
Prediction of Cloud Movement from Satellite
Images using Neural Networks

Marius E. Penteliuc and Marc Frincu
West University of Timisoara

Faculty of Mathematics and Computer Science
Department of Computer Science

Romania
{marius.penteliuc, marc.frincu}@e-uvt.ro

Abstract—Predicting cloud movement and dynamics is an
important aspect in several areas, including prediction of solar
energy generation. Knowing where a cloud will be or how it
evolves over a given geographical area can help energy providers
to better estimate their production levels. In this paper we
propose a novel approach to predicting cloud movement based
on satellite imagery. It combines techniques of generating motion
vectors from sequential images with neural networks. First, the
images are masked to isolate cloud pixels, then Farneback’s
version of the Optical Flow algorithm is used to detect motion
from one image to the next and generate motion vector flow for
each pair of images. After that, a feed forward back propagation
neural network is trained with the vector data derived from the
dataset imagery. Different parameters for the duration of the
training, size of the input, and the neighborhood radius of one
point in the scene are used. Promising results are presented and
discussed to weight the potential of the proposed algorithm for
forecasting cloud cover and cloud position in a scene.

Index Terms—cloud motion; forecasting; neural networks;
satellite imagery;

I. INTRODUCTION

Many satellite programs are funded and running with the
purpose of capturing Earth data and provide valuable historical
products that can be used in research. These products include
spectral images of the surface reflectance in visible and
near-infrared bands. Studies are making use of the satellite
imagery to evaluate land cover, vegetation growth, human
influence over land surface, cities expansion, weather and cli-
mate change, monitor the environment and natural resources.
Despite the great aid these image provide in monitoring
change, about two thirds of the captured surfaces are covered
by clouds [1] which negatively impact the work of monitoring
applications and evaluating land surface change. Solar energy
generation is one application which requires accurate estimates
of cloud coverage over specific areas [11]. Algorithms that
work on such images need to have a clear view of the surface
to output usable results. If clouds are present and obstruct the
view, these algorithms can misinterpret data from cloudy re-
gions and output unusable data. Clouds are a contaminant and
their shadows is also impeding remote sensing applications.

Due to this restrictive factor, the necessity of assessing cloud
cover became more pressing and techniques were developed
to enable classification of images based on cloud coverage
percentage. Then cloud and cloud shadow screening methods

took it a step further by detecting and masking out cloud and
cloud shadow pixels from the image in order to make use of
the clear pixels instead of discarding the entire image. More
details will be given in Section II.

Harnessing the power of solar irradiation is a task entirely
dependent on weather conditions, specifically on the absence
of cloud cover. As clouds passing over a solar power plant
cannot be eradicated, a solution is to identify clouds and
predict their near future position by analyzing their movement.
This way, plant operators can benefit from the cover of shadow
by performing maintenance on the installed equipment, and
not restrict it from running when the sky is clear.

The contents of this paper are structured as follows: In
Section II we will present work that has been done regarding
cloud detection, movement, and simulation; a new algorithm
is proposed in Section III; in Section IV we describe the
setup for making experiments and the results obtained; finally
conclusions and future directions are presented in Section V.

II. RELATED WORK

A. Cloud Movement Detection

Hamill et al. [2] developed a cross-correlation-based tech-
nique to take cloud features and find them in separate frames
and generate motion vectors. They applied multiple cross-
correlation analysis over an area in a frame with the sur-
rounding areas in the next one. The results of the correlation
were defined as displacement vectors and, by using a backward
trajectory technique, they forecast cloud motion up to a few
hours, but is best in the first hour. However, limitations such as
smoothing image too much over time, problems near the image
boundaries, and terrain advection left room for improvement
and raised a necessity for cloud masking to do a better job of
determining motion by having cloudy pixels identified first,
then motion vectors computed for each pixel.

B. Cloud Detection Algorithms

One of the earliest methods for identifying cloud-
contaminated scenes retrieved from satellite imagery is the
Automated Cloud-Cover Assessment (ACCA) algorithm [6]. It
was developed for the Landsat 7 ground system and to process
Enhanced Thematic Mapper Plus (ETM+) data. An older
version of the algorithm was incorporated into the Thematic



Mapper Image Processing System (TIPS) for the Thematic
Mapper (TM) sensor on board the satellites Landsat 4 and
Landsat 5 in the early 1980s [3]. The computational load was
reduced due to the technical limitations at that time and only
three bands were used and the images were sub-sampled down
to almost 6% of the original data.

The new ACCA algorithm took advantage of Landsat 7’s
more precise instruments and successfully assessed cloud
cover with an error of ±5%. It takes as input top of atmosphere
(TOA) reflectance and at sensor temperature converted from
the raw numbers provided by the sensor [4] and process the
images in two passes. The first pass uses eight filters to
determine a precise cloud signature and categorize regions
into three classes: clouds, non-clouds, and ambiguous data.
The second pass then begins a thermal analysis using a cloud
signature derived from either the cloud or non-cloud classes,
or both. The presence of snow or desert regions in the scene
are taken into account when determining the cloud signature.
The ambiguous data is revised by threshold comparison and
non-cloud pixels that have 5 or more cloud pixel neighbors
are labelled as cloud to boost the cover content and reflect
how much of a scene is unusable data. A grid overlay will
determine the cloud cover percentage score for the scene.

While ACCA did successfully identified the presence of
clouds in a scene, it could not draw a clear boundary to mask
out the clouds in a scene, which lead to imprecise isolation.
It also had trouble detecting warm cirrus clouds and often
miss-classified high altitude snow and ice as clouds [7]. All
that considered, it is important to remember that the intended
purpose of the ACCA system was to assess cloud coverage
percentage, not to screen clouds precisely.

Different methods were developed over time to screen
clouds and cloud shadows precisely including image fusion
techniques to remove clouds and their shadows [8], or using a
Normalized Difference Snow Index (NDSI) to isolate clouds
over ice sheets. A two-pass, similar to ACCA, algorithm
that generates an internal cloud mask [12]. Zhang et al.
(2002) developed a haze correction method [14], modified by
Hgarat-Mascle and Andr in 2009 to detect cloud pixels by
a distance from them to a clear-sky line [15]. Cloud shadow
detection used to be done by spectral test, but geometry-based
methods, like object matching and scattering differencing were
producing better results.

Zhu & Woodcock developed in 2012 a new method called
Fmask (Function of mask) to precisely identify, isolate, and
mask clouds [16]. Similar to ACCA, this method takes as input
the TOA reflectances for Bands 1 through 5 and 7, but also the
brightness temperature for Band 6 of Landsat’s TM and ETM+
(values converted using the LEDAPS atmosphere correction
tool [5], [12]). It identifies a cloud mask by passing twice
over an image: the first pass runs a series of tests to remove
land, desert, rock, and water. This pass will exclude pixels that
are certainly not cloud, but might include pixels representing
bright rock, water, snow, and ice, leaving a layer of absolute
clear pixels. If the layer of absolute clear pixels is at least
0.1% of the scene, the second pass will compute the cloud

probability over water and the cloud probability over land
separately using water temperature probability and brightness
probability, and land temperature probability and variability
probability respectively.

The potential cloud shadow layer is computed by per-
forming a flood-fill transformation on Band 4 data [13], and
observing the difference on the transformed Band 4 data and
the original Band 4 data. The potential snow layer is identified
using a modified MODIS snow mapping algorithm [9] with a
different Normalized Difference Snow Index (NDSI) threshold
of 0.15 that has been used by Wildt et al. [10]. The cloud
shadow mask is refined by using an object-based cloud and
cloud shadow match, which basically make use of the know
sattelite sensor angle, solar zenith angle, and solar azimuth
angle to project the direction of a cloud’s shadow. Fmask
will prioritize labelling of pixels in the following order: cloud
pixels with highest priority, followed by shadow pixels, and
finally snow pixels with lowest priority.

Fmask is widely known in the field and is an important
and reliable tool to mask clouds in a scene. Although it
has some limitations in failing to isolate thin warm clouds,
misidentifying as cloud cold, very bright land features (salt
pans, cold snow), and having difficulties in very complex
surface reflectances, Fmask has seen improvements in its
performance when Zhu, Wang & Woodcock expanded the
algorithm in 2014 to work on Landsat 8 and Sentinel 2
images, and modifying parts of the original workflow to have
better results [17]. In 2017, Qiu, He, Zhu et al.[18] further
improved on the algorithm by introducing Mountainous Fmask
(MFmask) which could better detect cloud and cloud shadow
in mountainous regions.

Frantz et al. [20] made an improvement in 2018 to Fmask’s
functionality on Sentinel 2 images by better separating clouds
from very bright land surfaces using the parallax effect of
clouds when viewed from the satellite’s three near infrared
bands to create a Cloud Displacement Index (CDI). Later,
Qiu et al., 2019 integrated the CDI into the FMask algorithm
version 4.0 (in beta as of this writing)[22], along with in-
tegrating Global Surface Water Occurence (GSWO), Digital
Elevation Models (DEM)[18], and making other adjustments.
Many more are integrating FMask into existing workflows to
achieve more off of the cloud mask that is generated by it.

C. Cloud Movement Simulations

In 2018, Alisson R. Silva et al. [23] presented and evaluated
a parallel implementation of a complex system for cloud
simulation with a cellular automaton by using a parallel stencil
programming tool called PSkel. To simulate cloud dynamics in
two dimensions as a function of the environment temperature
they used five partial differential equations, for: horizontal
and vertical air speed, temperature, water vapor, and cloud
water. The programming languages used for developing and
testing the algorithms were OpenMP (Open Multi Processing),
TBB (Threading Building Blocks), and CUDA (Compute
Unified Device Architecture). The parallel model was shown
to be stable with respect to the thermal equilibrium, and the



Consecutive
Satellite Imagery

Cloud-Masked Imagery

Generated
Motion Vectors

Training of
Neural Network

Predict Future
Motion Vectors

Fig. 1: Proposed algorithm, From top to bottom: the con-
secutive satellite images are cloud-masked using a thresh-
old technique; then motion vectors are generated by using
OpenCV’s Optical Flow method; the neural network is trained
with motion vector data; and the predicted output is a new set
of motion vectors.

runtime decreased as the number of threads increased (until the
computing limit). There is a 6.5 fold performance gain using
the parallel model over the sequential version. They observed
that shorter simulation times were stable, while longer ones
were unstable.

To summarize, demand and interest for cloud detection and
cloud evolution prediction is high and advances in this area are
needed. Our aim in this paper is to present a novel approach
to predicting cloud coverage using neural networks trained on
motion vectors generated by movement detection. The results
are satisfactory and show that forecasting of clouds in a scene
can be achieved from motion vector data.

In the following chapter the setup for running experiments
is described and the results are discussed.

III. PROPOSED PREDICTION ALGORITHM

The strategy for the algorithm is illustrated in Fig. 1 and
consists of three main steps:

I Use one masking algorithm (that is fit for the dataset) and
isolate cloudy pixels in the scene. This is not relevant for
the prediction itself, but for creating a cloud mask when
using predicted data.

II Generate motion vectors that describe the movement
of each image pixel between frames. The vectors are

154 200 243 255
93 167 211 242
64 112 178 215
17 85 104 149

199−→
0 0 243 255
0 0 211 242
0 0 0 215
0 0 0 0

Fig. 2: Example of applying thresholding to zero on a matrix
for a threshold value of 199.

assembled into a structure that is used as training data
for a neural network.

III A neural network is trained on motion vector data with
the scope of predicting future data from series of motion
vectors. The cloud mask can be obtained by distorting
pixels of the last frame according to the predicted motion
vectors.

A. The masking algorithm

Given the focus of the paper is prediction, the algorithm uses
a rather straightforward thresholding technique to determine
cloudy pixels in a scene. The training images are series of
snapshots taken from satellites in a geosationary orbit, which
captures the whole visible disk of the Earth every half hour,
rather than satellites in a polar or low-earth orbit, which
capture the same location much less frequent. The size of the
captured scene also means snow and water bodies are not a
concern in cloud identification and the thresholding technique
is suited for the dataset.

First, the images are converted to grayscale using a basic
method of converting pixel values to gray. Then the gray
images are processed after a threshold value. When working
with thresholds, we make use of the fact that an image has 255
levels of brightness starting from 0 (being the darkest) up to
255 (which is the brightest), and an image can be changed in
many ways by having different thresholding operations with
them. One operation could be applying a binary thresholding
to an image, meaning all values over the threshold will be
set to the maximum brightness level and all values equal
or less than it will be set to 0, leaving an image with just
the two brightness levels: 0 and 255. Another example of
thresholding is applying a truncate thresholding to an image,
where all values greater than the threshold are set to the
threshold value and all values smaller than the threshold
remain unchanged, essentially cutting the brightest parts of the
image and reducing them to a lower level. The thresholding
operation used here is commonly referred to as thresholding to
zero. When thresholding to zero, all values below the specified
threshold are set to 0, the darkest possible value, and the rest
are left untouched, as shown in Fig. 2.

After applying the thresholding operation to each image,
they are saved together as frames in a video file to be easily
available when processing them for the identification of motion
vectors.



Fig. 3: Motion vector: one pixel from the first image is located
into the second image and a vector depicting direction and
length is generated (arrow).

Fig. 4: From one pair of images a flow of motion vectors is
generated.

B. Motion vector algorithm

The output of the masking algorithm applied to the series
of images is an ordered collection masked frames. To identify
movement and generate motion vectors, a technique called
Optical Flow is used to process the sequence of frames. This
technique has several variants in use, but upon analyzing the
needs of the workflow, we have decided to use the variant
based on Farneback’s algorithm to detect cloud movement
[19]. The frames are fed to the algorithm as input two by two
such that each frame (except for the first and last) is fed two
times, once with the frame before, and once with the frame
after. The algorithm will try and compute were each pixel from
the first frame has gone in the next frame, essentially detecting
the movement of the pixels that changed locations, see Fig. 3.

Each pixel is associated a touple as follows: If a pixel has
moved, it is given two values: a length value and a direction
value such that when applying these values to its location in the
first frame, its result is the new position in the second frame. If
a pixel has not changed location, the values will be both zero.
All pixels are given two such values that constitute a vector,
and the output of the algorithm is a motion vector flow of the
two frames. The process is repeated for each consecutive pair
of images and all flows are saved in a collection as indicated
by Fig. 4.

The output of this step is a series of motion vector flows
equivalent to the number of consecutive pairs of frames, that
is one less than the number of processed images. One might

Fig. 5: Representation of a neural network containing the input
layer, one hidden layer, and the output layer. The arrows on the
left represent the motion vectors that are fed into the network.

find it easier to understand these vectors as a representation
of the direction and strength of wind at a point location.

C. Neural network

The action of predicting a value based on a number of inputs
is a task that requires special performance that only specific
techniques can achieve. Neural networks are such techniques
that when given a dataset and a target output, can learn how to
predict numbers, strings, or other data types. A network is able
to achieve this because of the architecture of nodes and arches
it is built on. The nodes are commonly called neurons – hence
the name of the network – and the connections between them
can be associated with synapses – the biological name given
to the communication paths that exist between the neurons in
the human brain.

The specific neural network used in this algorithm is a
simple multilayer perceptron running in a feed forward back
propagation configuration [24] consisting of three neuron
layers: an input layer, a hidden layer and an output layer, as
shown in Fig. 5.

Types of neural network, known as convolutional neural net-
works, had been trained to recognize patterns even if images
are distorted to a degree [25], [26], [27], but taking the same
pixel location of a scene over several snapshots and looking
to see if it was cloudy or not is little information to use for
making predictions. But vectors that show the motion of clouds
have rich data about their direction and length (which show
the direction and distance a cloud pixel travels). They are
more useful for making predictions of what properties future
vectors will have using multilayer perceptrons1, and use that
information to reveal where each cloudy pixel will move. The
input layer is the entry point of the network and the data that is
to be fed into the network is copied here. The hidden layer is
called hidden because it is managed entirely by the algorithm

1The current implementation does not use a convolutional neural network,
however, there is potential of such a network to produce good results under
the circumstances of working with motion vector data. Currently, I am
implementing and testing this type of network on a larger dataset and will
update the paper to include the findings.



and we can have no direct user influence or outside interaction.
The output layer is where the results of the network processing
is made available to be retrieved.

One neuron in the input layer is holding the two motion
vector values (length and direction) of one point in space for
all values they have during the sequence, meaning that for the
five flows of motion vectors, one neuron in the input layer will
have as input an array of 10 values (length and direction * five
motion vectors). This array can increase if we have more than
five flows available. Also, if we send motion the vector data of
the neighboring pixels, the array will further increase. I do this
to keep one neuron responsible for one motion vector and its
neighbors throughout the entire sequence. When talking about
input size, I am referring to how many points of the sequence
of frames are sent through the network.

This network adapts itself to the training input by the means
mentioned before and also by increasing or decreasing the
number of neurons in the input layer according to how large
is the training input. This way the network can work on
different sized inputs while automatically adjusting the number
of neurons it has. The number of neurons in the hidden layer
is equal to the number of values in one pixel sequence.

At runtime the network will split the data into training input
and training target (a target value is the last value had by a
point in the sequence) according to the arguments, and use
a common activation function to map vector values in the
range 0 to 1. The is done to make the algorithm work on
the dataset without having values too small or too large. Then
the connections between each layer neurons synapses are
created and initialized with random weights, in the range -1
to 1. If a previous training was run with the same arguments,
the network will load and reuse those trained synapses.

A loop over the desired number of epochs is set and the
training process begins. The input target is copied to the input
layer. Then the dot product of the input layer and the synapses
between it and the hidden layer is computed and saved into
the neurons of the hidden layer. Same is done next where
these neurons and the second set of synapses are computed
in a dot product and the result is saved into the output layer.
This result is said to be the network’s prediction and it is
unlikely, at first run, to be anything close to reality because
of the random weighted synapses. The steps up to this point
in the loop are part of the feed forward reasoning behind the
networks naming. Data so far has traveled from left to right
through the input layer, then the hidden layer and finally the
output layer. Back propagation means that some data has to
travel backwards through the network and when doing so,
will actually make the network adjust itself to make better
predictions, essentially learning its way around the data.

The output that the network has produced is a result of
processing the training input. This result is compared to the
training target of the corresponding input and an absolute
difference is saved as the error, representing how far off is the
guessed output from the real value. The error is distributed to
the synapses between the hidden layer and the output layer
and then over to the synapses between the input layer and

the hidden layer. This distribution will nudge the weights
proportionally up or down, depending on how much has the
weight contributed to the error. The synapses now are not
that random, but are actually a bit tuned to the training input.
To this point, a single training epoch has passed. The steps
are taken again and repeated until the desired number of
epochs for training is met and the error should get smaller
and smaller, depending on the configuration and the dataset
used. The synapses are saved locally so that the information
contained by them can be later used for prediction or further
trained.

With enough training epochs, the algorithm should be able
to converge and be reliable in predicting a value with a
sufficiently small error. Again, the success rate of the training
is strongly dependent on the training data. Input can be
given in smaller or larger amounts, containing few or more
related values. The number of epochs can be of a reasonable
duration for training or can be so time consuming that it is
not satisfiable to continue training until a small enough error
is reached.

After the first prediction, the algorithm can be applied on
the motion vectors used for making the prediction and the
prediction itself, and so on. However, the longer the predicted
is in the future, the more uncertain is the prediction, as is with
any forecasting because we are we will no longer predict on
real data, but on other predictions.

IV. EXPERIMENTS

In this section we focus on the setup designed to run
experiments and the results of our approach.

A. Setup

Data used for the purposes of training the network was
made available by Sat24.com, a web service that specializes
in weather products such as rain forecasting, and pictures of
locations on Earth. The pictures are taken at time intervals
of about 15 to 20 minutes by geostationary satellites and are
downloaded to the server as soon as the communication links
allows. The product we used for the training of the network
can be accessed automatically by a system command to save
the resource locally. It consists of six images sized at 400
pixels width by 290 pixels height, adding it to a total of
696 000 pixels per product. The images have text overlays
in the margins and translucent thin country borders, but this
does not affect the algorithm because of the magnitude with
which clouds are moving in the scene. After processing the six
images, five collections of motion vectors (flows) are formed,
one for each consecutive pair of images. Each vector has the
two attributes, length and direction, so all five collections have
1 160 000 values that can be used for network training.

The language used for the processing and training of the
network is Python 3. The Numpy library was used to perform
matrix calculations on the data, and OpenCV was used to
perform image adjustment and vector generation through the
Optical Flow API.



(a) Pick training data linearly.

(b) Pick training data randomly.

Fig. 6: Selection methods for training. Top: the training input
is selected sequentially (the points are neighbors); Bottom: the
training input is selected arbitrary (the points are not necessary
neighbors).

Fig. 7: One pixel with a neighborhood radius of 0 (left), 1
(center), and 2 (right).

The scripts were run on an 2.6 GHz Intel Core i5 x86-64
machine running macOS with Python 3.7, the Numpy library,
OpenCV 3.4.2.

The training process is run on various scenarios. They
differ by the amount of the input size given each run, the
amount of neighboring motion vectors taken around a point,
the duration of the training, and the way input is selected
from the dataset – either starting with the top left point of the
sequence and taking following points by row, either picking
randomly from somewhere in the image every 10% intervals
of the training duration, see Fig. 6. Using random points for
training decreases the chance that all points are outside cloudy
regions which would not help training. Training with points
that are next to each other will help in generalizing vector
data of several points into a single value because neighboring
points are in a tendency to move together.

We varied all tests by the factors mentioned above using
the values below:

• Size of the input: 1, 4, 8, 16, 32, and so on;
• Neighborhood radius: 0, 1, and 2 (see Fig. 7);
• Duration of training cycles: 1000, 10 000, and 100 000

epochs;
• The selection method: random and sequential;
• The five images used are 400 by 290 pixels.

To asses the overall accuracy of the prediction, we computed
the mean error between the target output and the predicted one.

B. Results

The correctness was tested using the Mean Absolute Per-
centage Error (MAPE):

MAPE =
1

n

n∑
t=1

∣∣∣∣At − Ft

At

∣∣∣∣ ,
where At is the actual target value, and Ft is the forecast
value. And the formula for MSE is:

MSE =
1

n

n∑
t=1

(At − Ft)
2
.

For an input size of four in all three neighborhood radii cases,
the error was computed at 0.34, and for input size of eight the
error was computed at 0.44. Their respective Mean Squared
Errors (MSE, used in numerical predictions) are 4.50e-6, and
9.76e-6.

Increasing the neighborhood radius will mostly decrease the
error, except for rare cases. This is most probably due to the
fact that neighboring points will generally move together as
a cluster of points. One particular outcome to note is that,
usually, a random selection type over a linear one does not
improve the error for this particular dataset. Also, during the
same number of epochs, randomization of training data will
decrease the error slower than not randomizing it – even when
taking into account neighborhood radius.

Fig. 8 shows evolution of the mean error for relevant
configurations of the network.

Configurations with random selection type and one neigh-
borhood radius have a higher mean error then other configu-
rations with the same training epochs. This means that while
at a linear selection type, results get better with training time
(number of epochs) and also with an increased neighborhood
radius, using the random selection method results will get
better only with more epochs increasing the neighborhood
radius does not guarantee better results in this case.

More tests are required to further verify the correctness of
the algorithm and the suitableness for predicting cloud cover
with cloud location.

V. CONCLUSION

In this paper I have summarized past and current work
on the topic of cloud cover screening. Observations of the
cloud cover had been ongoing for a long time and substantial
research has been done to correctly assess cloud coverage and
isolate it from the Earth surface. The Optical Flow technique
has proved to be very reliable in the detection of movement if
used with the right parameters for the data. The motion vectors
generated by the algorithm are useful in determining the angle
(direction) and magnitude (length) of the movement from
frame to frame. The use of neural networks for the prediction
of cloud movement based on motion vectors determined from
cloud masks is promising and should be studied in more depth
as the potential of this method producing accurate results is
of great value.



Fig. 8: Mean Error evolution in percentage for different neighborhood radii after training with random selection type – input
size of 1 (left), 4 (center), and 8 (right).

A bigger dataset for training the network should yield better
results and different configurations of input data should be
tested to verify how effective the algorithm is in various
scenarios and how should the data be fed in order to output the
best results. There are many more configurations to experiment
with in predicting motion vectors.

Future work will focus on more detailed experiments and
comparisons with existing state of the art algorithms.

REFERENCES

[1] A.S. Belward and C.R. Valenzuela, Remote sensing and geographical
information system for resource management in developing countries,
Kluwer Academic Publishers, Dordrecht/Boston/London, 1991.

[2] Hamill, T.M., Nehrkorn, T., 1993. Short-term Cloud Forecast Scheme
using Cross Cor- relations. Weather Forecast. 84, 401411.

[3] Su, Jih-Jui, Enhanced ACCA Algorithm, Space Imaging Corporation
Technical Memo IT81-LSD-SA&E Memo 274, 1984

[4] Markham, B.L. & Barker, J.L.. (1986). Landsat MSS and TM Post Cal-
ibration Dynamic Ranges, Exoatmospheric Reflectance and at-satellite
Temperatures. Landsat MSS and TM Post-Calibration Dynamic Ranges,
Exoatmospheric Reflectances and At-Satellite Temperatures. 3-8.

[5] Masek, Jeffrey & Vermote, E & Saleous, Nazmi & Wolfe, Robert &
Hall, Forrest & F Huemmrich, Karl & Gao, Feng & Kutler, Jonathan &
Lim, Teng-Kui. (2006). A Landsat Surface Reflectance Data Set for North
America, 19902000. Geoscience and Remote Sensing Letters, IEEE. 3.
68 - 72. 10.1109/LGRS.2005.857030.

[6] Irish, R. (2000). Landsat-7 automatic cloud cover assessment algorithms
for multispectral, hyperspectral, and ultraspectral imagery. The Interna-
tional Society for Optical Engineering, 4049, 348355.

[7] Irish, R., Barker, J. L., Goward, S. N., & Arvidson, T. (2006). Charac-
terization of the Landsat-7 ETM+ Automated Cloud-Cover Assessment
(ACCA) algorithm. Photogrammetric Engineering and Remote Sensing,
72(10), 11791188.

[8] Wang, B., Ono, A. Muramatsu, K., and Fujiwarattt, N., 1999. Automated
detection and removal of clouds and their shadows from landsat TM
images, IEICE Transactions on Information and Systems E82-D, no. 2:
453-460

[9] K. Hall, Dorothy & A. Riggs, George. & Salomonson (2001). Algorithm
Theoretical Basis Document (ATBD) for the MODIS Snow and Sea Ice-
Mapping Algorithms.

[10] Wildt, M. D. R. D., Seiz, G., & Gruen, A. (2007). Operational snow
mapping using multitemporal Meteosat SEVIRI imagery. Remote Sensing
of Environment, 109, 2941.

[11] T. Hashimoto, and Y. Nagakura, 2011. Prediction of Output Power Vari-
ation of Solar Power Plant by Image Measurement of Cloud Movement,
Journal of Advanced Research in Physics 2(2).

[12] Vermote, E., & Saleous, N. (2007). LEDAPS surface reflectance product
description-Version 2.0., Technical Document, Departement of Geogra-
phy, University of Maryland. USA.

[13] Soille, P. (1999). Morphological image analysis: Principles and applica-
tions (pp. 173174). Springer-Verlag.

[14] Zhang, Y., Rossow, W. B., Lacis, A. A., Oinas, V., & Mishchenko, M. I.
(2004). Calculation of radiative fluxes from the surface to top of at-
mosphere based on ISCCP and other global data sets: Refinements of
the radiative transfer model and the input data, Journal of Geophysical
Research: Atmospheres, 109(D19). ISO 690

[15] Le Hgarat-Mascle, S., & Andr, C. (2009). Use of Markov random fields
for automatic cloud/shadow detection on high resolution optical images,
ISPRS Journal of Photogrammetry and Remote Sensing, 64(4), 351-366.

[16] Zhu, Z. and Woodcock, C. E., Object-based cloud and cloud shadow
detection in Landsat imagery, Remote Sensing of Environment (2012),
doi:10.1016/j.rse.2011.10.028

[17] Zhu, Z. and Woodcock, C. E., Improvement and Expansion of the Fmask
Algorithm: Cloud, Cloud Shadow, and Snow Detection for Landsats 4-
7, 8, and Sentinel 2 images, Remote Sensing of Environment (2014)
doi:10.1016/j.rse.2014.12.014

[18] Qiu S., He B., Zhu Z., et al. Improving Fmask cloud and cloud shadow
detection in mountainous area for Landsats 48 images, Remote Sensing
of Environment (2017), doi.org/10.1016/j.rse.2017.07.002

[19] Farnebck, Gunnar. (2003). Two-Frame Motion Estimation Based on
Polynomial Expansion. Image analysis. 2749. 363-370. 10.1007/3-540-
45103-X 50.

[20] D. Frantz, E. Ha, A. Uhl, J. Stoffels, and J. Hill, Improvement of the
Fmask algorithm for Sentinel-2 images: Separating clouds from bright
surfaces based on parallax effects, Remote Sensing of Environment, vol.
215, pp. 471481, 2018.

[21] Qiu, S., Lin Y., Shang R., Zhang J., Ma L., and Zhu Z., Making Landsat
Time Series Consistent: Evaluating and Improving Landsat Analysis
Ready Data, Remote Sensing (2019), doi.org/10.3390/rs11010051

[22] Fmask 4.0: Improved cloud and cloud shadow detection in Landsats 4-
8 and Sentinel-2 imagery, Remote Sensing of Environment. accepted -
pending publication

[23] Alisson R. Silva, Maury M. Gouvła, Lus F.W. Ges,
Carlos A.P.S. Martins, A parallel implementation of a cloud dynamics
model with cellular automaton, Mathematics and Computers in
Simulation, Volume 154, 2018, Pages 65-93, ISSN 0378-4754,
https://doi.org/10.1016/j.matcom.2018.05.020.

[24] Rojas, Raul. (1996). The Backpropagation Algorithm. 10.1007/978-3-
642-61068-4 7.

[25] Fukushima, K. Neural network model for a mechanism of pattern
recognition unaffected by shift in position - Neocognitron, Trans. IECE,
J62-A(10):658665, 1979.

[26] Fukushima, K. Neocognitron: A self-organizing neural network for
a mechanism of pattern recognition unaffected by shift in position,
Biological Cybernetics, 36(4):193202, 1980.

[27] Fukushima, K.Increasing robustness against background noise: visual
pattern recognition by a Neocognitron, Neural Networks, 24(7):767778,
2011.


