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Abstract— Planning feasible paths in 3D environments is a
challenging problem, mainly in forestry environments due to,
for instance, the rough and slippery terrain or the challenges
for perception, as those caused by the high amount of trees,
wind, and general unstructured nature of the environment. This
paper presents a work in progress to propose an innovative
method for 3D local planning in outdoor environments, to fa-
cilitate autonomous navigation of a forestry Unmanned Ground
Vehicle. The proposed method builds on the ROS navigation
stack integrating a module that analyses the gradient of the
terrain to quantify slopes on the robot’s path, and taking
into consideration its mechanical effort when planning paths
to traverse.

I. INTRODUCTION

Reliable outdoor autonomous navigation, particularly in
forestry scenarios, is still a major challenge due to the dy-
namic conditions of outdoor environments such as weather,
illumination and vegetation characteristics changes make it
difficult to build a system that can robustly navigate all
the time in all conditions [1]. The forest environment is
unstructured making it difficult to perceive and to correctly
localize in at all times [2]; the estimation of wheel odom-
etry that is often a useful source for localization in most
environments may not be usable in forests, because of the
rough terrain conditions and slippage [3]. Forestry vehicles
are also typically large heavy-duty machines, making their
deployment process a hard and tedious task with safety
concerns.

The main goal of this work is to propose local planning
methods that allow a forestry robot to safely navigate from
an initial to a target configuration while avoiding obstacles.
Specifically, we:

1) Present a technique that uses a 3D pointcloud from
the robot’s sensors to estimate the cost of traversing
each individual point in space, producing a costmap
for navigation;

2) Test the feasibility and applicability of existing local
planning methods in forestry environments in light of
the mechanical costs of traversal;
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Fig. 1. The Ranger UGV.

3) Demonstrate that existing techniques do not take me-
chanical cost into account, and can thus be refined to
produce more economical trajectories.

We tested the approach in a forestry robot simulator,
developed for the SEMFIRE R&D project1, allowing us to
perform repetitive testing without the related costs of using
the real large-scale rig, presented in Fig. 1. This robot – the
Ranger UGV – is the main actor of the SEMFIRE (Safety,
Exploration, and Maintenance of Forests with the Integration
of Ecological Robotics) project, which proposes the devel-
opment of a robotic system to reduce fuel accumulation
in forests, by eliminating flammable material for wildfire
prevention, thus assisting in landscape maintenance tasks [4].

This paper is structured as follows: In Section II a lit-
erature review focused in 3D navigation is presented. In
Section III is presented the approach proposed by this paper.
In Section IV-A is presented experimental setup for the the
tests and in IV-B the obtained results and their discussion.

II. RELATED WORK

Robot navigation is a common ability that enables the
robot to reach the destination required by a certain job,
planning and executing trajectories safely, both for itself, but
also for humans and other entities that might be sharing its
workspace [5].

Planning feasible paths in fully three-dimensional envi-
ronments is a challenging problem [3]. Existing algorithms
typically require the use of limited 3D representations that
discard potentially useful information. In the literature, we
can find several works on 3D navigation not just for ground

1http://semfire.ingeniarius.pt/, last accessed 2020/09/16.
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Fig. 2. Flow diagram of the implemented algorithm to estimate the cost of traversing each individual point in space.

robots, such as [6], [7], [8], but also aerial [9], [10], [11] and
underwater robots [12].

As mentioned in Section I, we aim to allow a robot to
safely navigate in a 3D forestry environment. Benefiting from
existing local planning methods, we propose an algorithm
that distinguishes traversable areas and integrates the cost
of the mechanical effort of the robot in a 2D Grid, to be
considered for local planning. In a nutshell, we consider
the mechanical effort as a quantity that accounts for the
additional burden of the UGV when climbing hills in rough
terrain environments. In [13], a similar approach to ours
is followed. The authors represent the traversability map
in a 2D Grid, but instead of each cell representing the
mechanical cost of that point they represent the probability
that the vehicle can successfully drive over that cell.

Other seminal research works on traversability analysis
methods are available in the literature [14], [15], and in
this work, we make use of the Robot Operating System
(ROS) to develop our own method to estimate the cost of
traversing the environment. ROS includes some ready-to-use
methods, such as navigation mesh2, adopted in [16].
The authors refer to this method as a 3D representation of
estimation of distances, height differences, and roughness.
If specific safety thresholds are violated, these areas will
be marked as lethal obstacles. Similarly to [13], they only
evaluate if the area is traversable, not taking into account
the mechanical effort of the robot. In [17], the authors use
a “perceive-decide” paradigm on an Elevation Map of the
terrain to identify traversable areas, and based on this map
the best trajectory is selected. There are other packages in
ROS, such as traversability estimation3, which
use the elevation map and traversability estimation filters to
generate a traversability map.

For local planning, some of the works mentioned earlier
use existing methods like [6], in which the authors integrate
their system with ROS, using base local planner4

with the Rollout Trajectory Planner (RTP) and move base5

as the low-level controller.

2https://github.com/uos/mesh_navigation
3https://github.com/leggedrobotics/

traversability_estimation
4http://wiki.ros.org/base_local_planner
5http://wiki.ros.org/move_base
All URLs last accessed 2020/09/16.

Fig. 3. 3D representation of the LIDAR information projected in a 2D grid
with dimension 10 meters and resolution 0.3 meters/cell before and after
the interpolation process.

III. PROPOSED APPROACH

We have developed an algorithm that uses a 3D pointcloud
from the robot’s sensors to estimate the cost of traversing
each individual point in space, producing a costmap for
navigation. This allows us to quantify the mechanical effort
of traversing each cell of a map, enabling the robot to decide
to traverse paths that are sub-optimal according to traditional
metrics, such as total distance or time, while optimizing its
use of other resources, such as energy. An overview of this
process is shown in Fig. 2.

The first step is a ROS Interface, in which we subscribe to
the front and back 3D LIDAR Point Clouds available in the
Ranger UGV. The points of each LIDAR are transformed
from their respective frame into the robot base frame and
concatenated in a single matrix.

We used the ROS Navigation Stack, a framework designed
to generate minimal but complete autonomous navigation
solutions, thus speeding-up the implementation processes
required to obtain a robot navigation solution.

This framework traditionally operates in 2D, which is
a disadvantage when it is necessary to plan for a 3D
environment. To account for this, we can project the 3D
LIDAR information into a 2D grid, so that information is
represented by:



(a) Gradient arrows of the environment. (b) Resulting costmap based on the gradient and effort.

Fig. 4. Graphics representing a costmap with dimension 10×10 meters and resolution 0.3 meters/cell. In (a) we can see some outliers, that are points
with a very high gradient norm, and in (b) we can see the represented obstacles, such as trees in the environment.

Φ(x, y) = z, (1)

where Φ(x, y) is one cell of the grid, and z is the height of
detected LIDAR obstacles in the corresponding discretized
cell x, y.

The main output of the technique is a spatial grid that
contains a specific cost per cell. The size and the resolution
of the grid can be chosen by the user as a parameter of the
approach. Due to their discrete nature, each cell may contain
more than one LIDAR point. In these cases, the median is
used as a representative value for the whole cell, as shown
in the left picture of Fig. 3. Because this procedure results
in many empty cells, it is necessary to perform interpolation
to obtain an estimation of a value for those empty cells.
Our approach is to apply Nearest Neighbour Interpolation by
analysing the neighbour cells in row, column and diagonals
with information and apply the median, as before, to estimate
the cell value.

Strong discontinuities in the resulting map cause undesir-
able artifacts when interpolated. Thus, we have opted to filter
out these points from the interpolation procedure according
to:

|zi − zaverage| < ρ, (2)

where zi is the height estimation of each of the neighbours
of the current cell, zaverage is the weighted average of all the
neighbours, and ρ the threshold applied. Note that the weight
of each neighbour is inversely proportional to the euclidean
distance between the current cell and the neighbour cell, and
the ρ threshold has been empirically adjusted to 2 m allowing
for appropriate smoothing of the interpolation, resulting in
the representation seen on the right of Fig. 3.

After the interpolation we calculate the gradient (Eq. 3) on
each cell to obtain the inclination in each direction, Fig. 4(a):

∇z(x, y) =<
∂z

∂x
(x, y),

∂z

∂y
(x, y) > (3)

We define effort ξ, as:

ξ = cos(θ), (4)

where θ is the angle between two vectors: the vector that
connects the position of the robot with the position of the
cell we are currently analyzing, and the gradient vector in
that cell. Because the gradient direction is the direction in
which the function increases more quickly, when the effort
is maximum (ξ = 1) we are facing an upward slope, and
when minimum (ξ =−1), a downward slope.

In order to build a costmap of the surrounding environ-
ment, all cells with gradient norm above a certain threshold
are automatically considered as non-traversable; to other
cells, we apply the product between the gradient norm and
the so-called effort. Thus, we obtain a 2D Occupancy
Grid Map as in Fig. 4(b), where the black cells correspond
to the non-traversable areas.

This approach was then integrated back into move base.
For local planning we are using the base local planner
ROS package. This planner uses costmaps determine the
optimal trajectory according to known costs between the
target points, using a brute-force approach. To integrate our
map with this package we made move base subscribe
the our new map topic, so that it could be included in
the data structures that base local planner analyses to
calculate the cost of traversing each cell, which it uses to
score each possible trajectory.

IV. EXPERIMENTS

We have carried out experiments to demonstrate that
existing local planning methods in forestry environments
do not take mechanical cost into account, and can thus be
refined to produce more economical trajectories, in light of
our definition of effort (see claims 2) and 3) in Section I).



(a) Typical simulator scene. (b) Simulated environment in rviz.

Fig. 5. Images representing the same scenario, in (a) within the Unity simulator, and in (b) the information that the sensors perceive from robot
surroundings, as shown in rviz.

(a) First scenario. (b) Second scenario. (c) Third scenario.

Fig. 6. Simulator scenarios where the comparison tests of the approaches were carried out.

A. Experimental Setup

As mentioned in Section I, we have used a Unity-based
simulator that realistically simulates a 3D forest environment.
In Fig. 5(a) we show an image of a typical scene in the
simulator. The simulated Ranger UGV is equipped with two
3D LIDARs, that are used as source data for our algorithm.
In Fig. 5(b), we can see the information collected by the front
(green dots) and back (red dots) LIDARs, as well as the local
2D Occupancy Grid Map created with our algorithm.

We compare the default version of
base local planner and dwa local planner
available in ROS, measuring distance traveled, the time it
took to get to the target point, the total cost (T ), defined as:

T =

N∑
i

(∇zi), (5)

where ∇zi corresponds to the z gradient value every 0.1s of
the trajectory and T the sum of all the N z gradient values.
The Upward Cost (τ ), defined as

τ =

{∑n
i (∇zi), if ∇zi > 0

0, otherwise,
(6)

corresponding to the sum of the n positive z gradient values,
that is, the mechanical effort for the same goals given to the
robot. We tested different scenarios (cf. Fig. 6):

1) One to validate the metrics, using a simple planar
scenario with some obstacles, Fig. 6(a);

2) In the second one, we used a forestry scenario, provid-
ing a minimally flat goal, with small map elevations,
Fig. 6(b);

3) In the third goal, we intend the robot to go through a
more challenging forestry scenario, with large hills, to
check whether the robot can overcome them, Fig. 6(c).

B. Results and Discussion

Given the results in the Table I, we can observe that
existing techniques make efficient use of mobility resources:
they plan trajectories that take the robot from A to B in
a quick, efficient manner. In the first test, the robot just
had to go through a planar scenario, so as expected both
algorithms chose the shortest path, and the traveled distance
is the same. Being a planar scenario it was expected that
both algorithms obtained a total cost very close to zero,
with a small variance. The dwa local planner even
obtained a very small negative total cost T , meaning that



(a) Resulting z (left graph) and z gradient (right graph) values as a function of time of dwa local planner.

(b) Resulting z (left graph) and z gradient (right graph) values as a function of time of base local planner.

Fig. 7. Graphs obtained from the z values and the z gradient, with the two algorithms along the third scenario.

there was a slightly greater negative variation of the gradient
than positive along the path. The dwa local planner
tends to be slightly slower, taking more time to reach the
goal, with only an average speed of 0.459 m/s, while the
base local planner obtained an average speed of 1.180
m/s, close to the maximum speed of the robot (1.5 m/s).

However, they do not take mechanical cost into account
in light of our definition of effort. As said in the last
paragraph, both algorithms tend to choose the shortest path,
not considering other costs. In Fig. 7, and in Tables I-III
we can see that both algorithms prefer to go through a
big climb, presenting a high Upward Cost (τ ), instead of
circumventing it. In Fig. 5(a) we can see that some hills can

be circumvented, preventing the high mechanical effort.
Therefore, these can be refined to produce more econom-

ical trajectories, avoiding slopes by preventing the robot
to just choose the shortest path. In order to maximize
the autonomy or minimize the energetic costs, the robot
should mainly avoid steep climbs to reduce substantially the
mechanical effort involved in the planned trajectory path.

V. CONCLUSION

This paper presents a work in progress on a technique
to estimate the cost of traversing each individual point in
space. The method is grounded on prioritizing paths that
minimize the mechanical effort to the robot. We have defined



TABLE I
RESULTS FOR THE FIRST SCENARIO

Approach Traveled Distance (m) Time (s) T τ

base local planner 38.680 32.779 0.00029 0.006
dwa local planner 38.647 79.719 -0.00026 0.001

TABLE II
RESULTS FOR THE SECOND SCENARIO

Approach Traveled Distance (m) Time (s) T τ

base local planner 23.366 25.559 0.2706 0.7899
dwa local planner 23.335 48.36 0.276 0.842

TABLE III
RESULTS FOR THE THIRD SCENARIO

Approach Traveled Distance (m) Time (s) T τ

base local planner 17.670 28.98 0.390 0.4646
dwa local planner 16.88 43.659 0.403 0.6117

metrics and tested competing techniques to determine how
well they fared according to our standards. We can conclude
that there is room for improvement and, thus, this research
will continue.

In the short term, besides testing additional interpolation
methods, and to generally improve, document and make the
proposed approach available to the community, we aim to
obtain quantitative results comparing the travel time and
energy spent when taking into consideration the mechanical
effort. Also, we would like to propose metrics to answer
questions such as: “Is circumventing a hill better than driving
on it considering that a larger route will imply also additional
power consumption to some extent?”. Future work will tackle
two main fonts: (1) we will compare our approach with the
standard techniques; (2) when a stable approach is proposed,
tests will be transferred to the real robot – the Ranger, a
4000 kg heavy-duty UGV, based on the Bobcat T190 (see
Fig. 1).
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