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ESTELLE WALKER:

Proportional Hazards Modelling for the Analysis

of Reliability Field Data.

This thesis reviews the theory of the Proportional
Hazards Model for use in analysing reliability field data.
Since, much work in reliability is concerned with providing
statistical models for the 1lifelengths or interfailure
times of equipment, and hence provide predictions for their
performance in the field, reliability field data might be
considered most appropriate on which to base ones model.

Proportional Hazards Modelling has great potential in
the context of analysing reliability field data, since it
assesses significant affects on the lifelengths or
interfailure times of equipment due to both internal and
external covariates.

Three applications of PHM to the analysis of

reliability field data, are presented. The applications
illustrate that there is no unique form for reliability
data. The form of the data is influenced by the system
structure, the system’s deployment, repair and maintenance
regimes, and the data collection procedures. It is for
these reasons that Proportional Hazards Modelling can not
be applied 1in a Dblack box fashion. This thesis

demonstrates the questions that require resolving before
fitting a model and the difficulties involved in extracting
data from poor collection processes.

Four commonly used graphical diagnostic procedures,
which assess the fit of the model and indicate whether or
not the model's assumptions are violated are highlighted.
These procedures are discussed in detail and extended. The
additions to the forms applied previously in the literature
ease the visual inspection of the plots.

An exploratory data analysis approach to Proportional
Hazards Modelling of reliability field data is advised.

(i1)



OBJECTIVES

The main objectives of the research for this thesis are:

(1)

(11)

(iii)

(iv)

To review the literature on the use of
Proportional Hazards Modelling for
reliability analysis.

To 1investigate the problems involved in
applying Proportional” Hazards Models to
various formats of reliability field data.

To investigate the implementation of
graphical diagnostic procedures for
investigating the appropriateness and fit of
Proportional Hazards Models.

To improve the wvisual inspection of
diagnostic plots and hence ease decision
making.

To suggest an appropriate route through
analysing reliability field data with
Proportional Hazards Models.
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CHAPTER 1

INTRODUCTION TO RELIABILITY

1.1 HISTORY

Reliability is considered to have evolved into a
specific field, from the related areas of quality control
and machine maintenance, with the appearance of the first
papers on reliability in the late 1940's and early 1950's.
A review of the development of statistical methods in
reliability in the years prior to 1983 is given by Lawless

(1983) .

Reliability Jjournals first began to appear in the
1950 's; IEEE Transactions and Technometrics. These Thave

been followed recently in  the 1980's Dby Reliability

Engineering and System Safety (formerly Reliability
Engineering), and Quality and Reliability Engineering
International.

Much of the statistical work in reliability has
investigated the lifetimes of equipment, or their failures
over a time period. Parametric families of distributions
that could be used to model lifetimes, therefore, began to

appear .1in engineering contexts in the late 1930's and

the 1940's. By the 1950's the Weibull and exponential
distributions became particularly popular to model
lifetimes.



1.2 FAILURE TIME DATA

Functions used extensively in reliability studies are

defined below.

Consider an equipment which has not failed by time t.

The hazard function, h(t), is the 1limit of the ratio of the
probability of failure in (t,t+At) to At.
Prob ( t<T<t+At ! t<T )

h(t) - Lim 1.1

At-X) "'
At

where T 1is the time to failure.

The hazard function h(t) gives the probability of
instantaneous failure of the equipment having survived to

time t, see Cox (1962).

The hazard function can also be considered in terms of
other related functions.

For example:

f (v
h ) * 1.2
R(t)
where f(t) is the probability density function of time
to failure.
R(t) is the probability that the equipment has

survived to time t.
[R(t) is taken to be monotonically non-increasing with

R(0)=1 and R(<»)=0} =



Thus:

R (%) exp - h(x) .dx 1.3
1
0
and
t
A
f(t) = h(t).exp - I h(x).dx 1.4
B 0
Another function frequently of 1Interest 1is the

cumulative hazard, H(t):;

The exponential distribution has a well developed
methodology, and a simple form for the hazard function
(constant) . This has contributed greatly to its extreme

popularity in the reliability field.

In many applications, however, the exponential is not
an appropriate model. More complex distributional  forms
were therefore considered, leading to the popularity of the
Weibull distribution Dbeing used to model lifetime data.
(The exponential 1s a special case of the Weibull).

Other frequently used distributions are the Gamma, the

Generalised Gamma, Log-Normal and Log-Logistic, see



Kalbfleisch and Prentice (1980), Lawless (1982), Cox and

Oakes (1984).

1.3 POINT PROCESSES

Point ©processes are often used to treat repeated
failures on the same item of equipment, see Cox and Miller
(1965), Cox and Lewis (1966), Feller (1968), Lewis (1972),

Thompson (1981), Ascher and Feingold (1984).

Models of this type include homogeneous Poisson
processes, non-homogeneous Poisson processes, renewel

processes, and superimposed processes.

Cox (1972a) and Gail et al (1980) consider models of
this type which allow for explanatory variables. They are
discussed also by Kalbfleisch and Prentice (1980) and

Lawless (1982).

1.4 REGRESSION MODELS

Explanatory variables associated with the response

variable (usually the time to failure or the time between
failures) are often incorporated in reliability
applications.

Regression techniques where maximum likelihood or
linear estimaton procedures are usually employed can be

used to model the effects of these explanatory factors.



Accelerated Failure Time Models, and Proportional
Hazards Models are the regression techniques most commonly
applied to failure time data.

In Proportional Hazards models the explanatory
variables are assumed to act proportionally on the hazard,
whilst the explanatory variables are assumed to act
multipiicatively on the time to failure, in Accelerated

Lifetime Models.



CHAPTER 2

PROPORTIONAL HAZARDS MODELLING

2.1 HISTORY

The technique of Proportional Hazards Modelling (PHM)
has its origin largely in the seminal paper presented to
the Royal Statistical Society in March 1972 by Professor

Sir D.R. Cox.

PHM combines concepts from biostatistics and
reliability theory. It incorporates regression-like

arguments for explanatory factors into life-table analysis.

Cox (1972) regarded the application of the technique
most likely to be used in 'industrial reliability studies'
and in 'medical studies'.

It is indeed true that the medical statistics
community readily wused the approach of PHM in their
studies; the majority of the early papers using the
technique are in the medical field. The industrial
reliability community, however, took rather longer to apply

the technique within their studies.

2.2 BASIC THEORY

PHM is a technique whereby identification of
independent effects of variables thought to influence the

life length of equipment is possible without the necessity



of specifying any particular distributional form for the
life lengths of equipment.

The wvariables associated with the 1life length of
equipment are often termed covariates, explanatory

variables, or explanatory factors.

Commonly employed covariates are: operating
conditions. material. manufacturer. season, time of day.
It 1is often the case that a covariate such as time since
installation for example 1s incorporated to test for
reliability growth or decay.

PHM allows the inclusion of time dependent <covariates

that can vary with the life experience of equipments.

The method decomposes the observed variation in 1life
length into orthogonal factors, and a common baseline, then
identifies which of the factors are significant. Hence,
the relative effects of the significant variables can be

observed.

The model is structured on the hazard function.
Cox(1972) assumes the decomposition of the hazard function
into the product of a baseline hazard which is common to
all equipments, and an exponential term incorporating the
effects of the explanatory wvariables. This decomposition

is written:

h(tizlfza,..*.2kx) B ho (t) .exp (i5iZx+/32Za+.. .+BKZK ) . 2.1
t>0 . IXfiK®. -00<Z21<0

Where t 1s the survival time for an individual.



The Zt's. i=1.2....k are the wvalues of the
covariates. They may be naturally measured variables such
as temperature, or indicator wvariables representing for
example the presence or absence of a design change.

The JBj’s. i=1.2 k are the unknown parameters of
the model which represent the effect on the hazard of each
value of the covariates,

hO (t) is the common baseline hazard function. The
baseline hazard represents the hazard an equipment would
experience if the covariates all take the Dbaseline value
zero. These may correspond to a natural =zero, say
temperature. or a nominal zero representing for example a

particular design type.

From 2.1 above the effect of the covariates on the
hazard 1is to act multiplicatively on the baseline hazard
hO (t), so for different values of a significant covariate
the respective hazard functions are proportional over all
time; hence, the name Proportional Hazards Model. Fig 2.1
illustrates graphically the proportionality of the hazard
functions.

For all t the hazard experienced by an equipment with
covariate value b is twice that experienced by an equipment

with covariate wvalue a.

The method estimates the parameters Ut and tests
whether these are significantly different from zero, hence
whether each covariate has a real effect in explaining the

variation in observed 1life Ilengths.



Although it has become virtually synonymous with PHM
it is not necessary to construct the covariate effects
within an exponential  term. The formulation 1is wused
because there are no restrictions on the coefficients f

and it ensures that the hazard is always positive.

A fully parametric proportional hazards model can be
obtained if one assumes a particular distributional form
for ho (t).

It is often. however, that with complex systems and
with the confusing effects of covariates it is difficult or
impossible to assume a specified form of the Dbaseline
hazard function with any real justification. It is for
these reasons that a distribution free approach to
modelling the baseline hazard function is the more common
procedure. Thisprocedure in which the baseline hazard
function is left distribution free was adopted by Cox
(1972) ; thebaseline hazard function is an unspecified,
non-parametric. non-negative arbitrary function. The form
of this function is estimated from the data.

The non-paramcbric technique requires a different
approach.- from the usual likelihood procedures for the

estimation of the coefficients f.

Cox (1972), abilises. based on heuristic arguments, a
'conditional likelihood' in the estimation of the
coefficients ft. This 'conditional likelihood' was

subsequently Jjustified within the framework of partial



likelihood Cox (1975). It is now generally referred to as

Cox's partial 1likelihood.

2.2.1 PARTIAL LIKELIHOOD CONSTRUCTION

Cox's partial 1likelihood is based conditionally on the
set {ti>, i-1.2,...,k of times at which failures occurred.
For anytime tif conditional on the risk set at t#, R+,
which consists of all items still operationaljust prior to
ti, the probability that the failure is on the item

observed is:

exp (Bzi)

2 exp(ftz*)
IER%

where f£ is a row vector of k parameters, and Zi is a column

vector of k measured covariate values.

Cox's partial 1likelihood is then:

n exp (ftzi)
L (fv - ir 2.2
i=1
X exp(ftzi)
1ERi

where n is the observed number of failure points.

2.2.2 ESTIMATION PROCEDURES

We require to find the values of ff that maximise the

partial 1likelihood.



The natural logarithm of the partial likelihood 1is
taken, and then the first and second partial differentials
with respect to each of the parameters f£i1.,ftz, ...,ft*¥ are
obtained. A Newton-Raphson iteration procedure is used in
this thesis which employs a Taylor series expansion for
each step in the iteration procedure. The procedure starts
with initial wvalues of zero for f; and the iteration
continues until the convergence criterion is satisfied. In
this thesis we use a convergence criterion based on the
absolute ratio fiA and the last change Afd, i=*1,2, ...,k;
convergence 1is satisfied if laftil < IftilxlO*-*, i-1,2,...,k,
for all covariates, see Wightman (1987).

Alternative optimisation procedures are available,
for example the expectation maximisation (EM) algorithm,

(Cox and Oakes (1984)).

Once the estimates converge, tests of whether each
explanatory variable has a significant effect are based

upon the asymptotic Normality of the estimates.

Once estimates have been found for fti,i32> a
distribution free estimate of the baseline hazard function
may be obtained. From the relationship Dbetween the

cumulative hazard function and the survivor function we can

readily obtain an estimate of the Dbaseline survivor
function. There are various approaches to obtaining these
estimates suggested in the literature. Cox (1972)

considers a baseline hazard function which is taken to be

identically zero at points where no failure has occurred.



Cox himself notes that this method is, however, complex.
Both Oakes and Breslow in the discussion section of Cox
(1972) suggest a non-zero constant value of hO0 (t) between
the failure times.

Kalbfleisch and Prentice (1973) use a procedure for
estimating the Dbaseline hazard, which allows for ties,

whereby a likelihood is built in terms of the baseline

survivor function. The full 1likelihood is given by:
n exp (Bz7J) exp (Bzx)
L(a,B) ir {T (1 - a* ) . iy alA >
i«l JED* ie (R4-Di)
2.2
where Di set of labels associated with individuals

failing at t4
R* is the set of labels associated with individuals
at risk Jjust prior to ti
(1—cci) hazard contribution at ti

n number of failure points

Since the fi’'s have been estimated already from the
partial likelihood, 2.2 can be maximised with respect to

the =i ls.

The maximum likelihood estimate of the baseline

survivor function is:

Soct) a w il 2.3
ti<t

12



The routines employed in this thesis which are
extensions of those given in Kalbfleisch and Prentice
(1980), use the likelihood formulation 2.2 to obtain an
estimate of the baseline survivor function;

A A
So(t) - T a*
i/t <i><t
which would give an estimate of the cumulative Dbaseline
hazard function;
W a
Ho(t) - - 2 In ax* 2.4
i/t <a><t
However, the first order approximation to 2.4 is in
fact used in the Kalbfleisch and Prentice routines where;
A A
HO (t) = 2 1 - a*) 2.5
i/t <*><t
This is sometimes called the empirical cumulative

hazard function (Lawless (1982)).

There are occassions where computational problems

arise in a PHM model.

A covariate is monotonic when it is the largest of all
the covariate values in the risk set at each failure time;
or when it is the smallest of all the covariate values in

the risk set at each failure time.



If a covariate =z 1is monotone, then the partial
likelihood will be monotone in £, leading to the estimate
of E&» or ;«i».

Since estimation cannot proceed in such a situation,
it is necessary to remove the monotonic covariate from the

mode 1.

Multicollinearity in the covariates also inhibits the
estimation procedure. This occurs when a covariate is a
linear combination of one or more of the other covariates
in the mode 1.

It 1is again necessary to eliminate one of the
covariates involved in the multicollinearity to allow

estimation of the coefficients to proceed.

2.2.3 TIES

The model by nature is a continuous time model, hence
it is assumed that all failed life lengths are distinct.
However, it is often the case with reliability data that
tied failure times are recorded, this is usually due to the
crudity of the time measurement. In the ~case of tied
failure points approximations for the contributions to the
partial likelihood at that failure +time are available,
(Wightman (1987)) . The contribution used in this thesis

for analysis is that suggested by Breslow (1974):,



exp (£si)

2.6
di
[ 2 exp (ftzl) ]
1ER1
where si is the sum of z over failures at ti
di number of failures observed at ti

There is no guidance in the literature which would
indicate the number of ties for which a discrete version of
the model would be more appropriate. The discrete model

will be discussed later in section 2.3.6.

In the estimation procedure for the Dbaseline hazard
function, whereby 2.2 1is maximised with respect to the
oci's, if a single failure occurs at ti the value ai can be
obtained directly. If ties are involved an iterative

procedure 1is required.

2.3 EXTENSIONS TO BASIC MODEL

The basic model as described in section 2.2 can Dbe
built wupon in a number of ways which will be discussed in

this section.

2.3.1 STRATIFICATION

The proportional hazards model requires that an
explanatory factor should affect the hazard
multiplicatively. Although this may be descriptive of many

situations it is unrealistic to expect that all the



covariates necessarily fulfill the proportionality
assumption. [For example see covariate z"-event 1in the
example of PHM applied to computer hardware failures, in

section 4.5.3].

When a factor does not affect the hazard
multiplicatively, stratification could be employed.

Suppose a factor which occurs on g levels violates the
proportionality assumption. Individuals can be assigned to
g strata Dbased on the level of the factor. The hazard

function for an individual in the 7j'th stratum is given by:

hj (t;z) = hoj (t) .exp(ftz) =1,2,...,9 2.7
Individuals in the same stratum have proportional
hazards, but this is not necessarily true for individuals
between different strata.

In 2.7 it 1is assumed that the relative effect of the
explanatory variables is the same within all strata” this
condition can and may be relaxed with f£f varying between
strata. This'is equivalent to applying separate models to
each stratum.

A partial 1likelihood function Lj(ft) is obtained for
each stratum, and the overall partial 1likelihood of f£ is

approximately the product of these terms. In general:

L@ - %' 1j @ 2.8
J-1



Prentice, Williams and Peterson (1981) introduce
models whereby repairable items Wove through strata upon
failure'. That is; prior to its first failure an equipment
is in stratum 1, after its first and prior to its second

failure the equipment is in stratum 2, etc.

2.3,2 COVARXATE FORMULATION

It is usual for simplicity in the application of PHM
to reliability problems to include covariate information in
the form in which it is collected and measured.

Under the circumstances of the proportionality
assumption being violated other formulations for the

covariate information may be more appropriate.

Transformations of a covariate Zj may lead to
proportional hazards. For example a covariate x ~ In 7Zj,
or x = Tzj may be introduced as an alternative. (Davies et
ai (1988))

It is also possible that a time dependent formulation
will be more appropriate. For example x(zj,t) a function of
the measured variable Zj and the basic timemetric t may be
introduced as an alternative covariate. The choice of
transformation is ©presently arbitrary, (see Wightman,

Walker and Bendell (1988), appendix C).



2.3.3 COMPETING RISKS

Competing risk formulations within the PHM methodology
are available in the literature. Holt (1978) introduced
two models; one which had the same baseline for each cause
with cause specific B coefficients. and the other with
different Dbaseline and 8 coefficients for each cause.
Kalbfleisch and Prentice (1980) discuss such models and, in
the case of common baseline for each cause, find a
justification for the procedure of regarding a failure from
a particular cause as also a censored event for the other
causes.

The above procedure for competing risks 1is employed in
analyses presented in this thesis.

In the analyses presented in this thesis models for
competing risks are considered whereby the Dbasic time
metric is taken as the time between consecutive failures,
irrespective of cause, (this 1is an alternative to modelling
the different failure modes on separate time streams).
Given that there are 1+1 failure modes in the model, 1
binary dummy variables are introduced into the covariate
set to represent the different causes of failure.
Censoring events are generated at each failure time for

each of the other failure modes.

Interesting results arise from the above model
formulation, particularly that of the factorisation of the
partial likelihood, (Wightman (1987)) . The partial

likelihood factorises into two terms; one containing only



information from failure mode variables, and the other term
being the usual partial 1likelihood for a model without
competing risks, (see also Wightman, Walker and Bendell

(1988), appendix C) .

Originating from the above result it can be shown that
a constant expectated value, conditional on the risk set,
of a failure mode indicator covariate 1is obtained. This
will Dbe discussed in further detail in the later section on

Schoenfeld's partial residuals, 6.2.6.

2.3.4 DISCRETE PHM

A discrete proportional hazards modelling formulation
was introduced by Kalbfleisch and Prentice (1973).

This formulation may be applicable to a continuous
time model when there is a large number of ties at failure
times, or when failures are grouped into disjoint intervals
for example, due to their discovery during routine

inspections (Wightman (1987)).

The essence of the discrete proportional hazards model
is that the time axis 1s split into specific time
intervals. For each time interval a parameter, hi, is
allocated; the model then contains a finite number of
parameters hi,ha,. ..,hn and i3, the vector of covariate
coefficients. Likelihood procedures can be implemented for

obtaining asymptotic maximum likelihood estimates.



Further discussion and development of discrete

is provided by Prentice and Gloeckler (1978).
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Figure 2.1
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Hazard functions for different covariate values.
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CHAPTER 3

APPLICATION TO VEHICULAR SUBSYSTEM RELIABILITY

This chapter shows an example of an application to the
reliability analysis of two vehicular subsystems. The
example illustrates the importance of good data recording;

and also the necessity of using PHM as an exploratory tool.

3.1 THE INITIAL DATA

PHM was applied to analyse the failure data from two
subsystems of a vehicle, supplied by T. Nowakowski

(Poliiyfchnika Wroclawska)

The data was obtained during field tests of 110 buses
operating in 5 different towns/environments.
Each Dbus was tested over a total of at least 100,000

miles.

Table 3.1 shows the number of buses on test in each of

the environments.

TABLE 3.1 Test parameters

Environment Sample size

10
50
20
20
10
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Figure 3.1 1indicates the way in which the failures

were recorded.

Table 3.2 shows an example of the form of the data as

it was originally provided by the source.

It is stated in an analysis using a modified multiple
regression model by the data provider {Nowakowski (1986))
that there are no differences between the effects of the
different environments for subsystem A, Dbut subsystem B is

strongly influenced by the environment factors.

3.2 ANALYSIS; MODEL 1

The two subsystems were analysed separately.

The Dbasic 'performance' metric, t, in the hazard
function (see equation 2 .1), was taken to be the miles
travelled Dbetween events. An 'event' being a recorded

failure of the subsystem, or the position at which it

leaves the field of observation.

Dummy variables were introduced to model the effects
of the environments. Environment 2 was taken as the Dbase

since this area has the most buses under observation,

i.e.
z% Z2 73 z* %5
Environment 1 1 0 0 0
Environment 2 0 0 0 0
Environment 3 0 1 0 0
Environment 4 0 0 1 0
Environment 5 0 0 0 1

(base)
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Reliability data of Subsystem A

:

SREPEEEEEE PR

B HEF

520

838
3552

m

A
16D

ueies)
477



Since the data was split into two groups; miles to
first failure, and miles between failures, an indicator
variable was also introduced into the model such that;

1 first event (MTEF)

z$
0 subsequent event (MBF)

As much censoring information as could be obtained
from the data was included in the model. For example, from
Table 3.2, looking at environment 1 we are given four miles
to first failure (MTFF'’s). Since we know that there are
ten different buses operating in environment 1 (See Table
3.1), there must be six first events censored at 100,000
miles. Also, since there are no miles between failures
(MBF's) given there must be another four subsequent events
censored from the stage of the first failure up to 100,000
mi les.

The results from the proportional hazards analysis for
this first model (MODEL 1) can be seen in Tables 3.3 and
3.4, applied to subsystem A and subsystem B respectively.

These show the £ parameter estimates for the
significant covariates; their p-value (the probability of
obtaining such an extreme effect just due to chance) } and
the multiplicative effect on the baseline hazard that an
indicator variable when equal to 1 will Thave. The
likelihood ratio statistic, I, is also shown for the fitted
model, with the tabulated 5% critical value from the Chi-

squared distribution, given in brackets.



Table 3.3 Results of PHM analyses. Subsystem A.
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The 1likelihood ratio statistic for the models fitted
to both subsystems indicate that the model is significant
in explaining the observed data.

The covariate, ze” indicating whether the event was an
initial or subsequent event, is highly significant showing
that there is a lower hazard for first events (more miles
to first failure, than miles between failures).

The results also appear to confirm the hypothesis that
there is no difference Dbetween the effects of the
environments on subsystem A, but that there are significant
differences Dbetween the effects of the environments on
subsystem B.

For subsystem B there is no significant difference

between the effects of environment 3 and the base

(environment 2); environments 1 and 4 are significantly
better' (more miles between failures experienced within
these environments); and environment 5 1is significantly
wWorse’ (fewer miles between failures experienced in this
environment.)

3.3 FURTHER DATA AND MODELS

As indicated is section 3.2 the data provided in the
form shown in Table 3.2 masks a great deal of information.
We were unable to match the MBF's to the MTFF's for each
bus, and hence lost a large amount of censoring

information.



The data was immediately sought from the source in a
form in which a 'time stream: (time in this instance 1is
really miles travelled) for each bus could be observed. It
is then possible to match MBF's to MTFF’s and obtain more
information for censored events. Table 3.5 shows an

example of the form of the data finally obtained.

3.3.1 MODEL 2

A second model (MODEL 2) was applied to this new form
of the data with increased censoring information, obtained
from the second format of the data, with the same

covariates as defined in MODEL 1.

The results obtained, as seen in Tables 3.3 and 3.4,

are roughly similar to those for MODEL 1.

For subsystem B environment 3 now also appears

'better' than the base environment 2 .

The 1likelihood ratio statistics, L, again 1indicate

that the models fitted have significant explanatory power.

Despite the increased information in the data, and
although having significant explanatory power MODEL 2 does
not appear an especially good fitting model, for either

subsystem.
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3.3.2 MODEL 3
t

The third model fitted (MODEL 3) includes a covariate
for the cumulative number of miles travelled by the bus up
to each event. This, if significant, would indicate
whether the hazard was increasing or decreasing as the bus

traveiied more miies.

The inclusion of this additional covariate has quite a
dramatic effect; altering the significance of many of the
covariates previously fitted.

We can see from the results in Tables 3.3 and 3.4 that
for both subsystems the additional covariate, z%> is highly
significant, showing a decreasing hazard as the mileage
increases (i.e. reliability growth).

For both subsystems the indicator variable for the
event (MTFF/MBF) now shows a greater effect on the hazard.-

For subsystem A environment 4 now appears Wworse* than
the base and other environments.

For subsystem B the environments 1 and 3 no longer
appear to be significantly different from the base

(environment 2).

For the models, fitted to both subsystems, there has
been a dramatic increase in the likelihood ratio
statistics, L. The number of significant covariates have

of course also increased which will raise the likelihood



3.3.3 MODEL 4

Since the indicator variable for the events (JyITFE/MBF)
shows, in all the models, a highly significant effect, and
since there was no real reason to split on MTFF/MBF, other
than that being the form in which the data was originally
presented, the concept of modelling the failure number was
extended, to search for increasing or decreasing hazard as

the number of previous failures increases.

For the analysis of subsystem A dummy variables z& to

Zu were introduced to replace z©®, such that:

Zz9 2io Zu
1st event 1 0 0
2nd event 0 1 0
3rd event 0 0 0
later event 0 0 1
(base)

And in the analysis of subsystem B, dummy variables z®©

to Zi3 were introduced such that:

z@ ze Zio Zu Z21l2 713
1st event 1 0 0 0 0
2nd event 0 1 0 0 0
3rd event 0 0 0 0 0
4th event 0 0 1 0 0
5th event 0 0 0 1 0
later event 0 0 0 0 1
(base)

The results from this model (MODEL 4) can also be seen

in Tables 3.3 and 3.4.
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For subsystem A there appears to be no significant

difference between the 2nd and 3rd events (the third events

are modelled on the baseline). However, when zO (2nd
A

event) was eliminated it had - -0.61988, and so we can

see a gradation within the effects of these dummy

variables, which shows the hazard to be increasing as more

failures occur.

Again, environment 4 appears 'worse' than the others.

For subsystem B there is also a gradation within
effects of the 'failure number' dummy variables. Although
Zn and Zi2 were eliminated, they were marginal with p—
value 0.0265 and 0.0253 respectively. This gradation
shows, for this subsystem also, the hazard increases as
more failures occur.

None of the environments now have any significant
effect, refuting our earlier beief that subsystem B 1is

highly influenced by the environment factor.

The likelihood &ratio statistics, L, have again

increased.

3.4 GRAPHICAL DIAGNOSTICS FOR MODEL 4

Graphical diagnostics applied to the final fitted

model  for both subsystems are shown and described in this



The diagnostic techniques themselves are extended and

explained in greater detail in Chapter s .

3.4.1 SUBSYSTEM A

The Proportional Hazards Model makes no assumptions
about the form of the underlying distribution of the
process. The method does, however, obtain an estimate of
the Dbaseline hazard ho(t) at each failure point. It is
often possible then to identify the baseline distribution
direclty Dby using the estimate for the hazard in wvarious
distributional hazard plots.

Figures 3.2, 3.3. and 3.4 are Weibull, Log-Normal, and
Extreme value hazard plots respectively. Since the hazard
contributions estimated from the fitted model do not yield
straight lines on these plots, the underlying baseline
distribution does not follow any of these forms. We did
not manage to identify a distributional form for the
baseline hazard directly from the hazard plots.

Since we have estimates of the Dbaseline hazard
function, from the fitted model, we could estimate a
distributional form from the relationship with the

probability density function; equation 1 .2 .

Methods based on those in Cox and Snell (1968) are
used to obtain residual quantities at each time ts defined
as (see Section 6.3):

A A

ei Ho (t]) .exp(fiz)
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where Ho(t) is the cumulative baseline hazard.

The estimated residuals should look roughly 1like a
random sample from the standard negative exponential
distribution, if the model is a good fit.

Plotting the natural logarithm of a survivor function
;(e) estimated from the set of residuals against the
residual estimates, produces a graphical goodness~of~fit

"test* for the model, since the plot should result in a

straight 1line with gradient -1. A variance-stabilised form
of the plot <can Dbe wused which employs an angular
transformation.

Figure 3.5 1is the variance-stabilised, plot for the
residuals estimated from the fitted model. The fit of the

model appears reasonable.

Proportionality plots are shown in Figures 3.6, 3.7
and 3.8. The data is stratified on some of the significant
binary covariates, and the model run separately for each
stratum. Plotting In Eo(t) v t for each stratum on the
same graph should produce plots with constant vertical
separation for all ¢, if the assumption of proportional
hazards holds, (Kay (1977)1%.

We can see that the covariates zs4 and z#x appear to
violate the proportionality assumption. However, the small

number of points in the upper stratum in each of the plots,

Figures 3.6 and 3.8, may be disguising the true effect.



Plots Dbased on the influence of individual miles to
failure on the ?1 parameter estimates for the significant
covariates (Cain and Lange (1984), Reid and Crepeau (1985))
are shown in Figures 3.9 to 3.12

The form presented here shows the estimated normal
deviate for the covariate coefficient when each single miles
to failure and censoring miles is excluded from the model,
one at a time. This is plotted against the order by
magnitude of the the miles on the horizontal axis.

We can then examine which miles to failure have miles
most influential on the observed significance of the
covariates, and which, if any, would if deleted remove the
significance of the covariate. For b5%two-tailed tests
these points correspond to estimated normal deviates in the
range -1.96 to +1.96.

We can see from the plots that there are no such

influential points.

3.4.2 SUBSYSTEM B
Plots similar to those described in section 3.4.1 can
beseen in Figures 3.13 to 3.23. These refer to the

analysis of subsystem B.

Again the underlying distributional form was not

directly identified from the hazard plots.



Figure 3.16 shows the overall fit of the model to be
somewhat better for subsystem B than it was for subsystem

A.

The proportionality plots again show the possibility
of non-proportional hazards for those covariates which have

very few points in one of the strata.

There are no points that are so influential to any of
the covariates that they would alter its significance if

deleted.

3.5 SUMMARY

PHM has been used here in an exploratory manner, where
we have moved from one model to another adding more
information and searching for more explanation.

We have seen that as we moved through the models our
previous assumption about the effects of the environments
were contradicted; the processes 1involved are Dbetter
described by the number of miles travelled and the number
of failures that have occurred to each subsystem. Before
these covariates were introduced into the model their
effects were masked and partially explained by other

variables present.



3.6 CONCLUSIONS FROM ANALYSES OF VEHICULAR SUBSYSTEM

RELIABILITY

The results of this study indicate that following an
exploratory procedure, whereby we step from model to model,
we have identified a PHM model that fits the structure of

the data reasonably well.

The PHM model has enabled as to identify wvariables
which have a significant effect in explaining the miles
between failures for the bus subsystems, as well as the
direction and magnitude of these effects.

The main contributions come from the total number of
miles travelled, which reduces the hazard as the number of
miles increases, and from the number of previous failures
which 1increases the hazard as the number of failures

increases..

We have also seen how the presence or absence of some
covariates can affect the significance of others which give

only a partial explanation of the processes involved.



Figure 3.1 Reliability data scheme.
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Figure 3.2 Weibull baseline hazard plot.
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Figure 3. | Smallest extreme value hazard plot
Subsystem A.

13

41



Figure 3.5 Variance-stabilised Cox and Snell type
residual plot. Subsystem A.
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Figure 3.6 Proportionality plot. Subsystem A
Covariate z4 - 'environment 4.’



Figure 3.7 Proportionality plot.
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Figure 3. T

Proportionality plot. Subsystem A.
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Figure 3.9 Influence plot. Subsystem A.
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Figure 3.10 Influence plot. Subsystem A.
Covariate z? - 'miles travelled.'
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Figure 3.11 Influence plot. Subsystem A.
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Figure 3.12 Influence plot. Subsystem A.
Covariate 2:X\ ~ 'Later failures.'
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Figure 3.13 Weibull baseline hazard plot Subsystem B

50

4 4000



Figure 3.14 Log-Normal baseline hazard plot. Subsystem B
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Figure 3.15 Smallest extreme value hazard plot
Subsystem B.
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Figure 6.13 Variance-stabilised cox and Snell type
residual plot. Subsystem B.
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Figure 3.17 Proportionality plot.
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Figure 3.18 Proportionality plot. Subsystem B.
Covariate z© - 'Second failures.'



Figure 3.19 Proportionality plot. Subsystem B
Covariate Zia - 'Later failures.'



Figure 3.20 Influence plot.
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Figure 3.21

Influence plot.
Covariate z« -
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Figure 3.22

-5.6--

Influence plot.
Covariate z9 -

Subsystem B.
'Second failures.'

/ey



Figure 3,23
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CHAPTER 4

APPLICATION TO COMPUTER HARDWARE FAILURES

This chapter shows an example of an application of PHM
to computer hardware failure data, (Drury et al (1988),
Appendix A) .

The data came from failure reports of ©processors

within a family of ICL systems.

The example shows an approach to a common form of
reliability data; 'window structure' where failures have
been recorded within a particular time period and the
history of failures prior to the start of the 'window' is

unknown.

The example also uses the censoring structure for

competing risks as discussed in section 2.3.5.

4.1 WINDOW STRUCTURE

This 1is a structure in reliability data, corresponding
to a point process observed within a time window.
A diagram showing the form of a time window over the

time stream for an item is shown below.

failures recorded

X *_ time stream >

f T

start of time window end of time window
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Data recordedin this manner presents potential
problems for analysis since it includes both left and right
truncation to observed failure times, at the start and end

of the window respectively.

4.2 DATA COLLECTION

Reliability data was collected for processors within a
family of computer hardware systems by logging all failures

rectified by engineers on a computerised database.

The data was <collected within a three month time

window; 01/04/84 - 30/06/84, at 364 customer installations.

The records included the information: system
identifier, date of failure, date of installation, average
usage the system experiences, the number of processors in
the system, details of the type of failure the processor
experienced, and the quality control system in place at the

time of manufacture of the processor(s).

There are fourvariants of the system, in both single
and dual modes; the systems have different numbers of
processors depending on the system wvariant and its

operational mode, see Table 4.1.



Table 4.1 Number of processors in each sustem variant.

Number of processors

System type 1 2 4
A X X
B X
C X
F X X

The data provided did not however identify system
failures down to the actual failing processor for those
systems with multiple processors. It is, therefore, at
'system level' for which processor failures are considered

in the modelling of the reliability of the PCB set.

4.3 MODEL STRUCTURE

Since the systems are repairable, a simple starting
assumption is that a system is repaired to "as-good-as-
new". Therefore, the basic time metric, t, is taken as the
time between processor failures occurring on the same

system.

We deal with the left truncated events by assuming
that such a truncated time to first failure follows the

same distribution as subsequent times between failures.
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Such a procedure 1is less wasteful of data than ignoring
left truncated times, and would be sound in the case of an

exponential baseline.

Treating left truncated events in the above manner is

facilitated be measuring the time between the start of the

window and the point of first failure, and setting an
indicator covariate to show the presence of left
truncation.

Since we know from codings in the data that there are
a number of different types of failure that a processor can
experience, we can use a censoring procedure for competing
risks (see section 2.3.5).

Two large groups of events could be identified from
the raw data corresponding to failure modes 'No Fault
Foundl or NFF, and 'component type 272'. Since there are
no other failure modes nearly as prevalent all other
failure types are grouped together, in this analysis, to
form a third failure type 'other*.

We can assume that the three groups of failure mode
act as competing risks to the processors.

From the assumed failure mechanism, it follows that a
failure identified as any one of the three types, also
creates censored events on the system for the two other

failure modes.



4.3.1 EXPLANATORY VARIABLES

Covariates Introduced into the PHM model were:

Event. An indicator wvariable. zXt showlng the presence
*0’ or absence of left truncation.

Age. This is a measured covariate, s2, giving the age
of the system (in months), at the time of failure. Since

we are not provided with the exact date of installation the
age of the system is calculated from the first day of the
month of installation. Any significance of this covariate
will show that there is either reliability growth or

reliability decay as the system ages.

Average hours per week. The average number of hours use
that the system experiences whilst within the time window
is taken from actual field returns, and included as the

covariate z3 in the model.

Failure variables. These dummy variables set as in Table
4.2 compare the three different processor failure modes.
The failure mode 12721 is taken to be the baseline, as this

group has the largest number of observations.



Table 4.2 Coding of failure type.

Covariate
Failure type z4 Zs
272 (base) 0 0
NFF 0 1
OTHER 1 0
System variables. These dummy variables set as in Table
4.3 indicate the system variant. System variant A is taken

to be the baseline since there are more systems of this

variant under observation.

Table 4.3 Coding of system type.

Covariates
System variant Zs z7 Ze
A (base) 0 0 0
B 0 0 1
C 0 1 O
F 1 0 0
Number of processors. Dummy variables are used here to

compare the effect of the number of processors in a system
to avoid assuming linear effects, as would be the case if

introducing a single covariate taking the value 1, 2 or 4.
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The dummy variables are set as in Table 4.4. 1 processor
only 1is taken to be the baseline as most system variants

have this configuration.

Table 4.4 Coding for number of processors.

Covariates

No. of processors 7c, 2X0

1 (base) 0 0

2 0 1

4 1 0
Quality control. Since the start of manufacture a major
change in quality control for the processors was
introduced. Table 4.5 shows the coding of dummy variables

introduced into the model to indicate the quality control
to which the ©processors within the system have been

subject.

Table 4.5 Coding of quality control.

Covariates
Quality control z1ll z12
Pre-change (base) 0 0
Post-change 0 1
Combinat ion 1 0
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Pre-change was taken on the baseline as this was

applicable to the majority of the systems.

4.4 SELECTION OF PHM MODEL

As suggested should be the procedure from the example
in Chapter 3, the model described in section 4.3 evolved by

applying PHM in an exploratory manner.

Within this evolutionary process a number of different

structures were considered. Because of technical problems
such as multicollinearity and monotonic likelihood (see
section 2.2.3 and Bryson and Johnson (1981)) some of these

alternative structures had to be neglected or adjusted.

For example, multicollinearity between two covariates;
cumulative hours usage to failure, and age of system at
failure occurred and was subsequently explained by
discussions with the data providers from ICL. The
covariate for previous use was then ommitted from the
model . Also a covariate identifying the 'power' of the
system was found to be a direct linear combination of the
dummy variables representing the system variant, also
discovered by discussion with ICL, hence the covariate

'power' was eliminated.

In other cases some variables had their specification
altered to provide greater information. For example, due
to the presence of a few 'youngl systems, the redefinition

of 'age', from being calculated since the start of the time
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window to being calculated since installation, was deemed

to give more physical explanation.

4.5 RESULTS

The results from the described model, after the usual
backwards stepwise elimination procedure, whereby non-
significant covariates are excluded one at a time and the
model is rerun until all covarites are significant, are

given in Table 4.6.

The likelihood ratio statistic, L, is seen to exceed
the upper 5% critical value for a X 2 distribution with nine

degrees of freedom, indicating a highly significant model.

Table 4.6 Final significant model after backwards stepwise

elimination.
A

Significant i p-value L

covariates

zi - event 0.6384 0.0001

z2 “ age -0.0336 0.0019

z3 ~ av. hrs./wk. 0.0064 0.0030

zs ~ NFF 0.8345 0.0000

7<s system F -0.8748 0.0155 99.450

(16.92)

Za - system B -0.7079 0.0083

zs> “~ 4 procs. 1.5974 0.0010
Zio" 2 Procs. 0.6417 0.0050

z12- post-change —0.6622 0.0015



4.5.1 SIGNIFICANT COVARIATES

Event. The positive estimate of B* suggests that the
systems experience a lower hazard during times to left
truncated events than they experience during times between
subsequent failures. This corresponds to observations of
longer left truncated events than time between failures.
This is a somewhat counter-intuitive result, since we might
have expected left-truncated events to be shorter than full

times between failures.

The phenomenon may, however, be explained in three
ways:
Firstly, it occurs as a result of an inherent bias in

of

oo

the model caused by the nature of the time window; 71
the systems under observation had no processor failures
within the time window, hence a large number of long right

censored left truncated events are compared in the model

with the necessarily shorter observed times between
failures.
Secondly, as we will see later, the distributional

form for the tbf's is found to have a decreasing hazard.
Left-truncation, then, may be excpected to increase
residual 1life length.

Finally,as proposed by the data providers bunching of
failures, due for example to misdiagnosis, may expain the

observed longer times to first failure.



Age. The negative estimate of B2 indicates a lower hazard
experienced Dby the system at higher ages. Hence, the
systems are experiencing reliability growth with increasing

times between failures as they get older.

Average hours per week. The sign of the estimate of B3
indicates that the more use the system experiences per
week, the higher the hazard.

The Dbasic time metric in the model is taken from
calender time. Although an increase in the usage of the
system may result in fewer number of days (or less calender
time) between failues, it could nevertheless be possible

that more computer time has been used between failures.

Failure variables. The elimination of the covariate z4
indicates that there is no significant difference Dbetween
failure modes '272' and 'OTHER'. The significance and sign
of Bs which, after the elimination of the covariate ,
compares the hazard due to the failure mode 'NFF' with that
for the two other modes, indicates shorter times to this
mode of failure.

The 'No fault found' failure category is most

prevalent in the data. This is common to many reliability

data sets for which failure mode is recorded.

System variables. The covariate z? is eliminated
indicating that there is no significant difference between

the effects of system variant C and the base system variant

A.



Systems of variant F are seen, from the estimate of
f<s. to experience a lower hazard than variants A and C,

Similarly system variants B experience a smaller hazard.

Number of processors. From the significance of the
covariate z* it can be seen that systems with four
processors experience a higher hazard than those with just
one. Similarly, from £10, systems with two processors

experience a higher hazard than those on the baseline.

Quality control. The elimination of the covariate 7Zn
shows the effect of the combination not to be significantly
different to the effect of pre-change processors. However,
the systems with processors all included after the change
in the quality control procedure are seen to experience a
lower hazard than the other systems.

There 1is some evidence that the new quality control
procedures reject bad processors which would previously
have been incorporated into a system, since longer times
between faiures are associated with processors selected

from the new quality control regime.

4.5.2 EFFECT OF SYSTEM VARIANT AND OPERATIONAL MODE

COMBINATION

It is of operating importance to know the effects of
the combinations of system variant and operational mode.
Based on our model the magnitude of the hazard wvariations

can be calculated from the significant £ estimates.
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The multiplicative effect on the baseline hazard, for

each possible combination is shown in Table 4.7.

Table 4.7 Multiples of Dbaseline hazard for system

variant/operational mode combinations.

:
% Number of processors i
i System variant 1 2 4 %
i
! A i.oo 1.90 - :
1
: B 0.49 - - !
1
c oo — H
1 I
: F 0.79 2.06 !
t *

4.5.3 GRAPHICAL DIAGNOSTICS

Some examples of the graphical diagnostic tools are
shown in this section. FEach technique is described more

fully in Chapter 4.

Figure 4.1 1is a Weibull hazard plot for the Dbaseline
hazard estimated from the PHM model. The straightness of
the line plotted on these axes indicate that the Weibull is
a reasonable distributional form for the underlying
process.

The shape and scale parameters for the distribution
can be estimated from the plot, and are approximately 0.84
and 1425 days respectively. The shape parameter is less

than 1, hence, the baseline shows decreasing hazard.
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A variance-stabilised form of the Cox and Snell
residuals 1s shown in Figure 4.2. Since the plot lies very
close to the expected 45° line the model appears to be a

good fit.

Figure 4.3 1is the proportionality plot obtained for
the indicator variable Zx, which shows the ©presence or
absence of left truncation. If the covariate effects the
hazard in the assumed manner (proportional hazards) the
baseline hazards for the two strata should yeild a constant
vertical separation on these axes.

The plot, however, indicates that the assumption of
proportional hazards is violated for this covariate. A
model stratifying on the covariate may prove to be a
worthwhile approach, or since the plots seem to have a
reasonable constant separation after about t=30 a time

dependent covariate may prove appropriate.

Figures 4.4. and 4.5 show Schoenfeld partial residuals
plotted against time for the two significant covariates
z2 - age, and zs - NFF.

If the assumption of proportional hazards holds the
plot of the residuals against t should be scattered about
zero for all t. The x's indicate tied points. To ease
visual inspection we have applied a moving average based on

intervals of 20 tbf's to each graph.
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Both plots largely Dbear out the assumption of
proportionlity. and further show no obvious outliers which
might have indicated events requiring further

investigation.

Figures 4.6 and 4.7 are plots of the influence of
individual events on the parameter estimates for the two
covariates z2 - age and zs - NFF. They are typical of the
plots for naturally measured variables and binary variables
respectively. There are no events falling within the range
-1.96 and +1.96 which would indicate individual events so
influential that their removal from the analysis would

alter the significance of the covariate.

4.6 CONCLUSIONS FROM ANALYSES OF COMPUTER HARDWARE

FATILURES

This example has shown a PHM model which appears to
fit the structure of the data well.

The treatment of left truncated events. by defining a
covariate showing its presence or absence. was the least
successful aspect of the model.

We saw in section 4.5.1 that the significance of the
covariate offered a somewhat counter-intuitive result. The
bias in the model described in section 4.5.1 may be reduced
in examples with a longer duration time window and more

observed failures.



There 1is of course no real reason the believe that the
covariate 2* should effect the hazard multiplicatively,
although the treatment would be sound if the tbfls were

exponentially distributed.

As well as identifying variables having a significant
effect on the interfailure times of the systems we have
also Dbeen able to identify the effects of configuration

parameters.

The model has enabled us to identify the underlying

structure of the point process, and the distributional form



Figure 4.1 Weibull baseline hazard plot



Figure 4.2
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Variance-stabilised Cox and Snell type
residual plot.
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Figure 4.3

-5.0

Proportionality plot.
Covariate 7Zi - 'Left truncation
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Figure 4 4 Scboenfeld partial residuals.
Covariate z2 - ‘age.’

15--

XX

80



Figure 4.5
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Figure 4.6 Influence plot. Covariate z2 ~ 'age.
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Figure 4.7 Influence plot.
Covariate zs ~ 'No fault found. 1
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CHAPTER 5

APPLICATION TO A RELIABILITY ANALYSIS OF A

CONTEMPORARY WEAPON SYSTEM

Many large complex systems are hierarchical in nature.
Failures to such a system may be attributed to any level of
the hierarchy; at the lowest level to individual
components, or at higher levels to circuit boards, sub-

assemblies, or larger modules.

Failure data, therefore, records data at wvarious
levels of equipment aggregation, and is itself highly

complicated.

The weapon system used as an example in this chapter
is such a hierarchical system (Gray et ai (1988), Appendix
B) . The analysis of its early field performance is
approached through a database whose function was primarily
to provide logistic information necessary to the management
of equipment spares and resources. It was also hoped it

would serve to monitor reliability.

5.1 SYSTEM DESIGN

A complete system comprises subsystems:' launcher,
optical tracker, generator, and for blind fire systems an

additional radar tracker.



The subsystems themselves are of a modular design

which is illustrated in Figure 5.1.

Subsystems are interchangeable, SO a complete system
rarely remains such (with the same individual subsystems)
for long: the systems are mobile and are transported

frequently*

The susbsytems' modular design is to ease maintenance
in a battlefield environment, by combat troops. The
principle modules of a subsystem are designed as Line
Replacement Units (LRUs) . The philosophy of repair by
replacement is to ensure maximum operational availability.
First line maintenance (on the battlefield) consists of
changing a faulty LRU, whilst at second 1line (in the
workshop) the fault will be traced down to the lowest level

of the fault, in the hierarchy.

5.1.1 GENERALISED REPRESENTATION OF FAULT STRUCTURE

Using Figure 5.1 which outlines the subsystem
structure, and from our knowledge of the maintenance
procedures we can construct a generalised representation of

the fault structure which is shown in Figure 5.2.

At the lowest level are component faults. Higher in
the hierarchy are sub-assembley faults which are the
superposition of component faults plus other faults such as
interconnection problems. Faults at the next level up are

LRU faults which are a further superposition of sub-



assembley faults conjugated, with other problems that cannot
be attributed to sub-assembley or component faults. At the
highest level is the subsystem, where we have on this level
representation of the total aggregation by superposition of

all faults.

5.2 DATA COLLECTION

The database was of a conventional design. The repair
technician was required for each failure and repair to
complete a descriptive jobcard outlining information such
as date, serial number, elapsed time indicator readings
(ETIs), and fault classification code.

Information from jobcards was then transcribed into
the computer database; building up, in principle, a
complete historical record of reliability, maintenance and

repair data.

Four files from the database were available detailing:
scheduled maintenance, environmental/deployment data, ETI
readings, and defect data.

A number of features in the files. however, made data
extraction difficult and complicated. For example,
inconsistent formatting within the files precluded file
merging. Also, free formatting of certain fields in the
deployment file made the extraction of information

extremely difficult.
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Because of the problems described above, this example
uses only information readily available in the defect data
file, which contains records about faults found, for its

analysis.

5.3 STRUCTURE OF DEFECT DATA FILE

Fach record of the file refers to an individual fault.
The particular subsystem for which data is recorded is
identified by its type (i.e. launching unit, optical

tracker, etc.) and serial number.

FEach record contains fields detailing:

The date the fault occurred.

The holding group the subsystem was located in at the time
of the fault (i.e. a particular squadron or Dbattery).

There are six different holding groups.

The type and serial number of the particular LRU removed
and replaced. If more than one LRU was removed at one time

a separate record was generated by each.

The level in the hierarchy to which the fault was
subsequently traced. A separate record is generated for

each identified fault.

ETI reading when the fault occurred. The ETI is a four
digit counter which measures the time the unit has spent in

normal mode.
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5.3.1 ELAPSED TIME INDICATORS

These indicators measure only the elapsed time in
normal mode. The subsystems have various levels of
operational mode. For example, a radar tracking unit can

be operated in modes; high alert,low alert, and normal.

The ETIs themselves are known to be extremely
unreliable; often sticking, and sometimes running
backwards. The counters are 'throw awayl so may be
replaced if found to Dbe 'misbehaving'. However, the

replacement counter 1is not necessarily set to the last
reading of the discarded counter, or even reset to =zero.

The wvalue of the information from the ETIs is,

therefore, suspect.

5.4 MODEL FORMULATION

There is a multitude of different PHM model

formulations to be chosen from for analysis of any
reliabiltiy data. These formulations wvary by having
different time metrics, censoring structures, and
covariates.

The choice of formulations is particularly large when
faced with a hierarchical structure such as this, since
faults could, theoretically, be followed through at any

level.



Initially four formulations of simple, physically
plausible PHM models were identified. General <covariates
that can be included in all the models are; holding group,
season the fault occurred, ETI reading, and a time trend.

The four different formulations were identified Dby

considering different possible point processes.

5.4.1 POINT PROCESSES CONSIDERED

Process -A. Here the series of events occurring for a
particular serial numbered LRU is followed. The basic time
metric is taken as the time between the LRU being placed in
a subsystem, and its Dbeing removed from that same
subsystem. The next time between failures (TBF) wil be
taken for the same LRU within the next subsystem it enters
after repair. Figure 5.3 illustrates this point process.

For this formulation it is necessary to know when the
LRU was returned to service, so that its repair time is not
included in the TBF calculation.

Covariates could include which particular subsystem

the LRU was employed within when the fault occurred.

Process B. In this formulation the position of a
certain type of LRU within a particular serial numbered
subsystem is followed. The basic time metric here is taken
as the time between faults to the same type of LRU in the
fixed position of the subsystem. Figure 5.4 illustrates

this series of events.



Covariates could include which serial numbered LRU was

removed at each fault.

Process C. The types of model employing this point
process look at the times to first fault of LRUs ofa given
type. This is illustrated in Figure 5.5.

Covariates could include which particular serial

numbered subsystem the LRU was in when the fault occurred.

Process D. Models of this formulation look at events at
the high level of subsystem. The series of events on a
particular serial numbered subsystem is followed. The time

metric for this point process is taken as the time between
observed faults irrespective of which LRUs are faulty.
This series of events 1s illustrated in Figure 5.6.

Covariates could include which type of LRU is faulty.

5.4.2 NEED FOR CENSORING STRUCTURE

In dealing with the reliability analysis of
hierarchical structures, we may like to look at the
lifetimes of units at a lower level in the hierarchy than

is followed through the basic time metric.

When looking at such events at sub-assembley or lower
levels it may be nec.essary to introduce censoring concepts.
This would be the case in this example since non-
faulty sub-assemblies are removed from the field because

their parent LRU has been replaced.



Many censoring structures might Dbe identified by
interpreting various fault mechanisms in the hierarchical
levels. Many of these structures can result in

considerable complexity of the model applied.

5.4.2.1 POSSIBLE STRUCTURES

The examples of possible censoring structures
described in this section are chosen because they appear
reasonable in terms of what is known about the methods of

maintenance and fault recording.

In the simplest case consider an LRU with only two
levels within its hierarchy. Further, the LRU contains
just two sub-assemblies. See Figure 5.7.

There are four failure modes possible for such an LRU,

which could be recorded in the data. These are:

Fault recorded to LRU but to neither

sub-assembley (-, =)
Only sub-assembley 1 has fault (sa1, - )
Only sub-assembley 2 has fault (- ,SA2)
Both sub-assemblies have faults (SA1.SA2)

Four censoring structures that might be applicable to

such a case are given below, and summarized in Table 5.1.

(1) Two failure mechanisms. Only two failure mechanisms
[FI] and [F2] are causing the fault in the LRU.
[FI] - only sub-assembley 1 has fault.

[F2] - only sub-assembley 2 has fault.



In such a case (- , - ) type faults are ignored as being
recording errors. (SA1,SA2) type faults are treated as two
independent simultaneous faults; occurring together purely
by chance.

[FI] and [F2] are two competing risks, hence a failure

of each type also generates a censored event for the other.

(ii1) Three failure mechanisms. In addition to the two
failure mechanisms [FT] and [F2] as above, we could
consider a third mechanism [FO] for the case ( - , o~ )

where an LRU fails without either sub-assembley being
faulty; for example due to a fault in the connectors.

Again, (SA1,SA2) type recorded faults are treated as
two independent simultaneous faults.

We now have three competing risks, each mechanism

censoring the other two.

(1i1) Four failure mechanisms. Instead of treating
(SA1,SA2) as two independent simultaneous faults, we can
define another failure mechanism to explain this mode of
failure, [F12], whereby faults of this type are assumed to
be simultaneous due to a common external cause; for example
a power surge.

There are now four competing risks, accounting for the
four possible failure modes in the data, which each censor

the other three.



(iv) Modified four failure mechanisms. In a
particular example of an LRU of the nature assumed in this
section, it was found that simultaneous faults to the sub—*
assembley occurs more frequently than would be expected
according to the independent failure model.

We wish then to include a failure mechanism which

accounts for simultaneous failure, but unlike [F123 in
structure (1id) is not considered a risk competing with
[FO], [FI] and [F2]. Hence, a failure mechanism [F12'3 can
be introduced which itself is never censored, and does not

censor the other three mechanisms.



Table 5.1 Effects of various censoring structures.
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5.5 ANALYSES

In this example we look at just three of the four
different tyes of subsystem. These will be referred to as
subsystem (1), (2) or (3).

In section 5.4 a number of model formulations were
discussed. In this application, however, it was not
possible to apply a model using the point process A. This
is because information of when an LRU returns to the field
after repair is not available.

We consider here the application of some simple models

employing the point processes of type D and C.

5.5.1 POINT PROCESS D MODELS

Subsystems (1) and (2) are analysed with such models.

The time metric, t, was taken as the time in days
between faults on a particular serial numbered subsystem.

Multiple —records on the same day were treated as a
single fault event in order to avoid many zero TBFs.

In order to model the TBFs of a number of subsystems
together, it is assumed that subsystems of the same type
have the same baseline hazard.

Times to first failure, and times since last failure
were ignored since the date of entry into service, and the

date reports were ceased are unknown.

The models follow a point process at subsystem level.



In this application, because of the large numbers of
different types of LRU in the subsystems, covariates were
not wused to attribute a fault to a lower level. No

censorings for competing risks, therefore, were required.

Ten explanatory variabes were introduced to form the

covariate set for these models.

Holding group variables. Five binary dummy variables
were used to compare the six holding groups. These were
set as in Table 5.2. The baseline holding group 'was

selected to be the one with the longest period of reported

events.

Table 5.2 Coding of holding group.

Covariates
Holding group Zi 7.2 20 XKi Zs

I (base) 0 0 0 0 0

1T 1 0 0 0 0

I1T 0 1 0 0 0
v 0 0 1 0 0

\Y 0 0 0 1 0

VI 0 0 0 0 1

Season dummies. Three dummy variables z0©, Z71 and zO©

were used to compare the seasons spring, summer, and autumn

respectively against the baseline season winter.
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ETI value. This covariate is set to the actual ETI
reading as recorded at the time of the occurrance of the

fault. It is used irrespective of any apparent error.

Time  trend. This covariate, time in days since an
arbitrary start date, allows for the possible discovery of
a time trend.

5.5.1.1 SUBSYSTEMS (1)

The results after the usual backwards stepwise

elimination process, are given in Table 5.3.

Table 5.3 Significant model for subsystems (1).

a, Likelihood
covariates £i p-value Ratio
Statistic
zi - holding group II 0.3732 0.0000
Zs - holding group VI 0.5622 0.0000 68.695
(9.488)
z« — spring 0.1268 0.0205
Zio- time trend -0.0006 0.0000

The likelihood ratio statistic exceeds the tabulated
upper 5% critical wvalue for a chi-squared distribution with
four degrees of freedom. This indicates that the fitted
model provides significantly more explanation, for the
observed data, than a model assuming that the covariates

have no effect and' that the data is homogeneous.
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The positive estimates of fi* and fls indicate that
subsystems (1) in holding groups II and VI experience a
higher hazard than those in the other holding groups.

There may be a number of possible reasons for this
that could be investigated; for example these holding
groups may transport their equipment over rougher terrain,
or their maintenance procedures may not be of such a high

standard as the others.

The positive estimate of f« indicates that subsystems
(1) experience a higher hazard in the spring than in the
other seasons. This could possibly be reflecting increased

exposure due to exercises.

The negative estimate of indicates a decreasing
hazard as time passes, by a rate of an approximate 20%
reduction per year. The number.of subsystems (1) entering

the field was known to be rising over the period of

observation. If we can assume that the times to first
failure are not shortening with calander time, the result
indicates that the subsystems (1) are becoming more
reliable.

The ETI reading was found to be non-significant. The

elapsed time in normal mode was initially considered as
important in explaining the fault rates of the units. The
finding that the covariate 1is non-significant in this model
is probably mostly due to the unreliability of the ETIs

themselves, as discussed earlier in section 5.3.1.



A  Weibull hazard plot for the estimated cumulative
hazard from the model is shown inFigure 5.8. This shows

the Weibull to be a reasonable distribution for the

baseline hazard. The shape and scale parameters for the
distribution are estimated from the plot, and are
approximately 0.84 and 11 days respectively. Since the

shape parameter is less than 1 a decreasing hazard rate is

exhibited.

The plot of the Cox and Snell type residuals, Figure

5.9, shows that the model is a good fit. See Chapter 7.

Figures 5.10, 5.11 and 5.12 are proportionality plots
for the three binary significant covariates. See Chapter
6.

The approximately constant vertical separation in
Figure 5.10 shows that the proportionality assumption 1is
not invalid for the covariate zi - holding group II.

For holding group VI, the vertical separation in
Figure 5.11 changes towards the end of the graphs where
there 1is relatively little data (hence the crossing point).
The curves, however, are otherwise reasonably well
separated and the proportionality assumption appears
plausible for the majority of the data which corresponds to

TBEFs under 20 days.
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The plots in Figure 5.12, which stratifies on the
covariate for spring, cross 1n numerous places, hence do
not appear to have a constant vertical separation. The
modelling of the saesons in this manner may not be strictly

appropriate.

Figure 5.13 shows a standardised plot of the influence
of individual TBFs on the £0©0 parameter estimate, see
Chapter 7. The plot has split into two distinct groups;
one associated with TBFs in spring, and another associated
with TBFs in the other seasons.

Despite the marginality of the significance of the
covariate there do not appear to be any individual events
that would alter the significance of the covariate if

omitted.

5.5.1.2  SUBSYTEMS (2)

Applying the same model structure as was applied to
subsystems (1), and commencing with the same initial
covariate set, we can analyse the reliability of subsystems

(2) .

The results after backwards stepwise elimination for

this application is shown in Table 5.4.



Table 5.4 Significant mode for subsystems (2)

2
% Like 1lihood!
! Covariates p-value Ratio i
1 Statistic !
N 1
1 ¥
1721 - holding group II 0.4009 0 .0000 1
i 1
\z2 - holding group III 0.2566 0.0140 33.71 !
i (9.488) 1
Izs - holding group VI 0.5325 0.0000 %
Tzxo- time trend ~0.0006 0.0001 %

- »

These results, as may be expected, are broadly similar
to those obtained earlier for subsystems (1).

Spring, however, 1is no longer significant and holding
group IITI is now marginally significant.

The results for 21i. zs and z#o are highly significant
as before, and are of the same sign and order of magnitude
as in the model for subsystems (1).

The likelihood ratio statistic suggests that this is

not such a good-fitting model as that for subsystems (1).

5.5.2 POINT PROCESS C MODEL

For this example a particular type of LRU present in
subsystems (3) was selected for analysis. This selection
was made because the LRU has Jjust two sub-assemblies and
two levels in its hierarchy, so form the simple case
discussed in section 5.4.2. The censoring structure (iv)

was applied to the model.
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Dummy variables were introduced into the covariate set
to compare the failure mechanisms. The dummy variables

were set as in Table 5.5.

Table 5.5 Coding for failure mechanisms.

Covariate
Failure mechanism 2 xx 2x2 2x3
[FI] (base) 0 0 0
[F12'] 1 0 0
[EO] 0 1 0
[E2 ] 0 0 1

The covariates Zx to Sio that were used for the

previous models were again incorporated into the covariate
set.
After backwards stepwise elimination only one
A

covariate; Zu remained significant, with fin - 1.8713 and

p-value * 0.0000.

The positive estimate of flu suggests that there are
shorter times to simultaneous failures than times to

failures due to the alternative mechanisms.
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5.6 CONCLUSIONS FROM APPLICATION TO A WEAPON SYSTEM

PHM again offers itself as an effective method for the
reliability analysis of a system such as this with its
ability to incorporate a wealth of auxiliary, or covariate,
information.

However, with such a complex hierarchical system and
so many possible model formulations which could be applied
to the data, it becomes very important to understand the
operations of the system under observation, obtain high
quality data, and use PHM in an exploratory manner. The

complexity of the models requires careful application.
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Figure 5%
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Figure 5.2 Generalised representation of the fault structure.

System structure Time
3A
3C

Ha 3
3Cliia

O Lowest part of the system to which the fault was traced

KEY 9 Example of fault traced to two sub-assemblies



Figure 5.3 Series of events to a particular LRU

Particular
serial
numbered

LRU Time

Fault here, LRU removed from sub-system
repaired and returned to another sub-system.

Figure 5.4 'Series of events to the position of a certain type
of LRU within a particular sub-system.
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Figure 5.5 Times to first failure of each LRU of
_ a certain type

Particular LRU

Different LRU of
same type

Time
Another LRU of
same type Fault and removal
of the LRU
LRU enters a subsystem
Figure 5.6 Series of events to a particular subsystem
Particular serial
numbered subsystem Fault to any LRU
Time
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Figure 5,7 LRU with two levels of hierarchy only, and

two sub-assemblies
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Sub-assembley
SA2



Figure 5.8
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3.04-

Weibull baseline hazard plot.
D-type mode 1. Subsystem (1).



Figure 5,9

4,5

Cox and Snell type residual plot.
D-type mode 1. Subsystem (1).
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Figure 5.10 Proportionality plot. D-type model.
Subsystem (1). Covariate Zi.~1lHolding group II
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Figure 5.11 Proportionality plot. D-type model.
Subsystem (1). Covariate Zss*~MHolding group VI’
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Figure 5.12 Proportionality plot. D=type model.
Subsystem (1). Covariate =z - 'Spring'



5,13 1Influence plot. D-type model. Subsystem (1)

Figure Covariate z© - '‘Spring’

#++atat +

S T<nT +
+ o+t P M e B

addres «V/Ms

114



CHAPTER 6

DIAGNOSTICS FOR PHM

PHM has proved a useful tool for analysing reliability
data. It's strength is largely due to its non-parametric
approach to analysis.

The method does, however, make the assumption of
'proportional hazards' for the effect of covariates. This

assumption should be checked for validity.

In this chapter various diagnostics aids, which have
been suggested in the literature, will Dbe considered.
These diagnostics can be used to assess the validity of the
model’s assumption, or to assess the fit of the model.

Many of the diagnostics are based wupon graphical

techniques.

A  graphical method for testing the assumption of
proportionality between different levels of a covarite 1is
provided by Kay (1977). This technique is investigated in

detail in section 6.1.

Kay (1977) also suggested a technique to assess the
fit of a model, through obtaining residual quantities as
defined by Cox and Snell (1968). See section 6.3 for

detailed investigation into this technique.
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Lagakos (1981) defines residual scores similar to the
Cox and Snell type residuals defined in Kay (1977) .
Lagakos adjusts the observed ranks based upon the residual
information.

The readjustment should account for the effects of the
covariates, if the model is appropriate.

An explanatory variable omitted from the model  found
to be associated with the adjusted ranking may be
correlated with survival time.

An explanatory variable' fitted to the model exhibiting
an association with the adjusted rank indicates lack of fit

of the model.

A Chi-squared goodness-of-fit test 1s obtained by
Schoenfeld (1980), by partitionaing both the covariate
space and the time axes. Andersen (1982) proposes a new
technique similar to that of Schoenfeld (1980), that
invovles partitioning the time axes. A statistic for
checking the fit of a model is provided by Moreau et al
(1985), that in the two-sample problem is the same as that

proposed by Schoenfeld (1980).

Schoenfeld (1982) defines residuals which are
essentially the difference between the observed value of a
covariate and its expected value conditional on the risk
set. These are used graphically to examine the

proportional hazards assumption, see section 6.2.



Cain and Lange (1984) and Reid and Crepeau (1985)
employ essentially the same method to obtain influence
functions forthe ©proportional hazards model. These
functions areobtained for each covariate and approximate
the effect of individual eventsupon the estimate of the
associated B coefficient, see section 6.4.

Storer and Crowley (1985) also discuss a diagnostic

A

for estimating the change in I3 due to the deletion of

single observations.

Gill and Schumacher (1987) suggest a test of the
proportional hazards assumption. for two-level covariates.

The test procedures are based on the discrepancy between

two-sample tests. e.g. the log rank and a generalised
Wilcoxon test. In nonproportional hazards situations the
tests might give different answers. Gill and Schumacher
(1987) also present a related graphical method for

comparing trends in series of events.

Arjas (1987) presents graphical diagnostics which make
direct comparisons between observed and expected failure
frequencies, as estimated from the model.

The way in which individuals are stratified depends on

the aspect of the model Dbeing checked. Arjas (1987)
investigates a fitted ©proportional hazards model: a
significant covariate omitted from the model: a common

baseline assumed for an inappropriate case.
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The remaining sections of this chapter concentrate on
the four graphical diagnostics for PHM that have Dbeen
employed in Chapters 3-5.

The techniques are investigated in detail, and
improvements made to the presentation of the plots, to ease

visual inspection, are also discussed,

6.1 PROPORTIONALITY PLOTTING

The most commonly applied method to test whether a
covariate follows the proportionality assumptions is to
stratify wupon the covariate of interest and, for each
stratum (level) of the covariate, plot the logarithm of the
cumulative baseline hazard against time, or the logarithm
of time, see Kay (1977), Kalbfleisch and Prentice (1980),
Aitkin and Clayton (1980), Andersen (1982).

For a binary covariate, zx say, we have for the hazard
function

ho(t) .exp(Bz) .exp(8kZx ) , Zx~1

h(t;z,zx) 6.1
ho(t) .exp (Bz) , Z2x=0

and hence for the logarithm of the cumulative hazards:

log Ho(t) + Bz + ft* o o7Zx-1
log H(t;z,zx)
log Ho (t) + Bz , Zx—0
6.2

From equation 6.2 the difference Dbetween the log

cumulative hazards when 7Zx=1 and Zx=Q 1is a constant;



log Hki(t) - log H*o (t) = B* 6.3

where HKa.(t) is the cumulative hazard when z*=1, and Hxoft)

is the cumulative hazard when zk=0.

Now stratifying the data on the level of the covariate

zk and applying the model to the two stratum.

A A A
log H*x(t) = log Hoi (t) 4Bz
6.4
A A A
log Hxo(t) =log Hoo (t) +Bz
where Hoi (t) is the baseline cumulative hazard for the
stratum for which zk-1. and HOO (t) is the baseline
cumulative hazard for the stratum zk*0.
From 6.4 and 6.3
A A A
log Hoi (t) - log Hoo (t) -B* 6.5

Hence plotting the logarithm of the baseline
cumulative hazard against time t for the two strata on the
same graph should produce a constant vertical separation
equal to é?.

The stratified models as defined by 6.4 have the same
covariate- set and covariate <coefficients (with the
exception of Zx) as are significant in the full model. The
plots should still result in a constant wvertical separation
if the models for each stratum are not constrained in this
way. The size of the separation is now dependent on all

the covariates. Now for the two strata:
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log Hm (t) - log Hoi(t) + B'z'

log Hxo(t) - log Hoo(t) + &"z"

where z'’ is the set of significant covariates in the
stratum for which zx~1> and z"“ is the set of significant
covariates in the stratum for which . 8 ' and B" are

the respective coefficient wvalues.

From 6.6 and 6.3

log Hoi (t) - log Hoo(t) = iL ~ B'z' +B,z"

= constant

A non-constant vertical separation between the plots
will, then, indicate that the covariate zk does not act

proportionaly on the hazard.

6.1.1 CHOICE OF AXES

From equations 6.5 and 6.7 it can Dbe seen that
plotting the log baseline cumulative hazards against the
failure times t should result in plots having constant
vertical separation, hence testing the proportionality
assumption. This 1is the procedure followed by Kay (1977)
and Andersen (1982).

Kalbfleisch and Prentice (1980) and Aitkin and Clayton
(1980) suggest plotting the log baseline cumulative
hazards against log t. Such plots should also have

constant vertical separation, and in addition if the 1lines
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are straight they will indicate that the Dbaselines are
Weibull distributed.

However, since we are looking at the cumulative
hazard, more information goes into the plot at larger t's,
and this 1s the area of the plot we should be most
interested in. When plotting log t we effectively 'stretch
out' the smaller t's and 'bunch up' the larger t's
resulting in less of the plot being devoted to the area we
are most interested in.

It is for the above reason that we choose to plot

against t.

6.1.2 INTERPRETING THE PLOT

The ©problem with this graphical procedure is that it
contains a highly subjective element. It is not easy to.
decide whether or not there 1is a constant vertical
separation between the log baseline cumulative hazards for
each stratum.

Because of the curvature of the plots those with true
constant vertical separation appear to close in together as
t 0. See Figure 6.1.

The plots are particularly difficult to interpret when
one stratum has only a small number of failures.

6.1.3 PLOTTING SEPARATION

Because of the problem encountered with the visual
inspection of the diagnostic as detailed in section 6.1.2,

the wvertical separation Dbetween the two log baseline



cumulative hazards is calculated at each failure time and
plotted beneath the original graph.

Since the hazard is only estimated at failure times,
and the -two strata will have different failure times,
linear interpolation is employed between the failure points
on each stratum. Hence. an estimate of the vertical
separation can be calculated at each failure point.

Figure 6.2 is the proportionality plot from the
hardware failure example for covariate Zo - 'No fault
found'. The vertical separation at failure ©points 1is
plotted below.

For constant vertical separation the difference 1line
should be straight and horizontal. Typically, however, the
difference line will not Dbe perfectly straight or
horizontal, and a means to decide how 'good' the difference
line should appear needs to be developed in order to

accept the proportionality of the covariate.

A 'runs' and sign' test were chosen to look at the
walk of the difference line. At each failure point ti, the
walk is given a *+ sign 1f the difference 1line is
increasing between ti and t4+x, or a sign 1f the
difference line is decreasing between ti and tl1+i. If the

difference is the same at ti and ti+i no sign is awarded.

The 'runs' test tests the null hypothesis of
randomness. When tne null hypothesis is true the path of
signs should cross (+ to or - to +) quite frequently,

but when it is not true this happens much less frequently.



The number of runs is defined as the number of Dblocks
separated by a crossover to the other sign.

The 'sign' test is also used, since if the walk is
random we could expect about the same number of +'s
and —1s.

From the results of the runs and sign test we can see
then 1if there is any significant trend in the vertical

separation.

6.1.4 CONFIDENCE BOUNDS FOR THE CUMULATIVE HAZARD

Since the wvariance 1is known to alter along the
estimates of the log baseline cumulative hazard it would be

useful to construct confidence bounds around the estimates.

6.1.4.1 1 LINK'S * BOUNDS

Initial bounds for the log baseline cumulative hazard
were produced, from a transformation of the confidence
interval, around the baseline survivor function, which was
constructed from an asymptotic estimate of the variance for

the survivor function (Link (1984)).

A smoothed version of Breslow's step function estimate
for the Dbaseline survivor function; whereby linear
interpolation between failure points is employed to
estimate a value of the baseline survivor function at times

where no failure occurs, 1is considered.
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There are two sources of variation in the estimate of
the survivor function; firstly in the estimation of the
[N

coefficients B by &  and secondly in the approximation of

the integrated hazard function.

The estimates of the variance of the baseline survivor
function can be used to construct a confidence interval
about the baseline survivor function at wvarious ©points;

based on the asymptotic normality of the survivor function.

A transformation of this interval can be used to
construct bounds about the log baseline cumulative hazards.
These asymptotic bounds are, however, very wide.

An example of Link's Dbounds applied to the
proportionality plot for the covariate 'No fault found'
from the analysis of the ICL hardware failure data can Dbe
seen in Figure 6.3. The +'s on the figure are the 95%
bounds around the top plot, and the x's those for the lower
plot.

Despite the wideness of the bounds, it can Dbe seen
that the bounds 'narrow' as t increases indicating 1less

variability in the latter part of the plots.

6.1.4.2 SIMULATED WEIBULL BOUNDS

Simulated Dbounds were considered in an attempt to
narrow the confidence intervals. Assuming a Weibull
distributed Dbaseline with parameters estimated from a

hazard plot for each of the strata, 90% limits were



constructed by simulating twenty groups of fifty failure
times from the estimated Weibull distribution.
The parameters of the Weibull distribution are

estimated from a Weibull hazard plot.

An example of these simulated bounds as applied again
to the ©proportionality plot for the covariate 'No fault
found’ from the hardware failure example can be seen in
Figure 6.4.

The simulated bounds are narrower than those obtained
from the asymptotic wvariance of the survivor function. We
have, however, had to assume a distributional form for the
baseline hazard.

The variability is seen to decrease for larger t.

The simulations have also been used to produce 95%
bounds around the difference plot. The width of these
bounds indicate the sort of variability we might expect to
find 1in the difference walk when the proportionality

assumption is wvalid.

6.2 SCHOENFELD RESIDUALS

Schoenfeld residuals were first introuced as a
/

graphical diagnostic for PHM by David Schoenfeld (1982).

The residuals are known as 'partial residuals’ since a
set 1is obtained for each covariate. The partial residuals
can be used to test 'locally* the ©proportional hazards

assumption.



6.2.1 DEFINITION OF RESIDUALS

For the k'thcovariate at failure time ti the partial

residual r” defined:

A

rxi ~2x1 ~ E[zxilRil 6.8
where 7Zxi is the wvalue of the k'th covariate at

failure time tA.

*

E[ZxilRil is the conditional expectedvalue of Zxi
given the risk set R* atfailure time
11.
when

2  Zxm. exp (i3z)

a meERI
E[zki IR1] =
2 exp (Bz)
mERT

The partial residuals are only obtained at failure

points.

The partial residuals are not specified for tied
failure points. However, since we use Breslow's
approximation for the contribution to the partial
likelihood in the case of tied failures, we are able to
make a slight modification to estimate the partial
residuals at each of the tied failure points (Wightman

(1987)) .



The partial residuals are obtained from elements of

the score vector, UM®B), [U(R) =d log L(3) / d& 1, vis

2 Zxm.exp (Bz)
meR.

*

n n
U (B) 2 Zki ~ 2 <
i=1 i=1
2 exp (Bz)
mOFR i
6.2.2 TESTING THE PROPORTIONALITY ASSUMPTION

Since the score vector U(B)=0 globally the expected
value of the residual, E[;xi]»O. Hence, if proportional
hazards holds a plot of ;M v t* will be centred about O
for all areas of the time scale.

A
For a binary covariate k, Zx1i-E[zxiIRiI splits the

plot into two bands. above and below the axis,

corresponding to the two values of the covariate.

Schoenfeld (1982) gives as an example the residuals
for the data of Freirich (Cox, (1972)), where he splits the
time axis into three Dbands; T>16, 5<T<15 and T<5.
Schoenfeld suggests that there is no failure of
proporttonal vhazards 1in the two regions T>16 and 5<T<15
since* the? residuals in these regions approximately sum to
zero** but that for the region T<5 this condition is not met
indicating failure of proportional hazards.

This statement itself cannot be true since the total

sum of the residual by definition equals zero.
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6.2.3 DIVISION OF THE TIME SCALE

The particular division of the time scale by
Schoenfeld (1982) appears to be arbitrary. The gap in the
‘0* band in the region T<5 may not be toounusual, and if a
larger region were investigated theproportionality

assumption may not be deemed violated.

Consider a special case of a model with a single
binary covariate and an exponential baseline hazard. If
from a sample size of n, there are n* events for which the
covariate value equals 1, then the ratio of the expected
number of points in the 'l' band to the expected number of
points in the 'O’ band can be estimated. Consider the
region (0,t3<) : the ©probability of an individual with

covariate wvalue 1 failing in the interval is given by 1—

e X P , and the probability of an individual with
covariate wvalue 0 failing 1in the interval is given by
l-exptAtx)

Hence, in the interval (0,tx);

[expected no. points in 'l * band]

k(tx) -
[expected no. points in 'O' band]
<1 - exp(-e™Xtx) > ni

k(tx) - x 6.9
{ 1 - expfXtx) > (n - ni)
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If is small in relation to the mean failure time

then a crude approximation to 6.9 is given by:

Mt*) -

AN

n - n

For 13 >0 and ni» (n ~ ni) a Value of k(t>c) > 10,
say, may not be unusual. Thus at the start of the plots
this 1s quite consistent with gaps in the Y' band in the

interval (0,tx)H

6.2.4 APPLICATION OF MOVING AVERAGE

Since there are often in reliability problems a large
number of tied failure times the density of partial
resiuda”s at many of the points cannot be seen. Visual
inspection is also hindered, in the case, of Dbinary
covariates, because the two bands are rarely equidistant
from the axis.

Because of these reasons and the problem in
determining appropriate divisions for the time scale, as
discussed in setion 6.2.3, a moving average Dbased on
intervals of a large number of failures was applied to the
plot to ease visual inspection of the diagnostic. The
moving average can then be looked at to assess local fit to
the proportionality assumption.

Figure 6.5 1is the plot of Schoenfeld residuals against

time for the covariate 'average hours use per week' from



the hardware failure example. There is a general scatter
of residuals for this naturally measured variable. The x's
represent tied wvalues hence a density of ©points greater
that 1 in these positions. the moving average line has
been applied over groups of twenty observations, this
gives a Dbetter representation of the scatter about the
axis.

Figure 6.6 1is the plot of Schoenfeld residuals for the
covariate *2 processors' from the hardware failure example.
The residuals for this binary covariate have split into two
bands above and below the axis. Agian the x's represent
tied values. The moving average again based on groups of
twenty observations gives a clearer picture with which to

assess the local fit to the proportionality assumption.

6.2.5 EFFECT OF CENSORING OBSERVATIONS ON APPEARANCE OF

RESIDUAL PLOTS.

For a binary covariate, where a split of residuals
into two Dbands occurs, we can show that an upward or
downward trend should be expected in the appearance of the
residuals, based on the change in ratio of numbers with
covariate equal to 1 and numbers with covariate equal to O

in the risk set.

When there are no censoring events the appearance of

the residuals can easily be seen to depend on the sign of

Bj i
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Consider the two groups; the ni items for which

z3i = 1, i-1, 2, . , n hence having covariate
combination fiizi + + ... + Bj xZj 1 + Bj, and the
(n - n") items for which Zj* =0, i=1 2, ... ,n hence
having covariate combination Bi.2* + BsZa + ... +

Let a = exp(J3iZi + 1¥2a + ... + Bj—n-Zj-a.), and

consider the expected number of items surviving past a time

t in each group: ni.exp(-a.exp(Bj) .Ho (L)) and

(n-ni),exp(-a.Ho(t)), Zzj-1 and Zj =0 respectively.
Looking at the ratio of the expected number surviving

past t in each group:

nx exp (-a.exp (Bj) .HO (t))
RatiOi.o ~
(n~ni) exp(-a.Ho(t))
(exp (BJ)-1)
nx [exp(-a.Ho(t))}
(n—nx)

As t >® , exp(~a .HO(t)) =0

if Bj >0 then exp(Bj)-1 > 0

(exp (Bj)-1)
hence [exp(-a.HO (t))] decreases as t > ®

if Bj < 0 then exp(Bj)-1 < 0
(exp (BJ)-1)

hence [exp (-a .Ho (t)) ] increases as t> ©

Since nx/(n-nx) 1s constant over all t



Ratio*.o decreases as t >m if Bj > 0
Ratio*,o increases as t > ©» 1if BJg < 0

Now looking at the contributions from each group to

E[zji 'R ]'.
2 zJdm.exp(0z) 2  exp(Bj)
A moRi Ri
EfZjiIRi]
2  exp(flz) 2 [exp (B* +1}
mGR1 Ri
Let m* - numberin risk setat time ti, for which zJm
m0O = numberin risk setat time t+£, for which zJm 0
then A m* .exp (Bj)
E(zji 'Ri] -
m*.exp(Bj) + mO
Let
mi 1 - number in risk set at time ti*.*, for which zJdm = 1
mO ' M number in risk set at time ti+i. for which zJdm - O
then A m*'.exp (BJj)

E[Zji+i!Ri+i] —

m* '.exp(Bj) + mO'

A

Investigating the relationship (R) between E[zji!Ri]

A
and, B [Zj***»Ra. ~ex} :
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m*.exp (707) m* '’ . exp (BJj)

®R)
m* .exp(Bj) + mO m*1.exp (Bj) MmO*
m (m*'.exp(Bj) + mO?l) (R) m*’ (m*.exp(Bj) + mo)
m* mi
R)
mo mo
We already know the relationship (R) since
m*/mo & Ratio*,o at time , and m*¥ '/m01l * Ratio at time
ll-»-“.
A A
If Bj >0, m*/m0 >m* 1/m0 "', hence E[ZjilRt} > E [z* I 1
A A
If Bj < 0, m*/m0 < m* '/mO0 ', hence EtzjilR*} < E [Z]i*.* IRi+* 3

The appearance of the residuals on both bands is thus
determined; increasing if Bj >0, and decreasing if Bj < O.

Figure 6.7 shows the upward trend in each band of the
residuals as we would expect for a binary covariate with a
positive estimate of B. The figure shows the plot for such
a covariate; 'left truncation' from the hardware failure
example .

Figure 6.8 shows the downward trend we would expect
for a binary covariate with a negtive estimate of B. The
figure shows the plot for such a covariate 'system B ‘- from

the hardware failure example.
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However, with the inclusion of censoring events it is
no longer possible to determine whether the Ratioi.o is
increasing or decreasing because there 1is no longer a

constant term *~/(n-ni)

Experience has shown that the appearence of these
residual ©plots is highly affected by the pattern of
censoring observations: the effect has even altered the
trend we might expect from the sign of Bj, given no
censoring.

Figure 6.9 shows the Schoenfeld residuals for a model
with censored times. This plot has increasing trend in the
two groups of residuals despite the estimate of the
coefficient B being negative. The plot shows the residuals
for the covariate 'system F ' from the hardware failure

example.

Wightman (19871 observing the apparent dependence on
the pattern of censoring events, plots the censoring

observations at their covariate values on the same figure.

6.2.6- RESIDUALS FOR COVARIATES FROM COMPETING RISKS

The Schoenfeld partial residuals are extracted from

elements of the score vector U (B).

d log L n meER1
U B) = 2 zji - —mmmmm
=1
d Bj 2 exp(Bz)
mER1
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Now, in the case of a model involving competing risks
the partial 1likelihood factorises into two terms; one which
is the usual partial 1likelihood as obtained from a simple
model without competing risks, and the other containing
only information for the failure mode covariates, see

Wightman (1987) and section 2.3.5.

For a failure mode covariate the partial residual is
obtained via the factor of the partial 1likelihood involwving

the failure mode terms, Lr-

n exp (aiXn + az2Xz21 + + ai1X11)
T
i=1
[ 1 + exp(a”™) + exp(a2) + + exp(ax) ]
where number of covariates representing failure
modes.
X J1 J=1,2,...,1 *»value of J'th failure mode
covariate.
aj - associated parameter for

covariate Xj.

n

log Lt » 2 [(aiXii+...+taiXu) - In{l+exp (ax)+ ...texp (ax) }]
i-1

d log Lf exp (aj)
U(aj) = Xji

d aj tl+exp (ax)+..+exp(ai)



The element corresponding to the expected value of Xji

conditional on the risk set Ri, 1is constant over all ti:

* exp (aj)
EtxjilRi] -

[l+exp (ax)+...texp(a!)l

The Schoenfeld partial residuals for a failure mode
covariate involved in competing risks therefore split into
two bands above and below the axis, and remain parallel to
the axis over all ti.

Figure 6.10 shows the Schoenfeld residual for the
competing risks covariate 'No fault found' from the
hardware failure example. The residuals in each band have

a constant wvalue.

6.2.7 INVESTIGATION OF FORM OF TIME DEPENDENCE

Pettit and Bin Daud (1987) use Schoenfeld*s residuals
to investigate the nature of time dependence that may be
applicable for a covariate which violates the proportional

hazards assumption.

A proportional hazards model with a time dependent

covariate x becomes:

h(t;z,x) - hO (t).exp( Bz + ag(t)x) 6.11

where a is the associated unknown parameter of the
covariate x

g(t) is some function of the time metric t.



By fitting the model without the time dependence for

the covariate x, ag(t) 1is approximated by the coefficient

B(x)
For g(t) wvarying about zero slowly then:
Elri(x)] * ag(ti).Al(x)
where ri(x) is the residual at failure time t* for the

covariate x
Al (x) is the wvariance for the coefficient of the

variable x

Hence, plotting ri(x)/Ai(x) v tTA may give some
indication of the form of g (t).
Pettit and Bin Daud use various smoothing techniques

for these plots to build an overall picture of the form of

g(t)

However, from section 6.2.5 the residuals are
influenced by the censoring observations, which will
therefore effect the form of the plots. The form of g(t)
can then only be reliably pictured in the plots when there

are no censoringobservations.

6.3 COX AND SNELL TYPE RESIDUALS

A graphical procedure for assessing the goodness-of-
fit ofthe Proportional Hazards Model 1is provided by a plot

of Cox and Snelltype residuals, (Cox and Snell (1968)).



Methods based on those in Cox and Snell (1968) are
used to obtain residual quantities which should, if the
model fitted is appropriate, be consistent with a sample

from the standard negative exponential distribution.

6.3.1 DEFINITION OF RESIDUALS

The residual quantities are defined as (Kay (1977)):

A A

Oi * H (11;z1)

A. A
* Ho (t*) .exp (Bz) 6.12
A
where et is the estimated residual at the failure
time ti.
Ho (ti) is the cumulative baseline hazard* obtained

from fitting the model.

In forming residuals based on the cumulative hazard
there 1s a ©problem of how to incorporate tied failure

points, and censored events.

An estimate of the hazard based on the failure points,
which allows for tied failures, is used (see section
2.3.1).

Linear interpolation is employed Dbetween failure
points to obtain an estimate of the cumulative hazard at
censored times. The value of the censored residual 1is

obtained from the resulting estimate of the cumulative



hazard. Censored points occurring after the last failure
are allocated a 'cumulative' hazard value equal to that of

the last failure point.

6.3.2 DISTRIBUTION OF THE RESIDUALS

The estimated residuals, if there is no censoring,
should look roughly like a random sample from the standard
negative exponential distribution.

Consider 6.12

£
h(x) dx 6.13
0
hence d ei
h(t) 6.14
dt

A probability density function f£(t) is given by:

d S(t)
f (v 6.15
dt
where S(t) is the probability of an item surviving past

time t, given that it has not failed prior

to t. (The survivor function).



From the proportional hazards model:

hence d S(t)
exp h &) dx (- h(t)d

then for the probability density function f(t) in 6.15

substituting from 6.13 and 6.14

d e
£ () exp (0! )
dt
hence l I
(t) dt = xXp (—ea) de +
The ei, therefore, are seen to have negative

exponential distributional form with parameter 1.

6.3.3 USING THE RESIDUALS TO ASSESS THE FIT OF THE MODEL

We have seen 1n section 6.3.2 the distributional form

the residuals can be expected to exhibit 1if the model



fitted 1is appropriate. It is this property that forms the

of this graphical assessment for the fit of the

basis
model.

A residual e* for a censored observation at tA is

treated as a censored observation.

The residuals are reordered by size, and a product

limit survivor function R(e) 1is obtained from the set of
censored and uncensored residuals.

A

If the model is appropriate, then a plot of -In R(ei)

A
v ei should be roughly linear with slope 1.

Consider a function g(x) * exp(-x) c.f. form of the

residuals.

A survivor function at x ' is given by:

exp(-x) dx “ exp(-x")

S(x1) »

Xl

hence In S(x") » ~x'

A

product 1limit survivor function R(e) should then

Our

display the property:
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Hence, if the plot is a straight line with gradient 1,
then the residuals appear to be from a unit negative

exponential indicating that the model is a good fit.

6.3.4 DEVIATION FROM THE EXPECTED LINE

Because of the treatment of the censored events after
the last failure, over—-estimation of In R(e) can result
in the latter part of the plot; moving it away from the
expected straight 1line.

Figure 6.11 shows a Cox and Snell type residual plot
for the hardwarefailure example. The deviation from the
expected 45° line is increasing at the latter end of the

plot.

It is not apparent, in the 1literature, to what extent
agreement with the anticipated line should be expected.

Since the expected form of the residuals is known to
be unit negative exponential, bounds can be simulated.
Figure 6.12 shows 95% simulated bounds around the Cox and
Snell type residual plot for the hardware failure example.

The bounds are seen to widen as e increase.

The Dbounds in the plot have Dbeen estimated by
simulating sets of residuals from the unit negative
exponential distribution. For the 95% bounds shown in

Figure 6.12 200 sets of residuals were simulated. Foreach

residual 1in each set the corresponding In R(e) was
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estimated. The Dbounds were formed by using the ©6th and
195th largest estimated In R(e) at any point on the

residual axis.

This simulation technique could be wused to form
templates for Cox and Snell residual plots, showing bounds
at wvarious <confidence levels. Since the number of
residuals simulated within each set, equal to the number of
events 1in the Cox and snell plot, will effect the width of
the bounds separate templates will need to be prepared for

different sample sizes.

Figure 6.13 shows such a template. This has Dbeen

prepared for a sample size of 200. 99.9%, 99% and 95%
v

bounds, indicated by +'s, x's and o'’s respectively, have

been formed by simulating 2000 sets of residuals.
Computer time may, however, prove too. costly to

prepare such templates as a matter of course.

6.3.5 VARIANCE STABILISATION

Since the survivor function R{(e) is a binomial
probability; with the probability of any item surviving
past a time t equal to p. The variance of the proportion
of a sample size n surviving is given by p(l-p)/n.

In this instance the sample size n is not constant

(reduction by 1 as each item 'dies'). therefore the
variance in R(e) 1s not constant. Hence the variability in
A

the plot -In R(e) Vv e increases as e gets larger.



An angular transformation; sin-"Tx has the effect of
stabilising the wvariance in an estimated proportion x with

binomial variace p(l-p)/n (Bartlett (1947)).

A variance stabilised form of the Cox and Snell
residuals can then be presented by plotting sin“1'(R(ei) v
sin"1 (exp (-ei/2)), (Aitkin and Clayton (1980)) . The
variance of the new varianced stabilised function is given
approximately by 1/4N, when sin-3- is measured in radians,
and N 1is the size of the original sample, (Bartlett
(1947)) .

Figure 6.14 is the wvariance-stabilised plot of the Cox
and Snell type residuals for the hardware failure example.
Because of the variance stabilisation the plot is seen to

adhere more closely to the expected 45° line.

6.4 INFLUENCE FUNCTIONS

Empirical influence functions can be wused 1in an
informal manner to identify observations which may greatly

effect statistical inferences regarding the covariates.

The technique approximates the influence of individual

observations on each of the B coefficients.

6.4.1 CALCULATION OF INFLUENCE

The 1influence can be obtained in an exact manner by

dropping each observation in turn and refitting the model.



In most practical applications, however, this leads to

a prohibitive requirement of computer time.

Cain and Lange (1984) employ a first order
approximations. based on a Taylor series expansion, to
A A
£ N £ (5>,

A
Where £ estimate of £ with all observations.

A
£<j> estimate of £ with jlth observation removed.
A

A
Hence, £ - £<jB 1is the influence of the J'th

observation on the estimate of £.

This representation of the influence 1is found to
comprise Schoenfeld's partial residual (see section 6.2.1)
and a further component which is the effect an item has on
the £ coefficient via all the risk sets that contain the

item. (Wightman (1987)).

6.4.2 GRAPHICAL REPRESENTATION OF INFLUENCE

The influence function can be represented graphically

by plotting the standardised influence against the rank of

survival time (Cain and Lange (1984)), or by plotting
influence against covariate value (Reid and Crepeau
(1985T) ) .

However, in order to identify single observations

which may be so influential as to alter the significance of
the covariate if omitted. we plot the estimate of the

changed z-score against the rank of the observation.



Estimating the change in the z-score can be achieved
if we can assume that the variance-covariance matrix is not
fundamentally altered when one observation is omitted.

This assumption is already made in the calculation of the

estimated influence function. (Wightman (1987)).
A
st (13)
where z is the z-score obtained when all the

observations are included

Z (3> is the estimated z-score when the J'th

observation is omitted

I<3) is the <calculated influence of the J'th

observat ion

A
St 13 is the standard deviation of 13 obtained

from the variance-covariance matrix

Figure 6.15 shows the influence plot for the covariate
'average hours u.s« per week’ from the hardware failure
example, Zj3 v nnkK. The majority of the points occur
around the value of the original z-score. These are
observations with little influence. and are very often
censored events. There are no observations in this example
so influential as to alter the significance of the
covariate 1if omitted (values in the region <1.96 since +'ve

D .



Figure 6.16 shows the influence plot for the covariate
'4 processors' from the hardware failure example. For this
binary covariate there are three main groups of influence
points. The central group centred about the original z—
score largely comprises censored events. The other two

groups are largely due to the two levels of the covariates



Figure 6.1 Vertical separation In proportionality plotting
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Figure 6,2 Vertical separation plotted below
proportionality plot, from the hardware failure

example. Covariate YWo fault found.'
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Figure .3 95% Link's bounds around proportionality plot
for the hardware failure example.
Covariate 'No fault found'.
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Figure 6. 95% Simulated Weibull bounds around
proportionality plot for the hardware failure
example. Covariate Wo fault found.'



Figure 6.5 Schoenfeld partial residuals for covariate
laverage hours use per week' from the hardware
failure example. Moving average over groups of
twenty observations.
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Figure 6.6 Schoenfeld partial residuals for covariate
'2 processors’ from the hardware failure example.
Moving average over groups of twenty observations.
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Figure 6.7 Schoenfeld partial residuals for covariate with
positive estimate of 0. 'Left truncation' from
the hardware failure example.
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Figure 6.8 Schoenfeld partial residuals for covariate with
negative estimate of 3. 'System B' from the
hardware failure example.
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Figure 6,9 Schoenfeld partial residuals for covariate with
negative estimate of 0. 'System F1 from the
hardware failure example.
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Figure 6.10 Schoenfeld partial residuals for competing
risks covariate 'No fault found', from the
hardware failure example.
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Figure 6.11 Cox and Sneil type residual plot for the
hardware failure example.
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Figure 6.12 95% Simulated bounds around the Cox and Snell
type residual plot for the hardware failure
example.



Figure 6.13 Simulated confidence bound template for Cox
and Snell residual plot.
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Figure 6,14 Variance-stabilised plot of Cox and Snell type

residuals for the hardware failure example.
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Figure >.15 Influence plot for the covariate 'average use
per week* from the hardware failure example.
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Figure 6.16 Influence plot for ttie covariate
from the hardware failure example.
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CHAPTER 7

CONCLUSIONS AND CONTRIBUTIONS TO

KNOWLEDGE ACHIEVED

7.1 SUMMARY OF APPROACHES TO VARIOUS FIELD DATA STRUCTURES

Chapters 3-5 have given examples of the application of

PHM to reliability field data.

Each data set has had its own nuances, and provided
different problems for their analyses.

The data structures reflect the data collection
processes and procedures as well as field deployment and
failure phenomena.

The three examples, therefore, have led to illustrate
that there is no universal form of reliability data, and

that any data set has its own unique features.

7.1.1 IDENTIFICATION OF POINT PROCESSES

Appropriate structure for modelling and analysis
centres about the identification of appropriate point

processes to describe failures of repairable systems.

A careful choice of the basic time metric, t, must be

made. This may be reflective of the maintenance and repair
procedures.
It is often assumed, for simplicity, that an item is

repaired to as-good-as-new.
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It 1is

choice of the time metric 1is

data.

In a hierarchical system

processes, on which to base

This 1is because the series of

of course also necessary to

ensure that the

readily obtainable from the

the choice of different point

PHM, is greatly increased.

events may now be applied to,

and observed on, any level of the hierarchy.

7.1.2 CENSORING STRUCTURES

Having adopted the use of an appropriate point process

there is now a need to adopt a sensible censoring
structure.
Censoring 1is wused when an item leaves the field of

observation without having failed at this point.

A great deal of information can be lost by not using a
censoring structure.

The simplest form of censoring is used in introducing

a censored observation for right truncated failure times.

For example, if we know when failure recording ceased;

when using a metric, t, of times Dbetween failures, a

censored time is used from the last failure to the

termination of recording.

For systems with competing risks censoring can be used

to a greater extent.



Partial or complete censoring could be used in such
situations. This is because although an item has failed a

distinction can be made between modes of failure.

Again, this 1s more complex in hierarchical systems
since numerous failure mechanisms may be assumed at various

hierarchical levels.

7.1.3 EXPLORATORY USE OF PHM

Since there is a multitude of PHM models which might
be applied to any reliability field data, PHM can be wused

as a powerful exploratory tool.

In practice we use PHM, moving from one model to
another searching for a better fit, and more explanatory

power.

Although the method identifies relationships between
the life length of equipment and covariates fitted, these
need not Dbe causal relationships. Such relationships
identified may be masking underlying patterns which serve
for more explanation to the observed data.

The example in Chapter 3 illustrates this phenomenon

clearly.

7.1.4 TRANSFORMATIONS

It is wusual ©practice 1in reliability analysis to

include covariate infromation in the form it was recorded.



However, it may be the case that alternative formulations

for the covariate are more appropriate.

For example, a covariate such as failure number is

often fitted with the formulation N (where N is the failure

number) . Better formulations of the covariate, such as 1N,
N2, In N etc. may provide greater explanation of the
processes, see Davies et al (1987), or lead to the

proportionality assumption being fulfilled where previously

it had not.

Transformations for covariates are usually
incorporated into models as part of the exploratory process

of stepping through one model to, hopefully, a better

mode 1.

Figure 7.1 summarises the approach which should be
taken in applying PHM to field data of a repairable system,

in the form of a flow diagram.

7.2 SUMMARY OF USE OF GRAPHICAL DIAGNOSTICS

We have seen clearly the need for assessing the
appropriateness and fit of PHM models. In this thesis we
have investigated in particular four graphical techniques

suggested in the literature.



7.2.1 PROPORTIONALITY PLOTTING

It has been standard in the literature to assess the
proportionality assumption for different levels of a
covariate Dby stratifying at each level and plotting the
logarithm of the Dbaseline cumulative hazard for each
stratum against time on the same graph. However. we have
shown that looking for constant vertical separation in this
plot (true for proportional hazards) is difficult. We
have, therefore, in this thesis additionally plotted the
vertical separation at failure points.

Also to give an indication as to the extent we might
expect the plot to deviate from constant vertical
separation, we have simulated confidence bounds for the

plot (assuming Weibull baseline hazards).

7.2.2 SCH3ENFELD PARTIAL RESIDUALS

It has been suggested in the literature to look at the

local fit of the proportionality assumption by plotting,

for each covariate, the Schoenfeld partial residuals
against time. These residuals should have a general
scatter about the axis. Additionally to the literature we

have, in this thesis, plotted a moving average based on
groups of a large number of observations superimposed on to
each graph. This has eased visual inspection of the plot

to assess local fit of the assumption.



7.2.3 COX AND SNELL TYPE RESIDUALS

The literature has suggested the use of these residual
quantities to assess the global fit of the model. The
basis of this graphical test is essentially to compare
observed residuals to expected values from the model.

Since no indication is given in the literature as to
how much we may expect the plot to deviate from the
expected45° line we have investigated possible bounds for

the plot by simulation.

7.2.4 INFLUENCE FUNCTIONS

It is common 1in regression techniques to assess the
influence of individual ©observations on a model by
eliminating each observation one at a time .and refitting
the mode 1.

The influence functions presented in this thesis
employ an approximation to the effect of the above
technique.

It has been standard in the literature to plot the
difference between the coefficient estimate, for each
covariate. when the observation is and when it 1is not
included in the model, against the rank of the omitted

observation.



However, following the suggestion of Wightman (1987)

we plot the z-score for the coefficient obtained when the

observation is omitted, against each observation. This

enables us to clearly identify observations that may be so

influential as to alter the significance of the covariate.



Figure 7.1
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ABSTRACT

The analysis o fthe reliability o fcomputer systemsposes a number o fcomplex
problems. With the advent of VLSI and the diversity ofusages the modelling
of computer reliability has become far from straightforward. The cost of
computer breakdowns includes elements for loss of usage, and the cost of
repair. To minimise the costs it is essential that computers are as reliable as
possible. To achieve reliable designs suitable modelling o freliability has to be
undertaken. Proportional Hazards Modelling (PHM ) is an efficient
technique which can identify the effects ofthe various explanatory variables
which may be associated with variations in the times between faults on a

computer system. In thispaper we apply PHM to the analysis offault data on
a PCB setfrom an ICL product.

NOTATION

t Time in days (time to failure, time between failures,
censoring time).

* To whom carespadence shauld be adbiessad.
A versiondf thispgperwas presented atRelizhi Tityy 87,14-16 2l 1987, Binmingham, UK,
ard is rerodixoed by kird permission of the aganisers.
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tt Time in days between (i—I)th and fth events.
X, Z1ItZ2,...,29 Hazard function for item ofequipment with explanatory
variables Z 1t Z2) ..., Zk

MO Baseline hazard function,
tfo(t) jo h0(x) dx cumulative base-line hazard function.
£(*m= 12, Parameters of proportional hazards model.
L2,.. Estimators of parameters of PHM.
Z,(i- L2, Explanatory variables in PHM.
Bij Estimator of B{parameter when time; is omitted.

Estimator of Schoenfeld partial residual for time; on
covariate i

E Expectation operator.
SE(*) Standard error of x.
INTRODUCTION

Reliability in ICL

ICL, part of the STC group, is a leading European Information Systems
supplier. ICL supplies a range ofcomplete Information Systems to carefully
selected target market-places. This includes system integration and
development, the supply of office systems, maintenance, training, pro-
fessional services and, of course, the design and manufacture of the world’s
most advanced range of mainframes.

The Reliability of ICL’s products is of paramount importance to the
Company. Failures of computer equipment are costly to both the users and
ICL (who maintain it). The user suffers the costs associated with the lost
business and staff being idle waiting for the equipment to be repaired. ICL
suffers the cost ofexcessive failures in terms of man and part costs to fix. It is
thus in everyone’s interest to make the products as reliable as possible.

ICL collects reliability data at system, unit and component level for its
computer products. All failures rectified by the engineers are logged on a
computerised database, and weekly summary information for all large
mainframe systems is collected to monitor system reliability. So that
predictions for future products are as accurate as possible, the results of
analysing the system, unit and component reliability data collected enables
the prediction models and databases to be continually enhanced. However,
with the advent of VLSI and the diversity of usages, the analysis of field
returns, and the subsequent enhancement of reliability models is far from
straightforward.
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Application of proportional hazards modelling

To improve the reliability of future products, the modelling ofreliability has
to be improved to allow for the large number of variables that potentially
affect (or appear to affect) the reliability ofequipment. However, firstly these
have to be identified. From experience, large differences in the reliability of
identical hardware products in different environments and circumstances
have been seen. The various methods and systems for testing and burning-in
products prior to shipment can have different effects on the resultant
reliability seen by a user. It is this type of variable that needs explaining if
reliability models are to lead to the improvements looked for.

There is a large literature on the reliability ofcomputer hardware (Dhillon
and Ugwul).

In the continuing search for new techniques to analyse the field data
collected, and get a handle on the variables affecting reliability, Proportional
Hazards Modelling (PHM) presented an exciting new approach to try. The
actual reliability of the highly successful ICL 2957, 2958, 2966 and 2988
family of processors was modelled using PHM. Extensive data on the
failures ofthe Printed Circuit Boards comprising the processors, as well as a
number of other variables was readily available from ICL’s databases.

Four variants of'the processor, in both single and dual modes over a total
01364 customer systems were considered. For each system the following was
known:

Serial numbers and installation dates of processor(s).

Which variant (or system type).

Operational pattern of system.

Details of each processor hardware PCB failure to component level.
Weekly actual operating hours.

The QC system in place at time of manufacture of the processor(s).

Only failures of PCBs common to all the processors have been considered in
the analysis. Options (fitted to only some), cabling and the power supply
have not been counted as part of the processor. Failures of processors for
systems with more than one could not be identified to the actual failing
processor, and so the ‘system’ is the level at which processor failures are
considered in the modelling of the reliability.

PROPORTIONAL HAZARDS MODELLING

Proportional hazards modelling is a technique which can identify the effects
of explanatory factors which may be associated with the life length of
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equipment. PHM can be used to study repairable as well as non-repairable
systems. Data may be censored or uncensored. No underlying distribution
need be assumed for the structure of the data, making PHM a powerful tool
for reliability analysis.

The technique is a method for decomposing the variation in life lengths
into orthogonal factors, identifying the significant ones, and reconstituting
the model for prediction purposes.

The fundamental equation on which PHM is based is an assumed
decomposition of the hazard function for an item of equipment into the
product of a base-line hazard function and an exponential term
incorporating the effect of a number of explanatory variables varying
between items. That is:

WO\ ZuZ2...,Zk=hO)QXp(BIZ i + B2Z2+ — + BKZK)

where the B- s are the unknown parameters of the model defining the effects
of each of the explanatory variables; the Zts are the values of the
explanatory variables.

A Zi can be either a naturally measured variable such as age, or an
indicator variable, indicating for example the presence or absence of a
change in design.

The explanatory variables are assumed to act multiplicatively on the base-
line hazard functions. Thus, for different values ofthe explanatory variables
the hazard functions are proportional to each other over all time # The base-
line hazard function /40(f) represents the hazard function that the equipment
would experience if the covariates all take the base-line value zero.

The J5% are estimated from the data and tested to see whether each
explanatory variable really has an effect in explaining the variation in
observed failure times.

In this paper we employ the usual distribution-free approach. The detail
of the methodology is not developed here, but the interested reader is
referred to Kalbfleisch and Prentice 2The method first iteratively estimates
the effects of the covariates B/}B2 ...,Bk using the so-called method of
scoring based upon a Taylor Series expansion for each step in the iteration,
starting with initial values of zero. Once the estimates converge, tests of
whether each explanatory variable has any significant effect are based upon
the asymptotic normality of the estimators. A backwards stepwise
procedure is incorporated whereby non-significant explanatory factors are
excluded one at a time and the model re-run until all factors are significant.

Upon finding estimates for the Br%, the method then obtains the base-line
hazard function based upon discrete hazard contributions at each of the
times at which failures were recorded. This can then be compared to
standard distributional forms by usual hazard plots.
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DATA

Information was available about the processor failures occurring, within the
three month time window 01/04/84-30/06/84, at 364 customer systems.

The records included information on the system identifier, date of
installation, the usage the system experiences, the number of processors in
the system, and details of the processor failures occurring.

APPLICATION

There are many possible model formulations that could be used in applying
a proportional hazards study to these systems. For example;

(a) The basic time metric could be taken as the time between processor
failures of any type occurring on the same system with covariates
included to describe the type of failure found.

(b) The basic time metric could be taken as the time between processor
failures on the system of the same type; again covariates could be
included to describe the failure type occurring at each event.

For any model there are usually a number of censoring possibilities which
could be appropriate.

A good knowledge ofthe repair procedure would be useful to identify the
most appropriate model and censoring structure.

This particular data structure corresponds to a point process observed
within a time window. This is a familiar structure in reliability data (see Fig.
1). Such data presents problems since it includes both left and right
truncation. The right-hand truncation can be dealt with within PHM fairly
easily by defining a censored event time from the last failure viewed to the
end ofthe time window. However, the time from the start ofthe time window
to the first failure viewed needs to be treated differently. Here we assume that
the left-truncated time to the first event follows the same distribution as
subsequent time between failures but with a different hazard. Such a
procedure is less wasteful of data than ignoring such times and was
introduced for initial exploration of the data. It is, of course, theoretically
sound if the times between failure (TBF’s) are exponential.

_ —ommrae of failres

st off tive virrkw erd of i vircow
Fg 1 Time window.



DATA STRUCTURE

The basic time metric, ¢ is taken to be the time, in days, between failures.
Since the systems are repairable, a reasonable starting assumption is that a
system is repaired to ‘as-good-as-new’, irrespective of the particular failure
type that occurred. Thus we assume complete censoring. That is, should a
failure occur of one particular type, censored events are also assumed at this
time for the other failure types.

From the coding of failure types two large groups of events can be
identified in the data corresponding to failure types No Faults Found or
NFF (92 events), and component type 272 (32 events). All other failure types
are grouped together, in this analysis, to form a third failure type OTHER
(46 events). It follows from the type of failure mechanism assumed that a
failure to a system identified as type 272, also creates censored events for the
failure types NFF and OTHER.

Explanatory variables employed in the PHM model were:

zZ3 Z5 2%9,727,z28 z9zD zZn,Z,2

Event. This variable indicates the presence ‘O or absence ‘1’ of left
truncation.

Age. The age at the time of event is calculated, in months, from the first of
the month of installation.

Av. h/wk. The average number of hours use per week each system
experiences in the time window is taken from actual field returns.

Failure dummies. These dummy variables (in Table 1) compare different
processor failure types.

System dummies. These dummy variables indicate the system type the
processor(s) are in. There are four types of system (Table 2). There are 234
type A, 64 type B, 34 type C and 32 type F.

Number ofprocessors. These dummy variables compare the effects of the
number of processors without assuming linear effects. Systems can have
different numbers of processors depending whether they are single or dual
(Table 3).
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TABLE 1
Coding of Faihre Type
Failure type Covariates
z, z5
272" =) 0 0
NFF 0 1
OTHER 1 0
TABLE 2
Coding of Systam Type
System type Covariates
Ze z z8
Aase) 0 (1} 0
B 0 0 1
C 0 1 0
F 1 0 0
TABLE 3
Number of Progessrs within SystemTpe, and GovariateCoding
System type Number ofprocessors
1 2 4
A X X
B X
C X
F X X
Goariatess (Z9, Z 10) 00) 0,1) ap)

TABLE 4

Quality control

Covariates

Zn Z\2
Predace &) 0 0
Rstdage 0 1
Cahination 1 0

1 K., .A €C.»
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Quality control Since the start of manufacture a major change in Quality
Control was introduced. T able 4 shows the coding ofcovariates to model the
QC to which the processors within the System have been subject.

SELECTION OF PHM MODEL

The model described above evolved by applying PHM in an exploratory
manner. In this process a number of different structures were considered.
Some ofthese had to be neglected, or rather further adjusted, since they gave
rise to technical problems such as multicollinearity and monotonic
likelihood (Bryson and Johnson3). For example, multicollinearity between
the previous use and age of the system implied that previous use was
neglected, whilst power was found to be an exact linear combination of the
dummy covariates representing the system type, so that power was
eliminated.

In other cases the specification of some variables was also changed to
provide greater information. For example, in an early exploratory
formulation the covariate ‘age’was taken as the age ofthe system at the start
of'the time window. However, due to the presence of a few ‘young’ systems
the respecification to age of system at processor failure gives more physical
explanation.

ANALYSIS

Table 5 shows that disaggregation of the 1602 events into the binary
covariate categories.

Results

The results after the backwards usual stepwise elimination procedure, based
on two-tailed 5% tests, are given in Table 6. The p-value indicates the
probability of obtaining such an extreme estimate for the B's just due to
chance, if there were no real effect for that covariate. The likelihood ratio
statistic, in the last column, is seen to exceed the tabulated upper 5% critical
value for a x/ distribution with nine degrees of freedom (16-92). This
indicates that the model is highly significant as compared to assuming that
the covariates have no effect and that the data is homogeneous.

Significant covariates

Z x—event. The positive estimate By suggests that the times to the first
failure tend to be longer than the times between failures, with the t.b.f.’s
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TABLE 5

Covariate Covariate =10 Covariate —1
Numberof Number of Number of Number of
failures censorings failures censorings

71 13 47 67 485
z4 1= A5 47 487
Z5 ™ 289 a 443
Z6 148 1292 22 140
Zy 157 1304 13 18
Zs 157 1214 13 218
zZ9 157 1376 13 56
Z o 140 1261 0 ill

Z\i 16 1410 5 22
VA, 13 1046 37 386

ToEl nuber of eents= 162.
TEl nunber of fAihres= T0.
Tal urber of aansared eents= 1432,

having a hazard rate which is greater than that for the time to the first event
by a multiplicative factor of exp (0-6384) = 1-89. This, perhaps, counter-
intuitive result can be explained in three ways. Firstly, it is apparent, from the
raw data, that the majority (71 %) ofthe complete set of systems did not have
a processor failure at all during the time window. Thus, these systems have a
long censored time to first processor failure compared to the necessarily
shorter observed tb.f.’s. This model bias arises due to the time window

TABLE 6

Significant B, p-Value Likelihood
covariates ratio statistic
Z {—em=nt 0634 0-0001
22-=p -0-0336 0 0019
Z3— ar. h/wk 0-0064 0-0B0 9450
Z5- NFF 08345 0-0000 (5% adtial
26~ systamF -0-8748 0-a55 vahe fran
Z8- systamB -0-7079 0-083 Hes: 16P)
Z9- 4 poessxs 1-5074 00010
Zio—2 progessaxs o047 0-0050

Zj2— post dange -0-6622 0-0a15
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nature of the data. Secondly, as we show below, the underlying
distributional form for t.b.f.’s turns out to be decreasing hazard rate, so that
such left-truncation is expected to increase residual life length. Finally,
bunching of failures (e.g. due to misdiagnosis) may be associated with the
longer times to first failure.

Z2—age. The sign of B2 implies that the older the system the lower the
hazard, so that there is reliability growth as the system ages.

Z3—av. h/wk. The sign of B3 indicates that the more use the system
experiences per week, the higher the hazard.

Fault types. The covariate Z 4 was eliminated since its effect was not
significant, thus there is no significant difference between the fault types
OTHER and 2272’. The covariate Z5—NFF which compares the fault type
NFF with 272 and OTHER fault types, is significant with a positive
coefficient implying that the NFF fault type has higher hazard and shorter
times to failure than the 272 and OTHER fault types. This is not of great
physical significance, and is to be expected since NFF faults are very
prevalent.

System. Z 7 which compares system C with the base system A is not
significant. Z 6 which compares system F with systems type A and C is
significant with a negative coefficient implying that system type F is subject
to a smaller hazard than those ofsystems type A and C. Similarly, systems of
type B experience a smaller hazard (about half) compared to systems type A
and C.

Number ofprocessors. From the significance of Z 9 it can be seen that
systems with four processors experience a higher hazard than those with
one. The crude multiplicative factor is approximately 4*94. Similarly, Z 10
shows that systems with two processors experience a higher hazard than
those with one. The crude multiplicative factor is approximately 1-90.

System/number ofprocessors. Based on our model the magnitude of the
hazard variation between systems with different numbers of processors can
be calculated from the significant B estimates, since this is of operating
importance. Table 7 shows these differences.

Quality control. The covariate Z Xl was eliminated since its effect was not
significant. The covariate Z 12 which compares systems with processors
which are covered by the new quality control (only) with the other systems is
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TABLE 7
Nurber of Processor Conbinations

System type Number ofprocessors
1 2 4
A 1-00 10 _
B 00 - -
C 1-00 - -
F - o £06

significant with a negative coefficient implying that the new tighter quality
control procedures imply a lower hazard.

GRAPHICAL ANALYSIS

A number of graphical techniques can be employed to examine the
appropriateness and fit of the PHM model Some of these graphs for the
current data can be seen in Figs 2-9.

Figure 2 shows a Weibull hazard plot for the base-line hazard obtained
from the PHM model. The plot is reasonably straight indicating the Weibull
as a reasonable distribution for the t.b.f. (King4). The shape and scale

In@H

4.0

1.0

Fig. 2. Weihull besslire hezard glat £/00—U/d)B-
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parameters are estimated at approximately 0-84 and 1425 days respectively.
Since the shape parameter is less than 1 the base-line shows decreasing
hazard.

Cox and Snell trude’residuals can be calculated and plotted against their
expected order statistics (Cox and Snell5) to provide a graphical goodness-
of-fit test for the model. Ifthe model is a good fit to the data we would expect
the residuals to lie on a straight line of gradient 1, passing through the
origin (Kay6). As yet, however, little guidance is available as to how far the
plot can stray from this expected line before the model is no longer
considered a good fit. A problem also arises since we are unable to estimate
the hazard for censored times greater than the largest t.b.f. or time to first
failure. For our purposes, we assign these a hazard equal to that for the
greatest time to a failure. It is thus probable that such plots will be left-
shifted at their tail end. Another drawback to this plot is that the variance
increases as the residuals increase (Aitkin and Clayton1). Arcsine transforms
can be taken to plot a variance-stabilised form ofthe Cox and Snell residuals
and the resulting plot can be seen in Fig. 3. We can see from Fig. 3 that the
model appears to be a fairly good fit.

Figures 4 and 5 are proportionality plots for two of the significant binary
covariates. In the plots the data is stratified on each significant binary
covariate, and the model run separately for each stratum. Plotting In H 0z
against ¢ for each stratum on the same graph, should produce plots with
constant vertical separation for all ¢ if the assumption of proportional
hazards holds .6Figure 4 shows stratification on the dummy variable Z5.The

(Lxpected

0.8 1.0 1.2 1.4

Observed

Fg. 3. Varance sthilissdCox and Sell mesidsals.
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t

Fg. 4 Prportiaslity ot fr aoeriate NFF'.

two plots are reasonably parallel after about = 10, which implies that the
proportional hazards assumption holds for this variable. Proportionality
plots for the other significant binary variables included in the model; with
the exception of that for Z x are similar to Fig. 4, indicating good fit.
Figure 5shows stratification on the covariate Z v For small 7, the plots are
not constantly vertically separated indicating that this covariate violates the

=1

10 20 30 40 50 60 70 BO

Fg 5 Popatiaslity plot fixr coariate fistevant!.



proportionality assumption. If necessary it is possible to extend the
proportional hazards model to include strata, to accommodate such
variables that violate proportionality (Kalbfleisch and Prentice2). As
indicated above the assumption of proportionality for was only a
tentative first hypothesis. Figure 5 indicates that stratification might instead
be worthwhile.

Figures 6 and 7 show Schoenfeldpartial residuals plotted against time for
two of the significant covariates (Schoenfeld8). If proportional hazards
holds, E(fij) ~ 0, where ri3is the estimate of the Schoenfeld partial residual
for eventj on covariate i, and a plot of fjagainst ¢ will be centred about zero
for all ¢ Since, as often in reliability problems, there are a large number of

moving average

~ H K H—%1

'10 20 30 40 50 60 70 80
t

Fig. 6 . Sdoenfeld msid sls fixr coariate age’.

tied t.b.f.’s the density of partial residuals at many of the points cannot be
clearly seen on the plots, particularly for binary covariates. To ease visual
inspection, therefore, a moving average it shown on each plot based on
intervals of 10 t.b.f.’s. If proportionality holds for the covariate identified,
the moving average should centre about zero for all ¢

Figure 6 shows the Schoenfeld partial residuals plotted for the covariate
age. This plot is typical for a non-binary covariate. For all ¢ the plot has a
reasonable scatter about zero; this is borne out by the oscillation of the
moving average about the axis. Thus, the proportional hazards assumption
does not appear violated by this covariate. It is also noticeable that there are
no obvious outliers, which might have indicated times to failure which need
further examination.
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moving average

Hg 7. Sdoenfeld residsls fix aoariate NFF\

Figure 7 shows the Schoenfeld partial residuals plotted for the covariate
Z 6. This plot is typical of those for binary covariates 3 There is a split of
residuals above and below the axis corresponding to the two categories of
the- covariate. The plot largely bears out the assumption that the residuals
have scatter about zero. Thus the proportional hazards assumption does not
appear violated by this covariate.

Schoenfeld residual plots for the other significant binary variables are
typically similar to Fig. 7, with the exception ofthat for the covariate Z v The
plot for Z x suggests that there is a trend in the residuals. In agreement with
the interpretation of Fig. 5, this may suggest that the covariate violates the
assumption of proportionality.

Figures 8 and 9 show standardised plots of the influence of individual
times to failure on the Bt parameter estimates for some of the significant
covariates (Cain and Lange ,9 Reid and Crepeaul0). The form we present
here shows the estimated normal deviate for the covariate coefficient when
each single time to failure and censoring time is excluded from the model,
one at a time. This is plotted against the order by magnitude of the times on
the horizontal axis. We can thus examine which times to failure have times
most influential on the observed significance of the covariates, and which if
any, would if deleted remove the significance of the covariate. For the 5%
two-tailed tests these points correspond to estimated normal deviates in the
range (—1-96, +1-96).

The influences of an event is the difference between the B{estimates with
and without the event included; /5y —Bt—Bip where S is the estimate of B¢



212 M. R. Drury et al.

-2.75
-2.80
-2.85
-2.90
-2.95 .1 *:
-3.00

-3.05

-3.15

CRDERED EVENTS
Fg. 8§ . InfhEe of emnts fixr coadate a’.

made when time; is excluded. The figures presented here are based on the
simplifying approximation of treating the standard error (SE) of the B{
estimator as unaltered after elimination ofthe single data point. This is likely
to be valid for large data sets, such as here. However, since it is an
approximation we should examine the actual standard error for points on
the influence plots close to the + 1-96 limits.

Figure 8shows the influence oftimes on the covariate age. We can see that
there are no times or censorings that are likely to alter the significance ofthe
covariate (at 5% level) ifomitted. The highest density of points is close to the

SEXB5)
5.50 T

5.48

CRDERED EVENTS
Hg 9 Infhare ofeats fxr coarate NFF\
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normal deviate for this covariate in the full data set; most of these
correspond to censoring points.

Figure 9 shows the influence of times to failure on the dummy variable
NFF. Again there are no times which alter the significance of the variable
when omitted. The structure of this plot is typical of those for binary
covariates. There are three distinct groupings; the central group comprises
mainly censored events, and the groups above and below are split on the
value of the covariate in question for each time to failure event.

Plots obtained for the other significant covariates are similar to Figs 8and
9. Whilst not standard practice, it may on occasion be interesting to also
look at such influence plots for non-significant covariates, to see if there are
any events which when omitted would move the covariate into significance.
For the current case the B estimates and their significance for the non-
significant covariates, at the stage when they were eliminated from the model
in the backwards stepwise procedure, can be seen for each covariate in Table
8. In all cases (except perhaps for Z4) they are largely non-significant and
there is little argument to undertake such an approach.

TABLE 8
Elimirated fran tteModel
Covariates Bi p-Value
Z v+ caatkiration —-0*2472 0351
Z7 systamC 03714 0*1430
Z4- OTHERS 0*3844 00467
CONCLUSIONS

The results of the initial study reported here indicate that the PHM model
described fits the structure of the data quite well. The treatment of time to
first failure by use of'a covariate, to avoid the problem ofleft truncation, was
least successful and there may well be a need here for further work.

The PHM model has enabled us to identify variables which have a
significant effect in explaining the times between failures for the systems as
well as the direction and magnitude of these effects.

We have identified the effects of configuration parameters and have been
able to make comparisons between the failure types. The model has also
enabled us to identify the underlying structure of the point process, and the
distributional form for the base line distribution. Unlike other techniques we
did not have to make distributional assumptions prior to the analysis.
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Work is continuing in collaboration between ICL and Trent Polytechnic
to clarify outstanding issues and further understanding of the processes
involved.
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ABSTRACT

The complexity of modern weapon systems presents great difficulty for the
reliability analyst. In many analytical contexts,failures o fthe equipment may
take place at various levels in a hierarchy. Thusfailures may be attributed at
the lowest level to components, or alternatively at higher levels to circuit
boards, sub-assemblies, assemblies or modules. The logistic supportfor such
systems is highly complicated. Thefailure datafaced by the reliability analyst
records failures at various levels of equipment aggregation, hence standard
reliability analysis methods, as well as new techniques such as Proportional
Hazards Modelling, need adaption in order to facilitate the complex point
processes underlying the data structure.

In thispaper we consider the analysis o fearlyfield datafor a major weapon
system in current military use. The problems of data extraction and
manipulation are discussed, and the adaption ofmethodologies to the current
data structure highlighted. Emphasis is placed upon the exploration of the
data structure and the categorisation of mechanisms.
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NOTATION

time (time between faults, censoring time)

h ith TBF

hit, Zj,22,...>2] hazard function for item of equipment with covari-
ates zj,z2, ..., zk

MO baseline hazard function

#o (0 cumulative baseline hazard function = J20x) dx

ft (f=1,2,...,k) parameters of Proportional Hazards model denot-
ing effects of covariates zt,Z2, ...,zk

t=1,2,...,B) estimates of parameter of Proportional Hazards

model

covariates in Proportional Hazards model
influence of thejt# TBF on the ith covariate
estimate of /2- with 7th TBF excluded
normal deviate of

INTRODUCTION

The successful reliability engineering of complex systems can benefit from
inputs from the statistician as well as the engineer. The image of the
statistician’s role in reliability is that he/she organises and analyses failure
data for the purpose of measuring, modelling and predicting reliability.
There is however, an emerging view that the expertise of the statistician can
also be productively exploited in addressing the reliability engineer’s
primary objectives: those of achieving and improving reliability.

Whilst the engineer and the statistician use different methodologies, they
have a common objective: that of achieving a reliable product. We can
identify two roles that the statistician can play in the design process. The first
is passive in which the statisticians involve themselves with the organising
and analysis of data, so as to provide the designer (decision maker) with
relevant information. The second role is a more active one, in which the
statistician goes beyond being a mere provider of information or guidance
counsellor, but becomes a full participant in the design process, and is thus
entitled to make recommendations which are supported by his analysis as to
the actual form a design will take. To achieve this requires a substantial
reorientation in the statistician’s approach to design, he/she must regard
themselves as capable ofmore than just modelling a design, butjust as, ifnot
more importantly, having the potential of impacting a design. This has
considerable implications as to the types of models and analysis that will be
pursued. A new relationship between the designer and statistician is called
for, which now emphasises an iterative and interactive approach.
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Whilst in the 1960s and 1970s, the statistician could have argued a lack of
technical support for this role, there have been significant recent theoretical
and computational developments. If a distinction has.to be made between
then and now, it is that in the past emphasis has been on developing methods
and models that operate on quantitative (—cardinally measured) inform-
ation, which whilstimportant, all too often required the statistician to ignore
soft qualitative (—-categorically measured or rule based) information, which
in engineering is often more important. Recent trends are redressing this
imbalance.

One development ofsignificance is the general emergence ofthe theory of
generalised linear models (GLM). This has unified many areas of statistics
which have considerable potential for analysing reliability data; e.g. probit
analysis which concerns itself with quantifying the relation between a
stimulus and its response :1 contingency table analysis in association with
Log-Linear models, which concerns itself with the analysis of Cross-
Classified Data ;2,3and (although only very tenuously GLM) Proportional
Hazards Modelling” which concerns itself with developing failure models
based on explanatory variables 4 Whilst Probit Analysis and log-linear
models have only recently been introduced into reliability,56Proportional
Hazards has on occasions been applied with considerable success.7,8 The
development of the software package GLIM (available from NAG) offers
the competent professional statistician the facility of computerising much of
this type of analysis.

Almost irrespective of the analytical framework and the modelling
approach, in order to suggest particular model formulations these methods
shouki be used in conjunction with the exploratory approach to data known
as EDA (Exploratory Data Analysis).9 When used in conjunction with a
particular model structure, EDA proceeds very much in line with
conventional modelling theory, namely that of Model Identification, Model
Parameterisation, Model Validation and Iteration.

The reliability analysis of weapon systems reflects all of these
considerations, but is complicated by the features of particular systems.
Modern weapon systems, their deployment and maintenance, and not least
of all their record keeping, are all inherently complicated. Whilst the
reliability of such systems may be very good, their reliability analysis is
usually limited and difficult. For these and other reasons statistics has largely
failed to make a major impact on the reliability of weapon systems.

This may not be the statistician’s fault, for example, the form and the
quality ofthe data available from the field is often poor, usually dominated
by operational requirements, product of development and security
considerations, and imbedded by the historical data analysis methodology
current at the time of development years earlier. Indeed, it is not atypical for
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the data system to be recording at the same time too much irrelevant data
and too little informative data, as well as being full of errors. Concepts of
data validation and data entry are yet to permeate this field .5

BACKGROUND

The mature weapons system considered in this paper has an established
reputation for reliability. It has been in operation for over a decade and has
been successfully deployed worldwide in a variety of environments from
hot-wet to extreme cold. It has been transported over many types of rough
terrain.

The system is of modular design as shown in Fig. 1. A complete system

SUB-SYSTEM SUB-SYSTEM
LRUA LRUB LRUC LRUs
SUB-ASSEMBLY SUB-ASSEMBLY SUB-ASSEMBLY
Biii
LRU B
$-S-a SSa S-S-a S-S-a
Bib Blib Bills Biilb

Fig. 1. Hierarchical nature of sub-systems.

comprises a missile launcher, optical tracker, and generator, and for Blind
Fire Systems an additional radar tracker. The analysis in this paper only
discusses three types of subsystem, which are referred to as sub-systems (1),
(2) and (3). These sub-systems are interchangeable and also of modular
design, the principle modules being designed as Line Replacement Units
(LRUs). The system has been designed to be maintained by combat troops in
a battlefield environment. First line maintenance consists of changing the
LRU whilst at second line the fault will be traced to the sub-assembly (and
possibly down to component) level. The philosophy ofrepair by replacement
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is supported by automated performance testing, thereby ensuring maximum
operational availability. The modular design has allowed individual units to
be upgraded in line with technological developments, e.g. introducing Built
in Test Equipment (BITE). This has led to enhanced performance and a high
achieved availability. It is a successful military system with a proven track
record which has and is being continually upgraded to meet and surpass the
demands of its role on the battlefield.

Data source

The source of reliability data on this weapons system is the computerised
database built up by the REME, Radar Branch using the FORWARD
(Feedback of Repair Workshops and Reliability Data) reporting system.
The function of this database was to provide to management logistic
information necessary to the management of equipments, spares, and
resources ofa complex weapons system. It also served to monitor reliability
and provide engineering information to improve reliability.

The database, by today’s standards, can be considered of conventional
design. The repair technician was required to complete a descriptive jobcard
outlining relevant information, such as date, serial number, elapsed time
indicator readings (ETIs), and fault classification code. This information is
then transcribed and stored in the computer database, thereby in principle
building up a complete historical record of reliability repair and
maintenance data.

It has been recognised that there were several factors which detrimentally
affected the integrity of the FORWARD database. Omissions, inconsis-
tencies and errors were introduced due to the amount of human effort
required, the need for human judgement and interpretation at various stages
in the data gathering process and the amount of data transcription required.
Consequently it is estimated that the FORW ARD databases are about 70%
accurate.

Four databases detailing schedules, environmental/deployment data, ETI
readings and defect data were available. A number of features in the
database made data extraction difficult and complicated. For example there
was inconsistent formatting within the data bases which precluded file
merging, also certain fields ofthe deployment database were free format and
thus difficult to extract information from. Because of these problems only
the defect data base, which contains records about faults found, was
investigated.

Structure of the data in the defect database
Each record of the defect database refers to a fault. The particular unit for
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which data is recorded is identified by its sub-system type (i.e. launching unit,
optical unit, etc.) and serial number. Each record contains fields detailing:

(1) The date that the fault was identified.

(2) The holding group ofthe unit at the time offailure (User identifier i.e.
squadron or battery). In this analysis there were six different holding
groups.

(3) The type and serial number of the LRU that was removed and
replaced. [f more than one LRU was removed at one time a separate
record was generated for each.

(4) The level in the hierarchy (see Fig. 1) to which the fault was
subsequently traced. A separate record was generated for each
identified fault.

(5) ETI reading when the fault occurred. The ETI is a four digit counter
(i.e. 0000-9999) which measures the time the unit has spent in normal
mode. (A launching unit has two modes: alert and normal. A radar
unit has three modes: high alert, low alert, and normal. An optical
unit has just the one: normal mode.)

Note: The ETIs are themselves known to be extremely unreliable; often
sticking. The counters are ‘throw-away’, so should one appear to be
‘misbehaving’ it may be replaced. However, the replacement counter often
does not start at*zero, nor is it set to the last reading ofthe discarded counter.
The value of information from the ETIs is therefore suspect.

A generalized representation of the fault structure

A reliability model is a means ofrepresenting the failure events ofthe system
in a useful form. Since there is no such thing as a universal reliability model,
model formulation must be directed by knowledge of the system and the
data available. Initial considerations of the system lead to a generalised
representation of the fault structure from which realistic and detailed
models can be developed.

Using Fig. 1 which outlines the system structure and from the knowledge
of the data base structure and the data available we can construct the
representation shown in Fig. 2. Faults at the lowest level are component
faults. Faults at the next highest level are sub-assembly faults which are the
superposition of component faults plus other faults such as interconnection
problems. Faults at the next level up are LRU faults which are a further
superposition of sub-assembly faults conjugated with other faults that
cannot be attributed to sub-assembly or component fault. The highest level
is the sub-systems level which represents a total aggregation by
superposition of all events reported as faults.



The reliability analysis of weapon systems 251

SYSTEM STRUCTURE
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POSSIBLE ANALYSIS METHODS

A number of analysis methods that are associated with reliability were
considered, some of which were discarded as being inadequate or potentially
misleading, e.g.

()

(i)

(iii)

Multivariate analysis
This approach6,10 was not ideal because a lifetime characteristic
could be identified within the data structure.
Homogenizing the data and distribution fitting
This was not appropriate since among other reasons the data were
sparse in many of the possible combinations of factors. The known
hierarchical structure also complicates such an approach.
Time series analysis
Although potentially promising, due to time considerations it was
decided not to consider this approach fully. It can be used to study
and describe a sequence of observations which depend on time, space
or an index. In reliability such a time series approach may identify
some structure in the data.1l An indexed set of observations can be
constructed here by counting the number of fault records in the
database in some ordered time interval.

Figure 3 shows the number of records per month appearing in the
database for sub-systems (2) in holding group 1.
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There neither appears to be notable trend nor periodic behaviour.
Plots for other sub-system types and holding groups are similar. The
series, are however, shorter for holding groups II-VI, since fault
records did not begin for these until some months after the beginning
ofthe reporting for holding group I. The holding groups are known
to have received their weapon systems at different times, although the
exact dates each unit received them are not known.

Proportional hazards modelling {PHM)

Because of'the considerable potential of PHM in this line of analysis,
it was decided to pursue it further. An initial model is that times
between faults (TBF’s) may form a modified renewal process, where
the TBF’s are independent but non-identically distributed due to the
effects of certain covariates upon the probability of a fault occurring.
As there are a number of explanatory variables for TBF’s of the
LRUs, Proportional Hazards Modelling (PHM) is known to be a
useful technique.§,12,13 It identifies significant explanatory factors
for TBF by an orthogonal decomposition of the lifetime variation.
The model may then be reconstituted for prediction purposes.
Two important advantages of PHM in this application are:

(a) There is no need, within PHM, to specify a particular distribution
a priori.
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(b) Data may be censored or uncensored.

PHM is based on an assumed decomposition ofthe hazard function
for an item of equipment into the product of a base-line hazard and
an exponential term which incorporates the effect of explanatory
factors varying between items.

hizx, 72, ..., zk) = hO@t) exp (pxzx+ p22+ w+ pkzk) [>0

The Pi s are unknown parameters ofthe model defining the effects of
each of the explanatory factors. The z/s are the values of these
explanatory factors; they can be either a naturally measured variable,
or an indicator (dummy) variable indicating the presence or absence
of a factor.

The base-line hazard function A0(?) represents the hazard function
that the equipment would experience if the covariates all took the
base-line value zero.. From these considerations it was decided to use
the Proportional Hazards Modelling as a basis for this analysis.

MODEL FORMULATION

There is a multitude of formulations of the PHM model which could be
employed in the analysis of the data, the different models having different
time variables, censoring structures, and covariates. Selection between them
is iterative, based on experience and engineering information. The aim is to
explore the data, in order to maximise explanation.

Types of model

Initially four types of simple but physically plausible PHM model were
identified. General covariates which could be included in all the models are;
the holding group that the particular faulty unit was in, the season in which
the fault occurred, the ETI reading at the time of the fault, and a time trend.

Model A
Here the series of events occurring for a particular serial numbered LRU is
followed, see Fig. 4. The time metric here is the time between the LRU being
entered into a sub-system, and its being removed from that same sub-system
when found faulty. The next TBF will be for that same LRU within another
sub-system. Covariates can include which particular sub-system the LRU
was in when the fault occurred.

For this model to be formulated, it is necessary to know when the main
assembly block was returned to service, so that its repair time is not included
in the TBF calculation.
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Model B

Here the series of events to the position ofa certain type of LRU, within a
particular serial numbered sub-system is followed. The time metric here is the
time between faults to the same type of LRU in the fixed position within the
sub-system. Figure 5 illustrates this series of events. Covariates can include
which serial numbered LRU was removed at each fault.

Model C

The types of model here, look at times tofirstfault ofthe LRUs ofa given
type. Figure 6 illustrates this. Covariates could include which particular
serial numbered LRU was faulty, and which particular serial numbered sub-
system it was in when the fault occurred.

Model D

This model type looks at the events at the sub-system level. The series of
events on aparticular serial numbered sub-system is followed. The time metric
here is the time between faults, irrespective of which LRUs are faulty,
occurring on a particular unit. Figure 7 illustrates this series of events.
Covariates can include which type of LRU was faulty.

PARTICULAR
SERIAL
NUMBERED
SUB-SYSTEM tl

FAULT TO ANY LRU

Fg. 7. Sares aof evants to a partiailar sb-systan.

CENSORING STRUCTURES

In dealing with the lifetimes of sub-assemblies or lower level units it is
necessary to introduce censoring concepts. This is because a non-faulty sub-
assembly is removed from the field when its parent LRU is replaced. Many
censoring structures can be identified by interpreting various fault
mechanisms in the hierarchical levels. Many of these structures can result in
considerable complexity. The examples here are chosen because they seem
reasonable in terms of what is known about the methods of maintenance
and fault recording used.

In the simplest case consider Fig. 8 which depicts an LRU which has just
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LRU

SUB-ASSEMBLY SUB-ASSEMBLY
SAl SA2

Fig. 8. LRU with two sbassablies.

two levels in its hierarchy, and two sub-assemblies. Four failure modes are
possible for such an LRU, which could be recorded in the data.

(SA1, SA2)—Fault recorded to LRU but to neither sub-assembly.

(SA1, SA2)—Sub-assembly 1 only has fault.

(SA1, SA2)—Sub-assembly 2 only has fault.

(SA1, SA2)—Both sub-assemblies have faults.

Four censoring structures that might be applicable are given below, and
summarised in Table 1:

(1) Two Failure Mechanism structure: Two failure mechanisms (FI) and
(F2) only are causing failure.

(FI)—sub-assembly 1 only fails, e.g. due to wearout.
(F2)—sub-assembly 2 only fails, e.g. due to wearout.

Each failure mechanism censors the other, i.e. 2 competing risks (see
Fig. 9).

<FI) (F2>

SsAal SA2

Fig. 9. Rgaesentation of Aihremechanians fixr censxring stimchire (). The blodks show
thepartsof the systamwhichmay Giland the (F— ), e faihremechani smwhichcaasss ttat
partof e systamto &l
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(Ft) (F2) (FO)

SAl SA2 CONNECTORS

Fig. 10. Rgxesentation of Eihremedchanians fixr censarirg stnchre ).

(SA1, SA2) type failures are ignored as being recording errors.
(SA1, SA2) type failures are treated as being two independent simultaneous

failures due to chance. Consequently they are treated as (SAl, SA2) type
failure and a (SA1,SA2) type failure.

(it) Three Failure Mechanism structure: As well as the 2 failure
mechanisms from (i) an additional failure mechanism, (FO), exists

(FOy—The LRU fails without either sub-assembly failing, e.g. due to
the connectors failing.

Each failure mechanism censors the others, i.e. 3 competing risks (see
Fig. 10).

(SA1, SA2) type failures are treated the same as in (i).

(i) Four Failure Mechanism structure: In addition to the three failure
mechanisms from (ii) a fourth failure mechanism (FI12) exists.

(F12)—Both sub-assemblies fail together due to a common external
cause, €.g. a power surge.

Each failure mechanism censors the other, i.e. 4 competing risks (see
Fig. 11). This accounts for the four possible failure modes in the data.

(iv) Modified Four Failure Mechanism structures: In addition to the three
failure mechanisms from (ii) a fourth failure mechanism F(12)' exists:

(FI2)—a failure mechanism which accounts for simultaneous
failure.

This failure mechanism is included because simultaneous occurrence
of faults occurs more often than expected according to the

(F1) <F2) (FO) (F12)

sal SA2 CONNECTORS SAl & SA2
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independent failure model, thus we allow for an increased tendency
for simultaneous failures. However this has not been reflected in the
censoring structure, i.e. this failure mechanism neither censors any
other failure mechanism or is censored by any other failure
mechanism.

ANALYSIS

In the current application it is not possible to apply a model oftype A since
the data on when an LRU returns to the field is not available. Here, out of
the remaining model types we consider the applications of some simple
models of type D and C.

D models

For these models, the time metric was taken as the time in days between
faults on a particular serial numbered sub-system. However, to avoid many
TBF’s ofzero, multiple records on the same day were treated as a single fault
event. In order to model the TBF’s together, each sub-system was assumed
to have the same baseline hazard. Times to first failure were ignored since the
date ofentry into service was unknown. Similarly the times since last failure
were ignored since the time when reports ceased was unknown. Because D
models operate at the subsystem level no censoring was required.
Ten explanatory variables were employed in the PHM model:

z\t 22> z3t z\t z5 z6> 2Tt 26 2 zio

(a) holding group dummies—The base group was selected to be the
holding group that had the longest period of reported events. The
dummy variables as defined in Table 2 compare the hazard rate for
each holding group to that for the base group.

(b) season dummies—These dummy variables, compare the hazards
during each of spring, summer and autumn respectively to the
baseline season winter.

(¢) ETI—This covariate is the actual ETI reading value as recorded at
the time of the fault. (Irrespective of any apparent error)

(d) Time trend—This covariate, time in days since an arbitrary start
date, allows for the possibility of a time trend affecting the TBF
hazard.
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TABLE 2
z2 *3 *]
=== hldiggop I (1} 0 0 0 0
holding gragpe IT 1 0 0 0 0
halding gragpe IIT 0 1 0 0 0
holdinggragpe IV 0 (1} 1 0 0
holdinggrapV 0 0 0 1 0
holding gragpe VI 0 (1} 0 0 1

Because of the large number of types of LRUs present in a sub-system the
types of LRU were not included as covariates.

Results for sub-system (1)

The results after the usual backwards stepwise elimination procedure based
on two-tailed 5% tests, are given in Table 3. The p-values indicate the
probability of obtaining such extreme estimates for the /2’s just due to
chance, if there were no real effect for the covariate.

Discussion

(a) The likelihood ratio statistic: This, is seen to exceed the tabulated
upper 5% critical value for a chi-squared distribution with four
degrees of freedom. This indicates that the fitted model provides
significantly more explanation than the model that the covariates
have no effect and that the data is homogeneous.

(b) Significant Covariates: The positive estimates of /?xand p Simply that
sub-systems (1) from holding groups II, and more particularly VI,
experience a higher hazard than those in the other groups (by factors
0f45% and 75% respectively).

TABLE 3
Model fixr Sibo-systam 1 affer Backwards Stgowise Elimiration

Significant covariates A p-Value Likelihood
{less than) Ratio Stat.
Zy— holdinggragp IT 0373214 0*00005 B eb
Z5- halding grogp VI 0*562168 0*00005 (5% aatiaal
26— gxirng 0*126810 O*2055 fram 2des
ZI6- tire trard —0*000604 0*00005 = o)
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The positive estimate of indicates that sub-systems (1)
experience approximately a 13% higher hazard in the spring than
during the other seasons, possibly reflecting increased exposure due
to exercises. This covariate is however only marginally significant,
there being approximately a 2% chance that the effect is purely
spurious.

The negative estimate of /710 indicates that there is decreasing
hazard as time passes (at the rate of approximately a 20% reduction
peryear). The number ofsub-systems (1) entering the field was known
to be rising over the period. Assuming that times to first fault are not
shortening with calendar time, the sub-systems (1) are becoming
more reliable.

(¢) Non-Significant Covariates: The holding units III-V do not appear
to have a significantly different hazard rate, for their sub-systems (1),
to the base holding group. The hazards during summer and autumn
do not appear to be significantly different to that during winter.

Interestingly, the ETI reading was found to be non-significant. The
elapsed time in normal mode was initially considered as important in
explaining the fault rates of the units. The finding that this is non-
significant, in this model is probably mostly due to the unreliability of
the ETI’s themselves.

GRAPHICAL VALIDATION TECHNIQUES

A number of geographical techniques are available to examine the
appropriateness and goodness-of-fit of the PHM model.

(1) Baseline hazard plot

Figure 12 shows a Weibull hazard plot for the baseline hazard obtained
from the PHM model. The plot is reasonably straight indicating that, apart
from the effects ofthe covariates, the Weibull is a reasonable distribution for
the times between faults (e.g. Ref. 14). The shape and scale parameters are
estimated at approximately 0-84 and 11-02 days respectively. Since the shape
parameter is less than 1 the TBF’s exhibit a decreasing hazard rate.

(2) Cox and Snell residuals

A graphical goodness-of-fit test for the whole model is provided by plotting
Cox and Snell ‘crude’residuals15 against their expected order statistics. Ifthe
model is a good fit we expect the residuals to lie on a straight line, of gradient
1, passing through the origin.16 Figure 13 shows such a plot.
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(3) Proportionality plots

The PHM model assumes that all covariates affect the baseline hazard
proportionally. The validity ofthis assumption needs to be verified from the
data for each covariate, so that if it is unjustified, the model can be adapted
where necessary. Figures 14-16 are proportionality plots for the significant
binary covariates. In the plots the data is stratified on each covariate, and the
model is then fitted separately to each stratum. If the assumption of
proportionality holds, plotting the loge baseline cumulative hazard In H 0(z)
against ¢ for each stratum on the same graph, should produce plots with
constant vertical separation for all 7.i6 Figure 14 shows such a plot for the
stratification on the covariate zu holding group II, for which the
proportionality assumption, whilst not perfect, appears approximately
valid. Figure 15 stratifies on the covariate z 5 holding group VI. As in Fig. 14,
the vertical separation changes towards the end ofthe graphs for which there
is relatively little data (hence the crossing point). The curves remain however,
reasonably well separated and the proportionality assumption again
appears plausible for the majority of the data which corresponds to Tbf’s
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under 20 days. Figure 16 stratifies on the covariate z6, spring. The plots cross
in numerous places, reflecting the fact that there is little difference between
the estimated hazards for the two groups, as is apparent from the
marginality of the significance of z6 in Table 3.

(4) Influence functions

Figure 17 shows a standardised plot of the influence ofindividual TBF’s on
the p 6 parameter estimates for the covariate spring.17,18 The plot shows the
estimated normal deviate for the covariate coefficient when each single TBF
and censoring time is excluded from the model, one at a time. This is plotted
against the order of magnitude ofthe TBF’s on the horizontal axis. We can
thus examine which TBF’s have times most influential on the observed
significance of'the covariate, and which if any would, if deleted, remove the
significance of the covariate. For the 5% two-tailed tests these points
correspond to estimated normal deviates in the range (—1%96, +1*96). The
influence of an event is the difference between the ft estimate with and
without the TBF included: /¢ = ft —ft;, where  is the estimate of ft made
when TBF; is excluded. The figure presented here is based on the simplifying
approximation oftreating the standard error ofthe ft estimator as unaltered
after elimination ofthe single data point. The letters on the plot represent the
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combinations of the significant covariates associated with each TBF. The
plot splits into two distinct groups, one associated with TBF ’s in spring, and
one with TBF’s not in spring. This split is common for binary covariates.
Although the covariate is marginal there do not appear to be any TBF’s that
would change the significance of the covariate if omitted.

Results for sub-systams )

Commencing from the same set of initial covariates as for sub-systems (1),
and applying the same model D structure, the results for sub-systems (2)
after backwards elimination as shown in Table 4.

TABLE 4
Mdel fxrSibosystars @ after Backwards Stepwise Elimiration

Significant covariates A p-Value Likelihood
(less than) Ratio Stat.
zx— holdinggragp IT 0400882 0-00005 371
22- halding grogp T 026648 0-01405 (5% adticil
z =— holdinggragp VI 052513 0-00005 fran tdles
z10— timre trrd -0-000627 0-00015 = 9-48)
Discussion

As may be expected, the results are broadly similar to those obtained for
sub-systems (1). Now, however the spring is no longer significant, and
holding group III is marginally significant. The results forz/Ziz 5 and z10 are
highly significant as before, and are ofthe same sign and order of magnitude
as in the model for the sub-systems (1).

It may not be surprising that the results for two types ofsub-system are so
similar, since the holding groups operate their units as complete systems.
Thus ifholding group I exercised their sub-system (1) more than did holding
group II, then they necessarily also exercised their sub-systems (2) more.

C MODELS

For illustrative purposes here, we present the analysis of a PHM model of
type C, for a particular type of LRU, present in sub-systems (3), selected
because it has only two sub-assemblies, and two hierarchical levels. The
censoring structure (iv) described in the previous section was applied.

The covariates z/-z /0 were again used to describe holding group, season,
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TABLE 5
Coding of Gvariates fixr Ievel of Fault

z1 zl2 B
sbassably 1 fAilty &) 0 0 0
sbassaly?2 fAilty 0 0 1
both sbasshlies fAaillty smiltarsasly 1 0 (1}
reitter sb-assanbly fAilty 0 1 0

ETI, and time trend and zir zI13 were introduced for the censoring
procedure for the hierarchical system. Table 5 shows the coding of the
covariates zu -z I3.

Results

After backwards stepwise elimination only one covariate, zn (recording
simultaneous faults), remained significant; with fi// = 1-87128 and ap-value
of less than 0-000 05.

Di .

The positive estimate of fin indicates that there are shorter times to the
simulaneous faults on the sub-assemblies than times to faults due to the
other mechanisms.

No differences between the holding groups or the seasons was identified in
this model.

Once again the ETI reading is found to be non-significant, and in this
model there is no evidence that a time trend is affecting the times to first fault
of this type of LRU.

CONCLUSIONS

1.  Whilst reliability for weapon systems may be good, reliability
analysis for weapons systems has been poor and thus has limited the
role of the statistician effectively contributing to the design process.

2. Poor database design, recording and quality hampers analysis.

3. Reliability analysis methods need modification to be applied
satisfactorily to weapon systems.

4.  Proportional Hazards Modelling is an effective method for the
analysis of weapon systems data with its wealth of auxiliary
(covariate) information.
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Various model formulations, corresponding to different physical
interpretations are possible. The reliability analyst’s role is to explore
these in the search for structure and categorisation ofmechanisms. In
such an approach on-line graphical aids as partly reported here are of
great value.

This paper has presented an initial review of parts of the reliability
analysis of a weapons system currently being undertaken by British
Aerospace and Trent Polytechnic personnel. Work in this area is
continuing.
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APPENDIX C

APPLICATIONS OF PROPORTIONAL HAZARDS MODELLING TO HARDWARE

AND SOFTWARE RELIABILITY

Dr Dave Wightman, Mrs. Estelle Walker and Professor Tony Bendell

TRENT POLYTECHNIC

Nottingham, England

The paper describes work at Trent Polytechnic in extending uses of
Proportional Hazards Modelling (PHM) within both hardware and software
applications. The Reliability Group, led by Professor Tony Bendell, has
experience of applying PHM to a number of different industries and
technologies. As well as discussing the adaptation of PHM to diverse
reliability data structures, we discuss developments in diagnostic aids
employed to investigate model structure. Illustrative, material is drawn
from applications in railway engineering, computer hardware, weapon

systems, electricity supplyr computer software and electronic components.



INTRODUCTION: PHM

The origin of PHM is the seminal paper by Professor D R Cox which was

presented to the Royal Statistical Society in March 1972 (Cox 1972).

PHM combines concepts from biostatistics and reliability theory;
incorporating regression-like arguments for explanatory variables into
life-table analysis. It is a technique whereby identification of
independent effects of variables thought to influence the life-length of
equipment is possible without the necessity of specifying the

distributional form of life a-priori.

The model is structured on the assumed decomposition of the hazard
function into the product of a baseline or generic hazard function and
(usually) an exponential term incorporating the effects of wvariables. The

fundamental equation is:

h(t;z1l,2z2,...,2zk) = hO (t) .exp(Plzl + p2z2 + .... + Pkzk) 1)
where the P's are the unknown parameters of the model defining the effects
of each of the explanatory variables; the Zj/s are the values of the
explanatory variables; hO (t) 1is the baseline hazard function (usually

distribution free).

From (1) the effects of the Zi's are seen to act multiplicatively on

the baseline hazard hO (t), so that for different values of an explanatory

variable their respective hazard functions are proportional over all time.

The unknown parameters p are estimated through the maximisation of

Cox's partial 1likelihood, (Cox, 1972). Optimisation procedures available

2



include the expectation-maxiraisation (EM) algorithm, (Cox and Oakes, 1984).
However, for the material illustrated in this paper we employ a method

whereby we firstly take the natural logarithm of the partial likelihood and

then obtain the first and second partial differentials with respect to pj,

j=1,2,...,k. The parameters Plp2>e+e++/Fk are estimated iteratively based on

a Taylor Series expansion for each step of the iteration, starting with
initial wvalues of zero (the method of scoring). Tests of whether each
explanatory variable has any significant effect are based on the asymptotic
normality of the estimators. A backwards stepwise procedure @ is
incorporated whereby non-significant factors are excluded one at a time and

the model rerun until all the factors are significant.

Having obtained a set of significant explanatory variables we then

obtain an estimate of hO(t), wusing the approach in Kalbfleisch and

Prentice (1980) .

PHM RELIABILITY. APPLICATIONS

The reliability literature mainly concentrates on data from repairable
systems. The reported data is diverse, including moterettes (Dale, 1983),
marine gas turbines and ship sonars (Ascher, 1983), valves in light water
nuclear generating plants (Booker et al, 1980), aircraft engines (Jardine
and Anderson, 1984), sodium sulphur batteries (Ansell and Ansell, 198¢),
transmission equipment (Argent et al, 1986), (Manning et al, 1987), weapon
systems (Gray et al, 1987) and subsurface safety valves (Lindquist et al,
1988) . However, in some analyses the form of the models employed are in
general basic and are not developed to take specific account of the

complexities arising in reliability data.



Many of the PHM analyses of repairable systems in reliability employ
one (of four) of the formulations proposed for a Leukaemia study by
Prentice, Williams and Peterson (1981) (PWP) . The paper by PWP(1981)
concentrates upon data arising from a large number of study subjects with a
small number of failures on each subject. Experience at Trent has shown
that data structures arising in reliability studies are considerably more
diverse. Such structures reflect the data collection processes and

procedures as well as the field deployment and failure phenomena.

The question of appropriate structure for modelling and analysis
centres about what are the appropriate point processes to describe failures
of repairable systems. In this respect it 1is essential when analysing
these complex data sets that PHM 1is employed as an exploratory data

analysis tool, searching for appropriate pattern and structure.

Some commonly occurring reliability data structures are illustrated in
Figure 1. Within the constraints of this paper we are of course unable to
discuss in much detail the structure and analysis of all the data
structures identified in Figure 1. However, we briefly describe each in

the next section, and in particular concentrate on PHM for competing risks

SINGLE.OBSERVATION ON EACH ITEM

The application of PHM to a single failure observation on each item of
equipment (of which non-repairable items are a special case) has the
advantage that much of the complexity and necessary exploration associated
with its application to multiple observations on repairable systems is

unnecessary. However, the application still requires the adoption of a



flexible approach in which different modelling formulations are considered,

each of which contributes to the understanding of the data set under study.

REPAIRABLE ITEMS/ITEMS UNIDENTIFIED

A commonly encountered process is where we have information on failures
of a group of items within which failures to individual items are not
labelled. Thus, we do not have any information on the past failure history
of individual items in the group. Often in this situation, t, in equation
(1) is taken as the series of subsequent failure times for the group.
However, the possibilities are heavily dependent upon the context in which

the data arises.

REPAIRABLE ITEMS/ITEMS IDENTIFIED

Prentice, Williams and Peterson (1981) introduce a variation on the
basic PHM in which the structure of the model considered is essentially one
that allows for reliability growth or decay in subsequent inter-failure
periods on the same item. The concept behind this formulation is that
items move through strata upon failure, so that prior to the first failure
they are in stratum 1, after the first failure and prior to the second they
are in stratum 2, etc. PWP (1981) suggested four alternative approaches to

analysis.

DATA FROM ONE SYSTEM

Often reliability data takes the form of a sequence of events on one
system. Frequently in these data sets the underlying failure mechanism is

based upon the time between subsequent failures. However, more than one



cause of failure may be present, so that for example; t in equation (1) may

be based on the time between subsequent failures due to the same cause.

NESTED/HIERARCHICAL DATA STRUCTURES

The nested/hierarchical nature of some systems leads to the
identification of a number of different point processes on which to base
any PHM analysis. These point processes correspond to different levels of
the hierarchy; system, sub-system, assembly, sub-assembly, etc. In
analysing such complex data it is necessary not only to consider carefully
the choice of t in equation (1) but also the censoring structures that may
be appropriate. Gray et al (1987) found that many censoring 'structuresl
could be identified by interpreting various fault mechanisms in the

hierarchical levels.

APPLICATION OF PHM TO COMPETING RISKS

Competing risks formulations within the PHM techniques exist. Two

models were introduced by Holt (1978); one which has the same baseline for

each cause with cause specific pcoefficients, and the other with different

baseline and p coefficients for each cause. These are discussed in

Kalbfleisch and Prentice (1980).

In this paper we consider a model for competing risks whereby the
basic time metric, t, in equation (1), 1s taken as the time between
consecutive failures. Given that there are 1 + 1 failure modes, 1 binary
dummy variables are introduced into the covariate set to represent them. A
censoring event is generated at each failure time for each of the other

failure modes.



We now show that the partial likelihood for this model construction
factorises into two terms, one containing only information from failure
mode variables and the other being the usual partial likelihood as shown

below.

The partial likelihood for a model without competing risks is:

n exp (plzli + p2z2i + .... + PKzki)
Ip - n

I exp <plZlm + p2z2m +. ...+ p~,
i=1 meRi

where n = total number of failures
k = number of covariates

Under competing risks each event in the model (2) above now becomes 1

+ 1 events. Let )j represent the associated parameters for the indicator

variable Xj for the j'th failure mode. The partial likelihood now becomes



exp (p, Z1i + p2Z2i+ — + pKZi + Yin + Y2xit+ — +Yixii)
i=1 exp O 1ZIm + p2Z2m + — + pfcz” 0) +
£ exp (Plzlm + p2Z2m + — + pfcZfa + Yi) +
MeRi
3
exP <Plzlm + P2z2a + -——-+ Mka + Yi>
hence,
n exp(Yixll + Y2x2i + + Ylxu) exp (p” + p2z2l t pxZ)ci)
Le = n
£
i=1 MeRi [1 + exp(Y,) + —-—-— + exp ) 3 exp (PiZlm + P2z2m + ——— + pkZbn)
n exp (YiXU + —--- + YIXU) n exp (p,zu + + Pkzki)
- n X n
i=1 i=1 I
[I+exp(Yx)+ +exp<Yi)] MeRi exP (M Im+- ¢ «+PKk2W
Le = Lf x Ip (4)
where :
n exp (Yixii + ---+ Yixu>
f - (5)

i=1 [1+exp (Y1) +———+exp (Yi>]

Maximising the partial likelihood Le is equivalent to maximising Ip and the

factor involving the dummy variables independently. Hence the estimates of

the p*s from the competing risks model will be the same as those from the

initial model.

I]



Now maximising the factor Lf:

dlog Lf n exp(Yj)

dyj i=1 [1+exp (Yi)+..,+exp (Y1) ]
j=1,2,..., 1
let nj = number of the n events for which XJA = 1 then

n.exp(Yj)
m - =0 6)

(1 + expYx)+ +exp (Yi )

From (6) a set of 1 simulations linear equations can be generated

which can be solved to give the parameter estimates )y for the dummy

variables. The parameter estimates Yy are in terms only of the number of

'deaths' within each failure mode.



CQYftRIME-EQBMmATIQN

From the investigations of the Central Electricity Generating Board's
(CEGB) transmission failure data, see Argent et al (1986), Manning et al
(1987) and Manning (1988), one aspect of interest to the CEGB was the non-
significance of the overhead 1line length as a covariate. A possible
explanation of the non-significance of the line length is that there is
little information in the covariate; the line length figure was updated at
the end of each year for the first 7 years of data and remained constant

for the remainder of the period.

Given the line length values, of particular interest to the CEGB was
that by increasing the 1line length by a multiple, whether there was
evidence that the hazard was increased by the same multiple. Multiplying
the line length by k and investigating whether the hazard is multiplied by

k can be achieved by taking the logarithm of the line length (say x), viz

epin kx - fce&ln x

e0ln k< e 0ln x - kePln x

epnk . *

kp = k

P=1
where eé&ln x'~ hazard for length of line x . So that a p-1 would indicate
the property of increasing the length of the line k times would increase
the hazard k times. However, running the model with the logarithm of

line length found this formulation of the covariate non-significant and a p

coefficient markedly different from 1.



It is wusual practice in the PHM applications in reliability to
include covariate information as recorded. However, other formulations for
the covariate information may be more appropriate. For example, 1in Davies
et al (1987) who analysed the 16 software failure data sets for Musa (1980)
different formulations of the failure number covariate were considered -
these were (where N 1is the failure number) N, /N, N2, 1/N and In N.
Investigation of the form of the failure number information was undertaken
since in many conventional software reliability models failure number is an
integral part of the model. From Davies et al (1987) there 1is the
suggestion that the inclusion of failure number information (although not
statistically significant in the majority of cases) as N or tNN are the most

appropriate formulations.

The above examples were introduced to investigate specific questions
within particular data sets. However, 1in a more general sense, work at
Trent Polytechnic has recently focused on whether a-priori it is possible
to choose/obtain covariate' 'formulations that lead to the proportionality

assumption being fulfilled.

EXftMELE (7 ADAPTION QF PHM-FOR A LARGE DATA SET

Due to the number of events and covariates the problem with computer
space constraints has occurred in some of the analyses undertaken by the
reliability group at Trent. A recent problem of this nature occurred in
considering the use of PHM in the investigation of the data held in the
electronic component data base at Loughborough University, Loughborough.
Investigation focused on component types which had a 'reasonable' number of
failures for analysis purposes. However, because of the number of (same)

components of the circuit board, the number of boards in a unit and the



number of units in the field, substantial censoring information was
generated (in one case of the order 500,000 censoring observations). This
number of observations creates computer program problems, e.g. in terms of
dimension statements and also storage and data handling/manipulation

problems.

Background knowledge supported by inspection of the data revealed
that the wvast majority of the censoring observations had a censored time
larger than the greatest failure time, so that in PHM these observations
are given a rank equal to that of the last failure. Inspection also
revealed that for large groups of observations the covariate wvalues for
each group and the number of observations in the group. The computing
routines employed for PHM at Trent were altered to include reading of the
summarised data file for the censored observations and to amend the

calculations that are associated with the largest rank.

DIAGNOSTICS FQR PHM

A number of graphical techniques can be employed to examine the

appropriateness and fit of the PHM model.

A method of testing the crucial assumption of proportionality between
different levels of a covariate 1is provided by Kay (1977). Cox  (1979)
introduce two techniques similar to this, one which employs the logarithm

of-the hazard, the other the survivor distribution.
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Kay (1977) suggests an approach to testing the appropriateness of the
model whereby 'residual' quantities as defined by Cox and Snell (1968) are
obtained. These quantities should exhibit approximately the properties of
a random sample from a censored exponential sample with failure rate 1, if
the model is appropriate. Hence, survival estimates based on the residuals
should when plotted on a logarithmic scale, yield approximately a straight
line with slope - 1. Self (1981) extends the technique to include time
dependent covariates. Aitken and Clayton (1980) describe a variance-

stabilised version of the plot based upon an Arc-sin transformation.

Schoenfeld (1982) defines partial residuals for each significant
covariate which can be wused to look for 1local deviations from the

proportional hazards model.

Lagakos  (1981) defines residual scores for each individual from
consideration of the partial 1likelihood score function and the cumulative
hazard. Lagakos then proceeds to adjust the observed ranks based upon this
information. If the model is appropriate, then the re-adjustment should

account for the effects of the covariates.

Cain and Lange (1984) and Reid and Crepeau (1985) obtain influence
functions for the proportional hazards model. These influence functions,
for each explanatory factor, approximate the effect of individual cases
upon the estimate of the associated coefficient. Strorer and Crowley

(1985) also discuss a diagnostic for estimating the changes in 3 due to

the deletion of a single observation.

The recent paper by Barlow and Prentice (1988) represents residuals

for relative risk regression as an estimator of a stochastic integral with



respect to the martingale arising form a subject's failure time counting
process. Previously proposed residuals for individual study subjects and

for specific time points are shown to be special cases of this definition.

Despite a great deal of work having been undertaken in this area the
use of graphical diagnostics is still currently crude. This is, therefore,

an area for development.

The strengths and the 1limitations of three of these diagnostics;
proportionality plots, Schoenfeld residuals and influence functions, are

discussed below.

PROPORTIONALITY ASSUMPTION

The assumption of proportionality in PHM is that different wvalues of
the covariate have hazard functions that are proportional to each other

over all time.

The most commonly applied method to test whether a covariate follows
the proportionality assumption is to stratify wupon the covariate of
interest and for each stratum (level) of the covariate plot the logarithm

of the cumulative baseline hazard against time, see Kay (1977). That is,

for a binary covariate, zk say, we have for the hazard function



and for the logarithm of the cumulative hazard

In[Eh0 (£)3 + fia + A ! zk = 1

1n[In0 ()] + 2 / zk = 0

So that, if the assumption is appropriate then plotting the logarithm
of the cumulative hazard for each stratum against time should result in a

constant vertical separation. Figure 2 illustrates this graphically.

The problem with this procedure is that it contains a highly
subjective element. As a first step to minimize the subjectivity the
vertical separation of the plots at various points along the time scale can
be plotted separately below the graph, this is illustrated by Figure 3
taken from the analysis of ICL hardware for the covariate indicating 'No
fault found' (See Drury et al 1987). Although, we .should expect this to
reveal a straight horizontal 1line if proportionality holds it does not,
however, give any real indication as to whether there 1is a reasonable
constant vertical separation present. It would therefore be wuseful to
construct confidence bounds around the estimates. Initial bounds for the
log baseline cumulative hazards were produced, from a transformation of the
confidence interval around the Dbaseline survivor function, which was
constructed form an asymptotic estimate of the variance for the survivor
function (Link 1984). These asymptotic bounds were very wide and offered
little information, an example can be seen in Figure 4. The +'s are the

95% bounds around the top plot, and the x's those for the lower plot.

Simulated bounds were considered in an attempt to narrow the bounds.

Assuming a Weibull distributed baseline with parameters estimated from a

15



hazard plot for each of the strata, 90% 1limits were constructed by
simulating twenty groups of fifty failure times from the estimated Weibull
distribution- The problem with these, although the bounds are a little
narrower, 1s that they are not always defined at small t, since the first
simulated failure time can be relatively large, an example can be seen in

Figure 5.

From the bounds in Figure 5,despite their shortcomings as described
above, we are able to see thatthe two strata are clearly separated
(neither set of bounds overlap) indicating a real difference between the
levels of the covariate. The bounds generally narrow as t increases

indicating less variance 1in the latter part of the plots.

Work is continuing at Trent in the area of minimizing the level of

subjectivity in this diagnostic.



SCHOENFELD-RESIDUftLS

The Schoenfeld residuals (Schoenfeld, 1982) are known as 'partial

residuals' since a set is obtained for each covariate.

For the j'th covariate at failure time t* the partial residual r*

is defined:

rjt - z3jdl - BtZjil RiJ
where is the value of the j'th covariate at failure time tir and
S Zji exp (pz>
Ri

BZ7. Re] =

S exp (pz)
Ri

the partial residuals are obtained from elements of >the score vector (the

vector of first differentials of the log likelihood with respect to pj).

If proportional hazards holds ECr”] 0, and a plot of r” versus (L

will be centred about O.

For a binary covariate there is a split of residuals, above and below
the axis, corresponding to the two categories of the covariate. Since
there are often in reliability problems a large number of tied failure
times the density of partial residuals at many of the points cannot be
seen. Visual inspection is also hindered since the two bands are rarely
equidistant from the axis. To ease visual inspection, therefore, we have
added to the plot a moving average based on intervals of 20 failure times.

The moving average can then be looked at for local fit of the model, an



example can be seen in Figure 6. The +'s on Figure 6 represent single

failures and the x's tied failure points.

Experience at Trent tends to show that the appearance of these
residual plots is highly affected by the pattern of censoring observations.
To this end we now consider plotting censoring observations on the same
figure. As an example we show Figure 7 the Schoenfeld residuals and
censoring observations for the binary covariate 'routel in the analysis of
the brake discs on high speed trains, see Bendell et al (1986) and Wightman
(1987) . The x's on the plot are the partial residuals as defined by
Schoenfeld (1982), whilst the +'s are the partial residuals obtained using
a slight approximation in the presence of tied failure points, see Wightman
(1987), the o's are the censoring events plotted at their covariate value

and censoring time.

The plots of the o's gives an indication of the distribution of the
censoring points for each' covariate and may reveal outliers in the
censoring observations or provide evidence of a relationship between

censoring and the covariate.

The residuals on Figure 7 form two bounds reflecting the binary nature
of the covariate. There are more positive than negative residuals which
reflects there being more failures on the West route than the East. The
predominance of failures on the West route is balanced, as 1s necessary
since the sum of residuals for each covariate is zero, by the East route
residuals being greater 1in magnitude. In Figure 7 the patterns of
censoring points for the East route (o’s along the mileage axis at residual
value one) show no clear difference, however, the censoring observation at

approximately 470,000 miles on the East route is particularly unusual.
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This outlying point would not be detected in the usual Schoenfeld plots and
would in general go unnoticed because of the observation being censored and
many of the diagnostics and plots not explicitly using 'time to failure'

information, but rather rank information.
ESTIMATED INFLUENCE FUNCTIONS

Cain and Lange (1984) and Reid and Crepeau (1985)- present essentially
the same technique for approximating the influence of individual items upon
each of the p coefficients obtained from PHM. These empirical influence
functions can then be used in an informal manner to identify influential
observations which may greatly affect statistical inferences regarding the

covariates.

The influence of each observation on the p coefficients can be

obtained in an exact manner by dropping each observation in turn and
refitting the model. However, this ¢is not feasible in most practical
applications because the number of observations and covariates implies

prohibitive computer time.

Based on a Taylor series expansion Cain and Lange (1984) employ a

first order approximation to
A

A
PY P()
A
where:- P estimation of P with all observations
N
P{j) estimation of p with j'th observation missing
~ o a b

p - p@j is the influence of the j'th observation on p

This representation of the influence is shown to consist of the partial

residual of Schoenfeld (1982) (discussed above) and a component which is



the effect that an item has on the pcoefficient wvia all the risk sets that

the item is a member of.

Cain and Lange (1984) and Reid and Crepeau (1985) represent the
estimated influence function graphically; Cain and Lange plotting the
standardised influence against the rank of survival time, and Reid and
Crepeau plot influence against covariate value. However, we plot the
estimated change in the =z-score for when each observation is omitted
against the rank of the observation. This can be achieved if it is assumed
that the variance-covariance matrix does not change fundamentally when one
observation is omitted (this assumption is already made in the calculation

of the estimated influence function). Now for each coefficient the
estimated infl]lglence %f D%he j'th observation (IMJ) is

P " PO)



Dividing by the standard deviation of jj(St(p)) obtained from the variance'

covariance matrix. * A A
0 P P(J)
St (5) St (£J) St ©

A A

stp> st (d) st 3>

St(31)
where:
z'J is the estimated z-score when the j'th observation is
ommitted from the analysis.
4 is the z-score obtained when all the observations are
analysed.
I(3 the calculated influence of the j'th observation.

To illustrate our plot we consider the route covariate from the

British Railways High Speed Train brake disc analysis, see Bendell et al

(1986) and Wightman (1987). With 3 significant covariates, 2 of which are

two-level covariates and the other a three-level covariate, there are 12

possible combinations of covariate values. On the ‘'influence function'

plot, Figure 8, each possible combination of covariate values is

represented by a letter, failures by upper-case letters and censoring

events by lower-case letters. Figure 8 shows that the removal of any

observation does not change the high statistical significance of the

coefficient since for all observations the estimated z-score exceeds 1.96.



The plot also shows that failures have in general a larger effect than

censoring observations.

To 1illustrate the accuracy and the stability of the estimated
influence (z*-score) we consider observation [A] on Figure 8/ Table 1

summarises the effect of removing this observation.



Table 1. Effect of Removing Observation [A]

Covariate

Material/ Braking System/
Route Boltina Bolting
Interaction Interaction
Actual after
Elimination 3.5617 4.5129 4.4819
zZ-score
Estimated
{z*-score) 3.5913 4.5139 4.4820
All Data 0.1944 0.2094 0.1034
Standard
Deviation
Less Observation
0.1854 0.2095 0.1033

Comparing actual and estimated z-score values in Table 1 there is
seen to be good agreement, particularly for covariates material/bolting
position and braking system/bolting position. Also, the wuse of the

standard deviation, based upon the whole data set, appears reasonable.

CONCLUSIONS

There 1is a. need to avoid a Dblack-box application of the PHM
methodology, particularly in light of the unrefereed nature of much of the
early literature. PHM is, however, a good tool for use in an exploratory

manner.

A lot of experience 1is associated with identifying and modelling

structure in the data set, and also 1in wusing and interpreting the

diagnostics.
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The major need is for the improvement of graphical diagnostics, york

is being undertaken at Trent to systematically develop these.
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FIGURE 7. Schoenfeld Residuals for Route Covariate
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