Characterisation of a calcium dependent

 transglutaminase in Pisum sativum leaf and root tissue.Graham R. Lilley

A thesis submitted in partial fulfilment of the requirements of The Nottingham Trent University for the degree of Doctor of Philosophy

March 1999

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10290110
Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

Declaration

This work has not been accepted in substance for any other degree and is not currently being submitted in candidature for any other degree.

This is to certify that the work here was carried out by the candidate himself. Due acknowledgement is made of any assistance.

Signed

Abstract

. Two colorimetric assays for transglutaminase activity involving protein cross-linking were developed. The assays were used to screen protein extracted from root and leaf tissue of the dicotyledons Pisum sativum and Vicia faba and the monocotyledons Triticum aestivum and Hordeum vulgare for transglutaminase activity. In one assay, biotin labelled casein was cross-linked to chemically modified casein bound to a microtiter plate via ε - $(\gamma$-glutamyl) lysine isodipeptide bonds and the biotin labelled reaction product was detected by conjugation to extravidin peroxidase. In a second assay, microtiter plate bound N^{\prime}, N^{\prime}-dimethylcasein was enzymically modified using commercially available purified guinea pig liver transglutaminase to incorporate polyamines into glutamine residues. Biotin labelled casein was then cross-linked into the immobilized polyamines by the transglutaminase under assay resulting in the formation of N^{\prime}, N^{\prime} bis (γ-glutamyl) polyamine linkages. The crude plant protein preparations were also screened for the ability to catalyse the production of N - $(\gamma-$ glutamyl) polyamine bonds using a biotin labelled cadaverine incorporation assay and a radiolabelled putrescine incorporation assay. Crude plant extracts were shown to catalyse the cross-linking of biotin labelled casein to microtiter plate bound chemically modified casein and the incorporation of biotin labelled cadaverine into microtiter plate bound N^{\prime}, N^{\prime}-dimethylcasein in a calcium dependent manner. The cross-linking of casein and the incorporation of biotin labelled cadaverine into N^{\prime}, N^{\prime}-dimethylcasein were time dependent reactions with a pH optimum of 7.9. Transglutaminase activity was shown to increase over a 2 week growth period in both the roots and leaves of Pisum sativum. A partially purified transglutaminase from the root tissue of Pisum sativum had an estimated molecular mass of 36 kDa and a K_{m} of $190 \mu \mathrm{M}$ and $0.2 \mu \mathrm{~g} \mathrm{ml}{ }^{-1}$ for biotin labelled cadaverine and biotin labelled casein respectively. Calcium dependent transglutaminase activity was also detected in detergent treated Pisum sativum membrane preparations, implying that a membrane bound form of transglutaminase is also present in this tissue. The ε - $(\gamma$-glutamyl) lysine isodipeptide product of the transglutaminase reaction was detected in the root and leaf protein of Pisum sativum at a level of $510 \mathrm{pmol} \mathrm{mg}^{-1}$ and $210 \mathrm{pmol} \mathrm{mg}^{-1}$ respectively.

Acknowledgements.

There are several people I wish to acknowledge for their contribution to this work. My sincere gratitude goes to my supervisor, Dr Philip Bonner for his expert advice during the practical work and continued support during the preparation of the manuscript. Thanks also to Professor Martin Griffin, my second supervisor, and Dr Richard Olsson for their frequent contributions and guidance during the preparation of the publications accompanying this thesis. I would also like to acknowledge my friends Mr Graham Thomas and Dr Peter Smethurst for sharing with me their almost encyclopaedic knowledge of the transglutaminase family of enzymes. Thanks also to Mr James Skill for his technical assistance during the isodipeptide cross-link analysis and Mrs Jane Kemp for her excellent technical support throughout the period of my research. Finally, I wish to thank my parents, parents-in-law and wife Emma who have been so tolerant and supportive throughout the four years of my research.

Contents.

Page

1. Introduction.
1.1 Introduction to the transglutaminases. 1
1.2 Varieties and biological roles of the transglutaminases. 10
1.2.1 Mammalian transglutaminases. 10
1.2.2 Non-mammalian transglutaminases. 19
1.2.3 Plant transglutaminase. 22
2. Materials and methods.
2.1 Materials. 39
2.2 Methods. 41
2.2.1 Treatment of biological material. 41
2.2.2 Protein modification methods. 53
2.2.3 Transglutaminase activity assays. 62
2.2.4 Chromatographic techniques. 74
2.2.5 SDS-PAGE electrophoresis. 83
3. Development of two transglutaminase casein cross-linking assays.
3.1 Introduction. 87
3.2 Results. 96
3.3 Discussion. 124
4. The properties of crude plant transglutaminase.
4.1 Introduction. 131
4.2 Results. 133
4.3 Discussion. 175

Page

5. ε-(γ-glutamyl) lysine isodipeptide analysis.

5.1 Introduction. 185
5.2 Results. 190
5.3 Discussion. 201
6. Partial purification of soluble Pisum sativum root transglutaminase.
6.1 Introduction: 205
6.2 Results. 210
6.3 Discussion. 223
7. Concluding remarks. 227
8. References. 232

9, Appendix 254

Publications and presentations.

Publications.

1. Lilley, G. R., Griffin, M., and Bonner, P. L. R (1995). A survey of plant tissue for the presence of transglutaminase. J. Ex. Bot. (supplement) 46: 50.
2. Lilley, G. R., Griffin, M., and Bonner, P. L. R (1996). Transglutaminase in plants. J. Ex. Bot. (supplement) 47: 74.
3. Lilley, G. R., Skill, J., Griffin, M and Bonner, P. L. R (1997). The detection of $\boldsymbol{\varepsilon}(\gamma-$ glutamyl) lysine isodipeptide cross-links in Pisum sativum root and leaf tissue. J. Ex. Bot. (supplement) 48: 30.
4. Lilley, G. R., Griffin, M and Bonner, P. L. R (1997). Assays for the measurement of tissue transglutaminase (type II) mediated protein cross-linking via ε-(γ-glutamyl) lysine and N^{\prime}, N^{\prime}-bis $(\gamma$-glutamyl) polyamine linkages using biotin labelled casein. J. Biochem. Biophys. Methods 34 31-43.
5. Lilley, G. R., Skill, J., Griffin, M and Bonner, P. L. R (1998). Detection of calcium dependent transglutaminase activity in root and leaf tissue of monocotyledonous and dicotyledonous plants. Plant Physiol. 117: 1115-1123.

Presentations.

1. A survey of plant tissue for the presence of transglutaminase (1995). Poster presentation at the Society for Experimental Biology annual meeting, University of St. Andrews, U. K.
2. Transglutaminase in plants (1996). Oral presentation at the Society for Experimental Biology annual meeting, Lancaster University, U. K.
3. The detection of ε-(γ-glutamyl) lysine isodipeptide cross-links in Pisum sativum root and leaf tissue (1997). Poster presentation at the Society for Experimental Biology annual meeting, Canterbury, U. K.

Abbreviations.

BCA	Bicinchoninic acid
BSA	Bovine serum albumin
CTAB	Cetyltrimethylammonium bromide
DEAE	Diethylaminoethyl
DIECA	Diethyldithiocarbamic acid
DMEM	Dulbecco's modified Eagles medium
DMSO	Dimethylsulfoxide
DPM	Disintegrations per minute
DTT	Dithiothreitol
EDC	Ethyldimethylaminopropyl carbodiimide
EDTA	Ethylenediaminetetraacetic acid
EGTA	Ethylene glycol-bis(β-aminoethyl ether) $\mathrm{N}_{2} \mathrm{~N}_{2} \mathrm{~N}^{\prime}, \mathrm{N}^{\prime}$-tetraacetic acid
ELISA	Enzyme linked immunosorbent assay
FFQ	Fast flow quaternary ammonium
FW	Fresh weight
GTP	Guanosine triphosphate
HPLC	High pressure liquid chromatography
kDa	KiloDaltons
2-ME	2-mercaptoethanol
MES	(2-[N-morpholino] ethane sulphonic acid)
$\mathrm{Mr}_{\text {r }}$	Relative molecular mass
NEM	N -ethylmaleimide
OPA	Orthophthaldialdehyde

PAGE	Polyacrylamide gel electrophoresis
PBS	Phosphate buffered saline
PFS	Particle free supernatant
PMSF	Phenylmethylsulfonylfluoride
PVPP	Polyvinylpolypyrrolidone
QAE	Quaternary aminoethyl
RuBisCo L	Large sub-unit of ribulose 1, 5-bisphosphate carboxylase / oxygenase
SDS	Sodium dodecyl sulphate
SEM	Standard error mean
SWR	Standard working reagent
TCA	Trichloroacetic acid
TEMED	N,N,N', N'-tetramethylethylenediamine
TGase	Transglutaminase
TLC	Thin layer chromatography
TMB	3,3',5,5'-tetramethylbenzidine
Tris	(Tris [hydroxymethyl] amino methane)
Triton X-100	t-octylphenoxypolyethoxyethanol
Tween 80	Polyoxyethylenesorbitan

List of tables

Table 1. The effect of de-amidation and de-phosphorylation on bovine casein as a substrate of tissue transglutaminase. p. 96.

Table 2. The effect of carbodiimide modification on bovine casein as a substrate of tissue transglutaminase. p. 98.

Table 3. The effect of variation of biotinylation parameters on bovine casein as a substrate of tissue transglutaminase. p. 100.

Table 4. The effect of 7.5 M urea on bovine casein as a substrate of tissue transglutaminase and the effect of stopping the carbodiimide reaction using sodium acetate p. 102.

Table 5. The effect of various controls on the casein cross-linking assay signal. p. 104.
Table 6. The effect of enzymic modification on N^{\prime}, N^{\prime}-dimethylcasein as a substrate of tissue transglutaminase. p. 120.

Table 7. Detection of transglutaminase activity in soluble crude plant extracts using three assay systems. p. 133.

Table 8. Inhibition of the $\left[1,4-{ }^{14} \mathrm{C}\right]$-labelled putrescine binding activity of soluble crude plant extracts by calcium ion chelation. p. 139.

Table 9. Inhibition of the biotin cadaverine incorporation activity of soluble crude plant extracts by calcium ion chelation. p. 140.

Table 10. Inhibition of the casein cross-linking activity of soluble crude plant extracts by calcium ion chelation. p. 141.

Table 11. The effect of the diamine oxidase inhibitors, DIECA and o-P on the transglutaminase activity of soluble Pisum sativum root extract. p. 143.

Table 12. The effect of the diamine oxidase inhibitors, DIECA and o-P on the activity of guinea pig liver transglutaminase. p. 145.

Table 13. The effect of 1 mM GTP on the biotin labelled cadaverine incorporation and casein cross-linking activities of soluble Pisum sativum root transglutaminase. p. 151.

Table 14. The effect of the addition of 10 mM iodoacetamide or 10 mM NEM to the [$\left.1,4-{ }^{14} \mathrm{C}\right]$-labelled putrescine incorporation assay reaction buffer on the transglutaminase activity of soluble crude plant extracts. p. 153.

Table 15. The effect of the addition of 10 mM iodoacetamide or 10 mM NEM to the biotin cadaverine incorporation assay reaction buffer on the transglutaminase activity of soluble crude plant extracts. p. 154.

Table 16. The effect of the addition of 10 mM iodoacetamide or 10 mM NEM to the casein cross-linking assay reaction buffer on the transglutaminase activity of soluble crude plant extracts. p. 156.

Table 17. The effect of various concentrations of DTT on the transglutaminase activity of soluble Pisum sativum root extract in three assay systems. p. 158.

Table 18. The effect of adding 10 mM spermine to the biotin cadaverine assay reaction buffer on the transglutaminase activity of soluble Pisum sativum root extract. p. 159.

Table 19. The effect of substituting N^{\prime}, N^{\prime}-dimethylcasein with N^{\prime}, N^{\prime}-dimethylated Vicia faba storage proteins on the microtiter plate in the biotin cadaverine incorporation assay. p. 160.

Table 20. Survey of detergents used to solubilise Pisum sativum root membrane transglutaminase activity. p. 169.

Table 21. Optimisation of the concentration of sodium deoxycholate used to extract the Pisum sativum root membrane transglutaminase activity. p. 171.

Table 22. The isodipeptide content of Pisum sativum root tissue soluble protein at various stages of root development. p. 192.

Table 23. Cross-link analysis controls and levels of isodipeptide detected due to the cross-linking of bovine casein by soluble Pisum sativum root extract. p. 198.

Table 24. The partial purification of biotin cadaverine incorporation activity from soluble Pisum sativum crude root extract. p. 214.

Table 25. The effect of 10 mM iodoacetamide and 10 mM NEM on the biotin labelled cadaverine incorporation activity of ion exchange purified soluble Pisum sativum root transglutaminase. p. 221.

List of figures.

Figure 1. Nucleophilic attack on the protein bound glutamine residue by the active site thiol group. p. 8.

Figure 2. Nucleophilic attack on the acyl-enzyme intermediate by the primary amine. p. 9.

Figure 3. Incorporation of polyamines into the glutamine residues of proteins by the action of diamine oxidase. p. 28.

Figure 4. Apparatus used to rapidly de-salt Pisum sativum root protein extracts. p. 45.
Figure 5. Mechanism for the EDC coupling of glycine methyl ester to the acidic amino acid side chains of casein. p. 91.

Figure 6. Scheme for the ε-(γ-glutamyl) lysine formation assay. p. 93.
Figure 7. Scheme for the N^{\prime}, N^{\prime}-bis(γ-glutamyl) polyamine formation assay. p. 95.
Figure 8. The variation of absorbance at 450 nm as a function of the concentration of microtiter plate bound EDC-modified casein. p. 106.

Figure 9. The variation of absorbance at 450 nm as a function of the concentration of the biotin labelled casein substrate. p. 108.

Figure 10. The variation in absorbance at 450 nm as a result of using different concentrations of guinea pig liver transglutaminase. p. 110.

Figure 11. The variation in absorbance at 450 nm as a function of different quantities of homogenised ECV 304 human endothelial cells. p. 112.

Figure 12. Correlation between the casein cross-linking assay and the more conventional $\left[1,4-{ }^{14} \mathrm{C}\right]$-labelled putrescine incorporation assay. p. 114.

Figure 13a. Control for the ε-(γ-glutamyl) lysine cross-link analysis of EDC-modified and biotin labelled caseins which were incubated for zero time with guinea pig liver transglutaminase. p. 116.

Figure 13b. The ε - $(\gamma$-glutamyl) lysine isodipeptide present following cross-linking of EDC-modified and biotinylated caseins using guinea pig liver transglutaminase. p. 118.

Figure 14. Absorbance at 450 nm as a function of guinea pig liver transglutaminase concentration using the N^{\prime}, N^{\prime}-bis(γ-glutamyl) polyamine cross-linking assay. p. 122.

Figure 15. Time dependent casein cross-linking and cadaverine incorporation by soluble Pisum sativum root extract. p. 135.

Figure 16. Time dependent $\left[1,4{ }^{14} \mathrm{C}\right]$-labelled putrescine incorporation by soluble Pisum sativum root extract. p. 137.

Figure 17. The biotin cadaverine incorporation activity of soluble Pisum sativum root extract as a function of the free calcium ion concentration of the reaction buffer. p. 147. Figure 18. The casein cross-linking activity of soluble Pisum sativum root extract as a function of the free calcium ion concentration of the reaction buffer. p 149.

Figure 19. A graph showing the variation in casein cross-linking and cadaverine incorporation activities of soluble Pisum sativum root extract as a function of the pH of the reaction buffer. p. 161.

Figure 20. The effect of plant age on the casein cross-linking and cadaverine incorporation activities of soluble Pisum sativum root extract. p. 163.

Figure 21. The effect of plant age on the casein cross-linking and cadaverine incorporation activities of soluble Pisum sativam leaf extract. p. 166.

Figure 22. The effect of plant age on the cadaverine incorporation and casein crosslinking activities of Pisum sativum root membrane extract. p. 173.

Figure 23. The ε - $(\gamma$-glutamyl) lysine isodipeptide present in Pisum sativum root total soluble protein. p. 190.

Figure 24. ε-(γ-glutamyl) lysine isodipeptide analysis of Pisum sativum leaf total soluble protein. p. 194.

Figure 25. ε-(γ-glutamyl) lysine cross-link analysis of anion exchange purified Pisum sativum leaf total soluble protein. p. 196.

Figure 26. The ε-(γ-glutamyl) lysine isodipeptide present following the 16 hour crosslinking of bovine casein using soluble Pisum sativum root transglutaminase. p. 199.

Figure 27. Ion exchange chromatogram for the purification of soluble Pisum sativum root transglutaminase. p. 210.

Figure 28. Gel filtration chromatogram for the purification of soluble Pisum sativum root transglutaminase. p. 212.

Figure 29. Rate of the biotin cadaverine incorporation reaction as a function of the concentration of biotin labelled cadaverine using ion exchange purified soluble Pisum sativum root extract. p. 217.

Figure 30. Rate of the casein cross-linking reaction as a function of the concentration of biotin labelled casein using ion exchange purified soluble Pisum sativum root extract. p. 219.

Figure 31. BCA protein assay standard curve showing absorbance at 562 nm as a function of BSA concentration. p. 254.

List of plates.

Plate 1. Photograph of a typical biotin cadaverine assay used to construct the tissue activity data shown on figure 21. p. 165.

Plate 2. Photograph of a typical casein cross-linking assay used to construct the tissue activity data shown on figure 21. p. 165.

Plate 3. Photograph of a typical biotin cadaverine assay used to construct the tissue activity data shown on figure 22. p. 168.

Plate 4. Photograph of a typical casein cross-linking assay used to construct the tissue activity data shown on figure 22. p. 168.

Plate 5. SDS-PAGE electrophoretogram of crude and partially purified soluble Pisum sativum root transglutaminase. p. 215.

Chapter 1- Introduction.

1.1 Introduction to the transglutaminases.

1.1.1 Definition.

Transglutaminases (E.C 2.3.2.13, systematic nomenclature: R-glutamyl-peptide:-amine-γ-glutamyl transferases) are defined as a family of calcium dependent enzymes with an active site thiol responsible for catalysis of an in vivo acyl transfer reaction between the γ-carboxamide group of protein bound glutamine residues and primary amino groups (Sarkar et al. 1957). Reaction with the ε-amino group of protein bound lysine leads to protein cross-linking via ε - $(\gamma$-glutamyl) lysine isodipeptide bond formation. Alternatively, when the acyl acceptor substrate is a polyamine, both protein cross-linking via N^{\prime}, N^{\prime} 'bis $(\gamma$-glutamyl) polyamine cross-bridge formation and post translational modification via N^{\prime}-(γ-glutamyl) polyamine formation may occur (Folk 1980; Griffin and Smethurst 1994; Aeschlimann and Paulsson 1994). In addition, transglutaminases are able to carry out a variety of in vitro reactions involving either aminolysis or hydrolysis, none of which have been shown to be of physiological significance (Folk and Finlayson 1977; Folk et al. 1967).

1.1.2 Biochemistry of the transglutaminases.

1.1.2.1 Snecificity.

Transglutaminases are specific for protein bound glutamine as their only acyl donor substrate. Free glutamine is not utilised and this distinguishes transglutaminases from other enzymes of glutamine metabolism (Lorand and Conrad 1984). Differences in the reactivity of glutamine residues of different proteins and within the same protein has been reported (Folk and Finlayson 1977; Gorman and Folk 1981 and 1984; Aeschlimann et al. 1992). The observed differences in reactivity are due to charge, primary structure and conformation of the protein in the vaccinity of the glutamine residue. Different transglutaminases have also been shown to exhibit different specificity for the same protein as illustrated by the structural differences in the polymers formed by the action of factor XIII and tissue transglutaminase on fibrin. This structural difference is due to different glutamine residues within the same protein being utilised by each enzyme (Shainoff et al. 1991).

In contrast to the narrow acyl donor substrate specificity of transglutaminases, a broad specificity for amine donor substrates is exhibited. Use of the polyamines putrescine, spermine, spermidine and cadaverine results in the in vivo formation of either N^{\prime}, N^{\prime} bis(γ-glutamyl) polyamine cross-bridges or N^{\prime}-(γ-glutamyl) polyamine conjugates (For reviews see Folk and Finlayson 1977; Folk 1980 and 1983). Also of biological importance is the in vivo reaction between the ε-amino group of peptide bound lysine and peptide bound glutamine which results in ε - $(\gamma$-glutamyl) lysine formation. This bond is present in many tissues and provides mechanical and chemical stability (Griffin and

Smethurst 1994). Unlike glutamine donor proteins, a large number of lysine containing proteins are suitable substrates for transglutaminases because amino acid residues adjacent to lysine do not influence substrate potential (Aeschlimann and Paulsson 1994).

1.1.2.2 Reactions of the transglutaminases.

1.1.2.2.1 Polyamine incorporation.

The polyamine incorporation reaction results in the formation of N^{\prime}-(γ-glutamyl) polyamine bonds. This reaction has also been utilised in several transglutaminase assays involving the incorporation of either radiolabelled, fluorescently labelled or biotin labelled polyamines into such substrates as N^{\prime}, N^{\prime}-dimethylcasein and benzyloxycarbonyl-L-glutaminylglycine (Lorand et al. 1972; Fink et al. 1992; Slaughter et al. 1992). When proteins are used as glutamine donors in such assays, they are dimethylated in order modify the lysine and hence prevent intramolecular cross-linking via ε-(γ-glutamyl) lysine which would compromise assay sensitivity by reducing the signal.

$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CONH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NH}_{2}+\mathrm{NH}_{3}$

1.1.2.2.2 Protein cross-linking.

The cross-linking of two proteins via lysine and glutamine results in an ε-(γ-glutamyl) lysine isodipeptide bond. Calcium ions bind to all mammalian transglutaminase enzymes resulting in a conformational change, which exposes the active site (Folk 1983). Specificity for calcium is high and tissue transglutaminase has been shown to bind 3-4 calcium ions per molecule but it should be noted that other divalent cations including strontium and manganese have been demonstrated to activate tissue transglutaminase (Folk et al. 1967).

Sequencing has revealed no typical binding sequence such as the EF hand structure seen in calmodulin and other calcium binding proteins and it has been suggested that negatively charged regions of the molecule are probable binding sites for calcium (Aeschlimann and Paulsson 1994).

The ε-(γ-glutamyl) lysine cross-link is resistant to proteolysis but the bond may be hydrolysed in some specialist tissues. For example, hydrolysis of the free isodipeptide occurs in the kidney of rabbit by the action of a γ-glutamyl cyclotransferase (Fink et al. 1980). Furthermore, the medicinal leech, Hirudo medicinalis has been reported to posses enzymes capable of digesting the protein bound isodipeptide (Zavalova et al. 1996). The protein cross-linking reaction has been utilised in several transglutaminase assays involving the cross-linking of immobilised casein to biotin labelled casein (Seiving et al. 1991; Choi et al. 1992; Lilley et al. 1997a)

1.1.2.2.3 Protein-Dolvamine-protein cross-bridge formation.

During this reaction, the second primary amine group of an already covalently attached polyamine is able to react with a second protein resulting in the formation of an N^{\prime}, N^{\prime}-bis (γ-glutamyl) polyamine protein cross-link. Recently an assay has been developed at The Nottingham Trent University to detect the ability of transglutaminase enzymes to carry out this reaction in vitro (Lilley et al. 1997a).

1.1.2.2.4 Hydrolysis of pentide bound glutamine and other amides.

$$
\mathrm{R}_{1} \mathrm{CONH}_{2}+\mathrm{H}_{2} \mathrm{O} \quad \longrightarrow \quad \mathrm{R}_{1} \mathrm{CO}_{2} \mathrm{H}+\mathrm{NH}_{3}
$$

This reaction utilises water as the attacking nucleophile instead of a primary amine and results in the de-amidation of amides to carboxylic acids. The reaction has been demonstrated in vitro but is thought to have no physiological relevance (Folk et al. 1967).

1.1.2.2.5 Hydrolysis of esters.

$\mathrm{R}_{1} \mathrm{CO}_{2} \mathrm{R}_{2}+\mathrm{H}_{2} \mathbf{0} \longrightarrow \quad \mathrm{R}_{1} \mathrm{CO}_{2} \mathrm{H}+\mathrm{R}_{2} \mathrm{OH}$

1.1.2.2.6 Aminolvsis of esters.

$\mathrm{R}_{1} \mathrm{CO}_{2} \mathrm{R}_{2}+\mathrm{R}_{3} \mathrm{NH}_{2} \longrightarrow \mathrm{R}_{1} \mathrm{CONHR}_{3}+\mathrm{R}_{2} \mathrm{OH}$

In both reaction 1.1.2.2.5 and 1.1.2.2.6, protein bound glutamine is replaced by an ester. The reaction of primary amines and water with esters occurs in vitro by the same double displacement reaction as the other transglutaminase reactions (see section 1.1.2.3) but has no physiological relevance and has not been shown to occur in vivo (Folk and Finlayson 1977; Folk et al. 1967),

1.1.2.3 The catalvtic mechanism of the transelutaminases.

The transglutaminase reaction mechanism consists of a two step process, the initial step involving calcium ions binding to the enzyme which induces a conformational change resulting in exposure of the active site (Folk 1983). Nucleophilic attack on the electron deficient γ-carbon atom of the glutamine residue by the active site cysteine residue thiol group then occurs (Figure 1). This step was verified by the isolation of a thioester linked acyl-enzyme intermediate (for review see Folk 1983).

Figure 1. (Step 1): Nucleophilic attack on the protein bound glutamine residue by the active site thiol groun.

The second step of the reaction mechanism involves the nucleophilic displacement of the protein from the active site of transglutaminase by the primary amine group (Figure 2).

Figure 2. (Sten 2): Nucleophilic attack on the acvl-enzvme intermediate by the primary amine.

1.2 Varieties and biological roles of the transglutaminases.

1.2.1 Mammalian transglutaminases.

1.2.1.1 Plasma factor XIII.

Plasma transglutaminase (Factor XIII) is a heterotetramer ($\alpha_{2} \beta_{2}$) with a molecular mass of 320 kDa . It consists of two catalytic (α) sub-units of molecular mass 75 kDa and two non-catalytic (β) sub-units of molecular mass 80kDa (Aeschlimann and Paulsson 1994). Factor XIII is present in human blood plasma as a pro-enzyme and is activated by the calcium dependent protease thrombin during the terminal step of the blood clotting cascade. In the presence of fibrinogen, thrombin is activated by plasma levels of calcium to cleave the catalytic (α) sub-units from the (β) sub-units (Credo et al. 1978) and this yields an active dimer which is referred to as factor XIIIa.

Fibrin monomers produced by the thrombolytic cleavage of fibrinogen are cross-linked by factor XIIIa resulting in an insoluble fibrin clot which is mechanically stable and resistant to both chemical and enzymic degradation. The clot is also protected from the major clot degrading enzyme plasmin due to the factor XIIIa mediated incorporation of an α_{2}-plasmin inhibitor into the cross-linked fibrin (Tamaki and Aoki 1982). The crosslinking of fibrin and the incorporation of α_{2}-plasmin inhibitor occur at a faster rate than the cross-linking of other substrate proteins found in plasma and this ensures that these are the first reactions to occur (Hornyak and Shafer 1992). The cross-linked fibrin
polymer then increases the rate at which factor XIII is cleaved by thrombin by providing both factor XIII and thrombin binding sites (Greenberg et al. 1987).

Individuals with factor XIIIa deficiency suffer from a number of difficulties including bleeding disorders (Lorand et al. 1980). Wound healing problems are also common such as those experienced by sufferers of the chronic inflammatory bowel disorder, Crohn's disease which is often further complicated by the appearance of needle shaped ulcers known as refracted fistulas (Oshitani et al. 1995). As a consequence of the clinical importance of factor XIIIa, a number of assays have been developed to screen human blood for deficiency of this enzyme (Song et al. 1994, Seiving et al. 1991).

1.2.1.2 Prostate transelutaminase.

Prostate transglutaminase is a further example of an extracellularly active transglutaminase with a fully elucidated biological role. Guinea pig prostate transglutaminase is a calcium dependent monomer of molecular mass 70 kDa which accounts for up to 25% (w/w) of total anterior prostate gland intracellular protein (Wilson and French 1980; Wing et al. 1974).

Prostate transglutaminase is secreted into the semen to cross-link proteins and form a stable, clotted post ejaculatory vaginal plug which aids rodent fertility by providing mechanical stability to the clotted semen. The ε - $(\gamma$-glutamyl) lysine isodipeptide bonds have been isolated in vivo in clotted rodent semen and if polyamines are exogenously added during clotting, both $N^{\prime} ; N^{\prime}$-bis $\left(\gamma\right.$-glutamyl) polyamine and N^{\prime}-(γ-glutamyl) polyamine conjugates are formed (Folk 1980). In certain species, the reaction to cross-
link seminal proteins is inhibited by spermine and spermidine which are produced in excess by the ventral prostate. This reaction is thought to prevent premature semen coagulation, which could block the passage of sperm through the urethra (WilliamsAshman 1984). More recently, a transglutaminase has been identified in the human prostate gland. The molecular mass was determined at 77 kDa and the gene encoding the enzyme is located on chromosome 3 (Dubbink et al. 1996).

1.2.1.3 Keratinocyte transolutaminase (Type I).

Keratinocyte transglutaminase is a calcium dependent monomer of molecular mass 90 kDa (Chakravarty and Rice 1989). The presence of calcium also appears to upregulate synthesis of this enzyme (Floyd and Jetten 1989). It is often referred to as particulate transglutaminase as it is anchored to the plasma membrane of terminally differentiating keratinocyte cells of the stratified squamous epithelia by a post translational acylation reaction with palmitate and myristate. This anchorage is cleaved by calcium dependent proteolysis to release a transglutaminase of reduced molecular mass (80 kDa) which dimerises in the cytoplasm (Rice et al. 1990) where the function of the activated enzyme is proposed to be the cross-linking of the cell envelope proteins loricrin (Hohl et al. 1991) and cornifin (Marvin et al. 1992). Cross-linking of these proteins produces an insoluble, cornified cell envelope that serves to stabilise the outermost layer of the epidermis forming an effective barrier to the environment.

Deficiency of keratinocyte transglutaminase is thought to lead to the severe congenital skin disease lamellar ichthyosis that is characterised by large skin scales and variable redness (Huber et al. 1995). The skin disease psoriasis vulgaris which is characterised by
the appearance of red inflamed areas known as psoriatic plaques has been linked to premature expression of keratinocyte transglutaminase in the supra-basal spinous layer of the epidermis rather than the granular layer (Griffin and Smethurst 1994). Retinoids which are known to down regulate the expression of genes involved in cell proliferation have been shown to be therapeutically useful in the treatment of psoriasis possibly by decreasing keratinocyte transglutaminase expression in the psoriatic plaque (Rosenthal et al. 1992). Topical addition of the vitamin D_{3} analogue calcipotriol to psoriatic skin is also an effective treatment although the mechanism of action of this compound is not fully understood (Oranje et al. 1997).

1.2.1.4 Tissue transglutaminase (Tvpe III.

Tissue transglutaminase is the most widely distributed form of transglutaminase in mammals (Folk and Finlayson 1977) and has been detected in many tissues including liver, arterial muscle and lung (Folk 1980; Griffin and Smethurst 1994; Birkbichler et al. 1978b). Tissue transglutaminase has been purified to homogeneity from a variety of sources incluḍing gụinea pig liver (Folk and Cole 1966), Rabbit liver (Abe et al. 1977), rat livẹ (Knight et al. 1990) and human erythrocytes (Brennẹ and Wold 1978). The tissue enzyme from all sources is monomeric with a molecular mass of $70-90 \mathrm{kDa}$ and there is 80% homology between the amino acid sequences of the guinea pig and human tissue transglutaminase enzymes (Greenberg et al. 1991). Tissue transglutaminase has been found to co-exist alongside other forms of the enzyme in both hair follicles and the epidermis (Lichti et al. 1985; Chung and Folk 1972). Although the biological role of tissue transglutaminase has not yet been defined it has been suggested to be involved in a
number of important cellular functions and these processes will be discussed later in the text.

Tissue transglutaminase is activated in the presence of calcium ions (For reviews see Folk and Finlayson 1977; Folk 1980 and 1983). At sub-optimal levels of calcium, the enzyme exhibits GTP binding resulting in inhibition of activity (Takeuchi et al. 1992; Bergamini and Signorini 1993; Mian et al. 1995; Smethurst and Griffin 1996). Tissue transglutaminase thus exhibits a weak GTPase activity (Lee et al. 1989) and it has recently been suggested that tissue transglutaminase may be involved in transmembrane signal mediation, acting as a G-protein (Im et al. 1997). Since calcium ions and GTP have been shown to have opposite effects on enzyme activity in vitro it is also possible that the in vivo activity of tissue transglutaminase may be controlled by local levels of these factors (Achyuthan and Greenberg 1987). Tissue transglutaminase is also regulated by a number of agents at the gene expression level including retinoids, sodium butyrate and transforming growth factor beta (Fukuda et al. 1993; Griffin and Smethurst 1994).

It has been proposed that tissue transglutaminase may have an involvement in apoptosis (programmed cell death). First described by Kerr (1971), apoptosis is a process by which cells die in an ordered fashion without the leakage of cellular contents (For review see Schwartzman and Cidlowski 1993). During apoptosis, cells become more spherical and the nuclei separate into discrete masses of condensed chromatin which then fragment along with condensed cell organelles into a number of membrane bound vesicles which are described as apoptotic bodies. Apoptotic bodies prevent the leakage of cellular components and promote the phagocytosis of dying cells by the surrounding cells due to
alterations in the chemistry of surface carbohydrates and lectins of the plasma membrane (Duvall et al. 1985). It has been proposed that tissue transglutaminase is involved in the formation of the insoluble, cross-linked apoptotic envelope because both transglutaminase activity and the level of ε-(γ-glutamyl) lysine are observed to increase in certain tissues undergoing programmed cell death (Fesus ei al. 1987 and 1989). Analysis of apoptosing mouse and hamster cell lines showed that the majority of transglutaminase activity and ε-(γ-glutamyl) lysine was associated with the apoptotic bodies and not the remainder of the cell (Knight ei al. 1991). Further evidence to link tissue transglutaminase to apoptosis is the observed increase in the intracellular calcium concentration during late stages which is known to activate tissue transglutaminase (Fesus et al. 1987).

A further process in which tissue transglutaminase has been implicated in is the stabilisation of the extracellular matrix. This is thought to take place via the crosslinking of such proteins as fibronectin, coilagen, laminin and nidogen (Aeschlimann and Pauisson 1991). It has also been suggested that the cross-linking of extracellular matrix proteins by tissue transglutaminase may assist in the process of cell adhesion (JuprelleSoret et al. 1988; Gentile et al. 1992). The extracellular space is an ideal environment for optimal tissue transglutaminase activity due to a high calcium ion concentration and low levels of such inhibitory factors as GTP and zinc ions (Aeschlimann and Paulsson 1994). Tissue transglutaminase has been shown to be involved in extracellular matrix crosslinking prior to calcification during the process of bone formation (Aeschlimann et al. 1993) but it is not yet clear how tissue transglutaminase is secreted as the enzyme has no secretory sequence (Ikura et al. 1988). Certain disease states of the extraceliular matrix
have been coupied to elevated leveis of tissue transgiutaminase such as pulmonary fibrosis and eye lens cataract formation (Griffin et al. 1979; Griffin and Smethurst 1994). A recent paper reports a possible therapeutic role for tissue transglutaminase as an extracellular cartilage adhesive for use in orthopaedic surgery (Jurgensen et al. 1997).

Eievated transglutaminase activity was first related to the metastatic potential of tumours in 1966 by Laki et al. They observed that the administration of transglutaminase inhibitors to mouse YPC-1 tumours greatiy increased mouse survival time. Birkbichier et al. (1976 and 1978a) observed decreases in tissue transglutaminase activity in Hovikoff hepatoma cells compared to healthy cells. They demonstrated that the remaining transglutaminase became more particulate and that levels of ε-(γ-glutamyl) lysine isodipeptide were lower in metastasising tumours compared to normal tissue, indicating that transglutaminase was required for cells to remain in a non-proliferating state.

Haughiand et al. (1982) showed that a decrease in ε-(γ-glutamyl) lysine resulted in an increase in membrane fluidity and hence they proposed that tissue transglutaminase may be invoived in membrane architecture. Using 6-P-dimethylaminophenylazobenzathiazole and diethylnitrosamine as carcinogens, Barnes ei al. (1984 and 1985) were able to show that there is a decrease in transglutaminase activity in tumour containing liver compared to healthy liver. Indeed, other workers have noted a decrease in transglutaminase activity from healthy tissue $>$ benign tumour $>$ metastasising tumour (Delcros et al. 1986). Conversely, in certain types of cancer, expression of tissue transglutaminase has been shown to increase. In azoxymethane induced rat colon cancer cells, tissue
transglutaminase activity increased compared to healthy tissue and elevated levels of transgiutaminase were found to be associated with the extracellular matrix (Dargenio ei al. 1995). Hettasch et al. (1996) also demonstrated an increase in extracellular matrix leveis of tissue transglutaminase by immunoblot analysis in human breast carcinoma. The alteration of tissue transglutaminase levels during tumourigenesis could mean that this enzyme is of possibie prognostic value for the assessment of human cancers.

Various workers have shown that receptor mediated endocytosis may be impeded by transglutaminase inhibitors such as primary amine competitive substrates (Yarden et al. 1981; Leu et al. 1982; Teshigawara et al. 1985; Hucho and Bandini 1986). Yarden et al. (1981) showed that one round of internalisation of α-macroglobulin could be achieved in the presence of primary amines but further internalisation did not occur and this led to the proposal that α-macroglobulin receptors could not return to the cell surface without the participation of active tissue transglutaminase. A criticism of the work on transglutaminase inhibition was presented by Ahmed and Niswender (1981) who proposed that the added primary amines were accumulating in lysosomes and that the resultant increase in cellular pH was responsible for the inhibition of endocytosis. Whether or not tissue transglutaminase is involved in this process remains unclear.

Further proposed roles for tissue transglutaminase include the secretion of insulin by pancreatic β cells (Bungay et al. 1982 and 1984) and stiffening of the erythrocyte membrane during the ageing process (Lorand and Conrad 1984). The ubiquitous nature of this enzyme suggests that it is invoived in important biological processes and much
research is therefore still being directed towards the full understanding of the biological function of tissue transglutaminase.

1.2.1.5 Epidermal transglutaminase (Tvoe iii) and hair foilicie transglutaminase.

Epidermal transgiutaminase is a 72 kDa monomer, which is activated by proteolysis to a $50-54 \mathrm{kDa}$ protein (Negi et al. 1985; Greenberg et ai. 1991) and has been identified in bovine snout epidermis (Buxman and Wuepper 1975) and human callus (Foik 1980). Upon activation, the cross-linking of keratinocyte proteins results in the deposition of a rigid, insoluble protein matrix beneath the epidermal cell membrane (Thacher and Rice 1985) containing both ε-(γ-glutamyl) lysine and N^{\prime}, N^{\prime}-bis (γ-glutamyl) polyamine crossbridges. These covalent cross-links are thought to provide the protein matrix with the stability required to maintain skin integrity (Piacentini ei al. 1988). The epidermal enzyme is not found in cultured keratinocytes and is immunologically distinct from factor XIII and tissue transglutaminase (Ogwa and Goldsmith 1977). Epidermal transglutaminase has the same molecular mass as hair follicle transglutaminase (5054 kDa) but hair follicle transglutaminase has been shown to be a dimer consisting of two 27 kDa sub-units (Chung and Foik 1972) and the two enzymes are immunologically distinct (Buxman and Wuepper 1976 and 1978). The detection of ε-(γ-glutamyl) lysine isodipeptide in citruline rich proteins of hair foliicles has led to the suggestion that the hair follicie enzyme may be involved in hair fibre formation and stabilisation (Harding and Rogers 1976; Peterson and Wuepper 1984).

1.2.2 Non-mammalian transglutaminases.

1.2.2.1 Nematode transglutaminase.

Mehta ei al. (1992) detected ε-(γ-glutamyl) lysine isodipeptide in the nematode Brugia malayi and postulated that transglutaminase plays an important role during the development of the embryonic worm. Purification of Brugia malayi transglutaminase yieided a calcium dependent 56 kDa protein with a pH optimum of 8.5. The transglutaminase from Brugia malayi showed similar characteristics to mammalian tissue transglutaminase including inhibition by EDTA, primary amines and millimolar levels of GTP. Thiol blocking reagents also inhibit activity suggesting that there is a thiol group present at the active site (Singh and Mehta 1994). Further research showed that embryonic development of Brugia malayi was enhanced by the transglutaminase mediated cross-linking of host proteins (Mehta et al. 1996).

Transglutaminase has also been detected in the canine filarial parasite Dirofilaria immitis. Purification of this enzyme yielded a 56 kDa protein which cross reacted with an antibody raised in rabbit against the N -terminal sequence of Brugia malayi transglutaminase suggesting sequence similarity (Singh et al. 1995). Further evidence for the invoivement of transglutaminase in nematode development was presented by Lustigman et al. (1995). The transglutaminase inhibitors monodansylcadaverine, cystamine and N-benzyloxycarbonyi-D, L-beta-(3-bromo-4, 5 dihydroisoxazol-5-yl)alaninebezylamide were shown to prevent moulting of stage 3 Onchocerca volvulus larvae to stage 4 which suggests that transglutaminase in nematodes may be a possible target for an anti-parasitic chemotherapeutic agent.

1.2.2.2 Bacterial transglutaminase.

Transglutaminase from a variety of bacteria including Strepiomyces lydicus and Streptoveriicillium morbaraense has recently been shown to improve the functional properties of some foods by the cross-linking of certain proteins to improve the processing, fiavour, appearance and texture characteristics (For review see Zhu et al. 1995). For example, the treatment of soy protein hydrolysates by microbial transgiutaminase improves their solubility properties by greatly reducing hydophobicity Cross-linking of the protein hydrolysate serves to bury hydrophobic amino acids within the resultant polymer, which results in an improvement in the taste of soy protein (Babiker ei al 1996). Transglutaminase from Streptomyces morbaraense has been shown to improve the functional properties of a variety of food proteins including casein, soybean globulins, gluten, actin and myosins. It is a monomer of 38 kDa (SDS-PAGE) and differs from mammalian transglutaminases in that it is calcium independent (Zhu et al. 1995). Similarly Streptomyces lydicus transglutaminase is caicium independent (Faergemand ei al. 1997) but in common with mammalian transglutaminase both bacterial enzymes are thiol dependent implying active site similarities. Use of the bacterial enzyme over mammalian transglutaminase for food protein modification has certain advantages including the fact that purification from bacteria is easier and large quantities may be prepared using fermentation technology.

1.2.2.3 Fungal transgiutaminase.

It has recentiy been suggested that transglutaminase may be responsibie for the crosslinking of structural proteins during cell wail formation of the yeast Candida albicans as ceil wall protein incorporation was inhibited by the transglutaminase inhibitor cystamine
(Sentandreu et al. 1995; Ruizherrera et al. 1995). Immunoreactivity between a factor XIIIa antibody and a cell wall protein has also been demonstrated suggesting the invoivement of transgiutaminase in fungal development (Arrese and Pierard 1995). This research implies that inhibition of Candida albicans transglutaminase by a chemotherapeutic agent may reduce the pathogenicity of this fungi and result in a treatment for Candidiasis (thrush).

1.2.3 Plant transglutaminase.

1.2.3.1 Intróductöry stâtément.

The first evidence for enzyme mediated covalent incorporation of polyamines into protein by a crude plant extract, was presented in 1987 by Icekson and Apelbaum. They showed the incorporation of $\left[{ }^{3} \mathrm{H}\right]$-labelled putrescine into a number of protein substrates by an extract prepared from the 7 day old apical meristematic region of etiolated Pisum sativum seediings. There has been an increasing body of evidence to support the existence of a catalytically active transgiutaminase in plant tissue and the sections that foliow review the observations that have been made and the conclusions drawn from them.

1.2.3.2 Sources of plant transglutaminase and methods of detection.

Detection of transglutaminase activity in 7 day old apical meristematic tissue of etiolated Pisum sativum seedings was achieved using a modification of a method first described by Lorand et al. in 1972. Crude plant extract was incubated in the presence of N^{\prime}, N^{\prime} dimethylcasein and $\left[{ }^{3} \mathrm{H}\right]$-labelled putrescine. Following incubation at $35^{\circ} \mathrm{C}$ for 30 minutes, aliquots of the reaction mixture were spotted onto filter paper and the protein was precipitated by treatment with cold $10 \%(\mathrm{w} / \mathrm{v})$ TCA. The filter papers were placed into liquid scintiliation cocktail and the covalently incorporated $\left[{ }^{3} \mathrm{H}\right]$-labelled putrescine was quantified by liquid scintillation counting. The activity was shown to be present either in the cytosol or the extracellular fluid as only 3% of the activity was associated with a $27000 \times \mathrm{g}$ pellet. This data was supported by the more recent observation that the [$\left.{ }^{14} \mathrm{C}\right]$-iabelled polyamine conjugation activity of 10 day old apical meristematic hook
regions of etiolated Pisum saiivum seedlings was also shown to be soluble. Treatment of a membrane pellet with various detergents including Triton X-100, Tween, Brij 35 and deoxycholate yielded no transgiutaminase activity (Chiarello ei al. 1996a). It should be noted that many modifications of the original assay described by Lorand et al. in 1972 have been carried out in order to study plant transglutaminases. For example, recently a calcium independent transglutaminase-like activity has been purified from Glycine max leaves using a method that involves [$\left.{ }^{14} \mathrm{C}\right]$-labelled putrescine incorporation into $\bar{N}^{\prime}, \bar{N}^{\prime}$ 'dimethylcasein bound to nitro-celluiose discs (Kang and Cho 1996).

Membrane associated transglutaminase activities have also been detected in a number of plant tissues. Detergent treatment of membrane pellets prepared from the leaves of Spinacia oleracea and Beia vulgaris and the floral buds of Brassica oleracea yielded a radiolabelled amine incorporation activity (Signorini et al. 1991). Evidence for transglutaminase activity in intact chloroplasts of Medicago sativa was presented by Margosiak ei al. (1990) using a monodansyicadaverine conjugation reaction, which was visualised by fluorescence detection in polyacrylamide gels. Furthermore, they demonstrated that the transglutaminase activity co-eiuted with the large sub-unit of RuBisCo (E. C 4.1.1.39) when crude extracts were subjected to size exclusion chromatography indicating an estimated molecuiar mass of 58 kDa for plant transglutaminase. However, further purification of the activity from Medicago sativa using DEAE-celiulose chromatography, isoelectric focusing and reversed phase HPLC yielded a protein of molecular mass $37-39 \mathrm{kDa}$ (Kuehn ei al. 1991).

Transglutaminase activity was also observed in a Triton X-100 treated $22000 \times$ g Helianthus tuberosus leaf membrane pellet (Falcone et al. 1993). Further investigation showed the transglutaminase activity to be associated with the thylakoid membrane where a 58 kDa protein band cross reacted with antibodies raised against both rat prostate and human erythrocyte transglutaminases (Del Duca et al. 1994). In the same laboratory, transglutaminase activity has been detected in floral buds, tuber explants and the apical meristematic region of sprouting tubers of Helianthus tuberosus using a radiolabelled amine incorporation assay. The authors also suggest the possibility of different isoforms of transglutaminase within the same organ (Serafini-Fracassini et al.1988; Del Duca et al 1993; Falcone et al. 1993). Labelled Helianthus tuberosus endogenous substrate proteins were demonstrated by running the reaction products on SDS-PAGE geis. Entire lanes of the gels were cut into coomassie blue positive or negative bands and following gel dissolution the bands were counted for radioactivity. Endogenous proteins with various molecular masses ranging from $30-92 \mathrm{kDa}$ were shown to be labelled.

Other methods used to detect plant transglutaminase activity include the cross-linking of proteins by plant extracts followed by analysis on SDS-PAGE gels (Siepaio and Meunier 1995). A Triton X-100 treated $41400 \times$ Lupinus albus membrane pellet was incubated with bovine casein or spinach RuBisCo and the resultant reaction mixture was shown to contain high molecular mass protein polymers when analysed by SDS-PAGE electrophoresis. Furthermore, the extract was able to incorporate labelied polyamines into N^{\prime}, N^{\prime}-dimethyicasein and the authors concluded that this was good evidence for the presence of a transglutaminase in Lupinus albus seedlings because both polyamine
incorporation and protein cross-linking could be carried out by the membrane extract. Covalent attachment of both $\left[{ }^{3} \mathrm{H}\right]$ and $\left[{ }^{14} \mathrm{C}\right]$-labelled polyamines to oat and petunia protoplast homogenates bound to filter paper discs has been demonstrated. The homogenates were incubated with labelled polyamines and subsequently washed with either 1.0 M or 5.0 M NaCl to remove any label bound by an ion exchange effect (Mizrahi et al. 1989). They concluded that the labelled polyamine was bound to protein because washing with proteases was the only method found to reduce the number of counts on each filter paper disc.

Transglutaminase activity has also been demonstrated in the root tissue of a variety of higher plants. Lilley et al. (1996 and 1998) demonstrated the incorporation of biotin labelled cadaverine into N^{\prime}, N^{\prime}-dimethylcasein and the cross-linking of chemically modified bovine casein by soluble root and leaf extracts prepared from Pisum sativum, Vicia faba, Triticum aestivum and Hordeum vulgare. Similarly, an increasing level of transglutaminase activity was detected in root explants of Chrysanthemum morifolium during the initial days of culture. Following the initial rapid stage of cell division, activity was shown to decrease as differentiation occurred (Aribaud et al. 1995). To date both soluble and membrane bound transglutaminase activity has been detected in a variety of plant root and leaf tissues indicating that this enzyme may be as widely distributed in plants as it is in animals.

1.2.3.3 Plant transglutaminase biochemistry.

1.2.3.3.1 Regulatory factors.

1.2.3.3.1.1 Calcium ion requirement.

As previously stated, transglutaminases are generally regarded as calcium dependent enzymes. In contrast, recent research indicates that plant transglutaminase may have no absolute requirement for this cation (for review see Serafini-Fracassini et al. 1995) and it should be noted that examples of calcium independent microbial transglutaminases have been also been observed (Faergemand et al. 1997). The pioneering plant transglutaminase research article written by Icekson and Apelbaum in 1987 considered the question of calcium ion dependence and reported that the addition of $6.6 \mathrm{mM} \mathrm{CaCl}_{2}$ to the radiolabelled amine incorporation reaction buffer stimulated transglutaminase activity by 47% but no absolute dependency upon this cation was observed. Addition of the chelation agents EDTA and EGTA produced very little inhibition of the putrescine binding activity of the Pisum sativum apical meristem preparation and this led to the conclusion that there were differences between the enzymes found in mammals and plants. This work was supported by the observation that the radiolabelled polyamine incorporation activity in a crude extract prepared from the apical meristem of Helianthus tuberosus was also not dependent upon exogenous addition of calcium (SerafiniFracassini et al. 1988). Slight stimulation of activity was noted at calcium ion concentrations up to 5 mM but further addition of calcium was shown to inhibit transglutaminase activity. Chelation by 15 mM EDTA inhibited polyamine binding by only 16% indicating that calcium ions are not an absolute requirement for plant
transglutaminase activity. Further work in the same laboratory showed that transglutaminase activity from different organs including leaves and floral buds was stimulated by varying degrees due to addition of calcium ions to the reaction mixture but no total dependency was demonstrated (Falcone et al.1993, Del Duca et al. 1994). Other groups have shown similar findings using radiolabelled amine incorporation assays (Margosiak et al. 1990; Kuehn et al. 1991; Signorini et al. 1991; Aribaud et al. 1995; Lilley et al 1995 and 1998; Kang and Cho 1996). It should however be noted that the enzymic nature of the amine binding reactions was shown in all cases by the demonstration of a time dependent increase in covalently bound radioactive label and the use of boiled extract controls.

It has recently been demonstrated that the radiolabelled polyamine incorporation assays used to detect transglutaminase activity are subject to interference by calcium independent enzymes present in crude plant extracts such as diamine oxidases (Siepaio and Meunier 1995; Chiarello et al. 1996a and 1996b; Martin-Tanguy et al. 1997). This interference would account for the observed absence of total calcium dependence since a proportion of the total activity observed is possibly due to the presence of a calcium independent diamine oxidase. Diamine oxidases are proposed to incorporate polyamines into proteins by the following mechanism (Figure 3).

Figure 3. Incorporation of polvamines into the glutamine residues of proteins by

the action of diamine oxidase (according to Siepaio and Meunier 1995).
$\mathrm{NH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}+$ Diamine oxidase
$\mathrm{NH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CHO}+\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}_{2}$

Using a Lupinus albus membrane extract, Siepaio and Meunier (1995) showed that both diamine oxidase and transglutaminase activities were present. Over 50% of the amine binding activity of the extract was removed by treatment with 1 mM DIECA which inhibits diamine oxidase by chelation of copper ions essential for activity. The amine binding activity of a Pisum sativum apical meristem extract was also shown to be influenced by a diamine oxidase because addition of the copper chelator ophenanthrolinehenanthroline inhibited the reaction by 67-96\% (Icekson and Apelbaum 1987; Chiarello et al. 1996a). The debate concerning the relative contributions of transglutaminase and contaminating enzymes present in crude plant extracts forms a significant part of the scope of this thesis and will be discussed further in chapters 3 and 4 in terms of the development and use of alternative assay systems.

1.2.3.3.1.2 Inhibition by GTP.

Mammalian tissue transglutaminase is inhibited by GTP at sub-optimal calcium ion concentration (Takeuchi et al. 1992; Bergamini and Signorini 1993; Mian et al. 1995; Smethurst and Griffin 1996) and tissue transglutaminase exhibits a weak GTPase activity (Lee et al. 1989). Assaying for the inhibition of plant transglutaminase by GTP in crude extracts may result in misleading results due to the quenching of the GTP by other GTP binding proteins. This may explain why the only report to date of the inhibition of a plant polyamine binding activity by GTP has been following its purification from Glycine max leaves (Kang and Cho 1996). Kang and Cho estimated the relative molecular mass to be 80 kDa by SDS-PAGE implying that the enzyme may be similar to mammalian tissue transglutaminase.

1.2.3.3.1.3 Proteolvtic regulation.

The addition of the protease inhibitors leupeptin and PMSF to a Helianthus tuberosus extract was shown to inhibit radiolabelled polyamine binding implying that proteolytic cleavage may be a factor in the regulation of this type of transglutaminase (Grandi et al. 1992). This would suggest similarities between plant transglutaminase and both the keratinocyte and plasma mammalian transglutaminase enzymes (Credo et al. 1978; Rice et al. 1990). At present there are no other examples of proteolytic activation of plant transglutaminase in the literature.

1.2.3.3.2 The effect of inhibitors and activators.

1.2.3.3.2.1 Thiol group reagents.

A further acknowledged criteria for the identification of novel mammalian transglutaminases has been to demonstrate the presence of a thiol group at the active site of the enzyme since the active site sequence is the most conserved region of the molecule (Aeschlimann and Paulsson 1994). Thiol group activators such as the reducing agent DTT have been shown to exhibit various effects on plant transglutaminases depending on the source. $1-5 \mathrm{mM}$ DTT was shown to inhibit Pisum sativum apical meristematic transglutaminase activity by 40-80\% (Icekson and Apelbaum 1987; Chiarello et al 1996a) and DTT was also shown to inhibit the polymerisation of bovine casein by Lupinus albus transglutaminase (Siepaio and Meunier 1995). 2-mercaptoethanol was shown to slightly inhibit the amine binding activity of a crude Medicago sativa extract (Margosiak et al. 1990). Conversely, 10 mM DTT was found to be critical for the preservation of the amine binding activity of Helianthus tuberosus extracts (SerafiniFracassini et al. 1988) and Kang and Cho (1996) demonstrated that exogenous addition of 10 mM DTT almost doubled the amine binding activity of Glycine max leaf extracts. They also showed a 60% inhibition of activity due to the addition of 0.1 mM NEM (a thiol group inhibitor). Furthermore, a 10 mM concentration of the specific transglutaminase active site inhibitor cystamine was shown to inhibit the activity of Chrysanthemum morifolium transglutaminase by 100\% (Aribaud et al. 1995) and this data suggests that there may be active site similarities between the transglutaminases present in Chrysanthemum morifolium and mammals.

1.2.3.3.2.2 Competitive inhibitors.

Icekson and Apelbaum (1987), working with Pisum sativum, demonstrated that $\left[{ }^{3} \mathrm{H}\right]$ labelled putrescine incorporation into N^{\prime}, N^{\prime}-dimethylcasein could be inhibited by competition with other polyamines at a concentration of $10-100 \mathrm{mM}$. Cadaverine was found to be the most effective inhibitor giving a reduction of 63% in incorporated radioactivity at the highest concentration. They also tested the capacity of a variety of amino acids to act as amine donors and inhibit the amine incorporation reaction and found that 25 mM cysteine inhibited the reaction by 85% but other amino acids tested had little or no effect. The radiolabelled putrescine binding activity of Helianthus tuberosus apical meristematic tissue transglutaminase was also affected by competitive inhibition. 5 mM histamine caused 64% inhibition of the transglutaminase reaction (SerafiniFracassini et al. 1988).

1.2.3.3.3 Substrate specificity.

Some mammalian transglutaminases have been shown to catalyse the post-translational modification of more than one glutamine donor substrate (Aeschlimann et al. 1992). Similarly, several of the transglutaminases detected in plant tissues demonstrate the use of several glutamine donor proteins. The traditional animal transglutaminase substrate N^{\prime}, N^{\prime}-dimethylcasein was shown to act as a glutamine donor for transglutaminases detected in Pisum sativum, Lupinus albus, Chrysanthemum morifolium and Beta vulgaris (Icekson and Apelbaum 1987; Signorini et al.1991; Siepaio and Meunier 1995; Aribaud et al. 1995; Lilley et al. 1998). Thrombin, fibrinogen, pepsin and insulin were also utilised by Pisum sativum transglutaminase. In addition, creatine kinase and cellulase, which had not previously been identified as animal transglutaminase substrates
were identified as substrates for the Pisum sativum enzyme (Icekson and Apelbaum 1987). More recent work has shown that a number of unidentified endogenous plant proteins which vary in molecular mass are modified when radiolabelled polyamines are added to crude plant extracts (Serafini-Fracassini et al. 1988; Margosiak et al. 1990; Grandi et al. 1992; Del Duca et al. 1993 and 1994).

The transglutaminase enzymes detected in plant tissue display a broad specificity for primary amine donor substrates. Pisum sativum transglutaminase was shown to utilise putrescine, cadaverine, spermine, spermidine and diaminopropane as amine donor substrates (Icekson and Apelbaum 1987). Using a $\left[{ }^{14} \mathrm{C}\right]$-labelled polyamine incorporation assay, Helianthus tuberosus transglutaminase was shown to recognise putrescine, spermidine and spermine as substrates with spermine having the lowest K_{m} (Serafini-Fracassini et al. 1988). Further evidence for the use of a number of amine substrates by Helianthus tuberosus transglutaminase was presented by the same laboratory upon the isolation of the transglutaminase products N^{l}, N^{4}-bis $(\gamma$-glutamyl) putrescine and N^{l}, N^{8}-bis(γ-glutamyl) spermidine from a chloroplast preparation (Del Duca et al. 1995). Aribaud et al. (1995) showed that the transglutaminase present in Chrysanthemum morifolium was able to incorporate both radiolabelled putrescine and spermidine into N^{\prime}, N^{\prime}-dimethylcasein. This data demonstrated that the incorporation of both polyamines followed typical Michaelis-Menten kinetics and that the preferred substrate was putrescine. It should be noted that the ability of proteins to provide amine donor lysine has not been extensively tested due to the lack of suitable assay systems. Development of an assay system to test the protein cross-linking abilities of transglutaminases forms the basis for the third chapter of this thesis.

1.2.3.3.4 Plant transglutaminase product identification.

The demonstration of the calcium ion and thiol dependent incorporation of polyamines into proteins is often offered as evidence of transglutaminase activity in a tissue of interest. It has however been agreed that the only absolute proof of the presence of a catalytically active transglutaminase in an organism is the isolation of one of the products of the transglutaminase reaction (Folk and Finlayson 1977). This has been achieved in many mammalian tissues and fluids including liver, skin and blood plasma (Griffin and Smethurst 1994).
N^{\prime}-(γ-glutamyl) putrescine was detected in a crude Beta vulgaris protein extract following a 60 minute incubation with $\left[{ }^{14} \mathrm{C}\right]$-labelled putrescine at $30^{\circ} \mathrm{C}$ (Signorini et al. 1991). Exhaustive proteolytic digestion of the labelled protein followed by ion exchange chromatography using an LKB amino acid analyser by the method of Folk et al. (1980) was used to identify the conjugate. The presence of this product was further verified by the detection of equimolar quantities of glutamic acid and putrescine following acid hydrolysis of the appropriate un-derivatised chromatographic fraction. Other investigations have led to the isolation of N^{\prime} - $\left(\gamma\right.$-glutamyl) putrescine, N^{l}, N^{4}-bis $(\gamma-$ glutamyl) putrescine and N^{l}, N^{s}-bis(γ-glutamyl) spermidine from Helianthus tuberosus chloroplasts (Del Duca et al. 1995). This work was carried out using a similar method to that described by Signorini et al. (1991).

Although the isolation of these polyamine conjugates is acknowledged as good proof of the existence of a transglutaminase, it should be noted that N^{\prime}-(γ-glutamyl) polyamines may be formed in tissues without the action of a transglutaminase (Beninati et al. 1988;

Tack et al. 1981) and as a result, the only evidence regarded as total and unequivocal proof of the presence of transglutaminase is the isolation of the ε-(γ-glutamyl) lysine isodipeptide formed by the cross-linking of proteins (Folk and Finlayson 1977). The only attempt to date to test the hypothesis that an enzyme in plant tissue is able to catalyse the formation of this product was made by Chiarello et al. (1996a). Following exhaustive proteolytic digestion (Griffin et al. 1982) of β-casein which had been exposed to protein extracted from the apical meristematic region of 10 day old etiolated Pisum sativum seedlings, the subsequent analysis of liberated amino acids using reversed phase HPLC yielded no detection of isodipeptide cross-link. This indicates that the concentration of transglutaminase in the extract may be too low to produce a detectable quantity of isodipeptide when β-casein is used as the substrate.

1.2.3.4 Possible biological roles of plant transglutaminase.

At present no biological role has been established for transglutaminase in plant tissue although a number of processes in which the enzyme might have an involvement have been proposed. Two research articles have related an increase in transglutaminase activity to the progression of the cell cycle of non-photosynthetically competent cells. Dinella et al. (1992) observed an increase in high molecular mass radiolabelled putrescine-protein conjugates when $\left[{ }^{14} \mathrm{C}\right]$ or $\left[{ }^{3} \mathrm{H}\right]$-labelled putrescine was supplied to cycling Helianthus tuberosus tuber cells. Cycloheximide inhibited increase in transglutaminase activity before the mid- G_{1} stage of the Helianthus tuberosus tuber cell cycle was also shown in the same laboratory (Grandi et al. 1992). When subjected to SDS-PAGE, the labelled conjugates were immobile but some of them could be separated by adjustment of the acrylamide concentration of the gel or by treatment with papain or
cellulase. This data suggested that the high molecular mass conjugates were proteins linked to or entrapped by carbohydrates. Since it is known that fibrillar material migrates from the cytoplasm to the cell wall of cycling tuber cells, it was concluded that transglutaminase may play a part in the assembly and organisation of the cell wall. This conclusion is reinforced by a similar suggestion that transglutaminase may be involved in the cross-linking of proteins during cell wall organisation of the fungus Candida albicans (Sentandreu et al. 1995; Ruizherrera et al. 1995).

A further non-photosynthetically competent tissue containing transglutaminase activity is the pollen of Malus domestica (Bregoli et al. 1994; Del Duca et al. 1997). During the early stages of pollen germination, which involves rapid cell division and synthesis of new cell walls, transglutaminase activity is high and an antibody raised against rat liver transglutaminase recognised proteins of 80 kDa and 47 kDa present in the pollen. Actin and tubulin are known to play a key role in pollen tube elongation and were identified as substrates for pollen transglutaminase implying a possible role for the enzyme in the early stages of pollen tube growth (Bregoli et al. 1994; Del Duca et al. 1997). This observation is supported by the evidence that actin has been demonstrated as a transglutaminase substrate in fungal tissues (Klein et al. 1992). Other proposed roles for plant transglutaminase in non photosynthetically competent tissue include a possible involvement in the development of Chrysanthemum morifolium root tissue and a possible role in the heat stress response of Oryza sativa callus (Aribaud et al. 1995; Roy and Ghosh 1996)

Biological roles for transglutaminase in photosynthetically competent cells have also been suggested. Margosiak et al. (1990) demonstrated that the large sub-unit of RuBisCo could be utilised as an acyl donor substrate by Medicago sativa transglutaminase and hence proposed a possible role for the enzyme in photosynthesis. The evidence presented included the covalent attachment of either monodansylcadaverine or [$\left.{ }^{14} \mathrm{C}\right]$-labelled putrescine to endogenous proteins followed by fluorescence or autoradiographical detection in SDS-PAGE gels of a labelled protein of molecular mass corresponding to that of the large sub-unit of $\mathrm{RuBisCo}(57.6 \mathrm{kDa})$. A protein band of 52.7 kDa was also labelled and it was concluded that this may have been produced by partial proteolysis. The dependence of transglutaminase activity on the concentration of RuBisCo purified from either Medicago sativa or Spinacia oleracea was demonstrated using a $\left[{ }^{14} \mathrm{C}\right]$-labelled putrescine incorporation assay. The incorporation of radiolabelled amine into RuBisCo exhibited Michaelis-Menten kinetics with K_{m} values of 1.13 and $2.68 \mathrm{mg} \mathrm{ml}^{-1}$ for Medicago sativa and Spinacia oleracea RuBisCo respectively. Transglutaminase was demonstrated to co-elute with the large sub-unit of RuBisCo when crude protein extracts were subjected to gel filtration chromatography indicating a molecular mass of approximately 58 kDa for the enzyme. This data coupled to the fact that the same laboratory also showed light stimulated incorporation of $\left[{ }^{14} \mathrm{C}\right]$-labelled putrescine into RuBisCo L in isolated chloroplasts implies a role for transglutaminase in the photosynthetic process. It has been suggested that the formation of a dimer of RuBisCo L is the first step of the chaperone-mediated assembly of the catalytically active $\mathrm{L}_{8} \mathrm{~S}_{8}$ RuBisCo structure (Roy et al. 1988). A RuBisCo L dimer has been isolated in Medicago sativa and it has been suggested that transglutaminase may be responsible for the cross-link (Kuehn et al. 1991).

Del Duca et al. (1994) demonstrated a light stimulated transglutaminase activity in Helianthus tuberosus chloroplasts. Incorporation of $\left[{ }^{14} \mathrm{C}\right]$-labelled putrescine into endogenous proteins increased 120% in the light. The endogenous substrates were identified by immunoblotting with polyclonal antibodies as apoproteins of the chlorophyll-a/b antenna complex (LHCII, CP26, CP24 and CP29). The large sub-unit of RuBisCo was also labelled and this was identified using antibodies raised against maize RuBisCo. This data led Del Duca et al. (1994) to postulate that although the physiological function of polyamines binding to chloroplast proteins is not yet known, transglutaminase may have an involvement in the light harvesting process. This evidence was supported by more data from the same laboratory demonstrating the presence of both N^{\prime}-(γ-glutamyl) polyamine and N^{\prime}, N^{\prime}-bis (γ-glutamyl) polyamine conjugates in chloroplasts (Del Duca et al. 1995). Covalent attachment of exogenously added labelled polyamines to chloroplast proteins does not however demonstrate that this would occur physiologically and more work must be carried out to fully elucidate the biological role of plant transglutaminase in photosynthetically active tissue.

1.2.3.4 The aims of this proiect.

At present the question of the calcium ion dependence of plant transglutaminase remains unanswered as a direct result of the unsuitability of the radiolabelled polyamine assays frequently used in this field of research (Chiarello et al. 1996a and 1996b; Siepaio and Meunier 1995). The initial aim of this project was to develop a more suitable assay system for the detection of plant transglutaminase. A protein cross-linking assay which measures the ability of transglutaminase to cross-link biotin labelled casein into chemically modified casein bound to microtiter plates via ε-(γ-glutamyl) lysine bonds was
developed (Lilley et al. 1997a). The assay was developed to elucidate the calcium requirement of plant transglutaminase by overcoming the selectivity problems experienced by previous workers, who observed diamine oxidase activity in crude plant extracts.

The only unequivocal proof of the presence of a catalytically active transglutaminase is provided by the detection of the ε-(γ-glutamyl) lysine product of the transglutaminase reaction (Folk and Finlayson 1977). Hence, a second aim of the project was to detect this conjugate in vitro and in vivo.

Chapter 2- Materials and methods.

2.1 Materials.

2.1.1 Biological materials.

Seeds of Pisum sativum (var. Feltham first), Vicia faba (var. Aquadulce), Triticum aestivum (var. Apollo) and Hordeum vulgare (var. Pipkin) were purchased from Stewarts Seeds Ltd, Nottinghamshire, U.K.

2.1.2 Other materials.

Nunc maxisorp microtiter assay plates were obtained through Life technologies (Renfrewshire, U.K). Muslin was purchased from Jessops department store (Nottinghamshire, U.K). Liquid scintillation fluid was supplied by Packard (Berkshire, U.K). TLC plates were manufactured by Merck (Darmstadt, Germany) and dialysis tubing was purchased from Medicell International (London, U.K).

2.1.3 Chemicals.

$\left[1,4-{ }^{14} \mathrm{C}\right]$-labelled putrescine was obtained from Amersham Ltd (Buckinghamshire, U.K). N^{\prime}, N^{\prime}-dimethylcasein was purchased from Calbiochem (Nottinghamshire, U.K). Biotin-X-cadaverine was supplied by Cambridge Bioscience (Cambridgeshire, U.K). Bovine casein was obtained through ICN (Cleveland, Ohio, U.S.A). EDC, formaldehyde and sodium borohydride were purchased from Aldrich Ltd (Dorset, U.K). Ammonium carbonate, disodium hydrogen orthophosphate, potassium dihydrogen orthophosphate,
urea, sodium hydroxide and methylamine were purchased from BDH (Dorset, U.K). All other chemicals were purchased from Sigma chemical company (Dorset, U.K).

2.2 Methods.

2.2.1 Treatment of biological material.

2.2.1.1 Prenaration of dialvsis tubing.

Dialysis tubing was boiled for 5 minutes in 100.0 ml of distilled and de-ionised water containing 1 g of EDTA and lg of sodium hydrogen carbonate. The tubing was then rinsed and boiled in 100.0 ml distilled water. Unused tubing was stored at $4^{\circ} \mathrm{C}$ in a solution of $0.02 \%(\mathrm{w} / \mathrm{v})$ sodium azide $(0.02 \mathrm{~g}$ sodium azide dissolved in distilled water to a final volume of 100.0 ml).

2.2.1.2 Extraction of transglutaminase activity from plant tissue.

Stock solutions.

2.2.1.2.1. Extraction buffer (1)- 50 mM Tris-HCl pH 7.4 containing: 10 mM 2-ME 250 mM sucrose and 3 mM EDTA.
85.6 g sucrose, 6.1 g Tris, $651 \mu \mathrm{l}$ of $2-\mathrm{ME}$ and 1.1 g disodium EDTA (dihydrate) were dissolved in 900.0 ml of distilled water. The pH was adjusted to 7.4 using concentrated HCl and the volume was adjusted to 1.0 litre with distilled water.
(When extracting transglutaminase from Pisum sativum root tissue for the purpose of casein cross-linking followed by isodipeptide analysis the concentration of EDTA was increased to 10 mM and protease inhibitors were added to the extraction buffer at the following final concentrations: $5 \mu \mathrm{M}$ Leupeptin, $1 \mu \mathrm{M}$ pepstatin and 1 mM PMSF). sucrose and 1.0 M potassium chloride.
85.6 g sucrose, 0.6 g Tris, 0.15 g DTT and 75 g potassium chloride were dissolved in 900.0 ml of distilled water. The pH was adjusted to 7.2 using solid MES and the volume was adjusted to 1.0 litre with distilled water.
2.2.1.2.3. Membrane re-suspension buffer with detergent- 5 mM Tris pH 7.2 containing: 1 mM DTT. 250 mM sucrose and various concentrations of detergents.
85.6 g sucrose, 0.6 g Tris, 0.15 g DTT and various concentrations of detergent were dissolved in 900.0 ml of distilled water. The pH was adjusted to 7.2 using solid MES and the volume was adjusted to 1.0 litre with distilled water.
2.2.1.2.4. Membrane pellet re-suspension buffer- 5 mM Tris pH 7.2 containing: 1 mM DTT and 250 mM sucrose.
85.6 g sucrose, 0.6 g Tris and 0.15 g DTT were dissolved in 900.0 ml of distilled water. The pH was adjusted to 7.2 using solid MES and the volume was adjusted to 1.0 litre with distilled water.
2.2.1.2.5. Protein re-dissolving / dialvsis buffer- 50 mM Tris- HCl pH 7.4 containing: 1mM 2-ME.
18.2 g Tris and $195 \mu \mathrm{l}$ of $2-\mathrm{ME}$ were dissolved in 2.5 litres of distilled water. The pH was adjusted to 7.4 using concentrated HCl and the volume was adjusted to 3.0 litres with distilled water.

Method.

Seeds of Vicia faba (var. Aquadulce), Pisum sativum (var. Feltham First), Hordeum vulgare (var. Pipkin) and Triticum aestivum (var. Apollo) were soaked overnight in running water and germinated in damp vermiculite for 14 days in a greenhouse at $20^{\circ} \mathrm{C}$. Over a 16 hour photoperiod a photosynthetic flux of $300-400 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ was provided by natural daylight supplemented with high pressure sodium lamps. Root and leaf tissue was harvested after an appropriate growth period (14 days unless otherwise stated). Solid PVPP was added at a concentration of $5 \%(w / v)$ to the extraction buffer (1) (2.2.1.2.1). Plant tissue was homogenised in ice cold extraction buffer in a ratio of $1: 2$ (w/v) using a Phillips model HR1375/A blender (Nottinghamshire, U.K). The homogenate was strained through two layers of muslin and the pH was re-adjusted to 7.4 using solid Tris (Corning pH meter model 130, Essex, U.K). The extract was then centrifuged at $13000 \times \mathrm{g}$ for 20 minutes at $4^{\circ} \mathrm{C}$ using an MSE model 24 M centrifuge (Sussex, U.K) fitted with an $8 \times 50.0 \mathrm{ml}$ pre chilled rotor, part number $43114-143$. The supernatant was further clarified by centrifugation at $80000 \times \mathrm{g}$ for 45 minutes at $4^{\circ} \mathrm{C}$ to sediment the membrane fraction using a Beckman Ultra model L8 70 centrifuge fitted with a pre chilled 70 Ti rotor (Buckinghamshire, U.K). The membrane fraction was washed with membrane washing buffer (2.2.1.2.2), centrifuged at $80000 \times \mathrm{g}$ for 45 minutes and re-suspended in membrane re-suspension buffer with detergent (2.2.1.2.3). The membrane preparations were then centrifuged at $80000 \times \mathrm{g}$ for 45 minutes and the supernatant was stored in aliquots at $-20^{\circ} \mathrm{C}$. The resultant pellet was re-dissolved in membrane re-suspension buffer (2.2.1.2.4) and stored at- $20^{\circ} \mathrm{C}$. The initial $80000 \times \mathrm{g}$
supernatant protein was precipitated by the addition of solid ammonium sulphate to 90% saturation at $4^{\circ} \mathrm{C}(0.6 \mathrm{~g}$ ammonium sulphate per ml of supernatant $)$.

De-salting of extracted protein.

Method a. -Protein used for activity assays. Precipitated protein was collected by centrifugation at $13000 \times g$ for 20 minutes at $4^{\circ} \mathrm{C}$, re-dissolved in protein re-dissolving buffer (2.2.1.2.5) and dialysed against 2.5 litres of the same buffer at $4^{\circ} \mathrm{C}$. Aliquots of dialysed protein were stored at $-20^{\circ} \mathrm{C}$.

Method b - after Christopherson (1983). -Pisum sativum root protein used for cross-linking casein followed by isodipeptide analysis. A more rapid de-salting technique was employed for these experiments to ensure that the extracted protein retained as much activity as possible: Four millilitres of pre-swollen Sephadex grade G25 was placed into a 5.0 ml plastic syringe using a glass wool plug to stopper the end as shown in figure 4. The syringe was placed into a conical plastic centrifuge tube and distilled water was removed from the G-25 by centrifugation at 3000 rpm for 5 minutes at $4^{\circ} \mathrm{C}$ using a Beckman GPKR refrigerated centrifuge (Buckinghamshire, U.K). A 0.5 ml aliquot of the Pisum sativum root extract was then desalted by centrifugation at 3000 rpm for 5 minutes at $4^{\circ} \mathrm{C}$. $25 \mu \mathrm{l}$ of 2.0 M Tris- HCl pH 7.4 containing 20 mM 2-ME (2.42g Tris, $14 \mu \mathrm{l}$ 2-ME dissolved in 10.0 ml of distilled water) was added to restore lost buffer.

Figure 4. Apdaratus used to rapidly de-salt Pisum sativum root protein extracts.

2.2.1.3 Extraction of Vicia faba storage proteins.

Stock solution.

2.2.1.3.1. Extraction buffer (2)- 50 mM Tris- HCl pH 7.5 containing: 0.5 M sodium chloride and 5mM EDTA.
3.03 g Tris, 14.6 g sodium chloride and 0.93 g disodium EDTA (dihydrate) were dissolved in 450.0 ml of distilled water. The pH was adjusted to 7.5 using concentrated HCl and the volume was made up to 500.0 ml with distilled water.

Method.

Cotyledon tissue was homogenised in ice cold extraction buffer (2) (2.2.1.3.1) in a ratio of 1:2(w/v) using a Phillips model HR1375/A blender (Nottinghamshire, U.K). The homogenate was strained through two layers of muslin and the pH was re-adjusted to 7.5 using solid Tris (Corning pH meter model 130, Essex, U.K). The extract was then centrifuged at $10000 \times \mathrm{g}$ for 30 minutes at $4^{\circ} \mathrm{C}$ using an MSE model 24 M centrifuge (Sussex, U.K) fitted with an $8 \times 50.0 \mathrm{ml}$ pre chilled rotor, part number 43114-143. The
resultant supernatant was dialysed repeatedly against 5.0 litres of distilled water until a precipitate of globulins was observed. The extract was then centrifuged as before to pellet the globulins which were re-suspended in distilled water, freeze dried using a B. O. C model 5321 freeze drier (Sussex, U.K) and stored at $-20^{\circ} \mathrm{C}$.

2.2.1.4 Proteolvtic digestion of plant proteins (Griffin et al. 1982).

Stock solutions.

2.2.1.4.1. $-72 \%(w / v) T C A$.

72 g of solid TCA was dissolved in distilled water to a final volume of 100.0 ml .
2.2.1.4.2. $-10 \%(w / v)$ TCA.

10 g of solid TCA was dissolved in distilled water to a final volume of 100.0 ml .
2.2.1.4.3-50:50 ethanol: diethylether.
25.0 ml diethylether was added to 25.0 ml ethanol and stored on ice.

2.2.1.4.4. 100 mM ammonium carbonate pH 10.0 .

1.57 g ammonium carbonate was dissolved in 90.0 ml of distilled water and the pH was adjusted to 10.0 using concentrated sodium hydroxide. The volume was made up to 100.0 ml with distilled water.

2.2.1.4.5. Leucine amino peptidase activating solution.

This solution consisted of the following components:
250μ l leucine amino peptidase (250 units)
$225 \mu \mathrm{l} 10 \mathrm{mM}$ Tris-HCl pH 8.0 (0.12 g Tris $/ 100.0 \mathrm{ml}$ distilled water $/ \mathrm{pH}$ conc. HCl)
$25 \mu \mathrm{l} 50 \mathrm{mM}$ manganese chloride (0.1 g manganese chloride (tetrahydrate) $/ 10.0 \mathrm{ml}$ distilled water).

The solution was incubated at $37^{\circ} \mathrm{C}$ for 2 hours to activate the leucine amino peptidase.

2.2.1.4.6. Prolidase activating solution.

This solution consisted of the following components:
$50 \mu \mathrm{l}$ prolidase (100 units)
$200 \mu \mathrm{l}$ distilled water
$200 \mu \mathrm{l} 10 \mathrm{mM}$ Tris- HCl pH 8.0 (made as described in section 2.2.1.4.5)
$50 \mu \mathrm{l}$ manganese chloride (made as described in section 2.2.1.4.5)
The solution was incubated at $37^{\circ} \mathrm{C}$ for 2 hours to activate the prolidase.
2.2.1.4.7. -0.54 M magnesium chloride.
1.09 g magnesium chloride (hexahydrate) was dissolved in 10.0 ml of distilled water.

2.2.1.4.8. Chloroform:methanol: $\mathrm{HCl}(200: 100: 2$).

100.0 ml chloroform was added to 50.0 ml methanol. The solvents were mixed thoroughly and 1.0 ml of concentrated HCl was added. The mixture was used immediately.

Method.

Plant material was homogenised as described in section 2.2.1.2 and protein was precipitated from the $80000 \times \mathrm{g}$ supernatant by the addition of an appropriate volume of $72 \%(\mathrm{w} / \mathrm{v})$ TCA (2.2.1.4.1) to give a final concentration of $10 \%(\mathrm{w} / \mathrm{v})$. The protein was pelleted by centrifugation at $13000 \times \mathrm{g}$ for 20 minutes at $4^{\circ} \mathrm{C}$ using an MSE model 24 M centrifuge (Sussex, U.K) fitted with an $8 \times 50.0 \mathrm{ml}$ pre-chilled rotor, part number 43114 143. The pellets were washed once in 10% (w/v) TCA (2.2.1.4.2), three times in 50:50 ethanol:diethylether (2.2.1.4.3) and 3 times in diethylether (Each washing was followed by centrifugation at 13000 rpm for 3 minutes using a Jouan model A-14 mini bench centrifuge (St. Nazaire, France)). The resultant pellets were dried by evaporation on a non heat cycle (Jouan model RC. 10.22 centrifugal evaporator, St Nazaire, France) and re-dissolved in 1.0 ml of 100 mM ammonium carbonate pH 10.0 (2.2.1.4.4). A crystal of thymol was added to each pellet to inhibit microbial growth. The pH of each tube was checked and adjusted to 10.0 by the addition of sodium hydroxide if necessary. One hundred micrograms of subtilisin was added to each tube as $10 \mu \mathrm{l}$ of a $10 \mathrm{mg} \mathrm{ml}{ }^{-1}$ solution and the tubes were placed in an incubator at $37^{\circ} \mathrm{C}$ (Analytical Supplies, Derbyshire, U.K). All subsequent proteolytic enzyme incubations were carried out at this temperature. The addition of subtilisin was repeated twice more over a total subtilisin incubation period of 48 hours. One hundred and fifty micrograms of pronase was then added to each tube as $10 \mu \mathrm{l}$ of a $15 \mathrm{mg} \mathrm{ml}^{-1}$ solution. Following a further 24 hour incubation, each extract was boiled for 15 minutes and upon cooling, $10 \mu \mathrm{l}$ of both activated leucine amino peptidase solution (2.2.1.4.5) and activated prolidase solution (2.2.1.4.6) were added along with a $10 \mu \mathrm{l}$ aliquot of 0.54 M magnesium chloride
(2.2.1.4.7) (5 mM final concentration of magnesium chloride). The tubes were vortexed (Fisons model WM/250/SC/P) and incubated for 24 hours. The pH of each digestion was then adjusted to 7.0 with 1.0 N HCl and 0.1 mg of carboxypeptidase Y was added as $10 \mu \mathrm{l}$ of a $10 \mathrm{mg} \mathrm{ml}^{-1}$ solution. Following a further 24 hour incubation the digested protein solutions were placed into conical glass centrifuge tubes and added to chloroform:methanol: $\mathrm{HCl}(200: 100: 2)(2.2 .1 .4 .8)$ at the level of 3.6 ml to 1.0 ml of protein digestion. The tubes were centrifuged at 2500 rpm for 5 minutes at $4^{\circ} \mathrm{C}$ using a Beckman GPKR refrigerated centrifuge and both the upper aqueous layer containing the liberated amino acids and the central interface containing undigested protein were carefully removed and dried by centrifugal evaporation. The aqueous phase was redissolved in an appropriate volume of loading buffer (2.2.4.4.1) and stored at $-20^{\circ} \mathrm{C}$ prior to subsequent amino acid analysis. The undigested protein was retained and quantified as described in section 2.2.1.6 to determine the efficiency of the hydrolysis. Hydrolysis levels were typically between 96 and 99%.

2.2.1.5 Preparation of human endothelial cell homogenate.

Stock solutions.

2.2.1.5.1. Growth medium- $10 \%(\mathrm{v} / \mathrm{v})$ foetal calf serum. $1 \%(\mathrm{w} / \mathrm{v})$ penicillin $/$ streptomvcin.

100 g foetal calf serum and 10 g penicillin / streptomycin were dissolved in 1.0 litre DMEM.
2.2.1.5.2. Trypsinising solution- $0.05 \%(\mathrm{w} / \mathrm{v})$ trypsin.

500 mg trypsin was dissolved in DMEM to a final volume of 1.0 litre. and 1 mM EDTA.
0.6 g Tris, 8.6 g Sucrose and 0.037 g disodium EDTA (dihydrate) were dissolved in 90.0 ml of distilled water. The pH was adjusted to 7.4 using concentrated HCl and the volume was made up to 100.0 ml with distilled water.

Method.

Human endothelial cells (ECV 304) were provided and grown in this laboratory by Dr. P. A. Smethurst at $37^{\circ} \mathrm{C}$ with $5 \%(\mathrm{v} / \mathrm{v}) \mathrm{CO}_{2} / 95 \%(\mathrm{v} / \mathrm{v})$ air in growth medium (2.2.1.5.1). Cells were removed from the bottles by treatment with trypsinising solution (2.2.1.5.2). Following centrifugation at $2000 \times \mathrm{g}$ for 2 minutes (Beckman GPKR), the trypsin was decanted off and the cells were re-suspended in ice cold re-suspension buffer (2.2.1.5.3). The cell suspension was sonicated on ice using an MSE Soniprep model 150 fitted with a pre-chilled narrow probe (Sussex, U.K) for three pulses of 5 seconds (6 microns amplitude) with 15 second pauses between each pulse. The un-clarified homogenate was immediately assayed for transglutaminase activity.

2.2.1.6 Bicinchoninic acid protein assav (Brown et al. 1989).

Stock solutions

2.2.1.6.1 $-1 \mathrm{mg} \mathrm{ml}^{-1}$ BSA.

100 mg BSA was dissolved in distilled water to a final volume of 100.0 ml .
2.2.1.6.2.- $0.15 \%(\mathrm{w} / \mathrm{v})$ sodium deoxvcholate.
0.015 g sodium deoxycholate was dissolved in distilled water to a final volume of 10.0 ml .

2.2.1.6.3.- $72 \%(w / v) T C A$.

7.2 g TCA was dissolved in distilled water to a final volume of 10.0 ml .
2.2.1.6.4.- $5 \%(\mathrm{w} / \mathrm{v}) \mathrm{SDS}$ in 0.1 N sodium hydroxide.

5 g SDS was dissolved in 0.1 N sodium hydroxide to a final volume of 100.0 ml .
2.2.1.6.5.- BCA reagent $A-1 \%(w / v)$ BCA (sodium salt), $2 \%(w / v)$ sodium carbonate, $0.16 \%(\mathrm{w} / \mathrm{v})$ sodium tartrate. $0.4 \%(\mathrm{w} / \mathrm{v})$ sodium hydroxide and $0.95 \%(\mathrm{w} / \mathrm{v})$ sodium hydrogen carbonate pH 11.25.

5 g BCA (sodium salt), 10 g sodium carbonate, 0.8 g sodium tartrate, 2 g sodium hydroxide and 4.8 g sodium hydrogen carbonate were dissolved in 450.0 ml of distilled water. The pH was adjusted to 11.25 by the addition of either 50% (w/v) sodium hydroxide or solid sodium hydrogen carbonate and the volume was made up to 500.0 ml with distilled water.
2.2.1.6.6. BCA reagent $B-4 \%(w / v)$ copper sulphate. $4 \mathrm{~g} \mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ was dissolved in distilled water to a final volume of 100.0 ml .

2.2.1.6.7. BCA Standard working reagent (SWR).

This was prepared by the addition of 50 parts (2.2.1.6.5) to 1 part (2.2.1.6.6).

Method.

Standard protein solutions in the range $0-1.0 \mathrm{mg} \mathrm{ml}^{-1}$ were prepared using $1 \mathrm{mg} \mathrm{ml}^{-1}$ BSA stock solution (2.2.1.6.1). One hundred microlitres of protein to be assayed was
diluted to 1.0 ml with distilled water in an microfuge tube. One hundred microlitres of $0.15 \%(\mathrm{w} / \mathrm{v})$ sodium deoxycholate (2.2.1.6.2) was added to each tube. Following a 5 minute incubation at room temperature, protein was precipitated by the addition of $100 \mu \mathrm{l}$ of 72% (w/v) TCA (2.2.1.6.3) and each tube was thoroughly vortex mixed (Fisons model WM/250/SC/P, Leicestershire, U.K). Precipitated protein was collected by centrifugation at $13500 \times \mathrm{g}$ for 15 minutes using an MSE microcentaur (Sussex, U.K) and the supernatant was removed by vacuum aspiration. Protein was re-dissolved in $50 \mu \mathrm{l}$ of 0.1 N sodium hydroxide containing $5 \%(\mathrm{w} / \mathrm{v})$ SDS (2.2.1.6.4). Following the addition of 1.0 ml BCA SWR (2.2.1.6.7), each tube was vortex mixed and incubated at $37^{\circ} \mathrm{C}$ for 30 minutes (Grant model JB-1, Cambridgeshire, U.K). The absorbance of samples was read at 562nm (Pye unicam model SP6-400, Cambridgeshire, U.K).

2.2.2 Protein modification methods.

2.2.2.1 Biotinylation of bovine casein (Harlow and Lane 1988).

Stock solutions.

2.2.2.1.1. Reaction buffer- 100 mM sodium borate pH 8.8 containing: $3 \mathrm{mg} \mathrm{ml}^{-1}$ casein. 300 mg casein and 0.62 g boric acid were dissolved in 90.0 ml of distilled water. The pH was adjusted to 8.8 using concentrated sodium hydroxide and the volume was adjusted to 100.0 ml with distilled water.
2.2.2.1.2. $-10 \mathrm{mg} \mathrm{m}^{-1}$ biotin ester solution.

25 mg N-hydroxysuccinimidobiotin or biotin amidocaproate N -hydroxysuccinimide ester was dissolved in DMSO to a final volume of 2.5 ml .

2.2.2.1.3.- 1.0 M ammonium chloride.

5.3 g ammonium chloride was dissolved in distilled water to a final volume of 100.0 ml .

2.2.2.1.4. Dialvsis buffer- 150 mM PBS pH 7.4 .

8.0 g sodium chloride, 0.2 g potassium chloride, 1.15 g disodium hydrogen orthophosphate and 0.2 g potassium dihydrogen phosphate were dissolved in 900.0 ml of distilled water. The pH was adjusted to 7.4 using concentrated sodium hydroxide and the volume was made up to 1.0 litre with distilled water.

Method.

To 10.0 ml of reaction buffer (2.2.2.1.1) was added $750 \mu \mathrm{l}$ of $10 \mathrm{mg} \mathrm{ml}^{-1}$ of biotin ester solution (2.2.2.1.2). Following stirring at $4^{\circ} \mathrm{C}$ for $4-8$ hours (Corning model PC351, Essex, U.K), $600 \mu \mathrm{l}$ of 1.0 M ammonium chloride (2.2.2.1.3) was added and the reaction was left to proceed for a further 30 minutes at $4^{\circ} \mathrm{C}$. The modified protein was then dialysed overnight at $4^{\circ} \mathrm{C}$ against 3 changes of 5.0 litres of dialysis buffer (2.2.2.1.4) and stored at $-20^{\circ} \mathrm{C}$.

2.2.2.2 Carbodiimide modification of bovine casein (Carrawav and Koshland.

 1972).
2.2.2.2.1 EDC-modification of casein in solution.

Stock solutions.

2.2.2.2.1.1. Reaction solution- 7.5 M urea containing: $10 \mathrm{mg} \mathrm{ml}{ }^{-1}$ casein and 1.0 M nucleophile (glycine methvl ester hydrochloride. lvsine methyl ester dihydrochloride or arginine methvl ester dihvdrochloride) pH 4.75.
11.26 g urea, 250 mg casein, 3.14 g glycine methyl ester hydrochloride, 5.83 g lysine methyl ester dihydrochloride or 6.53 g arginine methyl ester dihydrochloride were dissolved in 15.0 ml of distilled water. The pH was adjusted to 4.75 using concentrated HCl and the volume was made up to 25.0 ml with distilled water.

2.2.2.2.1.2. Stop buffer- 1.0 M sodium acetate pH 4.75 .

2.05 g sodium acetate was dissolved in 15.0 ml of distilled water. The pH was adjusted to 4.75 using concentrated acetic acid and the volume was made up to 25.0 ml with distilled water

Method.

Four hundred and seventy nine milligrams of EDC (final concentration 100 mM) was added to 25.0 ml of reaction solution (2.2.2.2.1.1) and the pH was maintained at 4.75 using 0.1 N HCl over a 60 minute incubation period at room temperature. Two point five millilitres of stop buffer (2.2.2.2.1.2) was then added and the modified casein was dialysed overnight at $4^{\circ} \mathrm{C}$ against 3 changes of 5.0 litres of distilled water. The modified protein was stored at $-20^{\circ} \mathrm{C}$.

2.2.2.2.2 EDC-modification of assav plate bound casein.

Stock solutions.

2.2.2.2.2.1. Coating buffer- 50 mM sodium carbonate pH 9.8 containing 1 mg mi casein.

Prepared as in section 2.2.2.3.2 but using casein and not N^{\prime}, N^{\prime}-dimethylcasein.

2.2.2.2.2.2. Blocking buffer.

As section 2.2.2.3.3. hydrochloride. $10 \mathrm{mg} \mathrm{ml}^{-1}$ casein and 100 mM EDC pH 4.75 .
11.26 g urea, 250 mg casein, 3.14 g glycine methyl ester hydrochloride and 0.479 g EDC were dissolved in 15.0 ml of distilled water). The pH was adjusted to 4.75 using concentrated HCl and the volume was made up to 25.0 ml with distilled water.

Method.

Assay plates were coated and blocked as described in section 2.2.2.3. Two hundred and fifty microlitres of reaction solution (2.2.2.2.2.3) was then added to each well and the plates were incubated at room temperature for 30 minutes. Following addition of $1.5 \mu \mathrm{l}$ of 0.01 N HCl to each well, the plate was incubated for a further 30 minutes. The assay was then carried out as described in section 2.2.3.2.

2.2.2.3 Enzumic modification of N^{\prime}, N^{\prime}-dimethylcasein (Lillev et al. 1997a).

Stock solutions.

2.2.2.3.1. 50 mM sodium carbonate pH 9.8 .

5.3 g sodium carbonate was dissolved in 1.0 litre of distilled water. 4.2 g of sodium hydrogen carbonate was dissolved in 1.0 litre of distilled water in a separate flask. The pH of the sodium carbonate solution was adjusted to 9.8 by titration with the sodium hydrogen carbonate solution.
2.2.2.3.2. Coating buffer- 50 mM sodium carbonate pH 9.8 containing: $1 \mathrm{mg} \mathrm{ml}^{-1} N^{\prime}: N^{\prime}$. dimethylcasein.
$100 \mathrm{mg} N^{\prime}, N^{\prime}$-dimethylcasein was dissolved in 100.0 ml of 50 mM sodium carbonate pH 9.8 (2.2.2.3.1).
2.2.2.3.3. Blocking buffer- 50 mM sodium carbonate pH 9.8 containing: $1 \mathrm{mg} \mathrm{ml}^{-1} \mathrm{BSA}$. 100 mg BSA was dissolved in 100.0 ml of 50 mM sodium carbonate pH 9.8 (2.2.2.3.1).
2.2.2.3.4. Reaction buffer- 100 mM Tris- HCl pH 8.5 containing: 5 mM calcium chloride. 10 mM DTT. 37.5 mM polvamine (spermine. spermidine. cadaverine or putrescine) and $\underline{\mu} \underline{\mathrm{g} \mathrm{ml}^{-1}}$ guinea pig liver transglutaminase.
0.3 g Tris, 0.018 g calcium chloride (dihydrate), 0.039 g DTT, 0.19 g spermine (or 0.14 g spermidine $/ 0.083 \mathrm{~g}$ putrescine (dihydrochloride) $/ 0.096 \mathrm{~g}$ cadaverine) and $5 \times 10^{-5} \mathrm{~g}$ guinea pig liver transglutaminase were dissolved in 20.0 ml of distilled water. The pH was adjusted to 8.5 using dilute HCl and the volume was made up to 25.0 ml with distilled water.
2.2.2.3.5. Washing buffer- 150 mM PBS pH 7.4 containing: $0.05 \%(\mathrm{v} / \mathrm{v})$ Tween 80 .
8.0 g sodium chloride, 0.2 g potassium chloride, 1.15 g disodium hydrogen orthophosphate, 0.2 g potassium dihydrogen orthophosphate and $500 \mu \mathrm{l}$ Tween 80 were dissolved in 900.0 ml of distilled water. The pH was adjusted to 7.4 using concentrated sodium hydroxide and the volume was made up to 1.0 litre with distilled water.

2.2.2.3.6. Washing buffer- 100 mM Tris- HCl pH 8.5 .

12.1g Tris was dissolved in 900.0 ml of distilled water. The pH was adjusted to 8.5 using concentrated HCl and the volume was made up to 1.0 litre with distilled water.

Method.

Microtiter plates were coated for one hour at $37^{\circ} \mathrm{C}$ (Analytical supplies, Derbyshire, U.K) with $250 \mu \mathrm{l}$ per well of coating buffer (2.2.2.3.2). After discarding the unbound protein, plates were washed twice with $300 \mu \mathrm{l}$ per well of washing buffer (2.2.2.3.5) and twice with $300 \mu \mathrm{l}$ per well of distilled water. Two hundred and fifty microlitres per well of blocking buffer (2.2.2.3.3) was added and the plates were shaken for 30 minutes at room temperature (Luckham model R-100, Sussex, U.K). Plates were emptied and washed as previously described but with an additional wash using $300 \mu \mathrm{l}$ per well of washing buffer (2.2.2.3.6). Two hundred microlitres of reaction buffer (2.2.2.3.4) was then added to each well. Plates were incubated overnight at $37^{\circ} \mathrm{C}$ and washed as before to remove guinea pig liver transglutaminase. Plates were used immediately.

2.2.2.4 De-phosphorvlation of bovine casein (Cooke and Holbrook 1974).

Stock solutions.

2.2.2.4.1. Protein modification buffer- 150 mM Tris- HCl pH 7.4 containing: $20 \mathrm{mg} \mathrm{ml}{ }^{-1}$ casein.
0.45 g Tris and 500 mg casein were dissolved in 20.0 ml of distilled water. The pH was adjusted to 7.5 using concentrated HCl and the volume was made up to 25.0 ml with distilled water.
2.2.2.4.2. $20 \mathrm{mg} \mathrm{ml}^{-1}$ Alkaline phosphatase solution.

20 mg calf thymus alkaline phosphatase was dissolved in distilled water to a final volume of 1.0 ml .

2.2.2.4.3.- 10 mM zinc sulphate.

0.016 g zinc sulphate was dissolved in 10.0 ml of distilled water.

2.2.2.4.4. Dialysis buffer- 50 mM sodium carbonate pH 9.8 .

This was prepared as described in section 2.2.2.3.1.

Method.

One hundred microlitres of 10 mM zinc sulphate solution (2.2.2.4.3) and $25 \mu \mathrm{l}$ of 20 mg ml^{-1} alkaline phosphatase solution (2.2.2.4.2) were added to 25.0 ml of protein modification buffer (2.2.2.4.1) and the resultant reaction mixture was stirred for 2.5 hours at room temperature. The modified protein was dialysed twice for 60 minutes
against 2.5 litres of dialysis buffer (2.2.2.4.4). The protein concentration was then adjusted to $1.0 \mathrm{mg} \mathrm{ml}^{-1}$ and aliquots of the modified protein were either used immediately or stored at $-20^{\circ} \mathrm{C}$.

2.2.2.5 N^{\prime}. N^{\prime}-dimethylation of Vicia faba cotvledon storage proteins (Means and

 Feeney 1968).
Stock solutions.

2.2.2.5.1.- 150 mM PBS pH 9.0 .

0.8 g sodium chloride, 0.02 g potassium chloride, 0.12 g disodium hydrogen orthophosphate and 0.02 g potassium dihydrogen orthophosphate were dissolved in 90.0 ml of distilled water. The pH was adjusted to 9.0 with dilute sodium hydroxide and the volume was made up to 100.0 ml with distilled water.

2.2.2.5.2. Dialvsis buffer- 100 mM Tris- HCl DH 8.5 .

24.2 g Tris was dissolved in 1.9 litres of distilled water. The pH was adjusted to 8.5 using concentrated HCl and the volume was made up to 2.0 litres with distilled water.

Method.

Vicia faba storage proteins were dissolved in 10.0 ml of 150 mM PBS pH 9.0 (2.2.2.5.1) to a final concentration of $10 \mathrm{mg} \mathrm{m}^{-1}$. The solution was placed on ice at $0^{\circ} \mathrm{C}$ and 0.005 g sodium borohydride was slowly stirred in. Twenty five microlitres of reagent grade formaldehyde was then added slowly as five $5 \mu l$ aliquots. The pH of the reaction mixture was adjusted to 5.0 for one minute using concentrated HCl and then readjusted
to 8.5 with concentrated sodium hydroxide. The modified storage proteins were then dialysed twice for 60 minutes against dialysis buffer (2.2.2.5.2). The modified protein was stored at $-20^{\circ} \mathrm{C}$.

2.2.2.6 The de-amidation of casein (Wilcox 1967).

Stock solutions.

2.2.2.6.1. Glassware washing solution- $0.5 \%(\mathrm{w} / \mathrm{v})$ potassium dichromate in 4.0 N su:phuric acid.
0.5 g of potassium dichromate was added to $100.0 \mathrm{ml} 4.0 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$.

Method.

All glassware was thoroughly cleaned by soaking overnight in washing solution (2.2.2.6.1.) and thoroughly rinsing in 2.0 N HCl . Fifty milligrams of casein was added to 25.0 ml of 2.0 N HCl and the resultant mixture was placed in a boiling tube and heated in a water bath at $100^{\circ} \mathrm{C}$ for 2 hours. Solid sodium hydroxide was then added to neutralise the acid and the protein was dialysed against 2.5 litres of dialysis buffer (2.2.2.4.4). The final concentration of casein was adjusted to $1 \mathrm{mg} \mathrm{ml}^{-1}$ using dialysis buffer (2.2.2.4.4) and aliquots of the modified protein were stored at $-20^{\circ} \mathrm{C}$.

2.2.3 Transglutaminase activity assavs.

2.2.3.1 Biotin cadaverine incorboration assav (after Slaughter et al. 1992).

Stock solutions.

2.2.3.1.1. Coating buffer- 100 mM Tris- HCl pH 8.5 containing: $10 \mathrm{mg} \mathrm{ml} \mathrm{ml}^{-1} N^{\prime} \cdot N^{\prime}-$ dimethylcasein.
$\lg N^{\prime}, N^{\prime}$-dimethylcasein and 1.2 g Tris were dissolved in 90.0 ml of distilled water. The pH was adjusted to 8.5 using concentrated HCl and the volume was made up to 100.0 ml using distilled water.
2.2.3.1.2. Blocking buffer- 100 mM Tris- HCl pH 8.5 containing: 3% (w/v) BSA. 3 g BSA and 1.2 g Tris were dissolved in 90.0 ml of distilled water. The pH was adjusted to 8.5 using concentrated HCl and the volume was made up to 100.0 ml with distilled water.
2.2.3.1.3. Reaction buffer- 100 mM Tris- HCl pH 8.5 containing: 13.3 mM DTT. 6.7 mM calcium chloride and 0.67 mM biotin-X-cadaverine.
0.3 g Tris, 0.051 g DTT, 0.025 g calcium chloride (dihydrate) and 0.007 g biotin-Xcadaverine were dissolved in 15.0 ml of distilled water. The pH was adjusted to 8.5 using dilute HCl and the volume was made up to 25.0 ml with distilled water. 1:5000 extravidin peroxidase.
0.3 g Tris, 250 mg BSA and $5 \mu \mathrm{l}$ extravidin peroxidase ($2 \mathrm{mg} \mathrm{ml}^{-1}$ stock) were dissolved in 15.0 ml of distilled water. The pH was adjusted to 8.5 using dilute HCl and the volume was made up to 25.0 ml with distilled water.
2.2.3.1.5. Developing buffer- 100 mM sodium acetate pH 6.0 containing: 0.312 mM TMB and $0,004 \%(\mathrm{v} / \mathrm{v})$ hydrogen peroxide.
0.16 g sodium acetate, $150 \mu \mathrm{l}$ of $10 \mathrm{mg} \mathrm{ml}^{-1} \mathrm{TMB}$ in DMSO and $25 \mu \mathrm{l}$ of $3 \%(\mathrm{v} / \mathrm{v})$ hydrogen peroxide were dissolved in 15.0 ml of distilled water. The pH was adjusted to 6.0 using dilute acetic acid and the volume was made up to 20.0 ml with distilled water.
2.2.3.1.6. Washing buffer- 150 mM PBS pH 7.4 containing: $0.05 \%(\mathrm{v} / \mathrm{v})$ Tween 80 . 8.0 g sodium chloride, 0.2 g potassium chloride, 1.15 g disodium hydrogen orthophosphate, 0.2 g potassium dihydrogen orthophosphate and $500 \mu \mathrm{l}$ Tween 80 were dissolved in 900.0 ml of distilled water. The pH was adjusted to 7.4 using concentrated sodium hydroxide and the volume was made up to 1.0 litre with distilled water.

2.2.3.1.7. Washing buffer- 100 mM Tris- HCl pH 8.5 .

12.1 g Tris was dissolved in 900.0 ml of distilled water. The pH was adjusted to 8.5 with concentrated HCl and the volume was made up to 1.0 litre with distilled water.

2.2.3.1.8. Washing buffer- 100 mM sodium acetate pH 6.0 .

4.1 g sodium acetate was dissolved in 450.0 ml of distilled water. The pH was adjusted to 6.0 using concentrated acetic acid and the volume was adjusted to 1.0 litre with distilled water.

Method.

Microtiter plates were coated for 60 minutes at $37^{\circ} \mathrm{C}$ with $250 \mu \mathrm{l}$ per well of coating buffer (2.2.3.1.1). Following two washes with $300 \mu \mathrm{l}$ per well of washing buffer (2.2.3.1.6) and two washes with $300 \mu \mathrm{l}$ per well of distilled water, $250 \mu \mathrm{l}$ of blocking buffer (2.2.3.1.2) was added and the plates were shaken at room temperature for 30 minutes. The plates were emptied and washed as before but with an additional wash with $300 \mu \mathrm{l}$ per well of washing buffer (2.2.3.1.7). To each well was then added $150 \mu \mathrm{l}$ of reaction buffer (2.2.3.1.3) and $50 \mu \mathrm{l}$ of sample to be assayed for transglutaminase activity. After a 60 minute incubation at $37^{\circ} \mathrm{C}$, plates were emptied and washed as before. Two hundred microlitres of probing buffer (2.2.3.1.4) was then added to each well and the plates were incubated at $37^{\circ} \mathrm{C}$ for 45 minutes. Plates were emptied and washed twice with $300 \mu \mathrm{l}$ per well of washing buffer (2.2.3.1.6), twice with $300 \mu \mathrm{l}$ per well of distilled water and once with $300 \mu \mathrm{l}$ per well of washing buffer (2.2.3.1.8). Plates were then treated with $200 \mu \mathrm{l}$ per well of developing buffer (2.2.3.1.5) and colour development was terminated by the addition of $50 \mu \mathrm{l}$ per well of 10.0 N sulphuric acid. The absorbance was read at 450nm using a Titertek Multiscan ELISA spectrophotometer model MCC/340 (Laboratory systems, Hampshire, U.K). In some experiments, the 5 mM final concentration of calcium chloride was replaced with various concentrations of EDTA or

EGTA in the reaction buffer. In several experiments, other reagents were added to the reaction buffer in order to investigate their effect on plant transglutaminase activity. One unit of transglutaminase activity was defined as a change of absorbance at 450 nm of 1.0 per hour.

2.2.3.2 Casein cross-linking assav. Measurement of ε-(γ-glutamyl) lysine formation (Lillev et al. 1997a).

Stock solutions.

2.2.3.2.1.- 67.5 mM sodium carbonate pH 9.8 .

3.6 g sodium carbonate was dissolved in distilled water to a final volume of 500.0 ml . The pH was adjusted to 9.8 by the addition of 67.5 mM sodium hydrogen carbonate $(2.8 \mathrm{~g}$ sodium hydrogen carbonate dissolved in distilled water to a final volume of 500.0 ml).

2.2.3.2.2 - 50 mM sodium carbonate pH 9.8 .

Prepared as stated in section (2.2.2.3.1)
2.2.3.2.3. Coating buffer- 50 mM sodium carbonate pH 9.8 containing: $1 \mathrm{mg} \mathrm{ml}^{-1}$ EDCmodified casein.
20.0 ml 67.5 mM sodium carbonate pH 9.8 was added to 5.0 ml EDC-modified casein (5 $\mathrm{mg} \mathrm{ml}^{-1}$ stock in distilled water).
2.2.3.2.4. Blocking buffer- 50 mM sodium carbonate pH 9.8 containing: $1 \mathrm{mg} \mathrm{ml}^{-1}$ BSA. 25 mg BSA was dissolved in 50 mM sodium carbonate pH 9.8 to a final volume of 25.0 ml .

2.2.3.2.5. Reaction buffer- 100 mM Tris- HCl pH 8.5 containing: 13.3 mM DTT 6.7 mM

 calcium chloride and $1 \times 10^{-3} \mathrm{mg} \mathrm{ml}^{-1}$ biotin labelled casein.0.3 g Tris, 0.051 g DTT, 0.025 g calcium chloride (dihydrate) and $12.5 \mu \mathrm{l}$ of $2 \mathrm{mg} \mathrm{m}^{-1}$ stock biotin labelled casein were dissolved in 15.0 ml of distilled water. The pH was adjusted to 8.5 using dilute HCl and the volume was made up to 25.0 ml with distilled water.
2.2.3.2.6. Probing buffer- 100 mM Tris- HCl pH 8.5 containing: $1 \%(\mathrm{w} / \mathrm{v})$ BSA and 1:10000 extravidin peroxidase.
0.3 g Tris, 250 mg BSA and $2.5 \mu \mathrm{l}$ extravidin peroxidase ($2 \mathrm{mg} \mathrm{ml}^{-1}$ stock) were dissolved in 15.0 ml of distilled water. The pH was adjusted to 8.5 using dilute HCl and the volume was made up to 25.0 ml with distilled water.
2.2.3.2.7. Developing buffer- 100 mM sodium acetate pH 6.0 containing: 0.312 mM TMB and $0.004 \%(\mathrm{v} / \mathrm{v})$ hydrogen peroxide.
0.16 g sodium acetate, $150 \mu \mathrm{l}$ of $10 \mathrm{mg} \mathrm{ml}^{-1} \mathrm{TMB}$ in DMSO and $25 \mu \mathrm{l}$ of $3 \%(\mathrm{v} / \mathrm{v})$ hydrogen peroxide were dissolved in 15.0 ml of distilled water. The pH was adjusted to 6.0 using dilute acetic acid and the volume was made up to 20.0 ml with distilled water.
2.2.3.2.8. Washing buffer- 150 mM PBS pH 7.4 containing: $0.05 \%(\mathrm{v} / \mathrm{v})$ Tween 80. 8.0 g sodium chloride, 0.2 g potassium chloride, 1.15 g disodium hydrogen orthophosphate, 0.2 g potassium dihydrogen orthophosphate and $500 \mu \mathrm{l}$ Tween 80 were
dissolved in 900.0 ml of distilled water. The pH was adjusted to 7.4 using concentrated sodium hydroxide and the volume was made up to 1.0 litre with distilled water.

2.2.3.2.9. Washing buffer- 100 mM Tris- HCl pH 8.5 .

12.1 g Tris was dissolved in 900.0 ml of distilled water. The pH was adjusted to 8.5 with concentrated HCl and the volume was made up to 1.0 litre with distilled water.

2.2.3.2.10. Washing buffer- 100 mM sodium acetate pH 6.0 .

4.1 g sodium acetate was dissolved in 450.0 ml of distilled water. The pH was adjusted to 6.0 using concentrated acetic acid and the volume was adjusted to 1.0 litre with distilled water.

Method.

Microtiter plates were coated for 60 minutes at $37^{\circ} \mathrm{C}$ with $250 \mu \mathrm{l}$ per well of coating buffer (2.2.3.2.3). Following two washes with $300 \mu \mathrm{l}$ per well of washing buffer (2.2.3.2.8) and two washes with $300 \mu \mathrm{l}$ per well of distilled water, $250 \mu \mathrm{l}$ per well of blocking buffer (2.2.3.2.4) was added and the plates were shaken at room temperature for 30 minutes. The plates were emptied and washed as before but with an additional wash with $300 \mu \mathrm{l}$ per well of washing buffer (2.2.3.2.9). To each well was then added $150 \mu \mathrm{l}$ of Reaction buffer (2.2.3.2.5) and $50 \mu \mathrm{l}$ of sample to be assayed for transglutaminase activity. After a 60 minute incubation at $37^{\circ} \mathrm{C}$, plates were emptied and washed as before. Two hundred microlitres per well of probing buffer (2.2.3.2.6) was then added and the plates were incubated at $37^{\circ} \mathrm{C}$ for 45 minutes. Plates were emptied
and washed twice with $300 \mu \mathrm{l}$ per well of washing buffer (2.2.3.2.8), twice with $300 \mu \mathrm{l}$ per well of distilled water and once with 300μ l per well of washing buffer (2.2.3.2.10). Plates were then treated with 200μ l per well of developing buffer (2.2.3.2.7) and colour development was terminated by the addition of $50 \mu \mathrm{l}$ per well of 10.0 N sulphuric acid. The absorbance was read at 450 nm using a Titertek Multiscan ELISA spectrophotometer. In some experiments, the 5 mM final concentration of calcium chloride was replaced with various concentrations of EDTA or EGTA in the reaction buffer. In several experiments, other reagents were added to the reaction buffer in order to investigate their effect on transglutaminase activity. One unit of transglutaminase activity was defined as a change of absorbance at 450 nm of 1.0 per hour.

2.2.3.3 Casein cross-linking assav. Measurement of $N^{\prime} \cdot N^{\prime}$-bis (γ-glutamyl)

 polvamine formation (Lillev et al. 1997a).
Stock solution.

2.2.3.3.1. Reaction buffer- 100 mM Tris- HCl pH 8.5 containing: 13.3 mM DTT, 6.7 mM calcium chloride (dihydrate) and $1 \times 10^{-3} \mathrm{mg} \mathrm{ml}^{-1}$ biotin labelled casein.
0.3 g Tris, 0.051 g DTT, 0.025 g calcium chloride and $12.5 \mu \mathrm{l}$ of $2 \mathrm{mg} \mathrm{m}^{-1}$ stock biotin labelled casein were dissolved in 15.0 ml of distilled water. The pH was adjusted to 8.5 using dilute HCl and the volume was made up to 25.0 ml with distilled water.

Method.

To previously prepared plates coated with enzymically modified N^{\prime}, N^{\prime}-dimethylcasein (section 2.2.2.3) was added $150 \mu \mathrm{l}$ per well of reaction buffer (2.2.3.3.1) and $50 \mu \mathrm{l}$ per well of sample to be assayed for transglutaminase activity. The assay was then carried out as described for the measurement of ε - $(\gamma$-glutamyl) lysine formation (section 2.2.3.2). One unit of transglutaminase activity was defined as a change of absorbance at 450 nm of 1.0 per hour.

2.2.3.4 Radiometric filter paper transglutaminase assay (Lorand et al. 1972).

Stock solutions.

2.2.3.4.1. Reaction buffer- 100 mM Tris- HCl pH 8.5 containing: 9.1 mM calcium chloride. 18 mM DTT, $9.1 \mathrm{mg} \mathrm{ml}{ }^{-1} N^{\prime} . N^{\prime}$-dimethvlcasein and $2.2 \mathrm{mM}\left[1.4-^{14} \mathrm{C}\right]$-labelled putrescine.
$55 \mu \mathrm{l}$ of reaction buffer consisted of the following components:-
a) $10 \mu \mathrm{l}$ of 100 mM Tris- $\mathrm{HCl} \mathrm{pH} 8.5:(0.12 \mathrm{~g}$ Tris was dissolved in 7.0 ml distilled water). The pH was adjusted to 8.5 with dilute HCl and the volume was adjusted to 10.0 ml with distilled water.
b) $10 \mu \mathrm{l}$ of 100 mM Tris- HCl pH 8.5 containing; 100 mM DTT: 0.12 g Tris and 0.15 g DTT were dissolved in 7.0 ml of distilled water. The pH was adjusted to 8.5 with dilute HCl and the volume was adjusted to 10.0 ml with distilled water.
c) $5 \mu \mathrm{l}$ of 100 mM Tris- HCl containing; 100 mM calcium chloride: 0.12 g Tris and 0.15 g calcium chloride (dihydrate) were dissolved in 7.0 ml of distilled water. The pH was adjusted to 8.5 with dilute HCl and the volume was made up to 10.0 ml with distilled water.
d) $10 \mu \mathrm{l}$ of 100 mM Tris- HCl pH 8.5 . containing; 12 mM putrescine (final specific activity $3.97 \mu \mathrm{Ci} / \mu \mathrm{mol}$: (1.0 ml of 0.459 mM putrescine (specific activity $109 \mu \mathrm{Ci} / \mu \mathrm{mol}$) was added to $50 \mu \mathrm{l}$ of 2.1 M Tris HCl pH 8.5 containing; 243 mM cold putrescine).
e) $20 \mu \mathrm{l}$ of 100 mM Tris-HCl pH 8.5 containing; $25 \mathrm{mg} \mathrm{ml}^{-1} N^{\prime}, N^{\prime}$-dimethylcasein: 0.12 g Tris and $250 \mathrm{mg} N^{\prime}, N^{\prime}=$ dimethylcasein were dissolved in 7.0 ml of distilled water. The pH was adjusted to 8.5 with dilute HCl and the volume was made up to 10.0 ml with distilled water.
2.2.3.4.2. Blocking solution- $1 \%(\mathrm{w} / \mathrm{v})$ methylamine containing: 100 mM EDTA. 10 g methylamine and 37.2 g disodium EDTA (dihydrate) were dissolved in distilled water to a final volume of 1.0 litre.

2.2.3.4.3. $=10 \%(w / v)$ TCA.

100 g TCA was dissolved in distilled water to final volume of 1.0 litre.

2.2.3.4.4. $=5 \%(w / v)$ TCA.

50 g TCA was dissolved in distilled water to a final volume of 1.0 litre.

. Method.

To $55 \mu \mathrm{l}$ of reaction buffer (2.2.3.4.1) was added $45 \mu \mathrm{l}$ of the sample to be assayed for transglutaminase activity. The pH of the reaction measured at $37^{\circ} \mathrm{C}$ was 7.8 when assaying crude plant extracts. The reaction was terminated after 60 minutes by pipetting
$10 \mu \mathrm{l}$ aliquots of the reaction mixture onto $1 \mathrm{~cm}^{2}$ Whatman $\mathrm{N}^{\circ} 1$ filter paper squares presoaked in blocking solution (2.2.3.4.2). The protein was precipitated by washing the filter papers once in ice cold $10 \%(\mathrm{w} / \mathrm{v})$ TCA (2.2.3.4.3), three times in ice cold 5% (w/v) TCA (2.2.3.4.4), once in acetone:ethanol (1:1) and once in acetone prior to being dried and placed into 2.0 ml of liquid scintillant and counted for 5 minutes in a Packard model LSC 300C liquid scintillation counter (Berkshire, U.K). In some experiments, the 5 mM final concentration of calcium chloride was replaced with various concentrations of EDTA or EGTA in the reaction buffer. In several experiments, other reagents were added to the reaction buffer in order to investigate their effect on plant transglutaminase activity. One unit of transglutaminase activity was defined as one nanomole putrescine incorporated into N^{\prime}, N^{\prime}-dimethylcasein per hour.

2.2.4 Chromatographic techniques.

All column chromatography techniques were carried out using a Biorad Econosystem model ES-1 chromatography apparatus (Hertfordshire, U.K).

2.2.4.1. Pre-purification of ε-(γ-glutamyl) lvsine isodipeptide by Dowex anion exchange chromatography (Lillev et al. 1998).

Stock solutions.

2.2.4.1.1. Equilibration buffer- distilled water pH 12.6.

The pH of 1.0 litre of Millipore Q (Herefordshire, U.K) grade distilled water was adjusted to 12.6 by the addition of solid sodium hydroxide.
2.2.4.1.2. Leucine elution buffer- 300 mM ammonium bicarbonate.
2.4 g ammonium bicarbonate was dissolved to a final volume of 100.0 ml of distilled water and the pH was measured and recorded at 7.6.

Method.

The pH of 0.3 ml of each protein digest was adjusted to 12.6 by the addition of 1.7 ml equilibration buffer (2.2.4.1.1) The samples were applied to a Dowex ($2 \times 8-200$ chloride form) anion exchange column ($1.5 \times 1.1 \mathrm{~cm}$) pre-equilibrated with equilibration buffer. The column was then washed with a mixture of equilibration buffer and leucine elution buffer (2.2.4.1.2) at a flow rate of $4.0 \mathrm{ml} \mathrm{min}^{-1}$ (final concentration of ammonium bicarbonate 25 mM). After 70.0 ml of the mixture had passed through the column to
elute leucine, the column was washed with 10.0 ml equilibration buffer and the isodipeptide was eluted by washing the column with 0.1 N HCl .4 .0 ml fractions were collected and the pH monitored. When the pH dropped below pH 7.0 the next 20.0 ml of eluate was pooled. The pH was adjusted to 7.0 and the eluate was freeze dried. After freeze drying the samples were re-dissolved in 0.3 ml Millipore Q -grade water and stored at $-20^{\circ} \mathrm{C}$.

2.2.4.2 Sepharose FFO anion exchange chromatography of Pisum sativum root transglutaminase activity.

Stock solutions.

2.2.4.2.1. Equilibration buffer- 50 mM Tris- HCl pH 7.4 containing: 1 mM 2-ME.
6.1 g Tris and $70 \mu \mathrm{l} 2-\mathrm{ME}$ were dissolved in 900.0 ml of distilled water and the pH was adjusted to 7.4 using concentrated HCl . The volume was made up to 1.0 litre with distilled water.
2.2.4.2.2. Elution buffer A-50mM Tris-HCl pH 7.4 containing: 1 mM 2-ME and 1.0 M sodium chloride. 6.1 g Tris, $70 \mu \mathrm{l} 2-\mathrm{ME}$ and 58.4 g sodium chloride were dissolved in 900.0 ml of distilled water and the pH was adjusted to 7.4 using concentrated HCl . The volume was made up to 1.0 litre with distilled water. sodium chloride.
6.1 g Tris, $70 \mu \mathrm{~L}$ 2-ME and 116.9 g sodium chloride were dissolved in 900.0 ml of distilled water and the pH was adjusted to 7.4 using concentrated HCl . The volume was made up to 1.0 litre with distilled water.

Method.

Pisum sativum root protein prepared as described in section 2.2.1.2 was applied to a 6 ml FFQ Sepharose anion exchange column (Pharmacia, Milton Keynes U.K) preequilibrated with 10 column volumes of equilibration buffer (2.2.4.2.1) at $3.0 \mathrm{ml} \mathrm{min}^{-1}$ flow rate. The column was inverted and the unbound material was then eluted by the addition of 3 column volumes of the same buffer at the same flow rate. A $3.0 \mathrm{ml} \mathrm{min}^{-1}$ linear gradient between $0-1.0 \mathrm{M}$ sodium chloride was then applied to the column by mixing equilibration buffer with elution buffer A (2.2.4.2.2) over a 25 minute period. Strongly bound material was then eluted from the resin by the addition of 45.0 ml of elution buffer B (2.2.4.2.3). Three millilitre fractions were collected and assayed immediately for transglutaminase activity. The active aliquots were pooled, concentrated to a volume of 0.5 ml against solid polyethyleneglycol (average molecular mass 3350) at $4^{\circ} \mathrm{C}$ and stored at $-20^{\circ} \mathrm{C}$.

2.2.4.3 Gel filtration chromatography of Pisum sativum root transglutaminase activity.

Stock solutions.

2.2.4.3.1. Elution buffer- 50 mM Tris- HCl pH 7.4 containing: $1 \mathrm{mM} 2-\mathrm{ME}$ and $1 \mu \mathrm{M}$ calcium chloride.
6.1 g Tris, $70 \mu \mathrm{l} 2 \mathrm{ME}$ and $10 \mu \mathrm{l}$ of 100 mM calcium chloride (dihydrate) were dissolved in 900.0 ml of distilled water and the pH was adjusted to 7.4 using concentrated HCl . The volume was made up to 1.0 litre with distilled water.
2.2.4.3.2. Protein standard solution- 50 Mm Tris- HCl pH 7.4 containing; $1 \mathrm{Mm} 2-\mathrm{ME}$, $1 \mu \mathrm{M}$ calcium chloride and $5 \mathrm{mg} \mathrm{ml}^{-1}$ protein of interest. 0.6 g Tris, $7 \mu \mathrm{l} 2-\mathrm{ME}, 1 \mu \mathrm{l}$ of 100 mM calcium chloride (dibydrate) and 500 mg protein of interest were dissolved in 90.0 ml of distilled water and the pH was adjusted to 7.4 using concentrated HCl . The volume was made up to 100.0 ml with distilled water.

Method.

Approximately fifty millilitres of Sephacryl 100-HR (Pharmacia, Milton Keynes U. K) was de-gassed by vacuum aspiration and slowly poured into a $17.5 \times 2 \mathrm{~cm}$ column. Following overnight equilibration using elution buffer (2.2.4.3.1) at $0.1 \mathrm{ml} \mathrm{min}^{-1}$ flow rate, the column was calibrated using a set of protein standards (cytochrome c $\left(M_{r}=13000\right)$, ovalbumin $\left(M_{r}=45000\right)$, casein $\left(M_{r}=100000\right)$ and BSA $\left(M_{r}=66000\right)$). Five hundred microlitres of each $5 \mathrm{mg} \mathrm{ml}^{-1}$ protein standard (2.2.4.3.2) was applied to the column and eluted with elution buffer at $2.5 \mathrm{ml} \mathrm{min}^{-1}$ flow rate. The void volume
$(15.0 \mathrm{ml})$ and total volume $(35.0 \mathrm{ml})$ were determined using blue dextran and vitamin B_{12} respectively. A pre-concentrated 0.5 ml sample of ion exchange purified Pisum sativum root protein was then applied to the column and eluted using the same conditions. The protein was collected as 1.25 ml fractions and assayed immediately for transglutaminase activity. The active fractions were pooled and stored at $-20^{\circ} \mathrm{C}$.

2.2.4.4 Amino acid analvsis of protein digests (Griffin et al. 1982).

Stock solutions.

2.2.4.4.1. Loading buffer- 200 mM lithium hydroxide pH 2.2 containing: 50 mM citric acid and 10 mM phenol.
8.4 g lithium hydroxide (monohydrate), 9.6 g citric acid and 1 g phenol were dissolved in 900.0 ml of distilled water. The pH was adjusted to 2.2 using approximately 16.0 ml of concentrated HCl and the volume was made up to 1.0 litre with distilled water.
2.2.4.4.2. Elution buffer A- 200 mM lithium hydroxide pH 2.8 containing: 50 mM citric acid. 10 mM phenol and $7.5 \%(\mathrm{v} / \mathrm{v})$ isopropanol.
8.4 g lithium hydroxide (monohydrate), 9.6 g citric acid, 1 g phenol and 75.0 ml isopropanol were dissolved in 800.0 ml of distilled water. The pH was adjusted to 2.8 using approximately 15.4 ml of concentrated HCl and the volume was made up to 1.0 litre with distilled water.
2.2.4.4.3. Elution buffer B- 200 mM lithium hydroxide pH 3.0 containing: 50 mM citric acid. 100 mM lithium chloride, 10 mM phenol and $7.5 \%(\mathrm{v} / \mathrm{v})$ isopropanol. 8.4 g lithium hydroxide (monohydrate), 9.6 g citric acid, 4.3 g lithium chloride, 1 g phenol and 75.0 ml isopropanol were dissolved in 800.0 ml of distilled water. The pH was adjusted to 3.0 using approximately 14.8 ml of concentrated HCl and the volume was made up to 1.0 litre with distilled water.
2.2.4.4.4. Elution buffer C - 200 mM lithium hydroxide pH 2.9 containing: 50 mM citric acid. 400 mM lithium chloride and 10 mM phenol.
8.4 g lithium hydroxide (monohydrate), 9.6 g citric acid, 17.0 g lithium chloride and 1 g phenol were dissolved in 900.0 ml of distilled water. The pH was adjusted to 2.9 using approximately 14.8 ml of concentrated HCl and the volume was made up to 1.0 litre with distilled water.

2.2.4.4.5. Column regeneration buffer- 300 mM lithium hvdroxide.

12.6 g lithium hydroxide (monohydrate) was dissolved in distilled water to a final volume of 1.0 litre.
2.2.4.4.6. Derivatisation buffer- 800 mM boric acid (pH greater than 10.0) containing: 770 mM potassium hvdroxide, $0.74 \%(\mathrm{v} / \mathrm{v})$ methanol. $0.34 \%(\mathrm{v} / \mathrm{v})$ Brij $35,70 \mathrm{mM} 2-\mathrm{ME}$ and 4.4 mM OPA.
50.3 g boric acid, 43.9 g potassium hydroxide, 7.5 ml methanol, $3.5 \mathrm{ml} \mathrm{Brij} 35,5.0 \mathrm{ml} 2-$ ME and 0.6 g OPA were dissolved in distilled water to a final volume of 1016.0 ml . The pH was checked and was always between 10.1 and 11.0 .

Method.

The digested protein was diluted appropriately using loading buffer (2.2.4.4.1) and injected onto a $5 \times 250 \mathrm{~mm}$ Ultrapac ion exchange column (lithium form / particle size $8 \mu \mathrm{~m} \pm 0.5 \mu \mathrm{~m}$) fitted to a LKB 4151 Alpha plus amino acid analyser (Cambridgeshire,U.K). 3.6 ml of elution buffer A (2.2.4.4.2) was applied to the column at a flow rate of $0.4 \mathrm{ml} \mathrm{min}^{-1}$ and column temperature of $30^{\circ} \mathrm{C}$. The column temperature was then decreased to $21^{\circ} \mathrm{C}$ and 9.2 ml of elution buffer $\mathrm{B}(2.2 .4 .4 .3)$ was applied to the column at the same flow rate. Thirty six millilitres of elution buffer $\mathbf{C}(2.2 .4 .4 .4)$ was then applied at the same flow rate and column temperature. The amino acids and isodipeptide eluting from the ion exchange column due to the addition of elution buffer \mathbf{C} were then detected using post column derivatisation with derivatisation buffer (2.2.4.4.6) flowing at $0.33 \mathrm{ml} \mathrm{min}^{-1}$ through a 2.0 ml post column reaction loop. The derivatised amino acids were then passed through a Perkin Elmer LS1 fluorescence detector (Cheshire, U.K) set to 360 nm excitation, 450 nm emission. Fluorescence data was recorded by a Viglen SL1 computer (Middlesex, U.K) using a Nelson Analytical 900 series interface (Lancashire, U.K) sampling at a rate of 1 point every 9.9 seconds (model 2600 V5 chromatography software). The ion exchange column was cleaned prior to reuse by the addition of 4.0 ml of column regeneration buffer (2.2.4.4.5) at $0.4 \mathrm{ml} \mathrm{min}^{-1}$ flow rate and a column temperature of $99^{\circ} \mathrm{C}$. Re-equilibration was achieved by application of 12.4 ml of elution buffer $\mathrm{A}(2.2 .4 .4 .2)$ at $0.4 \mathrm{ml} \mathrm{min}^{-1}$ flow rate with a stepwise decrease in column temperature to $30^{\circ} \mathrm{C}$. Primary amine contamination was removed from all buffers to decrease the fluorescence base line to acceptable levels. This
was carried out by injection onto a pre-column $40 \mathrm{~mm} \times 6 \mathrm{~mm}$ cation exchange column ammonia trap.

2.2.4.5 Cross-link analysis of guinea nig liver transglutaminase treated EDCmodified and biotin labelled casein.

Stock solutions.

2.2.4.5.1. Reaction buffer- 0.1 M Tris- HCl pH 8.5 containing: 20 mM DTT. 10 mM calcium chloride. $0.4 \mathrm{mg} \mathrm{ml}^{-1}$ EDC-modified casein and $0.4 \mathrm{mg} \mathrm{ml}^{-1}$ biotin labelled casein. 0.12 g Tris, 0.031 g DTT, 0.015 g calcium chloride (dihydrate), 4.0 mg biotin labelled casein and 4.0 mg EDC-modified casein were dissolved in 7.0 ml of distilled water. The pH of the buffer was adjusted to 8.5 using dilute HCl and the volume was made up to 10.0 ml with distilled water.
2.2.4.5.2. Guinea pig liver transglutaminase solution- 0.1 M Tris- HCl pH 8.5 containing: $1 \mu \mathrm{~g} \mathrm{ml}^{-1}$ guinea pig liver transglutaminase.
0.12 g Tris and $10 \mu \mathrm{~g}$ of guinea pig liver transglutaminase were dissolved in 7.0 ml of distilled water. The pH was adjusted to 8.5 using dilute HCl and the volume was made up to 10.0 ml with distilled water.

Method.

Five hundred microlitres of reaction buffer (2.2.4.5.1) was added to $500 \mu \mathrm{l}$ of guinea pig liver transglutaminase solution (2.2.4.5.2). Boiled solution was used as control. The resultant reaction mixture was incubated at $37^{\circ} \mathrm{C}$ for 60 minutes. The reaction was
terminated by the addition of $165 \mu \mathrm{l}$ of 72% (w/v) TCA (2.2.1.6.3) to the reacting solution. The proteolytic digestion and cross-link analysis were then carried out as described in sections 2.2.1.4 and 2.2.4.4 respectively.

2.2.4.6 The cross-linking of casein by crude Pisum sativum extract.

Stock solution.

2.2.4.6.1. Reaction buffer- 0.1 M Tris- HCl pH 8.0 containing: 20 mM DTT, 10 mM calcium chloride (or 10 mM EDTA) and $20 \mathrm{mg} \mathrm{ml}^{-1}$ casein.
0.3 g Tris, 0.08 g DTT, 0.04 g calcium chloride (or 0.09 g EDTA) and 500 mg casein were dissolved in 15.0 ml of distilled water. The pH was adjusted to 8.0 using dilute HCl and the volume was made up to 25.0 ml with distilled water.

Method.

To 500μ l of reaction buffer (2.2.4.6.1) was added $500 \mu \mathrm{l}$ of crude Pisum sativum root protein, which had been extracted and rapidly de-salted as described in section 2.2.1.2. The resultant mixture was incubated for $0-16$ hours at $37^{\circ} \mathrm{C}$ and the reaction was then stopped by the addition of $165 \mu 1$ of 72% (w/v) TCA (2.2.1.6.3). The proteolytic digestion and cross-link analysis were then carried out as described in sections 2.2.1.4 and 2.2.4.4 respectively.

2.2.5 SDS-PAGE electrophoresis (Laemmli 1970).

Stock solutions.

2.2.5.1.- $30 \%(w / v)$ Acrvlamide $/$ bis.
87.6 g acrylamide and $2.4 \mathrm{~g} \mathrm{~N}^{\prime}, \mathrm{N}^{\prime}$-bis-methylene acrylamide were dissolved in distilled water to a final volume of 300.0 ml . The resultant solution was stored in the dark at $4^{\circ} \mathrm{C}$.

2.2.5.2.- 1.5M Tris-HCl pH 8.8.

27.23 g Tris was dissolved in 100.0 ml of distilled water. The pH was adjusted to 8.8 with concentrated hydrochloric acid and the volume was made up to 150.0 ml with distilled water and the solution was stored at $4^{\circ} \mathrm{C}$.

2.2.5.3.- 0.5M Tris- HCl pH 6.8 .

6.0 g Tris was dissolved in 80.0 ml of distilled water and the pH was adjusted to 6.8 using concentrated hydrochloric acid. The volume was made up to 100.0 ml using distilled water and the solution was stored at $4^{\circ} \mathrm{C}$.

2.2.5.4.- $10 \%(w / v)$ SDS.

10.0 g SDS was dissolved in distilled water to a total volume of 100.0 ml .

2.2.5.5. Sample buffer.

1.0 ml of 0.5 M Tris-HCl pH $6.8(2.2 .5 .3), 0.8 \mathrm{ml}$ glycerol, 1.6 ml of $10 \%(\mathrm{w} / \mathrm{v})$ SDS (2.2.5.4), 0.4 ml of 2-ME and $0.2 \mathrm{ml} 0.05 \%$ (w/v) bromophenol blue were dissolved in 4.0 ml of distilled water.
2.2.5.6.- $5 \times$ electrode muning buffer- $124 m \mathrm{M}$ Tris- HCl pH 8.3 contanings 0.96 M gheine, 0.5% (w/v) SDS.
9.0 g Ths, 43.2 g glycine and 3.0 g SDS were dissolved in 500.0 ml of distilled water. The pH was adjusted to 8.3 using concentrated hydrochloric acid and the volume was then made up to 600.0 mil with distilled water. 60.0 ml of stock was diluted by addition of 240.0 ml of distlled water for one electrophofetic run.

2.2.5.7.- $10 \%(w / v)$ ammonium persulphate.

100 mg of ammonium persulphate was added to distilled water to give a final volume of 1.0 ml .

2.2.5.8. $12 \%(w / v)$ Separãting gel.

2.5 min of 1.5 M Tis-HCl pH 8.8 (2.2.5.2), 0.1 mi of $10 \%(\% / v)$ SDS (2.2.5.4), 4.0 ml of 30% (w/v) acrylumide/bis stock (2.2.5.1), 0.05 ml of 10% (w/v) ammonium persulphate (2.2.5.7) and 0.005 ml TEMED were added to 3.35 ml of distilled water. The gel was mixed thoroughly and poured inmedately.

2.2.5.9. $4 \%(w / v)$ Stacking gel.

2.5 ml of 0.5 M Tris- $\mathrm{HCl} \mathrm{pH} 6.8(2.2 .5 .3), 0.1 \mathrm{ml}$ of $10 \%(\mathrm{w} / \mathrm{v})$ SDS (2.2.5.4), 1.3 ml of $30 \%(\mathrm{w} / \mathrm{v})$ acrylamide / bis stock (2.2 .5 .1), 0.05 nil of $10 \%(\mathrm{w} / \mathrm{v})$ ammonium persulphate (2.2.5.7) and 0.01 m TEMED were added to 6.1 ml of distilled water. The gel was poured immediately following thorough mixing.
2.2.5.10. Fixing solution- 40% (v / k) methanol containing: $10 \%(\mathrm{w} / \mathrm{v})$ acetic acid.

10 g of acetic acid was dissolved in 40.0 ml of distilled water. 40.0 ml of methanol was then stirred in and the volume was adjusted to 100.0 m with distilled water.

2.2.5.11.- $0.01 \%(\mathrm{w} / \mathrm{w})$ potassium manganate VII.

0.1 g of potassium manganate VII was dissolved in distilled water to a final volume of 1.0 litre.

2.2.5.12.-0.1\% (w/v) silfer nitatate solution.

0.1 g of AgNO_{3} was dissolved in distilled water to a final volume of 100.0 ml .
2.2.5.13. Developing solution- 0.05% (v / v) fomaldehyde, $3 \%(\mathrm{w} / \mathrm{v})$ sodium carbonate. 0.05 ml of formaldehyde and 3 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ were dissolved in distilled water to a final volume of 100.0 ml .
2.2.5.14. Stopping solution- $5 \%(\mathrm{w} / \mathrm{v})$ acetic acid containing: 10% (v/v) ethanol. 5 g of acetic acid and 10.0 ml of ethanol were dissolved in distilled water to a final volume of 100.0 ml

Method.

Five point six millilities of 12% (w/v) separating gel (2.2.5.8) was carefully poured between 1.0 mm spaced polished Biouad glass electrophoresis plates using a 1.0 ml pipete. Four percent stacking gel (2.2.5.9) was then layered on top of the sample gel and a plastic sample comb was carefully inserted into the gel avoiding trapping of air bubbles between the teeth of the comb and the gel. The gel was allowed to set and it was then placed into a biorad mini-Protean II cell (Hertordshire U. K). Three hundred millilitres of electrode funing buffer was prepared as described in section 2.2.5.6. One hundied and fifteen millilitres of electrode runing buffer was pouted into the upper buffer chamber and the renainder was poured into the lower buffer chamber to cover the bottom 1.0 cm of the gel. Samples were diluted 1 in 4 using sample buifer (2.2.5.5) and heated to $95^{\circ} \mathrm{C}$ for 4 minites. Twenty five microgran samples were then loaded into the wells of the gel using a $25 \mu \mathrm{l}$ SGE syringe (Ringwood, Australia). The gel was then conitected to a Bionad powerpac 300 (Henfordshite, U. K) at 200 volts constant voltage for approximately 45 minutes. The gel was then fixed overnight in fixing solution (2.2.5.10). The gel was placed into 0.01% (w/v) potassium permanganate VII (2.2.5.11) for 5 minutes prior to being insed three times in distilled water. The gel was then Stained in 0.1% (w/v) silver nitate solution (2.2.5.12) for 20 minutes and rinsed in distiled water prior to being placed in developing solution (2.2.5.13). The development was then hatted by immersion of the gel in stopping solution (2.2.5.14). The gel was placed on a light box (Huleo copilite, Tunbrige Wells, U. K) and photographed using a Mitsubishi model P68b image processing system (Tokyo, Japan). The restlant image was amotated using Adobe Photoshop version 4.0 for Windows 95 (Edinburgh, U. K).

Chàter 3- Develonment of two transglutaminàse casásein

cross-linkine assáys.

3.1 Introduction.

Many transglutanninase assays have been developed which utilise the polyamine incorporation reaction described in section 1.1.2.2.1 (for a review, see Wilhelin et al. 1996). The first of these was reported by Clarke et al. (1959) and involved the incorporation of radiolabelled amines such as putrescine and histamine into the protein substrates casein or p-lactoglobulin. Following covalent modification, the protein was precipitated using TCA and repeatedly washed and centrifuged to remove loosely bound radiolabel priot to the covalently incorporated polyainine being quantified by liquid scintillation counting. Many modifications have been made to this original method including the precipitation of protein directly onto filter paper squares of nitro-cellulose dises to increase the speed of the assay and the number of samples which may be simultaneously processed (Lorand et al. 1972; Kang and Cho 1996). Reductive methylation of the proteins used in the assay is a further common modification used in order to block lysine residues which would feact with gluanine to form intra- and intermolecular ε-(γ-glutamyl) lysine isodipeptide bonds resulting in a loss of signal due to a reduction in potential polyanine incorporation sites. Further modifications to the method include the substitution of the amine and protein substrates. [$\left.{ }^{14} \mathrm{C}\right]$-labelled putrescine and histamine have often been replaced with a variety of $\left[{ }^{3} \mathrm{H}\right]$ and $\left[^{14} \mathrm{C}\right]$-labelled primary amine donor substrates including spermine, spermidine and cadaverine (SerafiniFracassini et al. 1988; Aribaud et al. 1995). A variety of glutamine donor proteins have
also been utilised to replace casein and β-lactoglobulin in the assay induding RuBisCo, thrombin, fibringen, pepsin, insulin, creatine kinase and cellulase (Icekson and Apelbaum 1987; Margosiak et al. 1990).

An altemative transglutaminase assay was developed by Jeon êt al. (1989) which removed the need for radioisotopes and instead involved the incomporation of the biotinn labelled amine donor substrate 5 -(biotinamido)pentylanine into N ', N 'dimethylcasein by tissue transghtaminase. The resultant biotin labelled product was bound to polyvinylidine difluoride membranes and quantified by reaction with streptavidin- β galactosidase followed by the hydrolysis of $p p$-iitrophenyl- β-D-galactopyranoside and subsequent measurement of the absorbance at 405 mm .

Further highly sensitive amine incorporation assays have been reported (Ando et al. 1987; Fink et al. 1992). These assays involve the incorporation of monodansyladaverine into either casein or the small synthetic peptide benzyloxycarbonyl-L-glutaminylglycine respectively. The transglutaminase reaction product was separated from reactants by HPLC and detection limits of 31 pmol and 40 pmol of product were reported for the small synthetic peptide bound product and the casein bound product respectively. Ando et al. (1987) used their assay to aid the puification of human erythrocyte transglutaminase and platelet factor XIII.

The amine incorporation assays described so far are caried out in the solution phase and despite the modifications described involve the use of equipment and procedures, which do not lend themselves to processing large sample numbers quickly. As a result a number
of more convenient polyamine incorporation assays have been developed which are carried out in the solid phase using 96 well microtiter plates. These assays utilise commercially available biotin labelled amine substrates such as biotinylpentylamine which are incorporated into the glutamine residues of immobilised microtiter plate bound proteins such as N^{\prime}, N^{\prime}-dimethylcasein and fibrinogen. The incorporated biotin label is then detected by reaction with streptavidin conjugated to one of several reporter enzymes such as alkaline phosphatase, horse radish peroxidase or β-galactosidase (Song et al. 1994; Slaughter et al. 1992). The plate assays have several advantages over the solution phase amine incorporation assays described previously including the fact that no radiochemicals or expensive machinery are required to carry them out and up to 96 samples can be processed at once with relative ease and little processing time. Assays of this type have been used to detect both factor XIII and tissue transglutaminase activities (Song et al. 1994; Slaughter et al. 1992).

Assays which measure the ability of transglutaminases to cross-link proteins by the reaction scheme described in section 1, 1.2.2.2 have also been developed and involve the cross-linking of immobilised 96 well microtiter plate bound casein to biotin labelled casein present in solution (Seiving et al. 1991; Choi et al. 1992). The cross-linked reaction product is quantified by reaction with avidin or streptavidin-alkaline phosphatase followed by incubation with p-nitrophenyl phosphate and subsequent measurement of the absorbance at 405 nom. Both assays were found to be of use with chude and purified transglutaminase samples. Seiving et al. (1991) used their assay to both test the activity of pure guinea pig liver transglutaminase and then futher applied the assay to the
screening of human plasma for factor XIIIa deficiency and Choi et al. (1992) used their assay to purify transglutaminase \mathbf{C} from human erythrocytes.

The development of two transglutaminase assays based on the protein cross-linking reaction was an initial aim of this project. There are several reasons for developing such assays, not least to answer the question of the calcium dependence of transglutaminases derived from plant sources. Because calcium independent enzymes such as diamine oxidases present in crude plant extracts have been shown to interfere with the conventional radiolabelled amine incorporation assays (Siepaio and Meunier 1995; Chiarello et al. 1996a and 1996 bee section 1.2.3.3.1.1), we sought a new approach to measure the transglutaminase activity of crude plant extracts, which would not involve the use of radiolabelled amine substrates. Two casein cross-linking assays were developed in order to attempt to answer the calcium dependence question and also to overcome the selectivity problems experienced by other workers when using radiolabelled amine incorporation assays to screen crude plant extracts. Furthermore, to date the majority of plant transglutaminase research has demonstrated the polyamine incorporation reaction. As it is likely that plant transglutaminase may carry out the same collection of reactions as the animal transglutaminases the use of the two protein crosslinking assays will help to further characterise the plant enzyme.

The major drawback of previously developed protein cross-linking assays is that they have an inherently high background absorbance due to the presence of calcium ions in the reaction buffer resulting in a transglutaminase independent ionic interaction between the immobilised plate bound casein and the biotin labelled casein in solution. This adduct is thought to form between acidic amino acid side chains (Seiving et al. 1991). In the
development of the first of the two protein cross-linking assays, we sought to overcome the problem caused by ionic adduct formation by blocking the glutamate and aspartate residues of the plate bound casein by the incorporation of the nucleophile glycine methyl ester using a water soluble carbodiimide coupling reaction as shown in figure 5 (Carraway and Koshland 1972).

Figure 5. Mechanism for the EDC coupling of glycine methyl ester to the acidic amino acid side chains of casein.

The initial step involves nucleophilic addition of the protein bound glutamate residue to the carbodiimide via its hydroxyl lone pair of electrons.

Following rapid proton transfer, the nucleophile, glycine methyl ester then attacks the carbonyl carbon of the active ester intermediate.

Rearrangement then yields the methyl ester blocked protein and an acyl urea bi-product.

The assay was then developed using the carbodiimide modified casein and commercially available guinea pig liver transglutaminase. The methodological scheme for the assay is given in figure 6.

Figure 6. Scheme for the ε-(γ-glutamyl) Ivsine formation assav.

Microtiter plate Well
 between the immobilised EDC- modified casein and the biotinylated casein.

Quantify yellow colour at 450nm

Key.

TMB- Tetramethylbenzidine

A second transglutaminase protein cross-linking assay was developed to measure the ability of transglutaminases to form N^{\prime}, N^{\prime}-bis (γ-glutamyl) polyamine-protein cross-links in vitro. N^{\prime}, N^{\prime}-dimethylcasein bound to microtiter plates was modified enzymically by the incorporation of polyamines into glutamine residues using commercially available
guinea pig liver transglutaminase. Biotin labelled casein was then incorporated via its glutamine residues into the remaining free amino group of the polyamines to form N^{\prime}, N^{\prime} bis (γ-glutamyl) polyamine bonds. This assay is a novel method for the detection of protein-polyamine-protein cross-linking which is reported to be of physiological importance in mammalian tissues such as the anterior prostate gland of rodents where its function may be to stabilise the post ejaculatory vaginal plug (Folk 1980). A methodological scheme for this second protein cross-linking assay is presented in figure 7.

Figure 7. Scheme for the $N^{\prime} . N^{\prime}$-bis (γ-glutamyl) polyamine formation assay.

Part 1.- Pre-treatment of $N^{\prime} \cdot N^{\prime}$-dimethvlcasein to incorporate polyamines into glutamine residues.

Part 2.- Formation of N^{\prime}. N^{\prime}-bis (γ-glutamyl) polyamine cross-bridges.

polyamine bond

$$
+\mathrm{TMB}+\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4}
$$

Quantify yellow colour at 450nm

Key.

N^{\prime}, N^{\prime}-dimethylcasein_

Biotin labelled casein
TMB- Tetramethylbenzidine

Enzymically modified N^{\prime}, N^{\prime} '-dimethylcasein.

3.2 Results.

The first method attempted to overcome the high assay background previously described by Seiving et al. (1991) was to de-phosphorylate the casein bound to the microtiter plate in order to prevent calcium ions binding to the protein via phosphorylated serine and threonine residues thus causing unwanted adduct formation. In a further experiment, the plate bound casein was de-amidated to reduce the quantity of available glutamine residues and hence prevent intra-molecular ε-(γ-glutamyl) lysine isodipeptide bond formation as this would result in a reduction of assay signal.

Table 1. The effect of de-amidation and de-phosohorvlation on bovine casein as a substrate of tissue transglutaminase.

Type of modification	100ng/well Transglutaminase $\Delta \mathbf{A}_{450} \mathbf{h}^{-1} \pm$ SEM	Background $\Delta \mathbf{A}_{450} \mathbf{h}^{\mathbf{- 1}} \pm \mathbf{S E M}$	Increase in signal (\%) above background
None.	0.61 ± 0.01	0.53 ± 0.02	15.1
De-phosphorylation.	0.46 ± 0.02	0.42 ± 0.01	9.5
De-amidation.	1.09 ± 0.05	1.11 ± 0.03	0

One hundred nanograms of guinea pig liver transglutaminase was incubated for 60 minutes at $37^{\circ} \mathrm{C}$ with de-phosphorylated or de-amidated casein bound to the microtiter plate as described in section 2.2.3.2. Casein was de-phosphorylated and de-amidated as described in sections 2.2.2.4 and 2.2.2.6 respectively. One hundred nanograms of boiled guinea pig liver transglutaminase was used to provide the background. Data points represent the mean \pm SEM of 8 replicates.

Table 1 shows that the use of un-modified bovine casein in the casein cross-linking assay resulted in a signal of 15.1% above background at the 100 ng per well level of guinea pig liver transglutaminase and a substantial assay background of $0.53 \Delta \mathrm{~A}_{450} \mathrm{hr}^{-1}$ was observed. De-amidation and de-phosphorylation of the casein substrate did not improve the overall above background signal of the assay. Furthermore, high assay background values of $1.11 \Delta \mathrm{~A}_{450} \mathrm{~h}^{-1}$ and $0.42 \Delta \mathrm{~A}_{450} \mathrm{~h}^{-1}$ were observed using de-amidated and dephosphorylated casein respectively. As de-phosphorylation and de-amidation did not reduce the assay background to acceptable levels, the next step was to EDC-modify the casein to block acidic amino acid side groups as explained in figure 5. The results from this experiment are presented in table 2.

Table 2. The effect of carbodiimide modification on bovine casein as a substrate of tissue transglutaminase.

Nucleophile used in the carbodiimide reaction	100ng/well Transglutaminase ${\Delta \mathbf{A}_{450} \mathbf{h}^{-1} \pm \mathbf{S E M}}$	Background $\Delta \mathbf{A}_{450} \mathbf{h}^{\mathbf{- 1}} \pm \mathbf{S E M}$	Increase in signal (\%) above background
None (un-modified casein).	0.59 ± 0.02	0.51 ± 0.03	15.6
Glycine methyl ester.	0.56 ± 0.01	0.16 ± 0.01	250.0
Lysine methyl ester.	0.24 ± 0.01	0.16 ± 0.02	50.0
Arginine methyl ester.	0.23 ± 0.01	0.17 ± 0.02	35.3
On plate modification with glycine methyl ester.	1.17 ± 0.04	1.16 ± 0.02	0.9

One hundred nanograms of guinea pig liver transglutaminase was incubated for 60 minutes at $37^{\circ} \mathrm{C}$ with EDC-modified and biotin labelled casein as described in section 2.2.3.2. The EDC-modification reactions were carried out as described in section 2.2.2.2. One hundred nanograms of boiled guinea pig liver transglutaminase was used to provide the background. Data points represent the mean \pm SEM of 8 replicates.

Table 2 shows that using a range of nucleophiles in the EDC-modification reaction, the signal obtained was between 0.9 and 250.0% above background compared to 15.6% when using un-modified bovine casein. As the EDC-modification resulted in reduced assay background levels and an acceptable signal above background, further assay development was carried out using casein, which had been modified using the glycine methyl ester / EDC reaction.

Table 3. The effect of variation of biotinvlation parameters on bovine casein as a substrate of tissue transglutaminase.

Biotinylation conditions	$\Delta \mathrm{A}_{450} \mathbf{h}^{\mathbf{- 1}} \pm$ SEM above background using 100ng/well transglutaminase
4 hour reaction time with d-biotin $\mathrm{N}-$ hydroxysuccinimide ester.	0.39 ± 0.04
$\mathbf{8}$ hour reaction time with d-biotin $\mathbf{N}-$	
hydroxysuccinimide ester.	

One hundred nanograms of guinea pig liver transglutaminase was incubated with plate bound EDC-modified casein and biotin labelled casein for 60 minutes at $37^{\circ} \mathrm{C}$ as described in section 2.2.3.2. The biotinylation was carried out as described in section 2.2.2.1. One hundred nanograms of boiled guinea pig liver transglutaminase was used to provide the assay background. The data points represent the mean \pm SEM of 8 replicates.

Table 3 demonstrates the variation of assay signal with varying methods of casein biotinylation. Values of between $0.38 \Delta \mathrm{~A}_{450} \mathrm{~h}^{-1}$ and $0.39 \Delta \mathrm{~A}_{450} \mathrm{~h}^{-1}$ were obtained using the N -hydroxysuccinimide ester of d -biotin whereas a value of $0.31 \Delta \mathrm{~A}_{450} \mathrm{~h}^{-1}$ was obtained when using a similar ester with an incorporated amidocaproate spacer arm. Since the most satisfactory assay signal was obtained when casein was modified using the N -hydroxysuccinimide ester of d-biotin, this was utilised for further assay development.

Table 4. The effect of 7.5 M urea on bovine casein as a substrate of tissue transglutaminase and the effect of stopping the carbodiimide reaction using sodium acetate.

Condition used	$\Delta \mathbf{A}_{450} \mathbf{h}^{-1} \pm$ SEM above background using 100ng/well transglutaminase
Treatment of casein with 7.5M urea alone.	0.11 ± 0.01
Use of 1.0M sodium acetate to stop the	
carbodiimide reaction.	

One hundred nanograms of guinea pig liver transglutaminase was assayed at $37^{\circ} \mathrm{C}$ for 60 minutes in the presence of plate bound casein, which had been subjected to urea solution without EDC and glycine methyl ester modification. Guinea pig liver transglutaminase was also incubated with EDC-modified casein, which had not been treated with sodium acetate to stop the modification reaction. One hundred nanograms of boiled guinea pig liver transglutaminase was used to provide the assay background. Data points represent the mean \pm SEM of 8 replicates.

Table 4 shows that treatment of the casein with urea containing buffer alone results in a signal of $0.11 \Delta \mathrm{~A}_{450} \mathrm{~h}^{-1}$ above background at the 100 ng per well transglutaminase level. The table also demonstrates that cessation of the carbodiimide reaction using 1.0 M sodium acetate has little effect on the overall assay signal as values between $0.40 \Delta \mathrm{~A}_{450} \mathrm{~h}^{-1}$ and $0.39 \Delta \mathrm{~A}_{450} \mathrm{~h}^{-1}$ were observed for the reaction with and without sodium acetate respectively.

In order to show that the casein cross-linking assay signal observed was due to the presence of guinea pig liver transglutaminase, several controls were carried out including the use of transglutaminase inhibitors such as iodoacetamide and EDTA. The results are presented in table 5.

Table 5. The effect of various controls on the casein cross-linking assav signal.
$\left.\begin{array}{|c|c|}\hline \text { Control used } & \begin{array}{c}\Delta A_{450} \pm \text { SEM using } \\ \text { 100ng/well } \\ \text { transglutaminase }\end{array} \\ \hline \text { 100ng per well guinea pig liver transglutaminase (} \mathbf{0}^{\prime} \text {) } & 0.17 \pm 0.04 \\ \hline \text { 100ng per well guinea pig liver transglutaminase (30') } & 0.41 \pm 0.02 \\ \hline \text { 100ng per well guinea pig liver transglutaminase (60') } & 0.57 \pm 0.03 \\ \hline \text { 100ng per well boiled guinea pig liver } \\ \text { transglutaminase. }\end{array}\right] 0.14 \pm 0.01$

One hundred nanograms of guinea pig liver transglutaminase was assayed at $37^{\circ} \mathrm{C}$ for 60 minutes (unless otherwise stated in the table) in the presence of various controls as described in section 2.2.3.2. Data points represent the mean \pm SEM of 8 replicates.

Table 5 demonstrates a variety of assay controls varying in absorbance between $0.04 \Delta \mathrm{~A}_{450} \mathrm{~h}^{-1}$ for zero biotin labelled casein and zero extravidin peroxidase and 0.17 $\Delta A_{450} h^{-1}$ for the zero time control.

In order to further optimise the assay in terms of the concentration of substrates used, the kinetics of casein cross-linking were investigated and the results are presented in figures 8-9. of microtiter plate bound EDC-modified casein.

Figure 8 legend.

One hundred nanograms of guinea pig liver transglutaminase was assayed for 60 minutes at $37^{\circ} \mathrm{C}$ in the presence of varying concentrations of plate bound EDC-modified casein as described in section 2.2.3.2. One hundred nanograms of boiled guinea pig liver transglutaminase was used to provide the assay background of $0.12 \Delta \mathrm{~A}_{450} \mathrm{~h}^{-1}$. Data points represent the mean \pm SEM of 8 replicates.

Figure 8 shows as the concentration of EDC modified casein bound to the microtiter plate increases, the absorbance at 450 nm also increases up to a saturation point. The variation of assay signal with EDC modified casein concentration followed typical Michaelis-Menten type saturation kinetics with an optimum concentration of EDCmodified casein of $0.08 \mathrm{mg} \mathrm{ml}^{-1}$. Subsequent experiments were carried out using microtiter plates coated with a $1 \mathrm{mg} \mathrm{ml}^{-1}$ excess of this protein to ensure that all assay plate binding sites were occupied.
of the biotin labelled casein substrate.

Figure 9 legend.

One hundred nanograms of guinea pig liver transglutaminase was assayed at $37^{\circ} \mathrm{C}$ for 60 minutes in the presence of varying concentrations of biotin labelled casein as described in section 2.2.3.2. One hundred nanograms of boiled guinea pig liver transglutaminase was used as a negative control giving an average value of $0.15 \Delta \mathrm{~A}_{450} \mathrm{~h}^{-1}$. Data points represent the mean \pm SEM of 8 replicates.

Figure 9 demonstrates that an increase in biotin labelled casein concentration resulted in an increase in absorbance at 450 nm until a saturation point was achieved at $0.75 \mu \mathrm{~g} \mathrm{ml}^{-1}$. The K_{m} of biotin labelled casein was calculated to be $0.36 \mu \mathrm{~g} \mathrm{~m}^{-1}$ for guinea pig liver transglutaminase (Enzfitter, Biosoft U.K). A biotin labelled casein concentration of $0.75 \mu \mathrm{~g} \mathrm{ml}^{-1}$ was used in all subsequent experiments.

Figure 10 (overleaf) demonstrates the detection limit of the casein cross-linking assay when using guinea pig liver transglutaminase.

Figure 10. The variation in absorbance at 450 nm as a result of using different concentrations of guinea pig liver transglutaminase.

Figure 10 legend.

Guinea pig liver transglutaminase in the range $0-100 \mathrm{ng}$ per well was assayed at $37^{\circ} \mathrm{C}$ for 60 minutes as described in section 2.2.3.2. Boiled transglutaminase negative controls gave an average background of $0.14 \Delta \mathrm{~A}_{450} \mathrm{~h}^{-1}$. Data points represent the mean $\pm \mathrm{SEM}$ of 8 replicates.

Figure 10 demonstrates that a linear relationship between absorbance at 450 nm and transglutaminase concentration was observed over a $0-100 \mathrm{ng}$ per well range of transglutaminase concentrations. Since the assay was sensitive enough to detect 10 ng of purified guinea pig liver transglutaminase it was decided to test the suitability of the assay for transglutaminase detection in crude extracts. Figure 11 shows the results obtained when screening human endothelial cell homogenate for casein cross-linking activity.

Figure 11. The variation in absorbance at 450 nm as a function of different guantities of homogenised ECV 304 human endothelial cells.

Figure 11 legend.

Human ECV 304 endothelial cells were homogenised and assayed for casein crosslinking activity over the range $0-6000$ cells per well. The assay was carried out for 60 minutes at $37^{\circ} \mathrm{C}$ as described in section 2.2.3.2. Endothelial cells were prepared as described in section 2.2.1.5 and boiled endothelial cell homogenate was used as negative control giving an average background of $0.11 \Delta \mathrm{~A}_{450} \mathrm{~h}^{-1}$. Data points represent the mean \pm SEM of 8 replicates.

Figure 11 demonstrates that absorbance at 450 nm increases non-linearly with the number of homogenised ECV 304 cells per well. The lower detection limit was determined to be 400 homogenised cells per well which gave a transglutaminase activity of $0.05 \Delta \mathrm{~A}_{450} \mathrm{~h}^{-1}$ above background. The assay was carried out as described in section 2.2.3.2.

A sensitivity comparison between the casein cross-linking assay and the more conventional [1.4- $\left.{ }^{14} \mathrm{C}\right]$-labelled putrescine incorporation assay was now sought using guinea pig liver transglutaminase over the range $0-100 \mathrm{ng}$. The results are presented in figure 12.

Figure 12. Correlation between the casein cross-linking assay and the more conventional [1.4- ${ }^{14} \mathrm{Cl}$ - labelled putrescine incordoration assav.

Figure 12 legend.

Guinea pig liver transglutaminase was assayed using the radiolabelled putrescine incorporation assay described in section 2.2.3.4 and the casein cross-linking assay described in section $2 \cdot 2.3 .2$. The assays were carried out for 60 minutes at $37^{\circ} \mathrm{C}$ using a transglutaminase range of $0-100 \mathrm{ng}$. Boiled transglutaminase was used as negative control for both assays giving background values of $0.15 \Delta \mathrm{~A}_{450} \mathrm{~h}^{-1}$ and 101 cpm for the casein cross-linking assay and the [1,4- $\left.{ }^{14} \mathrm{C}\right]$-labelled putrescine incorporation assay respectively. Data points represent the mean \pm SEM ($n=3$ for putrescine incorporation and $n=8$ for casein cross-linking).

Figure 12 shows the correlation between the casein cross-linking assay and the more conventional $\left[{ }^{14} \mathrm{C}\right]$-labelled putrescine incorporation assay. A linear relationship exists between absorbance at 450 nm and disintegrations per minute for transglutaminase quantities between $0-100 \mathrm{ng}$.

To further demonstrate that the casein cross-linking was transglutaminase-mediated, the ε - $(\gamma$-glutamyl) lysine isodipeptide product of the transglutaminase reaction was identified in a proteolytic digestion of biotin labelled and EDC- modified caseins, which had been incubated with guinea pig liver transglutaminase for 60 minutes. The results of this experiment are shown in figures $13 a$ and $13 b$.

Figure 13a. Control for the ε-(γ-glutamyl) lysine cross-link analvsis of EDCmodified and biotin labelled caseins which were incubated for zero time with guinea pig liver transglutaminase.

Figure 13a legend.

One hundred and twenty five nanograms of guinea pig liver transglutaminase were incubated with 0.05 mg of biotin labelled casein and 0.05 mg of EDC-modified casein for zero time at $37^{\circ} \mathrm{C}$ according to section 2.2.4.5. The resultant protein was proteolytically digested and analysed as described in sections 2.2.1.4 and 2.2.4.4. The plot shown is a representative trace of three runs. As a negative control in all isodipeptide analysis experiments, a tube containing proteolytic enzymes alone was carried through the procedure to eliminate any contribution made by endogenous isodipeptide. Isodipeptide levels between 25 and 48 pmol were detected in these controls.

Figure 13a shows that the endogenous level of cross-link present in the casein was $489 \pm$ $54 \mathrm{pmol} \mathrm{mg}^{-1}$.

Figure 13b. The ε-(γ-glutamvl) lvsine isodipentide present following cross-linking of EDC-modified and biotinvlated caseins using guinea pig liver transglutaminase.

Figure 13b legend.

One hundred and twenty five nanograms of guinea pig liver transglutaminase was incubated with 0.05 mg of EDC-modified casein and 0.05 mg of biotin labelled casein for 60 minutes at $37^{\circ} \mathrm{C}$ as described in section 2.2.4.5. The resultant protein was proteolytically digested and analysed as described in sections 2.2.1.4 and 2.2.4.4. The dashed line indicates the sample with an added 2 nmol isodipeptide standard spike to confirm the identity of the reaction product and enable accurate quantitation of the isodipeptide formed following the action of transglutaminase on the caseins. The plot shown is a representative trace of three runs.

Figure 13b shows that the level of isodipeptide formed was $158 \pm 17 \mathrm{pmol} \mathrm{mg}^{-1}$. A method to measure the ability of transglutaminase enzymes to catalyse the cross-linking of proteins via N^{\prime}, N^{\prime}-bis (γ-glutamyl) polyamine bonds was also sought as described in section 3.1. Table 6 shows the results obtained when using putrescine, cadaverine, spermidine and spermine as bridging polyamines in the transglutaminase reaction.

Table 6. The effect of enzvmic modification on $N^{\prime} \cdot N^{\prime}$-dimethylcasein as a substrate of tissue transelutaminase.

Polyamine used	Background $\mathbf{\Delta \mathbf { A } _ { 4 5 0 } \mathbf { h } ^ { - \mathbf { 1 } } \pm \mathbf { S E M }}$	100ng/well Transglutaminase $\Delta \mathbf{A}_{450} \mathbf{h}^{\mathbf{- 1}} \pm \mathbf{S E M}$	Increase in signal (\%) above background
No modification	0.33 ± 0.01	0.35 ± 0.01	6.1
Putrescine	0.34 ± 0.02	0.62 ± 0.01	82.3
Cadaverine	0.21 ± 0.01	0.38 ± 0.01	81.0
Spermine	0.23 ± 0.01	0.44 ± 0.01	91.3
Spermidine	0.25 ± 0.01	0.50 ± 0.01	100.0

One hundred nanograms of guinea pig liver transglutaminase was incubated with enzymically modified N^{\prime}, N^{\prime}-dimethylcasein (see section 2.2.2.3) and biotin labelled casein. The assay was carried out for 60 minutes at $37^{\circ} \mathrm{C}$ as described in section 2.2.3.3. Boiled transglutaminase was used as negative control and gave background values of $0.21-0.34 \Delta \mathrm{~A}_{450} \mathrm{~h}^{-1}$. Controls run without extravidin peroxidase or biotin labelled casein typically resulted in background absorbance values of 0.03-0.05 $\Delta \mathrm{A}_{450} \mathrm{~h}^{-1}$. Buffer only controls resulted in plate background absorbance values of $0.19-0.35 \Delta \mathrm{~A}_{450} \mathrm{~h}^{-1}$. Data points represent the mean \pm SEM of 8 replicates.

Table 6 demonstrates that enzymic modification using spermidine gave a 100% increase in signal above background. The other polyamines when incorporated into $N^{\prime}, N^{\prime}-$ dimethylcasein resulted in increases in signal of $80-90 \%$. Unmodified N^{\prime}, N^{\prime} dimethylcasein was used as an experimental control and gave a signal above background of only 6.1% when 100 ng per well of guinea pig liver transglutaminase was assayed. As the use of spermidine as the modifying polyamine resulted in the highest specific activity this was used for further assay development. Figure 14 demonstrates the guinea pig liver transglutaminase detection limit of the assay when using spermidine.

Figure 14. Absorbance at 450 nm as a function of guinea nig liver transglutaminase concentration using the N^{\prime}. N^{\prime}-bis $(\gamma$-glutamvl) polvamine cross-linking assav.

Figure 14 legend.

Guinea pig liver transglutaminase was assayed over the range $0-100 \mathrm{ng}$ for 60 minutes at $37^{\circ} \mathrm{C}$ as described in section 2.2.3.3. Boiled transglutaminase was used as the negative control giving an average background of $0.27 \Delta \mathrm{~A}_{450} \mathrm{~h}^{-1}$. The assay signal obtained was time dependent with zero time and 30 minute above background absorbance values of $0.04 \Delta \mathrm{~A}_{450} \mathrm{~h}^{-1}$ and $0.11 \Delta \mathrm{~A}_{450} \mathrm{~h}^{-1}$ respectively at the 100 ng per well level of guinea pig liver transglutaminase. Data points represent the mean \pm SEM of 8 replicates.

Figure 14 shows that a linear relationship was observed between transglutaminase concentration and absorbance at 450 nm over the range $0-100 \mathrm{ng}$ per well. A lower detection limit of 12.5 ng per well was demonstrated when using spermidine as the modifying polyamine.

3.3 Discussion.

The main drawback of the casein cross-linking assay described by Seiving et al. (1991) was the inherently high background observed due to transglutaminase independent adduct formation between the casein bound to the microtiter plate and the biotin labelled casein in solution possibly mediated by the calcium ions present in the reaction buffer. Table 1 reinforces this observation because use of un-modified bovine casein in the assay results in an assay background of $0.53 \Delta \mathrm{~A}_{450} \mathrm{~h}^{-1}$ and an increase in signal above background of only $0.08 \Delta \mathrm{~A}_{450} \mathrm{~h}^{-1}$ at the 100 ng per well level of guinea pig liver transglutaminase. To eliminate the possibility of phosphate groups on the protein interacting with calcium ions in the reaction buffer the casein bound to the microtiter plate was de-phosphorylated. Table 1 shows that de-phosphorylation resulted in a small reduction in assay background to $0.42 \Delta \mathrm{~A}_{450} \mathrm{~h}^{-1}$ and an increase in signal above background of $0.04 \Delta \mathrm{~A}_{450} \mathrm{~h}^{-1}$ at the 100 ng per well level of guinea pig liver transglutaminase.

The casein bound to the microtiter plate was also de-amidated to convert glutamine residues to glutamate and hence prevent intramolecular protein cross-linking via ε - $(\gamma$ glutamyl) lysine isodipeptide bond formation. This could result in a reduction of assay signal by competing with intermolecular ε-(γ-glutamyl) lysine isodipeptide bond formation between the plate bound casein and the biotin labelled casein. Table 1 shows that this approach proved unsuccessful as an assay background of $1.11 \Delta \mathrm{~A}_{450} \mathrm{~h}^{-1}$ was observed and no increase in signal above boiled enzyme background could be attained. The higher background observed following de-amidation could be attributed to an
increase in the number of acidic amino acid side chains in the casein bound to the plate since these side chains are thought to be involved in the formation of the transglutaminase independent adduct (Seiving et al. 1991).

Table 2 shows that the solution phase chemical modification of casein by the carbodiimide mediated incorporation of small nucleophiles into acidic amino acid side chains resulted in much reduced background rates of $0.16-0.17 \Delta \mathrm{~A}_{450} \mathrm{~h}^{-1}$ compared to $0.51 \Delta \mathrm{~A}_{450} \mathrm{~h}^{-1}$ for un-modified casein. The best increase in signal above background at the 100 ng per well level of guinea pig liver transglutaminase was 250.0% which was achieved using glycine methyl ester as the modifying nucleophile. Smaller increases in signal above background of 35.3 and 50.0% were observed using the methyl esters of arginine and lysine respectively. Arginine and lysine methyl ester were possibly less effective modifiying agents due to steric hindrance caused by their ' R ' groups. This results in table 2 also indicate that the calcium mediated adduct formed when using unmodified casein not only serves to increase the assay background but also compromises assay sensitivity by sterically hindering the transglutaminase reaction as an increase in signal of only 15.6% above background was observed when using un-modified casein at the 100 ng per well level of guinea pig liver transglutaminase.

Calcium ions are essential for transglutaminase activity but also mediate an intermolecular interaction between aspartate and glutamate residues of biotin labelled casein and casein bound to the microtiter plate. This unwanted adduct formation was prevented by subjecting the casein to the carbodiimide modification to incorporate the nucleophile glycine methyl ester hydrochloride into acidic amino acid side groups of the
casein bound to the microtiter plate. Table 2 also shows an attempt to carbodiimidemodify the casein following binding to the microtiter plate. This approach proved unsuccessful as an assay background of $1.16 \Delta \mathrm{~A}_{450} \mathrm{~h}^{-1}$ was produced and an increase in signal above background of only 0.9% was achieved using this type of modification. The high assay background experienced using this approach was possibly due to removal of the plate bound casein and the BSA blocking protein followed by non-specific binding of extravidin peroxidase due to the action of the 7.5 M urea used in the reaction buffer.

Subjecting bovine casein to an 8 hour biotinylation using d-biotin N-hydroxysuccinimide ester did not improve the signal obtained when using 100ng per well of guinea pig liver transglutaminase (table 3). A 4 hour biotinylation time was therefore used for all subsequent preparations. The biotin amidocaproate succinimide ester was also investigated as a possible biotinylation reagent because it has been reported that the incorporated amidocaproate spacer arm results in a reduction of stearic hindrance when binding avidin to some biotin labelled compounds (Costello et al. 1979). A lower signal of $0.31 \Delta \mathrm{~A}_{450} \mathrm{~h}^{-1}$ was however obtained using this reagent compared to the $0.39 \Delta \mathrm{~A}_{450} \mathrm{~h}^{-1}$ observed using the d-biotin N -hydroxysuccinimide ester.

To demonstrate the involvement of the carbodiimide and the glycine methyl ester in the improvement of assay signal, the casein was incubated with 7.5 M urea alone. Table 4 shows that this approach has little effect on casein as a substrate of tissue transglutaminase since a signal of only $0.11 \Delta \mathrm{~A}_{450} \mathrm{~h}^{-1}$ above background was obtained when assaying 100ng per well of guinea pig liver transglutaminase. Table 4 also shows the effect of stopping the carbodiimide reaction with sodium acetate. This experiment
was carried out as it has been reported that protein amino groups may be spontaneously acetylated using this approach and this may reduce assay signal due to the removal of available lysine residues (Carraway and Koshland 1972). Quenching of the reaction using acetate buffer was however found not to be detrimental to assay signal at the 100 ng per well level of guinea pig liver transglutaminase. A signal of $0.40 \Delta \mathrm{~A}_{450} \mathrm{~h}^{-1}$ above background was obtained when using acetate buffer compared to $0.39 \Delta \mathrm{~A}_{450} \mathrm{~h}^{-1}$ when no acetate buffer was used.

Table 5 demonstrates the effect of various negative controls on the activity of the guinea pig liver transglutaminase used in the assay. Boiling the transglutaminase for 20 minutes resulted in total removal of activity as did replacement of the transglutaminase in the assay with an equal volume of buffer. Mammalian transglutaminase enzymes are inhibited by iodoacetamide because they contain an active site thiol group (Aeschlimann et al. 1994). At the 10 mM level, this inhibitor was shown to reduce assay signal by 100% when added to the reaction buffer. It should be noted that the transglutaminase was pre-incubated with calcium ions and iodoacetamide for 20 minutes prior to carrying out the assay to allow exposure of the active site and subsequent binding of the iodoacetamide to the enzyme. The calcium ion chelators EDTA and EGTA also fully inhibited 100ng per well of guinea pig liver transglutaminase and resulted in background values of $0.11 \Delta \mathrm{~A}_{450} \mathrm{~h}^{-1}$ and $0.12 \Delta \mathrm{~A}_{450} \mathrm{~h}^{-1}$ respectively at the 0.25 mM level. Table 5 also shows that removal of biotin labelled casein from the reaction buffer resulted in total removal of signal with a background of $0.04 \Delta \mathrm{~A}_{450} \mathrm{~h}^{-1}$ observed. This control was carried out in order to eliminate any contribution to the assay signal by endogenous biotin labelled proteins present in the tissue transglutaminase preparation. Also
eliminated was the possibility of a contribution to the assay signal by endogenous peroxidase enzymes present in the tissue transglutaminase preparation by carrying out a zero extravidin peroxidase control which resulted in a background of $0.04 \Delta \mathrm{~A}_{450} \mathrm{~h}^{-1}$.

Figure 10 demonstrates that the detection limit of the assay was 10 ng for purified guinea pig liver transglutaminase and that a linear relationship exists between absorbance and tissue transglutaminase concentration over the range $10-100 \mathrm{ng}$ per well. To demonstrate the versatility of the assay, ECV 304 human endothelial cell homogenate was chosen as an example of a crude physiological extract from which to detect tissue transglutaminase activity. Figure 11 shows that the tissue transglutaminase activity present in the homogenate derived from as little as 400 human endothelial cells was detected. This implies that the assay may be of use in the purification of human tissue transglutaminase from ECV 304 endothelial cell homogenates. The assay was found to be non-linear when using ECV 304 homogenate, suggesting possible interference due to incorporation of biotin labelled casein into endogenous proteins present in the crude extract. Figure 12 shows that the biotin labelled casein cross-linking assay is as sensitive as the conventional [$\left.1,4-{ }^{14} \mathrm{C}\right]$-putrescine incorporation assay (Lorand et al. 1972) when detecting guinea pig liver transglutaminase as a correlation of $\mathrm{r}^{2}=0.977$ was observed.

There was a time dependent increase in the presence of ε - $(\gamma$-glutamyl) lysine isodipeptide product formed when biotin labelled casein and EDC-modified casein were incubated at $37^{\circ} \mathrm{C}$ in the presence of guinea pig liver transglutaminase. Figure 13a shows a typical amino acid analysis profile obtained following the digestion of 0.05 mg biotin labelled
casein and 0.05 mg EDC modified casein which had been incubated for zero minutes at $37^{\circ} \mathrm{C}$ with 125 ng of guinea pig liver transglutaminase. The profile demonstrates that there is an endogenous level of $489 \mathrm{pmol} \mathrm{mg}^{-1}$ isodipeptide present in the casein. Figure 13b shows that after a 60 minute incubation under assay conditions the level of isodipeptide increased above the endogenous level by $158 \mathrm{pmol} \mathrm{mg}^{-1}$ of casein. The quantity of the isodipeptide was determined by addition of a 2 nmol authentic standard isodipeptide preparation which is represented by the dashed line on the chart. Detection of the isodipeptide product of the transglutaminase mediated protein cross-linking reaction is regarded as unequivocal proof of the presence of transglutaminase activity (Folk and Finlayson 1977) and is evidence that the signal obtained in the casein crosslinking assay is due to the cross-linking of EDC modified casein to biotin labelled casein via ε-(γ-glutamyl) lysine isodipeptide bonds.

To date there has been no reported method for the detection of the in vitro formation of N^{\prime}, N^{\prime}-bis (γ-glutamyl) polyamine bridges which may be compounds of significant physiological importance (Folk 1980). Verification of the existence of such species was originally carried out by Folk et al. (1980) and involved the exhaustive proteolytic digestion of samples followed by the chromatographic analysis of the resultant digests which is a procedure which may take 5 days or more to complete. In a second assay we measured the ability of tissue transglutaminase to catalyse the conjugation of polyamine modified N^{\prime}, N^{\prime}-dimethylcasein to biotin labelled casein. N^{\prime}, N^{\prime}-dimethylcasein bound to the microtiter plate was enzymically modified by the incorporation of polyamines into the free γ-glutamyl residues using commercially available guinea pig liver transglutaminase. Biotin labelled casein was then conjugated to the polyamine modified N^{\prime}, N^{\prime} -
dimethylcasein using the tissue transglutaminase sample which is to be assayed for activity. This conjugation is due to the formation of N^{\prime}, N^{\prime}-bis (γ-glutamyl) polyamine bridges. In order to develop this assay, commercially available guinea pig liver transglutaminase was used as the test enzyme. Folk (1980) showed that when the clotting of rat seminal plasma by prostate transglutaminase was carried out in the presence of 0.2 mM spermine and spermidine, N^{\prime}, N^{\prime} bis (γ-glutamyl) spermine and $N^{\prime}, N^{\prime}-$ bis (γ-glutamyl) spermidine were formed. The results in table 6 indicate that tissue transglutaminase is able to conjugate spermine and spermidine modified N^{\prime}, N^{\prime} dimethylcasein to biotin labelled casein but also demonstrate that putrescine and cadaverine modified $N^{\prime} N^{\prime}$-dimethylcasein are suitable substrates for tissue transglutaminase. Figure 14 shows that biotin labelled casein incorporation into enzymically modified N^{\prime}, N^{\prime}-dimethylcasein was found to be linear over a range of tissue transglutaminase concentrations between 0 and 100 ng and that the detection limit for guinea pig liver transglutaminase was found to be 12.5 ng .

Chapter 4- The properties of crude plant transglutaminase.

4.1 Introduction.

As stated in chapter 1, the assays used to investigate the properties of crude plant transglutaminase preparations have involved the incorporation of radiolabelled amine substrates into proteins, either in solution or in solid phase on filter paper discs. This has led to ambiguity regarding the calcium ion requirement of plant transglutaminase due to the presence of contaminating calcium independent diamine oxidases contributing to any observed activity (Icekson and Apelbaum 1987; Serafini-Fracassini et al. 1988; Siepaio and Meunier 1995; Chiarello et al. 1996a and 1996b). Consequently, it was a principal aim of this part of the practical investigation to screen several plant extracts using a variety of transglutaminase assays to determine the most suitable system(s) for use with crude plant transglutaminase preparations.

The assays selected for the investigation were the two casein cross-linking assays (Lilley et al. 1997a) and an assay involving the incorporation of biotin labelled cadaverine into microtiter plate bound N^{\prime}, N^{\prime}-dimethylcasein (Slaughter et al. 1992). These assays were chosen to provide an insight into the range of possible plant transglutaminase activities in terms of ε-(γ-glutamyl) lysine, N^{\prime}, N^{\prime}-bis (γ-glutamyl) polyamine and N^{\prime}-(γ-glutamyl) polyamine formation. The assays were also chosen to eliminate the possibility of interference by calcium independent enzyme activities such as diamine oxidases since these enzymes are not known to cross-link proteins or utilise amines with a single primary amine group such as biotin labelled cadaverine.

A further aim was to use the assays to investigate the general biochemical properties of plant transglutaminase such as pH optima and effect of known mammalian transglutaminase inhibitors, which include iodoacetamide, NEM and GTP (Aeschlimann and Paulsson 1994; Takeuchi et al. 1992; Bergamini and Signorini 1993). The assays were also used to identify a suitable source of plant transglutaminase from which to begin a purification.

4.2 Results.

In order to compare the conventional [$\left.1,4-{ }^{14} \mathrm{C}\right]$-labelled putrescine incorporation assay (Lorand et al. 1972) with the casein cross-linking assay (Lilley et al. 1997a) and the biotin labelled cadaverine incorporation assay (Slaughter et al. 1992), eight plant tissues were screened for transglutaminase activity using the three assay systems. The results are presented in table 7.

Table 7. Detection of transglutaminase activity in soluble crude olant extracts
using three assav svstems.

	Specific activity units $\mathbf{m g}^{-1} \pm \mathbf{S E M}$		
Tissue type	Putrescine incorporation	Cadaverine incorporation	Casein cross- linking
Pisum sativum root	1.84 ± 0.95	1.21 ± 0.10	1.02 ± 0.08
Pisum sativum leaf	2.57 ± 0.31	0.29 ± 0.02	0.26 ± 0.02
Vicia faba root	N.D	0.20 ± 0.02	0.42 ± 0.01
Vicia faba leaf	0.11 ± 0.01	0.07 ± 0.003	0.16 ± 0.03
Triticum aestivum root	N.D	2.74 ± 0.15	2.18 ± 0.23
Triticum aestivum leaf	N.D	0.18 ± 0.002	0.16 ± 0.01
Hordeum vulgare root	N.D	1.78 ± 0.11	0.71 ± 0.12
Hordeum vulgare leaf	N.D	0.29 ± 0.01	0.32 ± 0.02

One unit of casein cross-linking or cadaverine incorporation activity was defined as a change of absorbance at 450 nm of 1.0 per hour. One unit of putrscine incorporation activity was defined as one nanomole of putrescine incorporated into N^{\prime}, N^{\prime} dimethylcasein per hour.

Table 7 legend.

Crude plant extracts were assayed for 60 minutes at $37^{\circ} \mathrm{C}$ as described in section 2.2.3. Typical boiled extract background values for casein cross-linking were between 0.05 and 0.15 units. Boiled extract controls for biotin cadaverine incorporation produced background values of $0.05-0.10$ units. Removal of extravidin peroxidase or biotin labelled substrate from either plate assay resulted in background values of $0.04-0.05$ units. Zero extract controls (extract replaced with buffer) resulted in a casein crosslinking assay background of 0.15 units and a biotin cadaverine incorporation assay background of 0.09 units. Boiled controls or zero extract controls resulted in a putrescine incorporation assay background of between 100 and 200 cpm . Data points represent the mean \pm SEM of 4 replicates.

Table 7 demonstrates that using both the biotin-cadaverine incorporation assay and the casein cross-linking assay, activity was detected in the soluble extracts of all eight plant tissues screened. Root tissue exhibited a higher specific activity in all species than leaf tissue of the same age and in both assays the greatest specific activity was observed in Triticum aestivum root. Use of the $\left[1,4{ }^{14} \mathrm{C}\right]$-labelled putrescine incorporation assay resulted in activity being detected in only three of the eight tissues screened (Pisum sativum root and leaf and Vicia faba leaf).

The time dependence of each reaction was demonstrated (figures 15 and 16) and this data was used to optimise the incubation time of each assay

Figure 15. Time denendent casein cross-linking and cadaverine incorporation by soluble Pisum sativum root extract.

Figure 15 legend.

Pisum sativum root extract was assayed for cadaverine incorporation activity and casein cross-linking activity as described in section 2.2.3. The assays were carried out at $37^{\circ} \mathrm{C}$ for $0-90$ minutes. Each reaction was stopped at the specified time points by removal of the reaction mixture from the wells of the microtiter plate and its replacement with distilled water. Boiled extract was used as a negative control at each time point giving background values of 0.05-0.08 units for biotin cadaverine incorporation and 0.05-0.1 units for casein cross-linking. Data points represent the mean \pm SEM of 4 replicates. ($\mathrm{O}=$ casein cross-linking, =biotin cadaverine incorporation).

Figure 15 shows that the biotin-cadaverine incorporation and casein cross-linking transglutaminase reactions are time dependent and linear up to 60 minutes for soluble Pisum sativum root extract. Figure 16 shows the time dependence of the putrescine incorporation reaction.

Figure 16. Time denendent $\left[1.4-{ }^{14} \mathrm{Cl}\right.$ - labelled putrescine incorporation by soluble
Pisum sativum root extract.

Figure 16 legend.

Pisum sativum root extract was assayed for $0-80$ minutes at $37^{\circ} \mathrm{C}$ as described in section 2.2.3.4. The reaction was stopped at the specified time points by removal of $10 \mu \mathrm{l}$ of the reaction mixture, which was spotted onto $1 \mathrm{~cm}^{2}$ sections of Whatman $\mathrm{N}^{\mathrm{O}} 1$ filter paper (pre-soaked as described in section 2.2.3.4). Boiled root extract was used as a negative control at each time point and gave background values of between 100-150cpm. Data points represent the mean \pm SEM of 4 replicates.

Figure 16 shows that $\left[1,4-{ }^{14} \mathrm{C}\right]$-labelled putrescine incorporation is time dependent and linear up to 80 minutes for soluble Pisum sativum root extract. As all three assays were shown to be linear up to 60 minutes, subsequent experiments were carried out for this time period unless stated.

The calcium dependence of the three Pisum sativum mediated reactions was now investigated using EDTA and EGTA to remove calcium from the reaction buffers. These results are presented in tables 8,9 and 10 .

Table 8. Inhibition of the $\left[1,4-{ }^{14} \mathrm{C}\right.$-labelled putrescine binding activity of soluble

crude plant extracts by calcium ion chelation.

As $\left[1,4-{ }^{14} \mathrm{C}\right]$-labelled putrescine binding activity was observed only for Vicia faba leaf and Pisum sativum root and leaf and extracts (table 7), the inhibition of this reaction by calcium chelation was investigated using these extracts only.

	Specific activity units $\mathbf{m g}^{-1} \pm$ SEM		
Tissue type	$+\mathbf{5 m M ~ C a C l}{ }_{\mathbf{2}}$	+5mM EDTA	+5mM EGTA
Pisum sativum root	0.82 ± 0.18	0.70 ± 0.04 (14.6)	0.82 ± 0.15 (0)
Pisum sativum leaf	2.51 ± 0.12	2.02 ± 0.11 (19.5)	1.63 ± 0.10 (35.1)
Vicia faba leaf	0.17 ± 0.03	0.19 ± 0.05 (0)	0.15 ± 0.03 (11.8)

Plant protein extracts were assayed for 60 minutes at $37^{\circ} \mathrm{C}$ in the presence of either $5 \mathrm{mM} \mathrm{CaCl} 2,5 \mathrm{mM}$ EDTA or 5 mM EGTA as described in section 2.2.3.4. Data points represent the mean \pm SEM of 4 replicates.

Table 8 shows that small reductions in the putrescine binding activity of two of the extracts of between $15-20 \%$ were observed due to the addition of 5 mM EDTA (presented in brackets immediately after the specific activity). 5 mM EGTA inhibited activity of extracts by up to 35%. Note that all inhibition experiments, percentages are calculated by assuming boiled extract absorbance to be zero activity.

Table 9. Inhibition of the biotin cadaverine incornoration activity of soluble crude nlant extracts by calcium ion chelation.

	Specific activity units $\mathbf{m g}^{-1} \pm$ SEM		
Tissue type	$+5 \mathrm{mM} \mathrm{CaCl}_{2}$	+1mM EDTA	+1mM EGTA
Pisum sativum root	1.19 ± 0.03	0.08 ± 0.02 (93.3)	0.04 ± 0.03 (96.6)
Pisum sativum leaf	0.65 ± 0.03	0.06 ± 0.01 (90.8)	0.08 ± 0.01 (87.7)
Vicia faba root	0.25 ± 0.01	0 (100)	0 (100)
Vicia faba leaf	0.06 ± 0.01	0 (100)	0 (100)
Triticum aestivum root	2.07 ± 0.07	0 (100)	0 (100)
Triticum aestivum leaf	0.27 ± 0.01	0 (100)	0 (100)
Hordeum vulgare root	2.28 ± 0.08	0 (100)	0 (100)
Hordeum vulgare leaf	0.43 ± 0.01	0 (100)	0 (100)

Plant protein extracts were assayed for transglutaminase activity in the presence of 5 mM $\mathrm{CaCl}_{2}, 1 \mathrm{mM}$ EDTA or 1 mM EGTA as described in section 2.2.3.1. Data points represent the mean \pm SEM of 4 replicates.

Table 9 shows that large reductions in the biotin cadaverine incorporation activity of the extracts of between $91-100 \%$ were observed due to the addition of 1 mM EDTA (presented in brackets immediately after the specific activity). 1mM EGTA inhibited activity of extracts by $88-100 \%$.

	Specific activity units $\mathbf{m g}^{-1} \pm$ SEM		
Tissue type	$+5 \mathrm{mM} \mathbf{C a C l}_{\mathbf{2}}$	$+\mathbf{1 m M}$ EDTA	$+\mathbf{1 m M}$ EGTA
Pisum sativum root	1.15 ± 0.06	$0(100)$	$0(100)$
Pisum sativum leaf	0.68 ± 0.02	$0.09 \pm 0.01(87.5)$	$0.12 \pm 0.01(82.8)$
Vicia faba root	0.64 ± 0.04	$0(100)$	$0(100)$
Vicia faba leaf	0.12 ± 0.02	$0(100)$	$0.02 \pm 0.01(81.0)$
Triticum aestivum root	3.41 ± 0.15	$0(100)$	$0(100)$
Triticum aestivum leaf	0.51 ± 0.03	$0(100)$	$0(100)$
Hordeum vulgare root	0.92 ± 0.06	$0(100)$	$0(100)$
Hordeum vulgare leaf	0.48 ± 0.07	$0(100)$	$0(100)$

Plant protein extracts were assayed for transglutaminase activity in the presence of 5 mM $\mathrm{CaCl}_{2}, 1 \mathrm{mM}$ EDTA or 1 mM EGTA as described in section 2.2.3.2. Data points represent the mean \pm SEM of 4 replicates.

Table 10 demonstrates that large reductions in the biotin casein cross-linking activity of the extracts of between $88-100 \%$ were observed due to the addition of 1mM EDTA (presented in brackets immediately after the specific activity). ImM EGTA inhibited activity of extracts by $81-100 \%$.

Since the $\left[1,4-{ }^{14} \mathrm{C}\right]$-putrescine incorporation reaction was not fully inhibited by calcium ion chelation, the effect of 5 mM DIECA and o-phenanthrolinehenanthroline was investigated to determine the extent of any contribution to the assay signal made by copper dependent enzymes such as diamine oxidase. This data is shown in tables 11 and 12.

Table 11. The effect of the diamine oxidase inhibitors, DIECA and 0phenanthroline on the transglutaminase activitv of soluble Pisum sativum root extract.

	Specific activity units $\mathbf{~ m g}^{-1} \pm \mathbf{S E M}$		
Assay	Uninhibited	$+\mathbf{5 m M}$ DIECA	+5mM 0- phenanthroline
$[\mathbf{1 , 4 - 4} \mathbf{C l}$-putrescine incorporation	0.96 ± 0.21	$0.79 \pm 0.15(17.7)$	$0.68 \pm 0.17(29.2)$
Casein cross- linking	1.31 ± 0.08	$1.38 \pm 0.12(0)$	$1.02 \pm 0.07(22.1)$
Cadaveerine incorporation	1.08 ± 0.07	$1.09 \pm 0.11(0)$	$0.94 \pm 0.06(13.0)$

Pisum sativum root extract was assayed for transglutaminase activity in the presence of 5 mM DIECA or 5 mM o-phenanthroline for 60 minutes at $37^{\circ} \mathrm{C}$ as described in section 2.2.3. Data points represent the mean \pm SEM of 4 replicates.

Table 11 demonstrates that the addition of 5 mM DIECA to the assay reaction buffers resulted in inhibition of $0-18 \%$ (presented in brackets after the specific activity). ophenanthroline at the same concentration resulted in inhibition of activity between 13% and 29%.

The data shows that in addition to inhibition of the $\left[1,4-{ }^{14} \mathrm{C}\right]$-putrescine binding reaction, the casein cross-linking and cadaverine incorporation activities of Pisum sativum root extract were inhibited by o-phenanthroline. As a result, a control was carried out to investigate the effect of o-phenanthroline on the activity of guinea pig liver transglutaminase. The data relating to this control is shown in table 12 .

Table 12. The effect of the diamine oxidase inhibitors. DIECA and ophenanthroline on the activity of guinea nig liver transglutaminase.

	Specific activity units $\mathbf{m g}^{-1} \pm$ SEM		
Assay	Uninhibited	+5 mM DIECA	+5mM o- phenanthroline
$\left[1,4-{ }^{14}\right.$ C]-putrescine incorporation	2510 ± 333	$2620 \pm 281(0)$	$2490 \pm 305(0.8)$
Casein cross- linking	4320 ± 399	$3140 \pm 332(27.3)$	$3510 \pm 305(18.7)$
Cadaverine incorporation	4010 ± 338	$3500 \pm 354(12.7)$	$3240 \pm 289(19.1)$

One hundred nanograms of guinea pig liver transglutaminase was assayed for 60 minutes at $37^{\circ} \mathrm{C}$ in the presence of 5 mM DIECA or 5 mM o-phenanthroline as described in section 2.2.3. Data points represent the mean \pm SEM of 4 replicates.

Table 12 demonstrates that the addition of 5 mM DIECA results in inhibition of $0-27 \%$ (presented in brackets after the specific activity) when assaying guinea pig liver transglutaminase. o-phenanthroline at the same concentration resulted in inhibition of activity between 1 and 19%.

Information concerning the concentration of calcium required to activate the casein cross-linking and cadaverine incorporation reactions of Pisum sativum root transglutaminase was now sought. This is presented in figures 17 and 18 .

Figure 17. The biotin cadaverine incorporation activitv of soluble Pisum sativum root extract as a function of the free calcium ion concentration of the reaction buffer.

Figure 17 legend.

Pisum sativum root extract was assayed for 60 minutes at $37^{\circ} \mathrm{C}$ in the presence of varying free calcium ion concentrations as described in section 2.2.3.1. Zero free calcium was achieved by the addition of 1 mM EGTA to the reaction buffer. Calcium chloride was then added in increasing levels using a computer program to calculate the free calcium ion concentration increase due to each addition (Fuhr et al. 1993). Data points represent the mean \pm SEM of 4 replicates.

Figure 17 shows that no biotin cadaverine incorporation occurs between 1 and 19 nM free calcium. Activation of biotin cadaverine incorporation activity of soluble Pisum sativum transglutaminase occurs after 20 nM free calcium with maximum activity observed at 94 nM .

Figure 18. The casein cross-linking activitv of soluble Pisum sativum root extract as a function of the free calcium ion concentration of the reaction buffer.

Figure 18 legend.

Pisum sativum root extract was assayed for 60 minutes at $37^{\circ} \mathrm{C}$ in the presence of free calcium concentrations between 0 and 5 mM as described in section 2.2.3.2. The concentration of free calcium ions in the buffer was calculated as described for figure 17. Data points represent the mean \pm SEM of 4 replicates.

Figure 18 shows that approximately 20% of the activity is observed between $250 \mu \mathrm{M}$ and 1 mM free calcium. The remaining 80% occurs after 1 mM with a peak observed at 3 mM free calcium.

It is known that mammalian tissue transglutaminase is inhibited by GTP in the presence of sub-optimal calcium (Takeuchi et al. 1992; Bergamini and Signorini 1993; Mian et al. 1995; Smethurst and Griffin 1996). It was therefore decided to investigate the effect of this agent on the activity of Pisum sativum root transglutaminase. This is demonstrated by the results in table 13.

Table 13. The effect of 1 mM GTP on the biotin labelled cadaverine incornoration and casein cross-linking activities of soluble Pisum sativum root transglutaminase.

	Specific activity units $\mathbf{~ m g}^{-1} \pm$ SEM			
	Carporation			

Pisum sativum root extract was assayed for 60 minutes at $37^{\circ} \mathrm{C}$ in the presence of 1 mM GTP and sub-optimal calcium concentration $(80 \mathrm{~nm}$ for cadaverine incorporation and 2 mM for casein cross-linking) as described in sections 2.2.3.1 and 2.2.3.2. As a positive control, 100 ng per well of guinea pig liver transglutaminase was incubated at a calcium concentration of 2 mM in the presence of 1 mM GTP. Data points represent the mean \pm SEM of 4 replicates.

Table 13 shows that a small cadaverine incorporation inhibition of 2.4% was observed in the presence of 1 mM GTP (presented in brackets after the specific activity). Zero casein cross-linking inhibition was observed in the presence of 1 mM GTP. Inhibitions of 52.1\% and 35.3% were observed for cadaverine incorporation and casein cross-linking respectively.

Mammalian transglutaminases are also inhibited by thiol group reagents such as iodoacetamide and NEM due to the presence of an active site cysteine residue (Smethurst and Griffin 1996). Tables 14,15 and 16 show the results of adding a 10 mM concentration of iodoacetamide or NEM to the reaction buffers of the three assay systems.

The three tissues, which gave detectable $\left[1,4{ }^{14} \mathrm{C}\right]$-labelled putrescine binding activity in the initial screening experiment (table 7) were now tested to investigate the effect of thiol blocking reagents NEM and iodoacetamide on transglutaminase activity. The results are presented in table 14.

Table 14. The effect of the addition of 10 mM iodoacetamide or 10 mM NEM to the $\underline{\left[1,4-{ }^{14} \mathrm{Cl} \text {-labelled putrescine incorporation assay reaction buffer on the }\right.}$ transglutaminase activity of soluble crude plant extracts.

	Specific activity units $\mathbf{m g}^{-1} \pm$ SEM		
Tissue	Uninhibited	+ 10mM iodoacetamide	$+\mathbf{1 0 m M} \mathbf{N E M}$
Pisum sativum root	0.64 ± 0.19	$0.48 \pm 0.24(25.0)$	$0.33 \pm 0.02(48.4)$
Pisum sativum leaf	1.37 ± 0.07	$1.20 \pm 0.10(12.4)$	$1.54 \pm 0.04(0)$
Vicia faba leaf	0.39 ± 0.02	$0.31 \pm 0.02(20.5)$	$0.42 \pm 0.03(0)$

Plant protein extracts were incubated at $37^{\circ} \mathrm{C}$ for 30 minutes in the presence of 5 mM CaCl_{2} and 10 mM iodoacetamide or NEM. The pre-treated extracts were then assayed for 60 minutes at $37^{\circ} \mathrm{C}$ as detailed in section 2.2.3.4. As a positive control, 100 ng of guinea pig liver transglutaminase was also incubated in the presence of 10 mM concentrations of the thiol group inhibitors and no activity was observed in these controls. Data points represent the mean \pm SEM of 4 replicates.

Table 14 shows that reductions in activity of the extracts of between $12-25 \%$ were observed due to the addition of 10 mM iodoacetamide (presented in brackets immediately after the specific activity). 10 mM NEM inhibited activity of extracts by $0-48 \%$.

Table 15. The effect of the addition of 10 mM iodoacetamide or 10 mM NEM to the biotin cadaverine incordoration assav reaction buffer on the transelutaminase activity of soluble crude plant extracts.

	Specific activity units $\mathbf{m g}^{-1} \pm \mathbf{S E M}$		
Tissue	Uninhibited	$+10 \mathrm{mM}$ iodoacetamide	+ 10mM NEM
Pisum sativum root	1.12 ± 0.07	$0.82 \pm 0.02(26.8)$	$1.11 \pm 0.09(0.9)$
Pisum sativum leaf	0.34 ± 0.02	0.26 ± 0.01 (23.5)	0.34 ± 0.04 (0)
Vicia faba root	0.18 ± 0.01	0.15 ± 0.01 (16.7)	0.16 ± 0.02 (11.2)
$V i c i a ~ f a b a ~ l e a f ~$	0.05 ± 0.01	$0.02 \pm 0.00(60.0)$	0 (100)
Triticum aestivum root	2.53 ± 0.09	1.29 ± 0.08 (49.0)	$2.59 \pm 0.11(0)$
Triticum destivum leaf	0.25 ± 0.01	0.14 ± 0.01 (44.0)	0.17 ± 0.02 (32.0)
Hordeum vulgare root	1.58 ± 0.07	1.45 ± 0.03 (8.2)	$1.47 \pm 0.08(7.0)$
Hordeum vulgare leaf	0.30 ± 0.02	0.30 ± 0.03 (0)	0.26 ± 0.01 (13.3)

Plant protein extracts were incubated at $37^{\circ} \mathrm{C}$ for 30 minutes in the presence of 5 mM CaCl_{2} and 10 mM iodoacetamide or NEM. The pre-treated extracts were then assayed for 60 minutes at $37^{\circ} \mathrm{C}$ as detailed in section 2.2.3.1. As a positive control, 100 ng of guinea pig liver transglutaminase was also incubated in the presence of 10 mM concentrations of the thiol group inhibitors and no activity was observed in these controls. Data points represent the mean \pm SEM of 4 replicates.

Table 15 shows that reductions in activity of the extracts of between $0-60 \%$ were observed due to the addition of 10 mM iodoacetamide (presented in brackets immediately after the specific activity). 10 mM NEM inhibited activity of extracts by $0-100 \%$.

Table 16. The effect of the addition of 10 mM iodoacetamide or 10 mM NEM to the casein cross-linking assav reaction buffer on the transglutaminase activity of soluble crude plant extracts.

	Specific activity units $\mathrm{mg}^{-1} \pm$ SEM		
Tissue	Uninhibited	+ 10mM iodoacetamide	+10 mM NEM
Pisum sativum root	1.24 ± 0.10	$1.34 \pm 0.12(0)$	$1.42 \pm 0.12(0)$
Pisum sativum leaf	0.32 ± 0.04	$0.41 \pm 0.04(0)$	$0.39 \pm 0.04(0)$
Vicia faba root	0.40 ± 0.02	$0.41 \pm 0.01(0)$	$0.49 \pm 0.03(0)$
Vicia faba leaf	0.22 ± 0.04	$0.23 \pm 0.01(0)$	$0.21 \pm 0.01(0.5)$
Triticum aestivum root	2.23 ± 0.18	$2.44 \pm 0.19(0)$	$2.59 \pm 0.11(0)$
Triticum aestivum leaf	0.19 ± 0.02	$0.18 \pm 0.01(0.5)$	$0.20 \pm 0.03(0)$
Hordeum vulgare root	0.88 ± 0.08	$0.96 \pm 0.08(0)$	$0.89 \pm 0.09(0)$
Hordeum vulgare leaf	0.41 ± 0.02	$0.46 \pm 0.02(0)$	$0.43 \pm 0.02(0)$

Plant protein extracts were incubated at $37^{\circ} \mathrm{C}$ for 30 minutes in the presence of 5 mM CaCl_{2} and 10 mM iodoacetamide or NEM. The pre-treated extracts were then assayed for 60 minutes at $37^{\circ} \mathrm{C}$ as detailed in section 2.2.3.2. As a positive control, 100 ng of guinea pig liver transglutaminase was also incubated in the presence of 10 mM concentrations of the thiol group inhibitors and no activity was observed in these controls. Data points represent the mean \pm SEM of 4 replicates.

Table 16 demonstrates that with the exception of the 0.5% reduction of activity due to the effect of 10 mM NEM on Vicia faba leaf, no inhibition was observed due to the addition of thiol group inhibitors.

The effect of various concentrations of the thiol group activator, DTT was also investigated (table 17).

Table 17. The effect of various concentrations of DTT on the transglutaminase

activity of soluble Pisum sativum root extract in three assav systems.

	Specific activity		
	units $\mathbf{m g}^{-1} \pm \mathbf{S E M}$		
Assay type	$+\mathbf{1 0 m M} \mathbf{~ D T T}$	$+\mathbf{1 m M}$ DTT	$+\mathbf{0 m M}$ DTT
Casein cross- linking	0.75 ± 0.04	0.70 ± 0.06	0.76 ± 0.03
Cadaverine incorporation	0.84 ± 0.09	0.83 ± 0.05	0.81 ± 0.05
Putrescine incorporation	1.52 ± 0.28	1.54 ± 0.31	1.46 ± 0.21

Pisum sativum root extract was incubated for 60 minutes at $37^{\circ} \mathrm{C}$ in the presence of DTT concentrations between $0-10 \mathrm{mM}$ as detailed in section 2.2 .3 . The data points represent the mean \pm SEM of 4 replicates.

Table 17 shows that little difference was observed in specific activity values over the range of DTT concentrations tested. Further aspects of the biochemistry of Pisum sativum root transglutaminase activity including substrate specificity and pH optima were also investigated and the results are presented in tables 18 and 19 and figure 19.

Table 18. The effect of adding 10 mM spermine to the biotin cadaverine reaction buffer on the transglutaminase activitv of soluble Pisum sativum root extract.

	Specific activity units $\mathbf{m g}^{-1} \pm \mathbf{S E M}$	
Source of transglutaminase	Uninhibited	$+\mathbf{1 0 m M}$ spermine
Pisum Sativum root	0.94 ± 0.04	$0.52 \pm 0.03(44.7)$
Guinea pig liver	3850 ± 402	$1560 \pm 215(59.5)$

Pisum sativum root extract was incubated for 60 minutes at $37^{\circ} \mathrm{C}$ in the presence of 10 mM spermine as described in section 2.2.3.1. As a positive control, 100 ng per well of guinea pig liver transglutaminase was also incubated in the presence of 10 mM spermine. Data points represent the mean \pm SEM of 4 replicates.

Table 18 demonstrates that 10 mM spermine reduces the biotin cadaverine incorporation activity of Pisum sativum root extract by 44.7% (presented in brackets after the specific activity). A similar inhibition of 59.5% is observed when 10 mM spermine is added to the reaction buffer containing 100ng per well of guinea pig liver transglutaminase.

Table 19. The effect of substituting $N^{\prime} . N^{\prime}$-dimethvlcasein with $N^{\prime} . N^{\prime}$-dimethvlated

Vicia faba storage proteins on the microtiter plate in the biotin cadaverine

incorporation assav.

	Specific activity units $\mathbf{~ m g}^{-1} \pm$ SEM	
Source of transglutaminase	$+N^{\prime} N^{\prime}$-dimethylcasein	$+N^{\prime}, N^{\prime}$-dimethylated Vicia faba storage proteins
Pisum sativum root	0.86 ± 0.05	0.93 ± 0.10
Guinea pig liver	4010 ± 303	5130 ± 411

Pisum sativum root extract and 100 ng per well of guinea pig liver transglutaminase were incubated for 60 minutes at $37^{\circ} \mathrm{C}$ in the presence of plate bound N^{\prime}, N^{\prime}-dimethylated Vicia faba storage proteins or $N^{\prime} N^{\prime}$ 'dimethylcasein as described in section 2.2.3.1. The storage proteins were extracted and methylated as described in sections 2.2.1.3 and 2.2.2.5 respectively. Data points represent the mean \pm SEM of 4 replicates.

Table 19 shows an 8\% increase in the specific activity of Pisum sativum root extract when N^{\prime}, N^{\prime}-dimethylcasein is replaced on the microtiter plate with N^{\prime}, N^{\prime}-dimethylated Vicia faba storage proteins. An increase in specific activity of 28% was observed when 100ng per well of guinea pig liver transglutaminase was used.

Figure 19. A graph showing the variation in casein cross-linking and cadaverine incorporation activities of soluble Pisum sativum root extract as a function of the pH of the reaction buffer.

Figure 19 legend.

Pisum sativum root extract was assayed for casein cross-linking and cadaverine incorporation activities for 60 minutes at $37^{\circ} \mathrm{C}$ over a $6.5-9.0 \mathrm{pH}$ range as described in section 2.2 .3 .5 mM calcium chloride was added to the casein cross-linking reaction buffer and $100 \mu \mathrm{M}$ calcium chloride was used in the biotin cadaverine incorporation reaction buffer. $250 \mu \mathrm{M}$ EDTA was used as negative control at each pH point in both assays giving an average background of 0.07 units for casein cross-linking and 0.09 units for biotin cadaverine incorporation. Data points represent the mean \pm SEM of 4 replicates. ($\bigcirc=$ casein cross-linking, - biotin cadaverine incorporation).

Figure 19 demonstrates that both the casein cross-linking and biotin cadaverine incorporation activities of soluble Pisum sativum transglutaminase are influenced by the pH of the reaction buffer. Both activities increased with increasing pH until an optimum was reached at pH 7.9 .

The levels of Pisum sativum transglutaminase activity at different stages of root and leaf development were determined in order to provide an insight into the possible involvement of the enzyme in developmental processes. The data from these experiments is shown in figures 20 and 21. Photographs illustrating the data are also presented (plates 1-4).

Figure 20. The effect of plant age on the casein cross-linking and cadaverine incorporation activities of soluble Pisum sativum root extract.

Figure 20 legend.

Four to thirty two day old Pisum sativum root extract was assayed for casein crosslinking and cadaverine incorporation activities for 60 minutes at $37^{\circ} \mathrm{C}$ as described in section $2.2 .3 .250 \mu \mathrm{M}$ EDTA was used as negative control at each developmental stage giving average backgrounds of 0.08 units and 0.11 units for casein cross-linking and cadaverine incorporation respectively. Data points represent the mean \pm SEM of 4 replicates. ($\bigcirc=$ casein cross-linking, $=$ biotin cadaverine incorporation).

Figure 20 and plates 1 and 2 show that during root development, casein cross-linking activity of Pisum sativum root extract increases to a peak of 788 units $\mathrm{Kg}^{-1} \mathrm{FW}$ at day 15 after imbibition and falls to 49 units $\mathrm{Kg}^{-1} \mathrm{FW}$ at day 32. Biotin cadaverine incorporation activity shows a similar trend with a peak at day 18 of 473 units $\mathrm{Kg}^{-1} \mathrm{FW}$ followed by a decrease to 61 units $\mathrm{Kg}^{-1} \mathrm{FW}$ at day 32 .

Plate 1. Photograph of a typical biotin cadaverine assay used to construct the

tissue activity data shown on figure 20.

Plate 2. Photograph of a typical casein cross-linking assay used to construct the
tissue activity data shown on figure 20.

Figure 21. The effect of plant age on the casein cross-linking and cadaverine incorporation activities of soluble Pisum sativum leaf extract.

Figure 21 legend.

Eight to thirty two day old Pisum sativum leaf extract was assayed for casein crosslinking and cadaverine incorporation activities for 60 minutes at $37^{\circ} \mathrm{C}$ as described in section 2.2.3. $250 \mu \mathrm{M}$ EDTA was used as negative control at each developmental stage giving average backgrounds of 0.10 units and 0.12 units for casein cross-linking and cadaverine incorporation respectively. Data points represent the mean \pm SEM of 4 replicates. ($\bigcirc=$ casein cross-linking, $=$ biotin cadaverine incorporation).

Figure 21 and plates 3-4 show that during Pisum sativum leaf development, casein crosslinking activity increases to a peak of 500 units $\mathrm{Kg}^{-1} \mathrm{FW}$ at day 25 and remains at 434 units $\mathrm{Kg}^{-1} \mathrm{FW}$ at day 32. Similarly, biotin cadaverine incorporation activity peaks at 773 units $\mathrm{Kg}^{-1} \mathrm{FW}$ at day 15 and remains at 548 units $\mathrm{Kg}^{-1} \mathrm{FW}$ at day 32 .

Membrane bound mammalian transglutaminase activity has been reported (Thacher and Rice 1985). The next experiment, illustrated by tables 20 and 21 , was designed to investigate the possibility of the presence of membrane bound forms of transglutaminase in Pisum sativum root tissue.

Plate 3. Photograph of a typical biotin cadaverine assay used to construct the
tissue activity data shown on figure 21.

Plate 4. Photograph of a typical casein cross-linking assay used to construct the tissue activity data shown on figure 21.

transglutaminase activity.

	Specific activity	
units $\mathbf{m g}^{-1} \pm$ SEM		
Conditions	Casein cross-linking	Cadaverine incorporation
1M KCl supernatant	0.39 ± 0.08	1.90 ± 0.22
0.1\% (v/v) Triton X- 100 PFS	6.31 ± 0.20	0.33 ± 0.10
0.1\% (v/v) Triton X- $\mathbf{1 0 0}$ mixed microsomal pellet	1.89 ± 0.05	0.45 ± 0.041
$\mathbf{0 . 1 \%}$ (w/v) Sodium deoxycholate PFS	9.32 ± 0.26	6.33 ± 0.64
$\mathbf{0 . 1 \%}$ (w/v) Sodium deoxycholate mixed microsomal pellet	0.76 ± 0.05	0.45 ± 0.044
0.1\% (w/v) CTAB PFS	6.72 ± 0.17	8.00 ± 0.70
0.1\% (w/v) CTAB mixed microsomal pellet	0.38 ± 0.04	0.80 ± 0.24

Pisum sativum root membrane extract (prepared as described in section 2.2.1.2) was incubated for 60 minutes at $37^{\circ} \mathrm{C}$ in the presence of different detergents as described in section 2.2.3. $250 \mu \mathrm{M}$ EDTA was used as a negative control giving average background values of 0.11 units and 0.15 units for cadaverine incorporation and casein cross-linking respectively. Data points represent the mean \pm SEM of 4 replicates.

Table 20 demonstrates that some soluble transglutaminase activity was washed off the mixed microsomal membrane preparation by the 1 M KCl wash since between 0.39 and 1.90 units mg^{-1} activity was found in the $80000 \times \mathrm{g}$ supernatant when assayed using the casein cross-linking and cadaverine incorporation assays respectively. The most effective detergent for the measurement of both types of activity, giving specific activities of 6.339.32 units mg^{-1} for cadaverine incorporation and casein cross-linking respectively was found to be sodium deoxycholate at a concentration of $0.1 \%(w / v)$.

The optimum concentration of sodium deoxycholate was now determined and is presented in table 21.

extract the Pisum sativum root membrane transglutaminase activity.

	Specific activity units $\mathbf{m g}^{-1} \pm$ SEM	
Conditions	Casein cross-linking	Cadaverine incorporation
0.01\% (w/v) sodium deoxycholate PFS	0	0
0.01\% (w/v) sodium deoxycholate mixed microsomal pellet	1.83 ± 0.28	0.91 ± 0.34
0.1\% (w/v) sodium deoxycholate PFS	12.30 ± 1.22	7.10 ± 0.82
0.1\% (w/v) sodium deoxycholate mixed microsomal pellet	1.00 ± 0.31	0.61 ± 0.10

Pisum sativum root membrane extract (prepared as described in section 2.2.1.2) was incubated at $37^{\circ} \mathrm{C}$ for 120 minutes in the presence of different concentrations of sodium deoxycholate as detailed in section 2.2.3. $250 \mu \mathrm{M}$ EDTA was used as a negative control at each detergent concentration and gave average background values of 0.09 units and 0.12 units for cadaverine incorporation and casein cross-linking respectively. Assays carried out in the absence of either biotin labelled substrate or extravidin peroxidase gave background values between 0.04-0.05 units for both assays. Boiled membrane supernatant and experiments carried out with buffer to replace membrane supernatant gave average plate background absorbance values of 0.10 units and 0.15 units for cadaverine incorporation and casein cross-linking respectively. Zero time controls resulted in average background absorbance values of 0.15 units and 0.18 units for cadaverine incorporation and casein cross-linking respectively. Data points represent the mean \pm SEM of 4 replicates.

Table 21 demonstrates that the optimum concentration of sodium deoxycholate required to extract Pisum sativum root membranes was found to be 0.1% (w/v). This gave specific activities of 12.30 and 7.10 units mg^{-1} for casein cross-linking and cadaverine incorporation respectively. The relative distribution of transglutaminase activity between the soluble and membrane bound fractions of Pisum sativum root tissue was calculated to be as follows:

Cadaverine incornoration

Membrane- 17 ± 1 units $\mathrm{Kg}^{-1} \mathrm{FW}$ (3\%) Soluble- $558 \pm 37{\text { units } \mathrm{Kg}^{-1} \text { FW (97\%) }}^{\text {(}}$)

Casein cross-linking

Membrane- 12 ± 3 units $\mathrm{Kg}^{-1} \mathrm{FW}$ (1.7\%) Soluble- 702 ± 41 units $\mathrm{Kg}^{-1} \mathrm{FW}$ (98.3\%)

The relationship between Pisum sativum membrane associated transglutaminase activity and age of developing tissue was also investigated. The data is presented in figure 22 .

Figure 22. The effect of plant age on the cadaverine incorporation and casein cross-linking activities of Pisum sativum root membrane extract.

Figure 22 legend.

Four to 32 day old Pisum sativum root membrane extract was assayed for casein crosslinking and cadaverine incorporation activities at $37^{\circ} \mathrm{C}$ for 120 minutes as described in section 2.2.3. $250 \mu \mathrm{M}$ EDTA was used as negative control at each developmental stage giving average background values of 0.09 units and 0.13 units for casein cross-linking and cadaverine incorporation respectively. Data points represent the mean \pm SEM of 4 replicates. $(\bigcirc=$ casein cross-linking, $\quad=$ cadaverine incorporation).

Figure 22 shows that during root development, cadaverine incorporation activity peaks at day 4 at 65 units $\mathrm{Kg}^{-1} \mathrm{FW}$ and falls to 5 units $\mathrm{Kg}^{-1} \mathrm{FW}$ at day 32. Casein cross-linking activity also peaks at day 4 at 98 units $\mathrm{Kg}^{-1} \mathrm{FW}$ and falls to 14 units $\mathrm{Kg}^{-1} \mathrm{FW}$ at day 32 .

4.3 Discussion.

The ability of crude plant extracts to incorporate radiolabelled polyamines into proteins such as N^{\prime}, N^{\prime}-dimethylcasein has been demonstrated (Icekson and Apelbaum 1987; Serafini-Fracassini et al. 1988; Margosiak et al. 1990; Aribaud et al. 1995). In one case, this activity has in shown to be 100 fold less than that detected using animal transglutaminases (Signorini et al. 1991). Table 7 demonstrates that use of the conventional $\left[1,4-{ }^{14} \mathrm{C}\right]$-putrescine incorporation assay resulted in soluble transglutaminase activity being detected in only three of the eight tissues screened (Pisum sativum root and leaf tissue and Vicia faba leaf tissue). This suggests that this type of assay may be unsuitable for transglutaminase detection in some crude plant extracts. In addition, the $\left[1,4-{ }^{14} \mathrm{C}\right]$-labelled putrescine incorporation assay suffers from errors as large as $\pm 52 \%$ when screening Pisum sativum root extract for transglutaminase activity (table 7).

Transglutaminase activity was detected in all extracts screened using both the casein cross-linking assay (Lilley et al. 1997a) and the biotin-labelled cadaverine incorporation assay (Slaughter et al. 1992). This indicates that these assays are more suitable, for the detection of transglutaminase activity in crude plant extracts possibly due in part to greater sensitivity. Errors observed using these assays were also typically as low as \pm 8% for Pisum sativum root extract (table 7). The root tissue of all the species tested contained higher specific activity than the leaf tissue of the same species using both assays. Greatest specific activity was observed in the root tissue of Triticum aestivum where values of 2.74 and 2.18 units mg^{-1} were recorded for cadaverine incorporation and
casein cross-linking respectively. A decision was taken to focus the characterisation section of this research on Pisum sativum root transglutaminase as reasonably high specific activities of 1.21 and 1.02 units mg^{-1} were recorded for cadaverine incorporation and casein cross-linking respectively. Pisum sativum root tissue also produced above background plate absorbance values, which were higher than those obtained using Triticum aestivum root due to the low protein content of the extracts obtained from cereal root tissue. To eliminate the possibility of a contribution to assay signal by incorporation of endogenous biotinylated proteins or peroxidase enzymes, zero biotin and extravidin peroxidase controls were carried out and typically resulted in low plate background absorbances of between 0.04 and 0.05 units.

Figure 15 shows that the activity detected in Pisum sativum root tissue was found to be time dependent and linear for 60 minutes for both casein cross-linking and cadaverine incorporation. Further experiments carried out using Pisum sativum root tissue, were therefore incubated for 60 minutes. Furthermore, both the casein cross-linking reaction and the cadaverine incorporation reaction were shown to be enzymic as boiling plant root or leaf extract for 20 minutes resulted in total loss of transglutaminase activity. Figure 16 demonstrates the enzymic nature of $\left[1,4-{ }^{14} \mathrm{C}\right]$-labelled putrescine incorporation by Pisum sativum root extract. The reaction is time dependent and linear up to 80 minutes and subsequent experiments using this assay were carried out over a 60 minute incubation period. This figure does indicate that large errors are often observed when using this assay with Pisum sativum root extract. Such errors are not observed when using this assay to detect mammalian transglutaminase activity (data not presented).

Table 8 shows that the calcium chelating agent EGTA at 5 mM was unable to affect more than 35% inhibition of $\left[1,4-{ }^{14} \mathrm{C}\right]$-putrescine binding activity of extracts. The same concentration of EDTA caused a maximum inhibition of 19.5% observed in Pisum sativum leaf extract. Similar results have been reported by other workers using comparable assays and consequently they proposed that plant transglutaminase has no absolute calcium ion requirement (Icekson and Apelbaum 1987; Serafini-Fracassini et al. 1988 and 1995; Signorini et al. 1991).

However, recent research indicates the presence of a contaminating diamine oxidase in crude plant extracts which is able to incorporate $\left[1,4-{ }^{14} \mathrm{C}\right]$-putrescine into N^{\prime}, N^{\prime} dimethylcasein in a calcium independent manner. Diamine oxidase performs this reaction via oxidation of one amine group of $\left[{ }^{14} \mathrm{C}\right]$-putrescine to its aldehyde derivative followed by spontaneous reaction with protein amine groups resulting in Schiff base formation (see figure 3) (Siepaio and Meunier 1995; Chiarello et al. 1996a and 1996b). These contaminating activities do not appear to interfere with biotin cadaverine incorporation as chelation of calcium by 1 mM EDTA and 1 mM EGTA resulted in over 80% inhibition of Pisum sativum root and leaf transglutaminase activity and 100% inhibition of all the other extracts screened as shown by table 9. Similarly, no interference was observed using the casein cross-linking assay. Table 10 demonstrates that the casein cross-linking activity of Vicia faba leaf and Pisum sativum leaf was inhibited by over 80% by the chelation of calcium ions. The remaining extracts were inhibited by 100%. This data suggests that both plate assays are more suitable for the study of transglutaminase from crude plant cell extracts than the conventional $\left[1,4-{ }^{14} \mathrm{C}\right]$-putrescine incorporation assay.

The contribution to $\left[1,4-{ }^{14} \mathrm{C}\right]$-putrescine incorporation by possible diamine oxidase contamination was also investigated. Table 11 shows that addition of the copper ion chelator (diamine oxidase inhibitor) DIECA at a concentration of 5 mM inhibited the putrescine binding by 17.7%. Addition of the copper ion chelator o-phenanthroline at 5 mM caused a more pronounced 29.2% inhibition of the putrescine binding activity of Pisum sativum root transglutaminase. This data broadly supports the findings of Siepaio and Meunier (1995) and Chiarello et al. (1996a and 1996b) and suggests that at approximately 30% of the putrescine binding activity present in Pisum sativum root tissue is copper dependent. As a positive control, it was found that neither of the copper chelating agents were able to inhibit the putrescine binding activity of guinea pig liver transglutaminase (table 12). A further experiment was carried out to determine the extent to which DIECA and o-phenanthroline at a 5 mM concentration would inhibit the cadaverine incorporation and casein cross-linking reactions. Table 11 shows that 5 mM DIECA had no effect on Pisum sativum root cadaverine incorporation activity but a 13.0% inhibition was observed due to the addition of 5 mM o-phenanthroline. However, the 100 ng per well guinea pig liver transglutaminase positive control was inhibited by $12.7-19.1 \%$ in the presence of 5 mM DIECA and o-phenanthroline respectively (table 12). Similarly, table 11 shows that copper ion chelation by 5 mM o-phenanthroline caused 22.1% inhibition of the casein cross-linking activity of Pisum sativum root transglutaminase. It should be noted that guinea pig liver transglutaminase was also inhibited by $18.7-27.3 \%$ due to 5 mM concentrations of o-phenanthroline and DIECA respectively (table 12). This data suggests that the casein cross-linking assay and the cadaverine incorporation assay are not affected by interfering copper dependent enzymes since any reduction in Pisum sativum root transglutaminase activity caused by addition of

DIECA or o-phenanthroline is mirrored by the guinea pig liver transglutaminase positive control.

Resting levels of plant cytosolic calcium have been measured and found to be in the nanomolar range with brief rises to micromolar levels in response to appropriate stimulation. Calcium levels in the apoplast and in calcium stores have been detected in the millimolar range (Bush 1995). Activation of the biotin cadaverine incorporation activity of soluble Pisum sativum root transglutaminase by calcium was observed at levels of 20 nM and is represented by figure 17. Maximum activity was achieved at 94 nM free calcium suggesting that soluble Pisum sativum root transglutaminase is able to incorporate polyamines into proteins at resting levels of cytosolic calcium. Figure 18 demonstrates that activation of the protein cross-linking function of soluble Pisum sativum root transglutaminase occurs at $250 \mu \mathrm{M}$ but 80% of the observed activity occurs between 1 and 3 mM . This observation may indicate that in order to carry out the protein cross-linking reaction, soluble Pisum sativum root transglutaminase must be in a high calcium environment such as the extracellular environment or in the intracellular environment during calcium release resulting from cellular damage.

Furthermore, the activity of mammalian tissue transglutaminase is regulated by GTP at sub-optimal concentrations of calcium (Takeuchi et al. 1992; Bergamini and Signorini 1993; Smethurst and Griffin 1996). Table 13 shows that the biotin cadaverine incorporation activity of Pisum sativum root transglutaminase was not significantly inhibited by 1 mM GTP at a free calcium ion concentration of 80 nM . The activity of guinea pig liver transglutaminase was reduced by 52.1% in the presence of 2 mM free
calcium and 1 mM GTP. Similarly, table 13 shows that the casein cross-linking function of soluble Pisum sativum root transglutaminase was found to be uninhibited by 1 mM GTP at a free calcium ion concentration of 2 mM whereas the guinea pig liver transglutaminase positive control was inhibited by 35.3% at this concentration. These results indicate that in this respect Pisum sativum root transglutaminase may differ from mammalian tissue transglutaminase in that it may not contain a GTP binding site. Alternatively, the crude extract may be removing GTP from solution due to the action of GTPase activity.

Mammalian transglutaminases have a cysteine residue at the active site and as a result are irreversibly inhibited by reagents such as iodoacetamide and NEM (Smethurst and Griffin 1996). Table 14 shows that the $\left[1,4-{ }^{14} \mathrm{C}\right]$-putrescine incorporation activity of soluble Pisum sativum root transglutaminase was inhibited by 25.0% in the presence of 10 mM iodoacetamide. Similarly, soluble Pisum sativum and Vicia faba leaf extracts were inhibited by 12.4 and 20.5% respectively, due to addition of 10 mM iodoacetamide to the reaction buffer. There is little data in the literature with which to compare this finding but recently Kang and Cho (1996) reported a 60% inhibition of the [1,4- $\left.{ }^{14} \mathrm{C}\right]$-labelled putrescine binding activity of a purified Glycine max leaf transglutaminase activity upon addition of $100 \mu \mathrm{M}$ NEM to the reaction buffer. Table 15 shows that the inhibition of biotin cadaverine incorporation caused by the addition of 10 mM iodoacetamide varied between 0\% in Hordeum vulgare leaf tissue and 60% in Vicia faba leaf tissue. The same concentration of NEM brought about a reduction of cadaverine incorporation activity of between 0% in Triticum aestivim root and 100% in Vicia faba leaf. Table 16 however, shows that the casein cross-linking activity was unaffected by a 10 mM concentration of
either iodoacetamide or NEM. This data conflicts with the data presented in table 15 and one possible explanation for this is that the thiol group inhibitors are binding to thiol groups present at points other than the active site of plant transglutaminase thus sterically hindering the cadaverine incorporation reaction but not the casein cross-linking function. A further experiment was carried out to determine the effect of the thiol group stabiliser DTT (Cleland 1964) at various concentrations from $0-10 \mathrm{mM}$. Table 17 shows that DTT was not required for either the casein cross-linking or cadaverine incorporation reactions. The data also shows that up to 10 mM DTT did not have any inhibitory effect on Pisum sativum root transglutaminase. Other workers have shown DTT to slightly inhibit plant transglutaminase like activities (Icekson and Apelbaum 1987; Chiarello et al. 1996a; Siepaio and Meunier 1995). This data, coupled to the data presented in tables 15 and 16 suggests that there may be active site differences between mammalian transglutaminases and some transglutaminases found in plants.

Table 18 demonstrates that the biotin cadaverine incorporation activity present in Pisum sativum root extract can be inhibited by 45% following the addition of 10 mM spermine to the reaction buffer. This data suggests that plant transglutaminase is able to utilise polyamines other than cadaverine as acyl acceptor substrates and broadly supports the findings of other workers (Icekson and Apelbaum 1987; Serafini-Fracassini et al. 1988). As a control 100 ng per well of guinea pig liver transglutaminase was also incubated in the presence of 10 mM spermine and was inhibited by almost 60%. As well as utilising other acyl acceptor substrates, table 19 demonstrates that Pisum sativum root transglutaminase is able to utilise a preparation of N^{\prime}, N^{\prime}-dimethylated Vicia faba storage proteins as an amine acceptor substrate. There is however, little difference in the specific
activities observed between N^{\prime}, N^{\prime}-dimethylcasein and the dimethylated storage proteins. The purified guinea pig liver transglutaminase does however show an increase in specific activity of 28% when using storage proteins as the acyl donor substrate implying a greater number of available glutamine residues. This may indicate that there is a preferential endogenous substrate present in the crude Pisum sativum root extract, which out-competes the glutamine residues present in the Vicia faba storage protein preparation.

The pH optimum of soluble Pisum sativum root transglutaminase was determined to be pH 7.9. Figure 19 shows that this was the optimum pH for both casein cross-linking and biotin cadaverine incorporation activity. The profiles of both pH plots are similar, suggesting that both assays are detecting the same soluble activity in Pisum sativum root tissue. Other workers have demonstrated basic pH optima between 7.9 and 8.4 for transglutaminase activities in different tissues of Helianthus tuberosus (Falcone et al. 1993). The high pH optima observed may reflect the biochemistry of the transglutaminase enzymes because all of the transglutaminase reactions involve the release of a molecule of ammonia which may cause a high pH in the local environment.

A relationship exists between soluble transglutaminase activity and the age of Pisum sativum root tissue. Figure 20 demonstrates that transglutaminase activity increased over the first 18 days of development using both the biotin cadaverine incorporation and the casein cross-linking assays. This was followed by a sharp decrease in activity in 22 32 day old root tissue indicating that transglutaminase may be involved in early root growth and development. This suggestion is supported by a similar fluctuation in
transglutaminase activity in developing roots of Chrysanthemum morifolium (Aribaud et al. 1995). Figure 21 shows that in Pisum sativum leaf tissue both casein cross-linking activity and biotin cadaverine incorporation activity increase to a peak at days 25 and 15 respectively. Activity does not decline rapidly as for Pisum sativum root but remains at a level above that detected at day 8. Martin-Tanguy et al. (1996) also demonstrate rising levels of transglutaminase activity in developing shoot tissue using Chrysanthemum morifolium. Since transglutaminase is required both in developing and mature leaf tissue of Pisum sativum, this observation supports other reports, which propose roles for transglutaminase in photosynthesis (Margosiak et al. 1990; Del Duca et al. 1994 and 1995).

A mixed microsomal membrane preparation prepared from Pisum sativum root tissue was washed in 1 M KCl followed by $0.1 \%(w / v$ or $\mathrm{v} / \mathrm{v})$ concentration of either Triton X100, sodium deoxycholate or CTAB and assayed for transglutaminase activity. The biotin cadaverine incorporation and casein cross-linking activity of the membranes was partially removed by the salt wash as shown in table 20 suggesting that a proportion of the soluble activity is still present and associated with the membrane by an ion exchange effect. The results therefore indicate that the remaining activity, which was not removed by the KCl wash but required detergent to become solubilised, is associated with the membrane. The most effective detergent for both casein cross-linking and biotin cadaverine incorporation was shown to be sodium deoxycholate which solubilised more than 90% of the activity present on Pisum sativum root membranes. Table 20 also shows that CTAB was an effective detergent in terms of specific activity solubilised but it should be noted that use of this detergent resulted in low absolute absorbance values
and as a result sodium deoxycholate was selected for further membrane study. The fact that the use of CTAB resulted in a low total activity but high specific activity may indicate that this detergent could be of subsequent use for membrane transglutaminase purification experiments. Membrane bound forms of animal transglutaminases are also known to exist. One such transglutaminase is found in keratinocytes, anchored to the cell membrane by a fatty acid residue (Thacher and Rice 1985).

Figure 22 shows that both cadaverine incorporation and casein cross-linking activities of Pisum sativum root membrane transglutaminase showed a decreasing trend over a 4-32 day development period. This data may indicate that Pisum sativum root membrane transglutaminase might be involved in the early stages of root development.

At this point it should be noted that each of the eight plant extracts shown in table 7 were also screened using the N^{\prime}, N^{\prime}-bis (γ-glutamyl) polyamine cross-linking assay described in chapter 3 . No activity was observed using this assay with any of the extracts, possibly due to the lower sensitivity of this assay. As a result it was decided to re-test Pisum sativum root extract following partial purification and this is discussed further in chapter 6 .

Chapter 5- ε-(γ-glutamyl) Iysine isodipeptide analysis.

5.1 Introduction.

ε-(γ-glutamyl) lysine isodipeptide is one product of transglutaminase activity and the presence of this cross-link allows an assessment of the activity of the enzyme in a particular tissue (Griffin and Wilson 1984). Indeed, the correlation between isodipeptide levels and transglutaminase activity in human lung fibroblasts has been demonstrated by Birkbichler et al. (1978b). The presence of the isodipeptide in certain tissues has been an important finding as it has led to the elucidation of the role of the transglutaminase enzyme present. Pisano et al. (1971) showed that the mechanical and chemical stability of the clot formed during the blood coagulation cascade was directly related to a 1.6-2.0 $\mathrm{nmol} \mathrm{mg}{ }^{-1}$ level of ε-(γ-glutamyl) lysine present in the fibrin clot protein. Similarly, Williams-Ashman et al. (1972) demonstrated the relationship between the stability of the rodent post-ejaculatory seminal plug and the $37 \mathrm{nmol} \mathrm{mg}{ }^{-1}$ level of isodipeptide present in the cross-linked seminal proteins. The function of both plasma and prostate transglutaminase is directly related to the formation of the ε - $(\gamma$-glutamyl) lysine isodipeptide, which stabilises the protein in which it is present.

Transglutaminase enzymes without fully understood roles do have proposed biological functions, which mostly suggest that the enzymes have a stabilising effect on the tissues in which they are found. Tissue transglutaminase is thought to be involved in the stabilisation of the extracellular matrix due to the formation of ε-(γ-glutamyl) lysine cross-links between the matrix proteins, fibronectin, collagen, laminin and nidogen
(Juprelle-Soret et al. 1988; Barsigian et al. 1988). The keratinocyte enzyme is widely believed to stabilise the outer epidermal skin layer by cross-linking proteins in the terminally differentiating keratinocyte (Simon and Green 1991; Marvin et al. 1992).

Proposed roles for plant transglutaminase are also related to effects which may be caused by the formation of the ε-(γ-glutamyl) lysine cross-link. These include the dimerisation of the large sub-unit of RuBisCo (Keuhn et al. 1991) which has been proposed as the initial step of the assembly of the $\mathrm{L}_{8} \mathrm{~S}_{8}$ catalytically active structure (Roy et al. 1988). A further proposed role for plant transglutaminase, which is thought to involve the crosslinking of proteins, is the assembly and organisation of the cell wall (Grandi et al. 1992). This theory is supported by similar reports which suggest that transglutaminase may be an important factor in the assembly of the cell wall of the fungus Candida albicans (Sentandreu et al. 1995; Ruizherrera et al. 1995). These proposed theories regarding the cross-linking of proteins by plant transglutaminase are however unsupported since detection of the isodipeptide has not been reported in any of the listed publications.

The methods used to quantify the ε-(γ-glutamyl) lysine isodipeptide may be conveniently divided into two distinct sections, namely direct and indirect. One indirect method involves derivatisation of the un-reacted ε-lysine residues of cross-linked protein with either nitrous acid (Lorand et al. 1966) or acrylonitrile (Pisano et al. 1969) followed by total hydrolysis of the protein to liberate free lysine residues. The liberated free lysine must be derived from lysine, which was initially blocked by glutamine incorporated by transglutaminase. In a further indirect method, fluorescent amine markers have been
incorporated by transglutaminase to quantify the amine acceptor sites in fibrin (Lorand and Ong 1976; Lorand et al. 1968; Lorand and Chenoworth 1969).

Direct methods for ε-(γ-glutamyl) lysine quantitation involve isolation of the isodipeptide which has been released from cross-linked protein by hydrolysis (For a review of the methods see Griffin and Wilson 1984). Workers initially attempted to liberate the crosslink from guinea pig liver protein using a combination of proteolysis and acid hydrolysis (Schweet 1955 and 1956). This proved unsuccessful and was soon replaced by a method involving exhaustive proteolytic digestion alone. Korngruth et al. (1963) showed that the ε-(γ-glutamyl) lysine cross-link was resistant to the action of chymotrypsin, leucine amino peptidase and pronase. More recently, a variety of proteolytic enzyme cocktails have been developed which commonly include subtilisin and carboxypeptidase Y (Griffin et al. 1982). The cocktail of proteolytic enzymes used depends entirely on the composition of the protein to be digested and must be determined empirically.

To quantify the liberated isodipeptide, it must first be separated from the amino acids and peptides present in the proteolytic digest. This is usually carried out by one of two principle techniques, ion exchange chromatography or reversed phase HPLC (Griffin and Wilson 1984). Because the liberated isodipeptide is often present at extremely low levels (in the order of pmol mg ${ }^{-1}$) a pre-purification step may be required prior to applying the digest to either method in order to prevent flanking amino acids interfering with the isodipeptide peak. Whether or not this step is carried out is dependent on the type of tissue the proteolytic digest was derived from (Griffin and Wilson 1984). The ion exchange method has been carried out using a variety of resins including Dionex DC-4
for the separation of isodipeptide from human fibroblast protein digests (Birkbichler et al. 1977) and Custom AA-15 for the separation of isodipeptide from clotted guinea pig vesicular protein digest (Williams-Ashman et al. 1972). The digested protein is subjected to either post-column derivatisation with ninhydrin or post-column derivatisation using OPA to enable post-separation amino acid analysis. A standard isodipeptide spike is usually added to allow accurate identification and quantitation of the isodipeptide present in the sample.

The reversed phase HPLC method has also been carried out using a variety of resins including Zorbax C_{8} (Griffin et al. 1982) and Cosmosil AR C_{18} (Sato et al. 1992). The main advantage of this type of separation is the increased sensitivity observed (in the order of femtomoles of isodipeptide) when phenylisothiocyanate is used as the fluorescent deriviatising agent (Sato et al. 1992). The speed of the procedure is also improved since the HPLC technique can be carried out in 12-14 minutes compared to 140 minutes for the ion exchange method (Griffin and Wilson 1984).

The detection of the isodipeptide product of the transglutaminase reaction is regarded as the only unequivocal proof of the existence of a catalytically active transglutaminase (Folk and Finlayson 1977). Detection of N^{\prime}, N^{\prime}-bis $\left(\gamma\right.$-glutamyl) polyamine and $N^{\prime}-(\gamma-$ glutamyl) polyamine linkages has been demonstrated in plant tissue (Signorini et al. 1991; Del Duca et al. 1995) and this does provide good evidence for the presence of a catalytically active transglutaminase but as pointed out by Tack et al. (1981) and Beninati et al. (1988), these conjugates may form without the action of transglutaminase. Chiarello et al (1996a) attempted to demonstrate the ε-(γ-glutamyl) lysine cross-linking
of bovine β-casein by an extract prepared from 10 day old etiolated Pisum sativum apical meristematic hook tissue using exhaustive proteolytic digestion followed by reversed phase HPLC analysis. This approach proved unsuccessful suggesting that concentration of transglutaminase in the extract may be too low to produce a detectable level of isodipeptide when using this physiologically irrelevant substrate. It was one aim of this section to repeat Chiarello's experiment using 14 day old Pisum sativum root protein as this was shown to be more active than young Pisum sativum leaf protein (table 7). A further aim was to analyse total soluble protein extracted from Pisum sativum roots and leaves for the presence of endogenous isodipeptide in order to unequivocally demonstrate the presence of transglutaminase in these tissues. The technique used was exhaustive proteolytic digestion followed by ion exchange separation and subsequent amino acid analysis of the resultant eluent.

5.2 Results.

A decision was taken to investigate the ε-(γ-glutamyl) lysine isodipeptide content of 14 day old Pisum sativum root tissue initially as it was shown to contain approximately four fold more transglutaminase activity than Pisum sativum leaf tissue of the same age (table 7). The cross-link analysis result is shown in figure 23.

Figure 23. The ε-(γ-glutamyl) lysine isodinentide present in Pisum sativum root

tôtal soluble protein.

Figure 23 legend.

Four hundred micrograms of Pisum sativum root soluble protein was proteolytically digested as described in section 2.2.1.4. The resultant digest was then analysed according to the method detailed in section 2.2.4.4. The solid line represents the amino acid analysis profile. The dashed line indicates the same sample with an added 1 nmol isodipeptide standard spike to confirm the identity of the reaction product and enable accurate quantitation of the isodipeptide detected. Figure 23 represents one of three runs.

The level of isodipeptide present was $0.51 \pm 0.04 \mathrm{nmol} \mathrm{mg}^{-1}$. An experiment to determine the levels of isodipeptide present at different stages of root development was also carried out and the data is presented in table 22.

Table 22. The isodipentide content of Pisum sativum root tissue soluble protein at
various stages of root development.

Stage of root development	Isodipeptide conc. (nmol $\mathbf{K g}^{-1} \mathbf{F W} \pm$ SEM)
Day 4	1200 ± 210
Day 8	160 ± 10
Day 11	240 ± 40
Day 15	160 ± 12
Day 18	240 ± 0
Day 22	310 ± 0
Day 25	140 ± 0
Day 28	80 ± 0
Day 32	60 ± 0

Four to thirty two day old Pisum sativum soluble root protein was proteolytically digested as described in section 2.2.1.4. Four hundred micrograms of the resultant digest was then analysed for the presence of ε-(γ-glutamyl) lysine isodipeptide as detailed in section 2.2.4.4. Data points represent the mean \pm SEM of 3 replicates.

Table 22 demonstrates a relationship between the age of developing Pisum sativum root tissue and the endogenous level of ε - $(\gamma$-glutamyl) lysine isodipeptide present. The isodipeptide level peaks at day 4 with a value of $1200 \mathrm{nmol} \mathrm{Kg}{ }^{-1}$ FW. There is then a decrease over the period studied to a level of $60 \mathrm{nmol}_{\mathrm{Kg}}{ }^{-1} \mathrm{FW}$ at day 32 .

Pisum sativum leaf total protein was also screened for the presence of ε - $(\gamma$-glutamyl) lysine isodipeptide cross-links. The result is shown in figure 24.

Figure 24. ε-(γ-glutamvl) Ivsine isodipeptide analysis of Pisum sativum leaf total soluble protein.

Figure 24 legend.

Four hundred micrograms of Pisum sativum leaf soluble protein was proteolytically digested as described in section 2.2.1.4. The resultant digest was then analysed according to the method detailed in section 2.2.4.4. Figure 24 represents the amino acid analysis profile.

The experiment was repeated 3 times but figure 24 shows that no isodipeptide was detected in Pisum sativum leaf protein. A pre-purification step (as detailed in section 2.2.4.1) was undertaken to attempt to remove contaminating leucine. Following prepurification, the Pisum sativum extract was re-tested (figure 25).

Figure 25. ε-(γ_{-}glutamvl) lvsine cross-link analvsis of anion exchange purified
Pisum sativum leaf total soluble protein.

Figure 25 legend.

Four hundred micrograms of anion exchange purified Pisum sativum leaf soluble protein was prepared as described in section 2.2.4.1. The resultant purified digest was then analysed according to the method detailed in section 2.2.4.4. The solid line represents the amino acid analysis profile. The dashed line indicates the same sample with an added 1 nmol isodipeptide standard spike to confirm the identity of the reaction product and enable accurate quantitation of the isodipeptide detected. Figure 25 represents one of three runs.

Figure 25 shows that purification of the sample reduced the quantity of leucine considerably, allowing detection of a small ε - $(\gamma$-glutamyl) lysine isodipeptide peak of 210 $\pm 5 \mathrm{pmol} \mathrm{mg}^{-1}$ (allowing for 70% recovery following purification according to Lilley et al. 1998).

To further validate the casein cross-linking assay as a suitable method for plant transglutaminase detection, a sample of bovine casein was cross-linked in the solution phase by a protein extract prepared from Pisum sativum root tissue. The ε-(γ-glutamyl) lysine present following the cross-linking was detected as shown by table 23 and figure 26.

Table 23. Cross-link analvsis controls and levels of isodinentide detected due to the cross-linking of bovine casein bv soluble Pisum sativum root extract.

Experiment	Zero time isodipeptide (pmol $\mathbf{m g}^{-1} \pm$ SEM)	Isodipeptide after 16 hours (pmol $\mathbf{m g}^{-1} \pm$ SEM)
Extract + casein + $\mathbf{C a}^{\mathbf{2 +}}$	320 ± 16	$688 \pm \mathbf{3 2}$
Extract + casein + EDTA	288 ± 18	320 ± 7
Extráct ălone + Ca	560 ± 30	
Extract alone + EDTA	400 ± 24	448 ± 41

One point five milligrams of Pisum sativum root protein was incubated on its own or with 10 mg of bovine casein as described in section 2.2.4.6. The resultant protein was digested and analysed as described in sections 2.2.1.4 and 2.2.4.4 respectively. As a positive control, 500 ng per tube of guinea pig liver transglutaminase was also incubated with 10 mg of bovine casein producing an isodipeptide level of $81 \mathrm{pmol} \mathrm{mg}^{-1} \mathrm{~h}^{-1}$. The results represent the mean \pm SEM of 3 replicates.

Table 23 shows that the level of isodipeptide formed due to the action of Pisum sativum root transglutaminase on other root proteins was $7 \mathrm{pmol} \mathrm{mg}^{-1} \mathrm{~h}^{-1}$. The level formed due to the action of Pisum sativum root transglutaminase on casein and other root proteins was $23 \mathrm{pmol} \mathrm{mg}^{-1} \mathrm{~h}^{-1}$. By calculation, the level of casein cross-linking carried out by the Pisum sativum root transglutaminase was $25.3 \mathrm{pmol} \mathrm{mg}^{-1} \mathrm{~h}^{-1}$. Figure 26 is one of 3 amino acid analysis profiles from which the data in table 23 was derived.

Figure 26. The ε-(γ-glutamyl) lysine isodipeptide present following the 16 hour cross-linking of bovine casein using soluble Pisum sativum root transglutaminase.

Figure 26 legend.

Ten milligrams of bovine casein was incubated for 16 hours at $37^{\circ} \mathrm{C}$ with 1.5 mg of rapidly de-salted Pisum sativum root extract (see section 2.2.1.2) according to the method described in section 2.2 .4 .6 . The resultant cross-linked protein was subjected to proteolytic digestion as described in section 2.2.1.4 and 0.4 mg was applied to the amino acid analysis column. The dashed line represents the 5 mM calcium chloride activated sample plus a 1 nmol isodipeptide standard spike. The solid line shows the same sample without the isodipeptide spike. The intermittent dot/dash line shows the same sample with a final EDTA concentration of 5 mM

Figure 26 represents a level of isodipeptide of 43 ± 2 and $20 \pm 0 \mathrm{pmol} \mathrm{mg}^{-1} \mathrm{~h}^{-1}$ for the calcium and EDTA controls respectively as determined by the method described in section 2.2.4.4.

5.3 Discussion.

Pisum sativum root total soluble protein was subjected to exhaustive proteolytic digestion followed by subsequent ion exchange chromatography and amino acid analysis. The level of ε - $\left(\gamma\right.$-glutamyl) lysine isodipeptide present was $0.51 \pm 0.04 \mathrm{nmol} \mathrm{mg}^{-1}$ (figure 23). The isodipeptide eluted with an authentic standard and this data indicates the presence of a catalytically active transglutaminase in Pisum sativum root tissue (Folk and Finlayson 1977; Lilley et al. 1997b and 1998). The data presented in figure 23 also supports the assay data in chapter 4 which shows that plant transglutaminases are able to cross-link bovine casein. The level detected is however relatively low compared to quantities present in mammalian tissues. Clotted guinea pig semen has been shown to contain over 70 times this level (Williams-Ashman et al. 1972) and over 3 times this level is present in the human fibrin clot (Pisano et al. 1971). The data concerning the level of isodipeptide present broadly concurs with assay activity data gathered by Signorini et al. (1991) which suggested transglutaminase activity in plant tissue was up to 100 fold less than that seen in some animal tissues.

The level of isodipeptide present in Pisum sativum root tissue was determined over a 32 day developmental period as shown by table 22. The concentration of isodipeptide was relatively high at day 4 with an observed quantity of $1200 \mathrm{nmol} \mathrm{Kg}^{-1} \mathrm{FW}$. This level was shown to fall sharply over the remaining 28 days of the development period to 60 nmol $\mathrm{Kg}^{-1} \mathrm{FW}$ at day 32. The pattern of cross-link detected over the development period does not follow the pattern of activity shown by the soluble enzyme in figure 20 but does mirror the both the casein cross-linking activity and the cadaverine incorporation activity shown by the developing root membrane enzyme in figure 22. This observation implies
that the membrane-associated transglutaminase may be actively cross-linking protein which ultimately resides in the cytosol. This may imply a role for the membrane bound enzyme in early root development. The high soluble root enzyme activity observed at day 15 (figure 20) could possibly reflect a polyamine incorporating role for the soluble enzyme at this stage of root development as no ε-(γ-glutamyl) lysine appears to be synthesised between day 4 and day 32 . The observed fall in isodipeptide present over the 32 day period corresponds to a decrease in total soluble protein extracted from the tissue. This implies that the high level of isodipeptide present in the early stages of development remains in the root tissue bound to low molecular mass material derived from protein catabolism. This isodipeptide would therefore not be detected due to the method only collecting the isodipeptide present as protein cross-links.

The isodipeptide content of Pisum sativum leaf total soluble protein was also investigated. Figure 24 shows that by employing the same method as that used for root protein, no detectable level of isodipeptide was observed. The major peak flanking the position of isodipeptide elution is leucine and in many cases this is known to interfere with the detection of small quantities of ε-(γ-glutamyl) lysine (Griffin and Wilson 1984). Since we had already detected both cadaverine incorporation activity and casein crosslinking activity in Pisum sativum leaf extracts (table 7), it was decided to undertake a pre-purification step to further the attempt to detect isodipeptide in this tissue. This was carried out using the method of Lilley et al. (1998). When a mixture of standard isodipeptide and leucine was separated using this method. Up to 95% of the contaminating leucine was removed and on average 70% of the ε-(γ-glutamyl) lysine was recovered (Lilley et al. 1998). The quantity of isodipeptide present in the Pisum sativum
leaf soluble protein was calculated by correction for the percentage recovery. Possible explanations for losing up to 30% of the isodipeptide using this technique include the number of handling steps involved in the method or inaccurate neutralisation of samples prior to concentration by freeze drying which could facilitate hydrolysis of the isodipeptide as acid or base strength in the sample increases. Figure 25 does however show that using this method, a detectable level of $210 \mathrm{pmol} \mathrm{mg}^{-1}$ could be observed in Pisum sativum leaf tissue. To see and quantify the isodipeptide, the scale has been expanded by a factor of approximately 2.5 over the corresponding root tissue profile. This level is less than 50% of that seen in root tissue and this correlates with the relative casein cross-linking activities observed in day 14 Pisum sativum root and leaf tissue (table 7).

To attempt to validate the casein cross-linking assay, Chiarello's (1996a) casein crosslinking investigation was repeated using Pisum sativum root extract, which has a higher specific activity than the leaf extract of the same age (table 7). The incubation time was also increased from 4 hours up to 16 in an attempt to detect the cross-link. Table 23 and figure 26 show that the Pisum sativum root extract was able to catalyse the cross-linking of casein via ε - $(\gamma$-glutamyl) lysine isodipeptide cross-links. The calcium dependence of the reaction is clearly demonstrated by figure 26 . The intermittent line represents the cross-linking reaction with exogenously added 5mM EDTA. This reaction has produced no significant increase in cross-links above the endogenous level of $20 \mathrm{pmol} \mathrm{mg}^{-1} \mathrm{~h}^{-1}$ shown for the casein + extract zero time control in table 23 . The level detected due to the addition of 5 mM calcium chloride to the reaction mixture (solid line on figure 26) was $25.3 \mathrm{pmol} \mathrm{mg}^{-1} \mathrm{~h}^{-1}$ and this relates to an increase in cross-links of 1 per every 25
casein molecules over the full 16 hour period. This is a relatively low level compared to that observed due to the addition of 500 ng per sample of guinea pig liver transglutaminase to the casein which resulted in an increase of $81 \mathrm{pmol} \mathrm{mg}^{-1} \mathrm{~h}^{-1}(1$ crosslink per 8 casein molecules over the 16 hours). The low level observed using the Pisum sativum root extract could be attributed to the low concentration of enzyme present in the extract. Nevertheless, this data does demonstrate that the Pisum sativum root protein extract is able to cross-link bovine casein when calcium is added to the reaction mixture thus validating the casein cross-linking assay used to gather data in chapter 4.

Chapter 6- Partial purification of soluble Pisum sativum root transglutaminase.

6.1 Introduction.

Several of the mammalian transglutaminases have important physiological functions (see chapter 1) and it has therefore become desirable to purify transglutaminase enzymes in order to study and compare their structures. Purification has enabled antibodies to be raised to transglutaminase enzymes having as yet no biological function ascribed to them. This has enabled their role to be investigated extensively in such tissues as guinea pig liver where purification of the enzyme has also yielded information concerning molecular mass (Connellan et al. 1971), kinetics (Folk and Chung 1973) and the active site cysteine residue at position 276 (Ikura et al. 1988). Although the active site region of transglutaminase enzymes is extremely well conserved, there are differences in structure due to the number and arrangement of amino acid residues present (Guinea pig liver transglutaminase has 690 amino acid residues compared to factor XIIIa, which has 731 amino acid residues (Klein et al. 1992)). These differences make it necessary to employ different techniques to purify the enzymes but it should be noted that the core techniques of ion exchange and gel filtration chromatography are commonly used steps in many transglutaminase purifications (for review see Wilhelm et al. 1996).

Ion exchange chromatography involves the reversible binding of charged crude protein extracts to an immobilised, oppositely charged resin such as FFQ Sepharose. The binding reaction is based on the crude protein being applied to the resin in a pH -adjusted buffer to ensure that the protein carries an opposite charge to the resin. The
heterogeneous crude extract is then usually separated by the application of a linear sodium chloride concentration gradient to the column, which has the effect of eluting different proteins at different salt concentrations due to their charge differences. The salt ions compete with the proteins for charged sites on the resin and proteins with the lowest charge are eluted by the lowest salt concentrations. Ion exchange chromatography is capable of separating proteins with only minor charge differences and as a result it is a powerful initial purification technique (for a review see Karlsson et al. 1989).

Gel filtration chromatography separates protein molecules based on differences in size. The heterogeneous protein-containing buffer is passed through a column of immobilised gel filtration particles, which contain small pores, comparable in size to the protein molecules present in the heterogeneous mixture. The smallest protein molecules are able to occupy the pores in the gel filtration media and as a result they diffuse from the buffer into the pores and their progress through the column is impeded. The protein molecules with the highest molecular mass pass through the column without entering the pores of the gel filtration media and are thus eluted first resulting in separation of the higher molecular mass proteins from lower molecular mass proteins. This technique is rarely used as an initial purification step as crude protein extracts are often viscous, resulting in poor resolution. The method does, however allow for an estimation of molecular mass of the protein of interest to be made (For a review see Hagel 1989).

Tissue transglutaminase has been purified from a variety of biological sources including guinea pig liver (Folk and Cole 1966; Connellan et al. 1971; Brookhart et al. 1983) and rat liver (Chang and Chung 1986; Knight et al. 1990; Wong et al. 1990) using a variety
of different techniques. All purifications listed above did however employ an initial ion exchange step (resins used include DEAE Sepharose, MonoQ, DEAE cellulose and QAE Sephadex). A sodium chloride gradient was used in each case to elute the transglutaminase and EDTA was included in some of the elution buffers to prevent autoaggregation of the transglutaminase via available lysine and glutamine residues. One step purifications have also been reported for tissue transglutaminase and these include an immunoaffinity purification using a monoclonal antibody to guinea pig liver transglutaminase (Ikura et al. 1985) and a calcium ion dependent affinity purification of rat liver transglutaminase using casein-Sepharose (Croall and DeMartino 1986).

Human platelet factor XIIIa has also been successfully purified using a combination of ion exchange chromatography on DEAE cellulose, gel filtration chromatography using Sephacryl S-300 and hydrophobic interaction chromatography using Phenyl Sepharose CL-6B (Ando et al. 1987). Human plasma factor XIII was purified in a similar manner using ion exchange chromatography on DEAE Sephacel and gel filtration chromatography on BioGel A-5M (Ichinose and Kaetsu 1993). Other mammalian transglutaminases, which have been purified to apparent homogeneity include haemocyte transglutaminase (Tokunaga et al. 1993), keratinocyte transglutaminase (Chang and Chung 1986) and epidermal transglutaminase (Ogawa and Goldsmith (1976).

Transglutaminase enzymes have also been purified from sources other than mammals. Klein et al. 1992 purified a 77 kDa transglutaminase from the slime mould Physarum polycephalum using polyethylene glycol precipitation, ion exchange chromatography and isoelectric focusing. Singh and Mehta (1994) isolated a transglutaminase from the filarial
nematode Brugia malayi with a molecular mass of 56 kDa using thermoprecipitation, ammonium sulphate precipitation, ion exchange chromatography and gel filtration chromatography. The enzyme was found to be highly thermostable with optimum activity observed at $55^{\circ} \mathrm{C}$.

To date transglutaminase-like activities have been purified from a number of plant sources including Glycine max leaves and Lupinus albus seedlings (Kang and Cho 1996; Pallavicini et al. 1992). The Glycine max crude protein extract was precipitated using $50-70 \%$ (sat.) ammonium sulphate and then subjected to a series of ion exchange purification steps (DEAE Sepharose, Blue Sepharose CL-6B and ω-aminohexyl agarose). The final purification procedure involved a unique affinity step on α-casein agarose using 1 mM spermidine to elute the amine incorporating activity. The purification of the enzyme enabled Kang and Cho to estimate a molecular mass for the Glycine max enzyme of 80 kDa by SDS-PAGE. The purified activity was inhibited by NEM and GTP and activated by DTT suggesting some similarities between this enzyme and the transglutaminase found in mammalian tissues. It should however be noted that the activity observed by Kang and Cho (1996) was calcium independent. Pallavicini et al. (1992) used ion exchange chromatography on QAE-Sephadex A-50 to purify Lupinus albus seedling transglutaminase, which they then used to polymerise milk proteins.

The principle objective of this section of the thesis was to use appropriate techniques such as ion exchange chromatography and gel filtration chromatography to purify and further characterise the transglutaminase activity present in Pisum sativum root protein
extract in terms of estimated molecular mass, enzyme kinetics, inhibition by iodoacetamide and NEM and the ability to cross-link casein via N^{\prime}, N^{\prime}-bis $(\gamma$-glutamyl) polyamine cross-bridges.

6.2. Results.

The initial method chosen to purify the crude Pisum sativum root extract was ion exchange chromatography since this had previously been used successfully to purify mammalian transglutaminases (for a review see Wilhelm et al. 1996). The resin chosen for the purification was FFQ Sepharose and the resultant profile is presented in figure 27.

Figure 27. Ion exchange chromatogram for the purification of soluble Pisum

sativum root transglutaminase.

Figure 27 legend.

Eighteen point four milligrams of Pisum sativum root protein was applied to a 6.0 ml FFQ Sepharose anion exchange column ($6.5 \times 1.2 \mathrm{~cm}$) and eluted using a $0-1.0 \mathrm{M}$ sodium chloride gradient as described in section 2.2.4.2 (solid lines). The broken line shows the biotin cadaverine incorporation activity of each of the eluted fractions as determined by the method described in section 2.2.3.1. As a negative control, $250 \mu \mathrm{M}$ EDTA was added to the reaction buffer giving an average background of 0.14 units

Figure 27 demonstrates that the transglutaminase activity eluted at a sodium chloride concentration between 0.3 and 0.5 M . The ion exchange purified Pisum sativum salteluted peak was further purified by gel filtration chromatography on Sephacryl 100-HR (figure 28). Key- \longrightarrow Protein elution
------ Activity
.-_Sodium chloride gradient

Figure 28. Gel filtration chromatogram for the purification of soluble Pisum
sativum root transglutaminase.

Figure 28 legend.

Seven point two milligrams of Pisum sativum root protein was applied to a 35.0 ml Sephacryl $100-\mathrm{HR}$ column and eluted as described in section 2.2.4.3. Transglutaminase activity of the eluted fractions was detected using the cadaverine incorporation assay described in section 2.2.3.1 as shown demonstrated by the dashed line. As a negative control, $250 \mu \mathrm{M}$ EDTA was added to the reaction buffer giving an average background of 0.09 . The column was calibrated (inset) as described in section 2.2.4.3.

Figure 28 demonstrates that Pisum sativum root transglutaminase eluted at a volume of 21.5 ml . The relative molecular mass of the active peak was estimated to be 36000 . Table 24 (overleaf) gives a summary of the two purification strategies in terms of percentage yield and purification index. Key \rightarrow Protein elution
...-. Activity

Table 24. The partial purification of biotin cadaverine incorporation activity from

soluble Pisum sativum crude root extract.

Step.	Volume (ml)	Concentration $\left(\mathbf{m g ~ m l}^{-1}\right)$	Total protein $(\mathbf{m g})$	Specific activity (units $\left.\mathbf{m g}^{\mathbf{1}}\right)$	Total activity (units)	Yield (\%)	Fold pure
Crude extract	4.0	4.6	18.4	1.30	24.0	100.0	1.0
FFQ Sepharose	18.0	0.4	7.2	1.55	11.16	46.5	1.19
Sephacryl 100-HR	5.0	0.2	1.0	8.29	8.29	34.5	6.38

A total of 18.4 mg of Pisum sativum root protein was purified using the techniques of anion exchange and gel filtration chromatography (sections 2.2.4.2 and 2.2.4.3 respectively). The cadaverine incorporation assay used to detect the eluted activity was carried out for 60 minutes at $37^{\circ} \mathrm{C}$ as described in section 2.2.3.1.

Table 24 shows that following separation, 1.0 mg of plant protein remained with an increased specific activity of 8.29 units mg^{-1}. The transglutaminase was purified 6.38fold with a recovered yield of 34.5%. The partially purified extract was separated and visualised using SDS-PAGE electrophoresis (plate 5).

Plate 5. SDS-PAGE electrophoretogram of crude and partially purified soluble
Pisum sativum root transglutaminase.

Plate 5 legend.

Twenty five micrograms of protein obtained from each stage of the purification of Pisum sativum root transglutaminase was applied to an SDS-PAGE gel as detailed in section 2.2.5. As a positive control, $25 \mu \mathrm{~g}$ of purified guinea pig liver transglutaminase was applied to lane 4 of the gel.

Plate 5 demonstrates that there is a protein band present between 31 and 45 kDa , which is close to the molecular mass of the Pisum sativum root transglutaminase activity as estimated by gel filtration chromatography.

The partially purified Pisum sativum root transglutaminase was further characterised in terms of kinetics and the effect of transglutaminase inhibitors. The results are displayed in figures 29-30 and table 24.

Figure 29. Rate of the biotin cadaverine incordoration reaction as a function of the concentration of biotin labelled cadaverine using ion exchange purified soluble

Pisum sativum root extract.

Figure 29 legend.

Ion exchange purified Pisum sativum root transglutaminase (prepared as described in section 2.2.4.2) was assayed at $37^{\circ} \mathrm{C}$ for 60 minutes in the presence of various concentrations of biotin labelled cadaverine as described in section 2.2.3.1. Negative controls containing $250 \mu \mathrm{M}$ EDTA gave an average background of 0.08 units. Boiled extract controls gave an average background of 0.11 units. A buffer only control resulted in a background of 0.10 units. Zero extravidin peroxidase and biotin labelled casein controls resulted in an average absorbance of 0.05 units. Data points represent the mean \pm SEM of 4 replicates.

Figure 29 shows that an increase in biotin labelled cadaverine concentration resulted in a non-linear increase in absorbance up to a biotin cadaverine concentration of $375 \mu \mathrm{M}$. The K_{m} of biotin labelled cadaverine was calculated to be $190 \mu \mathrm{M}$ for Pisum sativum root transglutaminase (Enzfitter, Biosoft U.K).

Figure 30. Rate of the casein cross-linking reaction as a function of the concentration of biotin labelled casein using ion exchange purified soluble Pisum sativum root extract.

Figure 30 legend.

Ion exchange purified Pisum sativum root transglutaminase (prepared as described in section 2.2.4.2) was assayed at $37^{\circ} \mathrm{C}$ for 60 minutes in the presence of various concentrations of biotin labelled casein as described in section 2.2.3.2. Negative controls containing $250 \mu \mathrm{M}$ EDTA gave an average background absorbance of 0.13 units. Boiling the extract for 20 minutes resulted in an average background of 0.17 units. A buffer only control resulted in a background of 0.15 units. Zero extravidin peroxidase and biotin labelled casein controls resulted in an average absorbance of 0.05 units. Data points represent the mean \pm SEM of 4 replicates.

Figure 30 shows that an increase in biotin labelled casein concentration resulted in a linear increase in absorbance up to a biotin casein concentration of $0.5 \mu \mathrm{~g} \mathrm{ml}{ }^{-1}$. The K_{m} of biotin labelled casein was calculated to be $0.2 \mu \mathrm{~g} \mathrm{ml}{ }^{-1}$ for Pisum sativum root transglutaminase (Enzfitter, Biosoft U.K).

Table 25. The effect of 10 mM iodoacetamide and 10 mM NEM on the biotin

labelled cadaverine incorporation activity of ion exchange purified soluble Pisum

sativum root transglutaminase.

	Specific activity		
Units $\mathbf{m g}^{-1} \pm \mathbf{S E M}$			
Type of activity	Uninhibited	$+\mathbf{1 0 m M} \mathbf{~ N E M}$	+10 mM iodoacetamide
Casein cross- linking	1.24 ± 0.11	$1.29 \pm 0.10(0)$	$1.27 \pm 0.07(0)$
Cadaverine incorporation	1.44 ± 0.09	$1.31 \pm 0.12(9.0)$	$1.19 \pm 0.08(17.4)$

Ion exchange purified Pisum sativum root extract was assayed for casein cross-linking and cadaverine incorporation activity in the presence of 10 mM NEM or 10 mM iodoacetamide. The assays were carried out at $37^{\circ} \mathrm{C}$ for 60 minutes as described in section 2.2.3. The thiol group inhibitors were pre-incubated with the extract in the presence of $5 \mathrm{mM} \mathrm{CaCl}_{2}$ for 30 minutes. As a positive control, 100 ng per well of guinea pig liver transglutaminase was also incubated in the presence of 10 mM concentrations of the thiol group inhibitors and no activity was observed. Data points represent the mean \pm SEM of 4 replicates.

Table 25 shows that no inhibition of ion exchange purified Pisum sativum root transglutaminase was observed due to the addition of thiol group inhibitors to the casein cross-linking reaction buffer. Small inhibitions of the cadaverine incorporation reaction of 9.0 and 17.4% for NEM and iodoacetamide respectively were however observed (presented in brackets immediately after the specific activity).

6.3. Discussion.

The anion exchange procedure carried out using the crude Pisum sativum root extract did result in separation of the proteins. Figure 27 shows that there was a significant quantity of protein that did not bind to the FFQ Sepharose column (fractions 3-7) and a larger quantity of protein that did bind and was removed by the linear sodium chloride gradient (fractions 12-25). A further small quantity of tightly bound protein was also removed by the application of a 2.0 M sodium chloride wash to the column (fractions $40-$ 46). The cadaverine incorporation activity was detected in two peaks, one in the unbound and one in the range of sodium chloride concentration between $0.3-0.5 \mathrm{M}$. Both the unbound and the salt eluted activity peaks were assayed for protein cross-linking activity giving values of 1.28 ± 0.11 and 1.41 ± 0.09 units mg^{-1} respectively suggesting that both peaks contain the same enzyme. A relatively poor purification index of 1.19 (table 24) was observed prior to gel filtration despite removal of over 60% of the protein. This was due to the loss of a large amount of the activity in the unbound fractions. If the loss of activity was due to column overloading, the ion exchange step could be improved in future development by either loading less onto the column, using a larger column or a higher capacity resin. For the purpose of the purification, the salt eluted peak of activity was applied to the gel filtration column.

The gel filtration step is represented by figure 28 . The technique did successfully separate the proteins remaining after the ion exchange step with the transglutaminase activity detected at an elution volume of 21.5 ml . This step resulted in a final purity index of 6.38 since only 12% of the remaining activity was lost compared to 86% of the remaining protein. Calibration of the column using the method described in section
2.2.4.3 (calibration is inset) resulted in an estimated molecular mass of Pisum sativum root transglutaminase of 36 kDa . This observation closely corresponds to an estimated molecular mass of $37-39 \mathrm{kDa}$ for an amine incorporating enzyme present in Medicago sativa floral buds (Keuhn et al. 1991). An attempt was made to store the active fractions at $-20^{\circ} \mathrm{C}$ but no activity remained after thawing. This loss of activity may be due to proteolysis or sensitivity to a freeze / thaw cycle. In future purifications a protease inhibitor cocktail should be included to minimise the possibility of proteolytic degradation of the transglutaminase activity.

Plate 5 is an SDS-PAGE electrophoretogram demonstrating the reduction in the number of discrete protein bands present at each stage of the purification. The gel filtration lane of the electrophoretogram does contain a band of molecular mass between 31 and 45 kDa . The band in question also appears to be getting stronger in intensity as one might expect following two purification steps.

Figure 29 shows the relationship between activity and the concentration of biotin labelled cadaverine for ion exchange purified Pisum sativum root transglutaminase. A K_{m} of $190 \mu \mathrm{M}$ was estimated and this is similar to the K_{m} of guinea pig liver transglutaminase as reported by Slaughter et al. (1992) using biotin cadaverine as amine donor substrate. Figure 30 demonstrates the kinetics of casein cross-linking by Pisum sativum root transglutaminase. $\mathrm{A} \mathrm{K}_{\mathrm{m}}$ of $0.2 \mu \mathrm{~g} \mathrm{ml}^{-1}$ was estimated from the Michaelis-Menten plot using Enzfitter (Biosoft, U. K.) and this is also similar to the K_{m} reported by Lilley et al. (1997a) for guinea pig liver transglutaminase using biotin labelled casein as the glutamine donor substrate.

The inhibition of Pisum sativum root casein cross-linking and cadaverine incorporation by thiol group inhibitors was re-tested following ion exchange purification to ascertain whether or not the removal of contaminating proteins would affect the result reported in chapter 4. Little difference was observed using 10 mM iodoacetamide in the cadaverine incorporation assay (table 25). The inhibition of Pisum sativum root extract by 10 mM NEM was however increased by 8% following purification. The casein cross-linking inhibition was however not affected by purification as zero inhibition was observed using either reagent. This observation implies that there may be differences between the active site of mammalian transglutaminases and transglutaminase present in Pisum sativum root tissue. The effect of GTP on both the casein cross-linking and cadaverine incorporation activities of the Pisum sativum root transglutaminase was also re-tested following ion exchange purification. No inhibition was observed (data not shown) implying that the transglutaminase found in Pisum sativum root tissue may have a different regulatory mechanism to mammalian tissue transglutaminase.

The N^{\prime}, N^{\prime}-bis (γ-glutamyl) polyamine cross-linking ability of the Pisum sativum root extract was also re-tested following purification by ion exchange chromatography. Despite the small increase in specific activity observed following purification, no signal was obtained using the N^{\prime}, N^{\prime}-bis (γ-glutamyl) polyamine assay. This type of cross-link has been detected in plant tissue using a variation of the amino acid analysis procedure described in chapter 5 (Del Duca et al. 1995) and so it is likely that plant transglutaminase is able to perform the N^{\prime}, N^{\prime}-bis $(\gamma$-glutamyl) polyamine cross-linking reaction. The lack of detection of this activity may be due in part to the sensitivity of the assay used. The ε-(γ-glutamyl) lysine assay did give a greater overall signal when using
guinea pig liver transglutaminase (see chapter 3). The failure of the assay to detect activity in plant extracts may also reflect the unsuitability of the casein substrate for this reaction when using plant protein.

In conclusion, the techniques of ion exchange chromatography and gel filtration chromatography are relevant methods for transglutaminase purification (Wilhelm et al. 1996) but in the case of the ion exchange step, further refinement will be required to allow greater yield recovery and purity of the Pisum sativum root enzyme. There are many other anion exchange media available including, DEAE Sephadex, QAE Sephadex, DEAE Sepharose and DEAE Sephacel, which may prove more suitable as an initial purification step for Pisum sativum root transglutaminase. It may also be possible to develop an affinity step, based on the transglutaminase reaction mechanism. Pisum sativum root transglutaminase could be bound to the glutamine residues of immobilised α-casein agarose as described for Glycine max transglutaminase (Kang and Cho 1996). It would then be possible to elute the enzyme using a polyamine such as spermidine. Using this approach, it is possible that some of the more conventional purification strategies may be bypassed.

Chapter 7- Concluding remarks.

The screening of crude plant protein preparations using the conventional [1,4 $\left.{ }^{14} \mathrm{C}\right]$ labelled putrescine incorporation assay as described in chapter 4 resulted in the detection of relatively low levels of transglutaminase activity in only three of the eight tissues tested. This observation is broadly in line with the results of other workers who report much lower levels of transglutaminase activity in plant tissue compared to mammalian tissue when using assays of this type (Serafini-Fracassini et al. 1988; Signorini et al.1991; Del Duca et al. 1994). The results in chapter 4 also concur with the research of the aforementioned groups, in terms of the apparent lack of calcium ion dependence of the radiolabelled amine incorporation reaction. Table 11 does however show that up to 29% of the radiolabel is incorporated in a copper dependent manner. This finding supports the conclusion of others, who propose that diamine oxidases may be responsible for the radiolabelled amine incorporation reaction of crude plant extracts (Chiarello et al. 1996a and 1996b; Siepaio and Meunier 1995). This growing body of evidence seriously brings into question the suitability of the radiolabel assay for plant transglutaminase research. The results in chapter 4 do show that both soluble and membrane associated plant transglutaminases are able to carry out the incorporation of biotin labelled cadaverine into N^{\prime}, N^{\prime}-dimethylcasein (reaction 1.1.2.2.1) and also the cross-linking of chemically modified caseins (reaction1.1.2.2.2) in a calcium dependent manner indicating that both of the plate assays employed are more suitable for plant transglutaminase detection than the conventional radiolabelled amine method (Lilley et al.1998). In addition to the polyamine incorporation and protein cross-linking reactions, mammalian transglutaminases are able to carry out the formation of N^{\prime}, N^{\prime}-bis(γ-glutamyl) polyamine
cross-bridges (Folk 1980-reaction 1.1.2.2.3). The crude plant extracts were unable to catalyse this reaction when using casein as the acyl donor substrate and spermidine as the modifying polyamine. This suggests either, differences in the portfolio of reactions carried out by plant transglutaminase, or more likely the unsuitability of the assay system used because protein-polyamine-protein conjugates have been isolated in plant tissue (Del Duca et al. 1995).

Soluble Pisum sativum root biotin labelled cadaverine incorporation activity is activated by nanomolar levels of calcium ions, suggesting that the polyamine incorporation reaction of the enzyme is calcium dependent. The soluble Pisum sativum root extract mediated casein cross-linking reaction, however, requires millimolar levels of calcium and this suggests that the protein cross-linking role of the enzyme occurs in a high calcium area such as the extracellular environment. This is consistent with proposed roles for tissue transglutaminase, which include stabilisation of the mammalian extracellular matrix due to the cross-linking of proteins (Aeschlimann and Paulsson 1991). This may also indicate that if the membrane-associated enzyme has a protein cross-linking function, its orientation within the membrane may be towards the extracellular environment.

The results in chapters 4 and 6 show that GTP has no effect on the activity of soluble Pisum sativum root transglutaminase when applied at sub-optimal calcium ion concentration thus implying differences between mammalian tissue transglutaminase and the enzyme present in Pisum sativum root tissue in terms of mechanisms of regulation. Further possible differences are apparent as shown by the effect of the thiol group
reagents, iodoacetamide and NEM. A 10 mM concentration of these reagents failed to completely inhibit either the cadaverine incorporation reaction or the casein cross-linking reaction of soluble Pisum sativum root transglutaminase and this implies that there may be differences between the active site of mammalian transglutaminases and those present in higher plants.

The data in chapter 5 provides unequivocal proof of the presence of a catalytically active transglutaminase in Pisum sativum root and leaf tissue since the ε - $(\gamma$-glutamyl) lysine isodipeptide product of the transglutaminase reaction was detected (Folk and Finlayson 1977). The isodipeptide was present at significantly lower levels than that observed in mammalian fluids such as clotted semen and blood plasma (Pisano et al. 1971; WilliamsAshman et al. 1972) and this necessitated the pre-purification of the Pisum sativum leaf protein to reduce the level of the interfering amino acid leucine. Furthermore, the casein cross-linking assay was validated due to detection of the ε - $(\gamma$-glutamyl) lysine isodipeptide in a sample of casein, cross-linked by the soluble Pisum sativum root extract.

The work presented in this thesis establishes the presence of a catalytically active transglutaminase in plant tissue but in order to elucidate a role for the enzyme, the partial purification protocol described in chapter 6 should be improved and further developed in order to purify the enzyme to homogeneity. The methods chosen, namely ion exchange and gel filtration chromatography are relevant for the purification of transglutaminases (Ando et al. 1987; Ichinose et al. 1993) but require further refinement to allow greater yield recovery and purity of the Pisum sativum root enzyme. Following purification, the
amino acid sequence of Pisum sativum root transglutaminase may be determined and compared to that of known mammalian transglutaminases. Furthermore, monoclonal antibodies may be raised which will enable the localisation of plant transglutaminase and subsequent determination of possible roles for the enzyme in plant tissue.

If plant transglutaminase has a similar range of tissue stabilisation roles as the mammalian transglutaminase enzymes, one possible biological role could include root development. The data in figure 22 shows that membrane associated transglutaminase activity is highest during the first few days of Pisum sativum root growth. This may indicate that transglutaminase could be involved in developmental processes, which may involve the cross-linking of structural proteins at the root tip to aid the mechanical displacement of soil during root growth. It has also been suggested that transglutaminase may have a protein cross-linking role during cell wall assembly and organisation of Helianthus tuberosus tuber cells (Grandi et al. 1992). A further stabilising role for transglutaminase enzymes in plants may be to cross-link proteins required for the development of the protective outer coat (testa) of seeds.

Figure 21 shows that soluble Pisum sativum leaf transglutaminase activity increases during leaf development and this data is consistent with the findings of others who have speculated roles for transglutaminase in photosynthesis. If the plant enzyme has a protein cross-linking role in green tissue, it may be involved in the assembly of the catalytically active $\mathrm{L}_{8} \mathrm{~S}_{8}$ RuBisCo structure, which forms via a RuBisCo L dimer (Roy et al. 1988).

Transglutaminase enzymes are widely distributed throughout animal tissues and body fluids and some important biological functions have been ascribed to certain members of this enzyme family. The fact that transglutaminases have important biological roles in animals implies that these enzymes may also be carrying out vital functions in plants.

Plant transglutaminase research is still in its infancy, and clearly there are interesting avenues of investigation to be followed for future work, which should eventually elucidate the role of transglutaminases in plant tissue.

Chapter 8- References.

Abe, T., Chung, S. I., DiAugustine, R. P and Folk, J. E (1977). Rabbit liver transglutaminase: Physical, chemical and catalytic properties. Biochem. 16: 5495-5501.

Achyuthan, K. E and Greenberg, C. S (1987). Identification of a guanosine triphosphate binding site on guinea pig liver transglutaminase- role of GTP and calcium ions in modulating activity. J. Biol. Chem. 262: 1901-1906.

Aeschlimann, D and Paulsson, M (1991). Cross-linking of laminin-nidogen complexes by tissue transglutaminase: A novel mechanism for basement membrane stabilisation. J. Biol. Chem. 266: 15308-15317.

Aeschlimann, D., Paulsson, M and Mann, K (1992). Identification of Gln^{726} in nidogen as the amine acceptor in transglutaminase catalysed cross-linking of laminin-nidogen complexes. J. Biol. Chem. 267: 11316-11321.

Aeschlimann, D., Wetterwald, A., Fleisch, H and Paulsson, M (1993). Expression of tissue transglutaminase in skeletal tissues correlates with events of terminal differentiation of chondrocytes. J. Cell Biol. 120: 1461-1470.

Aeschlimann, D and Paulsson, M (1994). Transglutaminases: Protein cross-linking enzymes in tissues and body fluids. Thromb. Haemost. 4: 402-415.

Ahmed, C. E and Niswender, G. D (1981). Internalisation and degradation of human chorionic gonadotrophin in ovine luteal cells- effects of inhibitors of transglutaminase. Endocrinol. 109: 1388-1393.

Ando, Y., Imamura, S., Yamagata, Y., Kikuchi, T., Murachi, T and Kannagi, R (1987). High performance liquid chromatographic assay of transglutaminase and its application to the purification of human erythrocyte transglutaminase and platelet factor XIII. J. Biochem. 101: 1331-1337.

Aribaud, M., Carre, M., and Martin-Tanguy, J (1995). Transglutaminase-like activity in chrysanthemum leaf explants cultivated in vitro in relation to cell growth and hormone treatment. Plant Growth Regul. 16: 11-17.

Arrese, J. E and Pierard, G. E (1995). Factor XIIIa related antigen immunoreactivity of fungal cell wall- a biologically relevant feature. Dermatol. 190: 119-123.

Babiker, E. F. E., Khan, M. A. S., Matsudomi, N and Kato, A (1996). Polymerisation of soy protein digests by microbial transglutaminase for improvement of the functional properties. Food Res. Int. 29: 627-634.

Barnes, R. N., Bungay, P. J., Elliot, B. M, Walton, P. L and Griffin, M (1984). Changes in transglutaminase activity during tumour growth and metastasis. Biochem. Soc. Trans. 12: 297-303.

Barnes, R. N., Bungay, P. J., Elliot, B. M, Walton, P. L and Griffin, M (1985). Alterations in the distribution and activity of transglutaminase during tumour growth and metastasis. Carcinogen. 6: 459-463.

Barsigian, C., Fellin, F. M., Jain, A and Martinez, J (1988). Dissociation of fibronectin and fibronectin binding from transglutaminase mediated cross-linking at the hepatocyte surface. J. Biol. Chem. 263: 14015-14022.

Beninati, S., Piacentini, M., Cocuzzi, E. T., Autuori, F and Folk, J. E (1988). Covalent incorporation of polyamines as γ-glutamyl derivatives into CHO cell protein. Biochim. Biophys. Acta. 952: 325-333.

Bergamini, C. M., and Signorini, M (1993). Studies on tissue transglutaminase: interaction of erythrocyte type-2 transglutaminase with GTP. Biochem. J. 291: 37-39.

Birkbichler, P. J., Orr, G. R and Patterson, M. K. Jr. (1976). Differential transglutaminase distribution in normal rat liver and rat hepatoma. Cancer Res. 36: 29112914.

Birkbichler, P. J., Orr, G. R., Carter, C. A and Patterson, M. K. Jr. (1977). Catalytic formation of ε-(γ-glutamyl) lysine in guinea pig liver transglutaminase. Biochem. Biophys. Res. Commun. 78: 1-7.

Birkbichler, P. J and Patterson. M. K. Jr. (1978a). Cellular transglutaminase, growth and transformation. Ann. N. Y. Acad. Sci. 312: 354-365.

Birkbichler, P. J., Carter, H. A., Orr, G. R., Conway, E and Patterson, M. K. Jr. (1978b). ε-(γ-glutamyl) lysine isopeptide bonds in normal and virus transformed human fibroblasts. Biochem. Biophys. Res. Commun. 84: 232-237.

Bregoli, A. M., Del Duca, S., Bergamini, C and Serafini-Fracassini, D (1994). Malus domestica pollen: Transglutaminase activity and substrates at different stages of pollen tube emission. Proceedings of the fourth international conference on transglutaminase and protein cross-linking reactions. Debrecen, Hungary p 68.

Brenner, S. C and Wold, F (1978). Human erythrocyte transglutaminase, purification and properties. Biochim. Biophys. Acta. 522: 74-83.

Brookhart, P. P., McMahon, P. L and Takahashin, M (1983). Purification of guinea pig liver transglutaminase using a phenylalanine-Sepharose 4B affinity column. Anal. Biochem. 128: 202-205.

Brown, R. E., Jarvis, K. L and Hyland, K. J (1989). Protein measurement using bicinchoninic acid: Elimination of interfering substances. Anal. Biochem. 180: 139-139. Bungay, P. J., Griffin, M and Potter, J. M (1982). Evidence for the involvement of transglutaminase in insulin secretion in the rat. Diabetologia 23: 159.

Bungay, P. J., Potter, J. M and Griffin, M (1984). The inhibition of glucose stimulated insulin secretion by primary amines- a role for transglutaminase in the secretory mechanism. Biochem. J. 219: 819-827.

Bush, D. S. (1995). Calcium regulation in plant cells and its role in signalling. Ann. Rev. Plant Physiol. Plant Mol. Biol. 46: 95-122.

Buxman, M. M and Weupper, K. D (1975). Keratin cross-linking and epidermal transglutaminase. J. Invest. Dermatol. 65: 107-112.

Buxman, M. M and Weupper, K. D (1976). Isolation, purification and characterisation of bovine epidermal transglutaminase. Biochim. Biophys. Acta 452: 356-369.

Buxman, M. M and Weupper, K. D (1978). Cellular localisation of epidermal transglutaminase: A histochemical and immunochemical study. J. Histochem. Cytochem. 26: 340-348.

Carraway, K. L., and Koshland, D. E. (1972). Carbodiimide modification of proteins. in: Methods Enzymol. (Eds. Hirs, C. H. W and Timasheff, N) 25: 616-623, Academic Press, New York. USA.

Chakravarty, R and Rice, R. H (1989). Acylation of keratinocyte transglutaminase by palmitic and myristic acids in the membrane anchorage region. J. Biol. Chem. 264: 625629.

Chang, S. K and Chung, S. I (1986). Cellular transglutaminase. The particulateassociated transglutaminase from chrondrosarcoma and liver: partial purification and characterisation. J. Biol. Chem. 261: 8112-8121.

Chiarello, M. D., Larre, C., Kedzior, Z. M and Gueguen, J (1996a). Pea seedling extracts catalyse protein amine binding and protein cross-linking. 1. Evidence for the role of a diamine oxidase. J. Agric.Food. Chem. 44: 3717-3722.

Chiarello, M. D., Larre, C., Kledzior, Z. M and Gueguen, J (1996b). Pea seedling extracts catalyse protein amine binding and protein cross-linking. 2. Contribution of a diamine oxidase to these reactions. J. Agric. Food Chem. 44: 3723-3725.

Choi, J., Choi, G. H., Woo, K. M., and Park, S. C (1992). Development of a solid phase colorimetric assay for the screening of transglutaminase activities. Seoul J. Medicine. 33: 167-173.

Christopherson, R. I (1983). De-salting of proteins in a centrifuge column. in: Methods Enzymol. (Eds. Hirs, C. H. W and Timasheff, S. M) 91: 278-281, Academic Press, New York. USA.

Chung, S. I and Folk, J. E (1972). Transglutaminase from hair follicle of guinea pig. Proc. Natl. Acad. Sci. (USA) 69: 303-307.

Clarke, D. D., Mycek, M. J., Neidle, A and Waelsch, H (1959). The incorporation of amines into protein. Arch. Biochem. Biophys. 79: 338-354

Cleland, W. W (1964). Dithiothreitol, a new protective agent for SH groups. Biochem. 3: 480-482.

Connellan, J. M., Chung, S. I., Whetzel, N. K., Bradley, L. M and Folk, J. E (1971). Structural properties of guinea pig liver transglutaminase. J. Biol. Chem. 246: 10931098.

Cooke, R. D and Holbrook, J. J (1974). Calcium and the assays of human plasma clotting factor XIII. Biochem. J. 141: 71-78.

Costello, S. M (1979). Enhancement of immune cellular agglutination by use of an avidin-biotin system. Clin. Chem. 25: 1572-1580.

Credo, R. B., Curtis, C. G and Lorand, L (1978). Ca^{2+} regulated regulatory function of fibrinogen. Proc. Natl. Acad. Sci. USA 75: 4234-42367.

Croall, D. E and DeMartino, G. N (1986). Calcium dependent affinity purification of transglutaminase from rat liver cytosol. Cell Calcium 7: 29-39.

Dargenio, G., Iovino, P., Cosenza, V., Surrentini, I., Deritis, F., Dellecave, M., Darmiento, F. P and Mazzacca, G (1995). Transglutaminase in azoxymethane induced colon cancer in the rat. Digest. Disease Sci. 40: 685-695.

Delcros, J. E., Bard, S., Roch, A. M., Quash, G., Poupon, M. P and Korach, S (1986). Transglutaminase activity and putrescine binding capacity in cloned cell lines with different metastatic potential. FEBS Lett. 196: 325-330.

Del Duca, S., Favali, M. A., Serafini-Fracassini, D and Pedrazzini, R (1993). Transglutaminase activity during greening and growth of Helianthus tuberosus explants in vitro. Protoplasma 174: 1-9.

Del Duca, S., Tidu, V., Bassi, R., Esposito, C., and Serafini-Fracassini, D (1994). Identification of chlorophyll- a / b proteins as substrates of transglutaminase activity in isolated chloroplasts of Helianthus tuberosus L. Planta 193: 283-289.

Del Duca, S., Beninati, S., and Serafini-Fracassini, D (1995). Polyamines in chloroplasts: identification of their glutamyl and acetyl derivatives. Biochem. J. 305: 233-237.

Del Duca, S., Bregoli, A. M., Bergamini, C and Serafini-Fracassini, D (1997). Transglutaminase catalysed modification of cytoskeletal proteins by polyamines during the germination of Malus domestica pollen. Sex. Plant Repro. 10: 89-95.

Dinella, C., Serafini-Fracassini, D., Grandi, B., and Del Duca, S (1992). The cell cycle in Helianthus tuberosus: analysis of polyamine-endogenous protein conjugates by transglutaminase-like activity. Plant Physiol. Biochem. 30: 531-539.

Dubbink, H. J., Verkaik, N. S., Faber, P. W., Trapman, J., Schroder, F. H and Romijn, J. C (1996). Tissue specific and androgen-regulated expression of human prostate specific transglutaminase. Biochem. J. 315: 901-908.

Duval, E., Wyllie, A. H and Morris, R. G (1985). Macrophage recognition of cells undergoing programmed cell death (apoptosis). Immunol. 56: 351-358,

Faergemand, M., Otte, J and Qvist, K. B (1997). Enzymic cross-linking of whey proteins by Ca^{2+} independent microbial transglutaminase from Streptomyces lydicus. Food Hydrocol. 11: 19-25.

Falcone, P., Serafini-Fracassini, D., and Del Duca, S (1993). Comparative studies of transglutaminase activity and substrates in different organs of Helianthus tuberosus. J. Plant Physiol. 142: 265-273.

Fesus, L., Thomazy, V and Falus, A (1987). Induction and activation of tissue transglutaminase during programmed cell death. FEBS Lett. 224: 104-108.

Fesus, L., Thomazy, V., Autuori, F., Ceru, M. P., Tarcsa, E and Piacentini, M (1989). Apoptotic hepatocytes become insoluble in detergents and chaotrophic agents as a result of transglutaminase action. FEBS Lett. 245: 150-154.

Fink, M. L., Chung, S. I and Folk, J. E (1980). γ-glutamylamine cyclotransferase: specificity toward $\varepsilon(\gamma$-L-glutamyl)-L-lysine and related compounds. Proc. Natl. Acad. Sci. (USA) 77: 4564-4568.

Fink, M, L., Shao, Y and Kersh, G. J (1992). A fluorimetric, high performance liquid chromatographic assay for transglutaminase activity. Anal. Biochem. 201: 270-276.

Floyd, E. E and Jetten, A. M (1989). Regulation of type 1 (epidermal) transglutaminase messenger RNA levels during squamous differentiation- down regulation by retinoids. Mol. Cell Biol. 9: 4846-4851.

Folk, J. E and Cole, P. W (1966). Mechanism of action of guinea pig liver transglutaminase: purification and properties of the enzyme; identification of a functional cysteine essential for activity. J. Biol. Chem. 241: 5518-5525.

Folk, J.E., Mullooly, J. P and Cole, P. W (1967). Mechanism of action of guinea pig liver transglutaminase. J. Biol. Chem. 242: 1838-1844.

Folk, J. E and Chung, S. I (1973). Molecular and catalytic properties of transglutaminases. Adv. Enzymol. 38: 109-191.

Folk, J. E and Finlayson, J. S (1977). The ε-(γ-glutamyl) lysine cross-link and the catalytic role of transglutaminases. Adv. Protein Chem. 31: 1-33.

Folk, J. E (1980). Transglutaminases. Ann. Rev. Biochem. 49: 517-531.
Folk, J. E., Park, M. H., Chung, S. I., Schrode, J., Lester, E. P and Cooper, H. L (1980). Polyamines as physiological substrates for transglutaminases. J. Biol. Chem. 255: 3695-3700.

Folk, J. E. (1983). Mechanism and basis for specificity of transglutaminase catalysed ε (γ-glutamyl) lysine bond formation. Adv. Enzymol. 54: 1-56.

Fuhr, K. J., Warchol, W., and Gratzl, M (1993). Calculation and control of free divalent cations in solutions used for membrane fusion studies. in: Methods Enzymol. (Eds. Abelson, J. N and Sim, M. I) 221: 149-157. Academic Press, New York. USA.

Fukuda, K., Kojiro, M and Chiu, J. F (1993). Induction of apoptosis by transforming growth factor beta-1 in the rat hepatoma cell line MCA-RH7777- A possible association with tissue transglutaminase expression. Hepatol. 18: 945-953.
(Gentile, V., Thomazy, V., Piacentini, M., Fesus, L and Davies, P. J. A (1992). Expression of tissue transglutaminase in Balb-c 3t3 fibroblasts: effects on cellular morphology and adhesion. J. Cell Biol. 119: 463-474.

Gorman, J. J and Folk, J. E (1981). Structural features of glutamine substrates for transglutaminases: specificities of human plasma factor XIIIa and the guinea pig liver enzyme toward synthetic peptides. J. Biol. Chem. 256: 2712-2715.

Gorman, J. J and Folk, J. E (1984). Structural features of glutamine substrates for transglutaminases: role of extended interactions in the specificity of human plasma factor XIIIa and the guinea pig liver enzyme. J. Biol. Chem. 259: 90007-90010.

Grandi, B., Del Duca, S., Serafini-Fracassini, D., and Dinella, C (1992). Re-entry in the cell cycle- protein metabolism and transglutaminase-like activity in Helianthus tuberosus. Plant Physiol. Biochem. 30: 415-424.

Greenberg, C. S., Achyuthan, K. E and Fenton, J. W (1987). Factor XIIIa formation promoted by complexing of α-thrombin, fibrin and plasma factor XIII. Blood 69: 867871.

Greenberg, C. S., Birkbichler, P. J and Rice, R. H (1991). Transglutaminases: Multifunctional cross-linking enzymes that stabilise tissues. FASEB J. 5: 3069-3077.

Griffin, M., Smith, L. L and Wynne, J (1979). Changes in transglutaminase activity in an experimental model of pulmonary fibrosis induced by paraquat. Br. J. Exp. Path. 60: 653-661.

Griffin, M., Wilson, J and Lorand, L (1982). High pressure liquid chromatographic procedure for the determination of ε-(γ-glutamyl) lysine in proteins. Anal. Biochem. 124: 406-413.

Griffin, M and Wilson, J (1984). Detection of ε-(γ-glutamyl) lysine. Mol. Cell. Biochem. 58: 37-49.

- Griffin, M., and Smethurst, P. A. (1994). Transglutaminases- enzymes that cross-link proteins. Retinoids today and tomorrow. 37: 4-10

Hagel, L (1989). Gel filtration. in: Protein purification, principles, high resolution methods and applications. (Eds. Janson, J. C and Ryden, L) pp63-106, VCH publishers Inc. New York. USA.

Harding, H. J. W and Rogers, G. E (1976). Isolation of peptides containing citrulline and the cross-link ε-(γ-glutamyl) lysine from hair medulla protein. Biochim. Biophys. Acta. 427: 315-324.

Harlow, E., and Lane, D. (1988). Biotinylation using the succinimide ester. in: Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, New York. pp. 341.

Haughland, R. B., Lin, T. I., Douben, R. M and Birkbichler, P. J (1982). On the structural role of the ε-(γ-glutamyl) lysine cross-link in the cell membrane. Biophys. J. 37: 191-193.

Hettasch, J. M., Haroon, Z., Dewhirst, M. W., Marks, J., Inglehart, D., Peters, K and Greenberg, C. S (1996). Tissue transglutaminase is associated with the neovasculature and extracellular matrix of human breast cancer. FASEB J. 10: 2402.

Hohl, D., Mehrel, T., Lichti, U., Turner, M. L., Roop, D. R and Steinert, P. M (1991). Characterisation of human loricrin. J. Biol. Chem. 266: 6626-6636.

Hornyak, T. J and Shafer, J. A (1992). Interactions of factor XIII with fibrin as substrate and cofactor. Biochem. 31: 423-429.

Huber, M., Rettler, I., Bernasconi, K., Frenk, E., Lavrijsen, S. P. M., Ponec, M., Bon, A., Lautenschlagers, S., Schordet, D. F and Hohl, D (1995). Mutations of keratinocyte transglutaminase in lamellar ichthyosis. Science 267: 525-528.

Hucho, \mathbf{F} and Bandini, $\mathrm{G}(1986) . \mathrm{Ca}^{2+}$ dependent inactivation of acetylcholine receptors by an endogenous transglutaminase. FEBS Lett. 200: 279-282.

Icekson, I., and Apelbaum, A (1987). Evidence for transglutaminase activity in plant tissue. Plant Physiol. 84: 972-974.

Ichinose, A and Kaetsu (1993). Molecular approach to structure-function relationship of human coagulation factor XIII. in: Methods Enzymol. (Eds. Lorand, L and Mann, K. G) 222: 36-51, Academic Press, New York. USA.

Ikura, K., Sakurai, H., Okumura, K., Sasaki, R and Chiba, H (1985). One step purification of guinea pig liver transglutaminase using a monoclonal antibody immunoadsorbent. Agric. Biol. Chem. 49: 3527-3531.

Ikura, K., Nasu, T., Yokota, H., Tsuchiya, Y., Sasaki, R and Chiba, H (1988). Amino acid sequence of guinea pig liver transglutaminase from its cDNA sequence. Biochem. 27: 2898-2905.

Im, M. J., Russel, M. A and Feng, J. F (1997). Transglutaminase II: a new class of GTP binding protein with new biological functions. Cell Signal. 9: 477-482.

Jeon, W. M., Lee, K. N., Birkbichler, P. J., Conway, E and Patterson, M. K (1989). Colorimetric assay for cellular transglutaminase. Anal. Biochem. 182: 170-175.

Juprelle-Soret, M., Wattiaux-De-Connick, S and Wattiaux, R (1988). Sub-cellular localisation of transglutaminase. Biochem. J. 250: 421-429.

Jurgen, K., Aeschlimann, D., Cavin, V., Genge, M and Hunziker, E. B (1997). A new biological glue for cartillage-cartillage interfaces: tissue transglutaminase. J. Bone Joint surg. - American volume 79A: 185-193.

Kang, H and Cho, Y. D (1996). Purification and properties of transglutaminase from soybean (Glycine max.) leaves. Biochem. Biophys. Res. Commun. 223: 288-292. Karlsson, E., Ryden, L and Brewer, J (1989). Ion exchange chromatography. in: Protein purification, principles, high resolution methods and applications. (Eds. Janson, J. C and Ryden, L) pp107-148, VCH publishers Inc. New York. USA. Kerr, J. F. R (1971). Shrinkage necrosis: a distinct mode of cellular death. J. Path. 105: 13-20.

Klein, J. D., Guzman, E and Kuehn, G. D (1992). Purification and partial characterisation of transglutaminase from Physarum polycephalum J. Bacteriol. 174: 2599.

Knight, C. R. L., Rees, R. C., Elliot, B. M and Griffin, M (1990). Immunochemical similarities between cytosolic and particulate tissue transglutaminase. FEBS Lett. 265: 93-96.

Knight, C. R. L., Rees, R., and Griffin, M. (1991). Apoptosis- a potential role for cytosolic transglutaminase and its importance in tumour progression. Biochim. Biophys. Acta. 1096: 312-318.

Korngruth, M. L., Neidle, A and Waelsch, H (1963). The stability and rearrangement of ε-N-Glutamyl-lysines. Biochem. 2: 740-745.

Kuehn, G. D., Sotelo, M., Morales, T., Bruce-carver, M. R., Guzman, E and Margosiak, S. A (1991). Purification and properties of transglutaminase from Medicago sativa L. (Alfalfa). FASEB J. 5: 6.

Laemmil, U. K (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T_{4}. Nature 227: 680-685.

Laki, K., Tyler, H. M and Yancey, S. T (1966). Clot forming and clot stabilising enzymes from the mouse tumour YPC-1. Biochem. Biophys. Res. Commun. 24: 776.

Lee, K. N., Birkbichler, P. J and Patterson, M. K (1989). GTP hydrolysis by guinea pig liver transglutaminase. Biochem. Biophys. Research. Commun. 162: 1370-1375.

Leu, R. W., Herriot, M. J., Moore, P. E., Orr, G. R and Birkbichler, P. J (1982). Enhanced transglutaminase activity associated with macrophage activation- possible role in FC mediated phagocytosis. Exp. Cell Res. 141: 191-199.

Lichti, U., Ben, T and Yuspa, S. H (1985). Retinoic acid induced transglutaminase in mouse epidermal cells is distinct from epidermal transglutaminase. J. Biol. Chem. 260: 1422-1426.

Lilley, G. R., Griffin, M., and Bonner, P. L. R (1995). A survey of plant tissue for the presence of transglutaminase. J. Ex. Bot. (supplement) 46: 50.

Lilley, G. R., Griffin, M., and Bonner, P. L. R (1996). Transglutaminase in plants. J. Ex. Bot. (supplement) 47: 74.

Lilley, G. R., Griffin, M and Bonner, P. L. R (1997a). Assays for the measurement of tissue transglutaminase (type II) mediated protein cross-linking via ε - $(\gamma$-glutamyl) lysine and N^{\prime}, N^{\prime}-bis $(\gamma$-glutamyl) polyamine linkages using biotin labelled casein. J. Biochem. Biophys. Methods 34: 31-43.

Lilley, G. R., Skill, J., Griffin, M and Bonner, P. L. R (1997b). The detection of $\varepsilon(\gamma-$ glutamyl) lysine isodipeptide cross-links in Pisum sativum root and leaf tissue. J. Ex. Bot. (supplement) 48: 30.

Lilley, G. R., Skill, J., Griffin, M and Bonner, P. L. R (1998). Detection of calcium dependent transglutaminase activity in root and leaf tissue of monocotyledenous and dicotyledenous plants. Plant Physiol. 117: 1115-1123.

Lorand, L., Ong, H. H., Lipinski, B., Rule, N. G., Downey, J and Jacobsen, A (1966). Lysine as amine donor in fibrin cross-linking. Biochem. Biophys. Res. Commun 25: 629-637.

Lorand, L., Rule, N. G., Ong, H. H., Furlanetto, R., Jacobsen, A., Downey, J., Over, N and Bruner-Lorand, J (1968). Amine specificity in transpeptidation. Inhibition of fibrin cross-linking. Biochem. 7: 1214-1223.

Lorand, L and Chenoworth, D (1969). Intramolecular localisation of the acceptor cross-linking sites in fibrin. Proc. Nat. Acad. Sci. 63: 1247-1252.

Lorand, L., Campbell-Wilkes, L. K and Cooperstein, L (1972). A filter paper assay for transamidating enzymes using radioactive amine substrates. Anal. Biochem. 50: 623631.

Lorand, L and Ong, H. H (1976). Labelling of amine acceptor cross-linking sites of fibrin by transpeptidation. Biochem. 5: 1747-1753.

Lorand, L., Lowowski, M. S and Miloszewski, J. K (1980). Human factor XIII: Fibrin stabilising factor. Progress Hemost. Thromb. 5: 245-290.

Lorand, L and Conrad, S. M (1984). Transglutaminases. Mol. Cell Biochem. 58: 9-35.
Lustigman, S., Brotman, B., Huitma, T., Castelhano, A. L., Singh, R. N., Mehta, K and Prince, A. M (1995). Transglutaminase catalysed reaction is important for malting of Onchocerca volvulus third stage larvae. Antimicro. Agent. Chemo. 39: 1913-1919.

Margosiak, S. A., Dharma, A., Bruce-carver, M. R., Gonzales, A. P., Louie, D and Kuehn, G. D (1990). Identification of the large sub-unit of ribulose 1,5-bisphosphate carboxylase/oxygenase as a substrate for transglutaminase activity in Medicago sativa L . (alfalfa). Plant physiol. 92: 88-96.

Martin-Tanguy, J., Aribaud, M., Gaspar, T., Penel, C and Greppin, H (1996). Polyamine metabolism, floral initiation and floral development in chrysanthemum (Chrysanthemum morifolium Ramat.) Saussurea 27: 67-81.

Martin-Tanguy, J., Aribaud, M., Carre, M and Grasper, T (1997). ODC-mediated biosynthesis and DAO-mediated catabolism of putrescine involved in rooting of Chrysanthemum extracts in vitro. Plant Physiol. Biochem. 35: 595-602.

Marvin, K. W., George, M. D., Fujimoto, W., Saunders, N. A., Bernack, S. H and Jetten, A. M (1992). Cornifin, a cross-linked envelope pre-cursor in keratinocytes that is down regulated by retinoids. Proc. Natl. Acad. Sci. (USA) 89: 11026-11030.

Means, G. E and Feeney, R. E (1968). Reductive alkylation of amino groups in proteins. Biochem. 7: 2192-2201.

Mehta, K., Rao, U. R., Vickery, A. C and Fesus, L (1992). Identification of a novel transglutaminase from the filarial parasite Brugia malayi and its role in growth and development. Mol. Biochem. Parasitol. 53: 1-15.

Mehta, K., Chandrashekar, R and Rao, U. R (1996). Transglutaminase catalysed incorporation of host proteins in Brugia malayi microfilariae. Mol. Biochem. Parasitol. 76: 105-114.

Mian, S., El Alaoui, S., Lawry, J., Gentile, V., Davies, P. J. A., and Griffin, M (1995). The importance of the GTP-binding protein tissue transglutaminase in the regulation of cell cycle progression. FEBS Lett. 370: 27-31.

Mizrahi, Y., Applewhite, P. B and Galston, A. W (1989). Polyamine binding to proteins in oat and petunia protoplasts. Plant Physiol. 91: 738-743.

Negi, M., Colbert, M. C and Goldsmith, L. A (1985). High molecular weight human epidermal transglutaminase. J. Invest. Dermatol. 85: 75-78.

Ogwa, H and Goldsmith, L. A (1976). Human epidermal transglutaminase, preparation and properties. J. Biol. Chem. 251: 7281-7288.

Ogwa, H and Goldsmith, L. A (1977). Human epidermal transglutaminase 2: Immunologic properties. J. Invest. Dermatol. 68: 32-35.

Oranje, A. P., Marcoux, D., Svensson, A., Prendiville, J., Krafchik, B., Toole, J., Rosenthal, D., deWaardvanderspek, F. B., Molin, L and Axelsen, M (1997). Topical calcipotriol in childhood psoriasis. J. Am. Acad. Dermatol. 36: 203-208.

Oshitani, N., Kitano, A., Hara, J., Suzuki, N., Aoki, T., Yasuda, K., Watanabe, Y., Obayashi, M., Obata, A., Nakamura, S., Matsumoto, T and Kobayashi, K (1995). Deficiency of blood coagulation factor XIII in Crohn's disease. Am. J. Gastro. 90: 1116-1118.

Pallavicini, C., Alloggio, V and Deleonardis, A (1992). Action of a transglutaminase from plant tissues on some milk proteins. Industrie Alimentari 31: 1130-1134.

- Peterson, L. L and Weupper, K. D (1984). Epidermal and hair follicle transglutaminases and cross-linking in skin. Mol. Cell Biochem. 58: 99-111.

Piacentini, M., Martinet, N., Beninati, S and Folk, J. E (1988). Free and protein conjugated polyamines in mouse epidermal cells- effect of high calcium and retinoic acid. J. Biol. Chem. 263: 3790-3794.

Pisano, J. J., Finlayson, J. S and Peyton, M. P (1969). Chemical and enzymic detection of cross-links. Measurement of ε-(γ-glutamyl) lysine in fibrin polymerised by factor XIII. Biochem. 8: 871-876.

Pisano, J. J., Finlayson, J. S., Peyton, M. P and Nagai, Y (1971). ع-(γ-glutamyl) lysine in fibrin: lack of cross-link formation in factor XIII deficiency. Proc. Nat. Acad. Sci. 68: 770-772.

Rice, R. H., Rong, X and Chakravarty, R (1990). Proteolytic release of keratinocyte transglutaminase. Biochem. J. 265: 351-357.

Rosenthal, D. S., Griffiths, C. E., Yuspa, S. H., Roop, D. R and Voorhees, J. J (1992). Acute or chronic topical retinoic acid treatment of human skin in vivo alters the expression of epidermal transglutaminase, loricrin, involucrin, filaggrin, and keratin-6 and keratin-13 but not keratin-1, keratin-10 and keratin-14. J. Invest. Dermatol. 98: 343350.

Roy, H., Cannon, S and Gilson, M (1988). Assembly of RuBisCo from native sub-units. Biochim. Biophys. Acta. 957: 323-334.

Roy, M. and Ghosh, B (1996). Polyamines, both common and uncommon, under heat stress in rice (Oryza sativa) callus. Physiol. Plant. 98: 196-200.

Ruizherrera, J., Iranzo, M., Elorza, M. V., Sentandreu, R and Mormeneo, S (1995). Involvement of transglutaminase in the formation of covalent cross-links in the cell wall of Candida albicans. Arch. Microb. 164: 186-193.

Sarkar, N. K., Clarke, D. D and Waelsch, H (1957). An enzymically catalysed incorporation of amines into proteins. Biochim. Biophys. Acta 251: 451.

Sato, K., Tsukamasa, Y., Imai, C., Ohtsuki, K., Shimizu, Y and Kawabata, M (1992). Improved method for identification and determination of ε-(γ-glutamyl) lysine cross-link in protein using proteolytic digestion and derivatisation with phenyl isothiocyanate followed by high performance liquid chromatography separation. J. Agric. Food Chem. 40: 806-810.

Schwartzman, R. A and Cidlowski, J. A (1993). Apoptosis- the biochemistry and molecular biology of programmed cell death. Endocrine reviews 14: 133-151.

Schweet, R (1955). Incorporation of radioactive lysine into protein. Fed. Proc., Fed. Am. Soc. Exp. Biol. 14: 277-278.

Schweet, R (1956). Incorporation of radioactive lysine into protein. Fed. Proc., Fed. Am. Soc. Exp. Biol. 15: 350-351.

Seiving, B., Stenberg, P and Nilsson, B (1991). A new assay for transglutaminase. Scand. J. Clin. Lab. Invest. 51: 119-124.

Sentandreu, R., Sentandreu, M., Elorza, M. V, Iranzo, M and Mormeneo, S (1995). Interactions of proteins with other wall components: a pivotal step in fungal cell wall construction. Can. J. Bot 73: (Suppl. 1) 384-387.

Serafini-Fracassini, D., Del Duca, S., and D'Orazi, D (1988). First evidence for polyamine conjugation mediated by an enzymic activity in plants. Plant Physiol. 87: 757761.

Serafini-Fracassini, D., Del Duca, S., and Beninati, S (1995). Plant transglutaminases. Phytochem. 40: 355-365.

Shainoff, J. R., Urbanic, D. A and Bello, P. M (1991). Immunoelectrophoretic characterisations of the cross-linking of fibrinogen and fibrin by factor XIII and tissue transglutaminase. J. Biol. Chem. 266: 6429-6437.

Siepaio, M. P., and Meunier, J. C. F (1995). Diamine oxidase and transglutaminase activities in white lupin seedlings with respect to cross-linking of proteins. J. Agric. Food Chem. 43: 1151-1156.

Signorini, M., Beninati, S., and Bergamini, C. M (1991). Identification of transglutaminase activity in the leaves of silver beet (Beta vulgaris L.). J. Plant physiol. 137: 547-552.

Simon, \mathbf{M} and Green, H (1991). The glutamine residues reactive in transglutaminase catalysed cross-linking of involucrin. J. Biol. Chem. 263: 18093-18098.

Singh, R. N and Mehta, K (1994). Purification and characterisation of a novel transglutaminase from filarial nematode Brugia malayi. Euro. J. Biochem. 225: 625634.

Singh, R. N., Chandrashekar, R and Mehta, K (1995). Purification and partial characterisation of a transglutaminase from dog filarial parasite Dirofilaria immitis. Int. J. Biochem. 27: 1285-1291.

- Slaughter, T. F., Achyuthan, K. E., Lai, T., and Greenberg, C. S. (1992). A microtiter plate transglutaminase assay utilising 5-(Biotinamido) pentylamine as substrate. Anal Biochem. 205: 166-171.

Smethurst, P. A and Griffin, M (1996). Measurement of tissue transglutaminase activity in a permeabilised cell system: its regulation by Ca^{2+} and nucleotides. Biochem. J. 313: 803-808.

Song, Y. C., Sheng, D., Taubenfeld, S. M and Matsueda, G. R (1994). A microtiter assay for factor XIII using fibrinogen and biotinylcadaverine as substrates. Anal. Biochem. 223: 88-92.

Tack, B. F., Janatova, J., Thomas, M. L., Harrison, R. A and Hammer, C. H (1981). The third, fourth and fifth components of human complement: Isolation and biochemical properties. in: Methods Enzymol. (Ed. Lorand, L) 80: 64-110, Academic press, New York. U. S. A.

- Takeuchi, Y., Birkbichler, P. J., Patterson, M. K., and Lee, K. N (1992). Putative nucleotide binding sites of guinea pig liver transglutaminase. FEBS Lett. 307: 177-180.

Tamaki, T and Aoki, N (1982) Cross-linking of α_{2}-plasmin inhibitor to fibrin catalysed by activated fibrin stabilising factor. J. Biol. Chem. 257: 14767-14772.

Teshigawara, K., Kannagi, R., Noro, N and Masuda, T (1985). Possible involvement of transglutaminase in endocytosis and antigen presentation. Microbiol. Immunol. 29: 737-750.

Thacher, S. M and Rice, R. H (1985). Keratinocyte specific transglutaminase of cultured human epidermal cells: Relation to cross-linked envelope formation and terminal differentiation. Cell 40: 685-695.

Tokunaga, F., Muta, T., Iwanaga, S., Ichinose, A., Davie, E. W., Kuma, K and Miyata, T (1993). Limulus haemocyte transglutaminase-cDNA cloning, amino acid sequence and tissue localisation. J. Biol. Chem. 268: 262-268.

Wilcox, P. E (1967). Determination of amide residues by chemical methods. in: Methods Enzymol. (Ed. Hirs, C. H) 11: 63-63, Academic Press, New York. USA.

Wilhelm, B., Meinhardt, A and Seitz, J (1996). Transglutaminase: purification and activity assays. J. Chromatogr. B. 684: 163-177.

Williams-Ashman, H. G., Notides, A. C., Pabalan, S. S and Lorand, L (1972). Transamidase reactions involved in the enzymic coagulation of semen: Isolation of γ -glutamyl-e-lysine dipeptide from clotted secretion protein of guinea pig seminal vesicle. Proc. Nat. Acad. Sci. 69: 2322-2325.

Williams-Ashman, H. G (1984). Transglutaminases and the clotting of mammalian seminal fluids. Mol. Cell Biochem. 58: 51-61.

Wilson, E. M. and French, F. S (1980). Biochemical homology between rat dorsal prostate and coagulating gland . J. Biol. Chem. 255: 10946-10953.

Wing, D. A., Curtis, C. G., Lorand, L and Williams-Ashman, H. G (1974). Isolation of a transglutaminase from the coagulating gland of the guinea pig prostate. Fed. Proc. Am. Soc. Exp. Biol. 33: 290.

Wong, W. S. D., Batt, C and Kinsella, J. E (1990). Purification and characterisation of rat liver transglutaminase. Int. J. Biochem. 22: 53-59.

Yarden, Y., Gabbay, M and Schlessinger, J (1981). Primary amines do not prevent the endocytosis of epidermal growth factor into 373 fibroblasts. Biochim. Biophys. Acta. 674: 188-203.

Zavalova, L., Lukyamov, S., Baskova, I., Snezhkov, E., Akopov, S., Berezhnoy, S., Bogdanova, E., Barsova, E and Sverdlov, E. D (1996). Genes from the medicinal leech (Hirudo medicinalis) coding for unusual enzymes that specifically cleave endo-epsilon
(gamma-glu) lys isodipeptide bonds and help to dissolve blood clots. Mol. Gen. Genetics 253: 20-25.

Zhu, Y., Bol, J., Rinzema, A and Tramper, J (1995). Microbial transglutaminase, a review of its production and application in food processing. App. Microb. 44: 277-282.

Chapter 9- Appendix.

Figure 31. BCA protein assav standard curve showing absorbance at 562 nm as a
function of BSA concentration.

Figure 31 legend.

Figure 31 shows a typical BCA protein assay as described in section 2.2.1.6. The data points represent the mean \pm SEM of duplicate experiments. Protein concentrations between 3.1 and $6.0 \mathrm{mg} \mathrm{ml}^{-1}$ were obtained for soluble Pisum sativum root extracts (section 2.2.1.6) giving average activities of $1.04 \pm 0.06 u^{u} \mathrm{u}^{2} \mathrm{mg}^{-1}$ for cadaverine incorporation and 1.06 ± 0.08 units mg^{-1} for casein cross-linking.

