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Abstract

ABSTRACT

This thesis presents a novel message-passing hardware network interface 

controller which has been designed and developed for integration into a router 

interconnection network for distributed parallel processing systems. It describes how 

the network interface controller can improve the efficiency of message transfers in 

packet switching based communications and reduce the overheads incurred to 

microprocessor tasks.

Initially, a review focusing on the architectures and techniques of interfacing 

inter-processor interconnection networks to parallel processor computing nodes was 

carried out. Various parallel processing system packet routing devices and network 

interface controllers have been investigated. Following the review, a novel network 

interface controller was designed, to link a microprocessor node to a parallel processor 

system, interconnection network.

The network interface controller design was captured in a Hardware 

Description Language (VHDL) following a top-down design methodology. A series 

of comprehensive tests were written to verify the functionality of the design model. 

The design was synthesised into a target programmable logic device, tested via a 

working prototype processor node incorporating the Strong ARM SA-110 

microprocessor. This was followed by the construction of a distributed parallel 

processing system using an ICR C416 packet routing interconnection network.

The successful implementation has demonstrated how an efficient inter

processor communication can be achieved using the network controllers to link to an 

ICR C416 packet routing network to StrongARM microprocessor nodes. This offers 

the processing power of high performance microprocessors in an embedded 

distributed parallel processing system. Key features of the system incorporating the 

network controller are discussed and the system is compared and contrasted with the 

state-of-the-art in parallel processing communication networks.
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1. INTRODUCTION

1. INTRODUCTION

Many hands make light work.

John Heywood, Proverbs

Computers were designed to solve problems: from basic calculation to 

complex simulation. Over the decades, new computer architectures and device 

technologies have always been exploited to improve system performance. However, 

for every technology breakthrough, there is still a limit to the performance that a 

single processor can provide; there are always problems that are beyond the 

capabilities of one individual processor [1]. In addition, there is a belief that the speed 

of the processor will soon reach the physical limits imposed by the speed of light and 

quantum physics effects [2], though computers today have reached clock speeds 

approaching GHz rates. To obtain truly significant performance improvements, and to 

handle ever-bigger tasks, a viable approach is parallel processing [3]. In general, 

parallel processing can be defined as a concept of several processing entities, either 

homogeneous (identical) or heterogeneous, co-operating together on the solution of a 

problem.

The idea of parallel processing for the solution of complex problems has only 

become possible in recent decades. A number of different parallel system 

architectures have been introduced. Early generations of parallel machines were 

supercomputers that were used essentially in highly numerical intensive research and 

scientific areas. These supercomputers relied on custom built, high speed circuits and 

mostly utilised the principles of pipeline processing or array processing as their 

underlying architecture [4]. However, with the advance of Very Large Scale 

Integration (VLSI) technology, microprocessors have become more powerful, cheaper 

and smaller in size. This has given a large boost to the development of parallel 

systems that are constructed by interconnecting low-cost, off-the-shelf 

microprocessors. By connecting relatively fewer but more powerful microprocessors, 

the cost of parallel systems was reduced, while offering performance approaching that 

of supercomputers. M. J. Flynn classified this architecture, of connecting multiple

1
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1. INTRODUCTION

microprocessor devices to process multiple data concurrently, as the Multiple 

Instructions Multiple Data (MIMD) model [4, 5]. This MIMD model is the most 

common model for general parallel computation, examples include: nCUBE 2, 

Paragon XP/S, and Connection Machine CM-5 [6, 7].

A significant aspect of parallel computers is the mechanism that the processors 

use to exchange information. There are two general alternatives to the mechanism 

used, known as shared memory and message passing [8, 9], The first alternative uses 

a global shared memory that can be accessed by all processors. A processor can 

communicate to another by writing into the global memory, and then having the 

second processor read that same location from the memory. This type of parallel 

system is generally known as multiprocessor system, and the processors are normally 

closely coupled. In the second alternative, each processor has its own local memory. 

Processors communicate by passing messages through an interconnection network 

consisting of communication links. This type of parallel system is generally known as 

multicomputer system, and the processors are normally distributed (sometimes 

physically separated by a large distance). Shared memory multiprocessor systems are 

attractive, as they are relatively simple to program, while distributed memory 

multicomputer systems have better system scalability. Over the years, as both classes 

of architecture improved, the boundaries between multiprocessors and multicomputers 

have become blurred. Most of the scaleable parallel systems nowadays have a similar 

architecture consisting of a group of processing nodes connected by an 

interconnection network [10, 11], as shown in Figure 1. Physically distributed 

memories can be globally shared through virtual address space, with the help of some 

memory-mapping techniques in the network interface, or with a software translation 

layer [12].
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Figure 1: The standard architecture of scaleable parallel systems.

As illustrated in Figure 1, there are generally four major components in a 

scaleable parallel system: the microprocessor that features a processing unit; the 

memory that is used for program and data storage; the interconnection network that 

provides the communications path between processing entities; and the network 

interface that couples the processing entities to the communication network. 

Microprocessors and their associated memory chips have become inexpensive and 

widely available due to the dominance of uni-processor systems. Much research in 

parallel processing systems has thus focused on the interconnection network and the 

network interface. This includes design and development of hardware routing devices 

that provide efficient inter-processor communication, and hardware communication 

controllers in the processor node that offload most of the communication tasks of the 

microprocessor.

1.1 The Interconnection Network

An interconnection network is a medium that enables the establishment of 

communication channels amongst connected processing nodes. Ideally, an 

interconnection network should provide direct point-to-point connection to ail 

processing nodes in the system. However, this type of network is only feasible for 

connecting a small number of processing nodes; when these systems scale up, 

packaging constraints and hardware costs tend to limit the number of connections that 

can be implemented [13]. Therefore, parallel processing systems normally have their
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nodes connected with a limited number of communication links, in a specific network 

topology.

Most of the early network topologies are configured in a static way where the 

processing elements are directly linked in a fixed network connection style. This 

reduces the cost and complexity of the interconnection network, but it is only suitable 

for parallel systems that have a specific communication patterns. For generality in 

parallel tasks, dynamic connections in the network topology are preferred, where the 

communication pattern can be defined based on applications [14]. This requires the 

use of switches or arbiters along the connecting paths. Two major categories of 

dynamic network topology that are generally used are bus systems and switch 

systems.

Bus topology networks are very common in multiprocessor systems. All 

processor nodes share the use of a common communication path called a bus [15]. 

Only one communication transaction can happen at a time. An arbiter is thus 

provided to resolve the bus contention. The processor nodes connected to a bus 

system are likely to be closely coupled. Many systems require the inter-processor 

node distances to be limited so that the signals propagation delay is bound for correct 

arbitration. Generally bus systems are low-cost and low latency with closely coupled 

architecture. However, they suffer the problem of scaling. As the number of 

processors trying to access the bus increases, the contention between the processors 

rises accordingly. Access to bus eventually becomes a bottleneck, limiting the speed 

of the computation system. Hence, most bus systems posses very high bandwidth, in 

order to cover the average bandwidth required by a predefined number of connected 

processors.

Switch topology networks utilise complicated devices called switches or 

routers that offer separate connection paths for each processor node. Thus 

simultaneous data transfer can be done across the network providing the simultaneous 

data are not heading for the same destination. Some switches are also equipped with a 

queuing function that queues the data transfers during contention at the destination 

output. The switch topology is better than the bus network in term of system 

scalability, as the technology provides dedicated bandwidth for each connected node. 

The processor nodes connected in these systems can be closely coupled or loosely
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coupled. The allocated communication path for each connected processor allows 

independent transfer operations. In switching networks, complexity increases 

exponentially with the number of connection ports implemented. However, switching 

networks offer high overall bandwidth and improved routing capability. In fact, most 

recent interconnection network research has focused 011 the switching topology; 

mainly encouraged by the improvements in silicon technology that has reduced the 

complexity and the cost of the switching device implementation. The Cray T3D [16] 

interconnection network, the Myrinet [17], and to a lesser extend, the ICR C416 [18] 

are some commercially successful examples of such switching devices.

1.2 The Processor Node and the Network Interface

As shown in Figure 1, the processor node of a scaleable parallel processing 

system generally consists of a microprocessor, memory, and a network interface. The 

co-operation between these components determines the efficiency of the information 

passing, to and from the communication network. Each interface offers different 

advantages and disadvantages, from loosely-coupled network interfaces that are 

connected through a system Input/Output (I/O) expansion bus, to tightly-coupled 

network interfaces that are integrated onto the same microprocessor silicon chip.

Tightly-coupled network interfaces are well known for high performance, 

especially in communications. They offer low message latency with a special tailored 

interface and specific instructions for communications. For instance some integrated 

network interfaces allow message transfers by reading from, and writing to, special 

registers or executing some specialised instructions [19, 20]. This type of 

architecture simplifies the processing node implementation, minimising the number of 

additional components used. The Inmos Transputer on-chip interface was a 

successful example [21]. Despite the excellent performance, the built-in tightly 

coupled network interface requires a great engineering effort to integrate it with the 

microprocessor core on the same silicon chip. Study of the Transputer family history 

has shown that the upgrade of either the microprocessor core or the interconnection
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network/network interface was a time consuming and costly job, mainly due to the 

total integration on a single chip.

Most of the parallel systems today utilise a loosely-coupled network interface 

that is connected through a system I/O expansion bus. This type of network interface 

can be easily adapted across a family of different microprocessors, workstations, and 

Personal Computers (PCs). Utilisation of modern workstations/PCs as parallel 

machine building blocks is an economical solution and allows technology migration 

closely following the rapid workstations/PCs evolution. These system units are high 

performance and reasonably cheap nowadays. Moreover, the operating system kernel 

for these parallel systems can be modified from the existing system software. 

Examples of these systems are the Myrinet/PCI host interface card [22] and the first 

version of the SHRIMP design [23]. However, due to the overhead of accessing the 

I/O bus, it is preferable to carry out large Direct Memory Access (DMA) transfers 

across the bus. Not only does this increase the message buffering latency in the 

network interface, it also dominates the memory bus usage over the whole period of 

transfer. Most I/O bus based network interfaces are designed with large amount of 

buffering to support this operation mode.

As a compromise between the advantages and disadvantages of tightly- 

coupled and loosely-coupled interfaces, some architectures have been proposed that 

place the network interface on the memory bus or even integrate it with the cache 

controller [24, 25]. Moving the interface to the microprocessor memory bus should 

provide better message latency than coupling through I/O expansion bus, while 

offering a certain level of flexibility of choice of state-of-the-art microprocessors as 

processing elements. By optimising a dedicated communication path between the 

network interface and the memory bus, unnecessary arbitration latency of crossing 

from I/O bus to memory bus and bandwidth competition with other I/O bus devices 

are avoided. It also allows the maximum communication bandwidth for the network 

interface, most likely limited by the memory bus bandwidth available and utilisation 

percentage of the Central Processing Unit (CPU), but not by the inherent I/O bus 

speed. However, this type of interface requires the aid of a custom hardware device to 

handle memory bus access requests and the network interfacing.
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1.3 Research History and Objectives

The Nottingham Trent University parallel processing research group has been 

carrying out research and design in inter-processor communications since 1989 [26, 

27, 28]. Initial research interest was in Transputer systems. Transputers were 

designed as building blocks for parallel processing systems. Each chip was equipped 

with some internal memory, external memory control logic, I/O device interface, and 

four bi-directional serial communication links for message passing. By connecting 

the Transputers through the serial communication links, a parallel system network 

could be easily constructed. However, as the size of Transputer arrays grew, the 

interconnections became more complex, and considerable amounts of the processing 

power of the Transputer had to be allocated for communication software control [26,

29].

As a solution to the communication difficulties described above, dynamic 

hardware packet routing switches were designed and developed in The Nottingham 

Trent University, which then led to the realisation of the commercial ICR C416 [18,

30] device. The ICR C416 is a 16-link packet routing switch that was used to provide 

non-blocking messages routing for Transputer parallel systems; off-loading the 

communication tasks from the Transputer microprocessors. This device could be 

cascaded to support scaleable systems. The use of the ICR C416 device in Transputer 

systems demonstrated the efficiency of routing devices as a solution to medium scale, 

low-cost, high performance inter-processor communications [31].

Following the successful implementation of the ICR C416, a diverse range of 

inter-processor communication analyses was carried out. This included 

implementation of a multicast function on the hardware routing device [32] and study 

of different types of communication link flow control effects [33]. The successful use 

of the ICR C416 device, for Transputer networks, also raised interest in using the 

router switch to interface other families of high performance microprocessors. In this 

way, the parallel system formed could benefit from the rapid advances of 

microprocessor design, while the efficient switching communication network core 

could still be maintained.
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Since the demise of the Transputers, attention focused on incorporating state- 

of-the-art Reduced Instruction Set Computing (RISC) microprocessors into parallel 

processing systems. However, it was desirable to retain many of the advantages 

offered by the Transputer family. For instance, Transputers achieved low message 

latency and minimal processor intervention by using a mode of dedicated DMA 

transfer, and allowed the message transfer to interleave with normal memory access 

operations. With such techniques, computation could be carried out as usual with 

communication only adding a minimal overhead. In comparison, most of the modern 

RISC microprocessors contain an adequate amount of internal cache. Provided the 

cache is used efficiently, most of the computation tasks will operate from the 

processor cache, while the message transfers can take place on the memory bus, 

utilising cycle-stealing DMA transfers.

1.3.1 The New Distributed Processing System

The key aim of this project was to build a low-cost, medium-scale, high 

performance embedded distributed parallel processing system. The target was not to 

construct a system that is comparable to those of high-end supercomputers, but to 

build a powerful platform for embedded applications. Due to the physically 

distributed architecture of the system, the word ‘distributed’ was added. In fact, the 

term ‘distributed processing system’ will be generally used in the remaining of the 

thesis.

The new distributed processing system was designed based 011 three major 

underlying objectives:

• Applying switching or routing devices as the backbone of the 

scaleable interconnection network: providing non-blocking point- 

to-point communications, and providing a scalable interconnection 

network with individual channel communication bandwidth for 

processor nodes.
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• Utilising standard high performance RISC microprocessors and 

high-speed memory devices in processor node implementation. By 

using commodity products, the component cost was reduced while 

allowing close tracking of current technology.

• Reducing latency and overhead of message passing by designing a 

single-chip custom network interface controller that tightly couples 

to the microprocessor memory bus. The highly integrated memory 

controller and network interface architecture must optimise the 

communication streaming path.

This proposed system has similarities to the Transputer system, especially in its 

efficient communication links, but offers a much higher processing power.

At the initial stage, the ICR C416 packet routing switch was chosen as the 

communication network core of the system. The use of the ICR C416 router in 

existing systems has shown its reliability and simplicity in connection and flow 

control. Serial communications devices such as the ICR C416 router have the 

advantages of reducing the wiring cost and complexity in distributed systems 

(especially loosely distributed systems), though the performance of a serial 

communication link is lower than that of a parallel communication link. Research 

into better performance and fault tolerance for the router is in progress [33]. 

However, any development of the communication link would retain bi-directional 

serial connections. Therefore, an upgrade of the ICR C416 routing network would not 

be a difficulty, as the physical connections remain.

An initial review had identified the StrongARM SA-110 as a suitable 

processing core for the building block. The StrongARM SA-110 is a low power, high 

performance RISC processor [34]. With the core operating at up to 233 MHz and the 

data bus at up to 66 MHz, this general-purpose 32-bit microprocessor is targeted for 

many embedded applications. The SA-110 has 32 kB internal cache, 128 byte write 

buffer, and hardware support for fast interrupt handling. The on-chip cache together 

with the write buffer substantially increased the average execution speed and reduced 

the average memory bandwidth required, allowing DMA transfers with minimal 

performance loss.
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The combination of the ICR C416 packet routing switches and the 

StrongARM SA-110 microprocessors coupled with some memory would form the 

low-cost embedded distributed system, initially known as StrongARM Router 

Network (SARNet). The main original contribution to this research, however, was the 

design of the one chip solution, network interface message controller. This device 

utilises techniques specifically introduced for message passing efficiency and 

minimising processor overheads, and acts as the interface core to glue the major 

components together.

I.3.2 The Network Interface Controller Hardware

The underlying hardware of the inter-processor communication is the 

interconnection network and network interface. Ideally, a network system protocol 

should be designed considering the router and the interface together. However, this 

does not take place in many systems, where either the interface or the router is built 

first, thus one constraining the design of the other. For example, the ICR C416 router 

was built after the first generation of Transputers, and now the network interface for 

the StrongARM was built after the ICR C416.

In order to analyse the effect of coupling the network interface to the 

microprocessor memory bus, a custom network interface controller had to be 

designed, which closely integrated with the memory interface logic. Designing and 

implementing such hardware traditionally required a large engineering effort. 

However, with the availability of current large density, high performance CPLDs, the 

trend of logic design has changed. Synthesising and fitting a design into the target 

device can be carried out using re-programmable CPLDs. This enables almost 

unlimited modifications and re-designs without the excessive fabrication cost. 

Therefore, use of CPLDs for implementing the interface logic would ease the design 

changes required for incorporating a new RISC microprocessor. Nevertheless, there 

was still a challenge to push the performance of current CPLD design to somewhere 

comparable with the ASIC technology.
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The Altera FLEX 10KA CPLD [35] was chosen to develop the novel network 

interface controller design. This network interface controller implied a message- 

passing model, which was why the design was also known as the message controller. 

In addition to providing the function of message passing, the design acted as the 

interface core that glued the microprocessor and memory module, as well as 

supporting many other features. The mandatory functions embedded include:

• Servicing the request from the microprocessor.

• Controlling the arbitration between DMA accesses and

microprocessor accesses.

• Managing the access to memory module with correct timing.

• Supporting external I/O interfaces for slow devices.

• Providing timer function for software and process scheduling 

purposes.

The network interface controller design had been realised using Very-high- 

speed-integrated-circuit Hardware Description Language (VPIDL) entry, in a top- 

down modular flow. A series of comprehensive tests were written to verify the 

functionality of the model through simulation. The tested model was then synthesised 

into hardware logic, followed by hardware prototyping, and real-time hardware 

testing.

Two versions of network interface controller design were implemented. The 

first version, previously known as OS link Processor Interface (OSPI), was 

implemented with only the basic set of requirements. It was used to study the 

feasibility of the design realisation in the Altera FLEX CPLD. The successful 

implementation of the network interface controller design and some early experiences 

with the first prototype design had led to the development of the second version 

design, named as StrongARM Router Network Interface Controller (SARNIC).

The finalised SARNIC hardware design was equipped with many message- 

processing functions that reduced communication tasks of the microprocessor. It 

contained a number of original features as listed below:
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• Optimised data transfer path between the memory and network 

interface for continuous message streaming with minimal buffering, 

whilst keeping low interference to processor-memory accesses.

• An additional serial router communication link to double the 

effective network interface bandwidth, to provide better fault 

tolerance, and to offer a wider variety of network connection 

topologies.

• Multiple hardware message contexts/channels support for all 

communication links, hence reduced the complexity and 

inefficiency of implementing the same function in software.

• Ability to monitor router communication links status and the ability 

to communicate with the router device for fault detection and 

recovery.

• A booting from communication link option for ease of initialisation 

and real-time reconfiguration of a processor node.

The successful CPLD implementation of the S ARNIC provided an ideal single 

chip solution for the formation of an embedded distributed processing system building 

block. By replicating the building block and connecting them together through the 

ICR C416 packet routing switch, a low-cost and efficient embedded distributed 

processing system, SARNet, could thus be constructed. This was followed by 

intensive software development before the system was ready as a total solution.

1.3.3 Loosely Coupled Network Configuration

In distributed processing systems, there could be a need for a loosely coupled 

network configuration, where many of the processing nodes are physically separated 

at different locations. If processing is installed at the locations where the computing 

power is required, then communication costs are reduced [36]. Such a system requires 

a method to provide greater distances of data transmission.
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A side topic of this research was to carry out an investigation into extended 

distance communication for the new embedded distributed processing system. A 

solution was required to provide reliable and protected communication, preferable 

cost-effective, over a large range of distances. This would widen the area of 

applications for the embedded distributed processing system, for instance in a home- 

networking environment.

Differential signal transceiver circuitry was analysed in the investigation. 

Standard high speed transceiver devices and CAT 5 Unshielded Twisted Pair (UTP) 

cables were used. In addition to using standard differential transceiver circuitry and 

twisted-pair cables, experiments were carried out to improve the signal quality 

through the use of some added passive components. This was carried out in the aspect 

of line balancing.

1.4 Structure of the Thesis

This thesis presents research into distributed parallel processing systems 

leading to the design and development of a novel integrated network interface 

message controller device.

The arrangement of the thesis is summarised as the following:

• Chapter 2 gives an overview of inter-processor communications in 

parallel processing system, providing an insight into its fundamental 

principles, including latency, bandwidth, processor overhead, 

reliability, and scalability. The discussion of the architectures of inter

processor communication systems is concentrated on two main areas: 

the interconnection network and the network-interface. The 

advantages and disadvantages of common bus interconnection 

networks and switch interconnection networks are described, followed 

by technology case studies. The network interface technologies are 

categorised into three classes based on the level of coupling to the 

processing elements and memory: from loosely coupled I/O bus based,
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through memory bus based, to tightly coupled processor integration 

based. The chapter is concluded with examples of current network 

interface techno lo gies.

• Chapter 3 highlights a feasibility study of an novel embedded 

distributed processing system, using commodity microprocessors and 

RAM chips, with the aid of a proven inter-processor communication 

network utilising ICR C416 routing devices. A custom design for a 

network interface hardware controller to link the router network to the 

microprocessor and memory is proposed. A review of possible 

choices of RISC microprocessor and memory technology is given, 

resulting in the choice of the StrongARM microprocessor and 

SDRAM. A basic network interface and memory controller was 

implemented to study the potential performance of the system. 

Finally, an analysis of differential transceiver circuitry was carried out 

to extend serial communication transmission distances.

• Chapter 4 describes the structure and implementation of the 

StrongARM-router network interface controller device, the SARNIC. 

The design is described in six main blocks, namely the Bus Controller, 

the Communication Controller, the Control Link, the Interrupt 

Controller, the Timer, and the Universal Asynchronous Receiver 

Transmitter (UART). Functions of each block, and implementation 

issues related to the specific CPLD architecture are detailed.

• Chapter 5 describes the functional simulation of the SARNIC device in 

an emulated distributed system platform. Performance issues relating 

to the synthesis of the design into CPLDs are explained. System 

integration, verification of the design, and some basic performance 

tests are reported. A SARNet system was constructed, comprising of 

StrongARM processing units linked with an ICR C416 router network 

using SARNIC network interface devices. Raw performance tests 

were carried out for various combinations of possible communications.

• Chapter 6 is devoted to the discussion of the work presented in this 

thesis compared to previous work and other systems in the research
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literature. Key issues raised by the design and utilisation of the 

SARNIC, and the subsequent SARNet system, are given. This is 

followed by the conclusion of the thesis. Finally, potential areas of 

further work arising from the network interface controller are 

highlighted.
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2. INTER-PROCESSOR COMMUNICATION REVIEW

This chapter presents the fundamentals associated with inter-processor 

communications of a parallel processing system, in particular efficiency, reliability, 

and scalability: efficiency affects the performance of the system; reliability states the 

stability of the system and fault management; scalability relates to system processing 

power and the ease of system expansion. A review of different inter-processor 

communication architectures is then described as two major components: the 

interconnection network and the network interface, followed by case studies of the 

current technology. Bus based interconnection networks and switch based 

interconnection network architectures are described. Issues relating to the 

incorporation of the network interface are also discussed.

2.1 Concepts and Goals

Communications take place using a predefined algorithm or paradigm. Since 

the early 1980’s, several different inter-processor communication algorithms have 

been introduced. These algorithms were developed following two major tracks: the 

shared-memory model, implemented in shared-memory multiprocessor systems and 

the message-passing model, implemented in distributed-memory multicomputer 

systems.

Due to the advantage of scalability in distributed-memory architectures, most 

parallel machines conform to the message-passing computing model [37], The 

development of shared-memory architectures has been moving towards using 

physically distributed memory for scalability while maintaining the globally shared 

memory address for programmability: these are generally called Distributed Shared 

Memory (DSM) systems [12]. There are also recent parallel systems that support both 

message-passing and shared memory communication paradigms [38], The review 

given in this chapter is mostly focused on message-passing model as the system 

described in this thesis is based on this.
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A message-passing action involves the transmission, by a sending process, of a 

set of data values through a specified communication mechanism and the acceptance, 

by a receiving process, of the set of data [39], The practical implementation of 

message passing, between processes located in different processors, requires the use 

of a communication network for the transmission of data and synchronisation signals. 

This processor interconnection network technology involves several design 

considerations. The common considerations will be the network topology, deadlock 

possibilities, data transmission rate, probabilities of usage for each device, and 

queuing protocols at the sender and receiver [40]. The essential characteristics of the 

inter-processor communication fall into three categories: efficiency, reliability, and 

scalability.

2.1.1 Efficiency o f an Inter-Processor Communication System

The aim of efficient inter-processor communications is to overlap computation 

and communication. As the overlap of the inter-processor communication system 

reduces, a processor node would need to wait longer for the data to arrive, or more 

involvement from the processor would be required. In this situation, programmers 

often create coarser grain computation that requires less frequent communications. 

Consequently, tasks that might otherwise execute in parallel on several different nodes 

must now be combined to execute serially on a single node, thus reducing the amount 

of parallelism within a task.

In general, the efficiency of an inter-processor communication system is 

represented by three associated parameters: latency, bandwidth, and processor 

overhead.

2.1.1.1 Message Latency

Latency is defined as the time required transferring an empty message between 

the relevant processors. It is calculated from the point a message enters the 

communication network until the point the message reaches the destination. Latency
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is an important factor for short communications such as control signals, 

synchronisation signals, and error messages, as this overhead will be huge compared 

to the data contents.

The contributing factors to the latency of a network mostly depend on the 

speed of the communication devices and the number of stages/hops that a message has 

to travel in the network topology. In bus based interconnection networks, the latency 

is low as there is only one stage that the messages have to traverse. However, the 

factors of collision and contention have to be taken into consideration. Some early 

switching based interconnection networks utilising the store-and-forward 

communication mechanism incurred a large latency. This is because they store a 

complete packet before forwarding the packet to the next intermediate hop. As the 

number of hops a message has to travel increases, the latency increases linearly. 

Luckily the introduction of virtual cut-through [41] and wormhole routing 

mechanisms [42] have significantly reduced this hop dependent latency. These 

mechanisms forward the message or packet to the next location once the routing 

information has been extracted and decoded.

2.1.1.2 Communication Bandwidth

Bandwidth is defined as the speed at which data can be transferred between 

processors once a transmission has begun. It is primarily determined by the capacity 

and the capability of the interconnection network. The higher the bandwidth figure, 

the more information can be transferred within a limited time frame. This factor is 

important for large message size communications.

With higher communication bandwidth, the data can be transferred through the 

interconnection network faster. However, the data transfer rate of the network 

interface to the processor also has to be taken into consideration. Ideally, the 

interconnection network bandwidth and the network interface bandwidth should be 

equal, so that a bottleneck does not occur. Moreover, care should be taken that a high 

data rate does not incur too many overheads on the processor memory bus.
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To increase the physical bandwidth of the interconnection network, most 

closely coupled parallel systems use multiple data paths (parallel connections) instead 

of a single data path (serial connections). This method is very effective for closely 

coupled parallel systems, as the interconnection is either on the same board level, or 

only at very short distances between different boards. However, with loosely coupled 

parallel systems, multiple data path connections are a disadvantage. The cost of the 

cable increases and there is a problem with inter-signal skew for large distance 

communications.

2.1.1.3 Communications Related Processor Overhead

Processor overhead is defined as the slack time incurred during which the 

processor is busy initiating or receiving a message. It is an overhead that contributes 

directly to the latency of the current communication request, and indirectly to the 

latencies of subsequent requests.

Processor overhead is directly relevant to the network interface hardware. A 

good network interface design with communication function support will reduce the 

processor overhead significantly. For example, with the help of a communication co

processor, the protocol processing can be off-loaded from the processor. In this way, 

the processor is freed for independent computation work while the co-processor is 

being occupied with communication tasks. Another example is the occupancy of the 

memory bus during the transfer of a message through the network. A fair division of 

memory bus bandwidth between the network interface and the processor will reduce 

the bus access competition correspondingly.

Another approach to reduce processor overheads through using software 

methods. Traditional communication models usually provide message send and 

receive functions as services of the operating system. This is time-consuming because 

the service requires several crossings between the user level and the kernel level for 

each message in order to provide protection, buffer management and message-passing 

protocols. Recently, methods have been developed to reduce the software overhead 

by supporting the communication directly at the user level [22, 43].
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2.1.2 Reliability of a Parallel Processing System

Reliability is defined as the probability that a system will operate for a long 

enough time to be useful [44]. The interconnection network is one of the key factors 

of a reliable parallel processing system. Another factor related to reliability is the 

fault tolerance of the system. Depending on the requirements and applications of the 

system, different levels of reliability and fault tolerance can be implemented 

accordingly.

An interconnection failure will manifest itself in one of two ways. Messages 

either will be transmitted with errors or will not be transmitted at all. In the former 

case, error detection can be implemented to catch the fault, for example using parity or 

checksum algorithms. In the latter case, where faults can be caused by an open link or 

a failed processor, time-out or message acknowledgements are methods to check the 

reception of messages at the destination. As these fault detection and possible fault 

correction methods are added as an overhead to the communication bandwidth, the 

balance between performance and reliability will depend on the system requirements.

Failures can be classified as hard (permanent) or soft (transient) [44]. Most 

failures, when originally detected, will be initially dealt with as if they are transient. 

Recovery will be attempted and will consist of a retry of the failed process. If the 

retry is successful, the system can be said to be recovered. If the retry is not 

successful, the failure will no longer be regarded as transient, and will be dealt with as 

a hard failure. In the case of hard failure, the isolation of the fault is required, 

followed by the replacement of the failed hardware and a system restart. In some 

critical systems, operation in a fallback mode that provides reduced capability for the 

system will be a better solution. A straightforward mechanism to provide some levels 

of fault tolerance against failure is by replicating the critical component.

•• • •
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2.1.3 Scalability of a Parallel Processing System

Scalability refers to the ability to retain efficiency as the number of processing 

elements increase [45]. It applies to the expansion flexibility for both the number and 

the location of processor nodes in the system, as well as the application program 

involved.

Parallel processing systems should be able to operate effectively and 

efficiently at many different scales. A system may start off with only two processors, 

but later be expanded to hundreds. An architecture is scalable if it continues to yield 

performance increases proportional to the number of processors used for a given 

application. When a particular installation expands, the expansion should occur 

without disrupting the system. In this sense, the scalability should reflect the ease of 

translation for the system software and application software. Ideally, no changes to 

the software are required, but this is rarely ever the case.

In the aspect of interconnection network scalability, a system expansion 

preferably should not affect the performance of the network. As the number of 

processor scale up, demand for a resource (e.g. a communication channel) may grow. 

Depending on the application and the topology, a performance bottleneck can be 

formed, since high amounts of accesses are requested to that particular resource. 

Thus, the demand for scalability in parallel processing systems has led to a design 

philosophy in which no single resource is assumed to be in restricted supply [39]. 

Rather, the system should allow possible extension to replicate this resource to avoid 

both performance and system bandwidth degradation. For example, due to the 

sequential access in a shared memory bus system, the shared medium becomes a 

bottleneck as more processors are connected. A switch network, on the other hand, 

can provide arbitrary scaling with dedicated bandwidth for each connected processor.

2.2 The Processor Interconnection Network

The interconnection network plays a central role in determining the overall 

performance of a parallel system. If the network cannot provide adequate
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performance, processor nodes will frequently be forced to wait for the arrival of data, 

causing performance drop in parallel systems.

The network technology always needs to be improved in order not to become a 

serious bottleneck for a parallel system. Unfortunately, microprocessors and their 

associated memory devices are currently, rapidly improving in performance. 

Throughout the evolution of parallel systems, many structures and topologies have 

been introduced to allow the interconnection of multiple processors. Generally, the 

interconnection technology falls into two major classifications: common busses and 

switches. Most of the recent parallel systems utilise switches as their interconnection 

network, as these switches provide point-to-point communication channels and ease of 

system scaling. However, there are still systems that use shared medium common 

busses because of the cost effectiveness.

The following sections describe the two major classifications of 

interconnection network: common bus systems and switched systems. The 

investigation focuses on distributed interconnection network architectures, and is 

biased towards switched systems.

2.2.1 Common Bus Systems

A bus system is simply a collection of wires for data transactions among 

connected processing nodes. Since it is a shared medium, only one transaction can be 

done at a time between a source and a destination. In order to solve the contention 

when multiple requests are occurring, bus arbitration logic is used to service the 

requests one by one.

Usually all the processors in a bus structured system are homogeneous. This 

interconnection style is very common in closely coupled multiprocessor systems. A 

moderate number of processor nodes connected 011 the bus can communicate 

efficiently with high throughput. However, when the number of processor nodes in 

the system increases, the inherent sequentiality of these communication methods 

produces bottlenecks and bandwidth degradation. Timing constraints are a difficulty 

too. In order to guarantee performance, a common bus system is typically built with a
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fixed number of slots on a backplane, and thus only allows a limited number of 

connected processors.

Although closely coupled bus system usually use multiple data connections 

(parallel), serial connection is preferred in loosely coupled bus systems. Obviously, a 

major factor is the amount of cable used, which is proportional to the distance of 

connections. However, the data transfer rate of a serially connected bus system is 

significantly less than a parallel connected bus system due to the reduced number of 

connections. Therefore, research in serial bus systems concentrates 011 pushing the 

speed of the data transactions across the network. The Ethernet system is an example 

of such a serial bus system.

2.2.1.1 Ethernet

Ethernet is a very common network connection technology used in modern 

Local Area Network (LAN) systems [46]. This technology is cheap and widely 

available due to its dominance of current PC networking. Traditionally, Ethernet was 

a shared-medium network, and therefore all stations attached to the network are 

competing for the use of a wire. Therefore one would not expect that Ethernet is 

suitable for high performance distributed parallel systems which need predicted low 

latency in message transfers. However, recent research has demonstrated the use of 

this commodity network as the interconnection of a parallel system [43].

As a distributed network topology, Ethernet systems utilise serial connections. 

Data packets are transmitted serially over the shared-medium to every attached 

station. Figure 2 shows the data packet format for the standard Ethernet systems, as 

specified in IEEE 802.3. The first 8 preamble bytes and last 4 frame check sequence 

bytes are normally generated by the Ethernet chipset, while the rest are the 

responsibility of the software. The preamble consists of 62 bits of alternating l ’s and 

0’s, used by the receiver to acquire bit synchronisation, and 2 consecutive l ’s to 

acquire byte synchronisation. The destination address contains the address of the 

intended receiver (broadcast address is all l ’s). The source address contains the 

unique Ethernet address of the sending station. The length of data field contains the
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number of bytes in the data field. The data field can accommodate 46 to 1500 bytes 

of data, where shorter packets must be padded to 46 bytes. The frame check sequence 

consists of 32 bits of Cyclic Redundancy Check (CRC).

8 6 6 2 46-1500 4

Preamble Destination
address

Source
address

Length of 
data field

Protocol header, 
data and pad

Frame check 
sequence

Figure 2: IEEE 802.3 Ethernet packet format

In order to solve the contention of stations competing for the network access 

and ensure access to the network channel is fair, Ethernet conforms to a medium 

access control mechanism called Carrier Sense Multiple Access with Collision 

Detection (CSMA/CD):

Carrier Sense - When an interface is transmitting, there will be a 

signal on the channel, which is called carrier. Before each interface 

begins transmitting, it will sense if any carrier exists on the channel, 

and must wait until the carrier ceases if there is one.

Multiple Access - All the interfaces in an Ethernet system are equal 

priority in their ability to send frames onto the network.

Collision Detection - Since signals take a finite time to travel from 

one end of an Ethernet system to the other, the first bits of a 

transmitted frame do not reach all parts of the network simultaneously. 

Therefore, it is possible for two interfaces to sense that the network is 

idle and to start transmitting their frames simultaneously, and this is 

referred to as a ‘collision’. The interface has a way to detect the 

‘collision5 condition, stop the transmission, and re-send the frames.

Most designs ensure that the majority of the collisions on an Ethernet will be 

resolved in microseconds. In the event of a collision the Ethernet interface waits for a 

few microseconds, then retransmits the data packet. However, as more computers are 

added to a given Ethernet, and as the traffic level increases, more collisions will occur.



2. INTER-PROCESSOR COMMUNICATION REVIEW

It may also happen that there are multiple collisions for a given frame transmission 

attempt. After 16 consecutive collisions for a given transmission attempt, the 

interface will discard the Ethernet packet. This can happen only if the communication 

channel is overloaded for a fairly long period of time, or is broken in some way.

The original Ethernet system operated at 10 Mbps. There are four different 

media segments defined in the standard; 10 BASE 5 which uses thick coaxial cable 

with a maximum length of 500 m; 10 BASE 2 which uses thin coaxial cable with a 

maximum length of 185 m; 10 BASE T which uses twisted-pair cable; and 10 BASE 

F which uses fibre optic cable. 10 BASE T was the most widely used for PC network 

connections.

Recent Ethernet systems are operating at 100 Mbps. There are two LAN 

standards developed. Only the upgrade version of the original Ethernet system will be 

given here. This approach is called 100 BASE T Fast Ethernet. It produces a tenfold 

increase in the transmission speed, but keeping the existing frame format and media 

access control mechanism. Like the 10 Mbps Ethernet system, there are three 

different media segments defined: 100 BASE T4 which uses 4 pairs of telephone- 

grade twisted-pair wire; 100 BASE TX which uses 2 pairs of data-grade twisted-pair 

wire; and 100 BASE FX which uses fibre optic cable.

In the forth-coming Gigabit Ethernet, enhancements have been made to the 

speed of transmission, and in providing additional support for new applications and 

data types [47]. This includes support for video and multimedia traffic with reserved 

bandwidth and virtual LAN protocols. At gigabit speeds, fibre optic cable will be a 

more suitable communication medium. Flowever, research in using copper cable still 

continues [48]. 1000 BASE CX uses Shielded Twisted Pair (STP) at up to 25 m, 

while 1000 BASE T uses four pairs of CAT 5 UTP (unshielded) cable at up to 100 m 

with special coding and technology. These systems are still in the stage of testing and 

development.

It is difficult to guarantee predicted message delivery in Ethernet based 

parallel processing environments due to the collision detection and resolution 

mechanisms. Ethernet systems also suffer from the inherent disadvantages of shared- 

medium networks like bandwidth sharing degradation and the lack of scalability. 

Nevertheless, the introduction of star-wired hubs and switches has continued to
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improve the situation. These hubs and switches offer each node a ‘private’ link to the 

network that can provide a full-duplex link. New protocols are introduced in Gigabit 

Ethernet to provide reserved channel bandwidth.

2.2.2 Switch ed Systems

Switching or routing devices can provide simultaneous message transfers 

across the network, providing the messages are not going to the same destination. 

These switches allow scalability of the system without bandwidth degradation. They 

also raise the possibility of connecting heterogeneous processors for a distributed 

system, through compatible data representations and message-passing protocols. 

However, there is a general problem with message delay, because of the routing 

function and the fact that a message might traverse multiple links before it reaches the 

destination.

Initial switching communication technology used a store-and-forward 

mechanism for its message passing. Each message or packet has to be stored in an 

intermediate node before it is retransmitted to the destination node or the next 

intermediate node. A disadvantage is that even if there is no blockage on the 

communication path, the process of store and forward is still repeated at each 

intermediate node, until the message reaches the destination. The virtual cut through 

mechanism was introduced later, where the message or packet is forwarded through 

the intermediate nodes as long as there is no blockage ahead [41]: when a blockage 

occurs, the message or packet will be stored at that location and waits until the 

blockage disappears.

Wormhole routing is another mechanism that can forward the message or 

packet through the communication path until a blockage is found. The message or 

packet is injected into the network as a train of smaller data groups, called flits [42]. 

In this way, only the small size flits need to be buffered, and thus only a small amount 

of buffers needed to be implemented in the switching device.

The following sections will focus on three common packet routing switches: 

the Nottingham Trent University ICR C416, the SGS-Thompson ST C l04, and the
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Myricom Myrinet. These designs embrace most of the features of current switching 

technology.

2.2.2.1 ICR C416 Based Systems

The Nottingham Trent University ICR C416 [18] is a dynamic hardware 

routing switch designed initially for the first generation of Transputers [21], utilising 

the protocol called Over Sampling (OS) Links. It uses a wormhole routing 

mechanism for its message passing, in which the routing decision is taken as soon as 

the routing information has been received. There are a total of 16 ports available on 

the device. Messages to an input port of the device can be routed to any output port. 

All messages can be routed independently of each other provided there is no 

contention for an output link.

Each link of the ICR C416 consists of a pair of full duplex wires. Serial data 

is sent down the link, starting with a start bit, followed by an identification bit of ‘1’, 

data bits, and finally a stop bit. The speed of the transmission can be set as either 

10 Mbps or 20 Mbps. As three extra bits are sent per character, the maximum data 

throughput can only be 14.55 Mbps, or 1.82 MB/s. No clock is sent over the channel, 

and an over sampling technique is used to synchronise the serial data at the receiving 

end.

The OS Link protocol implements a stop and wait mechanism. Each data byte 

sent out must be acknowledged before the following bytes are sent out. An 

acknowledge token consists of a start bit immediately followed by a stop bit. To 

allow data to be sent back-to-back (thus achieving maximum throughput), an 

acknowledge token is sent back once a data token is detected, provided there is room 

in the buffer for the current data byte. Thus, at least one byte of buffer is needed at 

the receiving end to ensure continuous flow of data. This acknowledge token, 

however, reduces the bandwidth on bi-directional transfers since data and 

acknowledge have to be multiplexed on the channel. As a result, a single byte will 

need 13 bits of time with data and acknowledge back-to-back. This gives a maximum 

bi-directional throughput of 3.08 MB/s.
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The ICR C416 packet is a sequence of header bytes, a length byte, and a 

payload of specified length. Figure 3 shows the format of the packet. The header 

byte is the destination byte of the routing device output port. It will be stripped as the 

message is passed through the routing device. For a message that is going through 

more than one router, variable lengths of header bytes can be used: the Most 

Significant Bit (MSB) of the header byte (known as the cascade bit) is set to ‘1’, 

except for the last header byte. In this way, headers are stripped at each passage of a 

router. The byte following the last header will be the length byte. This length value is 

used to count the number of subsequent bytes and disconnect the link at the end. With 

the 8-bit length byte, a variable length of payload can be sent, from 1 to 256 bytes of 

data1.

First output link

Second last output link

Last output link

Payload length byte

Payload 
(1 to 256 bytes)

Header 
(variable length)

Figure 3: ICR C416 packet format.

The ICR C416 offers a simple and cheap solution to inter-processor 

communications. Though the link speed is not as fast as other networks, it does cover 

many applications without performance losses. In addition, the simplicity of the 

connection and wiring make it a favourable routing device in embedded or small-scale 

networks. One of the limitations of the ICR C416 is the lack of fault tolerance in the 

message passing. However, some forms of control can be achieved by monitoring the 

traffic via the software control port of the device, and implementing a fault detection 

function in the host. The operation and the special features of the device will be 

covered in more detail in Chapter 3.

I The valid packet length byte o f 0 (equivalent to packet size o f 256) is not documented in the data sheet.
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2.2.2.2 ST C l04 Based Systems

The SGS-Thompson ST C l04 [49] is a routing switch built specially for the 

second generation of Transputers - the T9000 [50, 51]. Like the ICR C416, the router 

uses a form of wormhole routing. The device has 32 ports, providing high bandwidth, 

serial communication links to each other via a 32 by 32 way, non-blocking, crossbar 

switch.

The link channel of the ST Cl 04 uses two pairs of full-duplex wires, one pair 

in each direction, which are referred to as Data Strobe (DS) Links. One wire is for 

data and the other carries a strobe signal. Each DS pair carries tokens and an encoded 

clock, and operates at data rates of up to 100 Mbps. Two types of tokens are 

available: data and control tokens. Data tokens are 10 bits long and consist of a parity 

bit, an identification bit of ‘O’, and 8 bits of data. Control tokens are 4 bits long and 

consist of a parity bit, an identification bit of ‘ 1 and 2 bits for types of control. Thus, 

the maximum unidirectional throughput will be 80 Mbps, or 10 MB/s.

Token-level flow control of the DS Links employs a stop and wait mechanism 

to prevent a sender from overrunning the input buffer of a receiving link. A sender 

will transmit eight tokens and wait for a Flow Control Token (FCT) before 

transmitting any further tokens. Thus, each receiving link input must contain a buffer 

with at least eight tokens of space. Whenever the receiving end has space for more 

than eight tokens, the ‘FCT’ token is sent to the transmitting end to allow transmission 

of the next eight tokens. The provision of eight extra token buffer on each input link 

ensures that the ‘FCT’ token can be sent before the current eight tokens of data is fully 

transmitted. Hence, a total of sixteen token buffer spaces will allow continuous flow 

of data without restricting the maximum bandwidth of the link. However, this ‘FCT’ 

token does slightly reduce the data bandwidth on bi-directional transmission. For full 

utilisation of the link bandwidth, eight tokens of data will be followed by a ‘FCT’ 

token. This gives a bi-directional throughput of 19.05 MB/s.

Communication through ST C l04 ports takes place in virtual channels, which 

always occur in pairs between the nodes in a network. The packet contains a header
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that identifies the virtual input channel of the node, and is also used to route the 

packet through the network. This is followed by the data section of the packet until a 

packet termination token is received. A packet termination token is either an End Of 

Packet (EOP) or an End Of Message (EOM). To ensure that no packet is lost, each 

packet of data sent along a virtual channel must be acknowledged before the next is 

sent. This is achieved by sending acknowledge packets at the receiving end, which 

consists of only a header and ‘EOP’ token. Figure 4 illustrates the structure of these 

packets.

Data
packet

Acknowledge 
packet

Figure 4: ST Cl 04 structure of data and acknowledge packets.

Two types of error detection are implemented in the ST C l04: parity and 

disconnection errors. Single bit odd parity error is checked at every token to ensure 

the link layer is reliable. A disconnection error is implemented by doing a time-out 

check for non-activity on the link. Null (NUL) tokens are sent whenever the link is 

idle, to ensure no disconnection error occurs.

The ST Cl 04 is one of the more sophisticated routing devices available, which 

offers up to 32 ports of connection, and features support for large network connection. 

It has different levels of reset and error recovery modes, providing good fault 

tolerance.

2.2.23 Myrinet Based Systems

The Myricom Myrinet [17] is a new type of message passing network used for 

packet communication and switching within Massively-Parallel Processors (MPPs). 

Like the ST C l04 and the ICR C416, the switching circuit employs a wormhole 

routing mechanism. The core of the switch is a pipelined crossbar, which introduces

header EOP token

header packet body packet terminator
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no internal conflicts between packet flows. Currently there are 4-port, 8-port, and 16- 

port switches available.

A Myrinet link channel is composed of nine full-duplex pairs of wires, making 

a total of eighteen. The message consists of a series of 9-bit parallel characters. The 

character can be either an 8-bit data byte or one of the five control bytes. Character 

transmission is at 80 MHz, resulting in a bandwidth of 720 Mbps per channel. 

However, the maximum unidirectional data throughput can only be 640 Mbps per 

channel as only 8 bits are data. Similar to the ICR C416, a sampling technique is used 

to synchronise the character at the receiving end.

The flow control in Myrinet is accomplished by injecting ‘stop’ and ‘go’ 

characters on the channel. When the receiving buffer reaches the stop limit, the 

receiving end sends a ‘stop’ character to the transmitting end so that the flow will stop 

before the buffer overflows. The receiving buffer is then read until the ‘go’ limit is 

reached, where a ‘go’ character is generated to resume the data flow before the buffer 

is totally empty. The ‘stop’ and ‘go’ limits are determined by measuring the number 

of characters which can transit on the round trip of Myrinet cable, and the time for 

‘stop’ and ‘go’ characters’ generation and receipt. Buffer size has to be carefully 

selected to ensure these control characters will not consume excessive bandwidth on 

the channel. Thus, there is a possibility of not sending the flow control characters at 

all if the buffer size is big enough, giving a full 160 MB/s bi-directional throughput 

(twice of the unidirectional throughput). This is certainly an advantage compared to 

the acknowledge flow control mechanisms of the ST Cl 04 and the ICR C416.

A Myrinet packet consists of a sequence of bytes starting with a routing 

header, followed by an arbitrary-length payload, and terminated by a trailer that may 

include a checksum. The format of the packet is illustrated in Figure 5. The number 

of headers used is variable, depending on the number of switches used. The MSB of 

each header byte will be set to ‘1’ to indicate the destination router outgoing port, 

except for the last header byte (dedicated for the host to identify packet type) which is 

set to ‘O’. A routing header byte will be stripped off when it enters the switch. 

Following the headers will be the arbitrary length of payload. At the end of payload, 

an 8-bit CRC character is computed on the entire packet, including the header. The 

marker of end of packet is the ‘gap’ character.
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Header
(variable length)

Delivered to 
destination host Payload

(arbitrary length)

Trailer

1 (to-switch), port #

Payload...

CRC

GAP

1 (to-switch), port #

0 (to-host), type

Payload...

Figure 5: Format of a Myrinet packet

To increase reliability, Myrinet uses a long period time-out mechanism to 

detect packets blocked for more than 50 ms, either caused by a software error or by a 

bit error in a header causing deadlock. Thus, the transmitter is required to send a non- 

idle character periodically to avoid time-out error. When a long-period time-out 

occurs, the transmitter will drop the blocked packet, and send a Forward Reset (FRES) 

character to the receiver to reset the blocked channel.

The Myrinet network flow control shows a good example of increasing the 

bandwidth on bi-directional communications. It also offers high bandwidth with the 

expense of multiple wire connections. Recent upgrades of the Myrinet switch has 

increased its bandwidth, achieving 1.2 Gbps per channel per direction.

2.3 The Processor Interconnection Network Interface

Although interconnection networks such as router switches are the key 

components in distributed multiprocessor systems, the interface between the router 

and the processors is of equal importance. A processor-network interface supports the 

communication protocols of a network, and data transfer to and from a processor 

node’s local memory. These make the interface very dependent on the 

interconnection architecture, and the processor chosen. One processor-network
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interface can be optimised to support a specific communication paradigm to achieve 

high performance.

The following sections describe the architecture and implementation of the 

network interface technology. A number of architectures of integrating a network 

interface to the processor and the memory subsystem are described. Examples of 

systems are given in each architecture class. Finally, the last section discusses the 

amount of communication support that can be offered in the network interface, and 

types of solution in implementing the support.

2.3.1 Tightly-coupled Versus Loosely-coupled Interfaces

A communication network interface controller can be located at a different 

level from the microprocessor. The closer the network interface is to the 

microprocessor, the greater the performance, but less general the communication 

parts. Typically, common network hardware has a processor interface implemented 

attached to the I/O bus of the host system. One of the common examples is using 

Peripheral Component Interconnect (PCI) bus interfaces [52]. However, to allow very 

low network access latencies and simple protection schemes, more customised 

architectures have been proposed, that integrate the processor-network interface more 

tightly with the host system. For example, by placing the interface on the memory 

bus or integrating it with the cache controller. There are some even more tightly- 

coupled processor-network interfaces where the interface design is integrated onto the 

same chip as the processor, thus offering specific instructions for sending and 

receiving messages.

2.3.2 I/O Bus Based Interface

The I/O bus based network interface is connected to the microprocessor and 

the memory through the system I/O bus. It is an economical strategy where standard 

workstations can be applied as the processing elements, and the communication 

network is provided through the network interface card slotted in the workstation’s
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I/O bus. The other benefit is that a network interface (and thus the interconnection 

network) can be easily adapted across different families of processors or workstations. 

In this way, upgrades of processing elements would not a relatively easy task, 

allowing close tracking of the rapidly advancing PC/workstation technology.

The standard I/O bus architecture normally offers a few expansion slots for the 

attachment of different I/O cards. Therefore the I/O bus based network interface has 

to compete with all the other I/O devices attached to the bus for bandwidth. 

Depending on the I/O bus arbiter, the network interface might not be able to get a 

fixed interval bandwidth. This is not a desirable situation, as the data flow to and 

from the network will be affected without the help of a large buffer. Another problem 

is with the I/O bridge which handles data transfers between the I/O bus and the 

microprocessor memory bus: the overhead and bandwidth of the I/O bridge, which 

determine the message latency, are variable. For instance, the performance of PCI bus 

systems is very dependent on the PC chipset used. A variety of performance figures 

of PCI bus transfer rates for a series of different computer systems have been reported 

011 the Myricom (manufacturer of Myrinet) website.

Although the latency measurement is difficult to define, most recent parallel 

systems use this I/O bus based method for implementing the network interface [22, 

23, 53, 54]. The main supporting reason is the flexibility of using current low-cost 

PC/workstations as processing elements. Two examples of I/O bus based network 

interfaces are discussed in the following sections.

2.3.2.1 Myrinet/PCI Host Interface

The Myricom Myrinet/PCI Host Interface card is the network interface card 

designed for connecting standard PCs or workstations to the high performance 

Myrinet switch discussed in section 2.2.2.3 [22]. The adapters are programmable, 

providing a flexible interface to the host through the system PCI I/O bus. Each 

network interface consists of a processor and some memory, which is used to store the 

firmware program and data for the message handling.
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Figure 6 illustrates the architecture of the network interface and the host 

system. There are three DMA engines located on the board: one for the transfer 

between the host memory and the network interface memory, one for sending 

messages from the network interface memory to the network, and one for receiving 

messages from the network to the network interface memory. The network interface 

memory is constructed from fast but relatively expensive Static Random Access 

Memory (SRAM), and therefore the size is limited [22]. All inbound and outbound 

network transfers are staged through this local memory. Although there are two DMA 

engines for inbound and outbound transfers between network interface and the 

network, there is only one DMA engine for the transfers between the network 

interface memory and the host memory. Thus, this might limit the maximum 

performance attainable where bi-directional message operations have to share the 

same DMA resource.

Host
CPU

Host
memory

Cache Network interface

uP

memory Send

DMA engine

Myrinet
Network

Figure 6: Myrinet host and network interface architecture.

An important feature of the Myrinet interface card is the availability of a 

programmable processor [55, 56]. The behaviour of the network adapter is 

determined by a firmware program, called Myrinet Control Program (MCP) that is 

written into the local SRAM from the host at start-up. This feature offers flexibility in 

designing the network protocol. However, the network interface processor is much 

slower than the host CPU, therefore the program must be carefully written to achieve
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efficient message handling in the network interface. In addition, due to the centralised 

control in the processor, the processor might become the bottleneck of the 

communication handling.

As a whole, the Myrinet/PCI host interface delivers high performance at 

reasonable cost, with latencies determined primarily by the messaging software and 

the time to transfer data on the host I/O bus. Many recent research parallel machines 

are focusing on using the Myrinet/PCI host interface and network because of its 

flexibility in protocol implementation and high network throughput [22, 57, 58].

2.3.2.2 SHRIMP Interface

The Scalable, High-performance, Really Inexpensive Multi-Processor 

(SHRIMP) system consists of commodity PC nodes connected by a high-speed 

interconnection network. The initial prototype was using Intel Pentium Xpress PC 

system as the processor node, and the Intel Paragon routing backplane as the 

interconnect [59]. The key components in the system are the custom SHRIMP 

network interfaces, which provide the connection from the PC node to the network 

[23, 60, 61]. Figure 7 illustrates the first version of SHRIMP network interface.

Network
interface

Other

Figure 7: A SHRIMP node with network interface.

The first generation of SHRIMP network interface is designed to connect to 

both the Xpress memory extension slot and an Enhanced Industry Standard

36



2. INTER-PROCESSOR COMMUNICATION REVIEW

Architecture (EISA) expansion slot. For outbound transfers, data is ‘snooped’ directly 

off the Xpress memory bus. However for inbound transfers, data has to be transferred 

to the main memory through the EISA bus, as the Xpress bus does not offer the 

capability of bus mastering. Both incoming and outgoing data transfers are assisted 

by two individual DMA engines, releasing the involvement of the CPU. One benefit 

of the Xpress bus is that the snooping cache architecture will insure cache consistency 

during message transfers. Therefore the SHRIMP system can use the cacheable 

memory region as the send and receive buffers for message passing without the help 

of extra hardware.

Other than supporting message-passing mechanism, the SHRIMP network 

interface also supports a Virtual Memory-Mapped Communication (VMMC) model. 

The virtual memory mapping communication uses a physical memory mapping 

mechanism. Each page of a local physical memory can be mapped to a physical page 

of some other node in the system. This will require a map system call to set up the 

appropriate physical mapping information in the network interface, and to perform 

protection checking. Once a map is established, either the network interface snoops 

all writes to the mapped memory and forward to the mapped received node 

(automatic-update), or a send primitive (user-level) is used to transfer data with 

minimal overhead (deliberate-update). Since the destination node already knows the 

mapping information, the network interface uses the destination address to transfer the 

data directly to the mapped-in physical memory without CPU assistance. This 

removes the need of a receiver interrupt, and thus reduces the message latency 

significantly.

Recently, the SHRIMP VMMC model has been ported on a Myrinet network 

of PCI-based PCs [58]. This was to analyse the feasibility of implementing the 

VMMC model on a commercially available hardware platform. The results have 

shown that the Myrinet implementation incurs a relatively higher overhead because of 

the demands of the network interface resources. These resources include the 

communication processor (LANai processor) and the network buffer (on board 

SRAM). However, the Myrinet based implementation requires less operating system 

support because of the help of the communication processor.
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2.3.3 Integrated Processor Based Interfaces

An integrated processor based interface, commonly known as a tightly coupled 

processor-network interface, is integrated onto the same silicon chip as the processor. 

This type of processor architecture normally has its own instruction set that includes 

specific instructions for sending and receiving messages. Efficiency is the key to the 

success of processor integrated network interfaces. Due to its highly integrated 

architecture, the message latency is much lower than the I/O bus based network 

interface. Other than having the network interface integrated on the same chip, these 

processor designs are also normally embedded with some additional functions, such as 

memory control logic. This ‘all in one’ feature simplifies the implementation of 

processor nodes and the construction of a parallel processing system.

The problem with the processor integrated interface architecture is a lack of 

flexibility: the selection of microprocessor and the network interface architecture is 

fixed at the design stage. Also due to its highly integrated architecture, a large amount 

of engineering effort is needed to design and integrate the network interface.

There are quite a number of processor integrated interface designs available. 

Examples are the iWarp [62], MDP [20], and Transputer systems.

2.3.3.1 Transputer T800 Interface

The Transputer architecture is constructed using the OCCAM parallel 

processing language concepts of process concurrency and communication [37]. 

However, the hardware can also support traditional programming languages. 

OCCAM is based on Hoare’s Communicating Sequential Processes (CSP) [63] and is 

designed to support explicit hardware concurrency. Every OCCAM program that is 

executed in Transputers is structured in a set of concurrent sequential processes that 

communicate through Input/Output instructions on point-to-point channels. This 

process is synchronous and unbuffered, where one process executes an I/O instruction 

on a given channel, it then stops until the opposite process begins to execute the 

complement I/O instruction.
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Since the Transputer was designed with OCCAM in mind, message passing is 

supported in hardware, yielding efficient implementation. Through a careful choice of 

processor characteristics, each Transputer provides on chip: a few external links for 

inter-Transputer communications; internal timers; a large area of RAM; and bus logic 

for an external memory system. With all the necessity functions embedded into a 

single chip processor, the building block for a parallel system is simplified, 

minimising the components used.

The Transputer chip architecture is illustrated in Figure 8. Communication on 

channels between processes is achieved by using the input message (in) and output 

message (out) instructions. A channel can be either an internal memory location or 

one of the external links, depending on whether the message passing takes place 

between processes in the same processor or on a different processor. Because every 

Transputer link is memory-mapped, both internal and external communication can be 

implemented by means of the same instructions. Three operands are needed for the 

message passing instructions: message length, message address, and message 

identifier. Based on these operands, the external communication system will be able 

to access the Transputer memory through DMA without processor intervention.
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Figure 8: The Transputer chip architecture.

39



2. INTER-PROCESSOR COMMUNICATION REVIEW

In addition to its internal RAM, the Transputer can also access a wide external 

memory space, directly mapped up to 4 Gbyte. The external memory interface 

module supports Dynamic Random Access Memory (DRAM), SRAM, Read Only 

Memory (ROM) and EPROM, and its timing can be software-configured to cater for 

the correct memory types and speed. Transputers have two timers based on free- 

running clocks, each for a different process priority level. The higher priority clock is 

running at a 1 ps clock tick, while the lower priority one running at a 64 ps clock tick.

The Transputer was the leading microprocessor for embedded parallel system 

in the late 1980’s and the early 1990’s. However, the integrated network interface 

architecture has made the Transputer upgrade complicated. In contrast, stand-alone 

microprocessors have advanced in a much faster curve throughout the years, both in 

terms of architecture and processing power.

2.3.4 Memory Bus Based Interfaces

Memory bus based network interfaces have an architecture that lies between 

I/O bus based network interfaces and processor integrated network interfaces. The 

performance is improved compared to I/O bus based network interfaces, due to 

several factors. The first factor is that message transfers do not need to cross over 

from the I/O bus to the memory bus, thus reducing the overhead. Secondly, the 

memory bus is conventionally faster than the I/O bus, thus elevating the performance 

and network interface bandwidth available. Thirdly, the number of devices connected 

on the memory bus are normally less than the number of devices attached on the I/O 

bus, thus bus competition is reduced. In contrast to processor integrated network 

interfaces, the memory bus based network interface offers better flexibility in 

selecting the appropriate processor and in upgrading the processor.

Integrating processor-network interfaces in memory control logic seems to be 

an effective and convenient solution. But care must be taken to make sure the 

network message transfer does not access the memory bus too often. A DMA method 

is normally used for message transfers, though it suffers from a slight start-up 

overhead. With cycle-stealing DMA, message accesses utilise unused processor
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cycles, thus minimising the bus congestion. More advantages will be seen if the 

memory used supports burst mode operation, so that each individual DMA access can 

be optimised to the burst size. An important note when using DMA for message 

transfer is that without the help of cache-coherent hardware, the message area must 

never be swapped to disk by the operating system (to avoid corruption of messages), 

nor made cacheable (to ensure data consistency).

2.3.4.1 MA GIC Interface Controller

The Stanford FLexible Architecture for SHared memory (FLASH) 

multiprocessor systems are aimed to provide efficient integration of both cache- 

coherent shared memory and high performance message passing mechanisms [64]. 

To accomplish these goals, a custom node controller, Memory And General 

Interconnect Controller (MAGIC) was designed. This controller is a highly integrated 

chip that handles all communications both within the node and between nodes. Figure 

9 illustrates the FLASH node organisation.

Processor

Cache

MAGIC

Prtocol
Processor

MAGIC MAGIC
ICache DCache

NetworkMemory Router

Figure 9: FLASFI node organisation.

Each node in FLASH contains: an off-the-shelf microprocessor with caches, a 

portion of the machine’s global memory made of DRAM, a connection port to the
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communication network, an I/O interface, and the MAGIC chip. The MAGIC chip 

forms the heart of the node, integrating the memory controller, I/O controller, network 

interface, and a programmable protocol processor. In this way, low hardware 

overheads are achieved.

The MAGIC chip supports both message-passing and shared-memory 

communication models [38]. In order to achieve efficient protocol handling, the 

MAGIC architecture splits the task into separate control and data processing paths. 

Message headers flow through the control macro-pipeline while message data flow 

through the data transfer logic. The control macro-pipeline consists of an embedded 

programmable processor that provides flexibility in supporting a variety of DSM and 

message-passing protocols, and additional hardware support for ensuring efficient 

protocol processing operations. For efficiency in data movement, the data transfer 

logic is hardwired. Data buffers are provided in the data transfer logic to stage data, 

thus achieving low latency and high bandwidth through data pipelining and 

elimination of multiple data copies.

The MAGIC design combines the benefit of integrating the network controller 

closely to the memory controller and flexible support for both memory-passing and 

the shared-memory model. This flexible support only slows the ideal performance by 

2% to 12% [65].

2.3.5 Co-processor Versus Conventional Logic Interface Implementation

One of the main objectives to be achieved in implementing the network 

interface controller is to overlap computation over communication. Once the 

communication task has been assigned to the network interface controller, the 

microprocessor can continue with computational tasks. In this way, the amount of 

parallel computation performed is significantly increased. However, in order to 

achieve this, the network interface controller hardware has to be equipped with the 

intelligence to handle the communication tasks without much intervention from the 

microprocessor.
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A network interface mechanism moves data from memory to the 

communication medium, and vice versa [13]. The physical implementation must be 

supported by logical mechanisms for message assembly, formatting, routing, and 

optional error checking. These mechanisms can be distributed between the processor 

and the network interface. The more functions supported in the interface, the fewer 

loads 011 the processor, however, the interface design will be more expensive and 

complicated. At a minimum, the interface will provide the translation between the 

information format of the communication medium and the data format of the 

processor. The network interface effects byte by byte transfer under the control of the 

processor, while the processor performs all other necessary functions to formulate the 

message and to transmit it to the destination process. At a more sophisticated level, 

the network interface will assemble complete message packets to pre-assigned buffer 

locations, and exert flow control on the processor when the buffer is full.

The implementation of the communication network interface controller can be 

varied, depending on how specialised the controller is in the tasks it performs. It can 

be a hardware state machine built from conventional logic, a customised special co

processor that runs protocol micro-code, or an inexpensive off-the-shelf general- 

purpose microprocessor. Conventional logic implementation normally requires an 

excessive amount of logic design and a long development cycle. It does not offer 

much flexibility to the communication models that can be applied. However, the 

operation speed of a hardware state machine is high, as the hardware has been 

designed for a specific configuration. In contrast, a co-processor solution, whether it 

is custom built or off-the-self general-purpose microprocessors, offers flexibility in 

supporting various communication models. The compromise is a reduction in speed 

and an increase in cost. For instance, the first SHRIMP design that was built using 

specialised hardware resulted in a relatively higher performance compared to the later 

SHRIMP design implemented on the Myrinet/PCI host that uses a communication co

processor [58],
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3. SYSTEM DESIGN STUDY

This chapter discusses the support and requirements to implement a network 

interface hardware device to be used for the construction of a new distributed parallel 

processing system. The system is to be based 011 an ICR C416 router network. An 

investigation of microprocessors and memory devices suitable for constructing the 

processor node technology is carried out, resulting in the selection of the StrongARM 

SA-110 microprocessor and SDRAM. This is followed by the specification of a 

network interface controller to link the router network with the processing node. An 

initial feasibility study for the network interface controller is carried out along with 

some experiments on long distance communications.

3.1 System Overview

The aim is to build a low-cost embedded distributed parallel processing system 

which incorporates high performance RISC microprocessors as the processing power 

of the system; fast RAM as the program workspace; and efficient switching devices as 

the communication system. To interface, and to glue these components together, a 

custom network interface controller with integrated memory control logic was 

designed. This is focused on enhancing the inter-processor communication of the 

distributed system and maximising the features offered by the switching technology.

Taken from the name of the two main components, namely the StrongARM 

microprocessor and ICR C416 Router, the system is called StrongARM Router 

Network (SARNet). In order to ease the distributed system implementation and 

expansion, the system components are arranged modularly. The processor nodes were 

to be constructed as ‘ready to use’ building blocks, namely the SARNode. This 

SARNode building block consists of the StrongARM SA-110 microprocessor, the 

SDRAM module, and the custom interface chip, the SARNIC, that provided a 

communication link to the ICR C416 and other functional support. The block 

diagram of the SARNet system is illustrated in Figure 10 and the SARNode 

architecture is illustrated in Figure 11.
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Figure 10: The SARNet scalable embedded distributed processing system.
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Figure 11: SARNode -  the processor node of SARNet.

3.2 Microprocessor Selection

The selection of the processor for a distributed system can be complex. Two 

key aspects will be performance and cost. One can always use the microprocessor 

with the highest performance, but the system must be cost effective.

During the 1980’s, most microprocessors applied Complex Instruction Set 

Computing (CISC) architectures. Generally, they provided a large set of complex 

instructions to simplify the software code development and to increase execution 

efficiency. However, through years of study, statistic analysis showed that the 

simplest instructions were used most often. Therefore, by replacing the rarely used 

complex instructions with the multiple instructions, the core can be optimised, which
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provided more powerful processor cores. Because of the reduction in the instruction- 

set complexity, and thus the reduction in hardware complexity, the processor core can 

operate at a higher clock rate and execute the instruction in lesser cycles. These 

microprocessors, called RISC microprocessors, typically contains less than 100 

instructions and use simple addressing modes [66, 67].

Currently there are many fast RISC processors on the market including: MIPS 

Technologies Inc. R3000 family, ARM Ltd. StrongARM family2, Motorola PowerPC 

family, and Sun Microsystems microSPARC. Although the microprocessor designs 

vary greatly, there are commonalties between all of them: address generation; 

arithmetic logic units; register files; and most importantly on-chip cache and memory 

management hardware features. The StrongARM SA-110 was selected [34]. This 

was due to its high performance and low price, in contrast to other choices of 32 bit 

RISC microprocessor at that moment of time. However, utilisation of other 

microprocessors could be easily achieved, as the interface support logic for the 

microprocessor was implemented in an easily adaptable manner using a modular 

VTIDL design entry on a CPLD.

The StrongARM SA-110 microprocessor is an implementation of Advanced 

RISC Machine Ltd. (ARM) Version 4 instruction set [34]. It is a general purpose 32 

bit RISC microprocessor targeted at embedded markets. With the core operating at up 

to 233 MHz, it achieves 268 Dhrystone (Version 2.1) MIPS. As well as the high 

performance, the power consumption is remarkably low, at a maximum of 420 mW. 

It has separate instruction and data caches, each 16 kB in size with 32-byte blocks and 

32-way associativity. It also has an 8-entry write buffer with each entry able to 

contain 1 to 16 bytes. The onchip caches and the write buffer effectively reduce the 

average amount of memory accesses required by the processor. This allows the 

memory system to support DMA message channels with minimal performance loss.

2 The StrongARM family was transferred to Intel Corporation in 1998.
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3.3 Processor Node Memory Selection

Over the years, DRAM has always been more favourable for microprocessor 

main memory organisation because it offers more memory bits per device, thus 

making it more economical in contrast to Static Random Access Memory (SRAM), 

although SRAM offers a faster access rate. Speed improvements on DRAM have 

continued on, historically from process and photolithography advances, and more 

recently due to architectural changes. This can be observed in the revolution from 

Fast Page Mode (FPM) DRAM, Extended Data Out (EDO) DRAM, to SDRAM [68]. 

FPM was the standard in DRAM functionality for more than ten years. It allowed 

faster continuous access of data bits (called the page mode cycles), provided those bits 

were in the same page. In early 1995, EDO DRAM was introduced, maintaining 

backward compatibility with FPM in terms of data width and packaging. Technically, 

it offered even shorter page mode cycles, and therefore increased the available data 

rates and the overall system performance.

Lately, SDRAM has become the new memory standard for computer systems. 

It is a technology that has provided the system designer with further advantages in 

terms of speed and performance and at the same time has reduced the development 

work required for the total system. Three major differences between the SDRAM and 

conventional DRAM are the synchronised operation, the burst mode operation, and 

the mode register. SDRAM uses a clock to synchronise the inputs, while DRAM is 

asynchronous. Burst mode is a mode where the column address is generated 

internally once the first access column address has been given, and the following data 

transactions are permitted to take place on every clock cycle. Mode register allows 

justification of the SDRAM operation and function into desired conditions.

The SDRAM devices were selected as the SARNet main memory. By having 

the synchronous access mode and capability to burst data without entering new 

addresses, the SDRAM is well suited for the StrongARM SA-110 cache line fills 

operation. In addition, the burst length and latency of the SDRAM can be 

programmed with a special instruction cycle and can thus be altered to suit different 

processors. For the flexibility in supporting different size of memory, standard 

SDRAM modules could be utilised.
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3.4 Router Network

At present, the ICR C416 device is used in the construction of the embedded 

distributed system described here. An upgrade to new router switches is possible in 

the future without much modification since the physical serial connection remains.

The basic functionality and packet protocol of the ICR C416 have been given 

in Section 2.2.2.1. An ICR C416 device provides 16 OS Link connections, supporting 

a maximum of 16 processor nodes. For a larger system, multiple ICR C416 devices 

can be cascaded to form a network of routers. This offers arbitrary scaling of the 

network without sacrificing the bandwidth available to each communication channel. 

To support multiple router hops, the number of message routing header bytes can be 

varied. Each header byte is used for address decoding of individual router hop.

An advanced feature of the ICR C416 design is group adaptive routing [18]. It 

is designed for easing network communication bottlenecks by grouping links that 

create identical paths between two points. Hence, messages that require the same 

destination can actually be routed through any of the grouped links. The grouping 

feature also takes into account the effects that bi-directional communication has on 

message bandwidth, by attempting to select links such that uni-directional 

communication is prioritised. If a processor node contains multiple link connections 

to an ICR C416 device, this feature can be utilised in the same manner.

An example of a 5 router distributed network is shown in Figure 12. Links 

connected between the routers (4 links) are logically grouped using the ICR C416 

group adaptive routing algorithm. In this way, it reduces the chances of bottleneck 

forming at the central router by allowing the routers to automatically select the best 

path within the grouped links.
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Figure 12: An example of 5 router network.

3.5 Interface and Control

To interface the microprocessor, the memory, and the router network, an 

interface chip was specifically designed. This interface chip, SARNIC, is to provide 

mandatory hardware support for the SA-110 processor, SDRAM control, and efficient 

communication links to the ICR C416. The following sections discuss the 

requirements, specification, and the feasibility of realising those features.

3.5.1 SARNIC Processor Interface

The processor interface is required to handle bus transaction requests from the 

StrongARM SA-110 microprocessor. It is also required to decode three major regions 

of the processor node memory space, which are the SDRAM main memory, the I/O 

device, and the SARNIC internal registers. For each incoming request, the address of
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the access must be latched and decoded. Depending on the region of the access, a 

proper response should be given. For instance, if the access falls within the main 

memory region, the request must be propagated to the memory interface for SDRAM 

access; or if the access is for the SARNIC internal registers, the relevant register must 

be connected to the data bus.

There is also a need for the processor interface to generate interrupts for the 

SA-110 microprocessor on important events. Example events are the arrival of a new 

message, end of a message transfer, timer interrupt, and external I/O interrupts. Each 

of the interrupt sources may be enabled or disabled separately, which is controlled by 

an interrupt enable register. Conventionally, modification of a particular bit in the 

enable register required a read of the register followed by a write with the bit updated. 

A better solution uses two write-only registers, one for setting and the other for 

clearing bits. A ‘1’ in a particular bit will only modify the intended register bit. 

There are two interrupt levels for the SA-110 CPU, by which the SARNIC design can 

interrupt the microprocessor from its normal program execution at two different 

priorities.

3.5.2 SARNIC Memory Interface

SDRAM module was chosen as the main memory of the processor node. In 

order to map the SDRAM into the StrongARM SA-110 memory region, a memory 

interface was required to provide address decoding and control signalling. This 

allowed the SA-110 CPU to access to the SDRAM region for program execution and 

data storage accordingly.

Other than the SA-110 CPU, the SDRAM region has to be accessed by DMA 

channels for message transfers to and from the communication network. To provide 

efficient message passing, a continuous flow of data is required once a message is 

initiated. This requires constant data transfers between the SDRAM and the network 

interface controller across the memory bus, and non-blocking data transfers between 

the source and the destination network interface controllers across the router network. 

Also, the constant message transfers on the memory bus should only interfere at
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minimum level with CPU normal accesses. Therefore, a means of fair access and fair 

arbitration between the CPU and DMA channels was needed in the memory interface. 

Fair access is feasible if the DMA transaction size is not larger than the CPU access 

length requirements. Fair arbitration is achievable if the CPU and DMA channels take 

turns accessing the memory bus. With these settings, the DMA channels can freely 

access the SDRAM when the CPU bus is idling, but will never utilised the memory 

bus bandwidth for more than 50% when the CPU is busy accessing.

Ideally, it would be useful to have the option of supporting different sizes of 

memory and different SDRAM families. This can be done through some form of 

software programmable registers holding the configuration of the memory. However 

the boot from link feature of the design may affect this, as the boot program needs to 

be downloaded into the memory before the software can actually modify those 

registers to configure the memory (please see Section 3.5.4.1 for further description). 

Another possibility is to use hardware static configuration pins. Nevertheless, this 

flexibility might slow the memory interface and will increase the logic complexity, 

which should be avoided.

3.5.3 SARNIC Router Network Interface

The router network interface is responsible for handling message passing to 

and from the router network. It comprises of one or more bi-directional 

communication link to the router network, depending on the memory-network 

interface bandwidth available and the size of the target device. Sufficient buffers had 

to be implemented in order to de-couple the communication link Rom the memory 

bus. Additional support was required to include handling multiple message contexts 

and virtual channels.

3.5.3.1 Communication Link Architecture

The INMOS-style OS Link interfaces were used to connect to the ICR C416. 

This bi-directional communication link would be DMA assisted in order to achieve
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efficient transfer of messages. DMA assistance removes the need of processor 

involvement during message transfers, but incurs a slight overhead on setting up the 

DMA channel.

As the ICR C416 packet router is utilised for the communication network, the 

higher level of message passing protocol must conform to the ICR C416 packet 

protocol. An ICR C416 packet consists of a number of routing header bytes, followed 

by the packet length byte, and 1 to 256 bytes of payload. A higher level of message 

protocol, however, normally requires a message header for message identification. A 

straight forward solution to encapsulate the message header into the ICR C416 packet 

is to send it as routing header, as the number of routing header bytes allowed are 

variable. In this way, the true routing header bytes will be stripped off when the 

packet is routed through routers, while the first byte arriving at the receiving node is 

the message header, followed by packet length byte, and the payload. The SARNet 

packet format is shown in Figure 13.

First routing header byte

1 Last routing header byte

1 First m essage header byte

Second last m essage header byte

Last m essage header byte

Payload length byte

Payload 
(1 to 256 bytes)

Variable routing 
header bytes

Variable m essage  
header byte

Figure 13: The SARNet packet format.

As a packet can only be a maximum of 256 bytes in size, this relatively short 

packet length may be irksome in some applications. Therefore, support for long 

messages would be preferred, in a form of multi-packets. The operation of 

packetising and de-packetising large messages was implemented in hardware to 

minimise software overheads.
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In transmit mode, the message formatting is relatively straightforward. A 

message length register is used to hold the total length of the message in bytes. If the 

message length register value is less than or equal to 256, only a single packet is sent. 

If the message length register value is greater than 256, a multi-packet message is 

transmitted. A packet of 256 bytes is sent with the packet length value of zero and the 

message length register is decremented accordingly. This process is repeated until the 

message length register value is less than 256, where the last packet is sent with 

remaining data bytes. Note that each packet must include the message header for 

identification purposes.

Receive mode is slightly more complex. On the first packet, an interrupt 

request to the processor is raised. When the software has analysed the header, it 

responds by copying the header to the header register and loading the total length of 

the expected message into the message length register. If the length value is less than 

or equal to 256, a single packet is received. If the value is more than 256, a multi- 

packet message is expected. Thus on the arrival of subsequent packets, the header of 

the packet will be compared with the content of the header register. If it matches, the 

packet is transferred into the memory and the message length register is decremented. 

If the header of an arriving packet does not match with the content of the header 

register, an interrupt is generated immediately, to request for handling of the new 

message. The process of multi-packet handling is repeated until the message length 

register value reaches zero. In order to remove the first interrupt request when a 

message arrives, the header register can actually be pre-loaded with the expected 

message header.

Ideally, the receiving node’s length register and the transmitting node’s length 

register will be set with the same figure for an intended message transfer. However, 

there might be cases where a software compilation error or some very rare exceptions 

that cause a difference between the expected incoming message length and the actual 

incoming message length. It is desirable to have some form of hardware fault 

tolerance for this situation. Therefore, there can be three different situations for 

termination of a receiving channel:
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• Normal termination: the actual incoming message length is equal to the 

expected incoming message length. The DMA channel is finished exactly 

at the end of the message.

• Early termination: the actual incoming message length is less than the 

expected incoming message length. The DMA channel is not finished and 

is terminated earlier.

• Late termination: the actual incoming message length is more than the 

expected incoming message length. The DMA channel is finished with the 

rest of the message being flushed.

In order for the length fault tolerance to work accordingly, the receiver needs 

end of message information. With the multi-packet mode configuration mentioned 

earlier, the last packet is found when a packet is less than 256 bytes. However, for a 

message size that is multiple of 256 bytes, there is no way to identify the last packet 

without carrying some special code. In this case, a detection of late termination or 

normal termination can be difficult. For example, consider a case with the receiver 

channel expecting 256 bytes and the actual incoming message is 512 bytes, and a case 

with the receiver channel expecting 256 bytes and the actual incoming message is 256 

bytes. Hence, special treatment has to be applied for messages that are a multiple of 

256 bytes.

3.5.3.2 Link DMA Control & Buffers

DMA channels are normally used to support the process of sending and 

receiving messages through a communication link. Although DMA operations suffer 

from initial start-up overhead, once a channel is activated, no processor intervention is 

needed until the end of the operation. A processor sends messages by initiating DMA 

data transfers from memory to the network interface. The network interface then 

packetises the data and injects it into the network. To receive messages, the processor 

initiates DMA data transfers from network interface to the memory. Hence, two
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DMA channels would be required per communication link to support concurrent bi

directional data transfers.

DMA operations can be classified into two mechanisms: block transfers where 

the entire data block is transferred across the memory bus in one unit; and cycle- 

stealing transfers where the data block is fragmented into a series of small transfers 

that utilise processor idle cycles. Cycle stealing mechanism is a better choice in this 

case, because smaller transactions offer fair multiplexing of CPU and DMA access on 

the memory bus. Moreover, the OS Link data transfer rate is much lower than the 

memory bandwidth. These infrequent transfers can be evenly distributed on the 

memory bus utilisation. With a block transfer mechanism, no CPU accesses are 

allowed until the DMA operation is finished.

In order to ensure fair arbitration of access between the link DMA and the 

CPU, the size of each DMA transfer should not be any bigger than the CPU access 

size. In particular for the StrongARM SA-110 CPU, the maximum size should only 

be 8 words. Configuring the access size to this maximum will reduce the address set

up overhead to a minimum. However, larger DMA buffers will be required to hold 

the data.

Link buffers are required to de-couple the communication link data 

transmission and the DMA transactions to and from the host memory. There are two 

factors that affect the buffer size: link transmission speed, and DMA transaction rate. 

Normally transfer rate over the host memory is faster than the transfer rate over 

communication link, thus, once a message is initiated, a continuous data stream to and 

from the communication link can be achieved. However, depending 011 the network 

interface architecture and amount of buffering given, the continuous message stream 

might not be attainable, and thus, this factor will worsen the network bandwidth 

utilisation. For instance, access to the host memory is shared by other DMA channels, 

and most frequently accessed by the CPU; DMA transactions have to compete for 

access on the memory bus. In this case, a guaranteed access rate of the DMA channel 

011 the memory bus, and enough buffering will ensure a continuous data stream to and 

from the communication link (provided no blockage on the communication link 

occurs) while waiting for the DMA transaction to complete.
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With an I/O bus based network interface, there is no guarantee of consistent 

DMA access rate to the host memory. It depends on the arbitration of the I/O 

bridge/memory controller. Thus it is better to carry out large DMA block transfers, 

even up to a packet size, before transmitting to a link or after receiving from a link. 

This normally requires SRAMs, or a large First In First Out (FIFO). In the case of the 

SARNIC design, control over the host memory bus is governed and thus continuous 

DMA access within a certain time frame is guaranteed. Depending on the link speed, 

a small amount of buffer is adequate, which can be implemented in Altera FLEX 

onchip RAM, or even with conventional logic elements.

If the transfer rate over the communication link is faster than the transfer rate 

over the host memory, the interface would become a bottleneck. Thus, continuous 

message data flow over the communication network would be impossible, as gaps in 

transfers would form due to data starvation. To utilise the network bandwidth better 

and ease the traffic, formatting the message into ‘bursts’ of packets or smaller flow 

groups are preferable, before injecting into the network. An output buffer of at least 

the burst size is required to achieve this.

3.5.3.3 Additional Communication Links

In the absence of a hardware routing device as the switch-based 

interconnection network, one processor node would need to be equipped with 2 or 

more communication links to allow it to connect to other processor nodes. Generally, 

increasing the number of links connected to each node will reduce the mean number 

of hops required to reach a particular destination. Hardware routing devices like the 

ICR C416 provides up to 16 point-to-point communication links with just one 

communication link to each processor node. Based on this fact, the StrongARM 

processor node can be implemented with only one communication link. Nevertheless, 

there are still reasons to implement more communication links on each processor node 

for hardware routing:
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• To offer communication fault tolerance through the mean of link 

replication.

• To increase the bandwidth of a processor node, so that more 

messages can be received or transmitted at a time.

• To combine with the adaptive grouping feature of the ICR C416, so 

that the utilisation of the increased bandwidth is further enhanced.

• To provide extra flexibility to the interconnection pattern of the 

parallel system.

• To create separate communication routes for different types of 

messages to improve performance and reliability.

There are a number of factors that need to be considered when implementing 

extra links. The primary concern is the utilisation of the host memory bus. With each 

communication link implemented, the demand for bus access increases contention on 

the memory bus, which degrades the processing node performance. Transputers 

suffered from the same limitation. The designers stated an assumption that the 

communication overload of those links should not be more than 10% of the overall 

memory access [37].

Initially, a single communication link was implemented in the first version of 

the SARNIC. Only when the size of a single communication link and the memory 

interface controller bandwidth available had been analysed, the feasible number of 

communication links to be implemented could be decided. This is discussed in 

Section 3.6.3.

3.5.3.4 Virtual Channels Support

Virtual channels are defined as concurrent logical connections to different 

destinations or to different processes at a destination concurrently down the same 

physical connection [69]. In practice, the virtual channels are multiplexed onto the 

physical communication link, through software or hardware. Therefore, in principle,
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it is sufficient to connect just one link per processor node to the routing network with 

the virtual channel capability.

There are a number of different levels, in which the multiplexing scheme on 

the communication link hardware may be implemented. The highest level of sharing 

is at the message boundary, where one message is transmitted after another. 

Multiplexing at the packet boundary provides fairer arbitration access to the 

transmitter and receiver link hardware. Multiplexing at the flow group boundary is 

the lowest level of virtual channel implementation. It was introduced to ease the 

traffic of the routing network and avoid deadlock [70, 71]. As the network routing 

devices are generally connecting on a packet basis, it is better to use packet level 

virtual channel support. However, the frequency of arbitration often depends on the 

size of the packet. Overhead of the arbitration should be minimal to maintain 

efficiency. Figure 14 illustrates the method of virtual channel multiplexing on a 

physical link.

Message 1 
TX

Message 1 
RX

Physical linkMessage 2 
TX

Message 2 
RX

Message 3 
RX

Message 3 
TX

A*.ifeiss

Figure 14: Virtual channel multiplexing of a physical link.

Without support of special multiplexing arbitration hardware, a purely 

software means of multiplexing can incur significant overhead. The information of an 

active communicating message channel needs to be stored at the arbitration point, so 

that the message channel can be continued later from the point it stopped. The task of 

sequentially matching and finding the corresponding message channel from the table
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of active messages for an incoming packet is also time-consuming. Depending on the 

level of multiplexing, this procedure can cause significant inefficiency and latency in 

servicing messages.

Appropriate hardware support for the virtual channel implementation improves 

the multiplexing arbitration efficiency. With the procedure of handling virtual 

message channels being carried out in hardware, intervention from the processor 

(software), and thus the overhead is significantly reduced. This requires logic to 

switch and allocate hardware message channels to the corresponding packets, and 

additional memory to store virtual channel control information. It is an added 

advantage if the block of virtual channel control information can be implemented with 

special hardware logic so that concurrent searches for a particular virtual channel can 

be done, hence reducing the time required.

As hardware logic is a scarce resource, only a limited amount of functionality 

is feasible. An optimised usage of the virtual channel hardware implementation, with 

additional support in software for larger numbers of virtual channels would be an 

advantage. The concept of caching fits well into this situation. Hardware virtual 

channels are utilised for frequently active messages. Replacement is only required if 

110 match is found 011 the list of hardware virtual channels. This will speed-up the 

process of virtual channel arbitration on average.

3.5.4 Other Supports

Other than providing an efficient communication link to the interconnection 

network, the memory control logic, and the processor interface, the SARNIC design 

requires some general features to support the StrongARM microprocessor in an 

embedded parallel processing system. These include a booting option for the 

microprocessor, timer function, I/O device control, and some hardware debug 

facilities.
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3.5.4.1 Booting options

Normal processor architecture boots up from ROM. If an additional boot 

option can be supplied through the link (like the ‘boot from link’ for Transputers), it 

would be a great advantage for slave subsystems in parallel processing systems. Not 

only can the cost of ROM be saved, rebooting or reconfiguration of remote processing 

nodes can also be done through the interconnection network in real time.

The SA-110 processor starts from reset by executing code from memory 

location zero. A possible solution is that after a reset of the system, the interface chip 

holds the SA-110 in a reset state, or stalls the first bus access to memory location zero. 

Then the incoming boot code from the link is DMA transferred to memory from 

location zero upwards. Of course, the memory at location zero must be RAM in this 

case. Some intelligence must be built into the communication link interface to 

recognise this boot message and initiate DMA transfer.

If the memory is software configurable, it will be necessary to download the 

memory configuration over the link in order to set up the memory before the code is 

loaded into it. This could be handled using special header bytes that direct the 

configuration data to control registers instead of memory. Alternatively, memory 

could be configured by a default power-on value that will work with most memory 

types.

As the ‘boot from link’ option requires RAM at memory location zero, while 

boot from ROM option requires ROM at memory location zero, a method to map the 

RAM or ROM to memory location zero according to the boot option is needed. 

Another solution is to keep the memory location zero as RAM, and utilise a bootstrap 

ROM interface to copy the boot code from ROM to memory location zero by a 

method similar to the link receiver mechanism.

3.5.4.2 Timer

The easiest way to achieve a timer operation is to supply the number of clock 

ticks (which is equivalent to the length of time) to a count down counter, and to
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generate an interrupt when the counter reaches zero. Further flexibility can be added 

to offer longer intervals by dividing the clock ticks by a factor before using it to 

decrement the counter. Thus, a wide range of timer periods is supported by using a 

dividing factor and the count down timer.

Alternatively, a single timer could be used to provide functions comparable to 

the Transputer on board timer. It would be a 32 visible bit counter that increments in 

microsecond ticks. This allows any number of concurrent processes to access the 

read-only clock. Also, a timer match register is needed, to provide a timer value at 

which an interrupt is to be generated. A value that is written to this register will be 

compared in relation to the current timer value. If the shortest route from the current 

timer value to the given value is clockwise, the interrupt event is considered as the 

time in the future, otherwise it is considered as the time in the past (please refer to 

Figure 15). An interrupt will be generated at once in the latter case.

t (current)

t1 (future)

t2 (past)

Figure 15: Examples of Transputer timer with past and future time references.

3.5.4.3 Per ip h era I I/O

This unit provides a low-cost solution for interfacing external passive 

peripheral I/O devices. These devices normally work at slower speeds and smaller 

data bus widths. If the number of peripherals is significant, it is probable that external 

latches and buffers will be required to separate the peripherals from the SA-110 CPU. 

Hence, direction and enable controls of such buffers are also driven by this interface. 

The timing of the interface signals may be fixed to a slow access rate, made 

compatible with the largest possible number of peripherals. Alternatively some level
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of configurability to the signal timing can be offered to drive the interface at different 

rate.

3.5.4.4 Debug Facilities

Since the CPLD is re-programmable, any internal signal can be routed out to 

the spare pins through design re-compilation and re-programming. Through reserving 

a number of pins of the CPLD device and connecting them to an external connector, 

device debug facilities can be provided. With the help of a logic analyser, this facility 

will allow monitoring of the internal and external operation of the device, which will 

aid the testing phase.

In addition to the hardware debugging pins, a port for console control and 

monitoring would be useful. A standard input like a keyboard and a standard output 

like a monitor could be used, but this requires additional interfaces. An alternative 

will be to implement a standard UART port. By connecting this UART port to a PC 

COM port and running a terminal program on the PC, a means of console input/output 

control is achieved.

3.6 Initial Design Feasibility Study

This section describes the initial stage of design and hardware implementation 

in CPLDs. A general overview of the CPLD technology is given, leading to the 

selection of the Altera FLEX 10KA CPLD family. Initial stages of development 

involved an investigation into the restrictions imposed in utilising this device. This 

included the analysis of OS Link engine implementation with required transmission 

speed, and the basic SARNIC design realisation with optimised memory bus operating 

frequency. An additional study was carried out for extended distance communications 

using differential transceiver circuitry.
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3.6.1 CPLD Technology

Historically, FPGAs and CPLDs have been largely used as glue logic, 

reducing chip count and simplifying board design. Most designs were typically 

expressed using Boolean equations. Recent CPLDs, however, are high density and 

high performance. Many of them are equipped with on-chip memory. Nowadays 

they are employed for system-level integration and are often a preferred alternative to 

ASIC designs. Some of the advantages are:

• Design development and verification is faster as the CPLD only 

need to be programmed for operation, without having to wait for 

prototypes to be manufactured like the ASIC design.

• Design changes can be made without incurring any penalties, as 

the devices are software configurable and re-programmable by the 

user.

• Errors can be corrected and different algorithmic approaches can 

be explored, without further hardware expenses.

• Debugging of the device operation is easier, by configuring some 

of the CPLD pins as outputs to monitor any particular signals 

inside the device.

• The overall development cycle is shorter; hence, time to market is shorter.

There are two leading companies currently dominating the CPLD market, 

these being Altera and Xilinx. Each company offers different architectures, and an 

understanding of the architectures is required to produce optimum coding. After 

considering the factors of cost, performance, and availability, the Altera FLEX 10KA 

family was chosen [35]. The FLEX 10KA CPLDs use an SRAM structure, which 

means the design configuration has to be downloaded every time the power is re

applied to the devices. The available device size range was from 10 K gates to 100 K 

gates.

Figure 16 illustrates the architecture of the Altera FLEX 10KA CPLD. It is a 

series of building blocks connected with different level of interconnects. The smallest
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unit of the building blocks is the Logic Element (LE), which is sometimes called the 

Logic Cell (LC). Eight of these LE form a block known as a Logic Array Block 

(LAB), and the LEs within the same LAB communicate through a local interconnect. 

Multiples of the LAB are populated as a table of rows and columns. LABs within the 

same row communicate through the row interconnect, and LABs on different rows 

communicate through the column interconnect. Therefore, there are three different 

delays for signal propagation from one LE to another. The shortest will be for LEs 

that are located in the same LAB, followed by LEs that are on the same row but 

different LABs, and the longest for LEs that are located at different rows. The same 

theory applies for connection to external pins.

I/O Element Embedded Array
(IOE) Block (EAB)

Column
Interconnect

Logic Array

Logic Array 
Block (LAB)

Logic Element (LE)

Row
Interconnect

Local Interconnect

Ii o e I Ii o e I Ii o e I |i o e | IioeI IioeI IioeI IioeI

Embedded
Array

Figure 16: Altera FLEX 10KA architecture.

The construction of a LE is detailed in Figure 17. Basically, it is a four-input 

Look Up Table (LUT) and a programmable register with clock, preset, reset and 

enable controls. The dual-output structure allows the LE to be used as combinational 

output, sequential output, or combination of both. Two special input and output 

resources of the LE are the carry chain and the cascade chain. The function of the
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carry chain output is to provide a very fast carry forward path into the LUT input of 

the succeeding LE. This is especially useful for implementation of adders, 

accumulators and comparators. The function of the cascade chain is to provide a fast 

input to a logical ‘AND’ or ‘OR’ gate at the output of the succeeding LUT. This 

chain is ideal for implementing wide input ‘AND’ gates, wide input ‘OR’ gates, and 

multiplexers [72].

Register
Programmable

Carry-ln Cascade-ln

Carry-Out

Datal
Data2
Data3
Data4

to FaslTrack Interconnect

to LAB Local Interconnect

LAB Ctrl 1 
LABctrl2

chip wide resBt
Clk Sel

LABctrW

LABctrl3

Cascade
Chain

Clear/
Preset
Logic

ENA
CLRN

Look-Up
Table
(LUT)

Carry
Chain

Cascade-Out

Figure 17: Altera FLEX 10KA logic element.

3.6.2 CPLD Prototype OS Link Implementation

The standard OS Link operates at 10 Mbps or 20 Mbps. To achieve this 

operating speed, the ICR C416 packet routing device uses a 30 MHz clock input, 

utilising 3 times over-sampling [29]. The design was fabricated in a 1.5 micron 

CMOS ASIC implementation. However, implementation of the OS Link design in 

CPLDs required a feasibility study to ascertain whether those devices were capable of 

providing suitable performance. The selected CPLD used for this study was from the 

Altera FLEX 8000 family [73]. This was due to the higher cost of the Altera FLEX 

1 OKA family devices that had just been introduced. The Altera CPLD compiler and 

synthesiser software, Maxplus II [74], was used for the development of the OS Link 

interface. Due to incompatibilities of the component library used in the ICR C416 OS 

Link interface design, the schematic was effectively re-drawn for the CPLD
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compilation and synthesised in Maxplus II. The initial target choice was the Altera 

EPF8282ALC84-4, which is the smallest, slowest, but cheapest device in the family. 

The design fitted well in the device, but the timing analysis reported an operating 

frequency of 22 MHz, which did not meet the required 30 MHz operation for OS 

Link.

In order to improve the operating frequency of the design, a second 

implementation was carried out. VHDL design tools were utilised for this 

implementation, as it provides a clear representation of the device operation, and the 

flexibility of moving from one target technology to another with the availability of 

different synthesisers. The reduction in performance compared to the ICR C416 

implementation was mainly due to the logic interconnect delay in the CPLD device. 

The worst case interconnect delay is almost double the logic delay. Therefore, the OS 

Link interface architecture was revised and modifications were made to optimise it for 

the CPLD technology. Using the same EPF8282ALC84-4 device, the performance 

was improved to an operating frequency of 33 MHz, which meets the required OS 

Link transmission speed.

To verify the functionality of the modified OS Link interface design, the 

original simulation vectors used for the ICR C416 OS Link interface were re

produced in a VHDL test bench. This was followed by the implementation of a 

hardware prototype to test the OS Link interface CPLD in real time.

As the OS Link communication between two nodes is asynchronous, there is a 

chance of metastability failure. The OS Link interface design implemented a 2-stage 

synchroniser to reduce the mean time between metastability failures. In addition, for 

off-board OS Link communications, the use of external link cable tends to distort the 

signal depending on the length and quality of the cable. The 3 times over-sampling 

operation of the OS Link should be able to cope with up to 33% of OS Link signal 

skew.

To analyse the reliability of the OS Link interface CPLD implementation in 

real time, some tests were carried out with two OS Link CPLD Printed Circuit Boards 

(PCBs) linked with an external cable. The tests were carried out with one OS Link 

CPLD PCB configured as transmitter, while the other OS Link CPLD PCB was 

configured as receiver. These two PCBs were linked with a 30-cm long twisted-pair
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cable. The CPLD design in the transmitter was modified to repetitively send out a 

continuous data byte stream, generated pseudo-randomly, following a 17-bit 

maximum length sequence. The receiver on the other end was modified to check for 

the correct incoming byte stream, and increment the counter for every correct data 

byte received. In the case of an error detected, the counter was stopped and error was 

flagged. The reliability tests were carried out for both 10 Mbps and 20 Mbps OS 

Link. Tests were run measuring the amount of data transferred until the first 

occurrence of failure, or in the case of no failure for the duration of approximately two 

days. The results show at least 72.03 GB for 10 Mbps and 128.04 GB for 20 Mbps. 

This gives a communication probability bit error rate of 1.74 x 10'12 for 10 Mbps link 

and 9.76 x 10'13 for 20 Mbps link.

3.6.3 Initial Network Interface CPLD Design

After the successful implementation of the OS Link engine, the SARNIC 

CPLD realisation was undertaken. The design and development of the SARNIC 

CPLD proceeded in two stages. The first stage, which resulted in the first SARNIC 

prototype, was a feasibility study using an Altera EPF10K50V-3 device, with just a 

minimal set of requirements implemented. These included: an interface to the 

processor, an interface to the memory, and a single communication link interface to 

the router network.

The realisation of the first SARNIC prototype went through the same design, 

simulation, and development stages as the second prototype described in Chapters 4 

and 5. Following this, prototype processor node PCBs were made to verify the 

design. The main objective of the feasibility study, utilising the first prototype, was to 

investigate the speed of the StrongARM memory bus using the controller 

implemented in the CPLD. The speed of the memory bus directly affects the data 

transfer rate associated with the CPU and the DMA channels, and hence, indirectly 

affects the size of buffer required to overlap DMA transactions, link communications, 

and the number of communication links that can be supported without overloading
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memory bus bandwidth. Both the selected CPU and memory can support 66 MHz 

operation. The only concern was the performance of the Altera FLEX 10KA CPLD.

After refinements and synthesis of the first prototype SARNIC design, the 

timing analyser reported a device operating frequency of approximately 40 MHz. 

However, the input and output pin delay of the EPF10K50V device resulted in a 

system memory bus performance of 33 MHz. The critical timing paths were found to 

be the data masking bits of the SDRAM, where signals from the CPU must travel 

through the CPLD before reaching the SDRAM within the same clock cycle. 

Investigations demonstrated that recompilation with a faster speed grade of 

FLEX10KA CPLD would only boost the internal operating frequency, with minimal 

improvement to the input output pin delays.

To overcome the critical path problems, the first prototype SARNIC design 

was adapted to change to the propagation operation of the critical paths. The address 

pipeline enable mode of the StrongARM SA-110 was utilised. This mode allowed the 

memory address signals to be available during the negative phase of the bus clock, 

effectively half a clock cycle earlier. Hence, by using latches that provide signal feed- 

through for half of a clock cycle and signal latches for the other half of the clock 

cycle, an SDRAM mask signal latch pipeline was formed (a more detailed description 

is given in Section 5.3.4). This pipeline modification pushed the external bus 

operation up to 38 MHz.

The core clock of the CPLD device was derived from the StrongARM SA-110 

microprocessor bus clock. As the SA-110 CPU generates this clock by dividing its 

core clock, the nearest frequency is 36.9 MHz with the CPU core running at

221.3 MHz. With the 32-bit memory bus operating at 36.9 MHz, the peak bandwidth 

achievable is 147.6 MB/s. However, this rate is not achievable, due to the overheads 

of SDRAM accesses and the SA-110 CPU maximum access size of 8 words. At 

36.9 MHz, a maximum of 4 clock cycles overhead is incurred for a SDRAM access, 

plus one extra memory request cycle. Hence, the maximum access time of the SA- 

110 CPU (Fornax)) is given by:
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1 + 4 + 8 
36.9x 10( 
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(•s')36.9x 10

Equation 1: Maximum access time of the SA-110 CPU.

With the OS Link maximum bi-directional bandwidth of 3.08 MB/s and the size of the 

smallest DMA transfer (DMASize), the interval time between DMA transfers (I), the 

time required for a DMA transfer (Tjji), and the memory bus utilisation percentage (U) 

are given by:

r 4 x DMASize
I  = -------------T~ \s)3.08x10

Equation 2: Interval time between DMA transfers.
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Equation 3: Time required for a DMA transfer.

u = ^ -(% )
I

5 + DMASize 3.08xl06
= --------------------------7—  X --------------------------------- ( % )

36.9x10 4 x DMASize
5 + DMASize 

~ 41:92 x DMASize

Equation 4: Memory bus utilisation percentage.

Therefore, with the smallest DMA transfer size of 1 word, the percentage of memory 

bus usage is 12.52%. However, by increasing the DMA transfer size to 8 words, the 

percentage of memory bus usage can drop to 3.39%. Assuming the memory bus
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arbiter design was made so that the CPU and DMA take turns to access the memory 

bus, in order to support full bandwidth on all the number of communication links, the 

number of supported communication links (NOLink) is given by the following 

inequality:

/  > NOLink x (Tc (max) + Tn)

NOLink <  —--------
Tc (max) + Td

4 x DMASize 36.9 xlO6
< 3.08 xlO6 X 13 + 5 + DMASize 

47.92 x DMASize
< 18 + DMASize

Equation 5: Number of fully supported communication links.

Consequently, if the DMA size is set to 1 word, the number of feasible 

communication links can only be 2. However, if DMA size is set to 8 words, the 

number of feasible communication links can be increased to 14.

Other than determining the feasible bus operating frequency, a problem related 

to the reset circuitry was found in the first implementation. The clock output from the 

SA-110 CPU is held high during the reset cycle. This effectively stalled the reset 

sequence generator that operates from the same clock source. Changes were made to 

the reset sequence generator, so that this portion of logic operates from the free 

running 30 MTIz clock.

3.6.4 Differential Transceiver for Extended Distance Communications

For tightly coupled processing systems, the processing nodes and the routing 

devices are in very close proximity, most likely on the same PCB. However, there 

may be cases where the processing nodes are physically distributed at different 

locations. This kind of loosely coupled configuration, an example of which would be 

a home network application, require off-board cable connections.
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A direct OS Link is excellent for communication on the same PCB level, and 

is also good for very short cable connections. As the distance of off-board 

communications increases, the signal quality deteriorates. The signal amplitude is 

attenuated and signal skew increases when a signal travels down the transmission line. 

The cable also tends to pick up noise along the transmission line, including possible 

hazardous voltage spikes that might destroy the communicating devices. The use of 

external transceivers and additional protection circuits are helpful in these situations. 

Depending 011 the transceiver circuitry, the cable quality, and the data transmission 

rate, there is a limit to the cable length achievable. The study here was dedicated to 

find an optimum transceiver circuitry solution for the OS Link for large distance 

transmissions, and thus the maximum cable length figures under various data 

transmission rates.

A transceiver device is a combination of a transmitter and a receiver. The 

transmitter converts a data value to its specified electrical level representation that is 

suitable for long distance transmission. The receiver detects signals that are above its 

acceptable threshold value for decoding to the corresponding data values. For high 

performance and reliable long-distance communications, differential transmission 

interfaces like RS-422 or RS-485 are commonly used. The standard RS-422/RS-485 

devices can accommodate data transmission rates of 10 Mbps at distances of up to 

10 m, or data transmission rates of 100 kbps at distance up to 4 km. Due to 

technological advances, new RS-485 transceivers offer the potential to transmit and 

receive at faster speeds [75, 76, 77, 78]. Nevertheless, there is always a constraint of 

maximum data transmission rate versus maximum distance regardless of which 

interface circuit used. At high-speed data transmission at distances up to 100 m, the 

effects of signal skew are more significant than the effects of amplitude attenuation.

The OS Link interface test design in section 3.6.2 was reproduced in this 

study, using the EPF 1 OKI 0ATC100-2 CPLD from the Altera FLEX 10KA. The 

CPLDs act as the terminal for generating and comparing random bytes of a data 

packet. With these advanced CPLDs, the OS Link implementation is capable of 

operating at 44 Mbps transmission rate. The transceiver used was the Analog Devices 

ADM 1485 device [75], which provided differential transmission across a long 

distance twisted pair cable. The twisted pair cable chosen was the CAT 5 UTP cable
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from Belden (SM1720A) [79], which is designed for 100 Mbps LAN communication. 

The connection was full duplex, achieved by separate twisted pair lines for transmit 

and receive.

When measuring the quality of the signal received, eye pattern is the most 

common and effective method [80]. The eye diagram was obtained by using the 

infinite persistence display mode of the oscilloscope, triggered from the transmitting 

clock. From the opening of the eye, the tolerance of the transmission system that 

could be sustained was determined. The opening of the eye was measured in two 

aspects: the height and the width. The height information states whether the 

amplitude of the incoming signal is acceptable to be received and interpreted 

correctly, whilst the width information states whether the receiver system is capable 

of sampling the data correctly. With the ADM 1485 transceivers used, the height 

value had to be greater than the threshold value of 0.2 V. With the 3 times over- 

sampling of the OS Link interface implementation, the width value must be greater 

than 67% of the bit width. These two figures were used as the acceptable reference 

margin for the tests.

3.6.4.1 Basic Transceiver Circuitry Configuration

The test carried out in this section was devised to imitate realistic OS Link 

transmission by transmitting random bytes over the cable connection. It was 

generated using 17 bit Maximum Length Sequence (MLS) pseudo-random bit stream 

in the CPLD. Each group of eight bits of the MLS bit stream was formatted to an OS 

Link token, fed to the differential transceiver, and then sent along the twisted pair 

cable. The transceiver circuit was primitive, with only 100 Q. termination resistors 

across the two differential signals, at both the transmitting and receiving ends. The 

eye diagram was obtained at the receiver differential inputs to measure the signal 

quality. The test was then repeated for different cable lengths and different baud 

rates.

The results are shown in Figure 18 and Figure 19. Detailed values are given 

in Appendix D. These graphs show that the amplitude attenuates approximately



3. SYSTEM DESIGN STUDY

linearly with distance. However, for signal skew, the eye opening reduces 

approximately logarithmically with distance. When the baud rate is increased, both 

amplitude attenuation and eye opening reduces significantly.
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Figure 18: The eye pattern height openness versus cable length for basic configuration.
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Figure 19: The eye pattern width openness versus cable length for basic configuration.
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3.6.4.2 Transmission Line Balance Improvements

Following the initial test, the transmitter circuit was modified to improve 

signal transmission. From the results in previous section, 44 Mbps transmission

reaches its limit at 80 m. Thus the experiment was run at this speed and this cable

length, where changing the transmitter configuration would be expected to have the 

greatest effect on signal quality.

It was noted that the skew problem appeared to be dominated by the line 

balance caused by the imbalance of numbers of 1 ’s and 0’s sent. In order to highlight 

this, four different sets of data patterns were used to carry out the tests, and the signal 

quality was measured. These data patterns were:

• random - generated with 17 bit pseudo random MLS

• unbalanced positive - generated with data value of 11111111 b

• unbalanced negative - generated with data value of 00000000b

• balanced - generated with data value of 00110011 b

The results are shown in Table 1. With the basic configuration, it can be seen 

that the balanced data pattern had the best signal quality, while the unbalanced data 

patterns were worst. To improve the line balance, some passive components were 

added to the transmitter output circuitry, which limited the unbalanced signal charges 

and terminated the line impedance. With this additional circuitry, the tests were 

repeated. The results showed that the eye opening was wider when compared to the 

previous results. Also, the variations in results between the data patterns were small.

Data pattern Eye height Eye Width

Without line balance improvement

Random 1.52 V 15.9 ns

Unbalanced + 1.76 V 14 ns

Unbalanced - 1.66 V 16.7 ns

Balanced 1.6 V 18.9 ns

With line balance improvement

Random 1.92 V 19.5 ns
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Unbalanced + 2 V 20.4 ns

Unbalanced - 1.94 V 19.9 ns

Balanced 1.88 V 19.8 ns

Table 1: Result for line balance improvement tests.

3.6.4.3 Transceiver Circuitry Diode Protection

The desired protection had to suppress transient noise voltages induced on the 

twisted pair cable, which could damage the transceiver circuitry. Galvanic isolation 

provides good protection, but incurs a higher cost. Transient Voltage Suppressor 

(TVS) diodes are cheaper and more commonly used, although they provide lower 

levels of protection. The tests here only utilised diode protection.

Initially the Transil TVS diodes from SGS-Thomson [81] were selected based 

on characteristics and price. They can sustain peak pulse powers of up to a few 

thousand watts. However, they posses a fairly large capacitance, which will 

effectively distort the signal quality, especially at high speeds and long transmission 

distances. A second solution was selected, using lower power zener diodes, with 

much lower capacitance, in conjunction with a current limit resistor (to limit the 

transient current). Unfortunately, the current limit resistor further attenuated the 

signal amplitude. Both solutions described here have their pros and cons in system 

protection.

It is necessary to consider the absolute maximum voltage input of the 

transceiver when selecting the voltage clamping level of the protection diode. In this 

case, the absolute maximum voltage input of the ADM1485 transceiver was +/- 14 V. 

Thus, the TVS diode selected for the first configuration was the P6KE13CA from 

Fairchild (this is a direct equivalent of the Transil device). For the second 

configuration, the zener doide selected was the BZX7912 from Philips [82]. From 

calculations, the minimum value for the current limit resistor is estimated at 40 Q. for 

protection against a 100 V pulse. Tests were repeated for different values of resistors 

to examine the signal quality. For all configurations, the cable length was 100 m, and

75

_______ i • '  ___.___ -____ ._- ;  • ■ - J ' v  -V______ - i - ___ ■-___x . ____ V



3. SYSTEM DESIGN STUDY

the bit rate was 44 Mbps. The transmitter was equipped with the line balance output 

filter, as described in the previous section.

The results are summarised in Table 2. From the result, it can be seen that 

TVS diodes are not suitable for high-speed transmission. The eye pattern is totally 

closed. This only left the option of using zener diode with a series current limit 

resistor. The zener diode protection circuitry only incurs about 1 ns extra skew on the 

signal, which was considered acceptable.

Protection Eye height Eye width

None 1.02 V 17 ns

TVS 0 V 0 ns

0.4 W zener diode, 0 Q resistor 1.02 V 17 ns

0.4 W zener diode, 56 Q resistor 0.92 V 16.6 ns

0.4 W zener diode, 82 Q resistor 0.84 V 16.1 ns

0.4 W zener diode, 100 Q resistor 0.8 V 15.5 ns

1.3 W zener diode, 0 Q resistor 0.98 V 17 ns

1.3 W zener diode, 0 Q resistor 0.88 V 16.2 ns

1.3 W zener diode, 0 Q resistor 0.74 V 15.7 ns

1.3 W zener diode, 0 Q resistor 0.74 V 15.2 ns

Table 2: Result for diode protection tests.

3.6.4.4 Overall Transceiver Circuitry Performance

With all the improvements and added protection, as shown in Figure 20, the 

transmission line random data tests were repeated to assess the overall performance. 

Figure 21 and Figure 22 show the results of the test (Appendix D gives detailed 

figures). The results were a significant improvement compared with the initial tests. 

It can be seen that the bit width remained fairly constant over the range of distances, 

and they are considerably higher than the limit of 67%.
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CAT5UTP

Figure 20: Enhanced RS-485 circuit diagram (for one direction).
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Figure 21: The eye pattern height openness versus cable length for improved

configuration.
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Figure 22: The eye pattern width openness versus cable length for improved

configuration.
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At the maximum cable length (100 m), the test was then run for extended 

periods, to discern the bit error rate. The results were: 1.45 x 10'12 at 20 Mbps, 1.68 x 

10'13 at 32 Mbps, and 3.6 x 10'12 at 44 Mbps.
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4. SARNIC IMPLEMENTATION AND STRUCTURE

This chapter discusses the approach and techniques used in the design of the 

novel network interface controller, the SARNIC. The design utilises VHDL in a 

modular, top down, hierarchical method. VHDL was selected as it provides a clear 

representation of the device operation, and the flexibility of moving from one target 

technology to another with the availability of different synthesisers. The software 

tools employed throughout the design cycle were the Mentor Graphics QHDL 

compiler and simulator, based on Sun Workstations.

It was decided to target the design in the Altera EPF10K50V CPLD [35]. The 

re-programmable feature of this SRAM based CPLD makes prototyping of the design 

more economical and eases design upgrade. In addition, it offers the flexibility of in- 

circuit debug, as simulation tests might not cover every detailed operation. The Altera 

CPLD software development tools, Maxplus II [74], provides a platform to construct 

designs from different entry formats (including VHDL) down to the complete end- 

product level. However, its simulator does not support proper test bench, and lacks 

debugging facilities throughout the design stage. Thus the Mentor Graphics QHDL 

compiler and simulator is used instead, until a full working VHDL model is ready, 

which is then transported onto the Maxplus II platform for synthesis.

4.1 Top-Down Design

The design of the SARNIC device was utilising top down design 

methodology. It was broken down into a modular and hierarchical structure. Each 

module was then constructed and simulated before inserting into a higher level 

module. This simplified the design and development process of the device. The 

structure of the design also eases future modifications or reuse of the modules in other 

designs.

The SARNIC design fragments into six main functional modules: the Bus 

Controller, the Communication Controller, the Control Link, the Interrupt Controller, 

the Timer, and the UART. Also, some reset circuitry, which occupies a small portion
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of the chip, controls the booting sequence of the whole device. Figure 23 illustrates 

the block diagram of the SARNIC. The functions of each module are described in the 

following sections in greater detail.

External
I/O

devices
ICR C416 
network

SDRAM

StrongARM 
SA-110

UART
devices

Figure 23: Block diagram of the SARNIC design.

4.2 Bus Controller

The bus controller interfaces the CPU and communication DMA channels to 

the addressable memory-mapped devices. These memory-mapped devices include the 

fast access SDRAM main memory, external peripheral I/O devices, and the SARNIC 

internal registers. Each of the memory-mapped devices will be control by separate 

blocks: the SDRAM Interface, the External I/O Interface, and the Internal Register 

Interface. The Arbiter Core is responsible to arbitrate the requests from the CPU and 

Communication Controller DMA, and to select which block of memory devices 

interface to activate. Priority is given to the CPU access, so that the overhead of 

DMA transactions on CPU normal operation is minimal. This is illustrated in Figure 

24.

Interrupt ga 32-bit ControlUARTController ■  Timer
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Figure 24: Block diagram of the Bus Controller.

The address space of the processor node is divided logically into three main 

regions: the SDRAM space, external I/O space, and SARNIC register space. For ease 

of logic decoding, the physical memory devices are only populated at the bottom of 

the logical region, and mirrored to the rest of the space. Table 3 summarises the 

address mapping of the SARNode.

SDRAM 0000 OOOOh 01FF FFFFh 32 MB

SDRAM (mirror 1)

.....
SDRAM (mirror 63)

0200 OOOOh 

7E00 OOOOh

03FF FFFFh 

7FFF FFFFh

32 MB

.....
32 MB

External I/O (CSO) 8000 OOOOh 8FFF FFFFh 256 MB

External I/O (CS1) 9000 OOOOh 9FFF FFFFh 256 MB

External I/O (CS2) A000 OOOOh AFFF FFFFh 256 MB

External I/O (CS3) B000 OOOOh BFFF FFFFh 256 MB

SARNIC registers C000 OOOOh C000 OOFFh 256 B

SARNIC registers (mirror 1) C000 OlOOh C000 OlFFh 256 B
. •
. .  ; .■

SARNIC registers (mirror 4194303) FFFF FFOOh FFFF FFFFh 256 B
............................

Table 3: Address mapping of the SARNet processor node.
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4.2.1 Arbiter Core

The task assigned to the Arbiter Core is to handle requests from the 

StrongARM SA-110 microprocessor and Communication Controller DMA channels. 

This includes latching the memory access address and requests from the StrongARM 

SA-110 and the DMA engine individually.

The Arbiter Core is also required to arbitrate the memory bus access between 

the microprocessor and DMA engines. The requests from the CPU and the DMA 

engine are pipeline and queued. When the memory bus is idling, priority is always 

given to the CPU. However, when requests are pending, access to the memory bus is 

alternated between CPU and DMA requests. This provides a fair memory access for 

both sources. No one particular source can dominate the memory bus utilisation.

When a request is being served, the address will be decoded in this block to 

decide which block of memory device interface to activate. Corresponding control 

signals are then sent to the appropriate memory device interface, to proceed on the bus 

transaction cycles. Necessary wait states, depending on the memory device accessed, 

are inserted to stall the request source until the data bus is ready for data transaction.

4.2.2 SDRAM Interface

The function of the interface is to generate the physical row and column 

addresses, and provide control signals, for the SDRAM. It also generates memory 

refresh cycles at the required interval. The start-up sequence of the SDRAM module 

has also been implemented into the interface.

The current version of interface is designed for 16 MB or 32 MB SDRAM 

modules, with 4 chip select lines, 11 row address lines, 9 column address lines, and 1 

bank address line. For connection to a 16 MB module, 2 of the chip select lines 

should be left unconnected. As the SARNIC operating core frequency is fed from the 

StrongARM SA-110, which is configurable, the memory bus can be set-up to different 

speeds. Therefore, it is advantageous to allow the timing of the SDRAM control 

signals, such as bank active and row precharge cycles, to be configurable. The
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SDRAM Timing Register is used for this purpose. Moreover, different SDRAM 

families or manufacturers may have differences in the exact timing specifications. 

The SDRAM Timing Register offers the option to optimise the SDRAM interface 

timing to a specific SDRAM module. As most SDRAM modules [83, 84] conform to 

the standard rate of 4096 refresh cycles every 64 ms, the refresh interval for the 

SDRAM has been fixed to this number. Hence, the refresh interval was generated 

from the 30 MHz clock, as the core clock can be variable.

The SDRAM access consists of 4 consecutive states in a state machine: idle, 

roM’-ciddress, column-address, and precharge. Each state can be a single bus cycle or 

multiple bus cycles, depending on the timing specification of individual SDRAM 

module. In the idle state, the SDRAM Interface waits for an access request. When a 

request is detected, the row-address state specifies the row address of the SDRAM 

location. This is followed by the column-address state that specifies the column 

address of the SDRAM location, together with the read or write command. For a read 

operation, the data output will only be available after several cycles delay, defined by 

the CAS latency of the SDRAM module. For a write operation, data can be written to 

the SDRAM module in the same cycle. The final state is the precharge state that 

commands the SDRAM to rewrite the bit line and reset the internal row address. The 

state machine then returns to the idle state, and is ready for new requests.

The SDRAM operation supports burst modes of 2, 4, or 8 words, with 

sequential or interleaved burst sequences. In this way, the column address is only 

specified once, and the burst continues from that location. Most accesses from the 

StrongARM SA-110 CPU are expected to be cache line operations of 8 words, which 

are suitable for the burst mode operation of the SDRAM. However, there are also 

shorter accesses from the SA-110 CPU, which range from a single word to a burst of 4 

words. During these short accesses, the SDRAM interface does not know the number 

of cycles in the processor burst until the microprocessor’s memory request signal de- 

asserts. This makes the use of SDRAM burst operation awkward. Therefore, the 

circuit implements processor bursts cycles by setting the SDRAM burst length to one 

cycle and issuing back-to-back read/write commands [85].
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4.2.3 External I/O Interface

The External I/O Interface allows low-performance peripherals to be attached 

to the system. This interface will provide control signals such as chip selects, read, 

write, and buffer direction.

A total of four chip selects have been implemented, decoded from address 

lines 28 and 29. This gives a window of 256 MB for each I/O device. More devices 

can be attached by decoding the lower address externally. The read and write 

operation is controlled by a separate active low read signal and an active low write 

signal. A buffer direction control signal has also been provided to control the flow 

direction of the optional data buffer.

The timing of the External I/O Interface control signals is software 

configurable. This is done through the I/O Control Register. There are three fields in 

the register: cycle length, strobe mask, and frequency divisor. The cycle length field 

defines the number of cycles of each I/O access, up to a maximum of 8 cycles. The 

strobe mask represents the cycle state of the strobe, shifted out to the read or write, 

starting with bit 0. The frequency divisor pre-scales the frequency that is used to time 

the cycle length and shift the strobe mask, in the range from 1 to 4. By setting these 

fields, the user can impose the address set-up, the strobe duration, and the address 

hold for the I/O access, thus offering an interface for a wide range of different speeds 

of I/O devices.

4.2.4 Internal Registers Interface

This block provides the address decoding and read write controls to all the 

internal registers. The six lower order bits of the address bus (a2 - a.7) are used to 

access 64 different internal register locations. Note that the register access must be in 

a single word. Byte masking is ignored in this design, in order to reduce the logic 

complexity.

Because the Altera FLEX 10KA devices do not support internal bus 

implementation, the register output has to be implemented using multiplexers. For a
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register read, the 64 internal register outputs have to propagate through six stages of 

multiplexer busses (32 bit multiplexer). The first stage comprises of 32 2-to-l 

multiplexer busses selected by address line the second stage comprises of 16 2-to- 

1 multiplexer busses selected by address line a3, and so on until the final stage of a 

single 2-to-l multiplexer bus selected by address line a l . This configuration would 

result in a total of 63 2-to-l multiplexers busses used for 64 registers (effectively 2016 

multiplexers if fully implemented) and large fan out to the address logic. Even though 

not all of the register locations contain physical register bits, the total logic and 

routing resources used for the multiplexers is a significant portion of the total design. 

The six stage multiplexer busses also resulted in 2 wait states (decided after synthesis 

and timing analysis) for each register read.

For a register write, data inputs of the selected register will be enabled 

following the address decoding. Only one wait state is needed to enable the CPU data 

bus.

4.3 Communication Controller

The Communication Controller is the largest part of the SARNIC design. It is 

the system network interface that controls every message passing operation to and 

from the interconnection network. There are two Communication Links implemented, 

each comprises of two independent incoming and outgoing links. A total of four 

DMA message channels, two incoming and two outgoing, are designed to support the 

Communication Links. One special feature of this Communication Controller is that 

the message channel connections to the communication links are not fixed: they are 

handled by the Message Allocater Switch. This allow flexible use of the message 

channel resource, so that both incoming channels or both outgoing channels can be 

allocated to one specific Communication Link for hardware virtual channel support. 

The block diagram of the Communication Controller is shown in Figure 25. The 

following sections describe the sub-blocks operation in more details.
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Figure 25: Block diagram of the Communication Controller.

4.3.1 DMA Message Channels

Four DMA assisted message channels have been implemented in order to 

support the Communication Links message-passing operations. Two of them are for 

the outgoing direction while the other two are for the incoming direction. The DMA 

mechanism utilised is a cycle-stealing mode, where the DMA transfer of a message is 

partitioned into a series of small transactions, instead of doing a single large block 

transfer across the memory bus. This is based on the fact that smaller block transfers 

allow better sharing of the memory bus among other memory bus devices, most 

importantly the CPU. The memory bus controller gives priority to the CPU access, so 

that the DMA transfer does not occupy the memory bus too often.

With integrated DMA engines and the pipeline design of the Bus Arbiter Core, 

memory bus switching inefficiencies are reduced. This is an advantage compared to a 

DMA message channel implementation that would require frequent short accesses to 

the memory bus. The DMA transfer size selected is a single word (discussed in 

Section 4.3.2.3).

The concept of virtual channels was implemented in the hardware design. 

Hence, the connection of message channels is not fixed to any particular 

communication link. Their use is assigned to a corresponding communication link 

through the allocation of the Message Allocater Switch. In this way, more than one 

message channel can be allocated to the same communication link, and the use of this
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communication link will be shared by the assigned message channels through a 

multiplexing scheme at the packet boundary. The hardware version of virtual channel 

support offers efficient switching and sharing of the communication link, thus 

achieving higher utilisation of communication bandwidth. For example, once a 

message channel has completed its transmission, the communication link can switch 

immediately to the other message channel to continue with the second data 

transmission.

The architecture of the transmit and receive DMA message channels are 

generally the same, each using three registers to control their operation. These 

registers are:

Header Register - used to hold the message header for incoming 

channels, and to hold routing headers and message headers for outgoing 

channels. The header register of the incoming channel is only 2 bytes 

wide. The header register of the outgoing channel is split into two 

physical 32-bit addresses (high and low) as it accommodates up to 6 

bytes of header.

Address Register - the pointer to the message address. This is a 24-bit 

register, offering a memory access range of 16 MB, which can only 

cover the 16 MB of SDRAM.

Length Register -  for counting the message length and controlling the 

state of operation. The 16-bit length field offers a maximum message 

size of 64 kB. The rest of the bits are for control and status purposes 

corresponding to the incoming or outgoing channels. These controlling 

status bits include: the active bit that indicates whether a message 

channel is active or not; the done bit that signify the completion of 

message transfer; and the reset bit that is used to reset the message 

channel in the case of errors.

The operation of each message channel is identical. Three states are involved 

in the state machine: idle, active, and done states. In the idle state, message channels 

are waiting for the assignment of a new message passing. To activate a message
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channel, information about that message needs to be specified in the Header, Address, 

and Length Registers. The final write must be the Length Register, as this will change 

the message channel to the active state, during which no modification to the registers 

is allowed. In the active state, outgoing DMA transactions will be initiated and the 

message continues to spill out on the assigned transmitter link, provided the link is not 

blocked; while incoming DMA transactions will be initiated whenever there are data 

coming in from the receiver link. At the end of the message transmission or reception, 

the message channel terminates and moves to the done state. At this state, the message 

channel will wait for the acknowledgement from the CPU that corresponds to the 

completion notification of the message transfer. Once the acknowledgement is 

received, the state machine resets to the idle state and the message channel is ready for 

use again.

In normal operation, the receiving DMA message channel terminates exactly 

at the end of message. However, for debugging and software development purposes, 

two extra modes of termination are added. They are the late-termination, where more 

data bytes are coming than the expected; and the early-termination, where less data 

bytes are transferred than expected. In the case of late-termination, redundant bytes 

have to be flushed. To cope with the difficulty of handling message sizes that are 

multiples of 256 in late termination or normal modes (described in Section 3.5.3.2), 

such message channels are treated as normal termination, whether the actual incoming 

message is exactly the same size or greater than expected. This results in subsequent 

packets of the same incoming message, that are greater than expected, being treated as 

a new message.

To support the boot from link feature, DMA message channel 0 is embedded 

with extra functionality. When a boot request is received, the Address Register will 

be reset to zero. The incoming data bytes will then be transferred to memory, starting 

from location zero where the SA-110 CPU boots from.
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4.3.2 Communication Links

The main task of the communication links is to handle the operation of 

message passing through the ICR C416 router network. This includes packetising and 

depacketising of messages, insertion and extraction of the headers at the appropriate 

place, and the low-level link flow control. Additional features include decode of the 

boot header from the links, and selection of boot from link or from internal ROM.

The communication link utilises an OS Link. There are two external 

communication links implemented on the device. The two links effectively double 

the bandwidth that one communication link can provide. Coupled with the group 

adaptive routing function of the ICR C416, one single destination header can be used 

for both communication links if they are connected to the same ICR C416 router in a 

continuous sequence. At the same time, two communication links offer greater 

network system design flexibility. They also increase the level of fault tolerance 

through resource replication, where if one link fails, the other can still support the 

system, although with reduced capability. The flow diagram of the communication 

link control is illustrated in Figure 26.

Channel Allocater

Packetiser Depacketiser

buffer buffer

synchronous interface

Transmitter
FIFO

Receiver
FIFO

OS Link Interface

Transmitter
Link

Receiver
Link

to ICR C416 network...

Figure 26: Flow diagram of the Communication Link control.
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A message-passing mechanism involves the transmission of one message from 

the source communication link, through the communication network, and the receipt 

of the message at the destination communication link. The transmission of data 

through a communication link can be viewed at three different representation layers: 

message layer, packet layer, and token layer. The process of a message transmission 

includes: DMA transfer of an outgoing message from the memory (message layer); 

packetising the message and pushing the packets into the Transmitter FIFO, byte by 

byte (packet layer); and finally the injection of bytes onto the serial link by the OS 

Link Interface (token layer). As a complementary function, the process of a message 

receipt includes: formation of a byte from the incoming bit stream by the OS Link 

Interface (token layer); popping the packet from the Receiver FIFO, byte by byte and 

de-packetising the message (packet layer); and finally a DMA transfer of the message 

to the memory (message layer).

From the hardware point of view, the communication link is working on two 

different clock domains. In order to sample the OS Link bit stream correctly, the link 

FIFOs and the OS Link Interface are working on a 30 MHz clock, supplied from an 

external crystal module. The rest of the circuitry is working on the memory bus clock, 

hence, utilising the faster bus clock speed of the SA-110 microprocessor. The 

following sections give a more detailed explanation of each sub-module.

4.3.2.1 Packetiser

The function of the Packetiser is to request DMA transactions from the 

memory and to fill the DMA buffers with the outgoing message. The message will be 

divided into packets, and patched with corresponding routing information and 

message headers before the packets are pushed to the outgoing link FIFO.

When a start request is detected from the DMA controller, the control logic 

will shift the contents of the Message Header Register to the transmit FIFO. Although 

the register is 6 bytes wide, there can be less than 6 bytes of header sent. The last 

header byte is recognised by setting the MSB to ‘O’. At the end of the shifting
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operation, the packet length byte is generated and sent, based on the Message Length 

Register value. This is followed by the required number of data bytes DMA 

transferred from the memory.

For short messages that are less than or equal to 256 bytes, only one packet is 

sent. For long messages, the information is sent in multiple packets. Whenever the 

message size left is bigger than 256, the message header, a packet length byte value of 

zero, and the 256 bytes of data are sent as a packet. This process is repeated until the 

value in the Message Length Register is less than or equal to 256, then the last packet 

is sent with the remain value as the packet length byte.

4.3.2.2 De-packetiser

The function of the De-packetiser is to request DMA transactions to the 

memory for each incoming message. When a packet arrives and the packet header 

matches one of the active receiver channel’s Message Header Register, the De- 

packetiser will start extracting the packet and filling the DMA buffers with incoming 

message bytes from the incoming link FIFO. A DMA request will be made when the 

DMA buffer is full or when the packet ends.

During idle mode, the control logic waits for the arrival of packets. Once the 

packet header is ready, it has to be checked to decide the correct operation before 

proceeding with the packet body. If the header is decoded as a boot header, a boot 

request is made to the Reset Circuitry for resetting appropriate sections. If not, the 

header is checked against all active message channels for a match. If a match with the 

Message Header Register is found, the extraction of the packet and data transfers 

proceed. If no match was found, notification will be generated to the processor 

through the Interrupt Controller to signify no available receiving channel for the 

current packet.

When processing the packet body, after the header extraction, the first byte 

received is the length of the packet. This value will be used to count the number of 

data bytes in the current packet. When the packet length counter reaches zero, the 

state machine returns to header detection. Note that a length value of zero indicates
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there are 256 data bytes in the packet (undocumented feature of ICR C416). In the 

case of late termination, as described in Section 4.3.1, a flush command will be given 

by the corresponding message channel. This command will force the removal of the 

remaining data bytes from the Receiver FIFO.

4.3.2.3 DMA Buffer

The DMA buffer is the first stage of the link buffer pipeline. Transfer of 

messages to and from memory is done through a series of small DMA block transfers. 

This DMA buffer is used to hold the DMA block of data while the communication 

link continues working on network data transmission to or from the link FIFO.

The SDRAM interface was configured to support a maximum burst size of 

eight words. Hence, increasing the DMA transfer size up to the burst length can 

reduce the overhead effect, as shown in Equation 4 in Section 3.6.3. However, a 

DMA block size of more than 8 words is not advisable as no extra overhead reduction 

can be seen, but the access time increases. The FLEX 10KA devices provides 

memory, called Embedded Array Blocks (EAB), but this is not suitable for the DMA 

buffer implementation. Each EAB is a distinct memory block with a single access 

port, and they are scarce resources: the FLEX 10KA50V only comes with 10 EABs. 

In addition, an EAB can only be a maximum of 8 bits wide. To implement a 32-bit 

wide DMA buffer, 4 EABs would be required. Flence, the DMA buffer was 

implemented using normal logic resources. The DMA buffer size was chosen to be 1 

word, in order to save logic expenses and reduce control complexity.

Each DMA transaction steals memory bus cycles. It is important that the 

DMA transaction rate does not occupy the memory bus too often, causing 

overloading. With 36.9 MHz memory bus frequency, the maximum percentage of 

utilisation of each communication link (2 DMA channels) is 12.52% as calculated 

using Equation 4. With two communication links implemented, a total of 25.04% 

utilisation results. However, the maximum utilisation is 50% because of the arbiter 

design discussed in Section 4.2.1.
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43.2.4 Link FIFO

The link FIFO is the second stage of the link buffer pipeline. It is designed to 

provide continuous data feeding to and from the communication network while DMA 

transaction is being requested or served.

The size of the link FIFO depends 011 the link speed and the DMA transaction 

rate. The higher the link speed, the faster the data is coming in, and thus the larger the 

amount of FIFO size needed. The higher the DMA transaction rate, the smaller the 

amount of FIFO needed. The deterministic factors for the DMA transaction rate, 

however, depend 011 the memory bus speed, the number of competing devices on the 

memory bus, and the access time allocated for each memory bus device. The longer 

the time the communication link has to wait for an access, the slower the DMA 

transaction rate.

In the SARNIC design, only the CPU and the DMA engines of two 

communication links have access rights to the host memory. Each communication 

link has two DMA engines. After each DMA access, the memory bus must be 

relinquished to the CPU if its request is pending. Therefore, the maximum time a 

communication link has to wait for a DMA transaction, Tqsl (in the units of OS Link 

byte time), with a memory bus frequency of 36.9 MHz, is:

2 x 2 x Td + 2 x 2 x Tc (max) .
T()SI = -----------— —   (1link byte time)

20 x 106
4 + DMASize 13 20 x l0 6 .= (4 x (-------------  —) + 4 x (---------- -)) x -----------(link byte time)

36.9x 10 36.9 x 10 13 7
80= (4 +1 +13) x ----------- (link byte time)

36.9x 13
= 3 {link byte time)

Equation 6: Maximum duration for a DMA operation, units of OS Link byte time.

The time to transfer the data between the link FIFO and the DMA buffer is negligible 

as it only takes a few clock cycles. Furthermore, since the shift registers in the link 

transmitter and link receiver can be considered as a single byte storage, this gives
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extra tolerance to the DMA interval. Therefore, to cover the DMA interval, the link 

FIFO size should be at least 3 bytes.

For OS Link flow control buffering, as an acknowledge token is returned for 

each received data byte, an extra one byte link buffer is needed for the acknowledge 

token. This increases the required receiver link FIFO to 4 bytes. Again, instead of 

using EABs, the implementation of the small link FIFO utilises the normal logic 

resources of the FLEX 1 OKA device.

In order to support the boot from ROM and boot from link feature, the receiver 

FIFO for Communication Link 0 has two input sources: from the receiver link engine 

and the internal ROM. This implementation is used to save the logic of interfacing 

the internal ROM to the SDRAM interface (discussed further in Section 4.3.2.6).

4.3.2.5 OS Link Interface

The OS Link Interface is the data conversion interface between the packet 

layer and the token layer. It is to handle the low level flow control of the OS Link, 

transforming bytes from packet layer to a bit stream in token layer, and shifting the 

incoming bit stream in token layer to bytes in packet layer.

Each OS Link is an asynchronous communication channel, consisting of two 

unidirectional wires. Data bytes are transmitted by the link as a sequence of 11-bit 

tokens, each containing a start bit, a type bit of ‘1’, eight data bits, and a stop bit. 

After transmission, the transmitter has to wait for an acknowledge token to arrive. 

This acknowledge token is used as flow control to prevent buffer overflow. An 

acknowledge token will not be sent out if no buffer is available at the receiver. To 

allow continuous flow of data on the link, the acknowledge token is sent out 

immediately after decoding the type bit at the receiving end. The OS Link data and 

acknowledge token format is shown in Figure 27.
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Data
token Start Type Bit Bit Bit Bit Bit Bit Bit Bit

0 1 2 3 4 5 6 7
-.....-  .

Stop

Acknowledge
token Start Stop

Figure 27: OS Link data and acknowledge token format.

The link engine utilises an over-sampling technique to read data. To overcome 

the signal skew and the possible variation of bit width on the OS Link, over-sampling 

is required. Taking an odd number of samples is always better than taking an even 

number of samples as the odd number sampling offers greater clearance from the 

‘middle’ sample, and thus provides greater skew immunity. For example, 3 time 

over-sampling gives 33% of clearance on both sides of the ‘middle’ sample. 4 time 

over-sampling however gives 25% on one side and 50% on the other side, depending 

on whether sample 2 or sample 3 is taken as the ‘middle’ sample. To minimise the 

sampling frequency required, 3 times over-sampling was applied. For 5 times over- 

sampling, the clearance is 40%, which is only a 21% clearance improvement for a 

67% increase in clock speed. Through the use of both edges of the clock for 

sampling, the sampling frequency was reduced to 30 MFIz.

As the OS Link is an asynchronous channel, metastability can occur during the 

sampling of incoming bit stream. Metastability is a phenomenon that occurs when 

data input is changing while a flip-flop is sampling this undetermined data input. 

Hence, the output at this state can be undefined or oscillating, and can be propagated 

into the consequent logic, causing system failure. There is no absolute way of 

removing the problem of metastability, the probability of failure can only be reduced 

[86, 87]. A two-stage synchroniser has been implemented in the link input sampling 

circuitry to reduce the probability of metastability failure. At a synchronising 

frequency of 30 MHz with both phases of the clock, the Altera FLEX 10KA devices 

can reduce the probability of failure to less than once in 100 years [88].
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4.3.2.6 Internal ROM

Other than the boot from link feature, there is a small internal ROM to store 

the fixed version of boot program. Altera FLEX 1 OKA devices have embedded RAM 

cells that can be used to implement RAM, ROM or FIFO. These EAB have been 

utilised to implement a 2 kB internal ROM, utilising 8 EABs.

When boot from internal ROM option is selected, data bytes in the internal 

ROM will be accessed using an address counter. In order to save logic, these data 

bytes are treated as normal OS Links data bytes and transferred into main memory 

through the Incoming DMA message channel 0. Thus, the format of the boot program 

stored in internal ROM must exactly match the ICR C416 packet protocol.

4.3.3 Channel Switching and Allocation

The purpose of channel switching and allocation is to allow flexible use of the 

DMA message channels among two communication links. It is used to allocate DMA 

message channels to the dedicated communication links. The hardware

implementation of the channel switching and allocation reduces the overhead in 

supporting virtual message channels, and lessens the need of processor intervention in 

handling virtual message channels.

To match an outgoing message channel to a transmitter link, the ‘PITYC’ bit in 

the Length Register has to be written with the intended communication link number, 

i.e. ‘O’ for communication link 0 and *1* for communication link 1 (see Appendix A 

for more details). This allows any outgoing message channel to be assigned to any 

communication link.

When both outgoing message channels are assigned to one particular 

communication link, hardware virtual channel transmission is in effect. Both message 

channels are multiplexing the message on the particular communication link in packet 

level, i.e. each message channel takes turns to send out a packet. The benefit of doing 

this is that in the case of a short message queued at the back of a long message, the
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short message has the chance to be sent out in between packets of the long message, 

reducing unnecessary latency.

To match an incoming message channel to a receiver link, the Header Register 

has to be written with the identical message header as the one received by the receiver 

link. Once the Allocater Switch has found a match between the incoming packet 

header and the Header Register, connection is made until the packet is transferred. 

Even though writing both incoming message channels with the same message header 

is unrealistic, in this case, protection has been provided to connect only one of the 

message channels to the receiver link at a time.

As the ICR C416 is a packet switch, there is a chance of the reception of one 

message being interfered with by packets from other messages. In this situation, the 

second incoming DMA message channel can be allocated to the same receiver link for 

handling the interfering message. This mode is known as hardware virtual channel 

receiving. Switching between the active DMA message channels is done 

automatically by the Allocater Switch depending on the incoming message header. 

To support more than two incoming virtual channels, however, software involvement 

would be required. One of the DMA message channels has to be freed to handle the 

packet of the third interfering message, through software means. Current message 

information will have to be swapped out to a temporary storage and restored at a later 

point. Nevertheless, the chance of handling more than two virtual channels is far less 

than the chance of handling up to two virtual channels.

4.3.4 DMA Core

The DMA Core is responsible for arbitration between the DMA message 

channel transactions and requesting the memory bus access for DMA operations. The 

progress of arbitration includes selecting the active channel for DMA transaction, 

multiplexing the selected channel address, and then generating the bus access request 

to the Bus Controller. The corresponding DMA transaction is then continued when 

the memory bus is ready. For transactions to the memory, multiplexing of the two
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incoming message channels data is required, while for transactions from the memory, 

de-multiplexing of the data to both outgoing message channels is required.

4.4 Control Link

The Control Link is designed specially for the control port of the ICR C416 

packet switch. The link protocol used is the OS Link. The module is implemented as 

a register-mapped interface, where reading or writing to the Data Register will 

perform a byte pull or a byte push to the Control Link FIFO. This allows a direct 

interface to the ICR C416 control port through software. The ICR C416 software port 

commands can be sent as writes to the Data Register, and results can be collected as 

reads from the Data Register.

The Control Link module was also embedded with an optional mode of 

automatically detecting blocked links in the ICR C416, and reporting back to the CPU 

through interrupts. This special feature can be enabled in the Control Register: all 

accesses to the Data Register are ignored in this mode.

The process of detecting blocked links is achieved through the ICR C416 

software port command 09h, which will return the status of all 16 links. Bit 5 of each 

status byte indicates the data flow since last status check. Therefore, if one of the 

links returns a ‘no data flow state’ for two consecutive status checks, a link block is 

assumed. The polling rate of the status, however, can be difficult to decide, as the 

time a link is considered blocked depends on the communication network 

characteristics. The size, the topology, the routing algorithm, and the load of the 

communication network can vary the time a message needs to travel from the source 

to the destination. A starting point of deciding the polling time will be to presume the 

network consists of a single ICR C416 device. Since each output link of the ICR 

C416 device can queue up to 3 packets, the worst case queued message delay incurred 

by the ICR C416 device, T^eiay(max), is given by Equation 7.
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Tlhlcty (max) = 3 x PacketSize x TokenTime (s)

= 3 x (PacketHeader + LengthByte + Payload) x C-5’)

3x(6 + l + 256)xl l  
lOxlO6 

= 867.9 xlO"6 (s)

Equation 7: Worst case queued message delay of the ICR C416.

Based on this calculation, a range of polling rates are offered. The user has the 

flexibility to select a suitable rate to define the time-out figure of a message. A pre- 

loadable 4 bit counter, clocked by 4 sets of selectable pre-scale clock, has been 

implemented for this purpose. This gives a time-out range from 64 qs to 4 s.

Other than connecting this link to the control port of the ICR C416 device, it 

can also be used for connections to other OS Link compatible device, such as a 

Transputer. However, in this mode, the user must make sure the special link blockage 

detection for the ICR C416 is disabled.

4.5 Interrupt Controller

The function of this block is to generate interrupt requests for the StrongARM 

SA-110 microprocessor, based on the status of the interrupt sources and the enabling 

state of the interrupt. There are a variety of interrupt sources implemented in the 

SARNIC design. These include DMA message channels interrupts, a Timer interrupt, 

Control Link interrupts, UART interrupts, and four additional external interrupts.

The interrupt controller supports two levels of StrongARM SA-110 interrupts: 

FIQ and IRQ. FIQ is the higher priority interrupt, and the StrongARM SA-110 

contains 8 banked registers that allow fast interrupt handler switching. Two different 

set of registers are utilised for the FIQ and IRQ interrupts, but sharing the same 

interrupt sources. Therefore, only one type of interrupt should be active for each 

interrupt source. The interrupt registers have been designed in such a way that 

enabling one interrupt type will disable the other interrupt type automatically.
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For each set of interrupt registers, there are: an internal Enable Register, a 

write-only Enable Set Register, a write-only Enable Clear Register, and a read-only 

Status Register. A Raw Status Register is shared by both sets of interrupt register. 

The Enable Register decides whether a particular interrupt bit is enabled or not. The 

Enable Set Register and the Enable Clear Register are used to modify the state of the 

Enable Register. Writing a logic ‘ 1’ at the appropriate interrupt bit location in the 

Enable Set Register or the Enable Clear Register will enable or disable the interrupt 

correspondingly. These two separate write-only registers implementations ease the 

process of modifying individual bits in the Enable Register, without having to read the 

Enable Register, mask the corresponding interrupt bit, then write back to the Enable 

Register. The Raw Status Register displays the status of the original interrupt source. 

The Status Register is the masked version of the Raw Status Register: it is the bit-wise 

‘AND’ function of the Raw Status Register and the Enable Register.

4.6 Timer

The 32-bit Timer provides a basic wrap-over counter that increases with clock 

ticks of 1 jus, giving a 1 MHz real-time timer. The use of this Timer is similar to the 

OCCAM timer function [37]. A special relation operator function decides whether a 

timer value supplied is before or after the current timer value. The result of the 

function is available in the Control Register, and an interrupt can be generated if 

enabled.

The Match Register is used to hold the timer value to be compared with the 

real-time timer value. The comparison is done with ‘wrap around’ arithmetic and 

magnitude comparison, so that if a value loaded into the register is one which has 

actually just passed, the interrupt occurs at once. To achieve this, the difference 

between the timer match register and the real time timer must be calculated. The most 

significant bit of the result is used to decide whether the requested timer event is in the 

past or future.

With the 32-bit Timer clocked at 1 MHz, the maximum magnitude of a timing 

event is 232 ps, equivalent to 4,294,967,296 ps. Since the timing event has to be
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divided into ‘past’ and ‘future’, only half of the maximum magnitude is meaningful. 

This gives a maximum length of timing event of approximately 35 minutes and 47 

seconds. Longer timing period can be handled in software without significant 

overhead.

4.7  UART Communication Port

The UART module design is to allow information display on a monitor and 

keyboard inputs, through a PC terminal program, by connecting it through the COM 

port. The UART module implemented here is a reduced function set of a standard 

UART device. The flow control circuitry has been totally removed. Only the serial 

communication link operational mode remains. Functions like parity generation and 

checking, framing error, and buffer overrun error are fully supported. The baud rate 

selection is reduced to only four options: 9600, 19200, 38400, and 57600 bps. No 

FIFO has been implemented in this version because of resource saving; this is 

acceptable, as the communication load is not heavy for development usage.

4.8 Reset Circuitry

The Reset Circuitry is used to generate a set of reset pulses to different 

portions of the interface chip, and to generate a reset pulse to the CPU. There are two 

sources that can cause a reset to the system. One is the global system reset switch, 

and the other is the boot request from the Communication Links.

To support the boot from link feature, the Reset Circuitry has to pass a reset 

pulse to the whole system when a boot request comes in. Plowever, the reset must be 

avoided at the communication receiver link that generates the boot request, which will 

be in the state of receiving the boot message. Therefore, three different reset pulses 

are generated: one for the chip-wide reset, and the other two are for resetting each 

communication receiver link individually depending on which link the boot message 

comes in on.
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Other than the internal reset pulses, the chip-wide reset has to be propagated to 

the StrongARM SA-110 CPU too. During the reset state, the SA-110 CPU will 

disable the clock output for 150 ps. This will effectively stop any SARNIC logic 

operations that are driven by the core clock, for that period of time. Hence, the Reset 

Circuitry logic is driven using the constant 30 MHz crystal clock.
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5. SIMULATION, SYNTHESIS AND VERIFICATION

This chapter describes the simulation, synthesis, and verification of the 

SARNIC device. The design simulations utilised the Mentor Graphics QHDL 

simulator to interpret the VHDL code behaviour. Following simulation, the synthesis 

of the SARNIC design into the Altera EPF10K50VRC240-3 CPLD, using the 

Maxplus II [74] project development platform, was discussed. Finally the SARNIC 

design was verified through the hardware realisation and testing of a few processor 

nodes (SARNode). Tests, that were optimised to highlight the raw hardware 

performance, are presented.

5.1 SARNIC Design Flow

Figure 28 illustrates the design flow adopted for realising the design concepts 

into an operational CPLD. A top down design approach was used for the SARNIC 

development, utilising VHDL. Simulations were then carried out for verification of 

the design functionality. Each individual lower module was manually simulated 

before combining into higher level modules. At the top-level, the design was again 

simulated as a complete system, through the use of other interacting component 

models.

Design
concepts

Operational
CPLD

Timing
analysis

Hardware
tests

VHDL
design
entry

Synthesis

Place

route

Simulation

Figure 28: High-level design flow.
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The processes of synthesis, place and route, and timing analysis were carried 

out using the Altera Maxplus II software. The process of synthesis is to generate a list 

of operational low-level components that are specific to the target CPLD family. 

These low-level components, known as Logic Elements (LE) in the FLEX 10KA 

CPLD were then placed and routed automatically on the selected size of device 

(EPF10K50VRC240-3 in this case). After the place and route process, the design is 

subjected to a static timing analysis that ensures the required operational speed of the 

design was met. The device was optimised for performance with smallest area used, 

by changing the design entry and careful placing of the logic elements. A 

programming file was also produced for configuring the SRAM based 

EPF 10K50VRC240-3 CPLD.

To save design time, post-synthesis simulation was replaced by hardware tests 

of the SARNode prototype. Normally, re-simulation of the design after synthesis is 

required to confirm the correct synthesis process. The Maxplus II software has an 

option of producing a VHDL VITAL simulation model [74] that contain the timing 

information. By replacing the original SARNIC VHDL design with the VITAL 

simulation model, the post synthesis design could be simulated for correct device 

operation under the same test conditions. However, due to the detailed internal 

simulation of the VITAL model, long simulation times would be expected. Correct 

operation results could be obtained faster through hardware tests.

Once the design cycle was complete, the programming file was used to 

configure the CPLD for hardware operation. Hardware verification tests were carried 

out for real-time operation validation. In the case of errors found during verification, 

changes were made easily, following the complete design flow, since the CPLD used 

is re-programmable.

5.2 SARNIC Simulation

The purpose of simulating the design was to guarantee design functionality 

before implementation. Also, simulation enabled estimates of device performance to
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be made. Design simulation for a re-programmable technology like a CPLD is not 

critical, as the targeted design can be corrected or upgraded without extra cost. 

Therefore, the simulations generated did not cover 100% of the device functionality. 

However, finding design problems during simulation is preferable as the simulator has 

the capability of monitoring all of the internal nodes of the design.

The simulation involved two different approaches: manually generated and 

model generated. The functional testing of each individual design module was carried 

out by utilising stimulus from manually generated waveforms, before inserting into a 

higher module in the design hierarchy. The tests were manually generated, as it was 

easier to generate the direct test waveforms than to create a model that would be 

significantly changed during the initial design phase. The simulation cycle followed a 

bottom-up methodology until it reaches the top-level design module.

The complete SARNIC design was then simulated with other interacting 

component models like the SA-110 model, the SDRAM model, and the OS Link 

interface model. Due to difficulties in getting the industrial standard models in VHDL 

code, all the models have been produced for this work to emulate each device. From 

the emulation models, a processor node model (SARNode model), was constructed. 

This is shown in Figure 29. Multiples of this SARNode model were connected to an 

ICR C416 router model, to perform different simulations of a complete distributed 

system model.

External
I/O

model

SDRAM
model

SA-110 
CPU 
model

ICR C416 
router 
model

SARNIC
design

Remote
UART
model

Figure 29: Simulation configuration of the SARNIC design model.
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The individual emulation modules are described below:

SA-110 CPU model

This is the core of the model generated simulation. It emulates the 

CPU, executing instructions and issuing memory accesses to the 

SARNIC chip. To simplify the emulating function, only the bus 

transaction initiator was designed. Instructions are entered as memory 

requests with specific memory access type, address, and data for 

storing. Like the actual SA-110 CPU, the instruction execution is 

based on three priority levels from the highest to the lowest: FIQ 

mode, IRQ mode, and supervisor/user mode. This allows the 

emulation of interrupt service routines.

SDRAM model

The model emulates SDRAM functions following a reduced set of its 

standard state machine. Only the functions used by the SARNIC 

design were implemented, for instance refresh, mode register set, ail 

bank precharge, and normal read/write cycles.

ICR C416 router model

The model was written as a synthesisable 4-link ICR C416 model. 

Only the basic direct routing function with queuing ability was 

implemented. The communications channels are non-blocking.

External I/O model

This model simulates the function of a slow memory peripheral. For a 

write access, it detects the active-low write pulse and writes the data 

into an internal register. For a read access, it detects the active-low 

read pulse and outputs data after a delay of 200 ns.
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Remote UART model

This model contains a UART link interface. It waits for an incoming

byte, and sends it back at a later time.

5.2.1 Functional Tests

The functional tests described here were carried out with a single SARNode 

model connected to an ICR C416 router model. These tests give an overall coverage 

of all the functions provide by the SARNIC design during ‘realistic’ operating 

conditions. The following is the list of functional tests executed through issuing 

memory accesses from the SA-110 CPU model:

• Testing the register access — writes followed by reads of some 

registers, to ensure the accessibility of the SARNIC registers. This 

is important since all the rest of the tests involved register access.

• Testing the SDRAM operation -  writes to a block of SDRAM 

region, followed by verification of the content after some time.

This was to test the correct SDRAM access and the SDRAM 

refresh cycles were working properly.

• Testing the external I/O access -  a write followed by a read to the 

emulated external I/O model.

• Testing interrupt generation -  generating an interrupt from 

emulated external I/O model to test the correct response from the 

SA-110 CPU model. The CPU model would go into an interrupt 

service mode to clear the interrupt source.

• Testing the timer — initialisation of a timer event by writing to the 

timer register and waiting for interrupt generation. This would be 

followed by clearing the timer interrupt.

• Testing the UART link -  checking correct UART transmission 

under various baud rates and parity checking, with the help of the 

remote UART link model.
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• Testing the Control Link -  checking the automated link time-out 

error generation circuit, with the help of the ICR C404 model.

• Testing Message Channel communication -  checking the message 

transmit and receive channels by initiating messages designated to 

the same SARNode, via the ICR C416 router model. Multiple 

simultaneous message transmissions were also simulated.

5.2.2 Estimated Design Performance

The simulation tests were configured with two SARNode models connected 

through an ICR C416 router model. The model simulations provided a means of 

measuring the performance figure for message transfer latencies and bandwidth. This 

allowed the device parameters to be recorded before design synthesis was carried out, 

thus allowing any final enhancements to be undertaken. The simulation also tested 

the correct operation of the design with varying message sizes.

The performance tests carried out were based on round-trip message time 

calculations. Model SARNode 1 begins by initiating a message transmission to model 

SARNode 2. At the end of the message reception on model SARNode 2, it initiates 

the same message transmission back to model SARNode 1. The time when model 

SARNode 1 has completely received the message was measured, and thus the round 

trip time was calculated.

Both 10 Mbps and 20 Mbps OS Link communications were tested. Different 

configurations of uni-directional, bi-directional, and multiple message DMA 

operations were also carried out. The message size used was varied from 1 byte to 

512 bytes, with a fixed single byte of routing header and a single byte of message 

header. No transmission line delay was simulated in these tests. Complete plots of 

the message time and bandwidth versus packet size are shown in Figure 30, Figure 31, 

Figure 32, and Figure 33. Detailed results are given in Appendix E.
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Figure 30: Message time simulation results for 10 Mbps link.
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Figure 31: Message bandwidth simulation results for 10 Mbps link.
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Figure 32: Message time simulation results for 20 Mbps link.
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Figure 33: Message bandwidth simulation results for 20 Mbps link.

From the results, it can be seen that the message time incurred is proportional 

to the size of the message. This means the message overhead stays constant across 

varying message sizes. These overheads include the time of sending: the routing 

header byte, the message header byte, the length byte; and the time of message 

handling incurred by the router and the network interface. As 3 extra bytes are added 

for each packet, a small ‘bump’ can be seen at message size of 256 bytes on the 

message time graph. This happens at every packet boundary. By deducting the time 

spent on the 3 overhead bytes, the message handling latency is found to be a constant, 

equal to approximately 2.1 ps at 10 Mbps and 1.8 ps at 20 Mbps.

From the bandwidth graphs, the results show that as the message size increases 

the effective bandwidth increases, reducing the overhead effect of the routing 

information, which must accompany each packet. The step reduction in effective 

bandwidth due to the overheads of the second packet is visible at the 256-byte 

boundary. The graphs also show that the bandwidth is nearly saturated when the 

message size is over 64 bytes. At 10 Mbps, uni-directional data achieves a bandwidth 

of 0.9 MB/s, effectively 72 % of the link raw bandwidth. Bi-directional data only 

achieves 58.8 % (1.47 MB/s) of the link raw bandwidth; this is due to the penalty of 

sending an acknowledge token per data token. At 20 Mbps, an uni-directional 

bandwidth of 71.6 % (1.79 MB/s) and a bi-directional bandwidth of 56 % (2.8 MB/s) 

were recorded.
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To further analyse the components that contribute to the message latency, the 

time needed for one particular message transmission was broken down into different 

sections as shown in Figure 34.

Transmit endTransmit start

Routing M essage Packet Data
header header length payload

Wire

Wire
M essage Packet Data

header length payload

Receive start Receive end
.

•' T. PS

Figure 34: Communication transmission time break down.

The explanation of the break-down points are listed below:

• Transmit call -  the write of the Transmitter Length Register 

initiates DMA channel transmission.

• Transmit start -  the first bit of routing header appears on the wire.

• Transmit return -  the last byte of the message has been pushed to

the link FIFO and a DONE interrupt is generated to the SA-110 

CPU.

• Transmit end -  the last bit of the last data byte is sent.

• Receive start -  the first bit of the message header appears on the 

wire.

• Receive request -  the decoding of the message header generates an 

interrupt request to the SA-110 CPU if no input message channel is 

ready.

I l l
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• Receive call -  the write of the Receiver Length Register sets up the 

receiving DMA channel.

• Receive end -  the last bit of the last data byte is received.

• Receive return -  the last byte of the message is transferred to 

memory and a DONE interrupt is generated.

The transmission starts by setting up a DMA transmit channel. Transmit call 

is the point where the write of the Transmitter Length Register initiating the transfer. 

The first bit of the routing header then appears on the wire, as noted by Transmit start. 

The router network extracts the routing header and forwards the rest of the packet to 

the output. At the end of the DMA transmit channel transfers, the SARNIC device 

generates an interrupt request to the SA-110 CPU, noted by Transmit return. 

Transmit end is the point where the last bit of the last data byte appears on the wire.

At the receiver end, Receive start is the point where the first bit of message 

header appears on the wire. If no incoming message channel was activated, the 

SARNIC generates an interrupt request to the SA-110 CPU, as noted by Receive 

request. The processor then responds by setting up the receiver DMA channel. 

Receive call is the point where the write of the Receiver Length Register initiating the 

transfer. When the last bit of the last data byte has entered the processor node, as 

noted by Receive end, the SARNIC generates an interrupt request to the SA-110 CPU, 

as noted by Receive return.

A capture of the simulation waveforms at 10 Mbps and 20 Mbps for a message 

size of 4 bytes is given in Figure 35 and Figure 36 respectively. These waveforms 

show that the latency of sending a message from the point the channel is activated 

('Transmit start -  Transmit call) is 199 ns at 10 Mbps and 206 ns at 20 Mbps. At the 

receiver node, the latency of generating the interrupt from the point the last bit of the 

message is received (Receive return -  Receive end) is 153 ns at 10 Mbps and 234 ns 

at 20 Mbps. No receive request interrupt was found as the message channel is setup 

before the message arrives. The router latency is 1.1 ps at 10 Mbps and 616 ns at 

20 Mbps. From the previous message time simulation, the message handling latency 

was 2.1 ps at 10 Mbps and 1.8 ps at 20 Mbps. By subtracting out the network 

interface and router hardware latency, this leaves an emulated software latency of
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648 ns at 10 Mbps and 744 ns at 20 Mbps for setting up the DMA channels. This 

software latency will increase accordingly in real system, depending on the 

complexity of the software.
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Figure 35: Simulation waveform for a 4-byte message at 10 Mbps.
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5.3 SARNIC Synthesis

The next stage after the functional simulation was to synthesise the functional 

Register Transfer Level (RTL) VHDL code into a net-list of low-level operational 

components for the Altera CPLD place and route tool. VHDL code synthesis is 

different for schematic entry where schematic entry uses standard parts like flip-flop 

or multiplexer modules that synthesise directly into the corresponding logic. VHDL 

code on the other hand is a hardware description code, which describes the behaviour 

of the flip-flop or multiplexer function. Hence, the code has to be carefully written so 

that the synthesiser can interpret the functional behaviour into correct logic. Also, 

depending on how sophisticated the synthesiser is, VHDL code might be required to 

be written as a very low level, detailed description, instead of in an ‘easy-to- 

understand’ high level.

Two types of optimisation were used to ensure the synthesised VHDL code 

meets the design specification, these are: area optimisation and speed optimisation. 

Optimisation requires an understanding of the target technology architecture, how to 

use its dedicated special resources, and how to achieve efficient synthesis with a 

VHDL code format that suits the compiler/synthesiser. Area optimisation was carried 

out first. Through logic reduction, signal path lengths are reduced, and thus some 

speed optimisation would normally be achieved indirectly. However, this is not 

always the case, for instance, speed improvement might only be possible by 

replicating common logic for two different partitions.

5.3.1 Area Optimisation

Area optimisation is related to the efficiency of the Altera Maxplus II 

compiler/synthesiser. From experience of the feasibility study of the first version of 

SARNIC implementation, The Maxplus II software could not interpret high-level 

behavioural writing style of the VHDL code precisely and efficiently, usually 

resulting in more logic than expected. The Maxplus II software might even result in 

incorrect functional logic due to some unsupported VHDL features. Therefore in the
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feasibility study, there was much familiarisation with the VHDL code writing style for 

correct and efficient Maxplus II synthesis. The process involved porting the high- 

level code to a low-level code interpretation to achieve optimum results, including 

consideration of modularisation of the logic functions down to the individual CPLD 

logic elements.

Besides modifying VHDL code, area optimisation could also be achieved by 

utilising the special resources of the target CPLD. Obvious examples of this are the 

use of the carry chain and the cascade chain of the FLEX device family. The carry 

chain is especially useful in implementing counters or adders/subtracters, as it 

provides the carry forward function in the same logic element and a dedicated chain 

which links to the next logic element. This reduces logic and improves carry forward 

speed. The cascade chain on the other hand is useful for wide-input ‘AND5 gate or 

‘OR’ gate implementations. It provides an additional ‘AND’ function fan in a chain 

from the previous logic element3. In this way, a portion of a wide-input ‘AND’ gate 

(in one logic element) can be fanned in directly to the next portion of the wide-input 

‘AND’ gate (in the next logic element), without using an extra ‘AND’ gate. The 

cascade chain is also valuable for multiplexer implementation [72].

Another resource that can be used to reduce logic is the enable input of the 

register. Consider the following VHDL code implementation of the register:

i f  reset =  7 '  then 
q  < “  ‘O'; 

elsif elk 'event and elk =  '1 ’ then 
i f  enable -  7  ' then 

ifse l = 7 '  then 
q <= a; 

else 
q < =  b; 

end if; 
else

q < = q ;  
end if; 

end if;

If the code is written as above, the function requires 5 variable inputs, resulting in 2 

logic elements used, since a logic element can only support a 4 variable input. By

3 OR gate functions are achieved through De-Morgan conversion.
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utilising the enable input pin, the variables enable and q are removed from the 

function. Hence, only 1 logic element would be required. The code becomes:

i f  reset -  7  ’ then 
q <— ‘0 ‘; 

elsif enable =  '0 ’ then 
q < = q ;

elsif elk ’event and elk — 7  ’ then 
i f  sel = 7 ’ then 

q  < ~  a ; 
else

q < =  b; 
end if; 

end if;

5.3.2 Speed Optimisation

Speed optimisation is related to careful layout of the design on the CPLD. For 

the high-performance FLEX 10KA family CPLD, the general interconnect delay is 

greater than the delay of the logic cell. Therefore, for a signal path that feeds through 

multiple logic cells, the physical placement of these logic cells on the CPLD will 

affect the delay from the first logic cell output to the last logic cell input. To minimise 

the routing delay effect, the top-level modules of the SARNIC design were assigned 

to dedicated rows. This decision was made based on the fact that the longest delay 

between two logic cells are when they are located in different rows, where the signal 

travels through a column interconnect and two row interconnects before fanning into 

the destination logic cell. By fitting each module in a single row (if possible), the 

intra-signal delays are localised to only row interconnects.

In the case where the interconnect delay is critical, the related logic cells 

should be kept as close as possible to each other. The Maxplus II software offers this 

function with the ‘clique’ assignment. Logic cells that are assigned to a ‘clique’ will 

be grouped closely together during the Maxplus II fitting process. However, for 

designs that occupy more than 80% of the CPLD, ‘clique’ assignments are often 

ignored by the Maxplus II compiler due to the increase complexity in routing the logic 

cells. For more secure logic group placement, the critical path logic cells could be 

forced into certain LABs using absolute assignments.
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Utilising target device special resources are another way of optimising the 

design operation performance. As mentioned previously, the carry chain improves the 

performance of a counter implementation. However, too long a carry chain is not 

recommended as the total carry signal delay is much greater than the delay of the 

conventional carry signal generation method. A long carry chain also reduces the 

flexibility of the other logic cells and routing resource usage as the logic cells used for 

the carry-chained counter are fixed in a predefined manner. Nevertheless, an 

implementation of a 32 bit carry-chained counter still operates faster than a 

conventional 32 bit counter implementation. As for the cascade chains, the dedicated 

connection allows faster wide-input ‘AND’ or ‘OR’ functions. Again, similar to the 

carry chain, too long a cascade chain will cause larger delay than the conventional 

routing interconnects. From experience, a cascade chain that is more than 4 logic 

cells is no longer beneficial.

5.3.3 Synthesis Results

With the combination of area optimisation and speed optimisation, a 

successful fit of the SARNIC design was produced. The CPLD fit utilised 85% of the 

logic cells, 80% of the memory bits, and it is capable of operating at the bus frequency 

of 39.37 MHz. A breakdown of the synthesis results is detailed in Table 4. Both the 

resource usage and operating frequency of each module are listed.

There are two clock domains in the SARNIC design. The major domain is 

driven by the memory bus clock, which is fed from the SA-110 CPU. The minor 

domain is driven by a constant 30 MHz crystal oscillator. The 30 MHz clock is 

required for precise sampling of the 10/20 Mbps OS Link operation. This clock is 

also utilised for generating constant Timer clock tick and UART baud rate.

Generally, most of the blocks in the SARNIC design operate within the region 

of 40 MHz to 50 MHz. No specific bottleneck was found. The largest block of the 

SARNIC design is the Communication Controller, which occupies about 56% of the 

50 IC gates CPLD.
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SDRAM Interface 81 48.07 125

XIO Interface 44 74.62 ■

Register Interface 21
■

125

Bus Core 153 72.46

Bus Controller 304 ' 43.1 : , .. 125 ;

OS Link Engine 58 38.75

ROM Interface 13 16384 45.45

Transmitter FIFO 38 83.33

Receiver FIFO 64 51.81

Link Transmitter 127 59.52

Link Receiver 88 52.35

Link Controller (x2) 381 49.01 37.87

DMA TX Channel (x2) 102 54.94

DMA RX Channel (x2) 73 53.19

DMA Core 131 42.55

Switch & Allocator 210 65.35

Communication Controller 1602 40 36.76

Control Link Engine 58 38.75

Control Link RX FIFO 14
___  ______ . ; 7 . : /' 59.52

Control Link Transmitter 16 106.38: ...: :: • . : ■ ■
Control Link Receiver 16 106.38

Control Link Timer 75 59.52..... ...... 64.93

Control Link 208 -• ; 59.52 .. 35.97

UART Core 37 125 42.73

UART Transmitter 45 59.52 79.36

UART Receiver 49 59.52 87.71

UART 140 59.52 r . 40.98 ‘ .

Interrupt Controller 

32-bit Timer

97

115
, . *

..—
...

64.93 
---------- ----------------

47.16
■ ■

■

\
Reset Circuitry j /* 16

.
• V ■ 80.64

Table 4: Resource allocation and performance of SARNIC.
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5.3.4 Pin Assignments & Floor-Plan

The output of a logic cell in the FLEX 1 OKA CPLD can be connected to both 

column interconnects or row interconnects directly. Therefore, both the row pins and 

column pins can be accessed directly from the output of a logic cell. Both the row 

pins and column pins are suitable to be used for output pin assignments. However, as 

the column interconnects are normally shorter than the row interconnects, the delay 

will be shorter. Column pins are thus slightly better as a fast output.

The input of a logic cell can only be connected to row interconnects. Signal 

input from the column pins have to travel through a column interconnect and switch to 

a row interconnect before reaching the designated logic cell. Hence, column pins are 

generally not suitable for input assignments in the sense that they require longer input 

set-up time and use up additional column interconnect resource. However, there is an 

exception, where if the input fans out to many logic cells on different rows, column 

pins are advantageous as inputs. This is because signals from row input pins in this 

case will have to travel through two row interconnects and a column interconnect 

before fanning into the logic cells located at different rows.

Although the first version of SARNIC design can generally operate at the 

frequency of near 40 MHz, the SARNode performance drops to approximately 33 

MHz due to external timing requirements. The input setup time and output delay time 

of the SDRAM data mask signals are the critical SARNode paths. The output delay 

of the address and control signals from the SA-110 is already 9 ns, leaving very little 

slack for the propagation delay time through the SARNIC design and the setup time 

for SDRAM inputs.

Enhancements were made in this, the second version of the SARNIC, to 

remove the critical paths. By enabling the address pipeline of the SA-110 CPU, the 

address signal outputs are available half a clock cycle earlier than the memory request 

signal. With latches that allow signal propagation during the first half clock cycle and 

the signal latching on the other half, pipelines are formed, which provide one and a 

half clock cycle of effective signal propagation slack time. This is illustrated in 

Figure 37, where the output is half a clock cycle delayed. The enhancement pushes 

the SARNIC device operation back to 38 MHz. At a CPU core clock speed of
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221.3 MHz, the nearest step of bus clock is 36.9 MHz. The next higher step is at

44.3 MHz, which would require extra optimisation on the SARNIC design, both 

internally and externally.

clock J
in addresses

latches' state

out addresses

in a1 in a2 in a3

latch feed latch | feed latch feed latch I .....

out a1 out a2 out a3

Figure 37: Address pipeline latches operation.

Improving the performance of the SARNIC design can be achieved by using a 

faster speed grade of CPLD. However, this is only effective for pushing the internal 

operating frequency, not for shorten the external pins input output delay. This is 

because the improvement on speed grade is achieved through faster logic cell 

operation, not by the shorter routing interconnect delay. The pin assignments for the 

first version of the SARNIC design were decided without much of the above floor 

plan considerations. They were placed for easy routing of the SARNode PCB. 

Therefore, this produced an extra constraint on the second version of the SARNIC 

design. The routing to the input output pins could not be changed much, limiting the 

optimisation to the input output delay that can be made. Without changing the pin 

assignments, significantly improving the performance of the SARNIC design is 

difficult.

5.4 SARNet System Integration and Verification

Following the successful design fitting, initial work on the hardware was 

centred on the design and production of a processor node. This consists of three 

major components: the StrongARM SA-110 microprocessor, the SDRAM module, 

and the SARNIC CPLD, which were integrated on a PCB for the processor node 

implementation. Multiples of this PCB were then connected to a ICR C416 routing
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switch to construct a basic StrongARM-ICR C416 distributed processing network, 

namely the SARNet. The ICR C416 packet routing switch is located on the B816 

Transputer-ICR C416 ISA board [89], which is plugged into an AMD K6 233 MHz, 

128 MB memory PC system. The same PC system was used as the host to develop 

the SA-110 machine codes, to download the task to the SARNet, to collect result from 

the SARNet, and also to act as the I/O console for the SARNet through the COM port 

of the PC.

5.4.1 The Processor Node - SARNode

A standard Eurocard size, four-layer PCB was designed and manufactured for 

the processor node implementation. This complete processor node hardware provided 

a method of verifying the SARNIC device functionality and a platform for software 

development. A block diagram of the main system components implemented on the 

prototype board is given in Figure 38. Figure 39 shows the photograph of the 

SARNode prototype PCB.
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Figure 38: Block diagram of the SARNode PCB.
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Figure 39: Photograph of the SARNode prototype PCB.

The SA-110 CPU generates the core clock from an external clock oscillator of 

3.57 MHz. The bus clock, to which all other components of the system are 

synchronised to, was generated by the SA-110 CPU core clock. This method provides 

the system with a simple and low-cost bus clock solution, but the bus clock is then 

limited to certain frequencies in steps relative to the processor core clock. With this 

configuration, the SA-110 CPU core can operate at any of the 12 clock frequencies 

ranging from 87.5 MHz to 221.3 MHz, whilst the bus peripherals operate by dividing 

the core clock with a divider of 1 to 9. The core frequency of 221.3 MHz and the bus 

frequency of 36.9 MHz were selected. A separate 30 MHz clock oscillator is provided 

on the processor node PCB for OS Link operations and other functions that require a 

constant clock, such as the 32-bit timer and UART link.

The SARNIC design has provided the processor node two options of booting 

up the SA-110 CPU. The first method is to boot up via the OS Link through the ICR 

C416. On power up or hardware reset, the processor is released from reset but held in 

a stalled state until the incoming boot message has been completely copied to the 

SDRAM. In normal working conditions, receiving a boot message will reboot the 

processor in the same way. The second method utilised a small boot program that is 

stored in the internal ROM of the SARNIC CPLD. It is similar to the first method,
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except that the data is copied from the SARNIC internal ROM, and can only occur 011 

power up or hardware reset. This method is targeted for use as a boot loader that 

copies the executive programs from an external I/O device, which could be a ROM.

5.4.2 The B816 Transputer-ICR C416 ISA Board

The ICR B816 is the first board developed by IC-Routing for use with 

Transputer systems [89]. The B816 is a motherboard providing direct connection of 

up to 8 TRAM boards to the ICR C416 router. This board plugs into the ISA slot of a 

PC and can be used with any Transputer development tool kit.

To keep the prototyping cost low, standard device packages were used for the 

SARNIC CPLD and the SDRAM modules. The prototype SARNode PCBs are 

standard Eurocard size, four-layer PCBs, and hence can not fit into the existing 

TRAM slots on the B816 board. Hence, connections to the B816 board were made 

through the eight external OS Links connections through the DB37 pin connector at 

the rear of the PCB. Twisted-pair cables were used to link this connector to the 

SARNode PCBs.

5.4.3 The High Performance RS485 Differential Transceiver Circuit

As the host PC is separated from the SARNodes by up to 2 metres, the OS 

Link communication through external cables was only reliable on 10 Mbps operations 

(problems were only observed for 20 Mbps operations). Hence, to retain 20 Mbps 

operations, external cable connections utilising the RS485 differential transceiver 

circuit, as studied in Section 3.6.4, were utilised. The transceiver circuits were built as 

daughter boards, sitting on top of the SARNode PCBs. However, the transceivers for 

the B816 board have to be placed outside of the host PC. Connections were made 

using RJ45 socket and CAT 5 UTP cables.
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5.4.4 Functional Verification

A series of tests were generated for the SARNet system to validate hardware 

functionality. The test codes were written using the ARM instruction set and the 

ARM Debugger Software Development Kit was utilised for test code development. 

All the simulation tests were repeated in the hardware verification by porting the same 

test functions into the SA-110 instruction codes. This was followed by second phase 

of hardware testing with more thorough tests for verification of each device function. 

The overall hardware tests include:

• Testing the register access -  writing to the SDRAM Timing 

Register to configure the correct operation mode and access cycle 

length.

• Testing the SDRAM access -  writing to the complete SDRAM 

region with different patterns, followed by verification of the 

content.

• Testing the external I/O access -  using a buffer and switch circuit 

to test the external I/O read write accesses.

• Testing interrupt generation -  using the buffer and switch circuit to 

generate an interrupt.

• Testing the UART link -  connecting the UART link to the COM 

port of a PC and testing it under various baud rates and parity 

checks.

• Testing the Control Link -  enabling the automated link time-out 

function and intentional blocking of a communication link to 

emulate a link failure.

• Testing Message Channel communication -  initiating message 

transfers across the ICR C416 router using different configurations 

and message sizes.
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5.4.5 Initial Performance Results

After the functionality of the SARNIC CPLD was confirmed, a series of 

performance tests were carried out. These tests were written in a way that the 

software overhead was minimised, in order to highlight the raw hardware performance. 

The tests ran on prototype SARNodes, with a bus frequency of 36.9 MHz and the SA- 

110 core frequency of 221.3 MHz.

5.4.5.1 Communication Performance

The first communication performance test was the round-trip time calculation, 

as carried out in the initial simulation, described in Section 5.2.2. Two SARNodes 

were connected to the ICR C416 router on the B816 board. The OS Link 

communications were tested with 10 Mbps and 20 Mbps operation. The message size 

was varied from 1 byte to 512 bytes. Additional performance test results for 

simultaneous two OS Link operation were also given. Complete plots of the message 

time and bandwidth results are shown in Figure 40, Figure 41, Figure 42, and Figure 

43.

Message Time (10 Mbps)

0 200 400 600
Message size (byte)

Figure 40: Message time results for 10 Mbps link.
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Message Bandwidth (10 Mbps)
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Figure 41: Message bandwidth results for 10 Mbps link.
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Figure 42: Message time results for 20 Mbps link.
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Figure 43: Message bandwidth results for 20 Mbps link.
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The results obtained generally closely matched the simulation. However, there 

were some interesting minor differences relating to performance of the ICR C416 

router. Figure 44 shows the result comparison between simulation and hardware tests 

for the 10 Mbps link: there was no noticeable difference between the simulation and 

hardware test for uni-directional transfers, other than a slight increase in the real case 

message handling latency (mainly due to the delay incurred by software processing of 

the messages). However, for bi-directional transfers, the hardware test graph was 

steeper than that of the simulated graph. The average time of a byte transfer on the 

link was higher than expected. In practice, the implementation of the OS Link 

protocol in hardware could not achieve 13 bits per byte bi-directional data transfers. 

This problem is not uncommon: devices such as the Transputer can demand up to 17 

bits per byte for bi-directional data transmission [21]. In addition, the propagation 

delay of the transceiver chips (and to a lesser extent the wires) worsens the problem.
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Figure 44: Simulation and hardware test result comparison for 10 Mbps link.

Figure 45 shows the result comparison between simulation and hardware tests 

for the 20 Mbps link. In this case, the hardware test graphs were both steeper than the 

simulated graphs, signifying the fact that the average byte transfer time was greater 

than expected. For uni-directional transfers, the ICR C416 hardware implementation 

requires 12 bits for sending a data token, as opposed to the 11 bits in the simulation. 

For bi-directional transfers, the situation is even worse for the same reason as in 

10 Mbps link results.
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Figure 45: Simulation and hardware test result comparison for 20 Mbps link.

Table 5 summarises the comparison of performance figures between simulation and 

hardware tests.

Performance Figures Simulation Hardware Tests

Message handling latency (10 Mbps) 2.1 ps 3.08 ps

Message handling latency (20 Mbps) 1.8 ps 2.87 ps

Maximum bandwidth (10 Mbps uni-directional) 0.9 MB/s 0.89 MB/s

Maximum bandwidth (10 Mbps bi-directional) 1.47 MB/s 1.38 MB/s

Maximum bandwidth (20 Mbps uni-directional) 1.79 MB/s 1.63 MB/s

Maximum bandwidth (20 Mbps bi-directional) 2.8 MB/s 2.37 MB/s

Table 5: Performance comparison between simulation and hardware tests.

5.4.5.2 Overloading Effects o f Communication on Computation Performance

A major aim of a communication system is to provide overlapping of 

communication and computation. Data transfers should be carried out with minimal 

overhead to the processing entities. To analyse this communication overhead, a 

standard benchmark program was used to gauge the performance of the processor 

during the transfer of data. The Dhrystone MIPS benchmark program was used, as

o 200 400 600

■Uni 1 DMA 
(htest)
Uni 1 DMA 
(sim)
Bi 2 DMA 
(htest)
Bi 2 DMA 
(sim)
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quoted in the SA-110 CPU data sheet. This benchmark program is a short synthetic 

program written to represent system integer programming.

The source code for Dhrystone MIPS version 2.1 (dated May 1988) was used 

to build the benchmark process, and was compiled with the ARM C compiler 4.90 

(optimisations turned off). Message transfers were carried out as a background 

process during the entire Dhrystone program execution. The message size selected 

was 256 bytes; this was an attempt to resemble ‘real case’ communications. Use of 

even larger message sizes could have been considered. This would minimise the 

number of interrupts over the test period, which would emphasise the efficiency of the 

arbitration between the DMA channels and processor rather than the software 

overhead. Table 6 shows the resultant Dhrystone MIPS performance ratings of the 

SARNode computation and the throughput of the communication subsystem.

Message activity Perfonnance drop

(%>

Interface throughput

(MB/s)

No transfer active 149.7 0 ' .....................

1 DMA channel active 

10 Mbps (unidirectional)
148.6 0.73 0.91

2 DMA channel active 

10 Mbps (uni-directional)
148.1 1.07 1.84

4 DMA channels active 

10 Mbps (bi-directional)
146.7 2 2.86

1 DMA channel active 

20 Mbps (uni-directional)
148.3 0.94 1.68

2 DMA channels active 

20 Mbps (uni-directional)
146.6 2.07 3.36

4 DMA channels active 

20 Mbps (bi-directional)
144.7 3.34 4.9

Table 6: Measured Dhrystone figures and interface throughput.

The results show the integer performance decreases by only 3.34% with four 

active DMA channels continually operating at the maximum bit rate of 20 Mbps. 

Comparing the interface throughput figure with the maximum bandwidth results from 

previous communication performance tests (with no computation), the bandwidth
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results were slightly higher even though the maximum message size was not used. 

This shows that transfer rates are maintained with active processor computation.



6. DISCUSSIONS, CONCLUSIONS AND FURTHER WORK

6. DISCUSSIONS, CONCLUSIONS AND FURTHER WORK

This chapter begins with a discussion on the SARNet distributed processing 

system, the SARNIC interface core design, and areas of interest within them. The 

benefits of the memory bus based network interface controller and associated features 

are detailed and compared with existing systems. This is followed by the conclusion 

of the thesis, summarising the work and the original contributions made. Finally, 

some comments are given on possible further work.

6.1 Design Discussions

Recent work on parallel system architectures have emphasised incorporating 

low-cost, high performance, and rapidly advancing microprocessors, as discussed in 

Chapter 1 and further described in Chapter 3. This includes inter-processor 

communication and synchronisation hardware devices that are separate from the main 

processor. The Connection Machine CM-5 is an early machine that uses off-the-shelf 

microprocessors as its processing elements [7]. Recent examples include Cray T3D 

that uses DECchip 21064 microprocessors [90]. The SARNet system, presented in 

this thesis, incorporates the StrongARM SA-110 microprocessors.

For efficient inter-processor communications, switching devices were utilised 

in the SARNet system. The use of ICR C416 packet routing devices in the SARNet 

has demonstrated: efficiency in providing concurrent communication channels for the 

connected processing elements; ease of scalability of the number of processing 

elements; and flexibility in constructing a specific network topology. In fact, as 

discussed in Chapter 2, many parallel processing systems have focused on utilising 

switching devices for inter-processor communications over the last few years, and this 

trend is likely to continue into the future. Cray T3D communication network and 

recent Myrinet routing devices are such examples. In addition to the switching core, 

high performance parallel systems like Cray T3D and those utilising Myrinet also rely 

on massively parallel interconnects and high clock speeds. However, using multiple 

serial interconnects will be more feasible and flexible for connecting the distributed
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parallel processing system targeted for embedded applications, such as the SARNet 

system.

In the area of communication and network interfacing, the SARNIC design 

raised a number of discussion points. These are mainly associated with the areas of 

coupling the network interface to the processor node architecture, streaming and 

buffering of the message, connections to the communication network, and the 

hardware virtual channel implementation.

6.1.1 Coupling of The Network Interface

As reviewed in Chapter 2, the coupling of the network interface to the 

processor node architecture can be classified into three generic types: integrated 

processor based, memory bus based, and I/O bus based. In general, the closer the 

network interface is to the processor node architecture, the higher the efficiency; the 

further the network interface is from the processor node architecture, the better the 

generality.

Integrated processor based network interfaces offer high efficiency and low 

latency in message handling by integrating the dedicated control hardware closely 

with the processor architecture. Designing a tightly coupled network interface and the 

processor on the same IC requires a large engineering effort and is time consuming. 

These factors cause upgrade difficulties to both the processor architecture and the 

network interface architecture. In comparison, microprocessors design cycles for 

stand-alone systems are much shorter, which is one of the factors that have allowed 

uni-processor systems to take the lead in the microprocessor market. The use of a 

memory bus based network interface, like the SARNIC, provides nearly the efficiency 

of a tightly coupled system, but separates the network interface hardware from the 

processor. This allows better technology migration, following the advances of 

microprocessor development. A processor upgrade would only require modification 

of the processor interface in the SARNIC CPLD design. In a similar way, the upgrade 

of the interconnection network would only require the modification of the network 

interface logic.
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A standard I/O bus based network interface can be easily adapted across a 

different processor node, for example workstations or PCs. An example of this is the 

PCI/host Myrinet interface that is currently used in many parallel research machines 

[22]. An advantage of the Myrinet interface is the flexibility of the onboard 

communication co-processor that can be customised with protocol micro-code 

according to requirements. Despite the high efficiency, there is still a potential 

problem with the latency of crossing from the I/O bus to the memory bus. This 

latency is composed of both the overheads of initiating and synchronising a 

transaction through the I/O bus bridge, and the bandwidth sharing with other possible 

competing I/O bus devices. The SARNIC device offers a better latency figure as both 

the memory interface and the network interface is integrated in the same CPLD. As 

the arbitration is on-chip, fair utilisation of the memory bus is also balanced between 

the message transfers and CPU accesses.

MAGIC [64] is a network interface design that is similar to the SARNIC. 

Both utilise the memory bus based network interface architecture. Both are single 

chip solutions with an integrated memory interface, network interface, and processor 

interface. MAGIC is more sophisticated with its greater flexibility in network 

protocol implementation. It uses a micro-coded protocol processor for handling 

communications. SARNIC uses a hardwired state machine for efficient message 

handling. Coupled with the CPLD realisation, these have made the development of 

the SARNIC device far less complex.

6.1.2 Streaming Versus Buffering for Network Interfaces

The issue of streaming and buffering is related to the injection and reception of 

a message. A buffering network interface stores the complete message into the 

network interface buffers before it is injected or received. A streaming network 

interface allows the message header to go through the system using a worm-hole 

routing method, without waiting for the end of the message. Buffered transmissions 

offer smooth message transmission on the communication network with the 

compromise of increased buffering latency. Streaming transmissions overlap message

133



6. DISCUSSIONS, CONCLUSIONS AND FURTHER WORK

assembly at the network interface with injection or reception time, hence, reducing the 

latency of buffering. However, if there are inconsistent data transfers between the 

host and the network interface, a possibility of data starvation on injection or network 

back pressure 011 reception can occur. Data starvation during message injection can 

cause ‘bubbles’ to be inserted, which cause inefficient bandwidth utilisation. Network 

back pressure on the other hand might cause congestion to the communication 

network.

The Myrinet PCI/host network interface design uses buffered transmission. 

The network interface buffers the whole packet in its SRAM before DMA transfers 

into the network or to the host. Buffering packets/messages in these I/O bus based 

systems is an advantage: mainly because the interval time between data transactions 

over the I/O bus varies depending 011 the host system memory bus arbiter, and the 

number of competing devices. In addition, the relatively high network 

communication bandwidth compared to the I/O bus bandwidth eventually increases 

the chance of data starvation and network back pressure. For instance, although the 

SHRIMP network interface uses streaming transmission, the limitation of 33 MB/s 

bandwidth on the EISA bus has become a bottleneck that limits the communication 

bandwidth and increases network back pressure [23],

Streaming transmission was implemented in the SARNIC design. As the 

SARNIC design has the network interface and the memory interface integrated on the 

same chip, the arbitration time 011 the memory bus is minimised and predicted. The 

network interface and the CPU take turns to access the memory, and therefore the 

interval between data transactions to the network interface is bounded. The use of 

streaming transmission in the network interface has not only reduced the buffering 

latency, but has also reduced the need of large buffering logic in the design. The 

buffer size is kept to minimum: just enough to cover the interval time between two 

consecutive data transactions. However, if the OS Link performance was comparable 

with the Myrinet, the buffer size would need to be much larger, and might even force 

the design back to utilising buffered packet transmission.
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6.1.3 Physical Connection Ports

Most current network interfaces only provide a single, high performance 

connection port to the communication network. These interfaces normally utilise a 

multiple wire (parallel) connection port to achieve high communication bandwidth. 

Implementation of more than one connection port would not be advisable, nor 

necessary, as the communication link bandwidth is high enough to fill the system 

memory bandwidth with just the network interface bandwidth required. For instance, 

the PCI/host Myrinet interface has a peak network interface bandwidth of 132 MB/s 

(32-bit)4, while the maximum communication link bandwidth is 160 MB/s. Other 

constraints to the connection port expansion would be the large increase required in 

both the pin count of the device package and the wire connections. To keep the 

external wire connections to a minimum, some communication links work in half 

duplex mode [91], i.e. only one direction of communication is allowed at one time. In 

this way, the effective bi-directional bandwidth is halved, while still maintaining full 

uni-directional bandwidth. However, the overall performance should not drop 

significantly, as the amount of uni-directional communications would normally be 

much higher than bi-directional communications.

With serial connection links, like the OS Link used in the SARNet system, it is 

desirable to have more than one physical link. Extra links will proportionally increase 

the effective communication interface bandwidth, as long as the system memory to 

network interface bandwidth is large enough to cover the sum. Extra links also offer 

better fault tolerance, through critical resource replication. Another advantage of 

multiple links would be the increased flexibility of the network topology construction.

One interesting aspect with the double link SARNIC design is the usefulness 

of the ‘group adaptive routing’ feature of the ICR C416 packet routing switch [18]. 

This feature can be helpful in the case where both links of the SARNIC are connected 

to the same router. By grouping the links in the router, both links can share a single 

port address. The ICR C416 router will automatically route a message to the other

4 Latest Myrinet/PCI Host design is targeted at 64-bit PCI, which provides 264 MB/s peak network interface 
bandwidth.
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free grouped link if the destined link is occupied. In this way, two messages destined 

for the same address can be routed to a SARNode concurrently via both links.

6.1.4 Virtual Channels

Virtual channels are used to provide concurrent communication channels by 

sharing messaging facilities according to need, while preventing any channel from 

causing the starvation of others by monopolising the communication link resources. 

This idea applies in both the interconnection network and the network interface 

hardware.

Early switching networks relied on circuit switching mechanisms, where a 

communication channel is created and held by the two communicating entities. No 

other entities can access the allocated channel resource until it is released. To allow 

better communication channel resource sharing, the information passing was later 

broken down into smaller sections: from the largest basis (message basis) through 

packet basis, to the smallest basis (flow-group basis). Each virtual channel takes turns 

to pass a small section of information over the network. Most of the recent switching 

devices operate on a packet basis, although virtual channels on a flow-group basis [70, 

71] provide better utilisation of the communication resources.

The theory of virtual channels also applies to network interfaces. Multiple 

virtual channels on a processing node can share the use of a network interface link. 

For instance, a large message is split into smaller packets at the transmitting end, and 

recombined at the receiving end. However, there is a need for identification 

information to be carried within each smaller packet in order to identify the dedicated 

receiving virtual channel.

The function of virtual channels in the SARNIC device is achieved through 

multiplexing multiple message channel access to the link resources on a packet basis. 

The link resource is allocated to a virtual channel for the transmission or reception of 

a packet, then on completion is relinquished to other virtual channels. The control 

process for the allocation can be carried out in software by swapping the DMA 

information of a link engine in and out of a virtual channel table in memory.
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However, this incurs switching latency and processor occupancy for each virtual 

channel swap. The SARNIC design was implemented with hardware support for 

virtual channel handling. Multiple message virtual channels can share the link engine 

resource without software intervention. Normal logic cells in the CPLD are utilised 

for this hardware virtual channel implementation. Due to the CPLD size limitations, 

support for only two virtual channels per direction (a total of 4 per device) is 

implemented. More virtual channels can be added by using a larger CPLD, or in 

software through the caching concept (refer to Section 3.5.3.4). Another approach is 

by changing the hardware virtual channel implementation using the advanced memory 

blocks available in the newer CPLDs (refer to Section 6.3).

In the transmitting interface, hardware virtual channels will take turns to 

transmit a packet on the physical link resource. This will guarantee fair access to the 

link between the hardware virtual channels, avoiding one virtual channel 

monopolising the link. In this way, a situation where a long message blocks a short 

message will never happen, as the short message has the chance to transmit before the 

long message has finished. Nevertheless, a link stalled within a packet will effectively 

block all the virtual channels, even though this situation is very rare.

For SARNIC message virtual channel identification purposes, a 2-byte 

message header is added to each packet. An incoming packet header will be 

compared with the hardware virtual channel header in the receiving interface. A 

match will result in the routing of the whole packet to the corresponding hardware 

virtual channel. A mismatch will result in an interrupt being generated to signify 

there is no active receiving channel for the current packet. An issue raised for the 

current receiving hardware virtual channel implementation is that when a ‘swap-out’ 

is required, the decision of which virtual channel to ‘swap-out5 totally relies on 

software. A replacement algorithm like a ‘least recently used5 hardware 

implementation would ease the decision-making.
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6.2 Conclusions

The objectives of this research were to investigate: the implementation of a 

distributed processing system using a packet routing switch network; the efficiency of 

a memory bus based network interface; and the resulting properties that effect 

minimum microprocessor support for message passing. This research has resulted in 

two main original contributions:

• The design and development of a CPLD based interface controller, 

the SARNIC, that integrates a bus-based network interface 

controller, a memory interface controller, and a processor interface 

controller in a single chip. The chip also contains the core logic 

for the functions required for processor node and multi processor 

node operation.

• The formation of a processor node PCB that is used as the building 

block of a low-cost embedded distributed processing system. This 

was used for the construction of a basic 4-node system for 

embedded distributed parallel processing applications, namely the 

SARNet.

The thesis has detailed the SARNet implementation, which has been 

constructed, tested and analysed. This system possesses a flexible switched network 

architecture that uses a modern RISC microprocessor, namely the StrongARM SA- 

110, for low-power high performance distributed processing. The switch architecture 

was built using the ICR C416, a 16-port intelligent crossbar switch, for dynamic 

message routing. The SARNIC, in addition to providing links between the processing 

entity and the communication network, also supplies data bus management and 

memory interfacing.

The SARNet system has been shown to work well with the switch topology. 

The test results showed that the communication layer of the system architecture 

imposes only a 3.08 ps latency on message transfers. This low overhead was 

achieved through the streaming network interface and the wormhole routing switch
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network architecture. The efficiency of the communication hardware was reaffirmed

by the results obtained from the Dhrystone benchmark tests, with only 3.34%

computation overhead arising from the communication layer. The tests showed the 

internal cache of the SA-110 CPU minimised data bus requirements, which allowed 

good use of cycle-stealing DMA to deliver messages. The bus arbitration of the 

SARNIC provided fair sharing of the data bus between the processor and 

communication DMA channels without compromising the computing performance of 

the StrongARM CPU.

The SARNIC device was described in VHDL and implemented in a re

programmable CPLD architecture. This has aided in maintaining low prototype costs 

and allowed scope for re-use. The support features of the SARNIC device have been 

demonstrated in the SARNet system implementation, especially providing the 

message-passing based network interfacing to the router network without significant 

interference to the processor. These SARNIC features include:

• A memory bus arbitration system, configured to provide 

guaranteed bandwidth for each message channel, while minimising

the interference overhead of DMA accesses to normal CPU

execution.

• DMA assisted message channels, offloading the packetising and 

de-packetising task of a message in software.

• Two communication links, providing improvement of the effective 

network interface bandwidth and better fault tolerance. This also 

offers extra flexibility in the network topology that can be formed.

• I-Iardware virtual channels, providing concurrent message 

transmission/reception and offloading the link resource allocation 

task from software. The hardware virtual channels are free to be 

allocated to either of the two physical communication link 

resources.

• A routing communication control link for connection to the control 

port of the ICR C416, providing automatic detection of blocked 

channels and acquiring minimum assistance from the processor.
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• A boot from communication link feature, which is an advantage for 

remote slave system operation and real-time system 

reconfiguration.

The use of CPLDs for the SARNIC design implementation proved to be a 

suitable target technology for the SARNIC prototype. It minimised the time required 

for the hardware realisation cycle. In comparison to an ASIC implementation, it 

saved a large amount of simulation that would have been needed to verify the design 

functionality before prototype production. The re-programmable feature of the CPLD 

has also eased the debugging cycle of the hardware operation, and offers flexibility in 

future modifications or upgrades. In spite of these advantages, the SRAM based 

CPLD requires the use of a configuration ROM and consumes a considerable amount 

of power in comparison to other fixed logic devices such as ASIC designs.

The research has also highlighted some issues in extended distance 

communications using differential transmission. Standard RS-485 industry interface 

devices are utilised to achieve high performance, long distance communications in 

many distributed systems. With some enhancements made to reduce the pattern 

dependent jitter, a result of 44 Mbps communications at up to 100 m was 

demonstrated. Some level of protection has also been provided with conventional 

zener diodes, without sacrificing performance.

The memory bus based network interface architecture and the re

programmable feature of the SARNIC CPLD implementation will ease any 

communication system upgrades. The network interface hardware mid the switch 

fabric can be altered to investigate modifications to the protocol without any changes 

to the software layers. This would allow concurrent development of software and 

hardware to increase the effectiveness of the system. The low cost loosely distributed 

processing system implementation will further its contribution in embedded control 

systems, certainly if used in a home networking environment.
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6.3 Further Work

The current prototype SARNode building blocks have been successfully 

implemented and tested. Coupled with the existing ICR C416 packet router switch, a 

basic SARNet system has been formed. At present, a standard software development 

library for the SARNet platform is being developed in the research group. This will 

contribute to a low-cost and efficient embedded distributed system for parallel 

processing applications.

In parallel with the software development, there are a few minor hardware 

reworks that could be carried out. The task will be to redesign the SARNode PCB 

with the new SARNIC pin layout and corrections to the prototype PCB, while 

focusing on shrinking the PCB size. This eventually will give a more compact 

outlook to the SARNode PCB and a very high chance of 44 MHz data bus operation. 

At the end, a system rig could be built to hold 8 SARNode PCBs, with the ICR C416 

router held in the system rig or inside the host PC. The host PC will be utilised to 

download parallel processing tasks into the SARNet system. A complete 8-node 

SARNet system will thus be constructed.

In terms of performance improvement, the rapidly advancing CPLD 

technology could be utilised. During the design stage of the SARNIC device, the only 

high performance, widely available CPLD from Altera was the FLEX 10KA family, 

utilised for the design. One year later, the FLEX 10KE [92] family was introduced, 

and more recently the APEX 20K family [93]. The smaller micron technology 

effectively pushed the underlying performance of these new CPLDs. At the same 

time, the architecture improvements like the dual-port RAM and Content Addressable 

Memory (CAM) have also benefited potential design implementations.

6.3.1 Dual-Port RAM Link Buffer Implementation

In the current design, normal logic resources were utilised to implement the 

DMA buffer and link FIFO. The decision was made due to the limitation of the single 

port RAM architecture EAB of the FLEX 10KA family. Furthermore, the maximum
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data width of each EAB can only be 8 bits. With the dual-port RAM in the FLEX 

10KE or APEX 20K devices, implementing the link FIFO in EAB would not need to 

sacrifice device performance as cycle sharing the single access port of the FLEX 

10KA EAB does. In terms of data width, the new EAB can support up to 16 bits. 

This only requires 2 EABs for each DMA buffer, which allows better utilisation of the 

EAB resources. The enhanced EAB architecture of the FLEX 10KE is highly 

recommended for future DMA buffer enlargement. This will effectively reduce the 

DMA accesses on the data bus, and reduces the number of logic elements required for 

the DMA buffer implementation.

6.3.2 Virtual Message Channel Improvements

The present SARNIC design was equipped with two hardware virtual message 

channels per direction. Ideally, more hardware virtual message channels could be 

implemented by replicating the existing channels in a larger CPLD. On the 

transmitting direction, no complexity is added, as each hardware virtual channel takes 

turns to use the physical link resource. On the receiving side, however, difficulties 

will be encountered. The matching of the incoming message header to a correct 

hardware virtual channel will take a longer time, if the checking process is to cycle 

through all the active virtual channels. At the other extreme, the decoding logic will 

become complicated, if comparison of all the hardware virtual channels is done 

simultaneously. Introduction of the CAM in the APEX 20K CPLD would make the 

message header comparison much easier. By storing the active virtual channel 

headers in a CAM block, matching of an incoming message header can ideally be 

done in one clock cycle. Assuming the message header size is kept to 16 bit wide, a 

total of 32 hardware message channels can be supported with one CAM block.

6.3.3 Internal Boot ROM Enhancement

In the existing SARNIC CPLD design, 2 kB of the memory resource (8 EABs) 

are allocated for internal ROM implementation. This internal ROM is used to store a
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small boot program, thus offering an alternative way of initialising the StrongARM 

SA-110 CPU other than booting from communication link. In order to save logic, the 

current architecture copies the ROM data to the SDRAM region using the same boot 

from communication link DMA mechanism. A switch is used to select the byte input 

of the channel from the internal ROM or from the communication link engine.

The Altera FLEX 1 OKA family CPLD actually implements ROMs by 

initialising EABs with the set of ROM data. Instead of wasting the capability of 

EABs as only a read-only ROM, an enhancement can be made by changing the boot 

ROM implementation into RAM, with initialised boot code on power up. This can be 

achieved by mapping the EAB blocks to the system memory region at location zero, 

with the help of additional memory decoding logic. This enhancement would provide 

the SA-110 CPU with a small amount of built-in fast SRAM, which is similar to the 

internal memory offered in Transputers. The SARNode processor node would be 

capable of operating with limited amount of memory, removing the necessity of 

SDRAM.

6.3.4 Link Transmission Speed & Protocol

Over time, advances in silicon technology have pushed the performance of 

data transmissions. If the 3 times over-sampling resolution and the double phase 

sampling architecture of the existing OS Link interface is to maintained, a higher link 

transmission speed would be predicted. As discussed in Section 3.6.4 the same link 

implementation is capable of achieving 44 Mbps transmission speed. Hence, if the 

ICR C416 router architecture is to be ported to the current CPLD technology, a higher 

communication network throughput can be achieved.

The SARNet latency tests have also highlighted the requirements to 

investigate other communication protocols, which may operate more efficiently. For 

instance, there is a significant reduction in the useable bit rate due to the low-level 

serial communication protocol, especially with concurrent bi-directional data transfer. 

The byte acknowledgement flow control of the OS Link reduces the bi-directional
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bandwidth to 85% of double the uni-directional bandwidth5. As the delay time of the 

transmission line increases proportionally with the distance, the turn around time of 

the acknowledge token will eventually not be enough to allow continuous flow of data 

tokens. This would utilise flow controls like the flow-group acknowledge or the stop- 

go protocol.

5 This figure is quoted for the ideal 13 bits per byte bi-directional transmission. In most cases, the figure might be 
down to 16 bits per byte due to rapid synchronisation between acknowledge and data tokens transmission.
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A. TECHNICAL DOCUMENTATION OF SARNIC

A. TECHNICAL DOCUMENTATION OF SARNIC

The control and status registers of the chip are accessible at address offset of C000 OOOOh.

R e g is te r
________ ______ __ .... ... ......

O iTset

RI SK OOh

IE R /IESR 04h

IECR 08h

ISR OCh

Reserved lOh

FER/FESR 14h

FECR 18h

FSR ICh

SD TR 20h

R eserved 24 h

I OCR 28h

R eserved 2Ch

U R B R /U T H R 3 Oh

U LC SR 34h

R eserved 38h-3C h

T E R /T E C R 40h

T V R /T M R 44h

Reserved 48h-5C h

O C R D R /O C T D R 60h

O C C S R 64h

R eserved 68h-6C h

OORBR 70h

0 1 R B R 74h

R eserved 78h-80h

DOORHR 84h

DOORAR 88h

DOORLR 8Ch

DOOTHHR 90h

DOOTHLR 94h

DOOTAR 98h

DOOTLR 9Ch

Reserved AOh

DOORHR A4h

DOORAR A 8h

DOORLR ACh

DOOTHHR BOh

DOOTHLR B4h

DOOTAR B8h

DOOTLR BCh
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A. TECHNICAL DOCUMENTATION OF SARNIC

Reserved COh-FCh

RISR: Raw Interrupt Status Register: (offset 00h)

This read-only register gives information on status of unmasked interrupt sources.

W ord bit N am e
l « - $  - t

R/W D escription

0 U A R T receiver in terrupt 

(U A R )

R A ‘ 1’ indicates the UAR T receiver in terrupt is active. Identical to 

D R  bit o f  URBR.

1 U A R T transm itte r in terrupt R A ‘ 1’ indicates the UART transm itte r in terrupt is active. Identical

(U A T) to T H R E  bit o fU L C S R

3:2 -

4 T im er in terrupt (T IM ) R A ‘ 1 ’ indicates a tin ier event has occurred.

7:5 -

8 O SLC receiver in terrupt 

(O CR)

R A ‘ 1’ indicates the OS Link C ontrol Port receiver in terrupt is 

active. Identical to DR bit o f  O C RD R.

9 O SL C  transm itter in terrupt 

(O C T)

R A ‘ 1’ indicates the OS Link C ontrol Port transm itte r in terrupt is 

active. Identical to TH R E bit o f  O C C SR

10 O SL C  erro r in terrupt (O CE) R A ‘ 1’ indicates the OS Link C ontrol Port erro r in terrupt is active.

11

12

Identical to  ER R bit o f  O CCSR.

OSLO receiver interrupt 

(ORO)

R A ‘ 1’ indicates OS Link 0 has received a new  m essage header.

13 OSL1 receiver interrupt 

(O R 1)

R A ‘ 1’ indicates OS Link 1 has received  a new  m essage header.

15:14 -

16 DM A OS receiver in terrupt 

(DORO)

R A M ’ indicates the DMA OS 0 receiver channel in terrupt is active. 

Identical to DONE bit o f  DOORLR.

17 DM A OS receiver interrupt 

(D O R 1)

R A ‘ 1 ’ indicates the DM A OS 1 receiver channel in terrupt is active. 

Identical to DONE bit o f  DO 1RLR.

19:18 -

20 DM A OS transm itter 

in terrupt (DOTO)

R A T  indicates the DM A OS 0 transm itte r channel in terrupt is 

active. Identical to DONE bit o f  DOOTLR.

21 DM A OS transm itter 

in terrupt (D O T1)

R A ‘ 1’ indicates the DM A OS 1 transm itte r channel in terrupt is 

active. Identical to DONE bit o f  D O IT L R .

23:22 -

27:24 I/O in terrupt (10) R A ‘ 1’ in the bit position indicates the associated  external I/O 

in terrupt source is active.

31:28 -

IER: IRQ enable register: (offset 04h)

This read-only register is used to mask the IRQ interrupt input sources and defines which 

active sources generate an interrupt request to CPU on IRQ.

154
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1

R /W D escription

31:0  IRQ enable R A '1 ' indicates the associated  in terrupt source is enab led  and 

allow s an interrupt request. A ‘0 ’ indicates the in terrupt is 

disabled.

IESR: IRQ enable set register: (offset 04h)

This write-only register is used to set bits in the IER.

W ord bit N am e
■

R/W D escription

31:0 IRQ enable set W A T ’ in this b it will set the corresponding  bit 

register. A ‘0 ’ will have no effects.

in the  enable

IECR: IRQ Enable Clear Register: (offset 08h)

This write-only register is used to clear bits in the IER.

W ord bit N am e R/W Description

31:0 IRQ enab le  c lear W A ‘ 1’ in this bit will c lear the corresponding  bit in the enable

register. A ‘0 ’ will have no effects.

ISR: IRQ Status Register: (offset OCh)

This read-only register gives information on masked interrupt status for IRQ. Masked status 

bits are a bit-wise ‘AND’ of unmasked status bits and IRQ enable bits.

W ord bit N am e

31:0 IRQ m asked status
—.—         -    ..........
A T ’ in a  bit position indicates the associated  in terrup t source is

both active and enabled.

FER: FIQ Enable Register: (offset I4h)

This read-only register is used to mask the FIQ interrupt input sources and defines which

active sources generate an interrupt request to CPU on FIQ.

A M ’ indicates the associated  in terrupt source is enab led  and

allow s an in terrupt request. A ‘0 ’ indicates the  in terrupt is

d isabled.

W ord b it N am e R/W

3 1:0 FIQ enable
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FESR: FIQ Enable Set Register: (offset I4h)

This write-only register is used to set bits in the FER.

W ord bit N am e p S.,s R/W  Des cription

31:0 FIQ  enable  set W A ‘ T  in this bit will set the corresponding  bit in the enable

register. A ‘0 ’ will have no effects.

FECR: FIQ Enable Clear Register: (offset I8h)

This write-only register is used to clear bits in the FER.

W ord bit Nam e
•

R/W
■

on

31:0 FIQ enable  set W A *1’ in this b it will c lear the correspond ing  bit in the  enable

register. A ‘O’ will have no effects.

FSR: FIQ Status Register: (offset I Ch)

This read-only register gives information on masked interrupt status for FIQ. Masked status 

bits are a bit-wise ‘AND’ of unmasked status bits and FIQ enable bits.

W ord bit ........ ....N am e " ' ' ” " """" R/W
......... ......... —......................... ................... ............- ...... ........

' 1
31:0 FIQ masked status R A ‘1’ in a bit position indicates the associated  interrupt source is 

both active and enabled.

SDTR: SDRAM Timing Register: (offset 20h)

This register controls the timing and format of the SDRAM access.

W ord b it N am e R/W D escr ption
0 RAS to C A S delay (T R C D ) R/W The num ber o f  cycles from a row  activate  com m and to the  first

3:2

L ast data in to  p recharge R/W

(TD PL)

A ctive to  Precharge delay R/W  

(TRA S)

read or w rite  com m and.

0 - 1 cycle

1 - 2 cycles

On w rite cycles, this is the m inim um  num ber o f  cycles from  the 

last data being  w ritten to the start o f  precharge.

0 - 1 cycle

1 - 2 cycles

T he m in im um  num ber o f  cycles from  row  activate  com m and to 

p recharge com m and.

00 - 1 cycle 

0 1 - 2  cycles
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1 0 - 3  cycles

1 1 - 4  cycles

6:5 Row  cycle tim e (T RC ) R/W  T he m inim um  num ber o f  cycles from  an au to-refresh  com m and to

the next row  activate com m and.

0 0 - 3  cycle

0 1 - 4  cycles

1 0 - 5  cycles

1 1 - 6  cycles

31:7

I O C R : I/O Control Register (offset 28h)

This register is used to control the timing and strobe states of the external I/O device. All 4 

I/O interfaces shared the same timing in this register.

 —    ...............
cription

  _
W ord bit

7:0

10:8

II
13:12

N am e

Strobe m ask (SM ) R/W

C ycle length (CL) R/W

Frequency d iv ider (FD) R/W

Strobe m ask shitted  out to io rd l o r io w r j  (for read o r w rite 

respectively) during access to external I/O  device.

C ontains the num ber o f  bus cycles for an access to  the external 

I/O  device.

C lock  frequency is div ided  by the  value in th is  field  to  determ ine 

the frequency o f  the clock that is used to tim e the cycle length  and 

shift the strobe m ask.

0 0 - 1

0 1 - 2

1 0 - 3

1 1 - 4

31:14

URBR. UART Receiver Buffer Register (offset 30h)

This read-only register contains the data received from the UART, and the status of the byte. 

Flags include the buffer states of receiver, and errors associated with the data received.

7:0 Data

8 D ata ready (DR)

O verrun erro r (OE)

R C ontains the valid data byte received.

R A M ’ indicates a com plete incom ing charac te r has been received.

T his b it w ill causes an in terrupt to the C PU  if  enab led  in FER or

IER by setting  UAR bit. Bit reset w hen CPU  reads the con ten ts  o f

URBR.

R A T ’ indicates the data in U RBR was not read by the CPU  before

the next character has com pletely received  in the receiver sh ift 

register. The character in the shift reg ister is overw ritten  w ithou t
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10 Parity erro r (PE) R

11 F ram ing erro r (FE) R

31:12

UTHR. UART Transmitter Hold Register (offset 34h)

This write-only register contains the data to be transmitted to the UART.

transferred  to URBR. B it reset w hen CPU  reads the con ten ts  o f  

ULSR.

A M ’ indicates the received character does not have the correct 

even o r odd parity, as selected by the EPS bit in ULSR. B it reset 

w hen CPU  reads the contents o f  ULSR.

A M ’ indicates the received character does not have valid  stop 

bits. A logic ‘0 ’ sam pled during  the stop  bits position  w ill set the 

error. B it reset w hen CPU reads the contents o f  ULSR.

 !
C ontains the data byte to be transm itted .

ULC SR. UART Line Control & Status Register (offset 38h)

This register controls the format of the asynchronous data communication exchange. It also 

provides status information to the CPU concerning the data transfer. Flags include the buffer states of 

transmitter, and redundant receiver status bits.

1:0

7:5

8

9

10 

I 1 
12

Baud rate select (B R S)

Parity  enable  (PEN)

Even parity  select (EPS)

D ata ready (DR) 

O verrun error (OE) 

Parity erro r (PE) 

Fram ing erro r (FE)

R/W  This field is used to select 1 o f  the 4 preset baud rates:

00 - 9600  bps

01 - 19200 bps

10 -3 8 4 0 0  bps

11 - 57600 bps

R/W  This bit is used to enable o r d isable  parity  generation  and

checking. W hen PEN =  1, parity  b it is generated  in data 

transm itted , and is checked in data received , accord ing  to  the  EPS 

bit. W hen PEN =  0, no parity  is generated  o r checked.

R/W  This b it selects w hether odd or even parity  should  be used  by the

transm itter and receiver logic. W hen EPS =  1, even parity  is 

selected. W hen EPS = 0, odd parity  is selected.

R Identical to  DR bit in URBR

R Identical to OE bit in URBR

R Identical to PE bit in URBR

R Identical to FE bit in URBR
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13

31:14

T ransm itte r hold ing  register 

em pty (T H RE )

A ‘ T  indicates U TH R is em pty  and is ready to accep t a new  

character for transm ission. This b it will causes an in terrupt to  the 

CPU  if  enabled  in FER or IER by setting  U A T bit. Bit reset w hen 

CPU  w rites to UTHR.

TER: Timer Enable Register (offset 40h)

This read-only register informs whether the timer match event is enabled or disabled.

W ord bit N am e R/W ■
 -  -  ; _ ___________

Enable (EN) R A M ’ in this position  indicates the tim er com parison  is active. A

‘0 ’ indicates it’s disabled.

31:1

T EC R . Timer Enable Clear Register (offset 60h)

This write-only register is used to disable the timer.

W ord bit Name on

0

31:1

C lear (CER ) W A T ’ in this position will disable the tim er com parison and clear 

the  interrupt. A ’0 ’ will be ignored.

TVR : Timer Value Register (offset 44h)

This read-only register holds the current value of the 32 bit 1 ps counter.

W ord bit Name” *
.

' - R / W D escription

31:0 C urren t coun ter value R C ontains the current

m icrosecond.

coun ter value, w hich  ticks every

T1Y1R. Timer Match Register (offset 44h)

This register holds the value to be compared with the current counter.

W ord bit R/W

31:0 C om pare value R/W  The w riting  to  this reg ister set the EN b it in T E R  and enab les the 

current value o f  tim er to be com pared w ith  th is  value. In terrupt 

will be generated  if  TV R  value is equal to  the  com pared  value o r 

ju s t  passed w ithin the first h a lf  o f  32-b it m odulo  region, provided 

tha t the TIM  bit in FER or IER is set.
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O C R D R : OSL Control port Receiver Data Register (offset 60h)

This read-only register contains the data received from the OS Link Control port, and the 

status o f the byte.

Word I “ N am e

7:0

8

31:9

Data

D ata ready (DR)

C ontains the valid  data byte received.

A ‘ 1’ indicates a com plete incom ing charac te r has been received . 

T his bit w ill causes an in terrupt to the C PU  if  enab led  in FER  or 

IER. B it reset w hen CPU reads the contents o f  O C RD R .

O C T D R . OSL Control port Transmitter Data Register (offset 60h)

This write-only register contains the data to be transmitted to the OS Link Control port.

W ord bit N am e R/W D escription

7:0 Data W C ontains the data byte to be transm itted.

31:8 -

O C C S R : OSL Control port Control & Status Register (offset 64h)

This register is dedicated to the control port of the ICR C416 router. There is a built in link 

time-out check for the ICR C416 router through this port, which can be enable or disabled. Whenever 

the internal time-out counter counts to zero, a link check command will be sent to the control port of 

the ICR C416 router. Error will be reported if there is blocked link. If the OS Link Control port is 

only used to connect to conventional OS Link devices, the time-out check feature should be disabled.

W ord bit N am e
—

R/W

2:1

6:3

T im e-out check enable 

(C EN )

T im e-ou t clock  select (C C S) R/W

T im e-ou t coun ter load value 

(C LV )

R/W  This bit enables or disables the ICR C 416  rou ter links id ling  tim e

ou t check. The check is done by send ing  com m and byte (0x9) to 

the control port o f  the ICR C 416 w henever the tim e-ou t coun ter 

reaches zero.

T hese bits p re-scale the clock w hich count the  tim er, from  the 30 

M Hz clock  input. Selections are as follows:

•  00 - 6 4  us (2K /30 M Hz =  68.27 us)

•  0 1 - 1  m s (32K./30 M Hz =  1.09 m s)

•  1 0 - 1 6  ms ( 5 12K/30 M Hz = 1 7 .4 8  m s)

•  11 -  256 ms (8M /30 M Hz =  279.62  ms)

R/W  The load value for the tim e-out check  tim er. W hen tim e-ou t

check enabled  and counter reaches zero, th is value w ill be
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11:8

13:12

14

15

Error (ERR)

Error link (ELN K )

D ata ready (D R) R

T ransm itte r hold ing  reg ister R

em pty  (TH RE)

reloaded into the counter again.

Indicates b locked link has been found. An in terrupt will be 

generated  i f  enabled  in IER or FER.

Link num ber tha t has been found b locked, associated  w ith the 

ERR bit.

Identical to DR bit o f  O CRDR.

A H ’ indicates O C TD R  is em pty  and is ready to accep t a new  

character for transm ission. This bit will cause an interrupt to the 

CPU if  enabled  in FER or IER. B it reset w hen CPU  w rites to 

O CTD R.

31:16

OORBR: OSLO Receive Buffer Register: (offset 70h)

This read-only register contains 1 or 2 message tags from the OS Link 0 during ORO interrupt 

is active. At other time, it is used as temporary data buffer for OS Link 0.

W ord bit

7:0 

14:8

31:15

N am e

M essage tag 1 

M essage tag  2

R/W  Des
mBSBB WM 

R This byte carries m essage tag 1.

R An M SB o f ‘ 1’ in m essage tag  1 indicates this field  carries a valid

m essage tag  2. I f  not, this field will be read as zero. (N ote tha t bit 

15 is tied dow n to zero since it’s alw ays zero according  to  the 

protocol)

O IR B R : OSL I Receive Buffer Register: (offset 74h)

This read-only register contains 1 or 2 message tags from the OS Link 1 during OR1 interrupt 

is active. At other time, it is used as temporary data buffer for OS Link 1.

W ord bit N am e R/W D escription

7:0 M essage tag 1 R This byte carries m essage tag 1.

14:8 M essage tag  2 R An M SB o f  ‘ 1’ in m essage tag 1 indicates this field  carries a valid

m essage tag 2. If not, this field will be read as zero. (N ote th a t b it

15 is tied dow n to zero since it’s alw ays zero according  to  the

protocol)

31:15 -

DOORHR: DMA OS 0 Receiver Header Register: (offset 84h)

This register contains message tags for the comparison of incoming OS Link message. Either 

I or 2 message tags are allowed. This register is read-only when the channel is activated.
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W ord bit N am e R/W D escrip tion

7:0 M essage tag  1 R This byte carries m essage tag 1.

14:8 M essage tag 2 R An M SB o f  ‘ 1’ in m essage tag 1 indicates this field  carries a valid  

m essage tag  2. I f  not, this byte is ignored  for com parison. (N ote 

that bit 15 is tied dow n to zero since it’s a lw ays zero accord ing  to 

the pro tocol)

31:15 -

DOORAR: DMA OS 0 Receiver Address Register: (offset 88h)

This register contains the SDRAM destination address for the DMA transfer. The register is 

loaded with the address at the start of the transfer and is updated internally after each SDRAM 

transaction as the transfer proceeds. The address value needs to be word aligned. Bit 1 and bit 0 o f the 

address will be ignored. This register is read-only when the channel is activated.

W ord bil N am e R/W Descriplicm

1:0 -

23:2 D estination SD R A M  address R/W C ontains the destination address w ith in  the SD R A M  for the

incom ing D M A transfer. I t’s updated  in ternally  as the D M A

operation  progresses.

31:24 -

DOORLR: DMA OS 0 Receiver Length Register: (offset 8Ch)

This register contains the length of message in bytes that needs to be received. The value 

must be at word boundary. Bit 1 and bit 0 of the length value will be ignored. This register is read

only (except DACTV and RST) when channel is activated.

W ord bit
 - J i l l -

N am e ption  ’ ----------
_______

R/W

1:0

15:2 W ord count R/W

16 C hannel active (A C TV ) R

17 C hannel packet active R

(PA C T V )

18 C hannel done (D O N E) R/W 1C

19 C hannel erro r (E R R ) R

Indicates the num ber o f  w ords in the m essage to be transferred  

to SD R A M . I t’s updated in ternally  after each write as the 

D M A  operation  progresses.

W hen ‘O’, channel not active. W hen ‘ 1’, channel enab led  to 

receive m essage. Bit resets w hen DM A transfer is done.

W hen ‘O’, no packet is active. W hen ‘ 1 ’, the D M A channel is 

active receiv ing  a packet.

W hen the DM A transfer is done, this bit is se t to  T ’ in ternally  

and can in terrupt the CPU if  enabled  in FER or IER. W rite o f  

‘ 1’ to this bit w ill reset the bit.

W hen the actual incom ing m essage length  is d ifferen t from  the 

expected  one, this bit will be set to indicate error. Early o r
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20

2!

22

23

Flush channel (FLSH ) R/W

D eactivate channel 

(D A C TV )

R eset channel (RST)

W

W

Physical channel connected  R 

(PH Y C)

late term ination  can be determ ined by the byte coun t value. 

W rite o f  T  ’ to this bit will reset the bit.

This b it is used to flush the incom ing data  w ithou t transferring  

it to the m em ory. Byte counts and address poin ter unchanged 

during  flush.

This bit is used to deactivate the receiver channel, w hich only 

effective  w hen ACTV -  T ’ and PA C TV  =  ‘O’. P lease note 

that a read o f  PACTV = ‘0 ’ follow ed by a w rite  o f  D A CT V  = 

T ’ d o e sn ’t m ean receiver channel defin ite ly  be deactivated , 

since PA C TV  m ight ju s t changed to ‘ 1’ after the  read,

W hen T ’, the receiver channel will be reset to idle state. T he 

b it will be cleared autom atically  after the reset.

This bit indicates w hich physical OS Link does the DM A 

receiver channel a llocated to.

31:24

DOOTHHR: DMA OS 0 Transmitter Header High Register: (offset 90h)

DOOTHHR and DOOTHLR are considered as 6 continuous byte register, holding the routing 

headers and message tags for the OS Link protocol which will be sent at the beginning of each packet 

transfer. The organisation of header bytes is little endian. Variable lengths of header are allowed. 

Note that the MSB of each header byte must be a ‘1’, except the last header byte which is a ‘O’. This 

register holds the higher 2 bytes of the header. The register is read-only when the channel is activated.

W ord b it N am e R/W Description

7:0 H eader 5 R/W C arries value o f  header byte 5.

14:8 H eader 6 R/W C arries value o f  header byte 6. (N ote tha t bit 15 is tied  dow n to 

zero since it’s alw ays zero according  to the p rotocol)

31:15 -

DOOTHLR: DMA OS 0 Transmitter Header Low Register: (offset 94h)

DOOTHHR and DOOTHLR are considered as 6 continuous byte register, holding the routing 

headers and message tags for the OS Link protocol which will be sent at the beginning of each packet 

transfer. The organisation of header bytes is little endian. Variable lengths of header are allowed. 

Note that the MSB of each header byte must be a ‘ 1’, except the last header byte which is a ‘O’. This 

register holds the lower 4 bytes of the header. The register is read-only when the channel is activated.

W ord bit N am e R/W D escription

7:0 H eader 1 R/W C arries value o f  header byte 1.

15:8 H eader 2 R/W C arries value o f  header byte 2.

23:16 H eader 3 R/W C arries value o f  header byte 3.

31:24 H eader 4 R/W C arries value o f  header byte 4.
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DOOTAR: DMA OS 0 Transmitter Address Register: (offset 98h)

This register contains the SDRAM address of the DMA transfer. It’s the address of the source 

of data to transmit down the OS link. It is loaded with the start address of the transfer and is updated 

internally after each SDRAM transaction as the transfer proceeds. The address value needs to be word 

aligned. Bit 1 and bit 0 of the address will be ignored. This register is read-only when the channel is 

activated.

W ord bit N am e K /w  Description

1:0

23:2

31:24

Source SD RA M  address R/W  C ontains the source address w ith in  the SD RA M  for the ou tgo ing  

D M A  transfer. The value is updated  in ternally  as the  D M A  

operation  progresses.

DOOTLR: DMA OS 0 Transmitter Length Register: (offset 9Ch)

This register contains the length of message in bytes that need to be transmitted. The value

can be byte boundary. This register is read-only (except RST) when the channel is activated.

W ord bit N am e R/W D escription

15:0 Byte count R/W Indicates the num ber o f  bytes to be transferred  from  SD R A M  

It is updated  internally  after each  read as the  D M A  operation

progresses.

16 C hannel active (A C TV ) R W hen ‘O’, channel not active. W hen ‘ 1 channel enab led  to 

transm it m essage. Bit resets w hen D M A  transfer is done.

17 C hannel packet active 

(PA C T V )

R W hen 'O’, no packet is active. W hen ‘ 1’, the  D M A channel is 

active transm itting  a packet.

18 C hannel done (D O N E) R/W  1C W hen the DM A transfer is done, this bit is set to ' 1’ in ternally  

and can interrupt the C PU  if  enab led  in FER or 1ER. W rite o f  

‘ 1 ’ to this bit will reset the bit.

21:19 -

22 R eset channel (RST) W W hen ‘ 1’, the transm itter channel will be reset to idle state. 

T he b it will be cleared au tom atically  after the  reset.

23 Physical channel connected  

(PH Y C)

R/W T his b it indicates w hich physical OS Link does the D M A 

transm itter channel allocated  to.

3 1 :24 -

D O IR H R : DMA OS I Receiver Header Register: (offset A4h)

This register contains message tags for the comparison of incoming OS Link message. Either 

1 or 2 message tags are allowed. This register is read-only when the channel is activated.
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W ord bit N am e R/W

7:0 M essage tag  1 R This byte carries m essage tag 1.

14:8 M essage tag  2 R An M SB o f ‘ 1’ in m essage tag 1 indicates this field  carries a valid  

m essage tag 2. If  not, this byte is ignored for com parison . (N ote 

that bit 15 is tied down to zero since i t ’s alw ays zero accord ing  to 

the pro tocol)

31:15 -

D O IR A R : DMA OS 1 Receiver Address Register: (offset A8h)

This register contains the SDRAM destination address for the DMA transfer. The register is 

loaded with the address at the start of the transfer and is updated internally after each SDRAM 

transaction as the transfer proceeds. The address value needs to be word aligned. Bit 1 and bit 0 o f the 

address will be ignored. This register is read-only when the channel is activated.

W ord bit Nam e R/W Descriptic

1:0

23:2

31:24

D estination  SD RA M  address R/W C ontains the destination 

incom ing D M A  transfer, 

operation  progresses.

address w ithin the SD R A M  for the 

I t’s updated  in ternally  as the DM A

D O IR L R : DMA OS 1 Receiver Length Register: (offset ACh)

This register contains the length of message in bytes that needs to be received. The value 

must be at word boundary. Bit I and bit 0 of the length value will be ignored. This register is read

only (except DACTV and RST) when channel is activated.

W ord bit N am e R/W

1:0

15:2 W ord count R/W

16 C hannel active (A C TV ) R

17 C hannel packet active R

(PA C T V )

18 C hannel done (D O N E) R/W  1C

19 C hannel error (E RR ) R

Indicates the num ber o f  w ords in the m essage to be transferred  

to SD R A M . It’s updated in ternally  a lte r each w rite as the 

D M A  operation  progresses.

W hen ‘O’, channel not active. W hen ‘ 1’, channel enab led  to 

receive m essage. Bit resets w hen DM A transfer is done.

W hen ‘O’, no packet is active. W hen ‘ 1’, the D M A channel is 

active receiv ing  a  packet.

W hen the DM A transfer is done, this b it is set to  T  ’ in ternally  

and can in terrupt the CPU if  enabled  in FER or 1ER. W rite o f  

‘ 1’ to this bit will reset the bit.

W hen the actual incom ing m essage length is d itferen t from  the 

expected  one, this bit will be set to indicate error. Early or
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20

21

22

23

Flush channel (FLSH )

D eactivate channel 

(D A C TV )

Reset channel (RST)

R/W

W

W

Physical channel connected  R 

(PH Y C)

late term ination  can be determ ined by the byte count value. 

W rite o f ‘ 1 ’ to this bit will reset the bit.

This bit is used to flush the incom ing data w ithou t transferring  

it to the m em ory. Byte counts and address po in ter unchanged 

during  flush.

This bit is used to deactivate  the receiver channel, w hich only  

effective  w hen A C TV  =  ‘ I ’ and PA C TV  =  ‘O’. P lease note 

tha t a read o f  PA CTV  =  ‘0 ’ fo llow ed by a w rite  o f  D A CT V  = 

‘ 1’ do esn ’t m ean receiver channel defin ite ly  be deactivated , 

since PA C TV  m ight just changed to I after the read.

W hen ‘ 1’, the receiver channel will be reset to  idle state. T he 

bit w ill be cleared autom atically  after the reset.

This bit indicates w hich physical OS Link does the DM A 

receiver channel a llocated to.

31:24

D O IT H H R : DMA OS 1 Transmitter Header High Register: (offset BOh)

DOITHHR and DOITHLR are considered as 6 continuous byte register, holding the routing 

headers and message tags for the OS Link protocol which will be sent at the beginning of each packet 

transfer. The organisation of header bytes is little endian. Variable lengths of header are allowed. 

Note that the MSB of each header byte must be a ‘ 1’, except the last header byte which is a ‘O’. This 

register holds the higher 2 bytes of the header. The register is read-only when the channel is activated.

W ord bit N am e R/W ~ D escrin tion" ~  —  -  —  -  -  -u e sc rtp u o n

7:0 1 leader 5 R/W C arries value o f  header byte 5.

14:8 H eader 6 R/W C arries value o f  header byte 6. (N ote that bit 15 is tied dow n to

zero since it’s alw ays zero according  to the pro tocol)

31:15 -

D O IT H L R : DMA OS 1 Transmitter Header Low Register: (offset B4h)

DOITHHR and DOITHLR are considered as 6 continuous byte register, holding the routing 

headers and message tags for the OS Link protocol which will be sent at the beginning of each packet 

transfer. The organisation of header bytes is little endian. Variable lengths of header are allowed. 

Note that the MSB of each header byte must be a ‘1’, except the last header byte which is a ‘O’. This 

register holds the lower 4 bytes of the header. The register is read-only when the channel is activated.

W ord bit N am e R/W D escription

7:0 H eader 1 R/W C arries value o f  header byte 1.

15:8 H eader 2 R/W C arries value o f  header byte 2.

23:16 H eader 3 R/W C arries value o f  header byte 3.

31:24 H eader 4 R/W C arries value o f  header byte 4.
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DO 1 TAR : DMA OS 1 Transmitter Address Register: (offset B8h)

This register contains the SDRAM address of the DMA transfer. It’s the address of the source 

of data to transmit down the OS link. It’s loaded with the start address of the transfer and is updated 

internally after each SDRAM transaction as the transfer proceeds. The address value needs to be word 

aligned. Bit 1 and bit 0 of the address will be ignored. This register is read-only when the channel is 

activated.

W ord b it N am e -----------_
R/W

1 : 0

23:2  Source SD RA M  address R/W  C ontains the source address w ithin the SD R A M  for the ou tgo ing

D M A  transfer. The value is updated  in ternally  as the D M A 

operation  progresses.

31:24

D O IT L R : DMA OS /  Transmitter Length Register: (offset BCh)

This register contains the length of message in bytes that need to be transmitted. The value 

can be byte boundary. This register is read-only (except RST) when the channel is activated.

W ord bit ......Nanie*... . ’ .........— .. R /W D escription

15:0 Byte count R/W Indicates the num ber o f  bytes to be transferred  from  SD R A M  

It’s updated  internally  after each  read as the  D M A  operation  

progresses.

16 C hannel active (A C TV ) R W hen ‘O’, channel not active. W hen T ’, channel enab led  to 

transm it m essage. B it resets w hen D M A  transfer is done.

17 C hannel packet active 

(PA C T V )

R W hen ‘O’, no packet is active. W hen ‘ T , the D M A channel is 

active transm itting  a packet.

18 C hannel done (D O N E) R/W  1C W hen the DM A transfer is done, this b it is set to M ’ in ternally  

and can in terrupt the CPU  if  enab led  in FER or IER. W rite o f  

‘ 1’ to this b it will reset the bit.

21:19 -

22 Reset channel (R ST) W W hen ‘ 1’, the transm itter channel will be reset to idle state. 

T he bit will be cleared autom atically  after the  reset.

23 Physical channel connected  

(PH Y C)

R/W This bit indicates w hich physical OS Link does the DM A 

transm itter channel allocated  to.

3 1 :24 -

167



B. TIMING SPECIFICATION OF SARNIC

B. TIMING SPECIFICATION OF SARNIC

LSmb° 1 ..11?:II.Ill
Tskew Signal skew & wire delay 1.00

SA-110 CPU
......................................................................... - .......................

Tmck MClk and nMCIk skew 1.00

Tmsd nMREQ output delay 10.00

Tws nWAIT input setup 1.00

Taddrl Addr output delay 13.00

(APE high)

Taddrlseq Addr sequence output delay 9.00

(APE high)

Tdout(C) Data output delay 10.00

Tdbe(C) DBE to data output delay 9.00

SDRAM

Tsdd

SARNIC CPI

SDRAM data input setup 

.D

3.00 ... it :: .::...... ............. .
Tctrlout SD Ctrl output delay 19.20 41.32 Tclk = Tskew+Tmck+Tsdd+Tctrlout

Tdqmoutl SD DQM[3:0] output delay 14.50 50.85 1.5 X Tclk = 2Tskew+Tmck+Taddr1seq+Tsdd+Tdqmout1

(timed from CPU Addr in)

Tdqmout2 SD DQM[3:0] output delay 18.40 42.74 Tclk = Tskew+Tmck+Tsdd+Tdqmout2

(timed from rising Clk in)

Tmris CPU nMREQ input setup 9.40 49.02 Tclk = Tskew+Tmsd+Tmris

Twoutl CPU nWAIT output delay 18.00 48.39 1.5Tclk = 2Tskew+Tmsd+Tws+Twout1

(timed from CPU mREQ in)

Twout2 CPU nWAIT output delay 31.40 44.91 1,5Tclk = Tskew+Tws+Twout2

(timed from rising Clk in)

Tais CPU Addr input setup 6.40 49.02 Tclk = Tskew+Taddr1+Tais

Tdbe CPU DBE output delay 13.00 76.92 Tclk = Tskew+Tdbe(C)-Tdout(C)+Tdbe

Tdis Data input setup 14.10 39.84 Tclk = Tskew+Tdout(C)+Tdis

Tdout Data output delay 15.10 49.75 Tclk = Tskew+Tmck+Tsdd+Tdout
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C. SCHEMATIC DIAGRAMS OF SARNET

Sheet I -  The StrongARM SA-110 microprocessor 

Sheet 2 -  4M X 16 SDRAM chips

Sheet 3 -  The SARNIC (Altera EPF10K50VRC240-3) CPLD

Sheet 4 -  Miscallaneous (Data buffers, I/O buffers, and RS-232 transceiver)

Sheet 5 -  OS Link differential transceiver circuitry
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C. SCHEMATIC DIAGRAMS OF SARNET
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D. RESULTS FOR DIFFERENTIAL TRANSMISSION TESTS

D. RESULTS FOR DIFFERENTIAL TRANSMISSION TESTS

Length Bit Height

(m) 44 Mbps 32 Mbps 20 Mbps

10 73.16% 77.37% 81.58%

20 69.47% 73.16% 76.84%

30 63.68% 67.89% 72.11%

40 55.79% 58.42% 64.21%

50 47.89% 53.16% 61.05%

60 41.05% 46.84% 54.21%

70 . 34.74% 42.63% 50.53%

80 27.37% 37.37% 46.32%

90 22.11% 32.11% 41.05%

100 18.95% 26.32% 35.79%

Length Bit width , ' ■
(m) 44 Mbps 32 Mbps 20 Mbps

10 89.32% 93.44% 94.00%

20 88.00% 93.12% 93.20%

30 85.80% 93.12% 93.20%

40 83.60% 90.88% 92.80%

50 81.84% 87.36% 92.40%

60 76.12% 85.76% 90.80%

70 70.84% 82.88% 88.80%

80 66.88% 77.44% 85.60%

90 59.40% 73.60% 84.00%

100 50.60% 67.52% 80.40%
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D. RESULTS FOR DIFFERENTIAL TRANSMISSION TESTS

______________________

Length
. .

Enhanced Configuration
... ............................... ......  — ................... ........... .......;......

D 'f
*l----------------------------------

(m) 44 Mbps 32 Mbps 20 Mbps

0.1 75.79% 75.79% 75.79%

10 74.21% 74.21% 74.21%

20 71.05% 71.05% 73.16%

30 69.47% 69.47% 71.05%

40 68.42% 68.42% 69.47%

50 66.32% 66.84% 67.89%

60 63.16% 64.21% 65.79%

70 61.58% 62.63% 63.68%

80 57.89% 59.47% 62.11%

90 52.11% 56.84% 57.89%

100 44.74% 53.68% 55.79%

Length
■

Bit width

(m) 44 Mbps 32 Mbps 20 Mbps

0.1 79.20% 87.68% 91.60%

10 79.20% 87.36% 92.00%

20 80.08% 88.96% 91.60%

30 79.64% 88.64% 91.60%

40 80.52% 89.60% 91.20%

50 80.52% 89.60% 92.00%

60 80.52% 89.60% 92.00%

70 81.84% 90.24% 91.20%

80 82.28% 89.60% 91.60%

90 82.28% 88.96% 91.20%

100 81.40% 89.28% 90.80%

176



E. RESULTS FOR SARNIC SIMULATION AND HARDWARE TESTS

E. RESULTS FOR SARNIC SIMULATION AND HARDWARE 

TESTS

V\ :v: '

M essage Size 1

(byte)

------ ---- -
0< ; 'V

Time (us) BW (MB/s)

I In i U I I I

Time (us)l BW (MB/s)

.... .......... —

Bi 2

tim e (us)|

~ —

*>;- ■ ' • « l ; y  *, *. 

BW (MB/s)

:

----------------------y
Time (us)

..........................
BW (MB/s)

4 9.50 0.42 5.00 0.80 8.00 0.50 4.00 1.00

8 14.00 0.57 7.25 1.10 11.00 0.73 5.50 1.45

12 18.50 0.65 9.50 1.26 13.50 0.89 6.75 1.78

16 23.00 0.70 11.75 1.36 16.50 0.97 8.25 1.94

20 27.00 0.74 14.00 1.43 19.00 1.05 9.50 2.11

24 31.50 0.76 16.00 1.50 21.50 1.12 10.75 2.23

28 36.00 0.78 18.25 1.53 24.00 1.17 12.00 2.33

32 40.50 0.79 20.50 1.56 27.00 1.19 13.50 2.37

36 45.00 0.80 22.75 1.58 29.50 1.22 14.75 2.44

40 49.00 0.82 25.00 1.60 32.50 1.23 16.25 2.46

44 53.50 0.82 27.25 1.61 35.00 1.26 17.50 2.51

48 58.00 0.83 29.25 1.64 37.50 1.28 18.75 2.56

52 62.50 0.83 31.50 1.65 40.00 1.30 20.00 2.60

56 67.00 0.84 33.50 1.67 42.50 1.32 21.25 2.64

60 71.00 0.85 35.75 1.68 45.50 1.32 22.75 2.64

64 75.50 0.85 38.00 1.68 48.00 1.33 24.00 2.67

68 80.00 0.85 40.25 1.69 51.00 1.33 25.50 2.67

72 84.50 0.85 42.50 1.69 53.50 1.35 26.75 2.69

76 89.00 0.85 44.75 1.70 56.50 1.35 28.25 2.69

80 93.00 0.86 47.00 1.70 59.00 1.36 29.50 2.71

84 97.50 0.86 49.00 1.71 61.50 1.37 30.75 2.73

88 102.00 0.86 51.25 1.72 64.00 1.38 32.00 2.75

92 106.50 0.86 53.50 1.72 67.00 1.37 33.50 2.75

96 111.00 0.86 55.75 1.72 69.50 1.38 34.75 2.76

100 115.00 0.87 58.00 1.72 72.50 1.38 36.25 2.76

104 119.50 0.87 60.00 1.73 75.00 1.39 37.50 2.77

108 124.00 0.87 62.25 1.73 77.50 1.39 38.75 2.79

112 128.50 0.87 64.50 1.74 80.00 1.40 40.00 2.80

116 133.00 0.87 66.50 1.74 82.50 1.41 41.25 2.81

120 137.00 0.88 68.75 1.75 85.50 1.40 42.75 2.81

124 141.50 0.88 71.25 1.74 88.00 1.41 44.00 2.82

128 146.00 0.88 73.25 1.75 91.00 1.41 45.50 2.81

132 150.50 0.88 75.25 1.75 93.50 1.41 46.75 2.82

136 155.00 0.88 77.50 1.75 96.50 1.41 48.25 2.82

140 159.00 0.88 79.75 1.76 99.00 1.41 49.50 2.83

144 163.50 0.88 82.00 1.76 101.50 1.42 50.75 2.84

148 168.00 0.88 84.25 1.76 104.00 1.42 52.00 2.85

152 172.50 0.88 86.50 1.76 107.00 1.42 53.50 2.84
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E. RESULTS FOR SARNIC SIMULATION AND HARDWARE TESTS

156 177.00 0.88 88.75 1.76 109.50 1.42 54.75 2.85

160 181.00 0.88 91.00 1.76 112.50 1.42 56.25 2.84

164 185.50 0.88 93.00 1.76 115.00 1.43 57.50 2.85

168 190.00 0.88 95.25 1.76 117.50 1.43 58.75 2.86

172 194.50 0.88 97.50 1.76 120.00 1.43 60.00 2.87

176 199.00 0.88 99.75 1.76 122.50 1.44 61.25 2.87

180 203.00 0.89 102.00 1.76 125.50 1.43 62.75 2.87

184 207.50 0.89 104.00 1.77 128.00 1.44 64.00 2.88

188 212.00 0.89 106.25 1.77 131.00 1.44 65.50 2.87

192 216.50 0.89 108.50 1.77 133.50 1.44 66.75 2.88

196 221.00 0.89 110.50 1.77 136.50 1.44 68.25 2.87

200 225.00 0.89 112.75 1.77 139.00 1.44 69.50 2.88

204 229.50 0.89 115.00 1.77 141.50 1.44 70.75 2.88

208 234.00 0.89 117.25 1.77 144.00 1.44 72.00 2.89

212 238.50 0.89 119.25 1.78 147.00 1.44 73.50 2.88

216 243.00 0.89 121.75 1.77 149.50 1.44 74.75 2.89

220 247.00 0.89 123.75 1.78 152.50 1.44 76.25 2.89

224 251.50 0.89 126.00 1.78 155.00 1.45 77.50 2.89

228 256.00 0.89 128.25 1.78 157.50 1.45 78.75 2.90

232 260.50 0.89 130.50 1.78 160.00 1.45 80.00 2.90

236 265.00 0.89 132.75 1.78 162.50 1.45 81.25 2.90

240 269.00 0.89 135.00 1.78 165.50 1.45 82.75 2.90

244 273.50 0.89 137.00 1.78 168.00 1.45 84.00 2.90

248 278.00 0.89 139.25 1.78 171.00 1.45 85.50 2.90

252 282.50 0.89 141.50 1.78 173.50 1.45 86.75 2.90

256 287.00 0.89 143.50 1.78 176.50 1.45 88.25 2.90

260 295.00 0.88 147.50 1.76 180.50 1.44 90.25 2.88

264 299.00 0.88 149.75 1.76 183.50 1.44 91.75 2.88

268 303.50 0.88 152.00 1.76 186.00 1.44 93.00 2.88

272 308,00 0.88 154.00 1.77 188.50 1.44 94.25 2.89

276 312.00 0.88 156.25 1.77 191.50 1.44 95.75 2.88

280 317.00 0.88 158.50 1.77 194.00 1.44 97.00 2.89

284 321.00 0.88 160.75 1.77 197.00 1.44 98.50 2.88

288 325.50 0.88 163.00 1.77 199.50 1.44 99.75 2.89

292 330.00 0.88 165.25 1.77 202.00 1.45 101.00 2.89

296 334.00 0.89 167.25 1.77 205.00 1.44 102.50 2.89

300 339.00 0.88 169.50 1.77 207.00 1.45 103.50 2.90

304 343.00 0.89 171.75 1.77 210.50 1.44 105.25 2.89

308 347.50 0.89 173.75 1.77 213.00 1.45 106.50 2.89

312 352.00 0.89 176.00 1.77 215.50 1.45 107.75 2.90

316 356.00 0.89 178.50 1.77 218.00 1.45 109.00 2.90

320 361.00 0.89 180.50 1.77 220.50 1.45 110.25 2.90

324 365.00 0.89 182.50 1.78 223.50 1.45 111.75 2.90
328 369.50 0.89 184.75 1.78 226.00 1.45 113.00 2.90

332 374.00 0.89 187.00 1.78 228.50 1.45 114.25 2.91

336 378.00 0.89 189.25 1.78 231.50 1.45 115.75 2.90

340 383.00 0.89 191.50 1.78 234.00 1.45 117.00 2.91



E. RESULTS FOR SARNIC SIMULATION AND HARDWARE TESTS

344 387.00 0.89 193.75 1.78 237.00 1.45 118.50 2.90

348 391.50 0.89 196.00 1.78 239.50 1.45 119.75 2.91

352 396.00 0.89 198.25 1.78 242.00 1.45 121.00 2.91

356 400.00 0.89 200.25 1.78 245.00 1.45 122.50 2.91

360 405.00 0.89 202.50 1.78 247.50 1.45 123.75 2.91

364 409.00 0.89 204.75 1.78 250.50 1.45 125.25 2.91

368 413.50 0.89 206.75 1.78 253.00 1.45 126.50 2.91

372 418.00 0.89 209.00 1.78 255.50 1.46 127.75 2.91

376 422.00 0.89 211.50 1.78 258.00 1.46 129.00 2.91

380 427.00 0.89 213.50 1.78 260.50 1.46 130.25 2.92

384 431.00 0.89 215.50 1.78 263.50 1.46 131.75 2.91

388 435.50 0.89 217.75 1.78 266.00 1.46 133.00 2.92

392 440.00 0.89 220.00 1.78 268.50 1.46 134.25 2.92

396 444.00 0.89 222.25 1.78 271.50 1.46 135.75 2.92

400 449.00 0.89 224.50 1.78 274.00 1.46 137.00 2.92

404 453.00 0.89 226.75 1.78 277.00 1.46 138.50 2.92

408 457.50 0.89 229.00 1.78 279.50 1.46 139.75 2.92

412 462.00 0.89 231.25 1.78 282.00 1.46 141.00 2.92

416 466.00 0.89 233.25 1.78 285.00 1.46 142.50 2.92

420 471.00 0.89 235.50 1.78 287.50 1.46 143.75 2.92

424 475.00 0.89 237.75 1.78 290.50 1.46 145.25 2.92

428 479.50 0.89 239.75 1.79 293.00 1.46 146.50 2.92

432 484.00 0.89 242.00 1.79 295.50 1.46 147.75 2.92

436 488.00 0.89 244.50 1.78 298.00 1.46 149.00 2.93

440 493.00 0.89 246.50 1.78 300.50 1.46 150.25 2.93

444 497.00 0.89 248.50 1.79 303.50 1.46 151.75 2.93

448 501.50 0.89 250.75 1.79 306.00 1.46 153.00 2.93

452 506.00 0.89 253.00 1.79 308.50 1.47 154.25 2.93

456 510.00 0.89 255.25 1.79 311.50 1.46 155.75 2.93

460 515.00 0.89 257.50 1.79 314.00 1.46 157.00 2.93

464 519.00 0.89 259.75 1.79 317.00 1.46 158.50 2.93

468 523.50 0.89 262.00 1.79 319.50 1.46 159.75 2.93

472 528.00 0.89 264.25 1.79 322.00 1.47 161.00 2.93

476 532.00 0.89 266.25 1.79 325.00 1.46 162.50 2.93

480 537.00 0.89 268.50 1.79 327.50 1.47 163.75 2.93

484 541.00 0.89 270.75 1.79 330.50 1.46 165.25 2.93

488 545.50 0.89 273.00 1.79 333.00 1.47 166.50 2.93

492 550.00 0.89 275.00 1.79 335.50 1.47 167.75 2.93
496 554.00 0.90 277.50 1.79 338.00 1.47 169.00 2.93

500 559.00 0.89 279.50 1.79 340.50 1.47 170.25 2.94

504 563.00 0.90 281.50 1.79 343.50 1.47 171.75 2.93

508 567.50 0.90 283.75 1.79 346.00 1.47 173.00 2.94

512 572.00 0.90 286.00 1.79 348.50 1.47 174.25 2.94
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(byte) iTime (us)||BW (MB/s) Time (us) BW (MB/s)||Time (us)IIBW (MB/s)||Time (us)||BW (MB/s)

4 5.50 0.73 3.00 1.33 4.50 0.89 2.25 1.78

8 8.00 1.00 4.00 2.00 6.00 1.33 2.75 2.91

12 10.00 1.20 5.00 2.40 7.50 1.60 3.50 3.43

16 12.00 1.33 6.25 2.56 8.50 1.88 4.50 3.56

20 14.50 1.38 7.25 2.76 10.50 1.90 5.00 4.00

24 17.00 1.41 8.50 2.82 11.50 2.09 5.75 4.17

28 18.50 1.51 9.50 2.95 13.00 2.15 6.25 4.48

32 21.00 1.52 10.50 3.05 14.00 2.29 7.00 4.57

36 23.50 1.53 11.75 3.06 15.50 2.32 8.00 4.50

40 25.50 1.57 12.75 3.14 17.00 2.35 8.50 4.71
44 27.50 1.60 14.00 3.14 18.50 2.38 9.25 4.76
48 29.50 1.63 15.00 3.20 19.50 2.46 9.75 4.92

52 31.50 1.65 16.00 3.25 21.00 2.48 10.50 4.95

56 34.00 1.65 17.25 3.25 23.00 2.43 11.50 4.87

60 36.00 1.67 18.25 3.29 24.00 2.50 12.00 5.00
64 38.50 1.66 19.50 3.28 25.50 2.51 12.75 5.02

68 41.00 1.66 20.50 3.32 27.00 2.52 13.25 5.13

72 43.00 1.67 21.50 3.35 28.50 2.53 14.00 5.14

76 45.00 1.69 22.75 3.34 29.50 2.58 15.00 5.07

80 47.50 1.68 23.75 3.37 31.50 2.54 15.50 5.16
84 50.00 1.68 25.00 3.36 32.50 2.58 16.25 5.17

88 51.50 1.71 26.00 3.38 34.00 2.59 16.75 5.25

92 54.00 1.70 27.00 3.41 35.00 2.63 17.50 5.26
96 56.50 1.70 28.25 3.40 36.50 2.63 18.50 5.19

100 58.50 1.71 29.25 3.42 38.00 2.63 19.00 5.26

104 60.50 1.72 30.50 3.41 39.50 2.63 19.75 5.27

108 62.50 1.73 31.50 3.43 40.50 2.67 20.25 5.33

112 64.50 1.74 32.50 3.45 42.00 2.67 21.00 5.33

116 67.00 1.73 33.75 3.44 44.00 2.64 22.00 5.27

120 69.00 1.74 34.75 3.45 45.00 2.67 22.50 5.33
124 71.50 1.73 36.00 3.44 46.50 2.67 23.25 5.33
128 74.00 1.73 37.00 3.46 48.00 2.67 24.00 5.33
132 76.00 1.74 38.00 3.47 49.50 2.67 24.75 5.33
136 78.00 1.74 39.25 3.46 50.50 2.69 25.25 5.39

140 80.50 1.74 40.25 3.48 52.50 2.67 26.00 5.38

144 83.00 1.73 41.50 3.47 53.50 2.69 26.75 5.38

148 84.50 1.75 42.75 3.46 55.00 2.69 27.50 5.38

152 87.00 1.75 43.75 3.47 56.00 2.71 28.25 5.38

156 89.50 1.74 44.75 3.49 57.50 2.71 28.75 5.43
160 91.50 1.75 45.75 3.50 59.00 2.71 29.50 5.42
164 93.50 1.75 47.00 3.49 60.50 2.71 30.25 5.42
168 95.50 1.76 48.25 3.48 61.50 2.73 31.00 5.42
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172 97.50 1.76 49.25 3.49 63.00 2.73 31.75 5.42

176 100.00 1.76 50.25 3.50 65.00 2.71 32.25 5.46

180 102.00 1.76 51.25 3.51 66.00 2.73 33.25 5.41

184 104.50 1.76 52.50 3.50 67.50 2.73 33.75 5.45

188 107.00 1.76 53.75 3.50 69.00 2.72 34.50 5.45

192 109.00 1.76 54.75 3.51 70.50 2.72 35.25 5.45

196 111.00 1.77 55.75 3.52 71.50 2.74 35.75 5.48

200 113.50 1.76 56.75 3.52 73.50 2.72 36.75 5.44

204 116.00 1.76 58.00 3.52 74.50 2.74 37.25 5.48

208 117.50 1.77 59.25 3.51 76.00 2.74 38.00 5.47

212 120.00 1.77 60.25 3.52 77.00 2.75 38.75 5.47

216 122.50 1.76 61.25 3.53 78.50 2.75 39.25 5.50

220 124.50 1.77 62.25 3.53 80.00 2.75 40.00 5.50

224 126.50 1.77 63.25 3.54 81.50 2.75 40.75 5.50

228 128.50 1.77 64.50 3.53 83.00 2.75 41.50 5.49

232 130.50 1.78 65.75 3.53 84.50 2.75 42.25 5.49

236 133.00 1.77 66.75 3.54 85.50 2.76 42.75 5.52

240 135.00 1.78 67.75 3.54 87.00 2.76 43.50 5.52

244 137.50 1.77 68.75 3.55 88.50 2.76 44.25 5.51

248 140.00 1.77 70.00 3.54 90.00 2.76 45.00 5.51

252 142.00 1.77 71.25 3.54 91.50 2.75 45.75 5.51

256 144.00 1.78 72.25 3.54 92.50 2.77 46.25 5.54

260 148.00 1.76 74.25 3.50 95.00 2.74 47.50 5.47

264 150.00 1.76 75.25 3.51 96.50 2.74 48.50 5.44

268 152.50 1.76 76.25 3.51 98.00 2.73 49.00 5.47

272 154.50 1.76 77.25 3.52 99.00 2.75 49.75 5.47

276 157.00 1.76 78.50 3.52 100.50 2.75 50.50 5.47

280 159.00 1.76 79.75 3.51 102.00 2.75 51.25 5.46

284 161.00 1.76 80.75 3.52 103.50 2.74 51.75 5.49

288 163.50 1.76 81.75 3.52 105.00 2.74 52.50 5.49

292 165.50 1.76 83.00 3.52 106.00 2.75 53.00 5.51

296 167.50 1.77 84.00 3.52 107.50 2.75 53.75 5.51

300 170.00 1.76 85.25 3.52 109.00 2.75 54.50 5.50

304 172.50 1.76 86.25 3.52 110.50 2.75 55.25 5.50

308 174.00 1.77 87.25 3.53 112.00 2.75 56.00 5.50

312 176.50 1.77 88.50 3.53 113.00 2.76 56.75 5.50

316 179.00 1.77 89.50 3.53 114.50 2.76 57.50 5.50

320 181.00 1.77 90.75 3.53 116.00 2.76 58.00 5.52

324 183.00 1.77 91.75 3.53 117.50 2.76 58.75 5.51

328 185.50 1.77 92.75 3.54 119.00 2.76 59.50 5.51

332 187.50 1.77 94.00 3.53 120.00 2.77 60.00 5.53

336 190.00 1.77 95.00 3.54 121.50 2.77 60.75 5.53

340 192.00 1.77 96.25 3.53 123.00 2.76 61.50 5.53

344 194.00 1.77 97.25 3.54 124.50 2.76 62.25 5.53

348 196.50 1.77 98.25 3.54 126.00 2.76 63.00 5.52

352 198.50 1.77 99.50 3.54 127.00 2.77 63.75 5.52

356 200.50 1.78 100.50 3.54 128.50 2.77 64.50 5.52
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360 203.00 1.77 101.75 3.54 130.00 2.77 65.00 5.54

364 205.50 1.77 102.75 3.54 131.50 2.77 65.75 5.54

368 207.00 1.78 103.75 3.55 133.00 2.77 66.50 5.53

372 209.50 1.78 105.00 3.54 134.00 2.78 67.00 5.55

376 212.00 1.77 106.00 3.55 135.50 2.77 67.75 5.55

380 214.00 1.78 107.25 3.54 137.00 2.77 68.50 5.55

384 216.00 1.78 108.25 3.55 138.50 2.77 69.25 5.55

388 218.50 1.78 109.25 3.55 140.00 2.77 70.00 5.54

392 220.50 1.78 110.50 3.55 141.00 2.78 70.75 5.54

396 223.00 1.78 111.50 3.55 142.50 2.78 71.50 5.54

400 225.00 1.78 112.75 3.55 144.00 2.78 72.00 5.56

404 227.00 1.78 113.75 3.55 145.50 2.78 72.75 5.55

408 229.50 1.78 114.75 3.56 147.00 2.78 73.50 5.55

412 231.50 1.78 116.00 3.55 148.00 2.78 74.25 5.55

416 233.50 1.78 117.00 3.56 149.50 2.78 75.00 5.55

420 236.00 1.78 118.25 3.55 151.00 2.78 75.75 5.54

424 238.50 1.78 119.25 3.56 152.50 2.78 76.25 5.56

428 240.00 1.78 120.25 3.56 154.00 2.78 76.75 5.58

432 242.50 1.78 121.50 3.56 155.00 2.79 77.75 5.56

436 245.00 1.78 122.50 3.56 156.50 2.79 78.25 5.57

440 247.00 1.78 123.75 3.56 158.00 2.78 79.00 5.57

444 249.00 1.78 124.75 3.56 159.50 2.78 79.75 5.57

448 251.50 1.78 125.75 3.56 161.00 2.78 80.50 5.57

452 253.50 1.78 127.00 3.56 162.00 2.79 81.25 5.56

456 256.00 1.78 128.00 3.56 163.50 2.79 82.00 5.56

460 258.00 1.78 129.25 3.56 165.00 2.79 82.75 5.56

464 260.00 1.78 130.25 3.56 166.50 2.79 83.25 5.57

468 262.50 1.78 131.25 3.57 168.00 2.79 83.75 5.59

472 264.50 1.78 132.50 3.56 169.00 2.79 84.50 5.59

476 266.50 1.79 133.50 3.57 170.50 2.79 85.25 5.58

480 269.00 1.78 134.75 3.56 172.00 2.79 86.00 5.58

484 271.50 1.78 135.75 3.57 173.50 2.79 86.75 5.58

488 273.00 1.79 136.75 3.57 175.00 2.79 87.50 5.58

492 275.50 1.79 138.00 3.57 176.00 2.80 88.25 5.58

496 278.00 1.78 139.00 3.57 177.50 2.79 89.00 5.57

500 280.00 1.79 140.25 3.57 179.00 2.79 89.75 5.57

504 282.00 1.79 141.25 3.57 180.50 2.79 90.25 5.58

508 284.50 1.79 142.25 3.57 182.00 2.79 91.00 5.58

512 286.50 1.79 143.50 3.57 183.00 2.80 91.50 5.60



E. RESULTS FOR SARNIC SIMULATION AND HARDWARE TESTS

1 II |
Time (us)|| BW (MB/s) Time (us)| BW (MB/s)

4

BW (MB/s)

4 10.77 0.37 5.81 0.69 6.41 0.62 3.41 1.17

8 15.17 0.53 7.99 1.00 9.26 0.86 4.83 1.66

12 19.57 0.61 10.21 1.18 12.11 0.99 6.26 1.92

16 23.97 0.67 12.40 1.29 14.96 1.07 7.67 2.09

20 28.37 0.71 14.60 1.37 17.80 1.12 9.10 2.20

24 32.78 0.73 16.79 1.43 20.66 1.16 10.53 2.28

28 37.17 0.75 18.99 1.47 23.50 1.19 11.95 2.34

32 41.57 0.77 21.19 1.51 26.35 1.21 13.38 2.39

36 45.97 0.78 23.40 1.54 29.20 1.23 14.80 2.43

40 50.37 0.79 25.59 1.56 32.05 1.25 16.22 2.47

44 54.77 0.80 27.79 1.58 34.90 1.26 17.65 2.49

48 59.17 0.81 29.99 1.60 37.75 1.27 19.07 2.52

52 63.57 0.82 32.19 1.62 40.59 1.28 20.51 2.54

56 67.97 0.82 34.39 1.63 43.45 1.29 21.92 2.56

60 72.37 0.83 36.59 1.64 46.30 1.30 23.35 2.57

64 76.77 0.83 38.79 1.65 49.15 1.30 24.76 2.58

68 81.17 0.84 40.99 1.66 52.00 1.31 26.20 2.60

72 85.61 0.84 43.19 1.67 54.85 1.31 27.62 2.61

76 89.96 0.84 45.39 1.67 57.70 1.32 29.05 2.62

80 94.37 0.85 47.59 1.68 60.53 1.32 30.48 2.62

84 98.76 0.85 49.79 1.69 63.40 1.33 31.90 2.63

88 103.17 0.85 51.99 1.69 66.25 1.33 33.32 2.64

92 107.57 0.86 54.19 1.70 69.10 1.33 34.74 2.65

96 111.97 0.86 56.39 1.70 71.95 1.33 36.17 2.65

100 116.37 0.86 58.58 1.71 74.80 1.34 37.60 2.66

104 120.77 0.86 60.79 1.71 77.65 1.34 39.03 2.66

108 125.17 0.86 62.98 1.71 80.50 1.34 40.46 2.67

112 129.57 0.86 65.19 1.72 83.34 1.34 41.87 2.67

116 133.97 0.87 67.39 1.72 86.20 1.35 43.30 2.68

120 138.38 0.87 69.59 1.72 89.05 1.35 44.72 2.68
124 142.77 0.87 71.78 1.73 91.90 1.35 46.16 2.69

128 147.18 0.87 73.99 1.73 94.75 1.35 47.57 2.69

132 151.57 0.87 76.18 1.73 97.61 1.35 48.99 2.69

136 155.98 0.87 78.39 1.73 100.45 1.35 50.42 2.70

140 160.37 0.87 80.58 1.74 103.31 1.36 51.86 2.70

144 164.78 0.87 82.79 1.74 106.16 1.36 53.28 2.70

148 169.17 0.87 84.98 1.74 109.01 1.36 54.70 2.71

152 173.58 0.88 87.19 1.74 111.85 1.36 56.12 2.71

156 177.97 0.88 89.38 1.75 114.71 1.36 57.55 2.71

160 182.38 0.88 91.59 1.75 117.54 1.36 58.97 2.71

164 186.77 0.88 93.78 1.75 120.41 1.36 60.40 2.72

168 191.18 0.88 95.98 1.75 123.24 1.36 61.82 2.72



E. RESULTS FOR SARNIC SIMULATION AND HARDWARE TESTS

172 195.57 0.88 98.18 1.75 126.11 1.36 63.24 2.72

176 199.98 0.88 100.39 1.75 128.96 1.36 64.68 2.72

180 204.37 0.88 102.58 1.75 131.81 1.37 66.09 2.72

184 208.78 0.88 104.79 1.76 134.66 1.37 67.52 2.73

188 213.17 0.88 106.98 1.76 137.51 1.37 68.95 2.73

192 217.58 0.88 109.19 1.76 140.36 1.37 70.37 2.73

196 221.97 0.88 111.38 1.76 143.21 1.37 71.79 2.73

200 226.38 0.88 113.59 1.76 146.06 1.37 73.22 2.73

204 230.77 0.88 115.78 1.76 148.91 1.37 74.65 2.73

208 235.18 0.88 117.99 1.76 151.76 1.37 76.07 2.73

212 239.58 0.88 120.18 1.76 154.61 1.37 77.50 2.74

216 243.98 0.89 122.39 1.76 157.46 1.37 78.93 2.74

220 248.37 0.89 124.58 1.77 160.31 1.37 80.33 2.74

224 252.78 0.89 126.79 1.77 163.16 1.37 81.75 2.74

228 257.17 0.89 128.98 1.77 166.01 1.37 83.17 2.74

232 261.58 0.89 131.19 1.77 168.86 1.37 84.60 2.74

236 265.97 0.89 133.38 1.77 171.71 1.37 86.03 2.74

240 270.38 0.89 135.59 1.77 174.56 1.37 87.45 2.74
244 274.78 0.89 137.78 1.77 177.41 1.38 88.88 2.75

248 279.19 0.89 139.99 1.77 180.26 1.38 90.30 2.75

252 283.57 0.89 142.19 1.77 183.11 1.38 91.72 2.75
256 287.99 0.89 144.40 1.77 185.96 1.38 93.15 2.75
260 295,67 0.88 148.24 1.75 190.81 1.36 95.57 2.72

264 300.08 0.88 150.43 1.75 193.66 1.36 96.99 2.72

268 304.47 0.88 152.63 1.76 196.51 1.36 98.42 2.72
272 308.87 0.88 154.83 1.76 199.36 1.36 99.85 2.72

276 313.27 0.88 157.03 1.76 202.21 1.36 101.27 2.73

280 317.67 0.88 159.24 1.76 205.06 1.37 102.70 2.73

284 322.07 0.88 161.43 1.76 207.91 1.37 104,12 2.73

288 326.47 0.88 163.63 1.76 210.77 1.37 105.55 2.73

292 330.87 0.88 165.83 1.76 213.61 1.37 106.97 2.73

296 335.28 0.88 168.03 1.76 216.46 1.37 108.39 2.73
300 339.67 0.88 170.24 1.76 219.31 1.37 109.82 2.73
304 344.08 0.88 172.44 1.76 222.16 1.37 111.25 2.73
308 348.47 0.88 174.64 1.76 225.01 1.37 112.67 2.73

312 352.88 0.88 176.83 1.76 227.86 1.37 114.10 2.73

316 357.27 0.88 179.03 1.77 230.71 1.37 115.52 2.74

320 361.67 0.88 181.23 1.77 233.56 1.37 116.95 2.74

324 366.07 0.89 183.44 1.77 236.41 1.37 118.37 2.74

328 370.47 0.89 185.64 1.77 239.27 1.37 119.80 2.74

332 374.87 0.89 187.84 1.77 242.12 1.37 121.22 2.74
336 379.27 0.89 190.04 1.77 244.97 1.37 122.65 2.74

340 383.67 0.89 192.23 1.77 247.82 1.37 124.07 2.74
344 388.07 0.89 194.43 1.77 250.67 1.37 125.50 2.74
348 392.47 0.89 196.63 1.77 253.51 1.37 126.92 2.74

352 396.87 0.89 198.84 1.77 256.36 1.37 128.35 2.74
356 401.27 0.89 201.04 1.77 259.21 1.37 129.77 2.74

184



E. RESULTS FOR SARNIC SIMULATION AND HARDWARE TESTS

360 405.67 0.89 203.23 1.77 262.06 1.37 131.20 2.74

364 410.08 0.89 205.44 1.77 264.91 1.37 132.62 2.74

368 414.48 0.89 207.63 1.77 267.77 1.37 134.05 2.75

372 418.88 0.89 209.84 1.77 270.61 1.37 135.47 2.75

376 423.27 0.89 212.04 1.77 273.46 1.37 136.90 2.75

380 427.67 0.89 214.23 1.77 276.31 1.38 138.32 2.75
384 432.08 0.89 216.43 1.77 279.17 1.38 139.75 2.75
388 436.48 0.89 218.64 1.77 282.02 1.38 141.17 2.75
392 440.87 0.89 220.84 1.78 284.87 1.38 142.60 2.75
396 445.27 0.89 223.04 1.78 287.71 1.38 144.02 2.75

400 449.67 0.89 225.24 1.78 290.57 1.38 145.45 2.75

404 454.07 0.89 227.44 1.78 293.42 1.38 146.87 2.75

408 458.47 0.89 229.63 1.78 296.27 1.38 148.30 2.75

412 462.88 0.89 231.83 1.78 299.12 1.38 149.73 2.75
416 467.28 0.89 234.04 1.78 301.97 1.38 151.15 2.75

420 471.67 0.89 236.24 1.78 304.82 1.38 152.57 2.75
424 476.08 0.89 238.43 1.78 307.67 1.38 154.00 2.75

428 480.48 0.89 240.64 1.78 310.52 1.38 155.42 2.75

432 484.88 0.89 242.83 1.78 313.37 1.38 156.85 2.75
436 489.27 0.89 245.04 1.78 316.22 1.38 158.27 2.75

440 493.68 0.89 247.24 1.78 319.07 1.38 159.70 2.76

444 498.08 0.89 249.44 1.78 321.92 1.38 161.13 2.76
448 502.48 0.89 251.63 1.78 324.77 1.38 162.55 2.76

452 506.87 0.89 253.84 1.78 327.61 1.38 163.97 2.76
456 511.27 0.89 256.04 1.78 330.47 1.38 165.40 2.76

460 515.67 0.89 258.24 1.78 333.32 1.38 166.82 2.76

. 464 520.08 0.89 260.44 1.78 336.17 1.38 168.25 2.76

468 524.48 0.89 262.64 1.78 339.02 1.38 169.68 2.76
472 528.88 0.89 264.83 1.78 341.87 1.38 171.10 2.76

476 533.28 0.89 267.04 1.78 344.72 1.38 172.53 2.76

480 537.68 0.89 269.24 1.78 347.57 1.38 173.95 2.76
484 542.08 0.89 271.44 1.78 350.42 1.38 175.38 2.76

488 546.48 0.89 273.64 1.78 353.27 1.38 176.80 2.76

492 550.88 0.89 275.84 1.78 356.12 1.38 178.23 2.76

496 555.28 0.89 278.04 1.78 358.97 1.38 179.65 2.76

500 559.68 0.89 280.24 1.78 361.82 1.38 181.07 2.76

504 564.08 0.89 282.44 1.78 364.67 1.38 182.50 2.76

508 568.48 0.89 284.64 1.78 367.52 1.38 183.92 2.76

512 572.88 0.89 286.84 1.78 370.37 1.38 185.35 2.76

185



E. RESULTS FOR SARNIC SIMULATION AND HARDWARE TESTS

Time (us) (M(byte) BW (MB/s) ime (us) BW (MB/s)

0 9 9

Time (u Time (us) BW (MB/s)

1.75

9.24 0.87 5.00 1.60 5.71 1.40 3.12 2.57

12 11.61 1.03 6.21 1.93 7.36 1.63 3.94 3.05

16 14.03 1.14 7.40 2.16 9.01 1.78 4.77 3.36

20 16.43 1.22 8.61 2.32 10.67 1.87 5.60 3.57

24 18.83 1.27 9.81 2.45 12.33 1.95 6.43 3.73

28 21.24 1.32 11.01 2.54 13.98 2.00 7.26 3.86

32 23.61 1.36 12.22 2.62 15.63 2.05 8.09 3.96

36 26.03 1.38 13.42 2.68 17.29 2.08 8.92 4.04

40 28.43 1.41 14.63 2.73 18.94 2.11 9.75 4.10

44 30.83 1.43 15.82 2.78 20.60 2.14 10.58 4.16

48 33.23 1.44 17.03 2.82 22.24 2.16 11.41 4.21

52 35.62 1.46 18.23 2.85 23.90 2.18 12.23 4.25

56 38.02 1.47 19.45 2.88 25.56 2.19 13.07 4.29

60 40.43 1.48 20.63 2.91 27.21 2.21 13.89 4.32

64 42.83 1.49 21.84 2.93 28.87 2.22 14.72 4.35

68 45.23 1.50 23.04 2.95 30.52 2.23 15.56 4.37

72 47.63 1.51 24.23 2.97 32.17 2.24 16.39 4.39

76 50.03 1.52 25.44 2.99 33.83 2.25 17.22 4.41

80 52.43 1.53 26.66 3.00 35.48 2.26 18.06 4.43

84 54.83 1.53 27.86 3.02 37.14 2.26 18.88 4.45

88 57.23 1.54 29.06 3.03 38.79 2.27 19.71 4.46

92 59.62 1.54 30.26 3.04 40.44 2.27 20.55 4.48

96 62.03 1.55 31.45 3.05 42.10 2.28 21.38 4.49

100 64.43 1.55 32.66 3.06 43.75 2.29 22.21 4.50

104 66.83 1.56 33.87 3.07 45.40 2.29 23.04 4.51

108 69.23 1.56 35.06 3.08 47.07 2.29 23.87 4.52
112 71.63 1.56 36.24 3.09 48.72 2.30 24.71 4.53

116 74.03 1.57 37.46 3.10 50.38 2.30 25.55 4.54

120 76.44 1.57 38.67 3.10 52.04 2.31 26.38 4.55
124 78.84 1.57 39.87 3.11 53.68 2.31 27.22 4.56

128 81.23 1.58 41.07 3.12 55.34 2.31 28.04 4.57

132 83.64 1.58 42.27 3.12 57.01 2.32 28.88 4.57

136 86.03 1.58 43.44 3.13 58.66 2.32 29.70 4.58
140 88.44 1.58 44.66 3.13 60.31 2.32 30.55 4.58
144 90.83 1.59 45.88 3.14 61.98 2.32 31.38 4.59

148

152

93.24 1.59 47.09 3.14 63.62 2.33 32.21 4.60
95.63 1.59 48.28 3.15 65.28 2.33 33.05 4.60

156 98.04 1.59 49.46 3.15 66.93 2.33 33.88 4.60
160

164

100.43 1.59 50.67 3.16 68.61 2.33

102.83 1.59 51.87 3.16 70.24 2.33

34.72

35.55

4.61

4.61
168 105.24 1.60 53.11 3.16 71.92 2.34 36.39 4.62

l 86



E. RESULTS FOR SARNIC SIMULATION AND HARDWARE TESTS

172 107.66 1.60 54.21 3.17 73.56 2.34 37.21 4.62

176 110.04 1.60 55.47 3.17 75.23 2.34 38.05 4.63

180 112.44 1.60 56.68 3.18 76.88 2.34 38.88 4.63

184 114.83 1.60 57.88 3.18 78.54 2.34 ' 39.72 4.63

188 117.24 1.60 59.09 3.18 80.20 2.34 40.54 4.64

192 119.64 1.60 60.29 3.18 81.86 2.35 41.39 4.64

196 122.05 1.61 61.49 3.19 83.53 2.35 42.22 4.64

200 124.45 1.61 62.70 3.19 85.15 2.35 43.04 4.65

204 126.86 1.61 63.90 3.19 86.82 2.35 43.88 4.65

208 129.24 1.61 65.09 3.20 88.49 2.35 44.72 4.65

212 131.64 1.61 66.29 3.20 90.15 2.35 45.56 4.65

216 134.05 1.61 67.49 3.20 91.79 2.35 46.39 4.66

220 136.45 1.61 68.72 3.20 93.46 2.35 47.23 4.66

224 138.85 1.61 69.89 3.21 95.11 2.36 48.05 4.66

228 141.24 1.61 71.10 3.21 96.77 2.36 48.89 4.66

232 143.69 1.61 72.29 3.21 98.43 2.36 49.73 4.66

236 146.04 1.62 73.50 3.21 100.08 2.36 50.56 4.67

240 148.44 1.62 74.69 3.21 101.75 2.36 51.40 4.67

244 150.84 1.62 75.89 3.22 103.38 2.36 52.23 4.67

248 153.24 1.62 77.09 3.22 105.06 2.36 53.08 4.67

252 155.65 1.62 78.30 3.22 106.71 2.36 53.92 4.67

256 158.05 1.62 79.51 3.22 108.37 2.36 54.74 4.68

260 162.45 1.60 81.68 3.18 111.27 2.34 56.20 4.63

264 164.84 1.60 82.91 3.18 112.94 2.34 57.03 4.63

268 167.25 1.60 84.11 3.19 114.59 2.34 57.86 4.63

272 169.63 1.60 85.31 3.19 116.24 2.34 58.69 4.63

276 172.04 1.60 86.46 3.19 117.90 2.34 59.53 4.64

280 174.45 1.61 87.69 3.19 119.58 2.34 60.36 4.64

284 176.84 1.61 88.93 3.19 121.23 2.34 61.19 4.64

288 179.24 1.61 90.13 3.20 122.87 2.34 62.03 4.64

292 181.64 1.61 91.33 3.20 124.55 2.34 62.86 4.65

296 184.04 1.61 92.56 3.20 126.22 2.35 63,71 4.65

300 186.45 1.61 93.77 3.20 127.84 2.35 64.53 4.65

304 188.84 1.61 94.96 3.20 129.51 2.35 65.37 4.65

308 191.25 1.61 96.17 3.20 131.16 2.35 66.21 4.65

312 193.65 1.61 97.35 3.21 132.83 2.35 67.03 4.65

316 196.05 1.61 98.54 3.21 134.48 2.35 67.86 4.66

320 198.46 1.61 99.76 3.21 136.16 2.35 68.70 4.66

324 200.85 1.61 100.97 3.21 137.80 2.35 69.52 4.66

328 203.26 1.61 102.17 3.21 139.45 2.35 70.36 4.66

332 205.66 1.61 103.37 3.21 141.10 2.35 71.20 4.66

336 208.05 1.61 104.58 3.21 142.77 2.35 72.04 4.66

340 210.46 1.62 105.78 3.21 144.43 2.35 72.88 4.67
344 212.86 1.62 107.01 3.21 146.08 2.35 73.71 4.67

348 215.22 1.62 108.44 3.21 147.72 2.36 74.54 4.67
352 217.65 1.62 109.33 3.22 149.41 2.36 75.39 4.67
356 220.05 1.62 110.56 3.22 151.05 2.36 76.21 4.67

187



E. RESULTS FOR SARNIC SIMULATION AND HARDWARE TESTS

360 222.44 1.62 111.76 3.22 152.72 2.36 77.05 4.67

364 224.87 1.62 112.99 3.22 154.39 2.36 77.87 4.67

368 227.24 1.62 114.15 3.22 156.01 2.36 78.71 4.68

372 229.66 1.62 115.38 3.22 157.68 2.36 79.55 4.68

376 232.07 1.62 116.61 3.22 159.32 2.36 80.38 4.68

380 234.46 1.62 117.79 3.23 161.00 2.36 81.23 4.68

384 236.86 1.62 118.99 3.23 162.67 2.36 82.06 4.68

388 239.25 1.62 120.16 3.23 164.33 2.36 82.90 4.68

392 241.65 1.62 121.39 3.23 165.99 2.36 83.72 4.68

396 244.05 1.62 122.61 3.23 167.62 2.36 84.56 4.68

400 246.44 1.62 123.84 3.23 169.30 2.36 85.39 4.68

404 248.87 1.62 125.01 3.23 170.94 2.36 86.22 4.69

408 251.27 1.62 126.19 3.23 172.61 2.36 87.05 4.69

412 253.66 1.62 127.37 3.23 174.25 2.36 87.90 4.69

416 256.05 1.62 128.60 3.23 175.92 2.36 88.75 4.69

420 258.46 1.63 129.79 3.24 177.59 2.37 89.57 4.69

424 260.85 1.63 131.01 3.24 179.24 2.37 90.40 4.69

428 263.26 1.63 132.22 3.24 180.90 2.37 91.26 4.69

432 265.66 1.63 133.37 3.24 182.57 2.37 92.05 4.69

436 268.06 1.63 134.59 3.24 184.22 2.37 92.90 4.69

440 270.45 1.63 135.81 3.24 185.87 2.37 93,76 4.69

44 4 272.88 1.63 137.03 3.24 187.52 2.37 94.58 4.69

448 275.29 1.63 138.18 3.24 189.21 2.37 95.41 4.70

452 277.66 1.63 139.43 3.24 190.82 2.37 96.25 4.70

456 280.06 1.63 140.61 3.24 192.50 2.37 97.10 4.70

460 282.46 1.63 141.81 3.24 194.15 2.37 97.92 4.70

464 284.85 1.63 143.02 3.24 195.82 2.37 98.75 4.70

468 287.27 1.63 144.32 3.24 197.46 2.37 99.62 4.70

472 289.68 1.63 145.41 3.25 199.12 2.37 100.41 4.70

476 292.05 1.63 146.60 3.25 200.79 2.37 101.24 4.70

480 294.46 1.63 147.82 3.25 202.46 2.37 102.09 4.70

484 296.86 1.63 149.02 3.25 204.10 2.37 102.93 4.70

488 299.27 1.63 150.21 3.25 205.77 2.37 103.77 4.70

492 301.66 1.63 151.41 3.25 207.41 2.37 104.60 4.70

496 304.07 1.63 152.60 3.25 209.08 2.37 105.42 4.71

500 306.47 1.63 153.81 3.25 210.73 2.37 106.26 4.71

504 308.86 1.63 154.95 3.25 212.40 2.37 107.11 4.71

508 311.27 1.63 156.21 3.25 214.07 2.37 107,93 4.71

512 313.67 1.63 157.38 3.25 215.69 2.37 108.80 4.71


