to be used with GPS to find orthometric height differences, then 

the quality of the model must be better than the height difference determined by 

GPS. With the current and future anticipated improvements in GPS capabilities, the 

requirement for a millimetre relative geoid will soon arise. For such a geoid to be 

determined by astrogeodetic means, there will need to be significant improvements in 

several aspects of the hardware and the data processing techniques.

• The quality of star co-ordinates available from current almanacs is probably not

the weakest link in the process. However, any improvement will help, especially 

in the removal of systematic errors in star co-ordinates.

• Refraction is probably the area that could benefit most from further research. If

the observations are made in a short period then there will be less likelihood of

the refraction effects being cancelled out than with observations taken over a

protracted period of time. Two approaches are possible.
<

>  Modelling systematic refraction effects at a given epoch and position due to 

known meteorological conditions such as the passage of a weather front.

>  The other is modelling total refraction effects, for example by “2 colour” 

methods, for the integrated meteorological effect. 2-colour solutions for 

meteorological effects have been used in EDM instruments such as the 

Terrameter for the measurement of distance. Observations on 2 frequencies 

are used with GPS. The problem with such an approach for direction 

measurement is that the difference in apparent direction of incoming blue and 

red light is that it will be about 2% of the total refraction effect and therefore to 

compute the refraction effect to 1” would require measurement of the
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difference in altitude of red and blue light from the star to 0”.02 - a formidable 

problem.

• Improved DEMs would aid the computation of the topographic-isostatic effect. 

Technically this would not be difficult if suitable map data already exists but the 

time and cost to produce the data sets could be significant. However, the 

refinement would need to be accompanied by improved density models for the 

computation of the topographic-isostatic effect. Figure 2 of Heiland et al (1998) 

suggests that the topographic-isostatic effect could be of several arc seconds in 

Austria. Marti (1998) suggests that the density of the topography in Switzerland 

can vary from +0.4 g cm'3 to -0.8 g cm'3 from the assumed value of 2.67 g cm'3. 

Taking these two facts together suggests that there could be errors approaching 

1” in the computation of the topographic-isostatic effect due to errors in the 

assumed topographic density.

• Further investigation is required to confirm that the method of finding topographic- 

isostatic deviation corrections by modelling the topography by infinitely long 

wedges perpendicular to the line of greatest slope gives a solution to ± 10% of its 

true value in topography similar to that found in the UK.

• Improve the model for the effect of barycentric lunar gravitation on deviation of 

the vertical to take account of the fact that the lunar orbit is not circular and 

therefore lunar gravitation varies. With an elliptical orbit, the earth will accelerate 

and decelerate during its orbit around the barycentre further complicating the 

model.

• Improvements to the fundamental observations of vertical angle with electronic 

theodolites are desirable.
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Annex A

Elevation and Topographic-lsostatic Graphics

This annex contains graphics that relate to Chapter 8 and is concerned with the topographic- 
isostatic effect upon astronomical position.
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Annex A - Elevation and Topographic-isostatic Graphics
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Annex A - Elevation and Topographic-isostatic Graphics
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Annex B 

RMS Solutions for Tests of Polynomial Geoid Models

The graphs in this Annex relate to the text in the Section 10.5 entitled “Geoid Model by 
Polynomial Coefficients”.
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