
Scheduling Highly Available Applications on Cloud

Environments

Marc Eduard Fr̂ıncu

Research Institute e-Austria and West University of Timisoara
Timisoara, Romania

Email: mfrincu@info.uvt.ro

Abstract

Cloud computing is becoming a popular solution for storing data and execut-
ing applications due to its on-demand pay-per-use policy that allows access
to virtually unlimited resources. In this frame applications such as those
oriented towards Web 2.0 begin to be migrated on cloud systems. Web 2.0
applications are usually composed of several components that run indefinitely
and need to be available to end users throughout their execution life cycle.
Their availability strongly depends on the number of resource failures and on
the variation in user hit rate. These problems are usually solved through scal-
ing. A scaled application can span its components on several nodes. Hence
if one or more nodes fail it could become unavailable. Therefore we require a
method of ensuring the application’s functionality despite the number of node
failures. In this paper we propose to build highly available applications, i.e.,
systems with low downtimes, by taking advantage of the component based
architecture and of the application scaling property. We present a solution
to finding the optimal number of component types needed on nodes so that
every type is present on every allocated node. Furthermore nodes cannot
exceed a maximum threshold and the total running cost of the applications
needs to be minimized. A sub-optimal solution is also given. Both solutions
rely on genetic algorithms to achieve their goals. The efficiency of the sub-
optimal algorithm is studied with respect to its success rate, i.e., probability
of the schedule to provide highly available applications in case all but one
node fail. Tests performed on the sub-optimal algorithm in terms of node
load, closeness to the optimal solution and success rate prove the algorithm’s
efficiency.

Preprint submitted to Future Generation Computing Systems April 3, 2012

Keywords: cloud scheduling, multi-objective scheduling, meta-heuristics,
nonlinear-programming, high available systems

1. Introduction

Cloud computing has become a popular solution for storing data and
executing applications for many companies due to its on-demand pay-per-
use policy which allows access to virtually unlimited resources. Public cloud
providers such as Amazon, Google, Microsoft or Rackspace offer access to
their data centers by means of infrastructure (e.g., Amazon EC2 [1], Rackspace
cloud [2]) or platform (e.g., Google App Engine [3], Microsoft Windows Azure
[4]) level APIs. There even exist solutions for companies that wish to create
their own cloud systems (e.g., Eucalyptus [5], OpenStack [6]). For compa-
nies as well as for private users choosing to switch to a cloud based solution
does not come without risks such as network crashes and splits, data center
failures or even security breaches. A key aspect when migrating to cloud
computing is to ensure the application availability in case of failures.

For Web 2.0 applications it is essential to minimize the impact of failures
throughout the application’s life cycle and to constantly monitor and adapt
resources to user request rates and failures through automatic scaling (cf.
Sect. 4).

Web 2.0 applications usually consist of several interlinked components
(e.g., web server, database, application logic modules or cloudlets [7], com-
munication server) which need to scale according to user request rates. Due
to this modular approach a further requirement, especially in case of failures,
is to ensure that all required components execute on the remaining resource
nodes. This guarantees that despite a possible considerable drop in the ap-
plications’s performance, caused by under provisioning or node failures, the
application is still able to handle a certain percent of the user requests. In
this way the application’s ability to handle large incoming requests is dimin-
ished – but not halted – until the components are scaled back to fit the size
of the request rate.

In case of performance drops the average response time (milliseconds to
seconds) increases. This causes some users to experience long response times
and even timeouts. For profit oriented websites this translates into less profit
being made, due to low page clicks or commercial activities.

We mentioned earlier the notion of availability. In web based applica-
tions this is defined as the ratio between the number of serviced requests and

2

the total number of requests [8]. It is also generally expressed in terms of
“number of nines”: the more “nines” the less denial of service messages in
minutes per year [9]. According to Gray et al. [9] High Availability (HA)
means an availability of 99.999%, i.e., 5 minutes of unavailability per year.
High-availability systems are characterized by fewer failures and faster repair
times.

Two major issues arise when dealing with scalable and component based
applications that need to be HA. First, as nodes cost it is undesirable for
long running applications to rent extra resources as in the case of many HA
cluster systems that require N+M nodes to operate (cf. Sect. 2). Second, as
applications are modular we could end up isolating on several nodes partic-
ular components. In case the hosting nodes would fail our application would
experience a drop in its availability while it restarts the failed resources.

In this paper we propose a solution for these two problems by introduc-
ing a method of placing each application component type on every needed
node. Hence we (1) avoid allocating unnecessary extra nodes and (2) ensure
with a certain degree of probability that in case only one node remains the
application would still execute – although at a slower rate – as though all
the required components types were available on it.

The proposed scheduling algorithms consider the method of scaling
to be known a priori and focus on searching for an optimal allocation of
components on nodes in order to ensure a homogeneous spread of compo-
nent types on every node. Numerous current scheduling strategies (cf. Sect.
2) assume short-to-medium lived tasks (e.g., bag of tasks, MapReduce or
parameter sweep applications) and ignore the Web 2.0 applications which
are inherently long (or infinitely) running. Despite the apparent simplicity
of such schedules it is often the case that we need to periodically migrate
components in order to optimize node load, minimize communication costs
between nodes and ensure HA.

The rest of the paper is structured as follows: Section 3 describes the
application model by introducing the mathematical formalism used through-
out the rest of this work. Section 4 presents two scheduling algorithms for
achieving HA in the context of this paper. We first address the problem of
component and node scaling (cf. Sects. 4.1 and 4.2) as they are essential
aspects in the proposed algorithms. Section 4.1.1 deals with the special case
in which the components’ loads are known and gives an optimal solution to
the number of components each node can accommodate. Section 4.2 presents
a pro-reactive algorithm for node scaling based on the user hit rate. Section

3

4.3 then presents the two algorithms used to schedule components on nodes
and to reactively allocate nodes if no suitable node exists – i.e., the pro-
active algorithm failed to allot the necessary nodes. The optimal solution
can be used in case the loads of every component are known and is depicted
in Sect. 4.3.1, while Sect. 4.3.2 presents the algorithm for the general case.
The model used to measure the success rate of the proposed algorithms is
addressed in Sect. 4.3.3. Section 5 describes the testing scenarios and in-
cludes discussions on the provided success rate, node load and closeness to
the optimal solution. The paper concludes by reviewing some of the main
achievements of this study (cf. Sect. 6).

2. Related Work on High Available Systems and Cloud Scheduling

The issue of achieving HA systems has gathered a lot of attention with
work ranging from cluster and grid to utility computing. The overall prob-
lem can be reduced to the problem of placing virtual machines on a limited
physical node so that the number of physical resources is minimized. This is
also known as the bin packing problem [10] which is known to be NP-hard.

A popular technique towards HA systems is to use virtual resources that
are migrated in case of failures. Several commercial solutions including
VMware [11] and Xen [12] use it but take opposite approaches: VMware
is a reactive solution which restarts virtual machines on other resources in
case of errors. This leads to temporal delays in the application uptime. Xen
on the other hand uses a proactive method based on monitoring data and
migrates virtual machines before the predicted failure occurs. However this
approach has also a major drawback as failures are difficult to predict in
advance.

For Internet based services solutions include deploying load balancers
which in case one or more servers fail redirect the traffic to the remaining
ones [13] [14] [15] [16].

Loveland et al. [17] study how virtualization techniques can augment
HA and propose a simple redundant method for placing virtual machines on
multiple nodes.

Besides migration there are also solutions based on clustering. Databases
servers such as MySQL [18] and key value stores like Amazon’s Dynamo [19]
rely on it. In this approach processes are distributed to replication servers
by using DNS Round Robin [18] or key consistent hashing [19].

4

One interesting aspect concerning the migration based methods depicted
earlier is that they separate the HA from the allocation problem. This raises
an important question regarding their overall efficiency when virtual ma-
chines contain dependent applications.

Some work which considers HA as part of the allocation algorithm has
been done. Recently Machida et al. [20] proposed an optimal solution for
achieving HA systems by using redundant nodes. The authors also show that
for some cases their algorithm uses less than the N +M nodes needed when
classic and simple approaches such as First-Fit Decrease [21] are used.

Gottumukkala et al. [22] [23] propose a reliability-aware allocation al-
gorithm for achieving HA in large scale computing systems. In their work
they study the possibility of using only reliable nodes when allocating virtual
machines and show their solution to offer a greater improvement in terms of
waste time and completion time than the classic Round Robin approach.

All of the previous examples have relied on software to achieve HA sys-
tems, yet hardware solutions exist as well. For instance, in their work, Ag-
garwal et al. [24] propose a low-level isolation for fault containment and
reconfiguration for chip multiprocessors. Their method partitions the chip
into multiple failure zones which can be exploited by redirecting power from
failed chip multiprocessor components to remaining ones.

Our proposed scheduling approach is different from these strategies in the
sense that we address a specific problem – that of providing HA long running
applications – and also because we operate on top of virtual machines and
schedule co-located application level component processes. In contrast other
approaches – from industry, e.g., Google App Engine [3], IBM Cloudburst
[25]; or from academia, e.g., [20], [22] – schedule virtual machines by asserting
that one component instance runs isolated in its own virtual machine.

Another difference in our approach is that we take advantage of the in-
herit scalability property of Web 2.0 based applications and of the component
based (workflow-like) structure of these applications. Cloud systems rent re-
sources on an hourly basis and for long running applications this induces
regular costs. Therefore applying traditional solutions which allocate redun-
dant resources only increases the overall cost. Due to the fact that scalable
applications usually require several components of the same type to coexist
in order to cover the requests a solution would be to spread the component
types homogeneously on every needed node. In this way we ensure that in
case all nodes except one fail we still have all the application components
running. So we both achieve HA without needing extra nodes and minimize

5

the actual number of used nodes.
Virtualization is a key aspect in cloud computing as it allows to harvest

the full potential of the “unlimited” resource pool of these systems. Since we
have already mentioned attempts to integrate HA with allocation (schedul-
ing) algorithms have been made. However most scheduling solutions used
in the industry still use simple scheduling heuristics and either offer the HA
as an additional feature [19] or rely on existing virtualization techniques to
deal with it [11] [12]. Examples include the Round Robin approach taken
by Amazon [1] or Rackspace [2] which offers several policies including con-
figurable random, Round Robin, weighted Round Robin, least connections,
and weighted least connections.

Cloud scheduling has been widely addressed in recent years in academia
as well. For instance we have a variety of methods for determining the
(sub-)optimal schedules: linear programming [26] [27] [28], multi-objective
functions [29] [30], genetic algorithms [31] [32] [33] [34], statistical estimates
[35], dynamic selection of the best schedule [36] or feedback control loops
[29].

Genetic Algorithms (GA) proved to give good results [37, 38] when schedul-
ing Grid applications. It comes with no surprise that they have been widely
proposed for Cloud systems also. They are split into algorithms for virtual
machine scheduling and for application scheduling. Due to their nature GAs
allow the exploration of a wider ranger of solutions through mutations and
crossovers. They can be used in solving multi-criteria optimization too.

Gu et al. [33] propose a GA for scheduling virtual machines and show it to
be efficient with regard to other approaches such as Least-Load or Rotating-
Scheduling. In [31] Zhong et al. present a GA that relies on the Dividend
Policy in Economics in order to select a(n) (sub)optimal allocation for the
virtual machine requests. Tests show the algorithm to perform better than
Eucalyptus, OpenNebula [39] or Nimbus [40] schedulers and faster than the
traditional GA for Grid scheduling.

Tayal [32] depicts a GA for scheduling independent tasks on clouds but
focuses on tasks with execution times rather than long running applications
as we do. Zhao et el. [34] also propose a GA for independent and divisible
tasks for distributed systems but do not consider costs such as those for
renting resources (i.e., nodes and network bandwidth). A short overview of
a GA relying on the Lexi – search is given in [41]. The paper however lacks
any validation of the algorithm’s efficiency.

Linear programming is another efficient scheduling technique as it allows

6

schedulers to determine the optimal placement of tasks on resources.
Paper [28] proposes a SA that relies on a binary linear programming

model to optimize cost for deadline constraint applications. Tests are per-
formed on both public and hybrid (public + private) clouds and show the
efficiency in the former case. Results prove however that the method is time
consuming and that the dependency between the time needed to solve the
problem and the number of applications to be scheduled is almost linear.

Another solution based on linear programming is given by Mao et al. [26].
They propose a solution to automatic scaling by operating inside a deadline
and budget constrained environment. The approach is different from our
own as we target long running application and not deadline constraint ones.

Chaisiri et al. [27] propose an algorithm called OVMP (Optimal Virtual
Machine Placement). It relies on a linear programming model for deter-
mining the optimal placement of virtual machines. The optimal allocation
cost is computed given probability distributions of future demand and prices.
Foreseeing demand is an interesting approach and could be applied to some
extent to Web 2.0 applications when predicting future hit rates.

3. Application Model

In what follows we focus on Web 2.0 applications and present the appli-
cation model used to represent them.

Web 2.0 applications are ideal candidates for studying HA and scalability
in cloud systems as they are characterized by long running times (almost all
run indefinitely) and high variations in user access rates. The latter is known
to depend on (1) visitor loyalty which forms a constant (non-negligible) back-
ground load and (2) occasional events that trigger usage spikes by capturing
the attention of a high number of users for short (to medium) periods of
time. These spikes can be either predictable – in case the triggering event
is previously known, (e.g., sport events, etc.) – or unpredictable – in case
of randomly occurring events (e.g., media hype, disasters, etc.). Figure 1
depicts an example Web 2.0 application in the form of a social-web site that
allows users to add, vote and retrieve news for a certain topic.

We model the architecture of Web 2.0 applications by using components
and connectors (C/Cs).

A component is seen as a module that handles part of the overall ap-
plication logic. This includes web servers – responsible for handling HTTP

7

Figure 1: Overview of the social-news Web 2.0 test application

requests and responses –, databases – for managing required data – and back-
end services – that perform application specific tasks. Components run on
(or consume) cloud resources such as virtual machines and block devices,
cloud file-systems or databases.

A connector is viewed as a communication tunnel between several com-
ponents. It can be represented by a socket or message queue described by
the AMQP standard [42].

The social-web application depicted in Fig. 1 can be easily mapped on
a C/C architecture as shown in what follows. Each individual module (e.g.,
web server; add news, vote news, list news and detect spam subroutines;
database and messaging system) can be seen as a distinct component which
interacts with other components through connectors represented by message
queues. Message queues have several advantages over sockets as they not
only allow asynchronous calls but also make communication transparent as
components only need to know the queue address and not the IP and port
of the partner components. The obtained application has seven component
types and one connector type.

3.1. Mathematical Model

Given the described application design we present the mathematical no-
tations and model used for representing it.

8

The set of components that make up an application is defined as a set
C = {c1, ..., cm}. Based on this set we define the connectors by using a
directed graph D in which a component ci is said to be connected with cj if
there exists an edge (i, j) ∈ D.

Every component has an input and output throughput. Throughput is
a measure of the rate in which messages from/to the components are being
consumed/produced per time unit (e.g., seconds). We assume the through-
put values to be, for every component type, within predetermined limits and
consider that large fluctuations outside these boundaries are caused by com-
ponent malfunctions due to internal logic errors. The limits inside which the
throughput varies are considered to be determined a priori by using pro-
filing techniques. An input/output throughput of a component ci from/to
component cj is represented by rinij respectively routij . This means that ci can
consume rinij messages per second from cj and can produce routij messages per
second to be consumed by cj. While it can be argued that the time needed
to consume/produce a message also varies depending on network load we
assume in what follows that these fluctuations are small enough to be ne-
glected. This can be backed by the fact that most HTTP communication
with a website contains with few exceptions (e.g., file tranfers) small message
bodies (e.g., the average size of a web page is around several kB).

In general routij 6= rinji . Figure 2 exemplifies the throughput of the social-
web application (cf. Fig. 1) in case only one component from each type
exists.

An efficient application which does not need to scale is one in which a
component’s cj input throughput for consuming messages can handle the
output throughput of ci, with (i, j) ∈ D:∑

j:(j,i)∈D

rinji =
∑

i:(i,j)∈D

routij (1)

Relation 1 is usually not true for a platform that handles only one instance
of each component type. The motive for this is that usually every component
has different input/output throughputs, i.e., ∀ci,cj∃routij ,rinji

(rinji 6= routij). This

paper tries to overcome this aspect by providing a scaling mechanism in
which Relation 1 is met for every application, even newly deployed ones.
This is usually achieved through scaling and Sect. 4 will further detail this.

As mentioned in Sect. 3 components communicate through connectors
that can be modeled as queues. So every component has a queue from which

9

Figure 2: Example of input/output throughputs for every component of the application
depicted in Fig. 1

it consumes messages at the rate given by its input throughput. Similarly
it produces messages at a certain output throughput and places them in the
queue linking it to the next component. As such any request req needs to
loop through the entire application graph D in order to return to the sender.
The time needed for this operation is called response time and is computed
based on Relation 2:

response timereq =
∑
ci∈C

(⌈req posqueueinji
rji

⌉
+

max

εi(t), ∑
(i,l)∈D

⌈
req posqueueoutil

ril

⌉ (2)

where response timereq ∈ N; queueinji and queueoutil represent the input re-
spectively output queues of component ci; req posqueueinji and req posqueueoutil

represent the positions in the input/output queues of message req; and εi(t)
is a function of time representing the actual time needed by ci to process req.
The relation indicates that a message can be read from only one queue but
can be published in any number of queues (the second term of the sum).

The response time should always be minimized. This happens when: (1)

10

req posqueueinji ≤ rji (i.e., req can be consumed immediately); (2) req posqueueoutil
≤

rij (i.e., req can be published immediately); and (3) εi(t)→ 0. The last con-
dition is hard to achieve as it depends on resource processing power at time t
and on the size and dependencies of req. The first two conditions are however
achievable (by ensuring Relation 1 with a certain ε limit) through component
scaling as discussed in Sect. 4.1.

The set of allocated nodes is represented by a set N = {n1, ..., nk}. Nodes
can be virtual machines inside one or several clouds or physical machines
located in a data-center.

Each node nk can hold one or more virtual nodes (vn): nk = {vn1, ..., vnl}.
A vn is a homogeneous entity which executes instances of exactly one com-
ponent type. Hence it can be modeled by a multiset: vn = {cinstancesi }. The
vn is also atomic meaning that it can only be relocated as a whole and not
by moving individual components running inside of it. Vns can be seen as
containers for executing one or more components. In this way they are sim-
ilar with Java Virtual Machines which execute Java code. Their goal is to
isolate the execution of various types of components.

Next we define the notion of node load. Load is seen as the number
of processes that execute on a node. Closely linked to it is the concept of
resource usage which is sometimes considered to be a direct indicator of the
system load (e.g., the greater the load the higher the CPU usage should
be). Efficient components will always try to maximize the node usage (CPU,
memory, network, etc.). In our model we consider the two terms to be
interchangeable.

Therefore we define the node load λk as follows:

λk =
∑
vni∈nk

∑
cj∈vni

(ω1CLj + ω2MLj + ω3NLj) (3)

where: ωi is a set of objective weights and the triplet 〈CLj,MLj, NLj〉
represents the normalized values for CPU, memory and network usage of cj.

Cost is another important aspect that must be taken into account. Three
objectives need to be minimized in this aspect: communication cost, reloca-
tion cost and node load. Each of these plays an important role in computing
the final cost and while node load is not a monetary cost by itself it is indi-
rectly linked to the efficiency of the node: a load over a maximum threshold
τ can inflict delays in processing the requests which causes long wait times
for end users. Based on the objectives we define the cost of a component as:

11

costkCi
= ω

′

1reccost
k
ci

+ ω
′

2relcosti + ω
′

3λk (4)

where: ω
′
i represent another set of weights attached to each objective – the

objectives are normalized as they have different limits and units of measure;
reccostkci represents the recurring running cost for component i on Nk – e.g.
estimated network traffic costs, execution cost and other cloud services; and
relcosti represents the one-time relocation cost of component i – set to 0 if
no relocation occurred after the moment the component was last relocated
and its value was computed;

Considering that migration usually occurs by vn relocation we compute
its cost as:

costvn =| vn | ω′

3λk +
∑
ci∈vn

(
costkci − ω

′

3λk

)
(5)

As noticed the cost is represented by a sum between the load of the node
holding the vn and the cost of each component running it. Since costkCi

already contains the load of nk we need to subtract it from every component
cost and adjust the node load weight in order to properly obtain costkCi

from
costvn.

4. Component and Node Scaling

In Sect. 3.1 we mentioned that the efficiency of a Web 2.0 application,
seen as request response time, can be affected by fluctuations in user hit rate
and failures. This is true as in general routij 6= rinji which leads to increasingly
larger response times (i.e., response timereq ↗) as messages accumulate in
the queues. For Web based applications there is a limit to which a user
request is considered to have timed-out. This limit can be customized for
individual web servers but the default usually ranges between 120s for Mi-
crosoft’s IIS [43] and 300s for Apache Tomcat [44]. Any requests exceeding
this limit are simply dropped out when read from the queue by a component.

In this paper we consider a pessimistic random failure model in which all
but one node can fail at any given moment. We assume this scenario as it
allows us to test whether our proposed algorithms achieve or not HA.

From Fig. 2 it can be easily seen that there exists an incoming flow of user
requests to the component representing the web server (i.e., rin10). This flow
must be always satisfied by the application as any requests that are not dealt

12

with in due time force the users that issued them to experience increasing
waiting times (i.e., high web server response times). To solve this problem
the web server must always adjust to the user request rate. Since the I/O
throughput of a component cannot be changed dynamically as it depends
on the implementation the solution is to scale the components so that their
combined throughput matches the request rate. This operation has a cas-
cading effect as all the components need to scale accordingly to match their
throughputs. This increases the input/output throughput to cinstancesi rji and
cinstancesi rij, where cinstancesi represents the number of instances of components
having the type of ci. Relation 2 becomes in this case:

response timereq =
∑
ci∈C

(⌈req posqueueinji
cinstancesi rji

⌉
+

max

εi(t), ∑
(i,l)∈D

⌈
req posqueueoutil

cinstancesi ril

⌉ (6)

Thus we obtain in case of the input queue cinstancesi rji = req posqueueinji +

ε, ∀req ∈ queueinji ∀ε > 0 small enough. The same relation is true for
output queue. This ensures that any message will be consumed/produced
immediately. The proof is straightforward:

Proof. Let req ∈ queueinji arbitrarily chosen. Since Relation 1 is met as a re-
sult of component scaling within ε limits:

∑
(j,i)∈D c

instances
i rinji =

∑
(i,l)∈D c

instances
i routil +

ε, ∀ε > 0 small enough, we have: | queueinji |≤ cinstancesi rji, i.e., the input
throughput of ci can handle all the components of its input queue during one
time interval including req: cinstancesi rji = req posqueueinji + ε.

The proof for the output queue queueoutil is identical.

Component scaling is performed by creating new component instances
which bind to the same message queues as the originals. This ensures that no
additional operations are needed to reroute the excess messages to the new
components. When scaling occurs it is only inevitable for the existing nodes
to scale once the existing nodes get overloaded. Based on this fact we can
view node scaling as a side effect of component scaling. Section 4.2 details
how node scaling is performed in our approach while component scaling is
discussed in Sect. 4.1.

13

There are two approaches that can be used for predicting user hit rate:
reactive and pro-active ones.

Reactive methods (e.g., Rightscale algorithm [45]) usually require knowl-
edge of the current user hit rate. Based on it the scalability algorithm decides
to adapt the number of components accordingly. Despite its simplicity this
approach experiences a major problem in the fact that it takes time to start
up a node (e.g., up to 10 minutes for an Amazon EC2 spot instance). In case
of short bursts in the hit rate by the time the nodes are allocated the spike
could be already over. In addition the users responsible for the burst would
experience large response times caused by under provisioning.

Pro-active approaches are based on historical records to predict the future
behavior of the request rate. These methods include linear regression, auto-
regression of order 1 [46] [8], pattern matching [47] [48] or neural networks
[49]. Similar to their reactive counterparts these methods have disadvantages
too. Most pro-active methods have difficulties in catching drastic changes in
the request rate as they rely on data which might not have contained values
close to the unpredicted spike. This is the case for regression and neural
network based techniques as well as for pattern based methods in case the
historical data did not comprise similar patterns. In addition public cloud
providers usually rent nodes on an hourly basis and as such over provisioning
caused by prediction errors rises the costs unnecessarily.

In what follows we consider the method of predicting the user request rate
known. We focus on determining from the user hit rate the actual number
(1) of components and their placements such that HA is achieved, and (2) of
nodes needed to handle this rate. These results will be used in Sect. 4.3 by
the scheduling algorithms that we propose for ensuring HA.

4.1. Component Scaling

Component scaling in an application based on the model described in
Sect. 3 follows a cascade effect triggered by the number of web server com-
ponents needed to handle the flow of user hits. The number of web server
components needs to be determined so that the rate of producing messages
is always balanced by the rate at which they are consumed: cinstancesWeb Server =
user hit rate/rinWeb Server, where user hit rate represents the number of user
hits per time unit.

Starting from the number of instances the web server needs, the number
of each component type can be determined by using the dependency graph
D: | cinstancesi routij − cinstancesj rinji |≤ ε,∀ε > 0 ∀(i, j) ∈ D. The problem that

14

remains is that of finding exactly how many components of each type can be
placed on every allocated node.

As shown in what follows this problem can be solved by using nonlinear
optimization when information on the component load is known and through
GAs when the load is unknown.

4.1.1. Optimal Number of Components per Node

The optimal number of components of every type each node can hold can
be used by the allocation algorithm to decide whether or not to accept a new
component for nk. In case the component load is known the exact value can
be determined through nonlinear optimization as described next:

For simplicity we rewrite Relation 3 by considering the load of every
existing component load λckj on a node nk:

λk =

|nk|∑
vnk

i ,i=1

|vnk
i |∑

ckj ,j=1

λckj ≤ τ (7)

where τ represents the maximum admissible load for every nk.
In what follows we study the optimal number of components that can be

placed on a node nk for both homogeneous (identical components and nodes)
and heterogeneous (identical/different component types and different node
types) systems.

Determining the maximum number of components that nk can accom-
modate is trivial for homogeneous environments as all component and node
types are homogeneous. So we have λckj = λck′l

= λc,∀nk, nk′ ∈ N∀ckj , ck
′

l .

Based on this observation Relation 7 becomes:

| nk || vnki | λckj ≤ τ (8)

As | nk |=| nk′ |, ∀nk, nk′ ∈ N and | vnki |=| vnk
′
j |, ∀vnki ∈ Nk, vn

k′
j ∈

Nk′ for homogeneous systems the previous relation can be generalized for all
nk ∈ N :

| N || nk || vnki | λckj ≤| N | τ (9)

From Relation 8 the maximum number of components that can be placed
on nk can be determined as being | C |k=| nk || vnki |. We immediately

15

obtain the relation between the total number of components (| C |max), the
total number of nodes (| N |) and τ :

| C |max=
| N | τ
λc

(10)

When considering heterogeneous environments the problem of determin-
ing | C |max is more difficult as each node and component type has its own
characteristics.

In what follows we model the load of a heterogeneous system with | N |
nodes by extending Relation 7:

| vn1
1 | λ1

ctype1
+ | vn1

2 | λ1
ctype2

+ ...+ | vn1
|n1| | λ

1
ctype|n1|

= τ

| vn2
1 | λ2

ctype1
+ | vn2

2 | λ2
ctype2

+ ...+ | vn2
|n2| | λ

2
ctype|n2|

= τ

...

| vn|N |1 | λ|N |ctype1
+ | vn|N |2 | λ|N |ctype2

+ ...+ | vn|N ||n|N||
| λ|N |ctype|n|N||

= τ

(11)

It can be noticed in the previous relation that λc is dependent on the
component type residing on the vn and on the node itself. As the number
of component types is known we reduce the system of equations to one in
which we have exactly | Ctypes | unknowns instead of a variable number that
depends on | nk |:

α1
1λ

1
ctype1

+ α1
2λ

1
ctype2

+ ...+ α1
|Ctypes|λ

1
ctype|Ctypes|

= τ

α2
1λ

2
ctype1

+ α2
2λ

2
ctype2

+ ...+ α2
|Ctypes|λ

2
ctype|Ctypes|

= τ

...

α
|N |
1 λ

|N |
ctype1

+ α
|N |
2 λ

|N |
ctype2

+ ...+ α
|N |
|n|Ctypes||

λ
|N |
ctype|Ctypes|

= τ

(12)

where αki =
∑
| vnkj | is the sum of identical components running on node

nk and represents the unknowns in the system of equations. The system is
particularly difficult to solve when nothing else is known about nodes. More
precisely we need to know the type of nodes to be considered: homogeneous,
uniform or unrelated nodes. The following paragraphs describe how the
optimal number of components can be determined for each case.

Clouds usually expose their resources as virtual machines – called nodes
in this paper – for which there is no restriction on the degree of heterogeneity.

16

We first consider a set of homogeneous nodes. Thus we have a number of
heterogeneous components deployed on homogeneous nodes. Homogeneous
nodes are usually used when users are interested in or afford a single type of
resource.

In this scenario λkctypei = λk
′
ctypei

= λctypei ,∀nk, n
′
k ∈ N . By summing the

equations from Relation 12 we get:

| N | α1λctype1+ | N | α2λctype2 + ...+ | N | αCtypesλc|Ctypes|
=| N | τ (13)

Hence we reduced the problem of finding the optimal number of compo-
nents per vn to one of finding the optimal number of components per Ctype
for every node. The optimal value for this number can be found through
nonlinear optimization. For this we need to find the function to be mini-
mized. The function is easily determined as our goal is to balance the I/O
throughputs of every component. This is done by minimizing the following
equation based on the least squares method:

f =

|Ctypes|∑
i=1

∑
(i,j)∈D

(routij αi − rinjiαj)2 (14)

with the following constraints:{∑|Ctypes|
i=1 αiλctypei = τ

αi ≥ 1, ∀i = 1, | Ctypes |
(15)

where the first constraint ensures that the node is fully loaded and the second
one guarantees the HA of the application.

The function f : R|Ctypes| → R. As the solutions need to be integer values
we truncate the αi to their closest integer value.

The goal of Relation 14 is to find the optimal number of components such
that the outgoing throughput of every component is completely consumed
by the incoming throughput of the parter components. The ideal case is to
have f = 0;

When a scenario with uniform nodes is considered the system of equations
from Relation 12 can be reduced to:

17

α1
1λ

1
ctype1

+ α1
2λ

1
ctype2

+ ...+ α1
|Ctypes|λ

1
ctype|Ctypes|

= τ

α2
1β

2
1λ

1
ctype1

+ α2
2β

2
2λ

1
ctype2

+ ...+ α1
|Ctypes|β

2
|Ctypes|λ

1
ctype|Ctypes|

= τ

...

α
|N |
1 β

|N |
1 λ1

ctype1
+ α

|N |
2 β

|N |
2 λ1

ctype2
+ ...+ α

|N |
|n|Ctypes||

β
|N |
|Ctypes|λ

1
ctype|Ctypes|

= τ

(16)
where βki represents the scaling factor that correlates the loads of each com-
ponent on a reference node selected in this case to be n1. From the system of
constraints needed to find the optimal number of components (cf. Relation
15) it is only the first one that changes. By summing up the equations from
Relation 16 the first constraint becomes:

Ctypes∑
i=1

(
λctypei

|N |∑
j=1

αjiβ
j
i

)
= τ (17)

The case of unrelated nodes is the most difficult to solve because it is
impossible to determine a dependency between the equations in Relation 11.
To overcome this problem we must treat each one independently by applying
the nonlinear optimization for each equation independently. This gives the
optimal number of components per type for every node. The sum of these
values reflect the optimal number of components per type that can be placed
on the platform.

4.2. Node Scaling

Node scaling usually occurs when the existing nodes cannot handle newly
arrived components due to overloading. Ideally node allocation would occur
only after the optimal number of components – as determined after minimiz-
ing Relation 14 – on every node has been reached.

In reality this approach inflicts useless delays, usually caused by node
booting time in the web server’s response time. One solution to this problem
is to combine pro-active methods with reactive ones (as mentioned at the
beginning of Sect. 4). This allows us to reserve nodes in advance through
predictions on the hit rate and adjust these predictions on the spot by using
the actual hit rate.

The efficiency of this approach is high when adjustments are minimal and
the prediction is fairly accurate. As seen in Figs. 3(a) and 3(c) medium and

18

large traffic websites have cyclic patterns which can be easily predicted. In
case of Fig. 3 predicted values are based on a feed forward neural network
with five input and ten hidden elements. The X axis represents hours while
the Y axis shows the number of page hits. Low traffic websites are more
chaotic (cf. Fig. 3(b)) which makes predictions highly unreliable. A classic
prediction method – such as the one based on a neural network – would only
manage to catch the general trend of the traffic at best. The study of these
prediction methods does not make the topic of this research. Our intention
is only to point out the difficulty in predicting web hit rates as these affect
the reaction time of the scaling algorithms.

Once the number of components needed for the next time frame (t+1, t+2]
has been determined based on the user hit rate, the algorithm decides how
to scale the number of nodes.

Figure 4 shows a simple algorithm that we propose for scaling nodes. The
algorithm is a pro-active one and relies on the required number of components
at a specific moment. The fine tuning of the needed number of nodes will be
accomplished by the scheduling algorithms described in Sect. 4.3.

This algorithm relies on the difference between the current number of
components and the number of required components at t+ 1. Based on this
value it decides if it should consider adding (Lines 1–10) or removing nodes
(Lines 11–14). If the difference is positive then it checks if it can place the
extra components on the existing nodes (Line 4). Providing that new nodes
are needed it calculates the requirement and allocates the nodes (Line 7). If
the difference is negative the algorithm determines the nodes to be removed
based on the number of components on each node (Lines 11–15): the nodes
are ordered by the number of components and the first nodes to deallocate
are selected such that the sum of their components is approximately equal
to the number of components not needed anymore.

It can be noticed that this algorithm only allocates nodes and does not
place components on them. Component allocation is handled by the algo-
rithm presented in Sect. 4.3. The aim is to allocate nodes in advance in
order to minimize the effects of the node startup in case of sudden changes.

4.3. Algorithm for Achieving Application High Availability

In this section we present two algorithms for achieving HA by carefully
choosing where to (re)schedule components of certain types. The first leads
to an optimal solution and can be used in case the load of every component

19

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160 180

H
it
 r

a
te

Hours

Real

Predicted

(a) Small page hit rate

-500

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100 120 140 160 180

H
it
 r

a
te

Hours

Real

Predicted

(b) Medium page hit rate

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 20 40 60 80 100 120 140 160 180

H
it
 r

a
te

Hours

Real

Predicted

(c) Large page hit rate

Figure 3: Predicted vs. real traffic using neural networks

type is known. The second produces a sub-optimal solution and relies on a
GA to allocate components in case the component load is unknown.

4.3.1. Known Component Load

This scenario considers that the component load on any node type is
known a priori. The HA algorithm then proceeds as follows:

20

Require: Cexisting(t) - the set of components existing in interval (t, t+ 1]
Require: Cneeded(t+ 1) - the set of components needed for interval (t+ 1, t+ 2]
Require: N - the set of nodes
Require: nc new(t + 1) =| Cneeded(t + 1) | − | Cexisting(t) | - the number of new components needed

for interval (t+ 1, t+ 2]
1: if 〈nc new(t+ 1) > 0〉 then
2: Cnew(t+ 1) = Cneeded(t+ 1) \ Cexisting(t)
3: if 〈Cnew(t+ 1) 6= ∅〉 then

4: find subsets Cj
new(t+ 1) such that |

∑
ck∈C

j
new

λ
c
j
typek

−
(
τ −

∑|Ctypes|
i=1 αiλcjtypei

)
|→ 0

5: Coverload
new = Cnew(t+ 1) \

⋃
Cj

new

6: if 〈Coverload
new 6= ∅〉 then

7: create m new nodes such that |
∑

ck∈Coverload
new

λ
c
j
typek

−mτ |→ 0

8: end if
9: end if
10: end if
11: if 〈nc new(t+ 1) < 0〉 then
12: order nodes by number of components
13: sum up number of components of the first nodes to deallocate
14: stop when the sum given by adding the next node >| nc new(t+ 1) |
15: deallocate nodes to deallocate nodes
16: end if

Figure 4: Node scaling algorithm

The optimal number of components on each node is determined based on
Relations 14 and 15. Afterwards the initial placement of each component will
take place on a node that can accommodate a new instance of that particular
component type. The node must at the same time provide the least cost as
given by Relation 4. Once all nodes have been occupied or have become fully
loaded and new components still require to be created the algorithm creates
on the spot node instances. Figure 5 outlines the algorithm for the initial
component placement. The key point in the algorithm is depicted on Line 3
which indicates the selection of the node that will host the new component.
The selection is made by comparing the optimal number of components that
can be placed on the node with the already existing components of the same
type. If the optimal number has been reached on all existing nodes a new
node will be created to accommodate the component.

The new node will be initially populated with randomly picked vns (Lines
9–10) that can hold the new components (i.e., the optimal number of com-
ponents plus the new one is not exceeded on the new node).

Once a new node is created it gets populated with new or existing com-
ponents so that every type of component will find itself there. This process
usually requires to relocate vns from existing nodes. Deciding on which vn to
relocate is however a difficult problem as it depends on a global cost function

21

1: Nnew = ∅
2: while 〈Cnew 6= ∅〉 do
3: select nk ∈ N which can host ci
4: if 〈 found nk 〉 then
5: assign ci ∈ Cnew to vnj ∈ nk

6: Cnew = Cnew \ {ci}
7: else
8: create nnew

9: randomly pick vnj that can hold ci on nnew

10: move vnj to cnew

11: assign ci ∈ Cnew to vnj

12: Nnew = Nnew
⋃
{nnew}

13: end if
14: end while

Figure 5: Pseudocode of component initial component placement for the known component
load scenario

1: Generate the set of identical initial schedules:
2: S ← {S1, . . . , Sn}
3: while 〈the stopping condition is false〉 do
4: for i = 1, n do
5: S′

i ←perturb(Si)
6: end for
7: S ← select(S, {S′

1, . . . , S
′
n})

8: end while

Figure 6: Pseudocode of the genetic algorithm

which needs to be minimized. We opted for a GA as it allows us to explore
a wide range of solutions. Applied iteratively mutations and crossovers can
lead to improved results as the solution converges to a local sub-optimal so-
lution. The larger the initial population the more likely that a significantly
improved solution is obtained.

Figure 6 depicts the general structure of a GA. The uniqueness of each GA
is given by the perturb subroutine (Line 5). Perturbations in the population
are usually produced by element mutations through random relocations or
swapping. As each perturbation induces extra communication costs – due to
vn migrations – we restrict mutations from being obtained out of swapping.

The perturb version that we propose is depicted in Fig. 7. The idea is
to migrate vns of every existing component type from existing nodes to the
newly created ones as long as the latter remain underloaded.

The GA stops when all the component types are present on the new node,
when the node’s load has been exceeded or when the maximum number of
iterations has been reached.

22

1: for 〈nnew ∈ Nnew〉 do
2: while 〈not all component types on nnew and λnew ≤ τ and retries ≤ L1〉 do
3: randomly pick vn holding components of type not already existing on nnew

4: increment retries
5: end while
6: end for

Figure 7: Pseudocode of the perturb(Si) function in case the component load is known

4.3.2. Unknown Component Load

In case we cannot determine a priori the optimal number of components
the node load λk can be used instead by comparing it with the maximum
admissible load τ . The initial placement of newly generated components is
done as follows: first the node which provides the least cost (cf. Relation 4)
is selected; then the vn that holds the least number of components having
the same type as the new one is picked. This is done to minimize the chance
of leaving empty vns in case of relocations.

The scheduling algorithm for this case is depicted in Fig. 8.
By starting from an element in the population we first determine the set

of overloaded nodes (i.e., λk > τ). For every such node nk we try to find
an existing node that can hold randomly picked vns from nk. If the node
still remains overloaded after a number of attempts (maxIterationsk < L1)
we create a new node (nnew) spot instance. This will be populated with
randomly picked vns of every component type until λk ≤ τ . In case not every
component type is present on nnew an attempt to migrate the necessary vns
from other nodes will be made while keeping λnew ≤ τ .

If a mutated element holds all component types on every node it will
replace the former one.

The GA stops once the stopping condition (cf. Fig. 6) is met: one or
more elements have all component types on every node. If more than one
such element exist the one that has the least cost attached to it is selected
(cf. Relation 5). This selection is done by the select subroutine (Figure 6
Line 7).

The GA is executed every time new components are generated and placed
on nodes.

It is clear from the model that perturb subroutines for the two algorithms
(cf. Figs. 7 and 8) leave nodes underloaded. This is not an issue if we
consider that having a node load under the maximum possible value can
help when deallocating nodes as presented in Fig. 4.

23

1: for 〈nk : λk > τ〉 do
2: vnk

j ← random vn from nk

3: nm ← random node such that λm < τ considering also the load of vnk
j

4: if 〈not found nm〉 then
5: increment maxIterationsk
6: else
7: relocate vnk

j to nm

8: end if
9: if 〈 maxIterationsk ≥ L1〉 then
10: nnew ← newly allocated node
11: maxIterationsnew ← 0
12: while 〈λk > τ and λnew ≤ τ〉 do
13: relocate random vnk

j to nnew

14: end while
15: retries← 0
16: while 〈not all component types on nnew and λnew ≤ τ and retries ≤ L2〉 do
17: randomly pick vn holding components of type not already existing on nnew

18: increment retries
19: end while
20: end if
21: if 〈 λk < τ 〉 then
22: maxIterationsk ← 0
23: end if
24: end for

Figure 8: Pseudocode of the perturb(Si) function function in case the component load is
unknown

4.3.3. Success Rate of the Algorithm

The success rate of a system, i.e., system reliability, represents the
probability of obtaining “k” successes out of “n” trials [50]. In case of schedul-
ing algorithms we define the schedule’s π reliability rel(π) as its probability
to be successful. In our particular case this metric measures the capacity of
algorithm to produce schedules in which each component type is present on
every node so that each node remains underloaded.

In what follows we show how we can maximize rel(π) in the context of
this paper.

There are two major parts of the algorithm that have a direct impact
on its reliability, mainly the allocation of new nodes and the mapping of
components on existing nodes.

Given the creation of new nodes the first question that needs to be asked
is what is the probability of having all component types on every newly
instantiated nnew? Formally this can be expressed as:

24

Pr
[
nCtypes
new =| Ctypes |

]
=

∏
ctype∈Ctypes

Pr
[
∃ | vnctype ∈ nnew |> 0

]
(18)

where the product indicates that the probability events need to take place
simultaneously.

To ensure HA Relation 18 needs to equal 1. This indicates that we always
have all component types on every allocated node.

After a new node nnew is created the algorithm requires to relocate vns
on nnew. These vns come from overloaded nodes which need to increase
their performance by reducing their load. A restriction on the relocation
procedure is to maintain, after relocation, exactly | Ctypes | component types
on every preselected node nsel. In other words we need to maximize the
chance of having every vn populated with components. Empty vns create
the risk of leaving a node, after vn relocations, without the maximum num-
ber of component types. In order to achieve rel(π) = 1 we need to have

Pr
[
n
Ctypes

sel =| Ctypes |
]

= 1.

Nodes are usually created when the existing ones are overloaded. This
normally takes place when the probability of having overloaded nodes is large

enough, i.e., Pr
[
∃nk ∈ N : λk > τ

]
→ 1. Hence the scheduling algorithm

must maximize its chance of having only underloaded nodes each consisting
of | Ctypes | component types. Based on this requirement we can compute
rel(π) as:

rel(π) = Pr
[
∀nk

: n
Ctypes

k =| Ctypes |
](

1− Pr
[
∃nk : λk > τ

])
(19)

In what follows we give weak and strong conditions for maximizing Re-
lation 19 (i.e., rel(π)→ 1):

Condition 1. (weak) Newly created components should always be placed on
the least occupied vn.

Condition 2. (strong) The node load λk must not exceed the threshold before
all vni ∈ nk are populated.

It can be easily seen that Condition 1 reduces the number of empty vns
due to allocations of new components. However this condition alone does not

25

ensure HA. The reason is that having both empty and non empty vns, all
of them accommodating the same ctype, could lead to the probable event of
relocating only the populated vns. This would cause nsel to remain without
components of ctype type which would impact on the application’s HA.

To ensure the previous case does not happen Condition 2 needs to be
met as well. So node nk will not affect the application’s HA when vns are
relocated from it. For this reason we argue that Condition 2 is strong while
Condition 1 is weak and ensures HA only for particular cases that imply the
strong condition.

If none of the conditions is met the application’s HA cannot be ensured,
resulting a scenario similar with the one depicted in case Condition 1 is not
met.

5. Algorithm Evaluation

In this section we present the test scenarios as well as the results obtained
on the proposed algorithms.

5.1. Test Scenario

To test the behavior of our algorithms we validated them against two
scenarios one based on a real application graph and the other based on syn-
thetically generated ones.

Scenario 1 used the Web 2.0 application structure as depicted in Fig. 1.
The application consists of 7 component types: web server, message queue
server, database and 4 modules for adding news, voting news, listing news
and detecting spam. Except for the message queue server, every component
can scale. The application only requires 12 message queues (two queues
are needed for a bidirectional component-to-component communication) as
indicated by Fig. 2. As each queue can store an arbitrary large number of
messages – the number of queues being constant – there is no need for scaling
the message server. The fail-safe for this component is achieved through a
backup copy. Consequently we do not consider failures of the communication
server. The characteristics of each component were simulated as described
in Sect. 5.1.1.

A typical application use case proceeds as follows: Users start by access-
ing the web page through a browser. Depending on the HTTP request goal
(e.g., to add, vote or list news) the request is placed in one of the correspond-
ing message queues by the web server component. The receiver component

26

consumes messages and processes them. Every initial user request ends up
as a query on the database component. From this point forward the re-
sponse message follows the same route backwards until the user receives it
in the form of a HTTP response message. It can be noticed that the two
most heavily used components are represented by the database and the web
server.

Scenario 2 used a wider range of randomly generated application graphs
in order to test the efficiency and limits of our solution. Each graph was
generated by using the samepred method in which each component can be
linked to any existing component [51]. The number of components in a graph
ranged from 10 to 60 in increments of 10. As shown later this interval suffices
to determine the boundaries within which our algorithm can achieve HA.

A single type of connector exists for both scenarios and is represented by
the input/output message queues.

We assume that vns can only be migrated and not created at runtime.
Hence when the application is first deployed all the required vns are created
– even though some are empty.

Each application is initially instantiated on a single node having the re-
quired number of components adapted based on the maximum user hit rate a
single web server can cope with. To achieve HA we need to have every compo-
nent type on each node. As a result we created a number of | Ctypes | ×Nmax

vns on the first node so that we have enough vns to spread – in a worse
case scenario – our entire application component set on all the nodes we are
willing to rent.

5.1.1. Simulating Platform and Component Characteristics

An important aspect for performing the tests was to simulate platform
heterogeneity. For this we varied the component load depending on the
node type (i.e., homogeneous, uniform or unrelated):

For homogeneous components and nodes we used a load of λ = 0.5 for
every component type. Thus every component had the same load on every
allocated node: λkci = 0.5.

For heterogeneous components and homogeneous nodes we used a normal
variate N(0.5, 0.25) to depict the load of each component type.

In the case of heterogeneous components with uniform nodes we assumed
the node load changes as follows: for every nk node uniformity is modeled
by a uniform variate U(0, 1)k so that the load on each node is computed as:

27

λctypej ×U(0, 1)k, where λctypej represents the load as obtained from a normal

variate N(0.5, 0.25).
The last case is represented by heterogeneous components and unrelated

nodes. In this case we used a a uniform variate whose value was different for
every component and node. Hence we obtained the load of a component of
type ctypej on node nk to be λkctypej = λctypej × U(0, 1).

The maximum admitted load for every node was set to τ = 100.
To compute the cost of a component we needed besides its load, the

recurring and relocation costs. The former was computed based on the load
it inflicts on the network (i.e., λctypej /3) and on its throughput, while the
latter was computed based on its size which we assumed to be equal to its
memory load (i.e, λctypej /3).

Component throughput was modeled individually for each scenario.
For Scenario 1 we used values as depicted in Table 1. The unit of measure

is messages per second. Because web servers and databases usually handle
large number connections we let them exhibit a similar behavior by allowing
them to process twice as much as an application specific component (add,
view, vote and detect spam). This permitted us to simulate the scaling of the
web server and database as well. Because the application specific components
used in the example are similar and do not perform complex operations we
specified the same throughput rates for each of them. The only difference
was that we set the produce rate to be lower than the consume one.

Scenario 2 used for the input rate a normal variate N(175, 25) and for
the output rate N(160, 20). The output rate was intentionally set lower than
the input one as we needed to simulate a non zero processing time for each
message.

Throughput c1 c2 c3 c4 c5 c6

consume rate 100 50 50 50 50 100
produce rate 100 40 40 40 40 100

Table 1: The consume/produce rate per component type in messages per second

The user hit rate also required to be modeled. Together with the com-
ponents’ throughputs we used it for determining the number of required
components at any given moment. Two methods were employed to model
the arrival rate:

First we used an extrapolation polynomial based on the user activity

28

within a 24h period [52]. Second we modeled user hit rate based on proba-
bilistic methods. The work of Vicari [53] provides a starting point for describ-
ing HTTP session arrival rate and number of user connections per page. Both
of these can modeled by Weibull/Lognormal respectively Pareto/Lognormal
distributions. For our tests we used a Weibull distribution having a shape
parameter of 0.17 and a scale parameter of 0.60. A Pareto distribution with
a shape of 1.75 and a minimum value of 1.68 was also considered.

5.1.2. Test Goals

To test the algorithm we aimed at studying its behavior relative to two
key aspects that had been discussed in this paper. The first one, detailed
in Sect. 5.2.1, is linked to the algorithm’s ability to achieve HA. For this
we wanted to see if the algorithm is capable of distributing every component
type on every allocated node. The algorithm’s reliability (cf. Sect. 4.3.3) is
a strong indicator of this aspect.

The second aspect, studied in Sect. 5.2.3, is related to the heterogeneity
of the produced load on every node. A homogeneous load indicates nodes to
be used uniformly without over or under utilized resources. If the load is close
to the resource maximum capacity then we can assume that the resources
are fully utilized and also that none is wasted.

The tests focused on the behavior of the algorithm version for unknown
component loads. The motive behind this choice was that in the case of
known component loads we have an algorithm for obtaining the optimal
solution. Intuitively the algorithm for unknown component loads is more
chaotic due to its random relocation of vns and is consequently of greater
interest. Nonetheless to get a glimpse of how results vary in this case from
the optimal allocation we show the allocation difference for Scenario 1 (as
seen in Sect. 5.2.2).

For each test a total of 10 experiments were executed and the average
result was taken. Results were compared with a Round Robin algorithm in
use in many commercial cloud systems.

5.2. Test Results

5.2.1. Reliability Test

For Scenario 1 the results for the reliability tests are depicted in Table
2. The first column presents the model for generating the user hit rate as
described in Sect. 5.1. The reliability is computed based on Relation 19.
To determine it we generated 10 experiments and randomly picked all but

29

one node to fail. The existence of every component type on the remaining
node was checked and the experiments in which this happens were counted.
The value for rel(π) was then computed as the ratio between the number of
events in which the remaining node contained all component types over the
total number of experiments.

Table 2 shows the results for the case of heterogeneous component types
and unrelated nodes. The first aspect we were interested in was to check
the validity of Condition 1 – for maximizing reliability. It can be easily
noticed that the case in which the least occupied vn is selected for component
allocation (polynomial × 10 least loaded vn) gives a better reliability (0.98
± 0.05) than the case in which the most loaded virtual node (polynomial ×
10 most loaded vn) is picked as destination 0.84 ± 0.12.

Another aspect that we discovered was the fluctuation of the reliability
in case small and medium number of components are allocated (polynomial
and Pareto). This behavior can be explained by the fact that in this case
the number of database and web server instances is smaller than the number
of allocated nodes. Hence the probability to remain without any of those is
higher in case of failures.

For large number of components (Weibull) the algorithm’s reliability is
more than twice as good as the one offered by Round Robin. The same is true
for a medium sized number of components (both polynomial × 10 cases). It
must be noted however that the reliability in case of the Round Robin is
similar with that of our approach when a small number of components is
generated. The reason behind this behavior could be the circular distribu-
tion of components implied by Round Robin. In case of small number of
components (and subsequently nodes) this allocation method could lead to a
uniform spread of component types per node. The intuition dictates that the
same is true for large number of components and nodes. Yet this behavior
is not observed in this case. The reason for this is still under debate but
it could have to do with the way in which we adapted Round Robin to our
model.

Overall our proposed solution provides a higher and more stable reliability
than that of Round Robin, a fact attributed to the design of our algorithm
that is targeted for obtaining HA.

In order to check whether or not our algorithm has a limit on the compo-
nent types beyond which its reliability degrades we performed tests by using
Scenario 2. Results for a hit rate modeled by the extrapolation polynomial
are depicted in Fig. 9. It can be noticed that the only case in which the

30

Hit Rate Model # components rel(πOur) rel(πRoundRobin)

polynomial × 10 most loaded vn 922 0.84 ± 0.12 0.38 ± 0.11
polynomial × 10 least loaded vn 922 0.98 ± 0.05 0.41 ± 0.05

polynomial 81 0.89 ± 0.04 0.96
Pareto 65 0.96 ± 0.07 0.95 ± 0.11
Weibull 18,988 0.96 ± 0.06 0.41 ± 0.29

Table 2: Reliability results for the case of heterogeneous component types and unrelated
nodes

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60

R
el

ia
bi

lit
y

Component Types

Homogeneous nodes
Uniform nodes

Unrelated nodes

(a) Reliability

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 10 20 30 40 50 60

 A
vg

 C
om

po
ne

nt
 T

yp
es

 p
er

 N
od

e

Component Types

Homogeneous nodes
Uniform nodes

Unrelated nodes

(b) Average number of component types
per node

Figure 9: Reliability results for Scenario 2

reliability is kept stable and close to 1 is that of heterogeneous components
and homogeneous nodes. In this case the average reliability of 0.96 indicates
that in more than 90% of experiments we achieve HA. For the rest of the
cases the reliability drops abruptly when more than 30 (heterogeneous com-
ponents with uniform nodes), respectively 40 (heterogeneous components with
unrelated nodes) component types are used in the application. The reason
for this is that when uniform and unrelated nodes are used the chances of
not being able to find space to fit the load of a missing component type are
higher especially if we allocate less powerful machines than the one we relo-
cate from. The large number of heterogeneous components that need to fit
inside every node also contributes to this aspect. However the fact that we
have achieved good results for the case of homogeneous nodes is promising

31

taking into account the fact that a customer usually rents a single type of
resources from a cloud provider.

Conclusively we can argue for this scenario that when uniform or un-
related nodes are used applications should not exceed more than 30 or 40
components as this represents the limit beyond which the algorithm reliabil-
ity starts to decrease rapidly. For homogeneous nodes however this limit is
pushed beyond 60 components.

Figure 9(b) indicates the average number of component types per node
in the three mentioned cases. Ideally the line should have a slope of 1 as
in the case of homogeneous nodes. Still the number of missing component
types ranges from below 8% for unrelated nodes to 17% for uniform nodes.
The reason for the higher values obtained for uniform nodes is that given
the same amount of components we have less nodes assigned in the case of
uniform nodes.

5.2.2. Optimality Test

To test the efficiency and outline the differences of the GA algorithm
(cf. Sect. 4.3.2) from the optimal solution we compared it based on Sce-
nario 1 against the optimal values obtained by solving Relation 14 under
the constraints from Relation 15.

For our testing case, through expansion and replacement, Relation 14
becomes:

f =600α2
1 + 82α2

2 + 83α2
3 + 82α2

4 + 82α2
5 + 600α2

6−
180α1α2 − 180α1α3 − 180α1α4 − 80α2α5−
180 ∗ α5α6 − 180α3α6 − 180α4α6

(20)

where the upper coefficients represent the powers of the αi variables.
As the results were similar we only depict in what follows the values

obtained by generating components based on the extrapolation polynomial
(cf. Sect. 5.1).

In case of homogeneous components and nodes the set of constraints
becomes: {∑6

i=1 0.5αi = 100

αi > 1
(21)

32

Solving this nonlinear system gives (by truncating the double values to
integers) a solution vector of : 〈α〉 = 〈18, 40, 40, 41, 40, 18〉. The solutions
represent the optimal number of component instances for every existing type.
A total of 10 nodes have been allocated during tests for this case. Figure
10 depicts the difference between the number of optimal components and
the ones that were actually allocated (i.e., optimal allocation difference). A
positive difference indicates that the actual number of components is smaller
than the optimal number by exactly the value indicated on the Y axis for
every component type. In contrast negative values show that the number
of instances for the respective component types have exceeded the optimal
values.

The large positive values in Fig. 10 indicate that the average node can
accommodate more components without exceeding their load threshold and
more importantly that the number of nodes could be reduced by migrating
components such that the nodes’ loads would reach the maximum limit τ .
However this is not usually possible as components migrate in groups (i.e.,
vns) and finding the best relocation configuration is difficult to obtain.

 0

 2

 4

 6

 8

 10

 12

 14

 16

-1 0 1 2 3 4 5 6

O
p

ti
m

a
l
A

llo
c
a
ti
o

n
 D

if
fe

re
n
c
e

Component Type

Figure 10: Optimal allocation difference in case of homogeneous components and nodes

When heterogeneous components with homogeneous nodes are considered
the results are similar with those of homogeneous components and nodes. In
this case we obtain a total of 12 allocated nodes and the following optimal
solution vector
〈α〉 = 〈5, 12, 12, 12, 12, 5〉. The optimal allocation difference for this case can
be seen in Fig. 11. As it may be noticed, in this case the algorithm provides
a solution that is closer to the optimal values. Only the first component type
is slightly over allocated but this exception is counterbalanced by the under
allocation found in the case of the other component types. The reason why

33

the algorithm produces solutions that are closer to the optimal one can be
linked to the heterogeneity of the components which allow a greater number
of combinations to take up more of each node’s load.

-2

-1

 0

 1

 2

 3

 4

-1 0 1 2 3 4 5 6

O
p

ti
m

a
l
A

llo
c
a
ti
o

n
 D

if
fe

re
n
c
e

Component Type

Figure 11: Optimal allocation difference in case of heterogeneous components with homo-
geneous nodes

For determining the optimal number of components in case of heteroge-
neous components with uniform nodes we solve the nonlinear optimization
problem for each equation in Relation 16. The obtained result gives the
optimal solution matrix for each of the three allocated nodes:α1

i

α2
i

α3
i

 =

 8 17 17 17 17 8
14 31 30 31 31 14
69 154 152 155 154 69

 (22)

Figure 12 presents the optimal allocation difference in case of uniform
nodes. Because every node has a different number of optimal components
(cf. Relation 16) each subfigure represents the allocation difference on a
distinct node. It can be noticed the highly under-allocated node 3 in Fig.
12(c). Although this is apparently a problem in the allocation algorithm a
quick look at the third row in the optimal solution matrix from Relation 22
provides the answer. Node 3 is a powerful machine that can hold a large
number of components. As the total number of components allocated in
this experiment is of 81 we quickly notice that there are simply insufficient
components to load three nodes close to the threshold τ (cf. Fig. 14(c)).

The case of heterogeneous components with unrelated nodes provides the
following optimal solution matrix for the four allocated nodes:

34

-2

-1

 0

 1

 2

 3

-1 0 1 2 3 4 5 6

O
p

ti
m

a
l
A

llo
c
a

ti
o

n
 D

if
fe

re
n
c
e

Component Type

(a) Node 1

-6

-4

-2

 0

 2

 4

 6

 8

-1 0 1 2 3 4 5 6

O
p

ti
m

a
l
A

llo
c
a

ti
o

n
 D

if
fe

re
n
c
e

Component Type

(b) Node 2

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-1 0 1 2 3 4 5 6

O
p

ti
m

a
l
A

llo
c
a
ti
o

n
 D

if
fe

re
n
c
e

Component Type

(c) Node 3

Figure 12: Optimal allocation difference in case of heterogeneous components and uniform
nodes

α1
i

α2
i

α3
i

α4
i

 =

23 52 50 51 51 23
24 53 55 54 54 25
10 23 23 23 22 10
10 23 23 23 23 10

 (23)

Figure 13 shows the optimal allocation difference for the case of unrelated
nodes. Results are similar with the uniform nodes case (cf. Fig. 12(c)). It can
be noticed that node 4 is underloaded due to the small number of generated
components.

5.2.3. Load Node Test

In this section we test and describe the evolution of the load during
the experiments for our two scenarios. Results for Scenario 1 are depicted

35

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

-1 0 1 2 3 4 5 6

O
p

ti
m

a
l
A

llo
c
a

ti
o

n
 D

if
fe

re
n
c
e

Component Type

(a) Node 1

-15

-10

-5

 0

 5

 10

 15

 20

-1 0 1 2 3 4 5 6

O
p

ti
m

a
l
A

llo
c
a

ti
o

n
 D

if
fe

re
n
c
e

Component Type

(b) Node 2

-2

-1

 0

 1

 2

 3

 4

 5

-1 0 1 2 3 4 5 6

O
p

ti
m

a
l
A

llo
c
a
ti
o

n
 D

if
fe

re
n
c
e

Component Type

(c) Node 3

 0

 2

 4

 6

 8

 10

 12

 14

 16

-1 0 1 2 3 4 5 6

O
p

ti
m

a
l
A

llo
c
a
ti
o

n
 D

if
fe

re
n
c
e

Component Type

(d) Node 4

Figure 13: Optimal allocation difference in case of heterogeneous components and unre-
lated nodes

in Figure 14. We show the load variation due to node allocations and vn
relocations. Dark cells indicate that the node has not been allocated yet.
We were mainly interested in the evolution of the load due to the constant
arrival of new tasks and consequently we did not study the deallocation
problem. The reason was that deallocation implies a simple node removal
including its components which does not influence the load of other nodes
(cf. Fig. 4).

The strongest variation seems to occur when using heterogeneous com-
ponents and homogeneous loads (cf. Fig. 14(b)). The average load has had
a value of 86.25± 10.54 which indicates that although some nodes are fully
loaded others remain with approximately a quarter of their resources unused.
The main reason for this behavior has been identified in Sect 5.2.2 as being
caused by relocations of vns. Having heterogeneous components deployed on

36

Load

 0 2 4 6 8 10 12 14 16 18 20 22
Time 0

 2
 4

 6
 8

 10

Node

 0

 50

 100
Load

-20

 0

 20

 40

 60

 80

 100

(a) Homogeneous components and nodes

Load

 0 2 4 6 8 10 12 14 16 18 20 22
Time 0

 2
 4

 6
 8

 10
 12

Node

 0

 50

 100
Load

-20

 0

 20

 40

 60

 80

 100

(b) Heterogeneous components and ho-
mogeneous nodes

Load

 0 2 4 6 8 10 12 14 16 18 20 22
Time 0

 2

Node

 0

 50

 100
Load

 0

 20

 40

 60

 80

 100

(c) Heterogeneous components and uni-
form nodes

Load

 0 2 4 6 8 10 12 14 16 18 20 22
Time 0

 2

 4

Node

 0

 50

 100
Load

 0

 20

 40

 60

 80

 100

(d) Heterogeneous components and unre-
lated nodes

Figure 14: Average node load for Scenario 1

homogeneous nodes reduces the diversity in the vn load and thus diminishes
the chances of finding suitable places for relocation. Therefore the algorithm
has difficulties in selecting vns that match the empty unused load slots during
the relocation process.

The same behavior can be observed for the case of homogeneous com-
ponents and nodes. In this case the average load is of 93.2 ± 5.86. The
variation is smaller in this case but the reason behind it is the same as the
one indicated in the previous paragraph.

The last two cases involving uniform (cf. Fig. 14(c)) and unrelated nodes
(cf. Fig. 14(d)) clearly depict the allocation process which takes place only
after the existing nodes have reached their load threshold. After that the
allocation of new components takes place only on the new node leaving the

37

existing ones working at full capacity. Despite the small number of allocated
nodes we can safely assume that the overall load evolution will follow pat-
terns similar with those found in the two cases involving homogeneous nodes.
Figures 14(c) and 14(d) also provide a reason for the high optimal allocation
difference found in case of nodes three – uniform nodes (cf. Fig. 12(c)) – and
four – unrelated nodes (cf. Fig. 13(d)): mainly that the difference is caused
by the low loads on these nodes (55 respectively 56).

Figure 15 presents the average load obtained during tests for Scenario
2. As it can be seen the load varies between 82 and 96 out of 100. As it is
undesired to fully load a node because it diminishes its efficiency a load in
the given range is sufficient not to over/under utilize the node. Like in the
reliability tests (cf. Sect. 5.2.1) we notice that the case when heterogeneous
components and homogeneous nodes are used gives the most homogeneous
and higher load: 92.98 ± 1.68. The larger variations observed in case of
uniform and unrelated nodes is expected due to the difficulty of finding good
candidates for fitting vns.

Results have shown that the algorithm produces high loads and for some
cases even homogeneous ones. This is a good indicator of the fact that for
some cases nodes are used at their full potential.

6. Conclusions

This paper has addressed the problem of deploying HA long running ap-
plications on cloud systems. For component based applications, such as Web
2.0 ones, this goal is difficult to achieve as several criteria need to be consid-
ered. These include: scaling the application on the allocated nodes in order
to manage the incoming user requests; keeping nodes within a given load
threshold; and minimizing the application cost. In this paper we provided a
solution for achieving HA distinct from the classic N+M approach, by de-
ploying every application component type on each node. Hence we aimed not
only at minimizing node use by maximizing node load but also at keeping
the application running even if all but one node have failed.

We have proposed two algorithms for achieving application HA. The op-
timal algorithm is presented as a reference model and can be used in case
the load requirement for every component type is known. As an alternative
in case the loads cannot be determined a sub-optimal algorithm is also intro-
duced. To prove the efficiency of the proposed methods we have described
and tested their reliability. Tests on the distance of the sub-optimal schedules

38

from the optimal one as well as on the node load distribution have also been
presented. Results have shown the efficiency of the algorithms especially
when considering heterogeneous components running on top of homogeneous
nodes. For heterogeneous nodes the algorithm still behaves well but experi-
ences a sudden drop in reliability after more than 30 components are used
per application.

Future work involves integrating the algorithms inside the mOSAIC plat-
form and their use as scheduling policies for the intended multi-cloud mid-
dleware.

 82

 84

 86

 88

 90

 92

 94

 96

 10 20 30 40 50 60

 A
vg

 L
oa

d
pe

r
N

od
e

Component Types

Homogeneous nodes
Uniform nodes

Unrelated nodes

Figure 15: Average node load for Scenario 2

Acknowledgment

The work of the author has been partially funded by the European FP7-
ICT project mOSAIC grant no. 256910 and by the Romanian AMICAS
project PN-II-ID-PCE-2011-3-0260.

References

[1] Amazon, Amazon elastic compute cloud (ec2), (accessed Feb 14 2012)
(2012).
URL http://aws.amazon.com/ec2/

[2] Rackspace, Rackspace, (accessed Feb 14 2012) (2012).
URL http://www.rackspace.com/

39

[3] Google, Google appengine, (accessed Feb 13 2012) (2012).
URL http://code.google.com/appengine/

[4] Microsoft, Windows azure, (accessed Feb 14 2012) (2012).
URL http://www.windowsazure.com/en-us/

[5] I. Eucalyptus Systems, Eucalyptus cloud computing software, (accessed
Feb 14 2012) (2012).
URL http://www.eucalyptus.com/

[6] R. Hosting, NASA, Openstack, (accessed Feb 14 2012) (2012).
URL http://openstack.org/

[7] D. Petcu, C. Craciun, N. Neagul, M. Rak, I. Lazcanotegui, Building an
interoperability api for sky computing, in: Proceedings of the 2011 In-
ternational Conference on High Performance Computing and Simulation
Workshop on Cloud Computing Interoperability and Services, 2011, pp.
405–412.

[8] J. Kupferman, J. Silverman, P. Jara, J. Browne, Scaling into the cloud,
(available on-line accessed Jan 29 2012) (2009).
URL http://cs.ucsb.edu/ jkupferman/docs/

ScalingIntoTheClouds.pdf

[9] J. Gray, D. P. Siewiorek, High-availability computer systems, Computer
24 (2002) 39–48.

[10] N. Bobroff, A. Kochut, K. Beaty, Dynamic placement of virtual ma-
chines for managing sla violations., in: Integrated Network Management,
IEEE, 2007, pp. 119–128.

[11] VMware, Vmware high availability, (accessed Feb 15 2012).
URL http://www.vmware.com/files/pdf/ha datasheet.pdf

[12] A. B. Nagarajan, F. Mueller, C. Engelmann, S. L. Scott, Proactive fault
tolerance for hpc with xen virtualization, in: Proceedings of the 21st
annual international conference on Supercomputing, ICS ’07, ACM, New
York, NY, USA, 2007, pp. 23–32.

[13] A. S. Foundation, Apache module mod proxy balancer, (accessed Feb
15 2012).

40

URL http://httpd.apache.org/docs/2.2/mod/

mod proxy balancer.html

[14] Novell, Suse linux enterprise high availability extension, (accessed Feb
14 2012) (2002).
URL http://www.ultramonkey.org/

[15] RedHat, Piranha, ip load balancing, (accessed Feb 14 2012) (2005).
URL http://www.redhat.com/software/rha/cluster/piranha/

[16] Novell, Suse linux enterprise high availability extension, (accessed Feb
14 2012) (2011).
URL http://www.suse.com/documentation/sle ha/index.html

[17] S. Loveland, E. M. Dow, F. LeFevre, D. Beyer, P. F. Chan, Leveraging
virtualization to optimize high-availability system configurations, IBM
Syst. J. 47 (2008) 591–604.

[18] M. A. Oracle, Mysql cluster ndb 6.x/7.x reference guide, (accessed Feb
15 2012).
URL http://dev.mysql.com/doc/#cluster

[19] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Laksh-
man, A. Pilchin, S. Sivasubramanian, P. Vosshall, W. Vogels, Dynamo:
amazon’s highly available key-value store, SIGOPS Oper. Syst. Rev. 41
(2007) 205–220.

[20] F. Machida, M. Kawato, Y. Maeno, Redundant virtual machine place-
ment for fault-tolerant consolidated server clusters., in: NOMS, IEEE,
2010, pp. 32–39.

[21] B. Korte, J. Vygen, Combinatorial Optimization: Theory and Algo-
rithms, 4th Edition, Springer Publishing Company, Incorporated, 2007.

[22] N. R. Gottumukkala, C. B. Leangsuksun, N. Taerat, R. Nassar, S. L.
Scott, Reliability-aware resource allocation in hpc systems, in: Proceed-
ings of the 2007 IEEE International Conference on Cluster Computing,
CLUSTER ’07, IEEE Computer Society, Washington, DC, USA, 2007,
pp. 312–321.

41

[23] N. Gottumukkala, C. Leangsuksun, R. Nassar, M. Paun, D. Sule, S. L.
Scott, Reliability-aware optimal k-node allocation of parallel applica-
tions in large scale hpc systems, in: Proceedings of the 2008 High Avail-
ability and Performance Computing Workshop, HAPCW ’08, 2008.
URL http://www.hpcsw.org/presentations/workshops/

high availability/105.pdf

[24] N. Aggarwal, P. Ranganathan, N. P. Jouppi, J. E. Smith, Configurable
isolation: building high availability systems with commodity multi-core
processors, SIGARCH Comput. Archit. News 35 (2007) 470–481.

[25] IBM, Cloudburst, (accessed Feb 14 2012) (2012).
URL http://www-01.ibm.com/software/tivoli/products/

cloudburst/

[26] M. Mao, J. Li, M. Humphrey, Cloud auto-scaling with deadline and
budget constraints, in: Proceedings of the 2010 11th IEEE/ACM In-
ternational Conference on Grid Computing, Brussels, Belgium, October
25-29, 2010, 2010, pp. 41–48.

[27] S. Chaisiri, B.-S. Lee, D. Niyato, Optimal virtual machine placement
across multiple cloud providers, in: Proceedings of the 2009 4th IEEE
Asia-Pacific Services Computing Conference, 2009, pp. 103–110.

[28] R. Van den Bossche, K. Vanmechelen, J. Broeckhove, Cost-optimal
scheduling in hybrid iaas clouds for deadline constrained workloads, in:
Proceedings of the 2010 IEEE 3rd International Conference on Cloud
Computing, CLOUD ’10, IEEE Computer Society, Washington, DC,
USA, 2010, pp. 228–235.

[29] Y. Zhang, G. Huang, X. Liu, H. Mei, Integrating resource consumption
and allocation for infrastructure resources on-demand, in: Proceedings
of the 2010 IEEE 3rd International Conference on Cloud Computing,
CLOUD ’10, IEEE Computer Society, Washington, DC, USA, 2010, pp.
75–82.

[30] Y. O. Yazir, C. Matthews, R. Farahbod, S. Neville, A. Guitouni,
S. Ganti, Y. Coady, Dynamic resource allocation in computing clouds us-
ing distributed multiple criteria decision analysis, in: Proceedings of the

42

2010 IEEE 3rd International Conference on Cloud Computing, CLOUD
’10, IEEE Computer Society, Washington, DC, USA, 2010, pp. 91–98.

[31] H. Zhong, K. Tao, X. Zhang, An approach to optimized resource schedul-
ing algorithm for open-source cloud systems, in: Proceedings of the The
Fifth Annual ChinaGrid Conference, CHINAGRID ’10, IEEE Computer
Society, Washington, DC, USA, 2010, pp. 124–129.

[32] S. Tayal, Tasks scheduling optimization for the cloud computing sys-
tems, IJAEST 5 (2011) 111–115.

[33] J. Gu, J. Hu, T. Zhao, G. Sun, A new resource scheduling strategy
based on genetic algorithm in cloud computing environment, Journal of
Computers 7 (2012) 42–52.

[34] C. Zhao, S. Zhang, Q. Liu, J. Xie, J. Hu, Independent tasks scheduling
based on genetic algorithm in cloud computing, 2009 5th International
Conference on Wireless Communications Networking and Mobile Com-
puting (2009) 1–4.

[35] A.-M. Oprescu, T. Kielmann, H. Leahu, Budget estimation and control
for bag-of-tasks scheduling in clouds., Parallel Processing Letters 21 (2)
(2011) 219–243.

[36] T. A. Henzinger, A. V. Singh, V. Singh, T. Wies, D. Zufferey, Flexprice:
Flexible provisioning of resources in a cloud environment, in: Proceed-
ings of the 2010 IEEE 3rd International Conference on Cloud Comput-
ing, CLOUD ’10, IEEE Computer Society, Washington, DC, USA, 2010,
pp. 83–90.

[37] T. D. Braun, H. J. Siegel, N. Beck, A comparison of eleven static heuris-
tics for mapping a class of independent tasks onto heterogeneous dis-
tributed computing systems, Journal of Parallel and Distributed Com-
puting 61 (6) (2001) 801–837.

[38] F. Zamfirache, M. Fr̂ıncu, D. Zaharie, Population-based metaheuristics
for tasks scheduling in heterogeneous distributed systems, in: NMA ’10:
Proceedings of the 7th International Conference on Numerical Meth-
ods and Applications, Vol. 6046 of Lecture Notes in Computer Science,
Springer-Verlag, 2011, pp. 321–328.

43

[39] O. P. Leads, Opennebula, (accessed Feb 15 2012).
URL http://opennebula.org/

[40] U. of Chicago, Nimbus, (accessed Feb 15 2012).
URL http://www.nimbusproject.org/

[41] P. Mousumi, S. Debabrata, S. Goutam, Dynamic job scheduling in cloud
computing based on horizontal load balancing, International Journal of
Computer Technology and Applications 2 (5) (2011) 1552–1556.

[42] A. M. Q. Protocol, Amqp 1.0 specification,
http://www.amqp.org/resources/download (accessed Oct 21 2011)
(October 2011).

[43] Microsoft, Microsoft windows server 2003 tech center, (accessed Feb 16
2012).
URL http://www.microsoft.com/technet/prodtechnol/

WindowsServer2003/Library/IIS/

31a2f39c-4d59-4cba-905c-60e7af657e49.mspx?mfr=true

[44] A. S. Foundation, Apache core features, (accessed Feb 16 2012).
URL http://httpd.apache.org/docs/2.0/mod/core.html

[45] R. inc., http://www.rightscale.com (accessed Oct 27 2011) (2009).

[46] A. Chandra, W. Gong, P. Shenoy, Dynamic resource allocation for
shared data centers using online measurements, in: Proceedings of the
2003 ACM SIGMETRICS international conference on Measurement and
modeling of computer systems, SIGMETRICS ’03, ACM, New York,
NY, USA, 2003, pp. 300–301.

[47] E. Caron, F. Desprez, A. Muresan, Forecasting for grid and cloud com-
puting on-demand resources based on pattern matching, Cloud Comput-
ing Technology and Science, IEEE International Conference on 0 (2010)
456–463.

[48] M. Finger, G. C. Bezerra, D. R. Conde, Resource use pattern analysis for
predicting resource availability in opportunistic grids, Concurr. Comput.
: Pract. Exper. 22 (2010) 295–313.

44

[49] S. Islam, J. Keung, K. Lee, A. Liu, Empirical prediction models for
adaptive resource provisioning in the cloud, Future Generation Com-
puter Systems 28 (1) (2012) 155 – 162.

[50] M. Rausand, A. Høyland, System reliability theory: models, statistical
methods, and applications, Wiley series in probability and statistics:
Applied probability and statistics, Wiley-Interscience, 2004.

[51] T. Tobita, H. Kasahara, A standard task graph set for fair evaluation of
multiprocessor scheduling algorithms, Journal of Scheduling 5 (5) (2002)
379–394.

[52] D. G. Feitelson, Workload modeling for computer systems performance
evaluation (February 2011).
URL http://www.cs.huji.ac.il/ feit/wlmod/

[53] N. Vicari, Modeling of internet traffic: Internet access influence, user
interference, and tcp behavior, Ph.D. thesis, University of Würzburg (4
2003).

45

