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Statistical models for identifying 
frequent hitters in high throughput 
screening
Samuel Goodwin, Golnaz Shahtahmassebi & Quentin S. Hanley*

High throughput screening (HTS) interrogates compound libraries to find those that are “active” in 
an assay. To better understand compound behavior in HTS, we assessed an existing binomial survivor 
function (BSF) model of “frequent hitters” using 872 publicly available HTS data sets. We found large 
numbers of “infrequent hitters” using this model leading us to reject the BSF for identifying “frequent 
hitters.” As alternatives, we investigated generalized logistic, gamma, and negative binomial 
distributions as models for compound behavior. The gamma model reduced the proportion of both 
frequent and infrequent hitters relative to the BSF. Within this data set, conclusions about individual 
compound behavior were limited by the number of times individual compounds were tested (1–1613 
times) and disproportionate testing of some compounds. Specifically, most tests (78%) were on a 
309,847-compound subset (17.6% of compounds) each tested ≥ 300 times. We concluded that the 
disproportionate retesting of some compounds represents compound repurposing at scale rather than 
drug discovery. The approach to drug discovery represented by these 872 data sets characterizes the 
assays well by challenging them with many compounds while each compound is characterized poorly 
with a single assay. Aggregating the testing information from each compound across the multiple 
screens yielded a continuum with no clear boundary between normal and frequent hitting compounds.

High Throughput Screening (HTS) has been used for over a quarter century to identify new drug  candidates1. 
During the same period, the scale of the compound libraries and the complexity of methods employed has 
 increased2. Early in the development of HTS some compounds were noted to respond  frequently3 leading to the 
concept of frequent  hitters3–6 and pan assay interference compounds (PAINs)7–9. Although specific structural 
motifs are known to be problematic, they also are found in pharmaceutically useful  compounds10–12. Practitioners 
of HTS have learned to recognize a wide range of chemical and physical processes leading to apparent activity 
in HTS  assays13. The science of active compound detection and corresponding statistical practice developed 
 early14,15 with many subsequent  refinements16–19. The underpinning instrumental technologies of HTS have 
been influential for increasing the scale achievable in routine laboratory work and these technologies are widely 
deployed in the form of plate readers, lab robotics, and compound libraries accessible to  researchers20. In addi-
tion, due to funding policies considerable HTS data is publicly  available21.

Despite extensive development and some  successes1, HTS remains subject to long-standing critiques related 
to  productivity22. The slow pace of discovery has created an interest in strategies that repurpose existing drugs 
rather than seek new  compounds23. Despite these limitations, considerable amounts of both public and private 
money are being invested in HTS and it is likely to remain a key aspect of drug discovery in the future.

The public investment and consequential data sharing provide a record containing many large primary HTS 
data sets. A previous investigation into a small number of these discovered an identifiable set of active compounds 
having excess variance many of which contained PAIN  motifs18. This work generated an interest in understand-
ing statistical behavior in HTS at scale. The goal was to fill a gap in the literature documenting the distributions 
observed in HTS, assess conformity with assumptions/expectations, and understand the characteristics of active, 
inactive, and inconclusive compounds. Here we investigated sampling of chemical space, screen and compound 
level metrics, and models of frequent hitters. While some of the results noted here may be known in industries 
involved in screening directly, we have not seen similar results presented previously.
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Theory and definitions
This section considers term definitions, screen models, compound models, and rank order models. In the screen 
model section, we consider the binomial survivor approach to identifying frequent hitters, adaptation of that 
model to consider multiple probabilities, and additional statistical functions used to model screen level prob-
abilities in the data analyzed. In the compound model part, we present an empirical gamma distributed model of 
active assignments and approaches to distributing chemical attributes to model observed distribution behavior. 
Background on rank order models is provided to assist understanding this presentation.

Definitions. Compounds were considered active, inconclusive, or inactive based on assignments in the data 
sets. Active designations are used interchangeably with hits. Compounds were deemed frequent hitters if they 
hit more often than expected based on a model of active behavior. When speaking of individual compounds, we 
restricted discussion to compounds tested 50 or more times. This threshold is arbitrary. Hit rates vary in assays 
with 0.5–2% of compounds found  active24. True positives are less common with few or none of a set of hits genu-
inely interacting with a  target25,26. A compound generating a true hit once in fifty screens (2%) will be poorly 
characterized using 50 as a cutoff. An infrequent hitter is one found to be active fewer times than expected and 
a normal hitter is a compound meeting statistical expectation.

Screen models. The binomial survivor function (BSF) was proposed to identify frequently hitting com-
pounds using information from multiple  screens6,27. This model considers each test of a compound as a trial with 
some probability, p, of success. The value of p is estimated from hit rates in multiple screens. Across n such trials 
the probability a compound is active k times can be computed using the binomial probability mass function,

Compounds with values of pBSF ≥ 2 (99% confidence) were considered diagnostic of a compound being a 
frequent hitter compound where pBSF = − log10(BSF)6,27. The BSF model assumes p is single valued and only 
considers compounds being active more times than expected (frequent hitters). Compounds can also be assigned 
active too few times making them infrequent hitters.

Multiple probabilities can be considered by adapting the BSF model. When N screens are performed each 
having a probability, pi, this can be simulated by N sets of trials with the number of trials equal to the number 
of compounds in each screen. The values of pi can be estimated from the fraction of active compounds in each 
screen. This type of process is described by the Poisson-binomial  distribution28–30.

Fk represents every subset of k integers contained in {1 …. n} where n is the number of trials and k the number 
of successes.

Such a framework allows observed results to be simulated when the probability is not constant. There is 
additional complexity in the data considered here due to the number of tests on each compound varying in a 
complex way (see Fig. 2). For this reason, each compound was simulated as the number of successes, s, in j tests 
done on each of the n compounds in i screens. The probability of success for each test was drawn from a function 
describing the distribution of pi.

The distribution of pi values obtained from the percentage of active compounds in each screen was modelled 
by a generalized logistic  distribution31–33 (LD) after logit transformation.

where θ, σ, and α are the location, scale and shape parameters.

Compound models. Another statistical tool to model active assignments in screens is based on the Gamma 
distribution (GD) with the following form

where α and β are parameters of the Gamma distribution and can be parameterized such that α = mean2/variance 
and β = mean/variance. Once the parameters are found, gamma distributed random numbers can be generated 
to simulate data and the resulting simulation compared to the binomial models and to the observed data.

Compounds have a range of attributes that combine to generate responses in screens and these attributes 
can be modelled using statistical mechanisms. These attributes might include approximate limits on drug-like 
chemical space such as Lipinski’s rules of  534,35. Other features might be useful building  blocks12, privileged 
 scaffolds4, PAIN  motifs9,37, and other related chemical attributes. A bottom-up model can distribute attributes 
by assuming initially that a randomly selected compound has a probability, pa, of having a detectable attribute 
based on a binomial trial. If it has one attribute, then it has the same probability of a second, and so forth. This is 
like flipping coins weighted by pa and accumulating attributes while a continuous run of successes is obtained. 
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Assuming all attributes have a single probability is clearly an over-simplification but provides a starting frame-
work for a parsimonious model of compound behavior. The number of successes, k, after r failures, in such a 
process is modeled by the negative binomial (NB) distribution.

To model the number of assayable attributes in a set of compounds we parameterized the NB to only allow 
a single failure, r = 1. Once the attributes are distributed, each attribute provides a chance of being designated as 
active in any screen based on the probability of success. This second stage considers the attributes accumulated 
according to Eq. (5) to be like tickets for a lottery (a screen) with a probability of success for each ticket. This 
model can then be compared to a rank order presentation of the number of hits a set of compounds accumulate.

Rank order models. Because the literature of drug discovery has been interested in  PAINs8,9,38–40, frequent 
 hitters3,6, and related  effects23 it is convenient to look at data in rank  order41–48 to focus on compounds appearing 
multiple times across screens and the variability in the hit percentage across the data sets. A rank order model 
sorts the data by a parameter, for example the number of tests on each compound, and seeks to model the shape. 
A three-parameter model for such data has been proposed as an extension to Zipf ’s  law49.

In this expression, A is a scale constant, a determines the curvature at low values of r, and b describes the 
curvature at large values of r. Specific values of a and b are related to specific distributions. For example, when 
a = b = 0 the uniform distribution is  obtained47.

Results and discussion
Overview of the 872 screens. The 872 HTS data sets examined all contained tests on 50,000 or more 
compounds. The data include assay results from 1,759,553 compound identification (CID) numbers. These rep-
resented approximately 1.7% of the ~ 103 million compounds on PUBCHEM and about 1.2% of the ~ 145 mil-
lion CID numbers assigned as of 24/3/2020. The percentage of active compounds ranged from 0% (AIDs 592, 
901, 1019, 1027, 1722, 1766) to 69.62% (AID 1996, solubility assay; 40,282 active out of 57,859 compounds 
tested). The six with no actives included spectroscopic profiling tests (AID 592) and assays against disease targets 
(AID 901, inositol monophosphatase). These 872 screens contain 223,573,071 compound assays against valid 
CID numbers which represented approximately 83% of the bioassays on PUBCHEM as of 24/3/2020. There 
were 1,559,098 assays resulting in active designations (0.782% of total) and 2,560,020 inconclusive tests (1.28% 
of total). These counts do not include a small number of compounds for which no CID number was included. 
The active designations represent 374,431 different compounds (21.2% of all compounds tested) and there were 
431,189 inconclusive compounds (24.5% of compounds).

Active compounds in screens. The fraction of active compounds in screens has been considered a proba-
bility when trying to identify frequent  hitters6,27. The wide range in the observed percentage of active compounds 
seen here suggested that no single probability defined the behavior over the series of screens. Although the 
average probability was 0.0078, this number had considerable variance. To better understand the distribution of 
the expected number of actives, we investigated the normal, skew normal, beta, logistic, and generalized logistic 
distributions as candidate distributions describing these probabilities. The logit transformed probabilities gave 
good correspondence with a generalized logistic  distribution33 (GLD) with location = -5.0587, scale = 0.6958, 
and shape = 0.6333 (Fig. 1a) in comparison to a normal distribution. The rank ordered data fit well to Eq. (5) 
(Fig. 1b) with parameters: a = 0.6084 ± 0.0068, b = 1.183 ± 0.0074, and A = 0.000121 ± 0.000091. Simulations using 
GLD random numbers followed by inverse logit transform were nearly identical to the data with reasonable 
recovery of rank order parameters (a = 0.64 and b = 1.01). These a and b values occupy a region that is currently 
not well  documented50. Descriptively, a and b are related to the skewness and shape of the distribution with the 
a and b parameters related to the left and right sides of the distribution, respectively.

The distribution of active probabilities (Fig. 1a) provides the information needed for a generalization of the 
binomial survivor model based on the Poisson-binomial distribution to build prospective models of large HTS 
programs consisting of hundreds of campaigns. The shape of this distribution is critical for appropriate cost–ben-
efit analysis of publicly funded HTS as it enables estimations of the scale in terms of campaigns required to find 
some number of lead compounds for an arbitrary set of diseases. In combination with a more holistic view of 
the entire drug discovery process, it could allow reasonable predictions of the resources needed from beginning 
to end of the process. To the extent these 872 screens are representative of public HTS campaigns, it is the best 
data available for modeling future campaigns.

Frequency analysis of tested compounds. The frequency with which each compound was tested was 
noted by the PUBCHEM CID number (Fig. 2). The frequency with which compounds were found to be inactive 
had a similar shape and structure (not shown). The rank ordered distribution shows a prominent feature due 
to a subset of the compounds appearing repeatedly within single data sets (Fig. 2). A total of 275 compounds 
were tested more than 872 times. The most tested compounds were a known approved drug: the anti-depressant 
maprotiline hydrochloride (CID 71,478; 1613 tests) and the serotonin reuptake inhibitor fluvoxamine maleate 
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(CID 9,560,989; 1555 tests). Maprotiline hydrochloride was also inactive the greatest number of times (1544). 
Several of the most tested compounds are approved drugs.

Investigation of the multiple repeats of specific compounds revealed flaws in the construction of compound 
libraries as well as problems with reporting stereochemistry to PUBCHEM. Two examples are worth consider-
ing: 4-aminobutanoic acid (GABA; CID119) and inositol (CID892). GABA appears multiple times in compound 
libraries and was tested 893 times in the 872 data sets. It appears four times in the AID175 screen under four 
different SID (substance identification) numbers which are all mapped to a single CID. This replication remained 

Figure 1.  The density histogram (a) of logit transformed probabilities when compared to a generalized logistic 
distribution (solid line) and a normal distribution (dashed line). The rank sorted (b) probabilities from the 872 
screens fit well to the three-parameter model Eq. (5) (solid line).

Figure 2.  Rank order distributions of the number of times each compound was assayed. Panel (a) represents 
all 872 screens and shows the key features of the compounds tested. Panel (b) is a comparison of the first 
(blue squares) and last (black circles) 100 screens (b). Values above the lines at 872 (a) and 100 (b) represent 
compounds tested more times than there were screens. Values above the line at 436 in panel (a) represent 
compounds having greater than 50% likelihood of being tested in any screen.
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at the end of the period. GABA appeared 63 times in the first 100 screens and 66 times in the last 100. For GABA 
and similar compounds, better library management could reduce the cost of repeatedly assaying such compounds 
in single screens.

More problematic is the case of inositol. Inositol appears nine times in the two screens represented by AID 
175 and AID 248 and 1067 times in the 872 screens. Inositol has nine stereoisomers and some of these are clearly 
designated in the names provided with the SIDs to PUBCHEM. PUBCHEM had eight CID numbers associated 
with inositol, however, six were deuterated or tritiated isotopologues. In AID 175 and AID 248 there were eight 
different SID numbers submitted with structures all mapping to CID 892. The names provided with the eight SIDs 
sometimes refer to specific forms leaving ambiguity between name and structure. The 1067 repeats assigned to 
CID892 may reflect this ambiguity and the tests were made on specific inositols but the stereochemical informa-
tion was subsequently lost during reporting to PUBCHEM. All 9 inositols currently appear as synonyms for CID 
892 along with hundreds of other names. Given the importance of stereospecific  effects51, this loss is concerning 
and researchers trying to mine the PUBCHEM data base may be unaware of this problem. Submitters need to 
be more careful about the structural information they provide to better deal with stereochemistry and greater 
care would enhance the value of the PUBCHEM data base.

The compound test frequency rank order distribution (Fig. 2a) includes two other notable groups of com-
pounds. One group of compounds is made up of the same core libraries tested over and over and another group 
tested 3 or fewer times. As an example of the former, there were 218,998 compounds tested over 436 times. This 
group represents 62% (139,313,672) of the 223,573,071 tests. The bulk of tests appear to represent a small core of 
compounds tested repeatedly. A similar portion (235,292 compounds, 13.4% of the total) were tested only once 
(0.1% of tests). It is unlikely this represents the best approach to compound library design and management. 
More equitable testing and expansive sampling of chemical space might help find more new drugs.

This structure changed somewhat over the 15 years represented in the 872 data sets (Fig. 2b). The change we 
ascribe to an increased number of screening labs with more variation in libraries, however, each lab is retest-
ing its core library repeatedly. The scale of the number of compounds tested increased roughly a factor of 3 
over the period with increased diversity during the last 100 screens. Based on this evidence, we concluded that 
this series of HTS experiments taken in aggregate includes extensive compound repurposing at  scale23. It also 
includes direct drug repurposing (e.g. the most tested compound maprotiline). In the 872 HTS data sets, core 
libraries are repeatedly tested against new targets. When these are looked at in isolation, it may seem reasonable 
to redeploy an existing library against a new target, but in aggregate the likelihood that discoveries will be made 
of fundamentally new classes of drugs in the core of repeatedly tested libraries is small. At the same time, more 
attention needs to be paid to the compounds tested a small number of times. How these are introduced and 
managed is particularly important as it is arguably the part of these screens representing drug discovery rather 
than compound repurposing at scale (Table 1).

A further issue became apparent when assessing how CID numbers were distributed (Fig. 3). CID numbers 
are assigned sequentially which provides an approximate timeline for when the compounds were added to the 
PUBCHEM data base (Table 2). There are some limitations to this approach because some CID numbers added 
recently represent compounds that were used in early screens. One such example is CID 135,400,595 which 
was added in 2019 but used as early as AID368 (deposited in 2006). Despite this limitation, constructing a plot 
of the frequency of tests against CID number (Fig. 3) gives insight into the extent to which chemical space (as 
represented by CID numbers) is being sampled (Fig. 3a) and tested (Fig. 3b). It is neither sampled nor tested 
uniformly with large sections almost untested. Over 58% of compounds tested were drawn from the first 10 mil-
lion compounds added. The aggregate library of 1,759,553 compounds tested in these screens is clustered into 
blocks as are the number of times tested. In the absence of evidence to the contrary, there is no reason to believe 
that the poorly sampled sections of chemical space are less likely to contain pharmacologically useful compounds. 
There are also very specific CID number ranges that contain nearly all excessively tested compounds (> 872 tests).

Frequency analysis of active and inconclusive compounds. Application of the binomial survivor 
 function6,27 such that a frequent hitter was any compound with pBSF > 2 found 42,264 compounds (11.3% of 
actives) meeting these criteria with more than 50 tests. We investigated further using two binomial simulations 

Table 1.  Date markers for when CID numbers were created in the PUBCHEM database.

CID number Date added

1 Jun 23, 2005

10,000,000 Oct 25, 2006

20,000,000 Dec 5, 2007

40,000,000 May 30, 2009

60,000,000 Aug 20, 2012

80,000,000 Oct 19, 2014

100,000,000 Dec 11, 2015

120,000,000 May 15, 2016

130,000,000 Oct 7, 2017

140,000,000 Dec 6. 2019



6

Vol:.(1234567890)

Scientific Reports |        (2020) 10:17200  | https://doi.org/10.1038/s41598-020-74139-0

www.nature.com/scientificreports/

Figure 3.  Maximum normalized histogram and cumulative sum of CID numbers (a) and plot of test frequency 
against CID number (b). Compounds above the line in panel (b) were tested more than 872 times. Note the CID 
number date markers in Table 1.

Table 2.  Example Motifs found in clusters. Each compound was active over 45 times.

sDICerutcurtSelpmaxEpuorG

Substituted acrylamides  3-(benzylsulfinyl)-2,3-

dichloro-N-(6-

methoxy-3-pyridinyl) 

acrylamide 

1472216 

1472218 

1472220 

1472222 

1472225 

1475337 

1475343 

1475345 

Substituted quinoxalines N-[2,3-bis(furan-2-yl) 

quinoxalin-6-yl] 

azepane-1-

carboxamide 

2214811 

3157647 

2925160 

3157644 

1278518 

5076890 

1072898 

3236343 

1329592 

1331611 

2213073 

3238500 

1331726  

Substituted methyl-

benzimidazolium compounds 

(5-methyl-2-propan-2-

ylcyclohexyl) 2-[3-

methyl-2-[(2-methyl 

phenoxy)methyl] 

benzimidazol-3-ium-

1-yl]acetate; chloride 

16192954 

2834423 

24746791 

2834414 

18593578 

23724261 

16192618 

23724249  
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(Fig. 4a). The first model consisted of a binomial with a single probability (0.0078). The second was a Poisson-
binomial model using probabilities drawn from the generalized logistic distribution. These models were used 
to simulate the structure of the active rank order distribution. When compared to the observed active distribu-
tion (Fig. 4a), both simulations indicated a large group of compounds hitting above expectation. The Poisson-
binomial generated fewer frequent hitters but the improvement was marginal. Both models gave a poor repre-
sentation of the observed data. Both models generated a much larger group of infrequent hitters. Infrequent 
hitters have not been described previously and they are important for understanding HTS. Specifically, binomial 
models based on screen level probabilities (Fig. 1) do not predict how hits distribute among the compounds in a 
screen. These probabilities are not equal due to the chemical properties of the compounds tested. The literature 
contains extensive discussion of PAINs and frequent hitters, but the chemistry of infrequent hitters also needs 
investigation.

Similar behavior was seen in the distribution of inconclusive compounds (Fig. 4b). The scale of this group was 
unexpected and to our knowledge there has been little discussion of this group of compounds. A single valued 
binomial simulation gave a poor representation of these compounds with many “frequent inconclusive” and 
“infrequent inconclusive” compounds. Inconclusive compounds represent a slice of the response distribution 
between the threshold for being “active” and the remainder of the distribution. As such, true hitters are expected 
to be concentrated above the active threshold and less prevalent in the inconclusive section of the distribution and 
therefore fit a binomial survivor model better. There was little evidence supporting this (Fig. 4) and the binomial 
simulation of the inconclusive compounds was unsatisfactory. It is unclear whether inconclusive compounds 
are investigated seriously during lead generation but from a model building point of view they are essential. 
Inconclusive designations represent a different section of the distribution of measured values from the active 
tail and need to be included in a self-consistent model of HTS.

Models of active designations. The failure of the binomial models based on screen probabilities to pro-
vide a model of active compound frequencies required alternatives based on compound behavior. Two types of 
models were investigated to simulate the frequency of active designations across the 872 HTS data sets. Type 
I sought to build a model of compound activity giving chemical insight into what makes a compound hit. The 
goal was to simulate the results for randomly selected molecules drawn from a chemical space. This approach 
assumes that the compounds in the study are representative. Successful model construction could help decide 
whether HTS should grow ever larger in scale or should be smaller with more randomness in compound selec-
tion. Type II models sought improved statistical description reducing the proportion of infrequent hits.

An initial type I model was built on the following assumptions: (1) compounds have attributes that can be 
detected in a screen; (2) attributes are accumulated following a negative binomial process with r = 1 and p1 = 0.50 
with p1 found by least squares minimization; (3) each attribute may be detected (result in active designation) with 
a binomial probability, p2 = 0.01. A small group would be expected to get a string of 18–20 successes (attributes) 
in a row and 50% would be expected to fail on the first attempt. The attributes distributed in this manner might 
include Lipinski’s  five34, privileged  scaffolds4, or PAIN  motifs9,37. For example, if all compounds on PUBCHEM 
were sampled, there is some probability a randomly sampled compound has a molecular weight under 500. This 

Figure 4.  Active (a) and inconclusive (b) rank order distributions obtained from the 872 screens. The Poisson-
binomial (solid line) and binomial (dashed line) models cross the observed active distribution (black circles) 
indicating the existence of a group of infrequent hitters (note the log scale). The binomial simulations used 
p = 0.0078 (active) and p = 0.0128 (inconclusive).
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model is simple but provides a framework for a probabilistic approach to estimating compound behavior in 
screens. This model (Fig. 5a, dotted line) gave a better approximation to the observed behavior of the compounds 
in rank order than the BSF model.

We then investigated descriptive models for this data. A gamma distributed simulation (Fig. 5a, dashed line) 
parameterized by shape  (mean2/variance = 0.0755316) and rate (mean/variance = 0.085242) worked for much 
of the range leaving a much smaller (~ 1000) frequent hitter group (Fig. 5b) and fewer infrequent hitters than 
the BSF model. The residual sum of squares for the binomial and attribute models were 27 and 3.3 times greater 
than the gamma model, respectively. The residuals from the gamma model could be approximated by summing 
attributes. For example, one to four attributes gave the results shown in Fig. 5b. While not definitive, the analysis 
made clear that considering the behavior of compounds rather than screens is required to understand active 
compounds. In the context of HTS, a clear interpretation of the gamma distribution is difficult, however, it was 
clearly better than any of the binomial models tested. The key limitation of the binomial models using screen 
derived probabilities is the assumption that all compounds have equal opportunities in a screen unless they are 
part of the select group of frequent hitters. This assumption cannot be supported by the data.

Compound hit probabilities. Compound behavior can be considered in terms of the total number of 
hits (Fig. 4) or by the fraction of screens where a compound was active. The former is a better indicator of total 
follow on cost and the latter a better indication of compound behavior. Individual compound probabilities can 
be investigated to see if a clear divide exists between normal and frequent hitters. The histogram of compound 
hit probabilities for pd > 0.0 (Fig. 6a) gives a spiky appearance with peaks in the histogram at 1, 0.5, 0.33, 0.25. 
0.2 etc. corresponding to 1 active test in 1, 2, 3, 4, 5, … measurements. To avoid this and similar issues, the rank 
order presentation (Fig. 6b) was restricted to compounds tested 50 or more times (420,572 compounds). The 
histogram (Fig. 6a) was neither normally distributed around some constant nor obviously bimodal and there 
was a nearly continuous range of pds (Fig. 6b) giving no clear boundary between normal and frequent hitting 
compounds.

Figures 1 and 6 reveal a limitation in the current approach to HTS. A single HTS screen is an extremely poor 
way to characterize compounds, particularly if each is tested once. It is an extremely good way to characterize 
an assay response. A compound tested once is poorly understood. However, an assay challenged with 100,000 
compounds has been thoroughly tested.

Characteristics of frequent hitters. The chemical characteristics of frequent hitters were assessed based 
on the number of times they were deemed active relative to the gamma model in Fig. 5a. We chose hit numbers, 
rather than hit probabilities since each hit would have required further workup and cost. For example, the most 
frequently active compound, 3-Methyltoxoflavin (CID 460,747, 159 times), has been patented as a treatment for 
tuberculosis but may have been considered multiple times for other conditions. The second most active com-
pound (toxoflavin; CID 66,541; 151 times) features in multiple patent applications. Forty-four compounds were 

Figure 5.  Rank order presentation of active designations in the 872 screens (a) compared to the BSF (solid 
line), gamma (dashed line), and attribute (dotted line) models. The residuals (data–model) (b) generated from 
the binomial survivor (circles) model resulted in a greater number of both frequent hitters and infrequent hitters 
than the gamma model (squares). The residuals from the gamma model could be approximated by summing 
over a set of negative binomial attribute distribution processes. This is illustrated for one (dashed line) to four 
(solid) attributes.
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active over 100 times. Similarly, the first 100 were active over 80 times each and the 1000 most frequent hitters 
were all active 45 or more times. For scale, 374,431 different compounds were deemed to be active 1,559,098 
times. Follow on costs associated with these active designations was probably high.

Investigation of the 1000 most active compounds yielded 429 suspected PAINs, 568 not matching any  PAIN37 
motif, and 4 inorganic or otherwise unclassified compounds (e.g. CID 44,202,984). Of the 568 compounds not 
matching current PAIN motifs, 80 contained other undesirable substructures. These 568 are of interest because 
they represent compounds that could be privileged  structures3,4,  PAINs7–9, or both. To assess this, the 541 without 
any suspected PAIN motifs were examined for structural similarity and presented as a heatmap (Fig. 7). Each 
pixel in the heatmap represents the Tanimoto similarity between two compounds with brighter pixels represent-
ing greater similarity. The heatmap shows many recognizable clusters as square along the diagonal with three 
examples presented in Table 2. All 568 compounds deserve further scrutiny and the structural motifs defining 
the clusters identified. A full annotated list the 1000 CID numbers appears as supplementary material S1.

Across the 872 screens, compounds were repeatedly tested but subsequent analysis does not appear to extend 
much beyond single screens. This leads to multiple retesting of frequent hitters, PAINs, potential PAINs, and oth-
erwise promiscuous compounds as well as missing an opportunity for discovering new scaffolds. Although some 
of these multiply active compounds may have useful characteristics, in the absence of a more coherent approach, 
repeated retesting is not going to discover this. The scale of the problem needs to be understood. Within this 
data set there were 37,050 compounds deemed active 10 or more times. There is no chemical overview of either 
the modes of action of these compounds or their specificity (if any). It is unclear whether they should be purged 
from libraries or built into smaller scale libraries as a pre-HTS compound repurposing stage.

Conclusions
Most of the HTS data represented here is compound repurposing at scale (Fig. 2) and assay characterization. 
Many compounds were repeatedly retested and subsequently treated screen by screen. The multi-screen infor-
mation is the most valuable for chemists. It is unclear whether industrial screening companies provide this 
information to their clients. It is also unclear whether large scale international screening programs are being set 
up so compound behavior can be transparently assessed.

Repeated retesting raises issues similar to the multiple comparisons problem; with enough tests eventually 
all the compounds will be designated as active. Across the 1.7 million compounds here, there is a large amount 
of prior information of varying quality but little evidence it is used effectively. For example, a compound with 
100 active designations may be understood sufficiently for decisions to be made about its behavior. It is not clear 
why such compounds remain in HTS libraries. Compounds tested only a few times are not well characterized 
and it is not clear why so many compounds do not remain longer. Information about compounds from previous 
screens needs to be used more effectively.

Future studies trying to discover new drug compounds should consider sampling chemical space in a more 
strategic way (Fig. 3). A 1.7 million sub-sample of 100 million items could be an excellent sample if done care-
fully. However, to the extent that PUBCHEM represents a view of a chemical space, most compounds tested are 
in the first 10 million added and much of the remainder is in specific regions. These same restricted regions are 
most likely to be repeatedly or excessively tested. It is worth looking more closely at library construction. Is the 
best predictor of compound inclusion today whether it or a similar compound was there 15 years ago? If these 

Figure 6.  The histogram of pd values (a) restricted to 0 < pd to highlight the structure of the histogram and rank 
order presentation (b) of pd for all compounds tested more than 50 times.
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isolated portions of PUBCHEM chemical space really contain the best hope for new drugs, then they should be 
used. However, it is unclear this hypothesis has been rigorously tested. For the remaining less tested compounds, 
the process by which they are included, tested a few times, and discarded is unclear. For some, a single test was 
considered enough. For others, no decision was made even after 1613 tests.

The binomial survivor model is an extremely useful and falsifiable model. As clearly as it identifies frequent 
hitters, it also generates a much larger pool of infrequent hitters (Fig. 4). Considering a distribution of prob-
abilities representing these screens rather than a single probability does not mitigate this problem. The chemical 
behavior of infrequent hitters deserves as much attention as frequent hitters. A self-consistent chemical model of 
what makes a compound hit is essential to understanding how attributes contributing to activity are distributed 
in chemical space. Future models should be able to identify infrequent hitter chemical motifs which may also 
be the keys to making compounds less toxic.

Aspects of the rank order active designations (Fig. 5) can be generated by considering attributes randomly 
distributed in a collection of compounds by a negative binomial process. This attribute model also generates 
excessive infrequent hitters. A gamma distribution parameterized by shape and rate was a better predictor of the 
number of active designations. Both models performed better than the BSF model indicating that compounds 
do not have a binomial probability of being found active in a screen. With enough tests the probability that a 
compound will be active can be quantified (Fig. 6), but when investigated, a continuum between normal and 
frequent hitting compounds was found. There was no clear boundary between them.

Nearly half of the 1000 most active compounds in the 872 screens were suspect PAINs. The remainder con-
tained clusters of compounds which should be examined for new motifs either to decorate (privileged struc-
tures) or avoid (PAINs). In future studies, it will be useful to investigate the strength of the responses to these 
compounds and if they respond preferentially in particular types of assays. The presence of these compounds 
indicates that insufficient effort is being made to understand the behavior of compounds across multiple screens.

This study assumed that the process of assigning active compounds was done perfectly. This needs to be 
revisited in future work. To better understand chemistry rather than assays, future studies should be looking 

Figure 7.  Heat map of Tanimoto similarity of the 568 compounds within the 1000 most active compounds not 
matching PAIN filters or considered inorganic.
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to challenge compounds with multiple assays, rather than the other way around. While there is considerable 
public data providing the information for some compounds, this set of 872 HTS studies were not designed to 
characterize chemical behavior and are doing it poorly.

Methods
Data sets. Data were obtained from PUBCHEM and included all Assay Identification (AID) numbers hav-
ing more than 50,000 compounds in the data base on 19 March 2020. This yielded 872 usable data sets. A few 
had to be discarded because they did not include decisions on activity. The data cover a period of approximately 
15 years with the first screen in the study (AID155) deposited August 15, 2004 and the last (AID 1,347,076) 
deposited on July 31, 2019. The data were downloaded 19 March 2020.

Statistical analysis. The data were downloaded and analyzed using  R52 (Version 3.6.2) running within 
R-studio (version 1.2.1335) with packages  dplyr53,  car54,  brms55,  moments56,  gplots57,  ggplot258,  ChemMineR59,60, 
and  glogis32. The active, inconclusive, inactive, and all CIDs were identified and collated across the 872 data sets 
by CID number. Tests for PAINs were done using the FAF-Drugs437 portal. Simulations were done using either 
random number generators (to simulate individual compounds in screens) or using numerical computations of 
the distributions. These were done using the R-packages noted and all the code needed to reproduce the study 
has been provided.

Data and code availability
All the data analysed here is freely available via PubChem. An annotated listing of data and code files has 
been provided (TitlePage_SI.pdf) along with the R-scripts (1_download_rev1.R, 2_Siftdownload_rev1.R, 3_
CombineTables_rev1.R, BinomialSurvivor_rev1.R, Fig. 1_rev1.R, Fig. 2_rev1.R, Fig. 2b_rev1.R, Fig. 3_rev1.R, 
Fig. 4_rev1.R, Fig. 5_rev2.R, Fig. 6_rev1.R, and Fig. 7_rev1.R), specification file (AID_NUMBERS_rev1.csv), an 
annotated list of the most frequently active compounds (Top1000Actives_all872.csv) and R readable data tables.
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