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ESTELLE WALKER:

Proportional Hazards Modelling for the Analysis 
of Reliability Field Data.

This thesis reviews the theory of the Proportional 
Hazards Model for use in analysing reliability field data. 
Since, much work in reliability is concerned with providing 
statistical models for the lifelengths or interfailure 
times of equipment, and hence provide predictions for their 
performance in the field, reliability field data might be 
considered most appropriate on which to base ones model.

Proportional Hazards Modelling has great potential in
the context of analysing reliability field data, since it
assesses significant affects on the lifelengths or
interfailure times of equipment due to both internal and
external covariates.

Three applications of PHM to the analysis of 
reliability field data, are presented. The applications 
illustrate that there is no unique form for reliability 
data. The form of the data is influenced by the system 
structure, the system’s deployment, repair and maintenance 
regimes, and the data collection procedures. It is for 
these reasons that Proportional Hazards Modelling can not 
be applied in a black box fashion. This thesis 
demonstrates the questions that require resolving before 
fitting a model and the difficulties involved in extracting 
data from poor collection processes.

Four commonly used graphical diagnostic procedures, 
which assess the fit of the model and indicate whether or 
not the model's assumptions are violated are highlighted. 
These procedures are discussed in detail and extended. The 
additions to the forms applied previously in the literature 
ease the visual inspection of the plots.

An exploratory data analysis approach to Proportional 
Hazards Modelling of reliability field data is advised.
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OBJECTIVES

The main objectives of the research for this thesis are:

(i) To review the literature on the use of
Proportional Hazards Modelling for
reliability analysis.

(ii) To investigate the problems involved in
applying Proportional^ Hazards Models to 
various formats of reliability field data.

(iii) To investigate the implementation of
graphical diagnostic procedures for 
investigating the appropriateness and fit of 
Proportional Hazards Models.

(iv) To improve the visual inspection of
diagnostic plots and hence ease decision 
making.

(v) To suggest an appropriate route through
analysing reliability field data with 
Proportional Hazards Models.
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CHAPTER 1

INTRODUCTION TO RELIABILITY

1.1 HISTORY

Reliability is considered to have evolved into a 
specific field, from the related areas of quality control 
and machine maintenance, with the appearance of the first 
papers on reliability in the late 1940's and early 1950's. 
A review of the development of statistical methods in 
reliability in the years prior to 1983 is given by Lawless 
(1983).

Reliability journals first began to appear in the 
1950's; IEEE Transactions and Technometrics. These have 
been followed recently in the 1980's by Reliability
Engineering and System Safety (formerly Reliability 
Engineering), and Quality and Reliability Engineering
International.

Much of the statistical work in reliability has 
investigated the lifetimes of equipment, or their failures 
over a time period. Parametric families of distributions 
that could be used to model lifetimes, therefore, began to 
appear . in engineering contexts in the late 1930's and 
the 1940's. By the 1950's the Weibull and exponential
distributions became particularly popular to model
1 ifetimes.

1



1.2 FAILURE TIME DATA

Functions used extensively in reliability studies are 
defined below.

Consider an equipment which has not failed by time t. 
The hazard function, h(t), is the limit of the ratio of the 
probability of failure in (t,t+At) to At.

Prob( t<T< t+At ! t<T )
h(t) - Lim _________  1.1

At-X)"*'
At

where T is the time to failure.

The hazard function h(t) gives the probability of 
instantaneous failure of the equipment having survived to 
time t, see Cox (1962).

The hazard function can also be considered in terms of 
other related functions.

For example:

f (t)
h (t) *   1.2

R(t)

where f(t) is the probability density function of time
to failure.

R(t) is the probability that the equipment has
survived to time t.

[R(t) is taken to be monotonically non-increasing with 
R(0)=1 and R(<»)=0} •

2



Thus:

and

R (t) exp

f(t) = h(t).exp

1
- h(x).dx

1
0

t
AI - I h(x).dx

—
«

0

1.3

1.4

Another function frequently of Interest is the 
cumulative hazard, H(t);

H(t) - | h(x).dx
0

1.5

The exponential distribution has a well developed 
methodology, and a simple form for the hazard function 
(constant). This has contributed greatly to its extreme 
popularity in the reliability field.

In many applications, however, the exponential is not 
an appropriate model. More complex distributional forms 
were therefore considered, leading to the popularity of the 
Weibull distribution being used to model lifetime data. 
(The exponential is a special case of the Weibull).

Other frequently used distributions are the Gamma, the 
Generalised Gamma, Log-Normal and Log-Logistic, see



Kalbfleisch and Prentice (1980), Lawless (1982), Cox and 
Oakes (1984).

1.3 POINT PROCESSES

Point processes are often used to treat repeated 
failures on the same item of equipment, see Cox and Miller 
(1965), Cox and Lewis (1966), Feller (1968), Lewis (1972), 
Thompson (1981), Ascher and Feingold (1984).

Models of this type include homogeneous Poisson
processes, non-homogeneous Poisson processes, renewel 
processes, and superimposed processes.

Cox (1972a) and Gail et al (1980) consider models of 
this type which allow for explanatory variables. They are 
discussed also by Kalbfleisch and Prentice (1980) and 
Lawless (1982).

1.4 REGRESSION MODELS

Explanatory variables associated with the response
variable (usually the time to failure or the time between 
failures) are often incorporated in reliability 
applications.

Regression techniques where maximum likelihood or
linear estimaton procedures are usually employed can be 
used to model the effects of these explanatory factors.



Accelerated Failure Time Models, and Proportional 
Hazards Models are the regression techniques most commonly 
applied to failure time data.

In Proportional Hazards models the explanatory 
variables are assumed to act proportionally on the hazard, 
whilst the explanatory variables are assumed to act 
multipiicatively on the time to failure, in Accelerated 
Lifetime Models.
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CHAPTER 2 
PROPORTIONAL HAZARDS MODELLING

2.1 HISTORY

The technique of Proportional Hazards Modelling (PHM) 
has its origin largely in the seminal paper presented to 
the Royal Statistical Society in March 1972 by Professor 
Sir D.R. Cox.

PHM combines concepts from biostatistics and 
reliability theory. It incorporates regression-1 ike
arguments for explanatory factors into life-table analysis.

Cox (1972) regarded the application of the technique 
most likely to be used in 'industrial reliability studies' 
and in 'medical studies'.

It is indeed true that the medical statistics 
community readily used the approach of PHM in their 
studies; the majority of the early papers using the 
technique are in the medical field. The industrial 
reliability community, however, took rather longer to apply 
the technique within their studies.

2.2 BASIC THEORY

PHM is a technique whereby identification of 
independent effects of variables thought to influence the 
life length of equipment is possible without the necessity



of specifying any particular distributional form for the 
life lengths of equipment.

The variables associated with the life length of 
equipment are often termed covariates, explanatory 
variables, or explanatory factors.

Commonly employed covariates are: operating
conditions. material. manufacturer. season, time of day. 
It is often the case that a covariate such as time since 
installation for example is incorporated to test for 
reliability growth or decay.

PHM allows the inclusion of time dependent covariates 
that can vary with the life experience of equipments.

The method decomposes the observed variation in life 
length into orthogonal factors, and a common baseline, then 
identifies which of the factors are significant. Hence, 
the relative effects of the significant variables can be 
observed.

The model is structured on the hazard function. 
Cox(1972) assumes the decomposition of the hazard function 
into the product of a baseline hazard which is common to 
all equipments, and an exponential term incorporating the 
effects of the explanatory variables. This decomposition 
is written:

h(tiZlfza, . . • .2k ) 53 ho (t) . exp (i5iZx+/32Za+. . .+BkZk ) . 2.1
t >0 . ~0D< ft i < CO . -00<Zl<C0

Where t is the survival time for an individual.
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The Zt's. i = 1.2.... k are the values of the
covariates. They may be naturally measured variables such 
as temperature, or indicator variables representing for 
example the presence or absence of a design change.

The JBj’s. i = 1.2 k are the unknown parameters of
the model which represent the effect on the hazard of each 
value of the covariates,

h0(t) is the common baseline hazard function. The 
baseline hazard represents the hazard an equipment would 
experience if the covariates all take the baseline value 
zero. These may correspond to a natural zero, say 
temperature. or a nominal zero representing for example a 
particular design type.

From 2.1 above the effect of the covariates on the 
hazard is to act multiplicatively on the baseline hazard 
h0 (t), so for different values of a significant covariate 
the respective hazard functions are proportional over all 
time; hence, the name Proportional Hazards Model. Fig 2.1 
illustrates graphically the proportionality of the hazard 
functions.

For all t the hazard experienced by an equipment with 
covariate value b is twice that experienced by an equipment 
with covariate value a.

The method estimates the parameters Ut and tests 
whether these are significantly different from zero, hence 
whether each covariate has a real effect in explaining the 
variation in observed life lengths.

8



Although it has become virtually synonymous with PHM 
it is not necessary to construct the covariate effects 
within an exponential term. The formulation is used 
because there are no restrictions on the coefficients ft,
and it ensures that the hazard is always positive.

A fully parametric proportional hazards model can be 
obtained if one assumes a particular distributional form 
for ho(t).

It is often. however, that with complex systems and 
with the confusing effects of covariates it is difficult or 
impossible to assume a specified form of the baseline 
hazard function with any real justification. It is for 
these reasons that a distribution free approach to 
modelling the baseline hazard function is the more common 
procedure. This procedure in which the baseline hazard
function is left distribution free was adopted by Cox
(1972); the baseline hazard function is an unspecified,
non-parametric. non-negative arbitrary function. The form 
of this function is estimated from the data.

The non-paramcbric technique requires a different 
approach.- from the usual likelihood procedures for the 
estimation of the coefficients ft.

Cox (1972), abilises. based on heuristic arguments, a 
'conditional likelihood' in the estimation of the 
coefficients ft. This 'conditional likelihood' was 
subsequently justified within the framework of partial

9



likelihood Cox (1975). It is now generally referred to as 
Cox's partial likelihood.

2.2.1 PARTIAL LIKELIHOOD CONSTRUCTION

Cox's partial likelihood is based conditionally on the 
set {ti>, i-1.2,...,k of times at which failures occurred.
For any time tif conditional on the risk set at t±, R±,
which consists of all items still operational just prior to
ti, the probability that the failure is on the item
observed is:

exp(Bzi)

2 exp(ftz* )
IER%

where ft is a row vector of k parameters, and Zi is a column 
vector of k measured covariate values.

Cox's partial likelihood is then:

n exp(ftzi)
L (ft) - ir  ________  2.2

i = l
X exp(ftzi) 
lERi

where n is the observed number of failure points.

2.2.2 ESTIMATION PROCEDURES

We require to find the values of ft that maximise the
partial likelihood.



The natural logarithm of the partial likelihood is 
taken, and then the first and second partial differentials 
with respect to each of the parameters £1.,ftz, . . . ,ft* are 
obtained. A Newton-Raphson iteration procedure is used in 
this thesis which employs a Taylor series expansion for 
each step in the iteration procedure. The procedure starts 
with initial values of zero for ft, and the iteration 
continues until the convergence criterion is satisfied. In 
this thesis we use a convergence criterion based on the 
absolute ratio ftA and the last change A fti , i=*l, 2, . . . ,k; 
convergence is satisfied if laftil < IftilxlO*-*, i-l,2,...,k, 
for all covariates, see Wightman (1987).

Alternative optimisation procedures are available, 
for example the expectation maximisation (EM) algorithm, 
(Cox and Oakes (1984)).

Once the estimates converge, tests of whether each
explanatory variable has a significant effect are based 
upon the asymptotic Normality of the estimates.

Once estimates have been found for fti,i32> a
distribution free estimate of the baseline hazard function 
may be obtained. From the relationship between the 
cumulative hazard function and the survivor function we can 
readily obtain an estimate of the baseline survivor 
function. There are various approaches to obtaining these 
estimates suggested in the literature. Cox (1972) 
considers a baseline hazard function which is taken to be
identically zero at points where no failure has occurred.



Cox himself notes that this method is, however, complex. 
Both Oakes and Breslow in the discussion section of Cox 
(1972) suggest a non-zero constant value of h0 (t) between 
the failure times.

Kalbfleisch and Prentice (1973) use a procedure for 
estimating the baseline hazard, which allows for ties, 
whereby a likelihood is built in terms of the baseline 
survivor function. The full likelihood is given by:

n exp(Bzj) exp(Bzx)
L(a,B) ir { t ( 1 - a* ) . tr aA >

i«l JED* ie(R4-Di)
2 . 2

where Di set of labels associated with individuals 
failing at t4

R* is the set of labels associated with individuals 
at risk just prior to ti 

(1 —cci) hazard contribution at ti 
n number of failure points

Since the fi’s have been estimated already from the 
partial likelihood, 2.2 can be maximised with respect to 
the cxi 1 s .

The maximum likelihood estimate of the baseline 
survivor function is:

A A
Soct) a w cti 2.3

ti<t

12



The routines employed in this thesis which are 
extensions of those given in Kalbfleisch and Prentice 
(1980), use the likelihood formulation 2.2 to obtain an 
estimate of the baseline survivor function;

A A
So(t) - it a* 

i/t < i><t

which would give an estimate of the cumulative baseline 
hazard function;

AW A,
Ho(t) - - 2 In a* 2.4

i/t < a><t

However, the first order approximation to 2.4 is in 
fact used in the Kalbfleisch and Prentice routines where;

A A
H0(t) = 2 (1 - a*) 2.5

i/t < * >< t

This is sometimes called the empirical cumulative 
hazard function (Lawless (1982)).

There are occassions where computational problems 
arise in a PHM model.

A covariate is monotonic when it is the largest of all 
the covariate values in the risk set at each failure time; 
or when it is the smallest of all the covariate values in 
the risk set at each failure time.



If a covariate z is monotone, then the partial 
likelihood will be monotone in £, leading to the estimate

A A
of £*<» or £«-£».

Since estimation cannot proceed in such a situation, 
it is necessary to remove the monotonic covariate from the 
mode 1.

Multicol1inearity in the covariates also inhibits the 
estimation procedure. This occurs when a covariate is a 
linear combination of one or more of the other covariates 
in the mode 1.

It is again necessary to eliminate one of the 
covariates involved in the multicol1 inearity to allow 
estimation of the coefficients to proceed.

2.2.3 TIES

The model by nature is a continuous time model, hence 
it is assumed that all failed life lengths are distinct. 
However, it is often the case with reliability data that 
tied failure times are recorded, this is usually due to the 
crudity of the time measurement. In the case of tied 
failure points approximations for the contributions to the 
partial likelihood at that failure time are available, 
(Wightman (1987)). The contribution used in this thesis 
for analysis is that suggested by Breslow (1974):,



exp (£si)
  2.6

di
[ 2 exp (ftz1) ]
lERi

where si is the sum of z over failures at ti
di number of failures observed at ti

There is no guidance in the literature which would 
indicate the number of ties for which a discrete version of 
the model would be more appropriate. The discrete model 
will be discussed later in section 2.3.6.

In the estimation procedure for the baseline hazard 
function, whereby 2.2 is maximised with respect to the 
oci's, if a single failure occurs at ti the value ai can be 
obtained directly. If ties are involved an iterative 
procedure is required.

2.3 EXTENSIONS TO BASIC MODEL

The basic model as described in section 2.2 can be 
built upon in a number of ways which will be discussed in 
this section.

2.3.1 STRATIFICATION

The proportional hazards model requires that an 
explanatory factor should affect the hazard
multiplicatively. Although this may be descriptive of many 
situations it is unrealistic to expect that all the



covariates necessarily fulfill the proportionality 
assumption. [For example see covariate ẑ -event in the 
example of PHM applied to computer hardware failures, in 
section 4.5.3].

When a factor does not affect the hazard 
multiplicatively, stratification could be employed.

Suppose a factor which occurs on q levels violates the 
proportionality assumption. Individuals can be assigned to 
q strata based on the level of the factor. The hazard 
function for an individual in the j'th stratum is given by:

hj (t; z) = hoj (t) .exp(ftz) j = l,2,...,q 2.7
Individuals in the same stratum have proportional 

hazards, but this is not necessarily true for individuals 
between different strata.

In 2.7 it is assumed that the relative effect of the 
explanatory variables is the same within all strata^ this 
condition can and may be relaxed with ft varying between 
strata. This'is equivalent to applying separate models to 
each stratum.

A partial likelihood function Lj(ft) is obtained for 
each stratum, and the overall partial likelihood of ft is 
approximately the product of these terms. In general:

qL (ft) - 7T Lj (ft) 
j-1

2.8



Prentice, Williams and Peterson (1981) introduce 
models whereby repairable items ‘move through strata upon 
failure'. That is; prior to its first failure an equipment 
is in stratum 1, after its first and prior to its second 
failure the equipment is in stratum 2, etc.

2.3,2 COVARXATE FORMULATION

It is usual for simplicity in the application of PHM 
to reliability problems to include covariate information in 
the form in which it is collected and measured.

Under the circumstances of the proportionality
assumption being violated other formulations for the 
covariate information may be more appropriate.

Transformations of a covariate Zj may lead to 
proportional hazards. For example a covariate x ~ In Zj, 
or x = Tzj may be introduced as an alternative. (Davies et 
ai (1988)) .

It is also possible that a time dependent formulation 
will be more appropriate. For example x(zj,t) a function of 
the measured variable Zj and the basic time metric t may be
introduced as an alternative covariate. The choice of
transformation is presently arbitrary, (see Wightman,
Walker and Bendell (1988), appendix C).



2.3.3 COMPETING RISKS

Competing risk formulations within the PHM methodology 
are available in the literature. Holt (1978) introduced 
two models; one which had the same baseline for each cause 
with cause specific J3 coefficients. and the other with 
different baseline and 8 coefficients for each cause. 
Kalbfleisch and Prentice (1980) discuss such models and, in 
the case of common baseline for each cause, find a 
justification for the procedure of regarding a failure from 
a particular cause as also a censored event for the other 
causes.

The above procedure for competing risks is employed in 
analyses presented in this thesis.

In the analyses presented in this thesis models for 
competing risks are considered whereby the basic time 
metric is taken as the time between consecutive failures, 
irrespective of cause, (this is an alternative to modelling 
the different failure modes on separate time streams). 
Given that there are 1+1 failure modes in the model, 1 
binary dummy variables are introduced into the covariate 
set to represent the different causes of failure.
Censoring events are generated at each failure time for 
each of the other failure modes.

Interesting results arise from the above model
formulation, particularly that of the factorisation of the 
partial likelihood, (Wightman (1987)). The partial
likelihood factorises into two terms; one containing only



information from failure mode variables, and the other term 
being the usual partial likelihood for a model without 
competing risks, (see also Wightman, Walker and Bendell 
(1988), appendix C).

Originating from the above result it can be shown that 
a constant expectated value, conditional on the risk set, 
of a failure mode indicator covariate is obtained. This 
will be discussed in further detail in the later section on 
Schoenfeld's partial residuals, 6.2.6.

2.3.4 DISCRETE PHM

A discrete proportional hazards modelling formulation 
was introduced by Kalbfleisch and Prentice (1973).

This formulation may be applicable to a continuous 
time model when there is a large number of ties at failure 
times, or when failures are grouped into disjoint intervals 
for example, due to their discovery during routine 
inspections (Wightman (1987)).

The essence of the discrete proportional hazards model 
is that the time axis is split into specific time 
intervals. For each time interval a parameter, hi, is 
allocated; the model then contains a finite number of 
parameters hi,ha,. . . , hn and i3, the vector of covariate 
coefficients. Likelihood procedures can be implemented for 
obtaining asymptotic maximum likelihood estimates.



Further discussion and development of discrete models 
is provided by Prentice and Gloeckler (1978).
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Figure 2.1 Hazard functions for different covariate values.
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CHAPTER 3

APPLICATION TO VEHICULAR SUBSYSTEM RELIABILITY

This chapter shows an example of an application to the
\

reliability analysis of two vehicular subsystems. The 
example illustrates the importance of good data recording; 
and also the necessity of using PHM as an exploratory tool.

3.1 THE INITIAL DATA

PHM was applied to analyse the failure data from two 
subsystems of a vehicle, supplied by T. Nowakowski 
(Poliiyfchnika Wroclawska) .

The data was obtained during field tests of 110 buses 
operating in 5 different towns/environments.

Each bus was tested over a total of at least 100,000 
miles.

Table 3.1 shows the number of buses on test in each of 
the environments.

TABLE 3.1 Test parameters

Environment Sample size

10
50
20
20
10
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Figure 3.1 indicates the way in which the failures 
were recorded.

Table 3.2 shows an example of the form of the data as 
it was originally provided by the source.

It is stated in an analysis using a modified multiple 
regression model by the data provider {Nowakowski (1986)) 
that there are no differences between the effects of the 
different environments for subsystem A, but subsystem B is 
strongly influenced by the environment factors.

3.2 ANALYSIS; MODEL 1

The two subsystems were analysed separately.

The basic 'performance' metric, t, in the hazard 
function (see equation 2 .1 ), was taken to be the miles 
travelled between events. An 'event' being a recorded 
failure of the subsystem, or the position at which it 
leaves the field of observation.

Dummy variables were introduced to model the effects 
of the environments. Environment 2 was taken as the base 
since this area has the most buses under observation, 
i.e.

z% Z2 Z3 z* z«5
Environment 1 1 0 0 0
Environment 2 0 0 0 0
Environment 3 0 1 0 0
Environment 4 0 0 1 0
Environment 5 0 0 0 1

(base)



Table 3.2 Reliability data of Subsystem A

EHVIROHHEHT
1 2 3 4 5

HTFF HBF HTFF HBF HTFF HBF HTFF HBF m HBF
25502
40335
49534
90500

3501
12946
14990
18953
29415
64304
68455
71775
78703
81562
85369
103126
108782
112311
119651
5788
14838
16474
25793
49610
68256
70838
74775
81297
81321
100904
106194
112248
118020

114366
392
65634
62845
51705
3352
337
34696
59782
9089
3849
881
4559
7403
312

52407
46791
90525

48469
44135
46480
41882
84984
14580
70126

20199
6130
11969
23940

40462
55609
110749
60910
75486
79243
66790
82285
32657
90238
103268
97362
112143
135083

26898
5599
32206
63547
10575

7464
16969
560
16837
13302

46485
20477
90000
45043



Since the data was split into two groups; miles to 
first failure, and miles between failures, an indicator 
variable was also introduced into the model such that;

z $
1 first event (MTFF)
0 subsequent event (MBF)

As much censoring information as could be obtained 
from the data was included in the model. For example, from 
Table 3.2, looking at environment 1 we are given four miles 
to first failure (MTFF’s). Since we know that there are 
ten different buses operating in environment 1 (See Table 
3.1), there must be six first events censored at 100,000 
miles. Also, since there are no miles between failures 
(MBF's) given there must be another four subsequent events 
censored from the stage of the first failure up to 1 0 0 , 0 0 0  

mi les.
The results from the proportional hazards analysis for 

this first model (MODEL 1) can be seen in Tables 3.3 and 
3.4, applied to subsystem A and subsystem B respectively.

These show the £ parameter estimates for the 
significant covariates; their p-value (the probability of 
obtaining such an extreme effect just due to chance) ,* and 
the multiplicative effect on the baseline hazard that an 
indicator variable when equal to 1 will have. The 
likelihood ratio statistic, L, is also shown for the fitted 
model, with the tabulated 5 % critical value from the Chi- 
squared distribution, given in brackets.



Table 3.3 Results of PHM analyses. Subsystem A.

MODE
covariates

Z1 - envir, 1 
z2 - envir. 2 
z3 - envir. 3 
u - envir, 4 
Zs - envir. 5 
z* - HTFF 
z? - travelled 
Ze - 1st fail. 
z9 - 2nd fail. 
Zio- 3rd fail. 
Zn- later fail.

base

-1.2861
*******
*******
*******
*******
*******

o.:;:; 
*******
*******
*******
***t***
*******

Mult.

0.25
*******
*******
ttttttt
*******
*******

L = 30.900 
( 3.841)

base

-1.1404
*******
*******
*******
*******
*******

0.0000
*******
*******
*******
*******
*******

Hult.

0.32
*******
*******
*******
*******
*******

20.312 
( 3.8411

base
0.8787
-2.8656
-0.0893
*******
*******
*******
*******

0.0017

0.0000*******
*******
*******
*******

Hult.

2.41
0,06
*******
*******
*******
*******

L * 237.439 
( 7.815)

base
0.9307
*******
-0,0922
-2.8185
base
1.3963

0.0011
*******
0.0000
0.0000

0.(

Hult.

2.54

0.06

4.04
L = 242.961 

( 9.488)

Table 3.4 Results of PHM analyses. Subsystem B,

MODE
covariates

Zi - envir. 1 -1.7538
za - envir. 2 base
z3 - envir. 3 -
U - envir. 4 -1.8914
Zs - envir. 5 0,9541
Zs -HTFF -1.0297
To - travelled *******
z« - 1st fail. *******
z* - 2nd fail. *******
Zio- 3rd fail. *******
Zn- 4th fail. *******
Zia- 5th fail. *******
Zi3- later fail.*******

0.0014

o.::;:
0.0000
0.0000*******
*******
*******
*******
*******
*******
*******

Hult.
0.17

0.15
2.60
0.36*******
*******
*******
*******
*******
*******
*******

L - 161.243 
( 9.488)

-1.7619
base
-0.5152
-1.7396
0.8638
-0.7100*******
ttttttt
*******
*******
*******
*******
*******

P
0.0014
0.0084
0.0000
0.0000
0.0000*******
*******
*******
*******
ttttttt
*******
*******

Hult.
0.17
0.95
0,17
2.37
0.49*******
*******
*******
*******
*******
*******
*******

L - 131.374 
(11.07 )

base
-0.8625
0.6384
-2.0246
-0.0450
ttttttt
*******
*******
*******
*******
*******

0.0170
0,0000
0.0000
0,0000********
*******
*******
*******
*******
*******

Hult.

0.42
1.89
0.13

*******
*******
*******
*******
*******
*******

L = 291.878 
( 9.488)

base

**************
-0.0556 0.0000
-2.8438 0.0000
-0.9920 0.0000
base -

o.:

Hult.

*******

0.06
0.34

3.09
L = 353.042 

(9.488)
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The likelihood ratio statistic for the models fitted 
to both subsystems indicate that the model is significant 
in explaining the observed data.

The covariate, ze  ̂ indicating whether the event was an 
initial or subsequent event, is highly significant showing 
that there is a lower hazard for first events (more miles 
to first failure, than miles between failures).

The results also appear to confirm the hypothesis that 
there is no difference between the effects of the 
environments on subsystem A, but that there are significant 
differences between the effects of the environments on 
subsystem B.

For subsystem B there is no significant difference 
between the effects of environment 3 and the base 
(environment 2); environments 1 and 4 are significantly 
‘better' (more miles between failures experienced within 
these environments); and environment 5 is significantly 
‘worse’ (fewer miles between failures experienced in this 
environment.)

3.3 FURTHER DATA AND MODELS

As indicated is section 3.2 the data provided in the 
form shown in Table 3.2 masks a great deal of information. 
We were unable to match the MBF's to the MTFF's for each 
bus, and hence lost a large amount of censoring 
information.



The data was immediately sought from the source in a 
form in which a 'time stream1 (time in this instance is 
really miles travelled) for each bus could be observed. It 
is then possible to match MBF's to MTFF’s and obtain more 
information for censored events. Table 3.5 shows an 
example of the form of the data finally obtained.

3.3.1 MODEL 2

A second model (MODEL 2) was applied to this new form 
of the data with increased censoring information, obtained 
from the second format of the data, with the same 
covariates as defined in MODEL 1.

The results obtained, as seen in Tables 3.3 and 3.4, 
are roughly similar to those for MODEL 1.

For subsystem B environment 3 now also appears 
'better' than the base environment 2 .

The likelihood ratio statistics, L, again indicate 
that the models fitted have significant explanatory power.

Despite the increased information in the data, and 
although having significant explanatory power MODEL 2 does 
not appear an especially good fitting model, for either 
subsystem.



Table 3.5 Reliability data for environment 3.

Bus
No.

Subsyste*
A B

1 48469 22280

2 44135 21205
64334 36596
70464 51467

3 46480 36796
41350
53653

4 41882
53851

2753

5

6 84984 63707
84199

7 62210

8

9 82954

10 109948

Bus
No.

Subsystei
A B

11 18562
20483
90238
94795

12 13262
117890

13 14580

14

15

16 70126
94066

39142
89041
120184

17 33169
66396

18 71709
86857

19 126800

20 40565
67476



3.3.2 MODEL 3
t

The third model fitted (MODEL 3) includes a covariate 
for the cumulative number of miles travelled by the bus up 
to each event. This, if significant, would indicate 
whether the hazard was increasing or decreasing as the bus 
trave1 1 ed more mi 1es.

The inclusion of this additional covariate has quite a 
dramatic effect; altering the significance of many of the 
covariates previously fitted.

We can see from the results in Tables 3.3 and 3.4 that 
for both subsystems the additional covariate, z-t- > is highly 
significant, showing a decreasing hazard as the mileage 
increases (i.e. reliability growth).

For both subsystems the indicator variable for the 
event (MTFF/MBF) now shows a greater effect on the hazard.-

For subsystem A environment 4 now appears ‘worse* than 
the base and other environments.

For subsystem B the environments 1 and 3 no longer 
appear to be significantly different from the base 
(environment 2 ).

For the models, fitted to both subsystems, there has 
been a dramatic increase in the likelihood ratio 
statistics, L. The number of significant covariates have 
of course also increased which will raise the likelihood



3.3.3 MODEL 4

Since the indicator variable for the events (jyTTFF/MBF) 
shows, in all the models, a highly significant effect, and 
since there was no real reason to split on MTFF/MBF, other 
than that being the form in which the data was originally 
presented, the concept of modelling the failure number was 
extended, to search for increasing or decreasing hazard as 
the number of previous failures increases.

For the analysis of subsystem A dummy variables z& to 
Z u  were introduced to replace z©, such that:

z© z9 2io Z u
1st event 1 0 0
2 nd event 0 1 0
3rd event 0 0 0
later event 0 0 1

(base)

And in the analysis of subsystem B, dummy variables z© 
to Z1 3 were introduced such that:

z @ z9 Zio Z u Zl2 Zl3
1st event 1 0 0 0 0
2 nd event 0 1 0 0 0
3rd event 0 0 0 0 0
4th event 0 0 1 0 0
5th event 0 0 0 1 0
later event 0 0 0 0 1

(base)

The results from this model (MODEL 4) can also be seen 
in Tables 3.3 and 3.4.
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For subsystem A there appears to be no significant 
difference between the 2nd and 3rd events (the third events 
are modelled on the baseline). However, when z© (2nd

A
event) was eliminated it had - -0.61988, and so we can 
see a gradation within the effects of these dummy 
variables, which shows the hazard to be increasing as more 
failures occur.

Again, environment 4 appears 'worse' than the others.

For subsystem B there is also a gradation within 
effects of the 'failure number' dummy variables. Although 
Z n  and Z1 2 were eliminated, they were marginal with p— 
value 0.0265 and 0.0253 respectively. This gradation 
shows, for this subsystem also, the hazard increases as 
more failures occur.

None of the environments now have any significant 
effect, refuting our earlier beief that subsystem B is 
highly influenced by the environment factor.

The likelihood ratio statistics, L, have again 
increased.

3.4 GRAPHICAL DIAGNOSTICS FOR MODEL 4

Graphical diagnostics applied to the final fitted 
model for both subsystems are shown and described in this



The diagnostic techniques themselves are extended and 
explained in greater detail in Chapter 6 .

3.4.1 SUBSYSTEM A

The Proportional Hazards Model makes no assumptions 
about the form of the underlying distribution of the 
process. The method does, however, obtain an estimate of 
the baseline hazard ho(t) at each failure point. It is 
often possible then to identify the baseline distribution 
direclty by using the estimate for the hazard in various 
distributional hazard plots.

Figures 3.2, 3.3. and 3.4 are Weibul1, Log-Norma1, and 
Extreme value hazard plots respectively. Since the hazard 
contributions estimated from the fitted model do not yield 
straight lines on these plots, the underlying baseline 
distribution does not follow any of these forms. We did 
not manage to identify a distributional form for the 
baseline hazard directly from the hazard plots.

Since we have estimates of the baseline hazard 
function, from the fitted model, we could estimate a 
distributional form from the relationship with the 
probability density function; equation 1 .2 .

Methods based on those in Cox and Snell (1968) are 
used to obtain residual quantities at each time t4 defined 
as (see Section 6.3):

A  A
ei = Ho(tj).exp(fiz)
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where Ho(t) is the cumulative baseline hazard.

The estimated residuals should look roughly like a 
random sample from the standard negative exponential 
distribution, if the model is a good fit.

Plotting the natural logarithm of a survivor function
A
R(e) estimated from the set of residuals against the 
residual estimates, produces a graphical goodness~of~fit 
'test* for the model, since the plot should result in a 
straight line with gradient -1. A variance-stabilised form 
of the plot can be used which employs an angular 
transformation.

Figure 3.5 is the variance-stabilised, plot for the 
residuals estimated from the fitted model. The fit of the 
model appears reasonable.

Proportionality plots are shown in Figures 3.6, 3.7
and 3.8. The data is stratified on some of the significant 
binary covariates, and the model run separately for each

A
stratum. Plotting In Ho(t) v t for each stratum on the 
same graph should produce plots with constant vertical 
separation for all t, if the assumption of proportional 
hazards holds, (Kay (1977)}.

We can see that the covariates z4  and z±x appear to 
violate the proportionality assumption. However, the small 
number of points in the upper stratum in each of the plots, 
Figures 3.6 and 3.8, may be disguising the true effect.



Plots based on the influence of individual miles to
A

failure on the £ 1 parameter estimates for the significant 
covariates (Cain and Lange (1984), Reid and Crepeau (1985)) 
are shown in Figures 3.9 to 3.12

The form presented here shows the estimated normal 
deviate for the covariate coefficient when each single miles 
to failure and censoring miles is excluded from the model, 
one at a time. This is plotted against the order by- 
magnitude of the the miles on the horizontal axis.

We can then examine which miles to failure have miles 
most influential on the observed significance of the
covariates, and which, if any, would if deleted remove the
significance of the covariate. For 5% two-tailed tests
these points correspond to estimated normal deviates in the 
range -1.96 to +1.96.

We can see from the plots that there are no such 
influential points.

3.4.2 SUBSYSTEM B

Plots similar to those described in section 3.4.1 can
be seen in Figures 3.13 to 3.23. These refer to the
analysis of subsystem B.

Again the underlying distributional form was not
directly identified from the hazard plots.



Figure 3.16 shows the overall fit of the model to be 
somewhat better for subsystem B than it was for subsystem 
A.

The proportionality plots again show the possibility 
of non-proportional hazards for those covariates which have 
very few points in one of the strata.

There are no points that are so influential to any of 
the covariates that they would alter its significance if 
deleted.

3.5 SUMMARY

PHM has been used here in an exploratory manner, where 
we have moved from one model to another adding more 
information and searching for more explanation.

We have seen that as we moved through the models our 
previous assumption about the effects of the environments 
were contradicted; the processes involved are better 
described by the number of miles travelled and the number 
of failures that have occurred to each subsystem. Before 
these covariates were introduced into the model their 
effects were masked and partially explained by other 
variables present.



3.6 CONCLUSIONS FROM ANALYSES OF VEHICULAR SUBSYSTEM 
RELIABILITY

The results of this study indicate that following an 
exploratory procedure, whereby we step from model to model, 
we have identified a PHM model that fits the structure of 
the data reasonably well.

The PHM model has enabled as to identify variables 
which have a significant effect in explaining the miles 
between failures for the bus subsystems, as well as the 
direction and magnitude of these effects.

The main contributions come from the total number of 
miles travelled, which reduces the hazard as the number of 
miles increases, and from the number of previous failures 
which increases the hazard as the number of failures 
increases..

We have also seen how the presence or absence of some 
covariates can affect the significance of others which give 
only a partial explanation of the processes involved.



Figure 3.1 Reliability data scheme.

Bus no.A

■X-
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miles between failures
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mHes to first failure

Mites travelled

100,000



Figure 3.2 Weibull baseline hazard plot. 
Subsystem A.
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Figure 3.3 Log-Normal baseline hazard plot. Subsystem A.
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Figure 3.

■b

| Smallest extreme value hazard plot 
Subsystem A.
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Figure 3.5 Variance-stabilised Cox and Snell type
residual plot. Subsystem A.
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Figure 3.6 Proportionality plot. Subsystem A
Covariate z4 - 'environment 4.’



Figure 3.7 Proportionality plot. Subsystem A.
Covariate Za — 'First failures.'
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Figure 3.

' *4 
 1

I Proportionality plot. Subsystem A. 
Covariate zXx ~ 'Later failures.'
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Figure 3.9 Influence plot. Subsystem A.
Covariate z* - 'environment 4.'
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Figure 3.10 Influence plot. Subsystem A.
Covariate z-? - 'miles travelled.'

o r d e r e d  ev'erd '.S

+ +-H" +
+ +++ +Ht‘ +++

-11,50 - ^

- II .  65 - -

- I I .  7 0 - -

■11,85- -

47



Figure 3.11 Influence plot. Subsystem A.
Covariate z© - 'First failures.'
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Figure 3.12 Influence plot. Subsystem A.
Covariate 2:X\ ~ 'Later failures.'
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Figure 3.13 Weibull baseline hazard plot Subsystem B
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Figure 3.14 Log-Normal baseline hazard plot. Subsystem B
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3.15 Smallest extreme value hazard plot 
Subsystem B.
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Figure 6.13 Variance-stabilised cox and Snell type 
residual plot. Subsystem B.
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Figure

I* Ho

3.17 Proportionality plot. Subsystem B.
Covariate z© - ‘First failures.’
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Figure 3.18 Proportionality plot. Subsystem B.
Covariate z© - 'Second failures.'
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Figure 3.19 Proportionality plot. Subsystem B 
Covariate Zia - 'Later failures.'



Figure 3.20 Influence plot. Subsystem B.
Covariate ~ 'miles travelled.
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»■*y.nFigure 3.21 Influence plot. Subsystem B. |
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Figure 3.22 Influence plot. Subsystem B.
Covariate z9 - 'Second failures.'
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Figure 3,23 Influence plot. Subsystem B.
Covariate - 'Later failures.'
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CHAPTER 4

APPLICATION TO COMPUTER HARDWARE FAILURES

This chapter shows an example of an application of PHM 
to computer hardware failure data, (Drury et al (1988), 
Appendix A).

The data came from failure reports of processors 
within a family of ICL systems.

The example shows an approach to a common form of 
reliability data; 'window structure' where failures have 
been recorded within a particular time period and the 
history of failures prior to the start of the 'window' is 
unknown.

The example also uses the censoring structure for 
competing risks as discussed in section 2.3.5.

4.1 WINDOW STRUCTURE

This is a structure in reliability data, corresponding 
to a point process observed within a time window.

A diagram showing the form of a time window over the 
time stream for an item is shown below.

failures recorded

time stream >-x *-

f
start of time window

T
end of time window
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Data recorded in this manner presents potential
problems for analysis since it includes both left and right 
truncation to observed failure times, at the start and end 
of the window respectively.

4.2 DATA COLLECTION

Reliability data was collected for processors within a 
family of computer hardware systems by logging all failures 
rectified by engineers on a computerised database.

The data was collected within a three month time 
window; 01/04/84 - 30/06/84, at 364 customer installations.

The records included the information: system
identifier, date of failure, date of installation, average 
usage the system experiences, the number of processors in 
the system, details of the type of failure the processor 
experienced, and the quality control system in place at the 
time of manufacture of the processor(s).

There are four variants of the system, in both single
and dual modes; the systems have different numbers of
processors depending on the system variant and its 
operational mode, see Table 4.1.



Table 4.1 Number of processors in each sustem variant.

System type
Number of 

1
processors 
2 4

A X X

B X

C X

F X X

The data provided did not however identify system 
failures down to the actual failing processor for those 
systems with multiple processors. It is, therefore, at 
’system level' for which processor failures are considered 
in the modelling of the reliability of the PCB set.

4.3 MODEL STRUCTURE

Since the systems are repairable, a simple starting 
assumption is that a system is repaired to "as-good-as- 
new". Therefore, the basic time metric, t, is taken as the 
time between processor failures occurring on the same 
system.

We deal with the left truncated events by assuming 
that such a truncated time to first failure follows the 
same distribution as subsequent times between failures.
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Such a procedure is less wasteful of data than ignoring 
left truncated times, and would be sound in the case of an 
exponential baseline.

Treating left truncated events in the above manner is 
facilitated be measuring the time between the start of the 
window and the point of first failure, and setting an 
indicator covariate to show the presence of left 
truncation.

Since we know from codings in the data that there are 
a number of different types of failure that a processor can 
experience, we can use a censoring procedure for competing 
risks (see section 2.3.5).

Two large groups of events could be identified from 
the raw data corresponding to failure modes 'No Fault 
Found1 or NFF, and 'component type 272'. Since there are 
no other failure modes nearly as prevalent all other 
failure types are grouped together, in this analysis, to 
form a third failure type 'other*.

We can assume that the three groups of failure mode 
act as competing risks to the processors.

From the assumed failure mechanism, it follows that a 
failure identified as any one of the three types, also 
creates censored events on the system for the two other 
failure modes.



4.3.1 EXPLANATORY VARIABLES

Covariates Introduced into the PHM model were:

Event. An indicator variable. zXf showlng the presence 

*0’ or absence of left truncation.

Age. This is a measured covariate, s2, giving the age
of the system (in months), at the time of failure. Since 
we are not provided with the exact date of installation the 
age of the system is calculated from the first day of the 
month of installation. Any significance of this covariate 
will show that there is either reliability growth or 
reliability decay as the system ages.

Average hours per week. The average number of hours use 
that the system experiences whilst within the time window 
is taken from actual field returns, and included as the 
covariate z3 in the model.

Failure variables. These dummy variables set as in Table
4.2 compare the three different processor failure modes. 
The failure mode 12721 is taken to be the baseline, as this 
group has the largest number of observations.



Table 4.2 Coding of failure type.

Failure type
Covariate 

Z4 Zs

272 (base)
NFF
OTHER

0 0 
0 1 
1 0

System variables. These dummy variables set as in Table
4.3 indicate the system variant. System variant A is taken 
to be the baseline since there are more systems of this 
variant under observation.

Table 4.3 Coding of system type.

System variant
Covariates 

Zs Z-7 Ze

A (base) 
B 
C 
F

0 0 0 
0 0 1 
0 1 0  
1 0  0

Number of processors. Dummy variables are used here to 
compare the effect of the number of processors in a system 
to avoid assuming linear effects, as would be the case if 
introducing a single covariate taking the value 1, 2 or 4.
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The dummy variables are set as in Table 4.4. 1 processor
only is taken to be the baseline as most system variants 
have this configuration.

Table 4.4 Coding for number of processors.

No. of processors
Covariates

Zc, 2xo

1 (base)
2 
4

0 0 
0 1 
1 0

Quality control. Since the start of manufacture a major 
change in quality control for the processors was 
introduced. Table 4.5 shows the coding of dummy variables 
introduced into the model to indicate the quality control 
to which the processors within the system have been 
subject.

Table 4.5 Coding of quality control.

Quality control
Covariates

Zll Z12

Pre-change (base) 
Post-change 
Combinat ion

0 0 
0 1 
1 0
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Pre-change was taken on the baseline as this was 
applicable to the majority of the systems.

4.4 SELECTION OF PHM MODEL

As suggested should be the procedure from the example 
in Chapter 3, the model described in section 4.3 evolved by 
applying PHM in an exploratory manner.

Within this evolutionary process a number of different 
structures were considered. Because of technical problems 
such as multicol1inearity and monotonic likelihood (see 
section 2.2.3 and Bryson and Johnson (1981)) some of these 
alternative structures had to be neglected or adjusted.

For example, multicol1inearity between two covariates; 
cumulative hours usage to failure, and age of system at 
failure occurred and was subsequently explained by 
discussions with the data providers from ICL. The 
covariate for previous use was then ommitted from the 
model. Also a covariate identifying the 'power' of the 
system was found to be a direct linear combination of the 
dummy variables representing the system variant, also 
discovered by discussion with ICL, hence the covariate 
'power' was eliminated.

In other cases some variables had their specification 
altered to provide greater information. For example, due 
to the presence of a few 'young1 systems, the redefinition 
of 'age', from being calculated since the start of the time
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window to being calculated since installation, was deemed 
to give more physical explanation.

4.5 RESULTS

The results from the described model, after the usual 
backwards stepwise elimination procedure, whereby non­
significant covariates are excluded one at a time and the 
model is rerun until all covarites are significant, are 
given in Table 4.6.

The likelihood ratio statistic, L, is seen to exceed 
the upper 5% critical value for a X 2 distribution with nine 
degrees of freedom, indicating a highly significant model.

Table 4.6 Final significant model after backwards stepwise 
elimination.

Significant
covariates

A
Id i p-value L

Zi - event 0.6384 0.0001
Z2 “ age -0.0336 0.0019
Z3 “ av. hrs./wk. 0.0064 0.0030
Zs “ NFF 0.8345 0.0000
Z<s system F -0.8748 0.0155 99.450 

(16.92)
Za - system B -0.7079 0.0083
Zs> “ 4 procs. 1.5974 0.0010
Zio" 2 procs. 0.6417 0.0050
Zl2- post-change —0.6622 0.0015



4.5.1 SIGNIFICANT COVARIATES

Event. The positive estimate of B* suggests that the 
systems experience a lower hazard during times to left 
truncated events than they experience during times between 
subsequent failures. This corresponds to observations of 
longer left truncated events than time between failures. 
This is a somewhat counter-intuitive result, since we might 
have expected left-truncated events to be shorter than full 
times between failures.

The phenomenon may, however, be explained in three
ways:

Firstly, it occurs as a result of an inherent bias in 
the model caused by the nature of the time window; 71% of 
the systems under observation had no processor failures 
within the time window, hence a large number of long right 
censored left truncated events are compared in the model 
with the necessarily shorter observed times between 
failures.

Secondly, as we will see later, the distributional 
form for the tbf's is found to have a decreasing hazard. 
Left-truncation, then, may be excpected to increase 
residual life length.

Finally,as proposed by the data providers bunching of 
failures, due for example to misdiagnosis, may expain the 
observed longer times to first failure.



Age. The negative estimate of B2 indicates a lower hazard 
experienced by the system at higher ages. Hence, the 
systems are experiencing reliability growth with increasing 
times between failures as they get older.

Average hours per week. The sign of the estimate of B3 
indicates that the more use the system experiences per 
week, the higher the hazard.

The basic time metric in the model is taken from 
calender time. Although an increase in the usage of the 
system may result in fewer number of days (or less calender 
time) between failues, it could nevertheless be possible 
that more computer time has been used between failures.

Failure variables. The elimination of the covariate z4 
indicates that there is no significant difference between 
failure modes '272' and 'OTHER'. The significance and sign 
of B«5 which, after the elimination of the covariate , 
compares the hazard due to the failure mode 'NFF' with that 
for the two other modes, indicates shorter times to this 
mode of failure.

The 'No fault found' failure category is most 
prevalent in the data. This is common to many reliability 
data sets for which failure mode is recorded.

System variables. The covariate z? is eliminated 
indicating that there is no significant difference between 
the effects of system variant C and the base system variant 
A.



Systems of variant F are seen, from the estimate of 
£<s. to experience a lower hazard than variants A and C, 
Similarly system variants B experience a smaller hazard.

Number of processors. From the significance of the 
covariate z* it can be seen that systems with four 
processors experience a higher hazard than those with just 
one. Similarly, from £1 0 , systems with two processors 
experience a higher hazard than those on the baseline.

Quality control. The elimination of the covariate Z n  
shows the effect of the combination not to be significantly 
different to the effect of pre-change processors. However, 
the systems with processors all included after the change 
in the quality control procedure are seen to experience a 
lower hazard than the other systems.

There is some evidence that the new quality control 
procedures reject bad processors which would previously 
have been incorporated into a system, since longer times 
between faiures are associated with processors selected 
from the new quality control regime.

4.5.2 EFFECT OF SYSTEM VARIANT AND OPERATIONAL MODE 
COMBINATION

It is of operating importance to know the effects of 
the combinations of system variant and operational mode. 
Based on our model the magnitude of the hazard variations 
can be calculated from the significant £ estimates.
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The multiplicative effect on the baseline hazard, for 
each possible combination is shown in Table 4.7.

Table 4.7 Multiples of baseline hazard for system
variant/operational mode combinations.

111111
! System variantI

ii
Number of processors !Il
1 2 4 1l

! A
1l

i.oo 1.90 - :i
: B 1

i
0.49 - - !

: c o 0 1 I

i
: fi! , ...

I
0.79 2.06 !i*

4.5.3 GRAPHICAL DIAGNOSTICS

Some examples of the graphical diagnostic tools are 
shown in this section. Each technique is described more 
fully in Chapter 4.

Figure 4.1 is a Weibull hazard plot for the baseline 
hazard estimated from the PHM model. The straightness of 
the line plotted on these axes indicate that the Weibull is 
a reasonable distributional form for the underlying 
process.

The shape and scale parameters for the distribution 
can be estimated from the plot, and are approximately 0.84 
and 1425 days respectively. The shape parameter is less 
than 1, hence, the baseline shows decreasing hazard.
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A variance-stabilised form of the Cox and Snell 
residuals is shown in Figure 4.2. Since the plot lies very 
close to the expected 45° line the model appears to be a 
good fit.

Figure 4.3 is the proportionality plot obtained for 
the indicator variable Zx, which shows the presence or 
absence of left truncation. If the covariate effects the 
hazard in the assumed manner (proportional hazards) the 
baseline hazards for the two strata should yeild a constant 
vertical separation on these axes.
The plot, however, indicates that the assumption of 
proportional hazards is violated for this covariate. A 
model stratifying on the covariate may prove to be a 
worthwhile approach, or since the plots seem to have a 
reasonable constant separation after about t=30 a time 
dependent covariate may prove appropriate.

Figures 4.4. and 4.5 show Schoenfeld partial residuals 
plotted against time for the two significant covariates 
z2 - age, and zs - NFF.

If the assumption of proportional hazards holds the 
plot of the residuals against t should be scattered about 
zero for all t. The x's indicate tied points. To ease 
visual inspection we have applied a moving average based on 
intervals of 20 tbf's to each graph.
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Both plots largely bear out the assumption of 
proportionlity. and further show no obvious outliers which 
might have indicated events requiring further 
investigation.

Figures 4.6 and 4.7 are plots of the influence of 
individual events on the parameter estimates for the two 
covariates z2 - age and zs - NFF. They are typical of the 
plots for naturally measured variables and binary variables 
respectively. There are no events falling within the range 
-1.96 and +1.96 which would indicate individual events so 
influential that their removal from the analysis would 
alter the significance of the covariate.

4.6 CONCLUSIONS FROM ANALYSES OF COMPUTER HARDWARE 
FAILURES

This example has shown a PHM model which appears to 
fit the structure of the data well.

The treatment of left truncated events. by defining a 
covariate showing its presence or absence. was the least 
successful aspect of the model.

We saw in section 4.5.1 that the significance of the 
covariate offered a somewhat counter-intuitive result. The 
bias in the model described in section 4.5.1 may be reduced 
in examples with a longer duration time window and more 
observed failures.



There is of course no real reason the believe that the 
covariate 2.*. should effect the hazard multiplicatively, 
although the treatment would be sound if the tbf1s were 
exponentially distributed.

As well as identifying variables having a significant 
effect on the interfailure times of the systems we have 
also been able to identify the effects of configuration 
parameters.

The model has enabled us to identify the underlying 
structure of the point process, and the distributional form



Figure 4.1 Weibull baseline hazard plot



Figure 4.2 Variance-stabilised Cox and Snell type
residual plot.
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Figure 4.3 Proportionality plot.
Covariate Zi - 'Left truncation
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Figure 4

A

4 Scboenfeld partial residuals.
Covariate z2 - ‘age.’
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Figure 4.5 Schoenfeld partial residuals.
Covariate z-s — ‘No fault found. '
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Figure 4.6 Influence plot. Covariate z2 ~ 'age.’
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CHAPTER 5

APPLICATION TO A RELIABILITY ANALYSIS OF A 
CONTEMPORARY WEAPON SYSTEM

Many large complex systems are hierarchical in nature. 
Failures to such a system may be attributed to any level of 
the hierarchy; at the lowest level to individual 
components, or at higher levels to circuit boards, sub- 
assemblies, or larger modules.

Failure data, therefore, records data at various 
levels of equipment aggregation, and is itself highly 
comp1icated.

The weapon system used as an example in this chapter 
is such a hierarchical system (Gray et ai (1988), Appendix 
B). The analysis of its early field performance is 
approached through a database whose function was primarily 
to provide logistic information necessary to the management 
of equipment spares and resources. It was also hoped it 
would serve to monitor reliability.

5.1 SYSTEM DESIGN

A complete system comprises subsystems:' launcher, 
optical tracker, generator, and for blind fire systems an 
additional radar tracker.



The subsystems themselves are of a modular design 
which is illustrated in Figure 5.1.

Subsystems are interchangeable, so a complete system 
rarely remains such (with the same individual subsystems) 
for long: the systems are mobile and are transported
frequently*

The susbsytems' modular design is to ease maintenance 
in a battlefield environment, by combat troops. The 
principle modules of a subsystem are designed as Line 
Replacement Units (LRUs). The philosophy of repair by 
replacement is to ensure maximum operational availability. 
First line maintenance (on the battlefield) consists of 
changing a faulty LRU, whilst at second line (in the
workshop) the fault will be traced down to the lowest level 
of the fault, in the hierarchy.

5.1.1 GENERALISED REPRESENTATION OF FAULT STRUCTURE

Using Figure 5.1 which outlines the subsystem
structure, and from our knowledge of the maintenance 
procedures we can construct a generalised representation of 
the fault structure which is shown in Figure 5.2.

At the lowest level are component faults. Higher in 
the hierarchy are sub-assembley faults which are the 
superposition of component faults plus other faults such as 
interconnection problems. Faults at the next level up are 
LRU faults which are a further superposition of sub-



assembley faults conjugated, with other problems that cannot 
be attributed to sub-assembley or component faults. At the 
highest level is the subsystem, where we have on this level 
representation of the total aggregation by superposition of 
all faults.

5.2 DATA COLLECTION

The database was of a conventional design. The repair 
technician was required for each failure and repair to 
complete a descriptive jobcard outlining information such 
as date, serial number, elapsed time indicator readings 
(ETIs), and fault classification code.

Information from jobcards was then transcribed into 
the computer database; building up, in principle, a 
complete historical record of reliability, maintenance and 
repair data.

Four files from the database were available detailing: 
scheduled maintenance, environmental/deployment data, ETI 
readings, and defect data.

A number of features in the files. however, made data 
extraction difficult and complicated. For example, 
inconsistent formatting within the files precluded file 
merging. Also, free formatting of certain fields in the 
deployment file made the extraction of information 
extremely difficult.
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Because of the problems described above, this example 
uses only information readily available in the defect data 
file, which contains records about faults found, for its 
analysis.

5.3 STRUCTURE OF DEFECT DATA FILE

Each record of the file refers to an individual fault. 
The particular subsystem for which data is recorded is 
identified by its type (i.e. launching unit, optical 
tracker, etc.) and serial number.

Each record contains fields detailing:

The date the fault occurred.

The holding group the subsystem was located in at the time 
of the fault (i.e. a particular squadron or battery). 
There are six different holding groups.

The type and serial number of the particular LRU removed 
and replaced. If more than one LRU was removed at one time 
a separate record was generated by each.

The level in the hierarchy to which the fault was 
subsequently traced. A separate record is generated for 
each identified fault.

ETI reading when the fault occurred. The ETI is a four 
digit counter which measures the time the unit has spent in 
norma1 mode.
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5.3.1 ELAPSED TIME INDICATORS

These indicators measure only the elapsed time in 
normal mode. The subsystems have various levels of 
operational mode. For example, a radar tracking unit can 
be operated in modes; high alert,low alert, and normal.

The ETIs themselves are known to be extremely 
unreliable; often sticking, and sometimes running 
backwards. The counters are 'throw away1 so may be 
replaced if found to be 'misbehaving'. However, the 
replacement counter is not necessarily set to the last 
reading of the discarded counter, or even reset to zero.

The value of the information from the ETIs is, 
therefore, suspect.

5.4 MODEL FORMULATION

There is a multitude of different PHM model 
formulations to be chosen from for analysis of any 
reliabiltiy data. These formulations vary by having 
different time metrics, censoring structures, and 
covariates.

The choice of formulations is particularly large when 
faced with a hierarchical structure such as this, since 
faults could, theoretically, be followed through at any 
level.



Initially four formulations of simple, physically 
plausible PHM models were identified. General covariates 
that can be included in all the models are; holding group, 
season the fault occurred, ETI reading, and a time trend.

The four different formulations were identified by 
considering different possible point processes.

5.4.1 POINT PROCESSES CONSIDERED

Process - A. Here the series of events occurring for a
particular serial numbered LRU is followed. The basic time 
metric is taken as the time between the LRU being placed in 
a subsystem, and its being removed from that same 
subsystem. The next time between failures (TBF) wi1 be 
taken for the same LRU within the next subsystem it enters 
after repair. Figure 5.3 illustrates this point process.

For this formulation it is necessary to know when the 
LRU was returned to service, so that its repair time is not 
included in the TBF calculation.

Covariates could include which particular subsystem 
the LRU was employed within when the fault occurred.

Process B. In this formulation the position of a
certain type of LRU within a particular serial numbered 
subsystem is followed. The basic time metric here is taken 
as the time between faults to the same type of LRU in the 
fixed position of the subsystem. Figure 5.4 illustrates 
this series of events.



Covariates could include which serial numbered LRU was 
removed at each fault.

Process C. The types of model employing this point
process look at the times to first fault of LRUs ofa given 
type. This is illustrated in Figure 5.5.

Covariates could include which particular serial 
numbered subsystem the LRU was in when the fault occurred.

Process D. Models of this formulation look at events at
the high level of subsystem. The series of events on a 
particular serial numbered subsystem is followed. The time 
metric for this point process is taken as the time between 
observed faults irrespective of which LRUs are faulty. 
This series of events is illustrated in Figure 5.6.

Covariates could include which type of LRU is faulty.

5.4.2 NEED FOR CENSORING STRUCTURE

In dealing with the reliability analysis of 
hierarchical structures, we may like to look at the 
lifetimes of units at a lower level in the hierarchy than 
is followed through the basic time metric.

When looking at such events at sub-assembley or lower 
levels it may be nec.essary to introduce censoring concepts.

This would be the case in this example since non- 
faulty sub-assemblies are removed from the field because 
their parent LRU has been replaced.



Many censoring structures might be identified by 
interpreting various fault mechanisms in the hierarchical 
levels. Many of these structures can result in 
considerable complexity of the model applied.

5.4.2.1 POSSIBLE STRUCTURES

The examples of possible censoring structures 
described in this section are chosen because they appear 
reasonable in terms of what is known about the methods of 
maintenance and fault recording.

In the simplest case consider an LRU with only two 
levels within its hierarchy. Further, the LRU contains
just two sub-assemblies. See Figure 5.7.

/There are four failure modes possible for such an LRU, 
which could be recorded in the data. These are:

Fault recorded to LRU but to neither
sub-assembley ( - , - )
Only sub-assembley 1 has fault (SA1, - )
Only sub-assembley 2 has fault ( - ,SA2)
Both sub-assemblies have faults (SA1.SA2)

Four censoring structures that might be applicable to 
such a case are given below, and summarized in Table 5.1.

(i) Two failure mechanisms. Only two failure mechanisms 
[FI] and [F2] are causing the fault in the LRU.

[FI] - only sub-assembley 1 has fault.
[F2] - only sub-assembley 2 has fault.



In such a case ( - , - ) type faults are ignored as being
recording errors. (SA1,SA2) type faults are treated as two 
independent simultaneous faults; occurring together purely 
by chance.

[FI] and [F2] are two competing risks, hence a failure 
of each type also generates a censored event for the other.

(ii) Three failure mechanisms. In addition to the two
failure mechanisms [FI] and [F2] as above, we could 
consider a third mechanism [FO] for the case ( - , ~ )
where an LRU fails without either sub-assembley being 
faulty; for example due to a fault in the connectors.

Again, (SA1,SA2) type recorded faults are treated as 
two independent simultaneous faults.

We now have three competing risks, each mechanism 
censoring the other two.

(iii) Four failure mechanisms. Instead of treating
(SA1,SA2) as two independent simultaneous faults, we can 
define another failure mechanism to explain this mode of 
failure, [F12], whereby faults of this type are assumed to 
be simultaneous due to a common external cause; for example 
a power surge.

There are now four competing risks, accounting for the 
four possible failure modes in the data, which each censor 
the other three.



(iv) Modified four failure mechanisms. In a
particular example of an LRU of the nature assumed in this 
section, it was found that simultaneous faults to the sub-* 
assembley occurs more frequently than would be expected 
according to the independent failure model.

We wish then to include a failure mechanism which 
accounts for simultaneous failure, but unlike [F123 in 
structure (iii) is not considered a risk competing with 
[FO], [FI] and [F2]. Hence, a failure mechanism [F12'3 can 
be introduced which itself is never censored, and does not 
censor the other three mechanisms.



Table 5.1 Effects of various censoring structures.

Censoring structure
(i) (ii)

Failure Failure Effect on Failure Effect on
«ode lechanisi analysis lechanisi analysis

( - ) - Ignored (FO) censors (FI) and (F2)
( Ski, - ) (FI) censors (F2) (FI) censors (FO) and (F2)
( - ,SA2 ) (F2) censors (FI) (F2) censors (FO) and (FI)
{ SA1.SA2 ) (FI) and (F2) censors nothing (FI) and (F2) censors (FO)

Censoring structure
(iii) (iv)

Failure Failure Effect on Failure Effect on
K>de lechanisi analysis lechanisi analysis

( - ) (FO) censors (FI), (F2), (F12) (FO) censors (FI) and (F2)
( Ski. - ) (FI) censors (FO), (F2), (F12) (FI) censors (FO) and (F2)
( - ,SA2 ) (F2) censors (FO), (FI), (F12) (F2) censors (FO) and (FI)
( SA1.SA2 ) (F12) censors (FO), (FI), (F12) (F121) censors nothing



5.5 ANALYSES

In this example we look at just three of the four 
different tyes of subsystem. These will be referred to as 
subsystem (1), (2) or (3).

In section 5.4 a number of model formulations were 
discussed. In this application, however, it was not 
possible to apply a model using the point process A. This 
is because information of when an LRU returns to the field 
after repair is not available.

We consider here the application of some simple models 
employing the point processes of type D and C.

5.5.1 POINT PROCESS D MODELS

Subsystems (1) and (2) are analysed with such models.

The time metric, t, was taken as the time in days 
between faults on a particular serial numbered subsystem.

Multiple records on the same day were treated as a 
single fault event in order to avoid many zero TBFs.

In order to model the TBFs of a number of subsystems 
together, it is assumed that subsystems of the same type 
have the same baseline hazard.

Times to first failure, and times since last failure 
were ignored since the date of entry into service, and the 
date reports were ceased are unknown.

The models follow a point process at subsystem level.



In this application, because of the large numbers of 
different types of LRU in the subsystems, covariates were 
not used to attribute a fault to a lower level. No 
censorings for competing risks, therefore, were required.

Ten explanatory variabes were introduced to form the 
covariate set for these models.

Holding group variables. Five binary dummy variables
were used to compare the six holding groups. These were 
set as in Table 5.2. The baseline holding group ' was 
selected to be the one with the longest period of reported 
events.

Table 5.2 Coding of holding group.

Holding group Zi Z2
Covariates

2 © Z<i Zs

I (base) 0 0 0 0 0

II 1 0 0 0 0

III 0 1 0 0 0

IV 0 0 1 0 0

V 0 0 0 1 0

VI 0 0 0 0 1

Season dummies. Three dummy variables z©, Z7 and z©
were used to compare the seasons spring, summer, and autumn 
respectively against the baseline season winter.
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ETI value. This covariate is set to the actual ETI
reading as recorded at the time of the occurrance of the 
fault. It is used irrespective of any apparent error.

Time trend. This covariate, time in days since an 
arbitrary start date, allows for the possible discovery of 
a time trend.

5.5.1.1 SUBSYSTEMS (1)

The results after the usual backwards stepwise 
elimination process, are given in Table 5.3.

Table 5.3 Significant model for subsystems (1).

covariates
A,
£ i p-value

Likelihood 
Ratio 

Statistic

zi - holding group II 0.3732 0.0000
Zs5 - holding group VI 0.5622 0.0000 68.695

(9.488)
z« - spring 0.1268 0.0205
Zio- time trend -0.0006 0 . 0 0 0 0

The likelihood ratio statistic exceeds the tabulated 
upper 5% critical value for a chi-squared distribution with 
four degrees of freedom. This indicates that the fitted 
model provides significantly more explanation, for the 
observed data, than a model assuming that the covariates 
have no effect and' that the data is homogeneous.
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The positive estimates of fi* and fl-s indicate that 
subsystems (1) in holding groups II and VI experience a 
higher hazard than those in the other holding groups.

There may be a number of possible reasons for this 
that could be investigated; for example these holding 
groups may transport their equipment over rougher terrain, 
or their maintenance procedures may not be of such a high 
standard as the others.

The positive estimate of £« indicates that subsystems
(1) experience a higher hazard in the spring than in the 
other seasons. This could possibly be reflecting increased 
exposure due to exercises.

The negative estimate of indicates a decreasing
hazard as time passes, by a rate of an approximate 20% 
reduction per year. The number.of subsystems (1) entering 
the field was known to be rising over the period of 
observation. If we can assume that the times to first 
failure are not shortening with calander time, the result 
indicates that the subsystems (1) are becoming more 
reliable.

The ETI reading was found to be non-significant. The 
elapsed time in normal mode was initially considered as 
important in explaining the fault rates of the units. The 
finding that the covariate is non-significant in this model 
is probably mostly due to the unreliability of the ETIs 
themselves, as discussed earlier in section 5.3.1.



A Weibull hazard plot for the estimated cumulative 
hazard from the model is shown in Figure 5.8. This shows
the Weibull to be a reasonable distribution for the 
baseline hazard. The shape and scale parameters for the 
distribution are estimated from the plot, and are 
approximately 0.84 and 11 days respectively. Since the 
shape parameter is less than 1 a decreasing hazard rate is 
exhibited.

The plot of the Cox and Snell type residuals, Figure 
5.9, shows that the model is a good fit. See Chapter 7.

Figures 5.10, 5.11 and 5.12 are proportionality plots
for the three binary significant covariates. See Chapter 
6 .

The approximately constant vertical separation in
Figure 5.10 shows that the proportionality assumption is
not invalid for the covariate zi - holding group II.

For holding group VI, the vertical separation in
Figure 5.11 changes towards the end of the graphs where 
there is relatively little data (hence the crossing point). 
The curves, however, are otherwise reasonably well 
separated and the proportionality assumption appears 
plausible for the majority of the data which corresponds to 
TBFs under 20 days.
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The plots in Figure 5.12, which stratifies on the 
covariate for spring, cross in numerous places, hence do 
not appear to have a constant vertical separation. The 
modelling of the saesons in this manner may not be strictly 
appropriate.

Figure 5.13 shows a standardised plot of the influence 
of individual TBFs on the £© parameter estimate, see 
Chapter 7. The plot has split into two distinct groups; 
one associated with TBFs in spring, and another associated 
with TBFs in the other seasons.

Despite the marginality of the significance of the 
covariate there do not appear to be any individual events 
that would alter the significance of the covariate if 
omitted.

5.5.1.2 SUBSYTEMS (2)

Applying the same model structure as was applied to 
subsystems (1), and commencing with the same initial 
covariate set, we can analyse the reliability of subsystems
(2) .

The results after backwards stepwise elimination for 
this application is shown in Table 5.4.



Table 5.4 Significant mode for subsystems (2)

1I11
! Covariates
iii-J........

p-value

»i
Like 1ihood!

Ratio i 
Statistic !i

ii
!Zi - holding group II 0.4009 0 .0000

iiiiii
\z2 - holding groupii

III 0.2566 0.0140
i

33.71 ! 
(9.488) 1

Izs - holding groupi VI 0.5325 0.0000 IlIi
Izxo- time trendi-l--

-0.0006 0.0001
)ii<»

These results, as may be expected, are broadly similar 
to those obtained earlier for subsystems (1).

Spring, however, is no longer significant and holding 
group III is now marginally significant.

The results for 2 i. zs and z±o are highly significant 
as before, and are of the same sign and order of magnitude 
as in the model for subsystems (1).

The likelihood ratio statistic suggests that this is 
not such a good-fitting model as that for subsystems (1).

5.5.2 POINT PROCESS C MODEL

For this example a particular type of LRU present in 
subsystems (3) was selected for analysis. This selection 
was made because the LRU has just two sub-assemblies and 
two levels in its hierarchy, so form the simple case 
discussed in section 5.4.2. The censoring structure (iv) 
was applied to the model.
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Dummy variables were introduced into the covariate set 
to compare the failure mechanisms. The dummy variables 
were set as in Table 5.5.

Table 5.5 Coding for failure mechanisms.

Failure me chan i sm 2 x x

Covariate
2x2 2x3

[FI] (base) 0 0 0

[F12'] 1 0 0
[F0] 0 1 0
[F2 ] 0 0 1

The covariates Zx to Sio that were used for the 
previous models were again incorporated into the covariate 
set.

After backwards stepwise elimination only one
A

covariate; Z u  remained significant, with fin - 1.8713 and 
p-value ** 0.0000.

The positive estimate of flu  suggests that there are 
shorter times to simultaneous failures than times to 
failures due to the alternative mechanisms.
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5.6 CONCLUSIONS FROM APPLICATION TO A WEAPON SYSTEM

PHM again offers itself as an effective method for the 
reliability analysis of a system such as this with its 
ability to incorporate a wealth of auxiliary, or covariate, 
information.

However, with such a complex hierarchical system and 
so many possible model formulations which could be applied 
to the data, it becomes very important to understand the 
operations of the system under observation, obtain high 
quality data, and use PHM in an exploratory manner. The 
complexity of the models requires careful application.
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Figure 5*1 Hierarchical nature of subsystems.
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Figure 5.2 Generalised representation of the fault structure.
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Figure 5.3 Series of events to a particular LRU

Particular
serial
numbered
LRU Time
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Figure 5.4 ' Series of events to the position of a certain type
of LRU within a particular sub-system.
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Figure 5.5 Times to first failure of each LRU of 
— — —  a certain type

Particular LRU

Different LRU of 
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Time

Another LRU of 
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of the LRU
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Figure 5.6 Series of events to a particular subsystem
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Figure 5,7 LRU with two levels of hierarchy only, and 
two sub-assemblies
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Figure 5.8 Weibull baseline hazard plot. 
D-type mode 1. Subsystem (1).
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Figure

V'?* * 1 'f'-

5,9 Cox and Snell type residual plot.
D-type mode 1. Subsystem (1).
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Figure 5.10 Proportionality plot. D-type model.
Subsystem (1). Covariate Zi.~ 1 Holding group II
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Figure 5.11 Proportionality plot. D-type model.
Subsystem (1). Covariate Zss*-‘ Holding group VI’
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Figure 5.12 Proportionality plot. D=type model.
Subsystem (1). Covariate z«s - 'Spring'
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Figure 5,13 Influence plot. D-type model. Subsystem (1)
Covariate z© - ‘Spring’
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CHAPTER 6

DIAGNOSTICS FOR PHM

PHM has proved a useful tool for analysing reliability 
data. It's strength is largely due to its non-parametric 
approach to analysis.

The method does, however, make the assumption of 
'proportional hazards' for the effect of covariates. This 
assumption should be checked for validity.

In this chapter various diagnostics aids, which have 
been suggested in the literature, will be considered. 
These diagnostics can be used to assess the validity of the 
model’s assumption, or to assess the fit of the model.

Many of the diagnostics are based upon graphical 
techniques.

A graphical method for testing the assumption of 
proportionality between different levels of a covarite is 
provided by Kay (1977). This technique is investigated in 
detail in section 6.1.

Kay (1977) also suggested a technique to assess the 
fit of a model, through obtaining residual quantities as 
defined by Cox and Snell (1968). See section 6.3 for 
detailed investigation into this technique.
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Lagakos (1981) defines residual scores similar to the 
Cox and Snell type residuals defined in Kay (1977). 
Lagakos adjusts the observed ranks based upon the residual 
information.

The readjustment should account for the effects of the 
covariates, if the model is appropriate.

An explanatory variable omitted from the model found 
to be associated with the adjusted ranking may be 
correlated with survival time.

An explanatory variable' fitted to the model exhibiting 
an association with the adjusted rank indicates lack of fit 
of the model.

A Chi-squared goodness-of-fit test is obtained by 
Schoenfeld (1980), by partitionaing both the covariate 
space and the time axes. Andersen (1982) proposes a new 
technique similar to that of Schoenfeld (1980), that 
invovles partitioning the time axes. A statistic for 
checking the fit of a model is provided by Moreau et al 
(1985), that in the two-sample problem is the same as that 
proposed by Schoenfeld (1980).

Schoenfeld (1982) defines residuals which are 
essentially the difference between the observed value of a 
covariate and its expected value conditional on the risk 
set. These are used graphically to examine the 
proportional hazards assumption, see section 6.2.



Cain and Lange (1984) and Reid and Crepeau (1985)
employ essentially the same method to obtain influence 
functions for the proportional hazards model. These
functions are obtained for each covariate and approximate
the effect of individual events upon the estimate of the
associated J3 coefficient, see section 6.4.

Storer and Crowley (1985) also discuss a diagnostic
A

for estimating the change in 13 due to the deletion of 
single observations.

Gill and Schumacher (1987) suggest a test of the 
proportional hazards assumption. for two-level covariates. 
The test procedures are based on the discrepancy between 
two-sample tests. e.g. the log rank and a generalised 
Wilcoxon test. In nonproportional hazards situations the 
tests might give different answers. Gill and Schumacher 
(1987) also present a related graphical method for 
comparing trends in series of events.

Arjas (1987) presents graphical diagnostics which make 
direct comparisons between observed and expected failure 
frequencies, as estimated from the model.

The way in which individuals are stratified depends on 
the aspect of the model being checked. Arjas (1987) 
investigates a fitted proportional hazards model: a
significant covariate omitted from the model: a common
baseline assumed for an inappropriate case.
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The remaining sections of this chapter concentrate on 
the four graphical diagnostics for PHM that have been 
employed in Chapters 3-5.

The techniques are investigated in detail, and 
improvements made to the presentation of the plots, to ease 
visual inspection, are also discussed,

6.1 PROPORTIONALITY PLOTTING

The most commonly applied method to test whether a 
covariate follows the proportionality assumptions is to 
stratify upon the covariate of interest and, for each 
stratum (level) of the covariate, plot the logarithm of the 
cumulative baseline hazard against time, or the logarithm 
of time, see Kay (1977), Kalbfleisch and Prentice (1980), 
Aitkin and Clayton (1980), Andersen (1982).

For a binary covariate, zx say, we have for the hazard 
function

and hence for the logarithm of the cumulative hazards:

ho(t).exp(Bz).exp(8k Zx ) , Zx~l
h(t;z,zx) 6 .1

ho(t).exp(Bz) , Zx=0

log Ho(t) + Bz + ft* ,  Zx-l
log H(t;z,zx)

1og Ho(t) + Bz , Zx—0
6.2

From equation 6.2 the difference between the log 
cumulative hazards when Zx=l and Zx=Q is a constant;



log Hki(t) - log H*o(t) = B* 6.3

where HKa.(t) is the cumulative hazard when z*=l, and Hxoft) 
is the cumulative hazard when zk=0.

Now stratifying the data on the level of the covariate
zk and applying the model to the two stratum.

A A A
log H*x(t) = log Hoi(t) + Bz

6.4
A A A

log Hxo(t) = log Hoo(t) + Bz

where Hoi(t) is the baseline cumulative hazard for the
stratum for which zk-l. and H00(t) is the baseline
cumulative hazard for the stratum zk*0.

From 6.4 and 6.3
A A a

log Hoi(t) - log Hoo(t) - B* 6.5

Hence plotting the logarithm of the baseline 
cumulative hazard against time t for the two strata on the 
same graph should produce a constant vertical separation

A
equal to B*.

The stratified models as defined by 6.4 have the same 
covariate- set and covariate coefficients (with the 
exception of Zx) as are significant in the full model. The 
plots should still result in a constant vertical separation 
if the models for each stratum are not constrained in this 
way. The size of the separation is now dependent on all 
the covariates. Now for the two strata:
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log H m  (t) - log Hoi(t) + B'z'
6 .6

log Hxo(t) - log Hoo(t) + &"z"

where z ’ is the set of significant covariates in the 
stratum for which zk~1> and z“ is the set of significant 
covariates in the stratum for which . 8 ‘ and B" are
the respective coefficient values.

From 6.6 and 6.3

log Hoi (t) - log Hoo(t) = iL ~ B'z' +B,,z"
6.7

= constant

A non-constant vertical separation between the plots 
will, then, indicate that the covariate zk does not act 
proportionaly on the hazard.

6.1.1 CHOICE OF AXES

From equations 6.5 and 6.7 it can be seen that 
plotting the log baseline cumulative hazards against the 
failure times t should result in plots having constant 
vertical separation, hence testing the proportionality 
assumption. This is the procedure followed by Kay (1977) 
and Andersen (1982).

Kalbfleisch and Prentice (1980) and Aitkin and Clayton 
(1980) suggest plotting the log baseline cumulative 
hazards against log t. Such plots should also have 
constant vertical separation, and in addition if the lines
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are straight they will indicate that the baselines are 
Weibull distributed.

However, since we are looking at the cumulative 
hazard, more information goes into the plot at larger t's, 
and this is the area of the plot we should be most 
interested in. When plotting log t we effectively 'stretch 
out' the smaller t's and 'bunch up' the larger t's 
resulting in less of the plot being devoted to the area we 
are most interested in.

It is for the above reason that we choose to plot 
against t.

6.1.2 INTERPRETING THE PLOT

The problem with this graphical procedure is that it 
contains a highly subjective element. It is not easy to. 
decide whether or not there is a constant vertical 
separation between the log baseline cumulative hazards for 
each stratum.

Because of the curvature of the plots those with true 
constant vertical separation appear to close in together as 
t 0. See Figure 6.1.

The plots are particularly difficult to interpret when 
one stratum has only a small number of failures.
6.1.3 PLOTTING SEPARATION

Because of the problem encountered with the visual 
inspection of the diagnostic as detailed in section 6.1.2, 
the vertical separation between the two log baseline



cumulative hazards is calculated at each failure time and 
plotted beneath the original graph.

Since the hazard is only estimated at failure times, 
and the - two strata will have different failure times, 
linear interpolation is employed between the failure points 
on each stratum. Hence. an estimate of the vertical 
separation can be calculated at each failure point.

Figure 6.2 is the proportionality plot from the
hardware failure example for covariate Zo - 'No fault 
found'. The vertical separation at failure points is 
plotted below.

For constant vertical separation the difference line 
should be straight and horizontal. Typically, however, the 
difference line will not be perfectly straight or
horizontal, and a means to decide how 'good' the difference 
line should appear needs to be developed in order to 
accept the proportionality of the covariate.

A 'runs' and sign' test were chosen to look at the 
walk of the difference line. At each failure point ti, the 
walk is given a *+’ sign if the difference line is 
increasing between ti and t4+x, or a sign if the
difference line is decreasing between ti and t1+i. If the 
difference is the same at ti and ti+i no sign is awarded.

The 'runs' test tests the null hypothesis of
randomness. When tne null hypothesis is true the path of 
signs should cross (+ to or - to +) quite frequently,
but when it is not true this happens much less frequently.



The number of runs is defined as the number of blocks 
separated by a crossover to the other sign.

The 'sign' test is also used, since if the walk is 
random we could expect about the same number of +'s 
and — 1s .

From the results of the runs and sign test we can see 
then if there is any significant trend in the vertical 
separation.

6.1.4 CONFIDENCE BOUNDS FOR THE CUMULATIVE HAZARD

Since the variance is known to alter along the 
estimates of the log baseline cumulative hazard it would be 
useful to construct confidence bounds around the estimates.

6.1.4.1 1 LINK'S * BOUNDS

Initial bounds for the log baseline cumulative hazard 
were produced, from a transformation of the confidence 
interval, around the baseline survivor function, which was 
constructed from an asymptotic estimate of the variance for 
the survivor function (Link (1984)).

A smoothed version of Breslow's step function estimate 
for the baseline survivor function; whereby linear 
interpolation between failure points is employed to 
estimate a value of the baseline survivor function at times 
where no failure occurs, is considered.
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There are two sources of variation in the estimate of 
the survivor function; firstly in the estimation of the

■A
coefficients J3 by &, and secondly in the approximation of 
the integrated hazard function.

The estimates of the variance of the baseline survivor 
function can be used to construct a confidence interval 
about the baseline survivor function at various points; 
based on the asymptotic normality of the survivor function.

A transformation of this interval can be used to
construct bounds about the log baseline cumulative hazards. 
These asymptotic bounds are, however, very wide.

An example of Link's bounds applied to the
proportionality plot for the covariate 'No fault found' 
from the analysis of the ICL hardware failure data can be 
seen in Figure 6.3. The +'s on the figure are the 95%
bounds around the top plot, and the x's those for the lower 
plot.

Despite the wideness of the bounds, it can be seen 
that the bounds 'narrow' as t increases indicating less 
variability in the latter part of the plots.

6.1.4.2 SIMULATED WEIBULL BOUNDS

Simulated bounds were considered in an attempt to 
narrow the confidence intervals. Assuming a Weibull 
distributed baseline with parameters estimated from a 
hazard plot for each of the strata, 90% limits were



constructed by simulating twenty groups of fifty failure 
times from the estimated Weibull distribution.

The parameters of the Weibull distribution are 
estimated from a Weibull hazard plot.

An example of these simulated bounds as applied again 
to the proportionality plot for the covariate ’No fault 
found’ from the hardware failure example can be seen in 
Figure 6.4.

The simulated bounds are narrower than those obtained 
from the asymptotic variance of the survivor function. We 
have, however, had to assume a distributional form for the 
baseline hazard.

The variability is seen to decrease for larger t.
The simulations have also been used to produce 95% 

bounds around the difference plot. The width of these 
bounds indicate the sort of variability we might expect to 
find in the difference walk when the proportionality 
assumption is valid.

6.2 SCHOENFELD RESIDUALS

Schoenfeld residuals were first introuced as a
/

graphical diagnostic for PHM by David Schoenfeld (1982).

The residuals are known as 'partial residuals’ since a 
set is obtained for each covariate. The partial residuals 
can be used to test 'locally* the proportional hazards 
assumption.



6.2.1 DEFINITION OF RESIDUALS

For the k'th covariate at failure time ti the partial
residual r ^  defined:

A
rxi ~ 2x1 ~ E[zxilRil 6.8

where Zxi is the value of the k'th covariate at
failure time tA.

*
E[ZxilRil is the conditional expected value of Zxi

given the risk set R* at failure time
11.

when
2 Zxm. exp (i3z) 

a m€Ri
E[Zki I Ri ] =

2 exp(Bz) 
m€R±

The partial residuals are only obtained at failure 
points.

The partial residuals are not specified for tied 
failure points. However, since we use Breslow's 
approximation for the contribution to the partial
likelihood in the case of tied failures, we are able to 
make a slight modification to estimate the partial
residuals at each of the tied failure points (Wightman 
(1987)).



The partial residuals are obtained from elements of 
the score vector, U(B), [ U(3) = d log L(3) / d& ] , vis

U(B)
n 
2 
i = 1

2
m€R.

Zxm.exp(Bz)

Zki
2 exp(Bz) 

m6ER i

n *
~ 2 rj<i

i = l

6.2.2 TESTING THE PROPORTIONALITY ASSUMPTION

Since the score vector U(B)=0 globally the expected
A

value of the residual, E[rxi]»0. Hence, if proportional
A

hazards holds a plot of rM  v t* will be centred about 0 
for all areas of the time scale.

A
For a binary covariate k, Zxi-E[zxi1RiI splits the 

plot into two bands. above and below the axis, 
corresponding to the two values of the covariate.

Schoenfeld (1982) gives as an example the residuals 
for the data of Freirich (Cox, (1972)), where he splits the 
time axis into three bands; T>16, 5<T<15 and T<5.
Schoenfeld suggests that there is no failure of 
proporttonal vhazards in the two regions T>16 and 5<T<15 
since* the? residuals in these regions approximately sum to 
zero** but that for the region T<5 this condition is not met 
indicating failure of proportional hazards.

This statement itself cannot be true since the total 
sum of the residual by definition equals zero.
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6.2.3 DIVISION OF THE TIME SCALE

The particular division of the time scale by 
Schoenfeld (1982) appears to be arbitrary. The gap in the 
‘0* band in the region T<5 may not be too unusual, and if a
larger region were investigated the proportionality
assumption may not be deemed violated.

Consider a special case of a model with a single 
binary covariate and an exponential baseline hazard. If 
from a sample size of n, there are n* events for which the 
covariate value equals 1, then the ratio of the expected 
number of points in the '1' band to the expected number of 
points in the 'O’ band can be estimated. Consider the
region (0,tj<): the probability of an individual with
covariate value 1 failing in the interval is given by 1— 
e x p , and the probability of an individual with 
covariate value 0 failing in the interval is given by 
1-exptAtx) .

Hence, in the interval (0,tx);

[expected no. points in '1 * band] 
k(tx) - ________________________________

[expected no. points in 'O' band]

< 1 - exp(-e^Xtx) > ni
k(tx) -_______________________ x __  6.9

{ 1 - expfXtx) > (n - ni)
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If is small in relation to the mean failure time
then a crude approximation to 6.9 is given by:

no.
Mt*) - . ___________

(n - n^

For 13 >0 and ni »  (n ~ ni) a Value of k(t>c) > 10,
say, may not be unusual. Thus at the start of the plots 
this is quite consistent with gaps in the ‘O' band in the 
interval (0,tx)■

6.2.4 APPLICATION OF MOVING AVERAGE

Since there are often in reliability problems a large 
number of tied failure times the density of partial 
resiuda^s at many of the points cannot be seen. Visual 
inspection is also hindered, in the case, of binary 
covariates, because the two bands are rarely equidistant 
from the axis.

Because of these reasons and the problem in 
determining appropriate divisions for the time scale, as 
discussed in setion 6.2.3, a moving average based on 
intervals of a large number of failures was applied to the 
plot to ease visual inspection of the diagnostic. The 
moving average can then be looked at to assess local fit to 
the proportionality assumption.

Figure 6.5 is the plot of Schoenfeld residuals against 
time for the covariate 'average hours use per week' from



the hardware failure example. There is a general scatter 
of residuals for this naturally measured variable. The x's 
represent tied values hence a density of points greater 
that 1 in these positions. the moving average line has 
been applied over groups of twenty observations, this 
gives a better representation of the scatter about the 
axis.

Figure 6.6 is the plot of Schoenfeld residuals for the 
covariate *2 processors' from the hardware failure example. 
The residuals for this binary covariate have split into two 
bands above and below the axis. Agian the x's represent 
tied values. The moving average again based on groups of 
twenty observations gives a clearer picture with which to 
assess the local fit to the proportionality assumption.

6.2.5 EFFECT OF CENSORING OBSERVATIONS ON APPEARANCE OF 
RESIDUAL PLOTS.

For a binary covariate, where a split of residuals 
into two bands occurs, we can show that an upward or 
downward trend should be expected in the appearance of the 
residuals, based on the change in ratio of numbers with 
covariate equal to 1 and numbers with covariate equal to 0 
in the risk set.

When there are no censoring events the appearance of 
the residuals can easily be seen to depend on the sign of 
J3 j i
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Consider the two groups; the ni items for which 
Zji = 1, i - 1, 2, ... , n hence having covariate
combination fiiZi + + ... + Bj_xZj_i + Bj , and the
(n - n^) items for which Zj± =0, i = 1, 2, ... ,n hence
having covariate combination Bi.2* + BsZa + . . . + .

Let a = exp(J3iZi + 1322a + ... + Bj-n-Zj-a.) , and
consider the expected number of items surviving past a time 
t in each group: ni.exp(-a.exp(Bj).Ho(t)) and
(n-ni),exp(-a.Ho(t)), Zj-1 and Zj =0 respectively.

Looking at the ratio of the expected number surviving 
past t in each group:

nx exp(-a.exp(Bj).H0 (t))
RatiOi.o ~   . ________________________

(n~ni) exp(-a.Ho(t))

(exp(Bj)-1) 
nx [exp(-a.Ho(t))}

(n-nx)

As t -> oo , exp(~a .H0 (t) ) •> 0

if Bj >0 then exp(Bj)-l > 0
(exp(Bj)-l)

hence [exp(-a.H0(t))] decreases as t > ®

if Bj < 0 then exp(Bj)-l < 0
(exp(Bj)-l)

hence [exp (-a .Ho (t) ) ] increases as t> co

Since nx/(n-nx) is constant over all t



Ratio*.o decreases as t > m if Bj > 0 
Ratio*,o increases as t > co if B j < 0

Now looking at the contributions from each group to 
E[zji ! Rj ]'.

2 zJm.exp(0z) 2 exp(Bj)
a m6Ri Ri
EfZjiIRi]

2 exp(flz) 2 [ exp (J3 *) + 1}
mGRi Ri

Let m* - number in risk set at time ti, for which zJm
m0 = number in risk set at time t±, for which zJm

then a m*.exp(Bj)
E(zji ! Ri ] - ___ ______________

0

m*.exp(Bj) + m0

Let
mi 1 - number in risk set at time ti*.*, for which zJm = 1 
m0 ‘ ■■ number in risk set at time ti+i. for which zJm - 0

then a m*'.exp(Bj)
E[Zji+i!Ri+i] — _________________

m* '.exp(Bj) + m0'
A

Investigating the relationship (R) between E[zji!Ri]
aand, B [Z j * -*.* »Ra. -«-x } :
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m

m*.exp(j0j) m*’.exp(Bj)
  (R) ________________
m*.exp(Bj) + m0 m*1 .exp(Bj) +■ m0 *

(m*'.exp(Bj) + m0‘) (R) m*’(m*.exp(Bj) + mo)

m* mi
  (R) ___
mo mo

We already know the relationship (R) since
m*/mo 8=5 Ratio*,o at time , and m* ' /m0 1 * Ratio at time °|
11 - » - * .

A A
If Bj > 0, m*/m0 > m* 1 /m0 ' , hence E[ZjilR±} > E [z* I 1

A A
If Bj < 0, m*/m0 < m* ' /m0 ' , hence EtzjilR*} < E [Zj î .* 1 Ri+* 3

The appearance of the residuals on both bands is thus 
determined; increasing if Bj >0, and decreasing if Bj < 0.

Figure 6.7 shows the upward trend in each band of the 
residuals as we would expect for a binary covariate with a 
positive estimate of B. The figure shows the plot for such 
a covariate; 'left truncation' from the hardware failure 
examp1e .

Figure 6.8 shows the downward trend we would expect 
for a binary covariate with a negtive estimate of B. The 
figure shows the plot for such a covariate 'system B ‘- from 
the hardware failure example.
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However, with the inclusion of censoring events it is 
no longer possible to determine whether the Ratioi.o is 
increasing or decreasing because there is no longer a 
constant term ^/(n-ni) .

Experience has shown that the appearence of these 
residual plots is highly affected by the pattern of 
censoring observations: the effect has even altered the
trend we might expect from the sign of Bj, given no 
censoring.

Figure 6.9 shows the Schoenfeld residuals for a model 
with censored times. This plot has increasing trend in the 
two groups of residuals despite the estimate of the 
coefficient B being negative. The plot shows the residuals 
for the covariate ’system F ‘ from the hardware failure 
example.

Wightman (19871 observing the apparent dependence on 
the pattern of censoring events, plots the censoring 
observations at their covariate values on the same figure.

6.2.6- RESIDUALS FOR COVARIATES FROM COMPETING RISKS

The Schoenfeld partial residuals are extracted from 
elements of the score vector U (B).

2 Zj.exp(Bz) 
m€Ri

zji - --------------
2 exp(Bz) 

m€Ri _

U (B)
d log L n
 =' 2

i=*l
d Bj
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Now, in the case of a model involving competing risks 
the partial likelihood factorises into two terms; one which 
is the usual partial likelihood as obtained from a simple 
model without competing risks, and the other containing 
only information for the failure mode covariates, see 
Wightman (1987) and section 2.3.5.

For a failure mode covariate the partial residual is 
obtained via the factor of the partial likelihood involving 
the failure mode terms, Lr-

n 
7r
i = l

exp (aiXn + a 2X2 1 + + a 1X1 i )

[ 1 + exp(a^) + exp(a2) + + exp(ax) ]

where

X ji

aj

number of covariates representing failure 
modes.
j = l,2,...,l *» value of j' th failure mode 

covariate.
- associated parameter for 

covariate Xj.

n
log Lt » 2 [(aiXii + ...+aiXu) -• ln{ 1+exp (ax ) + . . . +exp (ax ) } ]

i-1

U(aj) =
d log Lf

d aj

exp(aj)
Xji

t1+exp(ax)+..+exp(ai)



The element corresponding to the expected value of Xji 
conditional on the risk set Ri, is constant over all ti:

* exp(aj)
EtxjilRi] - __________________________

[1+exp(ax)+...+exp(a!)1
The Schoenfeld partial residuals for a failure mode 

covariate involved in competing risks therefore split into 
two bands above and below the axis, and remain parallel to 
the axis over all ti.

Figure 6.10 shows the Schoenfeld residual for the 
competing risks covariate 'No fault found' from the 
hardware failure example. The residuals in each band have 
a constant value.

6.2.7 INVESTIGATION OF FORM OF TIME DEPENDENCE

Pettit and Bin Daud (1987) use Schoenfeld*s residuals 
to investigate the nature of time dependence that may be 
applicable for a covariate which violates the proportional 
hazards assumption.

A proportional hazards model with a time dependent 
covariate x becomes:

h (t;z,x) - h0 (t).exp( Bz + ag(t)x) 6.11

where a is the associated unknown parameter of the 
covariate x

g(t) is some function of the time metric t.



By fitting the model without the time dependence for 
the covariate x, ag(t) is approximated by the coefficient 
B(x) .

For g(t) varying about zero slowly then:

E[ri(x)] * ag(ti).Ai(x)

where ri(x) is the residual at failure time t* for the 
covariate x

Ai(x) is the variance for the coefficient of the 
variable x

Hence, plotting ri(x)/Ai(x) v tA may give some
indication of the form of g(t).

Pettit and Bin Daud use various smoothing techniques 
for these plots to build an overall picture of the form of 
g(t) .

However, from section 6.2.5 the residuals are
influenced by the censoring observations, which will
therefore effect the form of the plots. The form of g(t)
can then only be reliably pictured in the plots when there
are no censoring observations.

6.3 COX AND SNELL TYPE RESIDUALS

A graphical procedure for assessing the goodness-of- 
fit of the Proportional Hazards Model is provided by a plot
of Cox and Snell type residuals, (Cox and Snell (1968)).



Methods based on those in Cox and Snell (1968) are 
used to obtain residual quantities which should, if the 
model fitted is appropriate, be consistent with a sample 
from the standard negative exponential distribution.

6.3.1 DEFINITION OF RESIDUALS

The residual quantities are defined as (Kay (1977)):
A  A
Oi * H (11 ; z i)

A. A
* Ho(t*).exp(Bz) 6.12

A
where e± is the estimated residual at the failure

time ti.

Ho(ti) is the cumulative baseline hazard* obtained 
from fitting the model.

In forming residuals based on the cumulative hazard 
there is a problem of how to incorporate tied failure
points, and censored events.

An estimate of the hazard based on the failure points, 
which allows for tied failures, is used (see section
2.3.1).

Linear interpolation is employed between failure 
points to obtain an estimate of the cumulative hazard at 
censored times. The value of the censored residual is 
obtained from the resulting estimate of the cumulative



hazard. Censored points occurring after the last failure 
are allocated a 'cumulative' hazard value equal to that of 
the last failure point.

6.3.2 DISTRIBUTION OF THE RESIDUALS

The estimated residuals, if there is no censoring, 
should look roughly like a random sample from the standard 
negative exponential distribution.
Consider 6.12

t*
h(x) dx 6.13

0

hence d e i
h(t) 6.14

dt

A probability density function f(t) is given by:

d S(t)
f (t) 6.15

dt

where S(t) is the probability of an item surviving past
time t, given that it has not failed prior 
to t. (The survivor function).



From the proportional hazards model:

S(t) = exp h (x) dx

hence d S(t)

dt
exp h (x) dx .( - h(t)J

then for the probability density function f(t) in 6.15

f(t) = h (t).exp h(x) dx

substituting from 6.13 and 6.14

d e-
f (t) exp (-*©! )

dt

hence J f(t) dt * Jexp (-e a.) de ±

The ei, therefore, are seen to have negative 
exponential distributional form with parameter 1.

6.3.3 USING THE RESIDUALS TO ASSESS THE FIT OF THE MODEL

We have seen in section 6.3.2 the distributional form 
the residuals can be expected to exhibit if the model



fitted is appropriate. It is this property that forms the 
basis of this graphical assessment for the fit of the 
model.

A residual e* for a censored observation at tA is 
treated as a censored observation.

The residuals are reordered by size, and a product 
limit survivor function R(e) is obtained from the set of 
censored and uncensored residuals.

A
If the model is appropriate, then a plot of -In R(ei)

A
v ei should be roughly linear with slope 1.

Consider a function g(x) ** exp(-x) c.f. form of the 
residuals.

A survivor function at x ‘ is given by:

S(xl) » | exp(-x) dx “ exp(-x')
x'

hence In S(x') » ~x'
A

Our product limit survivor function R(e) should then 
display the property:

A  A
- In R(ei) = ei
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Hence, if the plot is a straight line with gradient 1,
then the residuals appear to be from a unit negative
exponential indicating that the model is a good fit.

6.3.4 DEVIATION FROM THE EXPECTED LINE

Because of the treatment of the censored events after 
the last failure, over-estimation of In R(e) can result 
in the latter part of the plot; moving it away from the
expected straight line.

Figure 6.11 shows a Cox and Snell type residual plot
for the hardware failure example. The deviation from the
expected 45° line is increasing at the latter end of the
plot.

It is not apparent, in the literature, to what extent 
agreement with the anticipated line should be expected.

Since the expected form of the residuals is known to 
be unit negative exponential, bounds can be simulated. 
Figure 6.12 shows 95% simulated bounds around the Cox and 
Snell type residual plot for the hardware failure example. 
The bounds are seen to widen as e increase.

The bounds in the plot have been estimated by
simulating sets of residuals from the unit negative
exponential distribution. For the 95% bounds shown in
Figure 6.12 200 sets of residuals were simulated. For each
residual in each set the corresponding In R(e) was

142



estimated. The bounds were formed by using the 6th and
195th largest estimated In R(e) at any point on the
residual axis.

This simulation technique could be used to form 
templates for Cox and Snell residual plots, showing bounds 
at various confidence levels. Since the number of 
residuals simulated within each set, equal to the number of 
events in the Cox and snell plot, will effect the width of 
the bounds separate templates will need to be prepared for 
different sample sizes.

Figure 6.13 shows such a template. This has been 
prepared for a sample size of 200. 99.9%, 99% and 95%

V

bounds, indicated by + 's, x's and o ’s respectively, have 
been formed by simulating 2000 sets of residuals.

Computer time may, however, prove too. costly to 
prepare such templates as a matter of course.

6.3.5 VARIANCE STABILISATION

Since the survivor function R(e) is a binomial 
probability; with the probability of any item surviving 
past a time t equal to p. The variance of the proportion 
of a sample size n surviving is given by p(l-p)/n.

In this instance the sample size n is not constant 
(reduction by 1 as each item ’dies'). therefore the 
variance in R(e) is not constant. Hence the variability in

A
the plot -In R(e) v e increases as e gets larger.



An angular transformation; sin-^Tx has the effect of
stabilising the variance in an estimated proportion x with
binomial variace p(l-p)/n (Bartlett (1947)).

A variance stabilised form of the Cox and Snell 
residuals can then be presented by plotting sin“1'(R(ei) v 
sin"1(exp(-ei/2)), (Aitkin and Clayton (1980)). The 
variance of the new varianced stabilised function is given 
approximately by 1/4N, when sin-3- is measured in radians, 
and N is the size of the original sample, (Bartlett 
(1947)).

Figure 6.14 is the variance-stabilised plot of the Cox 
and Snell type residuals for the hardware failure example. 
Because of the variance stabilisation the plot is seen to 
adhere more closely to the expected 45° line.

6.4 INFLUENCE FUNCTIONS

Empirical influence functions can be used in an 
informal manner to identify observations which may greatly 
effect statistical inferences regarding the covariates.

The technique approximates the influence of individual 
observations on each of the B coefficients.

6.4.1 CALCULATION OF INFLUENCE

The influence can be obtained in an exact manner by 
dropping each observation in turn and refitting the model.



In most practical applications, however, this leads to 
a prohibitive requirement of computer time.

Cain and Lange (1984) employ a first order 
approximations. based on a Taylor series expansion, to
A A
£ “ £ ( j > .

A
Where £ estimate of £ with all observations.

A
£< j > estimate of £ with j1th observation removed.

A A
Hence, £ - £ < j ■> is the influence of the j ' th

observation on the estimate of £.

This representation of the influence is found to 
comprise Schoenfeld's partial residual (see section 6.2.1) 
and a further component which is the effect an item has on 
the £ coefficient via all the risk sets that contain the 
item. (Wightman (1987)).

6.4.2 GRAPHICAL REPRESENTATION OF INFLUENCE

The influence function can be represented graphically 
by plotting the standardised influence against the rank of 
survival time (Cain and Lange (1984)), or by plotting 
influence against covariate value (Reid and Crepeau 
(1985T) ) .

However, in order to identify single observations 
which may be so influential as to alter the significance of 
the covariate if omitted. we plot the estimate of the 
changed z-score against the rank of the observation.



Estimating the change in the z-score can be achieved 
if we can assume that the variance-covariance matrix is not 
fundamentally altered when one observation is omitted. 
This assumption is already made in the calculation of the 
estimated influence function. (Wightman (1987)).

A
S t  (13)

where z is the z-score obtained when all the
observations are included

A
Z(j> is the estimated z-score when the j'th 

observation is omitted
A
I<j) is the calculated influence of the j'th

observat ion
A A

St (13) is the standard deviation of 13 obtained 
from the variance-covariance matrix

Figure 6.15 shows the influence plot for the covariate 
'average hours u.s« per week’ from the hardware failure 
example, Zj v nnK. The majority of the points occur 
around the value of the original z-score. These are 
observations with little influence. and are very often 
censored events. There are no observations in this example 
so influential as to alter the significance of the 
covariate if omitted (values in the region <1.96 since + ’ve 
13) .



Figure 6.16 shows the influence plot for the covariate 
'4 processors' from the hardware failure example. For this 
binary covariate there are three main groups of influence 
points. The central group centred about the original z— 
score largely comprises censored events. The other two 
groups are largely due to the two levels of the covariates



Figure 6.1 Vertical separation In proportionality plotting
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Figure 6,2 Vertical separation plotted below
proportionality plot, from the hardware failure
example. Covariate ‘No fault found.'
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Figure

La

.3 95% Link's bounds around proportionality plot
for the hardware failure example.
Covariate 'No fault found'.
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Figure 6. 95% Simulated Weibull bounds around 
proportionality plot for the hardware failure 
example. Covariate ‘No fault found.'
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Figure 6.5 Schoenfeld partial residuals for covariate
1 average hours use per week' from the hardware 
failure example. Moving average over groups of 
twenty observations.
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Figure 6.6 Schoenfeld partial residuals for covariate
'2 processors’ from the hardware failure example.
Moving average over groups of twenty observations.
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Figure 6.7 Schoenfeld partial residuals for covariate with
positive estimate of 0. 'Left truncation' from
the hardware failure example.
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Figure 6.8 Schoenfeld partial residuals for covariate with 
negative estimate of 3. 'System B' from the 
hardware failure example.
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Figure 6,9 Schoenfeld partial residuals for covariate with
negative estimate of 0. 'System F 1 from the
hardware failure example.
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Figure 6.10 Schoenfeld partial residuals for competing
risks covariate 'No fault found', from the
hardware failure example.
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Figure 6.11 Cox and Sneil type residual plot for the 
hardware failure example.
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Figure 6.12 95% Simulated bounds around the Cox and Snell
type residual plot for the hardware failure 
example.
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Figure 6.13 Simulated confidence bound template for Cox 
and Snell residual plot.
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Figure 6,14 Variance-stabilised plot of Cox and Snell type
residuals for the hardware failure example.
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Figure >. 15 Influence plot for the covariate 'average use 
per week* from the hardware failure example.
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Figure 6.16 Influence plot for ttie covariate '4 processors' 
from the hardware failure example.

£ + + , -ffci

+
+ + 

+

+ + ++ +

■r++ +

+

++

163

_ _ _ _ _  y, . ,T ■- ^

ttndercJ

+
•(

* +
+ + + |

+ +++ i+ j+ ■?
+ j
+ i

I



CHAPTER 7

CONCLUSIONS AND CONTRIBUTIONS TO 
KNOWLEDGE ACHIEVED

7.1 SUMMARY OF APPROACHES TO VARIOUS FIELD DATA STRUCTURES

Chapters 3-5 have given examples of the application of 
PHM to reliability field data.

Each data set has had its own nuances, and provided 
different problems for their analyses.

The data structures reflect the data collection 
processes and procedures as well as field deployment and 
failure phenomena.

The three examples, therefore, have led to illustrate 
that there is no universal form of reliability data, and 
that any data set has its own unique features.

7.1.1 IDENTIFICATION OF POINT PROCESSES

Appropriate structure for modelling and analysis 
centres about the identification of appropriate point 
processes to describe failures of repairable systems.

A careful choice of the basic time metric, t, must be 
made. This may be reflective of the maintenance and repair 
procedures.

It is often assumed, for simplicity, that an item is 
repaired to as-good-as-new.
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It is of course also necessary to ensure that the
choice of the time metric is readily obtainable from the
data.

In a hierarchical system the choice of different point 
processes, on which to base PHM, is greatly increased. 
This is because the series of events may now be applied to, 
and observed on, any level of the hierarchy.

7.1.2 CENSORING STRUCTURES

Having adopted the use of an appropriate point process 
there is now a need to adopt a sensible censoring 
structure.

Censoring is used when an item leaves the field of 
observation without having failed at this point.

A great deal of information can be lost by not using a 
censoring structure.

The simplest form of censoring is used in introducing 
a censored observation for right truncated failure times. 
For example, if we know when failure recording ceased; 
when using a metric, t, of times between failures, a 
censored time is used from the last failure to the 
termination of recording.

For systems with competing risks censoring can be used 
to a greater extent.



Partial or complete censoring could be used in such
situations. This is because although an item has failed a
distinction can be made between modes of failure.

Again, this is more complex in hierarchical systems 
since numerous failure mechanisms may be assumed at various 
hierarchical levels.

7.1.3 EXPLORATORY USE OF PHM

Since there is a multitude of PHM models which might 
be applied to any reliability field data, PHM can be used 
as a powerful exploratory tool.

In practice we use PHM, moving from one model to 
another searching for a better fit, and more explanatory 
power.

Although the method identifies relationships between 
the life length of equipment and covariates fitted, these 
need not be causal relationships. Such relationships 
identified may be masking underlying patterns which serve 
for more explanation to the observed data.

The example in Chapter 3 illustrates this phenomenon 
clearly.

7.1.4 TRANSFORMATIONS

It is usual practice in reliability analysis to 
include covariate infromation in the form it was recorded.



However, it may be the case that alternative formulations
for the covariate are more appropriate.

For example, a covariate such as failure number is 
often fitted with the formulation N (where N is the failure 
number). Better formulations of the covariate, such as TN, 
N2, In N etc. may provide greater explanation of the 
processes, see Davies et al (1987), or lead to the 
proportionality assumption being fulfilled where previously 
it had not.

Transformations for covariates are usually 
incorporated into models as part of the exploratory process 
of stepping through one model to, hopefully, a better 
mode 1.

Figure 7.1 summarises the approach which should be 
taken in applying PHM to field data of a repairable system, 
in the form of a flow diagram.

7.2 SUMMARY OF USE OF GRAPHICAL DIAGNOSTICS

We have seen clearly the need for assessing the 
appropriateness and fit of PHM models. In this thesis we 
have investigated in particular four graphical techniques 
suggested in the literature.



7.2.1 PROPORTIONALITY PLOTTING

It has been standard in the literature to assess the 
proportionality assumption for different levels of a 
covariate by stratifying at each level and plotting the 
logarithm of the baseline cumulative hazard for each 
stratum against time on the same graph. However. we have 
shown that looking for constant vertical separation in this 
plot (true for proportional hazards) is difficult. We 
have, therefore, in this thesis additionally plotted the 
vertical separation at failure points.

Also to give an indication as to the extent we might 
expect the plot to deviate from constant vertical 
separation, we have simulated confidence bounds for the 
plot (assuming Weibull baseline hazards).

7.2.2 SCH3ENFELD PARTIAL RESIDUALS

It has been suggested in the literature to look at the 
local fit of the proportionality assumption by plotting, 
for each covariate, the Schoenfeld partial residuals 
against time. These residuals should have a general 
scatter about the axis. Additionally to the literature we 
have, in this thesis, plotted a moving average based on 
groups of a large number of observations superimposed on to 
each graph. This has eased visual inspection of the plot 
to assess local fit of the assumption.



7.2.3 COX AND SNELL TYPE RESIDUALS

The literature has suggested the use of these residual 
quantities to assess the global fit of the model. The 
basis of this graphical test is essentially to compare 
observed residuals to expected values from the model.

Since no indication is given in the literature as to 
how much we may expect the plot to deviate from the
expected 45° line we have investigated possible bounds for
the plot by simulation.

7.2.4 INFLUENCE FUNCTIONS

It is common in regression techniques to assess the
influence of individual observations on a model by 
eliminating each observation one at a time . and refitting 
the mode 1.

The influence functions presented in this thesis 
employ an approximation to the effect of the above 
technique.

It has been standard in the literature to plot the
difference between the coefficient estimate, for each 
covariate. when the observation is and when it is not 
included in the model, against the rank of the omitted 
observation.



However, following the suggestion of Wightman (1987) 
we plot the z-score for the coefficient obtained when the 
observation is omitted, against each observation. This 
enables us to clearly identify observations that may be so 
influential as to alter the significance of the covariate.



Figure 7.1 Summary of approach to applying PHM to repairable 
system field data
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A B S T R A C T

The analysis o f  the reliability o f  com puter system s poses a number o f  com plex  
problems. With the advent o f  V L S I and the d iversity o f  usages the modelling  
o f  com puter reliability  has becom e fa r  from  straightforward. The cost o f  
com puter breakdowns includes elem ents fo r  loss o f  usage, and the cost o f  
repair. To minimise the costs it is essential that com puters are as reliable as 
possible. To achieve reliable designs suitable m odelling o f  reliability  has to be 
undertaken. P roportional H azards M odelling ( P H M )  is an efficient 
technique which can identify the effects o f  the various explanatory variables 
which m ay be associated  with variations in the tim es between fa u lts  on a 
com puter system . In this paper we apply P H M  to the analysis o f  fault data  on 
a P C B  se t fro m  an IC L  product.

NOTATION

t Time in days (time to failure, time between failures,
censoring time).
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tt Time in days between (i — l)th and fth events.
/*(/; Z lt Z 2, ..., Z fc) Hazard function for item of equipment with explanatory 

variables Z lt Z 2) . . . ,Z k.
Baseline hazard function, 
jo h0(x) dx  cumulative base-line hazard function. 
Parameters of proportional hazards model.
Estimators of parameters of PHM.
Explanatory variables in PHM.
Estimator of B{ parameter when time j  is omitted. 
Estimator of Schoenfeld partial residual for time j  on 
covariate i.
Expectation operator.
Standard error of x.

M O
tfo(t)
£,(*■= 1,2,.,

1,2,..
Z , ( i - 1,2, .
Bij

E
SE(*)

INTRODUCTION

Reliability in ICL

ICL, part of the STC group, is a leading European Information Systems 
supplier. ICL supplies a range of complete Information Systems to carefully 
selected target market-places. This includes system integration and 
development, the supply of office systems, maintenance, training, pro­
fessional services and, of course, the design and manufacture of the world’s 
most advanced range of mainframes.

The Reliability of ICL’s products is of paramount importance to the 
Company. Failures of computer equipment are costly to both the users and 
ICL (who maintain it). The user suffers the costs associated with the lost 
business and staff being idle waiting for the equipment to be repaired. ICL 
suffers the cost of excessive failures in terms of man and part costs to fix. It is 
thus in everyone’s interest to make the products as reliable as possible.

ICL collects reliability data at system, unit and component level for its 
computer products. All failures rectified by the engineers are logged on a 
computerised database, and weekly summary information for all large 
mainframe systems is collected to monitor system reliability. So that 
predictions for future products are as accurate as possible, the results of 
analysing the system, unit and component reliability data collected enables 
the prediction models and databases to be continually enhanced. However, 
with the advent of VLSI and the diversity of usages, the analysis of field 
returns, and the subsequent enhancement of reliability models is far from 
straightforward.
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Application of proportional hazards modelling

To improve the reliability of future products, the modelling of reliability has 
to be improved to allow for the large number of variables that potentially 
affect (or appear to affect) the reliability of equipment. However, firstly these 
have to be identified. From  experience, large differences in the reliability of 
identical hardware products in different environments and circumstances 
have been seen. The various methods and systems for testing and burning-in 
products prior to shipment can have different effects on the resultant 
reliability seen by a user. It is this type of variable that needs explaining if 
reliability models are to lead to the improvements looked for.

There is a large literature on the reliability of computer hardware (Dhillon 
and Ugwu1).

In the continuing search for new techniques to analyse the field data 
collected, and get a handle on the variables affecting reliability, Proportional 
Hazards Modelling (PHM) presented an exciting new approach to try. The 
actual reliability of the highly successful ICL 2957, 2958, 2966 and 2988 
family of processors was modelled using PHM. Extensive data on the 
failures of the Printed Circuit Boards comprising the processors, as well as a 
number of other variables was readily available from ICL’s databases.

Four variants of the processor, in both single and dual modes over a total 
of 364 customer systems were considered. For each system the following was 
known:

Serial numbers and installation dates of processor(s).
Which variant (or system type).
Operational pattern of system.
Details of each processor hardware PCB failure to component level.
Weekly actual operating hours.
The QC system in place at time of manufacture of the processor(s).

Only failures of PCBs common to all the processors have been considered in 
the analysis. Options (fitted to only some), cabling and the power supply 
have not been counted as part of the processor. Failures of processors for 
systems with more than one could not be identified to the actual failing 
processor, and so the ‘system’ is the level at which processor failures are 
considered in the modelling of the reliability.

PROPORTIONAL HAZARDS M ODELLING

Proportional hazards modelling is a technique which can identify the effects 
of explanatory factors which may be associated with the life length of
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equipment. PHM can be used to study repairable as well as non-repairable 
systems. Data may be censored or uncensored. No underlying distribution 
need be assumed for the structure of the data, making PHM  a powerful tool 
for reliability analysis.

The technique is a method for decomposing the variation in life lengths 
into orthogonal factors, identifying the significant ones, and reconstituting 
the model for prediction purposes.

The fundamental equation on which PHM is based is an assumed 
decomposition of the hazard function for an item of equipment into the 
product of a base-line hazard function and an exponential term 
incorporating the effect of a number of explanatory variables varying 
between items. That is:

h{t\ Z u Z 2, . . . ,Z k) = h0(t)QXp(BlZ i + B2Z 2 + --- + BkZ k)

where the B- s are the unknown parameters of the model defining the effects 
of each of the explanatory variables; the Z t-’s are the values of the 
explanatory variables.

A Zi can be either a naturally measured variable such as age, or an 
indicator variable, indicating for example the presence or absence of a 
change in design.

The explanatory variables are assumed to act multiplicatively on the base­
line hazard functions. Thus, for different values of the explanatory variables 
the hazard functions are proportional to each other over all time t. The base­
line hazard function h0(t) represents the hazard function that the equipment 
would experience if the covariates all take the base-line value zero.

The J5,*s are estimated from the data and tested to see whether each 
explanatory variable really has an effect in explaining the variation in 
observed failure times.

In this paper we employ the usual distribution-free approach. The detail 
of the methodology is not developed here, but the interested reader is 
referred to Kalbfleisch and Prentice.2 The method first iteratively estimates 
the effects of the covariates B l}B2, . . . ,B k using the so-called method of 
scoring based upon a Taylor Series expansion for each step in the iteration, 
starting with initial values of zero. Once the estimates converge, tests of 
whether each explanatory variable has any significant effect are based upon 
the asymptotic normality of the estimators. A backwards stepwise 
procedure is incorporated whereby non-significant explanatory factors are 
excluded one at a time and the model re-run until all factors are significant.

Upon finding estimates for the Bt*s, the method then obtains the base-line 
hazard function based upon discrete hazard contributions at each of the 
times at which failures were recorded. This can then be compared to 
standard distributional forms by usual hazard plots.
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DATA

Information was available about the processor failures occurring, within the 
three month time window 01/04/84-30/06/84, at 364 customer systems.

The records included information on the system identifier, date of 
installation, the usage the system experiences, the number of processors in 
the system, and details of the processor failures occurring.

APPLICATION

There are many possible model formulations that could be used in applying 
a proportional hazards study to these systems. For example;

(a) The basic time metric could be taken as the time between processor 
failures of any type occurring on the same system with covariates 
included to describe the type of failure found.

(b) The basic time metric could be taken as the time between processor 
failures on the system of the same type; again covariates could be 
included to describe the failure type occurring at each event.

For any model there are usually a number of censoring possibilities which 
could be appropriate.

A good knowledge of the repair procedure would be useful to identify the 
most appropriate model and censoring structure.

This particular data structure corresponds to a point process observed 
within a time window. This is a familiar structure in reliability data (see Fig. 
1). Such data presents problems since it includes both left and right 
truncation. The right-hand truncation can be dealt with within PHM fairly 
easily by defining a censored event time from the last failure viewed to the 
end of the time window. However, the time from the start of the time window 
to the first failure viewed needs to be treated differently. Here we assume that 
the left-truncated time to the first event follows the same distribution as 
subsequent time between failures but with a different hazard. Such a 
procedure is less wasteful of data than ignoring such times and was 
introduced for initial exploration of the data. It is, of course, theoretically 
sound if the times between failure (TBF’s) are exponential.

 _- occurrence of failures

t . fstart of time window end of time window
Fig. 1. Time window.

A. 5



DATA STRUCTURE

The basic time metric, t, is taken to be the time, in days, between failures. 
Since the systems are repairable, a reasonable starting assumption is that a 
system is repaired to ‘as-good-as-new’, irrespective of the particular failure 
type that occurred. Thus we assume complete censoring. That is, should a 
failure occur of one particular type, censored events are also assumed at this 
time for the other failure types.

From the coding of failure types two large groups of events can be 
identified in the data corresponding to failure types No Faults Found or 
N F F  (92 events), and component type 272 (32 events). All other failure types 
are grouped together, in this analysis, to form a third failure type OTHER 
(46 events). It follows from the type of failure mechanism assumed that a 
failure to a system identified as type 272, also creates censored events for the 
failure types N FF and OTHER.

Explanatory variables employed in the PHM model were:

Z3 Z5 Zg, Z7, z8 z9, zl0 Zn, Z ,2

Event Age Av. h/wk Failure System Number of Quality
dummies dummies processors control

Event. This variable indicates the presence ‘O’ or absence ‘1’ of left 
truncation.

Age. The age at the time of event is calculated, in months, from the first of 
the month of installation.

Av. h/wk. The average number of hours use per week each system 
experiences in the time window is taken from actual field returns.

Failure dummies. These dummy variables (in Table 1) compare different 
processor failure types.

System dummies. These dummy variables indicate the system type the 
processor(s) are in. There are four types of system (Table 2). There are 234 
type A, 64 type B, 34 type C and 32 type F.

Number o f processors. These dummy variables compare the effects of the 
number of processors without assuming linear effects. Systems can have 
different numbers of processors depending whether they are single or dual 
(Table 3).
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TABLE 1
Coding of Failure Type

Failure type Covariates

z, z5

‘272’ (base) 0 0
NFF 0 1
OTHER 1 0

TABLE 2
Coding of System Type

System type Covariates

Ze z , z8

A(base) 0 0 0
B 0 0 1
C 0 1 0
F 1 0 0

TABLE 3
Number of Processors within System Type, and Covariate Coding

System type Number o f  processors 
I 2 4

A X X
B X
C X
F X X

Covariates (Z9, Z 10) (0,0) (0,1) (1,0)

TABLE 4
Coding of Covariates for quality Control

Quality control Covariates

Z n Z \ 2

Pre-change (base) 0 0
Post-change 0 1
Combination 1 0

A. 7

1 K*., . A  -C.C. •
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Quality control Since the start of manufacture a major change in Quality 
Control was introduced. T able 4 shows the coding of covariates to model the 
QC to which the processors within the System have been subject.

SELECTION OF PHM M ODEL

The model described above evolved by applying PHM  in an exploratory 
manner. In this process a number of different structures were considered. 
Some of these had to be neglected, or rather further adjusted, since they gave 
rise to technical problems such as multicollinearity and monotonic 
likelihood (Bryson and Johnson3). For example, multicollinearity between 
the previous use and age of the system implied that previous use was 
neglected, whilst power was found to be an exact linear combination of the 
dummy covariates representing the system type, so that power was 
eliminated.

In other cases the specification of some variables was also changed to 
provide greater information. For example, in an early exploratory 
formulation the covariate ‘age’ was taken as the age of the system at the start 
of the time window. However, due to the presence of a few ‘young’ systems 
the respecification to age of system at processor failure gives more physical 
explanation.

ANALYSIS

Table 5 shows that disaggregation of the 1602 events into the binary 
covariate categories.

Results

The results after the backwards usual stepwise elimination procedure, based 
on two-tailed 5% tests, are given in Table 6. The p -value indicates the 
probability of obtaining such an extreme estimate for the B 's just due to 
chance, if there were no real effect for that covariate. The likelihood ratio 
statistic, in the last column, is seen to exceed the tabulated upper 5% critical 
value for a x1 distribution with nine degrees of freedom (16-92). This 
indicates that the model is highly significant as compared to assuming that 
the covariates have no effect and that the data is homogeneous.

Significant covariates

Z x—event. The positive estimate B y suggests that the times to the first 
failure tend to be longer than the times between failures, with the t.b.f.’s

A. 8
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TABLE 5
Disaggregation of Events into the Binary Covariate Categories

Covariate Covariate = 0 Covariate — 1

Number o f  
failures

Number o f  
censorings

Number o f  
failures

Number of 
censorings

z 1 103 947 67 485
z4 123 945 47 487
Z5 79 989 91 443
Z 6 148 1292 22 140
Zy 157 1304 13 128
Z s 157 1214 13 218
Z 9 157 1376 13 56
Z io 140 1261 30 i l l
Z \ i 165 1410 5 22
Z l2 133 1046 37 386

Total number of events = 1 602.
Total number of failures = 170.
Total number of censored events = 1432.

having a hazard rate which is greater than that for the time to the first event 
by a multiplicative factor of exp (0-6384) =  1-89. This, perhaps, counter­
intuitive result can be explained in three ways. Firstly, it is apparent, from the 
raw data, that the majority (71 %) of the complete set of systems did not have 
a processor failure at all during the time window. Thus, these systems have a 
long censored time to first processor failure compared to the necessarily 
shorter observed tb .f.’s. This model bias arises due to the time window

TABLE 6
Final Significant Model after Backwards Stepwise Elimination

Significant
covariates

B, p- Value Likelihood 
ratio statistic

Z {—event 0-638 4 0-0001
Z2— age -0-033 6 0 0019
Z3— av. h/wk 0-0064 0-003 0 99-450
Z5— NFF 0-8345 0-0000 (5% critical
Z6— system F -0-874 8 0-015 5 value from
Z8— system B -0-7079 0-008 3 tables: 16-92)
Z9— 4 processors 1-5074 00010
Zio—2 processors 0-641 7 0-0050
Zj 2— post change -0-6622 0-0015
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A. 10

nature of the data. Secondly, as we show below, the underlying 
distributional form for t.b.f.’s turns out to be decreasing hazard rate, so that 
such left-truncation is expected to increase residual life length. Finally, 
bunching of failures (e.g. due to misdiagnosis) may be associated with the 
longer times to first failure.

Z 2—age. The sign of B 2 implies that the older the system the lower the 
hazard, so that there is reliability growth as the system ages.

Z 3—av. h /w k . The sign of B 3 indicates that the more use the system 
experiences per week, the higher the hazard.

F a u lt typ e s . The covariate Z4 was eliminated since its effect was not i
significant, thus there is no significant difference between the fault types 
OTHER and ‘272’. The covariate Z 5—N F F which compares the fault type 
N FF with ‘272’ and OTHER fault types, is significant with a positive 
coefficient implying that the N FF fault type has higher hazard and shorter 
times to failure than the ‘272’ and OTHER fault types. This is not of great J
physical significance, and is to be expected since N F F  faults are very 
prevalent.

S y s te m . Z7 which compares system C with the base system A is not 
significant. Z6 which compares system F with systems type A and C is 
significant with a negative coefficient implying that system type F is subject 
to a smaller hazard than those of systems type A  and C. Similarly, systems of 
type B experience a smaller hazard (about half) compared to systems type A 
and C.

N u m b e r  o f  p ro c e s so rs . From the significance of Z9 it can be seen that 4
systems with four processors experience a higher hazard than those with 
one. The crude multiplicative factor is approximately 4*94. Similarly, Z 10 
shows that systems with two processors experience a higher hazard than :f
those with one. The crude multiplicative factor is approximately 1-90.

S y s te m /n u m b e r  o f  p ro c e s so rs . Based on our model the magnitude of the 
hazard variation between systems with different numbers of processors can 1
be calculated from the significant B estimates, since this is of operating 
importance. Table 7 shows these differences. |

Q u a lity  co n tro l. The covariate Z X1 was eliminated since its effect was not j
significant. The covariate Z 12 which compares systems with processors 
which are covered by the new quality control (only) with the other systems is
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TABLE 7
Multiples of Base-line Hazard for Various System/ 

Number of Processor Combinations
System type Number o f processors

1 2 4

A 1-00 1-90 ___

B 0-49 — —

C 1-00 — —

F — 0-79 £06

significant with a negative coefficient implying that the new tighter quality 
control procedures imply a lower hazard.

GRAPHICAL ANALYSIS

A number of graphical techniques can be employed to examine the 
appropriateness and fit of the PHM  m odel Some of these graphs for the 
current data can be seen in Figs 2-9.

Figure 2 shows a Weibull hazard plot for the base-line hazard obtained 
from the PHM model. The plot is reasonably straight indicating the Weibull 
as a reasonable distribution for the t.b.f. (King4). The shape and scale

Ln(t)
4.0

3.0

2.5

2.0

1.5

1.0

-5

Fig. 2. Weibull baseline hazard plot f//o(0 — U/d)Bl-
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parameters are estimated at approximately 0-84 and 1425 days respectively. 
Since the shape parameter is less than 1 the base-line shows decreasing 
hazard.

C o x  a n d  S n e ll ‘cru d e’ re s id u a ls can be calculated and plotted against their 
expected order statistics (Cox and Snell5) to provide a graphical goodness- 
of-fit test for the model. If the model is a good fit to the data we would expect 
the residuals to lie on a straight line of gradient 1, passing through the 
origin (Kay6). As yet, however, little guidance is available as to how far the 
plot can stray from this expected line before the model is no longer 
considered a good fit. A problem also arises since we are unable to estimate 
the hazard for censored times greater than the largest t.b.f. or time to first 
failure. For our purposes, we assign these a hazard equal to that for the 
greatest time to a failure. It is thus probable that such plots will be left- 
shifted at their tail end. Another drawback to this plot is that the variance 
increases as the residuals increase (Aitkin and Clayton1). Arcsine transforms 
can be taken to plot a v a r ia n c e -s ta b il ise d form of the Cox and Snell residuals 
and the resulting plot can be seen in Fig. 3. We can see from Fig. 3 that the 
model appears to be a fairly good fit.

Figures 4 and 5 are p r o p o r tio n a l ity  p lo ts for two of the significant binary 
covariates. In the plots the data is stratified on each significant binary 
covariate, and the model run separately for each stratum. Plotting In H 0(t) 
against t for each stratum on the same graph, should produce plots with 
constant vertical separation for all t, if the assumption of proportional 
hazards holds.6 Figure 4 shows stratification on the dummy variable Z 5. The

(Lxpected

0.9

0.8
0.7

1.21 .00.8 1.4
Observed

Fig. 3. Variance stabilised Cox and Snell residuals.
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Fig. 4. Proportionality plot for covariate ‘NFF’.

two plots are reasonably parallel after about t =  10, which implies that the 
proportional hazards assumption holds for this variable. Proportionality 
plots for the other significant binary variables included in the model; with 
the exception of that for Z x are similar to Fig. 4, indicating good fit.

Figure 5 shows stratification on the covariate Z v  For small t, the plots are 
not constantly vertically separated indicating that this covariate violates the

Z1=1

-5

10 ‘20 30 40 50 60 70 BO
t

Fig. 5. Proportionality plot for covariate ‘first event’.
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proportionality assumption. If necessary it is possible to extend the 
proportional hazards model to include strata, to accommodate such 
variables that violate proportionality (Kalbfleisch and Prentice2). As 
indicated above the assumption of proportionality for was only a 
tentative first hypothesis. Figure 5 indicates that stratification might instead 
be worthwhile.

Figures 6 and 7 show Schoenfeld partial residuals plotted against time for 
two of the significant covariates (Schoenfeld8). If proportional hazards 
holds, E(fij) ~  0, where ri3 is the estimate of the Schoenfeld partial residual 
for event j  on covariate i, and a plot of f {j against t will be centred about zero 
for all t. Since, as often in reliability problems, there are a large number of

  moving average

- 1 0

H K-
50 60

~+
30 40 H--1—

70 80'10 20
t

Fig. 6. Schoenfeld residuals for covariate ‘age’.

tied t.b.f.’s the density of partial residuals at many of the points cannot be 
clearly seen on the plots, particularly for binary covariates. To ease visual 
inspection, therefore, a moving average it shown on each plot based on 
intervals of 10 t.b.f.’s. If proportionality holds for the covariate identified, 
the moving average should centre about zero for all t.

Figure 6 shows the Schoenfeld partial residuals plotted for the covariate 
age. This plot is typical for a non-binary covariate. For all t the plot has a 
reasonable scatter about zero; this is borne out by the oscillation of the 
moving average about the axis. Thus, the proportional hazards assumption 
does not appear violated by this covariate. It is also noticeable that there are 
no obvious outliers, which might have indicated times to failure which need 
further examination.
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Fig. 7. Schoenfeld residuals for covariate ‘NFF\

Figure 7 shows the Schoenfeld partial residuals plotted for the covariate 
Z 6. This plot is typical of those for binary covariates.8 There is a split of 
residuals above and below the axis corresponding to the two categories of 
the- covariate. The plot largely bears out the assumption that the residuals 
have scatter about zero. Thus the proportional hazards assumption does not 
appear violated by this covariate.

Schoenfeld residual plots for the other significant binary variables are 
typically similar to Fig. 7, with the exception of that for the covariate Z v  The 
plot for Z x suggests that there is a trend in the residuals. In agreement with 
the interpretation of Fig. 5, this may suggest that the covariate violates the 
assumption of proportionality.

Figures 8 and 9 show standardised plots of the influence of individual 
times to failure on the Bt parameter estimates for some of the significant 
covariates (Cain and Lange,9 Reid and Crepeau10). The form we present 
here shows the estimated normal deviate for the covariate coefficient when 
each single time to failure and censoring time is excluded from the model, 
one at a time. This is plotted against the order by magnitude of the times on 
the horizontal axis. We can thus examine which times to failure have times 
most influential on the observed significance of the covariates, and which if 
any, would if deleted remove the significance of the covariate. For the 5% 
two-tailed tests these points correspond to estimated normal deviates in the 
range (—1-96, +1-96).

The influences of an event is the difference between the B{ estimates with 
and without the event included; Ixj — Bt — Bip where S tj is the estimate of Bt
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Fig. 8. Influence of events for covariate ‘age’.

made when time j  is excluded. The figures presented here are based on the 
simplifying approximation of treating the standard error (SE) of the B{ 
estimator as unaltered after elimination of the single data point. This is likely 
to be valid for large data sets, such as here. However, since it is an 
approximation we should examine the actual standard error for points on 
the influence plots close to the ±  1-96 limits.

Figure 8 shows the influence of times on the covariate age. We can see that 
there are no times or censorings that are likely to alter the significance of the 
covariate (at 5% level) if omitted. The highest density of points is close to the

SEXB5) 
5.50 T

5.48 ..

5.42

5.38
5.36

ORDERED EVENTS 
Fig. 9. Influence of events for covariate ‘NFF\
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normal deviate for this covariate in the full data set; most of these 
correspond to censoring points.

Figure 9 shows the influence of times to failure on the dummy variable 
NFF. Again there are no times which alter the significance of the variable 
when omitted. The structure of this plot is typical of those for binary 
covariates. There are three distinct groupings; the central group comprises 
mainly censored events, and the groups above and below are split on the 
value of the covariate in question for each time to failure event.

Plots obtained for the other significant covariates are similar to Figs 8 and
9. Whilst not standard practice, it may on occasion be interesting to also 
look at such influence plots for non-significant covariates, to see if there are 
any events which when omitted would move the covariate into significance. 
For the current case the B  estimates and their significance for the non­
significant covariates, at the stage when they were eliminated from the model 
in the backwards stepwise procedure, can be seen for each covariate in Table
8. In all cases (except perhaps for Z 4) they are largely non-significant and 
there is little argument to undertake such an approach.

TABLE 8
Significance Level at Which Covariates Were 

Eliminated from the Model
Covariates Bi p- Value

Z v!— combination -0*2472 0*335 1
Z7— system C 0*371 4 0*1430
Z4— OTHERS 0*3844 0*046 7

CONCLUSIONS

The results of the initial study reported here indicate that the PHM  model 
described fits the structure of the data quite well. The treatment of time to 
first failure by use of a covariate, to avoid the problem of left truncation, was 
least successful and there may well be a need here for further work.

The PHM  model has enabled us to identify variables which have a 
significant effect in explaining the times between failures for the systems as 
well as the direction and magnitude of these effects.

We have identified the effects of configuration parameters and have been 
able to make comparisons between the failure types. The model has also 
enabled us to identify the underlying structure of the point process, and the 
distributional form for the base line distribution. Unlike other techniques we 
did not have to make distributional assumptions prior to the analysis.

A. 17
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Work is continuing in collaboration between ICL and Trent Polytechnic 
to clarify outstanding issues and further understanding of the processes 
involved.
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A B S T R A C T

The com plex ity  o f  modern weapon system s presents grea t difficulty fo r  the 
reliability analyst. In m any analytical contexts, fa ilu res o f  the equipm ent m ay  
take p lace a t various levels in a hierarchy. Thus fa ilu res m ay be a ttribu ted  a t 
the low est level to components, or a lternatively a t higher levels to circuit 
boards, sub-assem blies, assem blies or modules. The logistic support fo r  such 
system s is highly com plicated. The fa ilu re data fa c e d  b y  the reliability  analyst 
records fa ilu res a t various levels o f  equipm ent aggregation, hence standard  
reliability analysis methods, as well as new techniques such as Proportional 
H azards M odelling, need adaption in order to fac ilita te  the com plex poin t 
processes underlying the data  structure.

In this paper we consider the analysis o f  early f ie ld  data fo r  a m ajor weapon 
system  in current m ilitary use. The problem s o f  data  extraction  and  
manipulation are discussed, and the adaption o f  m ethodologies to the current 
data  structure highlighted. Emphasis is p laced  upon the exploration o f  the 
data  structure and the categorisation o f  mechanisms.
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NOTATION

time (time between faults, censoring time)
h
h{t, Zj, z2, . . .  > z j

ith TBF

(* = 1,2,...,A:)

M O
#o(0
ft (f= l,2,. . . ,k)

hazard function for item of equipment with covari­
ates Zj,Z2, •. •, Zk 
baseline hazard function
cumulative baseline hazard function =  Jf0 h0(x) dx 
parameters of Proportional Hazards model denot­
ing effects of covariates z t,Z2, . . . ,z k 
estimates of parameter of Proportional Hazards 
model
covariates in Proportional Hazards model 
influence of the jth  TBF on the ith covariate 
estimate of /?,- with 7'th TBF excluded 
normal deviate of

INTRODUCTION

The successful reliability engineering of complex systems can benefit from 
inputs from the statistician as well as the engineer. The image of the 
statistician’s role in reliability is that he/she organises and analyses failure 
data for the purpose of measuring, modelling and predicting reliability. 
There is however, an emerging view that the expertise of the statistician can 
also be productively exploited in addressing the reliability engineer’s 
primary objectives: those of achieving and improving reliability.

Whilst the engineer and the statistician use different methodologies, they 
have a common objective: that of achieving a reliable product. We can 
identify two roles that the statistician can play in the design process. The first 
is passive in which the statisticians involve themselves with the organising 
and analysis of data, so as to provide the designer (decision maker) with 
relevant information. The second role is a more active one, in which the 
statistician goes beyond being a mere provider of information or guidance 
counsellor, but becomes a full participant in the design process, and is thus 
entitled to make recommendations which are supported by his analysis as to 
the actual form a design will take. To achieve this requires a substantial 
reorientation in the statistician’s approach to design, he/she must regard 
themselves as capable of more than just modelling a design, but just as, if not 
more importantly, having the potential of impacting a design. This has 
considerable implications as to the types of models and analysis that will be 
pursued. A new relationship between the designer and statistician is called 
for, which now emphasises an iterative and interactive approach.
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Whilst in the 1960s and 1970s, the statistician could have argued a lack of 
technical support for this role, there have been significant recent theoretical 
and computational developments. If  a distinction has . to be made between 
then and now, it is that in the past emphasis has been on developing methods 
and models that operate on quantitative (—cardinally measured) inform­
ation, which whilst important, all too often required the statistician to ignore 
soft qualitative (—categorically measured or rule based) information, which 
in engineering is often more important. Recent trends are redressing this 
imbalance.

One development of significance is the general emergence of the theory of 
generalised linear models (GLM). This has unified many areas of statistics 
which have considerable potential for analysing reliability data; e.g. probit 
analysis which concerns itself with quantifying the relation between a 
stimulus and its response:1 contingency table analysis in association with 
Log-Linear models, which concerns itself with the analysis of Cross- 
Classified D ata;2,3 and (although only very tenuously GLM) ‘Proportional 
Hazards Modelling’ which concerns itself with developing failure models 
based on explanatory variables.4 Whilst Probit Analysis and log-linear 
models have only recently been introduced into reliability,5,6 Proportional 
Hazards has on occasions been applied with considerable success.7,8 The 
development of the software package GLIM  (available from NAG) offers 
the competent professional statistician the facility of computerising much of 
this type of analysis.

Almost irrespective of the analytical framework and the modelling 
approach, in order to suggest particular model formulations these methods 
shouki be used in conjunction with the exploratory approach to data known 
as EDA (Exploratory D ata Analysis).9 When used in conjunction with a 
particular model structure, EDA proceeds very much in line with 
conventional modelling theory, namely that of Model Identification, Model 
Parameterisation, Model Validation and Iteration.

The reliability analysis of weapon systems reflects all of these 
considerations, but is complicated by the features of particular systems. 
Modern weapon systems, their deployment and maintenance, and not least 
of all their record keeping, are all inherently complicated. Whilst the 
reliability of such systems may be very good, their reliability analysis is 
usually limited and difficult. For these and other reasons statistics has largely 
failed to make a major impact on the reliability of weapon systems.

This may not be the statistician’s fault, for example, the form and the 
quality of the data available from the field is often poor, usually dominated 
by operational requirements, product of development and security 
considerations, and imbedded by the historical data analysis methodology 
current at the time of development years earlier. Indeed, it is not atypical for
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the data system to be recording at the same time too much irrelevant data 
and too little informative data, as well as being full of errors. Concepts of 
data validation and data entry are yet to permeate this field.5

BACKGROUND

The mature weapons system considered in this paper has an established 
reputation for reliability. It has been in operation for over a decade and has 
been successfully deployed worldwide in a variety of environments from 
hot-wet to extreme cold. It has been transported over many types of rough 
terrain.

The system is o f m odular design as shown in Fig. 1. A complete system

SUB-SYSTEM SUB-SYSTEM

LRUs

LRU B

S-S-a
Blib

S-S-a
Bib

S-S-a
Biilb

S-S-a
Bills

LRUCLRUA LRUB

SUB-ASSEMBLY
Biii

SUB-ASSEMBLY SUB-ASSEMBLY

Fig. 1. Hierarchical nature of sub-systems.

comprises a missile launcher, optical tracker, and generator, and for Blind 
Fire Systems an additional radar tracker. The analysis in this paper only 
discusses three types of subsystem, which are referred to as sub-systems (1),
(2) and (3). These sub-systems are interchangeable and also of modular 
design, the principle modules being designed as Line Replacement Units 
(LRUs). The system has been designed to be maintained by combat troops in 
a battlefield environment. First line maintenance consists of changing the 
LRU whilst at second line the fault will be traced to the sub-assembly (and 
possibly down to component) level. The philosophy of repair by replacement
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is supported by automated performance testing, thereby ensuring maximum 
operational availability. The modular design has allowed individual units to 
be upgraded in line with technological developments, e.g. introducing Built 
in Test Equipment (BITE). This has led to enhanced performance and a high 
achieved availability. It is a successful military system with a proven track 
record which has and is being continually upgraded to meet and surpass the 
demands of its role on the battlefield.

Data source

The source of reliability data on this weapons system is the computerised 
database built up by the REME, Radar Branch using the FORW ARD 
(Feedback of Repair Workshops and Reliability Data) reporting system. 
The function of this database was to provide to management logistic 
information necessary to the management of equipments, spares, and 
resources of a complex weapons system. It also served to monitor reliability 
and provide engineering information to improve reliability.

The database, by today’s standards, can be considered of conventional 
design. The repair technician was required to complete a descriptive jobcard 
outlining relevant information, such as date, serial number, elapsed time 
indicator readings (ETIs), and fault classification code. This information is 
then transcribed and stored in the computer database, thereby in principle 
building up a complete historical record of reliability repair and 
maintenance data.

It has been recognised that there were several factors which detrimentally 
affected the integrity of the FORW ARD database. Omissions, inconsis­
tencies and errors were introduced due to the amount of human effort 
required, the need for human judgement and interpretation at various stages 
in the data gathering process and the amount of data transcription required. 
Consequently it is estimated that the FORW ARD databases are about 70% 
accurate.

Four databases detailing schedules, environmental/deployment data, ETI 
readings and defect data were available. A number of features in the 
database made data extraction difficult and complicated. For example there 
was inconsistent formatting within the data bases which precluded file 
merging, also certain fields of the deployment database were free format and 
thus difficult to extract information from. Because of these problems only 
the defect data base, which contains records about faults found, was 
investigated.

Structure o f  the data in the defect database
Each record of the defect database refers to a fault. The particular unit for
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which data is recorded is identified by its sub-system type (i.e. launching unit, 
optical unit, etc.) and serial number. Each record contains fields detailing:

(1) The date that the fault was identified.
(2) The holding group of the unit at the time of failure (User identifier i.e. 

squadron or battery). In this analysis there were six different holding 
groups.

(3) The type and serial number of the LRU that was removed and 
replaced. If more than one LRU was removed at one time a separate 
record was generated for each.

(4) The level in the hierarchy (see Fig. 1) to which the fault was 
subsequently traced. A separate record was generated for each 
identified fault.

(5) ETI reading when the fault occurred. The ETI is a four digit counter 
(i.e. 0000-9999) which measures the time the unit has spent in normal 
mode. (A launching unit has two modes: alert and normal. A radar 
unit has three modes: high alert, low alert, and normal. An optical 
unit has just the one: normal mode.)

Note: The ETIs are themselves known to be extremely unreliable; often 
sticking. The counters are ‘throw-away’, so should one appear to be 
‘misbehaving’ it may be replaced. However, the replacement counter often 
does not start at*zero, nor is it set to the last reading of the discarded counter. 
The value of information from the ETIs is therefore suspect.

A generalized representation of the fault structure

A reliability model is a means of representing the failure events of the system 
in a useful form. Since there is no such thing as a universal reliability model, 
model formulation must be directed by knowledge of the system and the 
data available. Initial considerations of the system lead to a generalised 
representation of the fault structure from which realistic and detailed 
models can be developed.

Using Fig. 1 which outlines the system structure and from the knowledge 
of the data base structure and the data available we can construct the 
representation shown in Fig. 2. Faults at the lowest level are component 
faults. Faults at the next highest level are sub-assembly faults which are the 
superposition of component faults plus other faults such as interconnection 
problems. Faults at the next level up are LRU faults which are a further 
superposition of sub-assembly faults conjugated with other faults that 
cannot be attributed to sub-assembly or component fault. The highest level 
is the sub-systems level which represents a total aggregation by 
superposition of all events reported as faults.

B. 6
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SYSTEM STRUCTURE
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Fig. 2. A generalised representation of the fault structure. O, lowest part of system to which 
the fault was traceable; *, example of fault traceable to 2 sub-assemblies.

POSSIBLE ANALYSIS METHODS

A number of analysis methods that are associated with reliability were 
considered, some of which were discarded as being inadequate or potentially 
misleading, e.g.

(i) Multivariate analysis
This approach6,10 was not ideal because a lifetime characteristic
could be identified within the data structure.

(ii) Homogenizing the data and distribution fitting
This was not appropriate since among other reasons the data were 
sparse in many of the possible combinations of factors. The known 
hierarchical structure also complicates such an approach.

(iii) Time series analysis
Although potentially promising, due to time considerations it was 
decided not to consider this approach fully. It can be used to study 
and describe a sequence of observations which depend on time, space 
or an index. In reliability such a time series approach may identify 
some structure in the data.11 An indexed set of observations can be
constructed here by counting the number of fault records in the
database in some ordered time interval.

Figure 3 shows the number of records per month appearing in the
database for sub-systems (2) in holding group I.
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Fig. 3. Number of fault records, occurring within each month, for sub-systems (2) in
holding group I.

There neither appears to be notable trend nor periodic behaviour. 
Plots for other sub-system types and holding groups are similar. The 
series, are however, shorter for holding groups II-VI, since fault 
records did not begin for these until some months after the beginning 
of the reporting for holding group I. The holding groups are known 
to have received their weapon systems at different times, although the 
exact dates each unit received them are not known.

(iv) Proportional hazards modelling {PHM)
Because of the considerable potential of PHM in this line of analysis, 
it was decided to pursue it further. An initial model is that times 
between faults (TBF’s) may form a modified renewal process, where 
the TBF’s are independent but non-identically distributed due to the 
effects of certain covariates upon the probability of a fault occurring. 
As there are a number of explanatory variables for TBF’s of the 
LRUs, Proportional Hazards Modelling (PHM) is known to be a 
useful technique.8,12,13 It identifies significant explanatory factors 
for TBF by an orthogonal decomposition of the lifetime variation. 
The model may then be reconstituted for prediction purposes. 
Two important advantages of PHM in this application are:
(a) There is no need, within PHM, to specify a particular distribution 
a priori.
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(b) Data may be censored or uncensored.
PHM is based on an assumed decomposition of the hazard function 
for an item of equipment into the product of a base-line hazard and 
an exponential term which incorporates the effect of explanatory 
factors varying between items.

h{zx, z2, ..., zk) =  h0(t) exp (pxz x +  p2z2 +  • ■ • +  pkzk) l >  0

The Pi s are unknown parameters of the model defining the effects of 
each of the explanatory factors. The z/s are the values of these 
explanatory factors; they can be either a naturally measured variable, 
or an indicator (dummy) variable indicating the presence or absence 
of a factor.

The base-line hazard function h0(t) represents the hazard function 
that the equipment would experience if the covariates all took the 
base-line value zero.. From these considerations it was decided to use 
the Proportional Hazards Modelling as a basis for this analysis.

MODEL FORMULATION

There is a multitude of formulations of the PHM model which could be 
employed in the analysis of the data, the different models having different 
time variables, censoring structures, and covariates. Selection between them 
is iterative, based on experience and engineering information. The aim is to 
explore the data, in order to maximise explanation.

Types of model

Initially four types of simple but physically plausible PHM model were 
identified. General covariates which could be included in all the models are; 
the holding group that the particular faulty unit was in, the season in which 
the fault occurred, the ETI reading at the time of the fault, and a time trend.

Model A
Here the series of events occurring for a particular serial numbered LRU  is 
followed, see Fig. 4. The time metric here is the time between the LRU being 
entered into a sub-system, and its being removed from that same sub-system 
when found faulty. The next TBF will be for that same LRU within another 
sub-system. Covariates can include which particular sub-system the LRU 
was in when the fault occurred.

For this model to be formulated, it is necessary to know when the main 
assembly block was returned to service, so that its repair time is not included 
in the TBF calculation.
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PARTICULAR SERIAL 
NUMBERED LRU

FAULT HERE. LRU, REMOVED FROM SU8 SYSTEM 
REPAIRED AND RETURNED TO ANOTHER SUB SYSTEM LATER

Fig. 4. Series of events to a particular LRU.

POSITION WITHIN 
PARTICULAR SERIAL 
NUMBERED 
SUB-SYSTEM

?1 t2 t3

FAULT AND REMOVAL OF LRU AND REPLACEMENT 
WITH SAME TYPE

TIME

Fig. 5. Series of events to the position of a certain type of LRU within a particular sub­
system.

TIME

PA R TICU LA R LRU

------------------M--------

t2
TIME

D IFF E R E N T  LR U 's 
OF SAME TYPE

A N O TH ER  LRU OF 
SAME TYPE t3

TIM E 
----------------------------►-------- M--------

LRU E N TER S A SUB-SYSTEM

LRU O F THE SAME 
TYPE ASSUMED TO 
HAVE THE SAME 
BASE-LINE HAZARD

FA U LT AND REM OVAL OF THE LRU

Fig. 6. Times to first fault of each LRU of certain type.
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Model B
Here the series of events to the position o f a certain type o f LRU, within a 
particular serial numbered sub-system is followed. The time metric here is the 
time between faults to the same type of LRU in the fixed position within the 
sub-system. Figure 5 illustrates this series of events. Covariates can include 
which serial numbered LRU was removed at each fault.

Model C
The types of model here, look at times to first fault o f the LRUs o f a given 
type. Figure 6 illustrates this. Covariates could include which particular 
serial numbered LRU was faulty, and which particular serial numbered sub­
system it was in when the fault occurred.

Model D
This model type looks at the events at the sub-system level. The series o f 
events on a particular serial numbered sub-system is followed. The time metric 
here is the time between faults, irrespective of which LRUs are faulty, 
occurring on a particular unit. Figure 7 illustrates this series of events. 
Covariates can include which type of LRU was faulty.

PA RTICULAR 
SERIA L 

NUM BERED 
SUB-SYSTEM t1

FA U LT T O  ANY LRU

Fig. 7. Series of events to a particular sub-system.

CENSORING STRUCTURES

In dealing with the lifetimes of sub-assemblies or lower level units it is 
necessary to introduce censoring concepts. This is because a non-faulty sub- 
assembly is removed from the field when its parent LRU is replaced. Many 
censoring structures can be identified by interpreting various fault 
mechanisms in the hierarchical levels. Many of these structures can result in 
considerable complexity. The examples here are chosen because they seem 
reasonable in terms of what is known about the methods of maintenance 
and fault recording used.

In the simplest case consider Fig. 8 which depicts an LRU which has just
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LRU

SUB-ASSEMBLY
SA2

SUB-ASSEMBLY
SA1

Fig. 8. LRU with two sub-assemblies.

two levels in its hierarchy, and two sub-assemblies. Four failure modes are 
possible for such an LRU, which could be recorded in the data.

(SA1, SA2)—Fault recorded to LRU but to neither sub-assembly.
(SA1, SA2)—Sub-assembly 1 only has fault.
(SA1, SA2)—Sub-assembly 2 only has fault.
(SA1, SA2)—Both sub-assemblies have faults.
Four censoring structures that might be applicable are given below, and 
summarised in Table 1:

(i) Two Failure Mechanism structure: Two failure mechanisms (FI) and 
(F2) only are causing failure.
(FI)—sub-assembly 1 only fails, e.g. due to wearout.
(F2)—sub-assembly 2 only fails, e.g. due to wearout.
Each failure mechanism censors the other, i.e. 2 competing risks (see 
Fig. 9).

<F1) (F2>

SA2SA1

Fig. 9. Representation of failure mechanisms for censoring structure (i). The blocks show 
the parts of the system which may fail and the (F—), the failure mechanism which causes that

part of the system to fail.

B. 12



^  oW c- j3 u
tn

U. 3
.2'Cca>

S,
s

5M ,2

•SI

sj*

I I  £ "§

I<*i <3&  s:5j* «

i? S

^ ̂  ̂  ̂  ^ o o u. u, 2

c c
CL) <D

U  CJ

in mc  c  <u u 
U (J

<N <N CN

E E E 2
C? <N~ — S' H, U, U. U,

« cn tn in

<U 1) D
o u o *

CNtu cl,

Cl , Cl ,

<N I CN <N CN< < < <cn | cn tn on

< < I < <on cn I cn on

tN
<cn

l<

-ac
<Icn

*oaa>
CLJi•O
.5
o
£

B. 13



258 C. Gray, N. Harris, A. Bendell, E. V. Walker

(Ft) (F2) (FO)

SA2 CONNECTORSSA1

Fig. 10. Representation of failure mechanisms for censoring structure (ii).

(SA1, SA2) type failures are ignored as being recording errors.
(SA1, SA2) type failures are treated as being two independent simultaneous 
failures due to chance. Consequently they are treated as (SA1, SA2) type 
failure and a (SA1,SA2) type failure.

(ii) Three Failure Mechanism structure: As well as the 2 failure 
mechanisms from (i) an additional failure mechanism, (FO), exists

(FO)—The LRU fails without either sub-assembly failing, e.g. due to 
the connectors failing.

Each failure mechanism censors the others, i.e. 3 competing risks (see 
Fig. 10).

(SA1, SA2) type failures are treated the same as in (i).

(iii) Four Failure Mechanism structure: In addition to the three failure 
mechanisms from (ii) a fourth failure mechanism (FI2) exists.

(F12)—Both sub-assemblies fail together due to a common external 
cause, e.g. a power surge.

Each failure mechanism censors the other, i.e. 4 competing risks (see 
Fig. 11). This accounts for the four possible failure modes in the data.

(iv) Modified Four Failure Mechanism structures: In addition to the three 
failure mechanisms from (ii) a fourth failure mechanism F(12)' exists:

(FI2)'—a failure mechanism which accounts for simultaneous 
failure.

This failure mechanism is included because simultaneous occurrence 
of faults occurs more often than expected according to the

(F1) <F2) (FO) (F12)

CONNECTORSSA2 SA1 & SA2SA1

Fig. 11. Representation of failure mechanisms for censoring structure (iii).
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independent failure model, thus we allow for an increased tendency 
for simultaneous failures. However this has not been reflected in the 
censoring structure, i.e. this failure mechanism neither censors any 
other failure mechanism or is censored by any other failure 
mechanism.

ANALYSIS

In the current application it is not possible to apply a model of type A since 
the data on when an LRU returns to the field is not available. Here, out of 
the remaining model types we consider the applications of some simple 
models of type D and C.

D models

For these models, the time metric was taken as the time in days between 
faults on a particular serial numbered sub-system. However, to avoid many 
TBF’s of zero, multiple records on the same day were treated as a single fault 
event. In order to model the TBF’s together, each sub-system was assumed 
to have the same baseline hazard. Times to first failure were ignored since the 
date of entry into service was unknown. Similarly the times since last failure 
were ignored since the time when reports ceased was unknown. Because D 
models operate at the subsystem level no censoring was required.

Ten explanatory variables were employed in the PHM model:

z \t z 2> z3t z\t z 5 z6> ZTt z6 z9 z ioholding group dummies season dummies ETI time trend

(a) holding group dummies—The base group was selected to be the 
holding group that had the longest period of reported events. The 
dummy variables as defined in Table 2 compare the hazard rate for 
each holding group to that for the base group.

(b) season dummies—These dummy variables, compare the hazards 
during each of spring, summer and autumn respectively to the 
baseline season winter.

(c) ETI—This covariate is the actual ETI reading value as recorded at 
the time of the fault. (Irrespective of any apparent error)

(d) Time trend—This covariate, time in days since an arbitrary start 
date, allows for the possibility of a time trend affecting the TBF 
hazard.
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TABLE 2
Coding of Holding Group Covariates

z 2 *3 *4
(base) holding group I 0 0 0 0 0

holding group II 1 0 0 0 0
holding group III 0 1 0 0 0
holding group IV 0 0 1 0 0
holding group V 0 0 0 1 0
holding group VI 0 0 0 0 1

Because of the large number of types of LRUs present in a sub-system the 
types of LRU were not included as covariates.

Results for sub-system (1)
The results after the usual backwards stepwise elimination procedure based 
on two-tailed 5% tests, are given in Table 3. The p -values indicate the 
probability of obtaining such extreme estimates for the /?,’s just due to 
chance, if there were no real effect for the covariate.

Discussion
(a) The likelihood ratio statistic: This, is seen to exceed the tabulated 

upper 5% critical value for a chi-squared distribution with four 
degrees of freedom. This indicates that the fitted model provides 
significantly more explanation than the model that the covariates 
have no effect and that the data is homogeneous.

(b) Significant Covariates: The positive estimates of /? x and p5 imply that 
sub-systems (1) from holding groups II, and more particularly VI, 
experience a higher hazard than those in the other groups (by factors 
of 45% and 75% respectively).

TABLE 3
Model for Sub-system 1 after Backwards Stepwise Elimination

Significant covariates A p- Value 
{less than)

Likelihood 
Ratio Stat.

Zy— holding group II 0*373 214 0*00005 68*695
z5— holding group VI 0*562168 0*00005 (5% critical
z6— spring 0*126810 0*02055 from tables
z10— time trend -0*000604 0*00005 = 9*488)

B. 16
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The positive estimate of indicates that sub-systems (1) 
experience approximately a 13% higher hazard in the spring than 
during the other seasons, possibly reflecting increased exposure due 
to exercises. This covariate is however only marginally significant, 
there being approximately a 2% chance that the effect is purely 
spurious.

The negative estimate of /?10 indicates that there is decreasing 
hazard as time passes (at the rate of approximately a 20% reduction 
per year). The number of sub-systems (1) entering the field was known 
to be rising over the period. Assuming that times to first fault are not 
shortening with calendar time, the sub-systems (1) are becoming 
more reliable.

(c) Non-Significant Covariates: The holding units III-V do not appear 
to have a significantly different hazard rate, for their sub-systems (1), 
to the base holding group. The hazards during summer and autumn 
do not appear to be significantly different to that during winter.

Interestingly, the ETI reading was found to be non-significant. The 
elapsed time in normal mode was initially considered as important in 
explaining the fault rates of the units. The finding that this is non­
significant, in this model is probably mostly due to the unreliability of' 
the ETI’s themselves.

GRAPHICAL VALIDATION TECHNIQUES

A number of geographical techniques are available to examine the 
appropriateness and goodness-of-fit of the PHM model.

(1) Baseline hazard plot
Figure 12 shows a Weibull hazard plot for the baseline hazard obtained 
from the PHM model. The plot is reasonably straight indicating that, apart 
from the effects of the covariates, the Weibull is a reasonable distribution for 
the times between faults (e.g. Ref. 14). The shape and scale parameters are 
estimated at approximately 0-84 and 11-02 days respectively. Since the shape 
parameter is less than 1 the TBF’s exhibit a decreasing hazard rate.

(2) Cox and Snell residuals
A graphical goodness-of-fit test for the whole model is provided by plotting 
Cox and Snell ‘crude’ residuals15 against their expected order statistics. If the 
model is a good fit we expect the residuals to lie on a straight line, of gradient 
1, passing through the origin.16 Figure 13 shows such a plot.
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(3) Proportionality plots
The PHM model assumes that all covariates affect the baseline hazard 
proportionally. The validity of this assumption needs to be verified from the 
data for each covariate, so that if it is unjustified, the model can be adapted 
where necessary. Figures 14-16 are proportionality plots for the significant 
binary covariates. In the plots the data is stratified on each covariate, and the 
model is then fitted separately to each stratum. If the assumption of 
proportionality holds, plotting the loge baseline cumulative hazard In H 0(t) 
against t for each stratum on the same graph, should produce plots with 
constant vertical separation for all t.i6 Figure 14 shows such a plot for the 
stratification on the covariate zu holding group II, for which the 
proportionality assumption, whilst not perfect, appears approximately 
valid. Figure 15 stratifies on the covariate z5, holding group VI. As in Fig. 14, 
the vertical separation changes towards the end of the graphs for which there 
is relatively little data (hence the crossing point). The curves remain however, 
reasonably well separated and the proportionality assumption again 
appears plausible for the majority of the data which corresponds to Tbf’s

Ln<H0<t)>
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Fig. 14. Proportionality plot for covariate z t .
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under 20 days. Figure 16 stratifies on the covariate z6, spring. The plots cross 
in numerous places, reflecting the fact that there is little difference between 
the estimated hazards for the two groups, as is apparent from the 
marginality of the significance of z6 in Table 3.

(4) Influence functions
Figure 17 shows a standardised plot of the influence of individual TBF’s on 
the p6 parameter estimates for the covariate spring.17,18 The plot shows the 
estimated normal deviate for the covariate coefficient when each single TBF 
and censoring time is excluded from the model, one at a time. This is plotted 
against the order of magnitude of the TBF’s on the horizontal axis. We can 
thus examine which TBF’s have times most influential on the observed 
significance of the covariate, and which if any would, if deleted, remove the 
significance of the covariate. For the 5% two-tailed tests these points 
correspond to estimated normal deviates in the range ( — 1*96, +1*96). The 
influence of an event is the difference between the ft estimate with and 
without the TBF included: I tj = ft — ft;, where is the estimate of ft made 
when TBF j  is excluded. The figure presented here is based on the simplifying 
approximation of treating the standard error of the ft estimator as unaltered 
after elimination of the single data point. The letters on the plot represent the

N.D. <0 ..)
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Fig. 17. Influence plot for covariate, Spring.
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combinations of the significant covariates associated with each TBF. The 
plot splits into two distinct groups, one associated with TBF’s in spring, and 
one with TBF’s not in spring. This split is common for binary covariates. 
Although the covariate is marginal there do not appear to be any TBF’s that 
would change the significance of the covariate if omitted.

Results for sub-systems (2)
Commencing from the same set of initial covariates as for sub-systems (1), 
and applying the same model D structure, the results for sub-systems (2) 
after backwards elimination as shown in Table 4.

TABLE 4
Model for Sub-systems (2) after Backwards Stepwise Elimination

Significant covariates A p- Value 
(less than)

Likelihood 
Ratio Stat.

z x— holding group II 0-400882 0-00005 33-71
z2— holding group III 0-256 648 0-01405 (5% critical
zs— holding group VI 0-532 513 0-00005 from tables
z l0— time trend -0-000627 0-00015 = 9-488)

Discussion
As may be expected, the results are broadly similar to those obtained for 
sub-systems (1). Now, however the spring is no longer significant, and 
holding group III is marginally significant. The results for z Li z5, and z10 are 
highly significant as before, and are of the same sign and order of magnitude 
as in the model for the sub-systems (1).

It may not be surprising that the results for two types of sub-system are so 
similar, since the holding groups operate their units as complete systems. 
Thus if holding group I exercised their sub-system (1) more than did holding 
group II, then they necessarily also exercised their sub-systems (2) more.

C MODELS

For illustrative purposes here, we present the analysis of a PHM model of 
type C, for a particular type of LRU, present in sub-systems (3), selected 
because it has only two sub-assemblies, and two hierarchical levels. The 
censoring structure (iv) described in the previous section was applied.

The covariates z l- z l0 were again used to describe holding group, season,
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TABLE 5
Coding of Covariates for Level of Fault

Z11 z l2 Z13

sub-assembly 1 faulty (base) 0 0 0
sub-assembly 2 faulty 0 0 I
both sub-assemblies faulty simultaneously 1 0 0
neither sub-assembly faulty 0 I 0

ETI, and time trend and zi r z13 were introduced for the censoring 
procedure for the hierarchical system. Table 5 shows the coding of the 
covariates z u - z 13.

Results
After backwards stepwise elimination only one covariate, zn  (recording 
simultaneous faults), remained significant; with fill =  1-87128 and a p-value 
of less than 0-000 05.

Discussion
The positive estimate of fin  indicates that there are shorter times to the 
simulaneous faults on the sub-assemblies than times to faults due to the 
other mechanisms.

No differences between the holding groups or the seasons was identified in 
this model.

Once again the ETI reading is found to be non-significant, and in this 
model there is no evidence that a time trend is affecting the times to first fault 
of this type of LRU.

CONCLUSIONS

1. Whilst reliability for weapon systems may be good, reliability 
analysis for weapons systems has been poor and thus has limited the 
role of the statistician effectively contributing to the design process.

2. Poor database design, recording and quality hampers analysis.
3. Reliability analysis methods need modification to be applied 

satisfactorily to weapon systems.
4. Proportional Hazards Modelling is an effective method for the 

analysis of weapon systems data with its wealth of auxiliary 
(covariate) information.
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5. Various model formulations, corresponding to different physical 
interpretations are possible. The reliability analyst’s role is to explore 
these in the search for structure and categorisation of mechanisms. In 
such an approach on-line graphical aids as partly reported here are of 
great value.

6. This paper has presented an initial review of parts of the reliability 
analysis of a weapons system currently being undertaken by British 
Aerospace and Trent Polytechnic personnel. Work in this area is 
continuing.
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APPENDIX C

APPLICATIONS OF PROPORTIONAL HAZARDS MODELLING TO HARDWARE 

AND SOFTWARE RELIABILITY

Dr Dave Wightman, Mrs. Estelle Walker and Professor Tony Bendell

TRENT POLYTECHNIC 

Nottingham, England

The paper describes work at Trent Polytechnic in extending uses of 

Proportional Hazards Modelling (PHM) within both hardware and software 

applications. The Reliability Group, led by Professor Tony Bendell, has 

experience of applying PHM to a number of different industries and 

technologies. As well as discussing the adaptation of PHM to diverse 

reliability data structures, we discuss developments in diagnostic aids 

employed to investigate model structure. Illustrative, material is drawn 

from applications in railway engineering, computer hardware, weapon 

systems, electricity supplyr computer software and electronic components.



INTRODUCTION: PHM

The origin of PHM is the seminal paper by Professor D R Cox which was 

presented to the Royal Statistical Society in March 1972 (Cox 1972).

PHM combines concepts from biostatistics and reliability theory; 

incorporating regression-like arguments for explanatory variables into 

life-table analysis. It is a technique whereby identification of 

independent effects of variables thought to influence the life-length of 

equipment is possible without the necessity of specifying the 

distributional form of life a -p rio r i.

The model is structured on the assumed decomposition of the hazard

function into the product of a baseline or generic hazard function and

(usually) an exponential term incorporating the effects of variables. The

fundamental equation is:
h(t;z1,z2,...,zk) = h0(t) .exp(P1z1 + p2z2 + .... + Pk zk) (1)

where the P's are the unknown parameters of the model defining the effects

of each of the explanatory variables; the Zj/s are the values of the 

explanatory variables; h0(t) is the baseline hazard function (usually 

distribution free).

From (1) the effects of the Zi's are seen to act multiplicatively on 

the baseline hazard h0(t), so that for different values of an explanatory 

variable their respective hazard functions are proportional over all time.

The unknown parameters p are estimated through the maximisation of

Cox's partial likelihood, (Cox, 1972). Optimisation procedures available
2
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include the expectation-maxiraisation (EM) algorithm, (Cox and Oakes, 1984).

However, for the material illustrated in this paper we employ a method

whereby we firstly take the natural logarithm of the partial likelihood and 
then obtain the first and second partial differentials with respect to pj,

j=l,2,...,k. The parameters Pltp2> • • • /Pk. are estimated iteratively based on

a Taylor Series expansion for each step of the iteration, starting with 

initial values of zero (the method of scoring). Tests of whether each 

explanatory variable has any significant effect are based on the asymptotic 

normality of the estimators. A backwards stepwise procedure is 

incorporated whereby non-significant factors are excluded one at a time and 

the model rerun until all the factors are significant.

Having obtained a set of significant explanatory variables we then 
obtain an estimate of h0(t), using the approach in Kalbfleisch and

Prentice (1980).

PHM RELIABILITY. APPLICATIONS

The reliability literature mainly concentrates on data from repairable 

systems. The reported data is diverse, including moterettes (Dale, 1983), 

marine gas turbines and ship sonars (Ascher, 1983), valves in light water 

nuclear generating plants (Booker et al, 1980), aircraft engines (Jardine 

and Anderson, 1984), sodium sulphur batteries (Ansell and Ansell, 1986), 

transmission equipment (Argent et al, 1986), (Manning et al, 1987), weapon 

systems (Gray et al, 1987) and subsurface safety valves (Lindquist et al, 

1988) . However, in some analyses the form of the models employed are in 

general basic and are not developed to take specific account of the 

complexities arising in reliability data.

3
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Many of the PHM analyses of repairable systems in reliability employ 

one (of four) of the formulations proposed for a Leukaemia study by 

Prentice, Williams and Peterson (1981)(PWP). The paper by PWP(1981)

concentrates upon data arising from a large number of study subjects with a 

small number of failures on each subject. Experience at Trent has shown 

that data structures arising in reliability studies are considerably more 

diverse. Such structures reflect the data collection processes and 

procedures as well as the field deployment and failure phenomena.

The question of appropriate structure for modelling and analysis 

centres about what are the appropriate point processes to describe failures 

of repairable systems. In this respect it is essential when analysing 

these complex data sets that PHM is employed as an exploratory data 

analysis tool, searching for appropriate pattern and structure.

Some commonly occurring reliability data structures are illustrated in 

Figure 1. Within the constraints of this paper we are of course unable to 

discuss in much detail the structure and analysis of all the data 

structures identified in Figure 1. However, we briefly describe each in 

the next section, and in particular concentrate on PHM for competing risks

SINGLE.OBSERVATION ON EACH ITEM

The application of PHM to a single failure observation on each item of 

equipment (of which non-repairable items are a special case) has the 

advantage that much of the complexity and necessary exploration associated 

with its application to multiple observations on repairable systems is 

unnecessary. However, the application still requires the adoption of a



flexible approach in which different modelling formulations are considered, 

each of which contributes to the understanding of the data set under study.

REPAIRABLE ITEMS/ITEMS UNIDENTIFIED

A commonly encountered process is where we have information on failures 

of a group of items within which failures to individual items are not 

labelled. Thus, we do not have any information on the past failure history 

of individual items in the group. Often in this situation, t, in equation 

(1) is taken as the series of subsequent failure times for the group. 

However, the possibilities are heavily dependent upon the context in which 

the data arises.

REPAIRABLE ITEMS/ITEMS IDENTIFIED

Prentice, Williams and Peterson (1981) introduce a variation on the 

basic PHM in which the structure of the model considered is essentially one 

that allows for reliability growth or decay in subsequent inter-failure 

periods on the same item. The concept behind this formulation is that 

items move through strata upon failure, so that prior to the first failure 

they are in stratum 1, after the first failure and prior to the second they 

are in stratum 2, etc. PWP (1981) suggested four alternative approaches to 

analysis.

DATA FROM ONE SYSTEM

Often reliability data takes the form of a sequence of events on one 

system. Frequently in these data sets the underlying failure mechanism is 

based upon the time between subsequent failures. However, more than one



cause of failure may be present, so that for example; t in equation (1) may 

be based on the time between subsequent failures due to the same cause.

NESTED/HIERARCHICAL DATA STRUCTURES

The nested/hierarchical nature of some systems leads to the 

identification of a number of different point processes on which to base 

any PHM analysis. These point processes correspond to different levels of 

the hierarchy; system, sub-system, assembly, sub-assembly, etc. In 

analysing such complex data it is necessary not only to consider carefully 

the choice of t in equation (1) but also the censoring structures that may 

be appropriate. Gray et al (1987) found that many censoring 'structures1 

could be identified by interpreting various fault mechanisms in the 

hierarchical levels.

APPLICATION OF PHM TO COMPETING RISKS

Competing risks formulations within the PHM techniques exist. Two

models were introduced by Holt (1978); one which has the same baseline for 
each cause with cause specific p coefficients, and the other with different

baseline and p coefficients for each cause. These are discussed in 

Kalbfleisch and Prentice (1980).

In this paper we consider a model for competing risks whereby the 

basic time metric, t, in equation (1), is taken as the time between 

consecutive failures. Given that there are 1 + 1  failure modes, 1 binary 

dummy variables are introduced into the covariate set to represent them. A 

censoring event is generated at each failure time for each of the other 

failure modes.



We now show that the partial likelihood for this model construction 

factorises into two terms, one containing only information from failure 

mode variables and the other being the usual partial likelihood as shown 

below.

The partial likelihood for a model without competing risks is:

n exp(p1zli + p2z2i + .... + PKzki)
Lp - n ___________________________________

I exp <plZlm + p2z2m +....+ p^, 
i=l meRi

where n = total number of failures 

k = number of covariates

Under competing risks each event in the model (2) above now becomes 1 
+ 1 events. Let yj represent the associated parameters for the indicator

variable Xj for the j'th failure mode. The partial likelihood now becomes



I j

exp(p,Zli + p2Z2i+ —  + pKZi + Yin + Y2x2i+ —  + Yixii)

i=l exp O lZlm + p2Z2m + -- + pfcZ^ 0) +
£ exp (Plzlm + p2Z2m + --+ pfcZfca + Yi) +

MeRi

(3)
exP <Plzlm + P2z2ra + -------+ M k a  + Yi>

hence, ,y
n exp(Yix11 + Y2x2i + + Y].xu ) exp ( p ^  + p2z21 t pxZ)ci)

Le = n  ______________________________________________________
£

i=l MeRi [1 + exp(Y,) + --- + exp (Yi) 3 exp (PiZlm + P2z2m + --- + pkZbn)

n exp(YiXU  + --- + Y]XU ) n exp (p,zu  +   + Pkzki)
-  n  x n

i=l i=l I
[l+exp(Yx) + +exp<Yi)] MeRi exP (M lm + - • •+Pk2W

where

Maximising the partial likelihood Le is equivalent to maximising Lp and the

factor involving the dummy variables independently. Hence the estimates of 
the p*s from the competing risks model will be the same as those from the

initial model.

C. 8

Le = Lf x Lp (4) Ci:

•
1n exp (Yixii + ---+ Yixu> J

f -  n (5)

i=l [l+exp(Yi) +---+exp(Yi>] j



Now maximising the factor Lf:
dlog Lf n exp(Yj)

___________ * z  x j i     = 0

dYj i=l [l+exp(Yi)+.. ,+exp(Yi) ]

j=l,2,..., 1
let nj = number of the n events for which XjA = 1 then

n.exp(Yj)
nj -   = 0 (6)

(1 + expYx) + +exp(Yi ))

j=l,2,.. .,1

From (6) a set of 1 simulations linear equations can be generated 
which can be solved to give the parameter estimates y for the dummy

variables. The parameter estimates y are in terms only of the number of

'deaths' within each failure mode.



CQYftRIME-EQBMmATIQN

From the investigations of the Central Electricity Generating Board's 

(CEGB) transmission failure data, see Argent et al (1986), Manning et al 

(1987) and Manning (1988), one aspect of interest to the CEGB was the non­

significance of the overhead line length as a covariate. A possible 

explanation of the non-significance of the line length is that there is 

little information in the covariate; the line length figure was updated at 

the end of each year for the first 7 years of data and remained constant 

for the remainder of the period.

Given the line length values, of particular interest to the CEGB was 

that by increasing the line length by a multiple, whether there was 

evidence that the hazard was increased by the same multiple. Multiplying 

the line length by k and investigating whether the hazard is multiplied by 

k can be achieved by taking the logarithm of the line length (say x), viz

epin kx - fce&ln x 

e01n k < e 01n x - ke Pln x 

epln k . * 
kp = k

P = 1
where e&ln x'~ hazard for length of line x . So that a p-1 would indicate

the property of increasing the length of the line k times would increase

the hazard k times. However, running the model with the logarithm of 
line length found this formulation of the covariate non-significant and a p

coefficient markedly different from 1.



It is usual practice in the PHM applications in reliability to 

include covariate information as recorded. However, other formulations for 

the covariate information may be more appropriate. For example, in Davies 

et al (1987) who analysed the 16 software failure data sets for Musa (1980) 

different formulations of the failure number covariate were considered - 

these were (where N is the failure number) N, /n, N2, 1/N and In N. 

Investigation of the form of the failure number information was undertaken 

since in many conventional software reliability models failure number is an 

integral part of the model. From Davies et al (1987) there is the 

suggestion that the inclusion of failure number information (although not 

statistically significant in the majority of cases) as N or t/N are the most 

appropriate formulations.

The above examples were introduced to investigate specific questions 

within particular data sets. However, in a more general sense, work at 

Trent Polytechnic has recently focused on whether a -prio ri it is possible 

to choose/obtain covariate' 'formulations that lead to the proportionality 

assumption being fulfilled.

EXftMELE OF. ADAPTION QF PHM-FOR A LARGE DATA SET

Due to the number of events and covariates the problem with computer 

space constraints has occurred in some of the analyses undertaken by the 

reliability group at Trent. A recent problem of this nature occurred in 

considering the use of PHM in the investigation of the data held in the 

electronic component data base at Loughborough University, Loughborough. 

Investigation focused on component types which had a 'reasonable' number of 

failures for analysis purposes. However, because of the number of (same) 

components of the circuit board, the number of boards in a unit and the



number of units in the field, substantial censoring information was 

generated (in one case of the order 500,000 censoring observations). This 

number of observations creates computer program problems, e.g. in terms of 

dimension statements and also storage and data handling/manipulation 

problems.

Background knowledge supported by inspection of the data revealed 

that the vast majority of the censoring observations had a censored time 

larger than the greatest failure time, so that in PHM these observations 

are given a rank equal to that of the last failure. Inspection also 

revealed that for large groups of observations the covariate values for 

each group and the number of observations in the group. The computing 

routines employed for PHM at Trent were altered to include reading of the 

summarised data file for the censored observations and to amend the 

calculations that are associated with the largest rank.

DIAGNOSTICS FQR PHM

A number of graphical techniques can be employed to examine the 

appropriateness and fit of the PHM model.

A method of testing the crucial assumption of proportionality between 

different levels of a covariate is provided by Kay (1977). Cox (1979) 

introduce two techniques similar to this, one which employs the logarithm 

of-the hazard, the other the survivor distribution.
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Kay (1977) suggests an approach to testing the appropriateness of the 

model whereby 'residual' quantities as defined by Cox and Snell (1968) are 

obtained. These quantities should exhibit approximately the properties of 

a random sample from a censored exponential sample with failure rate 1, if 

the model is appropriate. Hence, survival estimates based on the residuals 

should when plotted on a logarithmic scale, yield approximately a straight 

line with slope - 1. Self (1981) extends the technique to include time 

dependent covariates. Aitken and Clayton (1980) describe a variance- 

stabilised version of the plot based upon an Arc-sin transformation.

Schoenfeld (1982) defines partial residuals for each significant 

covariate which can be used to look for local deviations from the 

proportional hazards model.

Lagakos (1981) defines residual scores for each individual from 

consideration of the partial likelihood score function and the cumulative 

hazard. Lagakos then proceeds to adjust the observed ranks based upon this 

information. If the model is appropriate, then the re-adjustment should 

account for the effects of the covariates.

Cain and Lange (1984) and Reid and Crepeau (1985) obtain influence

functions for the proportional hazards model. These influence functions,

for each explanatory factor, approximate the effect of individual cases

upon the estimate of the associated coefficient. Strorer and Crowley
(1985) also discuss a diagnostic for estimating the changes in 3 due to

the deletion of a single observation.

The recent paper by Barlow and Prentice (1988) represents residuals 

for relative risk regression as an estimator of a stochastic integral with



respect to the martingale arising form a subject's failure time counting 

process. Previously proposed residuals for individual study subjects and 

for specific time points are shown to be special cases of this definition.

Despite a great deal of work having been undertaken in this area the 

use of graphical diagnostics is still currently crude. This is, therefore, 

an area for development.

The strengths and the limitations of three of these diagnostics; 

proportionality plots, Schoenfeld residuals and influence functions, are 

discussed below.

PROPORTIONALITY ASSUMPTION

The assumption of proportionality in PHM is that different values of 

the covariate have hazard functions that are proportional to each other 

over all time.

The most commonly applied method to test whether a covariate follows 

the proportionality assumption is to stratify upon the covariate of 

interest and for each stratum (level) of the covariate plot the logarithm 

of the cumulative baseline hazard against time, see Kay (1977). That is, 
for a binary covariate, zk say, we have for the hazard function



and for the logarithm of the cumulative hazard

ln[Eh0 (t)3 + fia + h  ' zk = 1

ln[Ih0 (t)] + fiz. / zk = 0

So that, if the assumption is appropriate then plotting the logarithm 

of the cumulative hazard for each stratum against time should result in a 

constant vertical separation. Figure 2 illustrates this graphically.

The problem with this procedure is that it contains a highly 

subjective element. As a first step to minimize the subjectivity the 

vertical separation of the plots at various points along the time scale can 

be plotted separately below the graph, this is illustrated by Figure 3 

taken from the analysis of ICL hardware for the covariate indicating 'No 

fault found' (See Drury et al 1987). Although, we .should expect this to 

reveal a straight horizontal line if proportionality holds it does not, 

however, give any real indication as to whether there is a reasonable 

constant vertical separation present. It would therefore be useful to 

construct confidence bounds around the estimates. Initial bounds for the 

log baseline cumulative hazards were produced, from a transformation of the 

confidence interval around the baseline survivor function, which was 

constructed form an asymptotic estimate of the variance for the survivor 

function (Link 1984). These asymptotic bounds were very wide and offered 

little information, an example can be seen in Figure 4. The +'s are the 

95% bounds around the top plot, and the x's those for the lower plot.

Simulated bounds were considered in an attempt to narrow the bounds. 

Assuming a Weibull distributed baseline with parameters estimated from a
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hazard plot for each of the strata, 90% limits were constructed by 

simulating twenty groups of fifty failure times from the estimated Weibull 

distribution- The problem with these, although the bounds are a little 

narrower, is that they are not always defined at small t, since the first 

simulated failure time can be relatively large, an example can be seen in 

Figure 5.

From the bounds in Figure 5, despite their shortcomings as described

above, we are able to see that the two strata are clearly separated

(neither set of bounds overlap) indicating a real difference between the 

levels of the covariate. The bounds generally narrow as t increases 

indicating less variance in the latter part of the plots.

Work is continuing at Trent in the area of minimizing the level of

subjectivity in this diagnostic.



SCHOENFELD-RESIDUftLS

The Schoenfeld residuals (Schoenfeld, 1982) are known as 'partial 

residuals' since a set is obtained for each covariate.

For the j'th covariate at failure time t* the partial residual r^ 

is defined:
rjt - zj:l - BtZjil RiJ 

where is the value of the j'th covariate at failure time tir and

S Zji exp (pz>

Ri
EtZjj. |Rt] = ____________

S exp (pz)
Ri

the partial residuals are obtained from elements of >the score vector (the 
vector of first differentials of the log likelihood with respect to pj).

If proportional hazards holds ECr^] 0, and a plot of r^ versus t L 

will be centred about 0.

For a binary covariate there is a split of residuals, above and below 

the axis, corresponding to the two categories of the covariate. Since 

there are often in reliability problems a large number of tied failure 

times the density of partial residuals at many of the points cannot be 

seen. Visual inspection is also hindered since the two bands are rarely 

equidistant from the axis. To ease visual inspection, therefore, we have 

added to the plot a moving average based on intervals of 20 failure times. 

The moving average can then be looked at for local fit of the model, an



example can be seen in Figure 6. The +'s on Figure 6 represent single 

failures and the x's tied failure points.

Experience at Trent tends to show that the appearance of these 

residual plots is highly affected by the pattern of censoring observations. 

To this end we now consider plotting censoring observations on the same 

figure. As an example we show Figure 7 the Schoenfeld residuals and 

censoring observations for the binary covariate 'route1 in the analysis of 

the brake discs on high speed trains, see Bendell et al (1986) and Wightman

(1987) . The x's on the plot are the partial residuals as defined by 

Schoenfeld (1982), whilst the + 's are the partial residuals obtained using 

a slight approximation in the presence of tied failure points, see Wightman

(1987), the o's are the censoring events plotted at their covariate value 

and censoring time.

The plots of the o's gives an indication of the distribution of the 

censoring points for each' covariate and may reveal outliers in the 

censoring observations or provide evidence of a relationship between 

censoring and the covariate.

The residuals on Figure 7 form two bounds reflecting the binary nature 

of the covariate. There are more positive than negative residuals which 

reflects there being more failures on the West route than the East. The 

predominance of failures on the ‘West route is balanced, as is necessary 

since the sum of residuals for each covariate is zero, by the East route 

residuals being greater in magnitude. In Figure 7 the patterns of 

censoring points for the East route (o’s along the mileage axis at residual 

value one) show no clear difference, however, the censoring observation at 

approximately 470,000 miles on the East route is particularly unusual.
18
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This outlying point would not be detected in the usual Schoenfeld plots and 

would in general go unnoticed because of the observation being censored and 

many of the diagnostics and plots not explicitly using 'time to failure' 

information, but rather rank information.

ESTIMATED INFLUENCE FUNCTIONS

Cain and Lange (1984) and Reid and Crepeau (1985)- present essentially

the same technique for approximating the influence of individual items upon 
each of the p coefficients obtained from PHM. These empirical influence

functions can then be used in an informal manner to identify influential 

observations which may greatly affect statistical inferences regarding the 

covariates.

The influence of each observation on the p coefficients can be

obtained in an exact manner by dropping each observation in turn and 

refitting the model. However, this • is not feasible in most practical 

applications because the number of observations and covariates implies 

prohibitive computer time.

Based on a Taylor series expansion Cain and Lange (1984) employ a 

first order approximation toA A
P “ P(j)

A
where:- P estimation of P with all observations

-N
P{j) estimation of p with j'th observation missing
^ a y\
p - p(jj is the influence of the j'th observation on p

This representation of the influence is shown to consist of the partial 

residual of Schoenfeld (1982) (discussed above) and a component which is



the effect that an item has on the pcoefficient via all the risk sets that 

the item is a member of.

Cain and Lange (1984) and Reid and Crepeau (1985) represent the 

estimated influence function graphically; Cain and Lange plotting the 

standardised influence against the rank of survival time, and Reid and 

Crepeau plot influence against covariate value. However, we plot the

estimated change in the z-score for when each observation is omitted 

against the rank of the observation. This can be achieved if it is assumed 

that the variance-covariance matrix does not change fundamentally when one 

observation is omitted (this assumption is already made in the calculation 

of the estimated influence function). Now for each coefficient the
estimated influence of the j'th observation (Im j ) isA A M

P " P(j)



Dividing by the standard deviation of jj(St(p)) obtained from the variance' 

covariance matrix. * a a
I(j) P P(j)

St (5) St(fJ) St (p)

A *1

st(p> st (5) st <3>

St(ji)

where:
z'j is the estimated z-score when the j'th observation is

ommitted from the analysis.

z is the z-score obtained when all the observations are
analysed.

I(jj the calculated influence of the j'th observation.

To illustrate our plot we consider the route covariate from the 

British Railways High Speed Train brake disc analysis, see Bendell et al

(1986) and Wightman (1987). With 3 significant covariates, 2 of which are 

two-level covariates and the other a three-level covariate, there are 12 

possible combinations of covariate values. On the 'influence function' 

plot, Figure 8, each possible combination of covariate values is 

represented by a letter, failures by upper-case letters and censoring 

events by lower-case letters. Figure 8 shows that the removal of any 

observation does not change the high statistical significance of the 

coefficient since for all observations the estimated z-score exceeds 1.96.



The plot also shows that failures have in general a larger effect than 

censoring observations.

To illustrate the accuracy and the stability of the estimated 

influence (z*-score) we consider observation [A] on Figure 8/ Table 1 

summarises the effect of removing this observation.



Table 1. Effect of Removing Observation [A]

C o v a r i a t e

Route
Material/
Boltina

Interaction
Braking System/ 

Bolting 
Interaction

z-score
Actual after 
Elimination 3.5617 4.5129 4.4819

Estimated 
{z*-score) 3.5913 4.5139 4.4820

Standard
All Data 0.1944 0.2094 0.1034

Deviation
Less Observation 

[A] 0.1854 0.2095 0.1033

Comparing actual and estimated z-score values in Table 1 there is 

seen to be good agreement, particularly for covariates material/bolting 

position and braking system/bolting position. Also, the use of the 

standard deviation, based upon the whole data set, appears reasonable.

CONCLUSIONS
There is a. need to avoid a black-box application of the PHM 

methodology, particularly in light of the unrefereed nature of much of the 

early literature. PHM is, however, a good tool for use in an exploratory 

manner.

A lot of experience is associated with identifying and modelling 

structure in the data set, and also in using and interpreting the 

diagnostics.
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The major need is for the improvement of graphical diagnostics, 

is being undertaken at Trent to systematically develop these.
Work
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FIGURE 7. Schoenfeld Residuals for Route Covariate
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FIGURE $ Estimated Influence on z score for Route Observations
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