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Abstract: Falls are the main cause of susceptibility to severe injuries in many humans, especially for
older adults aged 65 and over. Typically, falls are being unnoticed and interpreted as a mere inevitable
accident. Various wearable fall warning devices have been created recently for older people. However,
most of these devices are dependent on local data processing. Various algorithms are used in wearable
sensors to track a real-time fall effectively, which focuses on fall detection via fuzzy-as-a-service
based on IEEE 1855–2016, Java Fuzzy Markup Language (FML) and service-oriented architecture.
Moreover, several approaches are used to detect a fall using machine learning techniques via human
movement positional data to avert any accidents. For fuzzy logic web services, analysis is performed
using wearable accelerometer and gyroscope sensors, whereas in machine learning techniques, k-NN,
decision tree, random forest and extreme gradient boost are used to differentiate between a fall
and non-fall. This study aims to carry out a comparative analysis of real-time fall detection using
fuzzy logic web services and machine learning techniques and aims to determine which one is better
for real-time fall detection. Research findings exhibit that the proposed fuzzy-as-a-service could
easily differentiate between fall and non-fall occurrences in a real-time environment with an accuracy,
sensitivity and specificity of 90%, 88.89% and 91.67%, respectively, while the random forest algorithm
of machine learning achieved 99.19%, 98.53% and 99.63%, respectively.
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1. Introduction

Falls are one of the prime reasons for fatality among older adults and create a barrier for
independent living in many cases. According to the statistics carried out by England and Wales [1],
fall is the main reason behind death-related injuries among older adults aged 79 and over and the
second leading reason for unintentional deaths among all ages. Early fall detection among elderly
people is a thoughtful conundrum reported by the World Health Organization (WHO). Approximately
28–35% of people between 65 and 75 years and 32–45% over 70 years suffer from a fall [2]. Current
research has shown that the incidences of falls among the older adults are on the rise; therefore,
as a precautionary measure, a system that responds to an older adult’s fall must be developed. It is
projected that by 2030, the number of fall-induced accidents is estimated to increase up to 100% [2].
A fall detection system can be an assistive tool with the primary principle of informing fall incidents.
One of the main design objectives of fall detection systems is to alert all types of fall incidences,
especially those related to Activities of Daily Lives (ADL) [3,4] thereby aiming to lessen injuries to
the spine, head or severe bone fractures. In certain countries, Personal Emergency Response System
(PERS) facilities are developed for the elderly in case a fall occurs. Reports indicate that 80% of older
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adults are unable to stand after a fall and fail to use PERS to seek assistance [5,6]. Therefore, a smart
automated and precise fall detection system will be a substantial part of daily living environment for
the elderly to rapidly detect and provide fast medical responses [7]. Various fall detection systems
involve using analytical data from images, videos and audio as well as data from inertial sensors like
accelerometers and gyroscopes [3,4,8].

Moreover, wearable sensors (i.e., accelerometers and gyroscopes) that stimulate human activity
monitoring using a rule-dependent Fuzzy Logic System (FLS) have been demonstrated [9]. Different
machine learning algorithms, such as k-NN, decision tree, random forest and extreme gradient
boosting, and Artificial Neural Networks (ANNs) detect a fall using wearable sensors. However, there
are few research studies that have been carried out to determine comparative analysis of real-time fall
detection using fuzzy logic web services and machine learning for analysing the performance of a
real-time fall detection system. In summary, the main contributions of this paper include:

• A comprehensive study on the performance of various fall detection machine learning techniques
to detect a fall.

• To analyse the performance of online and offline fall detection techniques. Specifically,
Fuzzy-as-a-service utilises an online real-time approach and machine learning as an
offline approach.

• To evaluate the efficiency of using fuzzy versus non-fuzzy approaches in wearable sensors-based
real-time applications.

The remainder of this paper is organised as follows. Section 2 focuses on review of related
literature with respect to fuzzy logic web services and machine learning techniques. Section 3 explains
in-depth the system architecture of a fall detection system in addition to the methodology using fuzzy
logic web services and a modelling approach using machine learning techniques. Section 4 emphasises
on the results and discussion. Section 5 concludes the study with future scope.

2. Review of Related Literature

A great deal of research has been carried out on fuzzy logic web services for real-time fall detection
by means of wearable accelerometer and gyroscope sensors, which can be referred in detail in [10].
This paper is an extension of the authors’ research work. Generally, the techniques employed for fall
detection systems can be categorised into three groups, namely, wearable devices, ambience sensors
and vision-based sensors [7,10,11].

(a) Wearable devices: Herein, a subject is required to wear a device or a sensor embedded in
his/her garment to track his/her posture and motion. Sensor data that is collected is used as
motion signals to analyse different body movements [12,13]. A specific threshold-based sensor
is used that triggers an alarm whenever the output of the sensor reaches a specific threshold.
Recently, motion-based sensors have been integrated with commercially based smartphones [14].
The advantage of using such sensors is that they provide flexibility and portability; however,
their false alarm rate is high.

(b) Ambient Sensors: Using various sensors to record human-related data whenever a subject is in
close proximity. The main idea is to identify changes in posture from standing to lying down
whenever a fall occurs. The limitation of this type of sensor is that accuracy detection is limited,
it is cost inefficient and false alarm occurrence is high.

(c) Vision-based sensors: An indoor camera is used to monitor a single subject’s movement.
A variety of video-processing algorithms use fall characteristics to determine a fall occurrence
such as Verso Vision. The limitation of this type of sensor is that they are immovable, and a
subject is confined to a region covered by a camera.

A great deal of research has been carried out in machine learning for fall detection. Table 1 shows
the taxonomy of fall detection. The system introduced in [15] is employed to classify the affected body
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parts in a fall as several three-axis acceleration sensors are used to measure the properties of various
positions. If the acceleration reaches the normal acceleration limit, the model can decide if there are
fall accidents. The model transfers the sensor information to the computer via wireless transmissions
for further analysis and assessment across different body parts. It employs the cognitive adjustment
method to adapt the range of acceleration of different body parts in different movements. The sensors
were added to six areas of the body to reduce people’s indisposition.

Authors in [16] proposed that body angular velocity threshold checks should be included for
detecting a fall with significantly improved standards. By including such standards, they were
of the opinion that the accuracy improved from 82.72% without a gyroscope to 96.2% with a
gyroscope. Because sensitivity and specificity are combined, optimising key levels by receiver operating
characteristic analysis was a systematic strategy to simultaneously maximise sensitivity and specificity.
A wireless, wearable sensor system comprising a three-axis gyroscope and an accelerometer were
placed at the centre of the chest. Tests were conducted in a laboratory environment for 36 individuals
with a total of 702 different moves. 50% of the dataset was used by the algorithm for fall detection,
including significant sensor thresholds, and the remaining 50% of the dataset was used for evaluating
the algorithm’s sensitivity and specificity.

Table 1. Fall detection research taxonomy.

Technique Sub-Category Ref. Year Sensor Type
Performance

Accuracy Sensitivity Specificity

Wearable-based Attached to the body [15] 2011 Multiple tri-axial accelerometers – – –
[16] 2015 Accelerometer and gyroscope – 96.3% 96.2%
[17] 2013 Accelerometer and gyroscope 99.38% 100% 99.38%

Mobile phone-based [18] 2011 Multiple cameras – 99.7% 99.7%
[19] 2008 Multiple cameras 100% – –

Classification algorithm-based Machine learning [20] 2013 Tri-axial accelerometer 100% 100% 100%
[21] 2016 Tri-axial accelerometer 97.2% 91.7% 100%
[22] 2015 Accelerometer and magnetometer 97.7% 99.3% 96%
[23] 2014 Accelerometer 97.5% 97% 99%
[24] 2017 Accelerometer and gyroscope 99.23% 99% 99.37%

Threshold [23] 2014 Accelerometer and gyroscope 93.3% – –
[25] 2015 Tri-axial accelerometer and gyroscope – – 100%
[16] 2015 Thri-axis accelerometer and gyroscope 90% 96.3% 96.2%
[26] 2006 Bi-axial gyroscope 100% 100% 100%
[17] 2013 Accelerometer and gyroscope 99.38% 100% 99.38%

Authors in [22] have proposed a support vector machine-based fall detection using low-cost
Android smartphones. The proposed device had identified a total of 149 falls. The only event hidden
in the fall was simulation with a syncope. With regard to ADL, there were merely six ADL incidents
that were believed as fall events. Five imitations of collapsing on a chair and an imitation of lounging
on a bed were the six ADL events incorrectly categorised as falls. Motorola Moto G (ver. 4.4.4) has been
selected to fit the LIS3DH three-axis accelerometer with ST Microelectronics, an ultra-low power sensor
with I2C and SPI interfaces with a selectable full scale of ±16 g and competent of delivering data
output rates to a maximum of 5 kHz. It also embedded a three-axis compass AK8963 that integrated a
magnetic sensor that has a measuring range of ±4900 T.

A smart phone accelerometer-based detection solution using a decision tree was proposed
in [23]. The proposed approach could accurately predict fall events deprived of disrupting users
with unnecessary false alarms, while offering the benefit of unaltering a user’s habits because limited
external sensors were needed. An unobtrusive fall detection system was proposed that made use
of an amalgamation of information acquired from the classification of machine learning used in
a state machine algorithm. Once the phone was in the user’s belt or pocket, the data from the
smartphone built-in accelerometer was screened unremittingly. The position of the user was monitored
on identifying a fall occurrence, and short message service and electronic mail alerts were directed to a
series of acquaintances.

Authors in [24] suggested a method that uses threshold-dependent ANNs. Threshold-driven
feed-forward (FF) algorithm in ANN has the potential to improve the specificity and predictability
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of a fall detection method from 96.25% to 99.37% and 97.69% to 99.23%, respectively. The intensity,
however, was marginally decreased from 100% to 99%. This occurred on account of the prospect to
give erroneous identification of ANN resulting in false negatives. Their research work aimed to build
and create a modern waist-mounted fall detection device (Fallz 1.0) using an accelerometer and a
gyroscope to monitor body orientation and rotation by motion sensors. Fallz 1.0 uses a motion sensor
with an accelerometer and a gyroscope. Users wear the fall detection device. The body orientation and
movement data comprising linear acceleration and angular velocity were transmitted to the algorithm
for fall detection. The system alerted the fall and reported it to a caregiver or an observer to provide
adequate assistance.

A web-based data language for FLS characterizations is the key criterion for implementing FaaS
architecture. The current standard for this purpose is the IEEE-1855 (2016), also known as FML [27],
an XML-based mark-up language allowing the human readable and hardware-independent definition
of an FLS. FML and FML-compatible pieces of software such as JFML [28] are used as the basic design
standard in this study, and the extensibility of this standard is a solution to architecture growth.

Soto-hidalgo et al. [28] proposed an open source Java library, i.e., JFML, which presented a
complete implementation of the IEEE standard having a capacity to impart fuzzy systems as per
different norms and programming. Arcos et al. [29] developed an interoperability unit to design and
run FLS for embedded systems in JFML, particularly for Arduino boards. Moreover, they defined
a transmission protocol between JFML and Arduino boards, which removed regulated computing
capability proffered by embedded systems. Alcala-Fdez et al. [30] expounded a Python wrapper for
JFML (Py4JFML) that permits to use all JFML functionalities via Python programming language.

Considering the above review of related literature, this study aims to carry out a comparative
analysis of real-time fall detection using fuzzy logic web services and machine learning and try to
determine which one is better for a real-time fall detection.

3. Proposed System

Figure 1 indicates the general structure of the system proposed, containing three main steps,
i.e., data acquisition, data processing and feature extraction of fuzzy data. Specifically, data from the
accelerometer and gyroscope are continuously sampled and stored prior to the fall event.

Figure 1. System architecture of a fall detection system.
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3.1. Fuzzy Logic System

A normal fall can be typically viewed in three states: complete floating, state of impact and
inactivity. The accelerometer and gyroscope then remove three functionalities. Checking to cause a
sudden shift in acceleration in complete floating and impact states is one of the simplest methods
for predicting the event of a fall. Like ADLs, hand clapping can easily trigger false alarms for
wrist-wearing applications. During a fall, the flipping and spinning of hands might turn out to be
critical. Two outputs can be obtained from the stage of data processing, Delta A (DA) and SVM
values. Nevertheless, two simple criteria that distinguish falls for different people from all fall ADLs,
particularly for the presence of constantly moving hands, are very difficult to determine. A fuzzy logic
framework is implemented to solve the narrow thresholds provided by conventional Boolean logic 0
(fall) and 1 (non-fall) [26]. The fuzzy logical system takes the inputs over and takes a number of steps
to generate vagueness-dependent output in an explicit testing. A standard fuzzy logic procedure is
carried out in three phases, namely fuzzification, rule base and defuzzification. Fuzzification comprises
fuzzifying each input values as a fuzzy membership function, fuzzy input set and compounding.
Fuzzification turns signals into a fuzzy logic (low, medium and high) with degree of truth. The system
is a dual input system which contains DA and SVM are the function of three members, i.e., low,
medium and high DA values or low, medium, and high values, respectively. Memberships in a scheme
are drawn and every membership is classified as turning points with different DA values choosing
three turning points, i.e., 20, 45 and 90. Falls usually occur in 90, but some falls can occur in <90◦,
and an exact DA cannot be determined by the wrist-worn sensor.

(a) Fuzzify each input values as a function of fuzzy membership: Implement every necessary law
to quantify the fuzzy output functions. To get “crisp” performance values, de-fuzzify the blurry
output functions.

(b) Fuzzy input set: SVM is the first input that contains three values, i.e., low, medium and high.
(c) Compounding: Set a minimum angle, leading to a 45◦ fall, and see it as a medium angle.

The lower and extreme angles are 20◦ and 90◦ respectively. The size of all 0◦ to 180◦memberships
were calculated by the minimum and maximum angles that the sensor may calculate. In that
basis, if the angle is >45◦, then the accident is more likely to be called a collision.

(d) Rule base: To perform this experiment, a total of nine rules were created for identifying whether
it is a fall or not.

(e) De-fuzzification: It is one of the main phases in the method that uses fuzzy logic to transform
a fuzzy output set into a crisp value. As the input given to the system includes three values,
i.e., low, medium and high, the output of the system offered three values, i.e., low, medium
and high [10].

3.2. Methodology Using Fuzzy Logic Web Services

Following steps were used to obtain real-time fall detection using fuzzy logic web services:
(a) Data collection using wearable sensors: This study made use of an experimental dataset that

is prepared with linear accelerometer sensors and gyroscope sensors installed in a smartphone, which is
collected in real-time mode. Linear accelerometer sensors detected a fall or non-fall, whereas gyroscope
sensors measured orientation and angular rotation. It consisted of time period and tri-axis human
movement positioning data in addition to fall and non-fall labels. The labels contained information
such as backside, forward and side falls (i.e., both left and right), normal walk and running. In total,
data was gathered from six subjects, i.e., two subjects (20–25 years), 2 subjects (25–30 years), 1 subject
(30–35 years) and 1 subject (60–65 years). The duration of each type of movement for the six subjects
was 9–11 s. Data collection rate of the sensors was 419 Hz. For the five labels, each subject performed
the aforementioned activities once. The classes were tested with different techniques. Moreover, it was
determined that location data differed over time and was close to 0 in the event of a fall [10].

(b) Data exploration: Different features were assessed by means of several investigative
techniques. Figure 2 shows the flow chart of the proposed fall detection system. Diagnostic data helps
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in analysing nature as well as pattern of a fall as it provides an in-depth discernment. Positional data
ensures continuous distribution of a fall; so, it is invigorated to analyse data that either follow normal
distribution or not.

Figure 2. Flow chart of the proposed fall detection system.

From the Figures 3 and 4, it is evident that data frequency at position 0 is very high (for example,
forward fall, backward fall and side fall), whereas in the case of a normal scenario data frequency
position varies at different positions (for example, normal walk and running). After analysing
data distribution by means of normal distribution and histogram plots, data visualization in
three-dimensional (3D) space was needed. It is apparent that in case of a fall, data are being plotted
based a fall’s direction, whereas in the case of a normal scenario positional data are being concerted.
3D visualizations aid in envisioning data representation at a high dimension.

Figure 3. Normal distribution of the obtained accelerometer and gyroscope sensors.
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Figure 3 shows a normal distribution in case of a fall. Sharp peaks at 0 can be observed,
which indicate the nature of a fall. From the figure, it is evident that data tends to follow a normal
distribution in case of a non-fall. For each class, data frequency in case of a fall and non-fall was
checked, which was assessed via a histogram plot shown in Figure 4.

Figure 4. Histogram plots of the obtained accelerometer sensor.

Note that it is crucial to inspect trends in positional data with time. In case of a normal scenario,
it was observed that positional data gets fluctuated with time and stay close to 0 in case of a fall.
Box plots help in visualizing positional data range in every scenario. As it has already been observed
in a normal distribution and trend plots, shows that in case of a fall, positional data ranges close to 0,
whereas in the case of a normal situation, positional data varies intensely.

3.3. Modelling Approach Using Machine Learning Techniques

The generated dataset consists of positional data accompanied by response variables. A response
variable is a multi-category variable with labels, namely backside, forward and side falls; normal walk
and running. The dataset is also balanced with equal proportion of each response variable to circumvent
the introduction of a bias factor in the model.

It is very important to identify the abstract features from the dataset in order to form a model
that can provide the expected outcome. Hence, selecting a model is a crucial task, so that we have
compared the performance of the selected machine learning model with model selection technique
with the artificial neural network model.

Figure 2 shows the flow chart of the proposed fall detection system where modelling is done in
three phases. In the first phase, the model selection technique is used to identify the best performing
multi-class classification machine learning (ML) model, which outperforms the others. In the second
phase, the selected ML model is used to build a fall detection system that can predict the response
variable. In the final phase, the performance of the designed two-layered feed-forward artificial neural
network is compared with the best selected ML model from the first phase.

In model selection phase, four classification algorithms are taken into account, i.e., k-NN,
decision tree classifier, random forest classifier and extreme gradient boosting.
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(1) k-NN: Each object is graded by a majority vote of its neighbors, and the entity being allocated to
the most common class of its nearest k neighbors. The purpose of considering k-NN model is
because the nearby linear accelerometer or gyroscope sensor data points may form a specific
pattern, which can be used to identify a fall or non-fall.

(2) Decision tree classifier: In decision tree classification, branches represent independent variables
and leaves represent class variables. The purpose of using decision tree classifier was to validate
the effect of decision tree learning for prediction of a fall and non-fall.

(3) Random forest classifier: It is a classification method for learning an ensemble. It is a set of
decision trees from a randomly chosen training subset. It predicts the final class by aggregating
the votes from various trees for decisions.

(4) Extreme gradient boosting: is also an ensemble learning method and a decision tree-based
algorithm where gradient descent optimization is used for minimizing errors to optimize
parallel processing, tree pruning and the model’s over-fitting.

A two-layered feed-forward ANN is also built to predict the fall. Here, the neural network can
help us to learn the latent features among the data which may not be captured using discussed ML
models. This neural network contains following layers:

- Input Layer: It has the same dimension as of input data. In our case, we have in total 6 features
where 3 features represent linear accelerometer and the remaining 3 features represent the
gyroscope data.

- Hidden Layer: There are 2 hidden layers, each having 600 neurons. Rectified Linear Unit (ReLU)
is used as a non-linear activation function.

- Output Layer: As this is a multi-class classification problem and here we are aiming to predict 5
classes (backside fall, forward fall, side fall, normal walk, running), there will be 5 neurons in the
output layer. Each neuron represent one class and at the end whichever neuron gets the highest
probability, will be the final prediction.

The Softmax regression is a type of logistic regression that normalises an input value into a value
vector that follows a distribution of probabilities with a total amount of up to 1.

S(y = j|z) = ez

∑k
j=0 ezk

(1)

where, we define the net input Z as,

z =
m

∑
l=1

wl xl = WTX (2)

here, W is weight vector, X is feature vector [31]. Softmax function computes probability that training
sample X belongs to class j that is forward fall, side fall, backside fall, normal walk, running, given the
weight w and net input z. Table 2 shows the result analysis of ANN with 20 epochs offering a training
accuracy of 93.28% and testing accuracy of 92.82% in 71 s.
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Table 2. A summary of the experimental work in the training and testing stages using ANN with
different number of epochs versus time-efficiency.

EPOCH
Training
Accuracy

(%)

Training
Loss

Testing
Accuracy

(%)

Testing
Loss

Time
(s)

1 48.96% 1.2248 60.04% 0.9999 63
2 65.81% 0.8732 71.47% 0.7354 64
3 74.47% 0.6733 75.74% 0.6421 69
4 79.51% 0.5595 79.81% 0.5469 69
5 82.63% 0.4776 82.66% 0.4945 69
6 84.78% 0.429 83.92% 0.4504 71
7 86.45% 0.3886 86.10% 0.3956 70
8 87.70% 0.3595 88.22% 0.3526 70
9 88.62% 0.3411 87.41% 0.3768 69

10 89.56% 0.3181 88.38% 0.3335 69
11 90.18% 0.3037 89.44% 0.3251 70
12 90.61% 0.2918 90.94% 0.2795 72
13 91.22% 0.2834 90.15% 0.3195 68
14 91.51% 0.2815 91.33% 0.2997 71
15 91.81% 0.2772 91.12% 0.3189 69
16 92.30% 0.2616 91.28% 0.2996 72
17 92.67% 0.2511 91.96% 0.2839 69
18 92.88% 0.2447 91.30% 0.3092 70
19 92.98% 0.2472 92.01% 0.2851 71
20 93.28% 0.2386 92.82% 0.2514 71

4. Results and Discussion

In order to test the fuzzy based fall detection algorithm, there are four specific choices:
True Positive (TP) shows that fall is accurately recognized, False Negative (FN) this means that
fall is not noted, particularly where fall occurs in very slow motion, True Negative (FN) indicates that
non-fall event categorised and, False Positive (FP) and True Negative (TN) non-fall event identified as
a fall. In this study, 30 samples were collected from 6 participants, 18 of whom were enrolled. In the
fall operation, 12 were held and 12 were held for non-fall behavior. The data set was divided into 70:30
of the train-test ratios. As shown in Table 3 the sensitivity outcome for fall activity is 88.89 percent,
specificity result could reach 91.67 percent as shown in Table 1 and 90 percent is the total accuracy of
fall and non-fall activities.

Table 3. Human activity monitoring result [10].

Predicted Condition Results

TP 16 TP + FN 18FN 02

TN 11 TN + FP 12FP 01

Sensitivity 88.89% Specificity 91.67%
Accuracy 90%

Table 4 shows a comparison of different machine learning algorithms in terms of their average
accuracy and standard deviation, and Table 5 shows the result analysis of Random Forest. In the model
building stage, the dataset has been randomly divided into training and test sets with a 70:30 split ratio,
respectively. A total of 97,320 samples were considered in our study, where 68,124 samples were used
as a training data set and 29,196 samples were used as test data set. Table 2 shows feed-forward ANN
which provides 92% accuracy. Although it is low compared with the RF method, it proves that ANN
can also be a good alternative if data becomes more complex. It is shown that the RF method offers
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a prediction accuracy of 98.53%. Moreover, the model can accurately predict the response variable
because it achieves an overall sensitivity and specificity of 98.53% and 99.63%, respectively.

Table 4. Comparison of different machine learning algorithms.

Model Selection

Algorithm Average Accuracy Standard Deviation

KNN 96.85% 0.20%
Decision Tree classifier 96.18% 0.14%

Random Forest 99.19% 0.10%
XGBoost 84.18% 0.53%

Table 5. Result analysis of Random Forest.

Random Forest

No Action TP TN FP FN Sensitivity Specificity

1 Backside Fall 5645 23,482 45 24 99.25% 99.48%
2 Forward Fall 5678 23,408 45 65 97.99% 99.43%
3 Side Fall 6003 23,114 33 46 98.33% 99.73%
4 Normal Walk 5866 23,270 39 21 98.94% 99.74%
5 Running 5806 23,312 36 42 98.13% 99.76%
- Average 5799.6 23,317.2 39.6 39.6 98.53% 99.63%

5. Conclusions and Future Scope

Through successful implementation of the newly accepted IEEE-1855-2016 standard [9], this study
presents analyses of real-time fall detection using a web-based service-oriented FLS architecture
and machine learning-based methods. Fuzzy-as-a service [10] is capable of detecting a fall and a
non-fall with an accuracy of 90%, whereas machine learning techniques can detect five classes of a fall,
i.e., side fall, back fall, forward fall, walking and running with a maximum accuracy of 99.19% offered
by the random forest technique. This paper confirms that fuzzy-as-a-service is capable to detect a fall
from real-time data as it requires minimum hardware and software specification. Hence, this paper
proposes a cloud-based fuzzy-as-a-service to generate real-time results. The main purpose of using
fuzzy-as-a-service is to permit multipurpose delivery from clients to dedicated servers that perform
complex computations, which are required for FLSs. Unequivocally, the use of virtualized cloud
services provides the proposed system with elasticity. Reuse of existing data, balancing load amongst
FLS devices and cost-efficiency are some of the advantages offered by FLS architecture. Future work
could be to investigate the capabilities of the developed methodology in processing uncertain data
for uncertain decision-making support scenarios in AAL through developing a service-oriented and
web/cloud-based architecture for addressing the associated problem with uncertain data processing
in AAL. This will involve exploring the applications, and possibly extending the standard web
communication protocols for fuzzy logic systems, for example, IEEE 1855 and its associated software
libraries. Future work can also evaluate the performance of the present wearable devices and ambient
sensors such as Apple Watch Series 4, Bay Alarm Medical and Walabot.
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Abbreviations

The following abbreviations are used in this manuscript:
ADL Activity Of Daily Living
ANN Artificial Neural Network
FLS Fuzzy Logic System
FML Fuzzy Markup Language
ML Machine Learning
PERS Personal Emergency Response System
ReLU Rectified Linear Unit
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